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SUMMARY 

Population-based studies of copy number variations (CNVs) and regions of 

homozygosity (ROHs) have received considerable attention over the past few years. In 

addition, CNVs and ROHs were also found to be associated with various human complex 

diseases and traits such as schizophrenia, autism and height. Genome-wide mapping of 

CNVs and ROHs have been previously performed in European, East Asian and African 

populations using high-density SNP genotyping arrays. However, a comprehensive 

mapping study of CNVs and ROHs in the Singapore and Swedish populations has not 

been conducted previously. Therefore, the primary aim of this thesis was to detect and 

describe the characteristics of CNVs and ROHs in these two populations. A total of 292 

samples from three Singaporean populations (99 Chinese, 98 Malay, and 95 Indian 

individuals) and 100 samples from the Swedish population were genotyped using the 

Affymetrix Genome-Wide Human SNP Array 6.0 or/and Illumina Human1M BeadChip 

arrays. Subsequently, several hundred CNV loci and ROH loci were found in both 

populations. More interestingly, some of these CNV loci overlapped with known disease-

associated or pharmacogenetic-related genes and showed substantial population 

frequency differences.  Novel CNV loci that were not previously reported in public 

databases were also identified. Comparisons between these two populations and with the 

International HapMap III populations found substantial differences in their CNV and 

ROH profiles. Collectively, these results highlight the importance of characterizing 

CNVs and ROHs in individual populations. The studies in this thesis will establish a 

resource of CNVs and ROHs for future disease association studies in the Singapore and 

Swedish populations.  
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CHAPTER 1 – INTRODUCTION 

A new era of copy number variations (CNVs) discovery began when two separate 

studies, published concurrently in 2004, identified several hundred deletions and 

duplications in the human genome1, 2. The comprehensive detection and characterization 

of CNVs has begun to lay the foundation to improve our understanding of human genetic 

variation and for deciphering the role of CNVs in the risk of complex diseases. 

Subsequently, recent evidence has linked CNVs to various complex diseases such as 

cancers, autoimmune diseases, schizophrenia and autism3-8. 

 

Over the past several years, most of the CNV data were generated by microarrays9, 10. 

However, a paradigm shift in the discovery of CNVs and copy-neutral variations was 

attributed to the development of a sequencing-based method known as paired-end 

mapping (PEM). This method was first demonstrated to be powerful in detecting 

structural variations (CNVs and copy-neutral variations) using next-generation 

sequencing (NGS) technologies in 200711. Further studies also made use of the ability of 

NGS to generate several hundred million short sequence reads where CNV detection was 

based on the abundance or density of the sequence reads aligned to a reference genome. 

This approach is known as depth-of-coverage (DOC)12.  

 

However, at the time when our CNV project was started in 2007 as part of the Singapore 

Genome Variation Project13, the sequencing-based methods to detect CNVs were still 

developing and were not well-established. The Singapore Genome Variation Project 

aimed to characterize the extent of common single nucleotide polymorphisms (SNPs) and 
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the patterns of linkage disequilibrium (LD) and haplotype in the human genome  of DNA 

samples from each of the three populations in Singapore, i.e., Chinese, Malays and 

Indians (http://www.nus-cme.org.sg/SGVP/). Therefore, two high-density SNP 

genotyping arrays were chosen for the project. These arrays were the Affymetrix 

Genome-Wide Human SNP Array 6.0 and the Illumina Human1M BeadChip. As a result, 

the signal intensity data of these two genotyping arrays were also used for this CNV 

detection project. In addition, in collaboration with the Department of Medical 

Epidemiology and Biostatistics, Karolinska Institutet, Sweden, DNA samples from the 

Swedish population were also genotyped by the Affymetrix Genome-Wide Human SNP 

Array 6.0 for the project.  

 

My thesis is divided into four studies (Study I – IV), each with a specific aim. The 

primary aim was to identify CNVs and study their population characteristics using high-

density SNP genotyping arrays in the Singapore population (Study I) and the Swedish 

population (Study II). The motivation for these studies was that CNV data in the 

Singapore and Swedish populations is limited.   

 

Besides our SNP dataset, the CEL-files of the Affymetrix SNP Array 6.0 for the seven 

populations in the International HapMap III project were downloaded from the 

International HapMap ftp site 

(ftp://ftp.ncbi.nlm.nih.gov/hapmap/raw_data/hapmap3_affy6.0/). This allowed us to 

investigate population differences of CNV profiles between the HapMap III and 

Singapore populations (Study III). It is important to study population differences, 

http://www.nus-cme.org.sg/SGVP/�
ftp://ftp.ncbi.nlm.nih.gov/hapmap/raw_data/hapmap3_affy6.0/�
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particularly for those CNVs that overlap with known disease-associated genes, 

pharmacogenetics genes or other medically importance genes which could have different 

impacts in different populations4, 14, 15. Currently, the amount of data documenting the 

differences of CNVs in various populations is limited.  

 

In addition to CNVs, regions of homozygosity (ROHs) can be also detected using high-

density SNP genotyping arrays. ROHs are more abundant in the human genome of 

outbred populations than previously thought16. In addition, studies have identified ROHs 

to be associated with complex phenotypes such as schizophrenia, late-onset of 

Alzheimer’s disease and height17-19. This suggests that studying ROHs may be useful for 

identifying genetic susceptibility loci harboring recessive variants for complex diseases 

and traits. Therefore, the secondary aim of this thesis was to identify and study ROH 

distribution patterns using the same set of SNP data (the Affymetrix SNP Array 6.0 and 

Illumina 1M datasets) in the Singapore population (Study IV). However, for the Swedish 

population, the ROH analysis was included in Study II.  

 

In summary, the four studies in my thesis are:  

Study I – Genomic copy number variations in three Southeast Asian populations  

Study II – A population-based study of copy number variants and regions of 

homozygosity in healthy Swedish individuals  

Study III – Copy number polymorphisms in new HapMap III and Singapore populations  

Study IV - Regions of homozygosity in three Southeast Asian populations  
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CHAPTER 2 - BACKGROUND 

2.1. Human genetic variations 

Human genetic variations are the differences in the DNA sequence within the genome of 

individuals in populations and can take many forms, including single nucleotide changes 

or substitutions, tandem repeats, insertions and deletions (indels), additions or deletions 

that change the copies number of a larger segment of DNA sequence (i.e. CNVs), other 

chromosomal rearrangements such as inversions and translocations (also known as copy-

neutral variations), and ROHs (Figure 1 and Table 1). These genetic variations span a 

spectrum of sizes from a single nucleotide to megabases. Single nucleotide substitutions 

or alterations involve a change in a single nucleotide at a particular locus in the DNA 

sequence, such as restriction fragment length polymorphisms (RFLPs), single nucleotide 

polymorphisms (SNPs) and single nucleotide indels. On the other extreme, CNVs, 

inversions, translocations and ROHs encompass larger segments of DNA sequences that 

range from kilobases to megabases (>1kb), whereas tandem repeats and indels fall 

between these extremes (>1bp to 1kb)20, 21. 
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Table 1 – Categories of human genetic variations 

Category Genetic variation  Size  

Single nucleotide changes RFLP, SNP, single nucleotide 

indel 

Single nucleotide  

Tandem repeats STR 

VNTR 

2 – 8bp 

>8bp 

Indels Small indel 

Intermediate indel 

2 – 100bp 

>100bp - <1kb  

Structural variations Deletion, duplication, inversion, 

translocation 

>1kb 

Copy-neutral loss of 

heterozygosity  

ROH >1Mb 

 

 
Figure 1 – Types of DNA sequence or genetic variations in the human genome. The 

genetic variations can be broadly divided into 5 categories (a) single nucleotide changes, 

(b) tandem repeats, (c) indels, (d) structural variations (CNVs and copy-neutral 

variations) and (e) ROHs.   
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In general, these genetic variations occur spontaneously in the human genome, and are 

the footprints of alterations that occur in DNA replication during cell division. External 

agents, such as viruses and chemical mutagens, can also induce changes in the DNA 

sequence. The occurrence of each type of genetic variation is mediated by different 

molecular mechanisms, although most of these are currently unclear. For example, 

several mechanisms have been proposed to explain the widespread occurrence of CNVs 

in the human genome, such as non-allelic homologous recombination and non-

homologous end joining22. For ROHs, the homozygosity could have resulted from 

uniparental isodisomy and autozygosity16. Regardless of the molecular mechanisms that 

generated these genetic variations, they can be broadly classified as either somatic or 

germline variations depending on whether they arose during mitosis or meiosis, 

respectively. 

 

The understanding of human genetic variations has advanced considerably over the past 

30 years. Before the new millennium, the physical mapping of genetic variations such as 

RFLPs (in the 1980s)23 and tandem repeats (in the 1990s)24 was accomplished. By 

contrast, other genetic variations such as SNPs25, indels26, 27, CNVs28-30 and ROHs16 were 

identified after the turn of the new millennium. In addition to physical mapping, their 

biological functional roles, for example, their effects on or associations with mRNA 

expression levels, alternative splicing processes and other molecular and regulatory 

processes are now better understood31-34. Furthermore, these genetic variations were also 

found to be associated with various human diseases, including monogenic and complex 

diseases4, 17, 34-37. Presently, research in genetic variation is drawing much attention and 
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effort from the genetics community, as is evident from the initiation of the 1000 

Genomes Project. A major aim of this project is to construct the most detailed map of 

genetic variations in the human genome. The pilot phase of the project was completed in 

2010 (see section 2.10)38.  

 

2.2. Categories of genetic variations 

There is still no clear consensus on how to define and categorize genetic variations. For 

example, SNPs are defined as single nucleotide substitutions; occasionally single 

nucleotide insertions or deletions also fall under this category (Figure 2a). Point 

mutations include both single nucleotide substitutions and single nucleotide indels with 

population frequencies of less than 1%. This is different from polymorphisms, when the 

population frequency is higher than the arbitrary cutoff of 1%.  

 

 
Figure 2a – Single nucleotide changes (adapted from Ku et al. (2010) J. Hum. Genet. 

55:403-415)21 

 

Tandem repeats can be broadly divided into two classes: short and variable number 

tandem repeats (STRs and VNTR). STRs usually refer to tandem repeats in which the 

sequence length is arbitrarily set at eight nucleotides or less, and VNTRs are longer 
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tandem repeats (Figure 2b). They are also known as microsatellites and minisatellites 

respectively. The most common types of microsatellites are di-, tri- and tetra-nucleotide 

repeats. However, repeats of identical nucleotides of several bases or longer in the length 

are known as homopolymer sequences, for example, GGGGG or AAAAA. Although the 

sequence in the tandem repeats is simple compared with other more complex DNA 

sequence changes or rearrangements, these simple sequences can be repeated up to 

hundreds of times, thus creating very high heterozygosity or allelic diversity20, 21, 39, 40.  

 

 
Figure 2b – Tandem repeats (adapted from Ku et al. (2010) J. Hum. Genet. 55:403-

415)21 

 

The boundary or distinction between CNVs and indels is even more unclear. In the 

Database of Genomic Variants (DGV; http://projects.tcag.ca/variation/), deletions and 

duplications/insertions larger than 1kb are classified as ‘CNVs’, whereas those between 

100bp to 1kb are grouped as ‘InDels’. Table 2 summarizes the number of indels, CNVs 

and inversions cataloged in the DGV. As such, the remaining several hundred thousands 

of indels in the range of several nucleotides to tens of nucleotides, which were identified 

in the recent whole-genome resequencing studies, currently do not have their own 

category41-47. For example, Wang et al. (2008)43 found approximately 140,000 indels 

http://projects.tcag.ca/variation/�
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within 1-3bp in the Han Chinese Yan Huang (YH) genome, and approximately 400,000 

indels defined from 1 to 16bp were also detected in the African NA18507 genome by 

Bentley et al. (2008)44. Thus, perhaps a new category such as ‘short indels’ (<100bp) is 

needed (Figures 2c and 2d). Similar to SNPs, common CNVs with population frequencies 

of 1% or higher are known as copy number polymorphisms (CNPs)29.  

 

 
Figure 2c – Indels (adapted from Ku et al. (2010) J. Hum. Genet. 55:403-415)21 

 

 
Figure 2d - Structural variations (adapted from Ku et al. (2010) J. Hum. Genet. 55:403-

415)21 

 

 

 



26 

 

Table 2 – Summary statistics of the DGV 

DGV entries Number 

Total entries 101923 

CNVs 66741 

Inversions 953 

InDels (100bp – 1kb) 34229 

Total CNV loci 15963 

*Articles cited: 42 **Last updated: Nov 02, 2010 

 

However, apart from single nucleotide changes, such as RFLPs and SNPs, all other 

genetic variations can be broadly grouped under the umbrella of structural variations48. It 

is important to note that these classifications are based primarily on patterns of changes in 

DNA sequence and an arbitrary definition of size. There is no consideration to the 

underlying biological mechanisms or their downstream functions that mediated their 

occurrences.  

 

2.3. The evolution of genetic markers in disease gene mapping 

Genetic variations in the human genome are useful as genetic markers for many different 

applications. These include: 

(a) forensic investigations (for example, genetic or DNA fingerprinting)49  

(b) routine clinical tests (for example, human leucocyte antigen typing for 

hematopoietic stem cell or organ transplantation)50  

(c) prediction of drug responses or the tailoring of prescription doses (for example, 

genotyping tests for the SNPs in the thiopurine methyltransferase gene to predict 

patient responses to 6-mercaptopurine)51   
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(d) population genetics studies (for example, studies of human migration patterns)52  

(e) genetic markers in disease gene mapping, such as family linkage and genetic 

association studies to identify the susceptibility loci or genes for monogenic and 

complex diseases.  

 

Different genetic variations demonstrate different characteristics. Tandem repeats such as 

minisatellites and microsatellites are highly variable (polymorphic) in human 

populations. Therefore, they have higher allelic states and are more informative than the 

biallelic genetic markers, such as SNPs. Unlike SNPs in which a single nucleotide 

substitution will only give rise to two alleles, each repeat in minisatellites and 

microsatellites is considered as one allelic state. The genetic variations that occur in more 

than two allelic states are known as multiallelic markers. Tandem repeats have been 

widely used in genetic fingerprinting and as the genetic markers in linkage studies to 

locate the chromosomal regions harboring the mutations or genes for monogenic or 

familial disorders, complex diseases and quantitative traits53-56. Although tandem repeats 

are more informative than SNPs at the individual marker level, they are fewer in number 

than the several million SNPs in the human genome. Thus, tandem repeats are not ideal 

genetic markers for applications that require high marker density or resolution, such as 

genome-wide association studies (GWASs). In GWAS, a large number of genetic 

markers spanning the whole genome are required to achieve comprehensive coverage and 

adequate statistical power to detect unknown disease variants through LD57, 58.  
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The rapid advances of high-throughput SNP genotyping technologies have enabled the 

genotyping of up to one million SNPs to be done efficiently on thousands of samples in 

GWAS. In contrast, no high-throughput method has been developed to assay 

microsatellites on a genome-wide scale59-61. This technological development, together 

with their abundance in the human genome, has resulted in SNPs becoming the primary 

genetic markers used in more than 500 GWAS (A Catalog of Published Genome-Wide 

Association Studies: http://www.genome.gov/26525384). Almost all the GWAS have 

used the commercially available whole-genome SNP genotyping arrays from Illumina 

and Affymetrix. 

 

Although SNPs have been studied in detail over the past decade, progress in the studies 

of other genetic variations, such as indels, CNVs and ROHs has been slow. CNVs started 

gaining more attention from the genetics community when several hundreds of deletions 

and duplications were first reported in 20041, 2. Similarly, no large-scale attempt was 

made to identify indels until 2006, where a study by Mills et al. found several hundred 

thousand indels in the human genome26. The high frequency of ROHs in the genomes of 

outbred populations was also underappreciated until the first report in 200616. Finally, the 

richness of genetic variations in the human genome has recently been further 

corroborated by several whole-genome resequencing studies, revealing a high frequency 

of new SNPs, indels, CNVs and other structural variations (Figure 3a and 3b). NGS 

technologies have facilitated and accelerated the process of identifying genetic variations 

through whole-genome resequencing and making the 1000 Genomes Project technically 

http://www.genome.gov/26525384�
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feasible62-65. Several methods to detect structural variations based on NGS data were also 

developed (these methods will be discussed in sections 2.6. and 2.7).   

 

 
Figure 3a – The proportion of new SNPs identified in whole-genome resequencing 

studies (adapted from Ku et al. (2010) J. Hum. Genet. 55:403-415)21 
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Figure 3b – The proportion of new indels identified in whole-genome resequencing 

studies (adapted from Ku et al. (2010) J. Hum. Genet. 55:403-415)21 

* 89,679 insertions up to 3bp, 124,024 deletions up to 11bp, 12,826 larger indels. 67% of 

small indels in dbSNP (i.e., insertions up to 3bp and deletions up to 11bp) 

** Approximately 0.4 million indels were identified and it was reported that 

approximately half of the indels are corroborated by entries in dbSNP 

 

In recent years, many studies have directly examined the associations of CNVs with 

complex diseases using SNP genotyping or comparative genomic hybridization (CGH) 

arrays. These studies have yielded exciting results for several diseases, such as 

schizophrenia and autism66-68. This further supports the use of CNVs as genetic markers 

to uncover new susceptibility loci for future disease association studies. Interestingly, 

genome-wide homozygosity mapping approaches have also been applied to dissect the 

genetic basis of complex diseases and have successfully identified a number of 

susceptibility loci for schizophrenia17. Conversely, short indels have not been directly 

interrogated in GWAS, but how much they can be tagged indirectly through LD by the 
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SNPs in genotyping arrays is unclear. Unlike CNVs and ROHs, which can be studied by 

SNP genotyping arrays, no high-throughput method has been developed to investigate 

short indels on a genome-wide scale. Direct detection and interrogation of short indels 

requires sequencing-based methods, as demonstrated in the whole-genome resequencing 

studies. As a result they cannot be effectively used as genetic markers in GWAS at the 

present time. 

 

2.4. A new era of CNVs discovery through microarrays 

A new era of CNVs discovery began when two separate studies, published concurrently 

in 2004, identified several hundred deletions and duplications in the human genome. 

Historically, large deletions and duplications were documented decades ago in clinical 

cytogenetics studies and found to cause various genomic or cytogenetic disorders69. The 

distinguishing feature of the recent studies was that these CNVs were more prevalent in 

the human genome than previously expected. These changes in copies number also did 

not result in any apparent phenotype or disorder and these regions of variable copies were 

found in the genomes of phenotypically normal individuals1, 2. As these submicroscopic 

(<5Mb) deletions and duplications are beyond the detection limit of traditional 

cytogenetics tools, such as molecular fluorescence in situ hybridisation (FISH), these 

recent discoveries can be credited to the use of whole-genome microarray technologies10. 

The term CNV was first introduced in 2006, and it is generally defined as additions or 

deletions in the number of copies of a particular segment of DNA (larger than 1kb in 

length) when compared with a reference genome sequence70.  
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Although the early whole-genome microarray studies discovered several hundred CNVs, 

it was widely believed that the number of CNVs detected is likely to be under-estimated. 

For example, Sebat et al. (2004) detected a total of 221 CNVs in 20 individuals with an 

average CNV length of 465kb. These studies  used ‘low-resolution’ microarrays such as 

ROMA (representational oligonucleotide microarray analysis) containing 85,000 probes 

with a resolution of approximately one probe for every 35kb1, and the BAC-CGH array 

with a resolution of approximately one probe for every 1Mb2. Furthermore, these studies 

investigated a small sample size of only tens of individuals, which limit the detection of 

less common CNVs. CNVs smaller than 50-100kb will also not be detected as their size 

is below the resolution limits of these microarrays.  

 

A later study by Tuzun et al. (2005) showed that approximately 85% of the 297 identified 

structural variations (139 insertions, 102 deletions and 56 inversions) were not detected 

by the two earlier studies. However, this study used a sequencing-based method, where 

the fosmid paired-end sequences were sequenced. Many of the structural variations that 

are being identified using this sequencing-based method are beyond the resolution limit 

of ROMA and the BAC-CGH microarrays. Inversions are also undetected by 

microarrays1, 2, 71. The discovery of many novel structural variations is due to the 

difference between the resolution of sequencing-based and microarray-based methods in 

detecting structural variations 

 

However, the contribution of CNVs as a significant source of genetic variation in human 

populations has since been appreciated despite the limitations using microarrays. This is 
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evident from the enormous amount of interest and efforts generated towards mapping 

CNVs in different populations28, 72, 73. The first comprehensive mapping of CNVs in the 

270 samples from the International HapMap I Project was completed in 2006. DNA 

samples from the HapMap individuals were screened for CNVs using two 

complementary microarray platforms, i.e., SNP genotyping and clone-based CGH arrays. 

A total of 1,447 copy number variable regions covering 360Mb (12% of the genome) 

were identified in these populations. More interestingly, these regions contained hundreds 

of genes, disease loci, functional elements and segmental duplications28. ‘Human Genetic 

Variation’ was then recognized as the ‘Breakthrough of The Year’ in 2007 by the journal 

Science. This was partly accomplished due to the significant progress made in the 

research of CNVs74 (see Appendix: Table 1 - Summary of population-based CNV studies 

in different populations using SNP genotyping microarrays). 

 

The limitations of ROMA and the BAC-CGH arrays have been overcome in later studies 

by using higher resolution microarrays and larger sample sizes of several hundred 

samples29, 30, 75-78. For example, Conrad et al. (2010) designed and custom-made a set of 

20 tiling oligonucleotide-CGH microarrays comprising of 42 million probes with a 

median spacing of 56bp which were used for mapping CNVs in 40 HapMap samples. 

This study generated a comprehensive map of 11,700 CNVs greater than 443bp, of which 

8,599 have been subsequently validated independently30. Other studies have also used the 

highest resolution SNP genotyping arrays that are commercially available, such as the 

Affymetrix SNP Array 6.0 and the Illumina Human 1M BeadChip29, 78. The 270 HapMap 

samples were rescreened with a higher resolution SNP genotyping array (i.e., the 
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Affymetrix SNP Array 6.0) and identified 1,320 common CNVs or copy number 

polymorphisms (CNPs) that segregate at an allele frequency >1%29. By contrast, Yim et 

al. (2010) screened CNVs in a much larger sample size (3,578 healthy Korean 

individuals) but used a lower density SNP array, i.e., the Affymetrix SNP Array 5.0 (an 

earlier version of the Affymetrix SNP Array 6.0)77.   

 

Over the past few years, most of the CNV data were generated using CGH and SNP 

microarrays, where fluorescence signal intensity information is used to detect deletions 

and duplications. These microarrays are highly accessible and affordable for population-

based studies. Additionally, the methods of analysis and tools for detecting CNVs using 

microarray data, such as PennCNV and Birdsuite, have also been well-developed79-81. 

This has enabled studies of the characteristics of CNVs in various populations29, 75, 77, 78. 

However, due to the reliance on the relative or difference in signal intensity compared to 

a reference in inferring regions with copy number changes, this has hindered microarrays 

from detecting copy-neutral variations10. Furthermore, due to the limitations in marker 

density or resolution of microarrays used in the previous studies, these methods have 

poor sensitivity to detecting smaller CNVs (<50kb)28. However, the ability to detect 

smaller CNVs is critical as they are more numerous than the larger CNVs. The accuracy 

in determining the sizes or breakpoints of CNVs is highly dependent on the resolution of 

the microarrays as the sizes of CNVs found by previous studies were frequently over-

estimated. It is notable that 88% of 1,153 CNV loci were smaller than sizes reported in 

the DGV, and that a reduction of >50% in size was observed for 76% of the CNV loci82.  
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The latest developments in SNP genotyping arrays, such as an increase in marker density 

and uniformity of distribution in the genome and copy number probes to cover regions 

with sparse SNPs, have improved the sensitivity of microarrays. Nonetheless, these SNP 

microarrays still lack the sensitivity to detect CNVs smaller than 5-10kb, even with the 

use of the highest resolution microarrays such as the Illumina 1M and the Affymetrix 

SNP Array 6.029, 83. While designing a set of high-resolution CGH microarrays 

comprising tens of millions of probes offers an unprecedented resolution, this method is 

more costly for several hundred samples30, although, these improvements in microarrays 

are still unable to detect copy-neutral variations. Thus, developments of other methods 

that can overcome the limitations of microarrays and simultaneously detect both CNVs 

and copy-neutral variations are needed. Figure 4 illustrates the different signal intensity 

patterns of CNVs for oligonucleotide CGH and SNP genotyping arrays. Two types of 

signal intensity data were produced by SNP genotyping arrays, i.e., log ratio (total signal 

intensity) and B allele frequency (BAF, allelic intensity ratio). By contrast, the CGH 

array generated only a log ratio. As a result, ROHs can only be detected by a SNP 

genotyping array (see section 2.13).  
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Figure 4 – Different patterns of signal intensity of CNVs for oligonucleotide CGH and 

SNP genotyping arrays (adapted from Alkan et al. (2011) Nat. Rev. Genet. 12:363-

376)84. 

 

In array CGH (Figure 4, top panel), the signal ratio between a test and reference sample is 

normalized and converted to a log2 ratio, which acts as a proxy for copy number. An 

increased log2 ratio represents a gain in copy number in the test compared with the 

reference; conversely, a decrease indicates a loss in copy number. SNP arrays generate a 

similar metric by comparing the signal intensities of the sample being analysed to a 

collection of reference hybridizations, or the rest of the population being analysed. The 

log ratio metric for SNP arrays demonstrates a lower per-probe signal-to-noise ratio 

(SNR) than array CGH (compare log ratio for CGH and SNP arrays); however, SNP 

arrays offer an additional metric that enables a more comprehensive assignment of copy 

number than does array CGH (Figure 4, bottom panel). This metric, termed B allele 

frequency (BAF), can be calculated as the proportion of the total allele signal (A + B) 



37 

 

explained by a single allele (A). The BAF has a significantly higher per-probe SNR than 

the log ratio data and can be interpreted as follows: a BAF of 0 represents the genotype 

(A/A or A/–), whereas 0.5 represents (A/B) and 1 represents (B/B or B/–). Different BAF 

values occur for AAB and ABB genotypes or more complex genotypes (for example, 

AAAB, AABB and BBBA). Homozygous deletions result in a failure of the BAF to 

cluster. Thus, the BAF may be used to accurately assign copy numbers from 0 to 4 in 

diploid regions of the genome. The BAF also allows detection of copy-neutral events 

such as ROHs (also known as copy-neutral loss of heterozygosity) resulting from 

segmental uniparental isodisomy and i

 

dentity by descent (see section 2.13).  

2.5. Copy neutral variations - inversions and translocations 

The discovery of CNVs in the human genome of healthy individuals from different 

populations has advanced rapidly over the last few years. However, similar progress is 

not seen in the detection of copy-neutral variations. This is due to the lack of a more 

powerful and efficient method for a genome-wide discovery of inversions and 

translocations. Unlike CNVs that can be studied by microarrays, the detection of copy-

neutral variations usually requires sequencing-based methods. In addition, inversions and 

translocations are technically more difficult to detect. Relatively slower progress in the 

studies of copy-neutral variations is evident from the data entries recorded in the DGV 

(http://projects.tcag.ca/variation/), in which 66,741 CNVs and 34,229 indels have been 

reported in the database, whereas only 953 inversions have been found, and no data is 

available for translocations in the DGV presently (DGV last updated on 02 November 

2010). However, one should be cautious with this interpretation as these are not 

http://projects.tcag.ca/variation/�
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proportions. As the total number of CNVs, indels and inversions in the human genome is 

still unknown, the proportions of these genetic variations that have been discovered will 

remain unknown. The data in the DGV have been derived from the results of 42 studies 

using microarray-based, sequencing-based detection methods and other approaches. 

There are many more studies but their results have not been cataloged in the DGV. It is 

apparent that the entries in the database are still far from complete. 

 

Most of the CNV data, available to date, were generated by microarray-based methods in 

which differences in signal intensities were used to detect deletions and duplications 

(Figure 4). As a result, these methods are unable to detect inversions and translocations 

(also known as balanced chromosomal rearrangements) because they do not lead to a 

gain or loss of chromosomal or DNA segments. Rather, several different strategies and 

approaches have been taken to try to identify inversions in the human genome. For 

example, Feuk et al. (2005) discovered regions that are inverted between the chimpanzee 

and human genomes by performing comparative analysis of their DNA sequence 

assemblies. In the study, they identified about 1,600 putative regions of inverted 

orientation in the genomes that covered >150Mb of DNA sequence. The inverted regions 

are distributed throughout the genomes and span sizes from 23bp to 62Mb in length. A 

number of inverted regions were also selected to be validated using PCR and FISH, and 

out of the 23 experimentally validated inversion regions, three were found to be 

polymorphic (>1%) in a panel of human samples, and were known as inversion 

polymorphisms85.  
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A statistical method has also been developed to identify large inversion polymorphisms 

using high-density SNP genotyping data with unusual LD patterns. This method was 

developed to detect chromosomal regions that are inverted in a majority of the 

chromosomes in a population with respect to the reference human genome sequence. 

Although this method has worked using the International HapMap Project data to detect 

inversion polymorphisms, it has not been widely used by other studies. This study 

identified 176 inversions ranging from 200kb to several Mb in length using the HapMap 

Phase I data. However, their results were not cataloged in the DGV86. This, together with 

the study by Feuk et al. (2005)85, also provided some evidence that a considerable portion 

of their detected inversions were flanked by highly homologous repeats or segmental 

duplications. This suggests that segmental duplications could be the favored spots 

mediating the chromosomal rearrangements that generate inversions. 

 

The remarkable discovery of inversions was credited to the development of a sequencing-

based method known as PEM, and the concurrent advances in NGS technologies. The 

PEM method also contributed greatly to the mapping of CNVs in the human genome. 

The power of this method to detect inversions was first demonstrated in a study by Tuzun 

et al. (2005) by sequencing the fosmid paired-end sequences. Their study successfully 

identified 56 inversion breakpoints. Kidd et al (2008) used the same strategy of fosmid 

clone sequencing to detect structural variations in eight individual genomes, and a total of 

224 inversions were also identified71, 87.  
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2.6. Sequencing-based detection methods - PEM 

In the PEM method, a library of DNA fragments with a fixed insert size is prepared and 

both ends of the DNA fragments are sequenced to generate ‘paired-end sequences’ (the 

sequences at both ends of the DNA fragments). This sequence information is then aligned 

against the reference genome. The underlying principle of PEM is to detect the 

discrepancy or discordance in insert size and orientation of the paired-end sequences 

being aligned to the reference genome to infer ‘simple’ deletion, insertion and inversion 

(Figure 5). The use of the term ‘simple’ is to distinguish from other more complex 

structural variations such as ‘everted duplication’, ‘linked insertion’ and ‘hanging 

insertion’11, 71.   

 

 

 
Figure 5 – Top panel: No discrepancy or discordance in insert size and orientation of the 

paired-end sequences being aligned to the reference genome. Bottom panel: (a) Simple 

deletions were predicted from paired-end sequences span larger than a specified cutoff 

‘D’ (red region indicates region deleted from sample genome); (b) simple insertions had 
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a span smaller than a specified cutoff ‘I’ (blue region; indicates region inserted in 

sample genome) and (c) inversions are seen when ends map to the genome at different 

relative orientations (yellow region indicates region inverted in sample genome)(adapted 

from Korbel et al. (2007) Science 318:420-426)11. 

 

When paired-end sequences that are being aligned to the reference sequence display 

discordance from the expected insert size or distance, this is an indication of deletion and 

insertion, whereas discordance in orientation suggests the presence of inversion (i.e., 

paired-end sequences are incorrectly oriented compared to the reference genome). Since 

the insert size of the DNA fragment library is known, the presence of insertion is 

indicated when paired-end sequences that align to the reference sequence are 

substantially shorter than expected. Conversely, a longer than the expected insert size 

suggests the presence of deletion, while other more complicated patterns of discordance 

when aligning the paired-end sequences provide hints at more complex rearrangements11, 

71, 88.  

 

As such, the paired-end sequences are usually classified as ‘concordant pairs’ or 

‘discordant pairs’, with only the discordant pairs informative for inferring structural 

variations. The presence of both concordant and discordant pairs spanning a locus 

suggests a heterozygote state with respect to the structural variation, e.g. a deletion occurs 

only in one homologous chromosome. In addition, multiple paired-end sequences are 

usually needed to reliably infer whether a locus harbors a structural variation. The 

requirement of multiple paired-end sequences spanning a locus to detect structural 

variations will reduce the number of false-positive signals. It will also minimize the false-
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negative rate, for example, a heterozygous deletion will be missed by the presence of one 

concordant pair. However, with multiple paired-end sequences, it is more likely that both 

the concordant pair and discordant pair will be observed to detect the heterozygous 

deletion. As a result, a sufficient amount of sequencing is needed to ensure that there are 

multiple paired-end sequences spanning across the genome. This also means that a 

substantial amount of sequencing is needed for the PEM method and thus this method 

will be more costly when using Sanger sequencing compared to NGS technologies11, 71, 88.  

 

‘Physical coverage’ is important for detecting structural variations using PEM. Physical 

coverage measures the number of fragments spanning a site and this affects the ability to 

detect structural variations. It is different from ‘sequence coverage’ which measures the 

number of sequence reads that cover a site and this sequence coverage affects the ability 

to detect single nucleotide variants or point mutations (Figure 6). Thus, physical coverage 

can be increased by creating a library of larger insert sizes. When preparing a ‘shotgun 

library’ using standard methods, the sizes of DNA fragments or insert sizes are usually 

several hundred bases and approximately tens of bases on both ends of the DNA 

fragments which are sequenced using NGS technologies89.  
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Figure 6 – This figure illustrates the difference between ‘sequence coverage’ and 

‘physical coverage'. At the specific nucleotide locus (red arrow), it is covered by two 

sequence reads highlighted by red circles (sequence coverage = 2), however, there are 

four paired-end sequence reads spanning the locus (physical coverage = 4) (adapted 

from Meyerson et al. (2010) Nat. Rev. Genet. 11:685-696)89. 

 

However, the insert size can be increased to several kilobases by creating a ‘jumping 

library’ or a ‘mate-pair library’. Additional steps are involved in preparing a mate-pair 

library in comparison to a paired-end library, where both ends of the DNA fragments of 

several kilobases, e.g. 3kb in the Korbel et al. (2007) study were first ligated with 

biotinylated hairpin adapters. The DNA fragments were then circularized and randomly 

sheared. The fragments attached to biotinylated hairpin adapters were isolated to form a 

mate-pair library and then followed by sequencing11. Mate-pair library construction 

enables sequencing at both ends of longer DNA fragments of several kilobases. The 

mate-pair library with a larger insert size will increase the physical coverage of the 

genome. For example, by sequencing 50 bases from both ends of the DNA fragments 

from a library with a 3kb insert size, the physical coverage of the genome is 10-fold 

higher than from a library with a 300bp insert size. However, the sequence coverage is 

similar between both libraries as only 50 bases of paired-end sequences were generated 

with regards to the library insert size89.  



44 

 

Thus the paired-end and mate-pair libraries differ only in the steps of constructing these 

libraries, as the sequencing and aligning of the paired-end sequences to the reference 

sequence to detect structural variations follow the same principle. Although creating a 

mate-pair library increases physical coverage, a larger insert size is less sensitive to 

detecting smaller structural variations because of the difficulty in tightly controlling the 

sizes of the DNA fragments in the library. Therefore, depending on the ‘tightness’ or 

‘narrowness’ of the distribution pattern (standard deviation) of the insert sizes in the 

library, it can be difficult to distinguish a true PEM signature caused by a small indel 

(i.e., an indel of several or tens of bases) because of the variance in insert sizes in the 

library. This is due to the fact that it is not technically possible to generate an exactly 

similar size for each of the DNA fragments when preparing a library89.  

 

In comparison to microarray-based methods, PEM has a higher sensitivity to detecting 

smaller CNVs in addition to identifying copy-neutral variations, and it also has greater 

precision in determining the breakpoints or boundaries of structural variations. For 

example, the PEM method has been applied in a number of whole-genome resequencing 

studies where several thousand structural variations were detected43, 46.  

 

Nonetheless, this method could be biased against detection of duplications or insertions. 

This has been clearly shown in the YH genome, where most of the identified CNVs are 

deletions, namely 2441 deletions compared to 33 duplications. This is because PEM is 

unable to detect insertions larger than the insert size of the reference library. This also 

reveals the major limitation of PEM with fixed insert size in detecting insertions43.  
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Deletions are easier to be detected because they are identified by a longer than expected 

insert size when aligned to the reference, whereas the detection of insertions is restricted 

by the insert size. This means that insertions larger than the insert size are beyond the 

detection range. Therefore, several paired-end and mate-pair libraries with short and long 

insert sizes will be needed to capture structural variations of varying sizes. This will also 

nevertheless increase the sequencing costs several fold depending on the number of 

libraries. As the bias against detection of insertions is partly due to the small insert size, 

therefore, larger insert sizes of several kilobases should improve the ability to detect more 

insertions11.  

 

2.7. Sequencing-based detection methods - DOC 

Depth-of-coverage (DOC) is another method using the NGS data for CNVs detection. 

This method is based on the depth of coverage of the sequence reads to infer deletions 

and duplications. The DOC method is enabled by the production of several hundred 

million short sequence reads per instrument run by NGS technologies. The principle 

underlying the DOC approach is based on the assumptions that the sequencing process is 

uniform so that the number of sequence reads mapping to a region follows a Poisson 

distribution. As such, the number of sequence reads should be proportional to the number 

of times that a particular region appears in the genome (Figure 7). Therefore, it is 

expected that a duplicated region will have more reads aligning to it, and the converse is 

true for deletions12, 88. However the assumption that the sequencing process is uniform 

may not be valid. This is because of the sequencing bias of the NGS technologies which 
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leads to certain regions of the genome being over or under-sampled resulting in spurious 

signals90.  

 

 
Figure 7 – This figure illustrates that changes in sequencing depth (abundance of 

sequence reads) are used to identify copy number changes such as homozygous and 

hemizygous deletions and duplications.  

 

Based on the principle of the DOC method, the strength of a DOC signature (i.e., ‘gain’ 

or lose’) is thus directly related to the coverage of the sequencing data (the number of 

sequence reads) and also to the size of the CNVs. This means that the DOC signatures 

will be stronger for larger CNVs, and is thus more powerful for detecting larger CNVs 

compared to PEM. In contrast, unlike PEM, the DOC method cannot detect copy-neutral 

variations. Moreover, the DOC method may not be powerful enough to identify smaller 

CNVs (related to the strength of DOC signatures) and it is also limited in defining 

breakpoints88. In comparison to microarrays, copies number can only be inferred to four 
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(CN=4) as the upper boundary for SNP microarray or copy number changes will be 

denoted as ‘gain’ or lose’ for CGH microarray29, 79. The DOC method is also more robust 

and accurate at determining higher copies number.  

 

2.8. Choosing a sequencing platform for PEM and DOC 

The applications of high-throughput sequencing technologies that are commercially 

available and accessible to end-users or researchers for PEM and DOC will be discussed. 

The sequencing technologies that are currently available can be broadly grouped into 

NGS technologies such as the Roche 454 Genome Sequencer FLX (GS FLX) System, 

Illumina Genome Analyzer (GA) and HiSeq, and Applied Biosystems (ABI) Supported 

Oligonucleotide Ligation Detection System (SOLiD) and third generation sequencing 

(TGS) technologies such as the HeliScope Single Molecule Sequencer which is now 

commercially marketed by Helicos Biosciences. The features of NGS technologies are 

summarized in Table 3. It is noteworthy that the development of numerous other 

sequencing technologies are on the horizon, such as single molecule real time (SMRT) 

sequencing technology by Pacific Biosciences, which is now commercially marketed91. 

Others technologies such as nanopore sequencing may take several years to become a 

mature technology92. In comparison, Complete Genomics provides a sequencing service 

rather than selling their sequencing machines to end-users93.  

 

 

 

 

 

 



48 

 

Table 3 - Summary of the features of NGS technologies 

Feature Roche® 454 GS FLX Illumina® GAII/HiSeq ABI® SOLiD 

Commercially marketed 2005 2006 2007 

Current generation of 

the sequencer  

Roche® 454 GS FLX 

Titanium  

Illumina® HiSeq ABI® SOLiD 4.0 

Massively parallel 

sequencing (number of 

DNA fragments) 

Several hundred 

thousand to one million 

Several hundred million  Several hundred million 

Sequencing throughput 

per instrument run  

Several hundred 

megabases per run in 10 

hours 

Several hundred 

gigabases per run in a 

few days 

Several hundred 

gigabases per run in a 

few days 

In vitro amplification 

method 

Emulsion  PCR Bridge amplification on 

solid surface 

Emulsion  PCR 

Sequencing approach  Sequencing by synthesis 

mediated by polymerase 

- pyrosequencing 

Sequencing by synthesis 

mediated by polymerase 

- sequencing by 

reversible terminator 

chemistry 

Sequencing by ligation 

of di-nucleotide probes 

mediated by ligase 

Sequencing reagent 4 types of dNTPs 4 types of ddNTPs 

labeled by 4 different 

fluorescent colors 

16 types of di-

nucleotide probes 

labeled by 4 different 

fluorescent colors 

Detection method of  the 

incorporated nucleotides  

Emission of 

chemiluminescent light 

Fluorescent colors Fluorescent colors 

Sequence read length 400-500 bases 75-125 bases 50 bases  

Read base or base 

calling error rate 

0.5-1.5% 0.2-2% <0.1% 

Error type Insertion or deletion of 

nucleotides  in 

homopolymer sequences 

Substitution of 

nucleotides  

Substitution of 

nucleotides 

(This table was adapted from Ku et al. (April 2010) Next Generation Sequencing Technologies and Their 

Applications. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester. DOI: 

10.1002/9780470015902.a0022508) 

 

 



49 

 

Although Roche 454 GS FLX, Illumina GA/HiSeq and ABI SOLiD are classified as NGS 

technologies, several features differ substantially between them. They are characterised 

by the ability of parallel sequencing of a very large number of sequence reads. However, 

the Roche 454 GS FLX can only generate approximately one million sequence reads per 

instrument run, in comparison to the Illumina GA/HiSeq and ABI SOLiD where several 

hundred million sequence reads are produced. Similarly, the HeliScope Single Molecule 

Sequencer can also produce several hundred million sequence reads62-64, 94. One of the 

major distinctions between NGS and TGS is that TGS does not require whole-genome 

amplification steps such as emulsion PCR and bridge amplification compared to NGS. 

Therefore, TGS has the potential to further increase the number of sequence reads or 

throughput per instrument run than their current capacity. Therefore, the Illumina 

GA/HiSeq, ABI SOLiD and HeliScope Single Molecule Sequencer provide an advantage 

for the DOC method that requires high density of sequence reads to infer CNVs. The 

specificity of DOC to detect CNVs and the precision to map the breakpoints can be 

improved by increasing the density or coverage of sequence reads12, 88. However, the 

length of sequence reads produced by the Roche 454 GS FLX is on average 400-500bp, 

which is substantially longer than that of the other three sequencing technologies which 

range from 32bp to 125bp94. Although PEM and DOC methods are targeting larger 

structural variations, the sequence read lengths produced by the Roche 454 GS FLX is 

better for detecting small indels of up to tens of bases. Moreover, the longer sequence 

read lengths produced by the Roche 454 GS FLX may also be more suitable for de novo 

genome assembly before read lengths of several kilobases are generated by future 

sequencing technologies.  
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The PEM method, when applied alone rather than integrated with DOC data, must ensure 

that the paired-end sequences be uniquely aligned to the reference genome to infer 

structural variations, compared to ambiguous paired-end sequences which align to 

multiple locations. As such, shorter sequence read lengths may be less specific in 

aligning against the reference genome, especially in repetitive regions such as segmental 

duplications. Moreover, the number of paired-end sequences is also important as multiple 

discordant pairs are usually needed to reliably detect a structural variation. In terms of 

preparing the PEM libraries for sequencing, all three NGS technologies are able to 

generate both paired-end and mate-pair libraries, thus allowing for sequencing of short 

and longer insert sizes95, 96. Each of the sequencing technologies has its own strengths and 

weaknesses, and a combination of these technologies in an experiment may be the ideal 

approach to detecting new structural variations and to also address the systematic biases 

in sequencing90. Table 4 summarizes the comparison between microarrays and 

sequencing-based methods for detecting structural variations. 
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Table 4 – Comparison between microarrays and sequencing-based methods for detecting structural variations 

 Microarrays*  PEM** DOC 

Principle Based on the relative or difference 
in florescence signal intensity 
compared to a reference (one 
sample or a set of samples) to infer 
CNVs 

Based on the discrepancy or 
discordance in insert size and 
orientation of the paired-end 
sequences being aligned to the 
reference genome to infer ‘simple’ 
deletion, insertion and inversion 

Based on the density of sequence 
reads being aligned to the reference 
genome to infer CNVs 

Ability to detect CNVs Yes Yes Yes 
Ability to detect copy neutral 
variations 

No Yes No 

Reliably detecting CNVs  Up to tens of probes  Multiple discordant pairs A high density of sequence reads 
Application to population-based 
studies 

Commonly applied to up to 
thousand samples 

Has not yet been applied Has not yet been applied 

Sensitivity to detect smaller CNVs 
e.g. <10kb 

Generally poor, but dependent  on 
the resolution of the microarrays, 
e.g. a set of oligonucleotide CGH 
arrays containing 42 million probes 
has provided an unprecedented 
resolution  

Yes, preparation of several libraries 
of different insert sizes are able to 
detect insertions and deletions of 
varying sizes, but the detection of 
insertions is limited by the insert 
sizes 

It may not be powerful enough to 
detect smaller CNVs (related to the 
strength of DOC signatures and the 
coverage of the sequencing data or 
the number of sequence reads) 

Sensitivity to detect larger CNVs Yes, even low resolution BAC 
clone CGH arrays (with a resolution 
of approximately one probe for 
every 1Mb) have been used to 
detect CNVs of several hundred 
kilobases to megabases 

Yes, however the detection of 
insertions is limited by the insert 
sizes, thus preparation of fosmid or 
BAC clone libraries with larger 
insert sizes are needed for detecting 
larger insertions 

Yes, the DOC signatures will be 
stronger for larger CNVs 

Precision in mapping breakpoints Generally poor, however, it can be 
improved by increasing the 

Good, theoretically the breakpoints 
can be mapped to a single 

The precision to map the 
breakpoints can be improved by 
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resolution of microarrays  nucleotide resolution increasing the density or coverage 
of sequence reads  

Role in ‘discovery’ and 
‘genotyping’ 

Can be used as an effective method 
to genotype newly discovered and 
known CNVs in population-based 
studies 

Powerful for discovery of new 
structural variants  

Discovery of CNVs especially in 
regions such as segmental 
duplications where PEM is less 
effective   

Weakness as a result of technology 
limitations 

Generally have poor signal-to-noise 
ratios for oligonucleotide-CGH and 
SNP microarrays compared to BAC 
clone CGH arrays 

Short sequence reads are less 
specific in aligning uniquely to the 
reference genome especially in 
segmental duplications 

Sequencing biases may lead to 
certain regions of the genome being 
over or under-sampled resulting in 
spurious DOC signatures 

Scalability of sample throughput by 
technology 

High sample throughput, for 
example, several hundred samples 
per week can be genotyped by SNP 
arrays, as evident in genome-wide 
association studies 

Tens of gigabases of sequencing 
data can be produced per 
instrument run in several days by 
NGS technologies, and the sample 
throughput can be scaled up by 
‘barcoding’, i.e., labeling the 
samples by barcodes    

Tens of gigabases of sequencing 
data can be produced per 
instrument run in several days by 
NGS technologies, and the sample 
throughput can be scaled up by 
‘barcoding’, i.e., labeling the 
samples by barcodes    

Level of analytical and 
computational challenges  

Lesser, analytical methods for 
detecting CNVs using microarray 
data are well-developed 

Greater, an emerging and maturing 
method leveraging on the large 
amount of NGS data  

Greater, an emerging and maturing 
method leveraging on the large 
amount of NGS data 

Difficulty in sample preparation Easier in processing the samples for 
hybridization on the microarrays 

More challenging in preparing 
sequencing libraries especially 
clone-based libraries 

More challenging in preparing 
sequencing libraries 

*Whole-genome oligonucleotide-CGH and SNP microarrays **Paired-end and mate-pair libraries and clone-based libraries (such as fosmid and BAC 
clones) for PEM (This table was adapted from Ku et al. (February 2011) Characterising Structural Variation by Means of Next-Generation Sequencing. 
In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0023399) 
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2.9. International effort to characterize structural variations using PEM 

The PEM method to detect structural variations was first demonstrated by Tuzun et al. in 

2005 by mapping paired-end sequencing data from a human fosmid DNA genomic 

library. The average insert size of a fosmid library is approximately 40kb. This study 

identified 139 insertions, 102 deletions and 56 inversions71. However, sequencing of 

fosmid clones by means of Sanger sequencing is laborious and costly. These limitations 

have been overcome by NGS technologies which directly sequence the paired-end or 

mate-pair libraries without the need for cloning steps11. Both of the studies applied the 

PEM approach to investigate structural variations in the same sample (NA15510) from 

the International HapMap Project. However, their library insert sizes differed and this has 

enabled a comparison of the sensitivity between these studies. Korbel et al. (2007)11 were 

able to confirm 41% of all deletion and inversion events detected by fosmid paired-end 

sequencing. Additionally, they identified an additional 407 structural variations in 

NA15510 that had not been previously detected by fosmid paired-end sequencing. This 

further suggests that several libraries with different insert sizes are needed to increase the 

sensitivity of PEM.  

 

In addition to individual studies, a large-scale effort is currently underway by the Human 

Genome Structural Variation Working Group to comprehensively map structural 

variations in phenotypically normal individuals using the PEM approach97. More 

specifically, the objective is to characterize the pattern of human structural variations at 

the nucleotide sequence level from a collection of 48 individuals of European, Asian and 

African ancestry. This project plans to make fosmid clone libraries of approximately 
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40kb insert size from the genomic DNA of 48 unrelated females. These samples were 

already genotyped by the HapMap Project. A larger insert size of approximately 150kb 

prepared from BAC clone libraries will also be constructed from 14 unrelated HapMap 

males. This will aim to provide sequence information on structural variations that are too 

large to be included in the fosmid libraries, such as those associated with segmental 

duplications. As such, both the fosmid and BAC libraries will ensure the comprehensive 

capture of structural variations of varying sizes across the human genome.  

 

Structural variation is biased toward complex duplicated and repetitive regions. Hence, 

developing clone libraries for a modest number of human genomes should serve as a 

valuable resource for characterizing complex and difficult-to-assay regions of genome 

structural variation. Since the underlying clones can be retrieved, the complete sequence 

context of the discovered structural variation can also be obtained97. This is crucial for 

precise breakpoint delineation of structural variation, which is then important for 

understanding the mutational mechanisms responsible for human genome structural 

variation. A total of 1,695 structural variations were discovered with fosmid libraries 

derived from nine individuals. This study also showed that 50% were seen in more than 

one individual and that nearly half lay outside regions of the genome previously 

described as structurally variant thereby indicating novel discoveries. More importantly, 

525 new insertion sequences (that are not present in the human reference genome) were 

discovered and many of these were found to be variable in copy number between 

individuals87. This is important because it suggests that structural variations or CNVs 
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could have gone undetected as part of the ‘missing sequences’ in the human reference 

genome.  

 

The complete sequencing of 261 structural variations provided insights into the different 

mutational processes that have shaped the human genome. Thus, the study by Kidd et al 

(2008) provided the first high-resolution sequence map of human structural variation87. A 

subsequent study then expanded the Human Genome Structural Variation clone resource 

by including capillary end sequencing of 4.1 million additional fosmid clones from eight 

additional human genomes. The combined set included 13.8 million clones derived from 

the genomes of six Yoruba Nigerians, five CEPH Europeans, three Japanese, two Han 

Chinese, and one individual of unknown ancestry98. This study characterized the 

complete sequence of 1,054 large structural variations and analyzed their breakpoint 

junctions to infer their potential mechanisms of origin. Three mechanisms were found to 

account for the bulk of germline structural variation: microhomology-mediated processes 

involving short (2–20bp) stretches of sequence (28%), nonallelic homologous 

recombination (22%), and L1 retrotransposition (19%). 

 

2.10. The 1000 Genomes Project  

The 1000 Genomes Project was initiated in 2008 with the aim of sequencing the genomes 

of at least 1000 individuals from different populations around the world 

(http://www.1000genomes.org/). The main aim of this international collaborative project 

was to provide a comprehensive map of human genetic variation for future disease 

http://www.1000genomes.org/�
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association studies and population genetics. As with the HapMap project, the data from 

this project will also be made available publicly.  

 

Owing to the ease of high-throughput genotyping technologies, SNPs have been widely 

used as genetic markers in GWAS to search for disease variants. However, evidence has 

been accumulating to suggest that (common) SNPs alone are unlikely to account for all 

the heritable risk of complex diseases99, 100. Concurrently, the amount of data supporting 

associations of CNVs with complex diseases has grown4, 7. Similarly, the importance of 

rare variants in complex diseases is also increasingly being recognized101, 102. This 

indicates that future disease association studies need to interrogate non-SNP and rare 

genetic variants requiring a comprehensive catalogue of human genetic variations. 

Common SNPs have been well documented in the dbSNP, but rarer (or lower frequency) 

SNPs are still under-represented in the database and information on indels and structural 

variations is still incomplete. 

 

The completion of the pilot phase of the 1000 Genomes Project identified approximately 

15 million SNPs, 1 million short indels and 20,000 structural variations, most of which 

were previously unreported38. In addition, the location, allele frequency and local 

haplotype structure of these genetic variants were described. The sequencing data also 

enabled characterization of CNVs within heavily duplicated and near-identical regions103. 

Recently, a map of CNVs was constructed based on whole-genome sequencing data from 

185 human genomes in the pilot phase of the project; this encompassed 22,025 deletions 

and 6,000 additional structural variations, including insertions and tandem duplications. 
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More importantly, approximately half of the structural variations were mapped to single 

nucleotide resolution, thereby facilitating the analysis of their origin and functional 

impact104. Precision in terms of the breakpoint delineation of structural variations is a 

prerequisite to obtaining insights into their underlying mutational mechanisms98. 

However, the nucleotide resolution analysis of the breakpoints is hampered by the low 

resolution of the microarrays used in previous studies.  

 

A recent study also identified approximately two million small insertions and deletions 

(indels) ranging from 1bp to 10,000bp in length in the genomes of 79 humans. 

Interestingly, approximately half of these variants (i.e. 819,363 small indels) mapped to 

human genes. These small indels were frequently found in the coding exons of these 

genes, and several lines of evidence indicate that such variation is a major determinant of 

human biological diversity27, 104. This study also found that many of the small indels had 

high levels of LD with both HapMap-SNPs and GWAS-SNPs, suggesting that a 

proportion of these small indels have already been interrogated indirectly for their 

associations with complex phenotypes in GWAS through LD with the SNPs as surrogate 

markers. This also indicates that, in addition to SNPs and larger CNVs, small indel 

variation is likely to be a key factor underlying the genetics of human complex diseases 

and traits.  

 

In comparison to whole-genome resequencing, which relies on a reference genome for 

aligning the sequence reads, de novo genome assembly will enable a more thorough and 

comprehensive detection of various genetic variations in the human genome ranging from 
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single nucleotide variants, small indels to large structural variations. Currently, de novo 

genome assembly is challenging and less practical because of the short sequence reads 

generated by NGS technologies, especially the Illumina and Life Technologies 

sequencing platforms. Recent studies have attempted to perform de novo human genome 

assembly using short sequence reads with limited success105-108. One such study showed 

that de novo assemblies were 16.2% shorter than the reference genome with thousands of 

coding exons being completely absent84. De novo genome assembly and haplotype 

phasing will eventually become more feasible with longer sequence read lengths of up to 

several kilobases being generated by future sequencing technologies65, 91.  

 

2.11. Associations of CNVs with complex diseases and traits 

Although >4,000 SNPs have been reported to be associated with various human complex 

diseases and traits (http://www.genome.gov/26525384), these SNPs are more likely to be 

surrogate markers which are in strong LD with disease variants. The disease variants in 

most GWAS-implicated loci remain uncovered and the surrogate markers may not 

necessarily be tagging for SNPs, as the disease variants could also be in the form of 

indels and CNVs. This was well demonstrated in the discovery of a 20kb deletion located 

immediately upstream of the IRGM gene for Crohn’s disease, and the finding of a 45kb 

deletion that was in perfect LD with BMI (body mass index)-associated SNPs in the 

NEGR1 gene109, 110. In addition, studies have also found evidence of correlations of 

CNVs with GWAS-SNPs at r2 >0.5 suggesting the possibility of associations of CNVs 

with various human complex diseases and traits30.  

 

http://www.genome.gov/26525384�
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The genome-wide study performed by the Wellcome Trust Case Control Consortium 

(WTCCC) investigating the association between ~3,400 CNVs and 8 common diseases in 

19,000 samples, however, did not find novel discoveries111. This is noteworthy in that 

WTCCC interrogated only a fraction of the total CNVs found in a large-scale discovery 

study using a high-resolution oligonucleotide array30. Although the genome-wide studies 

of the associations of common CNVs and complex phenotypes did not yield exciting 

novel discoveries at this stage112-114, discoveries of rare CNVs with various complex 

phenotypes have been seen in schizophrenia66, 115, 116, epilepsy117 and severe early-onset 

obesity118. For example, these studies have found that rare structural variations that 

disrupt multiple genes in neurodevelopmental pathways are over-represented in 

schizophrenia cases than controls66, 115.  

 

In addition, CNVs that overlap with several genes such as FCGR3B and beta defensin 

genes (autoimmune and inflammatory diseases), CCL3L1 (HIV infection and rheumatoid 

arthritis), UGT2B17 (prostate cancer and graft versus host diseases), leptin receptor 

(type-2 diabetes) and TLR7 (childhood-onset systemic lupus erythematosus) have been 

found to be associated with various phenotypes from targeted approaches4, 7, 119-121. 

However, these associations warrant further validation as candidate-based association 

studies in small sample sizes have frequently been confounded by false-positive signals. 

The amount of evidence is expected to increase in the near future when we have a better 

understanding of the characteristics of CNVs and a more comprehensive map is 

constructed upon completion of the 1000 Genomes Project, and when more efficient and 

accurate methods are available to detect the CNVs for disease-association studies.  
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2.12. Regions of homozygosity (ROHs) 

A ROH defines a continuous or uninterrupted stretch of a DNA sequence without 

heterozygosity in the diploid state, that is, in the presence of both copies of the 

homologous DNA segment. Thus, all the genetic variations, such as SNPs (biallelic 

marker) or microsatellites (multiallelic markers) within the homologous DNA segments 

have two identical alleles that create homozygosity16. The ROH is different from one-

copy deletion (or hemizygous deletion), which could also lead to the homozygosity in 

genome-wide SNP genotyping data. However this is considered as a ‘spurious 

homozygosity’ because only one allele of the SNPs is present in the deleted region for 

one-copy deletions. Thus, the DNA fragments with only the single allele are hybridized 

on the genotyping array. As a result, the signal intensity of only one allele is measured 

and subsequently used in genotype calling, and hence it would be incorrectly labeled a 

homozygote genotype. Therefore, the result of ‘homozygosity’ is due to the absence of 

the other allele, instead of ‘true homozygosity’ where two identical alleles are present122. 

The distinction between ‘true homozygosity’ as opposed to ‘spurious homozygosity’ due 

to one-copy deletion is difficult to determine just by inspection of the genotype data 

alone. The allelic signal intensity ratio (the relative ratio of the fluorescent signals 

between two probes/alleles at each SNP) is needed to differentiate between the two types 

of homozygosity79, 122. Therefore, for studies that used only SNPs genotype data to 

identify the ROHs, i.e., to screen regions with a minimum consecutive homozygote 

SNPs, the possibility that some regions are caused by one-copy deletion cannot be firmly 

excluded, because deletions are also widespread in the human genome. 
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Cytogenetic abnormalities such as uniparental isodisomy can also result in homozygosity 

where two copies of a single parental homologous DNA segment are inherited from one 

parent. As such, it cannot be distinguished from homozygosity resulting from other 

factors such as parental consanguinity and autozygosity using the allelic signal intensity 

ratio as in the case of one-copy deletion. Thus, for studies that involved unrelated 

samples where checking the Mendelian transmission errors in the ROHs is not possible, 

the possibility of uniparental isodisomy leading to homozygosity cannot be definitively 

ruled out. Assessing the transmission errors requires data from trios or families. 

However, the likelihood that a considerable fraction of ROHs will be accounted for by 

uniparental isodisomy is low given that this cytogenetic abnormality is rare123. 

 

Currently, there is no consensus or standardized criteria used to define the ROH. 

However, previous studies have focused on regions ≥1Mb, and thus the true extent of 

homozygosity in the human genome could be underestimated16, 124, 125. More recent 

studies have defined a ROH at a minimum length of 500kb19 with the intention of 

avoiding underestimation of the numbers of regions in the human genome. This is 

because shorter ROHs are now also thought to be associated with complex phenotypes. 

However, setting a shorter length for definition will increase the number of false positive 

signals, i.e., increase the sensitivity at the expense of specificity. Therefore, in discovery 

studies, balancing both the sensitivity and specificity when setting the criteria to identify 

ROHs is critical. 
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By focusing only on regions ≥500kb or 1Mb, the ‘noise’ introduced by one -copy 

deletions is likely to be minimal, thereby reducing the potential to cause spurious 

homozygosity. This is because large deletions of ≥500kb are relatively rare in the human 

genome, as supported by data from genome-wide mapping of CNVs studies29, 30, 76-78. 

Therefore, a critical issue to be addressed in future homozygosity mapping studies is 

determining the optimal cutoff of the length of the ROH to be adopted, as this will avoid 

over-estimating the homozygosity when the length is set too low and which can then be 

easily confounded by one-copy deletion of hundreds of kilobases or smaller. Although 

some studies have reduced the cutoff length to 500kb19, it is still uncertain whether this 

new cutoff can readily reflect the true extent of homozygosity in the human genome. 

 

It was not previously expected that the genomes of outbred populations contain ROHs of 

several megabases until the first few early reports in 2006 and 200716, 124, 125. One study 

found ROHs of >5Mb in 26 of the 272 unrelated samples assessed125. Similarly, another 

study performed in Han Chinese also observed the high frequency of ROHs, where 34 

out of the 515 unrelated individuals contained ROHs ranging from 2.94 to 26.27 Mb124. 

Gibson et al. (2006) studied the samples from the International HapMap Projects and 

identified 1,393 ROHs exceeding 1Mb in 209 unrelated HapMap individuals. Several 

hundred ROHs were found in each of the HapMap populations, where the average 

number of ROHs (>1Mb) per individual was found to be lowest in the Yoruba Ibadan 

Nigerian (YRI) population compared to other populations within the HapMap Phase I 

Project16. In addition to demonstrating that ROHs are common, even in the unrelated 

individuals from the apparently outbred populations, Gibson et al. (2006)16 also 
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demonstrated the value of including diverse populations to examine the differences in 

ROHs. The YRI population has the least number of ROHs per individual. This finding is 

expected, as the populations of African ancestry are older in human history and hence 

have more generations and a higher number of recombination events than other 

populations (recombination occurs during meiosis in each generation). Recombination is 

an important process to interrupt the long continuous ROHs into smaller segments over 

generations. Population differences in ROHs have also been well documented in other 

studies126. 

 

Each of the previous studies identified a different number of ROHs per individual124, 126-

129. These differences are likely to be reflective of technical and methodological 

variations such as using different genotyping platforms or SNPs data, different defining 

criteria and different analytical techniques. Both the genotyping platform and defining 

criteria can significantly influence the profile of ROHs by way of number, size, 

cumulative length and genomic distributions. Minor alterations in defining criteria can 

substantially affect the number of ROHs detected making comparisons between studies 

difficult. Therefore, it is critical to develop a set of standardized criteria  for identifying 

ROHs, and to establish a database to catalog these and other regions in the human 

genome from published studies, similar to other databases developed for SNPs and 

structural variations (CNVs) such as the dbSNP and DGV respectively2, 130. This database 

will enable researchers to quickly compare their results with published data. Consensus 

on defining ROHs and the construction of a database to serve as a reference will help in 

expediting research in ROHs. 
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2.13. Methods of detecting ROHs 

Several targeted and genome-wide molecular methods are available to detect structural 

variations. However, unlike structural variations, ROHs cannot be detected with 

technologies used in molecular genetics such as FSIH and BAC clone or CGH arrays9, 10. 

Furthermore, several new sequencing-based approaches for detecting structural variations 

such as PEM and DOC are also unsuitable for detecting ROHs11, 12, 87. 

 

The genome-wide mapping of ROHs can only be done using SNP genotyping arrays or 

direct sequencing. The whole-genome resequencing or de novo genome assembly using 

NGS or TGS will offer an almost complete solution to detecting most of the genetic 

variations, including ROHs within the human genome. However, these high-throughput 

sequencing technologies were not readily available until recently, and the cost is still 

prohibitively expensive to sequence the whole human genome in a population-based 

study64, 65. As a result, SNP genotyping arrays are the main tools for ROH mapping. The 

SNPs data can be used in two different ways to detect the ROHs. The first approach is to 

screen the whole genome using a sliding window analysis for consecutive SNPs showing 

homozygotes over a certain length, such as 1Mb, as implemented in PLINK131. Since this 

approach uses genotype data only, it is unable to distinguish between true homozygosity 

and the spurious homozygosity caused by one-copy deletion without further investigation 

of CNVs in the samples. 

 

This limitation has been overcome by the second approach which relies on the signal 

intensity data. Two types of signal intensity data are generated by the SNPs genotyping 
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array: (a) the total signal intensity or log R ratio (LRR) and (b) the allelic intensity ratio 

or BAF. The combination of LRR and BAF can be used to determine several different 

states of copy numbers such as homozygous and hemizygous deletions, one-copy and 

two-copy duplications, and ROHs as implemented in the PennCNV algorithm. The BAF 

is needed to differentiate between ROHs from normal diploid copies and one-copy 

deletion79. Figure 8 illustrates the difference in LRR and BAF patterns between ROH and 

one-copy deletion. For the one-copy deletion, there is a decrease in the LRR in addition 

to the absence of heterozygosity as shown in the BAF panel. Conversely, no reduction in 

the LRR will be seen for ROH, but the absence of heterozygosity is observed. Most of the 

genome-wide studies of ROHs have used SNP genotyping arrays. In comparison, the 

commonly used CGH arrays for detecting CNVs produced only total signal intensity 

data. This renders them unusable for identifying ROHs. 

 

The ROH and one-copy deletion were detected using the LRR and BAF information by 

the PennCNV algorithm (LRR: total fluorescent intensity signals from both sets of 

probes/alleles at each SNP, BAF: the relative ratio of the fluorescent signals between two 

probes/alleles at each SNP)79. The size of the ROH is approximately 1.06Mb (1,064,933 

bases) spanning from 125374832 to 126439764 in chromsome 2. This region contains 

246 markers. The size of the one-copy deletion is approximately  250kb (250,186 bases) 

spanning from 23994408 to 24244593 in Chromosome 22.  This region contains 101 

markers. The regions affected by the ROH and one-copy deletion were shaded and the 

blue dots represent markers in the genotyping array (Figure 8).   
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Figure 8 –  Plots of the differences in the LRR and BAF  patterns for the ROH (left 

panels) and one-copy deletion (right panels) generated from a sample derived from our 

previous study (Ku et al. 2010) and genotyped by the Illumina 1M Beadchip (adpated 

from Ku et al. (2011) Hum. Genet. 129:1-15)132. 

 

2.14. Associations of ROHs with complex diseases and traits 

Although information regarding the extent of ROHs in the human genome is still limited 

compared to SNPs, indels and CNVs, the potential impact of ROHs on complex diseases 

and traits could also be as significant as other genetic variations. The importance of 

ROHs to complex phenotypes remains largely unexplored; however, several studies have 

shown significant differences in ROHs between cases and controls in a genome-wide 

investigation for schizophrenia17, late-onset Alzheimer’s disease18 and height19. The idea 

underlying the homozygosity association approach is to uncover recessive variants 

contributing to complex phenotypes. The success of this approach has been demonstrated 
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in several studies. Nine common ROHs significantly differentiated schizophrenia cases 

from controls. More interestingly, four of the regions contained or were located near to 

the genes known to be associated with schizophrenia17. This proof-of-principle study has 

demonstrated the applications of the whole-genome homozygosity association approach 

to identifying genetic risk loci for complex phenotypes and represents an alternative to 

SNPs analysis.  

 

Similarly, in a large-scale association study involving 837 late-onset Alzheimer’s disease 

cases and 550 controls, a single ROH on chromosome 8 was identified, and three of the 

genes in the region are biologically plausible candidates18. Success was also achieved for 

complex quantitative traits such as height19, where strong statistical evidence showing the 

association of one ROH with height was obtained in a total sample size of >10,000 in 

both the genome-wide discovery and replication studies. The height of individuals with 

this ROH was significantly higher (increased by 3.5 cm) than individuals without the 

ROH. Nonetheless, other studies produced negative results, as no evidence of 

homozygosity was found for bipolar disorder133. 

 

Many reasons can be considered for the inconsistencies with which associations of ROHs 

were only found in some diseases or studies but not others. This could also indicate that 

the effects of homozygosity on the risk of complex phenotypes may be disease or trait-

dependent, for example, some quantitative traits have shown significant variance due to 

recessive alleles such as systolic blood pressure, total cholesterol and low-density 

lipoprotein cholesterol. This implies that the effects of homozygosity may be greater in 
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influencing the variation of these traits than others134. On the other hand, it could also be 

population-dependent since differences in homozygosity between populations have been 

documented. Although a number of genome-wide homozygosity association studies have 

been performed, the optimum study design or methods of analysis for assessing the 

associations of ROHs on disease risk have not been well established. This is vital before 

breakthrough discoveries can be made in this research area. 

 

The aim of using the homozygosity association approach to dissect the genetics of 

complex phenotypes is to reveal the recessive loci that only express their effects (or 

increase the risk of complex diseases) in the presence of two deleterious recessive alleles, 

in a recessive disease model. In addition to autosomal recessive disorders, complex 

diseases can also be affected by recessive variants. The conventional single-SNP analysis 

approach applied in GWAS may not be statistically powerful enough to identify recessive 

alleles with small effect sizes and moreover, the recessive model is not usually tested. 

Until the effect of homozygosity on complex phenotypes is better understood, it is 

premature to make any conclusions, as the field is still in its infancy compared to 

association studies between SNPs and CNVs for complex diseases and traits. However, 

the published studies have collectively demonstrated the feasibility of using the 

homozygosity association approach to identify susceptibility loci for complex phenotypes 

and have subsequently produced encouraging results. This also underscores the need to 

further investigate and catalog the extent of ROHs in different populations. Similar to the 

other genetic variations, ROHs have the potential to become genetic markers in GWAS. 
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In fact, homozygosity mapping has been commonly used to identify the loci for recessive 

diseases in consanguineous families. 

 

2.15. History and origin of the Singapore and Swedish populations 

Singapore populations 

The earliest known settlement in Singapore was documented as far back as the second 

century AD and was an outpost of the Sumatran Srivijaya empire, named Temasek. 

Between the 16th and early 19th centuries, it was part of the Sultanate of Johor. In 1613, 

Portuguese raiders burnt down the settlement and the island sank into obscurity for the 

next two centuries. Singapore had been a part of various local empires since it was first 

inhabited. Modern Singapore was founded as a trading post of the East India Company 

by Sir Stamford Raffles in 1819. 

 

Singapore is a relatively young country with a migratory history predominantly 

consisting of immigrants with Chinese, Malay, and Indian genetic ancestries from 

neighboring countries such as China, India, Indonesia, and Malaysia (The population of 

Singapore, 2nd edition, Institute of South East Asian Studies, Singapore: 2007). The 

Chinese community mainly consists of descendents of Han Chinese settlers from the 

southern provinces of China, such as Fujian and Guangdong, and currently represents the 

dominant racial population in Singapore, accounting for 76.7% of the resident population 

from the Singapore Census conducted in 2000. While Han Chinese represents the largest 

ethnic group amongst the Chinese globally, there are a considerable number of sub-

ethnicities within the Han classification with a diverse range of dialects and cultural 
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diversity, with established genetic heterogeneity following a geographical north–south 

cline. The majority of the early Chinese immigrants to Singapore belonged mainlyto the 

dialect groups of Hokkien, Teochew, Cantonese, Hakka, and Hainanese found 

predominantly in Southern China. While Malays formed the dominant race in Singapore 

prior to the colonization by British settlers, the proportion of indigenous Malays has been 

surpassed by migrant Malays from Peninsula Malaysia, as well as Javanese and Boyanese 

people from Indonesia. Cultural and religious similarities have resulted in intermarriages 

between the immigrant and local Malays, whose descendents are now collectively known 

as Malays and account for 13.9% of the Singapore population. The British colonization 

of Singapore also brought Indian migrants from the Indian subcontinent, with the 

majority consisting of Telagus and Tamils from southeastern India and a minority of 

Sikhs and Pathans from north India. The origins of the Indians in Singapore comprises of 

people with paternal ancestries tracing back to the Indian subcontinent, and as a race, 

Indians represent 7.9% of the Singapore population. 

 

Swedish population 

The first inhabitants to the area of present-day Sweden travelled from Central Europe 

after the ice age. For millennia, the country was sparsely inhabited by hunter-gatherer 

populations until the slow adoption of agriculture and ceramics that began around 4000 

BC in southern Sweden. While the southern parts of the country developed strong 

contacts with the Germanic culture, the north associated to Finland and Karelia with a 

common culture covering the entire northern Fennoscandia. This culture has sometimes 

been suggested to be ancestral to the indigenous Sami population still inhabiting the area. 
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Sweden was not united under one ruler until the 11th century, and the traditional division 

to the southern Götaland, central Svealand, and northern Norrland is still widely known 

despite lacking any official status. There have been long-standing contacts with the 

neighboring populations, with Norwegian influence in western Sweden, Danish in the 

south, and Finnish in the north. The population density has been highest in Southern and 

Central Sweden, while in Norrland the population is centered on the eastern coast and in 

river valleys whereas the mountaineous regions in the northwest are largely uninhabited. 

 

Genetically the Swedes have appeared relatively similar to their neighboring populations 

-  for example the Norwegians, Danish, Germans, Dutch and British - both in a classical 

study based on a small number of autosomal markers and in the recent genome-wide 

studies. In contrast, the Finns seem to be an exception to this rule: they do not appear 

genetically very close to the Swedes although they are geographically nearby. However, 

the Finns tend to show inflated genetic distances relative to the European populations in 

general, not only relative to the Swedes. 
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CHAPTER 3 – AIMS 

My thesis was motivated by several key concepts highlighted in Chapter 2. The first is 

that the roles of CNVs and ROHs in human complex diseases and traits are increasingly 

being recognized. The second is that limited CNV and ROH data is available for healthy 

individuals in Singapore and Swedish populations, therefore, the population characteristic 

of CNVs and ROHs in these populations are largely unknown. Thirdly is that 

comparisons among different populations are challenging because different studies have 

applied different analytical approaches. As a result, comparison of the final results from 

different studies was plausible.  

 

This thesis is divided into four studies with a specific primary aim for each study: 

Study I:  To identify CNVs and to study their population characteristics in Singapore 

populations 

Study II: To identify CNVs and ROHs, and to study their population characteristics in the 

Swedish population 

Study III: To study population differences of CNVs and CNPs between HapMap III and 

Singapore individuals 

Study IV: To identify ROHs and to study their population characteristics in Singapore 

populations 
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CHAPTER 4 – MATERIALS AND METHODS 

The chapter summarizes the materials and methods sections of the four studies (Study I – 

IV). More details of the materials and methods of these four studies can be found in the 

full research publications attached in the appendix.  

 

4.1. Study I (Genomic copy number variations in three Southeast Asian populations) 

4.1.1. Samples 

The genomic DNA samples used in this study were extracted from peripheral blood 

samples of individuals recruited under a previous project approved by the National 

University of Singapore-Institutional Review Board (NUS-IRB) (Reference Code: 07-

199E). The project recruited 600 unrelated and apparently healthy individuals (without 

clinical disease) from the three populations in Singapore (Chinese, Malay, and Asian 

Indian) for identification and characterization of novel genetic variants in drug 

transporter and ion channel genes.   

 

The DNA samples for this study (n=292) were chosen using stratified random sampling 

from the pool of samples to ensure approximate equal representation of each population 

and gender. The selected samples were genotyped using the Illumina Human 1M 

Beadchip and Affymetrix Genome-Wide Human SNP Array 6.0. The Illumina array was 

used to detect CNV loci in the study population, whereas the Affymetrix array was used 

to characterize loci that were independently replicated. The samples were anonymized, 

but basic demographic data such as gender, age, and self-reported ethnicity were retained. 

There were a total of 99 Chinese, 98 Malay, and 95 Indian individuals in the final 
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genotyped samples. Population membership was ascertained on the basis that all four 

grandparents belonged to the same population group. 

 

Genotyping was performed using Illumina 1M for all DNA samples as per the 

manufacturer’s protocol. The Singapore Genome Variation Project applied several 

filtering criteria to identify and remove unsuitable samples that we similarly adopted13. A 

total of 273 samples were used in the subsequent CNV calling after removing samples on 

the basis of a high SNP missingness rate (≥2%), excessive heterozygosity or cryptic 

relatedness by excessive identity-by-states, and based on samples displaying either 

evidence of admixture or clear evidence of discordance between self-reported and 

genetically inferred population membership. 

 

4.1.2. CNV detection using PennCNV 

We used the PennCNV algorithm to identify both deletions and duplications in the 22 

autosomes and the X chromosome79, 135. We applied a set of filtering criteria, as 

recommended by the algorithm, to exclude poor quality samples, which resulted in a 

further seven samples being excluded because their intensity data failed to conform to 

these criteria. Our final set for analysis included 266 samples consisting of 93 Chinese, 

88 Malay, and 85 Indian individuals. For each sample, PennCNV returned a list of 

regions with an abnormal copy number with their associated confidence scores. The score 

is a log Bayes Factor that measures the likelihood that the region harbors an abnormal 

copy number. A confidence score of 10 or larger has been suggested as a threshold to 

classify reliable CNV calls. In our case, we retained all CNVs called with confidence 
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scores higher than the median confidence score. This median score was calculated based 

on the confidence scores of CNVs detected in all individuals, and its value was 

approximately 12. 

 

4.1.3. Analyses  

Construction of CNV loci - As CNV regions called by PennCNV tend to overlap, 

we merged these regions into discrete, non-overlapping loci with the boundaries of each 

locus determined by the union of all CNV regions that belong to that particular locus28. If 

both deletions and duplications were observed in a particular locus, two separate loci 

were identified for each form of CNV.  

Replicated CNV loci - To validate the CNV loci identified using the Illumina 1M 

platform, we genotyped the same 266 samples using the Affymetrix SNP Array 6.0. The 

signal intensity data were analyzed using PennCNV with the same parameters as used for 

the Illumina samples. A CNV locus found using the Illumina platform was considered to 

be replicated if there was at least one overlapping CNV locus found using the Affymetrix 

platform. A CNV locus detected using Illumina was considered replicated if it shared at 

least 50% of its length with a CNV locus detected using the Affymetrix platform.  

Novel CNV loci - To identify CNV loci that are novel, we compared our results 

with the CNV loci published in the DGV.  We classified a particular CNV locus 

identified using Illumina and subsequently replicated using the Affymetrix platform as 

novel if it did not share at least 50% of its length with any established CNV loci in the 

DGV database. 
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Population differentiation of CNV loci - We used a Vst statistic28 to describe the 

overall population differentiation due to CNVs. We also compared the distribution of 

integer copy numbers across the three ethnic groups using the Fisher’s exact test. A p-

value<0.001 from this test was used to identify loci that segregated at different 

frequencies across the three populations.  

Mapping against annotated genes - We used the UCSC gene annotation 

(http://genome.ucsc.edu/) to identify genes that are located within or partially overlap 

with CNV loci.  

 

4.2. Study II (A population-based study of copy number variants and regions of 

homozygosity in healthy Swedish individuals) 

4.2.1. Samples  

One hundred randomly selected healthy Swedish individuals who volunteered as controls 

in case controls studies were studied. Peripheral blood samples of the participants were 

drawn for genomic DNA extraction and stored at the Karolinska Biobank. Identities of 

the participants were kept anonymous and no personal identifiers were used. All 100 

samples were genotyped using the Affymetrix SNP Array 6.0 as per the manufacturer’s 

protocol. Two samples were removed from further analysis because their genotype call 

rates were below 98%. The remaining 98 samples were used for CNV detection. 

 

4.2.2. CNV-detection algorithms and analyses 

CNV calling using PennCNV - We used two CNV-detection algorithms, namely 

PennCNV and Birdsuite for both comparison and validation79, 80. This study focused only 

http://genome.ucsc.edu/�
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on the CNVs in the 22 autosomes. After PennCNV detection, we applied a set of filtering 

criteria, as recommended by the algorithm, to exclude samples with poor quality signal 

intensity data. This resulted in the exclusion of 11 samples with the final set for analysis 

consisting of 87 samples. For each sample, PennCNV generated a list of CNVs with their 

confidence scores. A confidence score of 10 or larger has been recommended as the 

threshold to classify reliable CNVs. Therefore, we retained all CNVs called with 

confidence scores ≥10 for subsequent analyses.  

Construction of CNV loci using PennCNV output - The CNVs called by 

PennCNV were shown to overlap across samples. Thus, we merged or grouped these 

individual CNV calls into discrete, non-overlapping loci with the boundaries of each 

locus determined by the union of all CNVs that belonged to that particular locus. This 

was performed using the methods that we have previously developed136. We classified 

the status of these CNV loci into three categories, ‘del’ (loci containing deletions), ‘dup’ 

(loci containing duplications) and ‘del/dup’ (loci containing both deletions and 

duplications). 

CNP calling using Canary (Birdsuite) - Birdsuite software was also used to 

analyze the Affymetrix SNP Array 6.0 data. There are two components in the software 

for detecting copy number changes, namely Canary and Birdseye. Canary is used to 

determine the integer copy number at each of the predefined 1316 CNPs. These 1316 

CNPs are distributed in all the autosomes and sex (X and Y) chromosomes. However, 25 

CNPs located in the sex chromosomes were removed because the CNP calling in these 

chromosomes was less accurate. Thus, the results reported in this study were comprised 

of only 1291 CNPs in the 22 autosomes. Confidence statistics generated for the CNPs 
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were also used to identify poor quality calls and only integer copy numbers detected with 

high confidence, as recommended by the software (confidence score >0.1), were used for 

subsequent analyses.  

Correlation analysis of CNPs - We performed a correlation analysis of CNPs and 

the nearby SNPs. For each of the 1291 CNPs, SNPs within a 200kb window from the 

start- and end-position of the CNP were considered. We used the squared Pearson’s 

correlation (r2) for correlation analysis. The genotype calling of the Affymetrix SNP 

Array 6.0 was done using Birdsuite. In addition, to investigate the potential associations 

of CNPs with human diseases and traits, the same methods of r2 calculations for the 1291 

autosomal CNPs and the SNPs that were identified by GWAS was adopted. The list of 

GWAS-SNPs was downloaded from the National Human Genome Research Institute 

(NHGRI) website (http://www.genome.gov/gwastudies/) on 26 October 2010. 

CNV calling using Birdseye (Birdsuite) - In addition to PennCNV we also used 

another algorithm, Birdseye, to analyse the same set of data as different algorithms tend 

to have different sensitivities and specificities for detection of CNVs in different regions 

throughput the genome. As such, CNV loci detected by PennCNV and Birdseye can be 

cross-validated. We used the Birdseye component in Birdsuite to detect additional CNVs 

throughput the genome, which was not restricted to the 1316 predefined CNPs. Similarly, 

only CNVs in autosomal chromosomes were used because of the inaccuracy of Birdseye 

in the sex chromosomes. CNVs with low confidence, as recommended by the software 

(confidence score ≤5), were removed from subsequent analysis.  

http://www.genome.gov/gwastudies/�
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Construction of CNV loci using Birdseye output - We also constructed CNV loci 

based on the Birdseye output using similar methods as were applied to the PennCNV 

output. 

Comparison of CNV loci detected by PennCNV and Birdsuite - The CNV loci 

identified by PennCNV and Birdseye were compared as a ‘validation’ step. We used a 

‘reciprocal 50% overlapping’ method to compare the CNV loci detected by these two 

algorithms and considered a CNV locus ‘found’ by both algorithms when this locus was 

detected in both PennCNV and Birdseye with an overlap of ≥50% of their lengths.  

Novel CNV loci - To identify novel CNV loci, we compared the CNV loci 

detected by PennCNV and Birdseye with the data from the DGV.  A CNV locus 

identified by PennCNV and Birdseye was considered novel if it did not share at least 

50% of its length with any CNV loci cataloged in the DGV.  

 

4.2.3. Comparison with HapMap Phase III populations 

The CEL-files of the Affymetrix SNP Array 6.0 for the seven populations in the HapMap 

Phase III project were downloaded from the ftp site (ftp://ftp.ncbi.nlm.nih.gov/hapmap/ 

raw_data/hapmap3_affy6.0/). The HapMap phase III populations studied are people of 

African ancestry in the southwestern USA (ASW), the Chinese community in 

Metropolitan Denver, Colorado, USA (CHD), Gujarati Indians in Houston, Texas, USA 

(GIH), the Luhya in Webuye, Kenya (LWK), people of Mexican ancestry in Los 

Angeles, California, USA (MEX), the Maasai in Kinyawa, Kenya (MKK) and the 

Tuscans in Italy (TSI). All the samples were analysed using Canary similar to the 

analysis of the Swedish population. Only unrelated samples were included in our study, 

ftp://ftp.ncbi.nlm.nih.gov/hapmap/ raw_data/hapmap3_affy6.0/�
ftp://ftp.ncbi.nlm.nih.gov/hapmap/ raw_data/hapmap3_affy6.0/�
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i.e., family-related samples were removed using the ‘relationships’ file provided by the 

International HapMap Project. After the sample exclusion step, a total of 594 unrelated 

samples from the seven HapMap III populations were analysed: ASW (n=52), CHD 

(n=89), GIH (n=89), LWK (n=90), MEX (n=53), MKK (n=132) and TSI (n=89). We 

performed principal component analysis (PCA) to compare the Swedish population with 

the HapMap Phase III populations using the CNP output generated by Canary. 

 

4.2.4. ROH-detection algorithms and analyses  

In addition to CNVs, we also detected ROHs using PennCNV in the 22 autosomes of the 

87 Swedish individuals. However, we only focused on ROHs ≥500Kb. For each of these 

we confirm that they are ROHs by determining the genotypes of the SNPs that fell within 

each region. We then calculated the percentage of heterozygosity (number of 

heterozygotes/total number of heterozygotes and homozygotes). We also calculated the 

percentage of missingness genotypes (number of missingness/total number of SNPs in 

each ROH). We excluded ROHs with >2.5% heterozygosity and >1% missingness. For 

the remaining ROHs, we also ensured a density of one SNP per 10kb.  

 

4.3. Study III (Copy number polymorphisms in new HapMap III and Singapore 

populations) 

4.3.1. Samples 

In this study, a total number of 265 Singapore samples (93 Chinese, 88 Malays and 84 

Indians) genotyped using the Affymetrix SNP Array 6.0 were available for analysis 

(please see section 4.1.1. for Singapore samples). We also studied the HapMap III 
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populations for comparisons (see section 4.2.3. for HapMap III populations). All the 

samples were analysed by Birdsuite.  

 

4.3.2. CNP calling using Canary (Birdsuite) 

All the Singapore and HapMap III samples were analysed by Canary. (Please see section 

4.2.2. for more descriptions of CNP calling using Canary). 

 

4.3.3. Correlation analysis 

The correlation analysis of CNPs performed in this study differed slightly from Study II, 

because we were restricted to biallelic CNPs with a MAF ≥5%. All the correlation 

analyses of CNPs and nearby SNPs were done separately for each of the 10 populations. 

(See section 4.2.2. for further descriptions of correlation analysis of CNPs.) 

 

4.3.4. Copy number loci calling using Birdseye (Birdsuite) and validation 

The Birdseye component in Birdsuite was used to detect additional copy number loci 

located outside the 1316 CNPs in the 10 populations. (See section 4.2.2. for more 

descriptions of CNV calling using Birdseye and construction of novel copy number loci 

using Birdseye output.)  
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4.4. Study IV (Regions of homozygosity in three Southeast Asian populations) 

4.4.1. Samples 

The identical set of samples (268 samples) studied in the Singapore Genome Variation 

Project13 was used in this study. (Please see section 4.1.1. for further description of these 

Singapore samples.)  

 

4.4.2. ROH detection 

The signal intensity data from the Illumina and Affymetrix arrays of these 268 samples 

were analyzed to identify ROHs in the 22 autosomes by the PennCNV algorithm. As 

such, ROHs detected by the Illumina and Affymetrix arrays could be cross-validated. We 

focused only on ROHs ≥500Kb  and confirmed each of the ROHs by determining the 

genotypes of the SNPs that fell within each region. The genotype data for each of the 

three populations was obtained from the Singapore Genome Variation Project 

(http://www.nus-cme.org.sg/sgvp/). There are approximately 1.58 million genotypes or 

SNPs in the ‘QC+Mono file’ for each population. This quality control exercise was done 

separately for each of the populations using their own specific genotype file.  

 

The percentage of heterozygosity (number of heterozygotes/total number of 

heterozygotes and homozygotes) was then calculated. We also calculated the percentage 

of missingness genotypes (number of missingness/total number of SNPs in each ROH). 

We removed ROHs with an arbitrary cutoff of >2% heterozygosity and >1% missingness.  

We also ensured a density of one SNP per 10Kb.  

 

http://www.nus-cme.org.sg/sgvp/�
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4.4.3. Validation 

Similar to our previous study on CNVs (Study I), we used the Illumina array as the 

detection platform for ROHs in this study. The results were then validated using the 

Affymetrix array at the ‘sample-level’, i.e., ROHs detected by the Illumina and 

Affymetrix arrays were cross-validated sample-by-sample. This cross-validation was 

performed by overlapping the ROHs detected by the Illumina array against the ROHs 

identified by the Affymetrix array at a 50% overlap cutoff point. 

 

4.4.4. Construction of ‘common ROH loci’ 

We also clustered the individual ROHs into discrete common loci termed ‘common ROH 

loci’, which were identified using statistical methods developed by our group136.  

 

4.4.5. Population comparisons 

For each of the common ROH loci, we tested the difference between the three 

populations (using the Fisher’s exact test with p-values corrected using the false 

discovery rate (FDR)). We also generated a PCA plot using the common ROH loci. Since 

the Illumina array was used as the detection platform, these analyses (i.e., identification 

of common ROH loci and the PCA plot) were restricted to ROHs detected by the 

Illumina array. 
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4.5. Summary for Study I – IV 
Table 5 – Summary of samples, genotyping platforms, detection algorithms and data used and generated by Study I - IV  

Study Final sample size Genotyping 
platform 

Detection algorithm  Data Remark 

I 266 Singapore 
samples  

Affymetrix SNP 
Array 6.0 and 
Illumina 1M 

PennCNV • CNV data generated by 
PennCNV for both 
Affymetrix and Illumina 
arrays 

• Illumina CNV data was used for 
detection and Affymetrix CNV data 
was used for validation 

II 87 Swedish samples 
and 594 HapMap III 
samples 
 

Affymetrix SNP 
Array 6.0 

PennCNV and 
Birdsuite (Canary 
and Birdseye) 

• CNV data generated by 
PennCNV and Birdseye  
• Canary determined the 
integer copy number of 
the 1316 predefined 
CNPs 
• ROH data generated by 
PennCNV  

• The Swedish CNV data generated by 
PennCNV and Birdseye were cross-
validated 
• The HapMap III samples were only 
analysed by Canary and used for PCA 
to provide some preliminary insights to 
the population differences (because this 
study focused on a detailed study of 
CNVs and ROHs in the Swedish 
population) 

III 265 Singapore 
samples and 594 
HapMap III 
samples 

Affymetrix SNP 
Array 6.0 

Birdsuite (Canary 
and Birdseye) 

• CNV data generated by 
Birdseye 
• Canary determined the 
integer copy number of 
the 1316 predefined 
CNPs 

• The HapMap III samples were 
analyzed in detail in this study for 
comparisons with Singapore 
populations 
  

IV 268 Singapore 
samples 

Affymetrix SNP 
Array 6.0 and 
Illumina 1M 

PennCNV • ROH data generated by 
PennCNV 

• Illumina ROH data was used for 
detection and Affymetrix ROH data 
was used for validation 
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CHAPTER 5 – RESULTS 

This chapter summarizes the major results of each of the four studies (Study I – IV). The 

complete set of the results of these four studies are reported in the full research papers 

attached in the appendix. 

 

5.1. Study I (Genomic copy number variations in three Southeast Asian populations) 

We discovered approximately 45 CNVs per individual with a ratio of deletions to 

duplications of approximately 4:1. The majority of individuals had 20–60 CNVs in their 

genome (Figure 9).  

 

 
Figure 9 – Number of CNVs per genome and their frequency in each of the three 

Singapore populations (adapted from Ku et al. (2010) Hum. Mutat. 31:851-857)78. 
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We merged overlapping individual regions and identified 1,841 deletion and 732 

duplication loci in these populations (Figure 10). Less than 10% of deletion loci and less 

than 5% of duplication loci could be considered common (population frequency >5%) 

across the three populations. Using the Affymetrix 6.0 platform we identified 1,514 

deletions and 560 duplications loci. 

 

Comparing the CNV loci we found 752 (40.8%) deletion and 422 (57.8%) duplication 

loci identified using the Illumina platform that were replicated by the Affymetrix 

platform. Singletons constituted the majority of CNV loci that were not replicated, with 

64.8% of non-replicated deletion loci and 71.6% of non-replicated duplication loci which 

were singletons.  

 

We discovered that approximately 40% of the replicated deletion loci were novel, as only 

467 out of 752 loci were found in the DGV. Similar to the deletion loci, approximately 

37% of duplication loci were found to be novel (156 out of 422 loci).  
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Figure 10 – Number of loci replicated by the Affymetrix platform and novel loci not 

found in the DGV. 

 

The median Vst statistic between Chinese and Malay populations, computed across 1,174 

replicated loci was 0.016 and lower than the corresponding comparisons for Chinese and 

Indian populations (median = 0.035) and Indian and Malay populations (median= 0.028). 

Over the whole genome, the Indian population was more differentiated from Chinese and 

Malay populations. We identified 27 deletion loci that segregated at significantly 

different frequencies across the three populations. 

 

Compared to duplication loci, we found an appreciably lower percentage of deletion loci 

that overlap with known genes or uncharacterized transcripts in the UCSC database (p-

value <0.001). Most of the 367 deletion loci that overlap with UCSC genes are rare 

(66.8%); however, there are 66 (18.0%) deletion loci with an intermediate frequency 

between 1% and 5%, and 56 (15.3%) common deletion loci that also overlap UCSC 
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genes. Likewise, we found that 229 (72.7%) out of 315 duplication loci overlapping with 

the UCSC genes are rare, 23.5% are intermediate, and 3.8% are common (Table 6). In 

addition, we also found several complex disease-associated genes overlapping with the 

common CNV loci (population frequency >5%), including FCGR3B, beta-defensin 

genes, UGT2B17, CCL3L1 and a number of drug-related genes such as CYP2A6 and 

CYP2A7.  

 

Table 6 – The proportion of deletion and duplication loci overlapping with the 

UCSC database with varying population frequencies  

Population frequency  Deletion loci overlap 

UCSC genes 

Duplication loci overlap 

UCSC genes  

Rare (<1%) 66.8% 72.7% 

Intermediate (1-5%) 18.0% 23.5% 

Common (>5%) 15.3% 3.8% 

 

5.2. Study II (A population-based study of copy number variants and regions of 

homozygosity in healthy Swedish individuals) 

In this study, an average of approximately 36 CNVs per individual with a ratio of 

deletions to duplications of approximately 2.6:1 was discovered for the Swedish 

individuals. The number of CNVs per individual ranged from 22 to 65.  

 

We merged overlapping CNVs to construct CNV loci and identified 623 loci where 476 

loci contained deletions (‘del-loci’), 102 loci contained duplications (‘dup-loci’) and 45 

loci contained both deletions and duplications (‘del/dup-loci’) (Table 7). Of the 623 CNV 

loci, 268 loci were detected in ≥2 individuals. Among the high frequency CNV loci (i.e. , 
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the loci that were detected in multiple individuals) several overlapped with disease-

related genes. For example, a deletion locus overlapping with WWOX (a tumor 

suppressor gene) was detected in 24 of the 87 individuals (27.6%), and a deletion locus 

encompassing GSTT1 was deleted at a population frequency of 13.8%. Additionally, the 

proportion of del-loci encompassing the UCSC genes (28.36%) was much lower than 

dup-loci (50.00%) overall.  

 

In an effort to validate the 623 CNV loci constructed from the PennCNV output, we 

compared them with the CNV loci detected by Birdseye. We found 196 loci (31.46%) 

with ≥50% reciprocal overlap with the Birdseye data and the status of ‘del’, ‘dup’ and 

‘del/dup’ of the 196 loci were consistent with the Birdseye data. For the remaining 427 

CNV loci that were not confirmed by Birdseye data, we found 247 loci that were 

cataloged in the DGV. Therefore, by applying two different methods of validation, 443 

(71.1%) of the 623 CNV loci detected by PennCNV were considered reliable in this 

study (Table 7). 
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Table 7 – Summary statistics of CNV loci constructed from PennCNV output 

Summary statistics of CNV loci (PennCNV 

output) 

Total Del Dup 

Number of CNV loci 623 476 (76.40%) * 102 (16.37%) * 

Number of CNV loci detected in ≥2 

individuals 

268 (43.02%) ** 194 (40.76%) ** 29 (28.43%) ** 

Sum of the length of loci 61.52Mb 19.83Mb 25.80Mb 

Average length per locus 98.75Kb 41.66Kb 252.93Kb 

Average number of markers per locus 58 34 141 

Size distribution   

<10Kb 141 (22.63%) 132 (27.73%) 6 (5.88%) 

≥10Kb to <50Kb 265 (42.54%) 236 (49.58%) 17 (16.67%) 

≥50Kb to <100Kb 79 (12.68%) 54 (11.34%) 21 (20.59%) 

≥100Kb to <500Kb 110 (17.66%) 52 (10.92%) 43 (42.16%) 

≥500Kb 28 (4.49%) 2 (0.42%) 15 (14.71%) 

Overlapping with DGV   

CNV loci that overlap 388 (62.28%) 298 (62.61%) 54 (52.94%) 

CNV loci that did not overlap 235 (37.72%) 178 (37.39%) 48 (47.06%) 

Overlapping with UCSC genes  

CNV loci that overlap 202 (32.42%) 135 (28.36%) 51 (50.00%) 

CNV loci that did not overlap 421 (67.58%) 341 (71.64%) 51 (50.00%) 

Overlapping with CNV loci from Birdseye data and consistent in CNV status, i.e., del/dup/del+dup 

CNV loci that overlap 196 (31.46%) 160 (33.61%) 30 (29.41%) 

CNV loci that did not overlap 427 (68.54%) 316 (66.39%) 72 (70.59%) 

*The percentage was calculated by dividing 623 loci   

**The percentage was calculated by dividing 623, 476 and 102 loci respectively 

 Note: as there are only 45 CNV loci (7.22%) with status del+dup, the summary statistics of these loci were 

not shown in the table 

(This table was adapted from Teo et al. (2011) J. Hum. Genet. 56:524-533)137 
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Approximately 49.81% of the 1,291 autosomal CNPs were non-polymorphic in the 

Swedish population. Numerous CNPs were found to overlap with important known 

disease- or pharmacogenetics-related genes (Table 8). To investigate the potential role of 

CNPs in the etiology of complex diseases or traits, we computed the r2 between CNPs 

and the SNPs from the NHGRI GWAS Catalog. Of the >3,000 GWAS-SNPs that were 

found to be associated with various complex diseases and traits, only 8 GWAS-SNPs 

were found to be in strong correlation with 6 CNPs (Table 9). 
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Table 8 – CNPs that overlap with important and known disease- and pharmacogenetic-related genes 

CNP ID CN=0 CN=1 CN=2 CN=3 CN=4 Frequency Chr. Start End Length UCSC gene (disease/trait) 

118 0 1 70 0 1 2.78 1 159778034 159906183 128149 FCGR3A,FCGR2B,FCGR2C,FCGR3B 

(autoimmune or inflammatory diseases) 

11164 0 1 83 2 0 3.49 6 162658558 162660430 1872 PARK2,parkin 

(Parkinson’s disease) 

530 1 10 71 0 0 13.41 3 190846372 190847332 960 TP63 

(cancers) 

147 3 31 53 0 0 39.08 1 194997658 195068695 71037 CFHR3,CFHR1 

(age-related macular degeneration) 

603 8 33 46 0 0 47.13 4 69043083 69168574 125491 UGT2B17 

(prostate cancer, graft-versus-host 

disease) 

2560 15 36 34 0 0 60.00 22 22680529 22726814 46285 GSTT1 

(phase II metabolizing enzyme) 

2203 20 46 17 1 0 79.76 16 76929941 76942266 12325 WWOX 

(cancers) 

109 33 39 15 0 0 82.76 1 150822330 150853218 30888 LCE3C,LCE3B 

(psoriasis) 

2559 32 41 1 0 0 98.65 22 22613016 22670785 57769 GSTT2,GSTT2B, GSTTP1 

(phase II metabolizing enzyme) 

88 46 1 0 0 0 100.00 1 110025907 110044476 18569 GSTM2,GSTM1 

(phase II metabolizing enzyme) 

(This table was adapted from Teo et al. (2011) J. Hum. Genet. 56:524-533)137 
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Table 9 – Correlation between CNPs and GWAS-SNPs at r2>0.5  

CNP  Chr. Start 

position 

End position Length GWAS-SNP r2 value Gene Complex disease/trait 

60 1 72541504 72583736 42232 rs2815752 1 NEGR1 BMI 

147 1 194997658 195068695 71037 rs6428370 0.647399825 Intergenic Acute lymphoblastic leukemia 

(childhood) 

333 2 203608045 203610291 2246 rs6725887 0.84632626 WDR12 Myocardial infarction (early onset) 

874 5 150185693 150198797 13104 rs13361189 0.927251567 IRGM Crohn's disease 

874 5 150185693 150198797 13104 rs1000113 0.927251567 IRGM Crohn's disease 

874 5 150185693 150198797 13104 rs11747270 0.927251567 IRGM Crohn's disease 

877 5 155409350 155415307 5957 rs4704970 1 SGCD Multiple sclerosis 

933 6 32539530 32681749 142219 rs3129934 0.664781909 HLA-DRB1 Multiple sclerosis 

(This table was adapted from Teo et al. (2011) J. Hum. Genet. 56:524-533)137 

 

 

 

 

 

 

 

 



94 

 

We performed a PCA to compare the Swedish population with the HapMap Phase III 

populations using the CNP output generated by Canary. The PCA showed distinct 

clusters for populations with different ancestries. The first two principal components 

(PC1 and PC2) separated the African (ASW, MKK and LWK) and non-African (CHD, 

GIH, MEX, SWED and TSI) populations (Figure 11, top left). This suggested that the 

CNP profiles of the African populations were substantially different from the non-

African populations. From the second and fourth principal component (PC2 and PC4), 

three distinct clusters were observed (Figure 11, top right). The three African populations 

remained as a distinct cluster; however, CHD was separated from the European 

populations (MEX, SWED and TSI) and the Gujarati Indians (GIH). This indicated that 

the CNP profile of Gujarati Indians in Houston (Texas, USA) resembles the European 

populations. PCA was also performed by restricting only the ‘European cluster’ 

populations (GIH, MEX, SWED and TSI) in PC2 versus PC4. More interestingly, we 

also found that the CNP profile of the Swedish population was substantially different 

from the other populations such as GIH and MEX, but it was also appreciably different 

from TSI (Figure 11, bottom left). These differences further justify the need to detect and 

characterize the CNV/CNP profile of the Swedish population. 
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Figure 11 - PCA comparing the Swedish and HapMap III populations 

(This figure was adapted from Teo et al. (2011) J. Hum. Genet. 56:524-533)137 

 

By restricting ROHs to ≥500Kb, a total of 14 ,815 regions were found in the 87 Swedish 

individuals with an average of 170 ROHs. The number of ROHs ranged from 105 to 220. 

The majority of these ROHs were less than 1Mb in length. However, by restricting ROHs 

to ≥1Mb, 2 ,814 ROHs with an average of 32 ROHs per individual were found. The 

median size of the ROHs was approximately 686Kb, with the largest ROH spanning a 

length of approximately 25Mb in chromosome 11. The sum of the length of ROHs in 

each individual (i.e., the total length of all the ROHs in one individual) was then 
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computed. It ranged from approximately 87Mb to 179Mb with a median and mean of 

approximately 141Mb. This finding suggests that on average, 141Mb or 4.92% of the 

human genome (2,867Mb) is homozygous in these Swedish individuals. 

 

5.3. Study III (Copy number polymorphisms in new HapMap III and Singapore 

populations) 

This study focused on comparing the Singapore and HapMap III populations. The 

Singapore populations were similar to the HapMap III populations of non-African 

descent in terms of the proportion of non-polymorphic loci and loci with varying 

population frequencies. More than half of the CNPs were non-polymorphic in the 

Singapore and HapMap III populations of non-African descent (i.e., CHD, GIH, MEX 

and TSI). This was in contrast to the populations of African descent (i.e., ASW, LWK 

and MKK), where only 26.41% to 37.72% of the CNPs were not polymorphic.  

 

We identified 698 CNPs (FDR <0.01) that differ between populations with several loci 

encompassing known disease- or traits-associated or pharmacogenetic-related genes. 

There was a large inter-population difference in the frequencies of some of the CNPs 

overlapping these genes (Table 10). 

 

The numbers of CNPs that showed significant differences (FDR <0.01) in pairwise 

comparisons of the 10 populations are shown in Table 11. Only 19 CNPs showed 

significant differences between Sing-Chinese and CHD, and 12 CNPs between Sing-
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Indian and GIH suggesting that the CNPs profile in the two Chinese and two Indian 

populations are very similar. 

 

To investigate the potential role of CNPs in the etiology of complex diseases or traits, we 

computed the r2 between CNPs and the SNPs in the NHGRI GWAS Catalog. Out of the 

>2,500 GWAS-SNPs that have been found to be associated with various complex 

diseases and traits, only 17 GWAS-SNPs were found to be in strong correlation with 12 

CNPs (Table 12).  
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Table 10 – CNPs (FDR <0.01) that overlap with known disease-associated or pharmacogenetic-related genes 

CNP  Gene Sing-

Chinese 

Sing-

Malay 

Sing-

Indian 

ASW CHD GIH  LWK MEX  MKK TSI 

CNP2203  WWOX 2.38* 7.32 51.81 66.67 0.00 48.86 40.00 67.31 28.35 68.18 

CNP340 ERBB4 0.00 2.33 12.05 7.69 0.00 17.24 0.00 0.00 0.00 4.49 

CNP530 TP63 64.84 48.24 27.38 30.77 68.54 31.82 31.82 9.62 32.06 6.90 

CNP2118 ADAMTSL3 67.05 46.84 11.54 38.46 51.19 4.49 49.40 24.32 48.80 19.51 

CNP147 CFHR3,CFHR1 11.83 12.64 53.57 59.62 15.73 58.43 59.09 18.87 42.42 43.82 

CNP2560 GSTT1 96.77 85.06 56.63 72.00 92.13 70.79 75.56 71.70 80.15 67.06 

CNP603 UGT2B17 100.00 95.40 82.14 48.08 98.88 86.42 63.33 58.49 67.18 58.43 

CNP2415 CYP2A6 18.89 36.25 5.13 6.00 23.86 11.49 8.05 2.04 8.80 4.60 

*Population frequency (%) = deletion frequency + duplication frequency 

(This table was adapted from Ku et al. (2011) J. Hum. Genet. 56:552-560)138. 
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Table 11 - The number of CNPs that showed significant differences (FDR <0.01) in the pairwise comparisons among the 10 populations 

 Population Sing-

Chinese 

Sing-

Malay 

Sing-

Indian 

ASW CHD GIH LWK MEX MKK TSI 

Sing-Chinese - 6 84 137 19 106 209 81 199 141 

Sing-Malay - - 46 125 26 72 197 59 180 126 

Sing-Indian - - - 93 88 12 186 32 147 54 

ASW - - - - 132 95 13 69 18 90 

CHD - - - - - 113 196 77 192 130 

GIH - - - - - - 170 35 155 52 

LWK - - - - - - - 123 33 176 

MEX - - - - - - - - 97 27 

MKK - - - - - - - - - 146 

TSI - - - - - - - - - - 

(This table was adapted from Ku et al. (2011) J. Hum. Genet. 56:552-560)138. 
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Table 12 – Correlation between CNPs and GWAS-SNPs at r2 >0.5 in 10 populations 

CNP Chr. Start/End 

position 

GWAS-

SNPs 

GWAS-

SNPs 

position 

Population   Gene Disease/Trait 

60 1 72541504 

72583736 

rs2815752 72585028 Sing-Chinese, Sing-Malay, Sing-Indian, 

ASW, CHD, GIH, LWK, MEX, MKK, TSI 

NEGR1 BMI 

874 5 150185693 

150198797 

rs13361189 150203580 Sing-Chinese, Sing-Malay, Sing-Indian, 

ASW, CHD, GIH, LWK, MEX, MKK, TSI 

IRGM Crohn's disease 

874 5 150185693 

150198797 

rs1000113 150220269 Sing-Chinese, Sing-Malay, Sing-Indian, 

CHD, MEX, MKK, TSI 

IRGM Crohn's disease 

874 5 150185693 

150198797 

rs11747270 150239060 Sing-Chinese, Sing-Malay, Sing-Indian, 

ASW, CHD, GIH, MEX, MKK, TSI 

IRGM Crohn's disease 

877 5 155409350 

155415307 

rs4704970 155433570 Sing-Malay, Sing-Indian, ASW, CHD, GIH, 

LWK, MEX, MKK, TSI 

SGCD Multiple sclerosis 

333 2 203608045 

203610291 

rs6725887 203454130 Sing-Chinese, CHD, LWK, MEX, MKK, 

TSI 

WDR12 Myocardial infarction (early 

onset) 

399 3 37957108 

37961932 

rs9311171 37971481 Sing-Chinese, Sing-Malay, CHD, MEX, TSI CTDSPL Prostate cancer 

28 1 25465715 

25534592 

rs10903129 25641524 Sing-Indian, GIH TMEM57 Total cholesterol 

147 1 194997658 

195068695 

rs6428370 195111216 Sing-Indian, ASW, GIH, MEX, TSI Intergenic Acute lymphoblastic leukemia 

(childhood) 

147 1 194997658 

195068695 

rs10737680 194946078 GIH CFH Age-related macular 

degeneration 

1491 9 98700200 

98729161 

rs10816533 98578959 CHD ZNP510 Height 
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109 1 150822330 

150853218 

rs10888501 150804578 Sing-Malay, Sing-Indian Intergenic Response to antipsychotic 

treatment 

12035 12 118473270 

118475144 

rs11064768 118302892 Sing-Chinese CCDC60 Schizophrenia 

2197 16 72953795 

73009537 

rs10871290 73030197 Sing-Indian GLG1 Breast cancer 

933 6 32539530 

32681749 

rs3135338 32509195 Sing-Malay, Sing-Indian HLA Multiple sclerosis 

933 6 32539530 

32681749 

rs615672 32682149 Sing-Malay HLA-DRB1 Rheumatoid arthritis 

933 6 32539530 

32681749 

rs9272346 32712350 Sing-Malay MHC Type 1 diabetes 

(This table was adapted from Ku et al. (2011) J. Hum. Genet. 56:552-560)138. 
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The second component of the Birdsuite software, Birdseye, was used to identify novel 

copy number loci in the 10 populations. We subsequently found 5,947 copy number loci, 

of which 933 loci were excluded due to overlap with the 1,291 autosomal CNPs 

identified by McCarroll et al. (2008)29. As a result, only 5,014 were novel copy number 

loci, i.e., had not been previously found by McCarroll et al. (2008). Of these, 1,448 loci 

were detected in two or more individuals in the 10 populations. Using a more stringent 

definition of ‘common’ novel copy number loci (population frequency ≥1%), there were 

only 170 loci and of these, 42 loci had a population frequency ≥5%.  

 

5.4. Study IV (Regions of homozygosity in three Southeast Asian populations) 

By restricting ROHs to ≥500Kb in length, several thousand ROHs were found in each of 

the three populations (Table 13). On average, the Indian population had the lowest 

number of ROHs compared to Chinese and Malay populations. This result was consistent 

between the Illumina and Affymetrix arrays. When restricting to ROHs ≥1Mb in length, 

the average number of ROHs was still lower in the Indian (n=10) than in the Chinese 

(n=16) and Malay (n=15) populations when using the Illumina array. The Indian 

population had the lowest number of ROHs and smallest total length of ROHs per 

individual on average compared to the Chinese and Malay populations. These results also 

show that, on average, approximately 2-3% of the human genome is homozygous in these 

Chinese (2.9%), Malay (2.6%) and Indian (2.0%) individuals. Approximately 58% 

(14,414 ROHs) of the total number of 24,730 ROHs detected by the Illumina array 

qualified for validation by the Affymetrix array. 
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Table 13 – Characteristics of ROHs in three Singapore populations 

 Illumina Affymetrix 

Characteristics Chinese 

(n=96) 

Malay  

(n=89) 

Indian 

(n=83) 

Chinese 

(n=96) 

Malay  

(n=89) 

Indian  

(n=83) 

Total number of ROHs 10,470 8,560 5,700 6,564 5,578 3,793 

Number of ROHs per individual 

Mean (average) 

Median 

Minimum  

Maximum 

 

109 

109 

87 

127 

 

96 

95 

54 

134 

 

69 

69 

42 

91 

 

68 

70 

48 

88 

 

63 

64 

38 

89 

 

46 

45 

27 

64 

Length of ROHs (in kb) 

Mean (average) 

Median 

Maximum 

 

761.6 

658.8 

5,078 

 

771.1 

660.0 

13,620 

 

836.0 

653.3 

44,840 

 

826.5 

691.9 

5,088 

 

837.1 

695.5 

36,270 

 

933.2 

679.7 

44,810 

Total length of ROHs per individual (in Mb) 

Mean (average) 

Median 

Minimum  

Maximum 

 

83.06 

82.92 

65.02 

105.70 

 

74.16 

74.50 

37.64 

103.50 

 

57.41 

52.94 

30.31 

219.60 

 

56.51 

56.46 

40.45 

81.10 

 

52.46 

51.31 

29.71 

102.00 

 

42.65 

36.93 

20.15 

210.60 

Size distribution of ROHs (proportion, %) 

500kb - 1Mb 

≥1Mb 

 

84.9% 

15.1% 

 

84.6% 

15.4% 

 

85.5% 

14.5% 

 

79.2% 

20.8% 

 

79.0% 

21.0% 

 

79.6% 

20.4% 

ROHs validated by Affymetrix at ≥50% 

overlap  

Number 

Percentage  

 

5,918 

56.5% 

 

5,070 

59.2% 

 

3,426 

60.1% 

 

- 

- 

 

- 

- 

 

- 

- 
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We subsequently identified a total of 821 common ROH loci in all three populations, of 

which only 20 loci differed significantly (FDR <0.01) between the populations. Our PCA 

plot (Figure 12) showed a reasonably good separation of Chinese and Malay from Indian, 

and to the best of our knowledge, we demonstrated the utility of ROHs as a genetic 

marker in population structure analysis for the first time. 

 

 
Figure 12 - PCA results based on the common ROH loci for three Singapore populations 
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CHAPTER 6 - DISCUSSION 

6.1. CNV and ROH maps for each population  

The four studies which comprise my Ph.D. thesis have investigated the population 

characteristics of CNVs (CNPs) and ROHs in the Singapore and Swedish populations. In 

addition, we have also investigated the population differences by comparison with the 

HapMap III populations. This has enabled us to discover substantial differences between 

these populations. For the three Singapore populations, our CNV results showed that the 

Indian population is more differentiated from Chinese and Malay populations (i.e., the 

differences between Indian and Chinese or Malay are greater than between Chinese and 

Malay) (Study I). This is in strong agreement with the findings based on SNP data from 

the Singapore Genome Variation Project13, which also found that the Indian population is 

more differentiated from Chinese and Malay populations. This was further supported by 

the PCA based on the ROH data of Singapore populations, of which the plot showed a 

reasonably good separation of Chinese and Malays from Indians (Study IV). Although a 

number CNV studies have been performed in European populations, our results showed 

that the CNP profile of the Swedish population differed considerably from the HapMap 

III European populations (Study II). Finally, further comparison to the HapMap III 

populations using the CNP data generated by Canary, revealed that pairwise comparisons 

between (a) Singapore Chinese and HapMap CHD and (b) Singapore Indians and 

HapMap GIH are comparable. In addition, the CNP profile of the Indian population is 

closer to European populations than to Singapore Chinese and Malay populations and the 

HapMap III CHD population (Study III). Therefore, we have documented the substantial 

differences between the populations in the studies. This also suggests that the data 
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generated for the HapMap populations might not be applicable to other populations 

worldwide, supporting the notion of generating a genome-wide map of CNVs and ROHs 

for individual populations. Although my thesis focuses on CNVs and ROHs, a greater 

emphasis was placed on CNVs as it has, to date, received greater research attention..     

 

Furthermore, some of the CNV loci or CNPs that showed differences in frequencies 

between populations overlapped with known disease-related genes and 

pharmacogenetics-associated genes. These differences may account for phenotypic 

differences between populations. In addition, the importance of CNPs was further 

demonstrated by their strong LD with several of the GWAS-SNPs. Taken together, these 

preliminary data warrant further studies to directly investigate the associations of 

CNVs/CNPs with various complex diseases and traits.  

 

6.2. Major criticisms from reviewers 

There were several major criticisms from reviewers for four submitted papers that are 

worth further discussion.   

(a) Validation using quantitative PCR 

One of the major criticisms from the reviewers for Study I and Study II was that 

quantitative PCR (qPCR) was not used to validate the CNVs identified from microarrays. 

It is argued that qPCR validation is necessary and important because the detection of 

CNVs using microarrays is prone to a high false-positive rate. We have performed an in 

silico validation in our studies.  
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In addition to applying a series of stringent quality control criteria at the ‘sample-level’ 

(i.e., removing samples with poor quality signal intensity data) and ‘CNV-level’ (i.e., 

removing CNV calls generated by algorithms using the accompanied statistic score for 

each CNV call), we have performed validation using a second genotyping platform, i.e., 

Illumina and Affymetrix genotyping arrays were used  in Study I and in silico validation 

using two different algorithms, i.e., PennCNV and Birdsuite  in Study II. In Study I, only 

CNV loci detected by the Illumina platform and subsequently replicated by the 

Affymetrix platform were discussed in detail. Furthermore, for loci that were replicated, 

the distribution of integer copy-numbers as detected by Illumina and Affymetrix were 

compared. We then tested the population differentiation of the CNV loci across the three 

populations, only if the integer copy-number frequency was estimated consistently across 

the two platforms. We found that for loci that were replicated, the vast majority (89.9% 

for deletion loci and 91.2% for duplication loci) had copy-number frequencies that were 

consistently estimated across the two platforms. On the other hand, validation through 

algorithm comparison method is a common and standard in silico approach used to 

validate CNV data or results139. Additionally, these results were also compared to the 

DGV (Study II). Approximately 70% of the CNV loci were considered validated by 

applying these two methods of validation (Table 7). 

 

In contrast, there are several problems of applying qPCR to validate the results or 

estimate the FDR. First, multiple primer sets are needed to probe/validate one CNV locus 

as the breakpoints of CNVs are inaccurately determined using microarrays and also due 

to the large sizes of CNV loci. Furthermore, the boundaries of a CNV locus were also 
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determined through statistical methods by clustering individual CNVs into discrete loci 

(as described in the Material and Methods ‘Construction of CNV loci’ in Study I and 

Study II). In addition, qPCR should be performed for at least tens of CNV loci randomly 

selected from hundreds of CNV loci in order to provide a more accurate estimation of 

FDR. Although qPCR is a highly accurate method, it is not scalable to validate all the 

CNV loci, with the result that the FDR will be estimated from only a small number of 

randomly selected CNVRs. In contrast, validation through comparison of the datasets 

produced by two different genotyping platforms (Study I) or two different algorithms 

(Study II) allowed us to validate all the CNV loci at the ‘whole-genome’ level. The other 

commonly used in silico validation method is through comparison with the data from the 

DGV. Thus, we have used different in silico validation methods in our studies. However, 

one major limitation in our validation approaches (i.e., using two different genotyping 

platforms or software) is that a ‘50% overlap’ was used to define the validation or 

replication of one locus by another genotyping platform or software. However, this is an 

arbitrary cutoff, and there is currently no consensus on the most appropriate cutoff to be 

used. Similarly, novel CNV loci were identified through comparison with entries from 

the DGV that did not have a >50% overlap.    

 

(b) Small sample sizes 

In addition to the validation limitation, the sample size for each population was also 

deemed to be inadequate for studying population characteristics by the reviewers. 

However, the sample size for each population in these studies is of similar size to other 

studies - most notably, the International HapMap Project. We have used a larger sample 
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size than other studies, for example, to date only one previous study has investigated 

CNVs in the Swedish population140. This study used a low resolution BAC-clone 

microarray with a sample size of approximately 30 samples. In our study, we overcame 

the limitations of the previous study by using a larger sample size (n=87) and using the 

highest density SNP genotyping array currently available, i.e., the Affymetrix SNP Array 

6.0 (Study II).  

 

(c) Comparisons with other populations 

Finally, it was also strongly recommended that Study I and Study II could benefit 

substantially from a comparison to CNV data that was already available (mostly from 

European populations). However, it is important to emphasize that such a comparison 

(i.e., comparing the final results across different studies) would be inappropriate. The 

reason we did not compare the results of our studies (Study I and Study II) with existing 

data from published studies is due to the methodological inconsistencies in CNV and 

ROH detection in the different studies. Since different studies have used different 

platforms, quality control criteria and methods to construct CNV loci and to detect 

ROHs, this would make direct comparisons of the final results in different studies 

challenging, even if the same genotyping platform and algorithm were used. As a result, 

we would need to analyse the data from different populations with the same analytical 

procedure. Therefore, we have downloaded the Affymetrix SNP Array 6.0 dataset for the 

International HapMap III populations for comparisons with the Singapore (Study III) and 

Swedish (Study II) populations. As the HapMap III data was analysed in a similar way 
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and filtered by the same quality control criteria, this made the population comparisons 

more valid.   

 

6.3. Technological limitations 

One major limitation of this project was the use of SNP genotyping arrays to identify 

CNVs. Using the highest resolution SNP genotyping arrays in our studies has allowed us 

to detect smaller sizes of CNVs, as evident by our results showing that the majority of the 

detected CNVs were less than 50kb. Furthermore, these arrays were also supplemented 

with ‘copy number’ or ‘non-polymorphic’ probes in addition to the probes designed for 

SNPs genotyping. These copy-number probes have increased the marker or probe 

coverage and density in regions lacking SNPs (i.e., SNPs sparse regions) and repetitive 

regions such as segmental duplications, of which there are difficulties in assessing these 

regions. Taken together, these can be considered important improvements in CNV 

detection studies compared to previous studies that used earlier versions of arrays which 

were not purposely designed for CNVs detection. A further advantage over studies using 

CGH arrays is that SNP genotyping arrays generate two types of signal intensity data, 

thus enabling detection of ROHs. However, there are still a number of limitations 

associated with these high resolution SNP genotyping arrays. These limitations include 

(a) a limited sensitivity to detect CNVs smaller than 10kb compared to sequencing-based 

approaches, (b) inability to detect copy-neutral variations such as inversions and 

translocations and (c) imprecise mapping of the breakpoints of the CNVs.  
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The arrival of NGS technologies has provided alternative sequencing approaches to 

studying structural variations (both CNVs and copy-neutral variations) in the form of 

PEM and DOC.  Although the sequencing-based approaches have overcome the major 

limitations of microarrays in detecting structural variations, it is still prohibitively 

expensive to be applied in population-based studies of up to several hundred samples. 

Thus far, sequencing-based methods have not been applied in population-based studies 

and published research has only shown the proof-of-concept in a few samples11, 87. Due to 

these limitations,  the applications of these sequencing-based methods in population-

based studies currently requires a large international effort such as the 1000 Genomes 

Project38, 104, despite the sample size for each individual population not being more than 

several hundred  in the 1000 Genomes Project. In addition, several libraries of different 

insert sizes, such as 3kb, 5kb or 10kb, will be needed to ensure a comprehensive 

detection of structural variations of varying sizes. Furthermore, the analysis of PEM and 

DOC is bioinformatically more challenging than microarrays, where well-developed 

algorithms such as PennCNV and Birdsuite are available to analyse microarray data81. As 

a result, this renders sequencing-based methods unsuitable for studying the population 

characteristics of CNVs and disease association studies where a large sample size would 

be needed.  

 

6.4. Clinical and public health significance 

Our studies have found substantial differences in the CNV/CNP profiles between 

Singapore, Swedish and HapMap III populations. Interestingly, many of these copy 

number loci overlap with known disease-associated genes and pharmacogenetic-related 
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genes (Study III). More specifically, we found a markedly lower deletion frequency of a 

CNP locus which overlapped with the WWOX gene (a tumour suppressor gene affected 

in multiple cancers) in Sing–Chinese and Sing–Malay compared with other populations. 

Another CNP of interest is a 46-kb deletion that overlaps with GSTT1 (an important 

detoxification enzyme and has a key role in the metabolism of carcinogenic compounds). 

The total deletion frequency of this CNP was high in all the 10 populations compared, 

ranging from 56.63% to 96.77%. However, Sing–Indians had a considerably lower total 

deletion frequency (56.63%) than Sing–Malays (85.06%) and Sing–Chinese (96.77%). 

This difference is attributable to two-copy deletion, as the difference in two-copy deletion 

frequency was 15.66% in Sing–Indian, 32.18% in Sing–Malay and 46.24% in Sing–

Chinese.   

 

Further, a 125-kb CNP deletion that overlapped with UGT2B17 also showed substantial 

differences in the deletion frequency between Asian and non-Asian populations. Asian 

populations (Sing–Chinese, Sing–Malay, Sing–Indian, CHD and GIH) had higher 

frequencies, which ranged from 82.14% to 100%, when compared with populations of 

European and African ancestry (48.08%–67.18%). The differences were even more 

apparent for two-copy deletions with the highest frequencies in CHD (70.79%), Sing–

Chinese (65.59%) and Sing–Malay (52.87%), followed by the two Indian populations, 

GIH (37.04%) and Sing–Indian (30.95%), whereas the European and African populations 

were in the lower end of the spectrum with frequencies less than20%. Deletion of the 

UGT2B17 gene was also been found to be associated with an increased risk of prostate 

cancer. The functional role of the UGT2B17 enzyme is clear in prostate cancer, as it is 
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involved in steroid hormone (androgen) metabolism. In addition, the mismatch of 

UGT2B17 copy numbers in donors and recipients of stem cell transplantation were also 

associated with an increased risk of graft-versus-host disease.  

 

Although a direct association between the CNPs and phenotypic differences has not been 

established in our studies, collectively our results suggest that CNP distributions are 

substantially different between populations and thus, may account for phenotypic or 

disease differences between them. As such, the potential implication of CNVs in clinical 

and public health practice is promising, however further studies are needed to establish 

their significance. For example, in the context of the Singapore populations, if the copy 

number changes of UGT2B17 were also found to be associated with an increased risk of 

graft-versus-host disease in the populations, then genetic screening could be implemented 

in the clinical setting prior to the transplantation. Similarly, a population screening 

program could be implemented in a high-risk group harboring multiple cancer 

predisposing CNVs of large effect sizes for early detection and treatment. Genetic 

information of CNVs overlapping with pharmacogenetic-related genes could also be 

beneficial for clinical drug trials, where it could be used to identify the population most 

likely to respond favorably to the drug.  
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CHAPTER 7 – FUTURE DIRECTIONS AND PERSPECTIVES  

7.1. Technological developments 

Microarrays have been widely used in the discovery of CNVs over the past several years. 

However, with the development of PEM and DOC, this raises the question of whether 

these sequencing-based methods will eventually replace microarrays in structural 

variation research. The answer is likely to be a resounding ‘yes’, but at present 

microarray and sequencing-based methods are proving to be more valuable by being 

complementary to each other in population studies of structural variations. The role of 

microarrays will likely need to be switched from that of ‘discovery’ to ‘genotyping’. 

Although sequencing-based methods are more powerful in the discovery of new 

structural variations, these methods are costly for up to several thousand samples, 

especially when several libraries of different insert sizes are needed for PEM. This would 

limit the number of future studies of population characteristics and disease association. 

However, the newly discovered and the currently known structural variations can be 

characterised in population-based studies or investigating their associations with diseases 

using custom-designed oligonucleotide microarrays. However, this is limited to CNVs 

which are believed to be in the majority in structural variations. Thus other high-

throughput methods to assay newly discovered and known copy neutral variations need to 

be developed.  

 

Although the PEM and DOC methods have overcome the major shortcomings of 

microarrays in detecting structural variations, these methods have their own weaknesses. 

Nevertheless, these emerging sequencing-based methods will continue to play a role in 
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the discovery of structural variations until de novo genome assembly is more feasible108. 

De novo genome assembly will be more practical with the promise of TGS technologies 

to increase the sequence read length to several kilobases so that a full human genome can 

be assembled91. The developments of NGS and TGS technologies are occurring at a rapid 

pace, and more importantly, the cost of sequencing has been decreasing over the years 

making whole-genome sequencing attainable at a cost ranging from several thousand US 

dollars (e.g. the sequencing service provided by Complete Genomics) to approximately 

USD30,000 (e.g. whole-genome sequencing using the Illumina HiSeq2000 system). 

Therefore, sequencing-based approaches could be applied to Singapore populations in the 

near future to generate a more comprehensive map of genetic variations including SNPs, 

indels, CNVs and other structural variations, and ROHs. This will complement the 

international effort of the 1000 Genomes Project of various European, Asian and African 

populations. This will also allow a thorough comparison of the population characteristics 

of genetic variations between Singapore and other populations worldwide.  

 

7.2. A perspective on a detailed genetic variation map for each population 

Recent studies have increasingly documented the population differences of CNVs within 

and between populations with distinct ancestral backgrounds (i.e., African, European and 

Asian)29, 30, 38, 141-143. This was further supported by our studies documenting a wide range 

of differences of CNVs and CNPs between the Singapore, Swedish and International 

HapMap III populations137, 138 (Study II and Study III). This further supports the concept 

that each geographically distinct population, despite common ancestral backgrounds e.g., 
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northern Han Chinese in China or the HapMap CHB panel versus Singapore Chinese (are 

mostly Southern Chinese), is genetically varied to some extent.  

 

This genetic diversity is due to differences in CNVs and other genetic variations such as 

SNPs, and small indels. Therefore, this may also suggest that public genetic databases, 

such as the International HapMap Project and the 1000 Genomes Project, are not 

completely representative of every geographical population worldwide. This has been 

shown by the inclusion of an additional seven populations of African, European and 

Asian ancestries in the International HapMap Phase III Project144. Similarly, the 1000 

Genomes Project will eventually include at least 28 populations which will comprise of 

populations of (a) European, (b) East Asian, (c) South Asian, (d) North and South 

American and (e) West African ancestries upon completion 

(http://www.1000genomes.org/about#ProjectSamples). In addition to these international 

consortia, individual country efforts aiming to study population genetic differences, such 

as the Singapore Genome Variation Project, were also conceived to characterize the 

genetic profile (e.g. SNPs, haplotype and CNVs) of Chinese, Malay and Asian Indian 

populations in Singapore13, 78 (Study IV). Taken together, this raises an important 

question of whether a comprehensive genetic variation map is needed for each 

geographical population worldwide.  

 

Most of these population genetic differences had been identified by microarray data and 

limited to CNVs and SNPs, whilst other structural variations such as inversions and 

translocations were not interrogated. These differences are anticipated to be larger when 

http://www.1000genomes.org/about#ProjectSamples�
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newer sequencing approaches are adopted to characterize small indels, structural 

variations, and rarer and population-specific variants (both SNPs and non-SNP variants). 

Structural variations account for a greater fraction of the diversity between individuals 

than SNPs104, 108. 

 

The detailed characterization of genetic variations in each geographical population 

worldwide will facilitate studies of human evolution and migration history, as well as the 

genetic basis underlying the phenotypic variability between populations. However, it also 

has negative ethical and societal implications145, 146, for example, discrimination may 

occur if one population is found to harbor common deleterious risk variants that 

predispose to certain serious illness such as mental retardation and depression. Similarly, 

in the pharmacogenetics realm, if some variants are responsible for the non-

responsiveness to certain drugs or lead to the requirement of a larger dosage to achieve 

the optimal therapeutic effect, this might label the population as an insurance risk. With 

the current pace of improvements in sequencing technologies, technical ability and 

financial feasibility, the goal of generating a detailed genetic variation map for each 

population is within reach. However, the negative ethical and societal impacts must be 

carefully monitored and minimized through the implementation and enforcement of 

regulations and policies by the respective parties. These ethical and societal impacts are 

now becoming more relevant as cheaper sequencing is becoming more available.  

 

So will a detailed genetic variation map eventually be needed for each geographical 

population? The answer is a resounding ‘yes’. However, this genetic information must be 
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used ethically to benefit all populations and to minimize the potential harmful effects. 

Despite having the sequencing technologies, generating a detailed genetic variation map 

from population-based studies was not possible a few years ago due to the cost. However, 

cost may no longer be the most significant factor to consider as the sequencing costs are 

widely anticipated to eventually become more affordable for population-based studies. 

By contrast, the balance of beneficial and harmful impacts on ethical and societal aspects 

is the key consideration in the future generation of a detailed population genetic variation 

map.   
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Appendix Table 1 - Summary of population-based CNV studies in different populations using SNP genotyping microarrays 
Study and year Microarray 

platform and 
algorithm  

Population, sample 
size 

Major findings 

Redon et al. 
2006 

•Affymetrix 500K 
early access and 
CGH with a Whole 
Genome TilePath 
(WGTP) array 

270 individuals from 
four HapMap II 
populations 

•The average number of CNVs detected per experiment was 70 and 24 for the WGTP and 
500K platforms respectively. 
•Identified 913 CNVRs on the WGTP platform and 980 CNVRs on the 500K platform. 
•Approximately half of these CNVRs were called in more than one individual and 43% of all 
CNVs identified on one platform were replicated on the other. 
•Combining the data resulted in a total of 1,447 discrete CNVRs, covering 12% (~360 Mb) of 
the human genome. 

Zogopoulos et 
al. 2007 
 

•Affymetrix 100K 
and 500 K 
•CNAG 

1,190 North 
Americans 

•Assembled a genomic map consisting of 578 CNVRs covering approximately 220 Mb 
(7.3%) of the human genome.  
•Copy number changes in the majority of these CNVRs are rare (>93% CNVRs occurring at 
<1% frequency). 
•Population frequencies of 1–5% and >5% were estimated for CNVs present in 
approximately 6 and 1% of CNVRs, respectively.   

Kang et al. 
2008 

•Affymetrix 250K 
Nsp  
•CNAG, dChip and 
GEMCA 

116 Korean 
individuals 

•There were significant differences in the numbers and positions of CNVs identified by the 
three methods.  
•The dChip algorithm identified more CNVs than CNAG and GEMCA. In total, 772, 403 and 
302 CNVs were found by the dChip, CNAG and GEMCA algorithms. 
•A total of 141 CNVs was identified (selecting CNVs represented by more than two 
algorithms) and defined 65 CNVRs from the 141 CNVs by merging overlapping CNVs from 
different individuals, among which 10 CNVRs (15.4%) were novel and not present in the 
DGV. 
•Most CNVs (75%) from the Korean population were rare (<1%), occurring just once among 
the 116 individuals 

McElroy et al. 
2009 

Affymetrix 500K 
CNAT 

385African 
Americans (from 28 
US States) and 435 
individuals of 
European descent 
(from  Australia, East 
Europe, North Africa, 
North America, 

•In the African Americans, a total of 1362 copy number events were identified, with a mean 
of 3.5 CNVs per individual. 
•A total of 1972 copy number events were identified in Whites, resulting in a mean of 4.8 
CNVs per individual. 
•1068 CNV regions were identified across all individuals (412 were unique to African 
Americans, 580 were unique to Whites, and 76 were common between the two populations) 



North Europe, South 
America, South 
Europe, and West 
Europe) 

Lin et al. 2009 •Illumina 
HumanMap550K 
•PennCNV 

813 Han Chinese 
residing in Taiwan 

•4452 reliable CN-altered events (1025 non-redundant genomic regions which are defined as 
any overlap of CNVs) were found in the 813 individuals. 
•Only 365 of the 1025 non-redundant genomic regions were found to be CN variable in at 
least two individuals, and were regarded as CNVRs in this study. 
•The majority of the CNVRs (298; 81.6%) had been reported in the DGV. 
•Only 64 of 365 CNVRs had a CNV allele frequency greater than 1%. 

Li et al. 2009 •Affymetrix 
GeneChip Mapping 
500K Array 
•CNAT 

985 US Caucasian 
and 692 Han Chinese 
individuals 

•2,381 autosomal CNVs were identified in the 1,677 subjects. 
•Among the 2,381 autosomal CNVs, 15.4% were detected in both populations, 41.4% only in 
Caucasian, and 43.2% only in Han Chinese 
•1135 CNVRs covering approximately 439 Mb (14.3%) of the human genome were 
identified.  
•Compared with the DGV, 69% (680) of  985 autosomal CNVRs overlapped with previously 
published CNVs. The remaining 305 CNVRs were novel and covered 2.5% (72.1 Mb) of the 
22 autosomes. 

Yim et al. 2010 •Affymetrix 
Genome-Wide 
Human SNP array 
5.0 
•SW-ARRAY 
algorithm 

3578 Korean 
individuals 

•Identified 144207 CNVs 
•4003 CNVRs were defined that encompass 241.9 Mb accounting for ∼8% of the human 
genome (a total of 3076 CNVs called in a single individual were excluded from defining 
CNVRs) 
•16% of the CNVRs (656/4003) were observed in ≥1% of 3578 study subjects. Among the 
CNVRs with an allele frequency ≥1%, 130 CNVRs (3.2% of total CNVRs) were observed in 
≥5% of study subjects 
•By comparing to DGV, 1926 CNVRs (48.1%) were known ones, and remaining 2077 
CNVRs (51.9%) were potentially novel.  

Wineinger et 
al. 2011 
 

•Affymetrix SNP 
Array 6.0  
•Birdsuite and 
PennCNV 

446 African-
American subjects 

•Identified 11  070 CNVs that were called by both algorithms, including 8385 deletions and 
2685 duplications. 
•1541 unique CNVRs identified by both Birdsuite and PennCNV, of which 309 were novel 
(did not overlap with any of the CNVs included in the DGV database) 
•Among the CNVRs identified by both algorithms, 655 were present in more than one 
individual 
•The majority of CNVRs that were called by both Birdsuite and PennCNV were rare (77.7%), 
occurring in <1% of the study population (≤4 individuals) 



•Many CNVRs were singleton (57.6%), only occurring in one individual 
Chen et al. 
2011 

•Illumina Infinium 
HumanHap 300 
•QuantiSNP and 
cnvPartition 

2789 individuals 
from the island of 
Vis, Croatia (n=965), 
the Orkney Isles, 
Scotland (n=691) and 
South Tyrol, Italy 
(n=1133)  

•Identified 4016 autosomal CNVs in 1964 individuals, out of the total 2789 samples 
•An average number of 2.05 detectable CNVs per sample 
•Fewer CNVs were detected on average in Orcadians (0.91 CNV per person) than in South 
Tyroleans (1.77 per person) or Vis islanders (1.43 per person). 
•The 4016 CNVs were clustered into 743 non redundant CNVRs which covered a total of 
187.95 Mb (6.6%) of the 22 autosomes 
•Different patterns of CNV frequency were observed in different populations; 588 CNVRs 
(79.1%) were specific to just one of the three population isolates: 244 of them were detected 
only in Dalmatians, 112 only in Orcadians and 239 only in South Tyroleans. 

Xu et al. 2010 •Illumina 
HumanHap 610 
Quad and 1M 
•PennCNV 

1917 Chinese, 2399 
Malays, and 2217 
Indians residing in 
Singapore 

•Identified about 16 CNVs per individual 
•Over half of the CNVs in each population are of low frequency (population frequency < 
10%), and more than one-third are rare (population frequency < 1%).  
•Over 70% of these rare CNVs are replicated in the same population (non-singletons), and the 
majority is shared by at least two populations. 
•In each population, about 20% of the CNVs are not found in the DGV and thus considered 
novel. Over 85% of the novel CNVs detected in the present study are rare (population 
frequency < 1%) 
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ABSTRACT: Research on the role of copy number
variations (CNVs) in the genetic risk of diseases in
Asian populations has been hampered by a relative lack
of reference CNV maps for Asian populations outside the
East Asians. In this article, we report the population
characteristics of CNVs in Chinese, Malay, and Asian
Indian populations in Singapore. Using the Illumina
Human 1M Beadchip array, we identify 1,174 CNV loci
in these populations that corroborated with findings
when the same samples were typed on the Affymetrix 6.0
platform. We identify 441 novel loci not previously
reported in the Database of Genomic Variations (DGV).
We observe a considerable number of loci that span all
three populations and were previously unreported, as
well as population-specific loci that are quite common in
the respective populations. From this we observe the
distribution of CNVs in the Asian Indian population to
be considerably different from the Chinese and Malay
populations. About half of the deletion loci and three-
quarters of duplication loci overlap UCSC genes. Tens of
loci show population differentiation and overlap with
genes previously known to be associated with genetic risk
of diseases. One of these loci is the CYP2A6 deletion,
previously linked to reduced susceptibility to lung cancer.
Hum Mutat 31:851–857, 2010. & 2010 Wiley-Liss, Inc.

KEY WORDS: Asian populations; copy number variation;
CNV; data resources; SNP array; PennCNV

Introduction

Copy number variations (CNVs) are defined as gains or losses
in the number of copies of a segment of DNA (larger than 1 kb in

length) when compared to a reference genome, and provide
further insight into the complexity and diversity of genetic
variations. Widespread deletions and duplications in the human
genome were first reported in 2004 [Iafrate et al., 2004; Sebat
et al., 2004] and many more have since been discovered [Conrad
et al., 2009; McCarroll et al., 2008; Redon et al., 2006]. The
comprehensive detection and characterization of CNVs is laying
the foundation to improve our understanding of human genetic
variation and is an important tool for deciphering the role of CNV
in the risk of complex diseases. In fact, recent evidence has linked
CNVs with complex diseases such as autoimmune disorders, HIV
infection, schizophrenia, and autism [Wain et al., 2009].

To study the role of CNVs in the genetic risk of diseases in Asian
populations, a more complete map of CNVs in these populations
is needed. To date, there has been relatively little research on CNVs
in Asian populations apart from the East Asians component of the
Hapmap collections. Articles from other research group that
report CNV in Asian populations tend to focus on East Asian
ethnic groups [Li et al., 2009; Yim et al., 2010]. In this article, we
explore the extent of CNVs in several Southeast Asian popula-
tions, namely, Chinese, Malay, and Asian Indian populations in
Singapore. The subjects in this study are part of the Singapore
Genome Variation Project (SGVP) [Teo et al., 2009]. The Chinese
in Singapore are mostly Southern Chinese, which reflect the
origins of most first-generation Chinese migrants in Singapore
[Saw, 2007]. Previous research has shown that there is a
north–south gradient population structure in the genetic structure
of Han Chinese [Chen et al., 2009; Teo et al., 2009]. As such, we
expect that the CNV characteristics of Southern Chinese to be
different from Northern Chinese whom Beijing Chinese in the
HapMap collection are part of. The Malays are the native
population of Singapore, with close cultural and migration
history with the Malays in the nearby Brunei, Indonesia, Malaysia,
and Southern Thailand. In a broader scope, the Malays are part of
the Austronesian people [Bellwood et al., 1995], which constitute
the majority of ethnic groups in Brunei, Indonesia, Malaysia,
and the Philippines, as well as forming a significant proportion of
populations in Madagascar and Thailand. The Indians in
Singapore are mostly descended from the Southern Indian ethnic
groups of Tamils and Telugas [Saw, 2007]. The Southern Indians
are genetically different from the Northern Indians, which in
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turn, is closer genetically to the HapMap CEU population [Reich
et al., 2009].

In this article, we describe the CNV characteristics of these three
populations and we believe that our findings can be used to
complement CNV maps from HapMap populations to form a
more global CNV map, as well to provide resources as a basis to
further investigate the roles of CNV in the risk of diseases,
especially in Asian populations. The data and information from
this project is available online, and can be accessed at the SGVP
Website (http://www.nus-cme.org.sg/SGVP/).

Materials and Methods

DNA Samples and Demographic Data

The genomic DNA samples used in this study was extracted
from the peripheral blood samples of individuals recruited under
a previous project that has been approved by the National
University of Singapore-Institutional Review Board (NUS-IRB).
The project recruited 600 unrelated and apparently healthy
individuals (without clinical diseases) from the three major
populations in Singapore (Chinese, Malay, and Asian Indian) for
identification and characterization of novel genetic variants in
drug transporters and ion channel genes. The DNA was directly
extracted genomic DNA without whole genome amplification
steps prior to genotyping to avoid any potential errors caused by
uneven amplification throughout the genome. This study was
approved by the NUS-IRB (Reference Code: 07-199E).

The DNA samples for this study (n 5 292) were chosen using
stratified random sampling from the pool of samples to ensure
approximately equal representation of each population and
gender. The selected samples were genotyped using Illuminas

Human 1M Beadchip and Affymetrix Genome-Wide Human SNP
Array 6.0. The Illumina chip was used to detect CNV loci in the
study population, whereas the Affymetrix chip was used to
characterize loci that are independently replicated (see Replicated
CNV Loci section). The samples were anonymized, but basic
demographic data such as gender, age, and self-reported ethnicity
were retained. There were 99 Chinese, 98 Malay, and 95 Indian
individuals in the genotyped samples.

Quality Control Measures

Pre-CNV calling

The genotyping using Illumina 1M chip for all DNA samples
was done according to the manufacturer’s protocol (Infinium II
Assay Protocol). The SGVP applied several filtering criteria to
identify and remove unsuitable samples [Teo et al., 2009] that we
similarly adopted here. Five samples were removed because their
genotype call rates were below the 98% threshold. One sample was
excluded due to mislabeling of the sample ID during the
genotyping process. A further five samples were suspected of
having first-degree relative relationship and were also subse-
quently removed. Seven samples were removed because their
principal component scores based on single nueleotide poly-
morphism (SNP) genotyping data (see Supp. Fig. S1) suggest
population admixture or misclassification of self-reported ethni-
city. One sample had to be removed because it failed to be
genotyped during the validation study using the Affymetrix 6.0
array. Thus, of the initial 292 samples, 19 were filtered through
these various criteria, leaving 273 samples for CNV calling.

Post-CNV calling

We used the PennCNV algorithm to identify both deletions and
duplications for the 22 autosomes and the X chromosome [Wang
et al., 2007]. The log R ratio (LRR) was calculated using HapMap
samples as reference. By default, PennCNV does not limit its
detection to aberrant regions greater than 1 kb in size, and in the
spirit of maximizing the information we extract from our data, we
decided to keep these small aberrant regions known as indels in
our analysis. As a consequence, in the subsequent paragraphs
whenever the term ‘‘CNV’’ is used it is implicitly assumed to
include indels.

We applied a set of filtering criteria (as recommended by the
algorithm) to exclude poor quality samples (criteria: LRR-
standard deviation 40.28, BAF-median 40.55, BAF-median
o0.45, or BAF-drift 40.002), which resulted in a further seven
samples being excluded because their intensity data failed to
conform to these criteria. Our final set for analysis included 266
samples that consisted of 93 Chinese, 88 Malay, and 85 Indian
individuals. The mean age of subject was 22.874.0 (age range:
19–48) for Chinese, 22.574.2 (age range: 18–36) for Malay, and
22.774.8 (age range: 18–42) for Indian. The gender proportion of
male to female is almost equal in each population: 47:46
(Chinese), 41:47 (Malay), 43:42 (Indian).

For each sample, PennCNV returned a list of regions with
abnormal copy number with their associated confidence scores.
The score is a log Bayes Factor that measures the likelihood that
the region harbors an abnormal copy number. A confidence score
of 10 or larger has been suggested as a threshold to classify reliable
CNV calls (Kai Wang, personal communication). In our case, we
retained all CNV called with confidence scores higher than the
median confidence score. This median score was calculated based
on the confidence scores of CNVs detected in all individuals, and
its value is approximately 12. Although the confidence score is
only a statistical measure of true positive, empirical evidence (see
Results section) shows that CNV regions with a higher confidence
score are more likely to be detected consistently across both
platforms. This empirical evidence further justifies our decision to
retain only reliable CNV regions called with sufficient degree of
confidence. For the subsequent analyses, only reliable CNV
regions are included.

Construction of CNV Loci

Because CNV regions as called by PennCNV tend to overlap, we
merged these regions into discrete, nonoverlapping loci with the
boundaries of each locus determined by the union of all CNV
regions that belong to that particular locus [Redon et al., 2006]. If
both deletions and duplications were observed in a particular
locus, two separate loci were identified for each form of CNV.

Replicated CNV Loci

To validate the CNV loci identified using the Illumina 1M
platform, we genotyped the same 266 samples using Affymetrix SNP
Array 6.0. The genotyping was done according to the manufacturer’s
protocol. The calculations of LRR and BAF are done according to
PennCNV protocol (http://www.openbioinformatics.org/PennCNV/
PennCNV_tutorial_affy_gw6.html). The signal intensity data were
then analyzed using PennCNV with the same parameters as used for
the Illumina samples.

The same confidence score threshold as used for the Illumina
platform was used to filter the unreliable CNV calls. The reliable

852 HUMAN MUTATION, Vol. 31, No. 7, 851–857, 2010



CNV calls were then used to construct CNV loci. A CNV locus
found using the Illumina platform was considered to be replicated
if there was at least one overlapping CNV locus found using the
Affymetrix platform. A CNV locus detected using Illumina is
considered replicated if it shares at least 50% of its length with a
CNV locus detected using Affymetrix platform.

Novel CNV Loci

To identify CNV loci that are novel, we compare our results
with the CNV loci published in the Database of Genomic Variants
(DGV) [Iafrate et al., 2004]. We used the most recent version of
the DGV (variation.hg18.v8.aug.2009.txt and indel.hg18.v8.aug.
2009.txt). These files were downloaded from the DGV Website
(http://projects.tcag.ca/variation/). We classified a particular CNV
locus identified using Illumina and subsequently replicated using
Affymetrix platform as novel if it does not share at least 50% of its
length with any established CNV loci in the DGV database.

Population Differentiation of CNV Loci

We used a Vst statistic [Redon et al., 2006] to describe the
overall population differentiation due to CNV. For each locus, the
Vst statistic was computed using log2 intensity data from the probe
within that locus with the strongest signal of population
differentiation. The strategy we adopted here follows the
procedure described in Redon et al. [2006]. As the Vst statistic is
not very sensitive in identifying loci with recent positive selection
signals to identify specific loci with strong population differ-
entiation, we also compared the distribution of integer copy
numbers across the three ethnic groups using Fisher’s exact test.
A P-valueo0.001 from this test was used to identify loci that
segregated at different frequency across the three populations.
Because there is uncertainty with the estimated integer copy
numbers, we only conducted Fisher’s exact test at loci for which
the distribution of copy numbers were estimated consistently
across the two platforms. We defined these loci as loci for which
the estimated proportion of subjects with CNVs according to the
two platforms were not statistically different at a liberal
significance level (a) of 0.10, in all three ethnic groups.

Mapping Against Annotated Genes and Disease-
Associated CNV Loci

We used UCSC gene annotation (http://genome.ucsc.edu/) to
identify genes that are located within or partially overlap with
CNV loci. To identify loci that warrant further investigation for
their roles in complex disease, we identified CNV loci that
overlapped with genes listed in the Online Mendelian Inheritance
in Man (OMIM) Morbid Map (http://www.ncbi.nlm.nih.gov/
omim/). CNV loci showing strong population differentiation are
especially of interest because of their potential role in causing
differences in disease risk between populations.

Results

Characteristics CNV Regions and Loci

After filtering unreliable CNV calls, we discovered about 45
CNVs per individual with a ratio of deletions to duplications of
approximately 4:1 (Table 1). The majority of individuals have
20–60 CNVs in their genome (Supp. Fig. S2). There is very little
between-group variations in term of the average number of CNVs

and the ratio of deletions to duplications. These findings on the
average number of CNVs and the ratio of deletions to duplications
agree quite well with recent publication studying Korean
population [Yim et al., 2010], but we found more CNVs per
genome compared to previous research that used lower resolution
arrays [de Stahl et al., 2008; Redon et al., 2006]. The median size
of CNV was 20.8 kb in Chinese, 25.1 kb in Malay, and 16.4 kb in
Indian. About 70% of the CNV regions were o50 kb and
approximately 35% were o10 kb. In each ethnic group, the
median size of deletions is about four- to fivefold smaller than the
median size of duplications (Table 1).

We merge overlapping individual regions and identify 1,841
deletion and 732 duplication loci in these populations, which
cover approximately 82 Mb and 89 Mb of the nucleotide sequence,
respectively. Some of the deletion and duplication loci overlap, so
in total we identify 2,379 unique CNV loci. A large proportion of
deletion loci (80%) tend to be small (o50 kb) (Table 2).
Conversely, duplication loci were much larger, with the majority
(52%) between 50 Kb to 1 Mb (Table 2). Less than 10% of deletion
loci and less than 5% of duplication loci can be considered
common (population frequency 45%) across the three popula-
tions (Fig. 1).

Using Affymetrix 6.0 platform we identify 1,514 deletions and
560 duplications loci. Comparing the CNV loci identified by the
two platforms we find 752 (40.8%) deletions and 422 (57.8%)

Table 1. Summary Statistics of CNVs

High confidence CNVs

Statistics

Chinese

(n 5 93)

Malay

(n 5 88)

Indian

(n 5 85)

Average number of CNVs/

individual

41.5 46.0 45.3

Range of number of CNVs/

individual

28–78 27–110 31–75

Average number of markers/CNV 15 17 14

Average size of CNVs (kb) 55.6 64.2 53.0

Median size of CNVs (kb) 20.8 25.1 16.4

Size range of CNVs 41 bp–1,823 kb 41 bp–3,414 kb 16 bp–3,066 kb

Proportion of CNVs o50 kb 0.71 0.66 0.71

Proportion of deletions 0.81 0.80 0.82

Average size (kb) 39.9 47.1 41.5

Median size (kb) 14.8 17.9 11.8

Size range 41 bp–946 kb 41 bp–3,066 kb 16 bp–3,066 kb

Proportion of duplications 0.19 0.20 0.18

Average size (kb) 118.9 132.0 104.4

Median size (kb) 58.8 71.3 59.8

Size range 1.8–1823 kb 1.9–3,414 kb 1.2–1,628 kb

Total sample size: 266. CNV, copy number variations.

Table 2. Distribution of CNV Loci by Types and Size

Deletion loci Duplication loci

Size (kb)

Total

(%)

Replicated

(%)

Novel

(%)

Total

(%)

Replicated

(%)

Novel

(%)

o1 34 (1.8) 1 (0.1) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

1–10 658 (35.7) 160 (21.3) 63 (22.1) 57 (7.8) 6 (1.4) 0 (0.0)

10–50 784 (42.6) 343 (45.6) 137 (48.1) 287 (39.2) 125 (29.6) 53 (34.0)

50–100 185 (10.0) 115 (15.3) 48 (16.8) 160 (21.9) 109 (25.8) 38 (24.4)

100–1,000 177 (9.6) 131 (17.4) 36 (12.6) 220 (30.1) 177 (41.9) 64 (41.0)

41,000 3 (0.2) 2 (0.3) 1 (0.4) 8 (1.1) 5 (1.2) 1 (0.6)

Total 1841 752 285 732 422 156

CNV, copy number variations.
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duplications loci identified using Illumina platform are replicated
by Affymetrix platform (Supp. Table S1). The validation exercise
was first done at population level (see Replicated CNV Loci
section) without explicit requirement on the reproducibility at
individual level. However, we did investigate the proportion of
subjects who are detected to have CNV in the same locus by both
platforms. For each replicated locus, we computed the proportion
of subjects detected to have deletion (duplication) by Illumina and
were also subsequently detected by Affymetrix to have the same
form of CNV at the same locus. We found that across 752
replicated deletion loci, the average proportion is 89.1%. Mean-
while, across 422 replicated duplication loci, the average
proportion is 75.4%. Hence, even though we did not explicitly
require crossplatform reproducibility at sample level, it turns out
that the rates of crossplatform reproducibility at sample level are
relatively high.

Singletons constitute the majority of CNV loci that are not
replicated, with 64.8% of nonreplicated deletion loci and 71.6% of
nonreplicated duplication loci are singletons. There is a slight bias
in the distribution of replicated deletion loci in that common and
intermediate loci are more likely to be replicated (Fig. 1); however,
almost no noticeable bias is observed for the duplication loci.

About five out of every six replicated deletion loci overlap by
more than 80% of its length, with deletion loci independently
detected using Affymetrix platform. The figure is even more
impressive for replicated duplication loci, with almost 95% of
them overlapping by more than 80% with their Affymetrix
counterpart (Supp. Fig. S3). Hence, by using Affymetrix platform,
we not only managed to replicate a significant proportion of the
CNV loci but we are also able to confirm that the breakpoints for a
vast majority of these loci are detected quite consistently across the
two platforms.

The median confidence scores for nonreplicated deletion loci is
significantly lower than the median confidence scores for the
replicated loci (15.8 vs. 27.7, Kruskal-Wallis test, P-valueo0.001).

The median confidence scores comparison for the duplication loci
yields the same conclusion (15.9 vs. 28.9, Kruskal-Wallis test,
P-valueo0.001). These results show that loci with higher
confidence scores are more reliable and are more likely to be
replicated. This provides an empirical justification to our decision
in filtering unreliable calls based on the confidence score statistic.

A significant number of loci failed to be replicated. It is quite
probable that this failure is partly due to differences in probe
density across the genome; CNV loci located in the genomic area
with dense markers tend to have their breakpoints well-
estimated, and hence, more likely to be replicated across
platforms. This is very possible given that our data show that
in the nonreplicated deletion loci, on average, there is one
marker every 22.3 kb, whereas in the replicated loci, there is more
dense representation of markers, with a marker for every 2.8 kb
(P-valueo0.001). The duplication loci also reveal a very similar
pattern, with one marker in every 30.2 kb in the nonreplicated
loci, whereas in the replicated loci, a marker is to be found for
every 3.0 kb (P-value 5 0.003).

Novel CNV Loci

We discover that almost 40% of the replicated deletion loci are
novel, as only 467 out of the 752 loci are found in the DGV
database (Supp. Table S1). However, out of the novel loci, only
one locus in chromosome 1 can be considered common across the
three populations with population frequency 45% and a further
25 loci have population frequency between 1 and 5%. The large
majority of these novel loci are relatively small, with just over 70%
less than 50 kb.

Similar to the deletion loci, almost the same percentage of
duplication loci is found to be novel (156/422). One of the novel
duplication locus in chromosome 7 has a population frequency
45%, with a further nine novel loci having a population
frequency between 1 and 5%. Unlike the novel deletion loci, the
novel duplication loci tend to be larger, with only 91 loci (58.3%)
less than 100 kb.

Crucially these novel CNV loci are detected with the same
degree of confidence as those CNV loci that overlap with
previously published loci. In fact, the median confidence score
for these 441 novel CNV loci (285 deletions, 156 duplications) is
statistically higher than the other replicated loci (32.9 vs. 26.3,
Kruskal-Wallis test, P-value 5 0.001). This result indicates that
these novel loci are unlikely to be false positives.

The vast majority of these novel loci are population specific
(Fig. 2). The highest number of population-specific deletion loci is
found in the Indian population (111 loci), whereas Malay have the
highest percentage of novel duplication loci (75 loci). Only 30
deletion loci and 11 duplication loci exist in multiple populations,
with more than half of the shared novel loci existing only in the
Chinese and Malay.

Although the frequencies of the vast majority of these novel loci
are relatively low across the three populations, there are still some
loci that are common (45% frequency) in specific populations.
Specifically, there are five novel loci common among the Indians,
four novel loci common among the Malays, and three novel loci
common among the Chinese (Table 3).

Population Differentiation

The median Vst statistic between Chinese and Malay populations,
computed across 1,174 replicated loci is 0.016, lower than the
corresponding comparisons for Chinese and Indian populations

Figure 1. Distribution of CNV loci based on their frequency across
the three populations (CommonZ5%, Intermediate 5 1–5%,
Rarer1%).
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(median 5 0.035) and Indian and Malay (median 5 0.028). Over
the whole genome, Indian is more differentiated from Chinese and
Malay populations (Supp. Fig. S4).

Using the PennCNV-inferred integer copy number we then
compare the estimated proportion of subjects with copy-number
variations within each ethnic group. We find that out of all
replicated deletion and duplication loci, 676 deletion loci
(89.9%) and 385 duplication loci (91.2%) have their copy-
number frequency estimated consistently across the three ethnic
groups. Among these loci with consistent estimated copy-
number frequencies, we identified 27 deletion loci that segregate
at significantly different frequency across the three populations
(Supp. Table S1). Among the 27 deletion loci, there is only one
novel locus that has significantly different copy-number
distribution across the ethnic groups. This locus is an 8.6-kb
deletion in Chromosome 8 that is found exclusively in the Indian
population.

Mapping Against Annotated Genes and Disease-
Associated CNV Loci

Compared to duplication loci, we find an appreciably lower
percentage of deletion loci that overlap known genes or
uncharacterized transcripts in the UCSC database (48.8 vs.
74.6%, P-valueo0.001). The percentage of novel deletion and
duplication loci that overlap with UCSC genes is only slightly
lower at 44.2 and 66.0%, respectively. This bias of deletion away
from the genes is also observed previously by Redon et al. [2006]
and Conrad et al. [2009]. Most of the 367 deletion loci that
overlap UCSC genes are rare (66.8%); however, there are 66
(18.0%) of deletion loci with an intermediate frequency between 1
and 5% and 56 (15.3%) common deletion loci that also overlap
UCSC genes. The number of deletion loci that overlap UCSC
genes are highest among Indians (212 loci), followed by Chinese
(182 loci) and Malays (176 loci). There are 62 novel deletion loci
among Indians that overlap UCSC genes, whereas the number of
novel deletion loci overlapping UCSC genes in Chinese and
Malays are 41 and 40, respectively.

Likewise, we find 229 (72.7%) out of the 315 duplication loci
overlapping UCSC genes are rare, 23.5% are intermediate, and
3.8% are common. Malays have the highest number of duplication
loci overlapping UCSC genes (190 loci), followed by Chinese (134
loci) and Indians (132 loci). Among the 315 loci, there are 103
novel loci that overlap UCSC genes, with 61 of these novel loci are
observed in Malay, 29 loci observed in Chinese and 24 loci
observed in Indian.

We find several complex disease-associated genes overlapping the
common CNV loci (population frequency45%), including FCGR3B
(MIM] 610665) [Fanciulli et al., 2007], beta-defensin genes [Hollox
et al., 2008], UGT2B17 (MIM] 601903) [Park et al., 2006], CCL3L1
(MIM] 601395) [Gonzalez et al., 2005], and a number of
drug-related genes such as CYP2A6 (MIM] 122720) and CYP2A7
(MIM] 608054). From the list of deletion loci with strong population
differentiation, several loci mapped to a few important genes involved
in the metabolism of exogenous (drug) and endogenous compounds:
CYP2A6, CYP2A7, UGT2B17, and UGT2B15 (MIM] 600069).
Previous research has shown these loci to be common [Ouahchi
et al., 2006], and our findings confirm this (Supp. Table S2).

One of the novel deletion loci overlaps the RABGAP1L gene in
chromosome 1 whose polymorphism has been suggested to be
associated with increased risk of hypertension among Japanese
[Oguri et al., 2010]. This deletion is particularly common among
Chinese with a population frequency of 36.6%. Meanwhile, among
Malays and Indians this deletion is only observed in 15–20% of
the population.

Out of the 367 deletion loci that overlap UCSC genes, we also
find 54 deletion loci (14.7%), with 24 of them being rare novel
loci that overlap genes in OMIM Morbid Map. The common
deletion on the CYP2A6 gene is particularly interesting because it
has been associated with reduced susceptibility to lung cancer in
Japanese population [Miyamoto et al., 1999]. Interestingly, among
our three populations the highest frequency of this deletion is
found in the Malay population (35.2%), followed by the Chinese
(18.3%) and Indian (7.1%). The role of this deletion in altering
risk of lung cancer in the Singaporean population definitely needs
to be further investigated, especially given that Singaporean Malay
males have the highest smoking prevalence, yet their age-
standardized lung cancer rates are lower than Chinese males
[Singapore Cancer Registry, 2008].

The percentage is higher for duplication loci, with 71 (22.5%)
out of 315 loci that overlap with UCSC genes also overlapping

Figure 2. Venn diagrams showing distribution of replicated and
novel CNV loci across the three ethnic groups. A: Replicated deletion
loci, B: Novel deletion loci, C: Replicated duplication loci, D: Novel
duplication loci.

Table 3. List of Novel CNV Loci Common to at Least One
Population

Chr. Start End

Form of

CNV

Chinese

(n 5 93)

Malay

(n 5 88)

Indian

(n 5 85)

1 173,064,490 173,135,447 Del 34 13 13

2 49,387,002 49,401,059 Del 8 4 0

2 72,102,919 721,33,022 Del 2 7 0

2 137,759,660 137,783,206 Del 0 1 6

6 40,174,655 40,204,896 Del 0 0 5

7 37,124 164,003 Dup 13 9 14

8 9,091,324 9,099,900 Del 0 0 7

HUMAN MUTATION, Vol. 31, No. 7, 851–857, 2010 855



with genes in the Morbid Map. Twenty-four of these duplication
loci are novel; one locus with intermediate frequency in
Chromosome 17 overlapped with ASPSCR1 (MIM] 606236), a
candidate gene for Alveolar soft part sarcoma.

Across the three ethnic groups, the number of deletion loci
overlapping genes in the Morbid Map relative to the number of
loci overlapping UCSC genes are 16.0% among Indians, and
slightly lower among Malays (14.2%) and Chinese (13.7%). For
duplication loci, the corresponding ethnic-specific percentage is
25.8% in the Malay population, followed by Indian (21.2%) and
Chinese (20.1%).

Discussion

Using the Illumina 1M Beadchip array, we investigate copy-
number characteristics of three South East Asian populations,
namely, Chinese, Malay, and Asian Indian populations in
Singapore. We genotype 266 individuals from the three popula-
tions and discover an average of 45 CNV regions per genome, with
very little variations in terms of average CNV per genome between
the three populations. This figure is higher than the number of
CNVs found in previous studies that used lower density SNP
arrays [Pinto et al., 2007; Redon et al., 2006; Wang et al., 2007].
We attribute our ability to detect more CNV regions mostly due to
the higher density of markers used.

To filter unreliable CNV calls, we used confidence score
statistics produced by the PennCNV software. Other studies have
used different criteria to establish reliable CNV data. For example,
Jakobsson et al. [2008] restricted analyses to CNVs with a
minimum of 10 markers per CNV to minimize the number of
false positives. Our empirical data show that higher confidence
scores are associated with regions with higher number of markers
as well higher marker density (number of markers per bp). Hence,
placing a threshold on the confidence scores is in a way equivalent
to indirectly placing a threshold on the number of markers. One
advantage of our approach is that it enables us to identify
relatively small CNV regions if the region is detected with high
confidence, as long as there are at least three markers in the region,
as this is a PennCNV default requirement for minimum number
of markers. This identification would not have been possible if we
had used number of markers as the threshold.

There are a higher proportion of duplications with confidence
scores below the reliable threshold. This is due to the technological
limitation of SNP array. Deletions are easier to detect than
duplications, because the exponential of intensity data is linearly
correlated with the copy number [Wang et al., 2007]. Conse-
quently, the signal intensity difference between for example, one-
copy deletion and diploid-copy is more pronounced than the
difference between diploid-copy and one-copy duplication.
Another important implication of this limitation is that hetero-
zygous (one copy) deletion would be harder to detect, hence, more
likely to be missed by the algorithm, than homozygous (two
copies) deletion. In our study, we find an underrepresentation of
heterozygous for small deletion regions. Approximately 82% of
called deletions of size 410 kb are heterozygous but only
approximately 73% of deletions o10 kb are heterozygous.

To overcome the challenge of estimating breakpoints, we merge
overlapping CNV regions into nonoverlapping CNV loci, in a
similar manner to Redon et al. [2006]. In total, we found 1,841
deletion and 422 duplication loci across the genome. About 40%
of these deletion loci and close to 60% of these duplication loci
found using the Illumina platform are replicated independently
using the Affymetrix 6.0 platform.

We do not attempt to make joint-calling of CNV regions using
data from both platforms simultaneously. Although joint-calling
would probably increase the sensitivity of the CNV calls, our first
priority is to reduce false discoveries, which we believe has been
achieved by our more conservative method in defining replicated
regions. Among the replicated loci, there are 285 novel deletion
and 156 novel duplication loci not previously reported in DGV.
Most of these novel loci are small (o50 kb) and are population
specific; however, 30 novel deletion loci and 11 duplication loci
are to be found in more than one population, with Chinese and
Malay being the two populations that most frequently ‘‘share’’ a
locus. Our findings that most of the novel loci are o50 kb support
earlier prediction that there are likely to be a plethora of
undiscovered CNV at this size [Estivill and Armengol, 2007].

We find tens of CNV loci that overlap genes in the OMIM
Morbid Map with some of the loci being novel variants. Several of
these CNV are quite common and interestingly segregate at
different frequency across the three populations. These loci
overlap with genes that have been previously linked to phenotypes
such as drug metabolisms, lung cancer, and hypertension. This
finding further highlights the need to better characterize the role
of CNV in the aetiology of complex diseases and drug response.
The fact that some of these loci are novel emphasizes the need to
have a more complete CNV map for Asian populations, some-
thing to which we believe this article contributes. In addition, it is
very likely that some of the CNV loci previously found in other
populations have very different copy-number forms and distribu-
tion in our study population.

The individual-level CNV data from this study is downloadable
from the SGVP Website and the population-level data are available
in the Supp. Table S1. Researchers interested in obtaining the raw
intensity data should e-mail us at ephcks@nus.edu.sg or statyy@
nus.edu.sg.

We believe our findings and datasets can serve as resources to
contribute further research into building a global CNV map as
well as to stimulate research on the role of CNV in the genetic risk
of complex diseases in Asian populations in general and South
East Asia in particular.
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González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D,

MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K,

Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C,

Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X,

Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW,

Hurles ME. 2006. Global variation in copy number in the human genome.

Nature 444:444–454.

Reich D, Thangaraj K, Patterson N, Price AL, Singh L. 2009. Reconstructing Indian

population history. Nature 461:489–494.

Saw SH. 2007. The population of Singapore, 2nd edition. Singapore: Institute of

South East Asian Studies.

Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Mãnér S, Massa H,
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ORIGINAL ARTICLE

A population-based study of copy number variants and
regions of homozygosity in healthy Swedish individuals

Shu-Mei Teo1,2,3,5, Chee-Seng Ku2,5, Nasheen Naidoo2, Per Hall1, Kee-Seng Chia1,2,4, Agus Salim4

and Yudi Pawitan1

The abundance of copy number variants (CNVs) and regions of homozygosity (ROHs) have been well documented in previous

studies. In addition, their roles in complex diseases and traits have since been increasingly appreciated. However, only a limited

amount of CNV and ROH data is currently available for the Swedish population. We conducted a population-based study to

detect and characterize CNVs and ROHs in 87 randomly selected healthy Swedish individuals using the Affymetrix SNP Array

6.0. More than 600 CNV loci were detected in the population using two different CNV-detection algorithms (PennCNV and

Birdsuite). A total of 196 loci were consistently identified by both algorithms, suggesting their reliability. Numerous disease-

associated and pharmacogenetics-related genes were found to be overlapping with common CNV loci such as CFHR1/R3,

LCE3B/3C, UGT2B17 and GSTT1. Correlation analysis between copy number polymorphisms (CNPs) and genome-wide

association studies-identified single-nucleotide polymorphisms also indicates the potential roles of several CNPs as causal

variants for diseases and traits such as body mass index, Crohn’s disease and multiple sclerosis. In addition, we also identified

a total of 14 815 ROHs X500 kb or 2814 ROHs X1M in the Swedish individuals with an average of 170 and 32 regions

detected per individual respectively. Approximately 141 Mb or 4.92% of the genome is homozygous in each individual of the

Swedish population. This is the first population-based study to investigate the population characteristics of CNVs and ROHs in

the Swedish population. This study found many CNV loci that warrant further investigation, and also highlighted the abundance

and importance of investigating ROHs for their associations with complex diseases and traits.

Journal of Human Genetics (2011) 56, 524–533; doi:10.1038/jhg.2011.52; published online 2 June 2011

Keywords: Affymetrix SNP Array 6.0; Birdsuite; copy number variants; PennCNV; regions of homozygosity; Swedish population

INTRODUCTION

There is a growing body of copy number variant (CNV) maps
covering different world populations.1–5 Most of these newer studies
used high-resolution methods for detecting CNVs, such as the
Affymetrix SNP Array 6.0, which has a higher density of single-
nucleotide polymorphism (SNP) and copy number probes than
previous microarray-based methods. This has led to an improved
performance of microarray-based methods to detect smaller CNVs
(o50 kb).1,6 In contrast, previous studies have used much lower
resolution arrays, such as the bacterial artificial chromosome (BAC)
clone or oligonucleotide comparative genomic hybridization arrays
and SNP genotyping arrays.7–10 Currently, there is only one CNV-
detection study in a Swedish population,10 but this was performed
in a small sample size of 33 individuals and used a low-resolution
32-K bacterial artificial chromosome clone microarray. This has
hampered the study from detecting less common and smaller CNVs
and from estimating the population frequency of CNVs. The ability to

detect smaller CNVs is critical as they are more numerous than the
larger CNVs.11

In addition, the study by Dı́az de Ståhl et al.10 was unable to detect
regions of homozygosity (ROHs) as the bacterial artificial chromo-
some clone microarray was unable to generate allelic intensity data.
Research on ROHs has started to gain impetus, as evidenced by the
increasing number of publications after the first study by Gibson
et al.12 reported the abundance of ROHs in the human genome of
outbred populations. Further studies have investigated the population
characteristics of ROHs in healthy individuals,13–15 and also per-
formed association analyses to identify ROHs that are associated
with complex diseases and traits in a case–control study design.16–18

To circumvent the limitations of the previous study by Dı́az de Ståhl
et al.,10 we conducted a study in a Swedish population by genotyping
100 individuals using the Affymetrix SNP Array 6.0 (Affymetrix, Santa
Clara, CA, USA). The main aim of this study was to perform a
more comprehensive detection of CNVs and ROHs in the Swedish
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population and to describe their population characteristics. Although
several studies have been performed to detect and characterize CNVs
and ROHs in multiple European populations, these studies have also
documented the genetic differences among these populations.14,15,19

The extension of the International HapMap Project to include an
additional seven populations in Phase III further suggests that multi-
ple populations from diverse ancestries or different geographical
locations are needed to study their population genetics.20 These
previous studies have justified the need for a population-based
study to characterize CNVs and ROHs in healthy Swedish individuals.
We also compared the Swedish population with the HapMap phase III
populations using principal component analysis.

MATERIALS AND METHODS

Samples and genotyping platform
A total of 100 randomly selected healthy Swedish individuals volunteering

as controls in case–control studies were studied. Peripheral blood samples of

the participants for genomic DNA extraction were drawn and stored at the

Karolinska Biobank. Identities of the participants were kept anonymous and no

personal identifiers were used. All 100 samples were genotyped using the

Affymetrix Genome-Wide Human SNP Array 6.0 as per the manufacturer’s

protocol. Two samples were removed from further analysis because their

genotype call rates were below 98% and the remaining 98 samples were used

for CNV detection.

CNV-detection algorithms and analyses
CNV calling using PennCNV. We used two CNV-detection algorithms, namely

PennCNV21 and Birdsuite,22 for both comparison and validation. This study

focused only on the CNVs in the 22 autosomes because of the inaccuracy of

Birdsuite to detect CNVs in sex chromosomes. Log R ratio and B allele

frequency were calculated according to the PennCNV algorithm (http://www.

openbioinformatics.org/penncnv/penncnv_tutorial_affygw6.html). Smaller CNVs

(o1 kb) were also included in our analysis, as PennCNV by default does not

limit its detection to CNVs 41 kb in size. We applied a set of filtering criteria

as recommended by the algorithm, namely Log R ratio-s.d 40.35, B allele

frequency-median 40.55, B allele frequency-median o0.45 and B allele

frequency-drift 40.006 to exclude samples with poor quality of signal intensity

data (http://www.openbioinformatics.org/penncnv/). This resulted in a further

exclusion of 11 samples, with the final set for analysis consisting of 87 samples.

For each sample, PennCNV generated a list of CNVs with their confidence

scores. The confidence score is a log Bayes factor that measures the likelihood

that the locus harbors an abnormal copy number. A confidence score of X10

has been recommended as the threshold to classify reliable CNVs. Therefore, we

retained all CNVs called with confidence scores X10 for subsequent analyses.

Although the confidence score is only a statistical measure of a true positive,

our previous study5 found that CNVs with a higher confidence score are more

likely to be detected consistently across two genotyping platforms. Therefore,

this justifies our decision to retain only reliable CNVs called with a sufficient

degree of confidence.

Construction of CNV loci using PennCNV output. The CNVs called by

PennCNV were shown to overlap across samples. Thus, we merged or grouped

these individual CNV calls into discrete, non-overlapping loci, with the

boundaries of each locus determined by the union of all CNVs that belonged

to that particular locus. This construction of CNV loci was needed to estimate

the population frequencies and these steps were performed using the methods

that we have developed previously.5,23 We classified the status of these CNV loci

into three categories, ‘del’ (loci containing deletions), ‘dup’ (loci containing

duplications) and ‘del/dup’ (loci containing both deletions and duplications).

Copy number polymorphism (CNP) calling using Canary (Birdsuite). Birdsuite

software22 was also used to analyze the Affymetrix SNP Array 6.0 data. There

are two components in the software for detecting copy number changes,

namely Canary and Birdseye. Canary was used to determine the integer copy

number at each of the predefined 1316 CNPs. The term ‘CNPs’ used by

McCarroll et al.1 is to describe common CNV loci. These 1316 CNPs were

found in more than one HapMap II individual and their sizes were

also accurately determined. Therefore, we used the Canary component in

Birdsuite to determine the integer copy number of the 1316 CNPs in the 87

Swedish samples. These 1316 CNPs are distributed in all the autosomes and sex

(X and Y) chromosomes. However, 25 CNPs located in the sex chromosomes

were removed because the CNP calling in these chromosomes was less accurate.

Thus, the results reported in this study comprised only 1291 CNPs in the 22

autosomes. Confidence statistics generated for the CNPs were also used to

identify poor-quality calls, and only integer copy numbers detected with high

confidence as recommended by the software (confidence score 40.1) were

used for subsequent analyses.

Correlation analysis of CNPs. We performed a correlation analysis of CNPs

and the nearby SNPs. Because the sizes of the CNPs were previously accurately

determined by McCarroll et al.,1 we restricted the analysis to only the CNPs

detected by Canary. For each of the 1291 CNPs, SNPs within a 200-kb window

from the start and end positions of the CNP were considered. We used the

squared Pearson’s correlation (r2) for correlation analysis. The genotype calling

of the Affymetrix SNP Array 6.0 was carried out using Birdsuite. In addition, to

investigate the potential associations of CNPs with human diseases and traits,

the same methods of r2 calculations for the 1291 autosomal CNPs and the

SNPs that were identified by genome-wide association studies (GWAS) were

adopted. The list of GWAS-SNPs was downloaded from the National Human

Genome Research Institute website (http://www.genome.gov/gwastudies/) on

26 October 2010.

CNV calling using Birdseye (Birdsuite). In addition to PennCNV, we also used

another algorithm, Birdseye, to analyze the same set of data as different

algorithms tend to have different sensitivities and specificities for detection

of CNVs in different regions throughout the genome. As such, CNV loci

detected by PennCNV and Birdseye can be cross-validated. Therefore, we used

the Birdseye component in Birdsuite to detect additional CNVs throughout the

genome, which was not restricted to the 1316 predefined CNPs. Similarly, only

CNVs in autosomal chromosomes were used because of the inaccuracy of

Birdseye in the sex chromosomes. CNVs with low confidence, as recommended

by the software (confidence scorep5), were removed from subsequent analysis.

Construction of CNV loci using Birdseye output. We also constructed CNV loci

based on the Birdseye output using methods similar to those applied to the

PennCNV output. The cutoff for the confidence score used by PennCNV (X10)

and Birdseye (X5) was recommended by both algorithms. This allowed for

greater comparability between the CNV loci detected by these two algorithms.

Comparison of CNV loci detected by PennCNV and Birdsuite. The CNV loci

identified by PennCNV and Birdseye were compared as a ‘validation’ step. We

used a ‘reciprocal 50% overlapping’ method to compare the CNV loci detected

by these two algorithms and considered a CNV locus ‘found’ by both

algorithms when this locus was detected in both PennCNV and Birdseye with

an overlap of X50% of their lengths.

Novel CNV loci. To identify novel CNV loci, we compared the CNV

loci detected by PennCNV and Birdseye with the data from the Database

of Genomic Variants (DGV).24 We used the latest data from the DGV

(variation.hg18.v8.aug.2009.txt and indel.hg18.v8.aug.2009.txt) downloaded

from the DGV Website (http://projects.tcag.ca/variation/). A CNV locus

identified by PennCNV and Birdseye was considered novel if it did not share

at least 50% of its length with any CNV loci cataloged in the DGV. All the

downstream analyses after PennCNV and Birdsuite were performed using the

statistical software package R (http://www.r-project.org/).

Comparison with HapMap phase III populations
The CEL files of the Affymetrix SNP Array 6.0 for the seven populations in

HapMap phase III project were downloaded from the ftp site (ftp://ftp.ncbi.

nlm.nih.gov/hapmap/raw_data/hapmap3_affy6.0/). The HapMap phase III

populations studied are people of African ancestry in the southwestern USA

(ASW), the Chinese community in Metropolitan Denver, Colorado, USA

(CHD), Gujarati Indians in Houston, Texas, USA (GIH), the Luhya in Webuye,

A study of copy number variants and regions of homozygosity
S-M Teo et al

525

Journal of Human Genetics

http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affygw6.html
http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affygw6.html
http://www.openbioinformatics.org/penncnv/
http://www.genome.gov/gwastudies/
http://projects.tcag.ca/variation/
http://www.r-project.org/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/raw_data/hapmap3_affy6.0/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/raw_data/hapmap3_affy6.0/


Kenya (LWK), people of Mexican ancestry in Los Angeles, California, USA

(MEX), the Maasai in Kinyawa, Kenya (MKK) and the Tuscans in Italy (TSI).

All the samples were analyzed using Canary similarly to the analysis of the

Swedish population. Only unrelated samples were included in our study, that is,

family-related samples were removed using the ‘relationships’ file provided by

the International HapMap Project. After the sample exclusion step, a total of

594 unrelated samples from the seven HapMap III populations were analyzed:

ASW (n¼52), CHD (n¼89), GIH (n¼89), LWK (n¼90), MEX (n¼53), MKK

(n¼132) and TSI (n¼89). We performed principal component analysis to

compare the Swedish population with the HapMap phase III populations using

the CNP output generated by Canary.

ROH-detection algorithms and analyses
In addition to CNVs, we also detected ROHs using PennCNV in the 22

autosomes of the 87 Swedish individuals. However, we only focused on ROHs

X500 kb, as this cutoff was adopted in a previous study.18 For each of these we

confirmed that they are ROHs by determining the genotypes of the SNPs that

fall within each region. We then calculated the percentage of heterozygosity

(number of heterozygotes/total number of heterozygotes and homozygotes).

We also calculated the percentage of missingness genotypes (number of

missingness/total number of SNPs in each ROH). First, we used an arbitrary

cutoff of the median of the percentage of heterozygosity (2.5%) to allow for

some heterozygote calls resulting from calling or genotyping errors. As a result,

we removed half of the ROHs with a percentage 42.5%. Second, we removed

ROHs with 41% for the missingness, to remove regions where genotype

calling was problematic. Finally, for the remaining ROHs, we also ensured a

density of one SNP per 10 kb to exclude those ROHs that could be spuriously

detected by a sparse number of SNPs. As such, for a 500-kb ROH, a minimum

of 50 SNPs is required. These three criteria were used as the filters to exclude

less reliable ROHs. Several summary statistics were then computed to describe

the characteristics of ROHs in the Swedish population.

RESULTS

Characteristics of CNVs identified by PennCNV
After filtering unreliable CNV calls, an average of approximately
36 CNVs per individual with a ratio of deletions to duplications of
approximately 2.6:1 was discovered (Supplementary Table 1). The
number of CNVs per individual ranged from 22 to 65. The median
size of a CNV was 28.6 kb and approximately 66% of the CNVs were
o50 kb and 26% were o10 kb (Supplementary Figure 1). The median
size of deletions was approximately fourfold smaller than the median
size of duplications.

Characteristics of CNV loci identified by PennCNV
We merged overlapping CNVs to construct CNV loci and identified
623 loci, of which 476 loci contained deletions (‘del-loci’), 102 loci
contained duplications (‘dup-loci’) and 45 loci contained both dele-
tions and duplications (‘del/dup-loci’; Table 1). These 623 loci covered
approximately 61.52 Mb of the nucleotide sequence and the sum
of the lengths for del-loci (19.83 Mb) was smaller than that for dup-
loci (25.80 Mb). Similarly for the individual CNVs (Supplementary
Table 1), the average size of del-loci (41.66 kb) was much smaller than
that of dup-loci (252.93 kb; Table 1). More than 77% of the del-loci
were o50 kb, and in comparison only 22.55% of dup-loci were within
this size range. The majority (62.75%) of dup-loci ranged from 50 to
500 kb. In summary, there were far more del-loci, but their sizes
tended to be smaller than those of dup-loci. A list of the 623 loci is
shown in Supplementary Table 2.

Of the 623 CNV loci, 268 loci were detected in X2 individuals
(Table 1). The remaining loci were detected in only one individual;
these loci were not necessarily ‘singleton loci’ as we only studied

Table 1 Summary statistics of CNV loci constructed from PennCNV output

Summary statistics of CNV loci (PennCNV output) Total Del Dup

Number of CNV loci 623 476 (76.40%)a 102 (16.37%)a

Number of CNV loci detected in X2 individuals 268 (43.02%)b 194 (40.76%)b 29 (28.43%)b

Sum of the length of loci (Mb) 61.52 19.83 25.80

Average length per locus (kb) 98.75 41.66 252.93

Average number of markers per locus 58 34 141

Size distribution

o10 kb 141 (22.63%) 132 (27.73%) 6 (5.88%)

X10–o50kb 265 (42.54%) 236 (49.58%) 17 (16.67%)

X50–o100 kb 79 (12.68%) 54 (11.34%) 21 (20.59%)

X100–o500 kb 110 (17.66%) 52 (10.92%) 43 (42.16%)

X500 kb 28 (4.49%) 2 (0.42%) 15 (14.71%)

Overlapping with DGV

CNV loci that overlap 388 (62.28%) 298 (62.61%) 54 (52.94%)

CNV loci that did not overlap 235 (37.72%) 178 (37.39%) 48 (47.06%)

Overlapping with UCSC genes

CNV loci that overlap 202 (32.42%) 135 (28.36%) 51 (50.00%)

CNV loci that did not overlap 421 (67.58%) 341 (71.64%) 51 (50.00%)

Overlapping with CNV loci from Birdseye data and consistent in CNV status that is, del/dup/del+dup

CNV loci that overlap 196 (31.46%) 160 (33.61%) 30 (29.41%)

CNV loci that did not overlap 427 (68.54%) 316 (66.39%) 72 (70.59%)

Abbreviations: CNV, copy number variant; DGV, database of genomic variants; UCSC, University of California Santa Cruz genes.
aThe percentage was calculated by dividing 623 loci.
bThe percentage was calculated by dividing 623, 476 and 102 loci, respectively.
Note: As there are only 45 CNV loci (7.22%) with status del+dup, the summary statistics of these loci are not shown in the table. A full colour version of this Table is available at the Journal of
Human Genetics Journal online.
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87 individuals. The proportion of del-loci detected in X2 individuals
(40.76%) was much higher than the proportion for dup-loci (28.43%).
Among the high-frequency CNV loci (loci that were detected in
multiple individuals), several overlapped with disease-related genes
such as WWOX and ERBB4 (gastric and pancreatic cancers and
melanoma)25–27 and CACNA1C (bipolar disorder)28 or drug-metabo-
lizing genes such as GSTT129 (Supplementary Table 2). For example, a
deletion locus overlapping with WWOX (a tumor suppressor gene)
was detected in 24 of the 87 individuals (27.6%), and a deletion locus
encompassing GSTT1 was deleted at a population frequency of 13.8%.
In addition, the proportion of del-loci encompassing the UCSC genes
(28.36%) was much lower than dup-loci (50.00%) overall.

Detection of CNVs using microarrays is usually plagued with poor
specificity or a high false-positive rate. In an effort to validate the 623
CNV loci constructed from the PennCNV output, we compared them
with the CNV loci detected by Birdseye. We found 196 loci (31.46%)
with X50% reciprocal overlap with the Birdseye data and the status
of ‘del’, ‘dup’ and ‘del/dup’ of the 196 loci were consistent with
the Birdseye data. For the remaining 427 CNV loci that were not
confirmed by Birdseye data, we found that 247 loci had been cataloged
in the DGV (please see Materials and methods). Therefore, by
applying two different ways of validation, 443 (71.1%) of the 623
CNV loci detected by PennCNV were considered reliable in this
study (Table 1).

Characteristics of CNPs identified by Canary (Birdsuite)
Approximately 49.81% of the 1291 autosomal CNPs were non-
polymorphic in the Swedish population (Supplementary Table 3).
The population frequency distribution pattern of the 1291 CNPs is
shown in Supplementary Figure 2. Among the polymorphic loci (648
CNPs) and non-polymorphic CNPs (643 loci) in the Swedish popula-
tion, 289 loci (44.60%) and 255 loci (39.66%) overlapped with genes
or entries from the UCSC annotation of the human genome, respec-
tively. No substantial difference was observed between the poly-
morphic and non-polymorphic loci.

The majority of the 648 polymorphic CNPs were biallelic (545
CNPs or 84.1%), of which the integer copy numbers were either
exclusively deletions, that is, copy number of 0 or 1 (387 CNPs or
59.7%), or exclusively duplications, that is, copy number of 3 or 4 (158
CNPs or 24.4%). Among the biallelic 545 CNPs, only one showed
significant deviation from HWE at an FDR o0.01.

Numerous CNPs were found to overlap with important known
disease- or pharmacogenetics-related genes (Table 2). The frequencies
of these CNPs ranged from relatively uncommon (2.78% for CNP118)
to completely polymorphic (100% for CNP88). For example, CNP88
overlapped with GSTM1 and GSTM2 was found to be completely
deleted in the Swedish population, where all except one carried two-
copy deletions. However, it is noteworthy that in approximately
half of the sample (47 individuals), the integer copy numbers were
successfully determined with high confidence scores. In addition, high
deletion frequencies were also found for CNPs overlapping with
other GST enzymes such as GSTT1 (60.00%), GSTT2, GSTT2B
and GSTTP1 (98.65%). Two-copy deletion was common for these
enzymes—17.6% of the individuals for GSTT1 (CNP2560) and 43.2%
for the other GST enzymes (CNP2559).

Besides these phase II metabolizing enzymes, several disease-asso-
ciated genes were also found to overlap with these CNPs, such as the
FCG receptor genes (autoimmune or inflammatory diseases),30

TP6331 and WWOX26 (lung adenocarcinoma, gastric, pancreatic and
other cancers), CFHR3 and CFHR1 (age-related macular degenera-
tion),32 UGT2B17 (prostate cancer and graft-versus-host disease),33,34 T
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and LCE3C and LCE3B (psoriasis and rheumatoid arthritis) among
others.35,36 The high deletion frequency of loci overlapping with
LCE3C and LCE3B (82.76%), UGT2B17 (47.13%) and WWOX
(79.76%) requires further studies to investigate their associations with
complex diseases such as psoriasis, rheumatoid arthritis and graft-
versus-host disease for hematopoietic stem cell transplantation patients.
For example, the mismatch of the copy numbers of UGT2B17 was
found to be associated with graft-versus-host disease in patients with
hematopoietic stem cell transplantation.34 Deletion of UGT2B17 was
also associated with an increased risk for prostate cancer.33

Correlation analyses between CNPs and nearby SNPs
To study the correlation patterns with SNPs, we calculated the r2

between the 648 polymorphic CNPs and nearby SNPs within a 200-kb
window from the start and end positions of the CNP. The proportion
of the CNPs with at least one SNP in strong correlation (r240.8) was
31.9%, that is, 207 CNPs were found to be in strong correlation with
at least one SNP. The median and maximum numbers of SNPs that
were in strong correlation with the 207 CNPs were 3 and 44,
respectively. This suggests that half of the 207 CNPs can be tagged
by more than three SNPs and some of the CNPs were tagged by tens of
SNPs. These results suggest that the majority of CNPs were not being
well tagged by the nearby SNPs in the Affymetrix SNP Array 6.0.
The strength of the r2 value decreases with distance between the CNP
and SNP (Figure 1a). We further investigated whether CNPs that
were not well tagged tend to be located in the genomic regions where

SNP markers are sparse. The correlation patterns do not appear to be
affected by the number of nearby SNPs and the frequencies of CNPs
(Figures 1b and c). In other words, there was no apparent difference
in the number of nearby SNPs and the frequencies of CNPs between
(a) the CNPs that were in strong correlation (r240.8) and (b) CNPs
that were not in strong correlation with SNPs (Figures 1b and c).
However, smaller-sized CNPs were generally in strong correlation with
more SNPs than the larger CNPs (Figure 1d).

Correlation analyses between CNPs and GWAS-SNPs
To investigate the potential role of CNPs in the etiology of complex
diseases or traits, we computed the r2 between CNPs and the SNPs on
the NHGRI GWAS Catalog (http://www.genome.gov/gwastudies/). Of
the 43000 GWAS-SNPs that have been found to be associated with
various complex diseases and traits, only eight GWAS-SNPs were
found to be in strong correlation with six CNPs (Table 3). Following
the methods of Conrad et al.,2 we define in our analysis a strong
correlation as r240.5. These eight SNPs were reported to be associated
with five diseases or traits, namely body mass index, childhood acute
lymphoblastic leukemia, early-onset myocardial infarction, Crohn’s
disease and multiple sclerosis. Several SNPs were in strong correlation
with a single CNP, for example, three SNPs (rs13361189, rs1000113
and rs11747270) were found to be in strong correlation with CNP874.

The most notable SNP was rs2815752 near the NEGR1 gene
(associated with body mass index), which was in perfect correlation
(r2¼1) with CNP60. This locus is a 42-kb deletion located in

Figure 1 (a) The correlation between the r2 and the distance between copy number polymorphism (CNP) and single-nucleotide polymorphism (SNP).
(b) Maximum r2 of CNP versus number of nearby SNPs in 200-kb windows. (c) Maximum r2 of CNP versus CNP frequency. (d) Number of SNPs in strong

correlation with the size of CNPs.
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chromosome 1 that did not overlap with any of the UCSC genes and is
located only 1.3 kb away from the SNP. The total deletion frequency in
the Swedish population was high (Table 3 and Supplementary Table
4), of which 51.72% were one-copy deletions and 29.89% were two-
copy deletions. CNP874 was found to be in nearly perfect correlation
(r2¼0.93) with three GWAS-SNPs located near the IRGM gene, which
is associated with Crohn’s disease. However, in comparison with
CNP60, the total deletion frequency for CNP874 was much lower,
with only 11.90% one-copy deletions and 1.19% two-copy deletions.
This locus spans 13 kb in chromosome 5 and does not overlap with
any of the UCSC genes. The three GWAS-SNPs were located 4.8 kb
(rs13361189), 21.4 kb (rs1000113) and 40.2 kb (rs11747270) away
from the deletion. The CNP877 locus is implicated in multiple sclerosis,
where it is in perfect correlation with the GWAS-SNP (rs4704970).
None of the individuals were deleted in both copies, and 32.56%
were one-copy deletions. The other CNPs were implicated in childhood
acute lymphoblastic leukemia (CNP147) and early-onset myocardial
infarction (CNP333). Interestingly, all the CNPs found to be in strong
correlation with GWAS-SNPs had only deletions in the loci.

Characteristics of CNV loci identified by Birdseye (Birdsuite)
Similar to the PennCNV output analysis, we also merged overlapping
CNVs to construct CNV loci for the Birdseye data and identified 641
loci, of which 451 were del-loci, 102 were dup-loci and the remaining
31 were del/dup-loci (Table 4). The proportion of del-loci (76.40%)
identified by PennCNV data was higher than that for the Birdseye data
(70.36%). In comparison, the Birdseye data identified a higher
proportion of dup-loci (24.80%) than the PennCNV data (16.37%).
However, these differences are not substantial.

The 641 loci identified by the Birdseye data cover approximately
35.23 Mb of the nucleotide sequence, and the sum of the length for
del-loci (13.10 Mb) is smaller than that for dup-loci (15.06 Mb).
Similar to PennCNV data, the average size of del-loci (29.04 kb) is
much smaller than that of the dup-loci (94.70 kb). However, sub-
stantial differences were observed for these parameters between the
PennCNV and Birdseye data (Tables 1 and 4). For example, the sum of
lengths covering CNV loci detected by the PennCNV data (61.52 Mb)
was approximately twice that for the Birdseye data (35.23 Mb), while
they have an almost similar number of CNV loci.

More than 60% of del-loci were o10 kb, and in comparison, only
18.24% of dup-loci fall within this size range. The majority (52.20%)
of dup-loci ranged from 10 to 100 kb. In summary, there were more
del-loci, but their sizes tended to be smaller than those of the dup-loci.
This is in agreement with the PennCNV data. However, the size
distribution pattern of the CNV loci for the Birdseye data is skewed
towards the ‘smaller’ end compared with the PennCNV data. This is
apparent when comparing the proportions in the first two strata:

(a) o10 kb and (b) X10–o50 kb between the two sets of data (Tables
1 and 4). The list of the 641 loci is shown in Supplementary Table 2.

Of the 641 CNV loci, 280 loci were detected in X2 individuals
(Table 4), and the remaining loci in only one individual. The
proportion of del-loci detected in X2 individuals (43.90%) was
much higher than the proportion for dup-loci (32.08%). Among
the high-frequency CNV loci (loci detected in multiple individuals),
several overlapped with disease-associated or pharmacogenetics-
related genes such as WWOX and GSTT1, which have also been
observed in the PennCNV data (Supplementary Table 2). Further-
more, the deletion frequencies were comparable between the Birdseye
and PennCNV data. For example, a deletion locus overlapped with
WWOX was also found in the Birdseye data. It was detected in 29 of
the 87 individuals (33.33%), and a deletion locus encompassing
GSTT1 was deleted at a population frequency of 11.49%. Among
the 196 CNV loci (160 del-loci, 30 dup-loci and 6 del/dup-loci) that
were detected by both the Birdseye and PennCNV data and consistent
in their CNV status, only 21 loci differed significantly (FDR o0.01) in
their frequencies estimated by both sets of data. In addition, the
proportion of del-loci encompassing UCSC genes (24.83%) was much
lower than dup-loci (45.28%); this finding is again consistent with the
PennCNV data.

For the CNV loci detected with the Birdseye data, we also
performed the ‘validation’ steps for overlap with the PennCNV data
and the DGV. As mentioned earlier, we found 196 loci with X50%
reciprocal overlap between the Birdseye and PennCNV data. For the
remaining 445 CNV loci that were not confirmed by PennCNV data,
we found that 322 loci have been cataloged in the DGV (please see
Materials and methods). Therefore, by applying two different ways of
validation, 518 (80.81%) of the 641 CNV loci detected by Birdseye
were considered reliable in this study (Table 4).

Comparison with HapMap phase III populations
The principal component analysis showed distinct clusters for popula-
tions with different ancestries. The first two principal components
(PC1 and PC2) separated the African (ASW, MKK and LWK) and
non-African (CHD, GIH, MEX, SWED and TSI) populations
(Figure 2a). This suggests that the CNP profiles of the African
populations were substantially different from those of the non-African
populations. From the second and fourth principal components (PC2
and PC4), three distinct clusters were observed (Figure 2b). The three
African populations remained as a distinct cluster; however, CHD was
separated from the European populations (MEX, SWED and TSI) and
the Gujarati Indians (GIH). This indicates that the CNP profile of
Gujarati Indians in Houston (Texas, USA) resembles that of the
European populations. Principal component analysis was also per-
formed by restricting only the ‘European cluster’ populations

Table 3 Correlation between CNPs and GWAS-SNPs at r240.5

CNP ID Chromosome Start position End position Length GWAS-SNP r2 value Gene Complex disease/trait

60 1 72541 504 72 583 736 42232 rs2815752 1 NEGR1 BMI

147 1 194 997 658 195 068 695 71037 rs6428370 0.647399825 Intergenic Acute lymphoblastic leukemia (childhood)

333 2 203 608 045 203 610 291 2246 rs6725887 0.84632626 WDR12 Myocardial infarction (early onset)

874 5 150 185 693 150 198 797 13104 rs13361189 0.927251567 IRGM Crohn’s disease

874 5 150 185 693 150 198 797 13104 rs1000113 0.927251567 IRGM Crohn’s disease

874 5 150 185 693 150 198 797 13104 rs11747270 0.927251567 IRGM Crohn’s disease

877 5 155 409 350 155 415 307 5957 rs4704970 1 SGCD Multiple sclerosis

933 6 32539 530 326 81 749 142 219 rs3129934 0.664781909 HLA-DRB1 Multiple sclerosis

Abbreviations: BMI, body mass index; CNPs, copy number polymorphisms; GWAS, genome-wide association studies; SNP, single-nucleotide polymorphism.
A full colour version of this Table is available at the Journal of Human Genetics Journal online.
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(GIH, MEX, SWED and TSI) in PC2 versus PC4 (Figure 2b). More
interestingly, we also found that the CNP profile of the Swedish
population was substantially different from that of the other popula-
tions such as GIH and MEX, but it was also appreciably different
from that of TSI (Figure 2c). These differences further justify the
need to detect and characterize the CNV/CNP profile of the Swedish
population.

Characteristics of ROHs
By restricting ROHs to X500 kb, a total of 14 815 regions were found
in the 87 Swedish individuals with an average of 170 ROHs (Supple-
mentary Table 5). The number of ROHs ranged from 105 to 220. The
majority of these ROHs were o1 Mb in length (Supplementary Figure
3). However, by restricting ROHs to X1 Mb, 2814 ROHs with an
average of 32 ROHs per individual were found. The median size of the
ROHs was approximately 686 kb, with the largest ROH spanning a
length of approximately 25 Mb in chromosome 11. This ROH con-
tained 9034 homozygotes, 29 heterozygotes and 2 missing genotypes,
and had a density of 3.6 SNPs per 10 kb. The second largest ROH was
12 Mb in length and was detected in a different individual. This ROH
contained 1571 homozygotes and 19 heterozygotes and had a density
of 1.3 SNPs per 10 kb. The sum of the length of ROHs in each
individual (that is, the total length of all the ROHs in one individual)
was then computed. It ranged from approximately 87 to 179 Mb
with a median and mean of approximately 141 Mb, respectively.
This finding suggests that, on average, 141 Mb or 4.92% of the
human genome (2867 Mb) was homozygous in these Swedish indivi-
duals (Table 5).

The distribution pattern of these ROHs in the 22 autosomes was
also studied. The larger chromosomes (chromosomes 1–8) tended to

have a higher average number of ROHs per individual (Table 5).
For example, these chromosomes had an average number of 49
ROHs per individual, and in contrast, an average number of o5
ROHs per individual was detected in chromosomes 16–22. As a
result, chromosomes 1–8 also had a higher average sum of length of
ROHs per individual (47 Mb) than the smaller chromosomes,
that is, o4 Mb for chromosomes 16–22. However, this pattern was
less obvious when the parameters were adjusted for the sizes of the
chromosomes. For example, the proportion of the chromosome
encompassed by ROHs for the largest chromosome 1 (4.78%) was
smaller than that for the other chromosomes such as chromosome 17
(5.14%). An apparent trend is not observed for the proportion
of the chromosome encompassed by ROHs across the 22 autosomes.
However, chromosomes 3, 4, 8 and 12 tended to have the highest
proportions (5.90–6.16%), and, in contrast, chromosomes 16, 19, 21
and 22 had the lowest proportions (1.76–2.59%). These results were not
due to differences in the density of SNPs across the 22 autosomes, as we
found no substantial differences in the density of SNPs across the
chromosomes (except for chromosome 19, which had a density of o2
SNPs per 10 kb when compared with the other chromosomes).
Although chromosomes 3 and 4 had 46% of the proportion of the
chromosome encompassed by ROHs, the density of SNPs of these
chromosomes was similar to that of chromosome 16, where only
approximately 2% of this chromosome was covered by ROHs (Table 5).

DISCUSSION

In this study, 4600 CNV loci were detected in the Swedish population
using two different CNV-detection algorithms, that is, PennCNV (623
loci) and Birdsuite (641 loci). From these, 196 loci were consistently
identified by both algorithms, suggesting their reliability. In addition,

Table 4 Summary statistics of CNV loci constructed from Birdseye (Birdsuite) output

Summary statistics of CNV loci (Birdseye output) Total Del Dup

Number of CNV loci 641 451 (70.36%)a 159 (24.80%)a

Number of CNV loci detected in X2 individuals 280 (43.68%)b 198 (43.90%)b 51 (32.08%)b

Sum of the length of loci 35.23 Mb 13.10Mb 15.06Mb

Average length per locus 54.96 kb 29.04 kb 94.70 kb

Average number of markers per locus 30 22 42

Size distribution

o10 kb 303 (47.27%) 272 (60.31%) 29 (18.24%)

X10–o50kb 193 (30.11%) 119 (26.39%) 63 (39.62%)

X50–o100 kb 52 (8.11%) 27 (5.99%) 20 (12.58%)

X100–o500 kb 79 (12.32%) 31 (6.87%) 40 (25.16%)

X500 kb 14 (2.18%) 2 (0.44%) 7 (4.40%)

Overlapping with DGV

CNV loci that overlap 465 (72.54%) 335 (74.28%) 106 (66.67%)

CNV loci that did not overlap 176 (27.46%) 116 (25.72%) 53 (33.33%)

Overlapping with UCSC genes

CNV loci that overlap 202 (31.51%) 112 (24.83%) 72 (45.28%)

CNV loci that did not overlap 439 (68.49%) 339 (75.17%) 87 (54.72%)

Overlapping with CNV loci constructed from Birdseye and consistent in CNV status, that is, del/dup/del+dup

CNV loci that overlap 196 (30.58%) 160 (35.48%) 30 (18.87%)

CNV loci that did not overlap 445 (69.42%) 291 (64.52%) 129 (81.13%)

Abbreviations: CNV, copy number variant; DGV, database of genomic variants; UCSC, University of California Santa Cruz genes.
aThe percentage was calculated by dividing 641 loci.
bThe percentage was calculated by dividing 641, 451 and 159 loci, respectively.
Note: as there are only 31 CNV loci (4.84%) with status del+dup, the summary statistics of these loci were not shown in the table.
A full colour version of this Table is available at the Journal of Human Genetics Journal online.
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we also identified a total of 14 815 ROHs X500 kb or 2814 ROHs
X1 Mb in the Swedish individuals with an average of 170 and 32
regions detected per individual, respectively.

CNVs have been increasingly recognized as a significant source of
genetic variation or diversity in human populations. Detection of

CNVs using SNP genotyping arrays is more cost-effective and afford-
able for population-based studies as compared with sequencing-based
methods, which are limited to only a few individuals.37–39 This has
enabled our study to investigate the population characteristics of
CNVs. Although 4600 CNV loci were identified, only 268 were
detected in at least two individuals by PennCNV. Similarly, Birdseye
also found 280 common CNV loci in the 87 Swedish individuals.
More importantly, these common CNV loci were found to encompass
several disease-related and important drug-metabolizing genes, sug-
gesting that these loci warrant further characterization and study for
their associations with the relevant diseases or traits.

We applied two different algorithms to detect CNV loci as a
validation step; 196 loci were found by both the algorithms and
these loci were also consistent in their CNV status (‘del’, ‘dup’ or
‘del+dup’). In the majority of the 196 loci, the population frequencies
were also in good agreement between PennCNV and Birdseye data,
indicating that these CNV loci are highly reliable. In addition, most of
the CNV loci detected by PennCNV (470%) and Birdseye (480%)
can be ‘validated’ by comparing them with each other and with the
DGV. The proportion of CNV loci overlapping with the DGV was
approximately 62% and 72% for PennCNV and Birdsuite, respectively.
These percentages could be overestimated because of the false-positive
entries in the DGV. Of the 196 CNV loci that were identified by both
algorithms, 53 loci had not been previously cataloged in the DGV,
which represents a subset of reliable novel CNV loci identified in our
study. The list of CNV loci in the DGV is not as yet complete as results
from only 42 published studies were documented as of November
2010 (http://projects.tcag.ca/variation/).

On performing the correlation analysis between CNPs and
GWAS-SNPs, our results also indicated that several CNPs could be
potential causal variants because of their strong correlation with the
GWAS-SNPs. Notably, the strong correlation between the CNPs and
the GWAS-SNPs near NEGR1 and IRGM for body mass index and
Crohn’s disease, respectively, are consistent with previous studies.40,41

Our study has a higher sensitivity than the study by Dı́az de Ståhl
et al.,10 which only detected an average of 15 CNVs per individual
compared with our study, which detected an average of 36 CNVs per
individual. An average of 4 clones per CNV was detected in the Dı́az
de Ståhl et al. study, whereas in our study, each CNV was detected by
an average of 51 markers (Supplementary Table 1). The ability to
detect smaller CNVs was also demonstrated in our study, because the
average size of CNVs detected by Dı́az de Ståhl et al. was approxi-
mately 3.5-fold (358 kb) larger than that in our study. Although Dı́az
de Ståhl et al. also clustered individual overlapping CNVs into loci,
their analysis was performed using data from different ancestries
(33 Europeans, 24 Africans and 14 Asians), whereas the CNV loci
constructed in our study were based entirely on the data from 87
Swedish individuals. Therefore, our list of CNV loci and their
frequencies was more representative of the Swedish population.

We did not compare our results with existing data from published
studies because of the methodological issues in CNV and ROH
detection in the different studies. As different studies have used
different platforms, quality control criteria and methods to construct
CNV loci and detect ROHs, comparisons with published studies
would not be valid. Therefore, we would need to analyze the
data from different populations with same analytical procedure.
Furthermore, such a comparison is beyond the scope of the current
paper and will be addressed in a future publication. However, to
provide some preliminary insight into the population differences, we
compared the CNP profiles of the Swedish population with the
HapMap phase III populations. This comparison was appropriate as
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we analyzed the CNP output for the HapMap III populations
generated by Canary similar to the Swedish population output. As
expected, the results of our analysis showed that the CNP profile of the
Swedish population was substantially different from that of the African
populations (ASW, MKK and LWK) and CHD. More interestingly, the
CNP profile of the Swedish population was also considerably different
from that of other European populations (MEX and TSI) and GIH.
This further supports the importance of delineating the population
characteristics of CNVs/CNPs in the Swedish population.

There are a number of limitations when using SNP genotyping
arrays to detect CNVs and ROHs, and the CNV and ROH list reported
in our study is not complete. Future studies will require higher
sensitivity methods and larger sample sizes for a more thorough
detection of CNVs and ROHs. Nevertheless, this is the first popula-
tion-based study to investigate the population characteristics of CNVs
and ROHs in the Swedish population. This study found many reliable
CNV loci and also highlighted numerous loci that warrant further
investigation for their medical or pharmacogenetic importance. The
abundance of ROHs detected in the human genome also suggests the
importance of studying their associations with complex phenotypes.
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ORIGINAL ARTICLE

Copy number polymorphisms in new HapMap III and
Singapore populations

Chee-Seng Ku1,2,8, Shu-Mei Teo1,2,3,8, Nasheen Naidoo1,2, Xueling Sim1,2, Yik-Ying Teo1,2,4,5, Yudi Pawitan6,
Mark Seielstad7, Kee-Seng Chia1,2,6 and Agus Salim1,2,8

Copy number variations can be identified using newer genotyping arrays with higher single nucleotide polymorphisms (SNPs)

density and copy number probes accompanied by newer algorithms. McCarroll et al. (2008) applied these to the HapMap II

samples and identified 1316 copy number polymorphisms (CNPs). In our study, we applied the same approach to 859 samples

from three Singapore populations and seven HapMap III populations. Approximately 50% of the 1291 autosomal CNPs were

found to be polymorphic only in populations of non-African ancestry. Pairwise comparisons among the 10 populations showed

substantial differences in the CNPs frequencies. Additionally, 698 CNPs showed significant differences with false discovery rate

(FDR)o0.01 among the 10 populations and these loci overlap with known disease-associated or pharmacogenetic-related genes

such as CFHR3 and CFHR1 (age related macular degeneration), GSTTI (metabolism of various carcinogenic compounds and

cancers) and UGT2B17 (prostate cancer and graft-versus-host disease). The correlations between CNPs and genome-wide

association studies–SNPs were investigated and several loci, which were previously unreported, that may potentially be implicated

in complex diseases and traits were found; for example, childhood acute lymphoblastic leukaemia, age-related macular degeneration,

breast cancer, response to antipsychotic treatment, rheumatoid arthritis and type-1 diabetes. Additionally, we also found

5014 novel copy number loci that have not been reported previously by McCarroll et al. (2008) in the 10 populations.

Journal of Human Genetics (2011) 56, 552–560; doi:10.1038/jhg.2011.54; published online 16 June 2011

Keywords: Affymetrix SNP Array 6.0; Birdsuite software; copy number polymorphisms; International HapMap III populations;
Southeast Asian populations

INTRODUCTION

The term copy number variation (CNV) was first introduced in 2006
and it is generally defined as additions or deletions in the number of
copies of a particular segment of DNA (larger than 1 kb in length)
when compared with a reference genome sequence.1 The ubiquitous
nature of CNVs in the human genome was underappreciated until
2004,2,3 when these reports stimulated a series of efforts to detect and
characterise CNVs in different populations.4–8 This development has
also resulted in several new terminologies such as copy number
polymorphisms (CNPs), which have been defined as common
CNVs with a population frequency of at least 1%.4

CNVs can be detected using microarray-based methods, but these
have relatively poor resolution when compared with sequencing-based
approaches.9,10 The low resolution of microarray-based methods also
led to imprecise mapping of the breakpoints. This is important when
constructing copy number loci to estimate population frequencies.

Newer genotyping arrays, such as the Illumina Human 1M Beadchip
(Illumina, San Diego, CA, USA) and the Affymetrix SNP Arrays 6.0
(Affymetrix, Santa Clara, CA, USA), have higher single nucleotide
polymorphisms (SNPs) density and copy number probes, resulting
in improved performance of microarray-based methods to detect
CNVs. However, even with higher resolution arrays, the challenge
of identifying common breakpoints still remains. This is largely
due to the early CNV-calling algorithms that identified breakpoints
sample-by-sample, resulting in significant variation of breakpoints.
The Canary algorithm in the Birdsuite software overcomes this
problem by calling CNPs simultaneously across multiple indivi-
duals at pre-defined genomic locations.11 McCarroll et al.4 used the
Canary algorithm to identify 1316 CNPs in the HapMap Phase II
populations. These CNPs were well validated and their sizes were in
agreement with the results from the fosmid paired-end sequencing
experiment.9
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To provide a more global map of CNPs, our study aims to
determine integer copy numbers of the 1316 CNPs set of three
Southeast Asian populations in Singapore, namely Chinese (Sing–
Chinese), Malay (Sing–Malay) and Asian Indian (Sing–Indian), and
the seven populations from the HapMap Phase III.12 The HapMap III
populations studied are people of African ancestry in the southwestern
USA (ASW), the Chinese community in Metropolitan Denver, Colo-
rado, USA (CHD), Gujarati Indians in Houston, Texas, USA (GIH),
the Luhya in Webuye, Kenya (LWK), people of Mexican ancestry in
Los Angeles, California, USA (MEX), the Maasai in Kinyawa, Kenya
(MKK) and the Tuscans in Italy (TSI). The characteristics of CNPs in
the 10 populations will be described and compared. In addition, the
correlation between CNPs and SNPs in the 10 populations will also be
characterised and compared. A special emphasis will be given to
studying the correlation between SNPs in the genome-wide associa-
tion studies (GWAS) catalog (GWAS–SNPs) and CNPs in the 10
populations. Additionally, novel copy number loci that have not been
reported previously by McCarroll et al.4 will also be reported on from
the 10 populations.

MATERIALS AND METHODS

DNA samples and genotyping
The detailed information on the sources of DNA samples, demographic data of

the samples, sample selection and the origin and migration history of the three

Singapore populations (Chinese, Malay and Asian Indian) have been described

in our previous publication.8,13 This study was approved by the National

University of Singapore Institutional Review Board (Reference Code: 07-199E).

In total, 292 DNA samples (99 Chinese, 98 Malay and 95 Indian) were

genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0. Of

the 292 samples, 27 were excluded from subsequent analysis. The final set of

265 samples (93 Chinese, 88 Malays and 84 Indians) was available for analysis

using Birdsuite. There were 135 females and 130 males in the final dataset. The

detailed information on the quality control and sample filtering have also been

described in our previous papers.8,13

HapMap III samples
The CEL-files of the Affymetrix SNP Array 6.0 for the seven populations in

HapMap III were downloaded from the ftp site (ftp://ftp.ncbi.nlm.nih.gov/

hapmap/raw_data/hapmap3_affy6.0/). All the samples were analysed by Bird-

suite, with only unrelated samples included in our study; that is, family-related

samples were removed using the ‘relationships’ file provided by the Interna-

tional HapMap Project. After the sample exclusion step, a total of 594 unrelated

samples from the seven HapMap III populations were analysed: ASW (n¼52),

CHD (n¼89), GIH (n¼89), LWK (n¼90), MEX (n¼53), MKK (n¼132) and

TSI (n¼89).

CNP calling using Canary
The Birdsuite software was used to analyse the Affymetrix SNP Array 6.0

dataset, which consisted of two components for detecting copy number

changes. The first component, Canary, was used to determine the integer copy

number at each of the predefined 1316 CNPs identified by McCarroll et al.4

in the HapMap II samples. These CNPs were found in more than one

HapMap II individual and the sizes of these CNPs were also determined.

The 1316 CNPs were distributed in all the autosomes and sex chromosomes.

However, 25 CNPs located in the sex chromosomes were removed, as CNP

calling in sex chromosomes is more problematic and less accurate. Therefore,

the results reported in this study comprised of only 1291 CNPs in the 22

autosomes. Confidence statistics was used to identify poor quality calls and

only integer copy numbers detected with high confidence (confidence score

o0.1) were reported and used for subsequent analyses. We performed the

Hardy–Weinberg equilibrium analysis as a quality control measure for biallelic

CNPs in all 10 populations. It is recommended that the samples should be

analysed on the basis of the genotyping batches using Birdsuite; therefore, the

samples for Singapore and HapMap III populations were analysed by batch

without separating the samples into each specific population.

FDR correction for population comparisons of the integer copy
numbers of the CNPs
Population differences in the integer copy numbers were examined using the

Fisher’s exact test as implemented by the ‘fisher test’ command in R. The false

discovery rate (FDR) was used in place of the P-value to account for the

multiple-testing problem. We calculated the FDR using the Benjamini and

Hochberg method. We performed two different test procedures: (1) comparing

the integer copy numbers among the 10 populations simultaneously and (2)

pairwise comparisons of the integer copy numbers among the 10 populations.

For each procedure, FDR was computed once to control for all the tests (that is,

in the second procedure, we calculated the FDR once by combining the

P-values from 45�1291 tests).

Correlation analysis
All the correlation analyses of CNPs and nearby SNPs were done separately for

each of the 10 populations. For each autosomal CNP (restricted to biallelic

CNPs with MAFX5%), SNPs in close proximity with the CNP; that is, within a

200-kb window from the start- and end-position of the CNP were considered.

The square of the Pearson correlation coefficient (r2) for each of the SNPs

(excluding the SNPs used for CNP-calling) found within the 200-kb windows

of the respective CNP was then calculated.

The r2 is the square of the Pearson correlation coefficient between the copy

number genotypes and the SNP genotypes. The copy number genotypes were

obtained using Canary in the Birdsuite algorithm. The SNP genotypes were

obtained using Larry Bird in the Birdsuite algorithms. Larry Bird outputs the

number of allele A (0, 1, 2) and number of allele B (0, 1, 2) for each SNP. We

used the number of allele A for the calculation. Larry Bird generates the number

of allele A and number of allele B for each SNP. As each SNP has two alleles in

total, knowing the number of allele A will inform the number of allele B;

for example, if the number of allele A is 2, then number of allele B should be 0.

The same r2 calculations used for the autosomal CNPs and the

SNPs identified by GWAS were used to explore the potential associations

of CNPs with human diseases and traits. The list of GWAS–SNPs was

downloaded from the National Human Genome Research Institute’s website

(http://www.genome.gov/gwastudies/) on 24 May 2010.

Copy number loci calling using Birdseye and validation
The Birdseye component in Birdsuite was used to detect additional copy

number loci located outside the 1316 CNPs in the 10 populations. Similarly,

only the copy number loci in autosomal chromosomes were detected because

of the inaccuracy of Birdseye in detecting copy number loci in the sex

chromosomes. Copy number calls with low confidence (confidence score

o5) were removed. On the basis of the copy number calls generated by

Birdseye, we constructed novel copy number loci using the methods that we

developed previously.14 All the downstream analyses after Canary and Birdseye

were performed using the software package R (http://www.r-project.org/). The

novel copy number loci identified by Birdseye were compared with data from

the Database of Genomic Variants (http://projects.tcag.ca/variation/) as a

validation step. We defined a copy number locus overlapped with the Database

of Genomic Variants, if the locus overlapped by 450% of its length with one or

more entries in the Database of Genomic Variants.

RESULTS

Characteristics of CNPs in the 10 populations
In each of the 10 populations, among the polymorphic CNPs
(Table 1), most were biallelic, where the integer copy numbers were
either exclusively deletions (copy number¼0, 1) or exclusively dupli-
cations (copy number¼3, 4). Among the biallelic CNPs, the majority
did not show significant deviation from Hardy–Weinberg equilibrium
with less than 2% failing a Hardy–Weinberg equilibrium test at
P-value o0.01 in all except three populations—Sing–Chinese
(2.2%), ASW (4.2%) and LWK (2.8%).
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In terms of the proportion of non-polymorphic loci and loci with
varying population frequencies, the Singapore populations were
similar to the HapMap III populations of non-African descent
(CHD, GIH, MEX and TSI) (Table 1 and Supplementary Figure 1).
More than half of the CNPs were non-polymorphic in the Singapore
and HapMap III populations of non-African descent. This was in
contrast to the populations of African descent (ASW, LWK and
MKK), where only 26.41–37.72% of the CNPs were not polymorphic.
They also had higher proportions of CNPs with frequencies ranging
from 1 to 10%, ASW (45.86%), LWK (35.48%) and MKK (39.27%),
compared with the other populations (ranging from 24.63 to 27.50%).
In addition, among all the populations, there were no substantial
differences in the proportion of CNPs with a population frequency
410%. The discrepancy between populations of African descent
and others is largely due to these populations having a larger number
of rarer CNPs with a population frequency o10%. Hence, the
differences between populations of African descent and the others
were primarily in the proportion of non-polymorphic loci and those
with population frequencies o10%. It is also worth noting that the
Sing–Indian and Sing–Chinese populations have almost similar
distributions of polymorphic loci, when compared with the HapMap
III populations with whom they share a similar ancestry (that is, GIH
and CHD, respectively) (Table 1 and Supplementary Figure 1).

The proportion of common (MAFX0.05) biallelic CNPs that were
highly correlated with at least one SNP (r240.8) was approximately
50% for non-African populations, but a lower proportion for African
populations; that is, ASW (35.34%), LWK (34.84%) and MKK (37.39%).
The majority of the common biallelic CNPs were ‘deletions’. There
was a substantial difference in the proportion that was highly corre-
lated with at least one SNP for CNPs categorised as ‘deletions’ and
‘duplications’. However, this substantial difference could be biased
because of the small number of ‘duplications’ (Table 2). The strength
of correlation or the r2 value decreased with distance between the
CNP and SNP (Supplementary Figure 2).

We further investigated whether CNPs that were not well tagged
were located in the genomic regions where SNP markers are sparse.
The correlation patterns did not seem to be affected by the number
of nearby SNPs and the MAF of CNPs. There was no apparent
difference in the number of nearby SNPs and the MAF of CNPs
between (a) the CNPs that were in strong correlation (r240.8) and
(b) CNPs that were not in strong correlation with SNPs (Supplementary
Figures 3a and b). However, smaller sizes of CNPs were generally in
strong correlation with more SNPs than the larger CNPs (Supplemen-
tary Figure 3c). These results were consistent across the 10 populations.

Population differences in the integer copy numbers of the CNPs
Out of the 698 CNPs (FDRo0.01) that differed between the 10 popula-
tions, several loci encompassed known disease- or traits-associated or
pharmacogenetic-related genes (Supplementary Table 1). These included
WWOX, ERBB4 and TP63 (cancers), ADAMTSL3 (height), CFHR3
and CFHR1 (age-related macular degeneration), GSTT1 (metabolism
of various carcinogenic compounds and cancers), UGT2B17 (prostate
cancer and graft-versus-host disease) and CYP2A6 (metabolism of
various drugs). There was a large interpopulation difference in the
frequencies of some of the CNPs overlapping these genes. For
example, CNP2203, which overlaps with the tumour suppressor
gene WWOX, was not polymorphic in CHD, whereas it had a deletion
frequency of 2.38% in Sing–Chinese and 7.32% in Sing–Malay
(Table 3 and Supplementary Table 2). In contrast, the deletion
frequency was 51.81% in Sing–Indian and 48.86% in GIH. Similarly,
CNP147, which overlaps with the CFHR3 and CFHR1 genes, hadT
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deletion frequencies in Sing–Chinese (10.75%), Sing–Malay (12.64%)
and CHD (15.73%) that was substantially lower than the other
populations.

Another CNP of interest was CNP2560, a 46-kb deletion that overlaps
with GSTT1. GSTT1 is an important detoxification enzyme and has a
key role in metabolism of carcinogenic compounds. The total deletion
frequency of this CNP was high in all the 10 populations ranging from
56.63 to 96.77% (Table 3 and Supplementary Table 2). Sing–Indians
had a considerably lower total deletion frequency (56.63%) than
Sing–Malays (85.06%) and Sing–Chinese (96.77%). This difference
is attributable to two-copy deletion, as the difference in two-copy
deletion frequency ranged from 15.66% in Sing–Indian, 32.18% in
Sing–Malay and 46.24% in Sing–Chinese. The two Chinese popula-
tions had the highest two-copy deletion frequency (CHD, 41.57%).
Conversely, both the Indian populations had the lowest two-copy
deletion frequency (GIH, 17.98%).

CNP603 is a 125-kb deletion that overlaps with TMPRSS11E and
UGT2B17. The entire UGT2B17 gene is within the deletion locus, but
only one exon from TMPRSS11E was deleted. The deletion frequency
of CNP603 was very different in Asian and non-Asian populations
(Table 3 and Supplementary Table 2). Asian populations (Sing–
Chinese, Sing–Malay, Sing–Indian, CHD and GIH) had higher fre-
quencies, which ranged from 82.14 to 100%, when compared with
populations of European and African ancestry (48.08–67.18%). The

differences were even more apparent for two-copy deletions with the
highest frequencies in CHD (70.79%), Sing–Chinese (65.59%) and
Sing–Malay (52.87%), followed by the two Indian populations, GIH
(37.04%) and Sing–Indian (30.95%), whereas the European and
African populations were in the lower end of the spectrum with
frequencies o20%. Generally, this trend was reversed for the frequency
of one-copy deletions especially in the Singapore populations
(Sing–Chinese 33.33%, Sing–Malay 42.53% and Sing–Indian 51.19%).

The number of CNPs that showed significant differences
(FDRo0.01) in pairwise comparisons of the 10 populations are
shown in Table 4. Only 19 CNPs showed significant differences
between Sing–Chinese and CHD, and 12 CNPs between Sing–Indian
and GIH, suggesting that the CNPs profile in the two Chinese and two
Indian populations were very similar (Supplementary Figure 4).
Through these pairwise comparisons (Table 4 and Supplementary
Figure 4), the 10 populations can be divided into three groups
representing Asian, European and African ancestry: (a) Sing–Chinese,
Sing–Malay and CHD, (b) Sing–Indian, GIH, MEX and TSI, (c) ASW,
LWK and MKK. The CNPs profiles of Sing–Indian and GIH were
closer to European populations (MEX and TSI).

Correlation analysis between CNPs and GWAS-SNPs
To investigate the potential role of CNPs in the aetiology of complex
diseases or traits, we computed the r2 between CNPs and the SNPs in

Table 2 The number and proportion (%) of common (MAFX0.05) biallelic (a) CNPs, (b) deletions, (c) duplications that were highly correlated

with at least one SNPs (r240.8)

Population

No. of CNPs

(MAFX5%)

No. of CNPs

correlated

(r240.8)

Proportion

(%)

No. of

deletions

(MAFX5%)

No. of

deletions correlated

(r240.8) Proportion (%)

No. of

duplications

(MAFX5%)

No. of duplications

correlated

(r240.8)

Proportion

(%)

Sing–Chinese 194 104 53.61 174 103 59.20 20 1 5.00

Sing–Malay 190 106 55.79 170 105 61.76 20 1 5.00

Sing–Indian 210 115 54.76 190 112 58.95 20 3 15.00

ASW 266 94 35.34 241 94 39.00 25 0 0.00

CHD 201 112 55.72 181 110 60.77 20 2 10.00

GIH 216 117 54.17 197 117 59.39 19 0 0.00

LWK 263 89 33.84 242 87 35.95 21 2 9.52

MEX 229 105 45.85 204 104 50.98 24 1 4.17

MKK 230 86 37.39 210 86 40.95 20 0 0.00

TSI 205 105 51.22 183 103 56.28 22 2 9.09

Abbreviations: ASW, African ancestry in the southwestern USA; CHD, Chinese community in Metropolitan Denver, Colorado, USA; CNPs, copy number polymorphisms; GIH, Gujarati Indians in
Houston, Texas, USA; LWK, Luhya in Webuye, Kenya; MAF, minor allele frequency; MEX, Mexican ancestry in Los Angeles, California, USA; MKK, Maasai in Kinyawa, Kenya; Sing, Singapore;
SNPs, single-nucleotide polymorphisms; TSI, Tuscans in Italy.
r2, Square of the Pearson correlation coefficient.

Table 3 CNPs (FDRo0.01) that overlap with known disease-associated or pharmacogenetic-related genes

CNP Gene Sing–Chinese Sing–Malay Sing–Indian ASW CHD GIH LWK MEX MKK TSI

CNP2203 WWOX 2.38a 7.32 51.81 66.67 0.00 48.86 40.00 67.31 28.35 68.18

CNP340 ERBB4 0.00 2.33 12.05 7.69 0.00 17.24 0.00 0.00 0.00 4.49

CNP530 TP63 64.84 48.24 27.38 30.77 68.54 31.82 31.82 9.62 32.06 6.90

CNP2118 ADAMTSL3 67.05 46.84 11.54 38.46 51.19 4.49 49.40 24.32 48.80 19.51

CNP147 CFHR3, CFHR1 11.83 12.64 53.57 59.62 15.73 58.43 59.09 18.87 42.42 43.82

CNP2560 GSTT1 96.77 85.06 56.63 72.00 92.13 70.79 75.56 71.70 80.15 67.06

CNP603 UGT2B17 100.00 95.40 82.14 48.08 98.88 86.42 63.33 58.49 67.18 58.43

CNP2415 CYP2A6 18.89 36.25 5.13 6.00 23.86 11.49 8.05 2.04 8.80 4.60

Abbreviations: ASW, African ancestry in the southwestern USA; CHD, Chinese community in Metropolitan Denver, Colorado, USA; CNPs, copy number polymorphisms; FDR, false discovery rate;
GIH, Gujarati Indians in Houston, Texas, USA; LWK, Luhya in Webuye, Kenya; MEX, Mexican ancestry in Los Angeles, California, USA; MKK, Maasai in Kinyawa, Kenya; Sing, Singapore; TSI,
Tuscans in Italy.
aPopulation frequency (%)¼deletion frequency+duplication frequency.
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the National Human Genome Research Institute GWAS catalog.
Out of the 42500 GWAS–SNPs that have been found to be associ-
ated with various complex diseases and traits, only 17 GWAS–SNPs
were found to be in strong correlation with 12 CNPs (Table 5 and
Supplementary Tables 3 and 4). In this analysis, we defined a strong
correlation as r240.5, following Conrad et al.5 These 17 SNPs were
reported to be associated with 14 diseases or traits and the notable
phenotypes that were observed consistently across the populations
were body mass index, Crohn’s disease, multiple sclerosis, myocardial
infarction and prostate cancer. Several SNPs were in strong correlation
with a single CNP; for example, three SNPs (rs13361189, rs1000113,
rs11747270) were found to be in strong correlation with CNP874.
Of the 33 copy number loci identified by Conrad et al.,5 which were
in strong correlation with GWAS–SNPs, seven were also identified in
our study which had 450% overlap in length. The remaining five
CNPs in our study were associated with childhood acute lympho-
blastic leukaemia, age-related macular degeneration, breast cancer,
response to antipsychotic treatment, rheumatoid arthritis and type-1
diabetes (Table 5 and Supplementary Tables 3 and 4).

Several SNPs were consistently found to be in strong correlation
with four CNPs (CNP60, CNP874, CNP877 and CNP333) in all
populations. The most notable was rs2815752 near the NEGR1
gene (associated with body mass index), which is in perfect correla-
tion (r2¼1) with CNP60 in all the 10 populations (Table 5 and
Supplementary Table 3). This locus is a 42-kb deletion located
in chromosome 1, which did not overlap with any of the UCSC
(University of California, Santa Cruz) genes and it is located only
1.3 kb away from the SNP. The total deletion frequency in the
three Singapore populations was high (Figure 1a and Supplementary
Table 5). There were, however, differences in the frequency of two-
copy deletion. More than 80% of the Sing–Chinese and Sing–Malay
samples were deleted in both copies, but only about 41% for the
Sing–Indian samples. The pattern is similar between Sing–Chinese
and CHD, as well as Sing–Indian and GIH. The frequency of two-
copy deletion frequency varied substantially across the 10 popula-
tions, from the lowest in the LWK population (26.97%) to the highest
in Sing–Chinese (87.10%). A significant difference in the two-copy
deletion frequency of CNP60 was seen between Asian populations
(480% for Sing–Chinese, Sing–Malay and CHD) compared with
African populations (o35% for ASW, LWK and MKK), whereas the
frequency of the Sing–Indian and GIH resembles European popula-
tions (MEX and TSI) (Supplementary Table 5).

CNP874 was found to be in strong correlation with three GWAS–
SNPs located near the IRGM gene, which is associated with Crohn’s

disease. This strong correlation pattern was consistent across the 10
populations (Table 5). Most of the individuals carried either deletions
or had a diploid copy. This locus spans 13 kb in chromosome 5 and
did not overlap with any of the UCSC genes. The SNPs were located
4.8 kb (rs13361189), 21.4 kb (rs1000113) and 40.2 kb (rs11747270)
away from the deletion. The differences in the frequency of two-copy
deletion of CNP874 appeared to divide the 10 populations into two
clusters. The populations of European ancestry (MEX and TSI) and
Indian populations (Sing–Indian and GIH) had a frequency p6.41%,
but the other populations had higher frequencies, which ranged from
10% to 20.69% (Figure 1b and Supplementary Table 5). We also found
a substantially lower frequency of two-copy deletion in the Sing–
Indian (6.41%) compared with the Sing–Chinese (15.22%) and the
Sing–Malay (11.49%) populations.

The CNP877 locus has been implicated in multiple sclerosis. It was
however not polymorphic in the Sing–Chinese (Figure 1c and Sup-
plementary Table 5). The total deletion frequencies for Sing–Malay
and CHD were 2.30 and 1.14%, respectively. However, we found a
much higher total deletion frequency for the other seven populations,
which ranged from 17.05 to 42.53%.

Novel copy number loci in the 10 populations
The second component of the Birdsuite software, Birdseye, was used
to identify novel copy number loci in the 10 populations. We
subsequently found 5947 copy number loci, of which 933 loci were
excluded because of overlap with the 1291 autosomal CNPs identified
by McCarroll et al.4 As a result, only 5014 were novel copy number
loci; that is, had not been previously found by McCarroll et al.4

Of these, 1448 loci were detected in two or more individuals in
the 10 populations (Table 6). The list of these loci is available
in Supplementary Table 6. Using a more stringent definition of
‘common’ novel copy number loci (population frequency X1%),
there were only 170 loci and of these, 42 loci had a population
frequency X5%.

Of the 1448 novel copy number loci, 763 (52.69%) were found to
overlap with the data from the Database of Genomic Variants.
Although for the 170 loci, the overlap was 78.82% (Table 6). Addi-
tionally, we also found that 86.54% of the 1448 loci were biallelic; that
is, these loci contained either deletions (48.76%) or duplications
(37.78%). The remaining loci were found to have both deletions
and duplications. The majority of these loci did not overlap with the
UCSC genes (62.43%). Of the 170 loci, 37.06% contained both
deletions and duplications and the majority of these loci also did
not overlap with the UCSC genes (52.35%).

Table 4 The number of CNPs that showed significant differences (FDRo0.01) in the pairwise comparisons among the 10 populations

Population Sing–Chinese Sing–Malay Sing–Indian ASW CHD GIH LWK MEX MKK TSI

Sing–Chinese — 6 84 137 19 106 209 81 199 141

Sing–Malay — — 46 125 26 72 197 59 180 126

Sing–Indian — — — 93 88 12 186 32 147 54

ASW — — — — 132 95 13 69 18 90

CHD — — — — — 113 196 77 192 130

GIH — — — — — — 170 35 155 52

LWK — — — — — — — 123 33 176

MEX — — — — — — — — 97 27

MKK — — — — — — — — — 146

TSI — — — — — — — — — —

Abbreviations: ASW, African ancestry in the southwestern USA; CHD, Chinese community in Metropolitan Denver, Colorado, USA; CNPs, copy number polymorphisms; FDR, false discovery rate;
GIH, Gujarati Indians in Houston, Texas, USA; LWK, Luhya in Webuye, Kenya; MEX, Mexican ancestry in Los Angeles, California, USA; MKK, Maasai in Kinyawa, Kenya; Sing, Singapore;
TSI, Tuscans in Italy.
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DISCUSSION

The finding that approximately 50% of the CNPs identified by the
McCarroll et al.4 study were not polymorphic in all of the three
Singapore populations and the HapMap III populations (CHD, GIH,
MEX and TSI) suggests that the CNPs found in the ‘reference’
HapMap II populations are not necessarily polymorphic or common
in other populations. This finding, together with the identification of
novel copy number loci other than those found using the HapMap II
populations, highlights the importance of characterising CNPs in
different populations.

In addition, we also found several hundred CNPs that showed
significant differences in integer copy numbers among the 10 popula-

tions. More interestingly, many of these loci encompass genes of
medical relevance. For example, we found a markedly lower deletion
frequency at CNP2203 (which is associated with the WWOX gene) in
Sing–Chinese and Sing–Malay compared with other populations.
WWOX is a tumour suppressor gene affected in multiple cancers.15

On the other hand, deletion of the UGT2B17 gene was also been found
to be associated with an increased risk of prostate cancer.16,17 The
functional role of the UGT2B17 enzyme is clear in prostate cancer, as it
is involved in steroid hormone (androgen) metabolism. The mismatch
of UGT2B17 copy numbers in donors and recipients of stem cell
transplantation were also associated with an increased risk of graft-
versus-host disease.18 This gene is contained within CNP603, which
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show substantial differences between the Singapore and HapMap III
populations. Although a direct association between the CNPs and
phenotypic differences is not established in our study, collectively our
results suggest that CNPs distributions are substantially different
between populations and thus, may account for phenotypic differ-
ences between them.

We found 12 CNPs that may have potential implications in various
diseases and traits; however, only five of them have not been reported
by Conrad et al.,5 who found evidence of correlations for 33 copy
number loci with GWAS–SNPs at r240.5. The difference in the
number of loci found to be in correlation with GWAS–SNPs between
our study and the Conrad et al.5 study is likely due to the limitation
that we only focused on the 1291 CNPs, whereas Conrad et al.5

studied the whole genome. Furthermore, it could also be due to the
difference in the marker density of the microarrays used in our study
and the Conrad et al.5 study. We used the Affymetrix SNP Array 6.0,
whereas they used a set of 20 oligonucleotide-CGH arrays, comprising

42 million probes. The differences in marker density will contribute to
the differences in sensitivity of detection.5

Several previous studies have reported correlations between CNVs
and GWAS–SNPs. For example, deletions near IRGM and NEGR1
genes, which were in perfect linkage disequilibrium (LD) with the
GWAS–SNPs, were identified for Crohn’s disease and body mass
index, respectively.19,20 Our study also showed strong correlations
between CNPs and GWAS–SNPs near IRGM and NEGR1 in all
10 populations, but the deletion frequencies varied substantially
among the populations. GWAS–SNPs are potentially indirect markers
of disease variants, which include CNPs. This may have important
clinical implications if these deletions are true disease variants.

A recent paper published by the International HapMap Consortium
also studied CNPs in the HapMap III populations.12 However, they
merged and analysed the probe-level intensity data from both the
Affymetrix SNP Array 6.0 and the Illumina 1M Beadchip arrays. In
contrast, we only analysed the Affymetrix SNP Array 6.0 data and
focused primarily on the 1291 CNPs identified previously, as only the
raw signal intensity files of this array were available from the HapMap
website. A total of 1610 CNPs with an estimated frequency of at least
1% of the cohort were identified in the HapMap III populations by the
International HapMap Consortium. They also found that most CNPs
also occurred at a low frequency.12 This was consistent with our study
where among the polymorphic CNPs, the majority also occurred at a
low frequency (o10%). Similarly, the finding that the frequency
spectrum of common CNPs (410%) was similar across populations
by the International HapMap Consortium was in good agreement
with our results (Table 1).
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ORIGINAL ARTICLE

Regions of homozygosity in three Southeast Asian
populations

Shu-Mei Teo1,2,3,4,5, Chee-Seng Ku1,2,5, Agus Salim2, Nasheen Naidoo1, Kee-Seng Chia1,2,4 and Yudi Pawitan4

The genomes of outbred populations were first shown in 2006 to contain regions of homozygosity (ROHs) of several megabases.

Further studies have also investigated the characteristics of ROHs in healthy individuals in various populations but there are no

studies on Singapore populations to date. This study aims to identify and investigate the characteristics of ROHs in three

Singapore populations. A total of 268 samples (96 Chinese, 89 Malays and 83 Indians) are genotyped on Illumina Human 1 M

Beadchip and Affymetrix Genome-Wide Human SNP Array 6.0. We use the PennCNV algorithm to detect ROHs. We report an

abundance of ROHs (X500 kb), with an average of more than one hundred regions per individual. On average, the Indian

population has the lowest number of ROHs and smallest total length of ROHs per individual compared with the Chinese and

Malay populations. We further investigate the relationship between the occurrence of ROHs and haplotype frequency, regional

linkage disequilibrium (LD) and positive selection. Based on the results of this data set, we find that the frequency of

occurrence of ROHs is positively associated with haplotype frequency and regional LD. The majority of regions detected for

recent positive selection and regions with differential LD between populations overlap with the ROH loci. When we consider both

the location of the ROHs and the allelic form of the ROHs, we are able to separate the populations by principal component

analysis, demonstrating that ROHs contain information on population structure and the demographic history of a population.

Journal of Human Genetics advance online publication, 1 December 2011; doi:10.1038/jhg.2011.132

Keywords: PennCNV; regions of homozygosity; Singapore; Southeast Asian populations

INTRODUCTION

A region of homozygosity (ROH) is defined as a continuous stretch of
DNA sequence without heterozygosity in the diploid state. All genetic
variations such as single-nucleotide polymorphisms (SNPs) or micro-
satellites within the homologous DNA segments have two identical
alleles that create homozygosity.1 Currently, there is no consensus or
standardized criteria to define an ROH. Previous studies focused on
ROHs larger than 1 Mb which could have led to an underestimation of
the true extent of homozygosity in the human genome,2,3 whereas more
recent studies define an ROH at a minimum length of 500 kb,4 with
the intention of avoiding this underestimation. This is of relevance as
shorter ROHs are now also thought to be associated with complex
phenotypes.4

The genomes of outbred populations were first shown in 2006 to
contain ROHs of several megabases.2,3,5 Their location is markedly
nonrandom, where different individuals share similar region bound-
aries. Some loci are caused by a single common haplotype, whereas
others are a consequence of several common haplotypes that could be

markedly disparate.6 Several mechanisms for the occurrence of ROHs
have been suggested, including uniparental isodisomy (a chromoso-
mal abnormality where a child inherits two identical copies of a
chromosome from one parent and none from the other) and auto-
zygosity (where a child inherits the same common ancestral haplotype
chromosomal segment from both parents). Studies have found no
significant violation of Mendelian transmission in these areas and
concluded autozygosity as the most likely cause for the majority of
ROHs observed.7,8

Previous studies have also investigated the population character-
istics of ROHs in healthy individuals9–11 and performed association
analyses to identify ROHs that are associated with complex diseases
and traits using a case–control study design.4,12,13 However, the
majority of these studies are conducted on European populations,
and only a few on Asian populations. This study aims to identify and
characterize ROHs in three Singapore populations, and to investigate
their relationship to linkage disequilibrium (LD), haplotype frequency
and positive selection.
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MATERIALS AND METHODS

Data
We use data from the Singapore Genome Variation Project (SGVP),14 where a

total of 292 DNA samples (consisting of 99 Chinese, 98 Malays and 95 Indians)

are genotyped using the Illumina Human 1 M Beadchip and the Affymetrix

Genome-Wide Human SNP Array 6.0. The characteristics of copy number

variations of these populations have been investigated and reported.15 The

Chinese, Indians and Malays in Singapore descended from immigrants from

neighboring countries such as China (mainly from southern provinces such as

Fujian and Guangdong), India (majority from south-eastern India), Indonesia

and Malaysia. The detailed information on the sources of DNA samples,

demographic data of the samples, sample selection, and the origin and

migration history of the three Singapore populations have been described in

previous publications.14,15 A total of 268 samples (consisting of 96 Chinese, 89

Malays and 83 Indians) are used in the subsequent analysis after removing

samples on the basis of high rates of SNP missingness (greater than 2%),

excessive heterozygosity or cryptic relatedness by excessive identity-by-states.

Population membership is ascertained on the basis that all four grandparents

belong to the same population, and samples that display either evidence of

admixture or clear evidence of discordance between self-reported and geneti-

cally inferred population membership are excluded.

SNP genotypes are obtained from the SGVP website (http://www.

nus-cme.org.sg/sgvp/). These SNPs have undergone a series of quality control

measures,14 including removing SNPs with SNP missingness X5% and P-value

o0.001 for a test of departure of Hardy–Weinberg Equilibrium (HWE),

resulting in B1.58 million SNPs per population remaining. Quality control

measures were conducted seperately for each of the populations.

Identification of individual-specific ROHs
Individual-specific ROHs are identified using the PennCNV algorithm16 for the

Illumina and Affymetrix arrays based on the log R ratio and B allele frequency

for each sample. The ROHs identified by PennCNV are copy neutral events,

meaning that one-copy deletions are excluded. We exclude regions o500 kb. To

further filter regions that may be called erroneously by PennCNV, we check the

SNPs genotypes for the number of heterozygous genotypes within the region.

Ideally, we would expect no heterozygous genotypes in the region, but we allow

for some heterozygosity that may be due to genotyping errors or other causes.

We investigate the effect of allowing some heterozygosity on the relationship

between ROH and LD. From a simulation (see Supplementary Methods,

‘Simulation’ section), we observe that ROH detection is very sensitive to

heterozygosity present either due to mutation or genotyping errors, whereas

the LD in the region is largely preserved despite the mutations introduced. By

not allowing any heterozygosity, we miss detecting older ROHs in many

individuals and this affects the formation of the common regions. So, to

capture the LD/haplotype structure using ROHs, it is important to allow a

small percentage of heterozygosity.

We use a binomial probability upper bound to calculate a confidence score

for each region (see Supplementary Methods, ‘Confidence scores

calculation’ section). The confidence score takes into account the amount of

heterozygosity, as well as the SNP density, and is an indication of how confident

we are that the ROH is true. In general, the confidence scores for regions

detected by the Affymetrix platform are lower than that detected by the

Illumina platform (see Supplementary Methods Figure S1). We decide to use

the Illumina platform with more than 1 million SNPs for ROHs detection but

still use the combined genotypes from 1.58 million SNPs from both platforms

in the calculation of confidence scores. Several summary statistics are computed

to describe and compare the characteristics of ROHs in the three Singapore

populations.

Identification of common ROHs
We identify common ROH loci using a previously published method.17

We define common loci as regions with consecutive probes where at least

5% of the subjects (that is, 13 subjects) have individual regions that overlap

with the probes. Occasionally, individual regions within a common locus can

show considerable variations in their boundaries, resulting in a heterogeneous

region. To refine the identified common loci, we form clusters of regions by

requiring all individual regions within a cluster to overlap by at least 80%. For

each common locus, individual regions are said to be concordant if it overlaps

with at least 80% of the length of the locus. Common loci with o2 concordant

individuals or o500 kb or having a SNP density o0.2 (SNP per kb) are

discarded. The common loci are further refined as the intersection of the

concordant regions. We perform population comparisons and test of departure

of HWE for each locus. For each set of tests, we account for multiple

comparisons using the false discovery rate,18 with results or discoveries

considered interesting at false discovery rate of o0.01.

Quantification of regional LD
The two most widely used measures to quantify the amount of LD

between two markers are the D¢ and r2 statistics.19 Here, instead of LD

between two markers, we are interested in the amount of LD in a region.

For all SNPs in a region, we calculate the pairwise D¢ (and r2). We perform

eigenvalue decomposition on the D¢ (r2) matrix and calculate the

percentage explained by the first eigenvalue (y). This percentage will take

values between 100/n and 100, where n is the number of (polymorphic) SNPs

in the region. To make the percentages comparable across regions with different

number of SNPs, we scale it such that the value varies between 0 and 1. So,

y*¼(y–100/n)/(100–100/n). The higher the value of y*, the stronger the LD in

the region.

Haplotypes in ROH loci
For each common locus, we use phased genotypes (using the program

fastPHASE version 1.3, see Supplementary Methods in Teo et al.14 for details

on the choice of parameters for phasing) to determine the different haplotypes

present in the three populations. To reduce the dimension of the data, we

consider only the top three most frequent haplotypes and combine the

others as ‘other haplotypes’, that is, we categorize each region into four alleles

(top three most common haplotypes and ‘other’ haplotypes). Each individual

has two alleles for each region. For convenience, we will refer to the alleles as A,

B, C and D.

Identification of regions with differential LD between populations
We use a previously published method, varLD,20,21 to identify regions with

differential LD between populations. Briefly, the method tests for equality

between two LD matrices for a user-defined window size, shifting each

window one SNP at a time. We calculate the varLD score for a window size

of 50 SNPs for the signed r2 matrices.21 For each pair of populations, a region is

considered to have differential LD if consecutive positions are above the 95th

percentile of the genome-wide varLD score. We restrict to regions 4500 kb for

comparison with ROHs. We exclude the region if it overlaps by 450% with

copy number variations previously reported for the same set of individuals,14 as

LD measures for regions that encapsulate copy number variations may not be

reliable.21

RESULTS

Summary statistics of individual ROHs
We discard regions whose confidence scores are below the 25th
percentile of the confidence scores. Table 1 summarizes the character-
istics of ROHs. On average, the Indian population has lower number
of ROHs compared with the Chinese and Malay populations. There is
wide inter-individual difference in the number of ROHs, which ranges
from 98 (sample 334_01 and 461_01) to 241 (sample 81_01). More
than 80% of the ROHs are o1 Mb in length. The largest ROH spans a
length of B68.5 Mb, and is detected in one Indian individual (sample
408_01) in Chromosome 3. A total of 32 ROHs larger than 10 Mb are
detected (Table 2). Interestingly, three Indian samples (397_01, 290_01
and 408_01) have five or more of these ‘extremely long’ ROHs.
Figure 1 plots the number of ROHs versus the total length of ROHs
in each individual. We see clusters of the three populations, indicating
that number and length of ROHs differ among populations. This
result was also observed by Kirin et al.22
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Summary statistics of common ROHs
We identify 1256 common ROH loci in all three populations (Sup-
plementary Table 1), where 90% of the loci overlap with UCSC genes
(http://genome.ucsc.edu/), and 292 (23%) overlap with genes listed in
the Online Mendalian Inheritance in Man Morbid Map (ftp://
ftp.ncbi.nih.gov/repository/OMIM/ARCHIVE/morbidmap). For each
locus, we test for differences among the three populations in terms of
ROH frequencies and haplotype frequencies, and 47 loci (o4%) differ
significantly in frequencies while 899 loci (69%) differ significantly in
haplotype frequencies among the populations. Approximately 52% of
the loci are detected in 45% (more common ROH loci) of indivi-
duals (Figure 2). Figure 3 shows the length distribution of the ROH
loci; B78% of the ROH loci are p1 Mb, and majority of the long
ROH loci (41Mb) are in the range of 1–2 Mb. The proportion of the
genome that is in the different ROH length categories differs among
the three populations (Figure 4). The Chinese and Malays have more
ROHs of shorter lengths compared with the Indians, while the Indians
have more ROHs in the longer length categories (44 Mb).

We compare the common loci we found to that published in
previous studies.10,23 Two regions are defined to overlap if the regions
have a reciprocal overlap of at least 50%. Nothnagel et al.’s study10

surveys ROHs in Europeans; we found that all 10 regions listed as
‘ROH islands’ (meaning they have a high population frequency) in
their study overlap with an ROH loci found in this study, suggesting

Table 1 Characteristics of ROHs in three Singapore populations

(using 1 029 591 SNPs from the Illumina 1 M platform)

Characteristics Chinese (n¼96) Malay (n¼89) Indian (n¼83)

Number of ROHs per individual

Mean 207 179 126

Median 206 178 127

Minimum 157 123 98

Maximum 241 228 173

Length of ROHs (in kb)

Mean 800.9 806.1 879.6

Median 670.5 672.8 666.3

Maximum 23230 21850 68500

Total length of ROHs per individual (in Mb)

Mean 166.1 144.6 111.2

Median 165.7 143.4 100.5

Minimum 115.4 90.49 73.91

Maximum 195.4 191.9 315.6

Size distribution of ROHs (proportion, %)

500kb–1 Mb 83.0 82.5 83.5

X1 Mb 17.0 17.5 16.5

Abbreviations: ROHs, regions of homozygosity; SNPs, single-nucleotide polymorphisms.

Table 2 ROHs larger than 10Mb

Chromosome Start End Length Sample Ethnicity

1 120 837 663 143 420 875 22583 213 108_01 Chinese

6 3 217 193 26449 280 23232 088 17_01 Chinese

16 34 034 376 45968 704 11934 329 131_01 Chinese

1 120 837 663 143 420 875 22583 213 218_01 Chinese

8 41 842 707 52102 021 1 025 9315 465_01 Malay

1 94 915 135 108 531 282 13616 148 174_01 Malay

11 19 924 676 41772 573 21847 898 174_01 Malay

1 67 073 684 90862 713 23789 030 290_01 Indian

3 175 758 479 190 839 635 15081 157 290_01 Indian

4 41 334 756 55223 410 13888 655 290_01 Indian

6 112 768 454 147 227 544 34459 091 290_01 Indian

11 86 911 515 131 748 067 44836 553 290_01 Indian

14 71 970 357 88634 741 16664 385 290_01 Indian

17 152 362 10559 477 10407 116 290_01 Indian

3 102 253 981 170 758 820 68504 840 408_01 Indian

6 79 661 14549 208 14469 548 408_01 Indian

6 121 892 269 132 743 942 10851 674 408_01 Indian

13 52 267 631 77893 750 25626 120 408_01 Indian

13 78 497 109 94452 168 15955 060 408_01 Indian

22 37 722 142 49582 267 11860 126 408_01 Indian

13 74 778 668 100 318 094 25539 427 367_01 Indian

3 158 294 635 169 108 914 10814 280 361_01 Indian

6 90 065 419 106 409 967 16344 549 397_01 Indian

7 28 668 234 43132 968 14464 735 397_01 Indian

7 80 118 053 105 839 742 25721 690 397_01 Indian

8 590 729 10908 015 10317 287 397_01 Indian

9 33 415 385 45059 163 11643 779 397_01 Indian

9 66 448 030 100 731 809 34283 780 397_01 Indian

10 121 636 24722 946 24601 311 397_01 Indian

15 63 308 076 73720 143 10412 068 397_01 Indian

7 9 983 924 21830 396 11846 473 76_01 Indian

13 47 337 000 72862 520 25525 521 76_01 Indian

Abbreviations: ROHs, regions of homozygosity.
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that these regions are not specific to Europeans (see Supplementary
Methods Table S1). The population frequencies of these ROHs in our
populations differ from that reported in Nothnagel et al.’s study,10 but
formal testing is inappropriate as the methods used to calculate the
frequencies are different.

Auton et al.’s study23 surveys ROHs in Mexicans, Europeans, East
Asians and South Asians; we found that out of 34 high-frequency
ROHs (defined as being found in at least 10% of individuals within
a population) 11 overlap with an ROH locus found in our study
(see Supplementary Methods Table S2). All the regions that overlap
are found in the East Asian population, except for one region in
Chromosome 4, which is present in all populations. The frequencies of
these ROHs are, however, quite low in our population (1–4%).

Association with haplotype frequency and regional LD
Figure 5 shows that the frequency of an ROH is positively associated
with the total frequency of the top three haplotypes (correlation of
0.69), and Figure 6 shows that as the frequency of an ROH increases,

so does y�D¢ and y�r2 (figure is shown for the Malay population,
similar figures for the Chinese and Indians are shown in Supplemen-
tary Methods Figures S2 and S3). If we assume random mating, the
homozygosity of any region will be high when there are few haplotypes
present at high frequency, thus it reinforces autozygosity as the
mechanism for the occurrence of an ROH. These empirical results
suggest that there is positive correlation between the frequency of an
ROH and the frequency of the common haplotypes, and also between
the frequency of an ROH and LD in the region.

Frequency of ROHs and frequency of haplotypes within ROHs
To assess if there is a difference in the location and frequency of ROHs
among the populations, we perform principal component analysis
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(PCA) using absence/presence of the common ROH loci. For each
individual, we check if that individual has an ROH that is concordant
with the common ROH. We can view the matrix input for the PCA
analysis as a matrix of 1’s and 0’s where each row corresponds to an
individual and each column corresponds to a common loci, so that
the (i, j) entry indicates whether individual i has a concordant ROH at
locus j. From Figure 7, we see that the Indians are quite well separated
from the Chinese and Malays, and that there is some separation
between the Chinese and Malays. This implies that the location and
frequency of occurrence of ROHs differ among populations.

However, interestingly, populations can share the same (or similar)
ROH location, but the common haplotypes driving the ROH can be
markedly disparate. One example is a 700-kb ROH in Chromosome
16 (location 30,438,046–31,137,964) that overlaps with the Vitamin K
epoxide reductase complex subunit 1 (VKORC1) gene (location
31,009,956–31,013,551). Genetic polymorphisms within the gene
have been found to correlate with differences in warfarin dosage
and response in many studies.24–26 In the Singapore populations,
the Indians were observed to display warfarin resistance, thus requir-
ing a higher dose as compared with the Chinese and Malays.26–29

There is no significant difference in ROH frequencies among the
populations (ROH frequencies of 21, 13 and 20% for the Chinese,
Malays and Indians, respectively). However, if we examine the

haplotypes in this region, there is significant difference. Fisher’s
exact test performed on the frequencies of the top three most frequent
haplotypes results in a P-value o10–6. In particular, the difference in
haplotype frequencies of the Indians differs markedly from the
Chinese and Malays. This is highlighted in Table 3, where haplotype
A dominates in the Chinese and Malays but is almost absent in the
Indians, while haplotype B dominates in the Indians but is almost
absent in the Chinese and Malays. Haplotypes A and B differ at 104
locations out of the 158 SNPs in this region.

We also perform PCA on the allele counts of the haplotypes as
described in the section ‘Haplotypes in ROH loci’. The first two
components separates the Indians from the Chinese and Malays while
the third component further separates the Chinese from the Malays
(see Figure 8). This suggests that ROH loci contain much genetic
ancestral haplotype information of a population.

Testing departure from HWE
Using the estimated frequencies of the top three haplotypes, we are
able to calculate the expected frequencies of the corresponding
genotypes. For the observed frequencies, we use the unphased geno-
types. For each individual, we can identify the haplotypes without
phase information when all the SNPs in the region are homozygous
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(removing SNPs where we had allowed heterozygosity in the detection
of ROH). With that, we are able to obtain observed frequencies for the
(A, A), (B, B) and (C, C) genotypes. We use the w2 test with three
degrees of freedom to test if there is departure of the observed from
the expected. A large majority of ROH loci (492%) adhere to HWE,
suggesting that assumptions of autozygosity and random mating are
true for most ROH loci. Of the regions that show departure from
HWE (false discovery rate o0.01), majority show excess homozygos-
ity than would be expected. The reasons for departure from HWE are
not immediately clear, and could be due to various reasons such as
positive selection (see section ‘Comparison with regions associated
with positive selection’) or nonrandom mating.

Comparison with varLD
As described in the section ‘Identification of regions with differential
LD between populations’, we identify 16, 10 and 13 regions with
differential LD variation between the Chinese and Indian populations,
Malay and Indian populations, and Chinese and Malay populations,
respectively. Of the 16 regions, 14 overlap with a common ROH and
10 out of 14 show significant differences in haplotype frequency
between the Chinese and Indian populations. Of the 10 regions, 7
overlap with a common ROH and 7 out of 7 show significant
differences in haplotype frequency between the Malay and Indian
populations. Of the 13 regions, 8 overlap with a common ROH and 8
out of 8 show significant differences in haplotype frequency between
the Chinese and Malay populations.

We observe that the majority of regions (74%) that show LD
differences between populations correspond to regions where ROHs
are observed, and furthermore, the haplotype frequencies in these
regions differ between the populations. These results indicate that
ROH patterns explain a large proportion of LD variations.

Comparison with regions associated with positive selection
We investigate if the regions detected for recent positive natural
selection overlap with ROHs. We consider the top 10 candidate
regions for recent positive selection in each of the populations, as
published in a previous study.14 These regions were detected based on
the clustering of SNPs with high integrated haplotype score.30 Out of
the 30 regions considered, 28 regions overlap with a common ROH
defined in this study, with 20 regions completely within an ROH and
the other 8 regions with a high percentage of overlap (at least 60%).
This suggests the occurrence of ROHs as a possible consequence of
positive selection, where the positively selected haplotypes rise to a
high frequency, resulting in a high possibility of ROHs due to
autozygosity.

Out of the 28 regions, 10 of them overlap with an ROH that failed
HWE. Performing Fisher’s exact test on a 2 by 2 table with indicators
for departure from HWE and indicators for positive selected regions
as rows and columns, we obtain an odds ratio of 1.89 (P-value¼0.05).
The departure from HWE may be a consequence of positive selection.
An ROH that has a higher frequency than would be expected for its
length may also be an evidence of positive selection (see Supplemen-
tary Methods Figure S8).

Effect of heterozygosity on the relationship between ROH and LD
When we filter the individual regions using a stricter confidence
threshold of the 75th percentile (that is, allowing less heterozygosity),
we identify 414 common regions, but the relationship of these regions
with haplotype frequency, regional LD and positive selection is weak
(see Supplementary Methods Figures S4 and S5 and section Compar-
ison with VarLD (results based on these 414 common regions)). We
also see poorer separation of the populations by PCA, but this is likely
due to the fewer number of common regions identified. At the 25th
percentile threshold, the percentage of heterozygosity is still kept low
at o5% for a large majority of the regions (See Supplementary
Methods Figure S9). With an overly strict confidence score threshold,
many regions are omitted and this decreases the number of common
regions formed from 1256 to 414. Allowing for some heterozygosity
within the regions allows detection of older ROH loci (heterozygosity
caused by recent recombination or mutation), which have a stronger
relationship with LD and positive selection (see Simulation section in
Supplementary Methods).

DISCUSSION

In summary, this study identifies and investigates the population
characteristics of ROHs in three Singapore populations, Chinese,
Malay and Indian. We report an abundance of ROHs, with an average
of 4100 ROHs per individual. On average, the Indians have lower
numbers and total length of ROHs per individual than the Chinese
and Malays, possibly indicative of a larger founder population.
However, there are several Indians with multiple large ROHs, suggest-
ing that they may be offsprings of parents who are close relatives. In
India, consanguineous marriages are more prevalent in the South,
especially in Tamil Nadu, from where many Singapore Indians
descended. From the Consanguinity/Endogamy Resource (http://
www.consang.net/index.php/Main_Page), data from a 1982 study
have shown the prevalence of consanguineous marriages among
Singapore Indians to be 4% compared with only 0.3% in Singapore
Chinese. Published data have shown that the number of ROHs of
several megabases increase markedly in the offsprings of consangui-
neous marriages,3,24 with an average of 6.25% homozygosity expected
in the genome of the offsprings of first cousin marriages.7 Li et al.3

have shown that in a family with four children from first cousin

Table 3 Haplotype frequencies of three populations in a ROH in

Chromosome 16 that overlaps with VKORC1

Haplotype A Haplotype B Haplotype C

Chinese 0.31 0.0052 0.099

Malay 0.28 0.045 0.10

Indian 0.0060 0.34 0

Abbreviation: ROH, region of homozygosity.
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marriages, multiple ROHs ranging from 3.06 to 53.17 Mb were
observed in all the children. Woods et al.24 have also shown a marked
increase in homozygosity levels in individuals with a recessive disease
whose parents were first cousins, where, on average, 11% of their
genomes were homozygous.

In addition, we identify 1256 common ROH loci, and investigate
the occurrence of ROHs and haplotype frequency, regional LD and
positive selection. Based on the results for this data set, we find that
the frequency of occurrence of ROHs is positively associated with
haplotype frequency and regional LD. The preferential occurrence of
ROHs in regions of high LD and low recombination has also been
observed in other studies.10 The majority of regions detected for recent
positive selection and regions with differential LD between popula-
tions overlap with ROH loci. By considering both the location of the
ROH and the allelic form of the ROH, we are able to separate the
populations by PCA, demonstrating that ROHs contain information
on population structure and the evolutionary and demographic
history of a population.

The ability of genome-wide SNP markers for population structure
analysis has been widely acknowledged. Here, we are not proposing
the superiority of ROHs in population structure analysis. It is expected
that using genome-wide SNP data allows very good separation of
populations through PCA because of the amount of information it
contains (see 14 for PCA analysis using SNPs on the same population
samples). In this paper, we have shown that it is possible to distinguish
populations using just B1000 segments of the genome. Compara-
tively, if we were to choose 1000 random segments of the genome and
perform a similar analysis, we would not obtain as good a separation
as with ROHs (see Supplementary methods Figure S7). The unique
characteristics of ROHs allow us to study common haplotypes
conveniently; it is complementary to SNP-based analysis. In SNP-
based analysis, we simply compare SNP-level frequencies between
populations but in ROH-based analysis, we are able to capture
differences in LD or haplotype structures.

Majority of the ROH loci overlap with known genes but their
association with complex phenotypes is still rudimentary. This war-
rants further characterization of ROHs in different populations,
investigation of their roles in the genetics of complex phenotypes
and further studies of population evolutionary genetics. These future
studies will be of importance given the abundance of ROHs in the
human genome and the differences of ROHs between populations.

A sufficiently large number of SNPs is required to accurately detect
ROHs.1,2 To this end, we have used two highly dense SNP arrays
(Illumina 1 M and Affymetrix 6.0) with 41.58 million unique SNPs.
Using a confidence score metric that takes into account percentage of
heterozygosity as well as the number of SNPs in the region, we discard
individual regions whose confidence scores are below the 25th
percentile of the confidence scores. We use the PennCNV algorithm
that relies on signal intensity data to detect putative ROHs. We then
filter out false positives by checking SNP genotypes within the ROH.
To our knowledge, most studies on ROHs use only SNP genotypes,
but this approach may produce false positives caused by hemizygous
deletions. On the other hand, due to the noise in signal intensity data,
the regions called by PennCNV could also result in false-positive
regions. We feel it is important to use a combination of the methods
(that is, signal intensity data and genotype data) to minimize false-
positive rates.

We also use PLINK, a widely used software for ROH detection, on
genotypes from both platforms using the following parameters: 500 kb
window with two heterozygous SNPs allowed, minimum length of
500 kb, 50 SNPs as minimum number of SNPs and minimum density

of 1 SNP per 10 kb. We find that 75% of the regions found by
PennCNV are detected by PLINK, suggesting that the results of the
analysis will likely give similar conclusions using PLINK. A formal and
systematic comparison of multiple algorithms for ROH detection will
be interesting.

Potential biases in the detection of ROHs include false-negative
regions due to ascertainment bias in SNP selection for the SNP
arrays and false-positive regions due to the lack of minor allele
frequency (MAF) criterion applied before the identification of
ROHs. With regards to the former, SNPs from genotyping platforms
are mostly tagged SNPs from the HapMap project, so populations
that were not analyzed in the HapMap project will have less chance
of their population-specific SNPs being included in the array.
However, both the Illumina 1 M and Affymetrix 6.0 arrays have a
high marker density and uniformity. With regards to the later, we
do not expect our results to be affected considerably by not filtering
SNPs with low MAF, for several reasons. First, we have very dense
SNP genotyping data of 41.58 million SNPs, and as an ROH is
defined as a region of consecutive homozygosity of 4500 kb, it is
unlikely that there exists a large number of consecutive low-MAF
SNPs that cause a false-positive identification. In any case, these
monomorphic/near monomorphic SNPs are uninformative and
would not affect the haplotype analyses. It is of concern if the region
is detected because the monomorphic/low-MAF SNPs are genotyped,
whereas other SNPs present in the region are missed (due to
ascertainment bias). However, as ROH detection is not reliant on a
single SNP, but on many consecutive homozygous SNPs in a 500 kb
region, we do not expect either issue to be of serious concern.

Some studies23 have adopted the strategy of removing SNPs in high
LD before defining an ROH (that is, thinning the data set but
requiring a lower number of SNPs for the definition of ROH).
However, we found poor correlation between the frequency of the
ROHs we identified and the mean or median pairwise D¢ or r2

statistics (for SNPs within the ROH, up to 250 kb apart, see Supple-
mentary Methods Figure S6), meaning that a SNP being in high LD in
the vicinity is not sufficient for its inclusion in an ROH, and a SNP in
low LD is not sufficient for its exclusion in an ROH.

In conclusion, our study is one of the first to describe the
population characteristics of ROHs in the three Singapore populations
(Chinese, Malay and Indian). Our results are in support that
ROHs contain population demographic and ancestral haplotype
information.
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REVIEW

The discovery of human genetic variations and their
use as disease markers: past, present and future

Chee Seng Ku1, En Yun Loy1, Agus Salim1, Yudi Pawitan2 and Kee Seng Chia1,2

The field of human genetic variations has progressed rapidly over the past few years. It has added much information and deepened

our knowledge and understanding of the diversity of genetic variations in the human genome. This significant progress has been

driven mainly by the developments of microarray and next generation sequencing technologies. The array-based methods have been

widely used for large-scale copy number variation (CNV) detection in the human genome. The arrival of next generation sequencing

technologies, which enabled the completion of several whole genome resequencing studies, has also resulted in a massive discovery

of genetic variations. These studies have identified several hundred thousand short indels and a total of thousands of CNVs and

other structural variations in the human genome. The discovery of these ‘newer’ types of genetic variations, indels, CNVs and copy

neutral variations (inversions and translocations) has also widened the scope of genetic markers in human genetic and disease

gene mapping studies. The aim of this review article is to summarize the latest developments in the discovery of human genetic

variations and address the issue of inadequate coverage of genetic variations in the current genome-wide association studies,

which mainly focuses on common SNPs. Finally, we also discuss the future directions in the field and their impacts on next

generation genome-wide association studies.

Journal of Human Genetics (2010) 55, 403–415; doi:10.1038/jhg.2010.55; published online 20 May 2010

Keywords: copy number variations; genome-wide association studies; human genetic variations; indels; loss of heterozygosity;
restriction fragment length polymorphisms; single nucleotide polymorphisms; tandem repeats

INTRODUCTION

Human genetic variations are the differences in DNA sequence within
the genome of individuals in populations. Genetic variations in the
human genome can take many forms, including single nucleotide
changes or substitutions; tandem repeats; insertions and deletions
(indels); additions or deletions that change the copies number of a
larger segment of DNA sequence; that is, copy number variations
(CNVs); other chromosomal rearrangements such as inversions and
translocations (also known as copy neutral variations); and copy neutral
loss of heterozygosity (LOH) or homozygosity. These genetic variations
span a spectrum of sizes from single nucleotides to megabases. Single
nucleotide substitutions or alterations, as implied in the terminology,
involve a change in a single nucleotide at a particular locus in the DNA
sequence, such as restriction fragment length polymorphisms (RFLPs),
single nucleotide polymorphisms (SNPs) and single nucleotide indels.
On the other extreme, CNVs, inversions, translocations and LOHs
encompass larger segments of DNA sequences that range from kilobases
to megabases (41 kb), whereas tandem repeats and indels fall in
between the extremes (from 41 bp to 1 kb).

In general, these genetic variations take place naturally in the
human genome, and they are the footprints of errors or mistakes
that occur in DNA replication during cell division, although external

agents, such as viruses and chemical mutagens, can also induce
changes in the DNA sequence. The occurrence of each type of genetic
variation is mediated by different mechanisms; nonetheless, most of
these molecular events or processes are currently unclear and are still
being investigated. For example, several mechanisms have been
proposed to explain the widespread occurrence of CNVs in the
human genome, such as nonallelic homologous recombination and
nonhomologous end joining.1 However, for copy neutral LOHs, the
homozygosity could have resulted from uniparental isodisomy and
autozygosity.2 Regardless of the molecular mechanisms or processes
that generated the genetic variations, they can be broadly classified as
either somatic or germline variations depending on whether they arose
from mitosis or meiosis, respectively.

The field of human genetic variations has advanced considerably
over the past five years. It has added much information and deepened
our knowledge and understanding of the complexity and diversity of
genetic variations in the human genome. In addition to the physical
mapping of different types of genetic variations, such as RFLPs in the
1980s,3 tandem repeats in the 1990s,4 and SNPs,5,6 indels,7 CNVs8–10

and LOHs2 after the new millennium, the data of their biological
functional roles; for example, their effects on or associations with
mRNA expression levels, alternative splicing processes and other
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molecular and regulatory processes have also been accumulating.11–14

Furthermore, these genetic variations were also found to be associated
with various human diseases, including monogenic and complex
diseases.14–22

Presently, research in genetic variations is drawing much attention
and effort from the genetics community, as evident from the initiation
of the 1000 Genomes Project, which has a major aim to construct the
most detailed map of genetic variations in the human genome.23,24

The non-SNP genetic variations certainly have the potential of
becoming the next generation genetic markers in human genetic
and disease gene mapping studies. The ‘disease gene mapping’ refers
to mapping of genetic loci which may or may not contain genes that
are associated with diseases. This review will focus on the discovery of
different types of genetic variations and their use as genetic markers in
disease gene mapping studies in the past, present and future.

CATEGORIES OF GENETIC VARIATIONS

There are issues and problems in categorizing genetic variations into
distinct groups, and a clear consensus in defining genetic variations
has not been achieved. As a result, the distinction for some of the
genetic variations is rather vague at this time. Although SNPs are
defined as single nucleotide substitutions, sometimes single nucleotide
insertions or deletions also fall under this category (Figure 1a).
In general, point mutations include both single nucleotide substitu-
tions and single nucleotide indels, although they are only classified as
such when their population frequencies are less than 1%. This is
different from polymorphisms, terminology of which is reserved for
those genetic variations with population frequencies higher than the
arbitrary cutoff of 1% similar to SNPs.

Tandem repeats can be broadly divided into two classes: short
tandem repeats (STRs) usually refer to tandem repeats in which the

Single nucleotide substitution of G>A
CCG TA(A)CAA GGA

Single nucleotide deletion of G
CCG TA(-)CAA GGA

Short tandem repeats
CCG TAG (TAG) (TAG) (TAG) CAA GGA

OR
CCG (TAG)n CAA GGA (n = number of repeats)

Insertion of a 6-nucleotide sequence (ATA CCA)
CCG TAG (ATA CCA) CAA GGA

Reference DNA sequence
CCG TAG CAA GGA

Deletion of a 6-nucleotide sequence (TAG CAA)
CCG (-) GGA

Reference DNA sequence
CCG TAGCAA GGA

Single nucleotide changes
A schematic illustration of

(I) single nucleotide polymorphism or
or single nucleotide substitution
(II) single nucleotide insertion
(III) single nucleotide deletion

Tandem repeats
A schematic illustration of
(I) short tandem repeats
(II) variable number of

tandem repeats

Reference DNA sequence
CCG TAG CAA GGA

Short indels
A schematic illustration of

(I) insertion
(II) deletion

Single nucleotide insertion of T
CCG TAG(T)CAA GGA

A schematic illustration of structural variations
(I) copy number variations (deletion, duplication)

(II) copy neutral variations (inversion, translocation)

A B C D EReference sequence (segment =>1kb)

Deletion (segment B was deleted)

Duplication (segment C was duplicated)

A C D E

A B C D EC

Inversion (segment D was inverted) A B C D E

Reciprocal translocation

A B

B A

Variable number of tandem repeats
CCG (TAGCAAGGA) (TAGCAAGGA)

(TAGCAAGGA)
OR

CCG (TAGCAAGGA)n (n = number of repeats)

Figure 1 A schematic illustration of (a) single nucleotide changes; (b) tandem repeats; (c) short indels; (d) structural variations.
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sequence length is eight nucleotides or less, and longer tandem repeats
are labeled as variable number tandem repeats (VNTRs; Figure 1b).
They are also known as microsatellites and minisatellites, respectively.
As such, it is apparent that the distinction between the two classes is
solely based on the length of the repeated sequence, but it is only an
arbitrary cutoff. The most common types of microsatellites are di-, tri-
and tetra-nucleotide repeats. However, repeats of identical nucleotide
of several bases or longer in the length; that is, consecutive identical
nucleotides in the DNA sequence are known as homopolymer
sequences; for example, GGGGG or AAAAA. Although the sequence
in the tandem repeats is simple compared with other more complex
DNA sequence changes or rearrangements, these simple sequences can
be repeated from tens to hundreds of times, thus creating a high
heterozygosity or allelic diversity.25,26

The boundary or distinction between CNVs and indels is even more
obscure. In the Database of Genomic Variants (DGV; http://projects.t-
cag.ca/variation/), deletions and duplications/insertions larger than
1 kb are classified as ‘CNVs’, whereas those between 100 bp to 1 kb are
grouped as ‘InDels’. As such, the remaining several hundred thousands
of indels in the range of several nucleotides to tens of nucleotides,
which were identified in the recent whole genome resequencing
experiments, do not currently have their own category.27–33 For
example, Wang et al. (2008)29 found B140 000 indels within 1–3 bp
in the Han Chinese YH genome, and B400 000 indels defined from 1
to 16 bp were also detected in the African NA18507 genome by Bentley
et al. (2008).30 Perhaps a new category such as ‘short indels’ needs to
be created to fit them in, and those indels between 100 bp to 1 kb
should probably be renamed as ‘intermediate indels’ (Figures 1c and d).
Similar to SNPs, common CNVs with population frequencies of 1%
or higher are known as copy number polymorphisms. However, in
some studies, CNVs that are detected in two or more individuals are
also considered as copy number polymorphisms.9

However, apart from single nucleotide changes, such as SNPs, all
the genetic variations can be broadly grouped under the umbrella of
structural variations.34 It is even more confusing when a variety of
names are used to describe essentially the same genetic variation. For
example, large-scale copy number variants and intermediate-sized
variants have been used to describe CNVs before this terminology
was introduced.35 Some comparative genomic hybridization array-
based studies used chromosomal gains and losses to indicate duplica-
tions and deletions, respectively.36 Despite the various categories of
genetic variations and terminologies that have been used, it is
noteworthy that the definitions or sizes are rather arbitrary. Further-
more, classifications are without biological basis; that is, they are
not classified by the mechanisms that mediated their occurrences.
Instead, the classification is simply based on the patterns of DNA
sequence changes and their sizes. As such, it is more important to
describe the characteristics of the genetic variations that are being
discovered and identified, rather than be concerned about their
respective categories.

THE EVOLUTION OF GENETIC MARKERS IN DISEASE GENE

MAPPING

Genetic variations in the human genome are useful as genetic markers
for many applications in different areas, such as forensic investigations
(for example, genetic or DNA fingerprinting), routine clinical tests
(for example, human leucocyte antigen typing for hematopoietic stem
cell or organ transplantation), prediction of drug responses or the
tailoring of prescription doses (for example, genotyping tests for the
SNPs in the thiopurine methyltransferase (TPMT) gene to predict
patient responses to 6-mercaptopurine) and population genetics

studies (for example, studies of human migration patterns).37–40

Furthermore, they have also been widely used as genetic markers in
disease gene mapping, such as family linkage and genetic association
studies to identify the susceptibility loci or genes for monogenic and
complex diseases.

Different genetic variations have different characteristics, and their
applications are influenced by a number of factors. Tandem repeats
such as minisatellites and microsatellites are highly variable or poly-
morphic in human populations, as such, they have higher allelic states
and are more informative than the biallelic genetic markers, such as
SNPs. Unlike SNPs in which a single nucleotide substitution will only
give rise to two alleles, each repeat in minisatellites and microsatellites
is considered as one allelic state. The genetic variations that occur in
more than two allelic states are known as multiallelic markers. Owing
to their inherent features, tandem repeats have been widely used in
genetic fingerprinting and as the genetic markers in linkage studies to
locate the chromosomal regions harboring the mutations or genes for
monogenic or familial disorders, complex diseases and quantitative
traits.41–44 Although tandem repeats are more informative than SNPs
at the individual marker level, their number is far less than the several
million SNPs in the human genome. Thus, tandem repeats are not
ideal genetic markers for applications that require high marker density
or resolution, such as genome-wide association studies (GWASs), in
which several hundred thousand of SNPs are needed. In GWAS, a
large number of genetic markers are required spanning the whole
genome, to achieve comprehensive coverage and adequate statistical
power to detect unknown disease variants through linkage disequili-
brium (LD).45,46 In other words, the disease variants would not be
detected if no markers in strong LD with them were genotyped.

Apart from the inherent characteristics of genetic variations such as
their allelic diversity and abundance in the human genome, their
applications are also influenced by technological developments. The
rapid advances of high-throughput SNPs genotyping technologies
have enabled the genotyping task of several hundreds of thousands
to one million SNPs to be done efficiently on thousands of samples in
GWAS. On the contrary, no high-throughput method was developed
to assay microsatellites on a whole genome scale.47–49 This technolo-
gical development, together with their abundance in the human
genome, have resulted in SNPs becoming the primary genetic markers
used in more than 450 GWAS that have been published to date
(A Catalog of Published Genome-Wide Association Studies: http://
www.genome.gov/26525384). In fact, almost all the GWAS have used
the commercially available whole genome SNPs genotyping arrays
from Illumina (San Diego, CA, USA), Affymetrix (Santa Clara, CA,
USA).

In the past, researchers had relied solely on RFLPs and tandem
repeats as the genetic markers in disease gene mapping studies. The
RFLPs were used in linkage studies before the discovery of tandem
repeats. Since the availability of the linkage map for microsatellites,
RFLPs were mainly used as the genetic markers in candidate gene
association studies, in which PCR–RFLP genotyping assay was com-
monly applied. However, microsatellites were widely used as the
genetic markers in linkage studies.41–44 These genetic variations have
been used as the markers in human genetic studies for more than 20
years until the completion of the Human Genome Project 50 and the
finding of millions of SNPs by the International SNP Map Working
Group and other studies.5,6 Thereafter, SNPs became the primary
markers in genetic association studies, and also replaced microsatel-
lites in some linkage studies.

Although SNPs have been studied in detail over the past decade, a
comparable progress in the studies of other genetic variations, such as
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indels, CNVs and LOHs has not been achieved. In fact, CNVs had only
started gaining some attention from the genetics community when the
finding of several hundreds of deletions and duplications was first
reported in 2004.51,52 Similarly, no large-scale attempt was made to
identify indels until 2006, in which a study found several hundreds of
thousands of indels in the human genome.7 The commonness of
LOHs or homozygosity regions in the genomes of outbred popula-
tions was also under appreciated until the first report appeared in
2006.2 However, the richness of genetic variations in the human
genome has recently been further corroborated by the several whole
genome resequencing studies, revealing plenty of new SNPs, indels,
CNVs and other structural variations.27–33 The technological devel-
opments have facilitated and accelerated the process of identifying
genetic variations, especially with the arrival of next generation
sequencing technologies, which have made whole genome resequen-
cing and the 1000 Genomes Project feasible.53–55

In recent years, many studies have been done to directly examine
the associations of CNVs with complex diseases using SNP genotyping
arrays. These studies have yielded some exciting results for several
diseases, such as schizophrenia and autism.56–58 Therefore, it further
supports the use of CNVs as genetic markers to uncover new
susceptibility loci for future disease association studies. Interestingly,
genome-wide homozygosity mapping approaches have also been
applied to dissect the genetic basis of complex diseases and have
successfully identified a number of susceptibility loci for schizophre-
nia.22 Conversely, short indels have not been directly interrogated in
GWAS, but how much they can be tagged indirectly through LD by
the SNPs in genotyping arrays is unclear. Unlike CNVs and homo-
zygosity mapping, which can be studied by SNPs genotyping arrays,
no high-throughput method has been designed and developed to
investigate short indels on a genome-wide scale. Direct detection and
interrogation of short indels requires sequencing-based methods as
demonstrated in the whole genome resequencing studies. As a result
they cannot be used effectively as genetic markers in GWAS at
the time.

In the following sections, we will discuss the genetic variations and
markers in the past (RFLPs and tandem repeats), present (SNPs) and
future (CNVs, indels, inversions, translocations and LOHs). The use
of ‘past, present and future’ genetic variations is only a ‘time concept’,
to illustrate the time of their discoveries and the time when they are
most commonly used as genetic markers. For example, RFLPs and
tandem repeats were mainly discovered in 1980s and 1990s, so they are
considered as the past genetic variations or markers, but this does not
mean that they are totally obsolete nowadays or that they are no
longer used in human genetic studies. However, although the com-
monness of CNVs, indels and LOHs in the human genome have
already been reported several years ago, they are considered as future
genetic variations or markers because they have yet to be ‘intensively
and completely’ studied or discovered in the human genome. In
addition, so far these newer genetic variations have not been widely
used as markers in disease gene mapping.

PAST

Restriction fragment length polymorphisms
The RFLPs are single nucleotide substitutions that alter the cutting
sites of restriction enzymes. They were one of the earliest genetic
markers used in disease gene mapping. The genetic linkage
map of RFLPs was constructed in the 1980s.59 The use of RFLPs
as genetic markers is based on their ability to create or eliminate
the cutting sites of restriction enzymes to distinguish between
two alleles. With the invention of the molecular technique PCR,

alleles of RFLPs are usually determined by PCR-based methods,
such as PCR–RFLP.

In PCR–RFLP assay, one set of probes or PCR primers (forward and
reverse primers) are designed to amplify the DNA sequence that
contains the RFLP. The PCR amplicons are then followed by restric-
tion enzyme digestion and gel electrophoresis to separate the digestion
products. As an example to illustrate the principle of the PCR–RFLP
method, the PCR amplicons of G allele will be cut by the restriction
enzyme but not for the C allele (a G4C substitution), assuming that
there is only one cutting site in the PCR amplicon. Therefore, if all the
PCR amplicons remain intact after restriction enzyme digestion
(appearing as a single band in gel electrophoresis), this result shows
the presence of two C alleles and the genotype is the homozygote CC.
Conversely, all the PCR amplicons will be digested by the restriction
enzyme for the homozygous GG genotype (two bands in gel electro-
phoresis for which the sizes are smaller than the PCR amplicon size),
and a mixture of three bands suggests the presence of both alleles
(Figure 2).

One of the major limitations of using RFLPs as genetic markers is
that single nucleotide alterations do not necessarily alter the cutting
sites of restriction enzymes. In other words, those single nucleotide
substitutions that are not digested by restriction enzymes cannot be
studied by PCR–RFLP method. As a result, their numbers are limited.
Furthermore, PCR–RFLP is a tedious, laborious and low-throughput
genotyping method. Nevertheless, PCR–RFLP has still been widely
used in disease gene mapping studies at least before the arrival and
feasibility of SNPs genotyping arrays or other higher throughput
genotyping methods, such as MassARRAY iPLEX, Invader and SNPlex
genotyping assays.60–62 As RFLPs are single nucleotide substitutions,
thus they are actually a subset of SNPs.

Tandem repeats
In addition to RFLPs, the earliest genetic markers also included
tandem repeats. The more widespread distribution of microsatellites
(4100 000) in the human genome and their higher allelic diversity
than RFLPs have made them to be commonly used as the genetic
markers in linkage studies for monogenic disorders and complex
diseases. Similarly, microsatellite also out-performed VNTRs in terms
of their numbers, where there are only a few thousand VNTRs in the
human genome.26 The availability of the genetic linkage map of
microsatellites has resulted in the immense success of linkage studies
in identifying genes for monogenic disorders.4 In contrast, only
limited success was achieved in dissecting the genetic basis of complex
disease using linkage analysis. For complex diseases, the linkage
regions identified were mostly irreproducible and inconsistent, and
so far, only a handful disease associated genes, such as CARD15/NOD2
(Crohn’s disease), PTPN22 (type-1 diabetes), TCF7L2 (type-2 dia-
betes) and STAT4 (rheumatoid arthritis and systematic lupus erythe-
matosus), were identified through linkage and positional cloning
strategies.63–66

The failure of linkage studies in interrogating the genetic basis of
complex diseases is not due to the inappropriateness of the genetic
markers (microsatellites) used to locate the genomic regions that
harbor the disease genes, but is instead attributable to the study
design. Linkage mapping is a powerful and effective approach to
detect rare and highly penetrant mutations, and is best suited for
diseases that segregate according to Mendelian inheritance. In con-
trast, complex diseases are characterized by genetic heterogeneity
(multiple genetic variants with incomplete penetrance), and the
phenotypes are consequences of complex interactions of genetic
factors and environmental exposures.67
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The arrival of high-throughput SNP genotyping technologies and
the ease of genotyping thousands of SNPs in a microarray have also
replaced the use of microsatellites in some linkage studies.68–71 In
classical family linkage studies, a few hundred microsatellites are
already sufficient to cover the whole genome. However, this number
can be substituted by about 10 000 SNPs to provide a comparable or
even greater amount of genetic information.72,73 The need for a
significantly larger number of SNPs is because of their lower hetero-
zygosity as opposed to multiallelic genetic markers. Although micro-
satellite is more informative at the individual marker level, this can be
superseded by a large number of SNPs.

Undoubtedly, microsatellites have been widely used in genome-
wide linkage studies, but not in GWAS for complex diseases. Hitherto,
there are only a few studies that have genotyped microsatellites in
GWAS, and they have adopted a pooling strategy of DNA samples to
reduce the amount of genotyping work.74,75 This is mainly due to the
need of genotyping a substantially larger number of microsatellites in
GWAS (B20 000–30 000 markers) compared with linkage studies
(B500 markers). The need for a larger number of microsatellites in
GWAS is due to the weaker LD in unrelated individuals, as compared
with family members in which there are only a limited number of
recombination events. In addition, a larger sample size is also needed
in GWAS to achieve adequate statistical power to detect genetic
variants with modest effect sizes for complex diseases. Finally, there
is a lack of high-throughput methods to assay microsatellites, and this
is one of the major reasons that microsatellites have decreased in
popularity in the SNP era. However, evidence is now increasing to
support the potential functional roles of tandem repeats (tri-nucleo-
tide repeats) and their variation could be associated with human
complex diseases. Therefore, they should be reconsidered in the future
genetic association.16,76

PRESENT

Single nucleotide polymorphisms
The completion of the Human Genome Project is a major scientific
development in human genomics and biomedical sciences. The
reference DNA sequence has provided the basis for studying genetic
variations in the human genome among individuals in populations.
While the Human Genome Project was about to be completed, genetic

variations in particular SNPs were also being uncovered. In 2001, the
International SNP Map Working Group identified 1.42 million SNPs
in the human genome.5 Currently, more than 17 million SNPs in
human genome have been documented in the dbSNP. As a large
number of SNPs has been reported, it is unavoidable that some of the
entries in the database are actually errors or artifacts rather than
‘genuine SNPs’. In fact, a false positive rate of 15–17% was estimated
for dbSNP.77 Therefore, large scale validation in population-based
studies would be necessary and important to authenticate them. To
bridge this gap of information, the International HapMap Project was
conceived in 2003 with the aim to validate several million SNPs in the
dbSNP, to obtain the SNP and genotype frequencies information, as
well as to study their correlation or LD patterns in populations of
European, Asian and African ancestry. These populations are the US
Utah population with Northern and Western European ancestry
(CEU), Han Chinese from Beijing (CHB), Japanese from Tokyo
(JPT) and Yoruba from Ibadan, Nigeria (YRI).78

In general, a SNP is defined as a single nucleotide substitution at
one particular locus in the DNA sequence and this mutational event
generates two alleles. To distinguish this from a point mutation, the
frequency of the minor allele of a SNP has to be at least 1% in any
population. Common SNPs are usually defined as those with minor
allele frequency 45% and approximately 7 million of the SNPs in
the human genome are common.79 Therefore, for single nucleotide
substitutions, where their population frequencies are yet to be
determined, strictly, they should be labeled as single nucleotide
variations (SNVs) to minimize confusion.77 As a substantial fraction
of entries in the dbSNP has not been validated in population-based
studies, one has to bear in mind that not all the entries in the dbSNP
are necessarily SNPs, as the name of database implies. As such, the
several hundred thousand ‘new SNPs’ identified by whole genome
resequencing studies27–33 should probably be considered as ‘new
SNVs’ instead, until their population frequency information is avail-
able (Figure 3a). The distinction between SNPs and SNVs should be
emphasized to avoid misleading.

Single nucleotide polymorphisms are the most abundant type of
genetic variation in the human genome in terms of their number.
They occur at an interval of about one SNP in every kilobase of DNA
sequence throughout the genome when the DNA sequences of any two

(I) PCR amplicons (e.g. 125bp)

.....CCG TA(G)CAA GGA.....
DNA ladder

The RE will cut or digest PCR
125bp

75bp 

50bp

.....CCG TA(C)CAA GGA.....

No RE cutting will occur for PCR

Interpretation (the genotype):
Lane 3: Homozygous GG
Lane 4: Heterozygous GC
Lane 5: Homozygous CC

PCR-RFLP
A hypothetical example to
illustrate the method PCR-

RFLP (assume that the
restriction enzyme/RE
cutting site is TAGCA).

amplicons because of the
presence of the specific cutting
site. As a result, 2 DNA
fragments with sizes 75bp and
50bp respectively are present
when running on gel
electrophoresis.

1 2 3 4 5

(II) PCR amplicons

amplicons, because the G>C
nucleotide substitution has
destroyed the cutting site. As a
result, the PCR amplicons
remain intact.

Lane 1: DNA marker
Lane 2: PCR amplicons without RE 
cutting
Lane 3, 4 and 5: PCR amplicons with RE
cutting

Figure 2 A schematic illustration for the method PCR–RFLP (restriction fragment length polymorphism).
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individuals are compared. This is approximately equivalent to 3
million SNPs being carried by each individual genome. Therefore,
the DNA sequence of any two genomes is estimated to be about 99.9%
identical, and the 0.1% genetic variations that are mainly comprised of
SNPs, are believed to be responsible for the phenotypic differences,
such as physical traits (for example, height, hair and eye colors),
disease susceptibility and drug responses, among individuals in
populations. However, the finding of thousands of CNVs that collec-
tively encompass hundreds of megabases of the genome8–10 and the
numerous short indels that are identified by whole genome resequen-
cing studies27–33 have thrown doubts to the estimation of ‘99.9%
similarity’. The DNA sequences of individuals within and between
populations are genetically more diverse and varied than previously
thought.

Most of the SNPs are predicted to be neutral without functional
effects and due to their abundance in the human genome; SNPs have
become useful genetic markers in GWAS compared with other genetic
variants such as microsatellites. In addition to the finding of a myriad
of SNPs, some early reports have also documented the correlation
patterns among the SNPs in parts of the human genome.80–82

However, no large-scale effort was undertaken to study the LD
patterns in the whole genome until the initiation of the International
HapMap Project. So far, a total of 43 million SNPs have been
genotyped and validated in the Phase I and Phase II of the project.83,84

The huge number of SNPs has also created a formidable task in
genotyping because it is not technically feasible and cost effective to
genotype several million of SNPs in a GWAS even with the latest
genotyping technologies. Fortunately, SNPs are not completely inde-

pendent of each other; instead they are correlated, as has been
demonstrated by the International HapMap project. The existence
of LD significantly reduces the number of SNPs that needs to be
genotyped in a GWAS. The indirect association approach of GWAS is
dependent on surrogate markers to locate disease variants through LD.
As shown in the International HapMap Project and other published
data, about half a million SNPs are already adequate to capture most
of the SNPs that have been genotyped in the HapMap Project.
However, the genome coverage of commercially genotyping arrays is
population dependent. For example, Illumina HumanHap550 Bead-
chip, which contained B550 000 tagging SNPs, achieved genome
coverage of 87 and 83% in CEU and CHB+JTP populations, respec-
tively, but it was only 50% in YRI.85–87

The International HapMap Project has created a useful and valuable
resource for GWAS. Furthermore, the availability of HapMap data has
also driven the rapid developments in genotyping arrays, in which the
data are used to guide the tagging SNPs selection. As the Phase I
HapMap was completed in 2005, a number of genotyping arrays has
been designed and introduced into the market, and the newer arrays
have significantly improved in genome coverage and are also designed
for CNVs detection, such as the Illumina Human 1 M Beadchip and
Affymetrix 6.0 SNP Arrays.49 Hence, the International HapMap
Project was a key and essential component in making the GWAS a
feasible approach.

Around the turn of millennium, there were also some intense
debates about the genetic architecture of complex diseases.88 It was
polarized into two opposing models: the common-disease common-
variant (CD/CV) versus multiple rare variant or common-disease

24%

New SNPs In dbSNP

86%

76%

14%

81%

74%

19%
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88%

83%

12%

17%

82%
18%

Han Chinese YH (Wang et al., 2008) ~3.07 million

European P0 (Pushkarev et al., 2009) ~2.80 million

African NA18507 (Mckernan et al., 2009) ~3.86 million

African NA18507 (Bentley et al., 2008) ~4 million

Korean SJK (Ahn et al., 2009) ~3.43 million

Korean AK1 (Kim et al., 2009) ~3.45 million

James Watson (Wheeler et al., 2008) ~3.32 million
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59%
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33%
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Han Chinese YH -135,262 (size range: 1bp to 3bp)

African NA18507 (Mckernan et al.) -226,529*

African NA18507 (Bentley et al.) -~400,000 (size range: 1bp to 16bp)**

Korean SJK -342,965 (size range: -29bp to +14bp)

Korean AK1 -170,202 (size range: -29bp to +5bp)

James Watson -222,718 (size range: 2bp to 38,896bp)

Figure 3 (a) The proportion of new SNPs identified in whole genome resequencing studies. (b) The proportion of new indels identified in whole genome

resequencing studies. *89,679 insertions up to 3bp, 124,024 deletions up to 11bp, 12,826 larger indels. 67% of small indels in dbSNP (i.e. insertions up

to 3bp and deletions up to 11bp). **Approximately 0.4 million indels were identified and it was reported that about half of the indels are corroborated by

entries in dbSNP
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rare-variant hypothesis.89 However, the CD/CV model formed the
basis of the International HapMap Project; it was clearly shown in the
Phase I HapMap, in which common SNPs have become the main
focus. Over one million SNPs with minor allele frequency 45% were
genotyped in 270 DNA samples collected from the four populations.
Even in the Phase II HapMap, common SNPs remained as the focus;
however, SNPs within minor allele frequency of 1–5% were also
chosen to be genotyped.83,84 As the HapMap data was used to develop
commercial genotyping arrays, the SNP selection has been largely
influenced by the CD/CV hypothesis. Therefore, the current GWAS
are mainly interrogating the association of common SNPs with
various complex diseases and traits.

The reason that the CD/CV model trumped the opposing model
was also due to the technologies that were available at that time.
Sanger dideoxynucleotide sequencing did not allow the survey of rarer
SNPs or point mutations in the whole genome to be carried out
efficiently. With the arrival of next generation sequencing technolo-
gies, whole genome sequencing is practical now, but still prohibitively
expensive to be done in a large sample set for association studies.
Instead, targeted sequencing of certain regions identified by GWAS, as
well as exomes, is more feasible at the moment.90,91 This approach has
been advocated by genetics community as a temporary alternative to
searching for rarer SNPs before we reach the goal of 1000 dollars per
genome, enabling thousands of cases and controls to be sequenced. In
contrast, the convenient high-throughput genotyping platforms have
enabled an efficient interrogation of several hundred thousand to one
million SNPs directly throughout the genome, which eventually
captured almost all the SNPs in the International HapMap Project
indirectly. Furthermore, it is more affordable to genotype (rather than
to sequence) the whole genome of several thousand cases and controls
for a statistically powerful association study.

FUTURE

Copy number variations
The term CNV was first introduced in 2006, and it is generally defined
as additions or deletions in the number of copies of a particular
segment of DNA (larger than 1 kb in length) when compared with a
reference genome sequence.35 The commonness of CNVs in the
human genome was under-appreciated until the first reports in
2004. The findings have also stimulated a lot of enthusiasm and
interest in the research of genetic diversity in the human populations
and resulted in a series of effort to detect CNVs in different popula-
tions. The number of publications of CNVs studies has indeed
increased greatly over the past few years.

In contrast to SNPs that have already been relatively well-cataloged
in the dbSNP, and well-studied by the International HapMap Project,
a lot more remains unclear for other types of genetic variations and to
what extent they are present in the human genome. Although the
ubiquity of CNVs in the human genome was reported several years
ago, and many more have since been found, most of the studies used
array-based detection methods that have relatively poor sensitivity
compared with sequencing-based approaches.8,9,36,92–95 These array-
based methods include bacterial artificial chromosome clones and
oligonucleotides comparative genomic hybridization arrays and SNPs
genotyping arrays. These methods are not sensitive enough to detect
smaller sizes of CNVs that are less than 50 kb in size due to the
limitations in array density or resolution.96 However, the number of
smaller CNVs is estimated to be more abundant than the larger CNVs
in the human genome.97

The poor sensitivity of array-based methods becomes apparent
when their results are to be compared with the sequencing studies.

The number of CNVs found in most of the array-based studies was in
the range of tens to several hundred per genome on average, which is
several fold lesser than the numbers that were reported in the whole
genome resequencing studies. In each of the studies, several thousands
of CNVs have been found;29–32 for example, Ahn et al. identified 2920
deletions and 963 insertions in the Korean SJK genome. Although
the improvements in SNPs density and inclusion of copy number
probes in newer genotyping arrays, such as Illumina Human 1 M
Beadchip and Affymetrix 6.0 SNP Arrays, have undoubtedly increased
the performance of array-based methods to detect CNVs, the methods
overall still suffer from poor sensitivity to detect CNVs smaller than
5–10 kb.9,98 This was again clearly shown in the findings from
whole genome resequencing studies. For example, a total of 2682
structural variations (dominated by deletions) were detected in the
Han Chinese YH genome with a median length of about 0.5 kb.29 In
contrast, the median length found by array-based methods was in the
range of tens to hundreds of kilobases depending on the resolution of
the arrays. This indicates that sequencing-based methods have much
higher sensitivity to detect smaller CNVs. This also suggests that the
overall larger number of CNVs found in whole genome resequencing
studies was attributed to the better sensitivity in detecting more CNVs
of smaller sizes. In addition, it is worthwhile noting that if the
arbitrary cutoff of 1 kb is applied here, at least half of the reported
CNVs by Wang et al.29 should be labeled as indels. This further
illustrates the problems in classifying CNVs and indels into distinct
categories.

Indels
In addition to CNVs, the several whole genome resequencing studies
also identified hundreds of thousands of short indels.27–32 The
numbers reported in each study are not directly comparable, because
the analyses, detection methods and criteria used are different between
the studies. For example, for the two Korean genomes, the number of
indels found in one study is twice another one. Ahn et al.32 identified
342 965 indels within a size range of �29 to +14 bp, whereas Kim
et al.31 only found 170 202 indels within �29 to +5bp. Collectively
these studies have uncovered plenty of short indels in the human
genome. Moreover, the number of indels found is likely to represent
only a fraction of the total number of indels in the human genome,
because a rather narrow size range was defined in each of the studies.
In summary, the several whole genome resequencing studies have
further revealed the richness of genetic variations in the human
genome and their numbers are more abundant than previously
expected.

It is estimated that there are 1.6–2.5 million indels in human
populations. However, no large-scale attempt was made to identify
indels until 2006, in which a study identified 415 436 indels with about
equal numbers of insertions and deletions.7 The sizes of these indels
ranged from 1 bp to B10 kb (which span the ‘1 kb boundary’), thus
suggesting that the dataset is actually a mixture of indels and CNVs. In
addition, the study also found over 148 000 indels located within
known genes and several thousands of them are found in the
promoter regions and exons of genes. This means that these indels
could potentially alter gene expression levels or affect protein structure
or function. Similarly in the whole genome resequencing studies,
several hundreds of indels were also found to overlap with coding
sequences.28,31 Despite some differences in the number of indels found
in each study that overlapped with coding sequences, these studies
have provided evidence to support their putative functional roles and
also underscores the importance of investigating them in disease
association studies. The discovery effort for indels is not keeping
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pace with that of SNPs, as indels have not been well cataloged in the
dbSNP. This can be clearly shown from the proportion of new indels
found in the whole genome resequencing studies; about 50% or more
of the identified indels are not in dbSNP. In contrast, less than 30% of
the SNPs identified in the studies are new (Figures 3a and b).

Though findings from whole genome resequencing studies have
broadened our knowledge in human genetic variation, all of them
only sequenced one individual genome, rendering them unable to
investigate the population genetics of the identified genetic variants,
such as frequencies and LD patterns. This piece of information is
crucial and would be needed for future disease association studies.
Moving towards this goal, and to accelerate the process of discovery of
various genetic variations in the human genome, the 1000 Genomes
Project was conceived and initiated in 2008. This project is currently
on-going and the aim is to eventually sequence at least 1000 individual
genomes from different populations worldwide. The ultimate goal is
to build a useful resource of human genetic variations for future
disease association studies. The availability of these resources and the
genetic variations maps will certainly drive the technological develop-
ment of new microarrays or other high-throughput methods to
capture the non-SNP genetic variations in the near future, and it
will bring another revolution to the genetic studies of complex
diseases.

Copy neutral variations—inversions and translocations
The discovery of CNVs in the human genome of healthy populations
has advanced rapidly over the last few years. However, an equivalent
progress has not been seen for the detection of copy neutral variations;
this is largely due to the lack of a powerful and efficient method for a
genome-wide discovery of inversions and translocations. Unlike CNVs
that can be studied by microarrays, the detection of copy neutral
variations usually requires sequencing-based methods, and the high-
throughput sequencing technologies that have only recently been
made more accessible. In addition, inversions and translocations are
technically more difficult to detect. A relatively slower progress in the
studies of copy neutral variations is evident from the data entries
recorded in the DGV, in which more than 29 000 CNVs and nearly
20 000 indels have been reported in the database, whereas less than a
thousand inversions have been found, and no data is available for
translocations in the DGV at the moment. However, one should be
cautious with this interpretation because the numbers are not propor-
tions. As the total number of CNVs, indels and inversions in the
human genome is still unknown, therefore, the proportions of these
genetic variations that have been discovered are also unknown. The
data in the DGV are so far derived from the results of 35 studies using
array-based and sequencing-based detection methods, and other
approaches. In fact, more than this number of studies have been
performed and published for CNVs detection in various populations;
but not all their results have been cataloged in the DGV. As such, it is
apparent that the entries in the database are still far from complete.

Most of the CNV data were generated by array-based methods
(comparative genomic hybridization and SNP arrays), in which the
signal intensity information is used to detect deletions and duplica-
tions, which relied on differences in signal intensities. As a result, these
methods are unsuitable for detecting inversions and translocations
(also known as balanced chromosomal rearrangements) because they
do not lead to gain or loss of chromosomal or DNA segments. Rather,
several different strategies and approaches have been taken to try to
identify inversions in the human genome. For example, Feuk et al.99

discovered regions that are inverted between the chimpanzee and
human genomes by performing comparative analysis of their DNA

sequence assemblies. In the study, they identified about 1600 putative
regions of inverted orientation in the genomes that covered 4150
megabases of DNA sequence. The inverted regions are distributed
throughout the genomes and span the sizes from 23 bp to 62 Mb in
length. A number of inverted regions were also selected to be validated
by using PCR and fluorescence in situ hybridization, and out of the 23
experimentally validated inversion regions, 3 of them were found to be
polymorphic (41%) in a panel of human samples, and were known
as inversion polymorphisms.

However, a statistical method has also been developed to identify
large inversion polymorphisms using high-density SNP genotyping
data in which it is based on unusual LD patterns. The method was
developed to detect chromosomal regions that are inverted in a
majority of the chromosomes in a population with respect to the
reference human genome sequence. Although this method has worked
using the International HapMap Project data to detect inversion
polymorphisms, it has not been widely used by other studies. In any
case, this study was able to identify 176 inversions ranging from 200 kb
to several megabases in length using the Phase I data. However, their
results were not placed in the DGV.100 This, together with the study by
Feuk et al. (2005)99, also provided some supporting evidence that a
considerable portion of their detected inversions were flanked by
highly homologous repeats or segmental duplications. This suggests
that segmental duplications could be the favorite spots mediating the
chromosomal rearrangements that generate inversions.

The breakthrough in the discovery of inversions was credited to the
development of a sequencing-based method known as paired-end
mapping, and the concurrent advances in next generation sequencing
technologies. The paired-end mapping method also contributed
greatly to the mapping of CNVs in the human genome. In the
paired-end mapping method, both ends of the DNA fragments with
known sizes would be sequenced and then aligned to the human
reference genome. The principle of the paired-end mapping to detect
various structural variations is simple in theory; it is based on the
discordances in size or orientation of the DNA fragments that are to
be aligned to the reference genome. When both ends of the DNA
fragments that map to the reference genome show discordances in
terms of size, this is an indication for deletion and insertion, whereas
discordances in orientation suggests the presence of inversion.101

The power of this method to detect inversions was first demon-
strated in the study by Tuzun et al.102 by sequencing the fosmid
paired-end sequences. The study successfully identified 56 inversion
breakpoints. The same strategy of fosmid clones sequencing was also
used by Kidd et al.103 to detect structural variations in eight individual
genomes, and a total of 224 inversions were also identified. However,
this study is only the preliminary phase of a larger project that will
eventually construct and sequence the fosmid clone libraries (B40 kb
inserts) prepared from the genomic DNA of 48 unrelated females, and
bacterial artificial chromosome clone libraries (B150 kb inserts) from
14 unrelated males in the International HapMap Project.104 Therefore,
more inversions are expected to be discovered when the project is
finished. The fosmid paired-end sequencing work of these studies was
completed by traditional Sanger sequencing methods.

The first proof-of-concept study using next generation sequencing
technologies in paired-end mapping to detect structural variations was
published in 2007.105 In the study, libraries of 3-kb fragments for two
female samples from the International HapMap Project were prepared
and sequenced by Roche 454 sequencing, and they found 1297
structural variations, including 122 inversions. Using the same
approach, hundreds of inversions were also uncovered by whole
genome resequencing studies; for example, 91 and 415 inversions
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were detected in the African NA18507 genome and Korean SJK
genome, respectively.32,106 Although the progress in the discovery of
inversions is moving at a slower pace than CNVs, there is already
evidence to support their roles in human diseases.107,108

Loss of heterozygosity and homozygosity
Copy neutral LOH defines a continuous stretch of DNA sequence
without heterozygosity. It is different from a single copy deletion
which could also lead to the absence of heterozygosity. More speci-
fically, extended homozygosity is essentially copy neutral LOH, but it
encompasses a large region of at least 1 Mb. Again, the distinction
between the two categories is solely based on the length of DNA
sequence without heterozygosity. Currently, there is no consensus on
the definition of extended homozygosity. Previous studies have
focused on homozygosity regions larger than 1 Mb, so the true level
of homozygosity in the human genome could be underestimated.2,109

The information regarding the extent of LOHs in the human
genome is even less compared with indels and CNVs, but their
potential impact on complex diseases could also be as much as
other genetic variations. Although the biomedical significance of
regions of homozygosity to complex diseases remains largely unex-
plored, some schizophrenia studies have already shown significant
differences in homozygosity regions between cases and controls in a
genome-wide study.22 More importantly is that the study has demon-
strated the feasibility of using the homozygosity mapping approach to
identify susceptibility loci and genes for complex diseases. This also
highlights the need to further investigate and catalog the extent of
LOH and homozygosity in the human genome. Similar to other
genetic variations, LOHs definitely have the potential of being the
genetic markers in future GWAS. Although homozygosity mapping
has not been widely applied for most of the complex diseases, this
approach is commonly used to interrogate the genetic basis of cancers
to identify cancer-associated genes.110,111

The ubiquity of homozygosity in the genomes of outbred popula-
tions has not been well documented. Previously, only a few studies
reported an abundance of homozygosity in the human genome with
frequent occurrence in genomic regions with extensive LD and low
recombination rates.2,109 Three widely discussed possibilities that led
to the commonness of homozygosity are parental consanguinity,
uniparental disomy and autozygosity. One previous study had demon-
strated that the number of homozygosity regions increased markedly
in the offspring of consanguineous marriages.112 However, this is
unlikely in outbred populations in which parental consanguinity
is rare.

Uniparental disomy can be divided into two types: uniparental
isodisomy and uniparental heterodisomy. Only the former situation
can cause homozygosity as the child inherits two identical copies of a
chromosome segment from only one parent.113 This is also an unlikely
explanation for the abundant homozygosity given that uniparental
disomies are rare genetic abnormalities that can cause severe and rare
genomic disorders, such as Prader–Willi Syndrome and Angelman
Syndrome. This assumption is further supported by previous research
that found extended homozygosity to be generally not due to genetic
abnormalities.114 Using this reductionist approach, autozygosity seems
to be the most likely process responsible for the commonness of
homozygosity in the human genome. Autozygosity is a situation in
which common ancestral haplotypes are inherited from both parents.
Hence, extended homozygosity seems likely to have occurred as a
result of common haplotypes, present in high frequencies in the
population, which are passed on by chance from both parents to
the child. This is further supported by previous findings of no excess

apparent deviation from Mendelian transmission in extended homo-
zygosity.109,114

THE FUTURE GENETIC VARIATIONS MAP

The significance of the 1000 Genomes Project for future disease
association studies is tremendous. Although SNPs have been widely
used as the genetic markers in GWAS to search for disease variants,
evidence has started accumulating to suggest that (common) SNPs
alone are unlikely to account for all the heritable risk of complex
diseases. Concurrently, the amount of data showing the associations of
CNVs with complex diseases has been growing.19–21 Similarly, the
importance of rare variants in complex diseases is also being recog-
nized.56,90,115,116 This implies that future disease association studies
need to interrogate non-SNP and rare genetic variations as well, and
for this to be feasible, a detailed catalog of human genetic variations is
a prerequisite. Common SNPs are well documented in the dbSNP, but
rarer SNPs (or lower frequency SNPs) are still under-represented in
the database and the information of indels and structural variations is
far from complete.

Unlike the whole genome resequencing studies of individual gen-
omes, the 1000 Genomes Project is a large scale population-based
sequencing study that enables studies of the population properties of
genetic variations and their LD patterns. This information will be
required to design next generation genotyping arrays to select surro-
gate markers that are not only able to tag for SNPs, but also to
efficiently to capture indels and CNVs as well. This development will
certainly widen the scope of genetic variations interrogated in GWAS.
In fact, data have shown that CNVs could be tagged by SNPs through
LD,9,10,117 but a detailed and in-depth investigation of their LD
patterns can only be done when most of the SNPs, indels, CNVs
and other genetic variations have been identified. In-depth studies of
LD among different genetic variations is important, as the finding of
the 20-kb deletion located upstream of the IRGM gene for Crohn’s
disease has demonstrated the efficiency of using SNPs as surrogate
markers to identify non-SNP genetic variants.118 Other examples
include the finding of a 45-kb deletion that is in perfect LD with
BMI-associated SNPs in NEGR1.119

It is less likely that the number of indels and CNVs will reach several
millions similar to the SNPs, but the total number of nucleotides
encompassed by these genetic variations has already far exceeded that
of the SNPs. Given their abundance in the human genome as found by
the whole genome resequencing studies, their total nucleotide com-
position and functional impact on gene expression levels,11,120,121 they
could potentially account for some or even a substantial portion of the
inherited risk of complex diseases.

A comprehensive interrogation of genetic variations is essential
because GWAS is an indirect approach to identify disease variants;
therefore, its success is dependent on whether surrogate markers that
are in strong LD with the disease variants are included in the studies.
The LD information between SNPs, indels, CNVs and other genetic
variations is valuable because it is more efficient to interrogate or
capture indels and CNVs through LD by genotyping a number of
SNPs, rather than by locating the probes within the copy number
variable regions and detecting them through signal intensity differ-
ences. If the number or fraction of ‘untaggable’ indels and CNVs is
considerable, then other high-throughput methods or microarrays can
be developed to complement the content of next generation SNPs
genotyping arrays. Besides driving the development of more efficient
genotyping arrays to interrogate SNPs and non-SNP genetic varia-
tions, the data from the 1000 Genomes Project will also accelerate the
fine mapping work in the regions identified by GWAS and improve
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the imputation powers because a much more complete reference set of
genetic variations will be available for imputing.

THE CURRENT STATUS OF GWAS

Genome-wide association study is a comprehensive and biologically
agnostic approach to searching for unknown disease variants, and as
demonstrated in more than 450 studies, this strategy has been very
successful in identifying new genetic loci for various human complex
traits. Most of the genes and loci that have been identified are not
previously thought to be associated with their respective diseases.122–

125 More importantly, the GWAS findings have also provided new
insights into the molecular pathways of complex diseases even when
most of the disease causative variants remain to be discerned from the
neighboring correlated markers. For example, the three new genes that
have been linked to Crohn’s disease: IL23R, ATG16L1 and IRGM have
highlighted the importance of interleukin-23 receptor and autophagy
pathways underlying the pathophysiology of this chronic inflamma-
tory bowel disease.126,127 Notably, GWAS have been making some
significant advances in our understanding and knowledge of the
genetic basis of human complex diseases compared with the pre-
GWAS approaches (that is, the candidate gene association and linkage
studies).

Most of the risk alleles that have been identified by GWAS are
common (allele frequency 45%) and confer small effect sizes (odds
ratio o1.5).17,18 However, this observation is not really reflecting the
true allelic frequency spectrum of complex diseases. This is because for
any given sample size, association studies have higher statistical power
to find associations with common SNPs. The other reason is that the
rarer SNPs (allele frequency o5%) are not well-covered either directly
or indirectly through LD by the markers in Illumina and Affymetrix
genotyping arrays, so they remain unexplored for disease association.
The design of GWAS and SNPs selection in commercial genotyping
arrays have been largely driven by the CD/CV hypothesis.

Due to their small effect sizes, collectively the identified risk alleles
only explain a small portion of the total inherited risk for the diseases.
For example, all the type-2 diabetes risk alleles that are identified by
GWAS cumulatively only account for B5% of the heritability, and
similarly for other diseases, only a small proportion of the heritability
was accounted for.128 The unexplained or missing heritability has been
a major concern in the field, leading to the skepticism of the promise
of GWAS to fully decipher the genetic basis of complex diseases.
Nevertheless, it is noteworthy that GWAS have only interrogated a
fraction of the total genetic variations in the human genome.

The genetic architecture of complex diseases remains elusive; it is
unclear how much each type of genetic variation contributes to
inherited risk and the relative proportion of rare versus common
variants. If non-SNP genetic variants or rarer SNPs constitute most of
the genetic component of complex diseases, then GWAS using the
current genotyping arrays would be likely to miss them, simply
because they are not covered directly by the genotyping arrays. How
much they can be tagged through LD by the markers on the arrays still
needs further investigation. Regardless, it is important to continue
investigating other genetic variations to discover additional disease
associated variants to explain the heritability.

INADEQUATE COVERAGE OF GENETIC VARIATIONS IN GWAS

All the GWAS rely heavily on the commercial genotyping arrays from
Illumina and Affymetrix to comprehensively genotype several hun-
dred-thousand of common SNPs. These genotyping arrays have near
complete coverage of the 43 million SNPs genotyped by the Inter-
national HapMap Project in CEU and CHB+JPT populations.85–87

The HapMap Project SNPs are either genotyped directly or tagged
indirectly through LD with one or more SNPs on the arrays. Never-
theless, the HapMap SNPs are only a subset of the entire collection in
the dbSNP, and currently there are more than 10 million SNPs
cataloged in the database. More than half of the SNPs in dbSNP
have not been studied for association with complex diseases directly
and the number of these SNPs that are covered indirectly through LD
by the genotyping arrays is unclear. It is noteworthy that the current
GWAS only investigate a portion of the SNPs and the non-SNP
genetic variations are likely not well studied for disease associations.

Furthermore, SNPs are not the only type of genetic variation in the
human genome. Although the roles of non-SNP genetic variations in
disease susceptibility remain largely unexplored, associations of CNVs
with complex diseases such as schizophrenia, autism, autoimmune
disorders, HIV infection and cancers have already been established
from both candidate gene and genome-wide approaches.56,115,129–132

The amount of evidence is expected to increase in the near future,
when we have a better understanding of the characteristics of
non-SNP genetic variations and a more comprehensive map of
them constructed upon the completion of 1000 Genomes Project,
and when more efficient and accurate methods are available to detect
and study them. One major limitation of the current GWAS using the
commercial genotyping arrays is that it covers only a portion of the
total genetic variations, thus a substantial false negative rate is likely
due to incomplete interrogation of all the genetic variations for disease
association. For future studies, the focus should be directed on
studying other genetic variations that have not yet been interrogated
by the GWAS, such as tandem repeats, indels, inversions and CNVs,
although it is highly dependent on the development of the technol-
ogies and methods of detection and analysis.

It is also obvious from the results of GWAS that the common SNPs
are unable to account for the total inherited risk of a complex disease.
However, it is not clear how much heritability can be attributed to
rarer SNPs (o1–5%) at the time. Rarer SNPs are not well-covered by
the GWAS or the genotyping arrays, as a result, they have not been
intensively studied for disease association. Fortunately, the current
genotyping arrays seem to work fine for detecting rare CNVs for
diseases.56,115 The evidence linking complex diseases and traits to
multiple rare variants has also been growing; for example, for schizo-
phrenia,56,115 high-density lipoprotein cholesterol level133,134 and
type-1 diabetes.90 This implies that the rare variants (both SNP and
non-SNP) should not be neglected in future studies. Sequencing
approaches will improve their detection, and consequently offer a
better understanding of the genetic architecture of complex diseases.
The advances in sequencing technologies enable researchers to
study a wider spectrum of genetic variants compared with genotyping
methods.

CONCLUSIONS

The ultimate goal of GWAS is to correlate the genotype with disease
phenotype, and to identify all the genetic variations that are associated
with the diseases. To achieve this, most of the genetic variations in the
human genome have to be first identified. It is essential to identify and
validate all the genetic variations in the human genome in population-
based studies, and catalog them properly in databases, so they can be
used as the genetic markers for future disease association studies.
Currently, we are moving towards these goals with the on-going 1000
Genomes Project, and only with the availability of a very detailed and
near complete map of all genetic variations will it be feasible to
perform a truly comprehensive search for the disease causing variants
throughout the human genome.
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Abstract Regions of homozygosity (ROHs) are more
abundant in the human genome than previously thought.
These regions are without heterozygosity, i.e. all the genetic
variations within the regions have two identical alleles. At
present there are no standardized criteria for deWning the
ROHs resulting in the diVerent studies using their own crite-
ria in the analysis of homozygosity. Compared to the era of
genotyping microsatellite markers, the advent of high-den-
sity single nucleotide polymorphism genotyping arrays has
provided an unparalleled opportunity to comprehensively
detect these regions in the whole genome in diVerent popula-
tions. Several studies have identiWed ROHs which were
associated with complex phenotypes such as schizophrenia,
late-onset of Alzheimer’s disease and height. Collectively,
these studies have conclusively shown the abundance of
ROHs larger than 1 Mb in outbred populations. The homo-
zygosity association approach holds great promise in identi-
fying genetic susceptibility loci harboring recessive variants
for complex diseases and traits.

Introduction

Human genetic variations are the diVerences in DNA
sequences within the genome of individuals within popula-

tions. These variations can take many forms, including sin-
gle nucleotide variants or substitutions, tandem repeats
(short tandem repeats and variable number of tandem
repeats), small indels (insertions and deletions of a short
DNA sequence), duplications or deletions that change the
copy number of a larger segment of a DNA sequence
(¸1 kb) i.e. copy number variations (CNVs), and other
chromosomal rearrangements such as inversions and trans-
locations (also known as copy-neutral variations) (Nakamura
2009; Frazer et al. 2009; Ku et al. 2010a). The amount of
genetic variation in the human genome is more abundant
than previously thought, and this has been further corrobo-
rated with the Wndings from whole genome resequencing
studies where several million single nucleotide polymor-
phisms (SNPs) and several hundred thousand indels and
structural variants were identiWed (Wheeler et al. 2008;
Bentley et al. 2008; Wang et al. 2008; Kim et al. 2009).
In addition to SNPs (Altshuler et al. 2008; HindorV et al.
2009), other genetic variations have also been found to be
associated with various complex diseases and traits
(Haberman et al. 2008; Hannan 2010; Wain et al. 2009;
Stankiewicz and Lupski 2010).

By comparison, the region of homozygosity (ROH) is
not currently classiWed as a type of genetic variation as
there is no consensus on whether it should be classiWed as
one type of ‘structural’ genetic variation. The reasons for
this are two fold: (a) the ROH is not a ‘genetic alteration’ of
the DNA sequence like other genetic variations and, (b) the
research on their genome-wide mapping is still relatively
new. However, the extent of ROHs varies among individu-
als and between diVerent populations. In comparison to
other types of genetic variations where the inter-population
diVerences have been well documented (International
HapMap Consortium 2005, 2007; Jakobsson et al. 2008;
Teo et al. 2009), published data has increasingly shown the
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inter-individual and inter-population variations in the pro-
Wles of homozygosity (Gibson et al. 2006; McQuillan et al.
2008; Nothnagel et al. 2010; O’Dushlaine et al. 2010).

Research on ROHs has started to gain impetus, as is evi-
denced by the increasing numbers of publications after the
Wrst study by Gibson et al. (2006) reporting its abundance
in the human genomes of outbred populations. Further
studies have investigated the population genetics aspects of
ROHs in healthy individuals (Li et al. 2006; McQuillan
et al. 2008; Nothnagel et al. 2010; Nalls et al. 2009b), and
also performed association analyses to identify ROHs that
are associated with complex diseases and traits in a case–
control study design (Lencz et al. 2007; Nalls et al. 2009a;
Vine et al. 2009; Yang et al. 2010b).

The aim of this paper is to review the recent progress
and to elaborate on the issues and challenges in genome-
wide mapping of ROHs in the human genome using high-
density SNPs genotyping arrays in normal populations and
in disease association studies. We also highlight the Wnd-
ings showing associations between ROHs and complex
phenotypes. Finally, we discuss the future directions and
the potential applications of ROHs as surrogate markers in
identifying recessive loci for complex phenotypes. This
approach is also known as ‘genome-wide homozygosity
association’ and could be a promising alternative to Wnding
the ‘missing heritability’ for complex phenotypes (Manolio
et al. 2009). Population genetics and selection pressure on
ROHs are brieXy discussed, as these topics are beyond the
scope of this review paper. Other interesting areas of ROHs
research such as studies of homozygosity in inbreeding and
isolated populations and Wndings from animal and plant
genetics deserve to be reviewed in a separate paper.

What is a region of homozygosity?

A ROH deWnes a continuous or uninterrupted stretch of a
DNA sequence without heterozygosity in the diploid state,
that is in the presence of both copies of the homologous
DNA segment. Thus, all the genetic variations, such as
SNPs (biallelic marker) or microsatellites (multiallelic
marker) within the homologous DNA segments have two
identical alleles that create homozygosity (Gibson et al.
2006). The ROH is diVerent from one-copy deletion (or
hemizygous deletion), which could also lead to the homo-
zygosity, e.g. in genome-wide SNPs genotyping data. How-
ever this is considered as a ‘spurious homozygosity’
because only one allele of the SNPs is present in the deleted
region for one-copy deletions. Thus, the DNA fragments
with only the single allele are hybridized on the genotyping
array. As a result, the signal intensity of only one allele is
measured and subsequently used in genotype calling, and
hence it would be incorrectly labeled a homozygote

genotype. Therefore, the result of ‘homozygosity’ is due to
the absence of the other allele, instead of ‘true homozygos-
ity’ where two identical alleles are present (PeiVer et al.
2006). The distinction between ‘true homozygosity’ as
opposed to ‘spurious homozygosity’ due to one-copy dele-
tion is diYcult to determine just by inspection of the geno-
type data alone. The allelic signal intensity ratio (the
relative ratio of the Xuorescent signals between two probes/
alleles at each SNP) is needed to diVerentiate between the
two types of homozygosity (PeiVer et al. 2006; Wang et al.
2007). Therefore, for studies that used only SNPs genotype
data to identify the ROHs, i.e. to screen regions with a mini-
mum consecutive homozygote SNPs, the possibility that
some regions are caused by one-copy deletion cannot be
Wrmly excluded, because deletions are also widespread in
the human genome (McCarroll et al. 2008; Conrad et al.
2010).

Cytogenetic abnormalities such as uniparental isodisomy
can also result in homozygosity where two copies of a sin-
gle parental homologous DNA segment are inherited from
one parent. As such it cannot be distinguished from homo-
zygosity resulting from other factors such as parental con-
sanguinity using the allelic signal intensity ratio as in the
case of one-copy deletion. Thus for studies that involved
unrelated samples where checking the Mendelian transmis-
sion errors in the ROHs is not possible, the possibility of
uniparental isodisomy leading to homozygosity cannot be
deWnitively ruled out. Assessing the transmission errors
requires data from trios or families. However, the likeli-
hood that a considerable fraction of ROHs will be
accounted for by uniparental isodisomy is low given that
this cytogenetic abnormality is rare (Curtis 2007).

Currently, there is no consensus or standardized criteria
used to deWne the ROH. However, previous studies have
focused on regions ¸1 Mb, and thus the true extent of
homozygosity in the human genome could be underesti-
mated (Gibson et al. 2006; Li et al. 2006). More recent
studies have deWned a ROH at a minimum length of 500 kb
(Yang et al. 2010b) with the intention of avoiding underes-
timation of the numbers of regions in the human genome.
This is because shorter ROHs are now also thought to be
associated with complex phenotypes. However, setting a
shorter length for deWnition will increase the number of
false positive signals i.e. increase the sensitivity at the
expense of speciWcity. Therefore, in discovery studies, bal-
ancing both the sensitivity and speciWcity when setting the
criteria to identify ROHs is critical.

By focusing only on regions ¸500 kb or 1 Mb, the
‘noise’ introduced by one-copy deletions is likely to be
minimal, thus reducing the potential to cause spurious
homozygosity. This is because large deletions of ¸500 kb
are relatively rare in the human genome—as supported by
data from high-resolution genome-wide mapping of CNVs
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studies (McCarroll et al. 2008; Conrad et al. 2010; Ku et al.
2010b; Park et al. 2010a; Yim et al. 2010). Therefore, a crit-
ical issue to be addressed in future homozygosity mapping
studies is determining the optimal cutoV of the length of the
ROH to be adopted, as this will avoid over-estimating the
homozygosity when the length is set too low and which can
then be easily confounded by one-copy deletion of hundreds
of kilobases or smaller. Although some studies have
reduced the cutoV length to 500 kb (Yang et al. 2010b), it is
still uncertain whether this new cutoV can readily reXect the
true extent of homozygosity in the human genome.

DeWning criteria and terminologies

Before the term ‘copy number variation (CNV)’ was Wrst
introduced in 2006 (Freeman et al. 2006), various diVerent
terms were used to describe these copy number variable
regions such as ‘large-scale copy number variants’ and
‘intermediate-sized variants’ (Sebat et al. 2004; Iafrate
et al. 2004). To date, various terminologies have also been
used to describe the ROHs such as ‘extended tracts of
homozygosity’ (Gibson et al. 2006), ‘long contiguous
stretches of homozygosity’ (Li et al. 2006), ‘runs of homo-
zygosity’ (Nothnagel et al. 2010; McQuillan et al. 2008),
‘autozygosity regions’ (Nalls et al. 2009b) and ‘homozy-
gosity-by-descent’ (Polasek et al. 2010). DiVerent studies
have used their own criteria in identifying ROHs with some
studies employing more stringent criteria compared to oth-
ers applying a more liberal deWnition (Gibson et al. 2006;
Li et al. 2006; Nothnagel et al. 2010; McQuillan et al.
2008; Nalls et al. 2009b; Curtis et al. 2008). For example,
Curtis et al. (2008) used their own developed software and
the criteria of a minimum of 10 consecutive, homozygous
SNPs extending over 1 Mb. In comparison, other studies
employed the default deWnition implemented in the ‘Runs
of homozygosity’ function in the PLINK software (http://
pngu.mgh.harvard.edu/»purcell/plink/). These criteria are
(a) the length of the ROH ¸1 Mb, (b) a minimum of 100
SNPs per ROH, and (c) a density of at least 1 SNP per
50 kb (Nothnagel et al. 2010). As all the studies are refer-
ring to the same type of ‘DNA sequence feature’ it is essen-
tial to standardize the terminology to be used in describing
these regions to avoid confusion.

Polymorphic markers used to detect ROHs

Although long continuous ROHs have been documented a
decade ago in reference families from the Centre D’etude
Du Polymorphisme Humain (CEPH) (Broman and Weber
1999), no large-scale population-based study had been per-
formed to interrogate the extent of ROHs in the human

genome until the Wrst study by Gibson et al. (2006). The
recent advances in genome-wide mapping or detection of
ROHs have been driven mainly by the availability of highly
accurate SNPs databases such as the International HapMap
Project, and the technology to genotype several hundred
thousand to several million SNPs throughout the human
genome (International HapMap Consortium 2005, 2007;
Gibbs and Singleton 2006; Ragoussis 2009). The early
study in the CEPH families used approximately 8,000 short
tandem repeat markers and detected long continuous
ROHs. In contrast, subsequent studies have applied SNPs
as the polymorphic markers to detect the ROHs (Gibson
et al. 2006; Li et al. 2006; McQuillan et al. 2008; Nothna-
gel et al. 2010; Nalls et al. 2009b). At the single marker
level, short tandem repeats are more informative than SNPs
because they are multiallelic markers. However, SNPs are
more numerous and collectively can yield more informa-
tion than short tandem repeats and oVer a higher resolution
compared to other genetic markers—both of which are
important to accurately identify the numbers and sizes of
ROHs.

Genotyping a large number of SNPs in a microarray
platform presents a powerful tool to detect ROHs compre-
hensively across the whole genome (Gibbs and Singleton
2006; Ragoussis 2009). This also enables investigation into
the number, length or size, and location or distribution of
the ROHs in the human genome in a more unbiased manner
compared to microsatellite markers (Gibson et al. 2006; Li
et al. 2006; McQuillan et al. 2008; Nothnagel et al. 2010;
Nalls et al. 2009b). The SNPs genotyping platforms also
allow studies of the relationship between ROHs and recom-
bination or linkage disequilibrium (LD) patterns, as the
SNPs data can be used for haplotype analyses and to calcu-
late the recombination rates (Curtis et al. 2008). The ability
to investigate the co-occurrence of ROHs in the areas with
extensive LD or low recombination is important in investi-
gating the mechanisms contributing towards the high fre-
quency of ROHs in the human genome.

Genotyping of a suYciently large number of SNPs is
required to accurately detect the ROHs. The study by Gib-
son et al. (2006) used data from the International HapMap
Phase I Project comprising of approximately 1 million
SNPs (International HapMap Consortium 2005), whilst
other studies have used lower density genotyping arrays
ranging from 300,000 to 550,000 SNPs. The importance of
having high-density polymorphic markers was shown by
Gibson et al. (2006) who found the largest ROH of 17.9 Mb
containing 3,922 SNPs from the SNPs data from HapMap
Phase I. However, using the data from HapMap Phase II
comprising of >3 million SNPs (International HapMap
Consortium 2007), a total of 12,778 SNPs were found in
the region with 11 heterozygotes. These heterozygotes
interrupted the ROH and have divided it into 12 smaller
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segments (Gibson et al. 2006). However, it is unclear
whether these 11 heterozygotes are genotyping errors or
true heterozygotes occurring as a result of recent mutations.
Thus, to account for genotyping errors, studies have
allowed some missing genotypes and heterozygotes for
each ROH to avoid artiWcially splitting the region
(Table 1).

This hints that the sizes of ROHs may be over-estimated
in previous studies when using lower density SNPs geno-
typing arrays. Therefore, the numbers and sizes of ROHs
identiWed by previous studies are likely to be diVerent or
altered when higher density SNPs data is available for anal-
ysis on the same samples. This also implies that a cautious
interpretation should be imposed for ROHs of several
megabases for studies using lower resolution SNPs data. A
higher density of SNPs is needed for a deWnitive assess-
ment of ROHs. Although the SNPs genotyping array is an
invaluable tool to detect ROHs, it is not without limitations.
Similar to CNV detection using SNPs genotyping plat-
forms, the boundaries of the ROHs cannot be determined
accurately at a single nucleotide resolution, as accuracy
depends on the SNPs resolution. Therefore, like CNVs, the
sizes of ROHs could be inXated, i.e. the ROHs detected in
previous studies could be smaller than currently estimated.
However, there is currently no data supporting this specula-
tion for ROHs as compared to CNVs (McCarroll et al.
2008; Perry et al. 2008).

Methods of detecting ROHs

Several targeted and genome-wide molecular methods are
available to detect structural variations such as CNVs (dele-
tions and duplications) and copy-neutral variations (translo-
cations and inversions). However, unlike with structural
variations, ROHs cannot be detected with technologies
used in molecular genetics such as Xuorescence in situ
hybridization (FISH) and bacterial artiWcial chromosome
(BAC) clone or oligonucleotide-based comparative geno-
mic hybridization (CGH) arrays (Carson et al. 2006; Feuk
et al. 2006; Carter 2007). Furthermore, several new
sequencing-based approaches for detecting structural varia-
tions such as paired-end sequencing mapping and depth-of-
coverage of the sequence read are also unWt to detect ROHs
(Korbel et al. 2007; Kidd et al. 2008; Yoon et al. 2009).

The genome-wide mapping of ROHs can only be done
using SNPs genotyping arrays or direct sequencing. The
whole-genome resequencing or de novo genome assembly
using the next or third generation sequencing technologies
will oVer an almost complete solution to detecting most of
the genetic variations including ROHs within the human
genome. However, these high-throughput sequencing tech-

nologies were not readily available until recently, and the
cost is still prohibitively expensive to sequence the whole
human genome in a population-based study (Mardis 2008;
Metzker 2010). As a result, SNPs genotyping arrays are the
main tools for ROH mapping. The SNPs data can be used
in two diVerent ways to detect the ROHs. The Wrst approach
is to screen the whole genome in a sliding window manner
for consecutive SNPs showing homozygotes over a certain
length such as 1 Mb, as implemented in PLINK (Purcell
et al. 2007). Since this approach only uses genotype data, it
is unable to distinguish between true homozygosity and the
spurious homozygosity caused by one-copy deletion with-
out further investigations of CNVs in the samples.

This limitation has been overcome by the second
approach which relies on the signal intensity data. Two
types of signal intensity data are generated by the SNPs
genotyping array: (a) the total signal intensity or log R ratio
(LRR) and (b) the allelic intensity ratio or B allele fre-
quency (BAF). The combination of LRR and BAF can be
used to determine several diVerent states of copy numbers
such as homozygous and hemizygous deletions, and one-
copy and two-copy duplications, and ROHs as imple-
mented in the PennCNV algorithm. The BAF is needed to
diVerentiate between ROH from normal diploid copies and
one-copy deletion (Wang et al. 2007). Figure 1 illustrates
the diVerence in LRR and BAF patterns between ROH and
one-copy deletion. For the one-copy deletion, there is a
decrease in LRR in addition to the absence of heterozygosity
as shown in the BAF panel. Conversely, no reduction in
LRR will be seen for ROH, but the absence of heterozygosity
is observed. Most of the genome-wide studies of ROHs
have used SNPs genotyping arrays. In comparison, the
commonly used oligonucleotide-based CGH arrays in
detecting CNVs produced only total signal intensity data.
This renders them unable to be used for identifying ROHs.

In addition to the most commonly used PLINK software
for detecting and analyzing ROHs (Table 1), other methods
have also been recently developed for these purposes
(Seelow et al. 2009; Browning and Browning 2010; Polasek
et al. 2010). The development of powerful and accurate
tools or methods for the detection and analysis is a prereq-
uisite for the success of research into ROHs. Furthermore,
new algorithms to identify disease-related segments based
on homozygosity using case–control data have also been
developed. This will enhance studies to identify ROHs that
diVer between cases and controls, as these regions may con-
tain recessive variants underlying the diseases (Wang et al.
2009). All the ROHs detection methods have their own
strengths and limitations with varying rates of false-
positive and false-negative results and as such, a combina-
tion of methods would be more ideal to minimize these
limitations.
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Mechanisms generating ROHs

Several mechanisms and factors have been postulated to
explain the high frequency of ROHs in the human genome
namely, parental consanguinity, uniparental isodisomy and
the presence of ‘common extended haplotypes’. One of the
most common and well established mechanisms leading to
ROHs of several megabases is parental consanguinity, in
which the oVspring inherits chromosomal segments that are
identical-by-descent from each parent. Published data has
shown that the number of ROHs of several megabases
increased markedly in the oVspring of consanguineous mar-
riages (Li et al. 2006; Woods et al. 2006) with up to 6% of
homozygosity anticipated in the genome of the oVspring of
Wrst cousin marriages (Broman and Weber 1999). Li et al.
(2006) showed that in a family with 4 children from Wrst
cousin marriages, multiple ROHs ranging from 3.06 to
53.17 Mb were observed in all the children. Woods et al.
(2006) also showed a marked increase in homozygosity
levels in individuals with a recessive disease whose parents
were Wrst cousins, where 11% of their genomes were homo-
zygous on average. Additionally, the cumulative length of
ROHs per genome was found to be larger in two isolated
rather than in two more cosmopolitan (non-isolated) Euro-
pean populations (McQuillan et al. 2008). Therefore, when
compared to outbred populations, there is an expected
increase in the level of homozygosity or number of ROHs
in populations where consanguineous marriages are preva-
lent, as well as in isolated populations where limited ran-
dom mating or a restricted mate choice has taken place.
However, this is unlikely to be the main factor responsible
for the high frequency of ROHs in outbred populations in
which parental consanguinity is uncommon.

Another widely discussed mechanism is cytogenetic
abnormalities such as uniparental disomy, which can be
divided into uniparental isodisomy and uniparental hete-
rodisomy. Only uniparental isodisomy can cause homozy-
gosity as the oVspring inherits two identical copies of a
homologous chromosomal segment from only one parent.
As a result, no heterozygosity would be observed in that
particular homologous chromosomal segment (Ting et al.
2007). Similarly, this is also an unlikely explanation for
the abundance of ROHs reported in the literature; given
that uniparental disomies are rare genetic abnormalities
that can cause severe and rare genomic disorders when
their locations aVect imprinted genes. Examples of these
disorders are Prader–Willi Syndrome, Angelman Syn-
drome and Silver–Russell syndrome (Gurrieri and Acca-
dia 2009; Van Buggenhout and Fryns 2009; Abu-Amero
et al. 2008). This is further supported by previous studies
concluding that the ROHs are not due to genetic abnor-
malities as no excess apparent deviation from Mendelian
transmission was observed. More speciWcally, transmis-T
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sion errors occur more rarely in ROHs than would be
expected by chance as shown by the observed number of
Mendelian transmission errors within a ROH which is less
than the expected number (Curtis 2007). Since this study
has clearly demonstrated that the ROHs are not usually
due to cytogenetic abnormalities, it then indirectly sup-
ports the presence of common extended haplotypes as the
mechanism contributing toward the high frequency of
ROHs in human genomes.

The presence of common extended haplotypes therefore
becomes the most likely factor responsible for the high fre-
quency of ROHs which are passed on from both parents to
the oVspring in the genomes of outbred populations. Data
demonstrating the co-occurrence of ROHs in regions with
extensive LD and low recombination rates also support the
hypothesis of common extended haplotypes in generating
homozygosity in the genomes of outbred populations
(Gibson et al. 2006; Curtis et al. 2008). A further process
believed to be driving the increasing frequency of common
extended haplotypes is positive selection. ROHs resulting
from common extended haplotypes may be indicative of
positive selection pressure of functional importance of
these regions. Several methods have been used to quantify
the positive selection pressure on ROHs namely, the inte-
grated haplotype score (iHS), Tajima’s D test and the Fixa-
tion index (FST). Numerous large (several megabases) and
common (>25%) ROHs were found to have high values for

these metrics indicating the signal for positive selection
(Enciso-Mora et al. 2010; Hosking et al. 2010).

Genome-wide mapping of ROHs in the human genome

It was not previously expected that the genomes of outbred
populations contain ROHs of several megabases until the
Wrst few early reports in 2006 and 2007 (Gibson et al. 2006;
Li et al. 2006; Simon-Sanchez et al. 2007). One study
found ROHs of >5 Mb in 26 of the 272 unrelated samples
assessed (Simon-Sanchez et al. 2007). Similarly, another
study performed in Han Chinese also observed the high fre-
quency of ROHs, where 34 of the 515 unrelated individuals
contained ROHs ranging from 2.94 to 26.27 Mb (Li et al.
2006). While Gibson et al. (2006) studied the samples from
the International HapMap Projects and identiWed 1,393
ROHs exceeding 1 Mb in 209 unrelated HapMap individu-
als. Several hundreds of ROHs were found in each of the
HapMap populations, and the average number of ROHs
(>1 Mb) per individual was found to be lowest in the
Yoruba Ibadan Nigerian (YRI) population compared to other
populations within the HapMap Phase I Project (Gibson
et al. 2006). In addition to demonstrating that ROHs are
remarkably common, even in the unrelated individuals
from the apparently outbred populations, Gibson et al.
(2006) also demonstrated the value of including diverse

Fig. 1 Plots of the diVerences in the LRR (Log R Ratio) and BAF (B
Allele Frequency) patterns for the ROH (left panels) and one-copy
deletion (right panels) generated from a sample derived from our pre-
vious study (Ku et al. 2010b) and genotyped by the Illumina 1 M Bead-
chip. The ROH and one-copy deletion were detected using the LRR
and BAF information by PennCNV algorithm (LRR: total Xuorescent
intensity signals from both sets of probes/alleles at each SNP, BAF: the
relative ratio of the Xuorescent signals between two probes/alleles at

each SNP) (Wang et al. 2007). The size of the ROH is approximately
1.06 Mb (1,064,933 bases) spanning from 125374832 to 126439764 in
chromsome 2. This region contains 246 markers. The size of the one-
copy deletion is approximately 250 kb (250,186 bases) spanning from
23994408 to 24244593 in Chromosome 22. This region contains 101
markers. The regions aVected by the ROH and one-copy deletion were
shaded and the blue dots represent markers in the genotyping array
123
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populations to examine the diVerences in ROHs. In the YRI
population, the samples have the least number of ROHs per
individual. This Wnding is expected, because the popula-
tions of African ancestry are older in human history and
hence have more generations and a higher number of
recombination events than other populations (recombina-
tion occurs during meiosis in each generation). Recombina-
tion is one of the important processes to interrupt the long
continuous ROHs into smaller segments over the genera-
tions. Population diVerences in ROHs have also been well
documented in other studies (Nothnagel et al. 2010).

Each of the previous studies identiWed a diVerent number
of ROHs per individual (Li et al. 2006; Nothnagel et al.
2010; McQuillan et al. 2008; Nalls et al. 2009b; Curtis
et al. 2008). These diVerences are likely reXective of tech-
nical and methodological variations such as diVering geno-
typing platforms or SNPs data, diVering deWning criteria
and diVering analytical techniques used. Both the genotyp-
ing platform and deWning criteria can signiWcantly inXu-
ence the proWle of ROHs by way of number, size,
cumulative length and genomic distributions. Slight altera-
tions in deWning criteria can substantially aVect the number
of ROHs detected and as a result comparisons between
studies are diYcult. Therefore, it is critical to develop a set
of standardized criteria in identifying ROHs and to estab-
lish a database to catalog these regions in the human
genome from published studies, similar to other databases
developed for SNPs and structural variants (CNVs) such as
the dbSNP and Database of Genomic Variants, respectively
(Day 2010; Iafrate et al. 2004). This database will enable
researchers to quickly compare their results with published
data. Consensus on deWning the ROHs and the construction
of a database to serve as a reference will help in expediting
research in ROHs.

LD-pruning of SNPs in mapping of ROHs

The SNPs genotyping data is undoubtedly invaluable for
identifying ROHs. However, there is an issue of whether
pruning the list of SNPs to remove local LD (i.e. to remove
SNPs that are in strong LD) should be done before the data
can be used for ROHs. The idea of LD-pruning of SNP data
is that the LD between the SNPs can inXate the chance of
occurrence of biologically meaningless ROHs. However,
there are still uncertainties with regards to the LD-pruning
step such as the optimal cutoV of LD (measured by r2) to be
used, although some studies have used the conventional
and arbitrary cutoV of r2 > 0.8. More importantly, it is
unclear about the quality and performance in terms of sen-
sitivity and speciWcity for mapping ROHs using LD-prun-
ing SNPs data compared to data without the LD-pruning
step. This is an interesting research subject worth pursuing

and studies should be done to assess the importance of this
LD-pruning step. However, unless signiWcant diVerences in
the sensitivity and speciWcity are shown using LD-pruning
SNP data, the LD-pruning step may not necessarily be
needed.

Some of the studies using whole-genome SNPs genotyp-
ing arrays have omitted the LD-pruning step before the data
was used for mapping ROHs, even though Gibson et al.
(2006) used the SNP data from the International HapMap
Project where the LD information is readily available.
However, others have taken the LD between SNPs into
account and used the pairwise LD SNP pruning function in
PLINK, with a default value of r2 > 0.8 (Enciso-Mora et al.
2010; Hosking et al. 2010). For example, one study found
370,611 separate tag groups which is a 27.6% reduction of
information compared with the original number of SNPs.
To account for this, the study adopted a more stringent
cutoV of a minimum of 80 consecutive SNPs (instead of 58)
to identify ROHs (Enciso-Mora et al. 2010). Similarly
Lencz et al. (2007) also took into consideration the LD
between the SNPs through setting a more stringent thresh-
old of 100 consecutive SNPs that are homozygous. In com-
parison, another study removed SNPs in LD with r2 < 0.1
leaving only 30,307 SNPs to form the ‘low-LD panel’ for
some analyses (Spain et al. 2009). Although these studies
have taken LD between SNPs into account, it is unclear
whether an improvement in sensitivity and speciWcity was
achieved by implementing this LD-pruning step since no
evaluation was done to directly compare the diVerences
between the ROHs proWle with and without the LD-pruning
step. Therefore, the LD-pruning step is conceptually cor-
rect; however to warrant this step to be performed in future
genome-wide mapping of ROHs, more published data dem-
onstrating its advantages is needed.

Implications on complex diseases and traits

Many novel pathogenic genes or mutations underlying
autosomal recessive disorders have been identiWed
through homozygosity mapping. This approach has been
shown to be powerful and is particularly useful in investi-
gating autosomal recessive disorders especially in popula-
tions with a high prevalence of consanguinity. This is
evident from the enormous number of studies identifying
causal mutations for autosomal recessive disorders in con-
sanguineous families (Abu SaWeh et al. 2010; Harville
et al. 2010; Walsh et al. 2010; Pang et al. 2010; Lapunz-
ina et al. 2010; Nicolas et al. 2010; Uz et al. 2010; Iseri
et al. 2010; Collin et al. 2010). However, the Wrst study
applying the homozygosity association approach at the
genome-wide scale for complex diseases only appeared
in 2007 (Lencz et al. 2007). Table 1 summarizes the
123
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genome-wide ROH association studies of complex pheno-
types using high-density genotyping arrays.

The ‘homozygosity analysis’ has been shown to be use-
ful for the identiWcation of disease susceptibility genes in
both monogenic and complex diseases (Miyazawa et al.
2007; Jiang et al. 2009). The eVects of inbreeding or con-
sanguinity and recessive variants or heterozygosity levels
on the risk of complex phenotypes (diseases and quantita-
tive traits) have been previously well established (Rudan
et al. 2003a, 2003b, 2006; Campbell et al. 2007). A strong
linear relationship between the inbreeding coeYcient and
blood pressure was found and several hundred recessive
loci were predicted as contributing to blood pressure vari-
ability. Recessive or partially recessive genetic variants
account for 10–15% of the total variation in blood pressure
(Rudan et al. 2003a). Higher levels of relative heterozygos-
ity were shown to be associated with lower blood pressure
and total and low-density lipoprotein cholesterol by mea-
suring genome-wide heterozygosity (Campbell et al. 2007).
In addition to quantitative traits, inbreeding was also found
to be a signiWcant positive predictor for a number of late-
onset complex diseases such as coronary heart diseases,
stroke, cancer and asthma (Rudan et al. 2003b). These stud-
ies have strongly supported the hypothesis that the genetics
of complex phenotypes include a component of recessively
acting variants; however, these studies did not directly
investigate the associations of complex phenotypes with
ROHs detected using polymorphic markers.

Although the information regarding the extent of ROHs
in the human genome is still limited compared with SNPs,
indels and CNVs, their potential impact on complex dis-
eases and traits could also be signiWcant as other genetic
variations. The importance of ROHs to complex pheno-
types remains largely unexplored; however, several studies
have shown signiWcant diVerences in ROHs between cases
and controls in a genome-wide investigation for schizo-
phrenia (Lencz et al. 2007), late-onset Alzheimer’s disease
(Nalls et al. 2009a) and height (Yang et al. 2010b). The
idea underlying the homozygosity association approach is
to uncover recessive variants contributing to complex phe-
notypes. The success of this approach has been demon-
strated in several studies. Nine common ROHs signiWcantly
diVerentiated schizophrenia cases from controls. More
interestingly, four of the regions contained or were located
near to the genes that are known to be associated with
schizophrenia such as NOS1AP, ATF2, NSF, and PIK3C3
(Lencz et al. 2007). This proof-of-principle study has dem-
onstrated the applications of the whole-genome homozy-
gosity association approach in identifying genetic risk loci
for complex phenotypes and it represents an alternative and
new avenue in addition to SNPs analysis.

Similarly in a large-scale association study involving
837 late-onset Alzheimer’s disease cases and 550 controls,

one ROH on chromosome 8 was identiWed, and three of the
genes (STAR, EIF4EBP1 and ADRB3) in the region are bio-
logically plausible candidates (Nalls et al. 2009a). Success
was also achieved for complex quantitative traits such as
height (Yang et al. 2010b), where strong statistical evi-
dence showing association of one ROH with height was
obtained in a total sample size of >10,000 in both the
genome-wide discovery and replication studies. The height
of individuals with the particular ROH was signiWcantly
higher (increased by 3.5 cm) than the individuals without
the region. The identiWcation of this ROH added further
support to the contribution of recessive loci to adult height
variation (Kimura et al. 2008; Xu et al. 2002). Nonetheless,
other studies produced negative results, as no evidence of
homozygosity was found for bipolar disorder (Vine et al.
2009).

To date, the results showing the association between
homozygosity with various cancers are also controversial
(Hosking et al. 2010; Assié et al. 2008; Enciso-Mora et al.
2010). For example, two studies investigating the homozy-
gosity in colorectal cancers derived an opposing conclusion
which is likely due to the diVerences between the two studies
such as the sample sizes, the density of genotyping platforms
and the analysis (Bacolod et al. 2008; Spain et al. 2009).
Although studies have found statistically negative results
after imposing the stringent Bonferroni correction for multi-
ple-testing, a number of ROHs warrant further investigation
as these regions overlapped with biologically plausible genes
for the phenotypes. One ROH was found to encompass the
gene encoding erythropoietin receptor (EPOR) protein.
Over-expression of this protein has been documented in
acute lymphoblastic leukemia (Hosking et al. 2010).

Many reasons can be speculated for the inconsistencies
as to why associations of ROHs were only found in some
diseases or studies but not others. This could also indicate
that the eVects of homozygosity on the risk of complex phe-
notypes may be disease or trait-dependent, for example
some quantitative traits have shown signiWcant variance
due to recessive alleles such as systolic blood pressure,
total cholesterol and low-density lipoprotein cholesterol.
This implies that the eVects of homozygosity may be
greater in inXuencing the variation of these traits than oth-
ers (Campbell et al. 2009). On the other hand, it could also
be population-dependent since diVerences in homozygosity
between populations have been documented. Although a
number of genome-wide homozygosity association studies
have been performed, the optimum study design or analysis
methods for assessing the associations or eVects of ROHs
on the disease risk has not yet been well established. This
is, however, vital before breakthrough discoveries can be
made in this research area.

The idea for using the homozygosity association
approach to dissect the genetics of complex phenotypes is
123
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to reveal the recessive loci that only express their eVects (or
increase the risk of complex diseases) in the presence of
two deleterious recessive alleles, in a recessive disease
model. In addition to autosomal recessive disorders, com-
plex diseases can also be aVected by recessive variants. The
conventional single-SNP analysis approach applied in
GWAS may not be statistically powerful enough to identify
recessive alleles with small eVect sizes and moreover, the
recessive model is not usually tested. Until the eVect of
homozygosity on complex phenotypes is better understood,
it is premature to make any conclusions, as the Weld is still
in its infancy compared to association studies between
SNPs and CNVs for complex diseases and traits. However,
collectively these studies have demonstrated the feasibility
of using the homozygosity association approach to identify
susceptibility loci for complex phenotypes and have pro-
duced encouraging results. This also further underscores
the need to further investigate and catalog the extent of
ROHs in diVerent populations. Similar to the other genetic
variations, ROHs have the potential of becoming the
genetic markers in GWAS. In fact, homozygosity mapping
has been commonly used to identify the loci for recessive
diseases in consanguineous families.

Strengths and shortcomings of genome-wide 
homozygosity association studies

From the statistical analysis point of view, the advantage of
the genome-wide homozygosity association approach is
that it suVers lesser penalty from Bonferroni correction for
multiple-testing as signiWcantly fewer ROHs are involved
compared to the number of SNPs tested in GWAS. Thus, it
needs a less stringent p value cutoV to declare genome-wide
signiWcance. Thus, the genome-wide ROHs association
approach has a higher statistical power or requires a fewer
number of samples in the studies than the ‘conventional
GWAS’.

GWAS is an indirect approach that relies on LD to iden-
tify the causal variants, thus the results from GWAS are
pinpointing genetic loci rather than revealing the causal
variants directly (Wang et al. 2005; Hirschhorn and Daly
2005). Similarly in genome-wide homozygosity association
studies, one or more ROHs are identiWed as susceptibility
risk loci rather than revealing the actual recessive variants
causing the disease. For example, the homozygous consen-
sus region in chromosome 8 was found to be associated
with late-onset Alzheimer disease contains seven genes.
However, the number of recessive variants within these
genes or this region responsible for this 'statistical associ-
ation signal' and which are functionally important in caus-
ing the diseases is unknown (Nalls et al. 2009a). The
approaches to be taken from identifying the disease or

trait-associated ROHs to locating the functional recessive
variants is also unclear. Moreover, the sizes of ROHs are
many folds larger than the LD blocks detected by conven-
tional SNP analysis in GWAS, thus making the Wne mapping
of recessive variants harder. Therefore, the genome-wide
association of ROHs, at best, can only pinpoint to a rela-
tively large region harboring as yet to be identiWed
recessive variants.

One common issue and problem in case–control associa-
tion studies of CNVs and ROHs is how to construct the
common CNV and ROH regions in the Wrst place. This step
is required to group the individual CNVs or ROHs into a
common and discrete region. Similar to CNVs, it is unclear
how to partition the individual ROHs into ROH groups so
that the frequencies can be used for association analysis.
This represents an important analytical challenge in these
studies. Genome-wide studies investigating the association
of common CNVs with complex phenotypes have so far
yielded limited successes (Wellcome Trust Case Control
Consortium 2010). As for ROHs, diVerent studies have
used their own methods to deWne ROH groups as no stan-
dardized criteria are available. Alternatively this step can be
easily performed as the individual ROHs can be divided
into diVerent ROH groups by using the ‘homozyg-group’
command in the ‘Runs of Homozygosity’ program in
PLINK. As a result, each ROH group is actually the over-
lapping region among all the individual ROHs in the group
i.e. the consensus region (the region shared by all overlap-
ping ROHs) (Fig. 2). Using this approach, Yang et al.
(2010b) identiWed 3,322 ROH groups containing more than
50 individual ROHs. While Nalls et al. (2009a) identiWed
1,090 consensus regions from overlapping ROHs, but each
consensus region was found in 10 or more individuals.

Besides identifying the ROH groups for association
analysis, attempts were also made to compute other
parameters such as the total length of the genome com-
prised by ROHs (the sum of the length of all ROHs), average
length of each ROH (the total length divided by the number
of ROHs) and the number of ROHs per individual and

Fig. 2 Schematic diagram illustrating the ROH group or consensus
region (shadowed rectangle) of several individual ROHs (blue line).
Only 8 individual ROHs are shown for illustrative purposes with each
individual ROH extending in both directions from the consensus
region

ROH group/consensus region
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compare these parameters between cases and controls.
Nonetheless, no signiWcant result was observed for late-
onset Alzheimer disease (Nalls et al. 2009a). Likewise, no
signiWcant diVerence was found in the average number of
ROHs between acute lymphoblastic leukemia, breast and
prostate cancers with their controls (Hosking et al. 2010;
Enciso-Mora et al. 2010).These analyses may not be very
fruitful and have a limited interpretation. Even though sig-
niWcant results were obtained for all the three parameters,
the Wndings are not informative in pointing to speciWc
ROHs that are important to the disease. It can only be con-
cluded that the overall extent of homozygosity is signiW-
cantly greater in cases compared to controls and thus some
recessive variants may be predisposed to the disease risk.

Conclusions

Published data have conclusively demonstrated the high
frequency of ROHs in the genomes of outbred populations,
and previous studies have also successfully unraveled the
associations between ROHs and several complex pheno-
types such as schizophrenia, late onset Alzheimer’s dis-
eases and height. These studies have shown the promise of
the homozygosity association approach in identifying
recessive loci for complex phenotypes. However, to what
extent this approach contributes toward dissecting the
genetics of complex phenotypes is yet to be determined.
The analysis of ROHs is now feasible and convenient given
the readily available high-density SNPs genotype data and
the powerful detection tools such as the PLINK and Penn-
CNV algorithms. Cataloging ROHs in diVerent populations
is important, as it lays the foundation for exploring the
recessive variants for complex phenotypes.

Currently, the results from GWAS focusing on SNPs
analysis alone, explains only a small fraction of the heritabil-
ity of complex phenotypes (Manolio et al. 2009). Several rea-
sons accounting for the missing heritability have been
postulated (Eichler et al. 2010). The missing heritability has
challenged the validity of the common-disease common vari-
ant (CD/CV) hypothesis (Schork et al. 2009), and has also
diverted the research focus to rare variants (Bodmer and
Bonilla 2008; Gorlov et al. 2008; Dickson et al. 2010). How-
ever, more recent studies have shown that common variants,
or more speciWcally common SNPs, can explain a greater
proportion of the heritability than what has been accounted
for by GWAS done to date. These SNPs, however, are hid-
den within the GWAS data, and require larger sample sizes
to be discovered (Yang et al. 2010a; Park et al. 2010b). The
homozygosity association approach will oVer an additional
avenue to discovering genetic risk loci that may be missed by
the conventional SNPs analysis in GWAS. The homozygos-
ity analysis can be ‘easily’ performed using the SNPs

genotype data and the available detection algorithms, and
this is also in line with the ethos of maximizing the informa-
tion from the GWAS dataset. However several issues and
problems still remain as has been discussed.

The power of the homozygosity mapping approach in
identifying genes and mutations for autosomal recessive
disorders has been previously shown, but currently avail-
able data is limited in order to evaluate the success of this
approach when applied to complex phenotypes. Hence
more studies are needed in the future. Finally we advocate
the use of the homozygosity association approach as an
additional method of identifying loci harboring recessive
variants for complex diseases and traits, which may have
been undetected when conventional SNPs analysis was per-
formed alone. The success of this approach has been dem-
onstrated in several complex phenotypes applying the
approach. The results so far are encouraging enough to war-
rant further studies on ROHs to investigate their impacts on
complex phenotypes.

Cataloging the ROHs in human genomes and investigat-
ing their associations with complex phenotypes should
build on the existing GWAS data and these are important
areas to pursue in future. The contribution and the role of
ROHs in complex phenotypes have been considerably
neglected in GWAS; therefore we encourage researchers to
explore the associations of ROHs with various phenotypes
using their existing SNP data. As the high-density SNPs
genotype data have already been generated by several hun-
dred GWAS, the studies of ROHs should be relatively
uncomplicated. The availability of these SNP datasets will
facilitate the assessment of the roles that ROHs have in
complex phenotypes.
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A new era of copy number variants (CNVs) discovery

began when two separate studies, published concurrently

in 2004, identified several hundred deletions and dupli-

cations in the human genome. Over the past several years,

most of the CNV data were generated by microarrays.

These methods have several shortcomings, such as the

inability to detect copy-neutral variants (e.g. inversions

and translocations), limited sensitivity to detect smaller

CNVsandpoorresolution in determiningCNVbreakpoints

especially with lower resolution microarrays. A paradigm

shift in the discovery of copy-neutral variants was attrib-

uted to the development of a sequencing-based method

known as paired-end mapping. This method was first

demonstrated to be powerful in detecting structural

variants using next-generation sequencing technologies

in 2007. Further studies have also leveraged an important

feature of sequencing data, where several hundred mil-

lion short sequence reads are produced by next-gener-

ation sequencers, to detect CNVs based on the abundance

or density of the sequence reads aligned to a reference

genome. This approach is known as depth-of-coverage.

These emerging sequencing-based methods will continue

playing an important role in the discovery of structural

variants until de novo genome assembly becomes more

feasible.

Introduction

A new era of copy number variants (CNVs) discovery
began when two separate studies, published concurrently
in 2004, identified several hundred deletions and dupli-
cations in the human genome (Sebat et al., 2004; Iafrate
et al., 2004). However, these genetic abnormalities were
documented decades ago in clinical cytogenetics studies
and found to cause various genomic or cytogenetic dis-
orders (Lee et al., 2007). The distinguishing feature of the
recent studies were that these CNVsweremore prevalent in
the human genome than expected. These changes in copies
number also did not result in any apparent phenotype or
disorder and these regions of variable copies were found in
the genomes of phenotypically normal individuals (Sebat
et al., 2004; Iafrate et al., 2004). As these submicroscopic
(53–5Mb) deletions and duplications are beyond the
detection limit of traditional cytogenetics tools such as
molecular fluorescence in situ hybridisation (FISH), these
recent discoveries can be credited to the use of whole gen-
ome microarray technologies (Carter, 2007). See also:
Copy Number Variation in the Human Genome; Genetic
Variation: Human; Relevance of Copy Number Variation
to Human Genetic Disease

Whole Genome Microarray and
Sequencing Technologies and Their
Progress

The early whole genome microarray studies discovered
several hundred CNVs (Sebat et al., 2004; Iafrate et al.,
2004), for example, Sebat et al. (2004) detected a total of
221 CNVs in 20 individuals with an average CNV length
of 465Kb.However, it waswidely believed that the number
of CNVs detected is likely to be underestimated. These
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studies used ‘low-resolution’ microarrays such as ROMA
(representational oligonucleotide microarray analysis)
containing 85 000 probes with a resolution of approxi-
mately one probe for every 35Kb (Sebat et al., 2004) and
the BAC-CGH (bacterial artificial chromosome-com-
parative genomic hybridisation) array with a resolution of
approximately one probe for every 1Mb (Iafrate et al.,
2004). Furthermore, these studies investigated a small
sample size of only tens of individuals which limits the
detection of less common CNVs. CNVs smaller than 50–
100Kb will also not be detected as their size is below the
resolution limits of these microarrays. Thus, both the
sample size and the resolution of microarray are critical
factors in determining the discovery of less common and
smaller CNVs.

A later study by Tuzun et al. (2005) showed that
approximately 85%of the 297 identified structural variants
(139 insertions, 102 deletions and 56 inversions) were not
detected by earlier studies. However, this study used a
sequencing-based method, where the fosmid paired-end
sequences were sequenced, instead of microarrays. Many
of the structural variants that are being identified using this
sequencing-based method are beyond the resolution limit
of ROMA and the BAC-CGHmicroarrays. Inversions are
also undetected by microarrays (Tuzun et al., 2005; Sebat
et al., 2004; Iafrate et al., 2004). The discovery of many
novel structural variants is likely due to the difference
between the resolution of sequencing- and microarray-
based methods in detecting structural variants.

The contribution of CNVs as a significant source of
genetic variation in human populations has since been
appreciated despite the limitations usingmicroarrays. This
is evident from the enormous amount of interest and efforts
generated towardsmapping CNVs in different populations
(Redon et al., 2006; Zogopoulos et al., 2007; Wong et al.,
2007). The first comprehensive mapping of CNVs in the
270 samples from the International HapMap I Project was
completed in 2006 (Redon et al., 2006). ‘Human Genetic
Variation’ was then recognised as the ‘Breakthrough of
The Year’ in 2007 by the journal Science. This was partly
accomplished due to the significant progress made in the
research of CNVs in addition to the numerous single
nucleotide polymorphisms (SNPs) identified by genome-
wide association studies for complex phenotypes (Pennisi,
2007). The limitations of ROMA and the BAC-CGH
arrays have been overcome in later studies by using higher
resolution microarrays and larger sample sizes of several
hundred samples (McCarroll et al., 2008; Matsuzaki et al.,
2009; Conrad et al., 2010; Park et al., 2010;Yim et al., 2010;
Ku et al., 2010). For example, a set of 20 high-resolution
oligonucleotide-CGHmicroarrays comprised of 42million
probes with amedian spacing of 56 bases was designed and
used by Conrad et al. (2010) in mapping CNVs in the
HapMap samples (Conrad et al., 2010). Other studies have
also used the highest resolution SNP microarrays that are
commercially available such as the Affymetrix SNP Array
6.0 and the Illumina Human 1M BeadChip (McCarroll
et al., 2008; Ku et al., 2010).

Other types of chromosomal rearrangements, particularly
inversions and balanced translocations, have received rela-
tively less attention (Feuk et al., 2006; Feuk, 2010; Stankie-
wicz and Lupski, 2010). Inversions and translocations are
also known as ‘copy-neutral variants’ or ‘balanced
chromosomal rearrangements’ and do not involve changes
in copies number (or losses or gains of deoxyribonucleic acid
(DNA) sequences). Collectively these copy number and
copy-neutral variants are broadly classified as ‘structural
variants’. The genome-wide mapping or detection of CNVs
in different populations has advanced considerably since
2004 and was driven mainly by high-resolution microarray
technologies such as oligonucleotide-CGH and SNP
microarrays. In contrast, the pace in identifying inversions
and translocations in the human genome has been slower as
morepowerful and effectivemethodswere not available until
the advent ofnext-generation sequencing (NGS) technologies
(Mardis, 2008; Shendure and Ji, 2008; Metzker, 2010).
Although sequencing-based methods such as paired-end

mapping (PEM), which uses cloning and Sanger sequencing
methods to sequence the fosmid paired-end sequences, have
been shown to be powerful in identifying copy-neutral vari-
ants, this method is laborious and expensive (Tuzun et al.,
2005). Even with the arrival of NGS technologies, PEM has
still not as yet been applied in population-based studies
(Korbel et al., 2007), as opposed to microarrays which are
commonly applied to several hundred or thousand samples
for CNV detection. However, it is foreseeable in the near
future that sequencing-based methods will eventually be
routinely andwidely applied in large-scale population-based
studieswhen the costof sequencingbecomesmoreaffordable
and the challenges in the analysis have been addressed.
The mechanisms that generate structural variants such

as nonallelic homologous recombination and non-
homologous end joining are beyond the scope of this article
(Hastings et al., 2009). Similarly, genome-wide detection of
CNVs in population-based studies and the population
characteristics of CNVs or structural variants, and their
associations with various complex diseases or genomic
disorders have been reviewed extensively in several excel-
lent review papers (Conrad and Hurles, 2007; McCarroll
and Altshuler, 2007). This article will focus on the new and
emerging research on structural variants using high-
throughput sequencing technologies (Mardis, 2008; Shen-
dure and Ji, 2008; Metzker, 2010; Schadt et al., 2010;
Gupta, 2008). We also discuss the relative strengths and
weaknesses of sequencing-based approaches in com-
parison to microarrays, and elucidate the potential
approaches for a more comprehensive and thorough
detection of structural variants in the human genome
before de novo genome assembly becomes more practical
(Li et al., 2010a, b; Paszkiewicz and Studholme, 2010).

Microarray-based Methods

Over the past few years, most of the CNV data were gen-
erated by CGH and SNP microarrays where fluorescence
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signal intensity information was used to detect deletions
and duplications. These microarrays are highly accessible
and affordable for population-based studies. Additionally,
the analysis methods and tools for detecting CNVs using
microarray data have been well-developed (Wang et al.,
2007; Korn et al., 2008). This has enabled studies of
population characteristics of CNVs in many different
populations (McCarroll et al., 2008;Matsuzaki et al., 2009;
Yim et al., 2010; Ku et al., 2010). However, because of the
reliance on the relative or difference in signal intensity
compared to a reference in inferring regions with copy
number changes, this has hindered microarrays from
detecting copy-neutral variants (Carter, 2007). Further-
more, due to the limitations inmarker density or resolution
of microarrays used in the previous studies, these methods
had poor sensitivity to detecting smaller CNVs (550Kb)
(Redon et al., 2006). However, the ability to detect smaller
CNVs is critical as they are known to be more numerous
than the larger CNVs (Estivill and Armengol, 2007). The
accuracy in determining the sizes or breakpoints ofCNVs is
highly dependent on the resolution of the microarrays as
the sizes of CNVs found by previous studies were fre-
quently over-estimated. It is notable that 88% of 1153
CNV loci were smaller than sizes reported in the Database
of Genomic Variants and that a reduction of450% in size
was observed for 76% of the CNV loci (Perry et al., 2008).

The latest developments in SNP microarrays such as an
increase inmarker density anduniformity of distribution in
the genome and copy number probes to cover regions with
sparse SNPs have improved the sensitivity of microarrays.
Nonetheless, these SNP microarrays still lack the sensi-
tivity todetectCNVs smaller than 5–10Kbevenwith use of
the highest resolution microarrays such as the Illumina
Human 1M Beadchip and the Affymetrix SNP Array 6.0
(McCarroll et al., 2008; Cooper et al., 2008). Although
designing a set of high-resolution CGH microarrays com-
prising tens of millions of probes offers an unprecedented
resolution, this method is more costly for several hundred
samples (Conrad et al., 2010). However, these improve-
ments inmicroarrays are still unable to detect copy-neutral
variants. Thus, developments of other methods that can
overcome the limitations of microarrays and simul-
taneously detect both CNVs and copy-neutral variants are
needed.

Sequencing-based Methods

Several previous studies have used sequencing data to
detect structural variants. For example, a study by Feuk
et al. (2005) discovered regions that are inverted between
the chimpanzee and human genomes by performing a
comparative analysis of their DNA sequence assemblies.
This study identified approximately 1600 putative regions
of inverted orientation in the genomes (Feuk et al., 2005),
whereas Khaja et al. (2006) identified various types of
genetic variants, including structural variants, through
comparison of two human assemblies (Khaja et al., 2006).

However, the paradigm shift in the discovery of copy-
neutral variants was attributed to the development of the
PEM and concurrent advances in NGS technologies
(Korbel et al., 2007). The PEM method has also contrib-
uted greatly to the discoveryofCNVs in thehumangenome
(Wang et al., 2008; Ahn et al., 2009). See also: Comparing
the Human and Chimpanzee Genomes; Human Genome
Project: Importance in Clinical Genetics; Sequencing the
Human Genome: Novel Insights into its Structure and
Function
Further studies have also leveraged on an important

feature of sequencing data generated by NGS technologies
where several hundred million short sequence reads are
produced per instrument run to detect CNVs. It is based on
the abundance or density of the sequence reads aligned to
the reference genome. This approach is known as depth-of-
coverage (DOC) and is similar to microarray-based
methods in that it is also unable to detect copy-neutral
variants (Yoon et al., 2009). Although de novo genome
assembly is still developing, the established PEMandDOC
methodswill continue toplay important roles in identifying
new structural variants. Table 1 shows the comparison
between microarrays and sequencing-based methods for
detecting structural variants.

Paired-end Mapping

Principle

In the PEM method, a library of DNA fragments with a
fixed insert size is prepared and both ends of the DNA
fragments are sequenced to generate ‘paired-end
sequences’ (the sequences at both ends of the DNA frag-
ments). This sequence information is then aligned against
the reference genome. The underlying principle of PEM to
detect structural variants is reliant on the discrepancy or
discordance in insert size and orientation of the paired-end
sequences being aligned to the reference genome to infer
‘simple’ deletion, insertion and inversion. The use of the
term ‘simple’ is to distinguish from other more complex
structural variants such as ‘everted duplication’, ‘linked
insertion’ and ‘hanging insertion’. Thus, the terms deletion,
insertion and inversion used throughout this paper refer to
the ‘simple’ types unless otherwise specified (Tuzun et al.,
2005; Korbel et al., 2007).
When paired-end sequences that are being aligned to the

reference sequence display discordance from the expected
insert size or distance, this is an indication of deletion and
insertion, whereas discordance in orientation suggests the
presence of inversion (i.e. paired-end sequences are incor-
rectly oriented comparing to the reference genome). Since
the insert size of theDNA fragment library is known, when
paired-end sequences that align to the reference are sub-
stantially shorter than expected, this indicates the presence
of insertion. Conversely, a longer than the expected insert
size suggests the presence of deletion while other more
complicated patterns of discordance when aligning the
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Table 1 Comparison between microarrays and sequencing-based methods for detecting structural variants

Microarraysa PEMb DOC

Principle Based on the relative or
difference in florescence
signal intensity compared

to a reference (one sample
or a set of samples) to infer
CNVs

Based on the discrepancy or
discordance in insert size
and orientation of the

paired-end sequences being
aligned to the reference
genome to infer ‘simple’

deletion, insertion and
inversion

Based on the density of
sequence reads being
aligned to the reference

genome to infer CNVs

Ability to detect CNVs Yes Yes Yes

Ability to detect copy-

neutral variants

No Yes No

Reliably detecting CNVs Multiple or tens of probes Multiple discordant pairs A high density of sequence

reads

Application to population-

based studies

Commonly applied to

several hundred or
thousand samples

Has not yet been applied Has not yet been applied

Sensitivity to detect smaller
CNVs e.g.510Kb

Generally poor, but
depends on the resolution
of themicroarrays, e.g. a set

of oligonucleotide CGH
arrays containing 42
million probes has provided

an unprecedented
resolution

Yes, preparation of several
libraries of different insert
sizes are able to detect

insertions and deletions of
varying sizes, but the
detection of insertions is

limited by the insert sizes

It may not be powerful
enough to detect smaller
CNVs (related to the

strength of DOC signatures
and the coverage of the
sequencing data or the

number of sequence reads)

Sensitivity to detect larger
CNVs

Yes, even low resolution
BAC clone CGH arrays
(with a resolution of

approximately one probe
for every 1 Mb) have been
used to detect CNVs of
several hundred kilobases

to megabases

Yes, however, the detection
of insertions is limited by
the insert sizes, thus

preparation of fosmid or
BAC clone libraries with
larger insert sizes are
needed for detecting larger

insertions

Yes, the DOC signatures
will be stronger for larger
CNVs

Precision in mapping
breakpoints

Generally poor, however, it
can be improved by
increasing the resolution of
microarrays

Good, theoretically the
breakpoints can be mapped
to a single nucleotide
resolution

The precision to map the
breakpoints can be
improved by increasing the
density or coverage of

sequence reads

Role in ‘discovery’ and

‘genotyping’

Can be used as an effective

method to genotype newly
discovered and known
CNVs in population-based

studies

Powerful for discovery of

new structural variants

Discovery of CNVs

especially in regions such as
segmental duplications
where PEM is less effective

Weakness as a result of

technology limitation

Generally have poor signal-

to-noise ratios for
oligonucleotide-CGH and
SNP microarrays

compared to BAC clone
CGH arrays

Short sequence reads are

less specific in aligning
uniquely to the reference
genome especially in

segmental duplications

Sequencing biases may lead

to certain regions of the
genome being over or
under-sampled resulting in

spurious DOC signatures

(Continued )
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paired-end sequences provide hints at more complex
rearrangements or structural variants (Tuzun et al., 2005;
Korbel et al., 2007; Medvedev et al., 2009).

As such, the paired-end sequences are usually classified
as ‘concordant pairs’ or ‘discordant pairs’ and only the
discordant pairs are informative for inferring structural
variants. The presence of both concordant and discordant
pairs spanning a locus suggests a heterozygote state with
respect to the structural variant, for example a deletion
occurs only in one homologous chromosome. In addition,
usually multiple paired-end sequences are needed to reli-
ably infer if a locus is harbouring a structural variant. The
requirement of multiple paired-end sequences spanning a
locus to detect structural variants will reduce the number of
false-positive signals. It will also minimise the false-nega-
tive rate, for example, a heterozygous deletion will be
missed by the presence of one concordant pair. However,
with multiple paired-end sequences, it is more likely that
both the concordant pair and the discordant pair will be
observed to detect the heterozygous deletion. As a result, a
sufficient amount of sequencing is needed to ensure that
there are multiple paired-end sequences spanning across
the genome. This also means that a substantial amount of
sequencing is needed for the PEM method and thus this
method will be more costly using Sanger sequencing com-
pared to NGS technologies (Tuzun et al., 2005; Korbel
et al., 2007; Medvedev et al., 2009).

The detection of structural variants using PEM ‘signa-
tures’ depends on the clustering strategies and criteria used
in the analysis, and the results can be varied for the same
dataset by applying different strategies and criteria.
‘Clustering’ refers to steps to group PEM signatures (e.g.
several discordant pairs) that support the presence of a

structural variant into clusters. As such, clustering will
improve reliability in inferring or predicting structural
variants and also increase the precision in estimating
breakpoints or the sizes of structural variants. The
important criteria to be determined in clustering are (a) the
minimum number of discordant pairs for a cluster and
(b) the number of standard deviations of the insert size to
distinguish between concordant and discordant pairs. The
strategies and criteria used will then affect the sensitivity
and specificity in detecting structural variants (Tuzun et al.,
2005; Korbel et al., 2007; Medvedev et al., 2009).

Physical coverage and mate-pair library

‘Physical coverage’ is important in detecting structural
variants using PEM. Physical coverage measures the
number of fragments spanning a site and this affects the
ability to detect structural variants. It is different from
‘sequence coverage’ which measures the number of
sequence reads that cover a site and this sequence coverage
affects the ability to detect single nucleotide variants or
point mutations. Thus, physical coverage can be increased
by creating a library of larger insert sizes.Whenpreparing a
‘shotgun library’ using standard methods, the sizes of
DNA fragments are usually several hundred bases, with
approximately tens of bases on both ends of the DNA
fragments sequenced using NGS technologies (Meyerson
et al., 2010).
However, the insert size can be increased to several

kilobases by creating a ‘jumping library’ or a ‘mate-pair
library’. Additional steps are involved in preparing amate-
pair library in comparison to a paired-end library, where
both ends of the DNA fragments of several kilobases (e.g.

Table 1 Continued

Microarrays PEM DOC

Scalability of sample
throughput by technology

High sample throughput,
for example, several
hundred samples can be

genotyped by SNP arrays
per week as evident in
genome-wide association

studies

Tens of gigabases of
sequencing data can be
produced per instrument

run in several days by NGS
technologies, and the
sample throughput can be

scaled up by ‘barcoding’ i.e.
labelling the samples by
barcodes

Tens of gigabases of
sequencing data can be
produced per instrument

run in several days by NGS
technologies, and the
sample throughput can be

scaled up by ‘barcoding’ i.e.
labelling the samples by
barcodes

Level of analytical and
computational challenges

Lesser, analytical methods
for detecting CNVs using

microarray data are well-
developed

Greater, an emerging and
maturing method

leveraging on the large
amount of NGS data

Greater, an emerging and
maturing method

leveraging on the large
amount of NGS data

Difficulty in sample
preparation

Easier in processing the
samples for hybridisation
on the microarrays

More challenging in
preparing sequencing
libraries especially clone-

based libraries

More challenging in
preparing sequencing
libraries

aWhole genome oligonucleotide-CGH and SNP microarrays.
bPaired-end and mate-pair libraries and clone-based libraries (such as fosmid and BAC clones) for PEM.
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3Kb in theKorbel et al. (2007) study)were first ligatedwith
biotinylated hairpin adapters. The DNA fragments were
then circularised and randomly sheared. The fragments
attached to biotinylated hairpin adapters were isolated to
form a mate-pair library and then followed by sequencing
(Korbel et al., 2007). Mate-pair library construction
enables sequencing at both ends of longer DNA fragments
of several kilobases. The mate-pair library with a larger
insert size will increase the physical coverage of the gen-
ome. For example, by sequencing 50 bases from both ends
of the DNA fragments from a library with a 3-Kb insert
size, the physical coverage of the genome is 10-fold higher
than that from a librarywith a 300-bp insert size. However,
the sequence coverage is similar between both libraries as
only 50 bases of paired-end sequences were generated with
regards to the library insert size (Meyerson et al., 2010).

Thus the paired-end andmate-pair libraries differ only in
the steps of constructing these libraries, as the sequencing
and aligning of the paired-end sequences to the reference to
detect structural variants follow the same principle.
Although creating a mate-pair library increases physical
coverage, a larger insert size is less sensitive in detecting
smaller structural variants because of the difficulty in
tightly controlling the sizes of the DNA fragments in the
library. Therefore, depending on the ‘tightness’ or ‘nar-
rowness’ of the distribution pattern (standard deviation) of
the insert sizes in the library, it can be difficult to distinguish
a true PEM signature caused by a small indel (i.e. indel of
several or tens of bases) because of the variance in insert
sizes in the library. This is because it is not practically
possible to generate an exact similar size for each of the
DNAfragmentswhenpreparing a library (Medvedev et al.,
2009).

Strengths and weaknesses

In comparison to microarray-based methods, PEM has a
higher sensitivity to detect smaller CNVs in addition to
identifying copy-neutral variants, and it also has a greater
precision in determining the breakpoints or boundaries of
structural variants. For example, the PEM method has
been applied in a number of whole genome resequencing
studies where several thousand structural variants were
detected (Wang et al., 2008; Ahn et al., 2009). Wang et al.
(2008) identified a total of 2682 structural variants (the
majority wereCNVs) in theHanChineseYanHuang (YH)
genome with a median length of approximately half a
kilobase. These sizes aremuch smaller than those identified
bymicroarrays ranging from tens to hundreds of kilobases
depending on their resolution (Redon et al., 2006; Zogo-
poulos et al., 2007; Wong et al., 2007). This has clearly
shown the greater sensitivity of PEM to detect smaller
structural variants.

Nonetheless, this method could be biased against
detection of duplications or insertions. This has been
clearly shown in the YH genome, where most of the iden-
tifiedCNVs are deletions, namely 2441 deletions compared
to 33 duplications. This is because PEM is unable to detect

insertions larger than the insert size of the library. This also
reveals the major limitation of PEMwith a fixed insert size
in detecting insertions (Wang et al., 2008). Deletions are
easier to be detected because they are identified by a longer
than expected insert size when aligned to the reference,
whereas detection of insertions is restricted by the insert
size. This means that insertions larger than the insert size
are beyond the detection range. Therefore, several paired-
end and mate-pair libraries with short and long insert sizes
will be needed to capture structural variants of varying
sizes. This will also nevertheless increase the sequencing
costs several fold dependingon the number of libraries. For
the YH genome, the two paired-end libraries had a small
insert size of 135 and 440 bp (Wang et al., 2008). Since the
bias against detection of insertions is partly due to the small
insert size, larger insert sizes of several kilobases should
improve the ability to detect more insertions. Indeed, this
has been demonstrated by Korbel et al. (2007) who pre-
pared libraries of 3Kb insert size for two individuals and
found1297 structural variants, including 853 deletions, 322
insertions and 122 inversions (Korbel et al., 2007).
Although the number of deletions is still higher than
insertions, it is significantly less biased compared to the
numbers detected by Wang et al. (2008).

Human Genome Structural Variation
Working Group

The PEM method to detect structural variants was first
demonstrated by Tuzun et al. in 2005 by mapping paired-
end sequences data from a human fosmid DNA genomic
library. The average insert size of a fosmid library is
approximately 40Kb. However, sequencing of fosmid
clones is laborious and costly using Sanger sequencing
(Tuzun et al., 2005). These limitations have been overcome
by NGS technologies which directly sequence the paired-
end or mate-pair libraries without the need for cloning
steps (Korbel et al., 2007). Both of these studies applied the
PEM approach to investigate structural variants in the
same sample (NA15510) from the International HapMap
Project. However, their library insert sizes differed and this
has enabled a comparison of the sensitivity between these
studies. Korbel et al. (2007) were able to confirm 41%of all
deletion and inversion events detected by fosmid paired-
end sequencing. Additionally, they identified an additional
407 structural variants in NA15510 that had not been
previously detected by fosmid paired-end sequencing
(Korbel et al., 2007; Tuzun et al., 2005). This further sug-
gests that several libraries with different insert sizes are
needed to increase the sensitivity of PEM. The majority of
structural variants detected by PEM were relatively small
where approximately 65% were 510Kb and 30% were
55Kb (Korbel et al., 2007). This represents a significant
improvement in resolution over microarrays.
Inaddition to these studies, a large-scale effort is currently

being undertaken by the Human Genome Structural
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Variation Working Group to comprehensively map struc-
tural variants in phenotypically normal individuals using
the PEM approach as demonstrated by Tuzun et al. (2005)
(Eichler et al., 2007). More specifically, the objective is to
characterise the pattern of human structural variants at the
nucleotide level from a collection of 48 individuals of
European,Asian andAfrican ancestry.This project plans to
make fosmid clone libraries of approximately 40Kb insert
size from the genomic DNA of 48 unrelated females. These
samples have already been genotyped in the HapMap Pro-
ject. A larger insert size of approximately 150Kb prepared
from BAC clone libraries will also be constructed from 14
unrelatedHapMapmales. Thiswill aim toprovide sequence
information on structural variants that are too large to be
included in the fosmid libraries, such as those associated
with segmental duplications (Eichler et al., 2007). As such,
both the fosmid and BAC libraries will ensure a com-
prehensive capture of structural variants of varying sizes
across the human genome. A preliminary report was pub-
lished for eight individuals (Kidd et al., 2008).

Depth-of-coverage

Principle, strengths and weaknesses

Depth-of-coverage (DOC) is another method using the
NGS data for CNVs detection. As the name implies, this
method is based on the depth of coverage of the sequence
reads to infer deletions andduplications. TheDOCmethod
is enabled by the production of several hundred million
short sequence reads per instrument run by NGS technol-
ogies. The principle underlying theDOCapproach is based
on the assumptions that the sequencing process is uniform
so that the number of sequence reads mapping to a region
follows a Poisson distribution. As such, the number of
sequence reads should be proportional to the number of
times that a particular region appears in the genome.
Therefore, it is expected that a duplicated region will have
more reads aligned to it, with the converse true for deletions
(Yoon et al., 2009; Medvedev et al., 2009). However, the
assumption that the sequencing process is uniformmay not
be valid. This is because of the sequencing bias of the NGS
technologies which leads to certain regions of the genome
being over or under-sampled resulting in spurious signals
(Harismendy et al., 2009).

Based on the principle of the DOCmethod, the strength
of a DOC signature (i.e. ‘gain’ or ‘loses’) is thus directly
related to the coverage of the sequencing data (the number
of sequence reads) and also to the size of the CNVs. This
means that the DOC signatures will be stronger for larger
CNVs, and is thus more powerful for detecting larger
CNVs compared to PEM. In contrast, unlike PEM, the
DOC method cannot detect copy-neutral variants. More-
over, the DOC method may not be powerful enough to
identify smaller CNVs (related to the strength of DOC
signatures) and it is also limited in defining breakpoints
(Medvedev et al., 2009). In comparison to microarrays,

copies number can only be inferred to four (CN=4) as the
upper boundary for SNP microarray or copy number
changes will be denoted as ‘gain’ or ‘loses’ for CGH
microarrays (McCarroll et al., 2008; Wang et al., 2008).
The DOC method is also more robust and accurate at
determining higher copies number.

Merging DOC with PEM

Studies comparing the results between the DOC and PEM
methods found that only a small fraction of the CNVs
overlapbetween thesemethods.Furthermore, the identified
CNVs that are specific to the DOC method are more
enriched in segmental duplications than the PEM-specific
CNVs. This is complementary to the PEMmethod as it has
difficulty detecting structural variants in segmental dupli-
cations because the paired-end sequences from these
repetitive regions cannot uniquely map to a single site or
location in the genome, especially for short sequence reads.
In comparison, this problem is less significant for DOC as
this method does not rely on uniquely mapping sequence
reads to a region to infer CNVs. This suggests that a com-
bination of the methods is ideal to further improve the
sensitivity of detection throughout the genome. In fact,
both methods have their own advantages and limitations
(Yoon et al., 2009; Medvedev et al., 2009). As discussed
earlier, the main assumption of the DOC method may not
be valid because of the sequencing biases that cause certain
regions to be over or under-sampled. To overcome this
limitation, a recent study by Medvedev et al. (2010) has
developed a method to detect CNVs by supplementing the
DOC with the PEM data by integrating both types of
sequencing data. Using this integrative method, the dis-
cordant pairs will be used to indicate the presence of CNVs
forDOC. It hasbeen shownthatPEMcan improveboth the
sensitivity and the specificity of the DOC method. Several
advantagesof integrating theDOCandPEMdatahavealso
been demonstrated which addresses some of the limitations
of each method when used independently. For example, by
using this integrative approach, the size of the variants that
can be detected is no longer limited by the insert size of
library and this approach is also more robust in detecting
variants in segmental duplications (Medvedev et al., 2010).

Choosing a Sequencing Platform for
PEM and DOC

The applications of high-throughput sequencing technol-
ogies that are commercially available and accessible by
end-users or researchers for PEM andDOCwill be further
discussed. It is noteworthy that the development of
numerous other sequencing technologies such as single
molecule real time (SMRT) sequencing (to be marketed
commercially soon) are on the horizon (Schadt et al., 2010).
Although others such as nanopore sequencing may take
several years to become a mature technology (Branton
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et al., 2008). In comparison, companies such as Complete
Genomics provides a sequencing service rather than selling
their sequencing machines to end-users (Drmanac et al.,
2010). The sequencing technologies that are currently
available can be broadly grouped into NGS technologies
such as the Roche 454 Genome Sequencer FLX (GS FLX)
System, Illumina Genome Analyzer (GA) and Applied
Biosystems (ABI) Supported Oligonucleotide Ligation
Detection System (SOLiD) and third generation sequencing
(TGS) technologies such as the HeliScope SingleMolecule
Sequencerwhich is now commerciallymarketed byHelicos
Biosciences. See also: Next Generation Sequencing Tech-
nologies and Their Applications; Whole Genome Rese-
quencing and 1000 Genomes Project

Although Roche 454 GS FLX, Illumina GA and ABI
SOLiD are classified as NGS technologies, several features
differ substantially between them.They are characterised by
the ability of parallel sequencing of a very large number of
sequence reads. However, the Roche 454 GS FLX can only
generate approximately one million sequence reads per
instrument run, in comparison to the Illumina GA and
ABI SOLiD where several hundred million sequence reads
are produced. Similarly, the HeliScope Single Molecule
Sequencer can also produce several hundred million
sequence reads (Mardis, 2008; Shendure and Ji, 2008;
Metzker, 2010; Li and Wang, 2009). One of the major dis-
tinctions between NGS and TGS is that TGS requires no
whole genome amplification steps such as emulsion poly-
merase chain reactionandbridgeamplification compared to
NGS. Therefore, TGS has the potential to further increase
the number of sequence reads or throughput per instrument
run than their current capacity. Therefore, the IlluminaGA,
ABI SOLiD and HeliScope Single Molecule Sequencer
provide an advantage for the DOC method that requires a
highdensityof sequence reads to inferCNVs.The specificity
of DOC to detect CNVs and the precision to map the
breakpoints can be improved by increasing the density or
coverage of sequence reads (Yoon et al., 2009;Medvedev et
al., 2009). However, the length of sequence reads produced
by Roche 454 GS FLX is on average 400–500 bp, which is
substantially longer than that for the other three sequencing
technologies which range from 32 to 125 bp (Li and Wang,
2009). Although PEM and DOC methods are targeting
large structural variants, the sequence read length produced
byRoche 454GSFLX is better for detecting small indels of
several to tens of bases.Moreover, the longer sequence read
length of Roche 454 GS FLXmay also be more suitable for
de novo genome assembly before read lengths of several
kilobases is generated by future sequencing technologies.

The PEM method, when applying it alone rather than
integratedwithDOCdata,must ensure that the paired-end
sequences are uniquely aligned to the reference genome to
infer structural variants compared to ambiguous paired-
end sequences which align to multiple locations. As such,
shorter sequence read lengths may be less specific in
aligning against the reference genome especially in repeti-
tive regions such as segmental duplications. Moreover, the
number of paired-end sequences is also important as

usually multiple discordant pairs are needed to reliably
detect structural variants. In terms of preparing the PEM
libraries for sequencing, all three NGS technologies are
able to generate both paired-end and mate-pair libraries,
thus allowing for sequencing of short and longer insert sizes
(Robison, 2010; Koboldt et al., 2010). Each of the
sequencing technologies has its own strengths and weak-
nesses, and a combination of these technologies in an
experiment may be the ideal approach to detecting new
structural variants and also to address the systematic biases
in sequencing (Harismendy et al., 2009).

A Comprehensive Detection of
Structural Variants in the Human
Genome

Currently no single approach can detect all CNVs or
structural variants within a human genome. A combination
of different approaches is thus ideal where bothmicroarrays
and sequencing-based methods can be utilised for this pur-
pose before de novo genome assembly is feasible. In com-
parison to whole genome resequencing that relies on a
reference genome for aligning the sequence reads (Wang
et al., 2008; Bentley et al., 2008; Ahn et al., 2009), de novo
genome assembly will enable a more thorough and com-
prehensive detection of various genetic variants in the
human genome ranging from single nucleotide variants,
small indels (insertions and deletions) to large structural
variants. Currently de novo genome assembly is challenging
and less practical because of the short sequence reads gen-
eratedbyNGS technologies especially the IlluminaGenome
Analyzer and Applied Biosystems SOLiD.However, recent
studies have attempted to perform de novo human genome
assembly using short sequence readswith limited success (Li
et al., 2010a, b; Paszkiewicz and Studholme, 2010).De novo
genome assembly will become more feasible with longer
sequence read lengths of several to tens of kilobases gener-
ated by future sequencing technologies. The number of de
novo genome assembly studies is anticipated to increase
exponentially with the arrival of third generation or single-
molecule sequencing technologies in the next few years
(Schadt et al., 2010; Gupta, 2008; Branton et al., 2008).
In anticipation, a recent study has used sequencing and

microarray-based strategies to detect various genetic vari-
ants which complement the results of the assembly com-
parison approach used in theHuRef genome (CraigVenter)
(Levy et al., 2007). This study detected genetic variants by
aligning the original Sanger sequence reads generated for
theHuRef genome to the reference genome (NCBIbuild-36
assembly). In addition, high density microarrays were cus-
tom-designed to probe the HuRef genome to identify
variants in regions where sequencing-based approaches
may have difficulties. Thousands of new structural variants
(i.e. copy number and copy-neutral variants) were dis-
covered and approximately 1.58% (48.8Mb) of the HuRef
haploid genome consisted of structural variants. In
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addition, the study also found biases in each method in
detecting these variants. This further justifies the need to
combine different methods for a more thorough detection
of structural variants (Pang et al., 2010).

Conclusions

Microarrays have been widely used in the discovery of
CNVs over the last several years. However, with the devel-
opment of PEM and DOC, this raises the question of
whether these sequencing-based methods will eventually
replace microarrays in structural variant research. The
answer is likely to be a resounding ‘yes’, but at present the
microarrays and sequencing-based methods are proving to
be valuable by being complementary to each other in
population studies of structural variants. The role of
microarrays will likely need to be switched from that of
‘discovery’ to ‘genotyping’. Although sequencing-based
methods are more powerful in the discovery of new struc-
tural variants, these methods are costly for several hundred
or thousand samples especially when several libraries of
different insert sizes are needed for PEM. This would limit
the number of future studies of population characteristics
and disease association.However, the newly discovered and
the currently known structural variants canbe characterised
in population-based studies for investigating their associ-
ations with diseases using custom-designed oligonucleotide
microarrays. However, this is limited to CNVs which are
believed to be in the majority in structural variants. Thus
other high-throughput methods to assay newly discovered
and known copy-neutral variants need to be developed.

Although thePEMandDOCmethodshaveovercome the
major shortcomings of microarrays in detecting structural
variants, these methods have their own weaknesses.
Nevertheless, these emerging sequencing-based methods
will continue to play a role in the discovery of structural
variants until de novo genome assembly is more feasible (Li
et al., 2010a, b; Paszkiewicz and Studholme, 2010).De novo
genome assembly will be more practical with the promise of
third generation sequencing technologies to increase the
sequence read length to tensofkilobases so that a full human
genome can be assembled (Schadt et al., 2010; Gupta, 2008;
Branton et al., 2008). In addition to advancing the know-
ledge of human genetic variation, these methods are also
useful in dissecting somatically acquired rearrangements in
cancer genomes (Campbell et al., 2008; Stephens et al.,
2009). Finally, the discovery of various genetic variants
including structural variants in the human genome has been
greatly accelerated by 1000 Genomes Project (Genomes
Project Consortium, 2010; Sudmant et al., 2010).
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The advances in next generation sequencing (NGS) tech-

nologies have tremendous impacts on the studies of

structural and functional genomics. Sequencing-based

approaches like ChIP-Seq and RNA-Seq have started

taking the place of microarray experiments to study

protein–DNA (deoxyribonucleic acid) interactions and

transcriptomic profiling, respectively. The arrival of NGS

technologies has also enabled several whole human gen-

ome resequencing studies to be completed efficiently at

an affordable price. The major strengths of NGS technol-

ogies are their ultra high-throughput production, char-

acterized by their ability to generate several hundred

megabases to tens of gigabases of sequencing data per

instrument run, and more importantly, the steep reduc-

tion in cost compared to the traditional Sanger sequen-

cing method. Hence, NGS technologies have rapidly

become the primary choice for large scale as well as gen-

ome-wide sequencing studies. The new sequencing-based

approaches to explore structural andfunctional genomics

have produced important information and significantly

expanded our knowledge in these areas.

Introduction

The rapid developments in sequencing technologies have
transformed the approaches in the studies of structural and
functional genomics. The studies of structural genomics
focus on identifying various genetic variations or muta-
tions, whereas functional genomics studies aim to interro-
gate and annotate the functional and regulatory elements
or sequences in the human genome. The next generation
sequencing (NGS) technologies have started substituting
traditional Sanger sequencing methods in many large scale
or genome-wide sequencing studies. These new sequencing
technologies have been attracting a considerable amount
of interest from researchers since they have been com-
mercially marketed. The major attractions are their ultra
high-throughput production, characterized by their ability
to simultaneously sequence millions of DNA (deoxyribo-
nucleic acid) fragments and produce gigabases of sequen-
cing data per instrument run, and more importantly,
the steep reduction in cost compared to the traditional
sequencing method.

Revolution in the Approaches for
Genomics Studies

Previously, the molecular genomics studies mainly relied
on microarray technologies such as gene expression
microarrays and the ChIP-chip method (i.e. chromatin
immunoprecipitation coupled with microarray) for gen-
ome-wide interrogation. However, this was swiftly
replaced by sequencing-based methods, namely RNA-Seq
(to measure transcripts or ribonucleic acids (RNAs)
expression levels) and ChIP-Seq (to study protein–DNA
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interactions like identifying transcription factor-binding
sites and interrogating histone modifications), respectively
(Wang et al., 2009; Park, 2009).

There are a number of limitations in using microarrays
compared to sequencing-based methods. For example,
conventional microarrays do not allow a truly com-
prehensive interrogation of the whole genome, because the
selection of probes to be synthesized and immobilized on
the solid surface of microarrays requires some prior
knowledge and reference genome sequences are also nee-
ded. The probes are needed to detect and measure the
abundance ofDNAorRNAtargets throughhybridization.
In other words, microarray-based methods are limited to
interrogating those genomic regions that are probed by the
microarrays. It is obvious from the conventional gene
expression microarray studies where the gene expression
levels could not be measured unless there are probes to
capture them, and the probes are usually synthesized to
capture known annotated protein-coding genes. Therefore
unknown transcripts or those transcripts from noncoding
sequences in the transcriptome could not be assessed.
Similarly for ChIP-chip experiments, the DNA fragments
that are pulled down by immunoprecipitation would be
undetected if no complementary probes are designed to
capture them. On the contrary, theoretically sequencing-
based approaches are able to capture all the DNA frag-
ments that are isolated by immunoprecipitation (ChIP-
Seq), and all the transcripts (coding and noncoding tran-
scripts) that are available in the transcriptome (RNA-Seq)
including the low abundance transcripts, if the sequencing
depth is sufficient (Wang et al., 2009; Park, 2009).

Likewise in structural genomics studies, microarray-
basedmethods such as comparative genomic hybridization
(CGH) and single nucleotide polymorphism (SNP) arrays
have poor sensitivity to detect smaller sizes of copy number
variations (CNVs) like those of510 kb, and thesemethods
are unable to detect copy neutral variations like balanced
translocations and inversions. Furthermore, microarray-
based methods have limited resolution to define the
breakpoints of CNVs and structural variations. However,
these limitations have been overcome by sequencing-based
methods like paired-end mapping (Korbel et al., 2007).
These new and innovative sequencing-based approaches
to studying structural and functional genomics have
produced important information and have significantly
expanded our knowledge in each area.

Next Generation Sequencing
Technologies

Sanger dideoxynucleotide or chain termination sequencing
has been the most widely used sequencing method for the
past three decades since it was invented in late 1970s until
the first NGS platform was marketed in 2005. Sanger
sequencing has been used for various applications such as
mutations discovery, genotyping and serial analysis of gene

expression (SAGE) for measuring gene expression levels,
and more importantly, it was used to complete the Human
Genome Project (International Human Genome Sequen-
cingConsortium, 2004).See also: HumanGenomeProject:
Importance in Clinical Genetics; Sequencing the Human
Genome: Novel Insights into its Structure and Function;
Whole Genome Resequencing and 1000 Genomes Project
Shortly after the first next generation sequencer was

introduced by Roche1 454 Life Science, the Genome
Sequencer 20 (GS 20) System (it was subsequently replaced
by GS FLX System with further improvements, i.e. higher
throughput and longer sequence read length, to the pre-
ceding system), another two biotechnology companies also
marketed their sequencing platforms: Illumina1Genome
Analyzer (GA) and Applied Biosystems1 (ABI) Sup-
ported Oligonucleotide Ligation Detection System
(SOLiD). The simultaneous advent of several next gener-
ation sequencers created intense competition in the
sequencing market; with each technology having its own
strengths and limitations. This article focuses on the NGS
technologies because they have been widely used for vari-
ous applications unlike the newer third generation
sequencing instrument, the Heliscope Single Molecule
Sequencer, which has only recently been introduced. The
following sections described the main features of NGS
technologies.

Sequencing throughput and cost

Currently, Sanger sequencing machines (e.g. ABI1
3730xl) have been largely supplanted by next generation
sequencers in many large genomics institutes worldwide.
This was mainly due to the ultra high-throughput pro-
duction of NGS technologies which is several orders of
magnitude higher than Sanger sequencing method. One of
the major differences between modern and traditional
sequencing is the ability of next generation sequencers to
simultaneously sequence one million to several hundred
millions of DNA fragments in contrast to the 96-capillary
Sanger sequencer. Therefore, NGS is also known as mas-
sively parallel sequencing technologies. This feature has
enormously increased the amount of the production or the
number of nucleotides or bases that it can sequence com-
pared to the Sanger sequencer in one experiment or per
instrument run. For example, the latest developments in
Illumina1 GA and ABI1 SOLiD have further increased
the throughput production generating more than 10 giga-
bases of sequencing data per instrument run in a few days,
whereas Roche1 GS FLX can generate several hundred
megabases per run in 10 h. In contrast, Sanger sequencer
like ABI1 3730xl which is commonly used in most of the
research laboratories can only produce �100 kb per run in
3 h (see Table 1 for the summary of the features of NGS
technologies) (Shendure and Ji, 2008; Tucker et al., 2009).
The sequencing chemistry of NGS technologies together

with their ultra high-throughput production has also
reduced the sequencing cost significantly, making large-
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scale sequencing studies affordable nowadays. Currently,
Illumina1GAandABI1 SOLiDhave already achieved a
sequencing cost of $6 per megabase as compared to
Roche1GSFLX,which is offered at $80 permegabase. In
general, the sequencing cost of NGS technologies was
substantially decreased by several folds to nearly 100-fold
compared to Sanger sequencing, which costs about $500
for the same amount of sequencing data (Shendure and Ji,
2008; Tucker et al., 2009). It is noteworthy that the cost of
sequencing is changing continuously; therefore the prices
cited here may not be the latest in the market. Regardless,
this provides some useful information on differences in
sequencing cost between Sanger sequencing and NGS.
Undoubtedly, both sequencing production and cost would
be continuously improved. The developments of third
generation sequencing technologies are on the horizon and
the instruments are expected to be marketed soon which
would certainly decrease the sequencing cost further and
eventually achieve the ultimate goal of $1000 per genome
sequencing (Von Bubnoff, 2008).

On top of the considerations of sequencing throughput
and cost, the other concern is logistics. As the amount of
sequencing data produced by a next generation sequencer
is equivalent to tens of Sanger sequencers, a large area or
space would be needed to accommodate the instruments.
This can only be feasibly attained by large genomics
laboratories or institutes. Furthermore, themaintenance of
tens of sequencing instruments will also be substantial and
this has not taken into account costs of labour or man-
power to operate the instruments.

Sequencing chemistry: in vitro amplification

The advances in sequencing technologies have enabled
several whole human diploid genome resequencing
studies to be completed efficiently. Besides the genome of
James Watson (Wheeler et al., 2008), several genomes of
anonymous individuals have also been sequenced; they are
two Koreans (AK1 and SJK) and one individual each of

Table 1 Summary of the features of NGS technologies

Feature Roche1 454 GS FLX Illumina1 GA ABI1 SOLiD

The year of the first
sequencer that
commercially marketed

2005 2006 2007

Current generation of the
sequencer

Roche1 454 GS FLX
Titanium

Illumina1 GA II ABI1 SOLiD 3.0

Massively parallel

sequencing (number of
DNA fragments)

Several hundred thousand

to one million

Several hundred millions Several hundred millions

Sequencing throughput per
instrument run

Several hundred megabases
per run in 10 h

410Gb per run in a few
days

410Gb per run in a few
days

Sequencing cost per
megabase (US$)

� $80 � $6 � $6

Differences in cost in

relative to Sanger
sequencing ($500 per
megabase)

� 6-fold � 80-fold � 80-fold

In vitro amplification
method

Emulsion PCR Bridge amplification on
solid surface

Emulsion PCR

Sequencing approach Sequencing by synthesis
mediated by polymerase –

pyrosequencing

Sequencing by synthesis
mediated by polymerase –

sequencing by reversible
terminator chemistry

Sequencing by ligation of
dinucleotide probes

mediated by ligase

Sequencing reagent Four types of dNTPs Four types of ddNTPs

labelled by four different
fluorescent colours

16 types of dinucleotide

probes labeled by4different
fluorescent colours

Detection method of the

incorporated nucleotides

Emission of

chemiluminescent light

Fluorescent colours Fluorescent colors

Sequence read length 400–500 bases 75–125 bases 50 bases
Read base or base calling

error rate

0.5–1.5% 0.2–2% 50.1%

Error type Insertion or deletion of
nucleotides in
homopolymer sequences

Substitution of nucleotides Substitution of nucleotides
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HanChinese (YH),African (NA18507) andEuropean (P0)
ancestries (Kim et al., 2009; Ahn et al., 2009; Wang et al.,
2008; Bentley et al., 2008;Mckernan et al., 2009; Pushkarev
et al., 2009). All these genomes were sequenced by NGS
technologies except the genome of the European individual
P0 which was sequenced by Heliscope Single Molecule
Sequencer. In contrast, the diploid genome of Craig Venter
was sequenced by the Sanger sequencing method (Levy
et al., 2007). The whole genome resequencing studies using
next and third generation sequencing technologies were
completed at a cost of tens of thousands to several hundred
thousands of dollars compared to Venter’s genome which
cost millions of dollars.

One of the major limitations in whole genome rese-
quencing using the Sanger sequencing method is the in vivo
amplification of DNA fragments using bacterial cloning.
This is unlike targeted sequencing studies, where con-
ventional polymerase chain reaction (PCR) is commonly
used to amplify the regions of interest to be sequenced. The
bacterial cloning procedures can introduce host cloning-
related biases; for example, it could affect the genome rep-
resentation in the sequencing of organism genomes because
some of the DNA fragments failed to be cloned.Moreover,
these steps are tedious and labour intensive. However, this
method has since been eliminated and is replaced by the in
vitro amplification of millions of DNA fragments simul-
taneously by NGS technologies, that is emulsion PCR for
Roche1 GS FLX and ABI1 SOLiD, and bridge amplifi-
cation on solid surface for Illumina1 GA (Mardis, 2008;
Strausberg et al., 2008; Ansorge, 2009).

In emulsion PCR, the single-stranded DNA fragments
or templates are attached to the surface of beads using
adaptors or linkers, and one bead is attached to a single
DNA fragment from theDNA library. TheDNA library is
generated through random fragmentation of the genomic
DNA. The surface of the beads contains oligonucleotide
probes with sequences that are complementary to the
adaptors binding theDNAfragments.After that, the beads
will be compartmentalized into separate water-oil emul-
sion droplets. In the aqueous water-oil emulsion,
each of the droplets capturing one bead will serve
as a PCRmicroreactor for amplification steps to take place
and produce clonally amplified copies of the DNA
fragment.

However, for bridge amplification on solid surface for
Illumina1 GA, the single-stranded DNA fragments are
first attached to a solid surface known as a flowcell using
adaptors with complementary probes on the flowcell.
Then, the other unattached end of the DNA fragments will
create a ‘bridge-like structure’ by bending over and also
hybridize to the probes on the flowcell, which form the
template for amplification to generate clonally amplified
copies of theDNA fragments on the surface of the flowcell.
However, this third generation sequencing is characterized
by single DNA molecule sequencing without the need for
amplification steps. The first third generation sequencing
instrument – Heliscope Single Molecule Sequencer – is
now commercially marketed by Helicos Biosciences.

Sequencing chemistry: massively parallel
sequencing

The sequencing approaches for NGS technologies can be
broadly divided into sequencing-by-synthesis mediated by
polymerase enzymes (pyrosequencing for Roche1 GS
FLX and sequencing by reversible terminator chemistry
for Illumina1 GA) and sequencing-by-ligation me-
diated by ligase enzymes (ABI1 SOLiD) (Mardis, 2008;
Strausberg et al., 2008; Ansorge, 2009).
In pyrosequencing, the adding of dNTPs (deox-

ynucleotide triphosphate) and reagents for cyclic sequen-
cing is controlled, where each of the four types of dNTPs
will flow through the picotiter plate consecutively or
sequentially. This means that only one type of dNTP is
present per cycle of sequencing or synthesis, followed by
another type of dNTP in the next cycle and the cycles
repeat. This is totally different from the reversible termi-
nator chemistry sequencing for Illumina1 GA where all
the four types of ddNTPs labelled by different fluorescent
colours are present in each cycle of sequencing. A picotiter
plate contains more than onemillion wells where the beads
(attached to clonally amplified copies of DNA fragments)
are situated, and onewell holds one bead.As such, it allows
parallel sequencing of an enormous number of DNA
fragments.
The polymerase-based synthesis or incorporation of the

complementary dNTPs to the DNA templates will cause
the release of inorganic pyrophosphate triggering a series
of downstream reactions which eventually produce
chemiluminescent light which is captured by a detection
system (CCD camera). The detection system records the
intensity of light emitted fromeachwell that corresponds to
a single DNA fragment. In summary, generally each cycle
of sequencing consists of dNTPs incorporation, pyr-
osequencing reactions and emission of chemiluminescent
light and measurement of the light intensity. The sequen-
cing reagents of the previous cycle are washed away before
next cycle of sequencing takes place.
The intensity of chemiluminescence is proportional to

the amount of inorganic pyrophosphate released and thus
the number of dNTPs incorporated to the DNA template.
Owing to this factor, pyrosequencing ismore susceptible to
insertion deletion (indel) errors in homopolymer sequences
(i.e. DNA sequences of consecutive identical nucleotides
like GGGGG or AAAAA) because of less accurate esti-
mation of the length or the number of nucleotides in
homopolymer sequences. This is especially problematic for
homopolymers with more than six bases. In pyrosequen-
cing, several dNTPs can be incorporated when there are
consecutive identical nucleotides in the sequences; this is in
contrast to the sequencing by reversible terminator chem-
istry where only one ddNTP (dideoxynucleotide tripho-
sphate) is incorporated to the DNA templates per cycle of
sequencing. To further illustrate this, for example, for
homopolymer GGGGG, five dCTPs (deoxycytidine tri-
phosphate) will be incorporated for pyrosequencing at
one time, whereas only one ddCTP (dideoxycytidine
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triphosphate) for reversible terminator chemistry sequen-
cing and another ddCTP will be incorporated in the next
four cycles of sequencing.

LikeRoche1GSFLX, Illumina1GAalso employs the
sequencing-by-synthesis approach, although it is totally
different from pyrosequencing. In reversible terminator
chemistry sequencing, all the four types of ddNTPs and
sequencing reagents are added onto the flowcell, and these
ddNTPs are labelled by four different fluorescent colours
corresponding to the four different nucleotides. One flow-
cell has several hundred million clusters and each cluster
contains clonally amplified copies from a single DNA
fragment. Similar to the Roche1GS FLX picotiter plate,
the format of the flowcell also allows simultaneous
sequencing of an enormous number of DNA fragments.
However, it is noteworthy that the difference in the number
of DNA fragments that gets sequenced in parallel between
the two platforms is about several hundred-folds.

The ddNTPs are reversible terminators, allowing for the
synthesis of DNA templates in the next cycle of sequencing
for the incorporation of other ddNTPs. In this cyclic
sequencing approach, one complementary ddNTP will be
incorporated to theDNA template at one time, followed by
washing steps to remove the excess sequencing reagents.
This is then followed by the imaging of the fluorescence
signals across the whole flowcell. After imaging, the fluor-
escent labels will be removed and the 3’ blocking group of
theddNTPs is also chemically removed.These steps are then
repeated. Since only oneddNTP is incorporated atone time,
and the base calling is not proportional to light intensity but
is dependent on the fluorescent colours, the reversible ter-
minator chemistrydoesnothaveproblems in the sequencing
of homopolymer sequences. However, it is more prone to
substitution errors because all the four types of ddNTPs are
present in each cycle of sequencing, unlike in pyrosequen-
cing, where only one specific type of dNTP is present.

It is worthwhile to note that in pyrosequencing, dNTPs
are used, whereas in reversible terminator chemistry
sequencing, ddNTPs are used and they are reversible ter-
minators. However, Sanger sequencing requires a mixture
of both dNTPs and ddNTPs, and the ddNTPs are non-
reversible terminators. Although these sequencing ap-
proaches are generally based on sequencing-by-synthesis, it
is obvious that the sequencing chemistries and approaches
are very different. In pyrosequencing, the identity of nucle-
otides that are incorporated into DNA templates is deter-
mined by emission of chemiluminescent light; however, the
nucleotides are determined by different fluorescent colours
for reversible terminator chemistry and Sanger sequencing.

The sequencing approach of ABI1 SOLiD is based on
sequencing-by-ligation. Like Roche1 GS FLX, ABI1
SOLiD also employs emulsion PCR for amplification. The
beads containing DNA fragments are then deposited on a
glass slide. The sequencing of DNA templates is mediated
by ligase. In brief, the sequencing is based on sequential
ligation of dinucleotide probes which are labelled by four
different fluorescent colours. There are 16 possible com-
binations of twonucleotides, and these dinucleotide probes

will compete for incorporation into theDNAtemplates.As
such, ligation of one probewill query twonucleotides in the
DNA templates. The sequencing of DNA templates is
completed by seven ligation cycles for each of the five
rounds of primer reset, and at the end produces a sequence
read length of 35 bases. Using this unique sequencing
approach, every single position or base in the DNA tem-
plate is interrogated twice, and allowing for distinction
between true genetic variations and errors.

Sequence read length and error

The NGS technologies have a number of advantages over
Sanger sequencing, but they are not without limitations.
The new sequencing technologies are characterized by
shorter sequence read lengths compared to Sanger
sequencing, that is 125 bases or less for Illumina1GAand
ABI1 SOLiD, as well as for Heliscope Single Molecule
Sequencer. As a result, NGS technologies are not suitable
for de novo sequencing of large and complex genomes like
the human genome as the assembly of billions of short
sequence reads into large contigs would be difficult and
challenging. Relatively longer sequence read lengths are
needed to obtain larger contigs with fewer gaps in between
in the assembled consensus sequence. However, the latest
improvements in sequencing chemistry and system have
enabledRoche1GSFLXtoachieve sequence read lengths
of 400–500 bases on average, but it is still half of that
that can be achieved by Sanger sequencing, which is
approximately 800 bases to 1 kb in length (Mardis, 2008;
Strausberg et al., 2008; Ansorge, 2009).
The feature of short sequence read lengths also makes

NGS technologies like Illumina1 GA and ABI1 SOLiD
inadequate for metagenomics studies in investigating bac-
terial diversity. It is crucial to have longer sequence read
lengths to achieve sufficient discriminatory power of the
sequences derived from different bacterial species in a sam-
ple, determining the presence of diverse species by mapping
the sequences against different reference bacterial genomes.
As a result, Roche1 GS FLX has become the primary
choice for this kind of studies. Nevertheless, the feature of
short sequence read length is just nice for ‘sequence census
methods or applications’ like ChIP-Seq and RNA-Seq.
These sequence censusmethods do not require full sequence
or long sequence read lengths, but rather, lengths sufficient
to align or map the sequences uniquely to the reference
genome sequence (Wold and Myers, 2008).
Although Illumina1 GA and ABI1 SOLiD are less

suitable for metagenomics studies at the time, they appear
to be more ideal for studies like ChIP-Seq and RNA-Seq
compared to Roche1 GS FLX. This is because of their
ability to generate several hundred millions of short
sequence reads compared to several hundred thousand to
onemillion longer sequence reads forRoche1GSFLX. In
the applications like ChIP-Seq and RNA-Seq, the number
of sequence reads ismore crucial than the lengthof sequence
reads for ‘counting’ purposes, as far as the length is suf-
ficient to align uniquely to the reference genome sequence.
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In addition to the limitation in sequence read length, the
NGS technologies were also reported to have higher read
base or base calling error rates, although it has been
improving. ABI1 SOLiD has achieved the highest accur-
acy with 50.1% error rate among the NGS technologies,
whereas the read base error rates for Illumina1 GA and
Roche1 GS FLX are within 0.2–2% and 0.5–1.5%,
respectively (Li and Wang, 2009). The differences seem to
be small and insignificant in terms of the percentage, but
when the error rates are transmitted to whole genome
sequencing of six billion bases for a humandiploid genome,
it will generate hundreds of thousands to millions of errors
in base calling and this will cause a detrimental effect in
identifying genetic variations like SNPs. Fortunately,
results from whole genome resequencing studies suggest
that the SNP calling error rate decreases significantly with
greater sequencing depth (Wang et al., 2008). Therefore, it
seems that the remedy is to increase the sequencing depth,
but one has to bear in mind that this will also add to the
sequencing cost.

Applications in Structural and
Functional Genomics Studies

Since the arrival of firstNGS technology in 2005, these new
sequencing platforms have contributed much to the

progress in the research of structural and functional
genomics. TheNGS technologies have beenused in various
research areas besides the standard sequencing appli-
cations such as whole genome sequencing; they have also
been increasingly applied in detecting structural variations
(paired-end mapping), studies of protein–DNA inter-
actions and histone modifications (ChIP-Seq), and tran-
scriptomic profiling of messenger RNAs (mRNAs) and
noncodingRNAs (RNA-Seq). These are themost common
applications built on the NGS data and will be the focus of
our discussion (Figure 1). This article also focuses on these
applications in human genomics studies, although NGS
technologies have also been widely used for genomics
studies of plants and other model organisms. The new and
innovative applications of NGS technologies have con-
tributed remarkably to the advancement in human geno-
mics studies.

Whole genome sequencing

The completion of several whole human genome rese-
quencing studies has yielded important scientific findings
and new insights into human genetic variations (Wheeler
et al., 2008; Kim et al., 2009; Ahn et al., 2009; Wang et al.,
2008;Bentley et al., 2008;Mckernan et al., 2009; Pushkarev
et al., 2009). It is equally important that they also served as
proof-of-concept studies demonstrating the feasibility of
using NGS and third generation sequencing technologies

Paired-end mapping and depth
of coverage approach
■ Genome-wide discovery and
detection of copy number
variations and balanced genomic
rearrangements like inversions and
translocations 

Applications of next
generation sequencing

technologies in structural
and functional genomics

Whole genome sequencing and
targeted sequencing
■ De novo assembly or sequencing
of organism genomes
■ Discovery of genetic variations/
mutations (germline and somatic)
like SNPs and small indels
■ Fine mapping of the genomic
loci found by linkage/GWAS

ChIP-Seq
■ Genome-wide interrogation of
protein−DNA interactions like
mapping of the binding sites for
transcription factors and other
DNA-binding proteins
■ Genome-wide investigation of
various histone modifications 

RNA-Seq
■ Expression analysis of coding
and noncoding RNAs/transcripts
■ Discovery of new transcripts
■ Study of alternative splicing
patterns
■ Detection of transcript fusions
■ Analysis of allele specific
expression

Sequencing of bisulfite-treated
DNA
■ Study of DNA methylation at the
5′-position in cytosine
■ Human Epigenome Project aims
to characterize genome-wide DNA
methylation patterns of all human
genes in all major tissues

Metagenomics
■ Study of the diversity and
abundance of bacterial/microbial
species in a sample by sequencing
the genetic materials obtained
from the samples and mapping the
sequences against different
species’ reference genomes

Figure 1 Application of next generation sequencing technologies in structural and functional genomics.
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to decode the DNA sequence of human genome efficiently
and at an affordable price per genome. Moreover, these
studies have also addressed important questions and issues
surrounding the experimental design and data analysis,
such as the preparation of DNA libraries for sequencing,
assessment of the sequencing depth that is needed to pro-
vide adequate coverage of the reference genome sequence
and to minimize SNP calling error rate, and the quality
control criteria for the detection of genetic variations like
SNPs, indels and structural variations. For example,Wang
et al. (2008) found that at a sequencing depth of greater
than 10-fold, the assembled consensus sequence covered
�83% of the NCBI human reference genome using single-
end reads and �95% coverage using paired-end reads, and
greater sequencing depth has minimally increased in the
coverage. However, the SNP calling error rate decreases
significantly with greater sequencing depth.

The findings from several whole genome resequencing
studies have also deepened our understanding of human
genetic variations. These studies revealed an abundance of
various genetic variations in the human genome, namely
SNPs, indels and structural variations. Although the
finding of several million SNPs in each individual genome
is not new, more interesting is the fact that the studies have
identified several hundreds of thousands of new SNPs that
have not been catalogued in dbSNP. For example, about
one million new SNPs were identified in the African gen-
ome (NA18507) and approximately half amillion SNPs for
the other genomes of Caucasian and Asian ancestry
(Bentley et al., 2008;Wheeler et al., 2008;Wang et al., 2008;
Kim et al., 2009; Ahn et al., 2009).

Apart from SNPs, whole genome resequencing studies
also identified several hundred thousand of short indels
with sizes ranging from several bases to tens of bases. The
Han Chinese (YH) genome contained approximately
135 000 indels within 1–3 bp, and approximately 400 000
indels defined from 1 to 16 bp were found in the African
NA18507 genome.However,Ahnand colleagues identified
the indels within a size range from 229 to +14 bp and
found nearly 343 000 entries for the Korean genome SJK
(Bentley et al., 2008; Wang et al., 2008; Ahn et al., 2009).
The effort to catalogue short indels in the human genome
was far less devoted than that for SNPs, where more than
50% of the identified indels have not been catalogued,
whereas only less than 30%of the identified SNPs are new.
Similarly some new discoveries have also been made for
structural variations, where several thousands of them
were identified. The large-scale sequencing studies like
whole genome resequencing and 1000 Genomes Project
would not have been feasible without the advances in NGS
technologies. See also: Copy Number Variation in the
Human Genome; Genetic Variation: Human; Single
Nucleotide Polymorphism (SNP)

In addition to the aforementioned whole genome rese-
quencing of nondisease genomes, the cancer genome of
acute myeloid leukaemia has also been sequenced to study
the de novo somatic mutations (Ley et al., 2008). Apart
from germline genetic variations, the importance of

somatic mutations in carcinogenesis is also well estab-
lished. Therefore, focusing merely on germline genetic
variations will not be sufficient to fully decipher the genetic
basis of cancers. It is noteworthy that the genome-wide
association studies (GWAS)only interrogated the germline
genetic variations of cancer and that the whole genome
SNP genotyping arrays used in GWAS are not designed to
study somatic mutations. Direct sequencing is required for
detecting somatic mutations; hence, sequencing approach
provides an additional advantage in dissecting the cancer
genome compared to genotyping.

Paired-end mapping of structural variations

The ubiquity of CNVs in the human genome was first
reported several years ago (Sebat et al., 2004; Iafrate et al.,
2004), and many more have since been found. Previous
studies have used poor sensitivity methods to detect CNVs
leading to high false negative rates (Scherer et al., 2007).
Most of theCNVdatawere generated bymicroarray-based
methods such as CGH and SNP arrays where the signal
intensity information is used to detect deletions and
duplications. Because of the reliance on relative or differ-
ences in signal intensities to detect copy number variable
regions, these methods are unsuitable for detecting other
structural variations like inversions and translocations
(also known as balanced chromosomal rearrangements).
Furthermore, due to the limitations in density or resolution
of CGH and SNP arrays, the methods are lacking in sen-
sitivity to detect smaller sizes of CNVs (550 kb). The dis-
covery of smaller sizes of CNVs is crucial as they are
predicted to be more abundant than the larger CNVs
(Estivill and Armengol, 2007). The latest developments in
SNP genotyping arrays, namely increased probe density
and uniformity of distribution in the genome, and also
included copy number probes to cover regions lacking of
SNPs, have improved the sensitivity compared to earlier
arrays. Nonetheless, the SNP arrays still suffer from poor
sensitivity to detect CNVs smaller than 5–10 kb even using
the highest density SNP arrays such as Illumina1Human
1M Beadchip and Affymetrix1 6.0 SNP Arrays
(McCarroll et al., 2008; Cooper et al., 2008). Therefore,
higher resolution and sensitivity methods are needed to
detect CNVs and also balanced structural variations.
The proof-of-concept study using NGS technologies to

detect structural variations was published in 2007, and the
sequencing-based method was known as paired-end map-
ping (Korbel et al., 2007). In thismethod, a library ofDNA
fragments of fixed insert sizes is prepared, both ends of the
DNA fragments are sequenced, and the sequence infor-
mation is used tomapagainst the human reference genome.
The underlying principle of the paired-end mapping
approach to detect structural variations is simple; it is
based on the discrepancies in length or orientation of the
DNA fragments to be sequenced. In other words, when
both ends of the DNA fragment that map against the ref-
erence sequence show discordances in terms of size or

Next Generation Sequencing Technologies and Their Applications

ENCYCLOPEDIA OF LIFE SCIENCES & 2010, John Wiley & Sons, Ltd. www.els.net 7

http://dx.doi.org/10.1002/9780470015902.a0020824
http://dx.doi.org/10.1002/9780470015902.a0020824
http://dx.doi.org/10.1038/npg.els.0001464
http://dx.doi.org/10.1038/npg.els.0005006
http://dx.doi.org/10.1038/npg.els.0005006
cmekcs
Highlight



length, this is an indication for deletion and insertion,
whereas discordance in orientation suggests the presence of
inversion. Since the insert size of the library is known, both
ends ofDNA fragments thatmap to the reference is shorter
than expected; this indicates the presence of insertion;
conversely, longer than the insert size suggests the presence
of deletion. Korbel and colleagues prepared libraries of
3 kb insert size for two female individuals, and using the
aforementioned mapping approach and Roche1 454
sequencing, they found 1297 structural variations, includ-
ing 853 deletions, 322 insertions and 122 inversions. After
this study, several whole genome resequencing studies have
also used the paired-end mapping strategy and identified
thousands of structural variations (Wang et al., 2008; Ahn
et al., 2009).

Furthermore, the paired-end sequencing method has
also been used to interrogate somatic genomic
rearrangements in cancer (Campbell et al., 2008). In the
study, Illumina1GAwas used to perform the sequencing
of both ends of DNA fragments derived from the gen-
omes of two individuals with lung cancer, and they
identified 306 germline structural variants and 103 som-
atic rearrangements to the single nucleotide level of
resolution. The cancer genome is well characterized by
genomic instability, with the presence of numerous
structural variations and complex genomic rearrange-
ments, and these genetic aberrations are not well captured
by microarray hybridization methods. However, this
study has now shown the feasibility and advantages of
paired-end sequencing method to decipher the cancer
genome. This mapping approach is undoubtedly a
promising strategy to harvest new cancer genes. The
paired-end sequencing approach takes the advantages of
the short sequence reads produced by NGS technologies
to map against human reference genome, it is an appli-
cation of ‘census sequence methods’. Nonetheless, one
major limitation of paired-end mapping is the inability to
detect insertions larger than the insert size of the library.

Recently a new and innovative method of using NGS
data to detect CNVs has been developed. The approach is
based on the depth of coverage of the sequence reads, and
some promising results have been obtained showing that it
is effective to search for copy number variable regions. The
principle underlying the depth of coverage approach is not
complicated. This approach assumes that the sequencing is
uniform, and that the number of sequence reads mapping
to a region follows a Poisson distribution. As such, the
number of reads should be proportional to the number of
times that a particular region appears in the genome.
Therefore, it is expected that a duplicated region will have
more number of reads mapping to it, and the converse is
true for deletions (Yoon et al., 2009;Medvedev et al., 2009).

Studies comparing the results between the depth of
coverage approach and the paired-end mapping approach
found that only a minority of the CNVs had overlapped
between the two methods. Furthermore, the identified
CNVs that are specific to the former method are more
greatly enriched in segmental duplications than the paired-

end mapping-specific CNVs. This suggests that both
methods in identifying CNVs are complementary to each
other and that the combination of the methods will cer-
tainly further improve the sensitivity of detection
throughout the genome. In fact, both methods have their
own advantages and limitations (Yoon et al., 2009; Med-
vedev et al., 2009).

ChIP-seq for studying protein–DNA
interactions and histone modifications

Previously, the studies of protein–DNA interactions like
identifying transcription factor binding sites, have relied on
some low-throughput methods, and focused on some
specific genomic regions. However, with the advent of
microarray technologies, for the first time, a comprehen-
sive interrogation of the whole genome has become feas-
ible. In the era of microarrays, the genome-wide studies
of protein–DNA interactions and histone modifications
were performed using a method known as ChIP-chip.
The ChIP or chromatin immunoprecipitation experi-

ment consists of several steps. First, the protein (e.g. a
transcription factor of interest) and its binding DNA
sequences or genomic regions are chemically cross-linked
by treating the cells with formaldehyde. Then the genomic
DNA is extracted and fragmented before adding the
specific antibody interacting with the protein of interest.
The function of the antibody is to selectively isolate the
antibody–protein–DNA complexes by immunoprecipi-
tation. After the immunoprecipitation, the cross-linking
between protein and DNA is reversed to obtain the DNA
sequences. The identity of isolated DNA sequences can be
determined by methods such as Southern blot, quantita-
tive PCR (qPCR), microarray (ChIP-chip) or sequencing
(ChIP-Seq). Chromatin immunoprecipitation requires a
highly specific antibody for the DNA-binding protein of
interest.
Beforemicroarrays were available, most of the studies of

protein–DNA interactions were designed to answer simple
questions like whether a genomic region (e.g. the promoter
region of a gene of interest) is bound to a transcription
factor thus regulating the transcription levels, that is locus-
specific experiment. These studies require some prior
knowledge to design the experiments and the immuno-
precipitatedDNAsequences are analysed by Southern blot
or qPCR to determine whether the genomic region was
indeed immunoprecipitated. However, the arrival of
microarray technologies has enabled a different question to
be asked. Since the scope of ChIP-chip experiments is not
restricted to specific regions, the question that is posed is
where the transcription factor binds to in the human gen-
ome, that is to identify all the regions where the tran-
scription factor might have regulatory roles. In ChIP-chip
experiments, the isolated DNA fragments are labelled
fluorescently and hybridized to the probes on microarrays.
Undeniably, the developments of microarrays have
enabled interrogation on a genome-wide scale, but the
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detection of the isolated DNA sequences is still dependent
on the availability of the probes to capture them. Although
the developments of high-density tiling arrays, where oli-
gonucleotide probes are placed in high density throughout
the whole genome, have improved the sensitivity of the
ChIP-chip, the cost for such tiling arrays is expensive
especially for large genomes like the human genome.

In contrast, for ChIP-Seq, the isolated DNA sequences
are not hybridized on microarrays (hence avoiding the
inherent problems in probe hybridization experiments);
instead they are directly sequenced to detect their presence
and abundance. This allows detection of all the DNA
fragments or sequences that are isolated in the sample
without biases of probe selection. Actually, both the meth-
ods,microarray- and sequencing-based experiments, rely on
the reference genome sequence, the former method requir-
ing it for synthesizing the probes, and the later method
requiring the reference genome for alignments of DNA
sequences that it sequenced (Park, 2009; Farnham, 2009).

The earliest two ChIP-Seq studies were first published in
2007 to identify the genome-wide binding sites for DNA-
binding proteins, NRSF (neuron restrictive silencer factor)
and STAT1 (signal transducer and activator of transcrip-
tion 1) (Johnson et al., 2007; Robertson et al., 2007). These
papers served as proof-of-concept studies for the new
approach in studying protein–DNA interactions. Both
studies used Illumina1 GA to sequence the immunopre-
cipitated DNA sequences. The identification of the previ-
ously known binding sites in both the studies serves as the
validation of the approach, and the detection of novel-
binding sites shows the higher sensitivity of ChIP-Seq
compared to ChIP-chip. The studies have shown some
promising results; for example, a total of 1946 locations
were identified in the human genome for NRSF, and more
importantly, the sequencing data provide a sharp reso-
lution of the binding sites. This approach will certainly
facilitate the annotation of the binding sites in the genome
for other DNA-binding proteins as well.

The first paper investigating histone methylations using
ChIP-Seq also appeared in 2007 (Barski et al., 2007). The
study performed genome-widemapping of 20 different types
of histonemodifications in the human genome and also used
Illumina1 GA to perform the sequencing. The high-reso-
lution maps of histone modifications generated by sequen-
cing methods are important in expanding our knowledge on
how this mechanism regulates the expression of genes in the
human genome. The development of ChIP-Seq is a major
stride in functional genomics as the studies of genome-wide
protein–DNA interactions like transcription factor binding
sites and studies of epigenetics like histonemodifications are
essential in our understanding of the transcriptional regu-
latory network. Nonetheless, ChIP-Seq is not without its
ownchallengesand limitations (Park, 2009;Farnham,2009).

Transcriptomic profiling

Studies of gene expression are important because they are
the immediate molecular traits that are directly affected by

genetic variations in DNA sequence and epigenetics regu-
lations. The term gene expression usually refers to expres-
sion levels of protein-coding genes, or mRNAs. Previous
studies were mainly focused on mRNAs expression,
because this class of RNAs is important as they serve as the
templates to synthesize proteins through the process of
translation, and proteins are the functional molecules
involved in diverse cellular functions and biological pro-
cesses.However, this perception has been changed after the
completion of the pilot phase of the ENCODE (Encyclo-
pedia of DNA Elements) Project. The project revealed a
pervasive transcription pattern in the 1% of the human
genome that was interrogated (ENCODE Project Con-
sortium, 2007; Carninci and Hayashizaki, 2007). It had
been previously thought that only the protein-coding
regions or sequences (i.e. genes) will undergo transcription
followed by translation. However, the ENCODE Project
showed that transcription also occurs in nonprotein coding
regions as well.
Following the findings, the importance and existence of

noncoding RNAs is getting appreciated and research has
been devoted to identify and characterize them in the
transcriptome. In contrast to mRNAs, the noncoding
RNAs only undergo transcription, but are not translated
into protein. As such, the transcriptome profiling encom-
passed both the coding RNAs (mRNAs) and noncoding
RNAs. One of the well-known noncoding RNAs is
microRNAs.
Traditionally, gene expression levels were measured by

the Northern blot method and reverse transcription
quantitative PCR (RT-qPCR) before the introduction of
microarray technologies. Nevertheless, both of them are
low-throughput methods where expression profiling of all
the known annotated genes in the human genome is not
feasible.
The arrival of microarray technologies has enabled for

the first time the interrogation of several thousand genes
simultaneously in a single experiment, and whole genome
expression studies of all the known genes have also become
feasible. Although microarrays have been the method of
choice forwhole genomegene expressionprofiling formore
than a decade, there are a number of inherent limitations or
problems in microarray studies. The conventional gene
expression microarrays are mainly focused on the expres-
sion levels of known annotated protein-coding genes. Like
the ChIP-chip experiment, the developments of tiling
arrays where the probes were designed to cover the genome
systematically in high resolution regardless of the gene
annotation have been used in discovering unknown or
novel transcripts, although the cost for tiling arrays is
expensive. Besides gene expression microarrays, further
developments have also enabledmicroarrays to be used for
studies of alternative splicing and microRNAs expression.
Currently, a variety of microarrays is commercially avail-
able for transcriptomic applications by companies like
Affymetrix1 and Illumina1.
The microarray method is based on the hybridization of

fluorescent labelled targets and probes, and the expression
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levels are inferred indirectly from fluorescent intensity.
Therefore, the method suffers from certain levels of cross
hybridization and noise, generating artefacts which will
complicate the interpretation of results. Sequencing-based
approach like SAGE was developed before the arrival of
NGS technologies and offered a number of advantages
over microarrays, such as the ability to detect novel tran-
scripts and the direct measurement of the abundance of
transcripts instead of relying on hybridization intensities.
In SAGE, the abundance of mRNAs is estimated or
measured by counting of sequence tags derived from the 3’
end of mRNAs. Nonetheless, this method also has several
major limitations such as the costly Sanger sequencing and
laborious cloning procedure.

The arrival of NGS technologies has brought about
another breakthrough in the approaches to explore the
transcriptome, and this sophisticated method is known as
RNA-Seq. RNA-Seq is based on NGS technologies that
offered several advantages over the previous methods like
microarray or SAGE for transcriptomic studies. First,
unlike the microarray hybridization method, the detection
capability of RNA-Seq is not limited by the probes syn-
thesized on the microarray to capture the corresponding
transcripts in the transcriptome, but it is instead influenced
by the depth of sequencing. Secondly, since RNA-Seq is
not based on hybridization to detect and measure tran-
script expression, it avoids the background noise resulting
from cross-hybridization.

Furthermore, RNA-Seq provides the highest resolution
to a single-base resolution which precisely maps the tran-
scription boundaries, and it can also identify sequence
variations like SNPs in the transcribed regions. In addition,
RNA-Seq can be used to study fusion transcripts and
alternative splicing. Although special microarrays like
exon microarrays where the probes are designed to span
exon junctions can be used to study alternative splicing as
well, they are subject to inherent limitations of microarray
methods.

RNA-Seq directly sequences andmaps the transcripts to
the reference genome to measure transcript expression by
counting the number of sequence reads. Therefore, RNA-
Seqhas the largest dynamic rangeof expression levels, from
low abundance to highly expressed transcripts (if the
sequencing depth is sufficient for low-abundance tran-
scripts). The number of sequence reads that map to a
genomic region corresponds to the level of expression from
that region. The performance of RNA-Seq has also been
evaluated by benchmarking against the gold standard
method, that is RT-qPCR for measuring the expression
levels, and has been shown to be highly accurate. Besides
this parameter, high reproducibility of the results obtained
from RNA-Seq has also been shown. Finally, RNA-Seq
allows the studying of the expression of mRNAs and
noncoding RNAs, and is also able to detect and identify
new transcripts (coding and noncoding) that have not been
annotated. However, no method is perfect; RNA-Seq is
also not without its problems and challenges (Wang et al.,
2009; Morozova et al., 2009).

In summary, besides gene expression profiling, the
applications of sequencing-based approaches in tran-
scriptomic studies have been expanded to genome anno-
tation, discovery of new transcripts, investigation of the
alternative splicing patterns, detection of gene fusions in
cancer, allele-specific expression analysis, as well as the
discovery andmeasurement of noncodingRNAexpression
(Denoeud et al., 2008; Pan et al., 2008; Maher et al., 2009;
Heap et al., 2009; Bar et al., 2008; Morin et al., 2008). The
number of publications using sequencing for tran-
scriptomic applications has been growing rapidly. The
high-throughput production and significantly cheaper cost
are the main factors for NGS technologies to be quickly
adopted in transcriptomic studies. The ability to study
coding and noncoding RNA expression, alternative spli-
cing, protein–DNA interactions and histonemodifications
effectively on a genome-wide scale holds a great promise to
significantly advance our knowledge in this complex field
of transcriptional regulations.

Future Perspectives and Summary

Large-scale sequencing studies have become more feasible
and affordable nowadays. In the recent few years since the
NGS technologies were introduced, we have seen their
tremendous impacts on transforming the approaches in the
studies of structural and functional genomics. Moreover,
sequencing-based approaches have already yielded
numerous novel and important findings in research areas
like genome-wide mapping of histone modifications and
protein–DNA interactions, discovery of genetic vari-
ations, and transcriptomics studies even though the
approaches are still new and maturing. These new
sequencing technologies have enabled researchers to
answer old questions in unprecedented detail and have
raised new questions. It has also allowed researchers to
design various experiments which were unthinkable just a
few years ago with Sanger sequencing.
Further improvements in various aspects of currentNGS

technologies such as throughput, read length and accuracy
and reduction in cost are anticipated.TheNGStechnologies
have shown their potential of being dominant in future
genomics studies. It is evident from several international
projects usingNGS technologies like theENCODEProject,
1000 Genomes Project and cancers sequencing project by
the International Cancer Genome Consortium. Each of the
projects has its own specific aim: the ENCODEproject aims
to annotate all the functional elements, whereas 1000 Gen-
omesProject aims to construct themost comprehensivemap
of genetic variations in the human genome. The cancers
sequencing project intends to study somatic genetic aber-
rations like point mutations and chromosomal rearrange-
ments in the cancer genome. It is clear that the approaches
based onNGSfit in all research areas, and in factNGShave
become an indispensable tool for genomics studies.
It is only a matter of time before achieving the goal of

$1000 per whole genome sequencing. This should not be
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too far from now given the progresses in the development
of third generation sequencing technologies. The arrival of
single molecule DNA sequencing technologies like nano-
pore sequencing will certainly bring about another break-
through (Gupta, 2008). In fact, a recent study has shown
thatwhole human genome sequencing can be done at a cost
of US$4400 using a new sequencing platform (Drmanac
et al., 2009). Although the $1000 genome will technically
make sequencingof thousands of humangenomes a reality,
the substantial cost that will be incurred for data storage,
powerful computational packages and analytical softwares
has to be borne in mind. However, beyond affordability,
what are left behind are the bioinformatics challenges in
processing and analysing the huge amount of sequencing
data (Flicek and Birney, 2009; Pepke et al., 2009; Pop and
Salzberg, 2008).
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The recent advances in sequencing technologies have

enabled the whole human genome to be sequenced within

weeks. To date, several human diploid genomes have been

sequenced and the number of genomes being sequenced is

expected to increase in the years to come. In fact, a 3-year

international collaborative project, the 1000 Genomes

Project, was initiated in 2008 to sequence at least 1000

individual genomes from different populations around the

world. The aim is to create the most detailed and com-

prehensivemapofgeneticvariations inthehumangenome

for future disease-association studies and biomedical

research. While waiting for this ambitious project to be

completed, several whole genome sequencing studies have

already provided some exciting results, where hundreds of

thousands of new SNPs and short indels have been identi-

fied. In addition, these studies also address many import-

ant questions and issues in the experimental design and

data analysis of whole genome sequencing.

Introduction

The arrival of next generation sequencing (NGS) and
third generation sequencing technologies has enabled the
sequencing of the whole human genome to be completed

within weeks compared tomore than a decade taken by the
Human Genome Project (HGP). The first human whole
genome sequencing (WGS) study using a next generation
sequencer was completed in 2008, which marked the
beginning of a new era in personalized genome sequencing.
To date, seven WGS studies have been done using NGS
technologies; other than James Watson’s genome, all are
anonymous individuals. The number of genomes being
sequenced is expected to increase in the coming years when
sequencing technologies and analysis tools are further
advanced and become even more feasible and affordable.
These next generation technologies enable WGS to be
finished at an unprecedented speed.More importantly, the
NGS technologies also allow the whole human genome to
be sequenced at a cost of a few hundreds of thousand
dollars or less which is only a small fraction of the three
billion US dollars spent by the HGP. Certainly, the cost of
WGS will decline steeply in the years to come, especially
with forceful competition from several third generation
sequencers which are expected to be in the market soon, as
ultimately the goal is to reduce the cost to 1000 dollars per
genome sequencing.
Nevertheless, it is noteworthy that the WGS studies

would not have been feasible today without the human
reference genomeorDNA(deoxyribonucleic acid) sequence
provided by the HGP. The reference genome sequence is
needed for alignments of the massive amount of sequence
reads produced by the next generation sequencers.
These studies are not de novoassembly of thehumangenome
sequence, but rather, resequencing studies. In spite of the
hefty cost of the HGP, we have amassed extensive know-
ledge from the project, and rapid developments have
occurred in the studies of structural and functional genomics
as the finished human reference genome sequence was in
hand. Besides the human genome, genomes of plants, ani-
mals and microorganisms were also getting sequenced.
However, this article focuses on human genome sequencing
and discusses the deliverables and impacts of the studies.
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Human Genome Sequencing: Past,
Present and Future

The field of molecular genetics and genomics has been
progressing rapidly after the completionof theHGP,which
provided a reference DNA sequence of the human genome
(International Human Genome Sequencing Consortium,
2004). It was a major scientific development in human
genomics and biomedical sciences. This ambitious work
was started in 1990 and took approximately 13 years to
complete (Figure 1). On its completion, HGP offered the
first glimpse of the number of protein-coding genes; it was
estimated to be 20 000–25 000 genes embedded in the �3
billion nucleotides which comprise the human haploid
genome. Recent data seem to suggest that the ‘real number’
is approximately 20 500 genes. Withal, none of the genome
experts have cast a good guess close to this number back in
the year 2000; even the lowest estimated number was still
several thousands of genes higher than this real number
(Pennisi, 2007). The massive sequencing task in the HGP
was completed by the Sanger dideoxynucleotide or chain
termination sequencing method which was developed in
the late 1970s.

In competition with the International Human Genome
Sequencing Consortium (IHGSC), a private company –
Celera Genomics – also finished their human genome
sequencing project in the same year, where both published
their draft sequences and data analysis in 2001 (Inter-
national Human Genome Sequencing Consortium, 2001;

Venter et al., 2001). Nevertheless, the draft or initial
sequences were not flawless; several imperfections in the
draft sequences were generated by both groups. The draft
sequences were far from perfect because of the incomplete
coverage of the euchromatic regions or euchromatin, where
� 10% of these regions were missing. The coverage was
even less when the whole genome is considered which
includes the heterochromatic regions; some 30% of the
genome was not covered. Furthermore, there were an
excessive number of gaps between the contigs which made
the genome sequences patchy or discontinuous. Therefore,
there was a need to improve the draft sequence, and sub-
sequently the IHGSCpublished an improved version of the
human genome sequence in 2004 and the Human Genome
Project was deemed to complete at that time. This
improved version has achieved a nearly complete coverage
of all the euchromatic regions in the human genome
(� 99%) and also significantly reduced the number of gaps
to 341 from the initial hundreds of thousands of gaps
(International Human Genome Sequencing Consortium,
2004). See also: Comparing the Human and Chimpanzee
Genomes;HumanGenomeProject: Importance inClinical
Genetics; Sequencing the Human Genome: Novel Insights
into its Structure and Function
Although both the HGP and Celera Genomics only

sequenced the human haploid genome, the availability of
the reference DNA sequence has marked an important
milestone in genomic research. It has initiated a new era in
the studies of genetic variations and the functional

1970s 2000s

1977: Sanger
dideoxynucleotide/
chain termination
sequencing
method was
developed

1990: Initiation of 
the Human
Genome Project

1980s 1990s

2001: Completion of the draft DNA
sequence of the human genome by
IHGSC and Celera Genomics  

2004: IHGSC published an
improved version of the DNA
sequence of the human
genome

2005: The first next generation
sequencer was introduced by Roche®
454 Life Science i.e. GS 20 System

2006 and 2007: Another two next
generation sequencing platforms were
commercially marketed i.e. Illumina® GA
(2006) and ABI®SOLiD (2007)

2007: The first human diploid genome
(Craig Venter’s genome) was sequenced by
the Sanger sequencing method

2008: The first human diploid
genome (James Watson’s
genome) was sequenced by
next generation sequencing
The first cancer genome (acute
myeloid leukemia) was also
sequenced
Initiation of the 1000 Genomes
Project

2009: The arrival of
Heliscope Single
Molecule Sequencer
and the first human
diploid genome was
sequenced by third
generation sequencing

Figure 1 The developments of sequencing technologies and whole human genome resequencing studies.
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characterization of the human genome. The two global
projects that ensued are the International HapMap (Hap-
lotype Map) Project and the ENCODE (Encyclopedia
of DNA Elements) Project (International HapMap
Consortium, 2003; ENCODE Project Consortium, 2004).
The aim of the HapMap initiative is to validate millions of
single nucleotide polymorphisms (SNPs) that are identified
during and after the completion of the HGP, and then to
characterize their correlation or linkage disequilibrium
(LD) patterns in populations of European, Asian and
African ancestry. Apart from decoding the blueprint of life
and identifying genetic variation (particularly the SNPs), it
is also crucial to understand the biological code and mes-
sage embraced in the � 3 billion nucleotides. To advance
knowledge in these areas, the ENCODE Project was con-
ceived to identify all the functional and regulatory elements
in the human genome. Both these projects have achieved
significant successes and generated important information
in each area (International HapMap Consortium, 2007;
ENCODE Project Consortium, 2007). See also: HapMap
Project

The first human diploid genome sequence appeared in
2007 and it was the Craig Venter’s genome that was
sequenced by the Sanger sequencing method (Levy et al.,
2007). In the subsequent year, the genome of James
Watson, who discovered the double-helix structure of
DNA molecule half a century ago (Wheeler et al., 2008),
was also sequenced. In contrast to Venter’s genome, Wat-
son’s genome was sequenced using NGS technologies.
Today, on top of the two scientists’ genomes, an additional
six human genomes have also been fully sequenced, five of
them being anonymous individuals with no phenotypic or
medical information, and one being a patient with acute
myeloid leukaemia (AML) (Ley et al., 2008). These
anonymous individuals are one Caucasian/European
(Pushkarev et al., 2009), one African (NA18507) from the
International HapMap Project who was sequenced in two
studies (Bentley et al., 2008; Mckernan et al., 2009), two
Koreans (Ahn et al., 2009; Kim et al., 2009) and one Han
Chinese (Wang et al., 2008). The sequencing work of all
these individual genomes was accomplished by next gen-
eration sequencers, except one that was done by a ‘next-
next’ or third generation sequencerwhich is based on single
DNA molecule sequencing (Pushkarev et al., 2009). The
NGS technologies are Roche1 454 Life Science Genome
Sequencer FLX (GS FLX), Illumina1 Genome Analyzer
(GA) and Applied Biosystems1 (ABI) Supported Oligo-
nucleotide Ligation Detection System (SOLiD).

Next Generation Sequencing
Technologies

Sanger dideoxynucleotide chain termination sequencing
has been themost common sequencingmethodused for the
past 30 years since it was invented in the late 1970s until the
first NGS technologies were introduced to the market in

2005. Sanger sequencing is used for various applications
such as mutation detection and SAGE (serial analysis of
gene expression) for measuring transcript levels, and more
importantly, it was used to complete the HGP. Shortly
after the first next generation sequencer was introduced by
Roche1 454 Life Science, that is Genome Sequencer 20
(GS 20) System, which was subsequently replaced by GS
FLX System with further improvements to the preceding
system, another two biotechnology companies also laun-
ched their sequencing platforms, that is Illumina1GAand
ABI1 SOLiD. The simultaneous advent of several next
generation sequencers has created intense competition in
the sequencing market, with each technology having its
own strengths and limitations.
Currently, Sanger sequencing machines have been

largely supplanted by next generation sequencers in many
large genomics institutes worldwide. This is mainly due to
the ultra high-throughput productionofNGS technologies
which is several orders of magnitude higher than tradi-
tional sequencing.One of themajor differences between the
two of them is the ability of next generation sequencers to
simultaneously sequence millions of DNA fragments;
therefore, NGS is also known as massively parallel
sequencing technologies. This feature has enormously
increased the throughput production or the number of
nucleotides that one can sequence when compared to the
Sanger sequencer in one experiment or per instrument run.
The sequencing chemistry of NGS technologies, together
with their ultra high-throughput production, has also
reduced sequencing cost significantly, making large-scale
sequencing studies affordable nowadays. The development
of third generation sequencing technologies is expected to
further decrease in the sequencing cost and eventually
achieve the goal of 1000 dollars per sequenced genome
(Mardis, 2006).
One of the tedious steps in WGS using the Sanger

method is the in vivo amplification step using bacterial
cloning. This has been substituted by in vitro amplification
of millions of DNA fragments by NGS technologies using
emulsion polymerase chain reaction (PCR) (Roche1 GS
FLX and ABI1 SOLiD) or bridge amplification on solid
surface (Illumina1 GA). The third generation sequencing
is characterized by single DNA molecule sequencing
without the need of amplification. The first third gener-
ation sequencing instrument – Heliscope Single Molecule
Sequencer – is now commercially marketed by Helicos
Biosciences. The sequencing chemistry or approach for
NGS technologies can be broadly divided into sequencing-
by-synthesis (pyrosequencing for Roche1 GS FLX, and
sequencing by reversible terminator chemistry for Illu-
mina1 GA) and sequencing-by-ligation (ABI1 SOLiD).
Nowadays WGS is able to be completed quickly, but it

would not be possible without the HGP that provides the
template for alignment of billions of short sequence reads
produced by next generation sequencers. This is because
the NGS technologies are characterized by short sequence
read length, less than 100 bp for Illumina1 GA and ABI1

SOLiD, as well as for the third generation sequencer. This
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feature makes the de novo sequencing or assembly of bil-
lions of short sequence reads into large contigs a difficult
task, especially for large and complex genomes like the
human genome. Longer read length is crucial to obtain
larger contigs with fewer gaps between them during the
assembly steps. Although the latest improvements in
sequencing chemistry and system allow Roche1 GS FLX
to achieve a sequence read length of 500 bp on average,
there is still a sizable gap from the length that can be
achieved by Sanger sequencing, which is approximately
800 bp–1 kb (Rothberg and Leamon, 2008; Shendure and
Ji, 2008; Gupta, 2008). NGS technologies have many
advantages over the traditional sequencing method, but
they are not without limitations. In addition to short read
length, they have higher sequence error rates, although this
has been gradually improving.

NGS technologies have not only accelerated the
sequencing speed exponentially, they have also remarkably
changed the approaches in genomics studies. In addition to
their applications in DNA sequencing, they also have
innovative applications in other areas such as genome-wide
mapping of transcription factor binding sites and histone
modifications (ChIP-Seq), transcriptomic profiling of
mRNAs (messenger ribonucleic acid) and noncoding
RNAs (RNA-Seq), studies of alternative splicing events,
detection of chromosomal alterations or rearrangements
(paired-end sequencing), direct sequencing of CpG meth-
ylation sites and metagenomics (Morozova and Marra,
2008; Mardis, 2008).

Deliverables from Whole Genome
Sequencing

Recent advances in sequencing technologies have permit-
ted WGS to be done efficiently. With current and future
sequencing technologies, there should be nomajor obstacle
in getting anyone’s genome sequenced quickly. But what is
more important is to be aware of the value and significance
of getting these genomes sequenced, what can be learned
from the sequencing data and how the results will impact
future genetic studies.

Experimental design and data analysis

Several important findings and favourable outcomes have
been delivered by the WGS studies. These studies have
clearly demonstrated the feasibility of using all the NGS
and third generation sequencing technologies to decode the
DNA sequence of human genome efficiently and at an
affordable price per genome. This should be scalable to
sequence hundreds or thousands of genomes when the
cost drops further. In addition, these studies have also
addressed many important questions and issues sur-
rounding the experimental design and data analysis, such
as preparation of single- and paired-end DNA libraries for
sequencing, assessment of the sequencing depth that is

needed to achieve near complete coverage of the reference
genome sequence and to minimize SNP calling error rate,
and the quality control criteria for detection of genetic
variations (SNPs, indels and structural variations). For
example, Wang et al. (2008) found that at a sequencing
depth of greater than 10-fold, the assembled consensus
sequence covered � 83% of the NCBI human reference
genome sequence using single-end reads and � 95% cov-
erage using paired-end reads, and greater sequencing depth
has minimally increased the coverage. However, the SNP
calling error rate decreases significantly with greater
sequencing depth. Similar conclusions were also derived
from other studies such as that of Bentley et al. (2008), who
reported that the discordances between sequence-based
SNP calls and data from genotyping arrays reduced with
increasing sequencing depth. The discordance genotypes
aremostly heterozygotes that were under-called due to low
sequencing depth, because a sufficient sequencing depth is
needed to detect both the alleles. This piece of information
would be useful and helpful for future studies using the
same sequencing platform to balance between coverage,
error rate in SNP calling and cost of sequencing.
The subsequent WGS studies that used shorter read

lengths have higher average sequencing or coverage depth
than the first study using Roche1 GS FLX. Average cov-
erage depths of 36-fold and 27.8-fold were achieved in the
YH and AK1 genomes, respectively, using Illumina1 GA,
compared to the genomes that were sequenced by longer
read length, such as 7.4-fold forWatson’s genome and 7.5-
fold for Venter’s genome. Higher sequencing depth is
needed for next generation sequencers that produce shorter
read lengths to attain more complete genome coverage.
With that sequencing depth, the aforementioned two
studies achieved almost complete coverage of the NCBI
human reference genome. Although, it is bit lower for the
P0 genome that was sequenced by the third generations
sequencer, it was reported that only � 90%of the reference
genome sequence was covered at 28-fold average coverage.
In addition, several single- and paired-end libraries (with

different insert sizes) are usually prepared and sequenced to
minimize the systematic biases in genome representation.
Using the same studies as examples, Wang et al. (2008)
prepared and sequenced eight single- and two paired-end
libraries for the YH genome. Similarly Kim et al. (2009)
also prepared several libraries with different insert sizes for
the AK1 genome to provide even coverage or to minimize
coverage biases, whereas three paired-end libraries with
span sizes of 100, 200 and 300 bp were prepared for the
other Korean genome (SJK).
The studies also examined the performance of next

generation sequencers from several aspects, such as the
percentage of uniquely aligned sequence reads to dis-
tinguish from sequence reads that aligned to multiple sites
in the reference genome sequence. This is because only the
uniquely aligned sequence reads are used to build the
consensus sequence and to detect genetic variations, and
multiple-site aligned reads are filtered because they are
ambiguous. This aspect is crucial for next generation
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sequencers, because aligning short sequence reads uniquely
to the reference genome could be problematic. It is wasteful
if a large fraction of the sequence reads generated by NGS
is aligning to multiple sites. Nevertheless, we have seen
some favourable outcomes as Wang et al. (2008) reported
that approximately 86%of the sequence reads thatmapped
to the reference genome could be uniquely aligned.

In addition, these studies have also led to the develop-
ments of many algorithms for aligning the sequence reads
and detecting the genetic variations. Some studies have
used their in-house developed algorithm, such as SOAP
(Short Oligonucleotide Alignment Program) to align bil-
lions of sequence reads to the reference, and the improved
version has significantly increased the alignment speed (Li
et al., 2009a). Others have used alignment tools that are
developed externally, like the MAQ (Mapping and
Assembly with Qualities) (Ahn et al., 2009). Besides the
advent of efficient alignment softwares, there is also a surge
in the publications of analysis tools for processing and
quality assessment of the sequencing data (Martinez-
Alcantara et al., 2009; Lassmann et al., 2009), methods for
detecting CNVs and structural variations using NGS data
(Yoon et al., 2009; Chen et al., 2009) and SNP detection
methods (Li et al., 2009b). If the amount of genotyping
data in genome-wide association studies (GWAS) can be
described as ‘drinking from the fire hose’ (Hunter and
Kraft, 2008), then in the WGS era, perhaps it is ‘drinking
from the waterfall’. It is indeed true that one of the greatest
challenges in the WGS era is the handling of massive
amounts of sequencing data, and fortunately, the devel-
opments of analysis methods and programs are keeping
pace with the increasing throughput production of next
generation sequencers. These achievements, together with
the established experimental procedures and analyses
pipelines, have greatly contributed to the maturity of the
field.

Richness of genetic variations

The more significant finding from the WGS studies is that
they have conclusively revealed the richness of genetic
variations in the human genome (Table 1). Although the
ubiquity of CNVs in the human genome has been reported
back in 2004 (Sebat et al., 2004; Iafrate et al., 2004), the
CNVs found in those studies were far less than the numbers
reported in the WGS studies. Most of the CNV data were
generated by array-basedmethods (CGH and SNP arrays)
where the signal intensity information is used to detect
deletions and duplications. Because of the reliance on
relative or differences in signal intensities, these methods
are unsuitable for detecting other structural variations like
inversions and translocations (also known as balanced
chromosomal rearrangements). Furthermore, due to limi-
tations in marker density or resolution, these methods are
not sensitive enough to detect smaller sizes of CNVs
(550 kb) (Scherer et al., 2007), which are predicted to be
more abundant than the larger CNVs (Estivill and
Armengol, 2007). Even using the highest density SNP

arrays such as Illumina1 Human 1M Beadchip and Affy-
metrix1 6.0 SNP Arrays, the method still suffers from
poor sensitivity to detect CNVs smaller than 5–10 kb
(McCarroll et al., 2008a; Cooper et al., 2008). Thank-
fully, the completion of several WGS studies has provided
much information on the genetic diversity of human
genome.
Several thousands of structural variations are found in

all the WGS studies although they have used different
detection methods and criteria. In total, 2682 structural
variations (dominated by CNVs) are detected in the YH
genome with a median length of � 0.5 kb; their sizes are
much smaller than those identified by array-based meth-
ods. These results show that paired-end sequencing meth-
ods have much higher sensitivity to detect smaller CNVs.
Nonetheless, this method could be extremely biased
towards detection of deletions, wheremost of the identified
CNVs are deletions, which are 2441 deletions versus 33
duplications. Moreover, this clearly reveals the limitations
of paired-end sequencing methods with certain insert sizes
in detecting CNVs.Deletions aremore likely to be detected
because they are identified by longer than expected paired-
end insert sizes when mapped to the reference sequence,
whereas detection of duplication is restricted by the paired-
end library span size. This means that duplications or
insertions larger than the paired-end insert size are
undetected. Therefore, several paired-end libraries with
different (short and long) insert sizes would be needed to
capture duplications or insertions and deletions of varying
sizes. For the YH genome, the two paired-end libraries
had a span size of 135 and 440 bp, respectively. The bias
against detection of duplications is partly due to the paired-
end insert size; therefore, larger insert sizes of several
kilobases should improve the ability to detect more dupli-
cations. See also: Copy Number Variation in the Human
Genome; Epigenetic Variation in Humans; Genetic Vari-
ation: Human; Relevance of Copy Number Variation to
HumanGenetic Disease; Single Nucleotide Polymorphism
(SNP)
In addition to structural variations, the studies also

identified hundreds of thousands of indels (Table 1). The
numbers reported are not directly comparable to each
other, as the analyses, detection methods and criteria used
are different between the studies. For the two Korean
genomes, the number of indels found in one study is twice
the other one. Ahn and colleagues identified the indels
within a size range from229 to+14 bp, whereas the other
study detected the indels within 229 to +5 bp. The YH
genome contained approximately 135 000 indelswithin 1 to
3 bp, and approximately 400 000 indels defined from1 to 16
bp were found in the NA18507 genome. All these four
genomes were sequenced using Illumina1 GA. Regardless
of the numbers, collectively these sequencing studies have
definitely revealed plenty of short indels in the human
genome. The reported numbers are likely representing only
a portion of the total number of indels in the human gen-
ome, because a rather narrow size rangewas defined in each
of the studies described here to identify indels.
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Table 1 Summary of genetic variations identified in the whole genome sequencing studies

Study, individual
genome and sequencing
technology

Total number of SNPs
detected In dbSNP new SNPs

Total number of indels
detected In dbSNP new indels

Total number of copy
number or structural
variations detected

Levy et al. (2007) 3 213 401 91% in dbSNP 292 102 Heterozygous
indels (size range: 1–571

bp)

– 62 Copy number
variable regions

(microarray-based
methods)

Craig Venter 9% New

559 473 Homozygous
indels (size range:1–
82 711 bp)

90 Inversions

Sanger sequencing

53 823 Block

substitutions or
multinucleotide
polymorphisms (size

range: 2–206 bp)

Wheeler et al. (2008) 3.32 Million 2.72 Million in dbSNP
(82%)

222 718 113 539 in dbSNP
(51%)

No mate-paired reads
for detecting structural
variants

James Watson
0.61 Million new (18%) (65 677 Insertions,

157 041 deletions, size

range: 2–38 896 bp)

109 179 new (49%)
23 CNV regions (size

range: 26 kb–1.6Mb)
were detected by aCGH
array

Roche1 GS FLX

Ahn et al. (2009) 3 439 107 3 019 024 in dbSNP
(88%)

342 965 113 534 in dbSNP
(33%)

2920 Deletions
Korean – SJK

420 083 New (12%)
(Size range: 229–+14
bp) 229 431 New (67%)

415 Inversions
Illumina1 GA 963 Insertions

Kim et al., 2009 3 453 653 2 863 078 in dbSNP
(83%)

170 202 38% in dbSNP 1237 CNV regions
(deletions)Korean – AK1

590 575 New (17%)

(Size range: 229–+5

bp)

62% New

77 Copy number gainsIllumina1 GA
Mckernan et al., 2009 3 866 085 3 131 423 in dbSNP

(81%)
226 529 67% of the small 5590 Indels between

mate-paired readsAfrican – NA18507
734 662 New (19%)

89 679 Insertions of up
to 3bp

Indels found (insertions
up to 3 bp and deletions

up to 11 bp) are present
in dbSNP

(1515 Insertions and

4075 deletions)

ABI1 SOLiD

124 024 Deletions of up
to 11bp 91 Inversions
12 826 Larger indels

Bentley et al. (2008) 4 Million 74% in dbSNP 0.4 Million Half of the indels are
corroborated

5704 Structural variants
African – NA18507 26% New (Size range: 1–16 bp)

by entries in dbSNPIllumina1 GA

Wang et al. (2008) 3.07 Million 2 657 081 in dbSNP 135 262 55 390 in dbSNP 2682 Structural variants
Han Chinese – YH (86%) (Size range: 1–3 bp) (41%)
Illumina1 GA 417 016 New (14%) 79 872 New (59%)

Pushkarev et al. (2009) 2 805 471 76% in dbSNP – – 752 Regions of CNV

European – P0 24% New
Heliscope Single
Molecule Sequencer
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Although, the finding of several million SNPs in each
individual genome is not new; more interesting is the
identification of several hundred thousands of newSNPs in
all the studies that have not been catalogued in dbSNP.
Bentley et al. (2008) found about one million new SNPs in
the NA18507 genome, and more or less half a million for
other genomes. Therefore, these results still suggest a lack
of completeness of the current dbSNP, even though SNPs
are the most well characterized genetic variations in the
human genome. Most of the common SNPs in human
populations have already been captured; thus the new
SNPs identified in each study are likely representing those
from the spectrum of lower frequencies. The information
about the population frequencies of the new SNPs is
unavailable, since they are individual genome sequencing
studies, but it should be available through the 1000 Gen-
omes Project when it is ready.

TheWGS studies also assessed the accuracy of their SNP
calls by comparing with the data from genotyping arrays,
and found an excellent concordance between them. The
accuracy of SNP calling in the SJK genome was assessed
using Illumina11MandAffymetrix16.0 arrays, and itwas
found that 499% of the SNP calls were in agreement.
However,Mckernan et al. (2009) used a different approach
instead of relying on commercial genotyping arrays to
validate the SNP calls. It is arguable that the SNPs in
genotyping arrays are well selected; therefore, it could bias
the comparisons. Therefore, they chose to focus on valid-
ation of new SNPs, instead of the known SNPs in the
genotyping arrays. They randomly selected a small fraction
of the novel SNPs and validated them using SNPlex gen-
otyping assays. They found495% agreement between the
sequencing detected genotypes and the SNPlex genotypes,
but 499% agreement with the HapMap genotype data.
Finally, Bentley et al. (2008) used both approaches to
examine the accuracy of SNP calling, by comparing the
sequence-based SNP calls with genotyping arrays, Hap-
Map genotype data, as well as validating a subset of new
SNPs. Good concordance was found in all the three
analyses.

The differences in the number of genetic variations iden-
tified in theWGS studies are likely to be the consequence of
technical and analytical differences rather than due to
genuine interindividual variability. It is apparent from the
NA18507 genome which was sequenced by Illumina1 GA
and ABI1 SOLiD; both studies found an appreciable dif-
ference in the number of SNPs, indels and structural vari-
ations. The number of SNPs identified by both studies can
differ as many as 0.2 million SNPs even if it is the same
individual genome that gets sequenced twice (Table 1).

Although technical and analytical differences between
the studies have to be borne in mind, there is still a sig-
nificantly higher number of SNPs found in the African’s
genome (NA18507) by the two studies when compared to
other genomes. Yet, this is not an unexpected finding
because the Africans are ancient populations, and have
greater genetic diversity than European and Asian popu-
lations. Other interesting results include the finding of

highly significant pairwise correlations of SNP and indel
densities throughout the genome (Kim et al., 2009).

Comparing the genetic variations between
genomes

Besides identifying genetic variations in each genome, the
studies also compared the genetic variation data with other
genomes, such as the proportion of SNPs that are shared
with other genomes and the number of SNPs that are
unique to each genome, to provide some insights to the
genetic differences between individuals from distinct
ancestries. For instance, Kim et al. (2009) found that 21%
of the AK1’s SNPs were unique, that were not found in the
other four genomes that were sequenced before it (Venter,
Watson, NA18507 and YH), although 8% of SNPs were
shared by all. Ahn and colleagues also made similar com-
parisons for the other Korean genome; SJK shared 50–
60%of the SNPswith the genomes of YH,Venter,Watson
and NA18507. Owing to the limited number of genomes
sequenced, for the time being, it is only feasible to compare
between individual genomes. More meaningful com-
parisons should instead involve a groupof individuals from
eachpopulation to interrogate the extent of similarities and
differences in genetic variations between different popu-
lations like the International HapMap Project. The Inter-
national HapMap only focused on (common) SNPs, but
the 1000 Genomes Project should enable a much more
detailed population comparison of various genetic
variations.

Genetic variations and complex diseases

Since SNPs have been well studied for disease association
in both genome-wide and candidate gene association
studies, it would be interesting to know whether the SNPs
identified in these genomes are associated with any of the
diseases. In fact, a list of such disease-associated SNPs has
been compiled by the studies. More than 100 SNPs were
identified in the genome of AK1 that have shown associ-
ation with various complex diseases such as 90 SNPs for
cancers, 34 SNPs for type 2 diabetes, 13 with Alzheimer
disease and 7 for rheumatoid arthritis. Although the find-
ings are exciting, their interpretations could be challenging,
unless most of the disease genetic variants (both the pro-
tective and predisposing risk factors) are known, and their
interactions with environment factors are also being
characterized. This is because the development of complex
diseases depends on both the genetic and environment
factors and their interactions. Nevertheless, these findings
further support the need to catalogue all the genetic vari-
ations in the human genome as the first step for future
disease association studies.

New sequences

The WGS studies also found a portion of the sequence
reads that could not map to the NCBI human reference
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genome, indicating that some sequences are missing from
the reference. Wheeler and colleagues found 1.5 million
reads (approximately 1.4% of the total sequence data) that
did notmap to the reference. These ‘unmappable’ sequence
readswere then assembled into � 170 000 contigs spanning
48Mb.Even after the removal of contigs thatwere less than
100 bp in size, there were still � 110 000 contigs spanning
29Mb. This agrees with the estimation of 25Mb of
euchromatic sequence that is absent from the reference.
For the SJK genome, � 6%of the sequence reads were not
mapped to the reference. Meanwhile, Wang et al. (2008)
also assembled approximately 1.7 million reads into nearly
21 000 contigs with lengths larger than 100 bp. Although
several technical factors could be responsible for the
unmappable sequence reads, it is equally likely to be due to
the missing sequences in the reference.

1000 Genomes Project

The 1000 Genomes Project was initiated in 2008 to
sequence the genomes of at least 1000 individuals from
different populations around the world (http://
www.1000genomes.org/page.php). The major aim of this
international collaborative project is to provide the most
detailed and comprehensive map of human genetic vari-
ations. The participants are anonymous individuals and no
medical information is collected since the aim of this pro-
ject is to build a useful resource of humangenetic variations
for future disease association studies, rather than correl-
ating the genetic information with disease phenotypes.
Like the International HapMap Project, the data from this
project will also be made publicly available to researchers
and the scientific community (Kaiser, 2008).

The significance of this project for future disease asso-
ciation is tremendous. Owing to the ease of large-scale
genotyping, SNPs have been widely used as genetic mark-
ers in GWAS to search for disease variants. Moreover,
evidence has been accumulating to suggest that (common)
SNPs alone are unlikely to account for all the heritable risk
of complex diseases. Concurrently, the amount of data
showing the associations of CNVs with complex diseases
has been growing (Wain et al., 2009). Similarly, the
importance of rare variants in complex diseases is also
being recognized (Nejentsev et al., 2009). This indicates
that future disease association studies need to interrogate
non-SNP and rare genetic variants, and for this to be
feasible, a detailed catalogue of human genetic variations is
needed. Common SNPs have been well documented in the
dbSNP, but rarer SNPs (or lower frequencies SNPs) are
still under-represented in the database and the information
of indels and structural variations are far from complete.

Unlike the WGS of one individual genome, the 1000
Genomes Project is a large-scale population-based
sequencing study which enables studies of the population
properties of genetic variations and their LDpatterns. This
information will be required to design next generation
genotyping arrays to select surrogate markers that are not

only able to tag for SNPs throughLD, but also to efficiently
capture indels and CNVs. This development will certainly
broaden the scope of genetic variations interrogated in
GWAS. In fact, there is already some evidence to show that
CNVs could be tagged by SNPs through LD (Hinds et al.,
2006; McCarroll et al., 2008a), but a detailed and in-depth
investigation of their LD patterns can only be done when
most of the SNPs, indels and structural variations are
identified. The in-depth studies of LD between different
genetic variations is important, as the finding of the 20 kb
deletion located upstream of the IRGM gene for Crohn
disease has demonstrated the efficiency of using SNPs as
surrogate markers to identify non-SNP genetic variants
(McCarroll et al., 2008b).

Sequencing of Cancer Genome

Many complex diseases have been interrogated in GWAS
over the past fewyears; these diseases includemany types of
cancers such as prostate, breast, lung, ovarian and color-
ectal cancers, acute lymphoblastic leukaemia, follicular
lymphoma and glioma among others. These studies have
successfully compiled a list of germline SNPs that confer
susceptibility to various cancers. However, most of the risk
alleles have small effect sizes (odds ratio51.5) which only
explain a small fraction of the total heritable risk (Easton
and Eeles, 2008). See also: Genome-Wide Association
Studies
Cancers are different from other complex diseases in

several aspects. In addition to germline genetic variations,
the importance of somatic mutations in carcinogenesis is
well established and recognized. Cancer is caused by the
accumulation of genetic lesions or somaticmutations (over
the lifetime of patient) in the genome of the cell where the
cancer originates from. Therefore, focusing merely on
germline genetic variations will not be sufficient to fully
decipher the genetic basis of cancers. Nonetheless, identi-
fying somatic mutations or variations is challenging
because it requires the specific cell population for investi-
gation. Unlike germline variations which are inherited in
all cells of the human body, the acquired mutations are not
shared by all types of cells. As a result, to study somatic
mutations, DNA has to be obtained from the specific cell
population where the disease arises. The original cells
where most cancers arise are known; but for other diseases
like schizophrenia or hypertension, it is unclear which cell
population to be studied for somatic mutations. Further-
more, tissue specimens are readily available for cancers
(compared to other diseases) where DNA is extracted. All
these factors provide opportunities to study somatic
mutations in cancers, but the genotyping arrays used in
GWAS are designed to interrogate germline SNPs.
Therefore, direct sequencing of the cancer genome would
be needed to study somatic mutations.
In the recent years, a number of targeted sequencing

studies have been undertaken and have identified an
enormous number of somatic mutations in various cancers
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(Wood et al., 2007; Ding et al., 2008; Prickett et al., 2009).
One of the notable studies was the Cancer Genome Project
which conducted a systematic sequencing of the exons of
protein kinase genes in various human cancers and found
more than one thousand somatic mutations (Greenman
et al., 2007). Previous studies have used PCR to isolate and
amplify the targeted regions. This method is tedious,
laborious and time consuming for isolating large genomic
regions of hundreds of megabases. Nevertheless, the
developments of several sequences capture or enrichment
methods to isolate the targeted genomic regions for
sequencing has allowed large-scale targeted sequencing
studies to be done more efficiently (Summerer, 2009).
Moreover, several international collaborative projects
have also been initiated to decipher the cancer genome
through large-scale sequencing approaches such as the
International Cancer Genome Consortium (ICGC). The
ICGCaims to eventually sequence the full genome ofmany
thousands of cancer samples of various types, but for the
near term, a targeted approach is being used to sequence
only the exons (Maher, 2009).

Whole genome sequencing is the ultimate and complete
solution to unravel disease genetic variants regardless of
whether they are germline polymorphisms or somatic
mutations, SNPs or non-SNP genetic variants. Although
sequencing cost is decreasing, the WGS approach is still
prohibitively expensive tobe applied in a large sample set of
cancer and noncancer samples; therefore, a targeted
sequencing strategy ismore feasible and being advocated at
themoment. So far, there is only oneWGS study of cancer.
The WGS of the AML genome has provided some pre-
liminary yet exciting findings, and also demonstrated the
power of this approach to discover new cancer-associated
mutations. For the time being, they focused primarily on
the coding sequences of annotated genes, and detected
eight new heterozygous and nonsynonymous somatic
mutations (single nucleotide changes) in theAMLgenome.
Interestingly, some of the mutations are found in the genes
involved in several pathways that are known to contribute
to cancer pathogenesis. For example, four of themutations
are found in the genes that are strongly associated with
cancer progression (i.e. protein tyrosine phosphatase,
receptor type, T (PTPRT), cadherin 24, type 2 (CDH24),
protocadherin LKC (PCLKC) and solute carrier family 15
(oligopeptide transporter), member 1 (SLC15A1)). In
addition to providing some preliminary results, this study
can be used as a reference for experimental design and data
analysis in the future cancerWGS studies (Ley et al., 2008).

Summary

There is still a considerable huge gap to move from ‘per-
sonalized genome sequencing’ to ‘personalized medicine’.
Personalized genome sequencing is able to provide full
DNA sequences and identify the enormous number of
genetic variations in the genome. However, personalized
medicine aims to predict individual susceptibility risks to

various diseases and responses to drug therapies using the
genetic variation information. Therefore, it is essential to
know beforehand which genetic variations are neutral and
which of them are disease-causing variants. To bridge the
gap, the first steps are to detect and validate all the genetic
variations in the human genome in population-based
studies, and catalogue them properly in databases, so they
can be used as the genetic markers for future disease
association studies. Currently, we are moving towards
these goalswith the on-going 1000Genomes Project. These
recourses would be needed for future GWAS, and only
with the availability of a very detailed and near complete
map of all genetic variations will it be feasible to perform a
truly comprehensive search for the disease causing variants
throughout the human genome. The current GWAS that
target only common SNPs have a limited representation of
the total genetic variations.
Identifying all the ‘single effect’ disease variants is the

preceding step to study their ‘combined effect’ or gene–
gene interactions. There will only be some hope for per-
sonalized medicine such as disease risk prediction when
most, if not all, of the disease variants are known.
Sequencing-based methods will become an indispensable
tool for future genetic association studies as well as func-
tional genomics.
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Genome-wide association studies have successfully identified many novel genetic loci

for various human complex diseases and quantitative traits. There are several important

factors contributing to the feasibility of this approach; one of them is the rapid

advancement in high-throughput single nucleotide polymorphisms (SNPs) genotyping

technologies which has enabled researchers to comprehensively interrogate the entire

human genome. Almost all the studies that have been published up to date used

commercially available whole-genome genotyping arrays from Illumina1 and

Affymetrix1. The most prominent feature of these high-throughput genotyping

platforms is the ability to interrogate several hundred thousands to one million SNPs

simultaneously in a microarray. The application of genotyping arrays is not only limited

to association studies, but it has also been applied to many other human genetic studies.

However, the rapid developments of sequencing technologies have started replacing

the microarray experiments for both structural and functional genomics studies.

Introduction

Over the past three years, we have been seeing the success of
genome wide association studies (GWAS) in identifying an
enormous number of novel genetic loci and implicating new
biological pathways for various human complex diseases
and quantitative traits (Ku and Chia, 2008). Many genes
which were identified by GWAS are not candidate genes
previously thought to be associatedwith diseases such as the
two novel genes and biological pathways linked to Crohn
disease: IL23R (interleukin-23 receptor) and ATG16L1
(autophagy) pathways (Mohlke et al., 2008; Easton and

Eeles, 2008; Lettre and Rioux, 2008). The paradigm shift in
genetic approach – from candidate–gene association and
family linkage studies to GWAS – has been attributed to
several important developments, notably the rapid advance-
ment in high-throughput single nucleotide polymorphisms
(SNPs) genotyping technologieswhichhas enabled research-
ers to interrogate several hundred thousands to one million
SNPs simultaneously in a microarray. GWAS is a compre-
hensive and agnostic approach in the search for unknown
disease variants, as such; the ability to interrogate large
number of SNPs covering the entire human genome is a
prerequisite to this study design. In parallel with decreasing
cost of genotyping, it is currently practical to genotype
thousands of samples in GWAS. Both the technological
feasibility and affordable genotyping cost have been one of
the primary driving forces for the rapid publications of
GWAS. See also: Genome-Wide Association Studies

Overview of Genotyping Platforms

To date, more than 200 GWAS have been published since
2007 (http://www.genome.gov/26525384), and almost all
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the studies had used commercially available whole-genome
SNPs genotyping arrays from Illumina1 (San Diego,
California, USA) and Affymetrix1 (Santa Clara, Califor-
nia, USA). Currently, Illumina1 and Affymetrix1 are the
only two companies in the market who design and provide
whole-genome genotyping arrays for human genetic
studies. Two common features of these high-throughput
genotyping platforms are the ability to interrogate several
hundred thousands to one million SNPs simultaneously in
a microarray, and the allelic discrimination or scoring is
based on fluorescent signal intensity. On the contrary,
several aspects are distinct between the two genotyping
platforms, especially the chemistry of genotyping assays,
experiment protocol and principle of allelic scoring.

Other low-throughput genotyping platforms (i.e. the
number of SNPs that can be genotyped in one experiment
per sample is less than several hundreds) are Sequenom1

MassARRAY iPLEX, Invader1 assay, Applied Biosys-
tems1 SNPlex genotyping system and TaqMan genotyp-
ing assay. The principle of allelic scoring forMassARRAY
iPLEX is based on the mass of allele-specific-extended
product which is generated by each of the two alleles
for one particular SNP. This extended product is then
separated by MALDI-TOF-MS (matrix-assisted laser
desorption/ionization, time-of-flight mass spectrometry).
This is totally different from most of the genotyping
platforms or assays which are based on fluorescent signal
intensity measurement. Low-throughput genotyping
platforms are commonly applied for replication studies
of several ten-to-hundred SNPs identified from initial
genome-wide scanning in GWAS, fine mapping of linkage
regions or candidate gene association studies.

SNPs Selection Approaches

There are two commonly adopted approaches in SNPs
selection for whole-genome genotyping arrays: direct and
indirect. Direct approach focuses on selecting SNPs that
are of putative functional importance, for example, SNPs
in coding, promoter regions and splicing sites. These SNPs
are predicted to alter the structure or function of proteins,
gene expression (transcription) or pre-messenger ribo-
nucleic acid (mRNA) splicing process. This selection
approach is applied in gene-centric association studies
which directly interrogate the putative functional SNPs as
opposed to GWAS, which is based on linkage disequili-
brium (LD) to indirectly locate the disease variants. The
logic for this approach,which assumed that SNPswithin or
near the genes have higher prior probability being the
disease variants, is clear (Jorgenson and White, 2006).
See also: Single Nucleotide Polymorphism (SNP)

The indirect approach selects SNPs despite their
functionality. The approach can be further divided into
LD-based and random-based approaches. The LD-based
approach, which is employed by Illumina1, selects SNPs
based on the LD pattern or information and the selected
SNPs to be genotyped on the array are called the tagging

SNPs. The LD-based approach relies on a metric called
correlation coefficient (r2) (Carlson et al., 2004). Genotyp-
ing for the SNPs which are in strong LD (r240.8) is
redundant in terms of obtaining more information. LD-
based is a more efficient approach (in contrast to random-
based approach) in SNPs selection because fewer (tagging)
SNPs need to be selected to sufficiently provide informa-
tion for other untyped SNPs in regions with strong LD.
The LD-based approach is feasible and practical on the
completion of International HapMap Project which
characterized LD patterns in the human genome (Interna-
tional HapMap Consortium, 2005, 2007). This global
effort revealed that most regions in the human genome are
in strong LD, and that recombination events which decay
the correlation between SNPs are not a randomprocess but
rather clustered in certain hotspots, that is, the recombina-
tion hotspots. See also: HapMap Project
The random-based approach employed by Affymetrix1

selects SNPs randomly distributed throughout the human
genome without taking LD patterns into account. As a
result, for equal number of SNPs being genotyped, the LD-
based approach tends to provide higher genome coverage
than the random-based approach because the tagging
SNPs provide additional information for other SNPs.
From the aspect of genome coverage, random-based
approach is less efficient because there are redundancies
of SNPs being genotyped in regions with strong LD since
the SNPs are randomly and evenly spaced throughout the
genome. However, there will be inadequacies of SNPs
covering weak LD regions or recombination hotspots. The
LD-based approach also encounters the latter problem
because SNPs in the weak LD regions are not ‘informative’
(i.e. in providing information for other SNPs) from the
perspective of this approach. As such, to optimize the
efficiency of LD-based approach, these SNPs are not
prioritized during SNPs selection. In addition to being
more efficient and cost-effective, the LD-based approach
also alleviates the statistical problem of multiple-
hypothesis testing in GWAS as lesser number of SNPs is
genotyped.

Chemistry of Genotyping Assays and
Principle for Allelic Scoring

Whole-genome sampling assay

The Affymetrix1 genotyping assay is known as the whole-
genome sampling assay (WGSA) which involves genome
complexity reduction step, that is, restriction enzyme
digestion and polymerase chain reaction (PCR) amplifi-
cation. A total genomic deoxyribonucleic acid (DNA)
of 250 ng is digested by a restriction enzyme for each
genotyping assay. Different restriction enzymes are used
for different whole-genome genotyping genechips, for
example, GeneChip HumanMapping 100K Set uses XbaI
and HindIII, whereas GeneChip Human Mapping 500K
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Set, Affymetrix1 SNPArray 5.0 and 6.0 useNspI andStyI.
All the digested DNA fragments are ligated to an adaptor.
Subsequently, these ligated DNA fragments are amplified
by a universal primer in PCR, and only DNA fragments
within a certain size range are selected for amplification.
The PCR amplification step is important in obtaining
sufficient amount of DNA fragments (targets) for hybri-
dization to the probes immobilized on genechip to produce
signal intensity later. The PCR step is then followed by
purification, fragmentation, labelling, denaturation and
hybridization. Finally, washing and staining steps elim-
inate any weak or unspecific bindings, and amplify signal
intensities respectively.

The genome complexity reduction step is critical for
Affymetrix1 genotyping assay because the allelic discrimi-
nation is based on the allele-specific hybridization prin-
ciple. For Human Mapping 100K and 500K, there are
perfect match (PM) and mismatch (MM) oligonucleotide
probes for each of the SNPs capturing two possible alleles
denoted as A allele and B allele. For one particular SNP
with homozygote AA genotype, DNA fragment where the
SNP is located will not hybridize to PMprobes for B allele.
As a result, the signal intensity of PM probes for A allele
is maximal, whereas the signal intensity of PM probes for
B allele is minimal. Based on this complementary and
hybridization between targets and probes, the allelic
discrimination or genotype is determined by comparing
signal intensities between the pair of PM probes after
subtracting background noise. For heterozygote genotype,
signal intensities of PM probes for both the A and B alleles
are expected to be equal. The function of MM probes is
to measure background noise (Kennedy et al., 2003;
Matsuzaki et al., 2004a, 2004b).

The genome complexity reduction approach selectively
amplifies a portion of the humangenome for hybridization.
Hence, only SNPs located in the PCR-amplified DNA
fragments, that is, only SNPs in a subset of genome can be
selected for genotyping. This constraint precludes the
flexibility of selecting any SNPs in the human genome for
genotyping. As a result, the LD-based approach is not
suitable for this genotyping assay. Reduction of the
genome complexity is essential to minimize noise level.
This is because the allelic discrimination is based on the
allele-specific hybridization principle. Genome complexity
reduction is crucial in reducing cross hybridizations
between targets and probes because the differentiation of
two alleles takes place during hybridization step.

Infinium assay

The two genotyping assays for Illumina1 whole-genome
genotyping beadchips are Infinium I and Infinium II
assays. Infinium assays involved several simple and
straightforward steps in the protocol. Total genomic
DNA is first amplified through a whole-genome amplifica-
tion step to harness sufficient amount of DNA for
hybridization to the probes on beadchip. This step
substantially increases the amount of DNA by more than

1000-folds. This amplification step is completely different
from Affymetrix1 genotyping assay which utilizes PCR to
amplify only a subset of genome. The amplified DNA is
fragmented and then precipitated to remove any impu-
rities. The DNA pellet is then dissolved in a resuspension
buffer, and denatured before overnight hybridization on
the beadchip which is then followed by washing and
staining in the next day.
Infinium I assay employs two bead types and one-colour

chemistry to assay one SNP; each bead-type corresponds to
one allele. The allelic discriminationor scoring is basedon the
allele-specific primer extension (ASPE) principle. Two allele-
specific oligonucleotide probes are designed to assay two
of the alleles for one particular SNP. The two probes are
identical except at their terminal 3’ nucleotide (i.e. the most
extremenucleotideat the3’ end)which isdesigned toperfectly
match to one allele or the other. For a hypothetical example
where the alleles are denoted as A allele and B allele, for
homozygote AA genotype, there will be perfect complemen-
taritybetween target andAallele-specificprobe, andonebase
mismatch with B allele-specific probe. Perfect complemen-
tarity will allow primer extension of several nucleotides by
polymerase enzyme, and followed by signal amplification for
A allele-specific probe during the washing and staining steps,
but minimal signal intensity for B allele-specific probe. The
genotype calling is basedon this signal intensities information
and is done by Illumina1 software – BeadStudio.
The Infinium II assay, however, employs one bead type

and two-colour chemistry. The dideoxy (dd) adenosine
triphosphate (ATP) and dideoxy thymidine triphosphate
(ddTTP) are labelled by one colour whereas dideoxy
guanosine triphosphate (ddGTP) and dideoxy cytosine
triphosphate (ddCTP) are labelled by another colour. As
such, this assay is unable to differentiate between A to T
nucleotide substitution and G/C SNP. Infinium II assay is
based on the principle of single base extension (SBE) for
allelic scoring. No allele-specific probes are designed for
this assay; instead, one locus-specific probe is designed
for each SNP. This locus-specific probe binds to the target
before the SNP position, that is, immediately adjacent
to the SNP locus. Addition of one dideoxy nucleoside
triphosphate (ddNTP) will terminate the extension reac-
tion, that is, SBE principle. For Infinium assays, the allelic
discrimination or scoring does not occur during hybridiza-
tion, but takes place posthybridization in an enzymatic-
based extension step (Gunderson et al., 2005; Steemers
et al., 2006; Gunderson et al., 2006; Steemers and
Gunderson, 2007). This is different from the allele-specific
hybridization principle employed by Affymetrix1 geno-
typing assay. The Infinium HD assay for the latest
beadchips – Human 1M-Duo and Human660W-Quad –
is able to assay all types of SNPs.
The two-step involvement in allelic scoring minimizes

the noise and increases accuracy of genotype calling. The
first step is accomplished by hybridization between target
and probe (selectivity) whereas the second step is accom-
plished by enzymatic-based primer extension (specificity)
in generating signal intensities for both theASPE and SBE.
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Generally, Infinium assays employ whole-genome
amplification step, which ultimately hybridize the ‘entire
human genome’ on beadchips. As such, these assays enable
unconstrained SNPs selection and are suitable for design-
ing a variety of arrays for different applications, from
whole-genome genotyping arrays and focused-content
arrays such as HumanCVD Genotyping BeadChip to
custom-designed array, that is, iSelect CustomGenotyping
BeadChip. The SNPs selection is only restricted by probes
representation on beadchip. Theoretically, any SNPs can
be selected as long as there are probes designed to capture
them.

Whole-Genome SNPs Genotyping
Arrays

Many products have been introduced by Affymetrix1 and
Illumina1 over the past few years, but only several
commonly used genotyping arrays in GWAS have been
selected for discussion. A considerable emphasis is placed
on these aspects – genome coverage and marker density of
genotyping arrays – as genome coverage is a critical factor
in contributing to a successful GWAS, and marker density
is important for comprehensive detection and discovery of
copy number variations (CNVs). The number of SNPs/

markers and genome coverage for each genotyping array
are summarized in Table 1 and Figure 1.

Affymetrix

GeneChip HumanMapping 100K Set was the first whole-
genome genotyping product introduced to the market by
Affymetrix1. This set comprised of two arrays and each
could interrogate greater than 50 000 SNPs. This genechip
was used in the first GWAS published in 2005 and
uncovered the association between an SNP in complement
factorH gene and age-relatedmacular degeneration (Klein
et al., 2005).
Since the number of SNPs which can be selected by

Affymetrix1WGSArelies on restriction enzymecuttingand
the size range of DNA fragments amplified by PCR, to
include additional SNPs to genotype, different restriction
enzymes and PCR conditions are needed. The second
product launched was GeneChip Human Mapping 500K
Set. This set also comprised of two arrays and used two
different restriction enzymes compared to the earlier
product. In comparison to other arrays with a comparable
numberofSNPs, for example,HumanHap550or even lesser
number of SNPs such as HumanHap300, HumanMapping
500K achieved considerably lower genome coverage for
HapMap CEU and CHB+JPT (Table 1) (Barrett and
Cardon, 2006; Li et al., 2008a, 2008b). This demonstrated
the power and efficiency of LD-based approach over

Table 1 Number of SNPs and genome coverage of whole-genome genotyping arrays

Genotyping array

Number of SNPs/

markers
Genome coverage (%) (r240.8)

Illumina CEU CHB+JPT YRI

Human-1 BeadChip 4109 000 SNPs 26a 28a 12a

HumanHap300 BeadChip 4317 000 SNPs 75a 63a 28a

77b 66b 29b

HumanHap550 BeadChip 4550 000 SNPs 87b 83b 50b

HumanHap650Y BeadChip 4650 000 SNPs 87b 84b 60b

Human 1M Beadchip 1 072 820 markers 93b 92b 68b

(55% are copy-number

probes)
Median spacing between
markers: 1.7 kb

Affymetrix
Human Mapping 100K Set 4110 000 SNPs 31a 31a 15a

Human Mapping 500K Set 4500 000 SNPs 65a 66a 41a

SNP Array 5.0 500 568 SNPs 64b 66b 41b

420 000 copy-number
probes

SNP Array 6.0 906 000 SNPs 83b 84b 62b

946 000 copy-number
probes

Median spacing between
markers: 5700 bp

aBarrett and Cardon (2006).
bLi et al. (2008b).
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random-based approach in SNPs selection in optimizing for
coverage. Simultaneous interrogation of more than 500 000
SNPs enabled the Wellcome Trust Case Control Con-
sortium (WTCCC) to conduct a high-powered and well-
designedGWAS. Seventeen thousand samples (14 000 cases
and 3000 controls) were genotyped using HumanMapping
500K Set which led to the identification of many novel
genetic loci for the seven complex diseases (Wellcome Trust
Case Control Consortium, 2007).

Illumina

The first product introduced by Illumina1 was Human-1
Genotyping BeadChip. SNPs located directly within
coding, promoter and highly conserved regions were
selected. The evolutionary-conserved sequences were pre-
dicted to be functionally important. The SNPs selection for
this product was mainly driven by direct approach as
greater than 70% of SNPs are located in transcripts or
within 10 kb of the exons.

On completion of the International HapMap Project
and the release of data, Illumina1 launched their second
line of whole-genome genotyping products – Human-
Hap300, HumanHap550 and HumanHap650Y Bead-
Chips. Selection of tagging SNPs for HumanHap300 was
based on Phase I HapMap data, whereas the latter two
products were developed using combined Phase I and II
HapMap data. HumanHap300 was designed mainly to
capture common SNPs in Caucasians, and in such,
performed excellently well when it was evaluated in
HapMap CEU population; HapMap CHB+JPT popula-
tion only achieved moderate coverage.

To further increase genome coverage for Asian and
African populations, more tagging SNPs were selected
and the resultant product – HumanHap550 – achieved
considerably good coverage for HapMap CEU and
CHB+JPT. The genome coverage for HapMap YRI was
much lower; this is due to a greater genetic diversity and
weaker LD in African populations. HumanHap650Y is
an extension of the content in HumanHap550 with an
additional approximately 100 000 tagging SNPs specifi-
cally chosen to improve genome coverage for Africans.
Sixty percent was achieved for HapMap YRI, whereas no
increment in genome coverage was observed for other
HapMap populations as expected (Eberle et al., 2007). The
genome coverage was computed by setting a threshold of
r240.8 andmeasured using InternationalHapMap data as
reference. Theoretically, setting a less stringent r2 threshold
will increase genome coverage, but this will also decrease
the statistical power to detect disease variants through LD.
Sample size is inversely proportional to r2 value.
As far as the same method in computing genome

coverage and SNPs selection approach are concerned
for Illumina1 beadchips, further increase in the number of
tagging SNPs to genotype in GWAS will cause ‘diminish-
ing return’ effect especially for Caucasian and Asian
populations. This was well-demonstrated in Human 1M
Beadchip, which doubled the number of tagging SNPs
to one million, adding a slight increment to genome
coverage (Table 1). However, it is unclear how much
improvement it has in terms of capturing other common
SNPs which are not validated by the International
HapMap Project but are genuine and deposited in the
database of SNPs (dbSNP).

20
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100

CEU CHB+JPT YRI

HumanHap300 HumanHap550 HumanHap650Y Human 1M

Mapping 500K Set SNP Array 5.0 SNP Array 6.0

Figure 1 Comparisons of genome coverage across several whole-genome genotyping arrays from Illumina1 and Affymetrix1 in International HapMap

populations. The y-axis is the genome coverage in percentage. (see Li et al., (2008b); Barrett and Cardon, (2006)).
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Latest genotyping arrays

The latest whole-genome genotyping arrays are Illumina1

Human 1M BeadChip and Affymetrix1 SNP Array 6.0
which enable genotyping of up to onemillion SNPs.Unlike
the earlier version of beadchips, Illumina1 Human 1M
is not focused on tagging SNPs selection alone from
International HapMap Project, but other SNPs from
dbSNPs have also been selected to further increase genome
coverage and marker uniformity across the genome.
Approximately 950 000 are HapMap tagging SNPs and
100 000 are non-HapMap SNPs. This new product used
combined direct and indirect LD-based SNPs selection
approaches which could be more powerful for disease
variants discovery in GWAS.

The latest genotyping genechip from Affymetrix1

contains more than 1.8 millionmarkers; half of the content
is SNPs and the remaining is nonpolymorphic or copy-
number probes to enhance power for detection of CNVs
(Shen et al., 2008). On the contrary, only a small portion of
the content in Human 1M Beadchip is copy-number
probes. The SNPs for Array 6.0 is built on the content
fromHumanMapping 500K,with additional SNPs chosen
from the International HapMap Project (tagging SNPs),
with more SNPs on sex chromosomes and mitochondrial
SNPs.

Copy-number probes were deliberately selected to cover
regions lacking of SNPs or regions where SNPs are difficult
to assay such as the repetitive sequences in segmental
duplications. In addition, markers were also chosen to
target known CNV regions reported in the Database of
Genomic Variants. With such design, these genotyping
arrays enabled researchers to discover novel CNVs as
well as to validate known CNVs which were previously
identified. These latest arrays are designed for both
applications: SNPs GWAS and CNVs detection.

Genome Coverage

GWAS are indirect association studies relying on tagging
SNPs that are genotyped to detect disease variants which
are not tested directly. Fine mapping is needed to capture
the disease or functional variants in regions revealed by
GWAS. Since indirect association studies are reliant onLD
to find disease variant, genome coverage of commercially
available genotyping arrays is critical and is a key factor for
the success of GWAS.

The statistical power of genetic association studies is
basically a function of sample size, magnitude of genetic
effect size and allele frequency. As the latter two factors
are unknown until the genetic variants are uncovered,
sample size is the only controllable factor determining
the statistical power. In addition, power also depends on
genome coverage. Ideally, increasing both sample size and
genome coverage will increase the statistical power of a
study. High genome coverage is important because the
underlying principle of this approach is based on LD in the

detection of disease variants. In SNPs-scarce regions,
genuine disease variants could be missed because they are
not in strong LD with any of the SNPs that are genotyped
on the array. Whole-genome genotyping arrays like Hu-
man 1M and SNPArray 6.0 offer almost complete genome
coverage for HapMap CEU and CHB+JPT.
Genome coverage is an estimate of the proportion of

SNPs (using the International HapMap data as reference)
that can be captured by the SNPs which directly genotyped
in anarraywith apreset r2 threshold.Usually a thresholdof
0.8 is used to estimate genome coverage. This is also known
as global genome coverage. This estimate differs from local
coverage and gene coverage of genotyping arrays. The
latter two estimates provide more information of coverage
at a finer scale (Li et al., 2008a, 2008b).
Most studies estimated genome coverage using Interna-

tional HapMap populations; therefore, whether the same
coverage is achieved in other populations is unclear
especially for Illumina1 beadchips which selected SNPs
based on tagging SNPs approach. However, there have
been a number of studies which demonstrated that
HapMap tagging SNPs are broadly transferable in many
other populations which are not part of the HapMap
Project (Lundmark et al., 2008; Xing et al., 2008). Based
on these findings, a comparable coverage is likely to be
achieved in other populations. In fact, these genotyping
arrays have been shown to perform equally well in other
populations (Magi et al., 2007). Genome coverage may
vary from one population to another, but would not be in a
large magnitude.
Since the SNPs selection for these genotyping arrays

especially the Illumina beadchips was based on the
International HapMap data, genome coverage could be
overestimated when the HapMap data was used as the
reference as well. This is known as data ‘over-fitting’. In
fact, it was well-demonstrated by using a set of resequen-
cing data as the reference; the genome coverage of common
SNPs by both Illumina1 and Affymetrix1 arrays were
appreciably lower. Coverage was about 17% lower in both
Human 1M and SNP Array 6.0 when compared to the
HapMap-based estimates for CEU population (Bhangale
et al., 2008). These differences clearly highlight the bias
introduced when HapMap data was used as the reference
to compute genome coverage for commercial genotyping
arrays. The same conclusions were also derived from other
studies using independent set of SNPs data and samples in
the evaluation of genome coverage, accounting for both
data and sample ‘over-fitting’ (Hao et al., 2008).

Other Applications

Application of whole-genome genotyping arrays is not only
limited to GWAS for complex diseases and traits, but it has
also been applied formanyotherhumangenetic studies such
as population genetics and population structure analysis (Li
et al., 2008a, 2008b; Jakobsson et al., 2008), identification of
eQTL (expressionquantitative trait loci) andpQTL (protein
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quantitative trait loci) (Schadt et al., 2008; Melzer et al.,
2008) and other studies (Cooper et al., 2008a; Kong et al.,
2008). Most importantly, Illumina1 and Affymetrix1 were
the main genotyping platforms used to complete the
International HapMap Project (International HapMap
Consortium, 2005, 2007).

Whole-genome genotyping arrays have also been
increasingly used for the detection and analysis of CNVs
in population-based studies. Both Human Mapping 500K
and SNP Array 6.0 were used for CNVs characterization
on International HapMap samples (Redon et al., 2006;
McCarroll et al., 2008). The significant increase in
resolution and marker uniformity on the Illumina1 and
Affymetrix1 latest arrays – minimizing large gaps devoid
of markers – is critical in ensuring a comprehensive and
less-biased CNVs discovery throughout the genome. Even
with these notable improvements, a considerably large
fraction of CNVs was still missed by these arrays when
compared to a sequencing method (Cooper et al., 2008b).
The application of genotyping arrays is beyond CNVs
detection and discovery studies; it has also extended to
disease association studies using CNVs as the markers for
identifying novel genetic loci (Weiss et al., 2008; Stefansson
et al., 2008). See also: Copy Number Variation in the
HumanGenome; Relevance of CopyNumber Variation to
Human Genetic Disease

Challenges from Whole-Genome
Sequencing Technologies

Expeditious developments of sequencing technologies have
started threatening the market of microarrays. Currently,
the three next-generation sequencing platforms are Illumi-
na1 Genome Analyzer, Roche1 454 GS-FLX Sequencer
and ABI1 SOLiD Sequencer (Mardis, 2008). Sequencing
approach has been quickly adopted for various applica-
tions in structural and functional genomic studies, for
example, ChIP-Seq (the combined chromatin immuno-
precipitation technique and sequencing method) in the
identification of transcription factor binding sites in a
genome-wide scale (Johnson et al., 2007). This approach
had started replacing the preceding method, ChIP-chip,
which was based on microarray hybridization. Moreover,
the applications have also been extended to transcriptome
profiling (RNA-Seq) substituting the conventional gene-
expression microarray which dominated the field over the
past decade (Sultan et al., 2008). Paired-end sequencing
method has been increasingly applied to characterize
structural variations (Korbel et al., 2007; Campbell et al.,
2008) which were previously studied using comparative
genomic hybridization (CGH) arrays. The strengths and
advantages of these innovative sequencing methods over
previous microarray approaches were clearly demon-
strated in these studies. Towards the end of 2008, we have
also seen the completion of sequencing two diploid
genomes (Wang et al., 2008; Bentley et al., 2008).

So, is there a future for SNPs genotyping arrays in the era
of next-generation sequencing technologies? Currently,
whole-genome sequencing has not been applied in associa-
tion studies of complex diseases which require a minimum
of thousands of samples. There are several hurdles to this:
cost is still prohibitively expensive for whole-genome
sequencing to be applied in large sample size, even though
it is rapidly decreasing. In addition, there are statistical
and computational challenges in analyzing tremendous
amount of data and this is undoubtedly several orders of
magnitude beyondwhat was described in theNature article
‘drinking from the fire hose’ by Hunter and Kraft (2008).
Finally, technical problems and issues of sample through-
put and data quality for studying thousands of genomes
still exist. Nonetheless, with the current momentum of
progress, it is foreseeable that within the next few years
whole-genome sequencing will start to play a key role in
association studies. Sequencing method would not only be
restricted to common SNPs, but uncommon SNPs, rare
mutations, structural variations and other genetic varia-
tions can also be studied simultaneously. Thus this would
provide a comprehensive picture for the genetic landscape
of complex diseases in comparison to genotyping which
can only produce a ‘snapshot’ picture. The competitive
force from sequencing technologies was well-addressed in
the 16 October issue of Nature News – The death of
microarrays? – in 2008. The 1000 Genomes Project will
further drive the rapid technological developments of
sequencing and their applications in genomics research.

Issues and Factors for Choosing a
Genotyping Platform

Selecting genotyping array for GWAS is one of the critical
factors determining the success of GWAS. Many factors
needed to be taken into account. At the stage of study
design, factors such as genome coverage, marker density
and robustness of genotyping assay, cost and the applica-
tion are important. For instance, should the major aim of
GWAS is for SNPs association analysis in a Caucasian or
Asian population, HumanHap500 may be the wise choice
as it had already provided fairly good genome coverage in
these populations. However, if the application is for CNVs
detection on top of the SNPs analysis, perhaps Human 1M
or SNP Array 6.0 is a better option as higher marker
density enhanced the power for CNVs studies. Robustness
of genotyping assay, sample throughput and ease of
experiment protocol are other factors which need to be
considered. Sample throughput is an important element
in GWAS which genotyped thousands of samples, for
example, the multisample format beadchips increase the
throughput by several folds. Experiment protocols that
involve only several simple and straightforward steps are
important in minimizing sample contamination and
ensuring a high sample genotyping success rate. Whole-
genome genotyping arrays have been playing an important
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part in GWAS for discoveries of novel genetic loci. It will
continue to make contributions in this field until we reach
the $1000whole-genome sequencing era and the associated
hurdles are conquered.
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TECHNICAL NOTE: Illumina® DNA ANALYSIS

Genome-Wide Mapping of Copy Number 
Variations and Loss of Heterozygosity Using  
the Infinium® Human1M BeadChip
Contributed by Ku Chee-Seng, Sim Xueling, and Chia Kee-Seng, Centre for Molecular 
Epidemiology and Department of Community, Occupational, and Family Medicine, Yong Loo 
Lin School of Medicine, National University of Singapore

Introduction

Genetic variations within the human genome can take 

many forms, including single-nucleotide polymorphisms 

(SNPs), copy number variations (CNVs), and copy-neutral 

loss of heterozygosity (LOH). SNPs involve the change in a 

single nucleotide, while CNVs and LOH encompass larger 

segments of DNA. In this application note, we focus on 

methods for accurately mapping these structural variations 

and their potential involvement in disease manifestations. 

	 CNVs, defined as additions or deletions in the number 

of copies of a particular segment of DNA (larger than 

1kb in length) when compared to a reference genome 

sequence, provide further insight into the complexity and 

diversity of genetic variations. Since the initial discovery 

of hundreds of CNVs in the human genome reported  

in 20041,2, many more have been found3. In 2006, the  

largest and most comprehensive mapping of CNVs on 

International HapMap samples was completed, iden-

tifying nearly 1,500 CNV regions covering ~360 Mb, or 

~12% of the nucleotide sequence in the human genome4. 

The significance of this discovery expands beyond the 

presence of CNVs themselves, and into the impact copy 

number changes have on complex diseases, as well as 

their importance in human evolution5,6. In fact, evidence 

is now available that links CNVs with complex diseases 

such as autoimmune disorders, HIV infection, cancers, 

schizophrenia, and autism7–9. 

	 Less information is currently available about LOH ef-

fects; however, their potential impact on complex diseas-

es is enormous. Copy-neutral LOH is a continuous stretch 

of DNA sequence without heterozygosity. Although the 

biomedical relevance of regions of homozygosity to hu-

man complex diseases remains largely unexplored, some 

schizophrenia studies have shown significant differences 

in homozygous regions between cases and controls10.

	 With only a preliminary understanding of the roles 

CNVs and LOH play in complex disease development, it  

is imperative that we generate a comprehensive catalog 

of structural variations in the human genome. This  

approach may provide the opportunity to unravel novel 

disease loci. To date, there has been little research into 

CNV information in Asian populations. Therefore, we 

have begun exploring the extent of CNVs in several 

South-East Asian populations (Singaporean Chinese,  

Malay, and Indian) with the goal of constructing a 

genome-wide map reflecting CNVs and copy-neutral  

LOH within these populations. In our study, we demon-

strate the advantages of using high-density SNP arrays 

for this purpose. 

Materials and Methods

Samples

We genotyped 292 genomic DNA samples from unrelated 

healthy individuals without any known clinical disease. 

Genomic DNA samples were extracted from peripheral 

blood instead of lymphoblastoid cell lines, avoiding the 

introduction of artifacts (e.g., cell culture–induced 

chromosomal rearrangement) that may have incorrectly 

influenced our data. A stringent filtering criteria was 

applied to identify poor-quality samples. Samples with 

log R ratio standard deviation > 0.28 were removed from 

subsequent analyses to minimize the number of 

false-positive CNVs. Fewer than 3% of our samples failed 

these criteria (Figure 1). 

Assay

Prepared DNA samples were run on the Infinium  

Human1M BeadChip from Illumina. We chose this 

platform for several reasons. The Human1M BeadChip 

offers significantly increased genomic coverage, resolu-
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tion, and probe uniformity across the human genome  

for unbiased, comprehensive detection of CNVs. Probes 

were specifically selected to cover genomic regions that 

potentially contain an excess number of CNVs, such as 

segmental duplications11–12, for more accurate mapping  

of CNVs in these regions. In addition, the higher density 

array offers enhanced power for detecting smaller CNVs 

(< 50kb), which is especially critical for screening or 

discovery experiments where a large number of CNVs 

less than 10–50kb in length are yet to be uncovered13. 

Higher density arrays also increase the accuracy in 

mapping breakpoints of CNVs, providing a more accurate 

prediction or estimation of CNV size. 

	 The Infinium Assay produced high-quality data in our 

study, achieving an average genotype call rate of > 99.5%. 

The simple workflow of the genotyping protocol involved 

only a few simple, straightforward steps, minimizing 

technical errors and ensuring a high genotyping success 

rate. This allowed our laboratory technician to complete 

the work within two weeks. 

Analysis

The PennCNV algorithm, which employs a Hidden Markov 

Model, was used to detect both CNVs and copy-neutral 

LOH. CNV detection was mainly based on log R ratio  

(total signal intensity) and B allele frequency (allelic 

intensity ratio). In addition, this algorithm incorporates 

other sources of information, including population B 

allele frequency and distance between adjacent probes, to 

produce more reliable CNV calls. The PennCNV algorithm 

was developed for genome-wide detection of CNVs using 

Illumina SNP data14, and is now available as a plug-in to 

Illumina’s BeadStudio analysis software.

Results

More Accurate CNV Mapping

We are excited to report that the majority of the CNVs 

detected were < 50kb in length. Figure 2 shows the 

distribution of deletions and duplications across chromo-

some 1 in our studied populations. These results contrast 

with preceding studies performed using lower resolution 

BAC and oligonucleotide array-based CGH or SNP arrays 

that are limited in their abilities to detect smaller sizes  

of CNVs. In fact, a recent study found that 88% of known 

CNV regions were smaller than the sizes reported in the 

Database of Genomic Variants and that more than a 50% 

reduction in size was reported for 76% of the CNVs15. This 

study was completed using a high-resolution, customized 

oligonucleotide CGH array with a 1kb resolution, empha-

sizing that use of lower-resolution arrays in most of the 

previous studies led to overestimation of CNV sizes. 

	 Accurately estimating CNV sizes will have a significant 

impact when overlapping CNVs with known annotated 

genes to predict functional roles or mRNA expression 

studies, because gene function may be disrupted if part  

or all of the gene is deleted or duplicated. We believe that 

many of the genes that were found to overlap with CNVs 

were spurious findings resulting from overestimation  

of CNV sizes. With greater accuracy in estimating CNV 

breakpoints, the number of genes mapped to CNVs will 

likely be reduced.

discussion

Continuing Studies

In addition to unrelated individuals, we genotyped a 

number of families (father, mother, and one pair of 

monozygotic twins) using the Infinium platform. These 

samples were derived from the Singapore Twin Project. 

Figure 1: PennCNV-generated standard deviation 
of log R ratio and B allele frequency drift  
values for each sample after CNV detection

These are useful quality control parameters at the sample level. 
Large values indicate poor-quality samples. In our study, we set 
the thresholds of LRR_SR (log R ratio standard deviation) > 0.28 
and BAF_Drift (B allele frequency drift) > 0.002 as the sample 
filtering criteria. Seven samples that failed the thresholds (red 
diamonds) were removed from further analyses. 



The goal of this study was to interrogate the de novo 

occurrence of CNV events compared to inherited germ 

line CNVs. CNVs detected in offspring but absent in their 

parents, or differences in the CNVs between a pair of mo-

nozygotic twins, are indications of putative de novo CNVs. 

Due to the noise inherent in any CNV detection method, 

it is important to validate these putative de novo CNVs 

using a second method. Comparing our CNVs data with 

other populations will provide further insight into the 

extent of similarities and differences in the CNV profile 

among populations of distinct ancestral backgrounds.

	 The Illumina iControlDB database made this compari-

son work possible. From iControlDB, we downloaded the 

data from 118 HapMap samples (49 Caucasians, 30 Asians, 

and 39 Africans) previously genotyped using the  

Human1M BeadChip. With this data set, we were able  

to detect CNVs using the same detection algorithm, 

applying the same quality control criteria to remove poor 

quality samples, filtering out likely false-positive CNVs, 

and analyzing CNV data in the same manner as our 

samples. This standardized analysis method allowed us  

to compare CNV profiles of our studied populations with 

those in the International HapMap populations. 

Looking Ahead

Current data about the relative proportion of various 

types of structural variation within the human genome, 

and the genomic distribution and population frequencies 

of CNVs, are still rudimentary. More population-based 

studies are needed using various CNV detection methods 

in diverse populations. As the case for a link between 

CNVs and diseases grows stronger, it will be of paramount 

importance to build a near-complete, accurate map of 

CNVs and other structural variants representing popula-

tions worldwide. Currently, no single method is capable  

of detecting all the structural variations in a single 

experiment. With the rapid advances in sequencing 

platforms and technologies, it is now feasible to use 

sequencing paired-end mapping to characterize CNVs, 

inversions, insertions, translocations, and more complex 

chromosomal rearrangements such as genomic regions 

which are duplicated and inverted at the whole-genome 

scale. Unfortunately, this method is not yet sufficiently 

cost-effective for use in population-based studies that 

include hundreds of samples or genome-wide association 

studies (GWAS) of several thousand cases and controls. 

A comprehensive, accurate CNV database would en-

able more targeted and efficient platforms to genotype 

CNVs in thousands of samples. This database would be 

a valuable resource for future genetic studies of complex 

The X-axis is the physical chromosomal position and each line in the Y-axis represents one individual in all the three populations.  
Deletions are indicated with red points and duplications are indicated with blue points. Bottom panel: Chinese. Middle panel:  
Malay. Upper panel: Indian.

Figure 2: Distribution of deletions and duplications in chromosome 1
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diseases and pharmacogenetic matters. 

	 Over the last two years, GWAS have played a key role in 

uncovering novel genetic variations associated with com-

plex human diseases. Future studies will need to explore 

CNV-structural variations, as well as gene-gene and gene-

environment interactions. Adding environmental factors 

to experimental variables will require environmental data 

collection prior to disease onset. Large cohorts with re-

positories of biological samples will need to be developed. 

Several notable efforts, such as the UK Biobank and Life-

Gene Sweden, are moving in this direction. At the Centre 

for Molecular Epidemiology, we have set up the Singapore 

Consortium of Cohort Studies (SCCS)  

(http://www.med.nus.edu.sg/cof/cme.html) with the 

primary goal of understanding both genetic and envi-

ronmental components in various complex diseases and 

quantitative traits such as metabolic and cardiovascu-

lar diseases. GWAS within the SCCS will be based on 

a nested case-control design and use next-generation 

genotyping and sequencing technologies to interrogate 

the genetic basis of complex diseases. 

	 Currently, there are several ongoing studies at our 

Centre, including a GWAS of high-density lipoprotein 

cholesterol with well-annotated environmental expo-

sure data. We are embarking on another GWAS on Type 2 

diabetes where two thousand samples from our cohort 

will be genotyped using the Infinium HD Human610-Quad 

BeadChip. With the high-quality data from Illumina’s 

BeadChips and our experience in CNVs and copy-neutral 

LOH detection, our future GWAS will not be restricted to 

SNP association analysis. Genome-wide CNV association 

analysis and whole-genome homozygosity mapping can 

be performed to discover other disease loci that may have 

eluded us when analysis was performed solely by SNP 

associations. 

	 We are also undertaking a genetic diversity project—

the Singapore Genome Variation Project—where 268 

samples have been genotyped for ~1.4 million SNPs to 

characterize the extent of genetic variations in the Chi-

nese, Malay, and Indian populations. 

conclusion

We are fortunate to live in an era where we may apply 

cutting-edge technologies to explore the human genome 

in unprecedented detail. We hope that research studies at 

our Centre will contribute even more to the current pool 

of knowledge of human genetic variations and improve 

our understanding of the environmental exposures and 

genetic basis underlying human complex diseases. The 

potential impact of genomics on medical sciences is tre-

mendous, from identifying new molecular drug targets to 

developing new therapeutic interventions.
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University of Oxford, Oxford OX3 7BN, United Kingdom; 4Genome Institute of Singapore, Agency for Science, Technology and

Research, Singapore 138672; 5Department of Pharmacology, National University of Singapore, Singapore 117597;
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The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide
polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast
Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele
frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International
HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon ag-
glomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the pop-
ulation structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome
for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural
selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all
population genetic summaries, are publicly available for download and browsing through a web browser modeled with
the Generic Genome Browser.

[Supplemental material is available online at http://www.genome.org.]

The detailed survey of human genomic variation across four pop-

ulations globally from the International HapMap Project (The In-

ternational HapMap Consortium 2005, 2007) has yielded valuable

insights into the design (de Bakker et al. 2005; Pe’er et al. 2006) and

analysis (Marchini et al. 2007) of studies that examine the entire

genomic landscape for correlation with the onset of diseases or

traits. These genome-wide association studies (GWAS) typically

detect indirect associations, where the identified genetic variants

by themselves are not biologically functional but are in the

neighborhood and thus are correlated or are in linkage disequi-

librium (LD) with the causal polymorphisms. Commercial geno-

typing arrays for genome-wide studies utilize these informative

markers for providing suitably dense genomic coverage, which

with the appropriate use of sophisticated imputation methods can

increase the effective genomic coverage of these arrays to that of

the HapMap by statistically inferring the genotypes of the

remaining unobserved markers in the HapMap (Marchini et al.

2007; Servins and Stephens 2007). The accuracy of genotype im-

putation, however, relies on having reference databases that are

representative of the target populations to be imputed. While it has

been shown that tagging SNPs identified from the HapMap are

expected to be portable across other non-African populations (de

Bakker et al. 2006; Conrad et al. 2006; Huang et al. 2009), impu-

tation performance is expected to be optimized if local reference

haplotypes are used (Huang et al. 2009; Jallow et al. 2009). The

ability to reproduce an association finding in other populations

through replication studies or meta-analyses is a prerequisite to

validating the authenticity of the discovery (NCI-NHGRI Working

Group on Replication in Association Studies 2007), and this fun-

damentally relies on having a similar LD structure between the

identified variant and the functional polymorphism in these

populations (Teo et al. 2009a). The success of imputation pro-

cedures, meta-analyses, and replication studies thus hinges criti-

cally on possessing sufficient knowledge on the extent of genomic

variation between multiple populations. The Singapore Genome

Variation Project (SGVP) is established with this aim of character-

izing genomic variation and positive natural selection in three

major population groups in Asia.

Singapore is a relatively young country with a migratory

history predominantly consisting of immigrants with Chinese,

Malay, and Indian genetic ancestries from neighboring countries

such as China, India, Indonesia, and Malaysia (Saw 2007). The

Chinese community consists mainly of descendents of Han Chi-

nese settlers from the southern provinces of China, such as Fujian

and Guangdong, and currently represents the dominant racial

population in Singapore, accounting for 76.7% of the resident

population from the Singapore Census conducted in 2000 (Saw

2007). While Han Chinese represents the largest ethnic group

amongst the Chinese globally, there are a considerable number of

sub-ethnicities within the Han classification with a diverse range

of dialects and cultural diversity, with established genetic heteroge-

neity following a geographical north–south cline (Chu et al. 1998;

Wen et al. 2004). The majority of the early Chinese immigrants to

7These authors contributed equally to this work.
8These authors jointly directed the project.
9Corresponding author.
E-mail ephcks@nus.edu.sg; fax 65-6-7791489.
Article published online before print. Article and publication date are at
http://www.genome.org/cgi/doi/10.1101/gr.095000.109. Freely available
online through the Genome Research Open Access option.
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Singapore were mainly attributed to the dialect groups of Hokkien,

Teochew, Cantonese, Hakka, and Hainanese (Saw 2007) that are

predominantly found in Southern China. While Malays formed

the dominant race in Singapore prior to the colonization by British

settlers, the proportion of indigenous Malays has been surpassed

by migrant Malays from Peninsula Malaysia, as well as Javanese

and Boyanese people from Indonesia. Cultural and religious sim-

ilarities have resulted in intermarriages between the immigrant

and local Malays, whose descendents are now collectively known

as Malays and account for 13.9% of the Singapore population (Saw

2007). The British colonization of Singapore also brought Indian

migrants from the Indian subcontinent, with the majority con-

sisting of Telugas and Tamils from southeastern India and a mi-

nority of Sikhs and Pathans from north India. The definition of

Indians in Singapore comprises people with paternal ancestries

tracing back to the Indian subcontinent, and, as a race, Indians

represent 7.9% of the Singapore population. Cumulatively, the

SGVP resource has the potential for representing the genetic di-

versity across multiple large populations in Asia while serving as

a useful complement to the HapMap database.

This paper aims to describe the SGVP resource, which geno-

typed in excess of 2 million polymorphisms across 99 Chinese, 98

Malay, and 95 Indian individuals. The genotype data, phased

haplotypes, and other data summaries for this resource have been

modeled after the format of the International HapMap Project and

are publicly available online. In addition, this paper details the

extent of population differences between the SGVP, the HapMap,

and the populations from the Human Genome Diversity Project

(HGDP) (Rosenberg et al. 2002; Jakobsson et al. 2008; Li et al.

2008). We also compared the diversity of SNPs and haplotypes

between the populations in the HapMap and SGVP, with a partic-

ular focus on the extent of LD variations between these pop-

ulations. A genome-wide survey for candidate signatures of recent

positive natural selection was also performed in the SGVP pop-

ulations, replicating a number of previous findings from HapMap

while identifying novel candidates, particularly in the Malay and

Indian population groups.

Results

Sample and SNP quality control

A total of 292 individuals comprising of 99 Chinese, 98 Malays,

and 95 Indians were genotyped across 2,007,788 SNPs on the

Affymetrix SNP6.0 and Illumina 1M arrays, of which 268,667 SNPs

overlap between the two platforms. The fidelity and accuracy of

the genotype data are of paramount importance in establishing

reference haplotype maps. We implemented a hierarchical quality

control (QC) procedure that begins with an initial round of SNP

QC to identify a set of ‘‘pseudo-cleaned’’ SNPs for detecting prob-

lematic samples. Samples with high levels of missingness, poten-

tial relatedness, and discordance between self-reported and ge-

netically inferred population membership were identified and

excluded from further analyses (Supplemental Table S1). A final

round of SNP QC was performed within each population separately

on the basis of missingness, departures from Hardy–Weinberg

equilibrium (HWE), excessive discordance in the genotypes for the

duplicated samples, and annotation failures. A total of 96 Chinese,

89 Malays, and 83 Indians remained after merging the SNP data

from both arrays. Here, we further excluded SNPs that were com-

mon on both arrays but with <95% concordant genotypes, and

SNPs that mapped to different alleles on the forward strand

according to the SNP manifests from Affymetrix and Illumina. This

yielded a final post-QC set with 1,584,040 autosomal SNPs for

Singapore Chinese (CHS); 1,580,905 SNPs for Singapore Malays

(MAS); and 1,583,454 SNPs for Singapore Indians (INS) (Sup-

plemental Table S1), with an average inter-SNP distance of 2 kb

across most of the genome (Supplemental Figs. S1, S2). The overall

concordance in the genotype calls for the sample dupli-

cates was 99.899%, at an overall call rate of 99.285%. Details of

the QC process can be found in the Methods and Supplemental

material.

Population structure

Principal components analysis (Price et al. 2006) and Wright’s FST

statistic (Wright 1951) were used to explore the extent of pop-

ulation differentiation between the SGVP, HapMap, and HGDP

populations (Supplemental Table S2).

In the context of global genetic diversity, Singapore Chinese,

the HapMap Han Chinese in Beijing, China (CHB), and HapMap

Japanese in Tokyo, Japan (JPT) were virtually indistinguishable,

while Singapore Malays were observed to be highly similar to the

East Asian populations in general (Fig. 1A). Singapore Indians were

comparable to samples from Central and South Asia, and geneti-

cally closer to the samples with European ancestries than to the

East Asian samples from HGDP. As with the non-African pop-

ulations in HapMap and HGDP, all three Singapore groups were

considerably distinct from the HapMap Yoruba samples from the

Ibadan region of Nigeria (YRI) and the African samples in the

HGDP. The first axis of variation at this global level effectively

distinguished samples from the Far East from Africans, while the

second axis of variation addressed the difference between Euro-

pean and African ancestries. Comparing between the East Asian

populations, the first axis separated the Yakut people of Siberia

from Chinese sub-ethnic groups mainly located in Southern China

(Dai, Lahu) and Southeast Asia (Cambodian, CHS) (Fig. 1B). When

we consider only the HapMap and SGVP populations, the third

axis of variation separated INS from the HapMap Utah samples

with ancestry from Northern and Western Europe (CEU), while

MAS was differentiated from the Far East Asian cluster (comprising

CHB, CHS, and JPT) by the fourth axis of variation (Fig. 1C).

Comparing within the three Far East Asian populations from

HapMap and SGVP, the JPT samples were clearly more different

from the two Chinese cohorts (FST = 0.3% with CHB; 0.4% with

CHS) than between the two Chinese cohorts themselves, although

substantial dissimilarities exist to distinguish between the two

Chinese cohorts (FST = 0.2%; Fig. 1D). In the latter analysis, a few

CHB samples were clustered together with most of the CHS sam-

ples and vice versa (see also Supplemental Fig. S3). The separation

seen between samples from CHB and CHS may be indicative

of a north–south genetic cline, as Singapore Chinese are pre-

dominantly descendents of immigrants from southern provinces

in China, while we expect the HapMap Han Chinese in Beijing

samples to mainly reflect the genetic ancestry from northern

China. It is possible that the HapMap Han Chinese samples from

Beijing have included individuals with genetic ancestries more

commonly seen in Southern China, and likewise with the Singapore

Chinese samples, as it is evident from the Chinese samples in HGDP

(Fig. 1B) that the designation of Han Chinese encompasses peo-

ple from genetically distinguishable sub-groups or sub-ethnicities.

Within the SGVP populations, the INS was more differentiated

compared with CHS (FST = 3.9%) and MAS (FST = 2.7%), than be-

tween the Chinese and the Malay samples (FST = 0.6%, Fig. 1E).
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Interestingly, the third axis of variation indicated there was sub-

stantial genetic variability within the Indian samples (Fig. 1F),

which may be attributed to the numerous ethnicities that com-

prise the Indian population.

SNP and haplotype diversity

The availability of accurate genome-wide data allows the assess-

ment of genetic diversity across the SGVP populations. At the SNP

level, there was considerably less variance in the allelic spectrum

between CHS and MAS, relative to comparisons between either

population and INS (Fig. 2A–C), while, expectedly, CHS was most

similar to CHB (Fig. 2D; Supplemental Figs. S4, S5). In a genome-

wide survey for regions that are highly differentiated in the SGVP

populations, the top 10 regions were attributed mainly to allele

frequency variations between INS and the two other populations

and encapsulated well-documented regions of genomic differen-

tiation between East Asian and other global populations, including

EDAR (Sabeti et al. 2007) and VKORC1 (Lal et al. 2006; Lee et al.

2006) (Table 1).

To investigate the extent of haplotype diversity across the

seven SGVP and HapMap populations, we calculated the per-

centage of the chromosomes within each population that can be

accounted for by a specified number of distinct haplotypes across

22 regions of 500 kb. We observed that there was considerably

higher haplotype diversity in YRI compared with the rest, while

the populations with Far East Asian ancestries (CHB, CHS, and JPT)

have the lowest haplotype diversity (Supplemental Fig. S6). For

example, 12 haplotypes accounted for only 43% of the YRI chro-

mosomes, and between 73% (for JPT) and 79% (for CHS) for the

three populations with Far East Asian ancestries. Among the SGVP

populations, INS has the greatest haplotype diversity, with 12

haplotypes accounting for 57% of the INS chromosomes. This is

followed by MAS, with 68% of the chromosomes accounted for by

Figure 1. Principal component analysis plots of genetic diversity across HapMap, HGDP, and SGVP populations. Each figure represents the genetic
diversity seen across the populations considered, with each sample mapped onto a spectrum of genetic variation represented by two axes of variations
corresponding to two eigenvectors of the PCA. (A) Individuals from each population in the HapMap and SGVP are represented by a unique color, while
samples from HGDP are broadly grouped by geography in which a unique color is assigned to each geographical location. (B) Comparison between CHS
and samples from Far East Asia found in the HapMap and HGDP. (C ) A plot of the third and fourth axes of variation for the seven populations from HapMap
and SGVP. (D) A plot of the first two axes of variation when the PCA is run on only the three Far East Asian populations comprising the Singapore Chinese,
HapMap Han Chinese in Beijing, China, and Japanese in Tokyo, Japan. (E ) A plot of the first two principal components in a separate analysis within the
three SGVP populations. (F ) A plot of the second and third principal components within the SGVP populations. The same color scheme has been used in C–
F; the legend for the color assignment can be found in C.
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12 haplotypes. The pattern of haplotype sharing between these

populations was very similar across the 22 regions, and we illus-

trate this with chromosome 1 (Supplemental Fig. S6). A high de-

gree of haplotypes was shared between CHB, CHS, and JPT, and it

was evident that there were different haplotypes present in CEU,

INS, and YRI that were either absent or at low frequencies in the

rest of the populations. These analyses concurred with the obser-

vations from the analysis of population structure that CHB, CHS,

and JPT are more genetically similar compared with the rest of the

populations, with INS being the most genetically diverse among

the SGVP populations.

Linkage disequilibrium, tagging efficiency, and LD variation

One important utility of the SGVP resource is the comparison of

the extent of LD between the SGVP and HapMap populations, as

this reflects the tagging efficiency for genotyping arrays that were

designed using the patterns of LD that were observed in the HapMap

populations. Overall, the SGVP populations exhibited similar

rates of LD decay with increasing distance as compared with the

HapMap non-African populations, with CHS and INS having the

greatest and least conservation of LD, respectively, with distance

amongst the three SGVP populations (Fig. 3). This is similarly

reflected in the number of tagging SNPs that are required to cap-

ture all the common SNPs in the SGVP panels at a pairwise r2

threshold of 0.8, where between 349,800 and 406,900 SNPs are

required for CHS and INS, respectively (Table 2). For comparison,

the corresponding range for the HapMap populations is between

358,800 and 546,300 for JPT and YRI, respectively. Intriguingly, we

observed the number of tagging SNPs required at a pairwise r2

threshold of 1 for each SGVP population is almost comparable to

the number required for YRI, although this is likely to be a conse-

quence of designing commercial genotyping microarrays utilizing

LD patterns observed in the HapMap populations.

One of the factors that affects the reproducibility of the as-

sociation results from GWAS is the degree of similarity in the cor-

relation structure between the causal variants and the reported

SNPs in these populations (Teo et al. 2009a). By comparing the

extent of LD differences in a sliding-window approach between

any two populations, we identified the regions that are found in

the top 5% of the distribution of LD differences as candidate re-

gions of LD variation, where consecutive signals in the top 5%

within 25 kb are binned as a single region (see Methods). As a sig-

nificant proportion of GWAS has been performed in populations

Figure 2. Allele frequency comparison between pairs of populations. The axes in each figure represent the allele frequencies for each of the two
represented populations. For each SNP, we define the minor allele after agglomerating the genotype data from all three SGVP populations and sub-
sequently calculate the frequency of this allele in each population. Twenty allele frequency bins each spanning 0.05 units are constructed for each
population, and we tabulate the number of SNPs found in each bin. The intensity of the contour represents the number of SNPs that displayed the
corresponding allele frequencies in the two populations, from a low number of SNPs (purple) to a higher number of SNPs (red). The figure panels
compare the allelic spectrum among CHS-MAS (A), CHS-INS (B), MAS-INS (C ), and CHS-CHB (D).
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of European descent, Supplemental Table S3 shows the top 10

candidate regions of LD variation between each SGVP population

and CEU, while a complete listing of the identified regions in the

top 0.1% of the distribution between pairs of populations from

SGVP and HapMap can be found in Supplemental Table S4. Per-

haps unsurprisingly, one of these regions observed between INS

and CEU spans the SLC24A5 gene, which has been established to

be functionally involved with skin pigmentation (Lamason et al.

2005). A region that shows considerable signals of LD variations

from multiple pairs of populations and that coincided with re-

ported association signals from GWAS spans the CDKAL1 gene,

which has been implicated with Type 2 diabetes in populations

with European ancestry (Saxena et al. 2007; Scott et al. 2007;

Steinthorsdottir et al. 2007; Zeggini et al. 2007) and also in Asian

populations such as the Chinese (Liu et al. 2008; Wu et al. 2008),

Koreans (Ng et al. 2008), and Japanese (Tabara et al. 2009). Our

analysis indicates that the implicated variant rs7754840 is found

in a region with extensive LD differences between multiple groups

(Fig. 4). The population-specific recombination profiles differed

between the SGVP and HapMap populations as the higher SNP

density from the HapMap data allowed inference of the recom-

bination rates at a finer scale compared with the SGVP (Myers et al.

2005).

Comparing the genome-wide LD patterns between the two

Chinese populations (CHB and CHS), the top 10 regions identified

contain an olfactory cluster on chromosome 1 as well as two HLA

gene clusters in the major histocompatibility complex (MHC) re-

gion on chromosome 6 (Supplemental Table S5), suggesting that

these regions are highly polymorphic even between two relatively

homogeneous populations. Intriguingly, we observed that three

regions outside the top 10 were in the vicinity of candidate genes

for common metabolic disorders (FABP2, PCSK1, CLOCK) that

have been implicated for climate adaptations (Hancock et al.

2008). The frequencies of the derived allele associated with greater

tolerance to cold climate at the A54T (rs1799883) polymorphism

in FABP2 were significantly lower in CHS (22.4%) and MAS

(15.7%) when compared with CHB (31.4%) and JPT (30.0%),

consistent with reported findings of a significant correlation with

latitude (Hancock et al. 2008). For comparison, the frequencies for

CEU, INS, and YRI were 37.3%, 30.7%, and 20.8%, respectively.

Signatures of positive natural selection

Genome-wide data on the three SGVP populations also permit the

survey of signatures of recent positive natural selection through

the detection of uncharacteristically long haplotypes in the ge-

nome. Using the single-SNP integrated haplotype score (iHS) and

the XP-EHH score (see Methods and Supplemental material), we

observed that most of the signals detected by iHS in the SGVP

populations concur with those established in the HapMap pop-

ulations, particularly for signals that span multiple SNPs (Supple-

mental Table S6). Novel candidates for positive selection were

identified in each of the three SGVP populations, with the largest

number observed in INS. Supplemental Table S7 lists the top 10

candidate regions for recent positive selection in each SGVP pop-

ulation. Across the genome, selection signals that corroborated with

earlier findings from the HapMap in genes with well-documented

Table 1. Top 10 regions across the genome with strongest signals of genetic differentiation (FST) across all three SGVP populations

Chromosome
Region

(start–end)
No. of
SNPs Genes Top SNP

Minor allele
frequencya

CHS MAS INS CEU CHB JPT YRI

1 203,126,372 1 NFASC rs7541623 0.185 0.185 0.886 0.017 0.244 0.300 0.508
2 16,659,951–16,660,077 2 FAM49A rs751192 0.063 0.180 0.801 0.867 0.100 0.136 0.508
2 108,305,167–108,956,812 16 SULT1C4, GCC2, LIMS1,

RANBP2, CCDC138, EDAR
rs3827760 0.083 0.573 0.994 1.000 0.044 0.205 1.000

2 215,991,803–216,030,633 6 FN1 rs1437787 0.036 0.225 0.801 0.771 0.034 0.067 0.850
3 81,515,924–81,742,773 5 GBE1 rs276105 0.042 0.114 0.693 0.542 0.044 0.125 0.342
6 131,499,350 1 AKAP7 rs6569733 0.109 0.163 0.807 0.862 0.100 0.182 0.508
11 134,012,618 1 — rs3017964 0.100 0.303 0.873 0.883 0.156 0.200 0.692
12 111,440,158–111,465,954 9 PTPN11 rs6489847 0.078 0.219 0.837 0.879 0.089 0.133 0.678
14 96,394,042–96,429,553 2 VRK1 rs12434466 0.104 0.315 0.861 0.992 0.131 0.179 0.945
16 30,364,851–31,055,049 27 ZNF(768, 747, 764, 689, 629,

668, 646), ITGAL, PRR14, FBRS,
SRCAP, PHKG2, RNF40, BCL7C,
CTF1, FBXL19, ORAI3, SETD1A,
STX4, BCKDK, PRSS8, MYST1,
VKORC1, PRSS36

rs11864054 0.078 0.203 0.855 0.578 0.056 0.080 1.000

aThe minor allele is defined with respect to CHS (Singapore Chinese). (MAS) Singapore Malays, (INS) Singapore Indians, (CEU) Utah samples with ancestry
from Northern and Western Europe, (CHB) Han Chinese in Beijing, (JPT) Japanese in Tokyo, (YRI) Yoruba samples from the Ibadan region of Nigeria;
(SGVP) Singapore Genome Variation Project.

Figure 3. Decay of LD with distance. Decay of LD as measured by the r 2

statistic with increasing distance up to 250 kb for each of the HapMap and
SGVP populations, where 90 chromosomes were chosen from each
population to perform the LD calculation. Only SNPs with minor allele
frequencies $5% in each population were considered in this analysis.
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functions include the alcohol dehydrogenase (ADH) gene cluster

in CHS and INS, genes involved in skin pigmentation (SLC24A5 in

INS, OCA2 in CHS and MAS, TYRP1 in CHS and INS, MYO5A in all

three populations), sucrose metabolism (SI in CHS and MAS), brain

development and function (CENPJ in CHS and INS, MCPH1 in MAS

and INS, CDK5RAP2 in all three), regulation of energy and appetite

(LEPR in CHS and MAS), and low-density lipoprotein cholesterol

(LDLR in CHS and INS, APOB in all three) (Supplemental Table S8).

The concurrence of positive selection across multiple populations

is reassuring, although we advocate caution in drawing immediate

relevance to the biological interpretations.

Discussion
The aim of the Singapore Genome Variation

Project is primarily to provide a genomic

resource for studying the three major pop-

ulation groups in Southeast Asia that can be

used in the design and analysis of studies

for discovering the genetic basis of com-

plex traits and common diseases. This is

achieved by making a database of 1.6 mil-

lion polymorphisms assayed in 268 in-

dividuals publicly available for researchers,

with the data intentionally formatted in

a similar structure to complement the In-

ternational HapMap Project.

It has been historically documented that Chinese migrants

into early Singapore predominantly consisted of people from the

southern provinces of China. Our analysis of population structure

in East Asia where CHS clustered together with Chinese sub-

ethnicities from Southern China and Southeast Asia supported this

claim, together with the observation at FABP2 that Singapore

Chinese are less likely to carry the genetic variant that confers

greater tolerance to cold climates compared with the Han Chinese

in Beijing from Northern China. As this variant is similarly found at

low frequency in the Malays with equatorial habitats, this suggests

Figure 4. LD variation and population-specific recombination rates at CDKAL1. The extent of LD variation between pairs of SGVP and HapMap pop-
ulations at the CDKAL1 gene, with separate LD heatmaps and recombination rates estimated from genotype data at each population. Population-specific
recombination rates are shown except for CHB and JPT, where the same HapMap estimated recombination rates for JPT+CHB are used.

Table 2. Number of tagging SNPs required to capture all 979,573 common SNPs in each of
the SGVP and HapMap populations

SGVP HapMap

r 2 threshold CHS MAS INS CEU CHB JPT YRI

r 2 $ 0.5 195,462 205,927 228,701 211,011 209,167 205,956 367,593
r 2 $ 0.8 349,814 371,631 406,814 370,941 364,540 358,898 546,250
r 2 = 1.0 633,161 670,423 680,740 562,479 547,233 530,642 679,687

A common SNP is defined as one with a minor allele frequency of $5% in all three SGVP pop-
ulations. The HapMap panels are thinned to contain the same set of SNPs for comparison. See Table
1 for definitions of abbreviations.
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that the difference between Singapore Chinese and the Han Chi-

nese from Beijing reflects the genetic diversity found between the

northern and southern parts of China.

One of the main motivations in establishing this genomic

resource is to explore the possibility of localizing functional poly-

morphisms through combining association signals across popula-

tions with diverse genetic backgrounds. Preliminary findings from

targeted sequencing and sequence-resolution imputation studies

have suggested that the presence of long LD in populations of Eu-

ropean and East Asian descent is a hindrance to this process of fine-

mapping, as what emerges from these sequencing studies are sets of

SNPs in perfect or almost perfect LD that are virtually impossible to

distinguish between for isolating the causal variants. However, as

the patterns of LD between the causal variants and the neighbor-

ing SNPs can vary across populations, pooling GWAS results with

dense population-specific reference haplotypes across multiple

populations can be expected to minimize the number of SNPs that

are potential candidates to be functional. While the fullmerit of such

transethnic fine-mapping approaches will only be realized with se-

quence-level haplotypes in the relevant populations, we expect the

availability of dense genome-wide data for more populations will at

least serve a few purposes: (1) to serve as reference panels to impute

against for the purpose of extending thecoverage of currentgenome-

wide experiments in Southeast Asia to at least 1.6 million SNPs; (2) to

prioritizeSNPs that emerged from genome-wide scans for replication

in Southeast Asia; and (3) to perform genome-wide comparisons of

LD between populations, which will be valuable in identifying re-

gions where transethnic fine-mapping holds the greatest promise.

To date, most genetic research and genomic databases (other

than the HapMap) have either focused on populations of Euro-

pean descent or have surveyed comparatively few samples in each

Asian population (e.g., the Human Genome Diversity Project). The

SGVP provides a timely complement to these databases by pro-

viding a publicly available resource of 1.6 million polymorphisms

genotyped in 268 samples from three major population groups in

Asia. To facilitate the access, analysis, and display of the SGVP data,

we have designed a genome browser that is publicly available at

http://www.nus-cme.org.sg/SGVP/ (Supplemental Fig. S7). We ex-

pect this resource will be valuable for advancing genetic and ge-

nomics science in Asia.

Methods

Samples
Subjects enrolled in the SGVP were originally recruited for an in-
terpopulation study on the genetic variability to drug response,
where 100 individuals from each of the Chinese, Malay, and Indian
population groups were anonymously and randomly chosen from
the manifest to partake in SGVP, with only gender and population
information. Of these 300 samples, genomic DNA samples for 99
Chinese, 98 Malay, and 95 Indians were chosen for genotyping.
Population membership was ascertained on the basis that all four
grandparents belong to the same population group. Ethical con-
sent for the original study on drug response and further ethical
approval for the extension to genome-wide genotyping were
granted by two independent Institutional Review Boards at the
National University Hospital (Singapore) and the National Uni-
versity of Singapore, respectively.

SNP genotyping

Genomic DNA for all 292 individuals was assayed on the Affy-
metrix SNP6.0 Genotyping Chip and the Illumina 1M-single DNA

Analysis BeadChip. Preliminary genotypes for 3022 control probes
on the Affymetrix array were called using the DM algorithm (Di
et al. 2005) for sample QC. The set of genotype data from the
Affymetrix array used in downstream analyses was called using the
BirdSeed algorithm (Korn et al. 2008). Genotypes for the Illumina
array were assigned using the proprietary calling algorithm GenCall
in the BeadStudio Suite (Oliphant et al. 2002; Fan et al. 2004). We
implemented a threshold of 0.15 on the GC score during the calling
process: a valid genotype was assigned if the GC score was $0.15;
otherwise, a missing genotype was assigned.

Quality assessment

The quality of the genotypes for data from both arrays was assessed
independently, in the following four phases in sequential order: (1)
preliminary SNP QC on the autosomal chromosomes to identify
a set of ‘‘pseudo-cleaned’’ SNPs for sample QC; (2) sample QC to
remove sample duplicates, related samples, or samples with high
rates of missing data; (3) identification of samples with in-
consistent population membership or inconsistent gender when
comparing between the self-reported and genetically inferred data;
(4) another round of SNP QC after excluding samples identified by
(2) and (3) to yield the set of SNPs for inclusion in the SGVP da-
tabase. Post-QC data for both arrays were available for 96 Chinese,
89 Malay, and 83 Indian samples. For SNPs that are common to
both Affymetrix and Illumina, only those with $95% concordant
genotypes between the two arrays were retained.

Assessing population structure

Population structure between the HapMap and SGVP popula-
tions was assessed by principal components analysis (PCA) with
EIGENSTAT (Price et al. 2006). We thinned the available SNPs by
using every tenth SNP out of the 1,423,464 SNPs that were com-
mon between HapMap and SGVP, consisting of 142,347 SNPs, to
reduce the extent of LD between the SNPs used in the PCA. The FST

calculation uses the same formula as that used by the International
HapMap Project (The International HapMap Consortium 2005),
which accounts for the different number of samples in each pop-
ulation (see Supplemental material).

Haplotype phasing and LD calculation

The software fastPhase (Scheet and Stephens 2006) was used to
perform the phasing of the genotype data within each population
separately. The parameters used in the analysis were optimized to
yield minimal error rates within realistic running time of the
analysis. The LD between a focal SNP and any SNP found within
250 kb upstream and downstream of the focal SNP was calculated
using the software Haploview (Barrett et al. 2005). LD was mea-
sured by the square of the genetic correlation coefficient r2, D9, and
the LOD score, and was calculated off the phased haplotype data.
Comparisons of LD across populations utilized 45 samples from
each population to avoid the effects of different sample sizes.

Comparing allele frequency spectrum

We considered the same set of SNPs that passed QC across all the
SGVP panels. For each SNP, the minor allele was identified after
agglomerating the genotypes from all three SGVP populations. The
frequencies of the minor alleles were subsequently calculated
within each SGVP populations and categorized in 20 bins of size
0.05 spanning 0 to 1.

Quantifying haplotype diversity

For each chromosome, we randomly selected a 500-kb region,
avoiding centromeres and genomic regions with low SNP density.
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For an unbiased comparison across all seven population panels
from HapMap and SGVP, we considered only the SNPs that were
common to all seven panels. In each of the 500-kb regions, we
identified the number of distinct haplotype forms. We then
quantified haplotype diversity by the proportion of chromosomes
from each population that had been accounted for by a specific
number of haplotypes. This procedure is similar to that established
for quantifying haplotype diversity across multiple populations
(Bonnen et al. 2006). In order to investigate the extent of haplotype
sharing, chromosomes from the region in chromosome 11 were
clustered and visualized with the use of haplosim and hapvisual from
the R package haplosuite (Teo and Small 2009). Briefly, haplosim
identifies the canonical haplotypes in each region across all seven
populations, where each canonical haplotype is defined as a spe-
cific haplotype configuration to which a substantial proportion of
the individuals are highly similar. Each chromosome is subse-
quently mapped either uniquely to one of these canonical haplo-
types, or as a mosaic of these haplotypes. We explicitly chose to
implement an upper limit of seven possible canonical haplotypes
in our analysis of the HapMap and SGVP populations. The outcome
of the haplotype clustering was subsequently fed into hapvisual,
which produced a visualization of the haplotype clustering for each
population, where each canonical haplotype is assigned a unique
color that remains consistent across the populations.

Analysis of LD variation

Comparison of regional LD between two populations was per-
formed with the varLD algorithm (Teo et al. 2009b). Briefly, we
considered windows of 50 consecutive SNPs found in both pop-
ulations and calculated the signed r2, defined as the r2 with the
sign of the D9 metric, between all possible pairs of these SNPs.
Consequently, we constructed a 50 3 50 symmetric matrix for each
population where the (i, j)th element represents the signed r2

metric between the ith and jth SNPs calculated. We compared the
equality between the two matrices by comparing the extent of
departures between the eigenvalues, given by the sum of the ab-
solute difference between the ranked eigenvalues for the two ma-
trices that yields a score for each window of 50 SNPs. The extent of
LD differences in each window was assessed by comparing the
relative rank of the score obtained against the distribution of scores
in the genome, and we identified regions that constituted the top
5% of the distribution of the scores. For visualizing the signals from
comparisons across multiple population pairs, we standardized the
scores to have a mean of zero and a standard deviation of one.
Signals in the top 5% of the distribution were binned into regions if
two consecutive signals were found within 25 kb.

Detecting signatures of positive selection

We used the single-SNP integrated haplotype score (iHS) statistic
introduced by Voight et al. (2006) to identify signals of positive
selection within each of the HapMap and SGVP populations. This
analysis followed the set-up described in Sabeti et al. (2007). To
compare signals of positive natural selection that differ between
populations, we used the XP-EHH test with the same set-up as in-
troduced and described by Sabeti and colleagues (Sabeti et al. 2007).

A full description of the methods with additional figures and
tables for the methodologies can be found in the Supplemental
material.
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Abstract

Background: Algorithms and software for CNV detection have been developed, but they detect the CNV regions
sample-by-sample with individual-specific breakpoints, while common CNV regions are likely to occur at the same
genomic locations across different individuals in a homogenous population. Current algorithms to detect common
CNV regions do not account for the varying reliability of the individual CNVs, typically reported as confidence
scores by SNP-based CNV detection algorithms. General methodologies for identifying these recurrent regions,
especially those directed at SNP arrays, are still needed.

Results: In this paper, we describe two new approaches for identifying common CNV regions based on (i) the
frequency of occurrence of reliable CNVs, where reliability is determined by high confidence scores, and (ii) a
weighted frequency of occurrence of CNVs, where the weights are determined by the confidence scores. In
addition, motivated by the fact that we often observe partially overlapping CNV regions as a mixture of two or
more distinct subregions, regions identified using the two approaches can be fine-tuned to smaller sub-regions
using a clustering algorithm. We compared the performance of the methods with sequencing-based results in
terms of discordance rates, rates of departure from Hardy-Weinberg equilibrium (HWE) and average frequency and
size of the identified regions. The discordance rates as well as the rates of departure from HWE decrease when we
select CNVs with higher confidence scores. We also performed comparisons with two previously published
methods, STAC and GISTIC, and showed that the methods we consider are better at identifying low-frequency but
high-confidence CNV regions.

Conclusions: The proposed methods for identifying common CNV regions in multiple individuals perform well
compared to existing methods. The identified common regions can be used for downstream analyses such as
group comparisons in association studies.

Background
Copy-number variants (CNVs) are genomic regions that
contain an abnormal number of copies. In humans, we
normally expect two copies of each autosomal region,
but in CNV regions we may observe copy gains or
losses. Current common technology used for CNV
detection are high-density single nucleotide polymorph-
ism (SNP) arrays or array comparative genomic hybridi-
zation (aCGH) arrays. Detection of CNVs from aCGH
arrays is mostly based on locating change-points in
intensity-ratio patterns that would partition each chro-
mosome into several discrete segments [1-5]. On the
other hand, the hidden Markov model (HMM) is

particularly popular for detection of CNVs from SNP
arrays, where the hidden states provide a natural way of
combining information from the total signal intensity
and the allele frequency values (see for example, [6,7]).
These approaches detect CNVs sample-by-sample, and
because of the high noise level in the intensity values,
especially for SNP array data, the boundaries of the
detected CNVs tend to vary among individuals. How-
ever, in a homogenous population, common CNV
regions are likely to occur at the same genomic loca-
tions across different individuals. Our focus in this
paper is to identify common CNV regions in multiple
individuals from a given population.
Common CNV detection algorithms for SNP arrays

report the log Bayes factor as a confidence score for
each identified region; this provides a measure of the
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reliability of a detected CNV within an individual. Pre-
vious methods developed to identify recurrent CNV
regions (see [8] for a review) were primarily developed
for aCGH data and hence did not incorporate confi-
dence scores. For example, a previously published
method, STAC [9], uses two statistics to identify recur-
rent CNV regions. These statistics are based on the
frequency of occurrence of the regions and the align-
ment of the regions. However, since the method does
not incorporate confidence scores, every individual
region contributes equally to the statistic, whereas in
fact, inter-sample variability is bound to exist, where
some regions are more likely to be true/false positives.
Furthermore, STAC requires each chromosome to be
split into non-overlapping windows of a user-defined
fixed size. The algorithm then searches for evidence of
common CNV regions within each window. The weak-
ness of this is that the output from such an approach
will only provide evidence of whether each window
harbours a common CNV, but will not indicate the
breakpoints of the CNV. Although we may decrease
the window size to improve the resolution, in practice,
doing so will incur an enormous computational
burden.
In this paper, we investigated two different methods

to detect common CNV regions. The methods take
segmented data as the input. The first method esti-
mates a statistic based on the frequency of occurrence
of reliable CNVs, where reliability is determined by a
high confidence score. The second method is based on
a weighted frequency of occurrence of CNVs, where
the weights are determined by the confidence scores.
Figure 1 illustrates a common CNV region in chromo-
some 22, identified using the first method, and shows
evidence of several distinct subregions within the iden-
tified common region. Hence, in addition to these
methods, we also investigated the use of a clustering
algorithm to split the common regions into smaller
subregions.
To assess the performance of the methods, we ran

the algorithms on 112 HapMap samples from the Illu-
mina iControl database, composed of individuals from
three populations (Yoruba, Caucasian and Asian). We
compared the regions we identified to the regions
identified using sequencing [10]. In general, the discor-
dance rates with sequencing-based CNV regions as
well as the rates of departure from HWE decreased
when we filtered the individuals with a stricter confi-
dence score threshold. To benchmark the proposed
methods to currently available methods, we performed
comparisons with STAC [9] and GISTIC [11] and
found that the proposed methods outperformed both
STAC and GISTIC in identifying low-frequency but
high-confidence CNV regions.

Methods
Data Structure
We assume that the raw intensity data have been pro-
cessed by a CNV detection algorithm. Denote by Ri =

{Ri1, Ri2..., R R R Ri i i i i
 { , , , }1 2   } the collection of

CNV regions detected in individual i, for i = 1,...,n. A
region is defined by its start and end probe locations,
and its CNV type (duplication or deletion). For each
region, we assume we have a confidence score statistic
that measures the likelihood that the detected region is
real. An example of this statistic is the log Bayes Factor
(see [6]). For region j detected in individual i, we denote
this statistic as Cij.

Cumulative Overlap Using Very Reliable Regions (COVER)
Our confidence in a CNV region depends on the within-
and between-subject information; our methods shall uti-
lize both information. The within-subject information
comes from the strength of the signal within an indivi-
dual CNV region, and this is measured by the confi-
dence score. The between-subject information comes
from the consistency of the CNVs across different indi-
viduals. Intuitively, we have less confidence in a CNV
that occurs in one individual than one that occurs in
many individuals. However, a single occurrence of CNV
might still be a true discovery if it is associated with a
high confidence score, i.e., it is based on a strong signal.
Since individual CNV regions span different probes,

the number of individual regions that overlap each
probe varies. However, common CNV regions tend to
occur at almost the same genomic locations across mul-
tiple individuals. Hence, we expect the common regions
to be identified by consecutive probes where a ‘signifi-
cant’ number of individuals have an overlapping CNV
region. Furthermore, we also expect the confidence
score of the individual region to be relatively high.
Let Zijk be the indicator that region j detected in indi-

vidual i overlaps with probe k. For each probe k, we cal-
culate the Cumulative Overlap using Very Reliable
Regions (COVER) statistic yk, defined as

y Z Ik ijk C c

ji

n

ij

i

  

 ( ),

11



where IC cij  is the indicator function for regions
detected with a confidence score above a certain thresh-
old c. The common CNV regions are then defined by

R         l l y u m mm m k k, , , , ,

representing sets of consecutive probes for which yk is
consistently greater than or equal to a specified
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threshold u. lm is the genomic position of probe m and
it is implicitly understood that the cardinal position of
the probe reflects its relative position in the chromo-
some so that when there are M probes in a chromo-
some, l1 <l2 <...<lM.
Using COVER, we can identify multiple common

CNV regions within a chromosome. Furthermore, differ-
ent subsets of individuals may contribute to different
common regions, hence allowing COVER to identify
regions that are common to only a subset of individuals.
By only considering individual regions that are detected
with high reliability, we also incorporate the uncertainty

associated with each individual region in the identifica-
tion of common regions. If this is not taken into
account, then all regions would be treated equally
despite the fact that some are more likely to be true
than the others. Figure S4 in the [Additional File 1]
gives an illustration of how COVER works.

Cumulative Composite Confidence Scores (COMPOSITE)
In COVER, regions with low confidence are given zero
weights and they do not contribute to the COVER sta-
tistic. The within-subject confidence is not fully
exploited when computing the COVER statistic: regions

Figure 1 An example of a common CNV region found based on COVER method with threshold u = 2 and c = 60. This figure illustrates a
common CNV region in part of chromosome 22, found using the COVER method with threshold u = 2 and confidence cutoff at 60th percentile.
41 out of 112 individuals have CNVs that overlap with this common region, indicated by the horizontal lines. We can see that despite being
identified as a common region, the individual regions still portray a mixture phenomenon of several distinct subregions.
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that are detected with low confidence but nonetheless
detected consistently across a large number of subjects
might be missed.
This limitation is addressed in the second method. For

probe k the composite confidence score (COMPOSITE)
statistic is defined as,

s Z Ck ijk ij

ji

n i

 

 ( ).

11



This formula is in fact similar to COVER statistic,
where instead of using the indicator function IC cij  as
weights, now all detected individual regions contribute
to the COMPOSITE statistic, with the amount of their
contribution proportional to their confidence scores.
Using COMPOSITE, the common CNV regions are

then defined as

R         l l s v m mm m k k, , , , ,

representing sets of consecutive probes for which sk is
consistently greater than or equal to a specified thresh-
old v. Figure S4 in [Additional file 1] gives an illustra-
tion of how COMPOSITE works.

Clustering of Individual CNV Regions within a Common
Region (CLUSTER)
Cluster analysis has been used in the analysis of gene
expression and aCGH data (see for example, [12-14]).
Here, the motivation for CLUSTER stems from the
observation that within a common CNV region identi-
fied by COVER or COMPOSITE, a complex mixture
phenomenon can still be observed (see Figure 1).
Figure 2 depicts the hypothetical situation where a

common region of length L bases has been identified by
COVER or COMPOSITE. Four individual regions over-
lap with the common region and from the figure, it is
clear that the first two regions are clustered to the left
while the last two are clustered to the right. The two
groups may form two distinct subregions and these

Figure 2 Hypothetical example of a identified common CNV region with 2 distinct clusters. Hypothetical situation where an identified
common CNV region is common to four individuals. From the figure, it is clear that the common region consists of two partially overlapping
regions. The first two individual regions are clustered together to the left of the common region, while the last two individual regions are
clustered to the right.
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subregions could differ biologically. In reality, the situa-
tion is more complex than the hypothetical example
here (see for example Figure 1).
To find the subregions inside this common region, we

first perform pairwise comparisons of the individual
regions that overlap with the common region. For
example, the comparison of two regions A and B can be
summarized into 4 values (a, b, c, d), where a is the
number of bases for which both A and B overlap with
the common region, b is the number of bases where A
overlaps with the common region but B does not, c is
the number of bases where B overlaps with the common
region but A does not, and d = L - a - b - c.
The (dis)similarity index can be computed using a

variety of distance metrics appropriate for binary data
such as the Manhattan, Canberra or Jaccard distance
[15]. The Jaccard distance is particularly attractive for
our case; it is defined by a/(a + b + c) and can be inter-
preted as the percentage of common overlap of the two
regions relative to the union of the overlaps of the two
regions with the common region. We then construct a
dissimilarity matrix as input to a hierarchical clustering
algorithm. The number of clusters will be determined
by the amount of within-cluster similarity we require.
The boundaries of each subregion will be the minimum
and maximum positions of all individual regions that
belong in that cluster. If these bounds overshoot the
boundaries of the initially identified region, then the
boundaries will be reset to the boundaries of the initial
region.

Results and Discussion
Assessment and Comparison
Datasets
We studied the performance of the proposed procedures
by varying the corresponding threshold parameters in
each approach. 112 HapMap samples, comprising 46
Caucasian (CEU), 29 Beijing Chinese and Tokyo Japa-
nese (CHBJPT) and 37 Yoruban (YRI) individuals were
used in the analysis. These samples are part of the Illu-
mina iControl Database. Each sample was genotyped
using the Illumina 1M chip, and PennCNV [6] was used
to detect the individual CNV regions.
Comparison with Sequenced Regions
We compared the common regions we identified to a
list of reference CNVs identified in eight HapMap sam-
ples using sequencing data [10]. For each of the eight
samples, we calculated the discordance rates by record-
ing the proportion of common CNV regions (found
using our methods) for that sample that were not con-
cordant with the sample-specific reference CNVs. To be
‘concordant’ with a reference CNV, a region has to be
either contained within the reference CNV or it has to
overlap with at least 50% of the reference region. It is

important to note however that it is difficult to get a
gold standard for common CNV boundaries; even the
sequencing-based CNV regions cannot be expected to
have 100% sensitivity and specificity in genotype calling
and certainly not in boundary calls for common CNVs.
Comparison with other Array-based Regions
We compared the regions found using our methods to
the regions found by two other groups using array-
based methods. We compared with McCarroll et al.
[16], where the regions were identified using the Affy-
metrix SNP 6.0 arrays on 270 HapMap samples. To
minimize false discoveries, they ran two independent
experiments and require a CNV to be observed in both
experiments. We also compared our regions to the
regions found by Conrad et al. [17]. These regions were
identified using tiling oligonucleotide microarrays, com-
prising of 42 million probes, on 41 HapMap samples. A
total of 11,700 CNVs were identified, and 8,599 were
validated using a set of stringent criteria including (i)
additional measurements by Agilent 105K CGH arrays,
(ii) overlap with previous studies and (iii) other quality-
control filters. For our comparisons, we used only the
8,343 validated CNVs in the autosomal regions.
Comparison to other approaches
We compared our approaches to previous common
CNV detection methods, STAC: Significance Testing for
Aberrant Copy number [9] and GISTIC: Genomic Iden-
tification of Significant Targets in Cancer [11].
Briefly, STAC takes segmented data as input and esti-

mates two statistics: 1. A frequency statistic, which esti-
mates the frequency of aberration at each location
across all individuals. 2. A footprint statistic, which uses
a subset search methodology and counts the number of
locations c such that c is contained in a set of intervals
(see [9] for more details). It then uses a permutation
test to assess the significance of the observed region.
STAC requires each chromosome to be split into non-
overlapping regions of a user-defined fixed size. The
algorithm looks for evidence of common CNV regions
within each window, and reports the associated fre-
quency and footprint p-values.
GISTIC first calculates a ‘G score’ that is associated

with both the frequency of occurrence as well as the
amplitude of the aberration. Then, it calculates the
probability (q-value) of the observed region occurring by
chance via a permutation test. One can either input the
log intensity ratios, where the GLAD algorithm [18] will
be used to segment the data, or input pre-segmented
data using other algorithms.
We had also planned to make comparison to another

method called MSA [19], but failed because the soft-
ware, which is part of the GenePattern module, did not
work properly. MSA can be viewed as an improvement
over STAC, where it extends the notions of frequency
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and footprint statistics using original intensity ratio data
instead of segmented data [8]. We also tried a compari-
son to RJaCGH [2], which uses a non-homogenous Hid-
den Markov Model fitted via the Reversible-Jump
Markov Chain Monte Carlo method to estimate the
probability that a region has copy number alterations;
the method also allows the identification of minimal
common regions of copy number changes among multi-
ple individuals.
Unfortunately, with our samples, the algorithm did not

converge, so we could not proceed with the comparison.
Testing Hardy-Weinberg Equilibrium
It has been observed that the majority of common
CNV regions are inherited [20]. Hence, for a popula-
tion of normal (healthy) individuals, we expect, for
most of the common regions, the integer copy num-
bers to be in Hardy-Weinberg equilibrium (HWE).
The small number of regions that depart from HWE
can be attributed to factors such as recent mutations.
For example, McCarroll et al. [16] found that about
98% of common diallelic CNV regions do not show
significant departure from HWE. In principle, HWE
applies to both diallelic CNVs (where only loss or gain
of copy numbers are present in addition to normal
copies) and multi-allelic CNV regions (where both loss
and gain of copies are present).
For diallelic CNVs with only loss and normal-copy

numbers (copy-number = 0,1,2), the HWE test can be
conducted by treating ‘0’ copies as minor allele homozy-
gous, ‘1’ copy as heterozygous and ‘2’ copies as reference
homozygous. Similarly, for CNVs with only gain and
normal-copy numbers (copy-number = 2,3,4), we treat
‘2’ copies as reference homozygous, ‘3’ copies as hetero-
zygous and ‘4’ copies as minor-allele homozygous. For
multi-allelic CNVs, a model with three or more alleles is
needed. However, the HWE test cannot be performed
directly on the unphased copy-number because there is
an issue with different combinations of alleles producing
the same copy-number. For example, in a 3-allele
model, a copy-number of 2 can be produced by a com-
bination of ‘0’ and ‘2’ copies or two ‘1’ copy alleles.
When dealing with samples from healthy individuals,

we propose to use the outcome of the HWE tests to
select ‘optimal’ parameter thresholds (e.g., c in COVER
and v in COMPOSITE). If we observe a large number
of common CNV regions with significant departure
from HWE (after accounting for population stratifica-
tion), it could mean that the parameters we choose are
not optimal. When dealing with a mixture of healthy
and diseased individuals such as in association studies,
it is expected that the CNVs among the diseased indi-
viduals will show some degree of departure from HWE
as some of the CNVs could be due to recent abbera-
tions. We propose performing HWE tests only among

the healthy individuals to select the optimal threshold
parameters.

Results
COVER results
Figure 3 shows the results for COVER. The discordance
rates with Kidd et al.’s [10] reference CNVs (see Com-
parison with Sequencing Results) can be as high as 80%
when we include all CNV calls in identifying the com-
mon regions. The discordance rates decrease when we
exclude CNVs whose confidence scores are below a cer-
tain percentile; more severe filtering generally reduces
the discordance rates. The lowest discordance rates of
about 55% were achieved when we excluded individual
regions whose confidence scores were below the 80th
percentile. Surprisingly, increasing the required mini-
mum number of individuals inside a region (u) does not
seem to have an effect on the discordance rates.
However, the required minimum number of indivi-

duals (u) does affect the rates of HWE violation (calcu-
lated as the percentage of diallelic CNVs whose p-value
from the HWE test is < 0.01 in at least one of the three
ethnic groups). (Some HapMap individuals were related;
the HWE test in each ethnic group was carried out on
unrelated individuals only.) There is an overall increas-
ing trend for the proportion of common CNV regions
that violate HWE when we increase the minimum num-
ber of individuals (Figure 3(b)). This is partly due to the
fact that with increasing number of individuals, we
detect CNV regions with larger minor allele frequencies
(see Figure 3(c)), hence the test for HWE will be more
powerful. Generally, the rates of departure from HWE
are less than 10% and can be lowered by filtering out
individuals with lower quality regions. A steeper reduc-
tion in the rates of departure from HWE can be
observed when only individual regions whose confidence
scores are above the 60th percentile are considered (Fig-
ure 3(b)).
The sizes of the identified common regions generally

increase when we filter lower quality individual regions
(Figure 3(d)), reflecting the fact that smaller regions
with fewer overlapping probes would tend to have lower
confidence scores. By choosing confidence score thresh-
olds (c) anywhere up to the 60th percentile, the average
size of the common regions are approximately the same
or slightly smaller than the average size that Kidd et al.
[10] obtained using sequencing methods (solid horizon-
tal line in Figure 3(d)). The dashed horizontal line in
Figure 3(d) shows that the median size of CNV regions
identified using the 500K EA chip [21] is much larger
than what we observe using our methods.
For this dataset, setting the confidence score threshold

to the 60th percentile seems to be the optimum choice.
With this setting, the discordance rates are around 60%

Mei et al. BMC Bioinformatics 2010, 11:147
http://www.biomedcentral.com/1471-2105/11/147

Page 6 of 14



and the proportion of diallelic CNVs that violate HWE
is kept at around 8%. The choice of u is more subjec-
tive, as it depends on our definition of ‘common’
regions. For example, if we require each common region
to overlap with at least three individual regions and set
c to the 60th percentile, we will identify 443 common
CNV regions (see [Additional file 2]).

COMPOSITE results
A total of 89% of the probes does not contain any indi-
vidual CNV regions and thus their composite scores are
zero. So, if we set the threshold v at the 89th percentile
of the composite scores, we do not filter out any indivi-
dual regions and this approach is essentially the same as
using u = 1 and c = 0 in COVER.
Figures 4(a) and 4(b) show that, as we increase the

threshold, the discordance rates as well as the rates of
HWE violation decrease steadily. Unlike the COVER

approach, where increasing the confidence score thresh-
old does not result in lower ability to detect rarer
CNVs, increasing the composite score threshold does
result in fewer rare CNVs being detected (Figure 4(c)).
This is because the composite score is a function of
both the confidence score and the number of individuals
within a common region. By increasing the threshold,
we are implicitly requiring more individuals within a
common region.
The increasing trend of mean minor allele frequency

(MAF) is consistently seen when the threshold is
increased to the 96th percentile. Beyond this, the mean
MAF decreases because large regions with higher MAF
may be split into several subregions with smaller MAF.
This observation is consistent with the pattern of med-
ian size of CNV regions (Figure 4(d)). Generally, we are
losing the smaller regions with low composite scores as
we increase the threshold. However, beyond the 96th

Figure 3 Results of COVER method. (a) Discordant Rates, (b) Proportion of diallelic CNVs that failed HWE, (c) mean minor allele frequency (MAF) of
diallelic CNVs and (d) Mean CNVs size (kilo-bases) as a function of confidence scores cut-off points and minimum number of individuals.
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percentile, the median region size decreases again due to
the splitting of the large regions.
The optimal setting is to set the threshold to the 94th

percentile, where the proportion of regions that failed
HWE is around 5% (Figure 4(c)). Using this setting, we are
able to detect 491 CNV regions (see [Additional file 3])
with median CNV size slightly larger then the median size
found by Kidd et al. [10]. The discordance rates among
the eight HapMap samples are approximately 70%, higher
than what can be achieved by COVER. Hence, although
COMPOSITE can pick up more regions, a higher percen-
tage of these regions is likely to be false discoveries.

CLUSTER results
The common regions identified using either COVER or
COMPOSITE can be further refined into distinct subre-
gions using CLUSTER. Here, we present the results of

applying CLUSTER to the common regions identified by
COVER. We choose the CLUSTER parameters so that
regions will be clustered together if they are at least 60%
similar. Complete linkage is used so that the distance
between any pair of clusters is defined as the maximum
distance between a pair of members drawn one from
each cluster. Single or average linkage can also be used.
Since single linkage defines the distance between any
pair of clusters as the minimum between a pair of mem-
bers from the clusters, it generally tends to produce
clusters that are more similar to each other, and when
the same similarity cut-off point is used, it tends to pro-
duce fewer clusters than complete linkage. Meanwhile,
using average linkage gives more clusters than single
linkage, but fewer than complete linkage. In the [Addi-
tional file 1], we compare the three linkage measures for
a sample region.

Figure 4 Results of COMPOSITE method. (a) Discordant Rates, (b) Proportion of diallelic CNVs that failed HWE, (c) mean minor allele frequency
(MAF) of diallelic CNVs and (d) Median size of CNV regions (kb) as a function of composite confidence scores cut-off points. Solid line is median
CNV size found by Kidd et al.
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Figure 5(a) shows that the number of clusters
decreases when we increase the confidence score thresh-
old. But even when we consider CNVs with confidence
scores above the median, the clustering effect is still evi-
dent with 1.3 to 1.7 clusters found for each common
region, depending on which threshold value u is used.
For the optimum parameters u = 3 and c = 60, on aver-
age, 1.5 clusters are found per common region. The
rates of departure from HWE (Figure 5(b)) are approxi-
mately the same as in Figure 3(b) and increasing the
confidence-score threshold lowers the rates.
Once the common regions are identified, it is straight-

forward to perform a number of downstream analyses.
For example, a principal component analysis (PCA) can
done based on subjects’ integer copy-number calls at
these regions (see Section ‘Principal Component Analy-
sis of CNV Profiles’ for more details). In the HapMap

dataset, CLUSTER clearly improves the separation
between the Yoruba and the other two populations
based on the subjects’ common CNV region profiles
(compare Figure 5(c) vs 5(d)). This result suggests that
different ethnic groups have more subtle differences in
the breakpoints of CNV regions.
Comparisons
McCarroll et al.’s versus Kidd et al.’s Results Using
the Affymetrix 6.0 arrays, McCarroll et al. [16]
employed a set of strict criteria based on duplicate
experiments to identify the CNV regions. For each of
the eight samples sequenced by Kidd et al. [10], we cal-
culated the discordance rates with McCarroll et al.’s
CNVs and they range from 71% for sample NA12878 to
84% for sample NA18517. On average, across the eight
samples, 76% of the regions found by McCarroll et al.
are discordant with the regions found by Kidd et al.

Figure 5 Results of applying CLUSTER to common regions identified by COVER method. (a) Average number of clusters, (b) rates of
departure from HWE, (c) First and second components of PCA based on subjects’ integer copy-number calls at common regions found using
COVER (with u = 3 and c = 60), (d) First and second components of PCA based on subjects’ integer copy-number calls at common regions
found using complete-linkage CLUSTER (with cluster.limit = 0.6).
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[10]. In comparison, using COVER, the discordance
rates are around 60% (see Section “COVER Results”).
Thus, the methods described in this paper, using only
data from a non-duplicated experiment, actually perform
better in terms of discordance rates against sequencing
data.
McCarroll et al.’s versus COVER/COMPOSITE
Results We also compared the regions identified by our
approaches to the list of common CNV regions identi-
fied by McCarroll et al. [16]. Figure 6(a) shows that by
using COVER, the discordance rates can be lowered by
either increasing the confidence-score threshold, placing
a higher limit on the minimum number of individuals
(u), or both. For the best scenario, the discordance rate
is about 15%. Using COMPOSITE, the discordance rates
can be reduced by increasing the composite-score
threshold, but even for the best scenario, the discor-
dance rate is around 25% (see Figure 6(b)).
Comparison to Conrad et al.’s regions Treating the set
of 8,343 validated autosomal CNVs found by Conrad
et al. [17] as reference CNVs, we calculate the discor-
dance rates against this reference list. Using the optimal
parameters for COVER/COMPOSITE for this dataset,
we obtain discordance rates of 42% and 31% for COVER
and COMPOSITE respectively. By refining the regions
using CLUSTER, the discordance rate for COVER
decreases to 34% and that for COMPOSITE remains
about the same, at 33%. These are better than McCarroll
et al.’s [16] regions, which have a discordance rate of
44%.
Comparison to GISTIC As input to GISTIC, we used
CNV calls from PennCNV for the same Hapmap

samples as described in the Datasets Section. Using the
default parameters of GISTIC, with the q-value thresh-
old set at 0.25, we obtained 342 significant common
regions with a mean frequency of 0.106 and a median
confidence score of 15.7. For comparison with COVER
and COMPOSITE, we chose threshold parameters to
give the closest number of common regions to that
detected by GISTIC. For COVER, this corresponded to
the choice of u = 3 and c = 70th percentile, which
yielded 329 regions with a mean frequency of 0.065 and
median confidence of 32.3. For COMPOSITE, the
threshold was chosen to be the 94.5th percentile, and
this yielded 360 regions with a mean frequency of 0.121
and median confidence of 27.6.
For each region identified by COVER, we checked if it

was concordant with any region identified by GISTIC.
Concordance is defined in the same way as in the Sec-
tion ‘Comparison with Sequencing Results’. The
COVER-identified regions can hence be divided into
two groups: those that are concordant with at least one
GISTIC region and those that are not. For each group,
we computed the mean frequency and median confi-
dence score, as well as the discordance rates with Kidd
et al.’s regions. We did the same for each region identi-
fied by GISTIC, checking if the region was concordant
with any region identified by COVER. Similar analysis
was done comparing COMPOSITE and GISTIC.
Table 1, for COVER, shows that regions that are con-

cordant with GISTIC regions have higher frequencies
but moderate confidence scores, while those that are
not concordant with GISTIC regions have lower fre-
quencies but higher confidence scores. The concordant

Figure 6 Comparison to McCarroll’s CNVs. (a) Discordance rates when comparing regions found using COVER and those found by McCarroll
et al., plotted against confidence score thresholds for different values of u. (b) Discordance rates when comparing regions found using
COMPOSITE and those found by McCarroll et al., plotted against composite score thresholds.
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regions have lower discordance rates with sequenced-
based results. Similar patterns in frequencies, confidence
scores and discordance rates are also seen for the
regions found by COMPOSITE. We deduce that GIS-
TIC misses regions that are of low frequencies but high
confidence scores. Hence, it seems that COVER/COM-
POSITE can identify the low-frequency CNVs better. In
addition, of the regions found by GISTIC, those that are
concordant with COVER or COMPOSITE have high
frequencies and moderate confidence scores while those
that are not concordant have low frequencies and low
confidence scores. Again, the concordant regions have
lower discordance rates with sequenced-based results.
From this, we deduce that the regions identified by GIS-
TIC but missed by our methods are those with low fre-
quencies and low confidence scores, and hence more
likely to be false positives.
Comparison to STAC For the purpose of analysis using
STAC, we split each chromosome into 1450-1500 fixed-
size windows with the size of the windows varying from
165 kb for chromosome 1 down to 24 kb for chromo-
some 22, resulting in a total of 32780 windows across
chromosome 1-22. (We tried a smaller window size but
the computational burden became too large, where even
after 48 hours the algorithm was still running in a 3
GHz windows PC with 4 Gb RAM). We used 0.05 as a
cut-off to declare windows with significant frequency or
footprint p-values, and obtained 868 significant windows
with a mean frequency of 0.155. Each significant fixed-
size window will be taken as a significant region.
To compare the regions found by STAC to the

regions found using COVER and COMPOSITE, we
chose threshold parameters to give a number of com-
mon regions closest to that detected by STAC. For
COVER, this corresponded to the choice of u = 2 and
c = 60th percentile, and for COMPOSITE, the 93th per-
centile. We obtained 777 and 805 common regions

respectively. We performed similar analysis as in the
comparison to GISTIC.
A summary of this comparison is shown in Table 2a.

We observe similar results as in the comparison to GIS-
TIC: regions that were identified by STAC but that were
missed by COVER/COMPOSITE have low frequencies
and low confidence scores, but regions identified by
COVER/COMPOSITE that were missed by STAC have
low frequencies but high confidence scores, and were
thus more likely to be true positives.
We also investigated if the relative performance of

STAC would improve if we manually filtered out indivi-
dual regions with lower confidence scores. We decided
to use only individual regions whose confidence scores
were above the median confidence score of all reported
regions. Using this filtered input, STAC identified 654
significant windows. Using u = 2 and c = 70th percen-
tile for COVER and the 93.5th percentile for COMPO-
SITE, we identified a similar number of common
regions (615 for COVER and 610 for COMPOSITE).
Table 2b summarizes the results of this comparison and
our conclusions are similar to those with the unfiltered
input data.
We conclude that COVER and COMPOSITE are able

to detect the majority of the regions found by STAC,
and in addition they also detect common high-confi-
dence CNV regions that occur in a smaller number of
subjects that were missed by STAC.

Implementation
The methods are implemented in an R package
cnvpack. The main input is a list of detected indivi-
dual CNV regions with the following information: Sam-
ple name, chromosome number, detected integer copy
number, start and end genomic locations and a confi-
dence score. The package can be downloaded from
http://www.meb.ki.se/~yudpaw.

Table 1 Comparison with GISTIC.

regions found by overlap? no. of regions mean freq median conf discordance**

COVER ✓ GISTIC 139 0.10 30 62%

✗ GISTIC 190 0.037 37.5 87%

COMPOSITE ✓ GISTIC 162 0.21 20.0 64%

✗ GISTIC 198 0.048 72.8 75%

GISTIC ✓ COVER 153 0.15 22.3 56%

✗ COVER 189 0.072 8.8 84%

✓ COMPOSITE 173 0.15 20.6 61%

✗ COMPOSITE 169 0.058 8.8 82%

✓ - overlap

✗ - no overlap

** discordance rates with Kidd’s sequencing results.

This table shows a summary of the results obtained from comparing COVER/COMPOSITE to GISTIC.
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Downstream analyses
CNV-association analysis
One important use of the identified common CNV
regions is for group comparisons in association stu-
dies. For each region we test whether certain CNVs
are over-represented in one group compared to the
others. Typically, the Fisher’s exact test or chi-squared
test for contingency tables can be used. The test can
be carried out for all identified common CNV regions
and the issue of multiple testing can be dealt with
using the false discovery rate (FDR) assessment. (See
[Additional file 1] on how to use the package for such
analyses.)
As an illustration we performed an association ana-

lysis on the common regions identified in the 112
control subjects using the optimal parameters for
COVER and COMPOSITE. The subjects were grouped
by ethnicity (YRI, CHBJPT and CEU). Both methods
showed that there were a number of highly-significant
CNV regions with p-value < 1e-06. Two of these
regions were detected by both methods. The first one
is a 16.2 kb deletion in chromosome 2 (genomic posi-
tions 203,004,035 to 203,020,242). This region occurs
exclusively in the Yoruba population (17/37) and over-
laps with the BMPR2 gene that has been linked to pri-
mary pulmonary hypertension [22]. The second region
is a 4.6 kb deletion in chromosome 4 (genomic posi-
tions 20,982,707 to 20,987,259) that occurs among
Yoruban (19/37) and CHBJPT (4/29). This region
overlaps with the KCNIP4 gene that is known to

interact with presenilin, a protein that has been
reported to be involved in early-onset Alzheimer’s dis-
ease [23].
Principal component analysis of CNV profiles
We also perform principal component analyses (PCA) to
obtain informative plots of population differentiation in
the CNV profiles (see [Additional file 1] for more infor-
mation). For the HapMap samples, the first two compo-
nents obtained using the optimal COVER parameters
separate the Yoruba population (YRI) from the Cauca-
sian(CEU) and Asian(CHBJPT) populations, but the
other two populations are not very well separated (Fig-
ure S1 in the [Additional file 1]). A better separation
between the CEU and CHBJPT populations is achieved
using the third and fourth components(see Figure 7(a))
and the separation is further improved when we use
CLUSTER to refine the CNV regions identified by
COVER (Figure 7(b)).

Conclusions
We have described and compared two different methods
for identifying common CNV regions. Using 112 Hap-
Map samples, we have shown that these methods pro-
duce common CNV regions that mostly follow Hardy-
Weinberg equilibrium (HWE). For the eight HapMap
samples where we compared the regions we identified
to the reference CNV regions found by sequencing [10],
the discordance rates can be as high as 80%, but this
can be reduced to 60% by considering CNVs with higher
confidence scores, thus showing the importance of

Table 2 Comparison with STAC.

STAC input: all data regions found by overlap? no. of regions mean(freq) median(conf)

COVER ✓ STAC 301 0.084 25.6

✗ STAC 476 0.021 31.2

COMPOSITE ✓ STAC 372 0.14 18.6

✗ STAC 433 0.023 52.5

STAC ✓ COVER 609 0.15 23

✗ COVER 259 0.11 8.1

✓ COMPOSITE 727 0.15 20.5

✗ COMPOSITE 141 0.07 7.21

STAC input: filtered data regions found by overlap? no. of regions mean(freq) median(conf)

COVER ✓ STAC 294 0.068 30.2

✗ STAC 321 0.020 37.6

COMPOSITE ✓ STAC 297 0.14 23.1

✗ STAC 313 0.045 65.2

STAC ✓ COVER 585 0.14 28.1

✗ COVER 69 0.07 16.1

✓ COMPOSITE 595 0.14 26.8

✗ COMPOSITE 59 0.06 20.2

✓ - overlap

✗ - no overlap

This table shows a summary of the results obtained from comparing COVER/COMPOSITE to GISTIC.

Mei et al. BMC Bioinformatics 2010, 11:147
http://www.biomedcentral.com/1471-2105/11/147

Page 12 of 14



further processing of the CNVs. The high level of dis-
cordance itself might be due to an inherent limitation in
the SNP array as the platform for CNV detection, but
perhaps also due to imperfection in the sequencing-
based results. Further works are needed to explain the
discordance level.
When we compared our methods to previously pub-

lished methods, STAC and GISTIC, we found that our
methods are better at identifying low-frequency CNVs.
Moreover, STAC is rather rigid and insensitive to the
actual breakpoints of a CNV region, because if two con-
secutive windows are reported as significant, we do not
know if there is one large CNV which spans both win-
dows, or two separate and distinct CNVs. Although we
can decrease the window size to increase the resolution,
in practice, decreasing the window size beyond a certain
point will incur too much computational burden.
Another limitation of previous methods is the lack of
consideration of individual-specific confidence scores.
This means that all samples contribute equally to the
calculation of the statistic used to identify the common
regions, while in fact, there is bound to be inter-sample
variability, where some CNVs are more likely to be true
positives than others.
The results of COVER and COMPOSITE are similar

in terms of discordance rates and HWE violation rates,
but COMPOSITE appears to be better at identifying
rare regions. The HWE violation rates are useful in
determining the choice of parameter values for COVER
and COMPOSITE. For this particular data set, we
observed a steeper reduction in HWE violation rates
when we used COVER with a confidence score thresh-
old set above the median or higher. For COMPOSITE, a

more noticeable reduction in HWE violation rates was
observed when we set v to the 94th percentile. For a
new dataset, we encourage users to choose the confi-
dence score and COMPOSITE score parameter thresh-
olds for which steeper reduction in HWE violation rates
can be observed.
When using COVER, the minimum number of indi-

viduals inside a common region (u) needs to be speci-
fied as well. If we are interested in rare variants
in addition to the common variants, then it makes
sense to set u = 1. Otherwise, u ≥ 2 should be used.
A higher u will result in the identification of fewer,
but more highly-recurrent CNV regions. In our experi-
ence with the HapMap samples, clustering results pro-
duce better separation of the ethnic groups than
indicated by the initial common CNV regions. In com-
parison with the highly-validated CNVs from Conrad
et al. [17], the concordance rate of COVER also
improves after refinement with CLUSTER. So, in sum-
mary, we recommend users to further refine the identi-
fied common CNV regions using CLUSTER.

Additional file 1: The supplementary report documents details on
how to use the R package cnvpack for the various analyses
described in this paper.

Additional file 2: This table shows details of the regions found by
COVER.

Additional file 3: This table shows details of the regions found by
COMPOSITE.
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