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Summary

It is an amazing fact that remarkably complex behaviors could emerge from a large

collection of very rudimentary dynamical agents through very simple local interac-

tions. However, it still remains elusive on how to design these local interactions

among agents so as to achieve certain desired collective behaviors. This thesis aims

to tackle this challenge and proposes a divide-and-conquer approach to guarantee

specified global behaviors through local coordination and control design for multi-

agent systems. The basic idea is to decompose a requested global specification into

subtasks for each individual agent such that the fulfillment of these subtasks by each

individual agent leads to the satisfaction of the global specification as a team. For this

purpose, three issues are studied here: (1) task decomposition for top-down design,

such that the fulfillment of local tasks guarantees the satisfaction of the global task,

by the team; (2) fault-tolerant top-down design, such that the global task remains

decomposable and achievable, in spite of some failures, and (3) the design of interac-

tions among agents to make an indecomposable task decomposable and achievable in

the top-down framework.

To address the first question, namely the cooperative tasking of multi-agent sys-

tems, it is firstly shown by a counterexample that not all specifications can be decom-

posed in this sense. Then, necessary and sufficient conditions are identified for the
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decomposability of a task for two cooperative agents; based on decision making on

the orders and selections of transitions, the interleaving of synchronized strings and

the determinism of local tasks. The decomposability conditions are then generalized

to the case of arbitrary finite number of agents, and furthermore, it is shown that the

fulfillment of local specifications can guarantee the satisfaction of the global specifi-

cation. Finally, a cooperative control scenario for a team of three robots is developed

to illustrate the task decomposition procedure.

The thesis then deals with the robustness issues of the proposed top-down design

approach with respect to event failures in the multi-agent system. The main concern

under event failure is whether a previously decomposable task can still be achieved

collectively by the agents and if not, we would like to investigate that under what

conditions the global task could be robustly accomplished. This is actually the fault-

tolerance issue of the top-down design, and the results provide designers with hints

on which events are fragile with respect to failures, and whether redundancies are

needed. The main objective of this part of the work is to identify conditions on failed

events under which a decomposable global task can still be achieved, successfully.

For such a purpose, a notion called passivity is introduced to characterize the type

of event failures. The passivity is found to reflect the redundancy of communication

links over shared events, based on which necessary and sufficient conditions for the

reliability of the task decomposability and conditions on cooperative tasking under

event failures are derived.

As the next important question, the thesis aims to study whether one can modify

ix



the communication pattern between agents so as to make an indecomposable task

decomposable. In particular, we would like to ask what is exactly needed to share by

communication among agents such that an originally indecomposable task becomes

decomposable. To answer this question, the decomposability conditions are revisited

and all possible causes for indecomposibility are identified. As the main contribution

of this part, the thesis then proposes a procedure, as a sufficient condition, to make

an indecomposable deterministic task automaton decomposable in order to facilitate

the cooperative tasking.

This result may pave the way towards a new perspective for the decentralized

cooperative control of multi-agent systems.

x
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Chapter 1

Introduction

1.1 Multi-agent Systems

1.1.1 Motivation and Background

Multi-agent system has emerged as a fascinating research area with strong attention

from a wide range of applications such as distributed plants (power grids, sensor net-

works, transportation systems, distributed control, distributed planning and schedul-

ing, distributed supply chains), distributed computational systems (decentralized op-

timization, parallel processing, concurrent computing, cloud computing) and multi-

robot systems. Multi-agent system is therefore a developing multi-disciplinary area

across various fields such as control engineering [1], computer sciences [2] and robotics

[3–10]. The significance of multi-agent systems roots in the power of parallelism and

cooperation between simple components that synergistically lead to sophisticated ca-

pabilities and more robustness and functionalities than individual multi-skilled agents

[3, 11]. Cooperative control of multi-agent systems is therefore of great importance

to the society and demands new methods and frameworks to analyze and design the

interaction rules and control laws among the agents.

The cooperative control of a large number of dynamical agents, however, is in the
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infancy stage and possesses significant theoretical and practical challenges such as co-

ordination, reconfiguration, synchronization and sequencing of the tasks that may fall

beyond the conventional methodologies [12, 13]. On the other hand, the cooperation

of agents provides new opportunities to achieve sophisticated team specifications. In

multi-agent systems, each agent is usually equipped with certain, but very limited,

degrees of sensing, processing, communication, and maneuvering capabilities. How-

ever, a large collection of such rudimentary systems, as a team, can display high level

of functionalities and exhibit complex collective behaviors [11,14–17]. These findings

generate increasing motivations towards more research efforts on the area of coop-

erative control of multi-agent systems. In the next part we briefly review some of

the existing methods in multi-agent systems and investigate them from the structural

point of view.

1.1.2 Existing methods

Existing methods in multi-agent systems have been mainly developed based on heuris-

tical, empirical and simulation studies, and mostly focused on bottom-up approaches

to understand how and what global behaviors can be generated from simple local in-

teractions [18, 19]. Usually, these local interaction rules are through biomimicry and

draw inspirations from the swarming behaviors of biological systems, such as colonies

of ants, hives of bees, flocks of birds, and schools of fishes [18, 20, 21]. As a result,

it has been widely accepted that complicated collective behaviors can be emerged

from a large collection of simple agents via intuitive local interaction rules [14–16].
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Recently, further serious efforts have been devoted to developing rigorous theoretical

frameworks for multi-agent systems. Remarkable efforts have been devoted to the con-

sensus seeking and formation stabilization [22–25], while approaches like navigation

functions [26–28] and artificial potential functions [29, 30] for distributed formation,

graph Laplacians for the associated neighborhood graphs [23,31], optimization-based

path planning [32–34], parallel processing [35, 36], bottom-up task sharing and plan-

ning [37, 38], game theory-based coordinations [39], distributed learning [40], and

geometrical swarming [17,41] have been developed in the literature.

1.1.3 Top-down Versus Bottom-up Approaches

Although we know that sophisticated collective behaviors could emerge from a large

collection of very elementary agents through simple local interactions, we still lack

knowledge on how to change these rules to achieve or avoid certain global behaviors.

As a result, it still remains elusive on how to design local interactions between the

agents to make sure that they, as a group, can achieve the specified requirements. The

desired global specification could be very sophisticated, and the design may go beyond

the traditional output regulation, path planning, or formation control [12, 13,42,43].

Moreover, the bottom-up scenario in swarming robotics may fail to guarantee the

correctness by design, due to the lack of understanding on how to manipulate the

local rules to achieve the global behavior. To remove the undesirable global behaviors

we may therefore need to redesign the local coordination rules through an iterative

trial and error process, which may quickly become inefficient or even intractable for
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practical applications. This problem demands a new and formal method to design

the local control laws and interaction rules for agents, directly, such that the desired

global specification can be guaranteed by design. In particular, this thesis aims at

developing a top-down correct-by-design method for distributed coordination and

control of multi-agent systems such that the group of agents, as a team, can achieve

the specified requirements, collectively (Figure 1.1).

For this purpose, the thesis proposes a divide-and-conquer design for cooperative

multi-agent systems so as to guarantee the desired global behaviors. The core idea is

to decompose a global specification into sub-specifications for individual agents, and

then design local controllers for each agent to satisfy these local specifications, respec-

tively. The decomposition should be done in such a way that the global behavior is

achieved provided that all these sub-specifications are held true by individual agents.

Hence, the global specification is guaranteed by design. In order to perform this idea,

several questions are required to be answered as will be discussed in the next sections

of this chapter. These questions include how to describe the global specification and

subtasks in a succinct and formal way; how to decompose the global specification (i.e.,

how to obtain local tasks, how to compose them and how to compare the composed

one with the original global task); whether it is always possible to decompose the

task, and if not what are the necessary and sufficient conditions for decomposability

and how to enforce them. In top-down design, when the logical behavior of the team

is concerned, the global specification can be modeled by discrete event systems. Next

part will discuss the specifications in the top-down supervisory control of logical be-

haviors, with the emphasize on the automaton model that is very close to the human

4



Figure 1.1: (a): Bottom-Up approach, (b): Top-Down approach.
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representation of physical event transitions and can express ordering and selections

between the events in the global tasks.

1.2 Specifications, Logical Behaviors and Au-

tomata Models

Cooperative control of multi-agent systems in general concerns with two types of

dynamics to be controlled: continuous-state and discrete event dynamics. While

continuous-state systems are time-driven, represented by differential/difference equa-

tions and modeled by transfer functions and state space equations; a discrete event

system (DES) is event-driven, represented by the sequence of states/events and mod-

eled by sequential models such as languages, automata and Petri nets. A continuous

system is controlled in the low-level (inner-loop) of the hierarchy to track an exact

trajectory and meet specifications such as stability, optimality and performance. A

discrete even system, on the other hand, is controlled (supervised) in a high level

(outer-loop) perspective to visit a desired sequence of regions in a partitioned state

space, to meet logical specifications. A discrete event system, therefore, can be seen as

an event-driven system whose state transitions are triggered by instantaneous events

in a discrete state space. In general, continuous controllers deal with control signals

based on set-points and control policies, provided by discrete supervisors. In this

sense, a discrete event system can represent an abstraction of a continuous/hybrid

system and facilitates the evaluation of symbolic (logical) behavior of the system

6



without a detailed investigation of its time-driven quantitative dynamics. This thesis

works on the cooperative control of a multi-agent system to achieve logical global

specifications.

The first step to control the logical behavior of a team of agents is to represent

the desired logical behavior of the team in a mathematical way to capture event-

driven transitions between the states of each agent as well as the interactions among

agents that allow synchronization over cooperative actions. This perspective is very

close to human understanding from the high level behavior of the system that is

encoded in sequential flowcharts, in which each part has its own sequence while the

parts may synchronize on some events for cooperative actions. In this case, the

global specification can be defined over the union of local event sets since the global

transitions are defined either individually or synchronously over the events from sensor

and actuator signals of the agents. For example, consider two robot agents that do

a cooperative surveillance task and are supposed to react upon the first detection of

an object, such that “if Agent 1 recognized the object” or “Agent 2 recognized the

object”, then for example they synchronously push a door. In this case, “Agent 1

recognized the object” and “Agent 2 recognized the object” are considered as private

events, while “pushing the door” is interpreted as a shared event to synchronize on.

The global event set is then considered as the union of local event sets and each

agent has its own local events to transit individually, while shares some events with

its neighbors to synchronize on cooperative actions. In this sense, each local agent

perceives the global task from the perspective of its local events. Following example

shows a global specification defined over the union of two local event sets for two

7



sub-plants.

Example 1.1 Consider two sequential belt conveyors feeding a bin, as depicted in

Figure 1.2. To avoid the overaccumulation of materials on Belt B, when the bin

needs to be charged, at first Belt B and then (after a few seconds), Belt A should be

started. After filling the bin, to stop the charge, first Belt A and then after a few

seconds Belt B is stopped to get completely emptied. The global task, showing the

order of events in this plant, is shown in Figure 1.3. The local event sets for Belt

Figure 1.2: The process of two belt conveyors charging a bin.

AS: // 76540123q0
BStart // 76540123q1

AStart

// 76540123q2
BinFull // 76540123q3

AStop

// 76540123q4
BStop // 76540123q5BCD@A

BinEmpty

OO

Figure 1.3: Global task automaton for the belt conveyors and bin.

A and Belt B are EA = {AStart, BinFull, AStop} and EB = {BStart, BStop, BinEmpty},

respectively, with AStart:= Belt A start; BinFull:= Bin full; AStop:= Belt A stop and

wait for 10 Seconds; BStart:= Belt B start and wait for 10 Seconds; BStop:= Belt B

stop, and BinEmpty: Bin empty.
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This structure of states and event transitions between the states is called tran-

sition system [44] that carries the source state, target state and event or action for

each transition.

Definition 1.1 (Transition System [44]) A transition system over a set E of events

is a tuple TS = (S, T, α, β, λ) where S is a set of states; T is a set of transitions; α,

β: T → S denote respectively the source state and the target state of a transition; λ :

T → E denotes the action responsible for the transition, and the mapping (α, λ, β) :

T → S × E × S is one-to-one so that T is a subset of S × E × S.

A special form of transition system is finite state machine (automaton) with the

emphasize on states and traditions, with the following definitions and notations [45].

Definition 1.2 (Automaton) A deterministic automaton is a tuple A := (Q, q0, E, δ)

consisting of a set of states Q; an initial state q0 ∈ Q; a set of events E that causes

transitions between the states, and a transition relation δ ⊆ Q × E × Q, with a

partial map δ : Q× E → Q, such that (q, e, q′) ∈ δ if and only if state q is transited

to state q′ by event e, denoted by q
e→ q′ (or δ(q, e) = q′). A nondeterministic

automaton is a tuple A := (Q, q0, E, δ) with a partial transition map δ : Q × E →

2Q, and if hidden transitions (ε-moves) are also possible, then a nondeterministic

automaton with hidden moves is defined as A := (Q, q0, E ∪ {ε}, δ) with a partial

map δ : Q × (E ∪ {ε}) → 2Q. For a nondeterministic automaton, the initial state

can be generally from a set Q0 ⊆ Q. In general the automaton also has an argument

Qm ⊆ Q of marked (accepting or final) states to assign a meaning of accomplishment

9



to some states. For an automaton whose each state represents an accomplishment

of a stage of the specification (like the following two examples), all states can be

considered as marked states and Qm is omitted from the tuple.

With an abuse of notation, the definitions of transition relation can be extended

from the domain of Q × E (or Q × (E ∪ {ε}) in the case of hidden moves) into the

domain of Q×E∗ (or Q×(E∗∪{ε}) for the case of hidden moves) to define transitions

over strings s ∈ E∗, where E∗ stands for the Kleene − Closure of E (the collection

of all finite sequences of events over the elements of E).

Definition 1.3 (Transition on Strings) For a deterministic automaton, the existence

of a transition over a string s ∈ E∗ from a state q ∈ Q is denoted by δ(q, s)! and

inductively defined as δ(q, ε) = q, and δ(q, se) = δ(δ(q, s), e) for s ∈ E∗ and e ∈ E.

Next, for a nondeterministic automaton A (possibly with hidden moves), the

ε-closure of q ∈ Q, denoted by ε∗A(q) ⊆ Q, is recursively defined as: q ∈ ε∗A(q);

q′ ∈ ε∗A(q) ⇒ δ(q′, ε) ⊆ ε∗A(q), based on which δ : Q × E∗ → 2Q, is inductively

defined as: ∀q ∈ Q, s ∈ E∗, e ∈ E: δ(q, ε) := ε∗A(q) and δ(q, se) = ε∗A(δ(δ(q, s), e)) =

∪
q′∈δ(q,s)

{
∪

q′′∈δ(q′,e)
ε∗A(q′′)

}
.

The existence of a set L ⊆ E∗ of strings from a state q ∈ Q is then denoted as

δ(q, L)! and read as ∀s ∈ L : δ(q, s)!.

For e ∈ E, s ∈ E∗, e ∈ s means that ∃t1, t2 ∈ E∗ such that s = t1et2. In this sense,

the intersection of two strings s1, s2 ∈ E∗ is defined as s1 ∩ s2 = {e|e ∈ s1 ∧ e ∈ s2}.

Likewise, s1\s2 is defined as s1\s2 = {e|e ∈ s1 ∧ e /∈ s2}. For s1, s2 ∈ E∗, s1 is called

a sub-string of s2, denoted by s1 6 s2, when ∃t ∈ E∗, s2 = s1t.
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Two events e1 and e2 are called successive events if ∃q ∈ Q : δ(q, e1)! ∧

δ(δ(q, e1), e2)! or δ(q, e2)! ∧ δ(δ(q, e2), e1)!. Two events e1 and e2 are called adjacent

events if ∃q ∈ Q : δ(q, e1)! ∧ δ(q, e2)!.

The transition relation is a partial relation, and in general some of the states

might not be accessible from the initial state.

Definition 1.4 The operator Ac(.) [46] is defined by excluding the states and

their attached transitions that are not reachable from the initial state as Ac(A) =

(Qac, q0, E, δac) with Qac = {q ∈ Q|∃s ∈ E∗, q ∈ δ(q0, s)} and δac = δ|Qac×E → Qac,

restricting δ to the smaller domain of Qac. Since Ac(.) has no effect on the behavior

of the automaton, from now on we take A = Ac(A).

Following two examples show global task automata defined over the union of local

even sets for the team of agents.

Example 1.2 Consider the plant of two sequential belt conveyors and storage

bin, in Example 1.1. The task automaton AS is defined as AS = (Q =

{q0, q1, q2, q3, q4, q5}, q0, E = {AStart, BinFull, AStop, BStart, BStop, BinEmpty}, δ), where

E = EA ∪ EB with respective local event sets EA = {AStart, BinFull, AStop} and

EB = {BStart, BStop, BinEmpty}. Transition relation on this task automaton is de-

fined as δ(q0, BStart) = q1, δ(q1, AStart) = q2, δ(q2, BinFull) = q3, δ(q3, AStop) = q4,

δ(q4, BStop) = q5, δ(q5, BinEmpty) = q0.

When the states are clear from the context, such as this example, the task au-

tomaton can be shown with unlabeled states as AS: // •BStart// •
AStart

// •BinFull// •
AStop

// •
BStop// •BCD@A

BinEmpty

OO
.
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Example 1.2 showed a task automaton for two sub-plants (two belt conveyors)

with satanic positions. In some application local plants refer to mobile agents in which

some events represent the change in physical position. Following example shows a

global specification for a team of three robot-agents defined over the union of local

event sets for agents.

Example 1.3 Consider a cooperative multi-robot system (MRS) configured in Fig-

ure 1.4. The MRS consists of three robots R1, R2 and R3. All robots have the

Figure 1.4: The environment of the MRS coordination example.

same communication and positioning capabilities. Furthermore, the robot R2 has

the rescue and fire-fighting capabilities, while R1 and R3 are normal robots with the

pushing capability. Initially, all of them are positioned in Room 1. Rooms 2 and 3

are accessible from Room 1 by one-way door D2 and two-way doors D1 and D3, as

shown in Figure 1.4. All doors are equipped with spring to be closed automatically,
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when there is no force to keep them open.

AS:

• r // •̌ h1 //

h2 �� ##GGGGGG •R1toD1//

##GGGGGG •R1onD1//

##GGGGGG •
h3

##GGGGGG

•
R3in1

OO

•
R2to2 �� $$HHHHHH •

�� $$HHHHHH // • //

$$HHHHHH • //

$$HHHHHH •
R3to3

$$HHHHHH

•
R2in2 �� $$HHHHHH •

�� $$HHHHHH • //

�� $$HHHHHH • //

$$HHHHHH • //

$$HHHHHH •
R3in3

$$HHHHHH

•

R3to1

OO

•
$$HHHHHH •
�� $$HHHHHH •

�� $$HHHHHH •
�� $$HHHHHH // • //

$$HHHHHH • //

$$HHHHHH •
R3toD1

$$HHHHHH

•
$$HHHHHH •
�� $$HHHHHH •

�� $$HHHHHH •
��

//

$$HHHHHH • //

$$HHHHHH • //

$$HHHHHH •
R3onD1

$$HHHHHH

•
D1Closed

ddHHHHHHHHHHHHHHH
•

$$HHHHHH •
�� $$HHHHHH •

�� $$HHHHHH •
��

// •
��

// •
��

// •
��

FWD

$$HHHHHH

•
$$HHHHHH •
�� $$HHHHHH •

��

// •
��

// •
��

// •
�� $$HHHHHH •

h2��
•

BWD

ddHHHHHHHHHHHHHHH
•

$$HHHHHH •
��

// •
��

// •
��

// •
�� $$HHHHHH •

R2to2��
• // • // • // •

$$HHHHHH •
R2in2��

•
R2in1

ddHHHHHHHHHHHHHHH
•

R2to1
oo •

D1opened
oo

Figure 1.5: Task automaton AS for the robot team.

Assume that Room 2 requests help for fire extinguishing. After the help announce-

ment, the Robot R2 is required to go to Room 2, urgently from D2 and accomplish

its task there and come back immediately to Room 1. However, D2 is a one-way

door, and D1 is a heavy door and needs the cooperation of two robots R1 and R3 to

be opened. To save time, as soon as the robots hear the help request from Room 2,

R2 and R3 go to Rooms 2 and 3, from D2 and D3, respectively, and then R1 and R3

position on D1, synchronously open D1 and wait for the accomplishment of the task

of R2 in Room 2 and returning to Room 1 (R2 is fast enough). Afterwards, R1 and

R3 move backward to close D1 and then R3 returns back to Room 1 from D3. All
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robots then stay at Room 1 for the next task.

These requirements can be translated into a task automaton for the

robot team as it is illustrated in Figure 1.5, defined over local event sets

E1 = {h1, R1toD1, R1onD1, FWD,D1opened,R2in1, BWD,D1closed, r}, E2 =

{h2, R2to2, R2in2, D1opened,R2to1, R2in1, r}, and E3 = {h3, R3to3, R3in3, R3toD1,

R3onD1, FWD, D1opened, R2in1, BWD, D1closed, R3to1, R3in1, r}, with hi:=

Ri received help request, i = 1, 2, 3; RjtoD1:= command for Rj to position on D1,

j = 1, 3; RjonD1:= Rj has positioned on D1, j = 1, 3; FWD:= command for mov-

ing forward (to open D1); BWD:= command for moving backward (to close D1);

D1opened:= D1 has been opened; D1closed:= D1 has been closed; r:= command to

go to initial state for the next implementation; Ritok:= command for Ri to go to

Room k, and Riink:= Ri has gone to Room k, i = 1, 2, 3, k = 1, 2, 3.

As it was illustrated in previous examples, the automata models are user friendly,

graphical, easy to visualize and carry the direct physical meaning of events and tran-

sitions between the states. It is also reported [47] that among common models for

logical behaviors [48–56], automata have a moderate level of abstraction, have rea-

sonable expressive power (as they can represent the human like sequential transitions,

can represent the propositional properties [57] and are connected to temporal logic

[12, 17, 58–64]) as well as verification power and span a wide range in relation to the

life cycle of modeling of DES [47]. It should be noted that the automata models, like

other modeling methods, require human experts to define the events based on sensor

readings and actuator signals and to translate the requirements into the transitions

14



between the states. Moreover, the representation of global behavior could be com-

plicated as it was shown in Example 1.3; however, automata models are suitable for

implementation since they can be realized by simple “if-then” rules over the tran-

sitions. This property is particularly important in decentralized cooperative control

that local tasks and local controller automata are reduced in the structure defined

over the corresponding local event sets. Another advantage of automaton is that, the

synthesis of supervisor for a given plant automaton is supported by the product and

parallel compositions as well as by mapping on the generated languages. In addition,

as it will be discussed in the following section, the behavior of the closed loop system

and the specification automata can be compared by equivalence relations [65–67], and

moreover, parallel composition and natural projection can be utilized to facilitate the

decentralized and modular synthesis and analysis of distributed DES [42,52,68].

We focus on deterministic global task automata that are simpler to be charac-

terized, and cover a wide class of specifications such as language specifications that

have been well studied in the context of supervisory control of discrete event systems

[52]. The advantage of deterministic automaton is that they can uniquely encode the

sequence of events using the notion of state and transition relation, and hence do not

require huge memory to save the strings as the history of transitions. The qualitative

behavior of a deterministic system is therefore described by the set of all possible

sequences of events starting from the initial state. Each such a sequence is called a

string as described in Definition 1.3, and the collection of all strings represents the

language generated by the automaton, denoted by L(A), as defined as follows.
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Definition 1.5 (Language, Language Equivalent Automata) For a given automa-

ton A with event set E, the language generated by A is defined as L(A) := {s ∈

E∗|δ(q0, s)!}. Two automata A1 and A2 are said to be language equivalent if

L(A1) = L(A2).

So far, global task automaton has been discussed for the representation of desired

logical behavior of the team of agents. Once the global specification is given for the

team, the key problem to accomplish the top-down cooperative tasking idea is the

task decomposition such that the composition of local tasks resembles (be equivalent

to) the original task. Consequently, several issues have to be declared here: how to

obtain local tasks from the global task? how to compose them to retrieve the global

task? and how to compare the composition of local tasks with the global task? (what

equivalent relation has to be used for the comparison?), as will be discussed in the

following three sections, respectively. Next section discusses natural projections to

obtain the local task automata as perceived observation of each agent from the global

task automaton.

1.3 Natural Projection and Local Task Automata

Given a global task automaton, the cooperative tasking relies on task automaton

decomposition such that local task automata collectively resemble the original task

automaton. The first step in this top-down approach is therefore to obtain the local

task automata. Since each agent has its private events (corresponding to local sensors

and actuators) as well as shared events (those sensors and actuator signals that are
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shared to synchronize on), the global task automaton is defined over the union of

all agents’ event sets. Consequently, each agent has a local observation from the

global task: the perceived global task, filtered by its local event set, i.e., through

natural projections with respect to each agent’s event set. Accordingly, each local

task automaton is the local observer automaton [46], as the interpretation of each

agent from the global task. Namely, the agent will ignore the transitions marked by

the events that are not in its own event set, i.e., blinds to these moves. The obtained

automaton will be a sub-automaton of the global task automaton by deleting all the

moves triggered by the blind events of the agent. Particularly, natural projection

is defined on automata as PEi
: A → A, where, A is the set of finite automata and

PEi
(AS) are obtained from AS by replacing its events that belong to E\Ei by ε-moves,

and then, merging the ε-related states. The ε-related states form equivalent classes

defined as follows.

Definition 1.6 (Equivalent Class of States, [69]) Consider an automaton AS =

(Q, q0, E, δ) and an event set E ′ ⊆ E. Then, the relation ∼E′ is the minimal equiva-

lence relation on the set Q of states such that q′ ∈ δ(q, e) ∧ e /∈ E ′ ⇒ q ∼E′ q′, and

[q]E′ denotes the equivalence class of q defined on ∼E′ . The set of equivalent classes

of states over ∼E′ , is denoted by Q/∼E′
and defined as Q/∼E′

= {[q]E′|q ∈ Q}.

∼E′ is an equivalence relation as it is reflective (q ∼E′ q), symmetric (q ∼E′ q′ ⇔

q′ ∼E′ q) and transitive (q ∼E′ q′ ∧ q′ ∼E′ q′′ ⇒ q ∼E′ q′′).

It should be noted that the relation ∼E′ can be defined for any E ′ ⊆ E, for

example, ∼Ei
and ∼Ei∪Ej

, respectively denote the equivalence relations with respect
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to Ei and Ei ∪ Ej. Moreover, when it is clear from the context, ∼i is used to denote

∼Ei
for simplicity.

Next, natural projection over strings is denoted by pE′ : E∗ → E ′∗, takes a string

from the event set E and eliminates events in it that do not belong to the event set

E ′ ⊆ E. The natural projection is formally defined on the strings as

Definition 1.7 (Natural Projection on String, [46]) Consider a global event set E

and an event set E ′ ⊆ E. Then, the natural projection pE′ : E∗ → E ′∗ is inductively

defined as pE′(ε) = ε, and ∀s ∈ E∗, e ∈ E : pE′(se) =


pE′(s)e if e ∈ E ′;

pE′(s) otherwise.

Accordingly, inverse natural projection p−1
E′ : E ′∗ → 2E

∗
is defined on an string

t ∈ E ′∗ as p−1
E′ (t) := {s ∈ E∗|pE′(s) = t}. When it is clear from the context, pi is used

instead of pEi
, for simplicity.

The natural projection is then formally defined on an automaton as follows.

Definition 1.8 (Natural Projection on Automaton) Consider an automaton AS =

(Q, q0, E, δ) and an event set E ′ ⊆ E. Then, PE′(AS) = (Q/∼E′
, [q0]E′ , E

′, δ′), with

[q′]E′ ∈ δ′([q]E′ , e) if there exist states q1 and q′1 such that q1 ∼E′ q, q′1 ∼E′ q′, and

q′1 ∈ δ(q1, e). Again, PE′(AS) can be defined into any event set E ′ ⊆ E. For example,

PEi
(AS) and PEi∪Ej

(AS), respectively denote the natural projections of AS into Ei

and Ei∪Ej. When it is clear from the context, PEi
is replaced with Pi, for simplicity.

Following example elaborates the concept of natural projection on a given au-

tomaton.
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Example 1.4 Consider an automaton AS: // • a //
e2 ))RRRRRR • e1 // • b // •
• e4

55llllll
with the

event set E = E1 ∪ E2 and local event sets E1 = {a, b, e1}, E2 = {a, b, e2, e4}.

The natural projection of AS into E1 is obtained as P1(AS): • •̌
a
77

boo •e1oo by replac-

ing e2, e4 ∈ E\E1 with ε and merging the ε-related states. Similarly, the projection

P2(AS) is obtained as P2(AS): // • e2 //
a

55• e4 // • b // •.

Given a task automaton and its local event sets, it is always feasible to do the

projection operation, but the question is whether the obtained sub-automata preserve

the required specifications in the sense that the fulfillment of each agent with its cor-

responding sub-task automaton will imply the satisfaction of the global specification

as a group.

In order to perform the decomposition, after obtaining local task automata, we

need to declare that how to compose local automata and how to compare the collec-

tive task automaton ( the composition of local task automata) with the global task

automaton, as will be discussed in the following two sections.

1.4 Composition of Automata

In order for the correctness of task automaton decomposition, the composition of

local automata should resemble the global task automaton, for which it requires to

carry the synchronization information to capture the interactions between the agents.

For this purpose, we consider synchronization information to be inserted in each

local automaton (instead of considering a coordinating automaton [70,71]), while no
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new synchronization events [72] are allowed. In this case, the size of global event set

will not be enlarged by inserting unobservable events. This method also allows de-

centralized synthesis without requiring a centralized coordinator for synchronization.

Moreover, we consider predefined local event sets with private events for individual

moves as well as shared events for synchronization with neighbors. So far, several

versions of operators have been introduced for such synchronization method, namely

for composition of local automata. One way to compose local automata and synchro-

nize them on their shared events is vector synchronous product [73]. This operator

restricts two systems to simultaneously evolve in each step: a shared event can be

transited if it is defined in and transited from the current states of both systems. The

private event, on the other hand, can individually evolve in the vector form. In this

case, if one of the systems has no available private event, it evolves with an unobserv-

able event, called “stay” or “wait” event. A more liberal operator is state-dependent

vector synchronous product that defines the synchronization based on the available

shared events in the current states, in the sense that different events in two systems

can form a vector transition as long as none of the events are shared events available

in current states of both systems [73]. In the state-independent vector synchronous

product, however, two different events can form a vector event only if none of them

is a shared event. Another vector-based composition is multi-agent product that re-

quires two systems have a transition at every step; and an identical event has to be

necessarily synchronized when is available in the current states of both systems [73].

Finally, the most relaxed vector-based composition is simultaneous product [73] that

restricts two automata to have a transition at every state with no other requirements.
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Another composition of automata is introduced as synchronously communicating sys-

tems [74] that is partially vector-based (on common events) and partially scalar (on

private events). This composition is based on Zeilonka’s asynchronous automata [75]

and makes local common transitions conditional to their counterpart transitions in

other local automata, such that common transitions joint before forming the global

transitions. This means that each branch of a nondeterministic transition in one au-

tomaton can be corresponded to only one of the nondeterministic transitions in the

other automaton. Although, theoretically, synchronously communicating systems are

more expressive, it is practically difficult to distinguish target states after nondeter-

ministic transitions.

In general, although vector-based compositions keep the information of local tran-

sitions in vector events, the standard scalar parallel composition is more tractable as

the composed automaton can be treated as one system with a scalar language. In

this case, the orders, selections and logical properties can be easier investigated and

compared with the desired specifications. The supervisory synthesis also is well-

established and easier to implement for scalar automata. We therefore adopt the

well-accepted operator of parallel composition of automata.

Parallel composition in [46] (loosely cooperating systems in [74], mixed product

in [76], synchronous product in [45]), as an special case of synchronized product in

[44], captures the synchronization of automata and allows the composed system to

be a scalar automaton, such that the individual local transitions can independently

evolve, while the transitions on any shared event can evolve globally only if it is tran-
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sited from the current state of all those local automata that recognize that event.

Especial cases of parallel composition are product composition (or completely syn-

chronous compositions) that allows only global transitions on common events; and

shuffle product that is defined for automata with mutual exclusive event sets, and

only captures the interleaving of private events with no synchronization. Parallel

composition itself, however captures the individual private moves and synchronized

common transitions in a unified framework.

Parallel composition is therefore a very simple and tractable tool for the modeling

of both individual moves as well as synchronized transitions among interactive plants.

Accordingly, the parallel composition can be used to capture the collective perception

of the team of agents from the global task automaton, i.e., to obtain the collective

task automaton by composing the local task automata. Parallel composition is also

used to model each local closed loop system by composing its local plant and local

controller automata.

Definition 1.9 (Parallel Composition)

Let Ai = (Qi, q
0
i , Ei, δi), i = 1, 2 be automata. The parallel composi-

tion (synchronous composition) of A1 and A2 is the automaton A1||A2 =

(Q = Q1 ×Q2, q0 = (q0
1, q

0
2), E = E1 ∪ E2, δ), with δ defined as ∀(q1, q2) ∈ Q, e ∈ E:

δ((q1, q2), e) =



(δ1(q1, e), δ2(q2, e)) , if δ1(q1, e)!, δ2(q2, e)!, e ∈ E1 ∩ E2;

(δ1(q1, e), q2) , if δ1(q1, e)!, e ∈ E1\E2;

(q1, δ2(q2, e)) , if δ2(q2, e)!, e ∈ E2\E1;

undefined, otherwise.

The parallel composition of Ai, i = 1, 2, ..., n is called parallel distributed system
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[74] (or concurrent system [69]), and is defined based on the associativity property of

parallel composition [46] as
n

‖
i=1

Ai = A1 ‖ ... ‖ An = An ‖ (An−1 ‖ (· · · ‖ (A2 ‖ A1))).

The set of labels of local event sets containing an event e is called the set of

locations of e, denoted by loc(e) and is defined as loc(e) = {i ∈ {1, . . . , n}|e ∈ Ei}.

An event e is then called a shared event if |loc(e)| > 1. Here, the operator |.| denotes

the cardinality or the number of elements of the set.

To investigate the interactions of transitions in two automata, particularly in

Pi(AS), i = 1, . . . , n, the synchronized product of languages is defined as follows.

Definition 1.10 (Synchronized Product of Languages [77]) Consider a global event

set E and local event sets Ei, i = 1, . . . , n, such that E =
n
∪
i=1
Ei. For a finite set

of languages {Li ⊆ E∗i }ni=1, the synchronized product (product language) of {Li},

denoted by
n

|
i=1

Li, is defined as
n

|
i=1

Li = {s ∈ E∗|∀i ∈ {1, . . . , n} : pi(s) ∈ Li} =

n
∩
i=1
p−1
i (Li).

Using the product language, it is then possible to characterize the language of

parallel composition of two automata in terms of their languages as

Lemma 1.1 ( [77]) Consider two automata A1 and A2, with respective event sets

E1 and E2. Then, L(A1||A2) = L(A1)|L(A2) = p−1
1 (L(A1)) ∩ p−1

2 (L(A2)) with pi :

E1 ∪ E2 → Ei, i = 1, 2.

Corollary 1.1 (Interleaving of two strings) Let A1 = ({q1, ..., qn}, {q1}, E1 =

{e1, ..., en}, δ1) and A2 = ({q′1, ..., q′m}, {q′1}, E2 = {e′1, ..., e′m}, δ2) denote path au-

tomata (automata with only one branch) q1
e1→ q2

e2→ ...
en→ qn and q′1

e′1→ q′2
e′2→
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...
e′m→ q′m, respectively. Then, L(A1||A2) = s̄|s̄′ = p−1

1 (s̄) ∩ p−1
2 (s̄′) with s = e1, ..., en,

s′ = e′1, ..., e
′
m and pi : E1 ∪ E2 → Ei, i = 1, 2.

Example 1.5 Consider three strings s1 = e1a, s2 = ae2 and s3 = ae1. Then, the

interleaving of s1 and s2 is s1|s2 = e1ae2, while the interleaving of two strings s2 and

s3 becomes s2|s3 = {ae1e2, ae2e1}.

Adopting the natural projection to obtain the local task automata, and parallel

composition to define the interactions between the local automata, the next issue

would be the comparison of automata in order to ensure the correctness of the de-

composition. Particularly, it should be declared that what equivalence relation is

considered for the comparison of the collective task and global task automata, as it

is discussed in the next section.

1.5 Comparison of Automata

To compare the logical behavior of two automata, particularly the collective and

global task automata, generally three main equivalence relations are considered in

the literature: state-space isomorphism; language equivalence, and bisimulation. Ac-

cordingly, the decomposability of task automaton with respect to parallel composition

and these equivalence relations are called synthesis modulo language equivalence, syn-

thesis modulo isomorphism, and synthesis modulo bisimulation [74].

The weakest equivalence relation is the language equivalence by which two au-

tomata A1 and A2 are said to be language equivalent if L(A1) = L(A2). Language
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equivalence can capture sequence, selection and order between the transitions, while

bisimulation carries more temporal and branching properties [65]. In particular,

bisimulation allows to compare the sequential behavior of two automata using states,

that requires less memory rather than using language equivalence. In this case instead

of storing and comparison of strings in two automata, one just needs to compare the

post-transition of the corresponding states in two automata. In general, bisimilarity

implies language equivalence but the converse does not necessarily hold [65]. If two

automata A1 and A2 are both deterministic, then their bisimulation is reduced to

language equivalence. For our application, on the other hand, we will show that (see

Example 1.8) even for a deterministic global task automaton AS, the collective desired

behavior
n

‖
i=1

Pi (AS) can be nondeterministic, and hence to compare their behaviors,

using the post-transitions of the corresponding states, we need the bisimulation be-

tween AS and
n

‖
i=1

Pi (AS).

Definition 1.11 (Bisimulation [46]) Consider two automata Ai = (Qi, q
0
i , E, δi),

i = 1, 2. A simulation relation from A1 to A2 over Q′1 ⊆ Q1, Q′2 ⊆ Q2 and with

respect to E ′ ⊆ E is a binary relation R ⊆ Q′1 ×Q′2, where

1. ∀q1 ∈ Q′1, ∃q2 ∈ Q′2 such that (q1, q2) ∈ R;

2. if (q1, q2) ∈ R, e ∈ E ′, q′1 ∈ δ1(q1, e), then ∃q′2 ∈ Q′2 such that ∃q′2 ∈ δ2(q2, e),

(q′1, q
′
2) ∈ R.

The automaton A1 is said to be similar to A2 (or A2 simulates A1), denoted by

A1 ≺ A2, if there exists a simulation relation from A1 to A2 over Q1, Q2 and with

respect to E, i.e.,
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1. (q0
1, q

0
2) ∈ R, and

2. ∀ (q1, q2) ∈ R, q′1 ∈ δ1(q1, e), then ∃q′2 ∈ Q2 such that q′2 ∈ δ2(q2, e), (q′1, q
′
2) ∈ R

[46].

If A1 ≺ A2 with a simulation relation R, A2 ≺ A1 with the simulation relation R

and R is a symmetric relation (i.e., ∀(x, y) ∈ R ⇒ (y, x) ∈ R or R−1 = R), then A1

and A2 are said to be bisimilar (bisimulate each other), denoted by A1
∼= A2 [78].

Equivalently, A1
∼= A2 when A1 ≺ A2 with a simulation relation R1, A2 ≺ A1 with a

simulation relation R2 and R−1
1 = R2 [79].

It should be noted here that a stronger equivalence relation is isomorphism that

has been used in the literature for automaton decomposition, and is formally defined

as follows.

Definition 1.12 (Isomorphism, [80]) Two automata Ai = (Qi, q
0
i , E, δi), i = 1, 2,

are said to be isomorphic, denoted by A1 ≡ A2 if there exists an isomorphism θ from

A1 to A2 defined as a bijective function θ : Q1 → Q2 such that θ(q0
1) = q0

2, and

θ(δ1(q, e)) = δ2(θ(q), e), ∀q ∈ Q1, e ∈ E.

By this definition, two isomorphic automata are bisimilar, but bisimilar automata

are not necessarily isomorphic.

The synthesis modulo isomorphism is more restrictive (as it requires two automata

to have the same structure of states and transitions, such that the only allowed differ-

ence is the label of states), but easier to be characterized, as it has been presented in

[74]. Such strong equivalence relation has been applied in graph theory and computer
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science synthesis problems [69]. For control applications, on the other hand, other

two relations, i.e., language equivalence and bisimulation, are expressive enough and

more applicable to capture the behaviors. Language equivalence can compare the

behavior of two systems in terms of the sequences of events. For cooperative tasking

application, however, since the collective task (
n

‖
i=1

Pi (AS)) might be nondeterministic,

then the bisimulation equivalence is used for the comparison of AS and
n

‖
i=1

Pi (AS);

hence, this work focuses on automaton decomposability in the sense of bisimulation

as formally stated as follows. From now on, the term “decomposability” refers to the

“decomposability in the sense of bisimulation”, unless it is stated.

Definition 1.13 (Automaton Decomposability) A task automaton AS with the event

set E and local event sets Ei, i = 1, ..., n, E =
n
∪
i=1
Ei, is said to be decomposable with

respect to parallel composition and natural projections Pi, i = 1, · · · , n, in the sense

of bisimulation, or in short decomposable, if
n

‖
i=1

Pi (AS) ∼= AS.

Now, let us see several motivating examples to illustrate the automaton decom-

posability.

Example 1.6 This example shows an automaton that is decomposable in the sense of

all three equivalence relations, isomorphism, bisimulation and languages equivalence.

Consider the task automaton AS: // • e1 //
e2 ))RRRRRR • e2 // • a // •
• e1

55llllll
with local event sets

E1 = {e1, a} and E2 = {e2, a}. For this automaton, P1(AS) : // • e1 // • a // • ,

P2(AS) : // • e2 // • a // • , P1(AS)||P2(AS): // • e1 //
e2 ))RRRRRR • e2 // • a // •
• e1

55llllll
; hence,

AS ≡ P1(AS)||P2(AS), AS ∼= P1(AS)||P2(AS) and L(AS) = L(P1(AS)||P2(AS)).
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Example 1.7 This example shows an automaton that is decomposable in the sense of

bisimulation and language equivalence relations, but not isomorphism. Consider the

task automaton AS: // • e1 //
e2 ))RRRRRR • e2 // • a // •
• e1 // • a // •

with local event sets E1 = {e1, a}

and E2 = {e2, a}. In this case, P1(AS) : // • e1 // • a // • , P2(AS) : // • e2 // • a // • ,

P1(AS)||P2(AS): // • e1 //
e2 ))RRRRRR • e2 // • a // •
• e1

55llllll
; hence, AS ∼= P1(AS)||P2(AS) and

L(AS) = L(P1(AS)||P2(AS)), but AS 6≡ P1(AS)||P2(AS).

Example 1.8 This example shows an automaton that is decomposable in the sense

of only language equivalence but not bisimulation nor isomorphism. Consider

AS: 76540123q1
a // 76540123q2

b // 76540123q3

// 76540123q0

e1 66llllll

a ((RRRRRR

76540123q4

with E1 = {a, b, e1}, E2 = {a, b}, leading

to P1(AS): 76540123x1
a // 76540123x2

b // 76540123x3

// 76540123x0

e1 55kkkkkk

a ))SSSSSS
76540123x4

, P2(AS): 76540123y1
b // 76540123y2

// 76540123y0

a 55llllll

a ))RRRRRR

76540123y3

, and

P1(AS)||P2(AS): 76540123z1
a //

a ))RRRRRR 76540123z2
b // 76540123z3

// 76540123z0

e1 55llllll

a ))RRRRRR 76540123z5

76540123z4

which is neither bisimilar not iso-

morphic, but language equivalent to AS. AS does not bisimulate P1(AS)||P2(AS),

since δ(q0, e1a) = q2 in AS, z5 ∈ δ||(z0, e1a) in P1(AS)||P2(AS), δ(q2, b)! but ¬δ||(z5, b)!.

Moreover, AS and P1(AS)||P2(AS) are not isomorphic as there is no state in AS

that forms a bijective pair with z5. However, AS has the same language with

P1(AS)||P2(AS) as L(AS) = P1(AS)||P2(AS) = {ε, a, e1, e1a, e1ab}.

Example 1.9 This example shows an automaton that is not decomposable in the

sense of language equivalence and hence is not decomposable in the sense of bisimu-

lation and isomorphism. Consider the task automaton in Example 1.2 with local task
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automata P1(AS): // • AStart // • BinFull // •BCD@A
AStop

OO
and P2(AS): // • BStart // •

BStop // •BCD@A
BinEmpty

OO
,

and collective task automaton P1(AS)||P2(AS): // •
BStart

//

AStart

��

•
BStop

//

AStart

��

•
AStart

��

BinEmpty

ss

•
BStart

//

BinFull

��

•
BStop

//

BinFull

��

•
BinFull

��

ss

•
BStart

//

AStop

KK

•
BStop

//

KK KK

ss

that

is neither language equivalent, nor bisimilar, nor isomorphic to AS.

Based on the definition of automaton decomposability and motivating examples

we are now ready to state the underlying problems to be tackled in this thesis.

1.6 Problems to be Tackled in the Thesis

While, Examples 1.6 and 1.7 show decomposable automata, Examples 1.8 and 1.9 il-

lustrate instances of task automata that are not decomposable, implying that not all

automata are decomposable with respect to parallel composition and natural projec-

tions. Then, a natural follow-up question is what makes an automaton decomposable.

Once the task automaton decomposability is characterized by necessary and suf-

ficient conditions, the main question will arise to understand that for a decomposable

task automaton whether the fulfilment of local task automata implies the satisfaction

of the global task automaton, collectively.

After identifying the conditions for cooperative tasking, next interesting question

would be the robustness of the proposed method to understand that if after the design,

some events fail in some agents then whether the global task still can be collectively
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achieved by the team of agents. To answer this question we also need to understand

the conditions for task decomposability under event failure. In particular, whether a

decomposable task automaton remains decomposable under event failures, and if not

what are the necessary and sufficient conditions for preserving the decomposability,

in spite of failures.

Example 1.10 Consider the global task automaton in Example 1.3. The task au-

tomaton is decomposable with respect to parallel composition and local event sets

Ei, i = 1, 2, 3, as the parallel composition of local task automata P1(AS), P2(AS) and

P3(AS), shown in Figure 1.6, bisimulates AS.

P1(AS): // • h1 // •
R1toD1

// •R1onD1// •
FWD
// •D1opened// •

R2in1
// •BWD// •

D1closed
// •BCD@A

r

OO

P2(AS): // • h2 // •
R2to2
// •R2in2// •

D1opened
// •R2to1// •

R2in1
// •BCD@A

r

OO

P3(AS): // • h3 // •
R3to3
// •R3in3// •

R3toD1

// •R3onD1// •
FWD
// •D1opened// •

R2in1
// •BWD// •

D1closed
// •R3to1// •

R3in1
// •BCD@A

r

OO

Figure 1.6: P1(AS) for R1; P2(AS) for R2 and P3(AS) for R3.

In this scenario, R1 and R3 receive R2in1 from R2; R1 and R2 receive r and D1closed

from R3; R2 and R3 receive D1opened from R1, and R1 and R3 share FWD and

BWD to synchronize on. Now, an important question is that which of these events

are crucial to be shared in order to preserve the decomposability of AS. In other

words, which of these communication links can be safely failed among the agents

and which of them has to be sustained to maintain the task decomposability. This

example will be revisited after the formulation of event failure in Example 4.3 in

Chapter 4, to illustrate the notion of fault-tolerant task decomposability.
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Next interesting and more practically important question would be the investiga-

tion of task automata that are not decomposable. In this case, we would like to ask

whether it is possible to make them decomposable and if so, whether the automata

can be made decomposable with the minimum number of communication links.

Example 1.11 Consider the task automaton in Example 1.2 for the process of belt

conveyors and storage bin. The task automaton is not decomposable as it was shown

in Example 1.9. The question is now whether it is possible to decompose such task

automaton and if yes, whether it is possible to do it with the minimum number of

communication links (This example will be revisited in Example 5.1 in Chapter 5 to

elaborate the enforcing of the task decomposability).

To answer these questions, the objectives of the thesis are outlined as follows:

1. to understand that given a deterministic task automaton and a set of local

event sets, whether the task automaton is always decomposable, such that

the parallel composition of local task automata is equivalent (in the sense of

bisimulation) to the global task automaton and if not, what are the necessary

and sufficient conditions for such decomposability?

2. if the task automaton is decomposable and assuming the existence of local

supervisors to enforce local task automata, is it guaranteed that the entire

closed loop system satisfies (bisimulates) the global task automaton?

3. if the task automaton is decomposable and local supervisors exist to enforce

local tasks and the global specification is satisfied, but some events fail in some

agents, then whether the global task automaton remains decomposable and if
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not, what are the necessary and sufficient conditions for preserving the task

decomposability in spite of event failures?, and

4. if the decomposability conditions under event failures are satisfied, whether the

global specification can be still collectively satisfied by the team of agents, in

spite of event failures, and

5. if the task automaton is not decomposable, is it possible to make it decompos-

able by modifying the distribution of events among the agents?

1.7 Organization of the Thesis

To address the top-down cooperative control, three fundamental questions are evoked

here: The first question is the task decomposition problem that is interested in under-

standing of whether all tasks are decomposable and if not, what are the conditions for

task decomposability. It furthermore asks that if the task is decomposable and local

controllers exist to satisfy local tasks, whether the whole closed loop system satisfies

the global specification. Subsequently, the second question refers to the cooperative

control under event failures, and would like to know if after the task decomposition

and local controller designs for global satisfaction, some events fail in some agents,

then whether the task still remains decomposable and globally satisfied, in spite of

event failures. As another interesting direction, the third question investigates a

way to make an indecomposable task decomposable through the modification of local

agents in order to accomplish the proposed cooperative control.

For the cooperative control of logical behaviors [81], represented in automata
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[45,46], the first question (task decomposability for cooperative tasking) is addressed

in Chapter 2, by decomposing a given global task automaton into two local task au-

tomata such that their parallel composition bisimulates the original task automaton.

By using the notion of shared events, instead of common events and incorporating

the concept of global decision making on the orders and selections between the tran-

sitions, the decomposability result is generalized in Chapter 3 into an arbitrary finite

number of agents. Given a deterministic task automaton, and a set of local event sets,

necessary and sufficient conditions are identified for task automaton decomposability

based on decision making on the orders and selections of transitions, the interleaving

of synchronized strings and the determinism of bisimulation quotient of local au-

tomata. It is also proven that the fulfillment of local task automata guarantees the

satisfaction of the global specification, by design. A cooperative control scenario has

been developed and implemented for a team of three robots and the results are shown

to illustrate the concept of task decomposition and cooperative tasking.

The second question, cooperative tasking under event failures, is investigated in

Chapter 4, by introducing a notion of passive events to transform the fault-tolerant

task decomposability problem into the standard automaton decomposability in Chap-

ters 2 and 3. The passivity is found to reflect the redundancy of communication links,

based on which the necessary and sufficient conditions are introduced under which

a previously decomposable task automaton remains decomposable, in spite of event

failures. The conditions ensure that after passive failures, the team of agents main-

tains its capability for global decision making on the orders and selections between

transitions; no illegal behavior is allowed by the team (no new string emerges in the
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interleavings of local strings) and no legal behavior is disabled by the team (no string

in the global task automaton is stopped in the parallel composition of local automata).

These conditions interestingly guarantee the team of agents to still satisfy its global

specification, even if some local agents fail to maintain their local specifications.

The third question is addressed in Chapter 5 to investigate what is exactly needed

to make an originally indecomposable task automaton decomposable, and how to

make it decomposable. For a global task automaton that is not decomposable with

respect to given local event sets, the problem is particularly interested in finding a way

to modify the local task automata such that their parallel composition bisimulates

the original global task automaton, to guarantee its satisfaction by fulfilling the local

task automata. For this purpose, a procedure is proposed to firstly use the results

in Chapter 4 to remove the redundant communication links (that are passive and

their deletions respect the decomposability conditions under event failure), and then

identify the sources of indecomposability, using the results in Chapters 2, 3. Any

indecomposability in this stage is not due to redundant links; hence, it cannot be

overcome by link deletion. The algorithm will instead suggest establishing new links

to enforce each decomposability condition. Finding the sequence of link additions

to enforce the task automaton decomposability is found to require an exhaustive

dynamic search. Therefore, besides a graph theory approach to enforce the global

decision making on orders and selections, simple sufficient conditions are introduced

to avoid illegal interleavings and local nondeterminisms and also to prevent checking

of the corresponding conditions after each link addition. This method can make

any indecomposable task automaton decomposable in order for cooperative control
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of multi-agent systems.

The thesis is finally concluded in Chapter 6 with highlighting the contributions

and outlining the future works.
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Chapter 2

Cooperative Tasking for Two Agents

2.1 Introduction

This chapter aims to propose a task decomposition approach applicable in divide-

and-conquer synthesis for cooperative multi-agent systems, as it was motivated in

the very beginning. The decomposition should be in such a way that the fulfilment of

local tasks collectively lead to the satisfaction of the global specification. The main

underlying question here is to understand whether it is always possible to decompose

a given task automaton and if not, what are the necessary and sufficient conditions

for its decomposability.

To formally describe the specification, a deterministic finite automaton is chosen

here to represent the global specifications for multi-agent systems, due to its express-

ibility for a large class of tasks [45,46], its similarity to our human logical commands,

and its connection to the temporal logic specifications [61, 82]. Accordingly, we will

focus on the logical behavior of a multi-agent system and model its collective behavior

through parallel composition [74]. It is assumed that the global task automaton is

defined over the union of all agents’ event sets and hence, local task automata are

obtained through natural projections with respect to each agent’s event set. Given
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a task automaton and the sets of local events, it is always feasible to do the projec-

tion operation, but the question is whether the obtained sub-automata preserve the

required specifications in the sense that the fulfillment of each agent with its corre-

sponding sub-task automaton will imply the satisfaction of the global specification

as a group. Unfortunately, by a simple counterexample, it can be shown that the

answer is not always (see Examples 1.8 and 1.9). Then, a natural follow-up question

is what the necessary and sufficient conditions should be for the proposed decompos-

ability of a global specification. The main part of the chapter is set to answer this

question. The automaton decomposability problem is particularly important in the

area of distributed supervisory control of discrete event systems.

The field of supervisory control of discrete event systems has been formally ini-

tiated by Ramadge and Wonham [52, 83] to control the logical behavior of systems,

pertaining evolutions according to the asynchronous occurrence of events. It has been

also extended to supervisory control under partial observation [84], supervisory con-

trol of vector discrete event systems [85, 86] and concurrent vectors discrete event

systems [87], supervisory control of multi-agent product systems [88–90] (based on

multi-agent product [73]) and bisimilarity control [91].

For multi-agent systems with high complexity [92–95] due to many interacting

subsystems, and large-scale distribution of sensors and actuators, it is more effi-

cient, flexible and scalable to synthesis distributed supervisory control [96, 97]. In

distributed supervisory control, several supervisors cooperatively deal with smaller

sub-plants or/and sub-specifications, in modular and decentralized configurations. In
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modular supervisory control, the supervisor is comprised of several sub-supervisors

each of which for a module of plant or/and specification. On the other hand, decen-

tralized supervisory control refers to the structure with several “local” supervisors

(not necessarily corresponding to the modules of plants or/and specifications), each

of which with local sensing and actuating capabilities, that jointly lead the controlled

closed loop system to satisfy a global specification. Decentralized approaches also

increase the robustness, flexibility and functionality of the systems due to the paral-

lelism of local agents, with some degree of redundancy. These approaches also offer

more mobility and autonomy to agents due to local sensing and actuation.

The examples of distributed supervisory control include modular centralized

supervisory control with several cooperative supervisors with access to all events

[98–101]; non-modular decentralized supervisory control, with several supervisors

with partial accesses to the events of a monolithic plant [102–110]; modular decentral-

ized supervisory control with indecomposable task, where local supervisors correspond

to modules of plants but a global specification [111–116], and modular decentralized

supervisory control with decomposable task, where both plant and specification are

decomposable and each local supervisor corresponds to one module of plant and spec-

ification [74, 77, 91, 103, 117–120]. Among all of these configurations, decentralized

modular structures simplify the synthesis and implementation of top-down coopera-

tive control. In these structures the plant is given as a parallel distributed system

(parallel composition of local plant automata) and the global specification is repre-

sented as a decomposable task automaton and each local controller is designed for

the corresponding modules of local plant and local specification automata. Therefore,
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the key problem to accomplish this top-down idea is task decomposition such that

the composition of local tasks resembles (be equivalent to) the original task.

Similar automaton decomposition problem has been studied in the computer sci-

ence literature. Roughly speaking, two different classes of problems have been studied,

so far. The first problem is to design the event distribution so as to make the automa-

ton decomposable, which is typically studied in the context of concurrent systems.

For example, [69] characterized the conditions for decomposition of asynchronous au-

tomata in the sense of isomorphism based on the maximal cliques of the dependency

graph. The isomorphism equivalence used in [69] is however a strong condition, in the

sense that two isomorphic automata are bisimilar but not vise versa [46]. In many

applications bisimulation relation suffices to capture the equivalence relationship. On

the other hand, the second class of problems assumes that the distribution of the

global event set is given and the objective is to find conditions on the automaton

such that it is decomposable. This is usually called synthesis modulo problem [74]

that can be investigated under three types of equivalence: isomorphism, bisimulation

and language equivalence, as it was discussed in Chapter 1. Bisimulation synthesis

modulo for a global automaton has been also addressed in [74, 121], by introduc-

ing necessary and sufficient conditions for automaton decomposability based on the

product language of the automaton and the determinism of its bisimulation quotient.

Obtaining the bisimulation quotient, however, is generally a difficult task, and the

condition on product language relies on language separability [77], which is indeed

another form of decomposability. These problems motivate us to develop new neces-

sary and sufficient conditions that can characterize the decomposability based on the
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investigation of events and strings in the given automaton.

In this chapter, we identify conditions on the global specification automaton in

terms of its private and common events for the proposed decomposability, which

are shown to be necessary and sufficient for the case of two agents. In the next

chapter, the result will be generalized into the case of arbitrary finite number of

agents. Furthermore, it will be shown that if the global task is decomposable, then

designing the local controller for each agent to satisfy its corresponding sub-task will

lead the entire multi-agent system to achieve the global specification.

The rest of this chapter is organized as follows. Section 2.2 introduces the neces-

sary and sufficient conditions for the decomposability of an automaton with respect to

parallel composition and two local event sets. This section builds the foundation for

the next chapter for generalizing the result into an arbitrary finite number of agents.

The chapter then concludes with remarks and discussions in Section 2.3. The proofs

of lemmas are given in the Appendix.

2.2 Task Decomposability for Two Agents

As it was motivated in the Chapter 1, the essential issue in cooperative tasking is

task automaton decomposition that is formally stated as follows.

Problem 2.1 (Task Decomposability Problem) Given a deterministic task automaton

AS with the event set E =
n
∪
i=1
Ei and the local event sets Ei, i = 1, . . . , n, what are the

necessary and sufficient conditions that AS is decomposable with respect to parallel
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composition and natural projections Pi, i = 1, · · · , n, such that
n

‖
i=1

Pi (AS) ∼= AS?

This chapter answers Problem 2.1 by introducing necessary and sufficient condi-

tions for task automaton decomposability for two cooperative agents (n = 2). Next

chapter will then generalize this result for an arbitrary finite number of agents and

furthermore addresses the more important question of cooperative tasking to under-

stand that whether a decomposable global task automaton is guaranteed upon the

satisfaction of local specifications.

In order for AS ∼= P1(AS)||P2(AS), from the definition of bisimulation, it is re-

quired to have AS ≺ P1(AS)||P2(AS) (with a relation R1); P1(AS)||P2(AS) ≺ AS

(with a relation R2), and R−1
1 = R2. These requirements are provided by the fol-

lowing three lemmas. Firstly, the following simulation relationship always holds true.

Lemma 2.1 Consider any deterministic automaton AS with event set E = E1 ∪E2,

local event sets Ei, and natural projections Pi, i = 1, 2. Then, AS ≺ P1(AS)||P2(AS).

Proof: See the proof in the Appendix.

Example 2.1 Consider an automaton AS to be // • e1 // • e2 // • a // • with lo-

cal event sets E1 = {e1, a} and E2 = {e2, a}. The parallel composition

of P1(AS) : // • e1 // • a // • and P2(AS) : // • e2 // • a // • is P1(AS)||P2(AS):

// • e1 //
e2 ))RRRRRR • e2 // • a // •
• e1

55llllll
. One can observe that AS ≺ P1(AS)||P2(AS) but

P1(AS)||P2(AS) ⊀ AS, meaning that AS is not decomposable with respect to par-

allel composition and natural projections Pi, i = 1, 2.
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Lemma 2.1 says that, in general, P1(AS)||P2(AS) simulates AS. The similarity

of P1(AS)||P2(AS) to AS, however, is not always true (see Example 2.1), and needs

some conditions as stated in the following lemma.

Lemma 2.2 Consider a deterministic automaton AS = (Q, q0, E = E1 ∪ E2, δ) and

natural projections Pi, i = 1, 2. Then, P1(AS)||P2(AS) ≺ AS if and only if AS satisfies

the following conditions: ∀e1 ∈ E1\E2, e2 ∈ E2\E1, q ∈ Q, s ∈ E∗:

• DC1 : [δ(q, e1)! ∧ δ(q, e2)!]⇒ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2 : δ(q, e1e2s)!⇔ δ(q, e2e1s)!, and

• DC3 : ∀s, s′ ∈ E∗, s 6= s′, pEi∩Ej
(s), pEi∩Ej

(s′) start with the same com-

mon event a ∈ E1 ∩ E2, q ∈ Q: δ(q, s)! ∧ δ(q, s′)! ⇒ δ(q, p1(s)|p2(s′))! ∧

δ(q, p1(s′)|p2(s))!.

Proof: See the proof in the Appendix.

Next, we need to show that for two simulation relations R1 (for AS ≺

P1(AS)||P2(AS)) and R2 (for P1(AS)||P2(AS) ≺ AS), defined by Lemmas 2.1 and

2.2, R−1
1 = R2.

Lemma 2.3 Consider an automaton AS = (Q, q0, E = E1 ∪ E2, δ) with natural pro-

jections Pi, i = 1, 2 and P1(AS)||P2(AS) = (Z, z0, E, δ||). If AS is deterministic,

AS ≺ P1(AS)||P2(AS) with the simulation relation R1 and P1(AS)||P2(AS) ≺ AS with

the simulation relation R2, then R−1
1 = R2 (i.e., ∀q ∈ Q, z ∈ Z: (z, q) ∈ R2 ⇔

(q, z) ∈ R1) if and only if DC4: ∀i ∈ {1, 2}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈ E∗i ,

x1 ∈ δi(x, e), x2 ∈ δi(x, e): δi(x1, t)!⇔ δi(x2, t)!.
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Proof: See the proof in the Appendix.

Based on these lemmas, the main result on task automaton decomposition is given

as follows.

Theorem 2.1 (Task Decomposability for Two Agents) A deterministic automaton

AS = (Q, q0, E = E1 ∪E2, δ) is decomposable with respect to parallel composition and

natural projections Pi, i = 1, 2, such that AS ∼= P1(AS)||P2(AS) if and only if AS

satisfies the following decomposability conditions (DC): ∀e1 ∈ E1\E2, e2 ∈ E2\E1, q ∈

Q, s ∈ E∗,

• DC1: [δ(q, e1)! ∧ δ(q, e2)!]⇒ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: δ(q, e1e2s)!⇔ δ(q, e2e1s)!, and

• DC3 : ∀s, s′ ∈ E∗, s 6= s′, pEi∩Ej
(s), pEi∩Ej

(s′) start with the same com-

mon event a ∈ E1 ∩ E2, q ∈ Q: δ(q, s)! ∧ δ(q, s′)! ⇒ δ(q, p1(s)|p2(s′))! ∧

δ(q, p1(s′)|p2(s))!;

• DC4: ∀i ∈ {1, 2}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈ E∗i , x1 ∈ δi(x, e),

x2 ∈ δi(x, e): δi(x1, t)!⇔ δi(x2, t)!.

Proof: According to Definition 1.11, AS ∼= P1(AS)||P2(AS) if and only if AS ≺

P1(AS)||P2(AS) (that is always true due to Lemma 2.1), P1(AS)||P2(AS) ≺ AS (that

it is true if and only if DC1, DC2 and DC3 are true, according to Lemma 2.2) and one

of the simulation relations is the inverse of the other relation, i.e., R−1
1 = R2 (that for a

deterministic automaton AS, when AS ≺ P1(AS)||P2(AS) with the simulation relation

R1 and P1(AS)||P2(AS) ≺ AS with the simulation relation R2, due to Lemma 2.3,

R−1
1 = R2 holds true if and only if DC4 is satisfied). Therefore, AS ∼= P1(AS)||P2(AS)

43



if and only if DC1, DC2, DC3 and DC4 are satisfied.

Remark 2.1 Intuitively, the decomposability condition DC1 means that for any

adjacent pair (decision on switch) of private events (e1, e2) ∈ {(E1\E2, E2\E1),

(E2\E1, E1\E2)} (from different private event sets), both orders e1e2 and e2e1 should

be legal from the same state. DC2 states that for any pair of successive private events

from different event sets (decision on order), before any string, they should be allowed

to occur in any order. It should be noted that here, e1e2 and e2e1 are not required to

meet at the same state (unlike FD and ID in [69] for decomposability in the sense of

isomorphism); but due to DC2, any string s ∈ E∗ after them should be the same, or

in other words, if e1 and e2 are necessary conditions for the occurrence of a string s,

then any order of these two events would be legal for such occurrence (see Example

2.1). Note that, as a special case, s could be ε. This condition is similar to the notion

of trace [121], that intuitively carries the concept of independent successive events

that can occurs in any order (A language L ∈ E∗ is said to be a trace language if

∀e1, e2 ∈ E,∀ω, ω′ ∈ E∗ : ωe1e2ω
′ ∈ L and @Ei ∈ {E1, . . . , En}, e1, e2 ⊆ Ei, then

ωe2e1ω
′ ∈ L). The notion of trace, however cannot capture the condition on decision

making on adjacent events.

The condition DC3 means that if two strings s and s′ share the same first ap-

pearing common event, then any interleaving of these two strings should be legal in

AS. This requirement is due to the synchronization of projections of these strings in

P1(AS) and P2(AS). The last condition, DC4, ensures the symmetry of mutual sim-

ulation relations between AS and P1(AS)||P2(AS). Given the determinism of AS, this
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symmetry is guaranteed when each local task automaton bisimulates a deterministic

automaton, leading to the existence of a deterministic automaton that is bisimilar to

P1(AS)||P2(AS). If R−1
1 6= R2, then some of the sequences that are allowed in AS will

be disabled in P1(AS)||P2(AS).

A related notion to our work is language decomposability [112, 113] that is a

type of decentralized observability [122,123], and is defined as K = L∩ p−1
1 (p1(K))∩

p−1
2 (p2(K)) for language plant L, specification language K and natural projections p1,

p2, and means that agents have enough information to retrieve the global specification,

i.e., “any string in K can be distinguished by at least one of the projections p1 or p2,

otherwise any retrieval should fall in K” [112]. This in turn means that any order of

any successive events in any string of K should be legal, or at least one the projections

p1(K) or p2(K) should be capable of distinguishing this order. The language decom-

posability also implicitly embodies DC1 and DC3, stating that the global languages

specification should contain all possible interleaving languages of all local languages.

The condition DC4, on the other hand, is relaxed for the language decomposability as

the languages do not capture the nondeterminism; hence, the mutual set inclusion for

two languages implies their equality; unlike the mutual simulation of two automata

that does not imply their bisimilarity, in general. This is identically hold true for the

weaker notion of called language separability K = p−1
1 (p1(K))∩ p−1

2 (p2(K)) [77]. Au-

tomaton decomposability in the sense of bisimulation, on the other hand, besides the

checking the capability of local plants on decision making on the switches (DC1) and

orders (DC2) of events, and that the synchronization of local task automata should

not lead to an illegal behavior(DC3); it also requires local task automata to present
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deterministic behaviors (DC4), in order to allow all legal strings of AS to appear in

P1(AS)||P2(AS).

The decomposability conditions can be then paraphrased as follows: Any decision

on order or switch between two transitions that cannot be made locally (by at least

one local controller) should not be critical globally (any result of the decision should be

allowed); and the interpretation of the global task by the team of local plants should

neither allow an illegal behavior (a string that is not in global task automaton), nor

disallow a legal behavior (a string that appears in the global task automaton).

Another point is that in general, the task automaton may contain loops that in-

troduce moves that are successive/adjacent to other transitions. The decomposability

of such automata also can be checked using DC1-DC4. Examples of decomposable

automata with self-loops are shown in the following example.

Example 2.2 Consider the automata A1: // • e2
//

e1

��
•

e1

�� , A2: // • e1
//

e2

��
•

e2

�� and A3:

// •

e1,e2

�� with E1 = {e1}, E2 = {e2}. All of these automata satisfy DC1 and

DC2 as δ(q0, e1e2)! ∧ δ(q0, e2e1)!. They also satisfy DC3 since there is no com-

mon event shared between E1 and E2. Finally, DC4 is also fulfilled for them

since there is no nondeterminism in their local automata. The automaton A4:

// •
e2 ))RRRRRR
e1 // •

e2

�� a // •
• e1 // • a // •

with E1 = {a, e1}, E2 = {a, e2} is not decompos-

able as the parallel compositions of P1(A4) ∼= // • e1 // • a // • and P2(A4):

// •

e2

��

e2 ))RRRRRR
a // •
• a // •

is P1(A4)||P2(A4) ∼= // •

e2

��

e2 ��

e1 // •

e2

��

e2��

a // •

• e1 // • a // •

� A4. The
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automaton A4 is not decomposable since it violates DC2, as δ(q0, e1e2e2)! but

¬δ(q0, e2e1e2))! in A4.

Now, to elaborate the decomposability conditions, following four examples illus-

trate DC1-DC4 for decomposable and indecomposable automata.

Example 2.3 This example illustrates the concept of decision making on switch-

ing between the events. Furthermore, it shows an automaton that satisfies DC2,

DC3 and DC4, but not DC1, leading to indecomposability. The automaton AS:

// • e1 //
e2 ))RRRRRR •
•

with local event sets E1 = {e1} and E2 = {e2}, is not decompos-

able as the parallel composition of P1(AS) : // • e1 // • and P2(AS) : // • e2 // • is

P1(AS)||P2(AS) : // • e1 //
e2 ))RRRRRR • e2 // •
• e1

55llllll
which does not bisimulate AS. Here, AS is

not decomposable with respect to parallel composition and natural projections Pi,

i = 1, 2, since two events e1 ∈ E1\E2 and e2 ∈ E2\E1 do not respect DC1, as none of

the local plants take in charge of decision making on the switching between these two

events. One can observe that, if in this example e1 ∈ E1\E2 and e2 ∈ E2\E1 were

separated by a common event a ∈ E1 ∩ E2, then // • a //
e1 ))RRRRRR • e2 // •
•

with

local event sets E1 = {e1, a} and E2 = {e2, a}, was decomposable, since the decision

on the switch between e1 and a could be made in E1 and then E2 could be responsible

for the decision on the order of a and e2.

Example 2.4 The automaton AS in Example 2.1 shows an automaton that respects

DC1, DC3 and DC4, but is indecomposable due to the violation of DC2. Here, AS

is not decomposable since none of the local plants take in charge of decision making

on the order of two events e1 ∈ E1\E2 and e2 ∈ E2\E1. The two automata in
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Examples 1.6 and 1.7 satisfy DC2 as both orders of e1 and e2 are allowed, before a.

Also, if in Example 2.1 e1 ∈ E1\E2 and e2 ∈ E2\E1 were separated by a common

event a ∈ E1 ∩ E2, then the automaton // • e1 // • a // • e2 // • with local event sets

E1 = {e1, a} and E2 = {e2, a}, was decomposable, since the decision on the orders of

e1 and a and then a and e2 could be made in E1 and then E2, subsequently. As another

example, consider an automaton AS: // • e1 //
e2 ))RRRRRR • e2 // • a // •
• e1

// •
with E1 = {a, e1},

E2 = {a, e2}. This automaton is not decomposable due to the violation of DC2,

as P1(AS)||P2(AS) : • •e1oo e1 // •

•
e2
OO

e2
��

•̀e1oo e1 //
e2
OO

e2
��

•
e2
OO

e2
��

• •e1oo e1 // • a // •

� AS. The transition δ||(z0, e2e1a)! in

P1(AS)||P2(AS), but ¬δ(q0, e2e1a)! in AS. Therefore, AS is not decomposable. If

the lower branch in AS was continued with a transition on a after e2e1, then the

automaton was decomposable (see Example 1.7).

As another example that satisfies DC1 and DC3 but not DC2, consider AS:

• e2 // • e4 // •
// •

e1 55llllll

e2 ))RRRRRR

• e1
// • e3

// •

with E1 = {e1, e3}, E2 = {e2, e4}.

Example 2.5 This example illustrates an automaton that satisfies DC1, DC2

and DC4, but it is indecomposable as it does not fulfill DC3, since new

strings appear in P1(AS)||P2(AS) from the interleaving of two strings in P1(AS)

and P2(AS), but they are not legal in AS. Consider the task automa-

ton AS: • e2
))RRRRRR

// •
e1 55llllll

e2 ))RRRRRR

a
��

• a // •
• e1

55llllll

• e2
// •

with E1 = {a, e1}, E2 = {a, e2}, lead-
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ing to P1(AS) ∼= // • e1 //
a ))RRRRRR • a // •
•

, P2(AS) ∼= // • e2 //
a ))RRRRRR • a // •
• e2

// •
and

P1(AS)||P2(AS): • •aoo

e1

��

•̌e2oo a //

e1

��

• e2 // •

• •aoo •e2oo a // • e2 // •

that is not bisimilar to AS since two strings

e2a and e1ae2 are newly generated, while they do not appear in AS, although both

P1(AS) and P2(AS) are deterministic.

Example 2.6 This example illustrates an automaton that satisfies DC1 and DC2,

and DC3, but is indecomposable as it does not fulfill DC4. Consider the task au-

tomaton AS in Example 1.8, where AS � P1(AS)||P2(AS) due to the violation of DC4.

The task automaton AS satisfies DC1 and DC2 as contains no successive/adjacent

transitions defined on different local event sets. It also satisfies DC3 as any string

in T = {p1(s)|p2(s′), p1(s′)|p2(s)} (s and s′ are the top and bottom strings in AS

and share the first appearing common event a ∈ E1 ∩ E2), appears in AS. But,

it does not fulfill DC4, since there exists a transition on string e1a from z0 to z5

that stops in P1(AS)||P2(AS), whereas, although e1a transits from q0 in AS, it does

not stop afterwards. This illustrates the dissymmetry in simulation relations be-

tween AS and P1(AS)||P2(AS). Note that AS ≺ P1(AS)||P2(AS) with the simula-

tion relation R1 over all events in E, from all states in Q into some states in Z,

as R1 = {(q0, z0), (q1, z1), (q2, z2), (q3, z3), (q4, z4)}. Moreover, P1(AS)||P2(AS) ≺ AS

with the simulation relation R2 over all events in E, from all states in Z into some

states in Q, as R2 = {(z0, q0), (z1, q1), (z2, q2), (z3, q3), (z4, q4), (z5, q2)}. Therefore, al-

though AS ≺ P1(AS)||P2(AS) and P1(AS)||P2(AS) ≺ AS, P1(AS)||P2(AS) � AS, since

∃(z5, q2) ∈ R2, whereas (q2, z5) /∈ R1.
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If for stopping of string e1a in P1(AS)||P2(AS), there was a state in Q reachable

from q0 by e1a and stopping there, then we would have ∀q ∈ Q, z ∈ Z : (q, z) ∈ R1 ⇔

(z, q) ∈ R2 and P1(AS)||P2(AS) ∼= AS.

It should be noted that the condition DC4 not only applies for nondeterminism

on common events, but also it requires any nondeterminism on any private event also

to have a bisimilar deterministic counterpart. For example, consider the task automa-

ton AS: •
// • e1 //

e2 ))RRRRRR • e2
//

a 55llllll •
• e1

// •

with E1 = {e1, a}, E2 = {e2, a}. The parallel compo-

sition of P1(AS): // • e1 //
e1 ))RRRRRR • a // •
•

(with nondeterministic transition on private

event e1) and P2(AS) ∼= // • a //
e2 ))RRRRRR •
•

is P1(AS)||P2(AS): • e2 // •

// • e2 //
e1

CC������

e1

��7777777 •
e1

CC������

e1

��7777777

• • e2 //aoo •

which

is not bisimilar to AS. The automaton AS: • a // •
// •

e1 55llllll

a ))RRRRRR

• e2
// •

with E =

E1 ∪ E2, E1 = {a, e1}, E2 = {a, e2}, P1(AS): • a // •
// •

e1 55llllll

a ))RRRRRR

•

and P2(AS):

• e2 // •
// •

a 55llllll

a ))RRRRRR

•

is an example of an indecomposable automaton that violates

both DC3 and DC4. It violates DC3 since δ||(z0, e1ae2)! in P1(AS)||P2(AS), but

¬δ(q0, e1ae2)! in AS, and it does not satisfy DC4 since P2(AS) is nondeterministic and

is not bisimilar to a deterministic automaton, leading to a string in P1(AS)||P2(AS)

that e2 is disallowed after a while there in no such restriction in AS. If AS was

AS: • a // • e2 // •
// •

e1 55llllll

a ))RRRRRR

• e2
// •

, then P2(AS) ∼= // • a // • e2 // • , and AS
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was decomposable.

2.3 Conclusion

The chapter proposed a method to check automaton decomposability in order for

top-down supervisory control of multi-agent systems. Given a set of two cooperative

agents whose logical behaviors can be modeled as a parallel distributed system, and a

global task automaton, the chapter has provided necessary and sufficient conditions

for decomposability of the task automaton with respect to parallel composition and

natural projections into two local event sets.

The result says that a task automaton is decomposable if and only if any pair

of adjacent or successive events from different local event sets can be symmetrically

transited in any order; and the interleaving of strings from two local task automata

neither excludes legal strings of the global task automaton, not exceed from the set

of its legal strings.

Next chapter will generalize the proposed approach into an arbitrary finite number

of agents, and furthermore will investigate that whether the fulfillment of local tasks

implies the satisfaction of a decomposable global task automaton.

51



2.4 Appendix

2.4.1 Proof for Lemma 2.1

We prove AS ≺ P1(AS)||P2(AS)) by showing that R = {(q, z) ∈ Q × Z|∃s ∈

E∗, δ(q0, s) = q, z = ([q]1, [q]2)} is a simulation relation, defined on all events

in E and all reachable states in AS. Consider AS = (Q, q0, E = E1 ∪ E2, δ),

Pi(AS) = (Qi, q
0
i , Ei, δi), i = 1, 2, P1(AS)||P2(AS) = (Z, z0, E, δ||). Then,

∀q, q′ ∈ Q, e ∈ E, δ(q, e) = q′, according to the definition of natural projec-

tion (Definition 1.8) [q′]i =


δi([q]i, e) if e ∈ Ei;

[q]i if e /∈ Ei
, i = 1, 2, and due to the

definition of parallel composition (Definition 1.9) ([q′]1, [q
′]2) ∈ δ||(([q]1, [q]2), e) =

(δ1([q]1, e), δ2([q]2, e)) , if e ∈ E1 ∩ E2;

(δ1([q]1, e), [q]2) , if e ∈ E1\E2;

([q]1, δ2([q]2, e)) , if e ∈ E2\E1.

This is true for any q ∈ Q, particularly for q0. This reasoning can be re-

peated for any reachable state in Q. Therefore, starting from q0 and taking

(q0, z0 = ([q0]1, [q0]2)) ∈ R, from the above construction, it follows that for any reach-

able state in Q (∃s ∈ E∗, δ(q0, s) = q) and q′ ∈ Q, e ∈ E, δ(q, e) = q′, there exists

z = ([q]1, [q]2), z′ = ([q′]1, [q
′]2) such that z′ ∈ δ||(z, e), and we can take (q, z) ∈ R

and (q′, z′) ∈ R. Therefore, R = {(q, z) ∈ Q× Z|∃s ∈ E∗, δ(q0, s)!, z = ([q]1, [q]2)} is

a simulation relation, defined over all e ∈ E, and all reachable states in AS; hence,

AS ≺ P1(AS)||P2(AS).
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2.4.2 Proof for Lemma 2.2

We use two following lemmas during the proof.

Lemma 2.4 Consider a deterministic automaton AS = (Q, q0, E = E1∪E2, δ). Then

DC1 ∧DC2⇒ [∀s ∈ E∗, δ(q0, s)!⇒ δ(q0, p1(s)|p2(s))!] in AS.

This lemma means that for any transition defined on a string in AS, all path automata

defined on the interleaving of p1(s) and p2(s) in P1(AS)||P2(AS) are simulated by AS,

provided DC1 and DC2.

Proof: Consider a deterministic automaton AS = (Q, q0, E = E1 ∪ E2, δ), a

string s ∈ E∗, δ(q0, s) = q, and its projections p1(s), p2(s) with x ∈ δ1(x0, p1(s)),

y ∈ δ2(y0, p2(s)) and (x, y) ∈ δ||((x0, y0), p1(s)|p2(s)), in P1(AS), P2(AS) and

P1(AS)||P2(AS), respectively. Any string s can be written as s = ω1γ1... ωKγK ,

with ωk ∈ [E\(E1∩E2)]∗, γk ∈ (E1∩E2)∗, p1(ωk) = αk = αk0...α
k
mk

, αk0 = ε, p2(ωk) =

βk = βk0 ...β
k
nk

, βk0 = ε, p1(γk) = p2(γk) = γk = γk0 ...γ
k
rk

, γk0 = ε. The case mk = 0,

nk = 0, rk = 0, K = 0, results in p1(ωk) = ε, p2(ωk) = ε, γk = ε and s = ε. Based on

this setting and the definition of parallel composition, for k = 0, ..., K, i = 0, ...,mk,

j = 0, ..., nk and r = 0, ..., rk, the interleaving p1(s)|p2(s) is evolved in P1(AS)||P2(AS)

as follows: ∀(xk+i, yk+j) ∈ Q1 × Q2: (δ1(xk+i, α
k
i ), yk+j) ∈ δ||((xk+i, yk+j), α

k
i ),

((δ1(xk+i, α
k
i ), δ2(yk+j, β

k
j )) ∈ δ||((δ1(xk+i, α

k
i ), yk+j), β

k
j ), (xk+i, δ2(yk+j, β

k
j )) ∈

δ||((xk+i, yk+j), β
k
j ), (δ1(xk+i, α

k
i ), δ2(yk+j, β

k
j )) ∈ δ||((xk+i, δ2(yk+j, β

k
j )), αki ),

(δ1(xk+mk+r, γ
k
r ), δ2(yk+nk+r, γ

k
r )) ∈ δ||((xk+mk+r, yk+nk+r), γ

k
r ))

with δ1(xk+i, α
k
i ) 3


xk+i if αki = ε

xk+i+1 if αki 6= ε

, δ2(yk+j, β
k
j ) 3


yk+j if βkj = ε

yk+j+1 if βkj 6= ε

and
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(δ1(xk+mk+r, γ
k
r ), δ2(yk+nk+r, γ

k
r )) 3


(xk+mk+r, yk+nk+r) if γkr = ε

(xk+mk+r+1, yk+nk+r+1) if γkr 6= ε

.

Moreover, DC1 and DC2 collectively imply that ∀e1 ∈ E1\E2, e2 ∈

E2\E1, q ∈ Q, [δ(q, e1)! ∧ δ(q, e2)!] ∨ δ(q, e1e2)! ∨ δ(q, e2e1)! ⇒ δ(q, e1e2)! ∧

δ(q, e2e1)! which particularly means that ∀k ∈ {0, ...K}, ∀αki , βkj , qi,j ∈ Q,

i = 0, ...,mk, j = 0, ..., nk: δ(qk+i,k+j, α
k
i β

k
j )! ∧ δ(qk+i,k+j, β

k
j α

k
i )! with a simula-

tion relation R(ωk) = {((xk+i, yk+j), qk+i,k+j), ((δ1(xk+i, α
k
i ), yk+j), δ(qk+i,k+j, α

k
i )),

((xk+i, δ2(yk+j, β
k
j )), δ(qk+i,k+j, β

k
j )), ((δ1(xk+i, α

k
i ), δ2(yk+j, β

k
j )), δ(qk+i,k+j, α

k
i β

k
j )),

((δ1(xk+i, α
k
i ), δ2(yk+j, β

k
j )), δ(qk+i,k+j, β

k
j α

k
i ))} from transitions defined

on p1(ωk)|p2(ωk) into AS. For the transitions on the common events, the evolu-

tions are δ(qk+mk+r,k+nk+r, γ
k
r )! in AS for r = 0, ..., rk, leading to simulation relation

R(γk) = {((xk+mk+r, yk+nk+r), qk+mk+r,k+nk+r), ((δ1(xk+mk+r, γ
k
r ),δ2(yk+nk+r, γ

k
r )),

δ(qk+mk+r,k+nk+r, γ
k
r ))} from transitions on p1(γk)|p2(γk) into AS. Therefore, for

i = 0, ...,mk, j = 0, ..., nk, r = 0, ..., rk, R =
K
∪
k=0

R(ωk) ∪ R(γk) defines a simulation

relation from path automata (from z0 along p1(s)|p2(s)) in P1(AS)||P2(AS) into AS.

Lemma 2.5 If DC1 and DC2 hold true, then ∀s, s′ ∈ E∗, δ(q0, s)!, δ(q0, s
′)!, s 6= s′,

pE1∩E2(s), pE1∩E2(s
′) do not start with the same a ∈ E1∩E2, then δ(q0, p1(s)|p2(s′))!∧

δ(q0, p1(s′)|p2(s))! in AS.

Proof: The antecedent of Lemma 2.5 addresses three following cases: (Case 1):

s = ω1, s′ = ω′1; (Case 2): s = ω1aω2, s′ = ω′1, and (Case 3): s = ω1aω2, s′ = ω′1bω
′
2,

where, ω1, ω
′
1 ∈ [E\(E1 ∩ E2)]∗, ω2, ω

′
2 ∈ (E1 ∪ E2)∗, a, b ∈ E1 ∩ E2.
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For Case 1, setting K = 1, rk = 0, taking p1(ω1) = α = α0...αm ∈ (E1\E2)∗,

p2(ω′1) = β′ = β′0...β
′
n′ ∈ (E2\E1)∗, p1(ω′1) = α′ = α′0...α

′
m′ ∈ (E1\E2)∗ and

p2(ω1) = β = β0...βn ∈ (E2\E1)∗, similar to the first part of Lemma 2.4, it follows

that δ(q0, p1(ω1)|p2(ω′1))! and δ(q0, p1(ω′1)|p2(ω1))! in AS.

For Case 2, from Case 1 and Lemma 2.4 it follows that δ(q0, p1(s)|p2(s′))! =

δ(q0, [p1(ω1)|p2(ω′1)]ap1(ω2))! and δ(q0, p1(s′)|p2(s))! = δ(q0, [p1(ω′1)|p2(ω1)]ap2(ω2))! in

AS.

For the third case, from the definition of parallel composition combined

with the first two cases and also Lemma 2.4, δ(q0, p1(s)|p2(s′))! leads to

δ(q0, [p1(ω1)|p2(ω′1)]a[p1(ω2)|p2(ω2)])! and δ(q0, [p1(ω1)|p2(ω′1)]b[p1(ω′2)|p2(ω′2)])! in AS

and similarly, δ(q0, p1(s′)|p2(s))! results in δ(q0, [p1(ω′1)|p2(ω1)]a[p1(ω2)|p2(ω2)])! and

δ(q0, [p1(ω′1)|p2(ω1)]b[p1(ω′2)|p2(ω′2))])! in AS.

Therefore, for all three cases, δ(q0, p1(s)|p2(s′))! in AS and δ(q0, p1(s′)|p2(s))! in

AS.

Now, Lemma 2.2 is proven as follows.

Sufficiency: The set of transitions in P1(AS)||P2(AS), can be defined as T =

{(x0, y0)
p1(s)|p2(s′)−→ (x, y) ∈ Q1×Q2}, where, (x0, y0)

p1(s)|p2(s′)−→ (x, y) in P1(AS)||P2(AS)

is the interleaving of transitions x0
p1(s)−→ x in P1(AS) and y0

p2(s′)−→ y in P2(AS) (pro-

jections of transitions q0
s−→ q and q0

s′−→ q′, respectively, in AS). T can be divided

into three sets of transitions corresponding to a division {Γ1,Γ2,Γ3} on the set of

interleaving strings Γ = {p1(s)|p2(s′)|q0
s−→ q, q0

s′−→ q′, q, q′ ∈ Q, s, s′ ∈ E∗}, where,

Γ1 = {p1(s)|p2(s′) ∈ Γ|s = s′}, Γ2 = {p1(s)|p2(s′) ∈ Γ|s 6= s′, pE1∩E2(s) and pE1∩E2(s
′)
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do not start with the same event}, and Γ3 = {p1(s)|p2(s′) ∈ Γ|s 6= s′, pE1∩E2(s) and

pE1∩E2(s
′) start with the same event }.

Now, provided DC1, DC2 and DC3, for any s, s′, δ(q0, s)!, δ(q0, s
′)!, in AS, both

δ(q0, p1(s)|p2(s′))! and δ(q0, p1(s′)|p2(s))! are guaranteed, for Γ1, due to Lemma 2.4;

for Γ2, due to Lemma 2.5, and for Γ3, due to the combination of DC3 and Lemma

2.4 (for simplification, in DC3, s and s′ can be started from any q, instead of q0, and

the strings between q0 and q are checked by Lemma 2.4).

Necessity: The necessity is proven by contradiction. Suppose that AS simulates

P1(AS)||P2(AS), but ∃e1 ∈ E1\E2, e2 ∈ E2\E1, q ∈ Q, s ∈ E∗ s.t. (1): [δ(q, e1)! ∧

δ(q, e2)!]∧¬[δ(q, e1e2)!∧ δ(q, e2e1)!]; (2): ¬[δ(q, e1e2s)!⇔ δ(q, e2e1s)!], or (3): ∃s, s′ ∈

E∗, sharing the same first appearing common event a ∈ E1 ∩ E2, s 6= s′, q ∈ Q:

δ(q, s)! ∧ δ(q, s′)! ∧ ¬[δ(q, p1(s)|p2(s′))! ∧ δ(q, p1(s′)|p2(s))!].

In the first case, due to the definition of parallel composition, the expression

[δ(q, e1)! ∧ δ(q, e2)!] leads to δ||(z, e1e2)! = δ||(z, e2e1)!, where z ∈ Q1 × Q2 in

P1(AS)||P2(AS) corresponds to q ∈ Q in AS. Therefore, δ||(z, e1e2)! ∧ δ||(z, e2e1)!,

but, ¬[δ(q, e1e2)! ∧ δ(q, e2e1)!]. This means that P1(AS)||P2(AS) ⊀ AS which is a

contradiction. The second case means ∃e1 ∈ E1\E2, e2 ∈ E2\E1, q ∈ Q, s ∈ E∗ s.t.

[δ(q, e1e2s)!∨δ(q, e2e1s)!]∧¬[δ(q, e1e2s)!∧δ(q, e2e1s)!]. From the definition of parallel

composition, then δ(q, e1e2s)! ∨ δ(q, e2e1s)! implies that δ||(z, e1e2)! = δ||(z, e2e1)!, for

some z ∈ Q1 × Q2 corresponding to q ∈ Q. Consequently, from the definition of

transition relation and AS ≺ P1(AS)||P2(AS) it turns to δ||(z, e1e2s)! = δ||(z, e2e1s)!,

meaning that δ||(z, e1e2s)! ∧ δ||(z, e2e1s)!, but, ¬[δ(q, e1e2s)! ∧ δ(q, e2e1s)!]. This in
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turn contradicts with the similarity assumption of P1(AS)||P2(AS) ≺ AS. The third

case also leads to the contradiction as it causes the violation of the simulation rela-

tion from P1(AS)||P2(AS) into AS as δ(q, s)! ∧ δ(q, s′)! leads to δ||(z, p1(s)|p2(s′))! ∧

δ||(z, p2(s)|p1(s′))! in P1(AS)||P2(AS), whereas ¬[δ(q, p1(s)|p2(s′))!∧δ(q, p2(s)|p1(s′))!].

2.4.3 Proof for Lemma 2.3

Following three lemmas are used during the proof of Lemma 2.3. The first lemma

is used for the combination of bisimilarity between automata using parallel composi-

tions.

Lemma 2.6 If two automata A2 and A4 (bi)simulate, respectively, A1 and A3, then

A2 ‖ A4 (bi)simulates A1 ‖ A3, i.e.,

1. (A1 ≺ A2) ∧ (A3 ≺ A4)⇒ (A1 ‖ A3 ≺ A2 ‖ A4);

2. (A1
∼= A2) ∧ (A3

∼= A4)⇒ (A1 ‖ A3
∼= A2 ‖ A4).

Proof: The first part of this lemma is proven by showing that the relation R =

{((q1, q3), (q2, q4))|(q1, q2) ∈ R1 and (q3, q4) ∈ R2} is a simulation relation, where, R1

and R2 are the respective simulations from A1 to A2 and from A3 to A4.

Consider Ai = (Qi, q
0
i , Ei, δi), i = 1, ..., 4, A1||A3 = (Q1,3, (q

0
1, q

0
3), E =

E1 ∪ E3, δ1,3), A2||A4 = (Q2,4, (q
0
2, q

0
4), E = E2 ∪ E4, δ2,4), E1 = E3 and E2 =

E4. Then, ∀(q1, q3), (q1, q3)′ ∈ Q1,3, e ∈ E, q2 ∈ Q2, q4 ∈ Q4 such that

(q1, q3)′ ∈ δ1,3((q1, q3), e), (q1, q2) ∈ R1 and (q3, q4) ∈ R2, according to the def-

inition of parallel composition (Definition 1.9), we have (q1, q3)′ = (q′1, q
′
3) =
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(δ1(q1, e), δ3(q3, e)) , if δ1(q1, e)!, δ3(q3, e)!, e ∈ E1 ∩ E3;

(δ1(q1, e), q3) , if δ1(q1, e)!, e ∈ E1\E3;

(q1, δ3(q3, e)) , if δ3(q3, e)!, e ∈ E3\E1;

and due to the defini-

tion of simulation (Definition 1.11), A1 ≺ A2 and A3 ≺ A4, it follows that
∃q′i ∈ Qi, q

′
i ∈ δi(qi, e), i = 2, 4 if e ∈ E2 ∩ E4

∃q′2 ∈ Q2, q
′
2 ∈ δ2(q2, e) if e ∈ E2\E4

∃q′4 ∈ Q4, q
′
4 ∈ δ4(q4, e) if e ∈ E4\E2

This, in turn, due to the definition of parallel composition implies

that ∃(q2, q4)′ := (q′2, q
′
4) ∈ Q2,4 such that (q2, q4)′ ∈ δ2,4((q2, q4), e) =

(δ2(q2, e), δ4(q4, e)) , if e ∈ E2 ∩ E4;

(δ2(q2, e), q4) , if e ∈ E2\E4;

(q2, δ4(q4, e)) , if e ∈ E4\E2.

Therefore, ∀(q1, q3), (q1, q3)′ ∈ Q1,3, (q2, q4) ∈ Q2,4, e ∈ E, such that

(q1, q3)′ ∈ δ1,3((q1, q3), e) and ((q1, q3), (q2, q4)) ∈ R, then ∃(q2, q4)′ ∈ Q2,4, (q2, q4)′ ∈

δ2,4((q2, q4), e), ((q1, q3)′, (q2, q4)′) ∈ R. This together with ((q0
1, q

0
3), (q0

2, q
0
4)) ∈ R, by

construction, leads to A1||A3 ≺ A2||A4.

Now, to prove the second part of Lemma 2.6, we define the relation R̄ =

{((q2, q4), (q1, q3))|(q2, q1) ∈ R̄1 and (q4, q3) ∈ R̄2}, where, R̄1 and R̄2 are the re-

spective simulation relations from A2 to A1 and from A4 to A3, and then similar

to the proof of the first part, we show that R̄ is a simulation relation. Now, to

show that A1||A3
∼= A2||A4 it remains to show that ∀(q1, q3) ∈ Q1,3, (q2, q4) ∈ Q2,4:

((q1, q3), (q2, q4)) ∈ R ⇔ ((q2, q4), (q1, q3)) ∈ R̄. This is proven by contradic-

tion. Suppose that ∃(q1, q3) ∈ Q1,3, (q2, q4) ∈ Q2,4 such that ((q1, q3), (q2, q4)) ∈
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R ∧ ((q2, q4), (q1, q3)) /∈ R̄, or ((q2, q4), (q1, q3)) ∈ R̄ ∧ ((q1, q3), (q2, q4)) /∈ R. We

prove that the first hypothesis leads to a contradiction, and the contradiction of

the second hypothesis is followed, similarly. The expression ((q1, q3), (q2, q4)) ∈

R ∧ ((q2, q4), (q1, q3)) /∈ R̄ means that ∃s ∈ E∗, (q1, q3) ∈ δ1,3((q0
1, q

0
3), s),

(q2, q4) ∈ δ2,4((q0
2, q

0
4), s), ∀e ∈ E, δ1,3((q1, q3), e)!: δ2,4((q2, q4), e)!; but, ∃σ ∈ E,

δ2,4((q2, q4), σ)! ∧ ¬δ1,3((q1, q3), σ)!. From Definition 1.9, δ2,4((q2, q4), σ)! means that
δ2(q2, σ)!, δ4(q4, σ)! if e ∈ E2 ∩ E4;

δ2(q2, σ)! if e ∈ E2\E4;

δ4(q4, σ)! if e ∈ E4\E2.

Consequently, from (q2, q1) ∈ R̄1 and E1 = E2 (due to A1
∼= A2), (q4, q3) ∈

R̄2 and E3 = E4 (due to A3
∼= A4), and Definition 1.11, it follows that

δ1(q1, σ)!, δ3(q3, σ)! if e ∈ E2 ∩ E4 = E1 ∩ E3;

δ1(q1, σ)! if e ∈ E2\E4 = E1\E3;

δ3(q3, σ)! if e ∈ E4\E2 = E3\E1.

, that from Definition 1.9 leads to

δ1,3((q1, q3), σ)! which contradicts with the hypothesis and the proof is followed.

Next, the following lemma is introduced to characterize the symmetric property

between simulation relations.

Lemma 2.7 Consider two automata A1 and A2, and let A1 be deterministic, A1 ≺ A2

with the simulation relation R1 and A2 ≺ A1 with the simulation relation R2. Then,

R−1
1 = R2 if and only if there exists a deterministic automaton A′1 such that A′1

∼= A2.

Proof:

Sufficiency: A1 ≺ A2, A2 ≺ A1 and A′1
∼= A2, collectively, result in A1 ≺ A′1

and A′1 ≺ A1, that due to the determinism of A1 and A′1 lead to A1
∼= A′1. Finally,
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since A′1
∼= A2, from the transitivity of bisimulation, A1

∼= A2, and consequently,

R−1
1 = R2.

Necessity: The necessity is proven by contradiction as follows. Consider two

automata A1 = (X, x0, E, δ1), A2 = (Y, y0, E, δ2), let A1 be deterministic, A1 ≺

A2 with the simulation relation R1, A2 ≺ A1 with the simulation relation R2 and

suppose that R−1
1 = R2 (and hence A1

∼= A2), but there does not exist a deterministic

automaton A′1 such that A′1
∼= A2. This means that ∃s ∈ E∗, σ ∈ E, y1, y2 ∈ Y ,

y1 ∈ δ2(y0, s), y2 ∈ δ2(y0, s), δ2(y1, σ)!, but ¬δ2(y2, σ)!. From A2 ≺ A1, y1 ∈ δ2(y0, s)∧

δ2(y1, σ)! it implies that ∃x1 ∈ X, δ1(x0, s) = x1 ∧ δ1(x1, σ)!. On the other hand, A1

is deterministic; hence, ∀x2 ∈ X, δ1(x0, s) = x2 ⇒ x2 = x1. Therefore, A2 ≺ A1

necessarily leads to (y2, x1) ∈ R2. But, ∃σ ∈ E such that δ1(x1, σ)! ∧ ¬δ2(y2, σ)!,

meaning that (y2, x1) ∈ R2 ∧ (x1, y2) /∈ R1, i.e., R−1
1 6= R2, that contradicts with the

hypothesis, and the necessity is followed.

Next, let A1 and A2 to be substituted by AS and P1(AS)||P2(AS), respectively, in

Lemma 2.7. Then, the existence of A′1 = A′S in Lemma 2.7 is characterized by the

following lemma.

Lemma 2.8 Consider a deterministic automaton AS and its natural projections

Pi(AS), i = 1, 2. Then, there exists a deterministic automaton A′S such that

A′S
∼= P1(AS)||P2(AS) if and only if there exist deterministic automata P ′i (AS) such

that P ′i (AS) ∼= Pi(AS), i = 1, 2.

Proof: Let AS = (Q, q0, E = E1 ∪ E2, δ), Pi(AS) = (Qi, q
i
0, Ei, δi), P

′
i (AS) =

(Q′i, q
′
0,i, Ei, δ

′
i), i = 1, 2, P1(AS)||P2(AS) = (Z, z0, E, δ||), P ′1(AS)||P ′2(AS) =
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(Z ′, z′0, E, δ
′
||). The proof of Lemma 2.8 is then presented as follows.

Sufficiency: The existence of deterministic automata P ′i (AS) such that P ′i (AS) ∼=

Pi(AS), i = 1, 2 implies that δ′1 and δ′2 are functions, and consequently from definition

of parallel composition (Definition 1.9), δ′|| is a function, and hence P ′1(AS)||P ′2(AS)

is deterministic. Moreover, from Lemma 2.6, P ′i (AS) ∼= Pi(AS), i = 1, 2 leads to

P ′1(AS)||P ′2(AS) ∼= P1(AS)||P2(AS), meaning that there exists a deterministic au-

tomaton A′S = P ′1(AS)||P ′2(AS) such that A′S
∼= P1(AS)||P2(AS).

Necessity: The necessity is proven by contraposition, namely, by showing that

if there does not exist deterministic automata P ′i (AS) such that P ′i (AS) ∼= Pi(AS),

for i = 1 or i = 2, then there does not exist a deterministic automaton A′S such that

A′S
∼= P1(AS)||P2(AS).

Without loss of generality, assume that there does not exist a deterministic au-

tomaton P ′1(AS) such that P ′1(AS) ∼= P1(AS). This means that ∃q, q1, q2 ∈ Q, e ∈ E1,

t1, t2 ∈ (E2\E1)∗, t ∈ E∗, δ(q, t1e) = q1, δ(q, t2e) = q2, δ(q1, t)!, but @t′ ∈ E∗,

δ(q2, t
′)!, such that p1(t) = p1(t′), that particularly results in δ(q1, t)! ∧ ¬δ(q2, t

′)!.

From δ(q1, t)! ∧ ¬δ(q2, t
′)!, the definition of natural projection and Lemma 2.4, it fol-

lows that [q1]1 ∈ δ1([q]1, e), δ1([q1]1, p1(t))!, [q2]1 ∈ δ1([q]1, e), ¬δ1([q2]1, p1(t))!, [q1]2 ∈

δ2([q]2, t1p2(e)), δ2([q1]2, p2(t))!, ([q1]1, [q1]2) ∈ δ||(([q]1, [q]2), t1e), δ||(([q1]1, [q1]2), t)!;

whereas, ([q2]1, [q1]2) ∈ δ||(([q]1, [q]2), t1e), ¬δ||(([q2]1, [q1]2), t)!, implying that there

does not exist a deterministic automaton A′S such that A′S
∼= P1(AS)||P2(AS), and

the necessity is proven.

Now, Lemma 2.3 is proven as follows.
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Sufficiency: DC4 implies that there exist deterministic automata P ′i (AS) such

that P ′i (AS) ∼= Pi(AS), i = 1, 2. Then, from Lemmas 2.6 and 2.8, it follows, respec-

tively, that P ′1(AS)||P ′2(AS) ∼= P1(AS)||P2(AS), and that there exists a deterministic

automaton A′S = P ′1(AS)||P ′2(AS) such that A′S
∼= P1(AS)||P2(AS) that due to Lemma

2.7, it results in R−1
1 = R2.

Necessity: Let AS be deterministic, AS ≺ P1(AS)||P2(AS) with the simulation

relation R1 and P1(AS)||P2(AS) ≺ AS with the simulation relation R2, and assume by

contradiction that R−1
1 = R2, but DC4 is not satisfied. Violation of DC4 implies that

for i = 1 or i = 2, there does not exist a deterministic automaton P ′i (AS) such that

P ′i (AS) ∼= Pi(AS). Therefore, due to Lemma 2.8, there does not exist a deterministic

automaton A′S such that A′S
∼= P1(AS)||P2(AS); hence, according to Lemma 2.7, it

leads to R−1
1 6= R2 which is a contradiction; hence, the necessity is proven.
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Chapter 3

Cooperative Tasking for n Agents

3.1 Introduction

This chapter continues the work in Chapter 2 and generalizes the proposed top-down

cooperative control into an arbitrary finite number of agents. As the first attempt,

this chapter proposes a hierarchical algorithm as a sufficient condition. If the algo-

rithm proceeds up to the end to complete the decomposition, then, the satisfaction

of local specifications leads to the satisfaction of the global specification by the team.

However, the hierarchical approach depends on the order of local event sets to be

chosen in each stage for decomposition. Moreover, since it is a sufficient condition

only, there will be no conclusion on the task decomposability, when the hierarchical

algorithm does not proceed for decomposition. Therefore, it would be advantageous

if the necessary and sufficient decomposability conditions could be developed for an

arbitrary finite number of agents. The conditions would be able to check the decom-

posability, in one stage. Moreover, if the conditions are also necessary, then violation

of one of them will result in the indecomposability of the global specification. For

this purpose, this chapter provides necessary and sufficient conditions for the decom-

posability of a global task automaton, with respect to an arbitrary finite number of

agents, based on the capability of the agents on decision making on the order and

63



selection of events, the interleaving of synchronized strings and the determinism of

bisimulation quotients of local task automata. Moreover, together with the properties

of parallel composition, it is also proven that if local controller automata exist such

that local task automata are satisfied in the sense of bisimulation, the global task

automaton will be guaranteed to be satisfied by the team of agents.

The rest of the chapter is organized as follows. As the first step, Section 3.2, intro-

duces the algorithm for the hierarchical extension of the automaton decomposition for

more than two agents. This section also shows that if local controllers exit to enforce

local task automata, the entire closed loop system will satisfy the global specification.

To illustrate the hierarchical task decomposition, an implementation result is given on

a cooperative multi-robot system example in Section 3.3. Afterwards, Section 3.4 dis-

cusses that the hierarchical algorithm is sufficient only, and consequently, introduces

the necessary and sufficient conditions for the decomposability of an automaton with

respect to parallel composition and an arbitrary finite number of local event sets. The

cooperative multi-robot system example is also revisited in this section to be handled

by the proposed necessary and sufficient conditions. This section also discusses two

special cases. Firstly, when an agent has all events of the global event set, it serves

as a centralized decision maker for all orders and selections, and the conditions on

decision making will be relaxed. Secondly, when the event set can be partitioned into

mutual exclusive clusters of local event sets, such that the task automaton is decom-

posable from the perspective of each cluster, then the decomposability of the global

task automaton is reduced to the global decision making on the orders and selections

between transitions. Finally, the chapter concludes with remarks and discussions in
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Section 3.5. The proofs of lemmas and propositions are given in the Appendix.

3.2 Hierarchical Decomposition

The previous chapter addressed Problem 2.1 and presented necessary and sufficient

conditions for the decomposability of an automaton with respect to the parallel com-

position and two local event sets. However, in practice, multi-agent systems are

typically comprised of many local agents that work as a team. To generalize the

result, a hierarchical algorithm is proposed here to the case of arbitrary finite number

of agents. Consider a task automaton AS to be decomposed with respect to parallel

composition and local event sets Ei, i = 1, 2, ..., n, so that E =
n
∪
i=1
Ei. We propose

the following algorithm as a sufficient condition for the hierarchical decomposition of

the given task automaton.

Algorithm 3.1 (Hierarchical decomposition algorithm)

1. E =
n
∪
i=1
Ei, Σ = {E1, ..., En}, K = {1, ..., n}.

2. i = 1, find k ∈ K such that Σi = Ek ∈ Σ, Σ̄i = ∪
j∈K\k

Ej, so that AS

satisfies decomposability conditions DC1-DC4 in Theorem 2.1, i.e., AS ∼=

PΣi
(AS)||PΣ̄i

(AS).

3. K = K\k, Σ = {Ej}j∈K, AS = PΣ̄i
(AS), i = i+ 1, go to Step 2.

4. Continue until i = n − 1 or no more decomposition is possible in i = m − 1,

m ≤ n. Then Σm = Σ̄m−1; hence, AS is decomposable with respect to parallel

composition and natural projections into {Σ1, · · · ,Σm} ⊆ Σ, if the algorithm
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proceeds up to i = m− 1.

Remark 3.1 The computational complexity of the algorithm in the worst case is of

order O(n2(|E|2× |Q| ×κ+ Σ
a∈E1∩E2

|pa(L(AS))|2)), where κ = max
t∈L(AS)

|t|, assuming the

number of appearing events as the length of loops. In practice, during the iterations,

|E| is replaced by
|K|
∪
j=1
Ej which is decreasing with respect to iteration. Moreover, the

second term in the complexity expression shows that the less number of common

events and the less appearance of common events in AS, the less complexity. The

algorithm will terminate due to finite number of states and local event sets. If the

algorithm successfully proceeds to step n − 1, the automaton AS is decomposable

and we obtain a complete decomposition of the global specification into subtasks for

each individual agent. However, it is unclear whether the algorithm can successfully

terminate for any decomposable task automaton (necessity).

Once the task is decomposed into local tasks and the local controllers exist for

each local plant, the next and more important question is guaranteeing the global

specification, provided each local closed loop system satisfies its corresponding local

specification.

Problem 3.1 (Cooperative Tasking Problem) Consider a plant, represented by a par-

allel distributed system
n

‖
i=1

APi
, with local event sets Ei, i = 1, ..., n, and let the

global specification is given by a decomposable deterministic task automaton AS, where

AS ∼=
n

‖
i=1

Pi (AS) with E =
n
∪
i=1
Ei. Then, does designing local controllers ACi

, so that

ACi
‖ APi

∼= Pi(AS), i = 1, · · · , n, derive the global closed loop system to satisfy the

global specification AS, in the sense of bisimilarity, i.e.,
n

‖
i=1

(ACi
‖ APi

) ∼= AS?
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Following result provides a sufficient condition for Problem 3.1, using the hierar-

chical decomposition method.

Theorem 3.1 (Hierarchical Cooperative Tasking) Consider a plant, represented by

a deterministic parallel distributed system AP =
n

‖
i=1

APi
, with given local event sets

Ei, i = 1, ..., n, and given specification represented by a deterministic automaton AS,

with E =
n
∪
i=1
Ei. If the Algorithm 3.1 continues up to i = n − 1, and there exist

local controllers ACi
, so that ACi

‖ APi
∼= Pi(AS), i = 1, 2, · · · , n, then the global

closed loop system satisfies the global specification AS, in the sense of bisimilarity,

i.e.,
n

‖
i=1

(ACi
‖ APi

) ∼= AS.

Proof: Algorithm 3.1 is a direct extension of Theorem 2.1 combined with the asso-

ciativity property of parallel decomposition [46]. Then, provided DC1-DC4 in each

step and choosing local controllers ACi
, so that ACi

‖ APi
∼= Pi(AS), i = 1, 2, · · · , n,

due to Lemma 2.6 leads to
n

‖
i=1

(ACi
‖ APi

) ∼=
n

‖
i=1

Pi(AS) ∼= AS.

Now, if DC1-DC4 are reduced to DC1-DC3 (Theorem 2.1 is reduced into Lemma

2.2), then
n

‖
i=1

Pi(AS) ∼= AS is reduced into
n

‖
i=1

Pi(AS) ≺ AS; hence, choosing local

controllers ACi
, so that ACi

‖ APi
≺ Pi(AS), i = 1, 2, · · · , n, due to Lemma 2.6 leads

to
n

‖
i=1

(ACi
‖ APi

) ≺
n

‖
i=1

Pi(AS) ≺ AS. Therefore,

Corollary 3.1 Considering the plant and global task as stated in Theorem 3.1, if

DC1-DC4 is reduced to DC1-DC3 in Algorithm 3.1 and it continues up to i = n−1,

then the existence of local controllers ACi
, so that ACi

‖ APi
≺ Pi(AS), i = 1, 2, · · · , n,

derive the global closed loop system to satisfy the global specification AS, in the sense

of similarity, i.e.,
n

‖
i=1

(ACi
‖ APi

) ≺ AS.
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3.3 Example

Consider the cooperative multi-robot system in Examples 1.3 and Figure 1.4.

We check decomposability condition for this global task automaton with re-

spect to Σ1 = E2 and Σ̄1 = E1 ∪ E3 for the first stage in Algorithm 1.

Firstly, {h2, R2to2, R2in2} ⊂ Σ1\Σ̄1 can occur in any order with respect to

{h1, R1toD1, R1onD1, h3, R3to3, R3in3, R3toD1, R3onD1, FWD} = Σ̄1\Σ1, as it is

shown in the global automaton in Figure 1.5, satisfying DC1 and DC2. Moreover,

D1opened, R2in1 and r are common events, provided by R1, R2 and R3, respectively,

and informed to other two robots upon occurrence. Since {D1opened, FWD} ⊆

Σ̄1, {R2in2, D1opened} ⊆ Σ1, {D1opened, R2to1} ⊆ Σ1, {R2to1, R2in1} ⊆

Σ1, {R2in1, BWD} ⊆ Σ̄1, {BWD,D1closed} ⊆ Σ̄1, {D1closed,R3to1} ⊆ Σ̄1,

{R3to1, R3in1} ⊆ Σ̄1, {R3in1, r} ⊆ Σ̄1, {r, h1} ⊆ Σ̄1, {r, h2} ⊆ Σ1, {r, h3} ⊆ Σ̄1;

hence, all these successive transitions satisfy DC1 and DC2. Furthermore, all com-

mon events {D1opened,R2in1, r} ⊆ Σ1 ∩ Σ̄1 appear in only one branch; hence,

DC3 is satisfied. Finally, PΣ1(AS) and PΣ̄1
(AS) are both deterministic; hence,

DC4 is satisfied. Therefore, due to Theorem 2.1, AS can be decomposed into

P2(AS) = PΣ1(AS) = A2 and P1,3(AS) := PE1∪E3(AS) = PΣ̄1
(AS).

For the second stage, the private transitions defined over E1\E3 =

{h1, R1toD1, R1onD1} can occur in any order with respect to the transitions defined

over the private local event set {h3, R3to3, R3in3, R3toD1, R3onD1} ⊂ E3\E1. More-

over, {R3onD1, FWD} ⊆ E3, {R1onD1, FWD} ⊆ E1, {FWD,D1opened} ⊆ E1∩E3,

{D1opened,R2in1} ⊆ E1∩E3, {R2in1, BWD} ⊆ E1∩E3, {BWD, D1closed} ⊆ E1∩
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P1,3(AS): // • h1 //

��

•R1toD1//

��

•R1onD1//

��

•
h3��

•
r
::vvvvvv •
��

// • //

��

• //

��

•
R3to3��

•
R3in1

OO

• //

��

• //

��

• //

��

•
R3in3��

•
R3to1

OO

•
��

// • //

��

• //

��

•
R3toD1��

•
D1closed

OO

• //

��

• //

��

• //

��

•
R3onD1��

•
BWD

OO

• // • // • // •
FWDzzvvvvvv

•R2in1

ddHHHHHH
•D1openedoo

P2(AS): // • h2 // •
R2to2
// •R2in2// •

D1opened
// •R2to1// •

R2in1
// •BCD@A

r

OO

Figure 3.1: PE1∪E3(AS) for the team {R1, R3} and P2(AS) for R2.

E3, {D1closed,R3to1} ⊆ E3, {R3to1, R3in1} ⊆ E3, {R3in1, r} ⊆ E3, {r, h3} ⊆ E3

and {r, h1} ⊆ E1. Therefore, DC1 and DC2 are satisfied. Furthermore, since all

common events {FWD,D1opened,R2in1, BWD, D1closed, r} ⊆ E1 ∩ E3 appear in

only one branch in P1,3(AS), therefore, there are no pairs of strings violating DC3;

therefore, DC3 is also satisfied. Moreover, P1(AS) and P3(AS) are both deterministic,

and consequently, P1,3(AS) satisfies DC4. Therefore, P1,3(AS) is decomposable into

P1(AS) and P3(AS). The results of two decomposition stages are shown in Figures

3.1 and 1.6, such that P1(AS) ‖ P2(AS) ‖ P3(AS) ∼= AS.

This scenario has been successfully implemented on a team of three ground robots,

shown in Figure 1.4.
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3.4 Necessary and Sufficient Decomposability

Conditions for n Agents

3.4.1 Link to the result for two agents

This part proposes necessary and sufficient conditions for task automaton decompos-

ability problem (Problem 2.1), for an arbitrary finite number of agents.

Theorem 2.1 showed the decomposability of an automaton with respect to the

parallel composition and two local event sets. However, in practice, multi-agent

systems are typically comprised of many individual agents that work as a team. For

this purpose, previous section introduced a hierarchical decomposition method to

handle only two individual event sets at each step for partitioning: an event set; and

the set of the rest of event sets. If the algorithm successfully terminates, then the

decompositions can be obtained, and subsequently, the proposed top-down approach

can by applied, however, the algorithm depends strongly on the order of the event

sets that are chosen for decomposition (see Example 3.1 as follows). In addition, as

it is illustrated in Example 3.2, the algorithm is sufficient only, which means that if

the algorithm successfully terminates, then AS is decomposable, otherwise, there is

no conclusion on its decomposability.

Example 3.1 Consider AS: • e2 // • b // • e3 // •
// •

a 55llllll

e1 ))RRRRRR

• a // • e2 // • b // • e3 // •

with E =

E1 ∪ E2 ∪ E3, E1 = {a, e1}, E2 = {a, b, e2}, E3 = {b, e3}. This automaton

is decomposable as AS ∼= P1(AS)||P2(AS)||P3(AS) ∼= P1(AS)||(P2(AS)||P3(AS)) ∼=
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P3(AS)||(P1(AS)||P2(AS)) ∼= P2(AS)||(P1(AS)||P3(AS)). In this example,

PE2∪E3(AS) ∼= P2(AS)||P3(AS) and PE1∪E2(AS) ∼= P1(AS)||P2(AS), but PE1∪E3(AS) �

P1(AS)||P3(AS). This means that while choosing P1(AS) or P3(AS) as the first set

allows the hierarchical algorithm to proceeds up to AS ∼= P1(AS)||P2(AS)||P3(AS),

choosing P2(AS) will stuck the algorithm in the second step as AS ∼=

P2(AS)||PE1∪E3(AS), but PE1∪E3(AS) � P1(AS)||P3(AS).

Example 3.2

The automaton AS: • e2 // • b // • e3 // • c // • e5 // • d // •

// •
a
OO

e1 ��

•

• a // • e2 // • b // • e3 // • c // • e5 // •
d
OO

with E =

E1 ∪ E2 ∪ E3, E1 = {a, c, d, e1, e5}, E2 = {a, b, d, e2}, E3 = {b, c, e3}, P1(AS):

• c // • e5 // • d // •
// •

a 55llllll

e1 ))RRRRRR

• a // • c // • e5 // • d // •

, P2(AS) ∼= // • a // • e2 // • b // • d // •

and P3(AS) ∼= // • b // • e3 // • c // • , is decomposable as AS ∼=

P1(AS)||P2(AS)||P3(AS) ∼= P1(AS)||(P2(AS)||P3(AS)) ∼= P3(AS)||(P1(AS)||P2(AS)) ∼=

P2(AS)||(P1(AS)||P3(AS)), although PE2∪E3(AS) � P2(AS)||P3(AS), PE1∪E2(AS) �

P1(AS)||P2(AS) and PE1∪E3(AS) � P1(AS)||P3(AS). This means that although AS

is decomposable with respect to P1(AS), P2(AS) and P3(AS), choosing any of local

event sets E1, E2 and E3 passes the first stage of the hierarchical decomposition, but

the algorithm will stuck at the second step.

Therefore, it would be very advantageous if we can find necessary and sufficient

conditions for the decomposability of a deterministic automaton with respect to an

arbitrary finite number of local event sets. The proposed conditions should be inde-
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pendent of the order of the local event sets and should give us more insights on the

cooperative tasking among agents. The main efforts in the rest of this chapter are to

generalize the decomposability conditions DC1-DC4 for an arbitrary finite number

of agents.

The first difficulty is to generalize DC1 and DC2 for more than two agents. For

two-agent case, DC1 and DC2 rely on the notion of “private events from different

local event sets” (e1 ∈ E1\E2 and e2 ∈ E2\E1), namely, an event is either private

(belongs to the union but not the intersection of local event sets) or common (belongs

to both local event sets). For more than two agents, on the other hand, the notion

of common event should be replaced by the notion of “shared events”, namely, the

events that belong to more than one agent. Accordingly, the first two decomposability

conditions are required to be restated based on the notion of shared events, as the

following lemma. In this perspective, the first two conditions say that for any decision

on selection (defined by adjacent events) or decision on the order (defined by successive

events) there should exist at least one agent capable of the decision making (at least

one local event set containing both events) or the decision is not important (both

orders are legal).

The third condition, DC3, also is not easily generalizable, and a more restrictive

condition is given for n agents. For two-agent case, the pairs of identical strings

sharing common events were excluded as they were already checked by the first two

conditions. For more than two agents, however, due to difficulty in the exclusion of

different permutation of strings, a more restrictive condition is introduced, in the sense
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that the third condition may check some strings that have been already checked by

the first two conditions on the selection and order decision makings. Nevertheless, the

new conditions are necessary and sufficient conditions for an arbitrary finite number

of agents and do not depend on the order of agents. Moreover, to mitigate the

restrictiveness of the third condition, it will be shown that for mutually exclusive

clusters of event sets the third and fourth conditions are required to be checked only

for each cluster.

Once DC1-DC3 are generalized, the fourth condition DC4 is already in the form

that can be generalized for any number of agents, stating that for any local task

automaton, there should exist a deterministic bisimilar automaton.

Before stating the main result, firstly, an alternative representation on DC1 and

DC2 is given in the following lemma, by replacing ∀e1 ∈ E1\E2, e2 ∈ E2\E1 (two

events from different local event sets) with ∀e1, e2 ∈ E,∀Ei ∈ {E1, E2}, {e1, e2} 6⊂ Ei

(two independent events that no local event set contains both of them). This provides

a way to generalize the first two decomposability conditions for more than two agents.

Lemma 3.1 Consider a deterministic automaton AS = (Q, q0, E = E1 ∪ E2, δ) and

natural projections Pi, i = 1, 2. Then the following two cases are equivalent

1. ∀e1 ∈ E1\E2, e2 ∈ E2\E1, q ∈ Q, s ∈ E∗,

• DC1: [δ(q, e1)! ∧ δ(q, e2)!]⇒ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: δ(q, e1e2s)!⇔ δ(q, e2e1s)!

2. ∀e1, e2 ∈ E,∀Ei ∈ {E1, E2}, {e1, e2} 6⊂ Ei, q ∈ Q, s ∈ E∗:
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• DC1: [δ(q, e1)! ∧ δ(q, e2)!]⇒ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: δ(q, e1e2s)!⇔ δ(q, e2e1s)!

Proof: See the proof in the Appendix.

The decomposability conditions for an arbitrary finite number of agents will be

then given in the next part.

3.4.2 Necessary and Sufficient Decomposability Conditions

for n Agents

In order for AS ∼=
n

||
i=1

Pi (AS), from the definition of bisimulation, it is required to

have AS ≺
n

||
i=1

Pi (AS);
n

||
i=1

Pi (AS) ≺ AS, and the simulation relations are inverse of

each other. These requirements are provided by the following three lemmas.

Firstly,
n

||
i=1

Pi (AS) always simulates AS. Formally:

Lemma 3.2 Consider a deterministic automaton AS =

(
Q, q0, E =

n⋃
i=1

Ei, δ

)
and

natural projections Pi, i = 1, ..., n. Then, it always holds that AS ≺
n

||
i=1

Pi (AS).

Proof: See the proof in the Appendix.

The similarity of
n

||
i=1

Pi (AS) to AS, however, is not always true (see Examples 3.5,

3.6, 3.8 and 3.9), and needs some conditions as stated in the following lemma.

Lemma 3.3 Consider a deterministic automaton AS =

(
Q, q0, E =

n⋃
i=1

Ei, δ

)
and

natural projections Pi, i = 1, ..., n. Then,
n

||
i=1

Pi (AS) ≺ AS if and only if ∀e1, e2 ∈

E, q ∈ Q, s ∈ E∗,∀Ei ∈ {E1, ..., En} , {e1, e2} 6⊂ Ei:

74



• DC1: [δ(q, e1)! ∧ δ(q, e2)!]⇒ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: δ (q, e1e2s)!⇔ δ (q, e2e1s)!;

• DC3: δ(q0,
n

|
i=1

pi(si))!, ∀{s1, · · · , sn} ∈ L̃ (AS), ∃si, sj ∈ {s1, · · · , sn}, si 6=

sj, where, L̃ (AS) ⊆ L (AS) is the largest subset of L (AS) such that ∀s ∈

L̃ (AS) ,∃s′ ∈ L̃ (AS) , ∃Ei, Ej ∈ {E1, ..., En} , i 6= j, pEi∩Ej
(s) and pEi∩Ej

(s′)

start with the same event.

Proof: See the proof in the Appendix.

Next, we need to show that for two simulation relations R1 (for AS ≺
n

||
i=1

Pi (AS))

and R2 (for
n

||
i=1

Pi (AS) ≺ AS) defined by the previous two lemmas, R−1
1 = R2.

Lemma 3.4 Consider an automaton AS = (Q, q0, E = E1 ∪ E2, δ) with natural

projections Pi, i = 1, ..., n. If AS is deterministic, AS ≺
n

||
i=1

Pi (AS) with the sim-

ulation relation R1 and
n

||
i=1

Pi (AS) ≺ AS with the simulation relation R2, then

R−1
1 = R2 (i.e., ∀q ∈ Q, z ∈ Z: (z, q) ∈ R2 ⇔ (q, z) ∈ R1) if and only if DC4:

∀i ∈ {1, ..., n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈ E∗i , x1 ∈ δi(x, e), x2 ∈ δi(x, e):

δi(x1, t)!⇔ δi(x2, t)!.

Proof: See the proof in the Appendix.

Based on these lemmas, the main result on task automaton decomposability is

given as follows.

Theorem 3.2 (Task Decomposability for n Agents) A deterministic automaton AS =(
Q, q0, E =

n⋃
i=1

Ei, δ

)
is decomposable with respect to parallel composition and natural

projections Pi, i = 1, ..., n such that AS ∼=
n

||
i=1

Pi (AS) if and only if AS satisfies
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the following decomposability conditions (DC): ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗,∀Ei ∈

{E1, ..., En} , {e1, e2} 6⊂ Ei:

• DC1: [δ(q, e1)! ∧ δ(q, e2)!]⇒ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: δ (q, e1e2s)!⇔ δ (q, e2e1s)!;

• DC3: δ(q0,
n

|
i=1

pi(si))!, ∀{s1, · · · , sn} ∈ L̃ (AS), ∃si, sj ∈ {s1, · · · , sn}, si 6=

sj, where, L̃ (AS) ⊆ L (AS) is the largest subset of L (AS) such that ∀s ∈

L̃ (AS) ,∃s′ ∈ L̃ (AS) , ∃Ei, Ej ∈ {E1, ..., En} , i 6= j, pEi∩Ej
(s) and pEi∩Ej

(s′)

start with the same event, and

• DC4: ∀i ∈ {1, ..., n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈ E∗i , x1 ∈ δi(x, e),

x2 ∈ δi(x, e): δi(x1, t)!⇔ δi(x2, t)!.

Proof: According to Definition 1.11, AS ∼=
n

||
i=1

Pi (AS) if and only if AS ≺
n

||
i=1

Pi (AS)

(that is always true due to Lemma 3.2),
n

||
i=1

Pi (AS) ≺ AS (that it is true if and only

if DC1, DC2 and DC3 are true, according to Lemma 3.3) and R−1
1 = R2 (that for a

deterministic automaton AS, when AS ≺
n

||
i=1

Pi (AS) with simulation relation R1 and

n

||
i=1

Pi (AS) ≺ AS with simulation relation R2, due to Lemma 3.4, R−1
1 = R2 holds

true if and only if DC4 is satisfied). Therefore, AS ∼=
n

||
i=1

Pi (AS) if and only if DC1,

DC2, DC3 and DC4 are satisfied.

A more insightful set of expressions for DC1 and DC2 are presented in the fol-

lowing lemma.

Lemma 3.5 Consider a deterministic automaton AS = (Q, q0, E =
n⋃
i=1

Ei, δ) and

natural projections Pi, i = 1, ..., n. Then following statements are equivalent

76



1. ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗,∀Ei ∈ {E1, ..., En} , {e1, e2} 6⊂ Ei:

• DC1: [δ(q, e1)! ∧ δ(q, e2)!]⇒ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: δ (q, e1e2s)!⇔ δ (q, e2e1s)!;

2. • DC1: ∀e1, e2 ∈ E, q ∈ Q: [δ(q, e1)! ∧ δ(q, e2)!]

⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei] ∨ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗: [δ(q, e1e2s)! ∨ δ(q, e2e1s)!]

⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei] ∨ [δ(q, e1e2s)! ∧ δ(q, e2e1s)!].

Proof: See the proof in the Appendix.

The alternative statements forDC1 andDC2 in Lemma 3.5, clearly state that any

decision on any selection or order between two transitions should be either possible

by at least one of the agents, or otherwise, the decision should not be important, in

the sense that both permutations be legal. This lemma together with Theorem 3.2

give an alternative result for decomposability conditions as follows.

Corollary 3.2 A deterministic automaton AS =

(
Q, q0, E =

n⋃
i=1

Ei, δ

)
is decom-

posable with respect to parallel composition and natural projections Pi, i = 1, ..., n

such that AS ∼=
n

||
i=1

Pi (AS) if and only if AS satisfies the following decomposability

conditions (DC):

• DC1: ∀e1, e2 ∈ E, q ∈ Q: [δ(q, e1)! ∧ δ(q, e2)!]

⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei] ∨ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗: [δ(q, e1e2s)! ∨ δ(q, e2e1s)!]

⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei] ∨ [δ(q, e1e2s)! ∧ δ(q, e2e1s)!];
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• DC3: δ(q0,
n

|
i=1

pi(si))!, ∀{s1, · · · , sn} ∈ L̃ (AS), ∃si, sj ∈ {s1, · · · , sn}, si 6=

sj, where, L̃ (AS) ⊆ L (AS) is the largest subset of L (AS) such that ∀s ∈

L̃ (AS) ,∃s′ ∈ L̃ (AS) , ∃Ei, Ej ∈ {E1, ..., En} , i 6= j, pEi∩Ej
(s) and pEi∩Ej

(s′)

start with the same event, and

• DC4: ∀i ∈ {1, ..., n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈ E∗i , x1 ∈ δi(x, e),

x2 ∈ δi(x, e): δi(x1, t)!⇔ δi(x2, t)!.

Remark 3.2 Intuitively, the decomposability condition DC1 means that for any

decision on the selection between two transitions there should exist at least one agent

that is capable of the decision making, or the decision should not be important (both

permutations in any order be legal). DC2 says that for any decision on the order of

two successive events before any string, either there should exist at least one agent

capable of such decision making, or the decision should not be important, i.e., any

order would be legal for the occurrence of that string. The condition DC3 means that

the interleaving of strings from local task automata that share the first appearing

shared event (pEi∩Ej
(s) and pEi∩Ej

(s′) start with the same event a ∈ Ei ∩Ej), should

not allow a string that is not allowed in the original task automaton. In other words,

DC3 ensures that an illegal behavior (a string that does not appear in AS) is not

allowed by the team (does not appear in
n

||
i=1

Pi (AS)). The last condition, DC4,

deals with the nondeterminism of local automata. Here, AS is deterministic, whereas

Pi (AS) could be nondeterministic. DC4 ensures the determinism of bisimulation

quotient of local task automata, in order to guarantee that the simulation relations

from AS to
n

||
i=1

Pi (AS) and vice versa are inverse of each other. By providing this
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property, DC4 guarantees that a legal behavior (appearing in AS) is not disabled by

the team (appears in
n

||
i=1

Pi (AS)).

The following examples illustrate the decomposability conditions for decompos-

able and indecomposable automata.

Example 3.3 Consider the automaton AS in Example 3.1. We denote the string on

the top and bottom branches of AS as s1 and s2, respectively. Since {e1, a} ⊆ E1,

{a, e2} ⊆ E2, {e2, b} ⊆ E2, {b, e3} ⊆ E3, then DC1 and DC2 are satisfied. More-

over, s1, s2 contain a ∈ E1 ∩ E2, b ∈ E2 ∩ E3 where a appears as the first event

in both pE1∩E2(s1) and pE1∩E2(s2). Then, according to DC3, following six inter-

leaving transitions are checked: δ(q0, p1(s1)|p2(s1)|p3(s2))!; δ(q0, p1(s1)|p2(s2)|p3(s1))!;

δ(q0, p1(s1)|p2(s2)|p3(s2))!; δ(q0, p1(s2)|p2(s1)|p3(s1))!; δ(q0, p1(s2)|p2(s1)|p3(s2))!, and

δ(q0, p1(s2)|p2(s2)|p3(s1))!, i.e., DC3 is satisfied (note that the expression

∀{s1, · · · , sn} ∈ L̃ (AS), ∃si, sj ∈ {s1, · · · , sn}, si 6= sj in the statements of DC3

excludes δ(q0, p1(s1)|p2(s1)|p3(s1))! and δ(q0, p1(s2)|p2(s2)|p3(s2))! from the checklist

of DC3). In addition, since Pi(AS), i = 1, 2, 3, have deterministic bisimilar automata,

then DC4 is also fulfilled; therefore, AS is decomposable.

Example 3.4 (Revisiting Example in Section 3.3 for decomposability using Theo-

rem 3.2) As another example for decomposable automaton, we recall the task au-

tomaton of cooperative multi-robot example in Section 3.3, where the global task

automaton has been decomposed into local task automata using the hierarchical ap-

proach, in two stages. Here, we decompose AS directly using Theorem 3.2. Firstly,

DC1 and DC2 are satisfied since the pairs of adjacent/successive events, each
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from one of the sets {h1, R1toD1, R1onD1} ⊆ E1\{E2 ∪ E3}, {h2, R2to2, R2in2} ⊆

E2\{E1 ∪ E3} and {h3, R3to3, R3in3, R3toD1, R3onD1} ⊆ E3\{E1 ∪ E2} and also

the pairs of event FW , paired with events from {h2, R2to2, R2in2} appear in both

orders in the automaton. The rest of adjacent/successive transitions that are not

legal in both orders can be decided by at least one agent, as {R1onD1, FWD} ⊆

E1, {R3onD1, FWD} ⊆ E3, {FWD,D1opened} ⊆ E1, {D1opened,R2to1} ⊆

E2, {R2to1, R2in1} ⊆ E2, {R2in1, BWD} ⊆ E1, {BWD,D1closed} ⊆ E1,

{D1closed,R3to1} ⊆ E3, {R3to1, R3in1} ⊆ E3, {R3in1, r} ⊆ E3, {r, h1} ⊆ E1,

{r, h2} ⊆ E2, {r, h3} ⊆ E3. Moreover, since starting from any state, each shared

event e ∈ {FWD,D1opened,R2in1, BWD,D1closed, r} appears in only one branch,

DC3 is satisfied. Furthermore, DC4 is also satisfied since Pi(AS), i = 1, 2, 3 are

deterministic automata. Therefore, according to Theorem 3.2, AS is decomposable

into Pi(AS), i = 1, 2, 3, as illustrated in Figure 1.6.

Examples 3.3 and 3.4 showed decomposable automata. Examples 3.5, 3.6, 3.8

and 3.9 will illustrate the automata that are indecomposable due to the violation of

one of the decomposability conditions DC1-DC4, respectively, although they satisfy

other three conditions.

Example 3.5 This example illustrates the concept of decision making on switch-

ing between the events, mentioned in Remark 3.2. Furthermore, it shows an au-

tomaton that satisfies DC2, DC3 and DC4, but not DC1, leading to indecompos-

ability. The automaton AS: // •
e2 ))RRRRRR
e1 //

e3uullllll •
• •

with local event sets E1 = {e1, e3},

E2 = {e2}, E3 = {e3}, is not decomposable as the parallel composition of
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P1(AS): // • e1 //
e3 ))RRRRRR •
•

, P2(AS): // • e2 // • and P3(AS) : // • e3 // • is obtained as

3

||
i=1

Pi(AS): • e2 // •

// •
e1
OO

e3 ��

e2 // •
e1
OO

e3��
• e2 // •

which does not bisimulate AS. Here, AS ≺
3

||
i=1

Pi(AS) but

3

||
i=1

Pi(AS) ⊀ AS; hence, AS �
3

||
i=1

Pi(AS). AS is not decomposable with respect to par-

allel composition and natural projections Pi, i = 1, 2, 3, since two events e2 and e3 and

also the pair of e1 and e2 do not respect DC1, as none of the local plants take in charge

of decision making on the switching between these event pairs, as δ(q0, e2)!∧δ(q0, e3)!,

but neither ∃Ei ∈ {E1, E2, E3}, {e2, e3} ⊆ Ei, nor δ(q0, e2e3)! ∧ δ(q0, e3e2)!. Sim-

ilarly, δ(q0, e1)! ∧ δ(q0, e2)!, but neither ∃Ei ∈ {E1, E2, E3}, {e1, e2} ⊆ Ei, nor

δ(q0, e1e2)! ∧ δ(q0, e2e1).

Example 3.6 This example shows the concept of decision making on the order of

events, and illustrates an automaton that satisfies DC1, DC3 and DC4, but it

is indecomposable because of the violation of DC2. Consider the automaton AS:

// • e1 // • e2 // • e3 // • , with local event sets E1 = {e1, e3}, E2 = {e2}, E3 = {e3}. The

parallel composition of P1(AS): // • e1 // • e3 // • , P2(AS) : // • e2 // • and P3(AS) :

// • e3 // • is
3

||
i=1

Pi(AS): // •
e1 ��

e2 // •
e1��

•
e3 ��

e2 // •
e3��

• e2 // •

. One can observe that AS ≺
3

||
i=1

Pi(AS)

but
3

||
i=1

Pi(AS) ⊀ AS; hence, AS �
3

||
i=1

Pi(AS). Here, AS respects DC1, DC3 and

DC4, but it is indecomposable due to the violation of DC2, as none of the local

plants take in charge of decision making on the orders of {e1, e2} and {e2, e3}.
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Remark 3.3 Example 3.6 also shows the decomposability of a path automaton (an

automaton with no adjacent events) that can be formally stated as a special case of

Theorem 3.2 as

Corollary 3.3 A path automaton (and hence, an automaton with only one self-loop

as a special case of a path automaton) is decomposable if and only if any two successive

events in the automaton belong to at least one of the local event sets (∀q ∈ Q, e1, e2 ∈

E, δ(q, e1e2)!, then ∃Ei ∈ {E1, . . . , En} such that {e1, e2} ⊆ Ei).

The reason for this corollary is that when the automaton has no adjacent events,

the antecedent of DC1, DC3 and DC4 (see Theorem 3.2 and Corollary 3.2) become

false and these conditions will be trivially satisfied. Moreover, since there is no

adjacent pair of events, the consequence of DC2 is reduced to ∃Ei ∈ {E1, . . . , En},

{e1, e2} ⊆ Ei.

Example 3.7 Two path automata A1: // • e1 // • a // • e2 // • , with local event sets

E1 = {e1, a} and E2 = {e2, a}, and A2: // • e1 // •
a

��
•
b

OO

•e2
oo

with local event sets E1 =

{e1, a, b} and E2 = {e2, a, b}, are both decomposable according to Corollary 3.3.

Example 3.8 This example illustrates an automaton that satisfies DC1, DC2

and DC4, but it is indecomposable as it does not fulfill DC3, since new

strings appear in
3

||
i=1

Pi(AS) from the interleaving of strings in P1(AS), P2(AS)

and P3(AS), but they are not legal in AS. Consider the task automaton AS:
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• e2 // • a // • b // •

// •
e1
OO

e2 ��

a // • b // • e2 // •

• e1 // • a // • b // •

with E1 = {a, b, e1}, E2 = {a, b, e2}, E3 = {b}, leading

to P1(AS) ∼= // •
a ))RRRRRR
e1 // • a // • b // •
• b // •

, P2(AS) ∼= // •
a ))RRRRRR
e2 // • a // • b // •
• b // • e2 // •

,

P3(AS) ∼= // • b // • and
3

||
i=1

Pi(AS): • •e2oo •boo •aoo

e2

��

•̌e1oo a //

e2

��

• b // • e2 // •

• •boo •aoo •e1oo a // • b // •

that

is not bisimilar to AS since two strings e1abe2 and e2ab are newly generated, while

they do not appear in AS.

Example 3.9 This example illustrates an automaton that satisfies DC1 and DC2,

and DC3, but is indecomposable as it does not fulfill DC4. Consider AS:

• e2 // • b // •
// •

a 55llllll

e1 ))RRRRRR

• a // • e2 // • b // • e3 // •

with E = E1 ∪ E2 ∪ E3, E1 =

{a, b, e1, e2, e3}, E2 = E3 = {a, b, e2, e3}. Then, the parallel composition of P1(AS) ∼=

AS, P2(AS) ∼= P3(AS) ∼= • e2 // • b // •
// •

a 55llllll

a ))RRRRRR

• e2 // • b // • e3 // •

is
3

||
i=1

Pi(AS):

• // •
e1

��

a // • e2 // • b // •

•
e3

OO

•boo •e2oo •aoo a // • e2 // • b // •

which is not bisimilar to AS. The task automaton

AS satisfies DC1 and DC2 since any successive/adjacent pair of events belong to E1.

Furthermore, any interleaving in
3

||
i=1

Pi(AS) appears in AS, and hence DC3 is satisfied;

however, DC4 is violated as there does not exist deterministic automata P ′2(AS) and

P ′3(AS) that respectively bisimulate P2(AS) and P3(AS). Therefore, AS �
3

||
i=1

Pi(AS),

since, although AS ≺
3

||
i=1

Pi(AS) and
3

||
i=1

Pi(AS) ≺ AS, the simulation relations are

not inverse of each other.

Remark 3.4 (Complexity) The complexity of the proposed method has the order
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of |Q|n+1 × |E|3 × log|Q|; while the complexity of the method with constructing the

parallel composition of the natural projections and checking the bisimilarity with the

initial automaton is of the order of |Q|2n × |E|. Here, |Q|, |E| and n denote the size

of the state space, the size of the event set and the number of agents (number of

local event sets), respectively. It can be seen that two methods cannot be compared

generally in the sense that only when |E| <
√
|Q|n−1/log|Q|, then the proposed

method provides less complexity. In other words, the comparison of their complexity

relies on the relative size of the event set with respect to the size of the state space.

More importantly, the proposed method provides some guideline on the structure

of the global specification automaton and the distribution the events among the agents

in order for decomposability.

Remark 3.5 (Insights on Enforcing the Decomposability Conditions) The result in

Theorem 3.2 or Corollary 3.2 provides us some hints for ruling out indecomposable

task automata and for enforcing the violated decomposability conditions. For exam-

ple, if ∃e1, e2 ∈ E, q ∈ Q: δ(q, e1)!∧δ(q, e2)! but neither ∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆

Ei nor δ(q, e1e2)! ∧ δ(q, e2e1)!, then AS is not decomposable due to the violation

of DC1. To remove this violation there should exist an agent with local event

set Ei ∈ {E1, . . . , En} such that {e1, e2} ⊆ Ei. This solution also works for an

indecomposability of AS due to a violation of DC2 where ∃e1, e2 ∈ E, q ∈ Q,

s ∈ E∗: δ(q, e1e2s)! ∨ δ(q, e2e1s)! but neither ∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei

nor δ(q, e1e2s)! ∧ δ(q, e2e1s)!. For instance, in Examples 3.5 and 3.6, if E2 = {e1, e2}

and E3 = {e2, e3}, then DC1 and DC2 were respectively satisfied. Violation of other
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two conditions, DC3 and DC4, is caused due to the synchronization of two different

branches s and s′ from different local task automata, say Pi(AS) and Pj(AS), on a

common event a ∈ Ei ∩ Ej. This synchronization may impose an ambiguity in the

understanding of AS, when Pi(AS) and Pj(AS) synchronize on a. If one string in

Pi(AS) after synchronization on a, continues to another string in Pj(AS) and this

interleaving generates a new string in
n

||
i=1

Pi (AS) that does not appear in AS, then

DC3 is dissatisfied, whereas if this interleaving causes that a string in AS cannot

be completed in
n

||
i=1

Pi (AS), then DC4 is violated. One way to remove this ambigu-

ity is therefore to introduce the first events in s and s′ to both Ei and Ej. In this

case, the synchronization on event a will only occur on the projections of the iden-

tical strings from AS. For example, the task automaton AS: // •
a ��

e1 // • a // •
• e2 //

e3 &&MMMMMM • e3 // •
• e2

88qqqqqq

,

with local event sets E1 = {a, e1, e3} and E2 = {a, e2} satisfies DC1 and DC2,

but violates DC3 and DC4; therefore, it is not decomposable as the parallel com-

position of P1(AS) ∼= // •
a &&MMMMMM
e1 // • a // •
• e3 // •

, and P2(AS) ∼= // •
a ��

a // •
• e2 // •

, is

P1(AS)||P2(AS) ∼= • •aoo
a��

•̌e1oo a //
a��

• e2 //

e3 &&LLLLLL • e3 // •

• •e2oo • e3 // • • e2

88rrrrrr

� AS. Now, including e1

in E2 leads to P2(AS) ∼= // •
a &&MMMMMM
e1 // • a // •
• e2 // •

and makes AS decomposable. This

issue will be discussed in details in Chapter 5 in order to enforce the decomposability

conditions.

Remark 3.6 (Decidability of the Conditions) Since this work deals with finite state

automata, the expression s ∈ E∗ in the decomposability conditions can be checked

over finite states as follows.
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The first condition DC1 involves no expression “s ∈ E∗”; hence, it can be

checked over the finite number of states and transitions. The second condition

DC2: ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗,∀Ei ∈ {E1, ..., En} , {e1, e2} 6⊂ Ei: δ (q, e1e2s)! ⇔

δ (q, e2e1s)!; (or DC2: ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗: [δ(q, e1e2s)!∨δ(q, e2e1s)!]⇒ [∃Ei ∈

{E1, . . . , En}, {e1, e2} ⊆ Ei] ∨ [δ(q, e1e2s)! ∧ δ(q, e2e1s)!]) can be checked by showing

the existence of a relation R̂2 on the states reachable from δ(q, e1e2) and δ(q, e2e1) as

(δ(q, e1e2), δ(q, e2e1)) ∈ R̂2, ∀(q1, q2) ∈ R̂2, e ∈ E:

1. δ(q1, e) = q′1 ⇒ ∃q′2 ∈ Q, δ(q2, e) = q′2, (q′1, q
′
2) ∈ R̂2, and

2. δ(q2, e) = q′2 ⇒ ∃q′1 ∈ Q, δ(q1, e) = q′1, (q′1, q
′
2) ∈ R̂2.

For instance, A4 in Example 2.2 violates DC2 as (δ(q0, e1e2), δ(q0, e2e1)) ∈ R̂2, ∃e2 ∈

E, δ(δ(q0, e1e2), e2)!, but ¬δ(δ(q0, e2e1), e2)!.

Checking DC3 also can be done over finite states by corresponding the strings

si, i = 1, . . . , n, in DC3 to the sequences q1,i
e1,i→ q2,i

e2,i→ ...
eni−1,i→ qni,i, i = 1, . . . , n

with the respective path automata Ai = ({q1,i, . . . , qni,i}, {q1,i}, {e1,i, . . . , eni−1,i}, ξi),

and checking that
n

‖
i=1

Pi (Ai) ≺ AS, where Pi is the natural projection into local

event set Ei of the i-th agent. For example, the task automaton AS in Remark

3.5 does not satisfy DC3 as, denoting its strings as s1 := e1a, s2 := ae2e3 and

s3 := ae3e2 with the corresponding path automata A1:= // • e1 // • a // • , A2:=

// • a // • e2 // • e3 // • , A3:= // • a // • e3 // • e2 // • , it reveals that

P1(A1)||P2(A2)||P3(A1) ∼= P1(A1)||P2(A3)||P3(A1): // • e1 // • a // • e2 // • ⊀

AS.

The fourth condition (DC4: ∀i ∈ {1, ..., n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei,
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t ∈ E∗i , x1 ∈ δi(x, e), x2 ∈ δi(x, e): δi(x1, t)! ⇔ δi(x2, t)!) also can be checked over

finite states, by checking the existence of a relation R̂4 on the states reachable from

x1 and x2 as (x1, x2) ∈ R̂4, ∀(x3, x4) ∈ R̂4, e ∈ E:

1. x′3 ∈ δi(x3, e)⇒ ∃x′4 ∈ Qi, x
′
4 ∈ δi(x4, e), (x′3, x

′
4) ∈ R̂4, and

2. x′4 ∈ δi(x4, e)⇒ ∃x′3 ∈ Qi, x
′
3 ∈ δi(x3, e), (x′3, x

′
4) ∈ R̂4.

For example, the task automaton in Example 3.9 does not satisfy DC4, as for

P2(AS) ∼= P3(AS) ∼= 76540123y1
e2 // 76540123y2

b // 76540123y3

// 76540123y0

a 55llllll

a ))RRRRRR

76540123y4
e2 // 76540123y5

b // 76540123y6
e3 // 76540123y7

,

R̂4 = {(y1, y4), (y2, y5), (y3, y6)}, (y3, y6) ∈ R̂4, ∃e3 ∈ E, δ2(y6, e3)!, but ¬δ2(y3, e3)!.

Once the task is decomposed into local tasks and the local controllers are de-

signed accordingly, similar to what we discussed in Section 3.2 for the hierarchical

approach, the next and main question is the cooperative tasking problem (Problem

3.1) to understand whether the decomposable global task is guaranteed to be satis-

fied, provided the fulfilment of the local specifications. Following theorem provides

a sufficient condition to answers Problem 3.1, using the decomposability result in

Theorem 3.2.

Before stating the theorem, following lemma is presented to be used for the proof.

Lemma 3.6 (Associativity of Parallel Composition [46]) P1(AS) ‖ P2(AS) ‖ · · · ‖

Pn−1(AS) ‖ Pn(AS) ∼= Pn(AS) ‖ (Pn−1(AS) ‖ (· · · ‖ (P2(AS) ‖ P1(AS)))).

Theorem 3.3 (Cooperative Tasking) Consider a plant, represented by a parallel dis-
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tributed system
n

‖
i=1

APi
, with local event sets Ei, i = 1, ..., n, and let the global specifica-

tion is given by a deterministic task automaton AS, with E =
n
∪
i=1
Ei. Then, designing

local controllers ACi
, so that ACi

‖ APi
∼= Pi(AS), i = 1, · · · , n, derives the global

closed loop system to satisfy the global specification AS, in the sense of bisimilarity,

i.e.,
n

‖
i=1

(ACi
‖ APi

) ∼= AS, provided DC1, DC2, DC3 and DC4 for AS.

Proof: Satisfying DC1-DC4 for AS, according to Theorem 3.2, leads to the

decomposability of AS into local task automata Pi(AS), i = 1, ..., n, such that

AS ∼=
n

‖
i=1

Pi(AS). Then, choosing local controllers ACi
, so that ACi

‖ APi
∼= Pi(AS),

i = 1, 2, · · · , n, due to Lemma 2.6, results in
n

‖
i=1

(ACi
‖ APi

) ∼=
n

‖
i=1

Pi(AS) ∼= AS.

Now, if DC1-DC4 is reduced to DC1-DC3 (conditions in Theorem 3.2 are re-

duced into the conditions in Lemma 3.3), then
n

‖
i=1

Pi(AS) ∼= AS is reduced into

n

‖
i=1

Pi(AS) ≺ AS; hence, choosing local controllers ACi
, so that ACi

‖ APi
≺ Pi(AS),

i = 1, 2, · · · , n, due to Lemma 2.6 leads to
n

‖
i=1

(ACi
‖ APi

) ≺
n

‖
i=1

Pi(AS) ≺ AS.

Therefore,

Corollary 3.4 Considering the plant and global task as stated in Theorem 3.3, if

DC1-DC3 are satisfied, then designing local controllers ACi
, so that ACi

‖ APi
≺

Pi(AS), i = 1, · · · , n, derives the global closed loop system to satisfy the global speci-

fication AS, in the sense of similarity, i.e.,
n

‖
i=1

(ACi
‖ APi

) ≺ AS.

Remark 3.7 It is known that bisimulation implies language equivalence and that

bisimulation of deterministic automata is reduced to their language equivalence. Now,

one question is that whether for a deterministic task automaton its decomposability

in the sense of bisimulation (stated in Theorem 3.2) is reduced to its decomposability
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in the sense of language equivalence (L(AS) = L(
n

‖
i=1

Pi (AS))) or its language sepa-

rability (L(AS) =
n

|
i=1

L(Pi (AS))). Furthermore, it is interesting to know whether the

proposed top-down cooperative control, in Theorem 3.3, is reduced into a top-down

approach in the sense of language equivalence. As it is illustrated in the following

examples, although in general, decomposability in the sense of bisimulation implies

the decomposability in the sense of language equivalence, the reverse is not always

true, in spite of the determinism of automaton. For the top-down cooperative control,

on the other hand, under the proposed decomposability conditions, the bisimulation-

based approach is reduced to the language equivalence one, as a deterministic task

automaton can be represented by its language. As it was explained in Section 1.5, the

advantage of using bisimulation for a deterministic AS is that it allows to compare the

behaviors of AS and
n

‖
i=1

Pi (AS) using the sequential comparison of post-transitions

of the corresponding states, by which less memory will be required rather than the

comparison of strings.

To elaborate these remarks, we first highlight that the natural projection may

impose emerging properties that do not exist in the original automaton. For ex-

ample, local task automata may have some new strings that do not appear in the

original automaton, i.e., AS does not necessarily simulates Pi (AS). Moreover, local

task automata may become nondeterministic, even if the original task automaton is

deterministic. The decomposability of AS, however, concerns with the bisimilarity of

AS and
n

‖
i=1

Pi (AS), that may hold even if Pi(AS) 6≺ AS, or the local task automata

are nondeterministic for some agents, as it is shown through the following examples.
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3.4.3 Examples for Remark 3.7

Example 3.10 Following example shows an automaton that does not simulate its

natural projections, yet is decomposable. Consider the task automaton in Example

1.4. AS is decomposable, although P1(AS) 6≺ AS (since the string b appears in P1(AS),

but not in AS), and P2(AS) 6≺ AS (since the string ab appears in P2(AS), but not in

AS).

As mentioned in Remark 3.7, another emergent property is that the natural pro-

jection of local task automata may lead to the nondeterminism of Pi (AS), leading

to the nondeterminism of
n

‖
i=1

Pi (AS). The decomposability of AS again concerns

with the bisimilarity of AS and
n

‖
i=1

Pi (AS), that may happen even if there exist some

nondeterministic Pi(AS), as it is elaborated in the following example.

Example 3.11 Consider the automaton AS: // • e1 //
a ))RRRRRR • a // • e2 // •
• e2 // •

with E =

E1∪E2, E1 = {a, e1}, E2 = {a, e2}. AS is decomposable, as the parallel composition of

P1(AS): // • e1 //
a ))RRRRRR • a // •
•

and P2(AS): // •
a ))RRRRRR
a // • e2 // •
• e2 // •

is bisimilar to AS.

Here, P2(AS) is not deterministic, but it bisimulates the deterministic automaton

P2(AS)′: // • a // • e2 // • .

Therefore, a deterministic task automaton AS may have nondeterministic natural

projections, and consequently, its
n

‖
i=1

Pi (AS) may become nondeterministic. As a

result, the determinism of AS does not reduce its decomposability in the sense of

bisimulation into its decomposability in the sense of language equivalence (synthesis

modulo language equivalence [74]), due to the possibility of nondeterminism of
n

‖
i=1

Pi (AS), as it is further illustrated in the following example.
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Example 3.12 Consider the task automaton AS in Examples 1.8 and 2.6, where AS

is deterministic, L(
n

‖
i=1

Pi (AS)) = L(AS); however,
n

‖
i=1

Pi (AS) � AS.

This example also shows that the determinism of AS also does not reduce its decom-

posability in the sense of bisimulation into the separability of its language ( [77]),

as
n

‖
i=1

Pi (AS) � AS, although AS is deterministic and its language is separable

(L(AS) =
n

|
i=1

L(Pi (AS))). Another such automaton can be found in Example 3.9.

Therefore, in general for a deterministic task automaton
n

‖
i=1

Pi (AS) ∼= AS is not

reduced into L(AS) =
n

|
i=1

L(Pi (AS)). But, under the determinism of bisimulation

quotient of all local task automata (DC4), the bisimulation-based decomposability

is reduced to the language-based decomposability and the top-down design based on

bisimulation, is reduced to the language-based top-down design, such that the entire

closed loop system (the parallel composition of local closed loop systems) bisimulates

(or equivalently is language equivalent to) the global task automaton. In case of

DC4, the other three conditions (DC1-DC3) can be used to characterize the language

separability.

3.4.4 Special Case 1: Centralized Decision Making

This part introduces the centralized decision making on the selection (DC1) and order

(DC2) of transitions as a special case of decentralized decision making. Accordingly,

in the centralized decision making, the first two decomposability conditions are re-

laxed. By decentralized, here, we mean that there is no centralized agent for the

coordination of all agents for global decision making; whereas, in centralized scheme
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there exists at least one agent that synchronizes all other agents on the order and

switches between events. It is worth noting that this type of decentralized control has

the communication constraint as the agents need the communication to synchronize

on the common events. This means that the agents are not fully autonomous and

need the communication, however, the agents sense locally and collaborate with their

neighbors to achieve a global decision without global information and with no central

unit. If at least one of the agents is equipped with global information and actuation

then it will serve as a central unit for decision making, ruling the whole set of orders

and selections, as it is stated in the following result.

Proposition 3.1 Consider a deterministic automaton AS =

(
Q, q0, E =

n⋃
i=1

Ei, δ

)
.

If ∃Ek ∈ {E1, ..., En}, Ek = E, then DC1 and DC2 always hold true.

Proof: See the proof in the Appendix.

In this case, DC1 and DC2 are relaxed in Theorem 3.2; hence, the decomposability

result is reduced to

Corollary 3.5 Consider a deterministic automaton AS =

(
Q, q0, E =

n⋃
i=1

Ei, δ

)
. If

∃Ek ∈ {E1, ..., En}, Ek = E, then AS ∼=
n

||
i=1

Pi(AS) if and only if

• DC3: δ(q0,
n

|
i=1

pi(si))! for si ∈ L̃ (AS), where, L̃ (AS) ⊆ L (AS) is the

largest subset of L (AS) such that ∀s ∈ L̃ (AS) , ∃s′ ∈ L̃ (AS) , ∃Ei, Ej ∈

{E1, ..., En} , i 6= j, pEi∩Ej
(s) and pEi∩Ej

(s′) start with the same event, and

• DC4: ∀i ∈ {1, · · · , n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈ E∗i , x1 ∈ δi(x, e),

x2 ∈ δi(x, e): δi(x1, t)!⇔ δi(x2, t)!.
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It should be highlighted that the existence of a centralized decision maker does not

necessarily imply the decomposability of the global task automaton. For instance, the

automaton AS in Example 1.8 is not decomposable, as it was discussed in Example

2.6, although E1 = E.

3.4.5 Special Case 2: Mutual Exclusive Clusters of Local

Event Sets

Generally, DC3 in Theorem 3.2 is more restrictive than its counterpart in Theorem

2.1 as it had excluded the identical strings s and s′, while DC3 in Theorem 3.2

may check interleavings on identical strings. This means that DC3 in this case may

check some of the interleavings that have been already checked by DC1 and DC2.

For instance, in Example 3.3, one needs to only check δ(q0, p1(s1)|p2(s2)|p3(s1))! and

δ(q0, p1(s2)|p2(s1)|p3(s2))! for DC3, the other interleaving transitions are redundant as

they are also checked via DC1 and DC2 (all of them contain the successive projections

of an identical string into different local event sets). Removing these overlapping

will reduce the computational burden, however, it will impose complexity in the

statements of DC3. For large scale systems it is difficult to determine the redundant

interleavings for DC3. Moreover, the set of redundant interleavings depends on the

problem. For instance, in Example 3.8, p1(s1)|p2(s2)|p3(s2) causes a violation of DC3,

whereas in Example 3.3 it does not (s1 and s2 are the branches numbered from the top

to bottom). Therefore, it is more tractable to let those transitions that are not defined

over strings in L̃(AS) to be checked by DC1 and DC2, and the rest of transitions
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whose strings may interleave with other strings in L̃(AS), are checked by DC3.

In special case that the event set is a partition of clusters of local event sets, the

restrictiveness of DC3 is mitigated using the following result.

Proposition 3.2 Let
{

Σ1, ...,ΣK
}

be a partition of E such that E =
K⋃
k=1

Σk, Σi∩Σj =

∅, ∀i, j ∈ {1, ..., K} , i 6= j, Σk =
nk⋃
l=1

Ek
l , Ek

l ∈ {E1, ..., En}. Then, AS ∼=
n

||
i=1

Pi (AS)

if and only if DC1 and DC2 hold true for AS with respect to E1, . . . , En, and ∀k ∈

{1, ..., K} : PΣk (AS) ∼=
nk

||
l=1

PEk
l

(AS).

Proof: See the proof in the Appendix.

The significance of this result is that if DC1 and DC2 hold true for AS, then the

decomposability of AS is reduced to the decomposability of its projections PΣk (AS)

into the clusters, ∀k ∈ {1, ..., K}. This simplification is illustrated in the following

example.

Example 3.13 Consider the global task automaton

AS: • •e4oo •boo •e3oo b // • e4 // •

•
e2

OO

•
e2

OO

e4oo •
e2

OO

boo •
e2

OO

e3oo b // •
e2

OO

e4 // •
e2

OO

•
a

OO

•
a

OO

e4oo •
a

OO

boo •
a

OO

e3oo b // •
a

OO

e4 // •
a

OO

•
e1

OO

a

��

•
e1

OO

a

��

e4oo •
e1

OO

a

��

boo •̀
e1

OO

a

��

e3oo b // •
e1

OO

a

��

e4 // •
e1

OO

a

��
•

e2

��

•
e2

��

e4oo •
e2

��

boo •
e2

��

e3oo b // •
e2

��

e4 // •
e2

��
• •e4oo •boo •e3oo b // • e4 // •

with E1 = {a, e1}, E2 = {a, e2}, E3 = {b, e3}, E4 = {b, e4}. There are 70 strings

that share the first appearing common events. Since only p1(s) is related to p2(s′),
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and p3(s) is related to p4(s′) for any strings s and s′, totally, 70 × 70 × 2 = 9800

combinations of interleaving transitions are required to be checked for DC3.

However, since Σ1 = (E1 = {a, e1}) ∪ (E2 = {a, e2}), Σ2 = (E3 =

{b, e3}) ∪ (E4 = {b, e4}), E = Σ1 ∪ Σ2, Σ1 ∩ Σ2 = ∅, then using Proposi-

tion 3.2, the number of interleaving transitions to be checked for DC3 is re-

markably reduced into 4 transitions δΣ1

(
x0, p1 (s1)|p2 (s2)

)
!, δΣ1

(
x0, p1 (s2)|p2 (s1)

)
!,

δΣ2

(
y0, p3 (s3)|p4 (s4)

)
! and δΣ2

(
y0, p3 (s4)|p4 (s3)

)
!, from the interleaving be-

tween P1(PΣ1(AS)): // • e1 //
a ))RRRRRR • a // •
•

, P2(PΣ1(AS)) ∼= // • a // • e2 // • ,

and P3(PΣ2(AS)): // • e3 //

b ))RRRRRR • b // •
•

, P4(PΣ2(AS)) ∼= // • b // • e4 // • .

Here, s1, s2 and s3, s4 are respectively the top and bottom branches in

PΣ1(AS): // • e1 //
a ))RRRRRR • a // • e2 // •
• e2 // •

and PΣ2(AS): // • e3 //

b ))RRRRRR • b // • e4 // •
• e4 // •

.

3.5 Conclusion

The chapter proposed a method for automaton decomposability, applicable in the top-

down decentralized cooperative control of distributed discrete event systems. Given a

set of agents whose logical behaviors are modeled in a parallel distributed system, and

a global task automaton, the chapter has the following contributions: firstly, the task

decomposability approach in Chapter 2, has been extended into a sufficient condition

for more than two agents, using a hierarchical algorithm. The algorithm, however,

was shown to be sufficient only, and moreover, it depends on the order of agents to

be chosen, in turn, for the hierarchical decomposition. Therefore, generalizing the
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results in Chapter 2, the next contribution was devoted to propose new necessary

and sufficient conditions for the decomposability of an automaton with respect to

parallel composition and natural projections into an arbitrary finite number of local

event sets. The decomposability, here, is checked, and in case of decomposability, the

decomposition is performed in one stage with no dependency on the order of local

event sets. Next, to address the cooperative tasking problem, it has been shown that

if a global task automaton is decomposed for individual agents, designing a local

supervisor for each agent, satisfying its local task, guarantees that the closed loop

system of the team of agents satisfies the global specification. Finally, a cooperative

control scenario has been developed and implemented to illustrate the concepts of

task decomposition and cooperative tasking, in this chapter.

For special case that the global event set is partitioned into some clusters of local

event sets, such that the task automaton is decomposable from the perspective of

each cluster, it was shown that the decomposability of the global task automaton is

reduced into the global decision makings on the orders and selections between the

transitions. Moreover, for the special case that one local event set contains all events,

it was shown that the first two decomposability conditions, on decision making on

the orders and selections, are relaxed.

Next questions on this topic include fault-tolerant task decomposition in spite

of failure in some events, and the decomposabilizability of an indecomposable task

automaton by modifying the event distribution, as will be addressed in Chapters 4

and 5, respectively.
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3.6 Appendix

3.6.1 Proof for Lemma 3.1

The proof of this lemma comes from the restatement of the expression ∀e1 ∈

E1\E2, e2 ∈ E2\E1, equivalently, as ∀e1, e2 ∈ E,@Ei ∈ {E1, E2}, {e1, e2} ⊆ Ei or

∀e1, e2 ∈ E,∀Ei ∈ {E1, E2}, {e1, e2} 6⊂ Ei.

3.6.2 Proof for Lemma 3.2

From Lemma 2.1, stating that for a deterministic automaton AS = (Q, q0, E =

E1 ∪ E2, δ), AS ≺ P1(AS)||P2(AS), it leads to P n
∪

i=m
Ei

(AS) ≺ Pm(AS)||P n
∪

i=m+1
Ei

(AS),

m = 1, ..., n − 1, for AS = (Q, q0, E =
n
∪
i=1

Ei, δ). Therefore, AS ∼= P n
∪

i=1
Ei

(AS) ≺

P1(AS)||P n
∪

i=2
Ei

(AS) ≺ P1(AS)||P2(AS)||P n
∪

i=3
Ei

(AS) ≺ · · · ≺
n

||
i=1

Pi(AS).

3.6.3 Proof for Lemma 3.3

Sufficiency: Consider the deterministic automaton AS = (Q, q0, E, δ). The set

of transitions in
n

||
i=1

Pi(AS) = (Z, z0, E, δ||) is defined as T = {(x1
0, · · · , xn0 )

n

|
i=1

pi(si)

−→

(x1, · · · , xn) ∈
n∏
i=1

Qi}, where (x1
0, · · · , xn0 )

n

|
i=1

pi(si)

−→ (x1, · · · , xn) in
n

||
i=1

Pi(AS) is the

interleaving of strings xi0
pi(si)−→ xi in Pi(AS), i = 1, · · · , n (the projections of q0

si−→

δ(q0, si) in AS. T can be divided into three sets of transitions corresponding to a

division of {Γ1,Γ2,Γ3} on the set of interleaving strings Γ = {
n

|
i=1

pi(si)|si ∈ E∗, q0
si−→

δ(q0, si)}, where, Γ1 = {
n

|
i=1

pi(si) ∈ Γ|s1, · · · , sn /∈ L̃(A), s1 = · · · = sn}, Γ2 =
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{
n

|
i=1

pi(si) ∈ Γ|∃si, sj ∈ {s1, · · · , sn}, si 6= sj,∀si ∈ {s1, · · · , sn}, si /∈ L̃(A)}, Γ3 =

{
n

|
i=1

pi(si) ∈ Γ|si ∈ L̃(A)}.

For the interleavings in Γ1, ∀z, z1 ∈ Z, e ∈ E, z1 ∈ δ||(z, e): ∃q, q1 ∈ Q, δ(q, e) = q1

such that ∀z[j] ∈ {z[1], · · · , z[n]} (the j− th component of z), ∃l ∈ loc(e), z[j] = [q]l.

Similarly, ∀e′ ∈ E, z2 ∈ Z, z2 ∈ δ||(z1, e): ∃q2 ∈ Q, δ(q1, e
′) = q2. Now, if @Ei ∈

{E1, · · · , En}, {e, e′} ∈ Ei, then the definition of parallel composition will furthermore

induce that ∃z3 ∈ Z, z3 ∈ δ||(z, e′), z2 ∈ δ||(z3, e). This, together with DC1 and DC2

implies that ∃q3, q4 ∈ Q, δ(q, e′) = q3, δ(q3, e) = q4 and that ∀t ∈ E∗, δ||(z2, t)!:

δ(q2, t)! and δ(q4, t)!. Therefore, any path automaton in
n

||
i=1

Pi(AS) is simulated by

AS; hence, δ(q0,
n

|
i=1

pi(s))! in AS, ∀s ∈ L(AS).

For the interleavings in Γ2, from the definition of Γ2, it follows that for any set of

si, δ(q0, si)!, i ∈ {1, · · · , n}, two cases are possible for Γ2:

Case 1: ∀s, s′ ∈ {s1, · · · , sn}, ∀Ei, Ej ∈ {E1, · · · , En}: pEi∩Ej
(s) = ε and

pEi∩Ej
(s′) = ε. In this case, the projections of such strings si can be written as

pi(si) = ei1, · · · , eimi
, i = 1, · · · , n. The interleaving of these projected strings leads to

a grids of states and transitions in
n∏
i=1

mi∏
ji=0

xiji as (xi1j1 , · · · , x
in
jn

)
eij−→ (yi1j1 , · · · , y

in
jn

), with

yikji =


xikji+1

, if i = ik, j = ji + 1

xikji , otherwise

ji = 0, 1, · · · ,mi, i = 1, · · · , n, ik = 1, · · · , n,

k = 1, · · · , n. This grid of transitions simulate counterpart transitions in AS, as

∀s, s′ ∈ {s1, · · · , sn}, for all two successive/adjacent events eij and ei
′

j′ , both orders

exist in AS, due to DC1 and DC2; hence, δ(qji,ik , e
k
j ) = q′ji,ik , ji = 0, 1, · · · ,mi,

i = 1, · · · , n, ik = 1, · · · , n, k = 1, · · · , n. Therefore, for any choice of si correspond-
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ing to Γ2, δ(q0,
n

|
i=1

pi(si))! in AS.

Case 2: ∃s, s′ ∈ {s1, · · · , sn}, ∃Ei, Ej ∈ {E1, · · · , En}: pEi∩Ej
(s) 6= ε or

pEi∩Ej
(s′) 6= ε, but they do not start with the same event. Any such s and s′

can be written as s = t1at2 and s′ = t′1bt
′
2, where t1 = e1 · · · em, t′1 = e′1 · · · e′m /∈

(Ei ∩ Ej)∗,∀i, j ∈ {1, · · · , n}, i 6= j, ∃i, j ∈ {1, · · · , n}, i 6= j, a, b ∈ Ei ∩ Ej

and t2, t
′
2 ∈ E∗. Therefore, due to synchronization constraint, the interleaving of

strings will not evolve from a and b onwards; hence, pi(s)|pj(s′) = pi(t1)|pj(t′1) and

pi(s′)|pj(s) = pi(t′1)|pj(t1), and Case 2 is reduced to Case 1, leading to δ(q0,
n

|
i=1

pi(si))!

in AS.

Therefore, for all strings si corresponding to Γ2, δ(q0,
n

|
i=1

pi(si))! in AS. This is

also true for transitions related to Γ3, provided DC3. Consequently, if DC1, DC2 and

DC3 are satisfied, for all si ∈ L̃(AS), δ(q0,
n

|
i=1

pi(si))!, and the sufficiency is proven.

Necessity: The necessity is proven by contradiction. Assume that
n

||
i=1

Pi(AS) ≺

AS, but DC1, DC2 or DC3 is not satisfied.

If DC1 is violated, then ∃e1, e2 ∈ E, q ∈ Q, @Ei ∈ {E1, · · · , En},

{e1, e2} ⊆ Ei, [δ(q, e1)! ∧ δ(q, e2)!] ∧ ¬[δ(q, e1e2)! ∧ δ(q, e2e1)!]. However, δ(q, e1)! ∧

δ(q, e2)!, from the definition of natural projection, implies that δi([q]i, e1)! ∧

δj([q]j, e2)!, in Pi(AS) and Pj(AS), respectively, ∀i ∈ loc(e1), j ∈ loc(e2). This in

turn, from the definition of parallel composition leads to δ||(([q]1, · · · , [q]n), e1)! ∧

δ||(([q]1, · · · , [q]n), e2)! and δ||(([q]1, · · · , [q]n), e1e2)! ∧ δ||(([q]1, · · · , [q]n), e2e1)!. This

means that δ||(([q]1, · · · , [q]n), e1e2)! ∧ δ||(([q]1, · · · , [q]n), e2e1)! in
n

||
i=1

Pi(AS), but

¬[δ(q, e1e2)! ∧ δ(q, e2e1)!] in AS, i.e.,
n

||
i=1

Pi(AS) ⊀ AS which contradicts with the
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hypothesis.

If DC2 is not satisfied, then ∃e1, e2 ∈ E, q ∈ Q, @Ei ∈

{E1, · · · , En}, {e1, e2} ⊆ Ei, s ∈ E∗, ¬[δ(q, e1e2s)! ⇔ δ(q, e2e1s)!],

i.e., [δ(q, e1e2s)! ∨ δ(q, e2e1s)!] ∧ ¬[δ(q, e1e2s)! ∧ δ(q, e2e1s)!]. The expression

[δ(q, e1e2s)! ∨ δ(q, e2e1s)!] from the definition of natural projection and Lemma

3.2, respectively implies that δ||(([q]1, · · · , [q]n), e1e2)! ∧ δ||(([q]1, · · · , [q]n), e2e1)! and

δ||(([q]1, · · · , [q]n), e1e2s)! ∧ δ||(([q]1, · · · , [q]n), e2e1s)! in
n

||
i=1

Pi(AS). This in turn

leads to δ||(([q]1, · · · , [q]n), e1e2s)! ∧ δ||(([q]1, · · · , [q]n), e2e1s)! in
n

||
i=1

Pi(AS), but

¬[δ(q, e1e2s)! ∧ δ(q, e2e1s)!] in AS, that contradicts with
n

||
i=1

Pi(AS) ≺ AS.

The violation of DC3 also leads to contradiction as δ(q0, si)!, i = 1, · · · , n, results

in δ||(([q0]1, · · · [q0]n),
n

|
i=1

pi(si))! in
n

||
i=1

Pi(AS), whereas ¬δ(q0,
n

|
i=1

pi(si))! in AS.

3.6.4 Proof for Lemma 3.4

Sufficiency: Following lemma is used together with Lemma 2.7 during the proof of

Lemma 3.4. Firstly, let A1 and A2 be substituted by AS and
n

||
i=1

Pi(AS), respectively,

in Lemma 2.7 . Then, the existence of A′1 = A′S in Lemma 2.7 is characterized by the

following lemma.

Lemma 3.7 Consider a deterministic automaton AS and its natural projections

Pi(AS), i = 1, · · · , n. Then, there exists a deterministic automaton A′S such that

A′S
∼=

n

||
i=1

Pi(AS) if and only if there exist deterministic automata P ′i (AS) such that

P ′i (AS) ∼= Pi(AS), i = 1, · · · , n.
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Proof: Let AS = (Q, q0, E =
n
∪
i=1

Ei, δ), Pi(AS) = (Qi, q
i
0, Ei, δi), P

′
i (AS) =

(Q′i, q
′
0,i, Ei, δ

′
i), i = 1, · · · , n,

n

||
i=1

Pi(AS) = (Z, z0, E, δ||),
n

||
i=1

P ′i (AS) = (Z ′, z′0, E, δ
′
||).

Then, the proof of Lemma 3.7 is presented as follows.

Sufficiency: The existence of deterministic automata P ′i (AS) such that P ′i (AS) ∼=

Pi(AS), i = 1, · · · , n implies that δ′i, i = 1, · · · , n are functions, and conse-

quently from the definition of parallel composition (Definition 1.9), δ′|| is a function;

hence,
n

||
i=1

P ′i (AS) is deterministic. Moreover, from Lemma 2.6, P ′i (AS) ∼= Pi(AS),

i = 1, · · · , n lead to
n

||
i=1

P ′i (AS) ∼=
n

||
i=1

Pi(AS), meaning that there exists a determinis-

tic automaton A′S :=
n

||
i=1

P ′i (AS) such that A′S
∼=

n

||
i=1

Pi(AS).

Necessity: The necessity is proven by contraposition, namely, by showing that

if there does not exist deterministic automata P ′i (AS) such that P ′i (AS) ∼= Pi(AS), for

i = 1, 2, · · · , or n, then there does not exist a deterministic automaton A′S such that

A′S
∼=

n

||
i=1

Pi(AS).

Without loss of generality, assume that there does not exist a deterministic au-

tomaton P ′1(AS) such that P ′1(AS) ∼= P1(AS). This means that ∃q, q1, q2 ∈ Q, e ∈ E1,

t1, t2 ∈ (E2\E1)∗, t ∈ E∗, δ(q, t1e) = q1, δ(q, t2e) = q2, δ(q1, t)!, but @t′ ∈ E∗, δ(q2, t
′)!,

such that p1(t) = p1(t′), that particularly leads to δ(q1, t)!∧¬δ(q2, t
′)!. From δ(q1, t)!∧

¬δ(q2, t)!, the definition of natural projection, the definition of parallel composition

and Lemma 3.2 it follows that ([q1]1, ([q1]2, . . . , [q1]n)) ∈ δ||(([q]1, ([q]2, . . . , [q]n)), t1e),

([q2]1, ([q1]2, . . . , [q1]n)) ∈ δ||(([q]1, ([q]2, . . . , [q]n)), t1e), δ||(([q1]1, ([q1]2, . . . , [q1]n)), t)!,

whereas ¬δ||(([q2]1, ([q1]2, . . . , [q1]n)), t)! in
n

||
j=1

Pi(AS), implying that there does not

exist a deterministic automaton A′S such that A′S
∼=

n

||
j=1

Pi(AS), and the necessity is
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followed.

Now, Lemma 3.4 is proven as follows.

Sufficiency: DC4 implies that there exist deterministic automata P ′i (AS) such

that P ′i (AS) ∼= Pi(AS), i = 1, · · · , n. Then, from Lemmas 2.6 and 3.7, it follows,

respectively, that
n

||
i=1

P ′i (AS) ∼=
n

||
i=1

Pi(AS), and that there exists a deterministic au-

tomaton A′S :=
n

||
i=1

P ′i (AS) such that A′S
∼=

n

||
i=1

Pi(AS) that due to Lemma 2.7, it

results in R−1
1 = R2.

Necessity: Let AS be deterministic, AS ≺
n

||
i=1

Pi(AS) with the simulation relation

R1 and
n

||
i=1

Pi(AS) ≺ AS with the simulation relation R2, and assume by contradiction

that R−1
1 = R2, but DC4 is not satisfied. The violation of DC4 implies that for

∃i ∈ {1, · · · , n}, there does not exists a deterministic automaton P ′i (AS) such that

P ′i (AS) ∼= Pi(AS). Therefore, due to Lemma 3.7, there does not exist a deterministic

automaton A′S such that A′S
∼=

n

||
i=1

Pi(AS); hence, according to Lemma 2.7, it leads to

R−1
1 6= R2 which is a contradiction.

3.6.5 Proof for Lemma 3.5

Denoting p := ∀Ei ∈ {E1, . . . , En}, {e1, e2} 6⊂ Ei, q := [δ(q, e1)! ∧ δ(q, e2)!], and

r := [δ(q, e1e2)! ∧ δ(q, e2e1)!], the equivalence of two statements for DC1 is followed

from (p∧ q)⇒ r ≡ q ⇒ (¬p∨ r) (since (p∧ q)⇒ r ≡ ¬(p∧ q)∨ r ≡ (¬p∨¬q)∨ r ≡

¬q ∨ (¬p ∨ r) ≡ q ⇒ (¬p ∨ r)).

For DC2, the expression δ(q, e1e2s)!⇔ δ(q, e2e1s)! is equivalent to [δ(q, e1e2s)! ∨

δ(q, e2e1s)!] ⇒ [δ(q, e1e2s)! ∧ δ(q, e2e1s)!], since for any expressions A and B, A ⇔
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B ≡ (A ∨B) ⇒ (A ∧B) (since A ⇔ B ≡ (A⇒ B) ∧ (A⇐ B) ≡ (¬A ∨B) ∧

(¬B ∨ A) ≡ [(¬A ∨B) ∧ ¬B] ∨ [(¬A ∨B) ∧ A] ≡ [(¬A ∧ ¬B) ∨ (B ∧ ¬B)] ∨

[(¬A ∧ A) ∨ (B ∧ A)] ≡ [(¬A ∧ ¬B) ∨ ⊥] ∨ [⊥ ∨ (B ∧ A)] ≡ [¬ (A ∨B)] ∨ [B ∧ A] ≡

(A ∨B) ⇒ (A ∧B)). This leads DC2 to ∀e1, e2 ∈ E, ∀Ei ∈ {E1, ..., En},

{e1, e2} 6⊂ Ei, q ∈ Q, s ∈ E∗: {[δ(q, e1e2s)!∨δ(q, e2e1s)!]⇒ [δ(q, e1e2s)!∧δ(q, e2e1s)!]}.

Now, taking p := ∀Ei ∈ {E1, . . . , En}, {e1, e2} 6⊂ Ei, q := [δ(q, e1e2s)! ∨ δ(q, e2e1s)!],

and r := [δ(q, e1e2s)! ∧ δ(q, e2e1s)!], the equivalence of two statements for DC2 is

followed similarly from (p ∧ q)⇒ r ≡ q ⇒ (¬p ∨ r).

3.6.6 Proof for Proposition 3.1

If ∃Ek ∈ {E1, ..., En}, Ek = E then ∀e1, e2 ∈ E: {e1, e2} ⊆ Ek, and the consequent

parts of DC1 and DC2 become true in Corollary 3.2.

3.6.7 Proof for Proposition 3.2

Let
{

Σ1, ...,ΣK
}

be a partition of E such that E =
K⋃
k=1

Σk, Σi ∩ Σj = ∅, ∀i, j ∈

{1, ..., K} , i 6= j, Σk =
nk⋃
l=1

Ek
l , Ek

l ∈ {E1, ..., En}. Then, Proposition 3.2 is proven by

the combination of following two lemmas.

Lemma 3.8 If AS ∼=
n

||
i=1

Pi(AS), then ∀k ∈ {1, ..., K} : PΣk(AS) ∼=
nk

||
l=1

PEk
l
(AS).

Proof: Due to the associativity and commutativity of parallel composition,

AS ∼=
n

||
i=1

Pi(AS) leads to AS ∼=
n

||
l=1

Pl(AS) ∼=
K

||
k=1

(
nk

||
l=1

PEk
l
(AS)

)
. Consequently,

∀k ∈ {1, ..., K} : PΣk(AS) ∼= PΣk

(
K

||
k=1

(
nk

||
l=1

PEk
l
(AS)

))
∼=

nk

||
l=1

PEk
l
(AS), where, the

first bisimilary comes from the definitions of natural projection and bisimulation, and
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the second bisimilarity is deduced from the fact that because of the partitioning of

E by {Σ1, ...,ΣK}, each Ek
l , l ∈ {1, ..., nk} appears in only Σk, and all transitions in

nr

||
l=1

PEr
l
(AS), r 6= k, are replaced by empty transitions, in PΣk

(
K

||
k=1

(
nk

||
l=1

PEk
l
(AS)

))
,

and according to the definition of parallel composition, none of the transitions in

nk

||
l=1

PEk
l
(AS) are disabled by any transition in

nr

||
l=1

PEr
l
(AS), r 6= k.

Lemma 3.9 If ∀k ∈ {1, ..., K} : PΣk(AS) ∼=
nk

||
l=1

PEk
l
(AS), and DC1 and DC2 hold

true for AS with respect to {E1, · · · , En}, then AS ∼=
n

||
i=1

Pi(AS).

Proof: Firstly, according to the defined partitioning of E, ∀Ei ∈

{E1, · · · , En}, ∃Σk ∈ {Σ1, · · · ,ΣK}, Ei ∈ Σk. Therefore, the expression [∃Ei ∈

{E1, · · · , En}, {e1, e2} ⊆ Ei] in the consequent of DC1 and DC2 in Corollary 3.2,

leads to the expression [∃Σk ∈ {Σ1, · · · ,ΣK}, Ei ∈ Σk, Ei ∈ {Ek
1 , · · · , Ek

nk
},

{e1, e2} ⊆ Ei ∈ Σk]. Consequently, DC1 and DC2 for AS with respect to

{E1, · · · , En} lead to DC1 and DC2 for AS with respect to {Σ1, · · · ,ΣK}.

Moreover, Σi ∩ Σj = ∅, ∀i, j ∈ {1, ..., K} , i 6= j guarantees DC3 for AS with

respect to {Σ1, · · · ,ΣK}.

Furthermore, according to Theorem 3.2, ∀k ∈ {1, ..., K} : PΣk(AS) ∼=
nk

||
l=1

PEk
l
(AS)

implies DC4 for PΣk(AS) with respect to {Ek
l }

nk
l=1, leading to the existence of de-

terministic automata P ′
Ek

l
(AS) such that P ′

Ek
l
(AS) ∼= PEk

l
(AS), ∀k ∈ {1, · · · , K}, l ∈

{1, · · · , nk}, that due to Lemmas 3.7 and 2.6, there exists a deterministic automa-

ton P ′
Σk(AS) :=

nk

||
l=1

P ′
Ek

l
(AS) such that P ′

Σk(AS) ∼=
nk

||
l=1

PEk
l
(AS) ∼= PΣk(AS); therefore,

DC4 becomes true for AS with respect to {Σ1, · · · ,ΣK}.

104



Therefore, DC1-DC4 will be satisfied for AS with respect to {Σ1, · · · ,ΣK},

i.e., AS ∼=
K

||
k=1

PΣk(AS), that because of PΣk(AS) ∼=
nk

||
l=1

PEk
l
(AS), it results in

AS ∼=
n

||
i=1

Pi(AS).
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Chapter 4

Reliable Cooperative Tasking

4.1 Introduction

Once a multi-agent system is designed, its safety becomes a crucial property across

the agents in order to prevent the irrevocable consequences for the system and users.

Failures on the other hand are usually unavoidable due to the large scale nature and

complex interactions among the distributed agents. It is therefore very important to

introduce some degree of redundancy into the design so as to achieve fault-tolerance

[124]. Towards this end, this chapter represents a continuation of the works in Chap-

ters 2 and 3, and deals with the robustness issues of the proposed top-down design

approach with respect to event failures in the multi-agent systems. The main concern

under failure is whether a previously decomposable task still can be achieved collec-

tively by the agents. Please note that no global information on failures is assumed,

and each agent is only aware of failures around itself and just trying to accomplish

its previously assigned subtask (assuming that the global task is decomposable before

failures, and subtasks are obtained, accordingly). An interesting question is whether

these agents can achieve the original global task in spite of event failures. If not, we

would like to ask under what conditions the global task could be robustly accom-

plished. This is actually the fault-tolerance issue of the top-down design, and the
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results provide designers hints on which events are fragile with respect to failures,

and whether redundancies are needed for sharing of some events. It is desired to

share as few number of events as possible through the communication links to reduce

the bandwidth, and consequently, the cost of the design. The main objective of this

chapter is to identify conditions on failed events under which a decomposable global

task can still be achieved successfully between cooperative agents.

This work differs from diagnosability and isolation problems [125] whose interest

is on the detection and identification of the type of faults. In this work the faults

are known and the question is the tolerance of systems against the faults. It also

differs from reliable supervisory control [126, 127] that seeks the minimal number of

supervisors required for the correct functionality of the supervised systems. Another

different problem is robust supervisory control [128] that considers the plant as a set

of possible plants and designs supervisor applicable for the whole range of the plants.

This work is related to the fault-tolerant supervisory control that has been widely

studied in the context of discrete event systems. For examples, [129] proposed switch-

ing to another supervisor after fault detection. In another work, [130], the author

proposed to re-synthesize the supervisor upon the fault occurrence. A framework for

fault-tolerant supervisory control has been proposed in [131] and further explored in

[132] by enforcing given specifications for non-faulty and faulty parts of the plant to

ensure that the plant recovers from any fault within a bounded delay, such that the

recovered plant is equivalent to the non-faulty plant. In [133] a fault was modeled as

an uncontrollable event, that its occurrence causes a faulty behavior. They provided
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a necessary and sufficient condition for the existence of supervisor under failures,

based on controllability, observability and relative-closure, together with the notions

of state-stability [134,135], and language-stability [136,137]. In [138], a fault recovery

result has been proposed by introducing normal, transient and recovery modes, such

that the language of the closed loop systems is equal to a given language of the normal

mode. Most of these works however address the language specifications and deal with

decentralized supervisory control with distributed supervisor and monolithic plant.

In this chapter, continuing the works in Chapters 2 and 3, it is firstly observed

that a necessary condition for preserving the decomposability is that the failed events

can only be shared events and could be those that are only received from the other

agents or sent to others, redundantly. In other words, a necessary condition for failed

events is that they are not produced by the sensors/actuators of the corresponding

agents, and that the failed events are not sent to other agents, unless there exist

some alternative agents to relay them. We call these events as passive events in the

agent (see Definition 4.1). Passive events indeed refer to the shared events through

redundant communication links. Based on this notation, it seems that the failure of

passive events have no effect on decomposability, as they do not fail in the sender

agents and the receiver is just no longer informed about those events. However, it

will be shown that although the passivity of failed events is a necessary condition for

preserving the decomposability, some additional conditions are required for the task

automaton to remain decomposable. The intuitive reason is that when a shared event

fails, the corresponding agent can no longer use its information as a part of decision

making on the order or switch between transitions. Moreover, the failure should
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satisfy some criteria to ensure that after the failures, the parallel composition of local

automata neither generates a new string that is not allowed in the global automaton,

nor prevents a string that is allowed in the global task automaton. In particular, while

the passivity of failed events is a necessary condition to preserve the decomposability,

it is shown that for a deterministic task automaton that experiences failures on passive

events, the task automaton remains decomposable if and only if any required decisions

on the order/switch between any pair of events can be accomplished by at least one

of the agents after failure; no illegal string is allowed and no legal string is prevented

by the composition of local task automata, after the failure. It is furthermore shown

that under the passivity of failed events together with the proposed conditions, a

previously decomposable and satisfied task automaton can be still achieved by the

team of agents.

The rest of the chapter is organized as follows. Sections 4.2 presents the main

result on decomposability under event failures and introduces the necessary and suffi-

cient conditions under which a decomposable task automaton remains decomposable

in spite of event failures, followed by illustrative examples for each condition. Next,

it is shown in Sections 4.3 that under the passivity and the proposed conditions, if

a previously decomposable task automaton has been achieved globally by local con-

trollers, it will remain satisfied, in spite of event failures. As a special case, Section

4.4 provides more insight on global decision making on the selections and orders of

transitions, in a two-agent case. Finally, the chapter concludes with remarks and

discussions in Section 4.5. The proofs of lemmas are given in the Appendix.
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4.2 Task Decomposability Under Event Failures

After identifying the conditions for task automaton decomposability and cooperative

tasking, a natural follow-up question is that if after such decomposition, some of

the events fail in some agents, then whether a previously decomposable and satisfied

global task automaton can be still remain collectively satisfied after the event failures.

And, if not, what are the conditions for preserving the cooperative tasking. In order

to address this problem, we first need to investigate the failure on events. In general,

an event e can be either private (|loc(e)| = 1) or shared (|loc(e)| > 1). Failure of

a private event fails the decomposability as it causes the failure in the whole team

of agents. Failure on a shared event, on the other hand, may or may not lead to a

global failure, depending on whether the failed event is redundant or not. When an

event is a sensor reading; or actuator command, or it is sent to other agents with no

other alternative links, then the failure on this event stops its global evolutions. In

the following, we will introduce a class of failures that are investigated in this work,

followed by the class of passive failures.

Definition 4.1 (Event Failure) Consider an automaton A = (Q, q0, E, δ). An

event e ∈ E is said to be failed in A (or E), if F (A) = PΣ(A) = PE\e(A) =

(Q, q0,Σ = E\e, δF ), where, Σ, δF and F (A) denote the post-failure event set, post-

failure transition relation and post-failure automaton, respectively. A set Ē ⊆ E

of events is then said to be failed in A, when for ∀e ∈ Ē, e is failed in A, i.e.,

F (A) = PΣ(Ai) = PE\Ē(A) = (Q, q0,Σ = E\Ē, δF ).

110



Consider a parallel distributed plant A :=
n

||
i=1

Ai = (Z, z0, E =
n
∪
i=1
Ei, δ||) with local

agents Ai = (Qi, q
i
0, Ei, δi), i = 1, . . . , n. The failure of e in Ei is said to be passive

in Ei (or Ai) with respect to
n

||
i=1

Ai, if E =
n
∪
i=1

Σi. An event whose failure in Ai is a

passive failure is called a passive event in Ai.

The notion of passivity, can be interpreted as communication redundancy as for

any local event set Ei, Σi excludes any passive failed event e from Ei, while the

effect of this failure on Pi(AS) is defined as the projection of AS into Ei\e (instead

of Ei), leading to PEi\e(AS). Moreover, the passivity of failed events is shown to be

a necessary condition for the evolution of global transitions after failures, based on

which the problems of decomposability and cooperative tasking under event failures

are defined as follows.

Problem 4.1 (Decomposability under Event Failures) Let a deterministic task au-

tomaton AS = (Q, q0, E =
n
∪
i=1

Ei, δ) is decomposable with respect to parallel composi-

tion and natural projections Pi, i = 1, . . . , n. Then, does the global task automaton

AS remain decomposable in spite of the failure of events {ai,r}, r ∈ {1, ..., ni} in local

event sets Ei, i ∈ {1, . . . , n}? i.e., if AS ∼=
n

‖
i=1

Pi(AS), then does AS ∼=
n

‖
i=1

F (Pi(AS))

always hold true? and if not, what are the conditions for such decomposability?

Example 4.1 Consider the task automaton in Example 1.4 with E = E1 ∪ E2 and

local event sets E1 = {a, b, e1}, E2 = {a, b, e2, e4} and assume that the agent with

E2 sends two events {a, b} to the agent with E1. In this case, AS is decomposable,

since it bisimulates the parallel composition of P1(AS): • •̌
a
77

boo •e1oo and P2(AS):
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// • e2 //
a

55• e4 // • b // • . Now, suppose that b fails to be sent to E1, i.e., new E1 becomes

Σ1 = {a, e1}. In this case, the automaton AS will no longer remain decomposable as

the parallel composition of F (P1(AS)): •̌
a
77 •

e1oo and F (P2(AS)) ∼= P2(AS), becomes

F (P1(AS))||F (P2(AS)): // • a //

e2

��

• b //

e1

��

•
e1

��
• e4 // • b // •

that is not bisimilar to AS. If AS was AS:

// • a //

e2

��

• b //

e1

��

•
e1

��
• e4 // • b // •

, then the failure of b in E1 had no effect on the decomposability of

AS, i.e., AS ∼= F (P1(AS))||F (P2(AS)).

The next interesting question is the cooperative tasking under event failure, de-

fined as

Problem 4.2 (Cooperative Tasking under Event Failure) Consider a concurrent

plant AP :=
n

||
i=1

APi
and a decomposable deterministic task automaton AS =

(Q, q0, E =
n
∪
i=1

Ei, δ) ∼=
n

||
i=1

Pi(AS), and suppose that local controller automata ACi
,

i = 1, . . . , n exist such that each local closed loop system satisfies its corresponding

local task, i.e., ACi
||APi

∼= Pi(AS), i = 1, . . . , n. Assume furthermore that Ēi = {ai,r}

fail in Ei, r ∈ {1, ..., ni}. Then, does the team still can fulfill the global task, in spite

of failures, i.e.,
n

||
i=1

F (APi
||ACi

) ∼= AS? and if not, what are the conditions to preserve

the satisfaction of the global specification?

This and the following section respectively address the Problems 4.1 and 4.2 on

automaton decomposability and cooperative tasking under event failures, for the class

of passive failures. Firstly, according to the definition of passive events, the notion

of passivity can be seen as the redundancy of communication links as it is stated as
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follows.

Remark 4.1 To interpret the passivity more formally, let snde(i) and rcve(i) respec-

tively denote the set of labels that Ai sends e to those agents and the set of labels that

Ai receives e from their agents, defined as snde(i) = {j ∈ {1, ..., n}|Ai sends e to Aj}

and rcve(i) = {j ∈ {1, ..., n}|i ∈ snde(j)}. Then, an event e is passive in Ai if

rece(i) 6= ∅ (i.e., the i−th agent does not receive e from its own sensor/actuator read-

ings, but from another agent), and ∀k ∈ snde(i): ∃j ∈ {1, · · · , n}\{i, k}, k ∈ snde(j)

(i.e., if the i − th agent is a relay for the transmission of e, for any receiver agent,

there exist another agent to send e). In this set-up a passive failure excludes the failed

event e from the corresponding local event set Ei while it makes its respective tran-

sitions hidden in F (Ai). Therefore, from the definition of parallel composition, the

transitions on other agents can contribute to form the global transitions in
n

||
i=1

F (Ai),

since only in this way there will be no synchronization constraint on the rest of agents

in
n

||
i=1

F (Ai).

Moreover, the definition of passivity implies that the passivity of failed events is

a necessary condition for the evolution of the global transitions after failures, as it is

stated in the following lemma.

Lemma 4.1 (Global Transitions after Local Failures) Consider a parallel distributed

plant A :=
n

||
i=1

Ai = (Z, z0, E =
n
∪
i=1
Ei, δ||) with local agents Ai = (Qi, q

i
0, Ei, δi), i =

1, . . . , n. If no global transitions in
n

||
i=1

Ai are disabled in
n

||
i=1

F (Ai) (i.e., ∀z1, z2 ∈ Z,

∀e ∈ E, z2 ∈ δ||(z1, e), then z2 ∈ δF|| (z1, e)), then all event failures are passive, i.e.,

the passivity of local event failures is necessary for preserving the global transitions.
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Proof: See the proof in the Appendix.

In this set-up, the evolution of global transitions in
n

||
i=1

F (Pi (AS)) relies on the

passivity of failed events, as it is expected and stated in Lemma 4.1. The reason is

that due to the definition of parallel composition, the evolution of global transitions

requires the failures to be passive, since passive failed events are excluded from the

corresponding local event set and the local task automaton is projected to the rest

of events. For non-passive failed events, on the other hand, since they are not re-

ceived from other agents or they have no alternative agents for relaying the event;

therefore, they are not excluded from the local event set, but their transitions are

stopped. Consequently due to synchronization restriction in the definition of parallel

composition, the global transitions cannot evolve on non-passive failed events.

Consequently, as it is stated in Lemma 4.1, the passivity of failed events is a

necessary condition for the task automaton to remain decomposable after the failures.

Moreover, when all failed events are passive, due to the definition of passivity,

Problem 4.1 can be transformed into the standard decomposition problem (Prob-

lem 2.1) to find the conditions under which AS ∼=
n

||
i=1

PEi\Ēi
(AS). Accordingly, the

conditions on the global task automaton to preserve the decomposability under event

failures, are reduced into their respective decomposability conditions in Corollary 3.2,

as the following lemmas.

Lemma 4.2 Consider a deterministic task automaton AS = (Q, q0, E =
n
∪
i=1

Ei, δ).

Assume that AS is decomposable, i.e., AS ∼=
n

||
i=1

Pi(AS), and suppose that Ēi = {ai,r}

fail in Ei, r ∈ {1, ..., ni}, and Ēi are passive for i ∈ {1, . . . , n}. Then, following two
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expressions are equivalent:

1. • EF1: ∀e1, e2 ∈ E, q ∈ Q: [δ(q, e1)! ∧ δ(q, e2)!]

⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei\Ēi] ∨ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• EF2: ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗: [δ(q, e1e2s)! ∨ δ(q, e2e1s)!]

⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei\Ēi] ∨ [δ(q, e1e2s)! ∧ δ(q, e2e1s)!].

2. • DC1Σ: ∀e1, e2 ∈ E, q ∈ Q: [δ(q, e1)! ∧ δ(q, e2)!]

⇒ [∃Σi ∈ {Σ1, . . . ,Σn}, {e1, e2} ⊆ Σi] ∨ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2Σ: ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗: [δ(q, e1e2s)! ∨ δ(q, e2e1s)!]

⇒ [∃Σi ∈ {Σ1, . . . ,Σn}, {e1, e2} ⊆ Σi] ∨ [δ(q, e1e2s)! ∧ δ(q, e2e1s)!].

Proof: See the proof in the Appendix.

Lemma 4.2 gives the simplified versions of DC1 and DC2 after event failures,

with respect to refined local event sets. Adopting the same DC3 for the refined

local event sets, it remains to represent a simplified version of DC4 for the local task

automata, after event failures. This condition is stated in the following lemma.

Lemma 4.3 Consider a deterministic task automaton AS = (Q, q0, E =
n
∪
i=1

Ei, δ).

Assume that AS is decomposable, i.e., AS ∼=
n

||
i=1

Pi(AS), and suppose that Ēi = {ai,r}

fail in Ei, r ∈ {1, ..., ni}, and Ēi are passive for i ∈ {1, . . . , n}. Then, following two

expressions are equivalent:

• EF4: ∀i ∈ {1, . . . , n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei\Ēi, t1, t2 ∈ Ē∗i , x1 ∈

δi(x, t1e), x2 ∈ δi(x, t2e): δi(x1, t
′
1)! ⇔ δi(x2, t

′
2)!, for some t′1, t′2 such that

pEi\Ēi
(t′1) = pEi\Ēi

(t′2).
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• DC4Σ: ∀i ∈ {1, . . . , n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Σi, t ∈ Σ∗i , x1 ∈ δFi (x, e),

x2 ∈ δFi (x, e): δFi (x1, t)! ⇔ δFi (x2, t)!. Where, δFi is the transition relation in

F (Pi(AS)).

Proof: See the proof in the Appendix.

Remark 4.2 EF4 is the counterpart of DC4 after the event failures, that handle

newly possible nondeterminism in the local task automata. Any nondeterminism that

is propagated from the local task automata of before the failure, is treated by DC4

when AS is decomposable.

Now, combination of Corollary 3.2 and Lemmas 4.2 and 4.3 leads to the main

result on decomposability under event failures as the following theorem.

Theorem 4.1 (Task Decomposability under Event Failures) Consider a deterministic

task automaton AS = (Q, q0, E =
n
∪
i=1

Ei, δ). Assume that AS is decomposable, i.e.,

AS ∼=
n

||
i=1

Pi(AS), and furthermore, assume that Ēi = {ai,r} fail in Ei, r ∈ {1, ..., ni},

and Ēi are passive for i ∈ {1, . . . , n}. Then, AS remains decomposable, in spite of

event failures, i.e., AS ∼=
n

||
i=1

F (Pi (AS)) if and only if

• EF1: ∀e1, e2 ∈ E, q ∈ Q: [δ(q, e1)! ∧ δ(q, e2)!]

⇒ [∃Ei ∈ {E1, · · · , En}, {e1, e2} ⊆ Ei\Ēi] ∨ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• EF2: ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗: [δ(q, e1e2s)! ∨ δ(q, e2e1s)!]

⇒ [∃Ei ∈ {E1, · · · , En}, {e1, e2} ⊆ Ei\Ēi] ∨ [δ(q, e1e2s)! ∧ δ(q, e2e1s)!];

• EF3: δ(q0,
n

|
i=1

pi (si))!, ∀{s1, · · · , sn} ∈ L̂ (AS), ∃si, sj ∈ {s1, · · · , sn}, si 6=

sj, where L̂ (AS) ⊆ L (AS) is the largest subset of L (AS) such that ∀s ∈

116



L̂ (AS) ,∃s′ ∈ L̂ (AS), ∃Σi,Σj ∈ {Σ1, ...,Σn} , i 6= j, pΣi∩Σj
(s) and pΣi∩Σj

(s′)

start with the same event, and

• EF4: ∀i ∈ {1, . . . , n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei\Ēi, t1, t2 ∈ Ē∗i , x1 ∈

δi(x, t1e), x2 ∈ δi(x, t2e): δi(x1, t
′
1)! ⇔ δi(x2, t

′
2)!, for some t′1, t′2 such that

pEi\Ēi
(t′1) = pEi\Ēi

(t′2).

Proof: First, according to Lemma 4.1, the passivity of Ēi is a necessary condi-

tion for preserving the decomposability. Now, providing the decomposability of AS

and the passivity of all failed events, due to the definition of passivity, it leads to

n

||
i=1

F (Pi (AS)) ∼=
n

||
i=1

PΣi
(AS) =

n

||
i=1

PEi\Ēi
(AS) that based on Corollary 3.2 and Lem-

mas 4.2 and 4.3, it is bisimilar to AS if and only if EF1 - EF4 hold true for the

refined local event sets {Σ1, . . . ,Σn}.

Remark 4.3 EF1-EF4 are respectively the decomposability conditions DC1-DC4,

after event failures with respect to parallel composition and natural projections into

refined local event sets Σi = Ei\Ēi, i ∈ {1, . . . , n}, provided the passivity of Ēi,

i ∈ {1, . . . , n}. Condition EF1 means that, after failure of some passive events, for

any decision on selection between two transitions there should exist at least one agent

that is capable of the decision making, or the decision should not be important (both

permutations in any order be legal). EF2 says that, after failure of some passive

events, for any decision on the order of two successive events before any string, either

there should exist at least one agent capable of such decision making, or the deci-

sion should not be important, i.e., any order would be legal for the occurrence of that

string. The condition EF3 means that, after failure of some passive events, any inter-
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leaving of strings from local task automata that have the same first appearing shared

event, should not allow a string that is not allowed in the original task automaton.

In other words, EF3 is to ensure that, after failure of some passive events, an illegal

behavior (a string that does not appear in AS) is not allowed by the team (does

not appear in
n

||
i=1

F (Pi (AS))). The last condition, EF4, ensures the determinism of

bisimulation quotient of local task automaton, in order to guarantee the symmetry

between simulation relations from AS to
n

||
i=1

F (Pi(AS)) and vice versa. By providing

this symmetry property, EF4 guarantees that, after the failures, a legal behavior (a

string in AS) is not disabled by the team (appears in
n

||
i=1

F (Pi(AS)).

Following examples illustrate these conditions.

Example 4.2 This example illustrates the notion of passivity and shows a de-

composable automaton that stays decomposable, when an event is failed pas-

sively in one of the local agents and EF1-EF4 are satisfied. Consider the au-

tomaton AS: // •
e2 ))RRRRRR
e1 // • e2 // • a // •
• e1 //

a ))RRRRRR • a // •
• e1 // •

with local event sets E1 = {e1, a} and

E2 = {e2, a}, E3 = {a} and communication pattern as {1, 2} ∈ snda(3), and

no other communication links. This automaton is decomposable, as the parallel

composition of P1(AS) ∼= // • e1 //
a ))RRRRRR • a // •
• e1 // •

, P2(AS) ∼= // • e2 // • a // •

and P3(AS) ∼= // • a // • is
3

||
i=1

Pi(AS): // • e2 //

e1 ��

• a //

e1 ��

• e1 // •

• e2 // • a // •

which is

bisimilar to AS. Now, assume that a fails in E1. Then EF1-EF4 are satis-

fied (as δ(q0, e2e1a)! ∧ δ(q0, e2ae1)!; hence, EF1 and EF2 hold true after the fail-

ure, the interleavings on shared event a impose no illegal strings, and therefore,
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EF3 is satisfied, and finally EF4 is fulfilled since F (P1(AS)) ∼= // • e1 // • ,

F (P2(AS)) ∼= // • e2 // • a // • and F (P3(AS)) ∼= // • a // • are all de-

terministic); therefore, the parallel composition of F (P1(AS)) with Σ1 = {e1},

F (P2(AS)) with Σ2 = {e2, a}, and F (P3(AS)) with Σ3 = {a}, is
3

||
i=1

F (Pi(AS)):

// • e2 //

e1 ��

• a //

e1 ��

•
e1 ��

• e2 // • a // •

that is bisimilar to AS. However, if a was failed in E3, then

it evolved in none of the local task automata and
3

||
i=1

F (Pi(AS)) � AS, since E3

is the source for a. Similarly, the failure of private events e1 and e2 in E1 and

E2, respectively, disables the global transitions on these events. As another ex-

ample for non-passive failure, consider the communication pattern of 1 ∈ snda(3),

{2, 3} ⊆ snda(1), while a fails in E1, Then, the parallel composition of F (P1(AS)):

// • e1 // • with Σ1 = {e1, a}, F (P2(AS)) ∼= // • e2 // • with Σ2 = {e2}, and

F (P3(AS)) ∼= // • a // • with Σ3 = {a} was // •
e1 ))RRRRRR
e2 // • e1 // •
• e2

55llllll
which is not

bisimilar to AS. The reason is that in this case, in contrast to the fist case, a was not

excluded from Σ1, while a was stopped in F (P1(AS)). This, due to the synchroniza-

tion constraint in parallel composition, disabled the global transitions on a.

Example 4.3 (Revisiting Example 3.4 for reliable task decomposability) As an-

other example, consider the multi-robot cooperative scenario in Section 3.3 and

Examples 1.10 and 3.4, with E1 = {h1, R1toD1, R1onD1, FWD, D1opened,

R2in1, BWD, D1closed, r}, E2 = {h2, R2to2, R2in2, D1opened,R2to1, R2in1, r},

and E3 = {h3, R3to3, R3in3, R3toD1, R3onD1, FWD, D1opened, R2in1, BWD,

D1closed, R3to1, R3in1, r} with the communication protocol {1, 3} ∈ snd{R2in1}(2),

{1, 2} ∈ snd{r,D1closed}(3), {2, 3} ∈ snd{D1opened}(1), 1 ∈ snd{FWD,BWD}(3), 3 ∈
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snd{FWD,BWD}(1). With this communication pattern, D1opened, is passive in E2 and

E3, D1closed and r are passive in E1 and E2, and R2in1 is passive in E1 and E3. More-

over, D1opend and R2in1 are redundant in E3, while D1closed is redundant in E1.

The reason is that D1opended is passive in E3 and its exclusion respects EF1-EF4,

as E3 has no role in decision making on successive events {R2in2, D1opened} ⊆ E2,

{D1opened,R2to1} ⊆ E2 that can be handled by E2, and the decision on the or-

der of {FWD,D1opened} ⊆ E1 that can be accomplished by E1. Similarly, after

the exclusion of passive event R2in1 from E3, the order of {R2to1, R2in1} ⊆ E2, and

{R2in1, BWD} ⊆ E1 can be decided by E2 and E1, respectively. Identically, D1closed

is redundant in E1, as it is passive and after its exclusion, E3 can handle the order of

event pairs {BWD,D1closed} ⊆ E3 and {D1closed,R3to1} ⊆ E3. Therefore, EF2

remains satisfied. Moreover, since these events have no adjacent event; the shared

events appear in only one branch, and local automata remain deterministic, EF1,

EF3 and EF4 are also fulfilled. Consequently, the exclusion of D1opened and R2in1

from E3 and D1closed from E1 preserve the decomposability of AS with respect to the

new local event sets Σ1 = {h1, R1toD1, R1onD1, FWD,D1opened,R2in1, BWD, r},

Σ2 = {h2, R2to2, R2in2, D1opened,R2to1, R2in1, r} and Σ3 = {h3, R3to3, R3in3,

R3toD1, R3onD1, FWD, BWD, D1closed, R3to1, R3in1, r}, as the parallel com-

position of F (P1(AS)), F (P2(AS)) and F (P3(AS)) (shown in Figure 4.1) bisimulates

AS.

Example 4.4 This example shows a decomposable automaton that will no longer

stay decomposable after a passive event failure, since EF1 is not satisfied, although
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P1(AS): // • h1 // •
R1toD1

// •R1onD1// •
FWD
// •D1opened// •

R2in1
// •BWD// •BCD@A

r

OO

P2(AS): // • h2 // •
R2to2
// •R2in2// •

D1opened
// •R2to1// •

R2in1
// •BCD@A

r

OO

P3(AS): // • h3 // •
R3to3
// •R3in3// •

R3toD1

// •R3onD1// •
FWD
// •BWD// •

D1closed
// •R3to1// •

R3in1
// •BCD@A

r

OO

Figure 4.1: F (P1(AS)) for R1; F (P2(AS)) for R2 and F (P3(AS)) for R3, after exclusion

of D1closed from E1 and {D1opened,R2in1} from E3.

other three conditions, EF2, EF3 and EF4, are fulfilled. Consider the automaton

AS: // • a //

b ))RRRRRR •
•

with local event sets E1 = {a}, E2 = {b}, and E3 = {a, b}

with 3 ∈ snda(1) and 3 ∈ sndb(2), and no other sending and receiving links. This

automaton is decomposable, as the parallel composition of P1(AS): // • a // • ,

P2(AS): // • b // • and P3(AS) ∼= AS bisimulates AS. Now, suppose that a is

failed in E3. Then, the parallel composition of F (P1(AS)): // • a // • with Σ1 =

{a}, F (P2(AS)): // • b // • with Σ2 = {b}, and F (P3(AS)): // • b // • with

Σ3 = {b}, is
3

||
i=1

F (Pi(AS)): // •
a ))RRRRRR
b // • a // •
• b

55llllll
which is not bisimilar to AS. The

reason is the violation of EF1, as after the failure of a in E3, neither there exists an

agent that knows both events a and b to decide on the selection between them, nor

both permutations are legal in AS. If AS was AS: // •
b ))RRRRRR
a // • b // •
• a // •

, then, the

failure of a in E3 had no effect on the decomposability of AS.

Example 4.5 This example shows a decomposable automaton that will no longer

stay decomposable after a passive failure, as EF2 is not satisfied, although other

three conditions, EF1, EF3 and EF4 are fulfilled. Consider the automaton AS:

// • a // • b // • with local event sets E1 = {a}, E2 = {b} and E3 = {a, b},
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with 3 ∈ snda(1) and 3 ∈ sndb(2) with no other sending and receiving links. This

automaton is decomposable, as the parallel composition of P1(AS): // • a // • ,

P2(AS): // • b // • and P3(AS) ∼= AS bisimulates AS. Now, suppose that a is

failed in E3. Then, the parallel composition of F (P1(AS)): // • a // • with Σ1 =

{a}, F (P2(AS)): // • b // • with Σ2 = {b}, and F (P3(AS)): // • b // • with

Σ3 = {b}, is
3

||
i=1

F (Pi(AS)): // •
a ))RRRRRR
b // • a // •
• b

55llllll
which is not bisimilar to AS. The

reason is the violation of EF2, as after the failure of a in E3, neither there exists an

agent that knows both events a and b to decide on the order of them, nor both orders

are legal in AS.

Example 4.6 This example illustrates a decomposable automaton that satisfies

EF1, EF2 and EF4, but it will not remain decomposable after a passive event

failure, due to the violation of EF3. Consider the automaton AS:

// •
c ))RRRRRR
a // • b // • c // •
• b // •

with local event sets E1 = {a, b, c}, E2 = {b, c}

and E3 = {a, b} and communication pattern 1 ∈ snd{b,c}(2), 1 ∈ snda(3),

3 ∈ sndb(2), with no other communication links. AS is decomposable, as

the parallel composition of P1(AS) ∼= AS, P2(AS): // •
c ))RRRRRR
b // • c // •
• b // •

, and

P3(AS): // •
b ))RRRRRR
a // • b // •
•

is bisimilar to AS. Now, assume that b fails in

E1. Then, the parallel composition of F (P1(AS)): // •
c ))RRRRRR
a // • c // •
•

with

Σ1 = {a, c}, F (P2(AS)): // •
c ))RRRRRR
b // • c // •
• b // •

with Σ2 = {b, c} and F (P3(AS)):
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// •
b ))RRRRRR
a // • b // •
•

with Σ3 = {a, b} is
3

||
i=1

F (Pi(AS)): • •boo • b // •

// •
c

CC������

b

��7777777
a // •

c

CC������

b

��7777777

• •coo • c // •

that is

no longer bisimilar to AS due to the violation of EF3 as it contains strings acb and

bc that do not appear in AS.

Example 4.7 This example shows a decomposable automaton that does not re-

main decomposable against a passive event failure, when it does not satisfy

EF4, although it fulfils EF1, EF2 and EF3. Consider the automaton AS:

// •
c ))RRRRRR
b // • c // •
• a // •

with local event sets E1 = {a, b, c}, E2 = {a, b} and E3 = {b, c},

with communication structure 1 ∈ snd{a,b}(2), 1 ∈ sndc(3), 3 ∈ sndb(2), with no

other communication links. This automaton is decomposable, as the parallel compo-

sition of P1(AS) ∼= AS, P2(AS): // •
a ))RRRRRR
b // •
•

and P3(AS): // •
c ))RRRRRR
b // • c // •
•

is

bisimilar to AS. Now, assume that b fails in E1, then the parallel composition of

F (P1(AS)): // • c //
c ))RRRRRR •
• a // •

with Σ1 = {a, c}, F (P2(AS)) ∼= // •
a ))RRRRRR
b // •
•

with Σ2 = {a, b} and F (P3(AS)) ∼= // •
c ))RRRRRR
b // • c // •
•

with Σ3 = {b, c} is

3

||
i=1

F (Pi(AS)): // •
cuullllll

c ))RRRRRR
b // • c // •

• • a // •
that is no longer bisimilar to AS due to the

violation of EF4, as there does not exist a deterministic automaton P ′1(AS) such that

P ′1(AS) ∼= F (P1(AS)).

Remark 4.4 The complexity and checkability of EF1-EF4 are similar to the com-

plexity and decidability of DC1-DC4, as they were discussed in Remarks 3.4 and

3.6.

123



4.3 Cooperative Tasking Under Event Failure

So far, we have presented the necessary and sufficient conditions for a decomposable

task automaton to remain decomposable in spite of passive failures. Now, assume

that the global task automaton is decomposable and local controllers exist such that

local specifications are satisfied, and consequestly due to Theorem 3.3, the global

specification is satisfied, by the team. Furthermore, assume that event failures occur

on some shared events, but due to the passivity of failed events and EF1-EF4, the

global task automaton remains decomposable. Then, the next question is Problem

4.2 to understand whether, the team is still able to achieve the global specification.

Following result answers this question.

Theorem 4.2 (Cooperative Tasking under Event Failures) Consider a concurrent

plant AP :=
n

||
i=1

APi
and a deterministic task automaton AS = (Q, q0, E =

n
∪
i=1

Ei, δ)

as the global specification. Assume that AS is decomposable, i.e., AS ∼=
n

||
i=1

Pi(AS),

and suppose that the local controller automata ACi
, i = 1, . . . , n, exist such that each

local closed loop system satisfies its corresponding local task, i.e., ACi
||APi

∼= Pi(AS),

i = 1, . . . , n. Assume furthermore that Ēi = {ai,r} fail in Ei, r ∈ {1, ..., ni}, Ēi

are passive for i ∈ {1, . . . , n}, and AS satisfies EF1-EF4. Then, the team can still

achieve its global specification, i.e.,
n

||
i=1

F (APi
||ACi

) ∼= AS.

Proof: Firstly, the decomposability of AS and ACi
||APi

∼= Pi(AS), i = 1, . . . , n,

due to Theorem 3.3, implies that
n

||
i=1

(APi
||ACi

) ∼= AS, i.e., the global specification is

satisfied by the team. Moreover, the global specification remains satisfied, in spite

of event failures, if Ēi are passive for i ∈ {1, . . . , n}, and AS satisfies EF1-EF4,
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since
n

||
i=1

F (APi
||ACi

) ∼=
n

||
i=1

PEi\Ēi
(APi
||ACi

) ∼=
n

||
i=1

PEi\Ēi
(Pi(AS)) ∼=

n

||
i=1

F (Pi(AS)) ∼=
n

||
i=1

Pi(AS) ∼= AS. In this expression, the first and the third bisimilarities come from the

passivity of Ēi, i ∈ {1, . . . , n}, and the second bisimilarity is followed from ACi
||APi

∼=

Pi(AS), i = 1, . . . , n, the definition of natural projection and Lemma 2.6. The fourth

equivalence is implied from the passivity of Ēi, i = 1, . . . , n and EF1-EF4, and

finally, the last bisimilarity is due to the decomposability assumption of AS.

Remark 4.5 The significance of Theorem 4.2 is that under the passivity condition

and EF1-EF4, although the local task automata may change after the failure (i.e.,

F (Pi(AS)) � Pi(AS)), the team of agents can satisfy the global specification, as

n

||
i=1

F (APi
||ACi

) ∼=
n

||
i=1

F (Pi(AS)) ∼=
n

||
i=1

Pi(AS) ∼= AS.

Example 4.8 This example illustrates a specification for a team of three agents

that is globally satisfied and remains satisfied in spite of passive event fail-

ures, provided the conditions EF1-EF4. Consider a parallel distributed

plant AP :=
3

||
i=1

APi
with local plants AP1 : // • e1 //

a ))RRRRRR • a // •
• e1 // •

with E1 =

{a, e1}, AP2 : • •aoo •boo
��

• e2 // • a // •
•

b 55llllll
e2iiRRRRRR

a ))RRRRRRb
uullllll

• •e2oo •aoo • e2 // • b // •

with E2 = {a, b, e2}, AP3 :

// • e3 //

b ))RRRRRR • b // •
• e3 // •

with E3 = {b, e3}, having communication pattern 1 ∈ senda(2),

3 ∈ sendb(2), and no more communication links. Assume that the global specifica-

tion is given as AS: // •
a ))RRRRRR
e1 // • a // • e2 // • b // • e3 // •
•

e2 ))RRRRRR
e1 // • e2 // • b // • e3 // •
•

b ))RRRRRR
e1 // • b // • e3 // •
•

e3 ))RRRRRR
e1 // • e3 // •
• e1 // •

. AS is decompos-

able, since the parallel composition of P1(AS) ∼= // • e1 //
a ))RRRRRR • a // •
• e1 // •

, P2(AS) ∼=
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// • a // • e2 // • b // • and P3(AS) ∼= // • b // • e3 // • is bisimilar to

AS. Now, taking the local controllers as ACi
:= Pi(AS), i = 1, 2, 3 results in

APi
||ACi

∼= Pi(AS), i = 1, 2, 3 and
3

||
i=1

(APi
||ACi

) ∼= • a // • e2 // • b // • e3 // •

•
e1
OO

a // •
e1��

e2 // •
e1��

b // •
e1��

e3 // •
e1��

OO

• e2 // • b // • e3 // •
that is bisimilar to AS, i.e., global specification is satisfied by designing local con-

trollers ACi
to satisfy local satisfactions Pi(AS).

Now, suppose that a fails in E1. Since a is passive in E1 and AS satisfies EF1-

EF4 (since δ(q0, e1ae2be3)! ∧ δ(q0, ae1e2be3)! in AS, and hence EF1 and EF2 are

satisfied; Σ1 = {e1}, Σ2 = {a, b, e2}, Σ3 = {b, e3} with the only shared events

b ∈ Σ2 ∩ Σ3, and the corresponding interleaving between F (P2(AS)) ∼= P2(AS) and

F (P3(AS)) ∼= P3(AS) is ae2be3 that appears in AS, with all permutations with e1 from

F (P1(AS)); hence, EF3 is satisfied, and finally, EF4 is fulfilled since F (P1(AS)),

F (P2(AS)) and F (P3(AS)) are respectively bisimilar to automata // • e1 // • ,

// • a // • e2 // • b // • and // • b // • e3 // • that all are deterministic.

Therefore, according to Theorem 4.1,
3

||
i=1

F (Pi(AS)) ∼= AS.

Moreover, since the failed event a is passive in E1 and AS satisfies EF1-

EF4, as Theorem 4.2, the global specification remains satisfied after failure, as

3

||
i=1

F (APi
||ACi

) ∼=
3

||
i=1

F (Pi(AS)) ∼= // •
e1��

a // •
e1��

e2 // •
e1��

b // •
e1��

e3 // •
e1��

• a // • e2 // • b // • e3 // •

that is

bisimilar to AS.
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4.4 Special Case: More Insight Into 2-Agent Case

This part provides a closer look into the two-agent case and illustrates the notion of

global decision making after the event failures.

First, following lemma presents some properties on a 2-agent system that expe-

riences passive failures. The properties will be then used to provide a deeper insight

on the global decision making of the team on successive and adjacent transitions, in

spite of passive failures.

Lemma 4.4 Consider a deterministic task automaton AS = (Q, q0, E = E1 ∪ E2, δ)

and assume that AS is decomposable with respect to parallel composition and natural

projections Pi, i = 1, 2, and furthermore assume that Ēi = {ai,r}, r ∈ {1, ..., ni} fail

in Ei, i ∈ {1, 2}. If Ēi, i ∈ {1, 2} are passive, then

1. Ē1 ∩ Ē2 = ∅;

2. Ē1, Ē2 ⊆ E1 ∩ E2;

3. Σ1\Σ2 = (E1\E2) ∪ Ē2 and Σ2\Σ1 = (E2\E1) ∪ Ē1.

Proof: See the proof in the Appendix.

Now, following lemma represents the conditions for maintaining the capability

of a team of two cooperative agents for global decision making on the orders and

selections of transitions in the global task automaton, after passive event failures.

Lemma 4.5 Consider a deterministic task automaton AS = (Q, q0, E = E1 ∪E2, δ).

Assume that AS is decomposable, i.e., AS ∼= P1(AS)||P2(AS), and furthermore, as-

sume that Ēi = {ai,r} fail in Ei, r ∈ {1, ..., ni}, and Ēi are passive for i ∈ {1, 2}.
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Then, the following two expressions are equivalent:

• (EF1 and EF2): ∀(e1, e2) ∈ {(E1\E2, Ē1), (E2\E1, Ē2), (Ē1, Ē2)}, q ∈ Q, s ∈

E∗:

[δ(q, e1)! ∧ δ(q, e2)!]⇒ [δ(q, e1e2)! ∧ δ(q, e2e1)!] (4.1)

δ(q, e1e2s)!⇔ δ(q, e2e1s)! (4.2)

• (DC1Σ and DC2Σ): ∀e1 ∈ Σ1\Σ2, e2 ∈ Σ2\Σ1, q ∈ Q, s ∈ E∗:

[δ(q, e1)! ∧ δ(q, e2)!]⇒ [δ(q, e1e2)! ∧ δ(q, e2e1)!]

δ(q, e1e2s)!⇔ δ(q, e2e1s)!.

Proof: See the proof in the Appendix.

Remark 4.6 EF1 and EF2 represent the decomposability conditionsDC1 andDC2

after failure, i.e., for the refined local event sets Σ1 and Σ2. They say that after the

failure, any decision on the switch or the order between two events that cannot be

accomplished by at least one of the agents ( neither {e1, e2} ⊆ Σ1, nor {e1, e2} ⊆ Σ2),

then the decision should not be important (both orders should be legal). This is a

good insight on the validity of DC1 and DC2 after the failure of passive events as it

is stated in Lemma 4.5 and illustrated in Figure 4.2.

From Lemma 4.5, (Σ1\Σ2) × (Σ2\Σ1) is the union of four spaces: (E1\E2) ×

(E2\E1); (E1\E2)×(Ē1); (Ē2)×(E2\E1), and (Ē1)×(Ē2) (see Figure 4.2−(a)−(d)).

Note that due to Lemma 4.4, Ē1 ∩ Ē2 = ∅.

Now, according to Theorem 2.1, for any pair of events from (E1\E2) × (E2\E1)

(shown in Figure 4.2−(a)), (4.1) and (4.2) are true as AS is decomposable, before the
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failure. Moreover, (4.1) and (4.2) are also true for the pair of events from other three

spaces of (Σ1\Σ2)× (Σ2\Σ1), due to EF1 and EF2 as it is elaborated as follows.

• Figure 4.2 − (b) shows (E1\E2) × (Ē1): any pair of events from this space

contains in E1, before the failure, but, contains in neither of E1 and E2 after

the failure;

• Figure 4.2 − (c) depicts (Ē2) × (E2\E1): any pair of events from this space

contains in E2, before the failure, but, belongs to neither of E1 and E2 after

the failure;

• Figure 4.2 − (d) illustrates (Ē1) × (Ē2): any pair of events from this space

contains in both E1 and E2, before the failure, but, contains in none of them

after the failure.

Therefore, since after the failure, for any pair of events from these three spaces, no

agent can be responsible for decision making on switch/order between them (no local

event set contains both events), then such decisions should not be important as it

stated in EF1 and EF2.

Another implication of this result is that when the system is comprised of only

two agents and one of those agent is failed, while all of its events are passive, then

the task automaton remains decomposable as

Corollary 4.1 Consider a deterministic task automaton AS = (Q, q0, E = E1 ∪

E2, δ). Assume that AS is decomposable, i.e., AS ∼= P1(AS)||P2(AS). Assume fur-

thermore that E1 entirely fails, i.e., Ē1 = E1. Then, AS ∼=
2

||
i=1

F (Pi (AS)) if and only

if Ē1 is passive.
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Figure 4.2: Illustration of (Σ1\Σ2)× (Σ2\Σ1).

Proof: Sufficiency: Since Ē1 = E1, from the definition of passivity, Lemma 4.4 and

E = E1∪E2, it follows that E1 ⊆ E2 = E and E1\E2 = Ē2 = ∅; hence, EF1 and EF2

hold true, due to Lemma 4.5. Moreover, since Σ1 = E1\Ē1 = ∅, then Σ1\Σ2 = Σ1 = ∅,

that makes EF3 always true. Finally, by Lemma 4.1, F (P1(AS)) with Σ1 = ∅ merges

into its initial state, with no nondeterminism, and F (P2(AS)) with Σ2 = E is bisimilar

to AS which is deterministic, therefore, EF4 is satisfies, as well. This implies that

when Ē1 = E1, the passivity of Ē1 leads to AS ∼= F (P1(AS))||F (P2(AS)).

Necessity: The necessity is proven by contradiction. Suppose that Ē1 =

E1 and AS ∼= F (P1(AS))||F (P2(AS)), but ∃e ∈ Ē1, e is not passive in E1.

Then, from Lemma 4.1, it is follows that transitions on e cannot evolve in

F (P1(AS))||F (P2(AS)), due to synchronization constraint in parallel composition;

hence, AS � F (P1(AS))||F (P2(AS)) which is a contradiction.
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4.5 Conclusion

This chapter proposed a method to investigate whether a decentralized bisimilarity

control design remains valid, under the failure of some events in multi-agent systems.

This work is a continuation of Chapters 2 and 3, in which necessary and sufficient

conditions were given for task automaton decomposability; and the satisfaction of

global specification was guaranteed upon the satisfaction of local specifications. This

work defines a new notion of called passivity under which it is possible to transform

the decentralized cooperative control problem under event failures into the standard

decomposability problem in Chapters 2 and 3, and then identifies conditions to guar-

antee the supervised concurrent plant to still satisfy the global specification, in spite

of event failures. The passivity of the failed events is turned to be a necessary con-

dition for the task automaton to remain decomposable, and it is found to reflect the

failure of redundant communication links. It is then proven that a decomposable task

automaton remains decomposable, and hence satisfied, after some passive failures if

and only if after the failures, the team of agents maintains the capability on collective

decision making on the orders and selections of transitions and preserves the collec-

tive perceiving of the task such that the parallel composition of local task automata

neither allows an illegal behavior (a string that is not in the global task automaton),

nor disallows a legal behavior ( a string from the global task automaton).

This result is of practical importance as it provides a sense of fault-tolerance to

the task decomposability and top-down cooperative control of multi-agent systems,

under event failures.
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4.6 Appendix

4.6.1 Proof for Lemma 4.1

Firstly, in order to allow the global transitions, the failed event a in Ei has to be

received from other agents not from its own sensors and actuator readings, otherwise,

no local transitions on a evolve in either of F (Ai) or
n

||
i=1

F (Ai) (since other agents

receive a from Ai). Therefore, the failed events have to necessarily be shared events

(loc(a) > 1), and that after the failure of a in Ai, a is excluded from Ei, i.e., Σi = Ei\a,

as a is not received to Ai from other agents. Moreover, due to Definition 1.9, exclusion

of a from Ei allows global transitions on a with no synchronization restriction from

F (Ai). Finally, the transitions on failed event a have to be replaced with ε-moves,

in order to allow transitions after a in Ai, i.e., ∀x1, x2 ∈ Qi, x2 ∈ δi(x1, a), then

[x2]Σi
∈ δFi ([x1]Σi

, a), [x1]Σi
= [x2]Σi

and F (Ai) = PEi\a(Ai) (otherwise a transition of

δFi (δFi (x, a), e) will be disabled due to the stopping of execution of δFi (x, a)). It should

be noted that, if there are no transitions after δi(x, a) (i.e., ∀e ∈ Ei: ¬δi(δi(x, a), e)!,

then the stopping of δi(x, a) is identical to replacing this transition with an ε-move.

These collectively mean that the preserving of global transitions in
n

||
i=1

F (Ai) requires

the local failures to be passive.

4.6.2 Proof for Lemma 4.2

Passivity of all Ēi, i ∈ {1, . . . , n}, due to definition of passivity, leads to Σi = Ei\Ēi ⊆

Ei; hence, the expression [∃Ei ∈ {E1, · · · , En}, {e1, e2} ⊆ Ei] in the antecedent of
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DC1 and DC2 leads to [∃Σi ∈ {Σ1, · · · ,Σn}, {e1, e2} ⊆ Σi], replacing Ei with Σi =

Ei\Ēi.

4.6.3 Proof for Lemma 4.3

Any nondeterminism in F (Pi(AS)) appears either due to nondeterminism from Pi(AS)

or newly formed nondeterminism because of replacing of passive events by ε.

In the first case, from the decomposability of AS, DC4 says that for any x, x1, x2 ∈

Qi, e ∈ Ei\Ēi, t ∈ E∗i , x1 6= x2, x1 ∈ δi(x, e), x2 ∈ δi(x, e): δi(x1, t)! ⇔ δi(x2, t)!,

i.e., [x1]Σi
∈ δFi ([x]Σi

, e), [x2]Σi
∈ δFi ([x]Σi

, e): δFi ([x1]Σi
, pΣi

(t))! ⇔ δFi ([x2]Σi
, pΣi

(t))!,

which is DC4 for F (Pi(AS)), with refined local event set Σi.

For the second case, any newly appeared nondeterminism is induced by tran-

sitions from the original local task automaton, in the following form. ∃i ∈

{1, . . . , n}, x, x1, x2 ∈ Qi, t1, t2 ∈ Ē∗i , e ∈ Ei\Ēi, t′1, t′2 ∈ E∗i , x1 6= x2, x1 ∈ δi(x, t1e),

x2 ∈ δi(x, t2e), t′1 transits after x1 or x2, but there does not exist t′2 after the other state

(among x1, x2), such that pEi\Ēi
(t′1) = pEi\Ēi

(t′2). In this case, [x]Σi
= [δFi ([x]Σi

, t1)]Σi

= [δFi ([x]Σi
, t2)]Σi

; hence, EF4 becomes [x1]Σi
∈ δFi ([x]Σi

, e), [x2]Σi
∈ δFi ([x]Σi

, e):

δFi ([x1]Σi
, pΣi

(t′1))! ⇔ δFi ([x2]Σi
, pΣi

(t′2))!, which is again equivalent to DC4 for

F (Pi(AS)).

4.6.4 Proof for Lemma 4.4

The first item is proven based on the fact that if ∃e ∈ Ē1 ∩ Ē2, then snde(1) =

∅ ∧ snde(2) = ∅ which is impossible, due to Remark 4.1 that requires snde(i) =
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∅ ∧ rece(i) 6= ∅ for an event e to be passive in Ei ∈ {E1, E2}, in two-agent case.

The second item, comes from the passivity of Ē1 and Ē2 that implies that ∀e ∈ Ēi,

i = 1, 2, snde(i) = ∅ ∧ rcve(i) 6= ∅, and hence loc(e) > 1 which means e ∈ Ej,

j ∈ {1, 2}\{i}, i.e., e ∈ E1 ∩ E2.

For the last item, from the second item and Ē1 ∩ Ē2 = ∅ we respectively have

Ē1, Ē2 ⊆ E1∩E2 and Ē1 ⊆ Ē ′2, Ē2 ⊆ Ē ′1 (In this proof, prime operation stands for the

set complement, where the E1 ∪E2 is considered as the universal set). Consequently,

Σ1\Σ2 = (E1\Ē1)\(E2\Ē2) = (E1 ∩ Ē ′1) ∩
(
E2 ∩ Ē ′2

)′
= (E1 ∩ Ē ′1) ∩

(
E ′2 ∪ Ē2

)
=

[(E1 ∩ Ē ′1) ∩ E ′2] ∪ [(E1 ∩ Ē ′1) ∩ Ē2] = [E1 ∩
(
Ē1 ∪ E2

)′
] ∪ [(E1 ∩ Ē2) ∩ Ē ′1] = (E1 ∩

E ′2) ∪ (Ē2 ∩ Ē ′1) = (E1\E2) ∪ Ē2. Similarly, Σ2\Σ1 = (E2\E1) ∪ Ē1.

4.6.5 Proof for Lemma 4.5

To prove this lemma, firstly, we recall the decomposability result for two agents as

stated in Theorem 2.1. In order to prove the equivalence of two cases in Lemma

4.5, one needs to prove that the set {Ē1 ×E1\E2, Ē2 ×E2\E1, Ē1 × Ē2} in EF1 and

EF2 is equal to the set {(Σ1\Σ2)× (Σ2\Σ1)} in DC1Σ and DC1Σ (decomposability

conditions DC1 and DC2 with respect to Σ1 and Σ2).

From Lemma 4.4, e1 ∈ Σ1\Σ2, e2 ∈ Σ2\Σ1 is equivalent to e1 ∈ (E1\E2) ∪ Ē2,

e2 ∈ (E2\E1)∪ Ē1 which means that e1 ∈ E1\E2∨ e1 ∈ Ē2 and e2 ∈ E2\E1∨ e2 ∈ Ē1,

leading to four possible cases: (e1 ∈ E1\E2 ∧ e2 ∈ E2\E1), (e1 ∈ E1\E2 ∧ e2 ∈ Ē1),

(e1 ∈ Ē2 ∧ e2 ∈ E2\E1) or (e1 ∈ Ē2 ∧ e2 ∈ Ē1).

Now, Lemma 4.5 is proven as follows. For the first case, since the decomposability
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of AS implies DC1 and DC2, then, ∀e1 ∈ E1\E2, e2 ∈ E2\E1, q ∈ Q, s ∈ E∗:

(4.1) and (4.2) hold true. For the second, third and fourth cases, i.e., when (e1 ∈

E1\E2 ∧ e2 ∈ Ē1), (e1 ∈ Ē2 ∧ e2 ∈ E2\E1) and (e1 ∈ Ē2 ∧ e2 ∈ Ē1), then (4.1) and

(4.2) are guaranteed by EF1 and EF2. Therefore, provided the decomposability of

AS, EF1 and EF2, (4.1) and (4.2) become true for all e1 ∈ Σ1\Σ2, e2 ∈ Σ2\Σ1. This

means that EF1 and EF2 are respectively equivalent to DC1 and DC2 after failures

(for Σ1 and Σ2).
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Chapter 5

Event Distribution for Cooperative

Tasking

5.1 Introduction

This chapter is a continuation of Chapters 2, 3 and 4, and aims to study whether one

can modify the communication pattern between agents so as to make an originally

indecomposable task become decomposable. It seems that a trivial solution to make

any task automaton decomposable is to broadcast all private events and make them

public. However, this is equivalent to the centralized control and impractical in many

situations. An interesting follow-up question would be what is exactly needed to

share by communication among agents such that an originally indecomposable task

becomes decomposable. To answer this question, one needs to understand the causes

of indecomposability and then find methods to overcome them.

For this purpose, we propose an algorithm that uses previous results on task de-

composability in Chapters 2 and 3 to identify and overcome the dissatisfaction of

each decomposability condition. The algorithm first removes all redundant commu-

nication links using the fault-tolerant result in Chapter 4. As a result, any violation

of decomposability conditions, remained after this stage, is not due to redundant
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communication links, and hence cannot be removed by means of link deletions. In-

stead, the algorithm proceeds by establishing new communication links to provide

enough information to facilitate the task automaton decomposition. Since each new

communication link may overcome several violations of decomposability conditions,

the algorithm may offer different options for link addition, leading to the question

of optimal decomposability with the minimum number of communication links. It is

found that if link additions impose no new violations of decomposability conditions,

then it is possible to make the automaton decomposable with the minimum num-

ber of links. However, it is furthermore shown that, in general, new communication

links may introduce new violations of decomposability conditions that in turn require

establishing new communication links. In such cases, the optimal path depends on

the structure of the automaton and requires a dynamic exhaustive search to find the

sequence of link additions with the minimum number of links. Therefore, in case of

new violations, a simple sufficient condition is proposed to provide a feasible subop-

timal solution to enforce the decomposability, without checking of decomposability

conditions after each link addition.

Similar problems on automaton decomposability have been also studied in com-

puter science literature. For example, [69] characterized the conditions for decompo-

sition of asynchronous automata in the sense of isomorphism based on the maximal

cliques of the dependency graph. The work in [69] considers a set of events to be

attributed to a number of agents, with no predefinition of local event sets. While

event attribution is suitable for parallel computing and synthesis problems in com-

puter science, control applications typically deal with parallel distributed plants [74]
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whose events are predefined by the set of sensors, actuators and communication links

across the agents. Another related work is [72] that proposes a method for automaton

decomposabilization by adding synchronization events such that the parallel composi-

tion of local automata is observably bisimilar to the original automaton. The method

in [72], however, allows to add new synchronization events to the global event set that

will enlarge the size of event set. Our work deals with those applications with fixed

global event sets and a predefined distribution of events among local agents, where

enforcing the decomposability is not allowed by adding new synchronization events,

but instead by the redistribution of the existing events among the agents. This ap-

proach can decompose any deterministic task automaton, after which according to

the previous results, the global specification is guaranteed to be satisfied, upon the

satisfaction of local specifications.

The rest of the chapter is organized as follows. Problem formulation and a moti-

vating examples are represented in Section 5.2. Section 5.3 proposes an algorithm to

make any indecomposable deterministic automaton decomposable by modifying its

local event sets. Illustrative examples are also given to elaborate the concept of task

automaton decomposabilization. Finally, the chapter concludes with remarks and

discussions in Section 5.4. Proofs of the lemmas are readily given in the Appendix.
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5.2 Problem Formulation and Motivating Exam-

ples

In the previous chapters, we have identified the conditions for global task automaton

decomposability and guaranteeing its satisfactions by the team as well as the condi-

tions for the task to remain decomposable, in spite of event failures. In this chapter

we are interested in the case that a task automaton is not decomposable and would

like to ask whether it is possible to make it decomposable and if so, whether the

automaton can be made decomposable with the minimum number of communication

links. This problem is formally stated as

Problem 5.1 (Event Distribution for Cooperative Tasking) Consider a determinis-

tic task automaton AS with event set E =
n
∪
i=1

Ei for n agents with local event sets

Ei, i = 1, . . . , n. If AS is not decomposable, can we modify the sets of private and

shared events between local event sets such that AS becomes decomposable with re-

spect to parallel composition and natural projections Pi, with the minimum number of

communication links?

One trivial way to make an automaton A decomposable, is to share all events

among all agents, i.e., Ei = E, ∀i = 1, . . . , n. This method , however, is equivalent to

centralized control. In general, in distributed large scale systems, one of the objectives

is to sustain the systems functionalities over as few number of communication links

as possible, as will be addressed in the next section.

For more elaboration, let us to start with two motivating examples.
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Example 5.1 Consider the plant of sequential belt conveyors and storage bin in

Example 1.2. The task automaton is not decomposable with respect to parallel

composition and natural projection Pi, i ∈ {A,B}, due to the violation of DC

by successive private event pairs {BStart, AStart} and {AStop, BStop}. To make AS

decomposable, (BStart ∨ AStart) ∧ (AStop ∨ BStop) should become common between

EA and EB. Therefore, four options are possible: (BStart ∧ BStop), (BStart ∧ AStop),

(AStart ∧ BStop), or (AStart ∧ AStop) become common. In each of these options two

private events should become common; therefore, all four options are equivalent in

the sense of optimality. Consider for example AStart and AStop to become common.

In this case the new local event sets are formed as EA = {AStart, BinFull, AStop}

and EB = {BStart, BStop, BinEmpty, AStart, AStop}. The automaton AS will then be-

come decomposable (i.e., PA(AS)||PB(AS) ∼= AS) with the new local event sets and

corresponding local task automata as are shown in Figure 5.1.

PA(AS): // • AStart // • BinFull // •BCD@A
AStop

OO
, PB(AS): // •BStart// •

AStart

// •
AStop// •

BStop

// •BCD@A
BinEmpty

OO

Figure 5.1: Local task automata for belt conveyors.

In this example, different sets of private events can be chosen to make AS decom-

posable. All of these sets have the same cardinality; therefore, the optimal solution

is not unique in this example. Next example shows a case with different choices of

private event sets to be shared, suggesting optimal decomposition by choosing the set

with the minimum cardinality.
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Example 5.2 (Revisiting Examples 3.4 and 4.3 for task decomposabilization) Con-

sider the task automaton in Section 3.3 and Examples 3.4 and 4.3, but with lo-

cal event sets E1 = {h1, R1toD1, R1onD1, FWD,D1opened,R2in1, BWD, r}, E2 =

{h2, R2to2, R2in2, R2to1, R2in1, r}, and E3 = {h3, R3to3, R3in3, R3toD1, R3onD1,

FWD, BWD, D1closed, R3to1, R3in1, r}. The task automaton is not decompos-

able with respect to the parallel composition and natural projections into these local

event sets, due to the violation of DC2 as the decision on the order of event pairs

{R2in2, D1opened} and {D1opened,R2to1} can be made by none of the agents.

To make it decomposable, one event among the set {R2in2, D1opened} and an-

other event among the set {D1opened,R2to1} (either {D1opened} or {R2in2, R2to1})

should become common between E1 and E2. Therefore, in order for optimal decom-

posabilization, {D1opened} is chosen to become common due to its minimum cardi-

nality. It is obvious that in this case only one event should become common while

if {R2in2, R2to1} was chosen, then two events were required to be shared. With the

new event set E2 = {h2, R2to2, R2in2, D1opened,R2to1, R2in1, r}, the automaton AS

becomes optimally decomposable, as it was shown in Example 4.3, with only one link

addition.

Motivated by these examples, the core idea in our decompozabilization approach

is to first check the decomposability of a given task automaton AS, by Corollary

3.2, and if it is not decomposable, i.e., either of DC1-DC4 is violated then the pro-

posed method is intended to make AS decomposable, by eradicating the reasons of

dissatisfying of decomposability conditions. We will show that the violation of de-
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composability conditions, can be rooted from two different sources: it can be because

of over-communication among agents, that may lead to the violation of DC3 or/and

DC4, or due to the lack of communication, that may lead to the violation of DC1,

DC2, DC3 or/and DC4. Accordingly, decomposability can be enforced using two

methods of link deletion and link addition, subjected to the type of indecomposabil-

ity. Considering link deletion as an intentional event failure, according to Theorem

4.1 a link can be deleted only if it is passive and its deletion respects EF1-EF4. On

the other hand, the second method of enforcing of decomposability, i.e., establishing

new communication links, may result in new violations of DC3 or DC4, that should

be treated, subsequently. Next part suggests basic rules to check and enforce each

decomposability condition.

5.3 Task Automaton Decomposabilization

In order to proceed the approach, we firstly introduce four basic definitions to detect

the components that contribute in the violation of each decomposability condition and

then propose basic lemmas through which the communication links, and hence the

local event sets are modified to resolve the violations of decomposability conditions.

5.3.1 Enforcing DC1 and DC2

This part deals with the enforcing of DC1 and DC2. For this purpose, the set of

events that violate DC1 or DC2 is defined as follows.

Definition 5.1 (DC1&2-Violating set) Consider the global task automaton AS with
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local event sets Ei for n agents such that E =
n
∪
i=1
Ei. Then, the DC1&2-Violating

set operator V : AS → E ×E, indicates the set of unordered event pairs that violate

DC1 or DC2 (violating pairs), and is defined as V (AS) := {{e1, e2}|e1, e2 ∈ E,∀Ei ∈

{E1, . . . , En}, {e1, e2} 6⊂ Ei,∃q ∈ Q such that δ(q, e1)! ∧ δ(q, e2)! ∧ ¬[δ(q, e1e2)! ∧

δ(q, e2e1)!] or ¬[δ(q, e1e2s)!⇔ δ(q, e2e1s)!]}, for some s ∈ E∗. Moreover, W : AS → E

is defined as W (AS) := {e ∈ E|∃e′ ∈ E such that {e, e′} ∈ V (AS)}, and shows the set

of events that contribute in V (AS) (violating events). For a particular event e and

a specific local event set Ei ∈ {E1, . . . , En}, We(AS, Ei) is defined as We(AS, Ei) =

{e′ ∈ Ei|{e, e′} ∈ V (AS)}. This set captures the collection of events from Ei that

pair up with e to contribute in the violation of DC1 or DC2. The cardinality of this

set will serve as an index for the optimal addition of communication links to make

V (AS) empty.

This definition suggests a way to remove a pair of events {e1, e2} from V (AS), by

sharing e1 with one of the agents in loc(e2) or by sharing e2 with one of the agents in

loc(e1). Once there exist an agent that knows both event, loc(e1) ∩ loc(e2) becomes

nonempty and e1 and e2 no longer contribute in the violation of DC1 or DC2 since

[∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei] becomes true for e1 and e2 in Corollary 3.2.

Therefore,

Lemma 5.1 The set V (AS) becomes empty, if for any {e, e′} ∈ V (AS), e is included

in Ei for some i ∈ loc(e′), or e′ is included in Ej for some j ∈ loc(e). In this case,

{e, Ei} or {e′, Ej} is called a DC1&2-enforcing pair for DC1&2-violating pair {e, e′}.

Example 5.3 In Example 5.2, V (AS) = {{R2in2, D1opened}, {D1opened,R2to1}},
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W (AS) = {R2in2, D1opened,R2to1}. Including D1opened in E2 vanishes V (AS) and

makes AS decomposable.

Therefore, as it is shown in Example 5.2, applying Lemma 5.1 may offer different

options for event sharing, since pairs in V (AS) may share some events. In this case,

the minimum number of event conversions would be obtained by forming a set of

events that are most frequently shared between the violating pairs. This gives the

minimum cardinality for the set of private events to be shared, leading to the minimum

number of added communication links. Such a choice of events offers a set of events

that span all violating pairs. These pairs are captured by We(AS, Ei) for any event e.

In order to minimize the number of added communication links for vanishing V (AS),

one needs to maximize the number of deletions of pairs from V (AS) per any link

addition. For this purpose, for any event e, We(AS, Ei) is formed to understand the

frequency of appearance of e in V (AS) for any Ei, and then, the event set Ei with

maximum |We(AS, Ei)| is chosen to include e (Here, |.| denotes the set’s cardinality).

In this case, the inclusion of e in Ei will delete as many pairs as possible from V (AS).

Interestingly, these operators can be represented using graph theory as follows. A

graph G = (W,Σ) consists of a node (vertex) set W and an edge set Σ, where an edge

is an unordered pair of distinct vertices. Two nodes are said to be adjacent if they

are connected through an edge, and an edge is said to be incident to a node if they

are connected. The valency of a node is then defined as the number of its incident

edges [139]. Now, since we are interested in removing the violating pairs by making

one of their events to be shared, it is possible to consider the violating events as the
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nodes of a graph such that two nodes are adjacent in this graph when they form a

violating pair. This graph is formally defined as follows.

Definition 5.2 (DC1&2-Violating graph) Consider a deterministic automaton AS.

The DC1&2-Violating graph, corresponding to V (AS), is a graph G(AS) =

(W (AS),Σ). Two nodes e1 and e2 are adjacent in this graph when {e1, e2} ∈ V (AS).

In this formulation, the valency of each node e with respect to a local event set

Ei ∈ {E1, . . . , En} is determined by val(e, Ei) = |We(AS, Ei)|. When e is included

into Ei, it means that all violating pairs containing e and events from Ei are removed

from V (AS), and equivalently, all corresponding incident edges are removed from

G(AS). For this purpose, following algorithm finds the set with the minimum number

of private events to be shared, in order to satisfy DC1 and DC2. The algorithm is

accomplished on graph G(AS), by finding e and Ei with maximum |We(AS, Ei)| and

including e in Ei, deleting all edges from e to Ei, updating W (AS), and continuing

until there is no more edges in G(AS) to be deleted.

Algorithm 5.1

1. For a deterministic automaton AS, with local event sets Ei, i = 1, . . . , n, violat-

ing DC1 or DC2, form the DC1&2-Violating graph ; set E0
i = Ei, i = 1, . . . , n;

V 0(AS) = V (AS); W 0(AS) = W (AS); G0(AS) = (W (AS),Σ); k=1;

2. among all events (nodes) in W k−1(AS), find e with the maximum

|W k−1
e (AS, E

k−1
i )|, for all Ek−1

i ∈ {Ek−1
1 , . . . , Ek−1

n };

3. Ek
i = Ek−1

i ∪ {e}; and delete all edges from e to Ek
i ;
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4. update W k
e (AS, Ei) for all nodes of G(AS);

5. set k = k + 1 and go to step (2);

6. continue, until there exist no edges.

Remark 5.1 The complexity of the algorithm is of the order of O(|E|4×|Q|3), where

|E| and |Q| respectively denote the sizes of the state space and global event set. The

algorithm successfully terminates due to the finite set of edges and nodes in the graph

G(AS) and enforces AS to satisfy DC1 and DC2 as the following lemma.

Lemma 5.2 Algorithm 5.1 leads AS to satisfy DC1 and DC2 with the minimum

addition of communication links. Moreover if AS satisfies DC3 and DC4 and Ek
i =

Ek−1
i ∪{e} in Step 3 does not violate DC3 and DC4 in all iterations, then Algorithm

5.1 makes AS decomposable with the minimum addition of communication links.

Proof: See the Appendix for proof.

Remark 5.2 (Special Case: Two Agents) For the case of two agents, since there are

only two local event sets, for all {e, e′} ∈ V (AS), e and e′ are from different local

event sets; therefore, for n = 2, |We(AS, Ei)| is equivalent to val(e), and the addition

of e into Ei in each step implies the deletion of all incident edges of e.

Remark 5.3 Although Algorithm 5.1 leads AS to satisfy DC1 and DC2, it may

cause new violations of DC3 or/and DC4, due to establishing new communication

links.

Example 5.4 Consider a task automaton AS:
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• •e5oo •e1oo // •
e2 ))RRRRRR

auullllll
e1 // • e2 // •

• •
b

oo •e1
oo
e3iiRRRRRR • e4

// • e6
// •

with local event sets E1 =

{a, b, e1, e3, e5} and E2 = {a, b, e2, e4, e6}. Both DC1 and DC2 are violated by event

pair {e1, e2} when they require a decision on a choice and a decision on their or-

der from the initial state, while none of the agents knows both of them. To vanish

V (AS) = {{e1, e2}}, two enforcing pairs are suggested: {e1, E2} (e1 to be included in

E2) or {e2, E1} (e2 to be included in E1). However, the inclusion of e1 in E2, cause

a new violation of DC4 since with new E2 = {a, b, e1, e2, e4, e6}, P2(AS) is obtained

as P2(AS): • // •
auullllll

e1 //
e2 ))RRRRRR • e2 // •

• •
b

oo •e1
oo
e1iiRRRRRR • e4

// • e6
// •

, violating DC4, due to new

nondeterminism, for which e3 also is required to be included to E2 in order to make

AS decomposable. On the other hand, if instead of including e1 in E2, one included

e2 in E1, then besides a violation of DC4 (as there does not exists a deterministic

automaton that bisimulates P2(AS)), a violation of DC3 emerges, as with new event

set E1 = {a, b, e1, e2, e3, e5}, the parallel composition of P1(AS):

• •e5oo •e1oo // •
e2 ))RRRRRR

auullllll
e1 // • e2 // •

• •
b

oo •e1
oo
e3iiRRRRRR •

and P2(AS):

// •
e2 ))RRRRRR

auullllll
e2 // •

• •boo • e4 // • e6 // •
produces string e1e2e4e6 that does not ap-

pear in AS. To make AS decomposable, we also need to include e1 and e3 in E2.

5.3.2 Enforcing DC3

Lemma 5.1 proposes adding communication links to make DC1 and DC2 satisfied.

Next step is to deal with the violations of DC3. In contrast to the cases for DC1 and

DC2, the violation of DC3 can be overcome either by disconnecting one of its com-

munication links to prevent the illegal synchronization of strings, or by introducing
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new shared events to fix strings and avoid illegal interleavings.

To handle the violations of DC3, we firstly define the set of transitions that

violate DC3 as follows.

Definition 5.3 (DC3 − violating Tuples) Consider a deterministic automaton AS,

satisfying DC1 and DC2 and let L̃ (AS) ⊆ L (AS) be the largest subset of L (AS)

such that ∀s ∈ L̃ (AS) ,∃s′ ∈ L̃ (AS) ,∃Ei, Ej ∈ {E1, ..., En} , i 6= j, pEi∩Ej
(s)

and pEi∩Ej
(s′) start with the same event a ∈ Ei ∩ Ej. For any such Ei, Ej

and a, if ∃{s1, · · · , sn} ∈ L (AS), ∃si, sj ∈ {s1, · · · , sn}, si 6= sj, si, sj ∈ L̃ (AS),

¬δ(q0,
n

|
i=1

pi (si))!, then a is called a DC3 − violating event with respect to s1,

s2, Ei and Ej, and (s1, s2, a, Ei, Ej) is called a DC3-violating tuple. The set of

all DC3 − violating tuples is denoted by DC3 − V and defined as DC3 − V =

{(s1, s2, a, Ei, Ej)|e is a DC3-violating event with respect to s1, s2, Ei and Ej }.

Any violation in DC3 can be interpreted in two ways: firstly, it can be seen as

an over-communication of shared event a that leads to the synchronization of s1 and

s2 in (s1, s2, a, Ei, Ej) and emerging illegal interleaving strings from the composition

of Pi(AS) and Pj(AS). In this case, if event a is excluded from Ei or Ej, then a will

no longer contribute in synchronization to generate illegal interleavings; therefore,

(s1, s2, a, Ei, Ej) will no longer remain a DC3-violating tuple. However, the exclu-

sion of a from Ei or Ej is allowed, only if it is passive (exclusion is considered as

an intentional event failure) and does not violate EF1-EF4. The second interpre-

tation reflects a violation of DC3 as a lack of communication, such that if for any

DC3 violating tuple (s1, s2, a, Ei, Ej), one event that appears before a in s1 or s2, is
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shared between Ej and Ej, then Pi(AS) and Pj(AS) will have enough information to

distinguish s1 and s2 to prevent the illegal interleaving of strings. Two methods for

resolving the violation of DC3 can be therefore stated as the following lemma.

Lemma 5.3 Consider an automaton AS, satisfying DC1 and DC2. Then any DC3-

violating tuple (s1, s2, a, Ei, Ej) is overcome, when:

1. a is excluded from Ei or Ej (eligible if it respects passivity and EF1-EF4), or

2. if ∃b ∈ (Ei ∪Ej)\(Ei ∩Ej) that appears before a in only one of s1 and s2, then

b is included in Ei∩Ej, otherwise, two events e1 ∈ pEi∪Ej
(s1), e2 ∈ pEi∪Ej

(s2),

such that e1 6= e2, e1, e2 appear before a in s1 and s2, are included in Ei ∩Ej.

Proof: See the proof in the Appendix.

To handle a violation of DC3, when, b ∈ Ei\Ej is to be included in Ej, then

{b, Ej} is called a DC3-enforcing pair; while, when {e1, e2} ⊆ Ei\Ej has to be in-

cluded in Ej, then {{e1, e2}, Ej} is denoted as a DC3-enforcing tuple. Finally, when

e1 ∈ Ei\Ej and e2 ∈ Ej\Ei have to be included in Ej and Ei, respectively, then

{{e1, Ej}, {e2, Ei}} is called a DC3-enforcing tuple.

Remark 5.4 Applying the first method in Lemma 5.3, namely, the exclusion of a

from Ei or Ej in a DC3-violating tuple (s1, s2, a, Ei, Ej), is only allowed if a is passive

in that local event set, and the exclusion does not violate EF1-EF4. The reason is

that once a shared event a ∈ Ei ∩ Ej becomes a private one in for example Ei,

then decision makings on the order/selection between any e ∈ Ei\a and a cannot be

accomplished by the i − th agent, and if there is no other agent to do so, then AS
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becomes indecomposable. Moreover, the deletion of a communication link may also

result in the generation of new interleavings in the composition of local automata,

that are not legal in AS (violation of EF3). In addition, the deletion of a from

Ei may impose a nondeterminism in bisimulation quotient of Pi(AS), leading to the

violation of EF4. On the other hand, the second method, namely, establishing new

communication link by sharing b with Ei or Ej may lead to new violations of DC3

or DC4 that have to be avoided or resolved, subsequently.

Both methods in Lemmas 5.3 present ways to resolve the violation of DC3. They

differ however in the number of added communication links, as the first method

deletes links, whereas the second approach adds communication links to enforce DC3.

Therefore, in order to have as few number of links as possible among the agents, one

should start with the link deletion method first, and if it is not successful due to

the violation of passivity or any of EF1-EF4, then link addition is used to remove

DC3-violating tuples from DC3− V .

Example 5.5 This example shows an indecomposable automaton that suffers from

a conflict on a communication link whose existence violates DC3, whereas its

deletion dissatisfies EF1, EF2 and EF4. Consider the task automaton AS:

• •boo •e1oo e5 // • e1 // •
• •boo

��
• e2

&&MMMMMM

•
affMMMMMM

bxxqqqqqq •coo

d

^^<<<<<<<< e1 88qqqqqq

e2 &&MMMMMM
a ��

• a // • e3 // •
• •e2
oo • •e2

oo • e1

88qqqqqq

with communication pattern 2 ∈

snd{a,b,c,d}(1), 1 /∈ snd{a,b,c,d}(2) and local event sets E1 = {a, b, c, d, e1, e3, e5},
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E2 = {a, b, c, d, e2}, leading to P1(AS): • •boo •e1oo e5 // • e1 // •
• •boo

))RRRRRR • a // • e3 // •
• •

b
oo

aiiRRRRRR •c
oo

d

OO
e1 55llllll
a
// •

,

P2(AS): • •boo

• •boo
��

• a // •
• •e2
oo •

b
oo

aiiRRRRRR •c
oo

d
iiRRRRRRRRRRRRR

e2 55llllll
a
// • e2

// •

and P1(AS)||P2(AS):

• e2
&&MMMMMM

• •boo •e1oo e5 // • e1 // • •
e3 88qqqqqq

e2 &&MMMMMM •
• •boo

��
• e2

&&MMMMMM

a 88qqqqqq • e3

88qqqqqq

•
affMMMMMM

bxxqqqqqq •

d

^^<<<<<<<<
coo

e1 88qqqqqq

e2 &&MMMMMM
a ��

• a // • e3 // •
• •e2
oo • •e2

oo • e1

88qqqqqq

which is not bisimilar to AS.

Here, AS is not decomposable since two strings e1ae2e3 and e1ae3e2 are newly gener-

ated from the interleaving of strings in P1(AS) and P2(AS), while they do not appear

in AS; hence, DC3 is not fulfilled, due to DC3-violating tuples (e1e2ae3, ae2, a, E1, E2)

and (e2e1ae3, ae2, a, E1, E2). Now, as Lemma 5.3, one way to fix the violation of DC3

is by excluding a from E2. However, although a is passive in E2, its exclusion from E2

dissatisfies EF1( as δ(q0, e2)! ∧ δ(q0, a)! ∧ ¬[δ(q0, e2a)! ∧ δ(q0, ae2)!]) and EF2 (since

δ(q0, e1e2a)!∧¬δ(q0, e1ae2)!) and also δ(q0, ae2)!∧¬δ(q0, e2a)!. In this case, DC4 also

will be violated as P2(AS) becomes P2(AS) ∼= // •
e2 ))RRRRRR

duullllll
c // • b //

b ))RRRRRR •
• •boo • • e2 // •

that bisimulates no deterministic automaton.

Lemma 5.3 also suggests another method to enforce DC3, by including either e1

in E2 or e2 in E1. The inclusion of e1 in E2, however, leads to another violation of

DC4, as it produces a nondeterminism after event d. This in turn will need to include

e5 in E2 to make AS decomposable. Alternatively, instead of inclusion of e1 in E2, one

can include e2 in E1, that enforces DC3 and makes AS decomposable. The second

method of Lemma 5.3 is more elaborated in the next example.
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Example 5.6 This example shows the handling of DC3-violating tuples using the

second method in Lemma 5.3, i.e., by event sharing. Later on, this example will

be also used to illustrate the enforcement of DC4. Consider a task automaton AS:

• e3 // • e5 // • a // • e2 // •

// •
e1

ZZ444444

e5

��







a // • e6 // •

• e3
// • e1

// • a
// • e4

// •

with local event sets E1 = {a, e1, e3, e5} and E2 = {a, e2, e4, e6},

and let three branches in AS from top to bottom to be denoted as s1 := e1e3e5ae2,

s3 := ae6 and s2 := e5e3e1ae4. This automaton does not satisfy DC4 (as P2(AS) has

no deterministic bisimilar automaton), as well as DC3, as the parallel composition of

P1(AS): • e3 // • e5 // • a // •

// •
e1

ZZ444444

e5

��







a // •

• e3
// • e1

// • a
// •

and P2(AS): • e2 // •

// •
a

ZZ444444

a

��







a // • e6 // •

• e4
// •

have illegal interleaving strings

{e1e3e5ae4, e5e3e1ae2}, e1e3e5ae6 and e5e3e1ae6, corresponding to DC3-violating tu-

ples (s1, s2, a, E1, E2), (s1, s3, a, E1, E2) and (s2, s3, a,E1, E2), respectively.

For pairs of strings {s1, s3} and {s2, s3}, there exits an event e5 ∈ (E1∪E2)\(E1∩

E2) that appears before a, only in s1 and s2, but not in s3. Therefore, the inclusion

of e5 in E2, removes the illegal interleavings between s1 and s2 with s3, but not

across s1 and s2, as with new E2 = {a, e2, e4, e5, e6} and P2(AS): • a // • e2 // •

// •
e5

ZZ444444

e5

��







a // • e6 // •

• a
// • e4

// •

,

(s1, s3, a, E1, E2) and (s2, s3, a, E1, E2) are no longer DC3-violating tuples, while

(s1, s2, a, E1, E2) still remains a DC3-violating one with illegal interleavings e1e3e5ae4
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and e5e3e1ae2. The reason is that e5 appears before a in both s1 and s2, and there is no

event that appear before a only in one of the strings s1 and s2. For this case, according

to Lemma 5.3, two different events that appear before “a”, one from pE1∪E2(s1) = s1

and the other from pE1∪E2(s2) = s2, say e1 and e5 have to be attached to E2, resulting

in E2 = {a, e1, e2, e4, e5, e6}, • e5 // • a // • e2 // •

// •
e1

ZZ444444

e5

��







a // • e6 // •

• e1
// • a

// • e4
// •

and P1(AS)||P2(AS) ∼= AS.

5.3.3 Enforcing DC4

Similar to DC1-DC3, a violation of DC4 can be regarded as a lack of communication

link that causes nondeterminism in a local task automaton. Such interpretation calls

for establishing a new communication link to prevent the emergence of local nonde-

terminism. Moreover, when this local nondeterminism occurs on a shared event, the

corresponding violation of DC4 can be overcome by excluding the shared event from

the respective local event set. It should be noted however that the event exclusion

should respect the passivity and EF1-EF4 conditions. Moreover, when DC4 is en-

forced by link additions, similar to what we discussed for DC3, the addition of new

communication link may cause new violations of DC3 or/and DC4. To enforce DC4,

firstly a DC4-violating tuple is defined as follows.

Definition 5.4 (DC4 − violating Tuple) Consider a deterministic automaton AS

with local event sets Ei = 1, . . . , n, ∀i ∈ {1, ..., n}, q, q1, q2 ∈ Q, t1, t2 ∈ (E\Ei)∗,

e ∈ Ei, δ(q, t1e) = q1 6= δ(q, t2e) = q2, ∃t ∈ E∗, δ(q1, t)!, but @t′ ∈ E∗ such that

153



δ(q2, t
′)!, pi(t) = pi(t

′). Then, (q, t1, t2, e, Ei) is called a DC4-violating tuple.

This definition suggests a way to overcome the violation of DC4, as stated in the

following lemma.

Lemma 5.4 Any DC4-violating tuple (q, t1, t2, e, Ei) is overcome, when:

1. e is excluded from Ei, (eligible, if it is passive in Ei and its exclusion respects

EF1− EF4), or

2. if ∃e′ ∈ (t1 ∪ t2)\(t1 ∩ t2), e′ is included in Ei; otherwise, e1 ∈ t1 and e2 ∈ t2,

such that e1 6= e2, are included in Ei. In these cases, {e′, Ei} and {{e1, e2}, Ei}

are called DC4-enforcing tuples.

Proof: See the proof in the Appendix.

Following examples illustrate the methods in Lemma 5.4 to enforce DC4.

Example 5.7 This example shows an automaton that is indecomposable due to a

violation in DC4, while DC4 can be enforced using both methods: event exclusion

as well as event inclusion.

Consider the task automaton AS: // • e1 //
a ))RRRRRR • a // • b // • e2 // •
• e3 // •

with

E1 = {a, b, e1, e3}, E2 = {a, b, e2}, 2 ∈ snd{a,b}(1), 1 /∈ snd{a,b}(2), leading

to P1(AS): // • e1 //
a ))RRRRRR • a // • b // •
• e3 // •

, P2(AS): // • a //
a ))RRRRRR • b // • e2 // •
•

, and

2

||
i=1

Pi(AS) ∼= // • e1 //
a ��

• a //

a &&MMMMMM • b // • e2 // •
• e3 // • •

which is not bisimilar to AS, due

to the violation of DC4 as there does not exist a deterministic automaton P ′2(AS)

such that P ′2(AS) ∼= P2(AS). Here, (q0, t1 = e1, t2 = ε, a, E2) is a DC4-violating tuple.
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Since a is passive in E2 and its exclusion from E2 keeps EF1-EF4 valid, according

to Lemma 5.4, one way to enforce DC4 is the exclusion of a from E2, resulting in

E2 = {b, e2}, P2(AS): // • b // • e2 // • and P1(AS)||P2(AS) ∼= AS.

Another suggestion of Lemma 5.4 to overcome the DC4-violating tuple (q0, t1 =

e1, t2 = ε, a, E2) is the addition of a communication link to prevent the nonde-

terminism in P2(AS). Since there exists e1 that appears before a in t1 only, the

inclusion of e1 in E2 also enforces DC4 as with new E2 = {a, b, e1, e2}, P2(AS):

// • e1 //
a ))RRRRRR • a // • b // • e2 // •
•

and
2

||
i=1

Pi(AS) ∼= AS. For the cases that there

does not exist an event that appears before a in only one of the strings t1 or t2, ac-

cording to Lemma 5.4, one needs to attach one event from each of two strings t1 and t2

in Ei. For instance consider the DC4-violating tuple (t1 = e1e3e5, t2 = e5e3e1, a, E2)

in Example 5.6, with no event that appears before a in (t1∪ t2)\(t1∩ t2). In that case

{e1 ∈ t1, e5 ∈ t2} could be included in E2 to make AS decomposable, as it was shown

in Example 5.6.

Example 5.8 This example shows a violation of DC4 that can be overcome by

link addition, but not using link deletion method. Example 5.7 showed a violation

of DC4 that could be handled using both methods in Lemma 5.4, namely, by link

addition and link deletion. In Example 5.7, event a was a passive shared event whose

exclusion from E2 respected EF1-EF4, otherwise it was not allowed to be excluded. If

the task automaton was // • e1 //
a ))RRRRRR • a // • e2 // • b // •
• e3 // •

with E1 = {a, b, e1, e3},

E2 = {a, b, e2}, then DC4 could not be enforced by the exclusion of a from E2, as

EF2 was violated since after this exclusion, no agent can handle the decision making
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on the order of a and e2. Another constraint for link deletion is the passivity of the

event. For example, consider A′S: • e4 // •
// • e1 //

e2 ))RRRRRR • e2
//

a 55llllll •
• e1

// •

with E1 = {e1, a},

E2 = {e2, e4, a}. A′S is not decomposable due to the violation of DC4 in P1(A′S):

// • e1 //
e1 ))RRRRRR • a // •
•

. The nondeterminism in P1(AS), and accordingly the DC4-

violating tuple (q0, ε, e2, e1, E1), cannot be removed by event exclusion since it occurs

on e1 that is not a shared event. To enforce DC4, according to Lemma 5.4, e2 is

required to be included into E1 that makes A′S decomposable.

Another important issue for the addition of communication link to enforce DC4

is that establishing new communication link may lead to new violations of DC3 or

DC4, as it is shown in the following example.

Example 5.9 Assume the task automaton in Example 5.7 had a part as shown in

the left hand side of the initial state in AS:

• •doo •e1oo •e5oo
e1uullllll •coo e1 //

a ))RRRRRR • a // • b // • e2 // •
•

OO
• e3

// •
with E1 = {a, b, c,

d, e1, e3, e5}, E2 = {a, b, c, d, e2}. Identical to Example 5.7, (q0, t1 = e1, t2 = ε, a, E2)

is a DC4-violating tuple and can be overcome by excluding a from E2, remov-

ing the nondeterminism on a in P2(AS). However, unlike Example 5.7, includ-

ing e1 into E2 (i.e., E2 = {a, b, c, d, e1, e2}), leads to a new violation of DC4 in

P2(AS): • •doo •e1oo
e1uullllll •coo e1 //

a ))RRRRRR • a // • b // • e2 // •
•

OO
•

, with a DC4-violating

tuple (δ(q0, c), e5, ε, e1, E2), that in turn requires the attachment of e5 to E2, in

order to enforce DC4.

If in this example, the order of e2 and b was reverse, i.e., the task automa-
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ton was A′S: • •doo •e1oo •e5oo
e1uullllll •coo e1 //

a ))RRRRRR • a // • e2 // • b // •
•

OO
• e3

// •
with E1 =

{a, b, c, d, e1, e3, e5}, E2 = {a, b, c, d, e2}. Then as it was shown in Example 5.8, the

DC4-violating tuple (q0, e1, ε, a,E2) could not be dealt with the exclusion of a from

E2, due to EF2, neither by the inclusion of e1 into E2 (since as it was mentioned for

AS in this example, it generates a new violation of DC4 that consequently requires

another inclusion of e5 into E2 to satisfy DC4).

Remark 5.5 Both Lemmas 5.3 and 5.4 provide sufficient conditions for resolving the

violations of DC3 and DC4, respectively. They do not however provide the necessary

solutions, neither the optimal solutions, as illustrated in the following example. We

will show that for DC3 and DC4, in general one requires to search exhaustively

to find the optimal sequence of enforcing tuples, to have the minimum number of

link additions. In this case, instead of exhaustive search for optimal solution, it is

reasonable to introduce sufficient conditions to provide a tractable procedure for a

feasible solution to make an automaton decomposable.

Example 5.10 Consider a task automaton AS:

• •e6oo •boo •e5oo •e7oo
��

• e5 // • e3 // • a // • e2 // •
•

e1iiRRRRRR

e7uullllll •coo
e1 55llllll

e3 ))RRRRRR

• •e8oo •boo •e1oo •e5oo • e5 // • e1 // • a // • e4 // •
with local event sets E1 = {a, b, c, e1, e3, e5, e7} and E2 = {a, b, c, e2, e4, e6, e8}. AS

is indecomposable due to DC3-violating tuples (e1e5e3ae2, e3e5e1ae4, a, E1, E2) and

(e1e7e5be6, e7e5e1be8, a, E1, E2) and DC4-violating tuples (q0, e1e5e3, e3e5e1, a, E2)

and (δ(q0, c), e1e7e5, e7e5e1, b, E2). According to Lemmas 5.3 and 5.4, two enforcing

tuples {{e1, e3}, E2} and {{e1, e7}, E2} remove all violations of DC3 and DC4. How-
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ever, this solution is not unique, nor optimal, as the enforcing tuple {{e1, e5}, E2}

enforced DC3 and DC4 with the minimum number of added communication links.

5.3.4 Exhaustive Search for Optimal Decompozabilization

Another difficulty is that enforcing the decomposability conditions using link deletion

is limited to passivity and EF1-EF4, and after the deletions of redundant links (that

are passive and their deletion respect EF1-EF4), the only way to make the automa-

ton decomposable is to establish new communication links. Addition of new links, on

the other hand, may lead to new violations of DC3 or DC4 (as illustrated in Exam-

ples 5.5 and 5.9), whose resolution in turn may introduce new violations. It means

that, in general, the resolution of decomposability conditions can dynamically result

in new violations of decomposability conditions, as it is elaborated in the following

example.

Example 5.11 Consider the task automaton AS:

• •e10oo •doo •e2oo •e6oo e2 // • •
• •e12oo •boo •e2oo •e4oo

e2xxqqqqqq •a
oo f //

e1 &&MMMMMM
c
OO

• e8
//

e4 88qqqqqq • e4
// • g

// •
•

OO

• e2
// • e3

// • e5
// •

with local event

sets E1 = {a, b, c, d, f, g, e1, e3, e5} and E2 = {a, b, c, d, f, g, e2, e4, e6, e8, e10, e12}. This

automaton is indecomposable due to DC2-violating event pairs {(e1, e2), (e2, e3)}

with the corresponding enforcing tuple {e1, E2}, {e3, E2} and {e2, E1} and with the

following possible sequences:

1. {e1, E2}; {e3, E2}: in this case AS becomes decomposable, without emerging

new violations of decomposability conditions;
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2. {e1, E2}; {e2, E1}; {{e4, e6}, E1}; {e8, E1}: if after including e1 in E2, e2

is included in E1, then two DC4-violating tuples (δ(q0, a), ε, e4, e2, E1) and

(δ(q0, c), ε, e6, e2, E1) emerge that in turn require {e4, e6} to be attached to E1.

Inclusion of e4 in E1, on the other hand, introduces another DC4-violating

tuple (δ(q0, f), ε, e8, e4, E1) that calls for the attachment of e8 to E1; similarly

3. {e3, E2}; {e1, E2};

4. {e3, E2}; {e2, E1}; {{e4, e6}, E1}; {e8, E1}, and

5. {e2, E1}; {{e4, e6}, E1}; {e8, E1}.

In this example, the first and the third sequences, i.e., {{e1, e3}, E2} gives the optimal

choice with the minimum number of added communication links, although initially

{e2, E1} sought to offer the optimal solution.

Therefore, in general an optimal solution to Problem 5.1 will be obtained through

an exhaustive search, using Lemmas 5.2, 5.3 and 5.4, as state in the following algo-

rithm.

Algorithm 5.2

1. For any local event set, exclude any passive event whose exclusion respects

EF1-EF4;

2. identify all DC1&2-violating tuples, DC3-violating tuples and DC4-violating

tuples and their respective enforcing tuples;

3. among all enforcing tuples, find the one that corresponds to the most violating

tuples;
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4. if applying of the enforcing tuple with the maximum number of violating tuples,

does not impose new violations of DC3 or DC4, then apply it, go to Step 3 and

continue until there is no violating tuples; otherwise, do the exhaustive search

to find the sequence of link additions with the minimum number of added links.

5. end.

Lemma 5.5 Consider a deterministic task automaton AS with local event sets Ei

such that E =
n
∪
i=1
Ei. If AS is not decomposable with respect to parallel composition

and natural projections Pi, i = 1, ..., n, Algorithm 5.2 optimally makes AS decompos-

able, with the minimum number of communication links.

Proof: See the proof in the Appendix.

Remark 5.6 The complexity of the algorithm has the order of O(|E|5 × |Q|n+1 ×

log|Q|), where |E|, |Q| and n respectively denote the size of state space, the size of

global event set and the number of agents.

Remark 5.7 (Special Case: Automata with Mutual Exclusive Branches) When

branches of AS share no events (i.e. ∀q ∈ Q, s, s′ ∈ E∗, δ(q, s)!, δ(q, s′)!, s ≮ s′,

s′ ≮ s: s ∩ s′ = ∅), due to the definition of DC3 and DC4 in Corollary 3.2, DC3

and DC4 are trivially satisfied and moreover, since branches from any state share no

event, then Algorithm 5.2 is reduced to Algorithm 5.1.
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5.3.5 Feasible Solution for Task Decomposabilization

As Example 5.11 showed, the additions of communication links may successively

introduce new violations of decomposability conditions, for which new links should

be established. Therefore, in general an optimal solution to Problem 5.1 requires an

exhaustive search, using Lemmas 5.2, 5.3 and 5.4. Moreover, checking of DC3 and

DC4 is a nontrivial task, while it has to be accomplished initially as well as upon

each link addition. It would be therefore very tractable if we can define a procedure

to make DC3 and DC4 satisfied, without their examination. Following result takes

an automaton whose DC1 and DC2 are made satisfied using Algorithm 5.1, and

proposes a sufficient condition to fulfill DC3 and DC4.

Lemma 5.6 Consider a deterministic automaton AS, satisfying DC1 and DC2. AS

satisfies DC3 and DC4 if ∀s1, s2 ∈ E∗, s1 ≮ s2, s2 ≮ s1, q, q1, q2 ∈ Q, δ(q, s1) = q1 6=

δ(q, s2) = q2, [@e1, e2 ∈ E, e1e2 6 s1, e2e1 6 s2, ∀t ∈ E∗, δ(q, e1e2t)! ⇔ δ(q, e2e1t)!],

∃e ∈ s1 ∩ s2, then ∀i ∈ loc(e), ∀e′ ∈ {e1 6 t1, e2 6 t2}, e′ appears before e, one

includes e′ in Ei.

Proof: See the proof in the Appendix.

Remark 5.8 The condition in Lemma 5.6 intuitively means that for any two strings

s1, s2 from any state q, sharing an event e, all agents who know this event e will be

able to distinguish two strings, if they know the first event of each string. The ability

of those agents that know this event e to distinguish strings s1 and s2, prevents

illegal interleavings (to enforce DC3) and local nondeterminism (to satisfy DC4).

The significance of this condition is that it does not require to check DC3 and DC4,
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instead provides a tractable (but more conservative) procedure to enforce DC3 and

DC4. The expression s1 ≮ s2, s2 ≮ s1 in the lemma, is to exclude the pairs of

strings that one of them is a substring of the other, as their product language does

not exceed from the strings of AS, provided DC1 and DC2. Moreover, the expression

[@e1, e2 ∈ E, e1e2 6 s1, e2e1 6 s2, ∀t ∈ E∗, δ(q, e1e2t)! ⇔ δ(q, e2e1t)!] in this lemma

excludes the pairs of strings e1e2t and e2e1t from any q ∈ Q that have been already

checked using DC1 and DC2 and do not form illegal interleaving strings, and hence

do not need to include e1 in the local event sets of e2 and vice versa (see Example

5.12).

Combination of Lemmas 5.2 and 5.6 leads to the following algorithm as a sufficient

condition to make a deterministic task automaton decomposable. Following algorithm

uses Lemma 5.2 to enforce DC1 and DC2 followed by Lemma 5.6 to overcome the

violations of DC3 and DC4.

Algorithm 5.3

1. For a deterministic automaton AS, with local event sets Ei, i = 1, . . . , n, ∀Ei ∈

{E1, . . . , En}, E0
i = Ei\{e ∈ Ei|e is passive in Ei and the exclusion of e from

Ei does not violate EF1-EF4};

2. form the DC1&2-Violating graph ; set V 0(AS) = V (AS); W 0(AS) = W (AS);

G0(AS) = (W (AS),Σ); k=1;

3. among all events in the nodes in W k−1(AS), find e with the maximum

|W k−1
e (AS, E

k−1
i )|, for all Ek−1

i ∈ {Ek−1
1 , . . . , Ek−1

n };

4. Ek
i = Ek−1

i ∪ {e}; and delete all edges from e to Ek
i ;
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5. update W k
e (AS, Ei) for all nodes of G(AS);

6. set k = k + 1 and go to step (3), and continue, until there exist no edges;

7. ∀s1, s2 ∈ E∗, s1 ≮ s2, s2 ≮ s1, q, q1, q2 ∈ Q, δ(q, s1) = q1 6= δ(q, s2) = q2,

[@e1, e2 ∈ E, e1e2 6 s1, e2e1 6 s2, ∀t ∈ E∗, δ(q, e1e2t)! ⇔ δ(q, e2e1t)!], ∃e ∈

s1 ∩ s2, then ∀i ∈ loc(e), ∀e′ ∈ {e1 6 t1, e2 6 t2}, e′ appears before e, include

e′ in Ei.

Based on this formulation, a solution to Problem 5.1 is given as the following

theorem.

Theorem 5.1 (Task decomposabilization) Consider a deterministic task automaton

AS with local event sets Ei such that E =
n
∪
i=1
Ei. If AS is not decomposable with

respect to parallel composition and natural projections Pi, i = 1, ..., n, Algorithm 5.3

makes AS decomposable. Moreover, if after Step 6, DC3 and DC4 are satisfied, then

the algorithm makes AS decomposable, with the minimum number of communication

links.

Proof: After excluding the redundant shared events in the first step, the algorithm

enforces DC1 and DC2 in Steps 2 to 6, according to Lemma 5.2 and deals with DC3

and DC4 in Step 7, based on Lemma 5.6.

Remark 5.9 If after Step 6, no violation of DC3 or DC4 is reported in the automa-

ton, then AS is made decomposable with the minimum number of added commu-

nication links; otherwise, the optimal solution can be obtained through exhaustive

search by examining the number of added links for any possible sequence of enforcing
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tuples, using Lemmas 5.3 and 5.4, as it was presented in Lemma 5.5. To avoid the

exhaustive search the algorithm provides a sufficient condition to enforce DC3 and

DC4 in Step 7, according to Lemma 5.6. The complexity of the algorithm is reduced

from O(|E|5 × |Q|n+1 × log|Q|) in Algorithm 5.2 to the order of O(|E|4 × |Q|3) in

Algorithm 5.3; and also it does not anymore grow with the number of agents, all due

to the elimination of enforcing of DC3 and DC4. The algorithm terminates, due to

the finite number of states and events, and the fact that at the worst case, when all

events are shared among all agents, the task automaton is trivially decomposable.

Example 5.12 Consider the task automaton

AS: • •e6oo • d //

e10

��9999999 • e10 // •

• •e7oo •e6oo

e7
\\9999999

•
a

OO

• d // •

• •e9oo •coo •e2oo

e8
���������

•boo

e11

99rrrrrrrrrrr

a
\\9999999

f
// • e2 //

e3
��9999999 • e1 //

e5
��9999999 •

• •e12oo •e2oo

BB�������� •

e4
BB�������

•
with local event sets E1 = {a, b, c, d, f, e1, e3, e5, e7, e9, e11} and E2 =

{a, b, c, d, f, e2, e4, e6, e8, e10, e12}, with the communication pattern 2 ∈ snd{a,b,c,d,f}(1)

and no other communication links. This task automaton is not decompos-

able, due to the set of DC1&2-violating tuples {e1, e2}, {e1, e4}, {e2, e3},

{e2, e5}, {e3, e4}, {e4, e5}, DC3-violating tuples (e11ade10, ae7e6, a, E1, E2), (e11ade10,

ae6e7, a, E1, E2), (e11ae10d, ae7e6, a, E1, E2), (e11ae10d, ae6e7, a, E1, E2) and DC4-

violating tuple (q0, e11, ε, a, E2). There is also one event d that is redundantly shared

with E2, as d is passive in E2 and its exclusion respects EF1-EF4. Therefore, the

algorithm excludes d from E2, at the first step.
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Next step is to construct the DC1&2-Violating graph and remove its edges by

sharing one node from each edge. The set of DC1&2-Violating event pair is obtained

as V 0(AS) = {{e1, e2}, {e1, e4}, {e2, e3}, {e2, e5}, {e3, e4}, {e4, e5}} with W 0(AS) =

{e1, e2, e3, e4, e5}. It can be seen that the private events d, e6, e7, e8, e9, e10, e11, e12,

and shared events a, b, c, f are not included in W 0(AS) as they have no contribution

in the violation of DC1 and DC2. The DC1&2-Violating graph is shown in Figure

5.2(a).

Figure 5.2: Illustration of enforcing DC1 and DC2 in Example 5.12, using Algorithm

5.3.

The maximum |W k−1
e (AS, E

k−1
i )| is formed by {e2, e4} with respect to E1

(here, since the system has only two local event sets, |W k−1
e (AS, E

k−1
i )| coin-

cides to the valency of e in the graph). Marking e2, including it to E1 (E1
1 =

{a, b, c, d, f, e1, e3, e5, e7, e9, e11, e2}), removing its incident edges to E1 and updating

the |W k
e (AS, E

k
i )| (valencies) are shown in Figure 5.2(b). The next step will include
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e4 in E1 (E2
1 = {a, b, c, d, f, e1, e3, e5, e7, e9, e11, e2, e4}) with the highest |W k

e (AS, E
k
i )|;

that removing its incident edges to E1 and updating the |W k
e (AS, E

k
i )| will enforce

DC1 and DC2 upon Step 6, as it is illustrated in Figure 5.2 (c). If from the first

stage e4 was chosen instead of e2, the procedure was similarly performed as de-

picted in Figures 5.2 (d) and (e), resulting the same set of private events {e2, e4}

to be shared with E1. Inclusion of e2 in E1, however, introduces a new DC4-

violating tuple (δ(q0, b), ε, e8, e2, E1) that will be automatically overcome in Step 7

by sharing e8 ∈ s1 = e8e2e12 (as s1 = e8e2e12 together with s2 = e2ce9 evolve

from δ(q0, b), sharing e2 ∈ s1 ∩ s2) in all local event sets of e2, i.e., by including

e8 into E1. Similarly, the inclusion of e11 in E2 overcomes DC4-violating tuple

(q0, e11, ε, a, E2). It is worth noting that the expression “@e1, e2 ∈ E, e1e2 6 s1,

e2e1 6 s2, ∀t ∈ E∗, δ(q, e1e2t)! ⇔ δ(q, e2e1t)!” in Step 7 prevents the unnecessary

inclusion of e10 in E1 as well as e7 in E2 and e6 in E1 (e6 and e7 satisfy DC1-DC2

and e10 and d satisfy EF1-EF2). The algorithm terminates in this stages, leading

to the decomposability of AS, with E3
1 = {a, b, c, d, f, e1, e3, e5, e7, e9, e11, e2, e4, e8},

E3
2 = {a, b, c, f, e2, e4, e6, e8, e10, e11, e12}.

5.4 Conclusion

The chapter proposed a method for task automaton decomposabilization, applicable

in the top-down cooperative control of distributed discrete event systems. This result

is a continuation of previous works on task automaton decomposability in Chapters

2 and 3, and fault-tolerant cooperative tasking in Chapter 4; and investigates the
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follow-up question to understand that how can an originally indecomposable task

automaton be made decomposable, by modifying the event distribution among the

agents.

First, using the decomposability conditions, the sources of indecomposability have

been characterized and then a procedure was proposed to establish new communica-

tion links in order to enforce the decomposability conditions. To avoid the exhaustive

search and the difficulty of checking of decomposability conditions in each step, a fea-

sible solution was proposed as a sufficient condition that can make any deterministic

task automaton decomposable.

5.5 Appendix

5.5.1 Proof of Lemma 5.2

Following lemma will be used during the proof.

Lemma 5.7 Consider two non-increasing chains ai, bi, i = 1, ..., N , such that a1 ≥

a2 ≥ ... ≥ aN > 0, b1 ≥ b2 ≥ ... ≥ bN > 0. Then
N

Σ
i=1
ai <

N

Σ
i=1
bi implies that

∃k ∈ {1, ..., N} such that ak < bk.

Proof: Suppose by contradiction that
N

Σ
i=1
ai <

N

Σ
i=1
bi, but, @k ∈ {1, ..., N} such that

ak < bk. Then, ∀k ∈ {1, ..., N} : ak ≥ bk. Therefore, since ak, bk > 0,∀k ∈ {1, ..., N},

it results in
N

Σ
i=1
ai ≥

N

Σ
i=1
bi which contradicts to the hypothesis, and the proof is followed.
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Now, we prove Lemma 5.2 as follows. In each iteration k for the event e and local

event set Ei with maximum |W k−1
e (AS, E

k−1
i )|, all edges from e to Ei are deleted.

Denoting the set of deleted edges in k − th iteration by ∆Σk, in each iteration k,

some elements of Σk−1 are moved into ∆Σk until after K iterations, there is no more

elements in ΣK to be moved into a new set. This iterative procedure leads to a

partitioning of Σ by {∆Σk}Kk=1, as {∆Σk} ∩ {∆Σl} = ∅, ∀k, l = {1, ..., K}, k 6= l and

K
∪
k=1

∆Σk = Σ. The latter equality leads to

K

Σ
k=1
|∆Σk| = |Σ| (5.1)

Now, we want to prove that

|∆Σk| = |∆Σk|max,∀k ∈ {1, ..., K} ⇒ K = Kmin (5.2)

Here, K is the total number of iterations that is also equal to the number of

added communication links to remove violations of DC1 and DC2. In this sense, K

is desired to be minimized.

The proof of (5.2) is by contradiction as follows. Suppose that |∆Σk| = |∆Σk|max,

∀k ∈ {1, ..., K}, but, K 6= Kmin, i.e., there exists another partitioning {∆′Σk}K′k=1,

with K ′ < K partitions, leading to

K′

Σ
k=1
|∆′Σk| = |Σ| (5.3)

In this case, from (5.1) and (5.3), we have

K

Σ
k=1
|∆Σk| =

K′

Σ
k=1
|∆Σk|+

K

Σ
k=K′+1

|∆Σk| =
K′

Σ
k=1
|∆′Σk|. (5.4)

Since |∆Σk| > 0, ∀k ∈ {1, ..., K}, then
K

Σ
k=K′+1

|∆Σk| > 0, then, (5.4) results in

K′

Σ
k=1
|∆Σk| <

K′

Σ
k=1
|∆′Σk|. (5.5)
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Moreover, since |∆Σk| > 0, |∆′Σk| > 0, ∀k ∈ {1, ..., K}, then (5.5) together with

Lemma 5.7 imply that ∃k ∈ {1, ..., K ′} ⊆ {1, ..., K}, such that |∆Σk| < |∆′Σk|, i.e.,

∃k ∈ {1, ..., K} such that |∆Σk| 6= |∆Σk|max, which contradicts to the hypothesis;

hence, (5.2) is proven. Moreover, if automaton AS has no violations of DC3 and DC4

before and during the iterations, then the algorithm makes it decomposable with

the minimum number of added communication links, since the problem of making

decomposable is reduced to the optimal enforcing of DC1 and DC2.

5.5.2 Proof for Lemma 5.3

For any DC3-violating tuple (s1, s2, a, Ei, Ej), the exclusion of a from Ei or Ej, ex-

cludes a from Ei ∩ Ej, leading to pEi∩Ej
(s1) and pEi∩Ej

(s2) do not start with a, and

hence (s1, s2, a, Ei, Ej) will no longer act as a DC3-violating tuple.

For the second method in this lemma, firstly ∀q ∈ Q, s1, s2 ∈ E∗, δ(q, s1)!,

δ(q, s2)!, pEi∩Ej
(s1) and pEi∩Ej

(s2) start with a, such that (s1, s2, a, Ei, Ej) is a DC3-

violating tuple, ∃b ∈ (Ei ∪ Ej)\(Ei ∩ Ej) such that b appears before a in s1 or s2

(since AS is deterministic and pEi∩Ej
(s1) and pEi∩Ej

(s2) start with a).

Two cases are possible, here: b appears in only one of the strings s1 or s2; or b

appears in both strings. If b appears before a in only one of the strings, then without

loss of generality, assume that b belongs to only s1; hence, ∃q, q1, q2, q
′
1, q
′′
1 ∈ Qi ×Qj,

ω1, ω2 ∈ [(Ei ∪Ej)\(Ei ∩Ej)]∗, ω′1 ∈ (Ei ∪Ej)∗, a ∈ Ei ∩Ej such that q′1 ∈ δi,j(q, ω1),

q′′1 ∈ δi,j(q′1, b), q1 ∈ δi,j(q′′1 , ω′1), δi,j(q1, a)!, q2 ∈ δi,j(q, ω2), δi,j(q2, a)!, where, δi,j is the

transition relation in Pi(AS)||Pj(AS). Now, due to synchronization constraint in the
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parallel composition, the inclusion of b in Ei ∩ Ej means that ([q′′1 ]i, y) and (x, [q′′1 ]j)

are accessible in Pi(AS)||Pj(AS) only if y ∈ [q′′1 ]j and x ∈ [q′′1 ]i, respectively. This

means that ([q1]i, [q2]j) and ([q2]i, [q1]j) are not accessible in Pi(AS)||Pj(AS); hence,

pi(s1)|pj(s2) and pi(s2)|pj(s1) cannot evolve after a, and therefore, do not generate

illegal strings out of the original strings, implying that (s1, s2, a, Ei, Ej) will no longer

remain a DC3-violating tuple.

On the other hand, if b appears before a, in both strings s1 and s2, then

∃q, q1, q2, q
′
1, q
′′
1 , q
′
2, q
′′
2 ∈ Qi ×Qj, ω1, ω2 ∈ [(Ei ∪ Ej)\(Ei ∩ Ej)]∗, ω′1, ω′2 ∈ (Ei ∪ Ej)∗,

a ∈ Ei ∩ Ej such that q′1 ∈ δi,j(q, ω1), q′′1 ∈ δi,j(q
′
1, b), q1 ∈ δi,j(q

′′
1 , ω

′
1), δi,j(q1, a)!,

q′2 ∈ δi,j(q, ω2), q′′2 ∈ δi,j(q
′
2, b), q2 ∈ δi,j(q

′′
2 , ω

′
2), δi,j(q2, a)!, that leads to the ac-

cessibility of ([q′1]i, [q
′
2]j) and ([q′2]i, [q

′
1]j) as well as ([q1]i, [q2]j) and ([q2]i, [q1]j) in

Pi(AS)||Pj(AS), that means that although (s1, s2, a, Ei, Ej) is no longer a DC3-

violating tuple, (s1, s2, b, Ei, Ej) emerges as a new DC3-violating tuple.

In this case (when @b ∈ (Ei ∪ Ej)\(Ei ∩ Ej) that appears before a in only one

of the strings s1 or s2), instead of inclusion of b in Ei ∩ Ej, if two different events

e1, e2, e1 6= e2 that appear before a in strings pEi∪Ej
(s1) and pEi∪Ej

(s1) are attached

to Ei ∩ Ej, it leads to ∃q, q1, q2, q3, q4 ∈ Qi × Qj, ω1, ω2, ω
′
1, ω

′
2 ∈ [(Ei ∪ Ej)\(Ei ∩

Ej)]
∗, e1, e2, a ∈ Ei ∩ Ej such that q1 ∈ δi,j(q, ω1e1), q3 ∈ δi,j(q1, ω

′
1), δi,j(q3, a)!,

q2 ∈ δi,j(q, ω2e2), q4 ∈ δi,j(q2, ω
′
2), δi,j(q4, a)!. Consequently, due to synchronization

constraint in parallel composition, ([q1]i, [q]j), ([q]i, [q1]j), ([q2]i, [q]j) and ([q]i, [q2]j);

hence, ([q3]i, [q4]j) and ([q4]i, [q3]j) are not accessible in Pi(AS)||Pj(AS), i.e., no more

DC3-violating tuples form on strings s1 and s2.
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5.5.3 Proof for Lemma 5.4

For any DC4-violating tuple (q, t1, t2, e, Ei), with q, q1, q2 ∈ Q, t1, t2 ∈ (E\Ei)∗,

e ∈ Ei, δ(q, t1) = q1 6= δ(q, t2) = q2, the exclusion of e from Ei leads to pi(e) = ε,

and pi(t1e) = pi(t2e) = ε, [q]i = [δ(q1, e)]i = [δ(q2, e)]i; hence, (q, t1, t2, e, Ei) will no

longer behave as a DC4-violating tuple. However, it should be noted that it may

cause another nondeterminism on an event after e, and this event exclusion is allowed

only if e is passive in Ei and the exclusion does not violate EF1− EF4.

For the second method, i.e., event inclusion, if ∃e′ ∈ (t1 ∪ t2)\(t1 ∩ t2), then

without loss of generality, assume that e′ ∈ t1\t2 such that ∃q, q1, q2, q
′
1, q
′′
1 ∈ Q,

t1, t2 ∈ (E\Ei)∗, e ∈ Ei, δ(q, t1) = q1 6= δ(q, t2) = q2, δ(q′1, e
′) = q′′1 . In this case,

the inclusion of e′ in Ei leads to pi(t1e) = e′e, while pi(t2e) = e and therefore,

[q1]i = [q′′1 ]i 6= [q2]i, i.e., in Pi(AS), t1 and t2 will no longer cause a nondeterminism

on e from q and accordingly, (q, t1, t2, e, Ei) will not remain a DC4-violating tuple.

If however @e′ ∈ (t1 ∪ t2)\(t1 ∩ t2), i.e., ∀e′ ∈ (t1 ∪ t2), e′ ∈ (t1 ∩ t2), then the

inclusion of any such e′ generates a DC4-violating tuple (q, t1, t2, e
′, Ei). In this case,

Lemma 5.4 suggests to take two different events that appear before e, one from t1

and the other from t2, and include them into Ei such that ∃q, q1, q2, q
′
1, q
′
2, q
′′
1 , q
′′
2 ∈ Q,

e1 ∈ t1, e2 ∈ t2, e1 6= e2, δ(q, t1) = q1 6= δ(q, t2) = q2, δ(q′1, e1) = q′′1 , δ(q′2, e2) = q′′2 .

Thus, including e1 and e2 in Ei results in pi(t1) = e1, pi(t2) = e2, [q1]i ∈ δi([q]i, t1),

[q2]i ∈ δi([q]i, t2), [q1]i 6= [q2]i meaning that (q, t1, t2, e, Ei) is not a DC4-violating

tuple anymore.
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5.5.4 Proof for Lemma 5.5

The algorithm starts with excluding events from local event sets in which the events

are passive and their exclusion do not violate EF1-EF4. From this stage onwards

the decomposability conditions are no longer allowed to be enforced by link dele-

tion; instead the algorithm removes the violations of decomposability conditions by

establishing new communication links. Next, the algorithm applies enforcing tuples

in the order of corresponding number of violating tuples. If no new violations of

decomposability conditions emerge during the conducting of enforcing tuples, then

the algorithm decomposes the task automaton with the minimum number of commu-

nication links, similar to the proof of Lemma 5.2. The reason is that the iterations

partition the set of violating tuples, and applying of enforcing tuples (based on Lem-

mas 5.2, 5.3 and 5.4) with the maximum number of violating tuples in each iteration

gives the maximum number of resolutions per link addition that leads to the mini-

mum number of added communication links. The algorithm will terminate due to the

finite number of states and events and at the worst case all events are shared among

all agents to make the automaton decomposable.

5.5.5 Proof for Lemma 5.6

Denoting the expression , “∀Ei, Ej ∈ {E1, . . . , En}, i 6= j, a ∈ Ei ∩Ej, s = t1at
′
1, s
′ =

t2at
′
2, pEi∩Ej

(t1) = pEi∩Ej
(t2) = ε” as “A”, and the expression “δ(q0,

n

|
i=1

pi (si))! for

any {s1, · · · , sn} ⊆ L̃(AS), ∃s, s′ ∈ {s1, · · · , sn}, s 6= s′” as “B”, the condition DC3

can be written as A ⇒ B. Now, if ∀s1, s2 ∈ E∗, s1 ≮ s2, s2 ≮ s1, q, q1, q2 ∈ Q,
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δ(q, s1) = q1 6= δ(q, s2) = q2, [@e1, e2 ∈ E, e1e2 6 s1, e2e1 6 s2, ∀t ∈ E∗, δ(q, e1e2t)!⇔

δ(q, e2e1t)!], ∃e ∈ s1 ∩ s2, any e′ ∈ {e1 6 t1, e2 6 t2}, such that e′ appears before e in

s1 and s2, then e′ is included in Ei, ∀i ∈ loc(e), it follows that ∀Ei, Ej ∈ {E1, . . . , En},

i 6= j, a ∈ Ei ∩ Ej, s = t1at
′
1, s
′ = t2at

′
2, δ(q0, s)! 6= δ(q0, s

′)!, a ∈ s ∩ s′, then the

first event of t1 and t2 belong to Ei ∩ Ej, i.e., A (the antecedent of DC3) becomes

false; hence, A⇒ B (DC3) holds true. Therefore, the procedure in Lemma 5.6 gives

a sufficient condition to make DC3 always true.

It is similarly a sufficient condition for DC4 as follows. Let the expressions

“∀i ∈ {1, . . . , n}, x, x1, x2 ∈ Qi, e ∈ Ei, t ∈ E∗i , x1 ∈ δi(x, e), x2 ∈ δi(x, e), x1 6= x2”

and “∀t ∈ E∗i : δ(x1, t)! ⇔ δ(x2, t)!” to be denoted as “C” and “D”, respectively. In

this case, DC4 can be expressed as C ⇒ D. Then, for a deterministic automaton

AS, if ∀s1, s2 ∈ E∗, s1 ≮ s2, s2 ≮ s1, q, q1, q2 ∈ Q, δ(q, s1) = q1 6= δ(q, s2) = q2,

[@e1, e2 ∈ E, e1e2 6 s1, e2e1 6 s2, ∀t ∈ E∗, δ(q, e1e2t)! ⇔ δ(q, e2e1t)!], ∃e ∈ s1 ∩ s2,

the first event of s1 and s2 are included in all local event sets that contain e, it results

in ¬C(i.e., the antecedent of DC4 becomes false, and consequently, DC4 becomes

always true). The reason is that ∀Ei ∈ {E1, . . . , En}, t1, t2 ∈ E∗, q, q1, q2 ∈ Q,

e ∈ Ei, δ(q, t1e) = q1 6= δ(q, t2e) = q2, we have ¬[pi(t1) = pi(t2) = ε], preventing

nondeterminism on e.
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Chapter 6

Conclusions

This thesis proposed a method for automaton decomposition, applicable in top-down

cooperative control of distributed multi-agent systems. Given a global specification

as a deterministic automaton and provided the global event set as the union of local

event sets for agents in a parallel distributed plant, the thesis has addressed three

problems: (1) developing cooperative tasking using task decomposition, namely a

divide-and-conquer method by decomposing the global task such that the fulfillment

of local tasks guarantee the satisfaction of the global specification, by the team; (2)

fault-tolerant cooperative tasking to identify the conditions under which a previously

decomposable and achievable task remains decomposable and globally satisfied, in

spite of some event failures; and (3) the design of event distribution, to make an

originally indecomposable task automaton decomposable, to facilitate the proposed

top-down cooperative tasking.

Motivating by these three research questions, the main contributions of the thesis

can be outlined as follows:

• necessary and sufficient conditions have been developed for the decomposability

of a deterministic task automaton with respect to parallel composition and

natural projections into two local event sets. The approach has been then
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extended into a sufficient condition for an arbitrary finite number of agents,

using a hierarchical algorithm, and finally, the decomposability conditions have

been generalized into an arbitrary finite number of agents. These conditions

intuitively mean that a task automaton is decomposable if and only if any

decision on the order or selection between two events can be handled by at

least one of the agents, and the cooperative perspective of the team of agents

neither allows a string that is illegal in the global task nor disables a legal string

of the global task automaton;

• it was shown that if a global task automaton is decomposed into local task

automata for the individual agents and local supervisors exist for each agent,

satisfying the local tasks, then the closed loop system of the team of agents is

guaranteed to satisfy the global specification;

• a cooperative scenario has been developed and implemented by a team of three

communicating robots, to show the concepts of task decomposability and co-

operative tasking;

• to address the robustness of the proposed method, a notion of passivity has

been introduced to characterize the redundant event failures. The passivity was

found to be a necessary condition for preserving the decomposability under

event failures, based on which necessary and sufficient conditions have been

identified for a decomposable task automaton to remain decomposable under

passive event failures;

• it was shown that under the passivity of the failed events and fault-tolerant
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decomposability conditions, a previously decomposable and satisfied task au-

tomaton remains satisfied, even if some agents fail to fulfill their corresponding

local tasks;

• the decomposability conditions and fault-tolerant decomposability conditions

have been utilized to identify the sources of indecomposability, and then a pro-

cedure was proposed to establish new communication links in order to enforce

the decomposability conditions. This procedure was shown to be a sufficient

condition to make any deterministic task automaton decomposable.

This thesis may represent a promising step towards developing a top-down frame-

work for cooperative control of multi-agent systems, as it was discussed at the very

beginning. This work however is limited to the class of specifications with all states as

marked states. Although in many specifications such as sequential tasking all states

can be assigned to the accomplishments of stages of the task, in some applications

only some of the states are marked states; therefore, the task decomposition should

be developed in such a way that the collective task has the same marked states as

the original task, and accordingly, the team of agents should collectively satisfy the

global specification, preserving the marked states and avoiding the blocking problem.

Cooperative tasking under marked states is particularly important in top-down sym-

bolic control, where the global specification is given in linear temporal logic whose

conversion to automaton imposes marked states.

Furthermore, the top-down framework in this work has been developed for basic

distributed plant with all events controllable and observable. Future works could

176



be extended to decomposability under partial controllability and observability. This

would be important for the applications with limited sensing and actuation of the

events.

Moreover, using the associativity property of parallel composition, it is possible

to investigate the modular cooperative tasking to understand whether the composi-

tion of decomposable task automata is a decomposable task, to be used in modular

cooperative tasking. The modular design allows to incorporate new tasks without

redesigning of the previous controllers.

In addition, this work has set a basis for future work towards identifying the

decomposability condition for nondeterministic automata that is very challenging

and to our best of knowledge still is an open problem. The difficulty comes from

the interleaving and synchronization of nondeterministic transitions. The proposed

decomposability conditions for deterministic automata can be carefully revisited to

hypothesize the decomposability of nondeterministic automata. The nondeterministic

cooperative tasking will allow to address more complex specifications. On the other

hand, reducing the decomposability conditions of deterministic automata to language

separability would be directly applied, and afterwards the Ramadge-Wonham frame-

work can be used for the synthesis of local supervisors such that the global language

specification is collectively satisfied.

From the industrial point of view, a good starting point to apply the idea of

cooperative tasking leans towards the distributed systems whose local plants are dy-

namically decoupled but they are coupled through the global specification, i.e., the
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team is supposed to achieve a global task, cooperatively. Examples on such systems

include: Distributed control systems (DCS), concurrent programming and parallel

computing. In distributed control systems, each local controller has access to local

information only, that is the set of sensor and actuator signals form its plant and its

neighbor local plants. The interconnection of each plant to its neighbors is typically

through logical signals, so-called interlocks. Each interlock is indeed an event in the

local event set and could be shared with the neighbors in order for cooperative task-

ing. For such an application, based on the proposed conditions DC1-DC4, the global

specification is checked for decomposability, if it is decomposable, then using EF1-

EF4, the redundant interlocks are identified and removed from the local event sets,

and if the task is not decomposable, then using the Algorithms in Chapter 5, one may

add new interlocks to the systems by introducing new communication links in order to

make the task decomposable and implementable, cooperatively. Another application

of the cooperative tasking is for concurrent programming (computation of different

blocks within a computer system) and parallel computing (execution of a program

in a multi-processor/multi-core system). In the first case, different subroutines of

the program serve as local agents and the common switches (if-then-else) and orders

(sequences) are considered as the shared events between the subroutines. For the sec-

ond case, parallel computing, the share events are exchanged between the processors,

rather than the subroutines, and finally in both cases, the proposed decomposability

conditions can be used to render the decentralized cooperative tasking.

Another promising direction of this result could be the decomposability of timed

automata, to incorporate the time information into the global specification. In this
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case, based on logical and temporal specifications, the occurrence time of the events

can be characterized, to be used in optimal task and resource allocation in manu-

facturing systems, cloud computing, smart grids, transportation, parallel computing,

multi-processing, robotics and distributed process control.
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