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SUMMARY 

It has been increasingly valuable to look across populations of different ancestries, taking 

advantage of the allelic frequency and linkage disequilibrium differences that could shed more 

light on the genetic architecture of common diseases and complex traits. Singapore is a small 

country state at the tip of the Malaysia Peninsula, home to a population of 5 million. The unique 

demographic makeup of the three main ethnic groups, Chinese, Malays and Asian Indians, 

captures much of the genetic diversity across Asia. We first assembled a resource of 100 

individuals from each of the three ethnic groups, with the aim of comparing their genetic diversity 

within ethnic groups and also with existing HapMap populations to determine if this genetic 

diversity might have implications for genetic association studies. The multi-ethnic demographic 

characteristic allowed us to investigate various aims: (i) to identify disease susceptibility genetic 

loci common to multiple ethnic groups; (ii) to assess the impact of allele frequencies differences 

and allelic heterogeneity on the transferability of European loci to non-Europeans; (iii) to identify 

population specific disease implicated loci in genetic association studies. In particular, we will 

describe findings from a Type 2 Diabetes genome-wide association study that highlight the 

transferability and consistency of established Type 2 Diabetes loci from European populations to 

Asian populations. Through meta-analysis with other South Asian populations, we report six new 

loci implicated in Type 2 Diabetes in South Asian Indians. Finally, using the same ethnic groups, 

we demonstrate that re-defining phenotype has an important role in improving existing 

knowledge of disease pathogenesis and complementing our physiological understanding of 

genetic susceptible variants. 
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CHAPTER 1 – INTRODUCTION 

1.1. Mendelian Genetics and Inheritance 

The evolution of modern genetics has seen the greatest change in the last decade. In 1865, Gregor 

Johann Mendel, the father of modern genetics, established Mendel’s law of segregation (two 

copies of alleles separate during gamete formation such that each gamete only receives one copy. 

Offsprings then randomly inherit one gamete from each parent during transmission) and law of 

random assortment (two different genes randomly assort their alleles to be inherited 

independently). Mendelian inheritance models are typically characterized by single molecular 

defects (monogenic) segregating within families, such as cystic fibrosis which has an autosomal 

recessive inheritance pattern1. However, it soon became clear that there could be extensive 

phenotypic variation in these disorders, even in the presence of similar molecular patterns due to 

variable penetrance2.  

 

At the same time, the patterns of inheritance for common quantitative traits such as 

anthropometric measures and complex diseases like Type 2 Diabetes within families were not 

conforming to Mendelian laws but rather in a blending fashion from the parents. In 1918, R. A. 

Fisher demonstrated that individual differences observed at a particular trait could be attributable 

to genetic variations at more than one locus and that inter-individual differences are as a 

consequence of the collective effects from all contributing loci3,4. Traits of this nature were later 

termed as polygeneic, multifactorial or complex traits. The understanding of these models of 

inheritance shaped the development of methods for the discovery of common diseases or complex 

traits. 
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1.2. Candidate Gene Studies and Linkage Scans 

Earlier studies of gene mapping to compare the inheritance patterns of complex traits were 

limited by our knowledge of the genome and the ease of detecting genetic variants. The candidate 

gene approach relied on prior biological knowledge to decide on the choice of target region, often 

based on specific hypothesis on the pathogenesis of disease. This type of study, limited by the 

lack of knowledge of the human genome to make informed selection of candidate regions and the 

small sample sizes of the experiments, often yielded irreproducible results. Despite these 

challenges, the candidate gene approach does have its success in Type 2 Diabetes. For example, 

the peroxisome proliferator-activated receptor gamma (PPARG)5 and potassium inwardly-

rectifying channel, subfamily J, member 11 (KCNJ11)6 harbor common variants associated with 

Type 2 Diabetes in a highly reproducible manner. Both are drugs targets used to treat Type 2 

Diabetes. They are implicated in rare monogenic syndromes characterized by severe metabolic 

disturbance of beta-cell function and insulin resistance7,8.  

 

Linkage studies leverage on the genetic markers segregating with disease alleles in affected 

families. Of note, the variant with the strongest effect on Type 2 Diabetes on chromosome 10 to 

date was discovered via linkage analysis9 and a search for microsatellite association localized the 

variant to an intron within the transcription factor 7-like 2 gene (TCF7L2)10,11. The index variant 

replicated across multiple European populations and had an odds ratio of 1.40 (95% CI: 1.34 – 

1.46)12 in developing Type 2 Diabetes. Unfortunately, linkage has low power and resolution for 

variants with modest effects. In 1996, Risch and Merikangas suggested that for a disease risk of 

1.5 and risk allele frequency of 0.10, the number of families required for 80% power using 

affected siblings design was close to 70,00013. On the contrary, for the same disease risk and risk 

allele frequency, the number of sibling pairs required for association analysis was a little under 

1,000. Association studies, by design, compare the frequencies of alleles or genotypes of variants 
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between disease cases and controls in its simplest form, thus providing a simpler and more 

practical way of identifying disease implicated variants in complex traits.  

 

1.3. Genome-Wide Association Study (GWAS) 

The genomes of any two individuals are about 99.9% identical. The remaining 0.1% of genetic 

differences can be largely attributable to: (i) single nucleotide polymorphism (SNP), which 

represent single base change between individuals; and (ii) structural variants comprising of 

genomic alterations such as copy number polymorphisms, insertions, deletions and duplications14.  

While a comprehensive direct search for genetic determinants of disease would involve 

examining all genetic differences in substantially large number of affected and unaffected 

individuals through whole genome sequencing, this is currently not feasible with the high cost of 

sequencing in large studies.  

 

The genetic architecture of diseases involves understanding how many susceptible genetic 

variants are involved, the risk allele frequencies at these variants and the magnitudes of the 

effects these risk alleles have on diseases. There have been two major views on the allelic spectra 

of variants affecting multi-factorial diseases15,16. The first being the common disease common 

variant (CDCV) hypothesis, that common diseases are attributed to the joint action of common 

genetic variants (minor allele frequency MAF at least 5%) which individually are likely to 

contribute marginally to the disease. On the other hand, the rare variant hypothesis proposes that 

disease incidences might be due to less common variants (MAF of less than 0.01) that are distinct 

in different individuals.  

 

Genome-wide association studies adopt a hypothesis-free approach to identify genetic variants 

associated with complex traits with the common disease common variant approach as the 
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underlying model of allelic spectrum of diseases. It is an indirect approach to screen the genome 

where a set of well chosen variants, specifically SNPs, could serve as genetic markers to detect 

association between regions of the genome and the phenotype of interest, by making use of the 

inherent correlation between genetic variants along a chromosome. The SNPs queried are 

believed to be rarely the causal variants (variants that are biological functional or responsible for 

expressing the phenotype of interest) but instead are sufficiently correlated with the causal 

variants to show an association with the trait. 

 

The unbiased approach of surveying the genome for disease implicated loci has been made 

possible with several crucial developments, including deeper understanding of linkage 

disequilibrium across the genome, the catalog of common genetic variation across four 

populations by the International HapMap Project14,17,18 and technological advancement in the 

genotyping field. Most genome-wide association studies rely on commercial genotyping arrays 

from two major companies, Affymetrix (Santa Clara, California, United States of 

America, http://www.affymetrix.com/estore/) and Illumina (San Diego, California, United States 

of America, http://www.illumina.com/). Since the first genome-wide scan published in 2005 that 

discovered an association between the complementary H polymorphism (CFH) in 96 age-related 

macular degeneration cases and 50 controls19, there has been a plethora of genome-wide 

association studies on chronic diseases Type 2 Diabetes, inflammatory disorders, infectious 

diseases, cancers and quantitative traits such as height and body mass index20,21. These will be 

discussed in greater details in the following sections. 

 

1.3.1. Linkage disequilibrium and recombination in the human genome 

Linkage disequilibrium (LD) reflects the shared ancestry of genetic variation in populations22. 

When new mutation arises, it is initially linked to the other alleles on the same chromosome. The 

http://www.affymetrix.com/estore/
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unique combination of alleles on a chromosome is called a haplotype and the non-random 

correlation of alleles on these haplotypes results in linkage disequilibrium.  

 

Linkage disequilibrium is a balance between several population genetic forces including genetic 

drift, population structure, natural selection and recombination. Briefly, contrary to Mendelian 

law of independent assortment, genetic material close on the same chromosome are not passed 

down independently and thus correlation structures within populations tend to be more similar 

due to shared evolutionary history23. Genetic drift results in a change in the allele frequency due 

to random sampling as genetic materials are passed down from parents to offsprings. Natural 

selection is another evolutionary force favoring mutations that increase survival and reproduction 

(positive selection) while eliminating deleterious mutations that decrease survival and 

reproduction (negative selection). These population genetic forces influence the linkage 

disequilibrium within populations, generally inflating linkage disequilibrium. In the absence of 

recombination, genetic diversity arises solely through mutation. Recombination is the re-shuffling 

of genetic material between the paternal and maternal chromosomes at a specific location of the 

chromosome during meiosis. This process results in the unlinking of materials on the parental 

chromosomes and new chromosomes that are eventually transmitted contain new combinations of 

genetic materials from both parents. Genetic diversity is increased as this process allows genetic 

materials from all four grandparents to be passed down to the offsprings. The genetic materials 

that are passed down from the parents to offsprings will be different from what is passed down to 

the parents from the grandparents, thus breaking down linkage disequilibrium.  

 

Linkage disequilibrium varies markedly across the genome and between populations of different 

ancestry. Using SNP data in 44 individuals from Utah from the Centre d’Etude du 

Polymorphisme Humain collection (CEPH) and 96 Yorubans from Nigeria in 19 regions of the 
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genome, Reich et al showed that linkage disequilibrium extends over longer distance compared to 

previous predictions from demographic models and decreases as a function of physical distance 

between SNPs24. Linkage disequilibrium patterns are closely related to recombination. Long 

stretches of linkage disequilibrium are often characterized by recombination hotspots (regions in 

the genome with elevated rates of recombination) at the ends, creating blocks of haplotypes 

where only a few common haplotypes are observed with little evidence of recombination within 

the block25-28. The presence of long stretches of linkage disequilibrium and haplotype blocks 

allows a small set of well-chosen SNPs to act as efficient tagging surrogates of other SNPs or 

haplotypes29,30, thus reducing the number of SNPs to be queried and to provide a high degree of 

genome coverage. The selection of markers therefore depends on the strength of linkage 

disequilibrium between markers.  

 

Several measures of linkage disequilibrium are commonly used, including the Lewontin’s D’31,32 

and genetic correlation coefficient r2 33. Consider two biallelic SNPs, with the alleles (A, a) on 

one locus and alleles (B, b) on the other locus. Let fx denotes the frequency of the x allele and fxy 

denotes the haplotype frequencies of the xy haplotype: 

 

𝐿𝑒𝑤𝑜𝑛𝑡𝑖𝑛 𝐷′ =  

⎩
⎪
⎨

⎪
⎧ 𝑓𝐴𝐵 −  𝑓𝐴𝑓𝐵

min(𝑓𝐴𝑓𝑏 , 𝑓𝑎𝑓𝐵)
     𝑖𝑓 𝑓𝐴𝐵 −  𝑓𝐴𝑓𝐵 > 0

𝑓𝐴𝐵 −  𝑓𝐴𝑓𝐵
min(𝑓𝐴𝑓𝐵 , 𝑓𝑎𝑓𝑏)

     𝑖𝑓 𝑓𝐴𝐵 −  𝑓𝐴𝑓𝐵 < 0
�      𝑎𝑛𝑑        𝑟2 =  

(𝑓𝐴𝐵 −  𝑓𝐴𝑓𝐵)2

𝑓𝐴𝑓𝐵𝑓𝑎𝑓𝑏
 

 

From the numerator in D’ and r2, if there is no linkage disequilibrium (i.e. linkage equilibrium), 

then the observed haplotype frequency at the two SNPs should be equal to the expected haplotype 

frequency obtained from the product of allele frequencies at the two SNPs. D’ can be interpreted 

as the number of differentiated haplotypes and is less than one if and only if all four haplotypes 

are observed. r2 is a measure of how much information one SNP contains for a second SNP. An r2 
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of one indicates that one variant is a perfect surrogate of the other while r2 of zero means that the 

two variants provide no information about each other. Correlations between SNPs r2 depends on 

the historical order and genealogy branches in which they arose while D’ measures evidence of 

historical recombination. Thus knowledge of linkage disequilibrium in the genome (in the form of 

r2) allows an efficient selection of informative tag SNPs, which act as proxies and provide 

information about unobserved SNPs, facilitating indirect genome-wide association studies30.  

 

1.3.2. The International HapMap Project (HapMap) 

In order to efficiently select informative markers in the genome, it is important to understand the 

local linkage disequilibrium patterns in different populations. The International HapMap 

Consortium was first initiated in 2001 with the aim to catalogue common patterns of genetic 

variations in samples from populations of African, Asian and European ancestry14, providing a 

guide to the design of genetic studies. 

 

The project was carried out in a few phases. In the first phase, genotyping set out to capture at 

least one common SNP (defined as MAF at least 5%) in every 5 kilobases (kb) across the genome 

in individuals with African, Asian and European ancestries17. Specifically, the samples consisted 

of 30 Yoruba parent-offspring trios (90 individuals) from the Ibadan region of Nigeria (YRI) of 

African ancestry, 30 parent-offspring trios (90 individuals) in Utah from the Centre d’Etude du 

Polymorphisme Humain collection (CEU) of European ancestry, and 45 unrelated Han Chinese 

from Beijing (CHB) and 44 unrelated Japanese from Tokyo, Japan (JPT) of Asian ancestry14,17. 

This generated approximately one million SNPs that were polymorphic across the samples after 

stringent quality checks.  
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Phase II catalogued a further 3.1 million SNPs on the same individuals, capturing approximately 

25 – 30% of the common variants in the assembled human genome18. At an r2 threshold of at least 

0.8 in common SNPs, only 520,111, 552,853 and 1,092,422 tag SNPs are required as proxies in 

CEU, JPT+CHB and YRI respectively to the 3.1 million common SNPs that are polymorphic in 

at least one of the three populations18. This provided an invaluable resource to commercial 

genotyping companies in the design of genome-wide genotyping arrays. Furthermore, the dense 

and high quality haplotype information from HapMap enabled new study samples to derive in-

silico genotypes by virtue of haplotype similarity of the study samples with local haplotypic 

structure from HapMap through statistical imputation methods18. 

 

As commercial genotyping companies design their genotyping arrays using HapMap, it is 

essential to know how well the tag SNPs selected from populations of Asian, European and 

African ancestries capture genetic variations in other populations as it directly affects the power 

of genetic studies in these populations34. The Human Genome Diversity Project (HGDP) 

performed an initial evaluation of the portability of HapMap haplotypes to 927 unrelated 

individuals from 52 populations in 36 regions spanning 12Mb35. Results indicated substantial 

haplotype sharing in populations of similar ancestries to those included in HapMap, for instance, 

the Han and Japanese samples in HGDP had the highest haplotype sharing with HapMap Asians 

(CHB+JPT). Generally, the HapMap resource can be used to select tags for other populations that 

are not in HapMap34. However, SNP tagging performance varied across populations. Tagging 

performance is improved if (i) the tag SNPs panel was based on closest HapMap panel as 

determined by population structure analysis or (ii) the tag SNPs were selected from all four 

HapMap populations for those populations which are genetically more distinct compared to 

HapMap35. Overall, the transferability of tag SNPs across populations largely depends on the 
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strength of linkage disequilibrium with the Africans having the lowest portability due to their 

shorter linkage disequilibrium24.   

 

The third phase of HapMap extended the study to include additional individuals from the original 

four populations and seven additional populations to increase genetic diversity, (i) African 

ancestry in southwestern United States (ASW); (ii) Chinese in Metropolitan Denver, Colorado, 

United States (CHD); (iii) Gujarati Indians in Houston, Texas, United States (GIH); (iv) Luhya in 

Webuye, Kenya (LWK); (v) Maasai in Kinyawa, Kenya (MKK); (vi) Mexican ancestry in Los 

Angeles, California, United States (MXL) and (vii) Tuscans in Italy (Toscani in Italia, TSI)36. 

Genotyping was performed on two commercial genotyping arrays, Genome-Wide Human SNP 

Array 6.037 and Illumina 1M-single bead chip, with quality checks at the individual array level 

and post merging of the genotype calls from the two arrays. 

 

1.3.3. Advances in genotyping technology and genotype calling 

Improving technology and availability of public SNP databases such as the Single Nucleotide 

Polymorphism Database (dbSNP) and HapMap made it possible to survey up to a million variants 

for disease association on first generation commercial genotyping arrays from Affymetrix and 

Illumina, two key players in the industry.  

 

Affymetrix introduced its first genome-wide array, GeneChip Mapping 10K 2.0 Array as part of 

their suite of robust DNA Analysis products in 200438. Between 2004 and 2009, four more 

genome-wide SNP arrays were released, namely the Mapping 100K Set, Mapping 500K Array 

Set, Human SNP Array 5.0 and Genome-wide Human SNP Array 6.0 

(http://www.affymetrix.com/estore/). Each SNP on the array is assayed by a number of probe 

cells containing unique oligonucleotides of defined sequences typically of length 25 bases or 

http://www.affymetrix.com/estore/
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more. These probing sequences will bind to the appropriate target sequences and emit 

fluorescence at the fluorescent end. The degree of fluorescence yields pixel intensity for each 

SNP which genotype calling is dependent on. Affymetrix selects probes evenly spaced across the 

genome37 and retains redundancy when probes fail in the process of genotyping.  

 

Illumina launched the Infinium Assay in mid 2005, which provided a way to intelligent SNP 

selection and unlimited access to the genome. The first Infinium product, Human-1 Genotyping 

BeadChip, assayed over 100,000 markers on a single BeadChip. Subsequently, Illumina 

introduced Infinium HumanHap300 BeadChip, HumanHap550 BeadChip, HumanHap610 

BeadChip, HumanHap650Y, HumanHap660W and Human1M over the next two years 

(http://www.illumina.com/). These first generation genome-wide arrays generally contained 

tagged SNPs selected from the HapMap project (CEU). The Infinium workflow includes 

hybridization of unlabeled DNA fragment to 50-mer probe on the array and enzymatic single base 

extension with labeled nucleotide, giving rise to red and green intensities39. The latest genotyping 

family of microarrays, the Omni family, features contents from The 1000 Genomes Project 

(1KGP) which aim to characterize at least 95% of variants in the genome that is accessible to 

high-throughput sequencing and of allele frequency 1% and above in five major population 

groups (Europe, East Asia, West Asia, West Africa and the Americas)40. This family of next-

generation genotyping array allows researchers progressive access to newly discovered variants 

and eventually aims to release five million marker set on a single BeadChip (Omni5 BeadChip)41.  

 

Generally, for both Affymetrix and Illumina, probes are designed to target specific regions of the 

genome. For each possible allele at the genomic position, hybridization of the probes with the 

samples will generate fluorescence intensities. Genotypes were previously manually determined 

by examining fluorescent intensities and assigning genotype calls. The scale of such genotyping 

http://www.illumina.com/
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experiments involving at least hundred thousand of SNPs and thousands of samples make it 

impossible to perform genotype calling manually. Thus, there have been immense developments 

in unsupervised automated genotype calling algorithms for genotype assignments42-49. 

Genotyping calling algorithms evaluate the intensities (typically biallelic) and assign the most 

probable genotype call based on the highest posterior probabilities of the three genotype classes. 

The process of genotype assignment is highly dependent on the designated threshold, which is 

determined differently by each method, and there exists a tradeoff between SNP call rates (the 

number of samples with a valid call for a SNP) and the designated threshold. A more stringent 

threshold will likely reduce the number of SNPs with unusual clustering characteristics, resulting 

in lower call rates.  

 

Ideally, genotype assignment should be visually assessed via clusterplots which are bivariate 

plots of intensities of the two alleles (Figure 1). As there are at least several hundreds of 

thousands of SNPs on these arrays, it is not possible to manually curate the continuous 

hybridization intensities to derive discrete genotype calls for association analyses. This implies 

that there would be inherent erroneous and missing genotype calls (i.e. the genotype of an 

individual is not called). Therefore a set of standard quality checks (QC) needs to be performed 

on the data to minimize false positive associations from these data artifacts in downstream 

analyses. The common strategy now is to visually assess clusterplots with suggestive signals of 

association to prevent spurious false positives caused by poor clustering of the intensities.  
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Figure 1. Clusterplots of biallelic hybridization intensities. The axes indicate the continuous 
hybridization intensities and the points are coloured (blue, green and red) based on their discrete 
genotype calls, with black indicating missing genotype call. A) A SNP with three distinct clusters, 
called with high confidence; B) A SNP with overlapping clusters and C) A SNP with a slight shift 
in the heterozygous cluster.  

 

1.4. Potential for Non European Genome-wide Association Study 

The majority of the first wave of genome-wide studies had been centered on populations of 

European descent50. Despite tremendous successes from European genome-wide association 

studies in identifying disease susceptibility loci, many questions remain to be answered. As the 

European populations only represent one aspect of human genetic variations, some of the most 

important questions relate to the relevance of current findings, mainly from populations of 

European descent, to other populations and the potential of non-European GWAS to detect novel 

susceptibility genetic variants that are either not present in the Europeans or are at considerably 

lower frequencies in European populations.  

 

1.4.1. Patterns of LD in Asian ethnic groups 

Early GWASs have primarily focused on populations of European descent. First generation 

genotyping arrays primarily make use of HapMap CEU for SNP selection which relied on the 

dbSNP database (mainly contained SNPs discovered and ascertained in populations of European 

descent) for SNPs to include in the genotyping. Thus commercial genotyping array favored 
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genetic association analyses in populations of European descent, resulting in the inclusion of 

some SNPs that are polymorphic in populations of European descent but are actually 

monomorphic in other populations. The availability of the HapMap CEU population of European 

descent meant that for association studies conducted in European, there is a sufficiently close 

reference population from which the tag SNPs could be selected from with similar underlying 

linkage disequilibrium structure.  

 

The HapMap project has documented variations in linkage disequilibrium in global populations 

such as Africans, Europeans and Asians17,18,36. However, there exists substantial heterogeneity in 

genetic variation within each of these global populations, which is less well documented. For 

instance, within Asia, while South Asians from the India sub-continent are genetically more 

similar to the Europeans than Japanese or Chinese, they exhibit much more genetic diversity 

compared to that observed within Europe51,52. This genetic diversity poses challenges in 

performing association mapping in non-European populations, from limitations in SNP 

ascertainment of the genotyping array to downstream analyses such as imputation, meta-analysis 

and replication of association signals.  

 

a. SNP ascertainment bias in first-generation GWAS arrays 

SNP ascertainment bias is a phenomenon where there is systematic deviation from population 

theory due to sampling process in the population and variation in the size of the sampling effort53. 

As the initial efforts for SNP detection and subsequently the design of genotyping arrays were 

more focused on European populations, SNPs selected for genotyping arrays could have lower 

allele frequencies in non-European populations, thus compromising the tagging properties of 

these SNPs and the resultant coverage of the genome in non-European populations. Coverage 

here is determined by the linkage disequilibrium measure r2, which translate to the percentage of 
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SNPs in a HapMap panel with a maximal r2 of 0.8 with the SNPs on the genotyping array. Low 

frequency SNPs affect r2, thus the same tagging SNP might not predict other SNPs as efficiently 

in non-European populations due to inter-population linkage disequilibrium differences, 

potentially affecting the ability to detect disease susceptibility locus in these populations.  

 

b. Imputation, meta-analysis and replication 

Current genome-wide association analyses typically utilize commercial genotyping arrays with 

different SNP contents. In order to maximize statistical power, evidences across multiple studies 

are combined through meta-analyses and any initial discovered variants will be validated in 

independent populations of the same ancestry and sometimes in different populations.  

 

Imputation infers unobserved genotypes against a common reference panel for association 

mapping and thus enables meta-analysis to be carried out in multiple studies where different 

SNPs are assayed using different genotyping arrays by harmonizing the SNP content. It makes 

use of publicly available dense reference panels and statistical/population genetics methods to 

infer genotypes that have not been observed on genotyping arrays. The general framework of 

imputation compares the observed genotypes against a set of dense reference haplotypes 

(generally sharing a common ancestry and evolutionary history) and subsequently fills in the 

missing data from the most appropriate reference haplotype54-58. These imputation algorithms 

typically include quantification of the uncertainties in the imputed genotypes, allowing 

association analyses to properly account for imputation uncertainties.   

 

The accuracy of the imputation method depends on several factors such as the strength of linkage 

disequilibrium in the population studied and the availability of a dense reference panel genetically 

similar to the population being imputed50. The extent of haplotype sharing is generally greater in 
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genomic regions with strong linkage disequilibrium, so the imputation can stretch across longer 

distances59,60. Using data from 52 populations around the world (Human Genome Diversity 

Project HGDP), Huang et. al. evaluated imputation accuracy using the HapMap populations as 

reference imputation panels59. They found imputing against a reference panel derived from a 

population that was geographically close generally produced higher imputation accuracy. In 

addition, population specific reference panels optimize imputation accuracy59,61. However, it 

might not be realistic to have sufficiently dense reference panels for all the genome-wide 

association studies in diverse populations. A mixture panel combining multiple reference panels 

has been recommended, with the advantage of increased haplotype diversity59.  

 

With imputation, data can be pooled together in an unbiased manner across the genome to 

combine evidences across multiple studies in order to boost the effective sample sizes especially 

in light of small effect sizes in genetic disease association. There are generally two commonly 

used meta-analysis methods, fixed and random effects modeling. In the context of fixed effect 

modeling, it is assumed that each individual study estimates a common population effect size. As 

meta-analysis is performed at individual SNP level, differential linkage disequilibrium patterns 

with the casual variants will result in different disease susceptibility variants, or index SNPs, 

emerging from the association analyses. Thus the same index SNP is likely to have different 

effect sizes across populations and combining evidence at the individual SNP level will mask any 

real association even though they share the same common causal variant. Multiple causal variants 

at each locus will also give rise to the same difficulty in detecting real association across 

populations. As meta-analysis leverages on imputation to augment the observed SNPs from 

genotyping arrays, imperfect imputation due to absence of appropriate reference panels is also 

likely to affect the validity of meta-analysis. The random effect model assumes that there is a 

distribution of population effect sizes around an overall population mean and each individual 
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study represents a draw from this distribution. Although the method accounts for additional 

variability between the studies, it is more conservative and tends to down-weigh studies with 

larger sample sizes, thus less commonly used in meta-analyses of genetic association studies. 

 

Similarly, in replication studies, index SNPs from the discovery phase are often selected to be 

validated in other populations. This fundamentally assumes that the linkage disequilibrium 

patterns of the index SNP with causal variants across the discovery and replication populations 

are similar. Understanding the genetic diversity and inter-population linkage disequilibrium 

differences is thus vital for interpretation of genetic association studies and lay the foundation for 

inter-population studies. 

 

1.4.2. Are findings from European studies relevant to other ethnic groups? 

Recall that genome-wide association scans make use of indirect association leveraging on linkage 

disequilibrium. Thus the discovered variants are rarely the functional disease causing variants, but 

represent variants in sufficient correlation with the functional disease causing variants. Suppose 

that different populations share a common disease functional variant. The reproducibility of the 

European discovered implicated index SNPs in other populations depends on several factors: i) 

the linkage disequilibrium of the index SNPs with the same functional variants in the non-

European populations; ii) the allele frequencies of the index SNPs across non-European 

populations; iii) the effect sizes of the index SNPs across the different populations due to 

differences in their genetic background or environmental exposures. Certainly, it is possible that 

there exist multiple causal variants across different populations, either at the same locus (allelic 

heterogeneity) or specific to particular populations. These factors have a direct impact on the 

sample sizes required and thus the power to detect the association across populations (Figure 2).  
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Figure 2. Schematic diagram describing the transferability of association signals across 
populations.  
 

The consistent association of the sortilin 1 (SORT1) locus with low-density lipoprotein 

cholesterol (LDL-C) observed across different populations suggested common functional variants 

and/or similar linkage disequilibrium patterns with the functional variants62,63. In Kathiresan et. 

al., the discovery index SNP was rs646776 in European populations, with consistent evidence of 

association in Chinese (P-value ≤ 0.001), Malays (P-value = 4.00 x 10-3) and Asian Indians (P-

value = 3.00 x 10-3)62. There was no evidence of inter-population variation in linkage 

disequilibrium at this locus64 and further meta-analysis in populations of European, East Asian, 

South Asian and African American ancestry further confirmed the association of this locus across 

multiple populations (P-value = 1.00 x 10-170 in 100,184 Europeans; P-value = 5.00 x 10-13 in 

15,046 East Asians; P-value = 6.00 x 10-18 in 9,705 South Asians; P-value = 2.00 x 10-14 in 8,601 

African Americans)63.  
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Differences in effect sizes at implicated index variant or regional linkage disequilibrium patterns 

would affect the transferability of association signals across populations. In 2008, Kooner et. al. 

reported suggestive evidence of rs326 at the lipoprotein lipase (LPL) gene locus in 1,005 

Europeans (P-value = 1.8 x 10-5) with high-density lipoprotein cholesterol (HDL-C) but the same 

index SNP did not show any evidence of association in 1,006 Asian Indians (P-value = 0.14)65. 

The allele frequencies of the index SNP was comparable across the two populations, with a risk 

allele frequency of 0.71 in the Europeans and 0.76 in the Asian Indians, but the observed effect 

sizes were substantially different, with per allele change in log units of 0.025 in Europeans and 

0.008 in Asian Indians. In one of the largest genome-wide meta-analyses of lipid traits, a different 

index SNP rs12678919 was found to be associated with HDL-C at the same LPL locus63. These 

two SNPs were correlated with r2 = 0.410 using data from the CEU population in The 1000 

Genomes Project40,66, suggesting the presence of allelic heterogeneity. In 100,184 individuals of 

European descent, there was genome-wide significant association of HDL-C at the LPL locus (P-

value = 1.00 x 10-97) and suggestive evidence of association in 9,705 Asian Indians (P-value = 

2.00 x 10-7)63. Thus it is possible that: (i) rs326 could be a poor surrogate of the functional variant; 

(ii) the heterogeneity in effect sizes were possibly modulated by differences in genetic 

background; or (iii) heterogeneous environmental exposures had an impact on the power to detect 

the association in Asian Indians.  

 

Allelic frequency differences could determine the ease at which some disease implicated variants 

are more easily detected in particular populations. The TCF7L2 locus is by far the locus 

associated with Type 2 Diabetes with the largest effect size. However, the risk allele frequencies 

of index SNP rs7903146 at this locus range from 0.026 in the HapMap Han Chinese CHB, 0.037 

in HapMap Chinese in Metropolitan Denver CHD, Colorado, 0.035 in HapMap Japanese from 

Japan JPT and 0.279 in HapMap CEU. If the same locus is implicated in Type 2 Diabetes in these 
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East Asian populations, many more samples will be needed to detect the association due to low 

allele frequencies. 

 

It is also possible that there exist different disease functional variants in the same locus across 

populations known as allelic heterogeneity. Alternatively, the particular disease causal variants 

are specific to certain populations. The potassium voltage-gated channel, KQT-like sub-family, 

member 1 (KCNQ1) was implicated in Type 2 Diabetes, and was first reported in Japanese 

populations and further replicated in a Danish population67,68. The Diabetes Genetics Replication 

And Meta-analysis (DIAGRAM+) Consortium reported a secondary signal at this locus in 

Europeans about 7.5Mb away from the previous reported finding. Conditional analysis by 

adjusting for previously reported variant in association analysis suggests that there might be more 

than one casual variant at this locus12. Within the Europeans, linkage disequilibrium between 

these two index SNPs was 0.01.  

 

The protein coding gene UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 2 (GALNT2) locus was found to be significantly associated with 

both HDL-C and triglycerides in European populations but no evidence was reported across 

populations of East Asian, South Asian and African American descent62,63,69. The index SNP 

could be a poor surrogate of the functional variants in non-European populations if indeed there 

are shared functional variants, or there could be allelic heterogeneity at the locus, or perhaps the 

risk implicated variant is specific to the Europeans only. Regional analysis of the linkage 

disequilibrium comparing HapMap CEU with HapMap Asian panel (CHB and JPT) and other 

reference populations in Singapore70 indicates some evidence of variation in linkage 

disequilibrium patterns between populations at this locus64. Thus the ability to contrast local 
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regions of linkage disequilibrium between populations becomes vital to understand the 

transferability of such findings across different populations.  

 

Linkage disequilibrium diversity at particular regions of the genome, differences in allele 

frequency or effect size, allelic heterogeneity at genetic loci and presence of different disease 

functional variants in diverse populations could all affect the transferability of association signals 

across populations, and affect our ability to use meta-analysis to increase statistical power or 

replication to confirm associations (Figure 2). Conducting genome-wide analyses in different 

populations thus has an important role in helping us understand the genetic architecture of 

diseases through the similarities and differences exhibited across populations and provide insights 

into the pathogenesis of these diseases. 

 

 

1.4.3. Can we identify novel susceptibility loci by studying different ethnic groups?  

Diseases prevalence varies across populations or the same disease could have heterogeneous 

pathogenesis resulting in differing genetic susceptibility in diverse populations. The prevalence of 

a particular disease in a population determines the population risk and ease of collecting diseased 

cases for such large scale genetic studies that generally allow us to detect variants of small effect 

sizes.  

 

Genetic association studies have been extremely successful in populations of European descent, 

and these studies are increasingly being reported in other populations including East Asians, 

South Asians, Africans and Mexican Americans. Due to their evolutionary history, some disease 

implicated variants are more easily detected in some populations than others. KCNQ1 was first 

shown to be associated with Type 2 Diabetes in 6,800 case control pairs from Japanese, Korean 
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and Chinese populations (odds ratio OR = 1.43, 95% CI = 1.34 – 1.52, P-value = 2.50 x 10-39)67. 

Of note, the allele frequency of the index SNP was 0.95 in the European replication population 

compared to 0.68 in the combined 6,800 Asian panel. In DIAGRAM+ Consortium, association at 

this index SNP was detected in 8,130 cases and 38,987 controls (OR = 1.14, 95% CI = 1.05 – 

1.24, P-value of 2.70 x 10-3)12. Thus, there is still potential for other populations to detect novel 

susceptible locus that might have been harder to pin down in populations of European ancestry.  

 

1.4.4. Importance of finer disease phenotyping  

Fundamentally, the presentation of a disease is an interplay between genetic and environmental 

factors. Often, there are many subtypes within a disease and changes in the classification with 

time reflect our knowledge of the disease and its heterogeneity. Using diabetes mellitus as an 

example, there are predominantly two forms of diabetes: Type 1 Diabetes which could be seen as 

an autoimmune condition; and Type 2 Diabetes that is affected by insulin secretion and/or insulin 

action71,72. Given current knowledge on the disease pathogenesis, some of the implicated variants 

or genes can be linked to either of the two mechanisms: (i) defects in insulin secretion due to 

abnormalities in the beta-cells and/or function; and (ii) irregularities in the insulin action (Figure 

3)73,74. Thus variants acting on glycemic traits and body mass index (BMI) could also be relevant 

to the pathogenesis of Type 2 Diabetes, as both pathways contribute towards the progression of 

Type 2 Diabetes75. In individuals with Type 2 Diabetes, either of these pathways may 

predominate. Analyzing individuals with different pathogeneses might dilute effects of genetic 

variants that affect specific pathways. Better phenotyping may improve the power to discriminate 

between genetic variants acting along different pathways.  
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Figure 3. Pathways to Type 2 Diabetes implicated by identified common variant associations 
(originally from reference 73).  
 

Timpson et. al. performed a stratified analysis of Type 2 Diabetes, by defining non-obese cases 

below the median BMI and obese cases to be above the median BMI. The association between 

the FTO variant and Type 2 Diabetes was only present in the obese cases, consistent with the 

known effects of FTO. Careful selection of subjects in these studies could boost or dilute 

association signals. These search strategies for Type 2 Diabetes genetic susceptibility loci 

complement one another and provide more insights into the pathogenesis and heterogeneity of 

Type 2 Diabetes12,76-78.  
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CHAPTER 2 – AIMS 

2.1. Study 1 – Singapore Genome Variation Project (SGVP) – Chapter 4 

Variation in linkage disequilibrium across populations of different ancestry has been previously 

documented. This study aimed to  

i) Investigate the similarities and differences in linkage disequilibrium patterns across 100 

Singapore Chinese, 100 Singapore Malays and 100 Singapore Asia Indians. 

ii) Provide a sufficiently dense resource of at least 1.4 million SNPs to facilitate genetic 

association studies carried out in Singapore or populations with similar genetic 

background. 

 

2.2. Study 2 – Transferability of established Type 2 Diabetes loci in three Asian 

populations – Chapter 5 

As of 2010, there were more than 40 extensively replicated Type 2 Diabetes implicated loci, 

primarily discovered in populations of European ancestry. With the increasing prevalence of 

Type 2 Diabetes in China and India, the multi-ethnic demography of Singapore provided the 

genetic diversity to look at  

i) Novel association signals with Type 2 Diabetes in Asian populations. 

ii) Relevance of the established loci in Asian populations and their implications the genetic 

architecture of Type 2 Diabetes. 

 

2.3. Study 3 – Meta-analysis of Type 2 Diabetes in populations of South Asian ancestry – 

Chapter 6 

Large scale meta-analyses in populations of European descent have discovered Type 2 Diabetes 

implicated loci of small effect sizes. In one of the largest meta-analysis of Type 2 Diabetes in 

South Asians, we sought to  
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i) Discover novel genetic loci in the South Asians that might be better powered due to 

differences in allele frequency as a consequence of evolution or population specific 

effects due to differences in genetic and/or environmental background.  

ii) Establish the relevance of European established loci in South Asians. 

 

2.4. Study 4 – Heterogeneity of Type 2 Diabetes in subjects selected for extremes in BMI 

– Chapter 7 

Type 2 Diabetes is a highly heterogeneous disease, with several pathways involved. Genetic and 

environmental risk factors interact. Refining cases and controls using risk factor BMI could 

provide insights into the mechanisms and pathogenesis of Type 2 Diabetes.  
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CHAPTER 3 – STUDY POPULATIONS AND METHODS 

3.1. Genome-wide study populations and genotyping methods 

3.1.1. Singapore Genome Variation Project (SGVP) – Study 1 

Sampling from an inter-population study of healthy volunteers on the genetic variability to drug 

responses79, 100 anonymised subjects from each of the three ethnic groups, Chinese, Malays and 

Indians, were randomly selected to participate in the Singapore Genome Variation Project. 

Gender and population membership information were available, and self-reported population 

membership to each of the three ethnic groups were further ascertained on the basis that all four 

grandparents belonged to the same ethnicity. Subjects were further required to declare a medical 

history free of cardiac condition at the time of recruitment. The use of volunteers from a drug 

response study might generate ascertainment bias, but the additional information of ethnic 

descent for two previous generations at recruitment was a more crucial condition for the purpose 

of this study. Ethical approval was granted by two independent Institutional Review Boards 

(IRBs), National University Hospital Singapore for the original drug response study and National 

University of Singapore for genome-wide genotyping of the selected subjects respectively.  

 

Among the 300 subjects, a total of 292 unique subjects comprising of 99 Chinese, 98 Malays and 

95 Indians with genomic DNA were successfully genotyped on two genome-wide commercial 

arrays, Affymetrix Genome-Wide Human SNP Array 6.0 and Illumina HumanHap1M-single. 

One subject from each ethnic group was genotyped twice for data quality purpose and an 

additional control subject was removed from the data after genotype calling, making the total 

number of subjects genotyped to be 295.  

 

For the Illumina array, genotype calls for the 295 subjects were assigned by the proprietary 

calling algorithm GenCall47,48 in Illumina’s BeadStudio Suite using clusterfiles provided by 
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Illumina. A genotype calling (GC) score generated by the calling algorithm was implemented to 

determine the confidence of the assigned genotype. Any SNP with a GC score ≥ 0.15 was 

accepted while a SNP with GC score < 0.15 was assigned as a NULL genotype. Overall genotype 

call rate of 274 unique samples after genotyping quality control filters was 99.86%. Details of 

genotyping quality control are given in Section 3.3.1.  

 

For Affymetrix, a preliminary calling on the 3,022 control probes on the array was performed 

using the Dynamic Modelling42 (DM) algorithm. There were seven repeats due to failure to 

achieve the minimum DM call rate of 86% on the control probes on the array, of which one 

sample was eventually discarded when the second round of genotyping still failed to make the 

cut-off. CEL files containing intensity calculations of pixel information of 295 subjects were 

submitted for calling by the BirdSeed46 calling algorithm developed by Broad and made available 

in Affymetrix Power Tools apt-1.8.6 (released March 4, 2008). Models files used were from 

version 2.6 and na24 of the Product files. Overall genotype call rate of 277 unique samples after 

genotyping quality control filters was 99.51% (see Section 3.3.1). 

  

3.1.2. Singapore Diabetes Cohort Study (SDCS) – Studies 2 & 4 

The Singapore Diabetes Cohort Study (SDCS) comprised of Chinese, Malay and Asian-Indian 

individuals with Type 2 Diabetes currently on follow-up in hospitals and polyclinics, namely the 

National Healthcare Group Polyclinics, National University Hospital Singapore and Tan Tock 

Seng Hospital since 200480. The diagnostic criteria in Singapore primary health care providers 

follows international norm and physicians would use local clinical practice guidelines (CPG, 

http://www/moh.gov.sg/content/dam/moh_web/Publications/Guidelines/Withdraw20CPGs/cgp_

Diabetes%20Mellitus-Jun%202006.pdf). Participants were not further tested for Type 2 Diabetes 

diagnosis. The primary aim of this initiative was to identify genetic and environmental risk 
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factors for diabetic complications such as diabetic nephropathy and to develop novel biomarkers 

for tracking disease progression. The participation response was excellent with a participation 

rate exceeding 90%. Questionnaire data as well as clinical data from case notes of consenting 

participants were obtained. The blood and urine specimens of these participants were collected 

and archived at -80◦C.  

 

Using a combination of Illumina HumanHap 610 Quad and HumanHap 1Mduov3 Beadchips on 

Illumina BeadStation, 2,202 unique Chinese subjects were genotyped for genome-wide analysis. 

Eight subjects were genotyped on both arrays for quality checks.  

 

3.1.3. Singapore Prospective Study Program (SP2) – Studies 2 & 4 

The Singapore Prospective Study Program (SP2) invited a total of 10,747 participants from four 

previous cross-sectional studies: Thyroid and Heart Study 1982–198481, National Health Survey 

199282, National University of Singapore Heart Study 1993–199583 and National Health Survey 

199884 to participate in a repeat examination in 2004 – 2007. By data linkage to the Registry of 

Births and Deaths in Singapore using each participant’s National Registration Identity Card, 517 

subjects who were deceased at the time of follow-up, six subjects who had migrated and 85 

subjects with errors in their record and hence un-contactable were excluded. Of the remaining 

participants, 2,673 were not contactable and 30 refused to take part in the study. Among these 

participants 5,157 of them completed the questionnaire and provided their blood specimens. 

Informed consent was obtained from the participants and ethic approvals were obtained from two 

Institutional Review Boards (National University of Singapore and Singapore General Hospital)85.  

 

The questionnaires were interviewer-administered, collecting information on demographic and 

lifestyle factors such as smoking and alcohol consumption as well as medical history including 
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physician diagnosed diabetes mellitus, hypertension and hyperlipidemia. Participants were 

required to fast for ten hours overnight before the health examination in the following morning. 

Health examination included anthropometric measurements of weight, height and waist-hip-ratio. 

Two readings of blood pressure were also taken from the participants after five minutes of rest, 

seated, using an automated blood pressure monitor (Dinamap Pro100V2; Criticon, Norderstedt, 

Germany) by trained examiners. If the difference between two readings of either the systolic 

blood pressure was greater than 10mmHg or the diastolic blood pressure was greater than 

5mmHg, a third reading is measured. The mean values of the closest two readings were then 

calculated. Venous blood was drawn, collected in plain and fluoride oxalate tubes to be stored at 

4◦C for a maximum of four hours prior to processing. All biochemical analyses of the blood 

specimens were carried out at the National University Hospital Referral Laboratory. Serum high 

density lipoprotein cholesterol, total cholesterol and triglycerides were measured using an 

automated autoanalyzer (ADVIA 2400; Bayer Diagnostics, Tarrytown, New York). Low density 

lipoprotein cholesterol level was calculated using the Friedewald formula. Plasma glucose was 

assayed with enzymatic methods (ADVIA 2400) from the blood collected. A random urine 

specimen (collected at subject’s convenience without a pre-specified time or prior conditions) 

was collected and urinary creatinine was measured using a commercial assay (Immulite; 

Diagnostic Products Corporation, Gwynedd, United Kingdon for urinary albumin and Roche 

Diagnostics GmbH, Mannheim, Germany for creatinine).  

 

In a case control design with SDCS, 2,483 Chinese DNA samples from SP2 were genotyped on a 

combination of Illumina HumanHap 610 Quad and HumanHap 1Mduov3 Beadchips. Similarly, 

eight subjects were genotyped on both arrays for quality checks.  
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3.1.4. Singapore Malay Eye Study (SiMES) – Studies 2 & 4 

The Singapore Malay Eye Study (SiMES) was a population based cross sectional study of 

Singapore Malays (using the criteria set by the Singapore Census to define Malays86) living in 

Singapore87. Age-stratified random sampling of all Malay adults (provided by Ministry of Home 

Affairs) aged 40 to 80 years old residing in fifteen residential districts in the southwestern part of 

Singapore was used to obtain a list of 4,168 eligible participants. Of the eligible participants, 

3,280 participated with a response rate of 78.7%. The study was designed to quantify the 

prevalence and risk factors for visual impairment and major eye diseases in an adult urban Malay 

population. Ethical approval was obtained from the Singapore Eye Research Institute Institutional 

Review Board and informed consent was obtained from the participants.  

 

A detailed interviewer-administered questionnaire was administered to collect demographic data, 

lifestyle factors, eye symptoms, systemic medical history and current medications. Blood pressure 

was taken with the participant seated and after five minutes of rest using a digital automatic blood 

pressure monitor (Dinamap model Pro series DP110X-RW, 100V2, GE Medical Systems 

Information Technologies, Inc., United States of America). Each participant went through a series 

of eye photographs and imaging, including fundus photography to determine retinopathy and age-

related maculopathy and retinal imaging. Participants were not required to fast overnight. To 

determine levels of serum lipids (high density lipoprotein cholesterol, low density lipoprotein 

cholesterol and total cholesterol), glycosylated haemoglobin A1c (HbA1c), creatinine and random 

glucose, 40 mL of non-fasting venous blood was collected from each participant and sent to the 

National University Hospital Reference Laboratory. Additional plasma was stored at -80◦C and 

DNA extracted from serum was stored at the Singapore Tissue Network at -80◦C. Samples of 

urine were collected to determine levels of microalbuminuria and creatinine at the Alexandra 

Hospital Laboratory.  
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In all, 3,072 Malay subjects were genotyped on Illumina HumanHap 610 Quad Beadchips. For 

the population-based Type 2 Diabetes genome-wide study, both cases and controls were selected 

from the population-based cross-sectional study where diabetic cases were defined as having 

either history of diabetes or had HbA1c level ≥ 6.5%88 and controls had no history of diabetes and 

HbA1c level < 6%. Finally, for Malays, there were 794 diabetic cases and 1,240 controls 

available for analyses in the Type 2 Diabetes genome-wide study. 

 

3.1.5. Singapore Indian Eye Study (SINDI) – Studies 2, 3 & 4 

The Singapore Indian Eye Study (SINDI) is part of the Singapore Indian Chinese Cohort (SICC) 

Eye Study and comprised of the Indian arm of the cohort. Similar to the SiMES study, SINDI is a 

population-based cross-sectional study of Singapore Asian Indians (using the criteria set by the 

Singapore Census to define Indians) living in Singapore89. Age-stratified random sampling of all 

Asian Indian adults (provided by Ministry of Home Affairs) aged 40 to 80 years old residing in 

fifteen residential districts in the southwestern part of Singapore was used to obtain a list of 6,350 

eligible participants. Of the eligible participants, 3,400 participated with a response rate of 53.5%. 

The study was designed to quantify the prevalence and risk of eye diseases in ethnic Indian 

residents of Singapore. Ethics approval was obtained from the Singapore Eye Research Institute 

Institutional Review Board and informed consent was obtained from the participants.  

 

A detailed interviewer-administered questionnaire was administered to collect demographic data, 

lifestyle factors, eye symptoms, systemic medical history and current medications. The health 

examination procedures included measurements of height, weight, blood pressure and pulse rate, 

followed by a comprehensive ocular examination such as fundus photography and retinal imaging. 

Participants were not required to fast overnight. Non-fasting venous blood was collected to 
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determine levels of serum lipids (high density lipoprotein cholesterol, low density lipoprotein 

cholesterol and total cholesterol), glycated haemoglobin HbA1c, creatinine and random glucose. 

DNA was extracted from serum and stored at the Singapore Tissue Network at -80◦C. Samples of 

urine were collected to determine levels of microalbuminuria and creatinine. 

 

Finally, 2,953 Indian subjects were genotyped on Illumina HumanHap 610 Quad Beadchips. In 

SINDI, diabetes case control ascertainment was determined with HbA1c level88. Cases were 

defined as having either a history of diabetes or HbA1c ≥ 6.5%. Controls had no history of 

diabetes and HbA1c level < 6%. This yielded 977 diabetic cases with 1,169 controls for the 

Indian Type 2 Diabetes genome-wide study. 

 

3.1.6. London Life Sciences Population (LOLIPOP) Study – Study 3 

The LOLIPOP study is a population-based cohort of European white and South Asian Indian men 

and women aged 35 – 75 living in West London90. Ancestry was self reported and South Asians 

were only included in the study if all four grandparents were born in the India Subcontinent 

(countries of India, Pakistan, Sri Lanka or Bangladesh).  

 

An interviewer-administered questionnaire conducted by trained research nurses collected 

information such as country of birth, language and religion of participants, parents and 

grandparents for assignment of ethnic subgroups. Data on medical history, family history, current 

prescribed medication, cardiovascular risk factors, alcohol intake and leisure-time physical 

activity were also obtained. The physical examinations included blood pressure (mean of 3 

readings, taken with an Omron 705CP), height, weight, waist and hip circumference and 12 lead 

electrocardiography (ECG). Fasting blood (8 hours) was collected for plasma glucose, lipids, 

insulin and high sensitivity C-reactive protein.  
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Type 2 Diabetes was defined as physician diagnosis cases on treatment or fasting glucose ≥ 

7.0mmol/L. Controls had no prior history of Type 2 Diabetes and had fasting glucose < 

7.0mmol/L. The study was approved by the Local Research Ethic Committee and all participants 

gave written informed consent.  

 

Subjects were genotyped on a combination of Illumina HumanHap317 and HumanHap610 arrays. 

Quality filters included call rate at least 97.5%, Hardy-Weinberg Equilibrium (HWE) P-value < 

10-6, MAF at least 1% and sample call rates of 95%. Duplicates and related individuals were also 

removed91.  

 

3.1.7. Pakistan Risk of Myocardial Infarction Study (PROMIS) – Study 3 

PROMIS is an ongoing case-control study of acute myocardial infarction (MI) and other 

cardiometabolic traits in urban Pakistan which included about 7,500 case control pairs as at 

October 201092. PROMIS has been approved by the research ethics committee of the Center for 

Non-Communicable Diseases (CNCD), Pakistan and research ethics committee of each of the 

institutions involved in participant recruitment. MI cases had typical ECG changes, positive 

troponin tests and MI symptoms within the previous 24 hours. Controls are frequency matched to 

cases by age (by 5 years age band) and gender from either: (i) visitors of patients attending the 

out-patient department, (ii) patients attending the out-patient department for routine non-cardiac 

complaints or (iii) non-blood related visitors of index MI cases. For each participant, non-fasting 

blood samples were collected. For MI cases, blood collection was done within 24 hours of 

symptom onset.  
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Type 2 Diabetes cases were defined based on physician diagnosis, prior use of oral hypoglycemic 

and/or HbA1c level > 6.5%. Controls had no history of Type 2 Diabetes and had HbA1c level < 

6%.  

 

Genotyping was performed using the Illumina HumanHap 670W array at the Sanger Institute, 

United Kingdom. Quality filters included call rate at least 98%, HWE P-value < 10-6, MAF at 

least 1% and sample call rates of 95%. Duplicates and related individuals were also removed93.  

 

3.2. Replication study populations  

3.2.1. The COBRA Study – Study 3 

Cobra is a population-based study of adults recruited in a cluster of randomized trial of strategies 

to control hypertension (‘Population Based Strategies for Effective Control of High Blood 

Pressure in Pakistan’, trial registration number NCT00327574) in Karachi, Pakistan94. Within the 

largest metropolitan city in Pakistan, a multi-stage cluster random sampling design was used to 

randomly select twelve geographical clusters, of which a listing of all individuals from all 

households in the selected areas was made from the census. All individuals aged 40 and above 

and able to give consent were invited by trained community health workers to participate in the 

study. Ethical approval was obtained from the Ethics Review Committee at the Aga Khan 

University, Pakistan.  

 

Physical examination included blood pressure with a calibrated automated device (Omron HEM-

737 TM Blood Pressure Monitor) in the sitting position after 5 minutes of rest, and collecting 

anthropometry measurements such as height, weight, waist and hip circumferences. Laboratory 

tests included fasting plasma glucose (Synchron Cx-7/Delta, Beckman, US) and DNA extraction.  
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Type 2 Diabetes cases were defined as physician diagnosis on diabetic medications or fasting 

blood glucose ≥ 7 mmol/L. Controls had no history of Type 2 Diabetes and fasting glucose < 

7mmol/L.  

 

3.2.2. Chennai Urban Rural Epidemiology Study (CURES) – Study 3 

CURES is an ongoing epidemiology study of a representative sample of 26,001 South Asians 

recruited using a random sample technique in Chennai, India. Written informed consent was 

obtained from all study participants and the research protocol was approved by the Institutional 

Ethics Committee of the Madras Diabetes Research Foundation95. This study was carried on in 

several phases. In the first phase, 26,001 individuals were recruited based on systematic random 

sample technique.  

 

Type 2 Diabetes cases were defined as self-reported on drug treatment at Phase I. At Phase 3, 

every 10th subject without Type 2 Diabetes at Phase I were invited to undergo an oral glucose 

tolerance test (OGTT). Those with post-load glucose ≥ 11.1mmol/L were labeled as newly 

detected diabetic subjects. Controls had no history of Type 2 Diabetes, fasting glucose < 

6.1mmol/L and post-load glucose < 7.8mmol/L.  

 

3.2.3. Diabetes Genetics in Pakistan Study (DGP) – Study 3 

Indigenous Pakistani subjects were recruited in collaboration with Baqai Institute of Diabetology 

and Endocrinology (BIDE), Karachi, Pakistan96. Informed consent was obtained from all study 

participants and the study was approved by the BIDE Institutional Review Board. 

 

Type 2 Diabetes cases were recruited either from hospitals within Mirpur District or from 

specifically organised Diabetes Awareness camps. Controls were recruited from community 
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screening camps set up throughout Mirpur District. Fasting blood and post-load glucose tests 

were not available for these subjects. Controls were thus defined as random blood glucose < 

7mmol/L. 

 

3.2.4. Mauritius Cohort – Study 3 

A population-based survey was undertaken in 1998 in the subtropical island Mauritius that 

included individuals who were 20 years and older, with a total of 6,291 individuals examined. 

Participants of self-reported South Asian ancestry (about 70% of the population) were included in 

the present study97.  

 

Participants not on any diabetes medication were subjected to 2-hour OGTT. Venous blood 

samples drawn at baseline fasting and 2 hours post ingestion of glucose were centrifuged and 

separated immediately. Plasma glucose was measured using the YSI glucose analyzer (Yellow 

Springs Instruments, OH, USA).  

 

Using the World Health Organization (WHO) 1999 criteria, Type 2 Diabetes was diagnosed if 

subject reported a history of diabetes and was taking hypoglycaemic medication, or fasting 

plasma glucose level was ≥ 7.0mmol/L and/or the 2-hour post-load value was ≥ 11.1mmol/L. 

Normal glucose tolerance was assigned if the fasting plasma glucose level was < 6.1 mmol/L and 

the post-load value was < 7.8 mmol/L. 

 

3.2.5. Ragama Health Study (RHS) – Study 3 

The Ragama Health Study (RHS) is a population-based study of South Asian men and women 

aged 35-64yrs living in the Ragama Medical Officer of Health (MOH) administrative area, near 

Colombo, Sri Lanka98. Participants gave consent to their available health records and ethical 
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approval for the study was obtained from the Ethics Committees of the Faculty of Medicine, 

University of Kelaniya and the National Center for Global Health and Medicine. 

 

Participants were subjected to a 12-hour fast and interviewed by trained personnel to obtain 

information on medical, socio-demographic and lifestyle variables. Blood pressure and 

anthropometric measurements were also obtained. For the purpose of fasting glucose and HbA1c 

quantification, 10-mL sample of venous blood was drawn from each participant. 

  

Type 2 Diabetes cases were defined as either physician diagnosis on treatment or fasting glucose > 

7.0mmol/L or HbA1c level > 6.5%. Controls had no history of Type 2 Diabetes, fasting glucose < 

6.1mmol/L and HbA1c level < 6.0.  

 

3.2.6. Sikh Diabetes Study (SDS) – Study 3 

Participants of the Sikh Diabetes Study were recruited from Sikhs living in the Northern states of 

India, including Punjab, Haryana, Himachal Pradesh, Delhi, and Jammu and Kashmir99. All 

participants provided written informed consent for investigations and all protocols and consent 

documents were reviewed and approved by the University of Oklahoma and the University of 

Pittsburgh Institutional Review Boards as well as the Human Subject Protection Committees at 

the participating hospitals and institutes in India. 

 

Type 2 Diabetes cases were defined as physician diagnosis on treatment, fasting plasma glucose 

level of ≥ 7.0mmol/L, or 2-hour post glucose load level ≥ 11.1mmol/L. Controls had no prior 

history of diabetes and had normal glucose tolerance given by fasting glucose < 6.0mmol/L and 

post glucose < 7.8mmol/L. Participants with impaired fasting glucose and/or impaired glucose 

tolerance were excluded from analysis.  
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3.2.7. Singapore Consortium of Cohort Studies (SCCS) – Study 3 

The Singapore Consortium of Cohort Studies includes Type 2 Diabetes cases and population-

based controls from Singapore. Type 2 Diabetic cases are recruited from hospitals and polyclinics, 

namely Alexandra and Changi General Hospitals and Ang Mo Kio, Jurong, Choa Chu Kang, 

Yishun and Pasir Ris Polyclinics while controls are recruited from the general population. The 

diagnostic criteria in Singapore primary health care providers follows international norm and 

physicians would use local clinical practice guidelines 

(CPG, http://www/moh.gov.sg/content/dam/moh_web/Publications/Guidelines/Withdraw20CPGs

/cgp_Diabetes%20Mellitus-Jun%202006.pdf). Participants were not further tested for Type 2 

Diabetes diagnosis. Participants gave broad consent for i) future biomedical research, ii) access to 

their medical records and iii) linkages to various registries.  

 

All participants completed a structured questionnaire, providing information on demographics, 

socio-economic status and medical history (including history of diabetes) and had measurement 

of anthropometric measures and blood pressure. Fasting blood samples were collected for blood 

glucose and lipid measurements.  

 

For the purpose of this study, only participants of self reported South Asian ancestry were 

included. Type 2 Diabetes cases were defined as physician diagnosis on treatment while controls 

had no prior history of diabetes and fasting glucose < 6.1mmol/L. 

 

3.2.8. Sri Lankan Diabetes Studies – Study 3 

The Sri Lankan Diabetes Cardiovascular Study (SLDCS) is a cross-sectional nationally–

representative epidemiological investigation which recruited 4,388 subjects (40% male)100. DNA 

http://www/moh.gov.sg/content/dam/moh_web/Publications/Guidelines/Withdraw20CPGs/cgp_Diabetes%20Mellitus-Jun%202006.pdf
http://www/moh.gov.sg/content/dam/moh_web/Publications/Guidelines/Withdraw20CPGs/cgp_Diabetes%20Mellitus-Jun%202006.pdf
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collection was only initiated midway through the SLDCS collection, limiting the number of 

samples available for genotyping. The Sri Lankan Young Diabetes Study (SLYDS) recruited a 

total of 992 patients with early onset diabetes (aged between 16 and 40 and were ≤ 45 years of 

age when they first joined the study) from the three largest hospitals in Sri Lanka between 2005 

and 2006.  

 

Type 2 Diabetes cases were mainly from the SLYDS and included 176 diabetic cases from 

SLDCS. These cases included previous physician diagnosed Type 2 diabetics or newly diagnosed 

diabetics (fasting glucose ≥ 7.0mmol/L or post-load glucose ≥ 11.1mmol/L). After biochemistry 

and immunological testing (absence of anti-GAD antibodies) on the basis of clinical history 

(independence from insulin for at least 6 months after diagnosis), 890 subjects from SLYDS were 

ascertained to be diabetic. Across the two sets of diabetic cases, additional exclusion criteria were 

applied (GAD antibodies ≥ 14units/ml, age ≥ 80 years, and missing sex information) to generate a 

total of 1,066 cases available for genotyping at the Diabetes Research Laboratory, Oxford. 

Among recruited subjects from SLDCS, 3,372 had normal glucose tolerance based on the results 

of a 75g OGTT, interpreted using American Diabetes Association (ADA) and WHO criteria. 

 

3.2.9. United Kingdom Asian Diabetes Study (UKADS) – Study 3 

South Asians subjects residing in the United Kingdom with Type 2 Diabetes (physician 

diagnosed, on treatment, n = 892) were recruited to UKADS from Birmingham and Coventry, 

UK101. All subjects were of Punjabi ancestry, confirmed over three generations, and originated 

predominantly from the Mirpur region of Azad Kashmir, Pakistan. Ethnically-matched controls 

(n = 449) were recruited from the same geographical areas through community screening. 

Informed consent was obtained from each of the study participants and the study was approved 

by the Birmingham East, North and Solihull Research Ethics Committee. Genomic DNA was 
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extracted from venous blood using the Nucleon® protocol (Nucleon Biosciences, Coatbridge, 

UK).  

 

Normal glucose tolerance was defined as either fasting plasma glucose < 6.1mmol/L and 2-hour 

plasma glucose < 7.8mmol/L on a 75g OGTT (where possible) or random blood glucose < 

7.0mmol/L.  

 

3.3. Methods for genome-wide data 

3.3.1. Genome-wide genotyping arrays 

Different genome-wide genotyping arrays were used by each of the different studies to survey the 

genome. Basic characteristics of these commercial arrays were given in Table 1.  

Table 1. Basic characteristics of genome-wide genotyping arrays used in the different studies. 
Arrays Basic characteristics 
Affymetrix Genome-Wide  
Human SNP Array 6.037  

Contains more than 906,600 SNPs and more than 946,000 non-polymorphic copy 
number probes. 
Approximately half of the SNPs were derived from previous generation 
Affymetrix arrays and the remaining from the HapMap project. 

Illumina HumanHap1M 
(single/duo chips)102 

Contains ~1.2 million SNPs, focusing on tag SNPs, SNPs in genes, and non-
polymorphic markers in known and novel copy number regions. 

Illumina HumanHap317103 Contains over 317,000 tagSNPs selected from HapMap Phase I17.  
In addition, approximately 7,300 non-synonymous SNPs and high density of 
tagSNPs on the Major Histocompatibility Complex (MHC) region was selected.  

Illumina HumanHap61039 Contains over 600,000 tagSNPs. 
Illumina HumanHap66039 Contains over 657,000 evenly spaced markers with approximately ~100,000 

markers that target observed common copy number variants. 
3.3.2. Quality control (QC) 

Genotype calling is an automated unsupervised process to translate fluorescent intensities from 

hybridization experiments into discrete genotype calls. Across hundred thousands of SNPs, it is 

not realistic to inspect each SNP for the accuracy of their genotype calling assignments. Thus a 

set of quality filter is always implemented on genome-wide data to filter SNPs with potential 

erroneous calling, which will likely lead to spurious association results45,104.  

 

The SDCS and SP2 samples were genotyped as part of a Chinese diabetes case control design 

while SGVP, SiMES and SINDI were QCed as population-based studies. For each array in each 
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study population, genotype clustering was first performed with the proprietary cluster files from 

Illumina (GenCall)47,48. Samples achieving 99% sample call rate were then used to generate local 

clusterfiles (GenTrain) for a second round of calling. A threshold of 0.15 was implemented on the 

GenCall score to decide on the confidence of the final assigned genotypes for a valid genotype 

call.  

 

A similar set of quality filters were implemented on the SGVP, SDCS, SP2, SiMES and SINDI 

populations. The genotype quality of the arrays was assessed independently and in three main 

phases according to the following sequence (Table 2): 

a. Preliminary SNP QC on autosomal SNPs to obtain a pseudo-clean set of SNPs for sample 

QC. 

b. Sample QC to identify duplicates, samples with high missing genotype calls, cryptic 

related samples and samples with discordant ethnic membership or gender across 

genetically inferred data and self-reported information from clinical data.  

c. Final SNP QC after the exclusion of the samples from (b) on the full panel of SNPs to 

obtain the set of SNPs for downstream analyses.  

The final set of samples and genotypes post-QC was used for subsequent analyses. For SDCS, 

SP2, SiMES, SINDI, LOLIPOP and PROMIS, the post-QC genotypes were used as imputation 

seed, to statistically infer unobserved genotypes that were present in the imputation reference 

panel.  

 

In Study 3, genome-wide association scans comprised of the SINDI study population from 

Singapore, the LOLIPOP study from United Kingdom and the PROMIS study from Pakistan. 

Samples from LOLIPOP were genotyped on both Illumina610quad and IlluminaHap317 while 

samples from the PROMIS study were genotyped on the Illumina670Quad only.  
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Similar quality control criteria was implemented across studies conducted in Singapore, namely 

SGVP, SDCS/SP2, SiMES and SINDI, while LOLIPOP and PROMIS in Study 3 applied slightly 

different sets of quality filters. Due to the collaborative nature of Study 3, it was not practical at 

the meta-analysis stage to standardize quality filters across all participating discovery cohorts. 

Each participating cohort had applied a set of reasonable quality filters to their data. Details of the 

quality control filters for each genome-wide cohort were presented in Table 2 below.  
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Table 2. Description of the quality filters on the genome-wide populations. 
 Study 1 Studies 2 & 4  

 Study 3 
Population  
name SGVP Chinese 

(SDCS/SP2) 
Malays 

(SiMES) 
Indians 
(SINDI) LOLIPOP PROMIS 

Study design 
Healthy individuals 

(Chinese, Malay, Indians) Diabetes case control Population-
based cohort 

Population-
based cohort Population-based cohort 

Acute 
myocardial 

infarction case 
control 

Array type Affymetrix 
SNP6.0 

(Affy6.0) 

Illumina1M-
single 

(Illu1M) 

Illumina610-
quad 

(Illu610) 

Illumina1M-
duov3 

(Illu1M) 

Illumina610-
quad 

(Illu610) 

Illumina610-
quad 

(Illu610) 

IlluminaHap3
17 

(Illu317) 

Illumina610-
quad 

(Illu610) 

Illumina660-
quad 

(Illu660) 
Genotype 
calling 

Birdseed46 

GenCall 
(Illumina 

clusterfiles; 
genotyping 
score GC > 
0.15) 47,48 

1. GenCall 
with Illumina 

clusterfiles 
2. GenTrain: 
Samples with 
99% call rates 
used to train 

project 
specific 
clusters  

3. GenCall 
using new 
clusterfiles 
from Step 2 

47,48 

1. GenCall 
with Illumina 

clusterfiles 
2. GenTrain: 
Samples with 
99% call rates 
used to train 

project 
specific 
clusters  

3. GenCall 
using new 
clusterfiles 
from Step 2 

47,48 

1. GenCall 
with Illumina 

clusterfiles 
2. GenTrain: 
Samples with 
99% call rates 
used to train 

project 
specific 
clusters  

3. GenCall 
using new 
clusterfiles 
from Step 2 

47,48 

1. GenCall 
with Illumina 

clusterfiles 
2. GenTrain: 
Samples with 
99% call rates 
used to train 

project 
specific 
clusters  

3. GenCall 
using new 
clusterfiles 
from Step 2 

47,48 

GenCall47,48 GenCall47,48 Illuminus49 

SNP QC 
exclusion 

Missingness > 5%, HWE 
significance across all samples P 
< 10-8, monomorphic across all 

samples, and more than 1 
discordant genotypes across 

three pairs of duplicates. 

Missingness > 5%, HWE 
significance across controls P < 
10-6, and monomorphic across 

all samples. 

Missingness > 5%, HWE 
significance across all samples P 
< 10-6, and monomorphic across 

all samples. 

Missingness ≥ 3%, HWE significance across 
controls P < 10-6, and MAF < 1%. 

Annotation 
issues  

Sample QC 
exclusion 

Missingness > 2%, excessive 
identity-by-state (IBS) 

genotypes (higher missingness 
of the pair), discordance of 
ethnic membership between 

Missingness > 5%, excessive heterozygosity, excessive identity-by-
state (IBS) genotypes (higher missingness of the pair), discordance 

of ethnic membership between self-reported ethnicity and 
genetically inferred population ascertainment by principle 

components analysis with HapMap and SGVP samples, and gender 

Missingness > 5%, excessive heterozygosity, 
excessive identity-by-state (IBS) genotypes 

(pi_hat ≥ 0.5 in LOLIPOP and pi_hat ≥ 0.37 in 
PROMIS to allow for higher consanguinuity in 
Pakistanis), discordance of ethnic membership 
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self-reported ethnicity and 
genetically inferred population 

ascertainment by principle 
components analysis, and 

gender discordance. 

discordance. between self-reported ethnicity and genetically 
inferred population ascertainment by principle 

components analysis with HapMap samples and 
Indian reference samples by Reich and 

colleagues52 (PLINK105 was used to select a set of 
LD pruned SNPs). 

Final SNP 
QC exclusion 

Population specific 
Missingness > 5%, HWE 

significance P < 0.001, and 
more than one discordant 

genotype across the three pair of 
duplicated samples. 

Missingness > 5%, HWE significance across controls P < 10-4, and 
monomorphic across all samples. NA NA NA 

Merging QC 
exclusion Only samples passing QC in 

both arrays are retained. 
Missingness > 5% for unique 

and common SNPs across both 
arrays, and  

SNP with higher missingness for 
common SNPs on both arrays. 

Only samples passing QC in 
both arrays are retained. 

Cryptic relatedness and gender 
discrepancies across the two 

arrays, allelic differences 
between common SNP across 

the two arrays as determined by 
departure from the QQ-plots. 

NA NA NA NA NA 

Imputation NA IMPUTEv0.5.054 
Imputation 
reference 
panel 

NA HapMap II JPT+CHB panel on 
build 36 release 22 HapMap II CEU+JPT+CHB+YRI panels on build 36 release 22 

Data handling 
softwares R106, PLINK105, Eigenstrat107,108 R106, PLINK105, Eigenstrat107,108, IMPUTE54, SNPTEST45 
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3.3.3. Type 2 Diabetes case control ascertainment 

For Type 2 Diabetes case control design in Study 2, Chinese cases included subjects from the 

SDCS with diagnosis of Type 2 Diabetes while Chinese controls were selected from SP2 with no 

prior history of diabetes and had fasting glucose level less than 6.0mmol/L. The Chinese cases 

and controls were checked across the two genotyping arrays, for duplicates and cryptic 

relatedness. This yielded a total of 2,010 cases from SDCS and 1,945 controls from SP2 over the 

two arrays. The sampling frame of the SP2 study was from a mixture of heart and thyroid studies 

and National Health Survey. These studies are cross-sectional population based with stratified 

sampling of the Singapore population using the census data, thus reducing the likelihood of 

ascertainment bias in the SP2. Using SP2 as a control set with SDCS could introduce 

misclassification bias, where a proportion of the controls could have the outcome of interest (thus 

meeting the criteria for being a case) and possibility of having undiagnosed cases in the control 

set. However, this misclassification would have modest impact on power unless the 

misclassification bias was substantial45. On the other hand, SP2 provided a convenient resource 

for the selection of controls, and fasting glucose levels were available to screen undiagnosed 

Type 2 Diabetes from the population.  

 

Diagnostic criteria of Type 2 Diabetes were not consistently defined across the cohorts. Type 2 

Diabetes can be diagnosed based on three different measures: (i) fasting plasma glucose greater 

than 7.0mmol/L (126mg/dl); (ii) after a 75g glucose load, venous post-load (2-hour) plasma 

glucose level greater than 11.1mmol/L (200mg/dl); and (iii) HbA1c level greater than 6.5%88. 

These three measures are highly correlated but not perfect. HbA1c is a chronic glycemic measure 

which captures the degree of glucose exposure over time. Biological pathways leading to Type 2 

Diabetes may affect specifically one glycemic trait more than others. Heterogeneity in phenotype 

definition may mean that we are more likely to detect variants acting through at least one or more 
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of the pathways. Nonetheless, many of these common pathways which lead to elevated fasting 

glucose, 2hour-glucose and HbA1c are likely to have biological relevance to the pathogenesis of 

Type 2 Diabetes. Table 3 summarized the number of Type 2 Diabetes cases and controls 

(discovery populations) in Studies 1 to 4 and Table 4 provided a summary of the diagnostic 

criteria of Type 2 Diabetes in Studies 2 and 3, including replication cohorts. 
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Table 3. Final sample counts post-QC for the genome-wide populations. 
N Study 1 

Studies 2 & 4  
 Study 3 

Array type 
Population Affy6.0 Illu1M 

Illu610 
Chinese 
SDCS 

Illu610 
Chinese 

SP2 

Illu1M 
Chinese 
SDCS 

Illu1M 
Chinese 

SP2 

Illu610 
Malays 
SiMES 

Illu610 
Indians 
SINDI 

Illu610 
South 
Asian 

LOLIPOP** 

Illu317 
South 
Asian 

LOLIPOP** 

Illu660 
South 
Asian  

PROMIS** 
Genotyped 
(duplicates) 

295 
(3) 

295 
(3) 

1,195 
(8) 

1,467 
(8) 

1,015 
(8) 

1,016 
(8) 

3,072 
(0) 

2,953 
(0) NA NA NA 

Post QC 
on individual  
array 

277 274 1,115 1,251 930 960 2,542 2,538 1,783 
4,773 

440 
1,699 

2,361 
6,817 

Final set of  
samples 
after merging* 

268 1,082 1,006 928 939 2,542 2,538 NA NA NA 

Diabetes study 
Cases (Cas) 
Controls (Ctl) 

NA Cas:1,082 
Ctl:1,006 

Cas:928 
Ctl:939 

Cas:794 
Ctl:1,240 

Cas:977 
Ctl:1,169 

Cas:1,783 
Ctl:4,773 

Cas:440 
Ctl:1,699 

Cas:2,361 
Ctl:6,817 

Meta-analysis NA 

Cas:3,781 
Ctl:4,354  

NA Cas:5,561 
Ctl:14,458 

* Merging refers to cross array check on common SNPs for samples from SGVP and only the Chinese samples from SDCS and SP2. 
** Detailed genotyping information not available for collaborating cohorts. 
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Table 4. Characteristics of participants in the Type 2 Diabetes discovery and replication cohorts 
(originally from reference 109). 

Cohort Location Genotyping 
method 

# Case 
# Control Type 2 Diabetes ascertainment 

Discovery (Genome-wide) 
Singapore Diabetic 

Cohort Study (SDCS)/ 
Singapore Prospective Study 

Program (SP2) 

Singapore Whole genome  2,010 
1,945 

Case: Physician diagnosis in primary care facilities. 
Control: No personal history and fasting glucose < 
6.1mmol/L 

Singapore Malay Eye Study 
(SiMES) Singapore Whole genome 794 

1,240 
Case: Personal history or HbA1c ≥ 6.5%. 
Control: No personal history and HbA1c < 6.0%. 

Singapore Indian Eye Study 
(SINDI) Singapore Whole genome 977 

1,169 
Case: Personal history or HbA1c ≥ 6.5%. 
Control: No personal history and HbA1c < 6.0%. 

London Life Sciences 
Population Study 

(LOLIPOP) 

United 
Kingdom Whole genome 2,223 

6,472 

Case: Physician diagnosis on treatment or fasting 
glucose ≥ 7.0mmol/L. 
Control: No personal history and fasting glucose < 
7.0mmol/L. 

Pakistan Risk of 
Myocardial Infraction 

Study (PROMIS) 
Pakistan Whole genome 2,361 

6,817 

Case: Physician diagnosis, prior use of oral 
hypoglycemic and/or HbA1c > 6.5%. 
Control: No personal history and HbA1c < 6.0%. 

Replication cohorts in Study 3 

COBRA Pakistan Kaspar 465 
1,580 

Case: Physician diagnosis on diabetic medication or 
fasting blood glucose ≥ 7.0mmol/L. 
Control: No personal history and fasting blood glucose 
< 7.0mmol/L. 

Chennai Urban Rural 
Epidemiology 

Study 
India Sequenom 1,316 

1,265 

Case: Self-reported on drug treatment or post-load 
glucose ≥ 11.1mmol/L. 
Control: No personal history and fasting glucose < 6.1 
mmol/L and post-load glucose < 7.8mmol/L. 

Diabetes Genetics in 
Pakistan Study Pakistan Kaspar 840 

1,225 

Case: Physician diagnosed Type 2 Diabetes in hospital 
or Diabetes Awareness camps. 
Control: Random blood glucose ≤ 7.0mmol/L. 

London Life Sciences 
Population Study 

(LOLIPOP) 

United 
Kingdom Kaspar 1,132 

7,652 

Case: Physician diagnosis on treatment or fasting 
glucose ≥ 7.0mmol/L. 
Control: No personal history and fasting glucose < 
7.0mmol/L. 

Mauritius Study Mauritius Kaspar 780 
1,536 

Case: Personal history or taking hypoglycaemic 
medication or fasting glucose ≥ 7.0mmol/L and/or 2-
hour glucose ≥ 11.1mmol/L. 
Control: Fasting glucose < 6.1mmol/L and 2-hour 
glucose < 7.8mmol/L. 

Pakistan Risk of 
Myocardial Infraction 

Study (PROMIS) 
Pakistan Kaspar 3,128 

5,277 

Case: Physician diagnosis, prior use of oral 
hypoglycemic and/or HbA1c > 6.5%. 
Control: No personal history and HbA1c < 6.0%. 

Ragama Health 
Study Sri Lanka TaqMan 776 

1,981 

Case: Physician diagnosis on treatment or fasting 
glucose > 7.0mmol/L or HbA1C > 6.5%. 
Control: No personal history, fasting glucose < 
6.1mmol/L and HbA1c < 6.0%. 

Sikh Diabetes Study India Sequenom 1,387 
1,732 

Case: physician diagnosis on treatment, fasting 
glucose > 7.0mmol/L, or post-load glucose > 
11.1mmol/L. 
Control: No personal history and fasting glucose < 
6.0mmol/L and post-load glucose < 7.8mmol/L. 

Singapore Consortium 
Of Cohort Studies Singapore Sequenom 1,613 

1,230 

Case: Physician diagnosis on treatment. 
Control: No personal history and fasting glucose < 
6.1mmol/L. 

Sri Lankan Diabetes 
Studies Sri Lanka TaqMan 841 

1,471 

Case: Hospital-recruited early onset diabetics. 
Control: Normal post-load glucose tolerance (Fasting 
glucose < 6.1mmol/L and post-load glucose < 
7.8mmol/L). 

United Kingdom 
Asian Diabetes Study 

United 
Kingdom Kaspar 892 

449 

Case: Physician diagnosed on treatment 
Control: Fasting glucose < 6.1mmol/L and post-load 
glucose < 7.8mmol/L. 
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3.3.4. Type 2 Diabetes case controls, stratified by BMI status 

There are several pathways leading to disease manifestation of Type 2 Diabetes, one of which 

includes defects of insulin action in fat, muscle and liver that is commonly linked to obesity. One 

of the most common measures of obesity is the anthropometric measure, body mass index (BMI), 

given by the weight of an individual in kilograms (kg) divided by the square of height in metres 

(m). WHO of the United Nations classifies individuals with BMI ≥ 25 kg/m2 as overweight and 

BMI ≥ 30 kg/m2 as obese, using BMI as a surrogate for adiposity. While this cut-off has been 

correlated with increased risk of Type 2 Diabetes, cardiovascular disease and mortality, the 

distribution of body fat (central adiposity) and percentage of body fat appear to correlate less well 

with BMI in Asian populations110,111.  

 

In Study 4, we explored potential differences in genetic susceptibility when cases and controls are 

selected by their obesity status. Following the international WHO classification, we denote 

individuals with BMI less than 25 kg/m2 as non-obese and individuals with BMI greater than or 

equal to 25kg/m2 as overweight. By stratifying cases and/or controls into overweight and non-

obese strata, we compare the association signals in each of these subsets of case control studies. 

Figure 4 below illustrates the various combinations of dichotomous BMI status and case control 

status in six case control substudies. Looking vertically across Subset1, we looked at only non-

obese cases where non-obese cases were compared to all controls (Substudy 1.1), overweight 

controls (Substudy 1.2) and non-obese controls (Substudy 1.3). The most interesting substudy 

here was comparing the non-obese cases with the overweight controls, under the most extreme 

phenotypic contrast. With non-obese cases, they were less likely to be affected by the insulin 

action due to obesity. On the other hand, the controls, being overweight, were still not showing 

signs of Type 2 Diabetes.  In Substudy 1.1, all controls were considered for increased sample size. 

Subset 2 comprised of three substudies comparing overweight cases with all controls (Substudy 
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2.1), non-obese controls (Substudy 2.2) and overweight controls (Substudy 2.3). In Substudy 2.2, 

hypercontrols (non-obese controls) were used and all controls were considered in Substudy 2.1 

for increased sample size. For completeness, we included Substudy 1.3 and 2.3 where both cases 

and controls were either non-obese or overweight. 

 

 Subset1 
(Substudies 1.1, 1.2,1.3) 

 Subset2 
(Substudies 2.1, 2.2, 2.3) 

 T2D  
Cases 

T2D  
Controls 

 T2D  
Cases 

T2D  
Controls 

BMI < 25 kg/m2      
BMI ≥ 25 kg/m2      
      
BMI < 25 kg/m2      
BMI ≥ 25 kg/m2      
      
BMI < 25 kg/m2      
BMI ≥ 25 kg/m2      
      
  Cases   Controls 

 
Figure 4. Schematic diagram for the study design of Study 4. 
 

3.3.5. Population structure 

Population structure arises when allelic frequencies variations within a genetic study are not 

related to the phenotype being studied, leading to false positive or false negative findings112. In 

the case-control setting, cases and controls could have inherent genetic differences and 

prevalence in diseases, generating spurious signals of association at loci where there are 

differences in the allelic frequencies. The large number of polymorphisms tested in genome-wide 

scans allowed an assessment of the impact of population structure on the association signals, 

using various statistical methods. In the following subsections, I will describe two commonly 

used statistical methods, genomic control and principal component analysis, to address population 

structure in genetic association studies.  
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a. Genomic control 

The genomic control method (GC) makes use of a set of independent markers in the genome to 

estimate the inflation of the association test statistics as a result of underlying population 

structure113,114. Assuming that the majority of the SNPs tested are independent from the 

phenotype of interest, their statistical evidence is likely to resemble that obtained from the null 

hypothesis of no association, i.e. a Uniform distribution. The genomic control inflation factor 

estimates the inflation of the test statistics, and is defined as the ratio of the median of the 

empirically observed distribution of the test statistic to the expected median.  

𝐺𝑒𝑛𝑜𝑚𝑖𝑐 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 λ𝑔𝑐 =  
𝑀𝑒𝑑𝑖𝑎𝑛 (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 χ2) 
𝑀𝑒𝑑𝑖𝑎𝑛 �χ1

2�  = 0.456 
 

The estimated inflation factor, λgc, is applied uniformly across the genome by inflating the 

standard error of the log odds.  For each of the Type 2 Diabetes case control study, genomic 

control was applied at the individual study level to minimize any residual population structure 

and a final correction was further implemented at meta-analysis (double GC correction).  

 

b. Principal components analysis (PCA) 

Principal components analysis reduces the genotype data to continuous axes of genetic variation, 

that describe as much of the variability of the data as possible107. Using the covariance matrix 

between samples, orthogonal eigenvectors place individuals onto continuous axes of genomic 

variations. Plotting the eigenvectors against one another allow one to explore the presence of any 

population structure. Figure 5 below shows three PCA plots illustrating some examples of 

population structure. Figure 5A contained three well-separated clusters, indicating that samples 

from the three populations originated from genetically distinct subpopulations. The continuous 

cloud of points in Figure 5B suggested the presence of admixed populations where there was a 

spectrum of genetic variation within each of the two populations. A random scatter of points as in 

Figure 5C indicated the absence of population structure in the population.  
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Figure 5. Principal components analysis plots of genetic variation. Points are colored in 
accordance to their self-reported ethnic membership. A) Well-separated clusters for three 
genetically distinct subpopulations; B) Two subpopulations showing some degree of admixture 
and C) Randomly scattered points indicating absence of population structure.  

 
 

Principal components analysis was carried out in the genome-wide studies, against reference 

populations HapMap II18, Indians from David Reich and colleagues52 and SGVP70. In the context 

of the Singapore-based populations, a set of SNPs evenly thinned across the genome, reducing 

linkage disequilibrium, was used to infer the axes of variations. The PCA plots were showed in 

Figure 6. Figure 6A and Figure 6B compared the SGVP populations (Singapore Chinese: CHS; 

Singapore Malays: MAS and Singapore Indians: INS) with the HapMap II populations in the 

global scale over the first three components. The first axis of variation separated the Yoruba 

samples from Nigeria from the non-African populations. The second axis addressed the 

differences between the European CEU from the Asian populations. CHB, JPT and CHS were 

virtually indistinguishable from each other on the global scale. The SGVP populations were 

subsequently used to ascertain the ethnic membership of the samples in the GWAS. The Chinese 

GWAS samples cluster closely with the CHS samples from SGVP as shown in Figure 6C. The 

Malays and Indians on the other hand showed a continuous cloud suggesting greater degree of 

genetic diversity. In Figure 6D, the SiMES Malay samples exhibit continuous clouds over the 

first and second principal components while the SINDI Indian samples showed continuous 

spectrum of genetic diversity over the first three principal components. Hence for subsequent 
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association analyses, principal components were included as covariates to correct for population 

structure in these populations, namely first two principal components for Malays and first three 

principal components for Indians. 



65 

 

 

Figure 6. Principal components analysis plots of genetic variation. Each individual is mapped 
onto a pair of genetic variation coordinates represented by the first and second components or 
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second and third components. A) First two axes of variation of HapMap II (CEU: pink, CHB: 
yellow, JPT: cyan, YRI: black) and SGVP (CHS: red, MAS: green, INS: blue) and B) Second and 
third axes of variation of HapMap II and SGVP. Each of the Chinese, Malay and Indian Type 2 
Diabetes case control study (cases: grey and controls: pink) are also superimposed onto SGVP. C) 
Chinese T2D cases and controls with SGVP; D) Malay T2D cases and controls with SGVP; E 
and F) Indian T2D cases and controls with SGVP (originally from references 70 and 115).  

 

For Study 3, principal components analysis was also used to identify population outliers by 

comparison to reference populations from the HapMap and Indian samples from Reich and 

colleagues. Using the LOLIPOP data on the Illumina610 array, a set of 100,864 SNPs was pruned 

to reduce linkage disequilibrium across the SNPs and subsequently used in study-specific 

principal components analysis with HapMap II (Figure 7). 
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Figure 7. Principal components analysis plots of genetic variation in populations of South Asian 
ancestry. Each individual is mapped onto a pair of genetic variation coordinates represented by 
the first and second components or second and third components. A) First two axes of variation 
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of HapMap II (CEU: pink, CHB: yellow, JPT: cyan, YRI: black) and LOLIPOP samples 
genotyped on the Illumina317 array (blue); B) First two axes of variation of HapMap II and 
LOLIPOP samples genotyped on the Illumina610 array (blue); C) First two axes of variation of 
HapMap II and SINDI samples genotyped on the Illumina610 array (blue); D) First two axes of 
variation of HapMap II and PROMIS samples genotyped on the Illumina670 array (blue); E) First 
two axes of variation of HapMap II and Reich’s Indian samples as reference (originally from reference 109). 
  

3.3.6. Tests of association and conditional analyses 

In assessing a SNP for association with the outcome, there are different modes of inheritance for 

the genetic load. Each of these modes of inheritance has the highest statistical power when the 

genetic model is concordant with the true effect of genetic burden. While the general model does 

not hold any prior assumption about the genetic load, being a two degree of freedom test, it is 

typically less powerful than the additive model with only one degree of freedom. In all our 

analyses, we only assume the additive mode of inheritance where each additional copy of the 

outcome-implicated allele increases the genetic risk by the same magnitude for all our association 

tests to avoid incurring multiple testing from different genetic models. 

 

Logistic regression was used to test for association between Type 2 Diabetes (binary outcome) 

and autosomal SNPs in the Singapore genome-wide scans by applying SNPTESTv1.1.545 

(http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html). Chromosome X was not 

included in any of the analyses. The missing data likelihood method implemented in the –proper 

option in SNPTEST incorporated genotype uncertainties in the imputed data at the association 

tests. For SNPs directly observed on the genotyping arrays, the observed genotypes were reported 

and imputed results were not used in association testing. Association analyses were performed 

separately in the two genotyping arrays for the Chinese and later combined using meta-analysis 

(see section 3.3.7.) to obtain an overall association result for the Chinese. 

 

http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html
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A P-value cut-off of 5 x 10-8 was used to declare genome-wide significance for any 

polymorphism associated with Type 2 Diabetes. In 2007, it was proposed that a significance 

threshold of 5 x 10-7 at power of 0.5 corresponds to posterior odds in favour of a true positive at 

10:145. As genome-wide studies expanded the number of SNPs tested by imputation, this 

benchmark of significance threshold was further revised to 5 x 10-8, which corresponded to more 

than a million independent tests across the genome116-118. Visual assessment of the genotype 

clusters was done on observed genotypes with statistical significance (P-value < 10-4) in the meta-

analysis (see section 3.3.7.) and observed SNPs in the top ten regions of each individual GWAS. 

SNPs with ambiguous assignment of genotype calls were removed from further analyses.  

 

Primary analysis in Study 3 comprised of gender-specific association analyses and these analyses 

were combined with the meta-analysis method (see section 3.3.7.) to obtain a final summarized 

association result on common directly genotyped SNPs across the three studies. Secondary 

analyses included the following, i) all samples combined using whole genome imputed data on 

HapMap II; ii) males only; iii) females only; iv) gender specific, adjusted for BMI; v) lean Type 2 

Diabetes cases (BMI < 25kg/m2) versus overweight controls (BMI > 25kg/m2).  

 

3.3.7. Imputation 

Analogous to solving a missing data problem, imputation techniques utilize the local linkage 

disequilibrium and population genetics models to infer unobserved genotypes54,55,119,120. In the 

instance where there is no population specific reference panel, the use of mixture panels had been 

recommended to provide more variation in the reference haplotypes.  

 

In the Singapore genome-wide scans, the final post-QC set of genotype data was used as seed for 

imputation using IMPUTE v0.5.054 (https://mathgen.stats.ox.ac.uk/impute/impute.html). In the 

https://mathgen.stats.ox.ac.uk/impute/impute.html
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Chinese, imputation was carried out using the JPT+CHB panel on build 36 release 22. All four 

panels of the HapMap II on build 36 release 22 were combined to form a mixture reference panel 

for the Malays and Indians. In addition, for the known Type 2 Diabetes loci, a second set of 

imputation was performed at these loci with IMPUTE v2.1.2 where it was possible to allow for 

more than one reference panel. This allowed the inclusion of population specific genotypes as an 

unphased reference panel which will hopefully reduce false negative findings that might have 

otherwise occurred with an inappropriate imputation reference panel being used. Specifically, we 

included the SGVP population specific genotypes as an unphased reference panel. For the 

Chinese, the phased reference panel was HapMap JPT+CHB and the unphased reference panel 

was SGVP CHS. For the Malays and Indians, all four HapMap population panels were the base 

reference with SGVP MAS and INS as the additional unphased panels respectively. 

 

The genotype data was split into chunks of 10Mb and a 250kb buffer on both sides was 

implemented to avoid edge effects during imputation54. The effective population size of the YRI 

was used when imputing against the mixture reference panel. For imputation targeting specific 

loci, a 5Mb region was imputed around the index SNP for each locus with similar buffer size and 

effective population size. The imputation resulted in posterior probabilities for each of the 

genotype classes.  

  

Similar imputation methods54 were also applied on the LOLIPOP and PROMIS data, against 

pooled haplotypes from the HapMap II panels.  

 

3.3.8. Meta-analysis 

Aggregating evidences over multiple small GWAS increase the effective sample size and 

statistical power to detect any real associations. Using the fixed effects inverse variance model, 
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we pooled evidences, first over the genotyping arrays to obtain an overall association result in the 

Chinese and later across all the three ethnic groups/cohorts in Studies 2 and 4 respectively. This 

assumes a common effect size for a particular allele at the SNP across the studies and is 

implemented in the program METAL (http://www.sph.umich.edu/csg/abecasis/Metal/index.html). 

Similarly, the gender-specific association results from each of the genotyping array/study 

populations in South Asian populations were combined and summarized using meta-analysis, 

giving a summary association measure across males and females combined. 

 

3.3.9. Replication and selection of SNPs 

To confirm the findings in Study 3, we sought to reproduce the results in nine independent studies 

of South Asian ancestry. A total of 13,170 Type 2 Diabetes cases and 25,396 controls were 

available from the following studies: The COBRA study94, the Chennai Urban Rural 

Epidemiology Study (CURES)95, Diabetes Genetics in Pakistan (DGP) study96, Mauritius cohort97, 

Ragama Health Study (RHS)98, Sikh Diabetes Study (SDS)99, Singapore Consortium of Cohort 

Studies (SCCS), Sri Lankan Diabetes Study100 and United Kingdom Asian Diabetes Study 

(UKADS)101.  

 

The SNP selection process is presented in the flow diagram below (Figure 8). SNPs within 

previously established Type 2 Diabetes loci were not considered for replication. All in all, 20 

SNPs were selected for follow up based on the following selection criteria: i) seven SNPs from 

primary analysis with P-value < 10-5; ii) twelve SNPs with P-values between 10-5 and 10-4 in 

primary analysis and had the lowest P-values in fixed effects inverse variance meta-analysis with 

populations of European ancestry from DIAGRAM+12 and iii) one SNP reaching genome-wide 

significance of P-value < 5 x 10-8 in the female only secondary analysis. 

http://www.sph.umich.edu/csg/abecasis/Metal/index.html
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De-novo genotyping of the SNPs in replication samples were performed by various methods such 

as KASPAR (K-Bioscience Ltd, UK), Sequenom MassArray or TaqMan assays. Similar to 

quality control filters for genome-wide scans, samples with poor call rates (< 90%) and SNPs 

with call rates < 95% or deviated from HWE at P-value < 2.5 x 10-3 were excluded. Study-

specific association tests were performed and combined across replication cohorts using fixed 

effects meta-analysis. Threshold for significance was defined as P-value < 2.5 x 10-3, after 

Bonferroni correction for 20 SNPs.  

 

Stage 1: Genome-wide Type 2 Diabetes association analysis in populations of South 
Asian ancestry 

5,561 cases and 14,458 controls 

 

All SNPs associated with Type 2 Diabetes at P-value < 10-5 
(N = 7) 

+ 
SNPs associated with Type 2 Diabetes between 10-5 ≤ P-value < 10-4 AND was 

the top SNP in inverse variance meta-analysis with European population, 
DIAGRAM+ (combined P-value < 10-3) 

(N = 12) 
+ 

SNP reaching genome-wide significance in secondary analyses 
(N = 1, female specific analysis) 

 

Stage 2: Replication of 20 SNPs in nine independent populations of South Asian 
ancestry 

13,170 cases and 25,398 controls 
 

 Figure 8. Summary of study design from the discovery stage to replication in Study 3. 
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3.4. Methods for population genetics 

3.4.1. Fixation index, Fst 

The fixation index, Fst, is a measure of population differentiation, that quantifies the fraction of 

total genetic variation due to differences between populations17. The fixation index ranges from 0 

to 1, with 0 indicating no differentiation and 1 indicating complete differentiation. The fixation 

index was implemented as the following: 

a. Weighted Fst across the genome, accounting for differences in the number of chromosomes 

𝐹𝑠𝑡 = 1 −
∑ �𝑛𝑗2 �∑ 2

𝑛𝑖𝑗
𝑛𝑖𝑗−1

𝑥𝑖𝑗�1 − 𝑥𝑖𝑗�/∑�𝑛𝑗2 �𝑖𝑗

∑ 2 𝑛𝑖
𝑛𝑖 − 1𝑖 𝑥𝑖(1 − 𝑥𝑖)

 

 where: 
𝑥𝑖𝑗 denotes the estimated MAF of SNP i in population j. 
𝑛𝑖𝑗 denotes the number of genotyped chromosomes at SNP i 
𝑛𝑗 denotes the number of genotyped chromosomes in population j 
 

b. SNP-specific Fst 

SNP-specific Fst was computed for each pair of populations for every SNP that passed QC and 

common across all populations. The pairwise Fst values between HapMap II populations and 

SGVP and comparison within SGVP were summarized by summary statistics such as mean, 

median, 1st and 3rd quartiles. The Fst between two populations is defined as follows: 

𝐹𝑠𝑡 =
(𝑝1 − 𝑝2)2

(𝑝1 + 𝑝2)(2 − 𝑝1 − 𝑝2) 

where 𝑝1and 𝑝2 denote the allele frequencies of a specific allele at a SNP in population 1 and 

2 respectively.  

 

3.4.2. Haplotype phasing 

Statistical methods coupled with population genetics model are commonly used to infer phase 

information of genotype data and construct haplotypes containing the sequence of alleles on the 
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same chromosome55,56,121-123. The SGVP merged genotypes were phased using the fastPHASE 

program (version 1.3) for subsequent analyses123. Preliminary runs were performed to investigate 

the optimal choice of parameters in realistic computational running time. Assuming that similar 

haplotypes originate from the same cluster, the number of haplotype clusters K initiated ranged 

from 6 to 20 at the default setting of 20 expectation-maximization runs. Each chromosome was 

phased independently with ten iterations for error rate estimations. To determine K, 1,000 

consecutive SNPs were randomly selected at each iteration, of which approximately 10% of the 

observed genotypes were masked and inferred by the algorithm. The discordance between the 

observed and inferred genotypes averaged over ten iterations constituted the error rate and the K 

with the lowest error rate was used as the eventual number of haplotype cluster. Based on the 

empirical error rates, the SGVP populations were phased within each subpopulations using K = 

14. 

 

3.4.3. Measures of linkage disequilibrium 

Summary measures of linkage disequilibrium between any two SNPs were computed off the 

phased haplotypes of SGVP using Haploview124. Only SNPs with MAF greater than 5% were 

considered and we computed LD measures between a focal SNP and all other SNPs within 250kb 

upstream and downstream of the focal SNP. The two metrics are r2 (square of genetic correlation 

coefficient) and D’22,32. 

 

3.4.4. Variation in LD (varLD) 

Comparison of regional linkage disequilibrium between two populations was performed with the 

varLD algorithm125,126. This method could be implemented in two ways, (i) sliding window 

approach across the whole genome; or (ii) a targeted approach around a specified genomic region. 

The targeted approach tests the null hypothesis that the local regional pattern of correlation 
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between pairs of SNPs in the window is identical across the two populations compared and yields 

a Monte Carlo P-value that quantifies the statistical evidence of departure from the null.  

 

All possible pairwise comparisons between the populations of HapMap II and SGVP were made. 

The sliding window approach defined windows of 50 consecutive SNPs common to both 

populations. For each of these windows, we compared the two 50 x 50 symmetric matrices of 

signed r2 (r2 linkage disequilibrium measure with the sign of the D’ metric) from the two 

populations respectively. The sum of the absolute differences between the ranked eigenvalues of 

the two matrices constituted a score for each window. The extent of linkage disequilibrium in 

each window was assessed by comparing the relative rank of the score against the distribution of 

scores across the genome. Regions falling in the top 5% of the distribution were identified as 

candidate regions of variation in linkage disequilibrium. To further facilitate comparisons across 

multiple population-pairs, each pairwise distribution scores were standardized to have mean of 

zero and standard deviation of one.  

 

In Study 2 on Singapore Type 2 Diabetes genome-wide association studies, varLD was 

implemented as a targeted approach centered on each of the established Type 2 Diabetes 

implicated loci. Comparisons were carried out between the three populations in SGVP and 

HapMap CEU. A region of 400kb centered on the index SNP was considered and a score was 

given by the difference of the trace of the eigen-decomposition of the signed r2 matrices. To 

assess the statistical significance of each score, a Monte Carlo P-value was generated with 10,000 

iterations of re-sampling from data combined over the two populations under the null of no 

differences in regional linkage disequilibrium.  
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The targeted varLD approach was also used in Study 3 to compare the regional pattern of linkage 

disequilibrium surrounding the index SNP of the six new loci implicated in Type 2 Diabetes in 

populations of South Asian ancestry. We performed 1,000 iterations of the Monte Carlo 

procedure within a 300kb window around the index SNP in each of the locus between any two of 

the following populations: (i) HapMap II CEU; (ii) SGVP INS and (iii) 60 randomly chosen 

control samples from the LOLIPOP study.  

 

3.4.5. Detecting signatures of positive selection 

Natural selection influences patterns of the human genome, through the removal of deleterious 

mutation (negative selection or purifying selection), the rapid rise and eventual fixation of 

positive selection, also known as Darwinian selection and the maintenance of multiple alleles 

through balancing selection or heterozygosity superiority. Positive selection is typically 

characterized by long haplotypes, which has risen to high frequency rapidly due to the selection 

pressure but relatively unbroken by recombination rates127.  

 

We first defined the extended haplotype homozygosity (EHH) as the probability of identity-by-

descent for two randomly chosen haplotypes that were carrying the core SNP/haplotype of 

interest within 1Mb around the core region128. Briefly, EHH is a measure of haplotype identity in 

a core region as a function of distance. Using a single SNP as a unit, haplotype homozygosity 

starts at 1 and decays to 0 with increasing distance away from the focal SNP. EHH for a focal 

SNP is computed by comparing the probabilities of each distinct haplotypes (formed by 

extending away from the focal SNP in both directions) occurring in randomly selected 

chromosomes across samples. A recent selection relatively unbroken by recombination will have 

extended stretches of haplotype similarity due to unbroken transmission of an extended haplotype 

and EHH will likely remain close to 1 around the core region with a much slower rate of decay. 
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Both the integrated haplotype score (iHS)129 and cross-population extended haplotype 

homozygosity (XP-EHH)130 utilized the computation of EHH.  

 

a. Integrated haplotype Score (iHS) 

Ancestral allele information was obtained from the Haplotter website 

(http://haplotter.uchicago.edu/) and HapMap II averaged recombination rates was used. The SNPs 

considered for analyses had MAF greater than 5% with consistent allele information across 

ancestral/derived alleles designated for the SGVP genotype data. For each SNP, the EHH was 

computed for each focal SNP, extending in both directions until an EHH score of 0.05 or a 2.5 

Mb region was reached. For adjacent SNPs with gaps of between 20kb and 200kb, a scaling 

factor was applied to the genetic distance so as to minimize the loss of SNPs and reduce spurious 

signals due to large gaps. Taking the integral under the EHH curve for each of the ancestral and 

derived alleles, we obtained the integrated EHH scores. Taking logarithm of the ratio of 

integrated EHH scores, the resultant raw iHS were then standardized to have mean zero and 

standard deviation one in 20 derived allele frequency bins, each spanning 5%. The iHS test is 

standardized across the genome and provides a measure of how unusual a region is compared to 

the rest of the genome, hence there is no formal significant test129. To identify regions of the 

genome with an unusual density of high standardized iHS scores, we computed the proportion of 

SNPs with |iHS| > 2.0131 in non-overlapping windows of 100kb, containing at least ten SNPs. A 

less stringent absolute iHS score was applied to first isolate the unusual regions of the genome 

and subsequently windows containing top 1% proportion of the SNPs were identified. 

 

b. Cross-population extended haplotype homozygosity (XP-EHH) 

XP-EHH compares the evidence of selection across two populations at a core SNP, for instance, 

alleles that had risen to fixation in one population but not in the other populations. The use of a 

http://haplotter.uchicago.edu/
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reference population makes overlap between methods and findings across population difficult to 

interpret. Hence the HapMap YRI population with its greater genetic diversity was chosen as the 

reference population for all pairwise comparisons and only SNPs common to both populations 

within 1Mb of the core SNP were considered. Within the limits of 1Mb, the test was valid only if 

there exists another SNP with an EHH of between 0.3 and 0.5. In the case of multiple SNPs 

satisfying the above criterion, the SNP with an EHH closest to 0.04 was considered. For each 

population, the integral of the EHH at all SNPs bounded by the core SNP and the second SNP 

(with EHH between 0.3 and 0.5) were calculated and the logarithmic ratio of the two resultant 

integrals was defined as the XP-EHH log ratio. In a similar fashion as iHS, the log-ratios were 

standardized to have mean zero and standard deviation one. XP-EHH was primarily used to 

confirm differential iHS signals hence we defined a candidate selection region as a region with a 

cluster of SNPs with |XP-EHH scores| > 2.5. This corresponds to the top 1% of the standardized 

XP-EHH distribution. 
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CHAPTER 4 – SINGAPORE GENOME VARIATION PROJECT (SGVP)Motivation 

The fundamental concept underlying genome-wide association studies relies on detecting indirect 

associations, where the genetic variants being queried are not directly responsible for the disease 

but are located near the causal variants and thus correlated (in linkage disequilibrium) with the 

causal variants. The HapMap Project cataloged a set of informative markers that capture common 

genetic variations across four populations from African, European and Asian ancestry. While this 

correlation reduces the amount of genotyping to perform, it can vary across the human genome 

and across different populations. As the success of genome-wide association studies in diverse 

populations leverage on assaying genetic variants in sufficiently strong linkage disequilibrium 

with the causal variants, how well association signals are transferable across diverse populations 

thus depends on how representative are the HapMap populations for the other populations.   

 

Singapore is a small and young country with a migratory history predominantly consisting of 

immigrants with Chinese, Malay (indigenous) and Indian genetic ancestries from neighbouring 

countries such as China, Indonesia, Malaysia and India. As of 2010, there are 3.2 million citizens 

or permanent residents living in Singapore with the following ethnic composition, 74.1% Chinese, 

13.4% Malays and 9.2% Indians132.  The Chinese community consists mainly of descendents of 

early Han Chinese settlers from the southern provinces of China, such as Fujian and Guangdong 

as determined from their dialect groups (linguistic properties)133. Malays are indigenous to 

Singapore, with migration of Malays from the Peninsular Malaysia as well as Javanese and 

Boyanese people from Indonesia. Cultural and religious similarities between the indigenous and 

immigrant Malays have resulted in intermarriages and the descendents from these marriages are 

now collectively known as Malays. Indians in Singapore comprise of people with paternal 

ancestries tracing back to the India subcontinent. The British colonization of Singapore had 
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brought Indian migrants from the India subcontinent, with the majority consisting of Telugas and 

Tamils from southeastern India and a minority of Sikhs and Pathans from north India.  

 

To embark on studies to identify genetic determinants of diseases within these three ethnic groups 

residing in Singapore, it would be essential to understand the genetic diversity of these 

populations and the extent of global diversity. The Singapore Genome Variation Project (SGVP) 

was thus initiated as a dense genetic resource that lay the foundation of genetic association 

studies in three ethnic groups residing in Singapore.  Results presented are based on the post 

quality control set of 96 Singapore Chinese (CHS), 89 Singapore Malays (MAS) and 83 

Singapore Indians (INS), combined over two genotyping arrays, Affymetrix 6.0 and Illumina1M.  

 

4.2. Population structure 

The principal components analysis was applied to post-QC data (see Chapter 3) from the three 

ethnic groups in Singapore, with various reference panels such as the HapMap and a catalog of 

Indian individuals collected by Reich and colleagues52 (Figure 9).  
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Figure 9. Principal components analysis maps of A) HapMap II and SGVP populations; B) Asia 
panels of HapMap II (CHB and JPT), SGVP and 19 diverse groups in India52; C) SGVP 
populations and D) Asia panels of HapMap II (CHB and JPT) with SGVP CHS. All plots show 
the second axis of variation against the first axis of variation (originally from reference 115).  
 

First, we looked at the global diversity of the SGVP population superimposed on the global 

genetic diversity map, HapMap II including populations from European, African and Asian 

ancestries (Figure 9A). The first axis of variation at the global level effectively distinguished the 

African samples from the rest of the samples, while the second axis of variation addressed the 

differences between the European and Asian ancestries. Not surprisingly, at the global diversity 

scale, the Chinese in Singapore CHS were not distinguishable from the Han Chinese from Beijing 

CHB and Japanese from Tokyo JPT, which we collectively refer to as the Far East Asian cluster. 

The Malays in Singapore MAS were observed to be highly similar to the Far East Asian cluster, 
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although there appeared to be some degree of admixture, likely due to inter-marriages and 

migratory history. The Indians in Singapore also showed some admixture and were genetically 

closer to the CEPH with European ancestry CEU than to the Far East Asian cluster.  

 

Together with HapMap Asian panels (CHB and JPT) and 98 samples from 19 diverse groups of 

Indian ancestry52, the Asian diversity map is presented in Figure 9B. The first axis of variation 

distinguished the Indians from the India subcontinent (including INS) from the Far East Asian 

cluster comprising of the two Chinese populations (CHB and CHS), Japanese (JPT) and Malays 

(MAS). Within the Asian diversity, the second axis of variation appeared to coincide with a 

north-south cline that almost reflected their respective geographical locations on the physical 

world map. The Han Chinese CHB and Japanese JPT appeared to be reasonably distinct from 

each other. The Singapore Chinese CHS were closer to the Han Chinese in Beijing CHB but there 

appeared to be a cline, confirming the Northern and Southern cline of the Chinese and consistent 

with the migratory history of Singapore. The 98 samples from Reich and colleagues52 were also 

separated along a north-south cline, with warmer colors representing those with a higher 

proportion of the Ancestral North Indians ANI ancestry (who are genetically closer to the Middle 

Easterners, Central Asians and Europeans) and the cooler colors representing those with a lesser 

proportion of the ANI ancestry. On the Asian diversity scale, Singapore Indians INS cluster with 

the 98 Indian samples from the India subcontinent.  

 

Within Singapore, INS was more differentiated compared to CHS (Fst = 3.9%) and MAS (Fst = 

2.7%), in contrast to the Fst = 0.6% between CHS and MAS (Figure 9C). Finally, comparing the 

Far East Asian cluster of CHB, JPT and CHS, there was a clear separation between CHB and 

CHS, although there were samples from CHB clustering together with CHS and vice versa 
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(Figure 9D). The Japanese JPT were more differentiated compared to CHB (Fst = 0.3%) and CHS 

(Fst = 0.4%) while Fst between CHB and CHS was 0.2%.  

 

4.3. SNP and haplotype diversity and variation in linkage disequilibrium 

The continuous axes of genetic variation from genome-wide principal components analyses 

suggested that the three ethnic groups residing in Singapore are pretty diverse, especially the 

Malays and Indians. We next look at how that diversity affects linkage equilibrium structure 

within these populations and compared against the HapMap, as these will have implications on 

the genetic association studies carried out in these three populations.  

 

At the SNP level, comparing allele frequencies across pairwise panels using heatmaps in bins of 

0.05, there was less variation in the allelic spectrum between CHS and MAS (Figure 10A), 

compared with CHS and INS (Figure 10B) and MAS with INS (Figure 10C). The pairwise allelic 

spectrums appeared almost symmetric between CHS and HapMap CHB (Figure 10D) and 

between CHS and MAS, indicating a greater degree of genetic similarity in these populations. 
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Figure 10. Allele frequency comparison between pairs of population: A) MAS against CHS; B) 
INS against CHS; C) INS against MAS; D) CHB against CHS. Each axis represents the allele 
frequencies for each population. For each SNP, the minor allele was defined across all the SGVP 
populations and subsequently the frequency of that allele was computed in each population. 
Twenty allele frequency bins each spanning 0.05 were constructed and the number of SNPs with 
MAF falling in each bin were tabulated/color-coded for each population (originally from reference 70). 
 

Using the linkage disequilibrium metric r2 computed on a single SNP basis across four HapMap 

populations and three SGVP populations, the degree of linkage disequilibrium decay was similar 

in the non-African populations, with linkage disequilibrium least conserved in the Africans 

(Figure 11).  
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Figure 11. Decay of linkage disequilibrium with physical distance (kb) measured by r2 with 
increasing distance up to 250kb for each of the HapMap and SGVP populations. 90 chromosomes 
were selected from each of the populations and only SNPs with MAF ≥ 5% were considered 
(originally from reference 70).  
 

Next we looked at the haplotype diversity in 22 unlinked regions of 500kb long from each of the 

autosomal chromosomes in the same populations, thinned to the same SNP density spanning an 

average of 174 SNPs (Figure 12). For each population, we counted the number of distinct 

haplotypes in the region and the proportion of chromosomes accounted for by the corresponding 

distinct haplotype. The figure below showed the number of distinct haplotypes against the 

percentage of chromosomes considered for each of the HapMap and SGVP populations. Looking 

across the plot horizontally, 12 distinct haplotypes only accounted for slightly over 40% of the 

chromosomes in the YRI, the lowest across all populations. There was considerably higher 

haplotype diversity in YRI when compared with the rest, while the populations with Far East 

Asian ancestries (CHB, JPT and CHS) had the lowest haplotype diversity. There are a few factors 

affecting the haplotype diversity in these populations. The African population YRI had shorter 

linkage disequilibrium (also seen from the decay of linkage disequilibrium over distance) and 

hence more diversity in their haplotypes compared to the rest of the populations. Populations 

which are more heterogeneous would also likely have higher haplotype diversity. For instance, 

among the SGVP populations, INS had the greatest haplotype diversity, with 12 haplotypes 
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accounting for 57% of the INS chromosomes. This was followed by MAS, with 68% of the 

chromosomes accounted for by 12 haplotypes and 79% in the CHS. 

 

Figure 12. The plot showed the percentage of chromosomes that could be accounted for by the 
corresponding number of distinct haplotypes on the y-axis, over 22 unlinked regions of 500kb 
from each of the autosomal chromosomes (originally from reference 70). 
 

In assessing linkage disequilibrium differences, heatmaps have been one of the conventional 

ways of visualizing differences in linkage disequilibrium across populations. These traditional 

heatmaps are difficult to assess since it is not easy to discern the significance of different linkage 

disequilibrium blocks across populations. We thus look at variation in linkage disequilibrium 

across pairs of populations using the varLD method, quantifying regional linkage disequilibrium 

differences.  

 

A region that showed considerable signals of linkage disequilibrium variation from multiple pairs 

of populations coincided with reported association signals from genome-wide association 

analyses spanned the CDK5 regulatory subunit associated protein 1-like 1 (CDKAL1) gene on 

chromosome 6 (Figure 13). Our analysis indicated that the implicated index variant rs7754840 

was found in a region with extensive linkage disequilibrium differences between populations and 

yet, associated with Type 2 Diabetes in many European12,134-137 and Asian138-149 populations. This 

would have implications on replication of the signals across populations and it is likely that this 
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index variant is in sufficient linkage disequilibrium with the causal variant(s) across all the 

populations. We will re-visit this locus with the Type 2 Diabetes data in Study 2.  

 

Figure 13. Variation in linkage disequilibrium scores at the CDKAL1 locus, with r2 heatmaps and 
population specific recombination rates (originally from reference 70). 
 

Linkage differences across populations between the index SNPs and the causal variant is one of 

the reasons behind the failure to replicate association signals across populations. In an East Asian 

meta-analysis of blood pressure in 19,608 individuals150, we looked up 13 established European 

implicated index SNPs from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) with 29,136 individuals of European descent151 and Global Blood 

Pressure Genetics (Global BPgen) with 34,333 individuals of European descent152. Of the 13 

index variants, 7 of those replicated at p < 0.05 with consistent direction as the European results. 

We noted the smaller sample size in the East Asian meta-analysis compared to the European 

meta-analyses. In addition, we also applied varLD to look for evidences of LD differences at 

these 13 loci. Using the HapMap CEU and JPT+CHB populations, the following figure showed 
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the standardized varLD scores over a 200kb region centered on the index SNP, and a standardized 

varLD score of 2 indicated the empirical threshold across the genome. For the seven reported 

variants that showed an association with blood pressure in East Asians, there was limited 

evidence of linkage disequilibrium differences between European and East Asian populations at 5 

(of 7) loci (unshaded in Figure 14) that harbor these variants. On the other hand, for the 6 

reported variants for which we did not detect an association with the index SNP in East Asians, 

we found significant differences in linkage disequilibrium between the ethnic groups at 4 (of 6) 

loci (shaded red in Figure 14) harboring these variants.  
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Figure 14. varLD assessment at 13 European established blood pressure loci, comparing HapMap 
CEU and JPT+CHB. Each plot illustrates the standardized varLD score (orange dotted circles) for 
200kb region surrounding the index reported SNP. The horizontal gray dotted lines indicate the 5% 
empirical threshold at varLD score = 2 across the genome (originally from reference 150).  
 

4.4. Signatures of positive selection 

The availability of dense SNP data also allowed the survey of signatures of positive selection 

across the genome for these populations. Many of the selection signals found in the SGVP 

populations coincided with the selection signals found in HapMap17,130. Of these, many were well 

known to be implicated in alcohol dehydrogenase153 (ADH) gene cluster and skin pigmentation154-
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156 (solute carrier family 24, member 5 SLC24A5 in INS; oculocutaneous albinism II OCA2 in 

CHS and MAS; tyrosinase-related protein 1 TYRP1 in CHS and MAS; myosin VA (heavy chain 

12, myoxin) MYO5A in CHS, MAS and INS). Interestingly, one of top candidate selected regions 

in MAS was the kinesin family member 11/ hematopoietically expressed homeobox 

(KIF11/HHEX) locus that was implicated in the risk of Type 2 Diabetes in Europeans12,134-137 and 

Asian138,141,144,146,149 populations including Chinese and Japanese but not in the Malays (Table 5). 

We further looked at this locus in HapMap CEU and Type 2 Diabetic controls from SP2, SiMES 

and SINDI by identifying the most common haplotype in the region126. Using the index SNP with 

the highest iHS score in the Malays, the longest common haplotypes across the four populations 

were showed in Figure 15. Both the Chinese and Malays controls haplotypes carry the non-risk 

allele of the Type 2 Diabetes implicated SNP rs1111875. The selection signal appeared to be 

originating 0.5Mb downstream of HHEX near CYP26A1, suggesting possible genetic hitchhiking 

at this locus.  

 

Figure 15. Visual representation of the haplotypes in Type 2 Diabetes controls of the Chinese 
(SP2), Malay (SiMES) and Indian (SINDI) cohorts and HapMap CEU. 
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Table 5. Top ten candidate regions of recent positive natural selection from the integrated 
haplotype score and if it had been previously observed in HapMap18 (originally from 70). 

Chr Bin start Bin end Genes in bin In HapMap 
CHS 

2 17,400,000 17,800,000 VSNL1, SMC6, GEN1 -- 
2 25,800,000 26,400,000 ASXL2, KIF3C, HADHA, RAB10, HADHB, 

GPR113 
-- 

2 108,300,000 108,500,000 SULT1C2, GCC2 Yes 
2 125,200,000 126,100,000 CNTNAP5 -- 
2 197,300,000 197,500,000 GTF3C3, PGAP1 Yes 
3 108,900,000 109,200,000 BBX -- 
4 143,700,000 144,600,000 USP38, GAB1 Yes 
7 5,400,000 5,800,000 KIAA1856, FBXL18, ACTB, FSCN1, TRIAD3 -- 
10 107,200,000 107,500,000 -- Yes 
12 1,100,000 1,400,000 ERC1 -- 

MAS 
1 153,100,000 153,400,000 PMVK, PBXIP1, PYGO2, SHC1, CKS1B, FLAD1, 

LENEP, ZBTB7B, DCST2, ADAM15, DCST1, 
EFNA4, EFNA3, EFNA1, RAG1AP1, DPM3 

-- 

2 84,300,000 84,900,000 SUCLG1 -- 
3 108,600,000 109,200,000 BBX -- 
5 117,400,000 117,900,000 -- -- 
8 67,000,000 67,100,000 -- -- 
10 94,400,000 95,100,000 KIF11, HHEX, EXOC6, CYP26A1, CYP26C1, 

FER1L3 
Yes 

11 25,100,000 25,600,000 -- Yes 
12 87,000,000 87,600,000 CEP290, TMTC3, KITLG  
15 61,600,000 62,600,000 USP3, FBXL22, HERC1, DAPK2, FAM96A, 

SNX1, SNX22, PPIB, CSNK1G1, TRIP4, ZNF609 
Yes 

17 25,000,000 25,500,000 SSH2, EFCAB5, CCDC55 -- 
INS 

2 82,800,000 83,100,000 -- -- 
2 96,300,000 97,100,000 SNRNP200, NCAPH, ITRIPL1, NEURL3, 

ARID5A, FER1L5, CNNM4, CNNM3, SEMA4C, 
ANKRD23, ANKRD39, FAM178B 

-- 

4 29,100,000 30,000,000 --  
4 32,900,000 34,200,000 -- Yes 
4 41,500,000 41,900,000 TMEM33, WDR21B, SLC30A9, CCDC4 Yes 
7 119,500,000 120,300,000 KCND2, TSPAN12 -- 
8 42,600,000 42,800,000 CHRNB3, CHRNA6 -- 
11 60,600,000 61,000,000 CD5, VPS37C, PGA3, PGA4, PGA5, VWCE, 

DOB1, DAK, CYBASC3, FLJ12529, C11orf79 
-- 

16 30,800,000 31,100,000 CTF1, FBXL19, ORAI3, SETD1A, STX4, BCKDK, 
HSD3B7, STX1B2, ZNF668, ZNF646, VKORC1, 
PRSS8, TRIM72, PRSS36, MYST1, FUS 

-- 

17 24,900,000 25,900,000 TP53I13, GIT1, ANKRD13B, CORO6, SSH2, 
EFCAB5, CCDC55, SLC6A4, BLMH, TMIGD1, 
CPD, GOSR1 

-- 
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4.5. Summary 

We now have a resource map of the genetic diversity of major ethnic groups in Singapore, which 

formed the basis of understanding ethnic differences in linkage equilibrium variations. Given a 

shared causal variant, there exist different index SNPs associated with disease identified in 

different populations. Replication and meta-analysis that rely on the transferability of the index 

implicated SNPs across populations will not be straightforward. Study 2 will explore these issues 

in greater details in the same populations, looking at Type 2 Diabetes in Chinese, Malays and 

Indians.  

 

Key findings from Study 1: 

I. Malays and Indians in Singapore showed some degree of admixture due to inter-marriages 

and migratory patterns. Chinese in Singapore formed a North-South cline with the HapMap 

Han Chinese from Beijing (CHB), again consistent with the migratory history of Singapore 

Chinese. 

II. Populations which are more heterogeneous would have higher haplotype diversity. Within 

Singpaore, the Indians had the highest haplotype diversity, followed by the Malays and lastly 

the Chinese.  

III. Genome-wide survey of signatures of positive selection coincided with selection signals 

found in HapMap.  
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CHAPTER 5 – TRANSFERABILITY OF TYPE 2 DIABETES LOCI IN MULTI-ETHNIC 

COHORTS FROM ASIA 

5.1. Motivation 

Type 2 Diabetes mellitus is a major chronic disease that affects more than 30 million people 

worldwide. The greatest increase in Type 2 Diabetes prevalence in the coming years is likely to 

be from Asia. With aging populations coupled with a more affluent and sedentary lifestyle from 

urbanization, the incidence of Type 2 Diabetes is expected to rise in these populations which 

already have higher rates of insulin resistance and metabolic syndrome74,157,158. In addition, these 

adverse effects on health also meant that Type 2 Diabetes develops earlier in Asians compared to 

the Europeans. The social economic burden of these younger diabetics, thus with a longer disease 

duration, and their co-morbidities such as cardiovascular diseases, diabetic nephropathy, diabetic 

retinopathy become a problem that needs to be addressed.  

 

Type 2 Diabetes has benefited enormously from the advent of genome-wide genetic association 

studies. Since the discovery of the TCF7L2 locus from linkage studies, and PPARG and KCNJ11 

from candidate gene studies, there has been at least forty other loci identified from genome-wide 

association studies associated with Type 2 Diabetes12,67,68,76,91,134-137,146,149,159-162. There is limited 

information on the transferability of the established loci in populations of other ethnicity as most 

of these studies had been carried out in populations of European descent and in large number of 

samples12,76.  

 

It is important to carry out genome-wide search for Type 2 Diabetes susceptibility locus in 

multiple populations and evaluate the transferability of established loci across populations. A 

common strategy is to genotype only the index implicated variants in other independent 

populations. If the causal variant(s) is(are) common across populations, variation in linkage 
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disequilibrium between index variant and causal variant among populations, allele frequency and 

effect size differences might potentially mask real associations across populations or result in the 

failure to detect genuine associations.  

 

With the multi-ethnic demography of Singapore, we performed three population-based Type 2 

Diabetes case control genome-wide association studies in three ethnic groups: Chinese (2,010 

cases and 1,945 controls), Malays (794 cases and 1,240 controls) and Indians (977 cases and 

1,169 controls) (Figure 16). Details of the quality control process are described in Chapter 3. The 

Chinese were genotyped on a combination of Illumina610 and Illumina1M arrays while the 

Malays and Indians were entirely genotyped on Illumina610 arrays. Table 6 below showed the 

summary characteristics of the study samples in each population. The cases were generally older 

than the controls, especially for the Chinese. Including age as a covariate was not effective in 

adjusting for the confounding effect as it resulted in spurious association from the disparate age 

distributions. All subsequent analyses presented were without covariate adjustment. The Malays 

and Indians had a higher BMI than the Chinese. Stratification by BMI status will be further 

discussed in Study 4 (Chapter 7).  
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Figure 16. Diagram summarizing the study designs and analytical procedures for each of the genome-wide association studies (originally from reference 115) 
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Table 6. Summary characteristics of cases and controls stratified by their ethnic groups and genotyping arrays (originally from reference 115). 

Characteristics 
Chinese Malaya Asian Indiana 

Illumina610quad Illumina1Mduov3 Illumina610quad Illumina610quad 
Cases Controls Cases Controls Cases Controls Cases Controls 

N 1,082 1,006 928 939 794 1,240 977 1,169 

Sex Ratio M/F (%) 402/680 
(37.15/62.85) 

217/789 
(21.57/78.43) 

602/326 
(64.87/35.13) 

599/340 
(63.79/36.21) 

405/389 
(51.01/48.99) 

645/595 
(52.02/47.98) 

531/466  
(54.35/45.65) 

566/603  
(48.42/51.58) 

Ageb (yr) 65.07 (9.70) 47.69 (11.07) 63.67 (10.81) 46.74 (10.23) 62.27 (9.90) 56.89 (11.39) 60.71 (9.85) 55.73 (9.72) 
Age at diagnosisb (yr) 55.65 (11.96) -- 52.15 (14.40) -- 54.35 (11.19) -- 51.35 (10.63) -- 

Fasting glucoseb (mmol/L) -- 4.67 (0.45) -- 4.73 (0.46) -- -- -- -- 
HbA1Cb -- -- -- -- 8.05 (1.84) 5.60 (0.30) 7.56 (1.52) 5.55 (0.28) 

BMIb (kg/m2) 25.27 (3.92) 22.30 (3.67) 25.42 (3.81) 22.84 (3.41) 27.82 (4.88) 25.13 (4.82) 27.06 (5.10) 25.33 (4.40) 
a For Malay and Asian Indian samples, diabetic samples are defined as either with history of diabetes or HbA1c ≥ 6.5% while controls are defined as no 
history of diabetes and HbA1c < 6%. 
b Mean(Standard Error). 
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5.2. Results from genome-wide scans 

In the genome-wide scans by ethnic groups, we only identified a genome-wide significant SNP 

rs1048886 (P-value = 3.48 x 10-8) on chromosome 6 in the Indians but it was not significant in 

the Chinese (P-value = 9.95 x 10-1) nor Malays (P-value = 8.23 x 10-2). This locus was also not 

found to be associated with Type 2 Diabetes in a larger South Asian meta-analysis at P-value < 

10-4in Study 3 (Chapter 6). It is highly likely that this locus was a false positive. Although no 

SNP showed genome-wide significance in the meta-analysis across the studies, we present the 

data for SNPs that showed suggestive evidence of association at P-value < 10-5. Table 7 below 

showed the list of top regions from the fixed effects meta-analysis of the GWAS results across the 

ethnic groups. Among the top suggestive loci, two of the loci were well-established implicated 

loci for Type 2 Diabetes, CDKAL1 and HHEX. Others include high mobility group 20A 

(HMG20A), zona pellucida-like domain containing 1 (ZPLD1) and hormonally upregulated Neu-

associated kinase (HUNK) which showed no evidence of heterogeneity among the three ethnic 

groups and finally chromosome 6 open reading frame 57 (C6orf57) which was primarily driven 

by the Indians.  
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Table 7. Statistical evidence of the top regions (defined as P < 10-5) that emerged from the fixed-
effects meta-analysis of the GWAS results across Chinese, Malays and Asian Indians, with 
information on whether each SNP is a directly observed genotype (1) or is imputed (0). 
Combined minor allele frequencies of each index SNP is at least 5%. The I2 statistic refers to the 
test of heterogeneity of the observed odds ratios for the risk allele in the three populations, and is 
expressed here as a percentage (originally from reference 115). 

SNP Chr Pos (bp) Nearest 
gene 

Risk 
allele 

Ref 
allele 

Genotyped 
(1) 
or 

imputed (0)a 

N 

Chinese + Malays + Indians 
(3781 cases/4354 controls) 

Risk  
allele 

frequencyb 

Fixed effects 
OR (95% 

CI) 

Fixed effects  
P-value 

I2 
(%) 

rs7119 15 75564687 HMG20A T C 1111 8,135 0.188 1.24  
(1.14-1.34) 5.24 × 10-7 0 

rs2063640 3 103685735 ZPLD1 A C 1111 8,131 0.167 1.23  
(1.13-1.34) 3.47 × 10-6 0 

rs2833610 21 32307057 HUNK A G 1111 8,127 0.567 1.17  
(1.09-1.24) 3.90 × 10-6 0 

rs6583826 10 94337810 KIF11 G A 1111 8,134 0.259 1.18  
(1.10-1.27) 7.38 × 10-6 0 

rs1048886 6 71345910 C6orf57 G A 1111 8,135 0.110 1.26  
(1.14-1.39) 9.70 × 10-6 85.40 

rs9295474 6 20760696 CKDAL1 G C 0000 8,079 0.357 1.16  
(1.09-1.24) 8.59 × 10-6 33.46 

a This column shows whether each SNP is directly genotyped (1) or imputed (0) in each of the case control studies shown in Table 3. Each digit 
represents a case control study in the following order from left to right: Chinese on Illumina610, Chinese on Illumina1M, Malays on Illumina610 and 
Indians on Illumina610.  
b Risk allele frequencies are sample size weighted frequencies across the three ethnic groups. 

 

5.3. Evaluating transferability of known loci across populations 

To evaluate the transferability of established disease implicated loci in our populations, we 

assessed the evidence of association at these loci in our populations, defining statistical 

significance as P-value < 0.05. For SNPs that were not directly observed, they were imputed with 

IMPUTEv258, which allowed the inclusion of population specific genotype information from 

SGVP to increase the haplotype diversity and reduce the chance of false negatives due to the use 

of an inappropriate reference panel. Among the 35 loci, only KCNJ11 (Chinese P-value = 3.63 x 

10-2 and Malay P-value = 2.26 x 10-2), CDKAL1 (Chinese P-value = 1.03 x 10-4 and Indian P-

value = 3.60 x 10-2) and HHEX/IDE (Chinese P-value = 2.79 x 10-2 and Indian P-value = 2.19 x 

10-2) showed evidence of association with Type 2 Diabetes in more than one population (Table 8). 

The majority of associations were present only in one population, namely, HNF1 homeobox B 

(TCF2/HNF1B), insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), ArfGAP with 

RhoGAP domain, ankyrin repeat and PH domain 1 (CENTD2), C2 calcium-dependent domain 

containing 4B (C2CD4A-C2CD4B) and FTO in the Chinese; KCNQ1 in the Malays and TCF7L2 



99 

 

and B-cell CLL/lymphoma 11A (BCL11A) in the Indians (Table 8). Finally, the meta-analysis 

across the three ethnic groups also exhibited associations at insulin receptor substrate 1 (IRS1) 

and solute carrier family 30 (zinc transporter), member 8 (SLC30A8).  

 

As our study was underpowered with the relatively smaller sample sizes compared to the tens of 

thousands of samples used in the initial discovery of these loci, we sought to evaluate consistency 

in the direction of effects at index SNPs from each of the established loci. Many genome-wide 

scans tend to oversample affected relative to the proportion present in the general population. 

SNPs reaching genome-wide significance from the discovery studies tended to have effect size 

estimates that were upwardly biased163. This constitutes the winner’s curse and subsequent 

replication efforts are dependent on the power in the original study. If the power to detect the 

original association is low, then the ascertainment effect on the replication efforts will be much 

more substantial164. Thus wherever possible, the published odds ratios (ORs) from combined 

discovery and replication stages were presented to avoid winner’s curse. Figure 17 compared the 

published odds ratios from established Type 2 Diabetes implicated loci with the reported ORs 

from each of the individual genome-wide scans and meta-analysis. For the same allele that was 

associated with high risk in the original discovery studies, our ORs were generally consistent with 

what had been reported. Firstly, there was an over-representation of loci found to be associated 

with Type 2 Diabetes, where the number of nominally associated loci would be expected by 

chance under the null of P-value = 0.05 (Binomial test one-sided P-values: 2.85 x 10-4 for 

Chinese, 1.05 x 10-1 for Malays, 2.22 x 10-2 for Indians and 3.31 x 10-7 for meta-analysis). We 

observed that the same allele that conferred risk in the three populations were in accordance with 

the published results, with a two-sided binomial test for consistency of direction given by 5.92 x 

10-3 for Chinese, 9.30 x 10-2 for Malays, 4.34 x 10-3 for Indians and 1.49 x 10-3 for meta-analysis. 

In addition, a greater proportion of SNPs displayed attenuated odds ratios in our populations 
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when compared to the effect sizes at each of the index SNPs, with two sided P-values given by 

Chinese: 5.22 x 10-2; Malays: 3.47 x 10-2; Indians: 8.55 x 10-4 and meta-analysis: 7.20 x 10-3. 

 

Figure 17. Bivariate plots comparing odds ratios established in populations of European ancestry 
against odds ratios observed in each of the ethnic groups (originally from reference 115).  
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Table 8. Known Type 2 Diabetes susceptibility loci tested for replication in three Singapore populations individually and combined meta-analysis. 
Published odds ratios (ORs) were obtained from European populations and correspond to the established ORs in Figure 17. Risk alleles were in 
accordance with previously established risk alleles. Information on whether each SNP was a directly observed genotype (1), or imputed (0) or not 
available for analysis (.) was presented in the table. Power (%) referred to the power for each of these individual studies to detect the published 
ORs at an α-level of 0.05, given the allele frequency and sample size for each study (originally from reference 115). 

SNP Chr 
Pos  

(bp) 

Nearest 

Gene 

Risk 

allele 

Ref 

allele 

Pub- 

lished 

OR 

Genotyped (1) 

Imputed 

(0) 

Not 

Available 

(.)a 

Chinese 

(2010 cases/1945 controls) 

Malays 

(794 cases/1240 controls) 

Indians 

(977 cases/1169 controls) 

Chinese + Malays + Indians 

(3781 cases/4354 controls) 

Power 

Risk 

allele 

freq 

OR 

(95% CI) 
P-value Power 

Risk 

allele 

freq 

OR 

(95% CI) 
P-value Power 

Risk 

allele 

freq 

OR 

(95% CI) 
P-value 

Fixed effects 

OR 

(95% CI) 

Fixed 

effects 

P-value 

I2 

(%) 

Identified Through Candidate Gene Study 

rs1801282 3 12368125 PPARG C G 1.148 01.0 29 0.964 
1.07  

(0.84-1.35) 
5.79 x 10-01 -- -- -- -- 39 0.889 

1.10  

(0.91-1.33) 
3.22 x 10-01 

1.09  

(0.94-1.26) 
2.63 x 10-01 -- 

rs5215 11 17365206 KCNJ11 C T 1.093 1111 47 0.363 
1.10  

(1.01-1.21) 
3.63 x 10-02 27 0.401 

1.16  

(1.02-1.32) 
2.26 x 10-02 28 0.351 

1.03  

(0.91-1.16) 
6.86 x 10-01 

1.10  

(1.03-1.17) 
5.00 x 10-03 0 

Identified Through Linkage Study 

rs7903146 10 114748339 TCF7L2 T C 1.398 1111 94 0.023 
1.14  

(0.84-1.53) 
4.04 x 10-01 70 0.043 

1.20  

(0.87-1.64) 
2.62 x 10-01 100 0.284 

1.23  

(1.08-1.40) 
2.10 x 10-03 

1.21  

(1.08-1.36) 
8.26 x 10-04 0 

Identified Through Candidate Pathway Analysis 

rs10010131 4 6343816 WFS1 G A 1.11 0100 30 0.919 
1.03  

(0.88-1.21) 
7.32 x 10-01 26 0.839 

0.86  

(0.72-1.02) 
8.17 x 10-02 32 0.767 

1.04  

(0.90-1.20) 
6.10 x 10-01 

0.98  

(0.90-1.07) 
6.88 x 10-01 38.42 

rs757210 17 33170628 
HNF1B  

(TCF2) 
T C 1.179 1111 93 0.261 

1.12  

(1.01-1.24) 
2.51 x 10-02 70 0.338 

0.96  

(0.84-1.09) 
4.99 x 10-01 71 0.274 

0.94  

(0.82-1.07) 
3.63 x 10-01 

1.02  

(0.96-1.10) 
4.80 x 10-01 65.55 

Identified Through Type 2 Diabetes GWAS 

rs10923931 1 120319482 NOTCH2 T G 1.138 0000 26 0.026 
0.93  

(0.71-1.22) 
5.85 x 10-01 24 0.054 

1.12  

(0.85-1.48) 
4.21 x 10-01 47 0.211 

1.05  

(0.91-1.22) 
4.95 x 10-01 

1.04  

(0.92-1.17) 
5.17 x 10-01 0 

rs7578597 2 43586327 THADA T C 1.151 1111 29 0.995 
1.37  

(0.71-2.61) 
3.45 x 10-01 17 0.984 

0.74  

(0.45-1.23) 
2.49 x 10-01 39 0.879 

0.98  

(0.82-1.18) 
8.27 x 10-01 

0.97  

(0.82-1.15) 
7.35 x 10-01 7.07 

rs243021 2 60438323 BCL11A A G 1.08 1111 38 0.669 
1.05  

(0.96-1.16) 
2.87 x 10-01 22 0.536 

0.96  

(0.85-1.09) 
5.76 x 10-01 24 0.482 

1.13  

(1.00-1.28) 
4.75 x 10-02 

1.05  

(0.98-1.12) 
1.38 x 10-01 36.97 

rs2943641 2 226801989 IRS1 C T 1.087 1111 22 0.931 
1.06  

(0.89-1.26) 
5.29 x 10-01 16 0.892 

1.18  

(0.96-1.44) 
1.14 x 10-01 21 0.805 

1.15  

(0.99-1.34) 
6.64 x 10-02 

1.13  

(1.02-1.24) 
1.92 x 10-02 0 

rs6780569 3 23173478 UBE2E2 G A 1.17 1111 81 0.817 
1.12  

(1.00-1.25) 
5.97 x 10-02 58 0.791 

1.04  

(0.89-1.22) 
5.93 x 10-01 66 0.701 

1.05  

(0.92-1.20) 
4.75 x 10-01 

1.08  

(1.00-1.16) 
5.63 x 10-02 0 

rs4607103 3 64686944 ADAMTS9 C T 1.096 000. 53 0.661 
1.03  

(0.94-1.13) 
5.24 x 10-01 28 0.709 

0.94  

(0.82-1.09) 
4.19 x 10-01 -- -- -- -- 

1.00  

(0.93-1.08) 
9.29 x 10-01 -- 

rs1470579 3 187011774 IGF2BP2 C A 1.139 1111 77 0.255 
1.15  

(1.04-1.28) 
5.80 x 10-03 50 0.329 

0.99  

(0.86-1.13) 
8.59 x 10-01 57 0.469 

1.08  

(0.95-1.22) 
2.26 x 10-01 

1.09  

(1.02-1.16) 
1.59 x 10-02 39.17 

rs4457053 5 76460705 ZBED3 G A 1.08 00.. 18 0.055 
1.01  

(0.84-1.22) 
9.31 x 10-01 -- -- -- -- -- -- -- -- 

1.01  

(0.84-1.22) 
9.31 x 10-01 -- 

rs7754840 6 20769229 CDKAL1 C G 1.185 1111 97 0.369 1.20  1.03 x 10-04 76 0.369 1.06  3.95 x 10-01 71 0.245 1.16  3.60 x 10-02 1.15  2.34 x 10-05 12.52 
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(1.09-1.31) (0.93-1.21) (1.01-1.34) (1.08-1.23) 

rs864745 7 28147081 JAZF1 T C 1.121 0000 60 0.785 
1.00  

(0.89-1.11) 
9.36 x 10-01 34 0.758 

1.05  

(0.91-1.22) 
4.93 x 10-01 37 0.752 

1.10  

(0.95-1.26) 
2.07 x 10-01 

1.04  

(0.96-1.12) 
3.41 x 10-01 0 

rs972283 7 130117394 KLF14 G A 1.07 …. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

rs896854 8 96029687 TP53INP1 T C 1.06 1111 22 0.258 
1.05  

(0.95-1.16) 
3.42 x 10-01 13 0.29 

1.10  

(0.96-1.26) 
1.80 x 10-01 15 0.399 

1.02  

(0.90-1.15) 
7.91 x 10-01 

1.05  

(0.98-1.13) 
1.47 x 10-01 0 

rs13266634 8 118253964 SLC30A8 C T 1.149 1111 87 0.545 
1.08  

(0.98-1.18) 
1.07 x 10-01 58 0.573 

1.11  

(0.97-1.25) 
1.20 x 10-01 52 0.767 

1.08  

(0.94-1.25) 
2.82 x 10-01 

1.09  

(1.02-1.16) 
1.39 x 10-02 0 

rs10811661 9 22124094 CDKN2A/B T C 1.191 …. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

rs13292136 9 81141948 CHCHD9 C T 1.11 0000 30 0.913 
0.88  

(0.76-1.03) 
1.25 x 10-01 17 0.914 

0.91  

(0.73-1.13) 
3.83 x 10-01 24 0.855 

1.03  

(0.86-1.22) 
7.64 x 10-01 

0.94  

(0.85-1.04) 
2.17 x 10-01 0 

rs17584499 9 8869118 PTPRD T C 1.57 1111 -- 0.104 
1.00  

(0.87-1.16) 
9.91 x 10-01 -- 0.227 

1.06  

(0.91-1.23) 
4.43 x 10-01 -- 0.257 

0.95  

(0.83-1.09) 
4.46 x 10-01 

1.00  

(0.92-1.09) 
9.78 x 10-01 0 

rs12779790 10 12368016 
CDC123/ 

CAMK1D 
G A 1.092 …. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

rs1111875 10 94452862 HHEX/IDE C T 1.172 1111 90 0.3 
1.11  

(1.01-1.22) 
2.79 x 10-02 65 0.313 

1.08  

(0.94-1.23) 
2.81 x 10-01 71 0.381 

1.16  

(1.02-1.31) 
2.19 x 10-02 

1.12  

(1.05-1.19) 
1.09 x 10-03 0 

rs2237892 11 2796327 KCNQ1 C T 1.141 1111 80 0.686 
1.01  

(0.92-1.11) 
8.71 x 10-01 50 0.692 

1.28  

(1.12-1.47) 
3.42 x 10-04 16 0.976 

1.15  

(0.74-1.77) 
5.33 x 10-01 

1.09  

(1.01-1.18) 
2.40 x 10-02 75.43 

rs231362 11 2648047 KCNQ1 G A 1.08 000. 18 0.913 
0.97  

(0.83-1.13) 
6.86 x 10-01 14 0.856 

1.07  

(0.90-1.28) 
4.51 x 10-01 -- -- -- -- 

1.01  

(0.90-1.14) 
8.47 x 10-01 -- 

rs1552224 11 72110746 CENTD2 A C 1.14 1111 43 0.937 
1.35  

(1.12-1.63) 
1.38 x 10-03 24 0.923 

1.06  

(0.84-1.34) 
6.23 x 10-01 41 0.818 

0.97  

(0.83-1.14) 
6.97X 10-01 

1.10  

(0.99-1.23) 
6.89 x 10-02 72.68 

rs10830963 11 92348358 MTNR1B G C 1.129 .1.. 77 0.426 
0.92  

(0.81-1.05) 
1.98 x 10-01 -- -- -- -- -- -- -- -- 

0.92  

(0.81-1.05) 
1.99 x 10-01 -- 

rs1531343 12 64461161 HMGA2 C G 1.1 0000 34 0.104 
1.09  

(0.95-1.27) 
2.26 x 10-01 15 0.076 

1.22  

(0.96-1.55) 
1.07 x 10-01 24 0.187 

1.03  

(0.89-1.21) 
6.72X 10-01 

1.09  

(0.99-1.20) 
8.49 x 10-02 0 

rs7961581 12 69949369 
TSPAN8/ 

LGR5 
C T 1.106 0000 53 0.222 

0.98  

(0.88-1.09) 
7.42 x 10-01 30 0.219 

1.07  

(0.92-1.24) 
3.93 x 10-01 37 0.346 

1.01  

(0.89-1.14) 
9.33 x 10-01 

1.01  

(0.94-1.08) 
8.20 x 10-01 0 

rs7957197 12 119945069 HNF1A T A 1.07 …. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

rs11634397 15 78219277 ZFAND6 G A 1.06 01.. 12 0.075 
1.11  

(0.94-1.31) 
2.33 x 10-01 -- -- -- -- -- -- -- -- 

1.11  

(0.94-1.31) 
2.33 x 10-01 -- 

rs7172432 15 60183671 
C2CD4A- 

C2CD4B 
A G 1.12 1111 68 0.672 

1.13  

(1.03-1.24) 
1.06 x 10-02 40 0.677 

1.00  

(0.87-1.14) 
9.79 x 10-01 45 0.593 

1.01  

(0.89-1.14) 
9.08 x 10-01 

1.06  

(1.00-1.13) 
6.72 x 10-02 37.7 

rs8042680 15 89322341 PRC1 A C 1.07 1111 10 0.997 
1.12  

(0.48-2.65) 
7.90 x 10-01 8 0.970 

1.75  

(1.21-2.53) 
3.09 x 10-03 16 0.766 

1.00  

(0.87-1.16) 
9.60 x 10-01 

1.08  

(0.95-1.23) 
2.52 x 10-01 73.39 

rs9939609 16 52378028 FTO A T 1.116 0000 45 0.132 
1.27  

(1.11-1.45) 
3.79 x 10-04 37 0.300 

1.08  

(0.94-1.24) 
2.57 x 10-01 43 0.329 

1.09  

(0.96-1.24) 
1.96 x 10-01 

1.15  

(1.06-1.24) 
5.06 x 10-04 43.05 

rs391300 17 2163008 SRR C A 1.28 1111 100 0.655 
0.99  

(0.90-1.08) 
7.68 x 10-01 97 0.466 

0.99  

(0.87-1.12) 
8.48 x 10-01 98 0.440 

1.00  

(0.89-1.13) 
9.96 x 10-01 

0.99  

(0.93-1.06) 
7.63 x 10-01 0 

rs10425678 19 38669236 PEPD C T 1.14 1111 73 0.211 
0.87  

(0.78-0.97) 
9.98 x 10-03 43 0.224 

1.02  

(0.87-1.19) 
8.05 x 10-01 54 0.331 

0.93  

(0.82-1.05) 
2.51 x 10-01 

0.92  

(0.85-0.99) 
2.32 x 10-02 30.4 

a This column shows whether each SNP is directly genotyped (1) or imputed (0) in each of the case control studies shown in Table 3. Each digit represents a case control study in the following order from left to right: Chinese on Illumina610, Chinese on Illumina1M, Malays on Illumina610 and 
Indians on Illumina610. 
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5.4. Power and related issues 

While there was evidence of over-representation of association signals in a consistent direction in 

these Asian populations, we failed to observe statistically significant associations for a number of 

well-established loci, mostly in European populations. Our sample sizes were smaller compared 

to the large scale meta-analyses that discovered these variants. While meta-analysis boosted the 

sample size, the genetic heterogeneity across these populations implied that we were likely to 

detect those variants which showed little evidence of heterogeneity in meta-analysis, with similar 

effect sizes across the populations (Table 8). We were able to detect association at genetic 

variants from the earliest wave of the GWAS which tended to have smaller sample sizes and 

larger ORs, including CDKAL1, KIF11/HHEX, IGFBP2, SLC30A8 and FTO134-137. The smaller 

effect sizes observed in our populations which affect the power of the study may explain why we 

fail to detect an association at the other variants.    

 

TCF7L2 is by far the genetic variant that harbors the largest effect size for Type 2 Diabetes. 

However, we had not been able to observe any significant association in our Chinese and Malay 

populations. For the index SNP, rs7903146, the risk allele frequencies were less than 5% in the 

Chinese and Malays. However, the risk allele frequency of the Indians at this variant was 28.5%, 

improving our power to detect an association (P-value = 2.10 x 10-3). In a recent large scale Type 

2 Diabetes study conducted in Japanese, with the risk allele at 3.5% in 5,629 cases and 6,406 

controls, they were able to detect an association at this variant with OR of 1.54 reaching genome-

wide significance162.  

 

5.5. Allelic heterogeneity 

We further looked at CKDAL1, a well-established Type 2 Diabetes implicated locus, across these 

three genetically heterogeneous populations. In Figure 18 below, the left panel shows regional 
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association plots of the index variant (from meta-analysis of the three populations) associated 

with Type 2 Diabetes in our populations. An association in this locus was observed only in the 

Chinese and Indians. The right panel shows the same locus, conditioned on rs7754840, the index 

SNP indentified in populations of European descent134,135. For the Chinese, we note that the 

conditional analysis (conditioned on rs7754840) effectively removed the association at this locus, 

suggesting that the observed association might be attributed to the same variant giving rise to an 

association in the European populations. On the other hand, in the Indians, conditional analysis 

attenuated signals near the index SNP but boosted signals upstream. It is possible that the 

European index SNP rs7754840 is a poor surrogate for the same causal variant in the Indians or 

there could be more than one casual variant in this region, i.e., allelic heterogeneity. Thus the 

European index SNP do not entirely account for the association signals observed at this locus in 

the Indians. 
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Figure 18. Regional association plots of the index SNP in CDKAL1. The left column of panels 
showed the univariate analysis while the right column of panels showed conditional analysis on 
the index SNP rs7754840 that was established in the Europeans. In each panel, the index SNP 
was represented by a purple diamond and the surrounding SNPs coloured based on their r2 with 
the index SNP from the HapMap CHB+JPT reference panel. Estimated recombination rates 
reflect the local linkage disequilibrium structure in the 500kb buffer and gene annotations were 
obtained from the RefSeq track of the UCSC Gene Browser (refer to 
LocusZoom http://csg.sph.umich.edu/locuszoom/ for more details) (originally from reference 115).  
 

The KCNQ1 gene is another Type 2 Diabetes implicated locus exhibiting allelic heterogeneity 

between populations of European and Asian descent12. This regional plot (Figure 19) shows the 

association results centered at the KCNQ1 gene, with the association signals in each of the ethnic 

groups distinguished by color (Chinese – red, Malay – green and Indians – blue). Also plotted 

http://csg.sph.umich.edu/locuszoom/
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were two index SNPs, in purple alphabets representing each of the three ethnic groups. One of the 

index SNPs was rs2237892 which was found associated with Type 2 Diabetes in 6,800 case 

control pairs from Japanese, Korean and Chinese populations in 200867. We also noted the newly 

established variant rs231362 from DIAGRAM+ that was 200kb upstream of the index variant of 

the Asian studies, which did not show any association in the Chinese and Malays, while the same 

index SNP was not available for Indians12.  

 

Figure 19. Regional association plots around the KCNQ1 gene. The three ethnic groups are 
represented by three separate colors, red: Chinese, green: Malays and blue: Indians. Two index 
SNPs rs231362 and rs2237892 are plotted in purple and indicated by the first alphabet of the 
three ethnic groups. Note that rs231362 is not available for the Indians. 
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5.6. Summary 

Despite the limited power of our studies, we showed that, among the associated variants 

established in the European populations for Type 2 Diabetes, there were more statistically 

significant associations detected in our studies that would be expected by chance, with 

consistency in direction of effects. Therefore we demonstrated that many of the variants 

established in the European populations were likely to be relevant in these Asian populations. We 

also discussed the possible reasons for failing to replicate association signals across populations: 

(i) power; (ii) variation in linkage disequilibrium and (iii) allelic heterogeneity. From the KCNQ1 

example, there is potential in non-European populations to detect novel loci, which might be 

common across populations or population specific, possibly due to different allelic frequencies or 

attributable to differences in environmental modifiers. In Study 3, which is in the next chapter, we 

look at a meta-analysis across three Type 2 Diabetes studies from individuals of South Asian 

ancestry.   

 

Key findings from Study 2: 

I. The individual population genome-wide association studies and meta-analyses failed to detect 

any new genome-wide association with Type 2 Diabetes.  

II. There was an over-representation of established Type 2 Diabetes loci in the meta-analysis 

that would be expected by chance, with the same risk allele conferring risk across populations, 

indicating the presence of shared causal variants across world-wide populations.  

III. Similarly, there were established Type 2 Diabetes loci where we failed to replicate in the 

Singapore populations. Possible reasons include the lack of power in these smaller studies, 

variation in linkage disequilibrium between populations at index SNPs and allelic 

heterogeneity at implicated loci.  
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CHAPTER 6 – GENOME-WIDE ASSOCIATION STUDY IDENTIFIES SIX TYPE 2 

DIABETES LOCI IN INDIVIDUALS OF SOUTH ASIAN ANCESTRY 

6.1. Motivation 

South Asian Indians have one of the highest rates of Type 2 Diabetes in the world74,165,166 and the 

number of South Asians affected by this chronic disease is projected to reach 80 million by 

2030166. The prevalence differs across India, with prevalence lowest for non-obese, physically 

active Indians living in the rural regions and highest in the most urbanized states, where people 

tend to have a more sedentary lifestyle and are more likely to be obese165. While urbanization 

bringing changes in lifestyle and diet is one main driving force behind the increase in incidence 

and prevalence of Type 2 Diabetes in South Asians Indians, studies showed that they have a 

higher predisposition to insulin resistance, greater degree of central obesity and more visceral fat 

for any BMI167-171. Migrant South Asian populations also have a higher prevalence of Type 2 

Diabetes than other populations residing in the same region, confirming that Type 2 Diabetes has 

an important genetic heritable component97,165.  

 

We thus carried out a genome-wide meta-analysis of three populations of South Asian origins 

from the LOLIPOP, PROMIS and SINDI studies, to identify common genetic variants underlying 

risk of Type 2 Diabetes in South Asians (people originating from the Indian subcontinent 

including India, Pakistan, Sri Lanka and Bangladesh). Across the three studies, there were 5,561 

Type 2 Diabetes cases and 14,558 controls (Table 9). We noted that two of these cohorts, 

LOLIPOP and PROMIS, had an over-representation of coronary artery disease (CAD) cases. 

Diabetes is a risk factor for coronary artery diseases. The genetic association of diabetes could be 

confounded by the presence of CAD cases if the same variant is also associated with CAD, 

though it is more likely that variants act through the diabetes pathway toward CAD progression. 

However, if the variants discovered in this study were attributable to the presence of CAD cases 
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rather than Type 2 Diabetes, the association will fail to replicate in the independent replication 

studies due to the lower prevalence of CAD cases in these studies. Recently, LOLIPOP and 

PROMIS, together with two other European studies, identified five new loci associated with 

CAD93. These loci were not known to be associated with Type 2 Diabetes risk. 
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Table 9. Summary characteristics of Stage 1 discovery populations (originally from reference 109). 

 
LOLIPOP 610 LOLIPOP 317 SINDI PROMIS 

T2D Controls T2D Controls T2D Controls T2D Controls 
N 1783 4773 440 1699 977 1169 2361 6817 
Age 59.4 (9.2) 53.9 (10.7) 54.1 (10.1) 46.8 (10.1) 60.7 (9.9) 55.7 (9.7) 55.0 (9.4) 52.9 (10.5) 
Gender (% male) 82.9 84.8 100.0 100.0 54.4 48.4 76.5 83.0 
SBP (mmHg) 140. 6 (20.4) 133.5 (18.9) 139.8 (20.6) 132.0 (20.2) 140.0 (19.7) 131.7 (19.2) 129.9 (21.5) 127.1 (20.5) 
DBP (mmHg) 80.7 (10.9) 82.4 (10.7) 84.0 (11.7) 82.5 (12.1) 77.1 (10.1) 77.2 (9.9) 81.6 (11.9) 80.8 (11.6) 
Weight (kg) 78.1 (14.0) 75.6 (13.0) 80.0 (15.9) 78.4 (13.9) 70.9 (14.0) 66.7 (12.5) 71.0 (12.5) 69.1 (13.2) 
BMI (kg/m2) 28.1 (4.6) 26.8 (4.2) 27.6 (4.7) 26.6 (4.2) 27.1 (5.1) 25.3 (4.4) 26.0 (4.0) 25.3 (3.9) 
Waist 100.8 (11.5) 96.6 (10.9) 100.0 (12.2) 96.3 (11.4) -- -- 92.0 (12.0) 90.1 (11.7) 
Waist-hip ratio 0.99 (0.07) 0.95 (0.07) 0.99 (0.07) 0.95 (0.07) -- -- 0.95 (0.06) 0.94 (0.07) 
Cholesterol (mmol/L) 4.65 (1.20) 5.21 (1.12) 4.94 (1.09) 5.46 (1.04) 4.86 (1.11) 5.36 (0.98) 4.81 (1.39) 4.74 (1.29) 
HDL chol (mmol/L) 1.16 (0.30) 1.22 (0.30) 1.17 (0.29) 1.247 (0.31) 1.02 (0.30) 1.10 (0.31) 0.88 (0.25) 0.89 (0.25) 
Triglycerides (mmol/L) 1.94 (1.55) 1.77 (1.12) 1.82 (0.86) 1.65 (0.82) 2.09 (1.22) 1.85 (1.13) 2.51 (1.58) 2.20 (1.36) 
Glucose (mmol/L) 8.6 (3.1) 5.2 (0.6) 8.9 (2.9) 5.1 (0.6) 9.71 (4.44) 5.38 (1.06) 13.31 (5.47) 6.89 (2.91) 
HbA1c (%) 7.9 (1.7) 5.63 (0.549) 8.0 (1.8) 5.5 (0.5) 7.6 (1.5) 5.5 (0.28) 8.9 (1.93) 5.8 (0.45) 
Coronary heart disease (%) 63.0 35.1 3.4 0.5 22.7 9.3 60.8 46.6 
Ever smoked (%) 27.4 21.1 28.0 28.5 28.3 26.4 49.4 55.7 
Hypertension (%) 80.1 56.1 70.7 40.6 74.2 46.2 36.5 25 
Mean (Standard Error). 
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6.2. Six new loci associated with Type 2 Diabetes in people of South Asian ancestry 

The primary analysis combining gender-specific association analysis using fixed effects meta-

analysis across LOLIPOP, SINDI and PROMIS study populations identified one variant on the 

TCF7L2 locus that reached genome-wide significance. The lead SNP was rs7903146 (P-value = 

2.8 x 10-19), the same index SNP widely reported across European populations12,134-137. 

 

Six new common variants were found to be associated with Type 2 Diabetes in people of South 

Asian ancestry. Table 10 below illustrates the association results of the index SNPs across the 

discovery (stage 1), replication (stage 2) and the combined analysis of the two stages (Stage 1 + 

2). Regional plots of the six loci were shown in Figure 20, with the local linkage disequilibrium 

structure of HapMap CEU. In the selection process of SNPs to Stage 2 replication from a set of 

43 SNPs exhibiting significance between P-value greater than 10-5 and P-value less than or equal 

to 10-4, SNPs with evidence of association in the Europeans12 were prioritized. This was done to 

generate a more manageable list of SNPs to Stage 2 replication. South Asians are genetically 

more similar to Europeans and many common disease implicated variants are shared across 

population of different ancestries. While this strategy might mean that we would fail to detect 

South Asian specific variants implicated with Type 2 Diabetes, this maximizes the discovery of 

genetic loci that are also present in European populations. Association of these variants with 

secondary glycemic (fasting insulin, fasting glucose, Homeostatic Model Assessment of beta-cell 

function and insulin sensitivity) and metabolic traits were also investigated in LOLIPOP and 

PROMIS. The HOMA indices provide an estimation of the glucose regulation as a feedback loop. 

For instance, fasting insulin levels will be elevated in direct proportion to diminished insulin 

sensitivity (HOMA-sensitivity) and elevated fasting glucose level reflect a feedback mechanism 

that maintained fasting insulin levels when there is a reduced insulin secretion (HOMA-B)172.  
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On chromosome 2, rs3923113 showed the strongest association with Type 2 Diabetes (Stage 1 P-

value = 3.7 x 10-7; Stage 2 P-value = 6.7 x 10-4; Stage 1+2 P-value = 1.0 x 10-8), and the same 

risk allele was also associated with reduced insulin sensitivity in the meta-analysis of LOLIPOP 

and PROMIS studies (Insulin: beta = 4.71% change, P-value =1.0 x 10-3; Glucose: beta = 1.62% 

change, P-value = 3.1 x 10-4; HOMA-Sensitivity; beta = -4.5% change, P-value = 5.0 x 10-4). The 

same allele was consistently associated with impairment of glucose homeostasis (elevated fasting 

glucose and insulin) and reduced insulin sensitivity in addition to higher risk of Type 2 Diabetes. 

The nearest gene to rs3923113 is growth factor receptor-bound protein 14 (GRB14) is an adapter 

protein which binds to insulin receptors and insulin-like growth-factor receptors, inhibiting 

tyrosine kinase signaling173,174. In addition, GRB14 knockout mice had higher lean mass, better 

glucose homeostatisis despite lower insulin and improved insulin sensitivity175. 

 

The lead genotyped SNP on chromosome 3 was rs16861329 (Stage 1 P-value = 2.5 x 10-5; Stage 

2 P-value = 1.6 x 10-4; Stage 1+2 P-value = 3.4 x 10-8), intronic on ST6 beta-galactosamide 

alpha-2,6-sialyltranferase (ST6GAL1). This gene is involved in the post-translational modification 

of cell-surface components by glycosylation, and glycosylation through addition of sialic acid 

residues is reported to influence insulin action and cell surface trafficking176. This SNP was 

associated with decreased glucose levels in LOLIPOP and PROMIS (Glucose: beta = -1.37% 

change, P-value = 3.0 x 10-3). Another potential candidate gene is the adiponectin, C1Q and 

collagen domain containing gene (ADIPOQ) encoding adiponectin (a hormone secreted by 

adipoctyes which promote insulin sensitivity), upstream of the index SNP. This index SNP was 

not in linkage disequilibrium (r2 < 0.1) with reported ADIPOQ variants, which showed an 

association with adiponectin levels, obesity and Type 2 Diabetes177, although adiponectin 

knockout mice showed severe insulin resistance178.  
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On chromosome 10, the lead genotyped SNP rs1802295 (Stage 1 P-value = 1.9 x 10-6; Stage 2 P-

value = 6.6 x 10-4; Stage 1+2 P-value = 4.1 x 10-8) is in vacuolar protein sorting 26 homolog A 

(VPS26A) which has not been known to be associated with Type 2 Diabetes nor glucose 

metabolism. VPS26A is a multimeric protein involved in the transport of proteins from 

endosomes to the trans-Golgi network179,180 and is also expressed in pancreatic, adipose and other 

tissues181. The same risk allele was associated with elevated glucose levels in LOLIPOP and 

PROMIS (Glucose: beta = 1.16% change, P-value = 8.0 x 10-3). 

 

There were two loci on chromosome 15 that showed an association with Type 2 Diabetes in 

South Asians. At 15q24, rs7178572 (Stage 1 P-value = 2.4 x 10-5; Stage 2 P-value = 7.0 x 10-7; 

Stage 1+2 P-value = 7.1 x 10-11) is intronic on HMG20A, which is a non-histone chromosomal 

protein that may influence histone methylation and is involved in neuronal development182,183.  

This same locus also showed an association in the meta-analysis of three Asian ethnic groups of 

Chinese, Malays and Indians in Study 2, likely driven by the Indians. At 15q26, rs2028299 was 

associated with Type 2 Diabetes (Stage 1 P-value = 4.8 x 10-5; Stage 2 P-value = 1.1 x 10-7; Stage 

1+2 P-value = 1.9 x 10-11). This index SNP is located near a number of potential candidate genes 

which might be implicated in the biological pathway of Type 2 Diabetes. The nearest gene, 

adaptor-related protein complex 3, sigma 2 subunit (AP3S2), encodes a clathrin associated 

adaptor complex expressed in adipocytes, pancreatic islets and other tissues184. The perilipin 1 

gene (PLIN1) 300kb upstream of the index SNP has been implicated with obesity in human and 

experimental mouse models185,186. It encodes Perilipin-1, a phosphoprotein which coats fat 

droplets in adipocytes and regulates lipolysis by hormone sensitive lipase187. Finally, the index 

SNP rs2028299 is 1.2MB away from the index SNP rs8042680 (r2 = 0 for rs2028299 and 

rs8042680 in HapMap II CEU) associated with Type 2 Diabetes in Europeans on the protein 
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regulator of cytokinesis 1 (PRC1) gene12. Both these loci did not show any association with the 

glycemic traits.  

 

Lastly, on chromosome 20, the lead SNP rs4812829 (Stage 1 P-value = 4.5 x 10-7; Stage 2 P-

value = 2.8 x 10-5; Stage 1+2 P-value = 2.6 x 10-10) with the strongest association among directly 

genotyped and imputed SNP is intronic in hepatocyte nuclear factor 4, alpha (HNF4A), known to 

be implicated in maturity-onset diabetes of the young (MODY), characterized by defective beta-

cell function and impaired insulin secretion188. HNF4A is a nuclear transcription factor strongly 

expressed in the liver189, and the risk allele was associated with reduced pancreatic beta cell 

function in South Asians (Glucose: beta = 2.33%, P-value = 1.0 x 10-6; HOMA-Beta; beta = -

4.5%, P-value = 1.0 x 10-3).  
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Table 10. Association test results of the index SNPs from the six loci reaching genome-wide significance P < 5 x 10-8 in South Asians (originally from 
reference 109). 

SNP Chr 
position 

Nearest 
Gene 

Alleles 
(ref/risk) 

South Asians 
Europeans (DIAGRAM+) 

Risk 
allele 
Freq 

Stage 1 
Genome-wide analysis 

Stage 2 
Replication Combined Stage 1 + 2 

OR 
(95% CI) P-value OR 

(95% CI) P-value OR 
(95% CI) P-value 

Risk 
allele 
Freq 

OR 
(95% CI) P-value 

rs3923113 2 
165210095 GRB14 C/A 0.74 1.15 

(1.09-1.21) 3.7 x 10-7 1.07 
(1.03-1.11) 6.7 x 10-4 1.09 

(1.06-1.13) 1.0 x 10-8 0.64 1.05 
(1.01-1.10) 2.0 x 10-2 

rs16861329 3 
188149155 ST6GAL1 A/G 0.75 1.12 

(1.07-1.19) 2.3 x 10-5 1.07 
(1.03-1.11) 1.6 x 10-4 1.09 

(1.06-1.12) 3.4 x 10-8 0.86 1.02 
(0.95-1.09) 0.62 

rs1802295 10 
70601480 VPS26A G/A 0.26 1.14 

(1.08-1.20) 1.9 x 10-6 1.06 
(1.03-1.10) 6.6 x 10-4 1.08 

(1.05-1.12) 4.1 x 10-8 0.31 1.04 
(1.00-1.09) 6.0 x 10-2 

rs7178572 15 
75534245 HMG20A A/G 0.52 1.10 

(1.05-1.15) 2.4 x 10-5 1.08 
(1.05-1.12) 7.0 x 10-7 1.09 

(1.06-1.12) 7.1 x 10-11 0.71 1.07 
(1.02-1.12) 2.6 x 10-3 

rs2028299 15 
88175261 AP3S2 A/C 0.31 1.11 

(1.05-1.16) 4.8 x 10-5 1.09 
(1.06-1.13) 1.1 x 10-7 1.10 

(1.07-1.13) 1.9 x 10-11 0.31 1.05 
(1.00-1.09) 4.0 x10-2 

rs4812829 20 
42422681 HNF4A G/A 0.29 1.14 

(1.08-1.19) 4.5 x 10-7 1.07 
(1.04-1.11) 2.8 x 10-5 1.09 

(1.06-1.12) 2.6 x 10-10 0.19 1.08 
(1.02-1.14) 1.0 x 10-2 
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Figure 20. Regional association plots of observed genotyped SNPs at the six new loci associated 
with Type 2 Diabetes in individuals of South Asian ancestry. Results of the index SNPs in stage 1 
were represented by a purple dot and combined analyses results of stage 1 and 2 were plotted as a 
purple diamond. The surrounding SNPs were colored based on their r2 with the index SNP from 
the HapMap CEU reference panel (originally from reference 109). 
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6.3. Transferability of known Type 2 Diabetes to South Asians and assessment of linkage 

disequilibrium structure and heterogeneity compared to Europeans 

While the meta-analysis discovered six new genetic loci associated with Type 2 Diabetes in 

individuals of South Asian ancestry, we applied varLD to quantify regional linkage 

disequilibrium differences between CEU Europeans from HapMap II and the South Asians 

populations. There was no evidence of linkage disequilibrium differences between LOLIPOP and 

SINDI but there appeared to be some evidence of linkage disequilibrium differences between 

Europeans and South Asians at the VPS26A locus (Table 11). In DIAGRAM+, the index SNP at 

the VPS26A was not statistically associated with Type 2 Diabetes in European populations (Table 

11). 

 

Table 11. Comparison of regional linkage disequilibrium structure between South Asians 
populations (LOLIPOP, SINDI) and CEU (HapMap2). Results were presented as Monte Carlo P-
values for comparison of pairwise LD between SNPs at the loci by VarLD (originally from reference 109). 

 Lead SNP    Nearest Gene    CEU – LOLIPOP    CEU – SINDI    LOLIPOP – SINDI  
 rs3923113   GRB14 0.40 0.16 0.56 
 rs16861329   ST6GAL1 0.08 0.05 0.69 
 rs1802295   VPS26A 0.006 0.002 0.18 
 rs7178572   HMG20A 0.62 0.33 0.90 
 rs2028299   AP3S2 0.84 0.11 0.38 
 rs4812829   HNF4A 0.06 0.13 0.58 

 

We further looked up 42 previously reported loci in the South Asian Indians. Table 12 showed a 

list of 42 variants at 41 loci implicated in Type 2 Diabetes, mostly in the Europeans. A total of 27 

variants showed an association (P-value < 0.05) in the South Asians Stage 1 meta-analysis. A 

Binomial test for assessing whether the number of observed nominally significant association 

would be expected by chance under P = 0.05 indicated evidence of over-representation of 

associated loci (P-value < 2.2 x 10-16). More than half of the previously reported loci showed 

nominal significance in the South Asians, further corroborating the observation in Study 2 that 

many of the European discovered loci were relevant across populations. This meta-analysis was 

better powered with a bigger sample size and lesser heterogeneity in the studies combined since 
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the discovery stage consisted only of individuals of South Asian. Under the null hypothesis that 

the proportion of variants showing association in the same direction was ½ by chance, 37 out of 

42 variants showed consistency in the directions of association for the same alleles (P-value = 

4.43 x 10-7).  

 

Three loci showed evidence of heterogeneity in effects between the Europeans and South Asians, 

namely, glucokinase (hexokinase 4) regulator (GCKR), CDKAL1, and Kruppel-like factor 14 

(KLF14). GCKR encodes for the glucokinase regulator protein (GKRP), which regulates 

glycolysis primarily in liver hepatocytes. GCKR was associated with glycemic traits in multiple 

populations76,91,98,190-192. In 40,655 cases and 87,022 non-diabetic controls of European ancestry, 

GCKR was associated with Type 2 Diabetes (OR = 1.06, 95% CI = 1.04 – 1.08, P-value = 1.30 x 

10-9)76.  This association was not seen in the DIAGRAM+ study consisting of samples from 

European descent (total number of cases and controls = 22,570), probably due to the small effect 

size and comparatively smaller number of samples (Table 12). The effect size was larger in the 

South Asians with a total sample size of 10,816 (OR = 1.19, 95%CI = 1.11 – 1.19, P-value = 4.10 

x 10-6). There was also heterogeneity in the effect sizes at the CDKAL1 locus, with a smaller 

effect size in the South Asians. The last locus was KLF14, which was only recently found to be 

implicated in Type 2 Diabetes12. There was no evidence of association in the South Asians, with 

the ORs trending in the opposite directions.  
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Table 12. Known Type 2 Diabetes loci and their index variants tested for replication in the South Asians meta-analysis. Risk alleles were in 
accordance with previously published risk alleles in the Europeans (originally from reference 109). Index variants with association P-value < 0.05 in South 
Asians are shaded in grey   

SNP Chr Pos 
(bp) 

Nearest 
Gene 

Risk 
allele 

Ref 
allele 

Europeans South Asians Pheter 
between 

European and 
South Asians 

Risk 
allele 
Freq 

OR 
(95% CI) P-value 

Risk 
allele 
Freq 

OR 
(95% CI) P-value 

rs10923931  1 120230001 NOTCH2 T G 0.12 1.14  
(1.07 - 1.21) 6.50 x 10-05 0.18 1.01  

(0.95- 1.07) 8.30 x 10-01 5.50 x 10-03 

rs340874  1 210547651 PROX1 C T 0.51 1.07  
(1.02-1.11) 2.00 x 10-03 0.55 1.02  

(0.98-1.07) 3.10 x 10-01 2.00 x 10-01 

rs780094  2 27652888 GCKR C T 0.62 1.01  
(0.97-1.05) 6.00 x 10-01 0.74 1.19  

(1.11-1.29) 4.10 x 10-06 1.20 x 10-04 

rs11899863  2 43530470 THADA C T 0.93 1.17  
(1.09-1.25) 1.00 x 10-05 0.96 0.96  

(0.80-1.15) 6.30 x 10-01 4.40 x 10-02 

rs243021  2 60496470 BCL11A A G 0.46 1.09  
(1.05-1.14) 8.10 x 10-06 0.51 1.05  

(1.00-1.10) 3.60 x 10-02 1.90 x 10-01 

rs7593730  2 160996961 RBMS1 C T 0.80 1.07  
(1.02-1.13) 6.50 x 10-03 0.80 1.01  

(0.95-1.07) 7.80 x 10-01 1.10 x 10-01 

rs7578326  2 226846158 IRS1 A G 0.64 1.12  
(1.07-1.17) 8.70 x 10-07 0.77 1.08  

(1.03-1.14) 4.40 x 10-03 4.20 x 10-01 

rs13081389  3 12264800 PPARG A G 0.96 1.24  
(1.14-1.35) 2.00 x 10-07 0.93 1.07  

(0.97-1.19) 1.70 x 10-01 2.80 x 10-02 

rs6780569  3 23173488 UBE2E2 G A 0.95 1.11  
(1.04-1.18) 1.50 x 10-03 0.74 1.07  

(1.02-1.13) 8.90 x 10-03 4.40 x 10-01 

rs6795735  3 64680405 ADAMTS9 C T 0.54 1.09  
(1.04-1.13) 8.40 x 10-05 0.28 1.06  

(1.01-1.12) 2.40 x 10-02 5.10 x 10-01 

rs11708067  3 124548468 ADCY5 A G 0.78 1.10  
(1.05-1.16) 1.70 x 10-04 0.78 1.10  

(1.04-1.17) 1.40 x 10-03 9.80 x 10-01 

rs1470579  3 187011782 IGF2BP2 C A 0.29 1.14  
(1.09-1.19) 2.20 x 10-09 0.42 1.12  

(1.07-1.17) 2.50 x 10-06 5.80 x 10-01 

rs1801214  4 6421094 WFS1 T C 0.73 1.13  
(1.08-1.18) 3.20 x 10-08 0.68 1.08  

(1.02-1.13) 7.20 x 10-03 1.60 x 10-01 

rs4457053  5 76460705 ZBED3 G A 0.26 1.16  
(1.10-1.23) 4.20 x 10-08 0.22 0.97  

(0.88-1.08) 6.30 x 10-01 3.00 x 10-03 

rs10440833  6 20796100 CDKAL1 A T 0.25 1.25  
(1.20-1.31) 1.80 x 10-22 0.26 1.08  

(1.02-1.14) 4.90 x 10-03 2.80 x 10-05 

rs2191349  7 14837549 DGKB T G 0.47 1.07  
(1.03-1.11) 1.20 x 10-03 0.62 1.05  

(1.00-1.11) 3.50 x 10-02 6.70 x 10-01 

rs849134  7 27969462 JAZF1 A G 0.53 1.13  
(1.08-1.17) 2.80 x 10-09 0.69 1.06  

(1.01-1.12) 2.30 x 10-02 6.50 x 10-02 

rs4607517  7 44008908 GCK A G 0.2 1.03  
(0.97-1.09) 3.10 x 10-01 0.13 1.01  

(0.95-1.08) 7.10 x 10-01 7.30 x 10-01 

rs972283  7 129924109 KLF14 G A 0.55 1.10  
(1.06-1.15) 1.80 x 10-06 0.61 0.98  

(0.94-1.03) 4.60 x 10-01 2.70 x 10-04 

rs896854  8 96029687 TP53INP1 T C 0.48 1.10  1.20 x 10-06 0.41 1.08  1.80 x 10-03 4.50 x 10-01 
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(1.06-1.15) (1.03-1.13) 

rs3802177  8 118254206 SLC30A8 G A 0.75 1.15  
(1.10-1.21) 1.50 x 10-08 0.76 1.13  

(1.07-1.19) 2.40 x 10-05 5.70 x 10-01 

rs17584499  9 8869118 PTPRD T C 0.25 1.03  
(0.96-1.10) 3.80 x 10-01 0.25 0.98  

(0.93-1.04) 5.50 x 10-01 2.80 x 10-01 

rs10965250  9 22123284 CDKN2A/B G A 0.81 1.20  
(1.13-1.27) 1.20 x 10-10 0.87 1.20  

(1.10-1.30) 2.60 x 10-05 9.60 x 10-01 

rs13292136  9 79181682 CHCD9 C T 0.93 1.20  
(1.11-1.29) 1.50 x 10-06 0.86 1.10  

(1.03-1.17) 7.50 x 10-03 8.00 x 10-02 

rs12779790  10 12368016 CDC123 G A 0.23 1.09  
(1.04-1.15) 6.80 x 10-04 0.17 1.12  

(1.05-1.20) 5.90 x 10-04 4.90 x 10-01 

rs5015480  10 94455539 HHEX C T 0.57 1.18  
(1.13-1.23) 1.30 x 10-15 0.45 1.08  

(1.03-1.13) 2.10 x 10-03 3.30 x 10-03 

rs7903146  10 114748339 TCF7L2 T C 0.25 1.40  
(1.34-1.46) 2.20 x 10-51 0.31 1.25  

(1.19-1.32) 3.40 x 10-19 1.10 x 10-03 

rs2334499  11 1653425 DUSP8 T C 0.44 1.08  
(1.04-1.13) 1.20 x 10-04 0.28 1.02  

(0.97-1.07) 4.20 x 10-01 7.80 x 10-02 

rs231362  11 2648047 KCNQ1 G A 0.52 1.11  
(1.06-1.16) 6.40 x 10-06 0.73 1.09  

(1.03-1.15) 3.00 x 10-03 5.90 x 10-01 

rs163184  11 2803645 KCNQ1 G T 0.44 1.09  
(1.04-1.13) 6.80 x 10-05 0.53 1.08  

(1.03-1.13) 1.20 x 10-03 8.40 x 10-01 

rs5215  11 17365206 KCNJ11 C T 0.41 1.09  
(1.05-1.14) 1.60 x 10-05 0.37 1.04  

(0.99-1.09) 1.10 x 10-01 1.10 x 10-01 

rs1552224  11 72110746 CENTD2 A C 0.88 1.13  
(1.07-1.19) 7.00 x 10-06 0.83 1.04  

(0.98-1.10) 2.20 x 10-01 4.20 x 10-02 

rs1387153  11 92313476 MTNR1B T C 0.28 1.12  
(1.07-1.17) 1.00 x 10-06 0.39 1.07  

(1.02-1.12) 8.70 x 10-03 1.30 x 10-01 

rs1531343  12 64461161 HMGA2 C G 0.1 1.20  
(1.12-1.29) 1.70 x 10-07 0.18 1.07  

(1.01-1.13) 3.40 x 10-02 1.00 x 10-02 

rs4760790  12 69921061 TSPAN8 A G 0.23 1.11  
(1.06-1.16) 3.60 x 10-06 0.34 1.06  

(1.01-1.11) 1.80 x 10-02 1.60 x 10-01 

rs7957197  12 119923406 HNF1A T A 0.85 1.14  
(1.08-1.19) 4.60 x 10-07 0.95 1.14  

(0.97-1.34) 1.20 x 10-01 9.90 x 10-01 

rs7172432  15 60183681 C2CD4A/B A G 0.52 1.07  
(1.03-1.12) 1.10 x 10-03 0.61 1.05  

(1.01-1.11) 2.60 x 10-02 6.40 x 10-01 

rs11634397  15 78219277 ZFAND6 G A 0.6 1.11  
(1.06-1.16) 5.10 x 10-06 0.53 1.05  

(1.00-1.12) 7.50 x 10-02 1.80 x 10-01 

rs8042680  15 89322341 PRC1 A C 0.22 1.10  
(1.06-1.15) 8.20 x 10-06 0.63 1.06  

(1.01-1.11) 2.80 x 10-02 2.00 x 10-01 

rs11642841  16 52402988 FTO A C 0.45 1.13  
(1.08-1.18) 3.40 x 10-08 0.32 1.07  

(1.02-1.14) 1.20 x 10-02 1.70 x 10-01 

rs391300  17 2163008 SRR C T 0.64 1.00  
(0.96-1.04) 9.50 x 10-01 0.51 0.99  

(0.94-1.03) 6.10 x 10-01 6.70 x 10-01 

rs4430796  17 33172153 HNF1B G A 0.53 1.14  
(1.08-1.20) 1.50 x 10-06 0.37 1.07  

(1.02-1.13) 4.10 x 10-03 1.10 x 10-01 
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6.4. Obesity and Type 2 Diabetes in South Asians 

Obesity is a major risk factor for Type 2 Diabetes. Individuals with Type 2 Diabetes tended to 

have higher BMI than non-diabetic individuals. As obesity is one of the pathways leading to 

predisposition to Type 2 Diabetes, it was possible that the association at some of the genetic loci 

identified could be mediated via obesity. We carried out the following secondary analyses: i) 

genome-wide study in BMI extremes (lean Type 2 Diabetes cases with BMI < 25kg/m2 versus 

overweight controls with BMI > 25kg/m2); ii) association of the six index SNPs with BMI and 

WHR in the LOLIPOP and PROMIS and iii) adjusting for BMI or waist-hip-ratio (WHR) at the 

six new loci across the Stage 2 replication cohorts where WHR was available across all cohorts. 

 

In the genome-wide analysis of BMI extremes, only TCF7L2 reached genome-wide significance. 

The six index SNPs were not associated with anthropometric measures BMI and WHR in 

LOLIPOP and PROMIS (Table 13). Adjustments for BMI and WHR did not remove the 

association of the six index SNPs with Type 2 Diabetes in the replication cohorts (Table 13). 

These findings suggest the associations of these SNPs with Type 2 Diabetes were independent of 

obesity. 
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Table 13. Association of the six index SNPs with (originally from reference 109) 
i) Secondary quantitative anthropometric traits in the LOLIPOP and PROMIS cohorts, as change in phenotype per copy of risk allele in the 

Type 2 Diabetes association and adjusted for age and gender. Associations were computed in each study separately and combined by 
inverse variance meta-analysis. 

ii) Type 2 Diabetes in the Stage 2 replication cohorts, with no adjustment for adiposity measures, adjustment for BMI and adjustment for 
WHR. Results are presented as OR (95% CI) for each copy of Type 2 Diabetes risk allele. All analyses were adjusted for age and gender in 
each individual cohort and combined by inverse variance meta-analysis. 

SNP Chr 
position 

Nearest 
Gene 

Risk 
allele 

Stage 1 Discovery cohorts  
(LOLIPOP + PROMIS) Stage 2 Replication cohorts 

BMI WHR Unadjusted BMI adjusted WHR adjusted 
Beta P Beta P OR P OR P OR P 

rs3923113 2 
165210095 GRB14 A -0.09 6.9 x 10-02 -0.001 2.4 x 10-01 1.07 

(1.03-1.11) 6.7 x 10-04 1.09 
(1.04-1.14) 1.0 x 10-04 1.05 

(1.01-1.10) 2.6 x 10-02 

rs16861329 3 
188149155 ST6GAL1 G 0.08 1.3 x 10-01 0.001 3.9 x 10-01 1.07 

(1.03-1.11) 1.6 x 10-04 1.07 
(1.02-1.11) 3.4 x 10-03 1.07 

(1.03-1.12) 1.7 x 10-03 

rs1802295 10 
70601480 VPS26A A 0.07 1.7 x 10-01 0.000 8.8 x 10-01 1.06 

(1.03-1.10) 6.6 x 10-04 1.07 
(1.02-1.11) 1.9 x 10-03 1.06 

(1.02-1.11) 3.7 x 10-03 

rs7178572 15 
75534245 HMG20A G -0.07 1.5 x 10-01 -0.001 3.0 x 10-01 1.08 

(1.05-1.12) 7.0 x 10-07 1.07 
(1.02-1.11) 1.4 x 10-03 1.07 

(1.03-1.11) 1.1 x 10-03 

rs2028299 15 
88175261 AP3S2 C -0.02 7.0 x 10-01 0.000 6.0 x 10-01 1.09 

(1.06-1.13) 1.1 x 10-07 1.09 
(1.05-1.13) 6.1 x 10-06 1.09 

(1.05-1.13) 2.7 x 10-05 

rs4812829 20 
42422681 HNF4A A -0.02 7.0 x 10-01 0.000 6.0 x 10-01 1.07 

(1.04-1.11) 2.8 x 10-05 1.08 
(1.03-1.12) 2.1 x 10-04 1.08 

(1.04-1.12) 2.0 x 10-04 
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6.5. Summary 

This meta-analysis across large samples of individuals of South Asian ancestry exhibit the 

potential of non-European genome-wide association efforts to detect new loci associated with 

Type 2 Diabetes, or even in other diseases. As European data was used to prioritize the selection 

of SNPs to the replication phase, four out of the six loci were also associated with Type 2 

Diabetes in European populations. More than half of the currently established Type 2 Diabetes 

implicated loci were also associated with the same outcome in South Asians, due to increased 

power from a larger sample size and the relative homogeneity of the populations (as compared to 

Study 2).This further supports the observations made in Study 2 that many of these common 

variants are largely shared across populations.  

 

The key findings from Study 3 were: 

I. Six new common variants were found to be associated with Type 2 Diabetes in people of 

South Asian ancestry. 

II. These new loci were not associated with secondary anthropometric traits and including these 

anthropometric traits as covariates did not remove any association at these six loci. These 

findings suggested that these associations were independent of obesity. 

III. Of 42 previously implicated Type 2 Diabetes loci, 27 showed as association (P-value < 0.05) 

in the South Asians. The observation is unlikely to happen by chance (Binomial test P-value 

< 2.2 x 10-16).  
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CHAPTER 7 – TYPE 2 DIABETES AND OBESITY 

7.1.    Motivation 

Type 2 Diabetes is a complex chronic disease and closely related to the metabolic syndrome 

which is a clustering of obesity, dyslipidemia, hypertension and glucose intolerance, now known 

as risk factors for cardiovascular diseases.  There are several pathways leading to disease 

manifestation of Type 2 Diabetes. One of these pathways is commonly linked to obesity 

dependent abnormalities of muscle, fat or liver responses to insulin. The incidence of Type 2 

Diabetes worldwide has been linked to rising rates of obesity, brought on by affluence, sedentary 

lifestyle and over-nutrition193.   

 

The World Health Organization (WHO) of the United Nations classifies individuals with BMI ≥ 

25 kg/m2 as overweight and BMI ≥ 30 kg/m2 as obese, using BMI as a surrogate for adiposity. 

While there have been recommendations to lower the cutoffs for Asian populations as it is likely 

that the existing cutoffs might underestimate the overall risk attributable to obesity111,194,195, the 

use of ethnic-specific BMI cutoffs might be complicated by health management, variation in 

prevalence, environmental and nutritional changes in increasingly multi-ethnic metropolitan 

populations in the world110. In 2004, WHO identified additional cut-points for Asians with a 

threshold of 23 kg/m2 to differentiate between healthy and overweight and a threshold of 27.5 

kg/m2 for obese110. These cut-offs at 23kg/m2 will generate much clearer ‘extreme’ phenotypes of 

hypercases and hypercontrols in these Asian populations compared to the 25kg/m2 cutoff but will 

have an impact on the sample sizes, especially in the Chinese (Table 14). 

 

Early genome-wide association studies established the association of the FTO gene with Type 2 

Diabetes, mediated through the effects of obesity196. The risk allele predisposing to Type 2 

Diabetes was also associated with increased BMI, but the association signal for Type 2 Diabetes 
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was attenuated when BMI was included as a covariate in the association analyses. In addition, the 

FTO association was not consistently replicated in genome-wide association scans of European 

descent despite considerable power134,135,197. A likely explanation has to do with the ascertainment 

of lean Type 2 Diabetes subjects in some of these studies, while certain studies prioritized mainly 

diabetic cases with considerably higher BMI136. Timpson and colleagues further investigated the 

disease susceptibility heterogeneity of non-obese and overweight Type 2 Diabetes cases through 

stratified analyses198.  

 

We followed up with Study 2 (Chapter 5), by refining case and controls phenotype in the 

following ways: (i) performing association between non-obese cases and all controls; and 

overweight cases and all controls (ii) performing association between all pairwise combinations 

of non-obese cases/controls and overweight cases/controls.  

Non-obese  
T2D  all  

controls  Non-obese  
T2D  Non-obese  

controls 
 
       

Overweight  
T2D  all  

controls  Overweight  
T2D  Overweight  

controls 
 

 

7.2. Summary characteristics by obesity status 

It can be seen from Table 14 below that there are differences in the obesity status across Type 2 

Diabetes case ascertainment and ethnic groups. Within the cases, there were higher percentages 

of overweight cases in the Malays and Indians. Chinese controls tended to be non-obese.  
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Table 14. Number of Type 2 Diabetes case controls stratified by BMI status. 

B
M

I s
tra

tif
ic

at
io

n 
N Type 2 Diabetes Disease Status 

Type 2 Diabetes Cases Type 2 Diabetes Controls 

non-obese 
BMI < 25 kg/m2 

Illu610 
Chinese 
SDCS 

Illu1M 
Chinese 
SDCS 

Illu610 
Malays 
SiMES 

Illu610 
Indians 
SINDI 

Illu610 
Chinese 

SP2 

Illu1M 
Chinese 

SP2 

Illu610 
Malays 
SiMES 

Illu610 
Indians 
SINDI 

531 
(49.4) 

443 
(48.3) 

237 
(30.3) 

356 
(36.6) 

816 
(81.1) 

704 
(75.2) 

643 
(52.2) 

581 
(50.5) 

overweight 
BMI ≥ 25 kg/m2 

Illu610 
Chinese 
SDCS 

Illu1M 
Chinese 
SDCS 

Illu610 
Malays 
SiMES 

Illu610 
Indians 
SINDI 

Illu610 
Chinese 

SP2 

Illu1M 
Chinese 

SP2 

Illu610 
Malays 
SiMES 

Illu610 
Indians 
SINDI 

544 
(50.6) 

474 
(51.7) 

545 
(69.7) 

618 
(63.4) 

190 
(18.9) 

232 
(24.8) 

589 
(47.8) 

570 
(49.5) 

(): within column percentages. 
 

7.3. Heterogeneity in association signal by obesity status 

The results from the BMI-stratified analyses with all controls are presented in Figure 21. Due to 

the small sample size, these stratified analyses had little power to detect associations at genome-

wide significance. We defined P-value < 10-6 as suggestive evidence of association.  

 

Comparing the non-obese cases with all controls as the reference group, there were suggestive 

evidences of association at two loci: CDKAL1 at chromosome 6 and insulin-like growth factor 1 

receptor (IGF1R) on chromosome 15. Established index SNP rs7754840 at CDKAL1 was the top 

ranking SNP (OR = 1.27, 95% CI = 1.26 – 1.38, P-value = 2.86 x 10-7). This SNP had P-value at 

10-7 while P-value using all cases and controls in Study 2 was at 10-5. Odds ratio was also higher 

compared to 1.15 (1.08 – 1.23) in Study 2. Risk allele at CDKAL1 was associated with reduced 

beta-cell glucose sensitivity199, suggesting that this has effects on insulin secretion73,200,201. The 

signal at the index SNP rs7180435 was mainly driven by the Indians (Meta-analysis: OR = 1.82, 

95% CI = 1.43 – 2.30, P-value = 7.65 x 10-7 and Indians: OR = 1.81, 95% CI = 1.82 – 2.33, P-

value = 4.42 x 10-6). This SNP was almost monomorphic in the Chinese (risk allele 0.002) and 

Malay (risk allele 0.021) while risk allele frequency was 0.132 in the Indians. These findings and 

study design however, were not replicated in Study 4. Nevertheless, IGF1R is a transmembrane 

receptor that is activated by the two growth factors, insulin-like growth receptor 1 and 2 (IGF-1 
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and IGF-2). This receptor has been associated with several cancers such as breast202, prostate203 

and lung204. Interestingly, heterozygous knockout mice showed longer lifespans with small 

decrease in their growth205.  

 

In the association analysis between overweight cases and all controls, suggestive association 

signals between FTO and Type 2 Diabetes were detected similar to what Timpson et al. 

reported198. Index SNP rs9939609 (established association with Type 2 Diabetes and 

obesity)45,196,206 was associated with Type 2 Diabetes in overweight cases versus all controls (OR 

= 1.26, 95% CI = 1.15 – 1.38, P-value = 6.22 x 10-7) while it ranked 2,346,240 in the non-obese 

cases versus all controls association analysis (OR = 1.00, 95% CI = 0.90 – 1.12, P-value = 9.44 x 

10-1).  

 

Figure 21. Manhattan plots of genome-wide association analyses. A) Association between non-
obese cases and all controls; B) Association between overweight cases and all controls.  
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To investigate possible interaction effects by obesity status, we further stratified controls, in 

addition to cases, by their obesity status (Figure 22). We only detected an association at CDKAL1 

in non-obese cases and non-obese controls (Index SNP rs7754840: OR = 1.28, 95% CI: 1.16 – 

1.41, P-value = 3.88 x 10-7). These results were similar to the association between non-obese 

cases and all controls. In comparing extremes of overweight cases and non-obese controls, only 

FTO showed suggestive evidence of association, with the top SNP rs7185735 at P-value = 7.21 x 

10-8, almost reaching genome-wide significance. The use of more extreme controls (non-obese) 

resulted in a 10 fold more significant P-value for rs9939609 and larger effect size compared to 

using all controls (OR = 1.32, 95% CI = 1.19 – 1.46, P-value = 8.97 x 10-8). In the extremes of 

non-obese cases and overweight controls, we identified suggestive signals on chromosome 6 

C6orf57/KIAA1411 which was also present in Study 2 and driven mainly by the Indians, where 

there was no stratification by obesity status. In the stratified analysis, the top SNP was 200kb 

upstream of the association signal in the un-stratified analysis and was associated in both Malays 

(P-value = 7.60 x 10-4) and Indians (P-value = 1.02 x 10-4), with consistent direction of effect in 

the Chinese (P-value = 0.09). While the FTO variant was detected in overweight cases versus 

non-obese controls, no evidence of association was seen in the stratum of overweight cases and 

overweight controls.  
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Figure 22. Manhattan plots of genome-wide association analyses. C) Association between non-
obese cases and non-obese controls; D) Association between non-obese cases and overweight 
controls; E) Association between overweight cases and non-obese controls and F) Association 
between overweight cases and overweight controls.  
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We further looked at the two loci, CDKAL1 (index SNP rs7754840) and FTO (index SNP 

rs8050136) by using the multinomial logistic regression in the Chinese, to test whether the effect 

sizes differ across the strata of cases (non-obese and overweight cases) against a common control 

group (all controls) (Table 15)198,207. rs8050136 was chosen as it was a directly genotyped SNP. 

The genotype data was combined over the two arrays, Illumina610 and Illumina1M. Consistent 

with the stratum-specific results, association signal in CDKAL1 was primarily driven by the non-

obese cases while the association signal in FTO was due to the overweight cases.  

 

Table 15. Selected stratified Type 2 Diabetes association results for two index SNPs, rs7754840 
and rs8050136, in Chinese. 

SNP 
Non-obese cases 

vsall controls 

Overweight cases 
vs 

all controls 

P-value* 
(heterogeneity  
between strata) OR (95% CI) P-value OR (95% CI) P-value 

CDKAL1 
(rs7754840) 1.35 (1.21 – 1.52) 6.69 x 10-8 1.07 (0.96 – 1.19) 2.51 x 10-1 < 0.0001 

FTO 
(rs8050136) 1.10 (0.93 – 1.29) 2.67 x 10-1 1.40 (1.20 – 1.64) 1.51 x 10-5 < 0.0001 
* Test of heterogeneity between strata using a likelihood ratio test of nested multinomial models where model 1 
assumed the same beta for all strata while model 2 assumed different beta at different strata.  
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7.4. Summary 

In this BMI-stratified analysis in Asians, we showed that CDKAL1 is implicated in the non-obese 

cases, along the reduced insulin pathway of Type 2 Diabetes. Similar to the findings in the 

European studies, the FTO variant was only detected in overweight cases with all controls/non-

obese controls. As the FTO variant was associated with increasing BMI, overweight cases and 

overweight controls likely had much more similar allelic frequencies. The refining of cases and 

controls also suggested IGF1R as a likely Type 2 Diabetes implicated locus, although it still 

needs to be validated in other independent studies. These phenotypic refining supplements our 

limited knowledge in the physiological pathways of Type 2 Diabetes.  

 

I. Key findings of Study 4:We showed in BMI stratified and multinomial regression analyses 

that CDKAL1 is implicated in the reduced insulin pathway of Type 2 Diabetes in Asian 

populations.  

II. Consistent with what was established in populations of European descent, FTO affects Type 

2 Diabetes along the obesity pathway.  

III. Refining of cases and controls definition provides a better understanding of association 

signals and the pathways leading to disease manifestation.   
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CHAPTER 8 – DISCUSSION 

8.1. Bringing it all together 

The genetic architecture of common diseases and complex traits, at its most fundamental, looks at 

the relationship of genetic variants with the phenotype. As with any epidemiological study, it 

requires some basic understanding of the phenotype of interest and in this case, an agnostic search 

for the genetic variants that could increase or decrease the risk of the phenotype. Evolutionary 

histories, origins and migratory patterns of the populations studied influenced the ease at which 

this phenotype-genotype relationship can be detected. 

 

We have shown the importance of understanding linkage disequilibrium and genetic diversity in 

multi-ethnic populations for valid and sensible interpretations of genetic association studies 

(Study 1). In Singapore, Malays and Indians showed greater genetic heterogeneity within their 

own ethnic group, likely due to inter-marriages and migratory history. This provided essential 

basis for understanding the transferability of association signals of Type 2 Diabetes in 

populations of European ancestry to Asian populations.  Under the assumption of common causal 

variants across populations, reproducibility of association signals depends on the (i) linkage 

disequilibrium patterns of the index variants in different populations; (ii) the power to detect these 

association, which relates to the frequencies and effect sizes of these variants in different 

populations; (iii) the presence of different causal variants in the same implicated locus (Study 2). 

Certainly, due to evolutionary history and environmental pressures, some variants are expected to 

be specific to populations or may occur at higher frequencies in specific populations. Through a 

genome-wide association study of Type 2 Diabetes in South Asians, we also showed the potential 

for non-European populations to discover new susceptibility loci that might have been missed in 

the well-studied Europeans (Study 3). Six new loci were implicated in Type 2 Diabetes in this 

South Asian ancestry which is more genetically diverse and possesses one of the world’s highest 
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prevalence of Type 2 Diabetes. Lastly, we also demonstrated the importance of finer phenotyping 

in elucidating the roles of genetic predisposition variants and supplementing existing knowledge 

on disease physiology (Study 4). These are summarized in Figure 23.  

 

 

Figure 23. Schematic diagram unifying the four studies from Chapter 4 to Chapter 7.  
 

We observed that implicated variants from published genome-wide association studies tended to 

display greater evidence of inter-population heterogeneity in effect sizes, particularly so for 

variants detected by assimilating tens to hundreds of thousands of samples.  

 

8.2. What’s next? / Future Work 

The eventual aim of genetic studies is translational, from variant discovery to biology to clinical 

practice. Broadly, the support and endeavor for genetic research stems from two translational 
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aspects: (i) to better understand the pathogenesis of diseases for improved diagnosis (diagnostic 

tools), treatment (drug targets and prognosis to targeted therapy) and prevention and (ii) for risk 

prediction of inherited individual predisposition (personalized medicine)208. Thus far, progress 

has been less prominent for common diseases, with greater successes seen mainly in highly 

familial monogenic diseases.  

 

Genome-wide association study represents an important advancement beyond the candidate gene 

and linkage studies and is a critical tool for genetic mapping of common diseases and complex 

traits in populations. In performing meta-analysis across populations of Chinese, Malay and 

Asian Indian ancestry, we did not account for population diversity differences between them, 

especially between the South Asian Indians and the two other East Asian populations. We are 

likely to detect association signals that are common across these populations or driven strongly by 

one or more of the populations carrying the implicated variants. In addition, the SNP-based 

method has its limitation that assumes similar genetic architecture surrounding the causal variant 

across populations. Methods that focus on a genomic region would be a possible advancement 

beyond the single SNP method to assimilate statistical evidence across populations. Instead of 

looking for evidence at index SNPs, Xu et al. introduced a novel method of looking at regional 

evidence of disease association, taking linkage disequilibrium into account209. Across a pre-

defined region in the genome (e.g. moving window or around a gene), the method quantifies an 

over-representation of independent associated SNPs through eigen-decomposition of the linkage 

disequilibrium matrix. A plethora of genetic variants have been found to be implicated in 

common diseases, infectious diseases and cancers. These findings have improved our 

understanding of the genetic architecture of disease but the important question remains, how can 

these findings bring us closer to translational genomics.  
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8.2.1. Fine mapping 

Linkage disequilibrium has been instrumental in the design of genotyping arrays but long 

stretches of linkage disequilibrium hinder fine mapping to localize the causal variants. Due to 

different evolutionary history and migratory patterns, different populations exhibit varying 

degrees of linkage disequilibrium, with the least conserved linkage disequilibrium in African 

populations. While explicitly assuming a common causal variant across populations, the causal 

variants could take the form of similar haplotype structure but of differing lengths across 

populations or the presence of different dominant haplotypes across populations210. Sufficiently 

dense genotyping across populations with appropriate reference panels could provide a means of 

localizing potential genomic regions for further investigation.  

 

An early example of success was the discovery of the TCF7L2 locus where a large region on 

chromosome 10 was implicated in Type 2 Diabetes by linkage and subsequent fine-mapping 

efforts through sequencing localized the susceptibility region to an intron within the gene10,11. The 

HapMap project had catalogued over 3.5 million common variants across three populations of 

European, Asian and African ancestry. More recently, the 1000 Genomes project aim to discover 

and provide haplotype information on multiple form of human genetic variation through 

sequencing major population groups from Europe, East Asia, South Asia, West Africa and 

Americas40. This will provide a wider spectrum of genetic variants beyond commercial 

genotyping arrays and allow association tests at low frequency variants not previously discovered. 

As with the course of genome-wide association analysis, these sequenced reference panels will 

provide a less costly mean of performing association analyses by imputing the sequenced variants 

into previously genotyped samples. While imputation accuracy decreases as allele frequency 

decreases, the more complete catalogue of putative functional annotation in these variants offers a 
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more comprehensive resource in understanding and localizing putative functional variants in 

known disease implicated regions40,211.   

8.2.2.  Missing heritability 

Despite the number of genetic variants discovered and large numbers of individuals studied, the 

amount of heritability explained remains low212. Many explanations have been proposed, 

including structural variants, rare variants with larger effects and lack of understanding of the role 

of effect modifier of other genes (gene-gene interactions) or the environment and lifestyle (gene-

environment interactions).  The ability to estimate heritability has also been widely debated. In 

general, heritability refers to the narrow sense heritability which is the amount of phenotypic 

variation attributable to the additive effects of genetic variants. The prevailing view is that many 

additional variants remained to be discovered such as low frequency disease implicated variants. 

However, this narrow sense heritability fails to take into account dominance genetic effects and 

genetic interactions, and does not include the other important contributor to phenotypic variation, 

the degree of environmental variations213,214.  

 

a. Structural variants 

Structural variants are genetic variants in the genome that are typically span 1kb or larger, taking 

the form of insertion/deletion (copy number variants CNVs), inversion and translocation. Copy 

number variants account for a major proportion of genetic polymorphism that are not attributed to 

SNPs and has been implicated in monogenic genomic disorder such as Charcot-Marie-Tooth 

disease215 and more recently in schizophrenia216,217, autism218 and obesity219,220. As with SNP 

variation, there is substantial variation in copy number variants across populations36. It has been 

noted that existing SNPs on genotyping arrays do tag common CNVs in the European 

populations221, though this is less so in non-European populations222. CNVs are poorly captured 

by genotyping arrays, especially in defining the breakpoints of the variants. While next 



137 

 

generation sequencing (process of determining the exact order of nucleotides in the DNA) aims to 

revolutionize structural variant studies, each method of sequencing still has their bias and much 

more computational work is needed to improve existing algorithms to map structural variants 

with greater confidence223.  

 

b. Rare variants and sequencing 

The first generation genotyping arrays have focused on common variants typically occurring at 5% 

and above in a population. Could some of the missing heritability be explained by those rarer 

variants that occur in less than 5% of the populations? The ability to statistically detect an 

association becomes increasingly difficult as the allele frequency decreases, unless effect sizes 

are large212. In many instances, the variants discovered in genome-wide studies are found in non-

coding regions of the genome. Individuals carrying rare variants with large effect size are more 

likely to be in the extreme spectrum of the complex traits or enriched in frequency in disease 

cases compared to controls224-228. Sanna and colleagues showed that by sequencing exons and 

flanking regions of seven LDL-C implicated genes in individuals with extremely high or low 

LDL-C values, the combination of common and rare variants doubled the amount of heritability 

explained229. These successful targeted sequencing examples have showed that individuals at the 

extreme spectrum tended to carry an excess of rare variants, with increased genetic heritability.  

 

It is possible that the same rare variants could have differential effects on the phenotype and 

might be located across large stretches of the genome. Rather than to look at each rare variant on 

its own, similar to the single SNP based approach, aggregating rare variants to look at cumulative 

burden of rare variants on diseases has becomes more appealing212. There have been less 

successful examples of targeted sequencing at implicated genes230. A synthetic association theory 

has been proposed, that rare-disease causing variants with much bigger effect size (here referring 
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to variants less commonly found in genome-wide scans) could lead to the genome-wide 

association signals detected in common variants and these disease causing variants could be 

located megabases away from the original genome-wide signals230. These rare variants could be 

found on the same disease-causing haplotype, that is tagged by some common-occurring 

variant228,230. In Type 2 Diabetes that has been studied across multiple populations with different 

ancestries, the transferability of the association signals across global populations suggest that the 

hypothesis that rare variants are driving these common shared associations is less likely to be true. 

With increasingly high sequencing throughput and rapidly falling costs, it is now possible to 

sequence whole exomes, or even whole genomes, to improve our catalog of human diversity and 

to look for disease implicated variants. These new variants discovered could be responsible for 

the genome-wide association signals and thus bringing us a step closer to the causal/functional 

variants. 

 

c. Gene-gene interactions / gene-environment interactions / epigenetics 

The joint effects of genetic variants on common diseases, and the interplay of genetic variants in 

specific environmental factors have not been fully explored231. The difficulty in interaction 

analyses lies in the power and the environmental exposure measurements. Besides the effect size 

of interaction and allele frequency of the variant, the prevalence of environmental exposure and 

burden of multiple testing influence the ability to detect any statistical interaction. While methods 

to ascertain genotypes have greatly improved the accuracy and validity of genotype calling, 

harmonization of exposure measurements across studies and in particular across heterogeneous 

populations remains a challenge. Methods to measure environmental exposures accurately have 

been less successful than in the genetic field. The fundamental bias problems in traditional 

epidemiological studies also return to haunt us, such as confounding, information bias; selection 

bias and reverse causation. Biological interactions could include genetic variants that exhibit 
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synergistic effects without marginal main effects, or environmental factors that are only “turned 

on” in certain genetically susceptible individuals, or interaction in the presence of both genetic 

and environmental risk factors. Current analytical methods include looking at risk dosages 

accumulated over implicated variants, candidate genes which showed an association with 

phenotype and also in case only designs that assumes independence in the original source 

populations.  

 

More recently, epigenetic that describes the heritable gene expression without equivalent 

information stored in DNA has garnered widespread interest, and has been linked to gene-

environment interaction232. Epigenetic modifies gene activities without corresponding changes in 

the underlying DNA code and has been suggested to be a dynamic and reversible process that is 

triggered by environmental influences. In Type 2 Diabetes, a common disease with strong genetic 

component and environmental influences, epigenetic mechanisms such as maternal nutrition and 

metabolism233 and growth regulation234 are of growing interest in the long term progression of the 

disease and affiliated risk factors like obesity.   

 

d. Pleiotropy  

Pleiotrophy is a phenomenon where a genetic locus is associated with multiple phenotypes. 

Carlson in 2004 had suggested that the use of intermediate quantitative phenotypes would 

increase the proportion of variance explained by a given locus than in the eventual clinical 

endpoint75. On the other hand, the correlation between these intermediate phenotypes and clinical 

endpoints could induce correlation or interaction between the genetic variants and phenotypes. 

The inability to differentiate induced correlation and interaction with true association findings 

will inflate or deflate heritability measures. In lipids phenotypes, many loci are also associated 

with more than one lipid traits63. On chromosome 12q24, there has been a variety of association 
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signals in celiac disease235, blood pressure150-152,  hematological parameters such as platelets236, 

red blood cells237 and leukocytes238, retinal venular caliber239, myocardial infarction238 and 

coronary heart disease236. These are blood vessels related complex traits which are inter-related, 

for instance, blood pressure is a pre-cursor to myocardial infarction and coronary heart disease, 

however, the locus points towards an inflammatory signaling pathway in endothelial cells that has 

an effect on blood pressure regulation and development of atherosclerosis152,240.  
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CHAPTER 9 – CONCLUSION  

The field of genetic mapping is moving beyond finding association between phenotypic variation 

and genetic variants to establish biological mechanisms and fine map the causal variants. These 

studies are timely in highlighting (i) the importance of understanding inter-population genetic 

diversity; (ii) the transferability and consistency of association signals across populations and (iii) 

the potential for non-European populations to discover disease implicated variants. Genome-wide 

association studies of common diseases and complex traits have showed some degree of shared 

genetic susceptibility across global populations, suggesting shared causal variants underlying 

disease pathogenesis. Different evolutionary history and migratory patterns in worldwide 

populations result in different allelic spectrum, where some variants are more common in some 

populations than others. Though sequencing costs have decreased rapidly, it is still not affordable 

to look at every single genetic variant in the genome for association with diseases and traits in 

substantial number of subjects. Exome sequencing is a more efficient strategy to whole genome 

sequencing that targets the genetic variants in the coding regions (2- 3% of the genome), 

motivated by understanding of functional changes in the genome sequences. Studies assimilating 

multi-ethnic populations will be in a better position to discover casual variants that are relatively 

common across populations or multiple low frequency variants in some or all of the populations. 

These developments are crucial and should work in conjunction with rapid technological 

advancements in the genomics field. I believe these studies emphasize the significance of 

studying multi-ethnic populations that elucidates the underlying genetic architecture of common 

disease and complex traits. 
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