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Abstract

The aim of this dissertation is to investigate the formation control of multiple mobile

robots based on thequeueandartificial potential trenchmethod. In general, this thesis

addresses the following topics: (1) comparative analysis of two nonlinear feedback con-

trols and study of an improved robust control for mobile robots; (2) real implementation

of multi-robot system formation control; (3) extracting explicit control laws and ana-

lyzing the associated stability problems based on the framework of queue and artificial

potential trench method; (4) zoning potentials for maintaining robot-to-robot distances;

(5) stability analysis on attracting robots to the nearest points on the segment and colli-

sion avoidance methods; (6) input-to-state stability of formation control of multi-robot

systems.

A detailed analysis of the qualitative characteristics of two nonlinear feedback controls

of mobile robots is presented. The robustness of a tracking control is investigated. Based

on the research results, an improved control is proposed. In addition to robustness, the

improved method produces faster response. Real implementation of formation control

is conducted on a multi-robot system. The triangle and square pattern formations of

MRKIT robots are successfully demonstrated.
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ABSTRACT iii

Based on the framework ofqueueandartificial potential trenchfor multi-robot forma-

tion, we aim to extract explicit multi-robot formation control laws and provide stability

analysis for a group of robots assigned to the same segment. A refined definition of ar-

tificial potential trench, which allows the potential function to be nonsmooth, is defined

and various ways to construct admissible potential trench functions have been proposed.

Stability of formation control is investigated through a solid mathematical nonsmooth

analysis.

We investigate the stability of formation control for multi-robot systems operating as a

coordinated chain. In this study, a group of robots are organized in leader-follower pairs

with constraints of maximum and minimum separations imposed on a robot with respect

to its leader and new stable controls are synthesized. The introduction of the concept

of zoning scheme, together with the associated zoning potentials, enables a robot to

maintain a certain separation from its leader while forming a formation. Computer

simulation has been conducted to demonstrate the effectiveness of this approach.

We investigate a generic formation control, which attracts a team of robots to the near-

est points on the same segment while taking into account obstacle avoidance. A novel

obstacle avoidance method, based on the new concept of apparent obstacles, is pro-

posed to cope with concave obstacles and multiple moving obstacles. Comparison be-

tween apparent obstacle avoidance method and other alternative solutions is discussed.

An elaborated algorithm dedicated to seeking the nearest point on a segment with the

presence of obstacles is presented. Local minima are discussed and the corresponding

simple solutions are provided. Theoretical analysis and computer simulation have been
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performed to show the effectiveness of this framework.

The input-to-state stability of the formation control of multi-robot systems using arti-

ficial potential trench method and queue formation method is investigated. It is shown

that the closed-loop system of each robot is input-to-state stable in relation to its leader’s

initial formation error. Furthermore, queue formation is robust with respect to structural

changes and intermittent breakdown of communication link.
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Chapter 1

Introduction

1.1 Background

During the past few decades, we have witnessed increasing research and development

in the area of Autonomous Multi-robot System (AMRS) or Autonomous Multi-Vehicle

System (AMVS). An autonomous multi-robot (or multi-vehicle) system usually com-

prises a group of (often homogenous) unmanned robots (or vehicles); each has a certain

degree of mobility and autonomy. Before we can have a formal discussion, we first

need to define the terms ”autonomous” or ”multi-robot system”. It is difficult to use

precise words to explain these terms because each of them may involve a great variety

of technologies and disciplines, which are getting much more sophisticated nowadays.

Nevertheless we would try to present rough definitions. The multi-robot/multi-vehicle

systems under consideration here refer to all types of unmanned autonomous mobile

robot/vehicle components, which include (but not limited to) ground robot/vehicle, un-

derwater robot/vehicle, and flying robot/vehicle. These machines are organized in ei-
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ther homogeneous or heterogeneous forms and operate in a cooperative way. In order to

make the definition more precise, we would like to point out the essential components

of the autonomous multi-robot system. There are three key attributes that are inherent

in these systems:locomotion, perception, andautonomy.

Locomotion means that each robot has certain on-board mechanism to voluntarily per-

form motions in its environment. The nature of locomotion mechanism is usually prop-

erly designed to adapt to the intended surrounding environments. For instance, a robot

which moves on ground has a different locomotion mechanism from that of these which

are intended to perform underwater tasks. Even for ground robots, the design of lo-

comotion mechanisms to explore a tough terrain is usually different from that of robots

deployed in a jungle. Therefore, there are numerous solutions for various kinds of robots

and the selection of a proper method of locomotion plays an important role in robot de-

sign. An introduction to common locomotion mechanisms on mobile robots can be

found in the book written by R. Siegwart and I. R. Nourbakhsh [78].

Perception is one of the most important capabilities for an autonomous robot to actively

acquire information from the surrounding environment and its internal states. A great

variety of kinds of sensors are normally integrated into autonomous robots. Readings

from these sensors provide the necessary knowledge of the outside environment like

ambient temperature, humidity, etc.; they also supply data of internal states, such as tire

pressure and battery voltage. Detailed information of common sensors used in mobile

robots can be found in the book authored by H. R. Everett [23].

In simple words, autonomy is the attribute, which enables the system to adapt to the out-
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side environment with minimum human instructions while controlling its own internal

states. As indicated by the word ”adapt”, autonomous systems, often possess flexible

capabilities such as perception, learning, computation, and decision-making. On the

other hand, autonomous robots are often required to operate in unconstructed environ-

ments. In these situations, the capabilities of navigation and planning are vital to robust

mobility and performance. Moreover, with autonomy it means the whole robot team can

complete assigned tasks in a coordinated, cooperative and even negotiated way. In other

words, autonomy operates in the context of the whole team and it is not limited to an

individual robot. Normally research on team-level autonomy attracts interest than that

on an individual robot.

The above definitions help to draw distinct lines between autonomous multi-robot sys-

tems and other terms such as ”autonomous mobile robots” and ”multi-agent system”.

Obviously autonomous mobile robots can be the atomic components of autonomous

multi-robot systems and the components of autonomous multi-vehicle systems are not

limited to mobile robots in the ordinary sense. Unmanned flying vehicles and under-

water vehicles may also be utilized as basic components. Although autonomous multi-

robot or multi-vehicle systems can be viewed as multi-agent system from the software

perspective, autonomous multi-vehicle systems are inevitably linked to a certain hard-

ware platform which features competence of sensing and locomotion. Moveover, many

of the multi-agent systems usually are not autonomous multi-vehicle system. Multi-

agent systems is a much broader term than autonomous multi-robot or multi-vehicle

systems. Discussion on definitions of ”agent”, ”agent-based system”, and ”multi-agent
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system” can be found in the reference book [37].

There is a great variety of motivations to research and develop multi-robot systems or

multi-vehicle systems. One of the obvious reasons for such growing interests is the

potentials of this type of robotic systems to perform a variety of tasks in environments

inaccessible or too dangerous to humans. While a single autonomous robot may be very

useful in performing a given robotic task, multiple robots that can accomplish various

tasks cooperatively may offer even greater advantages. This is due to the increased and

synergistic effectiveness in certain applications. One of such examples is the ”target

search and detection” job in a large area of coverage. The procedure can be carried

out in this manner: distribute a group of mobile robots over the area to be searched;

program the robots to do the searching individually and collaboratively with all other

robots. As a result of the cooperative works, the searching tasks and targets location can

accomplished in much shorter time.

In some applications like object transport and manipulation, it is difficult if not impossi-

ble for a single autonomous robot to complete an assigned task by itself. But a group of

robots operating in a cooperative way can carry or push objects. They even demonstrate

promising potentials and advantages in handling complex missions. Other benefits that

multi-robot systems have over single-robot systems include a large range of task do-

mains, greater efficiency with inherent parallelism, improved system performance, fault

tolerance, comparatively lower cost, and ease of development [58]. In addition, a team

of multiple robots has better survivability, enhanced reliability guaranteed by its inher-

ent redundancy and cooperation mechanism in the battle or other adverse environments
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where damages or losses are inevitable. This is one of the most important and overriding

advantages of multi-robot system over single robots.

Research interests in unmanned autonomous vehicles have been growing significantly

in recent years, especially with the advent of highly publicized events such as DARPA’s

Grand Challenge [89]. Most of the autonomous multi-vehicle systems have been em-

ployed in military applications [89].These systems are usually intended for missions

that are either too difficult or too dangerous for humans to accomplish alone. Areas

of application include reconnaissance/surveillance, target observation/acquisition, mine

clearing and using the vehicles as communications hubs/relays. For example, the U.S.

Navy has been doing extensive research on using Autonomous Underwater Vehicles

(AUVs) for mine hunting, maritime reconnaissance, underwater mapping, tracking of

submarines and even as communication and navigation aids mainly through the use of

networks of small Unmanned Undersea Vehicles (UUVs) [94]. However, the potential

widespread adoptions of multi-robot technology beyond the aforementioned military

applications should never be underestimated. For instance, the use of UUVs is being

commercialized to support offshore oil field and pipeline route surveys [94].

A single autonomous robot is a complicated system requiring the integration of many

technologies; a multi-robot system is even more complicated, because of the added co-

ordination and collaboration duties among the robots. Dealing with such complications

requires many technologies across many engineering disciplines. Some comprehensive

surveys exist, such as [1], and those which have more specific focus or perspective, such

as [19] for vision and [35] for robot-soccer, are also available.
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Formation control is one of the focuses of multi-robot system research. The formation

control problem is described as the coordination of a group of moving robots while

maintaining the formation of a certain shape. This aspect of navigation is important

in applications such as search and rescue operations, landmine clearing, and remote

terrain and space exploration. Developments in this area are often derived from biolog-

ical examples such as flying formations of migratory birds flying in the air and schools

of fish swimming in the ocean. Some centralized formation coordination approaches

are described in [22, 44] and [46]. Due to the centralized approach to the problem,

these methods are less robust to withstand failures, less scalable to larger systems and

more costly in terms of computational needs. On the other hand, feasible decentralized

approaches include the Leader-Follower method [11], the Control Lyapunov Function

approach [67] and Motor Schemas [2]. In the leader-follower approach, individual vehi-

cles would basically take reference from a ”leader” vehicle and keep to a predetermined

distance and orientation as they travel along the planned path. However, problems may

arise when the team of vehicles is large and direct communication with the ”leader”

vehicle is not possible. Thus, an alternative approach is to take reference from one or

two neighboring vehicles [3]. On the other hand, the Control Lyapunov Function (CLF)

approach uses CLFs to solve the coordination problem; it changes the motion control

problem into a ”stabilization problem for one single system” [67]. Finally, the motor

schema method is a behavior-based approach to formation control. Each motor schema

(or behavior) generates a vector representing a desired direction and distance of travel.

These vectors are later integrated to give a resultant action that will be communicated to

the actuators for execution.
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1.2 Motivations

In this dissertation, differential mobile robot with built-in locomotion mechanism and

certain capabilities of sensing nearby surroundings and communicating with other robots

or host (such as a human operator or high-level supervisor like PC machine) is consid-

ered. The specific type of two-wheel differential mobile robot or commonly referred

to as Wheeled Mobile Robot (WMR) illustrated in Figure 1.1(a), is considered in this

work. This kind of mobile robot has a left wheel and a right wheel which are controlled

and driven independently. There is no mechanical or electrical couplings between the

wheels. Various ways exist for driving the wheels. The most common way is to use

electric motors, such as step motor and brushless DC motor. We use the term ”multi-

robot system” to refer to a group of mobile robots which are organized in certain way;

they are capable of operating in a coordinated and cooperated manner to accomplish

certain tasks. The foregoing statement, which describes the working of an autonomous

multi-robot system, implies a fundamental prerequisite: each member (robot) within the

system must be able to communicate with other members directly or indirectly. The

wireless technology is an ideal tool to build the communication components in mobile

robots; it is also the best network communication link for multi-robot systems. Wireless

communication technology are inherent with many advantages including functionality,

mobility, small physical size, reliability, commercial availability, affordability and low

power consumption. Figure 1.1(b) depicts a robot community consisting of three dif-

ferential mobile robots each with an integrated wireless communication device. Robot

community can be established by the robots’ on-board wireless communication mod-
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ules. The wireless signal of each module can cover a certain area. The reception areas

generated by the respective robots would inadvertently overlap one another to some

extent such that any robot can reach at least one other member of the community via

wireless communication.
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Figure 1.1: A differential mobile robot and a robot community consisting of multiple
robots: (a) representation of a single mobile robot; (b) a robot community with three
mobile robots which are connected to each other via wireless communication.

It is reasonable to assume that each mobile robot has certain essential but limited abilities

of perception and communication. For instance, a commercial mobile robot named

MRKIT shown in Figures 1.2 - 1.4, can be regarded as a prototype of the generic mobile

robot model, which is depicted in Figure 1.1(a). MRKIT is developed for experiments

on multi-robot systems. Top view of one of the MRKIT mobile robots used for multi-

robot formation implementation is shown in Figure 1.2. Its on-board wireless Radio

Frequency (RF) module can be seen on the top right side of this robot from this figure.

There is also another counterpart of RF module on the workstation side. Figure 1.3
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depicts the RF module on the workstation side which can be connected to a PC via

Universal Serial Bus (USB) interface. Because of its on-board RF module, each robot

can directly talk to its neighbors which fall within its wireless coverage range. A robot

may also indirectly reach those robots located outside its wireless broadcast coverage

with assistance from its neighbors. The RF device on the workstation side, however,

provides possible bi-directional communication paths between the host (e.g., a high-

level supervisor or human commander) and robots. Global information such as the task

to be performed can be transmitted to each robot by the host. The infrared sensors

located on MRKIT emit a ray of infrared light to detect nearby objects. Although such

localized sensory capability of nearby environment is not global, it is crucial not only to

the single robot but also to the whole group of robots. Any robot in the group must have

such access to the knowledge of nearby environment to determine its next-step of action

and to avoid possible collisions with obstacles or other robots. Next to the RF device

shown in Figure 1.2 is a 32-bit Micro Computer Unit (MCU), which provides the basic

computation capabilities, low level programmable logic control, and implementation of

algorithms through firmware development. The on-board MCU can control all other

electronic modules of the robots including sensors, RF module, locomotion actuators

and other components. The codes for the MCU can be programmed and flashed when

necessary and this flexibility greatly facilitates implementation.

Figure 1.4 shows bottom view of a MRKIT mobile robot. On the bottom of the robot, the

white ball-shape parts are castors. Also from this picture, it can be observed that the two

wheels are symmetrically located on two sides of the robot. Each wheel is controlled and
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Figure 1.2: Top view of MRKIT mobile robot.

driven by two independent step motors which constitute the robot’s actuators. These are

hidden behind the lowest Printed Circuit Board (PCB) in Figure 1.4. The power to drive

the two step motors are supplied by a rechargeable battery, which is hidden behind the

lowest PCB mounted close to the motors. Current will flow from the battery to the step

motors under the control of MCU and peripheral circuitry such as H-bridge MOSFETs

or transistors to render mobility for the robot. The rotational motions of the step motors

will then be translated into mobility for the robot. H-bridge MOSFETs or transistors

can drive the motor to rotate in clockwise or counterclockwise directions.
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Figure 1.3: USB interface RF module on the workstation side.

Formation control of multi-robot systems involves a series of topics to be investigated

and several of the key issues of formation control have been addressed by this thesis. To

illustrate the generic scenario of formation control of a group of mobile robots, Figure

1.5 is depicted to highlight the fundamental tasks involved. As it is typical for most

of the multi-robot formation control, a group of mobile robots are initially randomly

scattered within a certain area. In Figure 1.5, initially all robots are stationed within the

area surrounded by dash lines. Usually all the robots are identical and we refer to such

a group of robots as homogeneous. Before the formation starts to shape, each robot has

very limited information about its surroundings. At the very beginning, it needs to talk to

its neighbors to get acquainted with the whole group of robots so as to establish the robot

community, namely the whole group of robots with certain social characteristics. The

social characteristics may include the following: which neighboring robots are within

its directly communication coverage range and who else are within the community but

cannot be reached directly. Sometimes, it is convenient for a robot to identify and form

certain relationship with others. For instance, a robot may follow or lead another robot

during the formation process. This initialization stage before the formation starts is
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Figure 1.4: Bottom view of MRKIT mobile robot.

important. After this stage, the group of robots is organized in certain manner rather

than a mere band of robots.

Specifications on the desired geometric pattern may be transmitted to each robot by the

host. The robot community then has to figure out how to perform the task. Although the

simplest way is to do it through human interventions, autonomous intelligent methods

with minimum human interventions and resources are always preferred. In order to

form the desired geometric pattern, the group of robots has to be distributed to occupy

certain positions and ensure that each robot will be allocated with respect to the others

in a harmonious way. Now, the key issue is the subdivision of the whole geometric

pattern into several smaller representations, which can be executed by a single robot or
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a couple of robots. With such representations, the robot community can be divided into

several subgroups. Within each subgroup, an individual robot can manage to play its

dedicated role. The interactions between an individual robot and others must be taken

into account. There are two fundamental requirements for successful implementation.

The first is collision avoidance with other robots for safety reasons. The second is to

keep proper distances with respect to its immediate neighbors and to maintain constant

wireless communication with the rest of the robot community. Broken communication

may prevent the robot community from carrying out the assigned missions successfully.

As soon as the robot community figures out how to accomplish the desired pattern, it is

ready to perform the assigned tasks such as patrol and surveillance. For certainty, the

same fundamental requirements mentioned above also have to be complied. Sometimes,

the robot community needs to perform multi-tasking functions with a certain geometric

pattern while pursuing a moving target as depicted in Figure 1.5. It has to keep the

pattern as much as possible when it is approaching the target. In real implementations,

especially in an unconstructed dynamic environment, obstacles are of much concern

because they may obstruct one or more robots to form the desired pattern or to approach

the target. Such interruptions may finally ruin the robot community. As illustrated in

Figure 1.5, obstacles are real threats as they cause one or more robots to stray away from

the rest and disrupt the wireless communication among the rest of the robot community.

Obstacles, especially moving obstacles, are menaces to any robot because they may lead

to collisions and damage the robots involved.

There are two basic steps to achieve successful obstacles avoidance.: first detect and
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identify the obstacles; second, share the acquired information among the robot commu-

nity. In addition, the dedicated obstacle avoidance algorithms or schemes must be able

to rule out possible collisions. The algorithms must also be capable of directing the af-

fected robots to maintain their relative distances with the other robots. The ultimate goal

is this, when a robot confronts an obstacle, the dedicated algorithms must be able to as-

sist the affected robot to move pass the obstruction without collisions while maintaining

real-time communication relationship with at least one robot of the robot community.

In the process of avoiding the obstacle, the original geometric pattern may be disturbed

temporarily. Stability issues of formation control may arise when synthesizing a com-

prehensive controller for the whole robot community and individual robots to deal with

target tracking, separation managing, collision avoidance and other functions.

rob ot s’  i n i t i a l  
l oc a t i on s

ob st a c l e s

d e si re d  f orm a t i on  
p a t t e rn

m ov i n g  
d i re c t i on

t a rg e t

t o f orm  a  
g e om e t ri c  
p a t t e rn  

Figure 1.5: A generic scenario of multi-robot system formation control.
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1.3 Objectives

Driving a single mobile robot to track a moving target represents a basic endeavor be-

fore the multi-robot formation control is ready to be addressed. It is a well-known fact

that a differential mobile robot depicted in Figure 1.1(a) has non-integrable kinematic

constraints. Due to these constraints, nonlinear feedback control based on the kinetic

model is commonly used. A great number of nonlinear feedback control methods have

been proposed [43][20]. Suitable nonlinear feedback controls can be constructed using

Lyapunov functions. This is a typical engineering comprehensive practise to solve the

problem of controller design and at the same time to guarantee the associated stability.

Based on this simple observation and beginning with Lyapunov functions, we investigate

the nonlinear controller design problem. Our discussion goes beyond the usual stability

issues and includes the robustness for a given controller as a major concern. The ulti-

mate purpose of this part of work is to figure out a robust nonlinear control which can be

implemented by MRKIT robots (presented in Figures 1.2 - 1.4) driven by step motors.

One of the objectives of this thesis is to apply the robust nonlinear feedback control in

a multi-robot system consisting of several MRKIT robots for formation control. To this

end, the whole implementation which involves a vision system, firmware, hardware and

integration with other subsystems is to be developed and multi-robot formation control

will be performed based on it. Three-robot triangle formation and four-robot square

formation are conducted as experimental examples to verify the proposed robust control

and formation control in the absence of obstacles.

For a geometric pattern to be formed by a multi-robot system, there are several methods
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to break it down into low-level components to be executed by several robots or and in-

dividual robot. Among these methods, one solution (also known as ”queue and artificial

potential trench scheme”) proposed by Ge and Hua [29] in 2005 is to conveniently sub-

divide the whole geometric shapes into a series of smooth curves. Several robots of the

whole robot community are then distributed or allocated to one of the smooth curves ac-

cording to certain algorithm. Consequently, the whole robot community is divided into

several subgroups and each of them shares the same segment. In this way, an individual

robot only needs to focus on tracking along the assigned curve while keeping proper

distances to its neighbors, which are also assigned to the same curve. In other words,

any robot in the formation can decide its motion depending upon its local environment

variables, such as its distances to nearby neighbors. This method can greatly simplify

the complexity especially when the size of robot community is a concern (for instance

the multi-robot system has up to 20 robots) and the geometric pattern is complicated.

The main portion of the work reported in this thesis focuses on extending the original

idea ”queue and artificial potential trench scheme” by Ge and Hua [29]. Although this

scheme is essentially a behavior based control for multiple robots to provide the needed

flexibilities and scalability, it is only partially done. Despite extensive simulations that

have been done, a rigorous framework which is built on solid theoretical grounds has to

be completed and it presents the core of the work of this dissertation.

More often than not, initially robots are scattered far away from the assigned curve,

and therefore they have to move close to the curve first. Even robots which are at their

desired positions along the curve and the geometric pattern is perfectly formed, some
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disturbances due to unexpected circumstances such as obstacles may cause the robots

to drift away from the curve. There is an effective way to drive a mobile robot moving

towards a given curve or to correct the position error with respect to the curve during

formation control. This simple and elegant method entails the artificial creation of a

potential field where the curve becomes its bottom. A potential field, with mathematical

simplicities for analytic study and computation efficiency, can attract the robots to fall

into its bottom, namely the assigned curves. The commonly used potential fields are

ideally supposed to be differentiable. In other words, the potential fields are smooth.

However, sometimes the potential fields may fail to be differentiable at somewhere on

its domain. Inevitably we have no other options but to investigate the nonsmooth cases

and the associated problems such as whether the robots can be successfully driven to

the curve and what conditions or constraints have to be applied to these potential fields.

One of the objectives of this work is to introduce a new framework to accommodate the

nonsmooth potentials and to complete the associated stability issues for the multi-robot

system and single robots.

For the robots assigned to the same segment, it is convenient to deploy them along the

curve (of the segment) and then turn on a cascade form. It is natural to let them be

organized such that a robot can takes the robot ahead as its ”leader” and it becomes a

”follower” to this robot ahead. We refer to such a relationship as leader-follower pair.

This notion is very handy for formation control. As mentioned in the previous section,

separations among robots are to be regulated during formation control. To maintain a

desired distance between a robot and its leader, a zoning scheme and associated zoning
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potentials are introduced in our work. The basic idea is to attract the follower towards

to its leader if it gets too far away from the leader. If it gets too close to the leader, it

has to be pushed away. Basically an attracting zoning and a repulsive zoning together

make the separation between a leader and a follower to fall within certain reasonable

range. However, a simple zoning scheme may fail in formation control as it only guar-

antees collision avoidance between the leader and follower. The collision between a

robot and another one which is not its leader or follower still may happen. To prevent

possible collisions among the robots on the same segment, an improved collision avoid-

ance method based on zoning potentials has to be developed. In this thesis, we have

proposed a hierarchical collision avoidance method to serve this purpose.

To attract robots to a segment, the conventional method is to assign a goal point for

each robot to pursue. A mechanism must exist to generate goal points, and usually these

goal points are specifieda priori. In order to attract robots to segments withouta priori

goal points, we have to think of a new solution. The concept of direction of attraction

is proposed and it can let the robot decide how to approach the segment and hence no

goal points are necessary. Now with the concept of attraction and zoning potential, we

are ready to come up with explicit control laws to complete formation control for a

multi-robot system. The related stability or attractiveness is to be studied. The aim is

to generalize a novel framework, which can analyze and grantee the stability of multi-

robot formation based on synergy of the notion of artificial potential trench, direction of

attraction and zoning potentials.

To avoid using pre-determined goal points, we may also think of driving any robot to its
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nearest point on the segment. However, there are theoretical difficulties even though the

idea seems simple. Obviously for a single robot, there may be more than one nearest

points on the segment giving rise to a series of questions such as which nearest point to

follow. In contrast to the pre-determined goal points which can ensure the continuous

motion of goal points on the segment, attracting robot to its nearest point may cause the

motion of the nearest points to be discontinuous. Theoretical barriers arise as stability

theories usually require smooth functions. To solve these challenges entirely, we have

done a mathematical framework on the properties of nearest point. Based on the results

we are able to complete the stability analysis.

In real world applications, obstacles have to be handled carefully for feasible formation

control. Obstacles may have a great variety of shapes. Generally speaking, in terms of

the shapes, there are two main categories of obstacles: convex and concave. Convex ob-

stacles are more manageable in that they can make the analysis greatly simplified. How-

ever concave shape obstacles are more likely to be encountered and therefore present

greater challenges especially for potential fields. It is common that the attractive force

trying to pull a robot to the segment may be cancelled out by a repulsive force due to

the existence of obstacles. If this happens, the robot will be trapped in somewhere off

the segment and fail to meet the formation requirements. Moreover, obstacles may oc-

cupy some portions of the segment. If the robots are instructed to approach their nearest

points on the segment, then dedicated nearest points seeking algorithms have to take into

account the presence of obstacles. To cope with the generic formation control scenario

as shown in Figure 1.5, a complete framework must consider the following items:
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• (i) there are multiple obstacles which may affect the formation and these obstacles

can be static or dynamic, convex or concave;

• (ii) each robot approaches its nearest point on the segment and some portions of

the segment may be occupied by obstacles and thus are not available for the robot

to dwell on;

• (iii) each robot in the same segment must maintain a reasonable distance with

respect to its leader or follower;

• (iv) no robots will experience collisions with either other robots or obstacles under

whatever conditions;

• (v) no robots will be trapped during formation control and they are able to recover

from such adverse situations in the event of occurrence.

This is one of the most important tasks of this thesis. For any effective formation control,

it is worthwhile to study the formation error propagation behavior during the formation

process. At the end of this dissertation, some theoretical analysis on the formation input-

to-state stability will be reported.

1.4 Organization of the Thesis

The thesis is organized as follows:Chapter 1 introduces the background of the multi-

robot systems and the generic problem of multi-robot formation control. Motivations of
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the research work on formation control of this thesis is stated and the main objectives

are outlined and summarized.

Chapter 2 reviews several available approaches to formation control. The associated

control stability and performance such as scalability and flexibility are surveyed. The

advantages and disadvantages are also briefly reviewed.

Chapter 3 presents the technical basics and formulations of the research problems,

which will be addressed in this thesis. The commonly used models of mobile robots

are reviewed. Fundamentals of nonsmooth analysis, which is the key mathematical tool

for stability study in this thesis are also covered.

Chapter 4 addresses a detailed analysis of the qualitative characteristics of two contin-

uous nonlinear feedback controls of differential mobile robots. It also touches on the

application of an improved robust feedback control on multi-robot formation control

implementation.

For the study on mobile robot tracking control, the main contents include: (i) the evolu-

tion of heading; (ii) trajectory characteristics; (iii) robustness of one of the two nonlinear

feedback controls; (iv) an improved controller design and its performance. More details

of the improved control law are revealed and the benefits of facilitating real implemen-

tation are discussed.

The multi-robot formation control experiments are based on the concept of the queue

and artificial potential trench scheme, which is the main topic of this thesis. First, a

real-time vision system, which is used to detect robots’ positions and headings, is de-
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veloped and its performance is evaluated. Analysis shows that the noise level in the

measurement of position and orientation is relatively lower than resolution of the vision

system. Therefore, the measurement can be used for the experiment. Based on the novel

robust nonlinear feedback control law which is proposed in the this chapter, a 3-robot

triangle formation and a 4-robot square formation experiments on multi-robot system

are conducted.

Chapter 5 investigates the nonlinear tracking control based on the concept of artificial

potential trench. The original idea is briefly reviewed and some refined key concepts

such as admissible potential trench function are defined. It moves on to deal with the

stability of controlling a team of mobile robots to track goal points on segments. Various

ways of constructing potential trench functions are proposed. The response is revealed

using available results on Lienard’s Equation. Based on the results, we synthesize a

control law that stabilizes a team of robots on a given formation without considering

specific requirement on the distance between any two robots. We verify its effectiveness

through simulations.

Chapter 6 deals with the a novel zoning scheme with emphasis on managing separa-

tions among a team of robots during formation. In the proposed zoning scheme, zon-

ing potentials include attracting potentials and repulsive potentials, which can provide

collision avoidance and prevention of communication linkage breakdown. It is a novel

framework, which can analyze the stability of multi-robot formation based on the notion

of artificial potential trench. While the notion of artificial potential trench provides scal-

ability in multi-robot formation, the controls presented in this chapter ensure that such
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scalable formations are stable even under the constraints of separation coordination.

Apart from separation management which relies on zoning potentials, a new method is

introduced to remove the pre-determined goal points by assigning a direction for robots

to approach. This procedure is incorporated into the formation controller design. Com-

puter simulations are carried out to verify the effectiveness of this approach.

Chapter 7 aims to investigate a generic formation control, which attracts a team of co-

ordinated robots to their own nearest points on the assigned segment. Meanwhile, the

robots are capable of avoiding collisions with multiple static or moving obstacles in a

dynamic environment. A mathematical framework is developed beforehand to analyze

the characteristics of motions of the nearest points on the segment. Although the near-

est points may undergo a discontinuity as revealed by the analysis, such transitions of

the nearest points are well handled by nonsmooth analysis. A novel method of obstacle

avoidance is based on the new concept of apparent obstacle scheme. Together with the

associated local minima recovery scheme, the method is proposed to cope with con-

cave obstacles and multiple moving obstacles. Comparison between apparent obstacle

avoidance method and other alternative solutions is summarized. A detailed algorithm

to seek the nearest point on a segment in the presence of obstacles is presented. The

special cases of local minima and the corresponding simple solutions are discussed in

detail.

Chapter 8 deals with the stability of the formation control of multiple robots based

on artificial potential trench method and queue formation method. It is shown that the

closed-loop system of each robot is input-to-state stable to its leader’s initial forma-
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tion error and each queue formation is globally uniformly asymptotically stable. Fur-

thermore, queue formation is robust with respect to structural changes and intermittent

breakdown of communication link.

Chapter 9 summarizes the contributions of this thesis and outlines the directions for

future research.
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Chapter 2

Literature Review

Cooperative control for multi-agent systems can be categorized as either formation con-

trol problems with applications to mobile robots, unmanned air vehicles (UAVs), au-

tonomous underwater vehicles (AUVs), satellites, aircraft, spacecraft, and automated

highway systems, or nonformation cooperative control problems such as task assign-

ment, payload transport, role assignment, air traffic control, timing, and search. The

cooperative control of multi-agent systems poses significant theoretical and practical

challenges. For cooperative control strategies to be effective, numerous issues must

be addressed, including the definition and management of shared information among

a group of agents to facilitate the coordination of these agents. In cooperative control

problems, shared information may take the form of common objectives, common con-

trol algorithms, relative position information, or a world map. Information necessary

for cooperation may be shared in a variety of ways.

For cooperative control strategies to be effective, a team of agents must be able to re-
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spond to unanticipated situations or change in the environments that are sensed as a co-

operative task is carried out. As the environment changes, the agents on the team must

be in agreement as to what changes took place. A direct consequence of the assumption

that shared information is a necessary condition for coordination is that cooperation re-

quires that the group of agents reach consensus on the coordination data. In other words,

the instantiation of the coordination data on each agent must asymptotically approach a

sufficiently common value. Convergence to a common value is called the consensus or

agreement problem in the literature.

2.1 Formation Control Methods

Formation control is an important issue in coordinated control for a group of unmanned

autonomous vehicles/robots. In many applications, a group of autonomous vehicles are

required to follow a predefined trajectory while maintaining a desired spatial pattern.

Moving in formation has many advantages over conventional systems, for example, it

can reduce the system cost, increase the robustness and efficiency of the system while

providing redundancy, reconfiguration ability and structure flexibility for the system.

Formation control has broad applications, for example, security patrols, search and res-

cue in hazardous environments. In military missions, a group of autonomous vehicles

are required to keep in a specified formation for area coverage and reconnaissance; in

small satellite clustering, formation helps to reduce the fuel consumption for propul-

sion and expand their sensing capabilities. In automated highway system (AHS), the

throughput of the transportation network can be greatly increased if vehicles can form
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platoons at a desired velocity while keeping a specified distance between vehicles. Re-

search on formation control also helps people to better understand some biological social

behaviors, such as swarm of insects and flocking of birds.

In formation control for a group of coordinated robots, different control topologies can

be adopted depending on the specific scenarios. There may exists one or more leaders in

the group while other robots follow one or more leaders in a specified way. Each robot

has onboard sensing and computation ability. In some application scenarios, robots can

have limited communication ability. But generally speaking, not all the global informa-

tion is available for each robot.

A centralized controller usually is not assumed to exist. The design of the controller for

each robot has to be based on the local information. If no leader is designated, then all

robots must coordinate with each other by relying on some global consensus for a com-

mon goal achievement. There are many issues need to be considered when designing a

distributed controller for mobile robot formation, such as the stability of the formation,

controllability of different formation patterns, safety and uncertainties in formations.

Many control approaches have been proposed to solve the problems in formation con-

trol, for example, leader-follower strategy [25], virtual structure approach [55][22] and

behavior-based method [4] [85] [97], passivity-based decomposition approach [52]. In

this chapter, we will cover the main issues in formation control and give a review on

current technologies in formation control.
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2.1.1 Behavior-Based Approach

Behavior-based approach is one of the most widely used methods for formation control.

It is well-known that formation behaviors in nature such as schooling and flocking ben-

efit the animals in a variety of ways. Sensors are combined by animals via grouping to

maximize the chance of detecting predators or to more efficiently forage for food [90].

Studies of flocking and schooling in [76] reveal that these behaviors emerge as a combi-

nation of a desire to stay in the group and yet simultaneously keep a separation distance

from other members of the group.

A pioneering work [73] provides important results based on the behavioral simulation of

flocks of birds and schools of fish and a simple egocentric behavioral model for flocking

which is instantiated in each member of the simulated group of birds. In this work, the

behavior includes inter-agent collision avoidance, velocity matching and flock centering

and successfully generates an overall group behavior while individual agent only sense

their local environment and close neighbors. Improvements to this approach have been

made in [87], where more realistic simulated fish schooling by accurately modelling

the animals’ muscle and behavioral systems are developed. Moreover [9] developed a

system for realistically animating herds of one-legged agents using dynamical models

of robot motion.

In contrast to the afore-mentioned work [9][73][76][87][90] which are focused on the

generation of visually realistic flocks and herds for large numbers of simulated animals,

behaviors for a small group (up to four) of mobile robots are studied in [4] [85], where
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each robot has a basic motor schema, which can generates a vector representing the

desired behavior response to sensory inputs. The motor schemas include move-to-goal,

avoid-static-obstacle, avoid-robot and maintain-formation. The control action of each

robot is represented by a vector weighted average of the control for each motor schema

behavior. Three zones (ballistic zone, controlled zone, and dead zone) are predefined to

compute the magnitude of the vector. In [97], the Genetic Algorithm is used to decide

the control weights and choose the appropriate behavior for formation maintains and

obstacle avoidance. In [65], the behavior-based formation control is modelled as a non-

linear dynamic system for trajectory generation and obstacle avoidance. In [21], the

robot’s behavior is based on a subsumption architecture. The primary behavior explored

in this work is a group formation behaviors based on social potential fields [71]. In this

paper, the social potential fields method is extended and evaluated in the presence of

agent failure and imperfect sensory input. In general, behavior-based approach typically

lacks rigorous analysis and therefore this weakness imposes limit on its applications.

2.1.2 Potential Field Approach

The method of artificial potential fields [40], usually combined with behavior-based

approach, has been applied to formation control. This method is also widely utilized in

motion planning of mobile robots [50], ranging from obstacle avoidance [47][68][41],

to robot navigation [42][74][75][93][92], and global path planning [91][88][33]. In this

method, the control is synthesized based on a linear relationship involving the gradient

of a potential field [34].
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In [27], potential functions were used for a target tracking problem by considering both

the instantaneous position and velocity of the target in a dynamic environment. When

applied to the problem of formation control, however, the conventional potential field

method yields deficient solutions because of lacking scalability of the prescribed forma-

tion as the robots are to be attracted to predetermined points that define the formation.

The notion of queues and artificial potential trenches was introduced in [29] to provide

the needed scalability. Since in practical applications, a formation taking certain geo-

metric pattern shapes can be conveniently subdivided into a series of smooth line seg-

ments, each of these line segments are referred to asqueue. Some of the key concepts

such asqueueandsegmentare adopted from the original work [29] as follows:

Definition 2.1.1 A queue Qj is defined as Qj = (Sj ,Xj ,Cj ,ε j(n)), where Sj is a set of

points defined by some smooth function f: R3 → R3, Xj ⊆ Sj is a set consisting of one

or two formation vertices, Cj is the percentage of n robots that belong to Qj , andε j(n)

defines the set of points within a certain distance of f . ¤

Definition 2.1.2 A segment S is a curve defined by some smooth (i.e., at least twice-

differentiable) function in R3 that passes through one or two formation vertices. ¤

According to [29], a vertex is the terminal node of segments and is represented by its

position relative to the coordinate frame of the target. In this approach, the definition

of a formation is usually specified by a higher level decision maker, such as a human

user. An example of queues, segments and the formation vertices from [29] is shown

in Figure 2.1, where six robots are randomly scattered around three segments. These
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robots are required to form some geometric pattern by allocating them to the segments

at the desired locations. The idea is that, instead of being attracted to a predetermined

point, each robot is to be attracted to the bottom of the “valley” artificially created by a

so-called potential trench, and once there, move along the trench to distribute themselves

along the trench in order to form a formation by maintaining the desired separation in

relation to other robots. In Figure 2.1, each robot is supposed to be attracted to the

corresponding location (denoted by shaded robot) on the assigned segment via artificial

potential trench. Generally speaking, artificial potentials are inherent with local minima

issues (which may cause the robots stuck) and this thesis will address such issues in

detail.

robots’ desired 
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Figure 2.1: Examples of queues, segments and formation vertices(circles), wherext

andyt are the axes of the coordinates frame of the target centered atV1. Open queues
are drawn with solid and dashed lines, indicating that they extend indefinitely from the
vertex.
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2.1.3 Leader-Follower Approach

Based on the assumption that only local sensor-based information is available for each

robot, another approach using leader-follower pairing [84] is also widely adopted in

formation control. The notion of leader-follower pairing can be illustrated in Figure 2.2.

Two typical leader-follower pairing are depicted in this figure with the Figure 2.2(a) and

Figure 2.2(b) denoting a cascade pattern and a parallel pattern respectively. Take the

Figure 2.2(a) for instance, agent 2 and 3 depicted in circles are followers while agent 1

is the leader. Specially agent 1 and 2 form a leader-follower pair and so it is for agent 2

and 3.

In [84], two types of feedback controllers for maintaining formations of multiple mobile

robots are proposed. One is thel −ψ controller, which is illustrated by Figure 2.3 and

the other one is thel − l controller, of which the corresponding scenario is depicted in

Figure 2.4. In thel −ψ controller, the objective is to maintain a desired lengthld12 and

a desired relative angleψd
12 between the leader and the follower. By using input/output

feedback linearizaiton, a controller can be designed so thatld12 andψd
12 can exponentially

convergence to the desired values.

Figure 2.4 illustrates thel− l controller considering the relative position of three mobile

robots, where one robot is supposed to follow the other two robots. The objective is

to maintain the desired lengthsl13
d and l23

d between the follower and its two leaders.

A controller is also designed by using input/output feedback linearization in [84]. The

application of leader-follower approach can be found in [81]. Although leader-follower

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



2.1 Formation Control Methods 33

123

5

3 2

4

1

( a  ) ( b  )

Figure 2.2: Leaders and followers in formation.
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Figure 2.3: Notation forl −ψ control.

approach is an important concept in formation, the controller methods introduced in

[84] obviously lacks a framework to represent complicated geometric patterns and is

not scalable to a team of robots with a great number of members.

2.1.4 Generalized Coordinates Approach

In [80], a control methodology based on generalized coordinates was presented. The

generalized coordinates characterize the vehicles location (L), orientation (O) and its

shape (S) with respect to a formation reference point in the formation. The trajectories
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of the formation group can be specified in terms of L, O and S coordinates. Formation

control laws have been developed for asymptotic tracking of trajectories while maintain-

ing a desired formation geometry. A similar idea was presented in [99], [95], where the

shape of the formation is expressed in shape coordinates. In this approach, the robots

are modelled as controlled Lagrangian systems on Jacobi shape space to allow a block-

structured control of position, orientation and shape of the formation. Feedback control

derived from Lyapunov functions leads the controlled dynamics to converge to the in-

variant set where the desired shape is achieved. Normally this kind of approach is useful

for a small group of robots. However, it is hard to extend to large-scale multi-robot ap-

plications. Besides, the frameworks with collision prevention and obstacle avoidance

are not clearly formulated and addressed.

2.1.5 Virtual Structure Method

The concept of virtual structure was first introduced in [55]. The virtual structure ap-

proach is usually used in spacecraft or small satellite formation flying control [22]. Con-
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trol methods are developed to force a group of robots to behave in a rigid formation. In

virtual structure approach, the controller is derived in three steps. First, the desired

dynamics of the virtual structure is defined. Second, the desired motion of the virtual

structure is translated into desired motions for each agent. Finally, individual tracking

controllers for each agent are derived for agent tracking. In [54], the virtual structure

method is combined with leader-following method and behavioral approach to forma-

tion control of multiple spacecraft interferometer in deep space. A similar idea in [17]

was applied for spacecraft formation flying control. It should be noted that virtual struc-

ture method is similar to the ’node-to-robot’ scheme and therefore is usually employed

only in those applications where strict adherence of each robot to specific points is re-

quired.

2.1.6 Model Predictive Control (MPC) Method

Model Predictive Control (MPC), namely Receding Horizon Control (RHC), has been

one of the well-established and probably the most popular forms of optimized process

control and has been widely applied in many industries such as oil and chemical engi-

neering. MPC is an optimal control strategy. The current control action is calculated by

solving a constrained finite horizon open-loop optimal control problem at each sampling

instant such that the current state of the system is used to compute the optimal input and

state trajectories. The solution of the optimization problem turns out to be an optimal

control sequence and according to the MPC strategy, only the first control action in the

sequence is applied to the system.
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A thorough survey of nonlinear MPC stability theory is given by Mayne et al in [62].

The generalized formulation and conditions for stability stated in [62] [61] are used

as a guide for the formulation here. Recently MPC has been receiving more attention

from researchers on formation control. There are several appealing aspects of MPC

for the coordination of multiple vehicles to stabilize a formation. The advantages in-

clude inherent consideration of state, input and output constraints and its capabilities in

dealing with Multiple Input, Multiple Output (MIMO) systems, etc. Moreover, as an

optimization based method, it allows the cost functions and constraints in the optimal

control problem to be potentially changed on-the-fly to accommodate new formations

and limitations, such as inter-vehicle and obstacle collision avoidance [64]. In [96],

MPC is utilized as a local control law to meet with the overall formation performance

under imperfect inter-vehicle communication. The error in inter-vehicle communication

is modelled as white noise. In [12], the problems associated with formation keeping of

mobile robots is studied and control solutions to maintain a formation of robots as well

as implementing a system to localize robots in an indoor environment is developed. In

this work, several control strategies including an explicit MPC controller, made possible

by the very low sampling rate of the system, are implemented.

Despite MPC’s theoretical elegance and prominent advantages, it is facing challenges

even from the very beginning because of its inherent tremendous demands on compu-

tational capabilities. The difficulties may aggregate and thus make the situation even

worse with enhanced complexities when dealing multi-robot formation control in un-

structured dynamic environments. As far as the high sampling rate of the robotic system

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



2.2 Stability Analysis Approaches for Formation Control 37

is concerned, online computation of the optimal control actions is not currently feasible

[12], considering the current computational power of todays CPUs.

2.2 Stability Analysis Approaches for Formation Con-

trol

2.2.1 Lyapunov Function

In [69], the multi-agent coordination problem is studied in the framework of control

Lyapunov functions. The main assumption is that each individual robot has a control

Lyapunov function. Then, sufficient conditions for the existence of a control Lyapunov

function for the formation of robots are derived. This function is a weighted sum of

individual control Lyapunov function of each robot. Further investigation on the prop-

erties of the control Lyapunov function to maintain formation stability is applied by

parameterized formation approach.

In [72], the stability of a decentralized virtual structure based spacecraft formation flying

is studied using a Lyapunov function. In this paper, asymptotic stability is shown for

each spacecraft’s dynamic with respect to the corresponding desired states. In [54], a

framework for coordinated and distributed control of multiple autonomous vehicle using

artificial potentials and virtual leaders is proposed. Closed-loop stability is proved by

constructing a Lyapunov function based on the system’s kinetic energy and artificial

potential energy. Asymptotic stability is achieved by integrating the dissipative control

terms in the controller.
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2.2.2 Nonsmooth Analysis

It is well-known that classical theorems for ordinary differential equations require vector

fields to be at least Lipschitz continuous, of which the definition is given as follows.

Definition 2.2.1 For a differential equation

ẋ = f (x, t),x(t0) = x0,

where f : Rn×R→ Rn is piecewise continuous in t. f is sLipschitz if the following

inequality holds

|| f (t,x)− f (t,y)|| ≤ L||x−y||,

where L is a positive constant. ¤

However, nonsmooth dynamics such as Coulomb friction, contact interactions existing

in the nature feature discontinuous control inputs and thus cannot be addressed by clas-

sical stability theory. These observations make it essential to develop rigorous analysis

and deal with the associated issues such as the existence of equilibria, stability and qual-

itative dynamics. Moreover, variable structure systems in control engineering where

control inputs usually are discontinuous is another motivation for developing a formal

tools dedicated to the analysis of differential equations with discontinuous right-hand

sides.

There are many literatures such as [13] on nonsmooth analysis. As far as the generalized

Lyapunov analysis is concerned, Lyapunov stability theory of nonsmooth systems was

developed in [70][77],with which the stability properties of nonsmooth dynamic system

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



2.2 Stability Analysis Approaches for Formation Control 39

can be calculated and determined. In [83], the stability properties of a system of multiple

mobile agents with double integrator dynamics are investigated by using nonsmooth

analysis. Owing to nonsmooth analysis, control discontinuities arising from dynamic

control interconnection topology and switching control law which are allowed to vary

with time are handled at no expense of system stabilities.

2.2.3 Graph Theory

Graph theory is the branch of mathematics on graphs, mathematical structures used to

model pairwise relations between objects from a certain collection. It plays an important

role in the stability analysis of the formations as it caters for a natural presentation of

the interconnection of coordinated robots for information exchange. An example where

the formation pattern is represented as ”graph formation” is provided in Figure 2.5 with

each circle denoting an agent in the formation. There are several appealing characteris-

tics of graph theory which motivate the application research for multi-robot formation

control. First, characterization of the topology of a graph can be used which greatly

facilitates the stability analysis of robot formations. Second, it can also be employed

to determine an appropriate controller for a specific formation pattern or even decide if

such a controller can exist. There are rich literatures on graph theory [31], [32], [82].

An undirected graphG consists of a vertex setV(G) and an edge setE(G), where an

edge is denoted as a pair of distinct vertices of G. In [24], the directed graph is used to

represent a formation of agents while the dynamics of the agents are represented by lin-

ear time-invariant systems. By analyzing the eigenvalues of the graph Laplacian matrix,
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a Nyquist criterion is developed to determine the effect of the communication topology

on formation stability. In [49], the connection between the spectral graph theory and

the control problem in vehicle formations is further investigated. The vehicles exchange

information according to a pre-specified undirected communication graph. A statespace

approach was developed to stabilize the formation. It is proved that a linear stabilizing

feedback law always exists provided that the communication graph is connected. The

rate of convergence to formation is governed by the size of the smallest positive eigen-

value of the Laplacian of the communication graph. Some research has been focused on

how the characteristics of the interconnection graph will change when the formation is

changed from one pattern to another. In [18], under the framework of leader-following

approach, the number of possible control graphs is derived, depending how the follow-

ing pattern for each local controller is chosen. This result is used to search for the

possible transient control graph when the formation is changing. In [60], the geometric

formations of multiple vehicles are studied under cyclic pursuit control law. The stabil-

ity of the equilibrium formations of unicycle robots is related to the graph characteristic

of the patterns. In [56], based on the analysis of the directed graph from the intercon-

nection of individual robots, the feasibility of achieving a desired pattern is investigated.

Generally speaking, despite convenience of stability analysis for graph-based formation

control, the complexity of theory is a barrier for widely application of this method and

there is still much fundamental work to be done in this research area.
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Figure 2.5: An example of graph formation.

2.3 Summary

In the chapter, we reviewed several available approaches to multi-robot formation con-

trol together with the performance such as scalability, flexibility. The associated control

stability and analysis methodologies are also surveyed.
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Chapter 3

Formulation of Research Problems

In this chapter, formulations of the significant research problems of this dissertation and

the fundamentals of nonsmooth analysis are to be addressed. Previously in Chapter 1,

a typical scenario of multi-robot formation control is shown in Figure 1.5 and an infor-

mal discussion on topics of multiple robotic system formation control is presented. In

this chapter, more technical details including fundamentals of the relevant key concepts

and notions (such as the modelling of differential mobile robots) and the statements of

research problems to be investigated is covered.

3.1 Modelling of Differential Mobile Robots

3.1.1 Dynamics Model

We consider Hilare-type mobile robots with two rear wheels and a front caster. Figure

3.1 illustrates one such robot with its inertial coordinates frame. The two rear wheels of
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the robot are controlled independently by motors. The center of the wheels is denoted by

(xi ,yi), the center of mass of the robot is denoted by(xhi,yhi), and the distance between

(xi ,yi) and (xhi,yhi) denoted byLi . It is assumed that the wheels of the robot do not

slide, so that the velocity of(xi ,yi) is orthogonal to the axis of the wheels. Without
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Figure 3.1: A wheeled mobile robot.

considering the rolling friction forces or torques produced by the casters, the dynamics

of a robot is described by the following equations of motion:





ẋi = vi cosθi ,

ẏi = vi sinθi ,

θ̇i = ωi ,

v̇i = Fi/mi ,

ω̇i = τi/Ji ,

where, with respect to the inertial coordinates frame with its origin atO, [xi ,yi ]T ∈ R2

is the position vector of a roboti, θi is the orientation,vi is the translational velocity,
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ωi is the angular velocity,Fi is the force input,mi is the mass,τi is the torque input

andJi is the moment of inertia. Define vectors~qi = [xi ,yi ,θi ,vi ,ωi ]T and~µi = [Fi ,τi ]T ,

which represents the physical inputs to the actuators. To facilitate analysis, the above

nonholonomic system can be feedback linearized by some diffeomorphic coordinate

transformation~Ξi = T1(~qi) with~Ξi = [ξ1i ,ξ2i , ...,ξ5i ]T and state feedback~µi = T2(~qi ,~ui).

Define a new position vector as

xhi = xi +Li cos(θi),

yhi = yi +Li sin(θi).

Differentiating(xhi,yhi) with respect to time twice yields,




ẍhi

ÿhi


 =



−viωi sin(θi)−Liω2

i cos(θi)

viωi cos(θi)−Liω2
i sin(θi)


+




1
mi

cos(θi) −Li
Ji

sin(θi)

1
mi

sin(θi) Li
Ji

cos(θi)







Fi

τi
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Let T1(~qi) :~qi →~Ξi as





ξ1i = xi +Li cos(θi),

ξ2i = yi +Li sin(θi),

ξ3i = vi cos(θi)−Liωi sin(θi) = ξ̇1i ,

ξ4i = vi sin(θi)+Liωi cos(θi) = ξ̇2i ,

ξ5i = θi .

It is known that the mapT1 is a diffeomorphism with its inverse given by

~qi = T−1
1 (~Ξi) =




ξ1i−Li cos(ξ5i)

ξ2i−Li sin(ξ5i)

ξ5i

ξ3i cos(ξ5i)+ξ4i sin(ξ5i)

− 1
Li

ξ3i sin(ξ5i)+ 1
Li

ξ4i cos(ξ5i)




Let the state feedbackT2(~qi) :~µi →~ui be as

~µi =




1
mi

cos(θi) −Li
Ji

sin(θi)

1
mi

sin(θi) Li
Ji

cos(θi)




−1

×


~ui−



−viωi sin(θi)−Liω2

i cos(θi)

viωi cos(θi)−Liω2
i sin(θi)





 .
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which gives




ξ̇1i

ξ̇2i


 =




ξ3i

ξ4i


 , (3.1)




ξ̇3i

ξ̇4i


 = ~ui , (3.2)

ξ̇5i = − 1
Li

ξ3i sin(ξ5i)+
1
Li

ξ4i cos(ξ5i). (3.3)

Note that Equation (3.3) represents theinternal dynamics(see page 517 of the mono-

graph [39]) of the transformed systems. Its zero dynamics can be obtained by setting

ξ1i = ξ2i = ξ3i = ξ4i = 0, yielding ξ̇5i = 0, which is stable. The stability issues of the

internal dynamics are addressed in [98], which shows that the internal motion is asymp-

totically sable when the reference point is to move forward, and unstable when it moves

backward. Defining the vector~r i = [xhi,yhi]T and noting thatxhi = ξ1i andyhi = ξ2i ,

from Equations (3.1) and (3.2), we have

~̈r i =~ui , (3.4)

which is a two-dimensional double integrator and~ui is the control input for this lin-

earized model.
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3.1.2 Kinematic Model

Usually the motion of WMR can be depicted by kinematic models. Define the posture

variable aspi = [xi ,yi ,θi ]T , then the kinematics of a WMR is given by

ṗi =




cos(θi) 0

sin(θi) 0

0 1







vi

ωi




= S(pi)




vi

ωi


 . (3.5)

As shown in Equation (3.5), the posture of a WMR is a time-varying nonlinear system

with three outputs and two inputs.

3.2 Point Tracking Control of Mobile Robots

3.2.1 Comparative Study of Two Nonlinear Feedback Controls

It is well-known that usually WMRs are characterized by non-integrable kinematic con-

straints, namely the nonholonomic constraints. The consequence is that these constraints

rule out the possibility of direct application of standard control theories, such as linear

control theory. Furthermore, as pointed out in a landmark paper [8], nonholonomic sys-

tems cannot be stabilized by continuously differentiable, time-invariant, state feedback

controls. To deal with the challenges arising in nonhonomic system control, a great
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number of approaches have been proposed and some selections of the vast amount of

published literature are reflected in the survey paper [43] and the book [20] and in Chap-

ters (7-9) of the book [15]. Several controls from experiment perspectives are examined

and implemented in [59].

Central to the WMR motion control are the tracking control problems. Normally there

are two categories of tracking control:posture trackingandpoint tracking. The former

aims to achieving stably tracking a moving reference posture (i.e., position and orienta-

tion) while the latter only concerns about position tracking. Nonlinear feedback control

strategies [16, 30, 38, 63, 86] are often preferred in dealing with tracking control prob-

lem to compensate disturbances and uncertainties although open-loop controls are also

workable [66, 48, 10, 7].

We consider thepoint trackingproblem for a wheeled mobile robot that is depicted in

the world frameOXY as shown in Figure 3.2. In this scenario, a wheeled mobile robot

is supposed to track a series of goal points denoted byqg along a smooth curve, which

is usually referred as a ”segment” in the sequel. Referring to this figure, intuitively we

refer to notationsr andφ as ”distance to target” and ”misalignment angle” respectively.

As far as tracking control is concerned, an effective control should be able to drive the

robot approaching the desired goal point. In other words, the distance to targetr has to

be reduced as small as possible by manipulating with the velocities of left wheel and

right wheel.

In order to take advantages of kinematic model described by Equation (3.5) for the

wheeled mobile robot, it is convenient to transform it into another type of kinematic
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Figure 3.2: Illustration of a wheeled mobile robot and its goal pointqg, which may be
moving on a segment (smooth curve) in the world frame.

model in a polar coordinates as shown in Figure 3.3. In this figure, a differential mobile

robot, together with the associated notations, is illustrated in a polar coordinatesO′X′Y′.

It should be noted that deliberately we assign the origin to be the goal point (on a seg-

ment that is not depicted in this figure) for the robot to track. Namely the origin of the

polar frameO′X′Y′ in Figure 3.3 denotes the aforementioned goal pointqg (for the robot

to track) in Figure 3.2. The separation between point(x,y) and center of each wheel is

represented byCd, which is a fixed constant parameter for a given model of real robot.

The heading of the robot isθ while its translational velocity and angular velocity are

denoted byv andω respectively. Note that throughout this chapter, bothφ andθ are

defined in the domain(−π,π].
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Figure 3.3: Representation of a wheeled mobile robot in the polar coordinates frame
O′X′Y′ with the origin being its goal point.

Referring to Figure 3.3, the motion of a differential mobile robot can be described by

ẋ = vcos(θ),

ẏ = vsin(θ),

θ̇ = ω. (3.6)

To link this model with the notations in polar coordinates, we can calculater andφ as

r =
√

x2 +y2,

φ = π +θ −ϕ,
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respectively.

A kinematic model of a differential mobile robot in the polar coordinates can be derived

as follows:




θ̇

ṙ

φ̇




=




0 1

−cos(φ) 0

1
r sin(φ) 1







v

ω


 . (3.7)

Detailed derivation of Equation (3.7) can be found in [53] and is omitted for brevity. This

model is similar to the ones used in Chapter 3 of [78]. From this model, specifically we

have the relationship between ˙r, φ̇ andv, ω as




ṙ

φ̇


 =



−cos(φ) 0

1
r sin(φ) 1







v

ω


 . (3.8)

Two similar continuous nonlinear feedback controls were proposed by [36] and [53]

respectively. In [36], a simple feedback control taking on the following form:

v = K1r,

ω = −K1sin(φ)−K2φ , (3.9)

together with some analytic results is presented. A similar control law is first proposed
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in [53] and it is represented as follows:

v = K1r cos(φ),

ω = −K1sin(φ)cos(φ)−K2φ . (3.10)

Up to date, the essentially common features of these two nonlinear feedback controls are

rarely addressed by researchers. In this thesis, we investigate the evolutions of robot’s

heading for each control. From this starting point, we are led to the special character-

istics of the trajectory’s uniqueness with respect to gain ratio and features of trajectory

curvature. It is shown that the gain ratio plays a vitally important role in the motion of

mobile robot. To synthesize these fruitful results and to facilitate real applications, we

generalize the concept of ”critical gain ratio” for the first time.

To sum up, a comparative study for these two nonlinear feedback controls, represented

by Equations (3.10) and (3.9) respectively, is to be performed and the main tasks of this

study include:

• (i) for the system described by Equation (3.8), study the Lyapunov stability prob-

lem that can lead to a generic form of nonlinear controls and then show that it can

be simplified into the control represented by Equations (3.10) and (3.9);

• (ii) derive analytic expressions of robot’s headingθ(t) and misalignment angle

φ(t) by solving the corresponding differential equations;

• (iii) based on results obtained from (ii), calculate the overall turning of robot’s
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heading defined asHc = |θ(∞)−θ(0)|, namely the evolution of robot’s heading;

• (iv) extract trajectory’s characteristics with respect to gain ratio defined asλ = K1
K2

;

• (v) investigate characteristics of trajectory curvature defined asK (t) = |ω(t)|
|v(t)| .

3.2.2 Formulation of the Robustness Problem

For the specific nonlinear control law described by Equation (3.10), which is stated

in previous subsection, there exists a fundamental challenge beneath this control law

although the stability issue seems to be affirmatively guaranteed by Lyapunov stability

theorem. To look into this challenge, we can substitute Equation (3.10) in to Equation

(3.8) and obtain




ṙ

φ̇


 =




−K1r
(

cos(φ)
)2

−K2φ +
(
K1sin(φ)cos(φ)−K1sin(φ)cos(φ)

)


 , (3.11)

where−K2φ +
(
K1sin(φ)cos(φ)−K1sin(φ)cos(φ)

)
can be simplified as−K2φ . Usu-

ally a Lyapunov function candidate is chosen asV = 1
2r2 + 1

2φ2. Accordingly, with

Equation (3.11), the derivative ofV can be calculated as follows:

V̇ =
[

r φ
]



ṙ

φ̇




= −K1r2(cos(φ)
)2−K2φ2

≤ 0. (3.12)
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Evidently, the technique of term cancellation, namely
(
K1sin(φ)cos(φ)−K1sin(φ)cos(φ)

)
,

is the key to obtain the simplified result represented by Equation (3.12), which leads to

invoking Lyapunov stability theorem. One may be interested in the following question:

what if the gainK1 in v andω does not match? Consider an alternative to the control

law in Equation (3.10) as follows:

v = K1 · r cos(φ),

ω = −K3sin(φ)cos(φ)−K2φ , (3.13)

whereK3 is not necessarily equal toK1. Then it is equivalent to say: ”will the closed-

loop system be stable if an alternative control represented in Equation (3.13) rather than

the one in Equation (3.10) is applied to the system?”.

In the real world, there are numerous factors contributing to such kind of ”gain mis-

matching”. Take the digital control for example, truncation error of numerical calcu-

lation of triangle functions ofφ is unavoidable. Moreover, in terms of real outputs of

physical actuator, this ”mismatching gain” phenomenon may happen from time to time.

To explain it, letvL,vR denote the tangent velocities of each wheel about the centers of

rotation.

v =
vL +vR

2
,

ω =
vR−vL

2Cd
, (3.14)
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whereCd is the displacement from the point(x,y) to each wheel. We can establish the

relationship between the vector[v ω]T and[vL vR]T as follows:




v

ω


 =

1
2




1 1

1
Cd

1
Cd







vL

vR


 , (3.15)




vL

vR


 =




1 Cd

1 −Cd







v

ω


 . (3.16)

The ideal control law Equation (3.10) is based on the assumption that the following

equations

vL = K1r cos(φ)−Cd
(
K1sin(φ)cos(φ)+K2φ

)
,

vR = K1r cos(φ)+Cd
(
K1sin(φ)cos(φ)+K2φ

)
,

strictly hold for each moment during the operation. However, in the real world, this

turns out to be unrealistic. Apart from external disturbances, there are many factors that

can ruin the perfect diagnosing shown in aforementioned context. For instance, each

motor have different electro-mechanical characteristics. And each motor has its own

nonlinearities(e.g. saturation) and so on. So in dynamic scenarios, we only have the real

velocitiesv
′
L andv

′
R instead of the ideal counterpartsvL andvR. In other words, we need

to evaluate the real-world relationships represented byv
′
L 6= vL andv

′
R 6= vR and their
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effects on stability. Readily it flows that

v
′

= (v
′
L +v

′
R)/2,

ω
′

= (v
′
R−v

′
L)/(2Cd). (3.17)

To simplify the analysis, we consider the mismatching ofω with respect tov, which is

the case with control in Equation (3.13). Substituting Equation (3.13) into Equation (2)

in the first part of this chapter, we obtain




ṙ

φ̇


 =



−cos(φ) 0

1
r sin(φ) 1







K1r cos(φ)

−K3sin(φ)cos(φ)−K2φ




=




−K1(cos(φ))2r

−K2φ − (K3−K1
2 )sin(2φ)


 . (3.18)

Through studying the stability of the closed-loop system described by Equation (3.18),

we are able to investigate the robustness of the alternative control law given in Equation

(3.13).

The ultimate goal of this part of robustness analysis is to obtain an improved robust

control on the basis of Equation (3.10) and then try to implement it on MRKIT robots

on multi-robot formation control.
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3.3 Implementation of Multi-Robot Formation Control

Based on the results obtained in the foregoing mentioned robustness analysis, the im-

proved nonlinear feedback control given by Equation (3.13), rather than the original

control described by Equation (3.10) is to be applied to multi-robot formation control.

The specific MRKIT mobile robots shown in Figures 1.2 - 1.4) in Chapter 1, are in-

structed to form certain geometric pattern. In order to perform experiments on forma-

tion control, a complete set-up including hardware platform and software application

program has been implemented. To provide real-time position and heading informa-

tion of robots, a GPS system is simulated by a vision system comprising vision frame

grabber, CCD color camera with lens, a working station, and wireless communication

modules. Details of implementation will be discussed in the following chapter. To verify

the robust improved feedback control and to demonstrate multi-robot formation control,

two experiments of formation control implementation on multi-robot system are to be

implemented. One experiment is to form 3-robot triangle formation while the other is a

4-robot square formation. Each robot will follow an assigned virtual robot, which can

be viewed as a moving point. Figure 3.4 shows the scenario of these two experiments.
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Figure 3.4: Illustration of segments, virtual robots and three-robot triangle formation
and four-robot square formation.
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3.4 Problem Formulation of Segment Formation Con-

trol

3.4.1 Mathematical Preliminaries

As far as stability of control system is concerned, Lyapunov stability theory is one of the

most powerful analysis tools. The well known notion of stability in the sense of Lya-

punov together with the main Lyapunov’s Stability Theorem is summarized as follows.

Definition 3.4.1 (Stability in the sense of Lyapunov) Consider the autonomous system

ẋ = f (x), where f: D→ Rn. Suppose that xe∈ D is an equilibrium point, i.e., f(xe) =

0. The equilibrium point xe is said to be stable if, for eachε > 0, there existsδ =

δ (ε) such that‖x(0)‖ < δ =⇒ ‖x(t)‖ < ε,∀ t ≥ 0, and asymptotically stable if it is

stable andδ can be chosen such that‖x(0)‖ < δ =⇒ limt→∞ x(t) = 0, and it is said

to be globally asymptotically stable if xe is stable and every initial state x(0) results in

‖x(t)‖→ 0 as t → ∞. ¤

Lyapunov’s Stability Theorem[39]: The equilibrium pointxe is stable if there exists

a continuously differentiable functionV : D ⊂ Rn → R such thatV(0) = 0, V(x) > 0

in D−{0} andV̇(x) ≤ 0 in D. Moreover, the pointxe = 0 is asymptotically stable if

V̇(x) < 0 in D−{0}.

However, in order to invoke Lyapunov theorem, the corresponding Lyapunov function

candidate must be continuously differentiable. Hence, it rules out some application

cases with nonsmooth dynamics, such as Coulomb friction, variable structure systems
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of which control inputs can be discontinuous, or contact interactions. For instance, the

function V = |x| wherex ∈ R fails to be differentiable atx = 0. In order to analyze

such systems with discontinuities, some results from nonsmooth analysis will be uti-

lized in this thesis when dealing with stability issues of formation control. To facilitate

presentation, it is necessary to state some fundamentals of nonsmooth analysis.

Definition 3.4.2 (Strict Differentiability) A map F is said to admit a strict derivative

at x, denoted by DsF(x), if for each v, the following holds,

lim
y→ x

t ↓ 0

sup
F(y+ tv)−F(y)

t
=< DsF(x),v >,

and the convergence is uniform for v in compact sets. ¤

Definition 3.4.3 (Filipov Solutions [77]) Consider the following differential equation

ẋ = f (x, t), (3.19)

where f : Rn×R→ Rn is discontinuous, measurable and locally bounded. A vector

function x(·) is called a solution of (3.19) on[t0, t1] if x(·) is absolutely continuous on

[t0, t1] and for almost all t∈ [t0, t1]

ẋ∈ K[ f ](x, t) (3.20)

where

K[ f ](x, t)≡
⋂

δ>0

⋂

µN=0

co f(B(x,δ −N, t)) (3.21)

and
⋂

µN=0 denotes the intersection over all sets N of Lebesgue measure zero.¤

To overcome the limitations of conventional derivative that is not defined at disconti-
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nuities, F. H. Clarke introduced the generalized directional derivative and generalized

gradient.

Definition 3.4.4 (The Generalized Directional Derivative [13]) Let f: Rn×R→ R be

locally Lipschitz at x and let v be any vector in a real Banach space X. The generalized

directional derivative of f at x in the direction v, denoted fo, is defined as follows:

f o(x;v)≡ lim
y→ x

t ↓ 0

sup
f (y+ tv)− f (y)

t
, (3.22)

where y is a vector in X and t is a positive scalar. ¤

Evidently, the generalized directional derivative greatly relaxes the constraints imposed

on strict differentiability.

Definition 3.4.5 (Clarke’s Generalized Gradient [13]) Let f: Rn×R→ R be locally

Lipschitz at x and let v be any vector in a real Banach space X. The generalized gradient

of f at a given point x, denoted by∂ f (x), is the subset of X∗ given by

∂ f (x)≡ {ζ ∈ X∗ : f o(x;v)≥< ζ ,v >,∀v∈ X} (3.23)

¤

In the finite-dimensional case, the generalized gradient is a very useful property as

shown in the following theorem.

Generalized Gradient Formula[14]: Let x∈ Rn and let f : Rn → R be locally Lipschitz

near given pointx. Let Ω be any subset of zero measure inRn, and letΩ f be the set of
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points inRn at which f fails to be differentiable. Then

∂ f (x)≡ co{lim∇ f (xi) : xi → x,xi /∈Ω,xi /∈Ω f } (3.24)

Definition 3.4.6 (Regular Function [13]) A function f: Rn→ R is said to be regular at

x provided that,

(1) for all v, the usual one-sided directional derivative f
′
(x;v) exists.

(2) for all v, f
′
(x;v) = f o(x;v).

¤

Chain Rule Theorem[77]: Let x(·) be a Filipov solution to ˙x = f (x, t) on an interval

containingt andV : Rn×R→Rbe a Lipschitz and regular function. ThenV =V(x(t), t)

is absolutely continuous,(d/dt)V(x(t), t) exists almost everywhere, and

d
dt

V(x(t), t) ∈a.e. ˙̃V(x, t),

where

˙̃V(x, t)≡
⋂

ξ∈∂V(x(t),t)

ξ T




K[ f ](x(t), t)

1


 ,

and ”a.e.” is the abbreviation of ”almost everywhere”.

Now we present the nonsmooth version of Lyapunov’s and LaSalle’s Theorems.Non-

smooth Version of Lyapunov’s Theorem:If a real-valued mapV : Rn → R is definite
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positive and forx : R→ Rn, V(x(t)) is absolutely continuous on[t0,∞) with

d
dt

[V(x(t))] <−ε < 0 a.e. on{t|x(t) 6= 0},

thenx(t) converges to 0 in finite time.

Nonsmooth Version of LaSalle’s Theorem[77]: Let Ω be a compact subset ofRn such

that every Filipov solution to the autonomous systems ˙x = f (x), x(0) = x(t0) starting in

Ω is unique and remains inΩ for all t ≥ t0. LetV : Ω→Rbe a time-independent regular

function such thatv≤ 0 for all v∈ ˙̃V (if ˙̃V is the empty set then this is trivially satisfied).

DefineS= {x∈Ω|0∈ ˙̃V}. Then every trajectory inΩ converges to the largest invariant

set,M, in the closure ofS.

3.4.2 Segment Formation Control with Nonsmooth Artificial Poten-

tial Trenches

In the artificial potential trenches method introduced in [29], formations are defined

using ”queues” or ”segments” instead of nodes or vertices, and potential trenches are

designed to guide the robots into the formation rather than the exactly predetermined

points in the formation. Before proceeding with the problem description, we make the

following assumptions throughout the dissertation.

Assumption 3.4.1 The whole team follows a leader (either virtual or real). The position

~r0, the velocity~v0 and the topside orientation of the leader are known.
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Assumption 3.4.2 Each robot is able to localize itself, and can estimate its global po-

sition~r i , velocity~vi and orientation.

At the initial stage of formation the randomly scattered robots have to determine to

which segment they belong. As the robots can localize themselves in terms of global

position and they can broadcast their position information among each other, it is pos-

sible for the robots to arrive at a decision of their segment status. The detailed decision

making algorithms was described in [29].

The notion of artificial potential trench is illustrated in Figure 3.5). In this approach,

for each instantaneous position~r i of a robot, there is a unique known goal pointqi,g

(stationary or in motion) with its position indicated by~r i,g on the segment for the robot

to track. For each pair(~r i ,~r i,g), we can construct a scalar functionΦ(di,g), wheredi,g =

‖~di,g‖ = ‖~r i,g−~r i‖ represents the distance from the current position of robotr i to its

goal point on the segment. Intuitively,Φ(·) forms a trench along the segment, and is

referred to as thepotential trench function. The motivation for creating such an artificial

potential trench is to attract robots to the segment. The corresponding attractive force

generated by artificial potential trench is calculated as

~Fi,att =
(

∇xΦ(x)|(di,g)

)
d̂i,g, (3.25)

whered̂i,g = ~di,g/di,g is the unit vector pointing from instantaneous position ofr i to the

nearest pointqi,g.
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Figure 3.5: Illustration of an artificial potential trench on a segment.

Similar to the conventional smooth potential functions use in [6, 50, 27], many nons-

mooth potential functions (including the previous exampleV = |x|, wherex∈R) can be

used to attract a robot to the desired goal point. With mathematical tools of nonsmooth

analysis, it is possible to deal with the discontinuity of derivative, namelyV̇, and the

generalized gradient of functionV = |x| can be expressed as follows:

∂V(x) =





{−1} x > 0

{+1} x < 0

[−1,1] x = 0

In this thesis, the proposed artificial potential trench functions, which are limited to be

smooth functions in the original work [29], are allowed to be nonsmooth to provide

more flexibilities and design freedom. A refined formal definition of a potential trench

function is given and then the artificial potential trench is synthesized in a controller

design for the dynamics model given by Equation (3.4).

A group of mobile robots can form leader-follower pairs to facilitate formation control.
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Similar to other papers [84, 81], two mobile robotsr i and r i−1 that share the same

segment and are organized in leader-follower pairing are depicted in Figure 3.6. The

vector~r i specifies the position of robotr i , whose leader is robotr i−1, with its position

denoted by the vector~r i−1. Similar to the the concept of virtual structure in [55, 17, 22],

it is supposed that each robot has its own goal point on the segment. For instance, the

goal point for robotr i is qi,g. A synthesized formation control will drive a group of

robots with potential trench functions to approach the segment by tracking goal points

on the segment.

0r
�

gir ,1−
�

gid ,1−

gid ,

1, −iid ������

�����	�

0X

0Y

0Z

gir ,

�

gir ,
��

gir ,1−
��

1−ir
�

ir
� giq ,1−

giq ,

ir

1−ir




�

�



Figure 3.6: Representation of relevant variables for two robots together with the associ-
ated segment and vertex in the coordinates system.

To sum up, a framework of multi-robot formation control without considering obstacle

avoidance is to be performed and the main tasks of this study include:

• (i) refine a formal definition of the potential trench functionΦ(di,g), which al-

lows for discontinuity of its derivative such as the previously mentioned function

V(x) = |x|, wherex∈ R;
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• (ii) propose practical methods for constructing possible potential trench functions;

• (iii) based on mobile robot’s dynamics model described by Equation (3.4), study

the Lyapunov stability problem for a robot under the control of a potential trench

functionΦ(di,g);

• (iv) for a group of mobile robots that are assigned to the same segment and orga-

nized in leader-follower pairs, study the associated stability problem if each robot

is supposed to track its own goal point on the segment.

3.4.3 Zoning Potentials

As shown in Figure 1.1(b), each robot in the group can communicate with the rest via

wireless signals. A wireless communication network among all members of the group

is vital for them to accomplish certain tasks in a cooperative and coordinated way. Each

robot can pass information such as its own location within the map to its neighbors.

When obstacles are detected by one robot, information such as location and shape of

obstacles should be shared as each robot has limited capabilities of sensing nearby sur-

roundings. However the radio linkage among robots may be broken if they are separated

too far away because robots’ on-board wireless module can only cover a certain limited

area. Therefore the separation among robots needs to be managed within reasonable

range. Specifically if a group of mobile robots are organized in leader-follower pairs,

separation between the leader and its follower must be controlled under an upper limit

to prevent losing communication linkage.
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On the other hand, to avoid collision among robots, the separation between any follower

and its leader has to be greater than a certain threshold to prevent collision. Moreover,

for robots that are not in leader-follower pairing, the separation between any one robot

and another needs to be controlled. Hence, separation between any two robots must

be sufficient to ensure that each robot can move in a collision-free path. To meet the

requirements on separation management, azoning potentialis proposed. The basic

idea of a zoning potential is that an attractive potential will be invoked whenever the

separation is greater than certain threshold trying to reduce the separation and a repulsive

potential will be applied whenever the separation is less than a threshold and will push

the robot away from dangerous areas to prevent collisions.

Although it is a common practice to assign goal points to usher robots as it is in [55,

17, 22], such pre-determined goal points may not be necessary. Removing these goal

point obviously can entitle the multi-robot systems to more autonomy and flexibilities.

A convenient way is to attract the robots towards the assigned segment in a certain

direction. Consequently, a similar artificial potential trench as illustrated in Figure 3.5

is also formed. In this way, the robot only needs to calculate how far it is away from the

segment in this direction and then can generate a valley-shaped trench to stabilize on the

segment. The benefits of removing goal points are obtained at the cost of introducing a

direction to attract the robots towards segment. The effects of the assigned direction of

attraction on robots also have to be addressed.

To completely solve all these challenges on separation management and removing pre-

determined goal points, a framework involving synthesizing artificial potential trenches
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and zoning potentials into formation controller design and the associated stability anal-

ysis will be the target of this portion of the research.

3.4.4 Segment Formation Control with Obstacle Avoidance

Another possible way to avoid using goal points is to drive any robot towards the nearest

point on the segment. The basic idea is to let each mobile robot to autonomously find

its nearest point on the segment, which also indicates the shortest path from the instan-

taneous position of robot to the assigned segment, and then move towards the nearest

point with an artificial potential trench. Similar to the situations depicted in Figures 3.5

and 3.6, an artificial potential trench that features the shape of a ”valley” with its bottom

being the segment curve is presented in Figure 3.7. It should be noted that here the

artificial potential trench attracts the robot towards its nearest point on the segment and

hence there is no goal point at all in this scenario. In this figure, vector~r i denotes the

instantaneous position of robotr i while qi,ns stands for the nearest point on the segment

to the robot. Similarly,~r i,ns is the vector representing the position ofqi,ns. The artificial

potential trench can be calculated readily once the nearest pointqi,ns is determined. The

attractive force due to the potential trenchΦ(di,ns) can be calculated as

~Fi,att =
(

∇xΦ(x)|(di,ns)

)
d̂i,ns, (3.26)

whered̂i,ns = ~di,ns/di,ns is the unit vector pointing from the instantaneous position ofr i
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to the nearest pointqi,ns.

ir
r

nsir ,

r

nsir ,

r

ir
r

)( ,nsidΦ

nsid ,

Robot
ir

nsiq ,

S e g m e n t
d e n ote s  r obot’ s  p os i ti on .  
N ote :   h e r e  s y m bol

nsiq ,

V e r te x

Y

Z
O X

O

Figure 3.7: Cross section of a potential trench based on the shortest distance from a
robot to the segmentdi,ns.

For this idea, there are three major challenges to be solved. First, there are theoretical

difficulties even on the simple concept of ”nearest point”, as multiple nearest points on

the segment may exist for a single robot. For these cases, in the original work [29] each

robot is instructed to approach a specific nearest point which is closest to the target. In

Figure 3.8, two mobile robots in leader-follower pairing are instructed to pursue their

respective nearest points on the segment. The leader robot has a single nearest point,

which is q1, while the follower has two nearest points, namelyq1 andq2. According

to the simple control strategy in [29], the follower should approachq1 rather thanq2

becauseq1 is closer to the target. Butq1 happens to be the nearest point of the leader.

Obviously, this control strategy lacks rigorous analysis and fails to handle complicated

situations. Therefore a more sophisticated solution is needed. Usually robots with pre-

determined goal points undergo a smooth motion. However, if a robot is instructed

to approach one of nearest points on the segment, motion of the nearest point may be
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discontinuous. Questions about how this will affect the robot’s motion and trajectory

and whether the whole group of robots can be stabilized on the segment need to be

investigated.
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Figure 3.8: Two mobile robots and their nearest points on the segment.

Second, robots under the control of potentials are likely to be stuck at so-calledlocal

minimumlocations where the attractive force cancels out the repulsive force. Usually re-

pulsive potentials are utilized to avoid collisions. Without loss of generality, for robotr i

with the shortest distance to an obstacle is denoted bydi,ob, the repulsive force generated

by the repulsive potentialUrep can be calculated as

~Fi,rep =
(
−∇xU(x)|(di,ob)

)
d̂i,ob, (3.27)

whered̂i,ob = ~di,ob/di,ob is the unit vector pointing from the instantaneous position of

r i to the nearest point on the obstacle and the negative sign indicates that the direction
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of the force is pushing the robot away from the obstacles. Local minimum may result

when the sum of the repulsive forces and the attractive forces becomes zero, i.e.,

~Fi,rep+~Fi,att = 0.

The issue of local minimum leads to several problems [45, 26] including: (1) robots

being trapped due to local minima; (2) no path between closely spaced obstacles; (3)

goal nonreachable with obstacles nearby (GNRON). These problems are addressed in

this thesis since the issue of local minimum is inherent in potential-based methods and

frequently encountered. As far as approaching nearest points is concerned, the GNRON

problem present practical challenges. Two examples of GNRON are illustrated in Fig-

ure 3.9. In Figure 3.9(a), a leader dwelling very close to the segment may cause its

follower robot to be stuck because the repulsive force (to prevent collision) cancels out

the attractive force generated by artificial potential trench.

Third, in the real world, the presence of obstacles must be considered for robot motion

control and multi-robot formation control. Obstacles may give rise to local minimum

issues. Take the simplified situation of a single obstacle for example; existence of the

obstacle may prevent a robot from reaching the nearest point, and, in the worst case,

the robot may get stuck somewhere off the segment. An obstacle which is close to

the segment may cause local minimum even though it does not physically occupy the

segment. This situation is depicted Figure 3.9(b), where the repulsive zone (dotted

line) of the obstacle covers portion of the segment. In this case, the affected robot

will be trapped somewhere off the segment and fail to reach the desired nearest point
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q3. Obstacles may also affect the segment as they may occupy certain portions of the

segment. In turn, such obstacles will affect the robots and the availabilities of nearest

points. Obstacles may be convex or concave shape. In this thesis obstacles with arbitrary

shapes as shown in Figure 1.5 will be considered. An effective method is needed to

handle obstacles of arbitrary shape and the presence of multiple obstacles.
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near es t 
p o i nt

(a) (b)

r o bo t

3q
f o l l o w er ’ s  

near es t p o i nt

Figure 3.9: Two examples of local minima.

In summary, a framework of multi-robot formation control will be studied in the context

of of the specifications below.

• (i) a group of robots must be able to approach the corresponding nearest points on

the segment while the motion of these nearest points are subject to discontinuities;

• (ii) obstacles must be avoided and obstacles are allowed to be static or dynamic,

convex or concave;

• (iii) separation between any leader and follower is maintained within a pre-defined

range;

• (iv) no robots will collide with either another robot or an obstacle;
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• (v) each robot will be able to approach its segment along a local-minima-free path.

3.5 Formation Control Input-to-State Stability

In [84], the concept of input-to-state stability based on leader-follower approach and

graph formation is proposed. It can quantify error amplification during signal propa-

gation in leader following formations. The input-to-state stability of formation is con-

cerned as it not only guarantees stability but also it provides insights into robot-to-robot

interactions in the formation. Therefore it is motivated to investigate some important

properties of formation control based on queues and segments.

Consider the nonlinear system

ẋ = f (x, t)+g(x, t)d(t) (3.28)

wherex∈ D⊂ Rn is the state,d ∈ Dd ⊂ Rm is the disturbance, andf (0, t)≡ 0.

The notion of input-to-state stability (ISS) is presented as follows:

Definition 3.5.1 [79] The system (3.28) is said to be locally input-to-state stable (ISS)

if there exist a classK L functionβ , a classK function χ, and positive constants

k1 and k2 such that for any initial state x(t0) with ‖x(t0)‖ < k1 and any input d(·) with

supt≥t0 ‖d(t)‖< k2, the solution x(t) exists and satisfies

‖x(t)‖ ≤ β (‖x(t0)‖, t− t0)+ χ
(

sup
t0≤τ≤t

‖d(τ)‖
)

(3.29)

for all t ≥ t0≥ 0. It is said to be input-to-state stable if D= Rn, Dd = Rm, and inequality
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(3.29) is satisfied for any initial state x(t0) and any bounded input d(t).

Similar to the work [84], the generic model of Linear-Time-Invariant (LTI) for each

robot is adopted and finally the task to is to show that the formation control with queues

and segments is input-to-state stable.

3.6 Summary

In this chapter, formulations of important research problems of this dissertation are dis-

cussed. The relevant key technical notions and fundamentals of nonsmooth analysis,

which becomes the corner stone of stability analysis of this thesis are reviewed.
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Chapter 4

A Robust Nonlinear Feedback Control

and Implementation of Multi-Robot

Formation Control

This chapter covers two topics. The first one begins with stability analysis on nonlinear

feedback control for mobile robots and the associated comparative study of two similar

feedback controls to derive an improved robust control. The other topic is mainly on the

implementation of multi-robot formation and experiments based on the proposed robust

control law.

4.1 Nonlinear Control and Lyapunov Stability

Motion control of mobile robots usually features nonlinear feedback control and nu-

merous methods have been proposed in the past decades [16, 30, 38, 63, 86, 66, 48,

10, 7, 51]. Specifically two similar continuous nonlinear feedback controls, of which
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the expressions are described in Equations (3.9) and (3.10), were proposed by [36] and

[53] respectively. A review of Lyapunov stability for nonlinear feedback control based

on kinetics model is motivated to reveal the inherent linkage between these two similar

controls.

Now for system kinetics model described by Equation (3.8), we consider to derive a

general form of control laws which can stabilize the robot in the sense of Lyapunov

stability theorems. It requires that bothr andφ tend to zero as timet → ∞. A possible

way is to choose control laws which lead to diagonalization of the matrix on the right-

hand-side of Equation (3.8). To this end, we letv andω being




v

ω


 =




g1(r,φ) 0

0 g2(r,φ)







r

φ


+




0

−g1(r,φ)sin(φ)


 , (4.1)

whereg1(r,φ) andg2(r,φ) are certain unexplicit functions to be determined. It is worth-

while to note that while time-invariant state feedback control laws based on certain

g1(r,φ) andg2(r,φ) functions are feasible, there is still a special term−g1(r,φ)sin(φ)

left on the right-hand-side of Equation (4.1) according to Brockett’s theorem [8].

Then by substituting the above equations into Equation (3.8), we can rewrite the Equa-
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tion (3.8) into




ṙ

φ̇


 =



−cos(φ) 0

1
r sin(φ) 1







g1(r,φ) 0

0 g2(r,φ)







r

φ




+




0

−g1(r,φ)sin(φ)


 . (4.2)

A family of possible functionsg1(r,φ) andg2(r,φ) can be chosen as follows:

g1(r,φ) = K1rnφ2q(cos(φ))2p+1,

g2(r,φ) = −K2φ2s, (4.3)

wheren = 0,1,2, · · · , p = 0,1,2, · · · , q = 0,1,2, · · · ands= 0,1,2, · · · .

Accordingly Equation (4.1) can be rewritten into the following form:

v = K1rn+1φ2q(cos(φ))2p+1,

ω = −K1rnφ2qsin(φ)(cos(φ))2p+1−K2φ2s+1. (4.4)

Proposition 4.1.1 The family of control laws given in Equation (4.4) asymptotically

stabilizes a differential robot on its goal point. ¤

Proof: See Appendix A.1. ¤
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It should be noted that although the general control law represented in Equation (4.4) can

theoretically asymptotically stabilize the robot at its goal point, the termφ2q will greatly

slow down the system response. Therefore for the sake of practical considerations,q= 0

is preferred. Let us focus on the control with simple structure.

Proposition 4.1.2 Both Equations (3.10) and (3.9) can be derived from the general

control law given in Equation (4.4). ¤

Proof: See Appendix A.2. ¤

Obviously, either Equations (3.9) (3.10) is verified to be special cases of Equation (4.4).

Apart from this observation, similarity of these two nonlinear feedback controls inspires

a comparative research work on their effects on the system’s behavior. Although some

preliminary analysis results on the control law represented by Equation (3.9) are avail-

able in [36], a comparative study on these two control laws proves to be more informa-

tive.

4.2 Analysis on Robot’s Motion Behavior

4.2.1 Evolution of Heading

As mentioned, one interesting thing is to learn the behavior of the robot’s heading when

under control in Equations (3.10) or (3.9). To avoid expression confusion, we useθ1(t)

and θ2(t) to denote the heading of robot under control in Equations (3.9) and (3.10)

respectively. Let us processθ2(t), namely the case with control in Equation (3.10) first.
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The resultant closed loop system equation is

ṙ = −K1r(cos(φ))2,

φ̇ = −K2φ . (4.5)

Solving the differential equations in Equation (4.5) yields

r(t) = r0e−K1
∫ t
0 cos2(φ0e−K2s)ds,

φ(t) = φ0e−K2t . (4.6)

We define a variableλ = K1/K2 ∈ [0,+∞) and refer to it as ”gain ratio” throughout this

chapter. Sincėθ = ω = −K2φ −K1sin(φ)cos(φ), substituting results from Equation

(4.6) into Equation (4.5) we can have

θ2(t) = θ0 +
[
φ0e−K2t]t

0 +
[
λSi(2φ0e−K2t)/2

]t
0,

whereθ0 denotes the initial heading of robot andSi(x) is the Sine Integral function

defined asSi(x) =
∫ x

0
sin(t)

t dt. Readily we obtain the information ofθ2(t) whent →∞ as

θ2(∞) = θ0−φ0−λSi(2φ0)/2.

Similarly, we can derive the solutions of the closed-loop system equations under control
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in Equation (3.9) as

r(t) = r0e−K1
∫ t
0 cos(φ0e−K2s)ds

φ(t) = φ0e−K2t . (4.7)

Consequently, we can acquire headingθ1(t) as

θ1(t) = θ0 +
[
φ0e−K2t]t

0 +
[
λSi(φ0e−K2t)

]t
0,

whereθ0 denotes the initial heading of robot. Accordingly, we haveθ1(∞) as

θ1(∞) = θ0−φ0−λSi(φ0).

From the foregoing results, for any given initial conditions, bothθ1(∞) andθ2(∞) are

only relevant to gain ratioλ rather than the amplitudes of gainK1 or K2.

Let us define turning of headingHc as

Hc = |θ(∞)−θ0|,

and specificallyHc1 = |φ0 +λSi(φ0)| andHc2 = |φ0 + λ
2 Si(2φ0)| for the two cases with

control in Equation (3.9) and (3.10) respectively. ObviouslyHc is the total change of

heading of the robot along the whole trajectory from the starting point to the target.

It is of interest to compareHc1 with Hc2 andθ1(∞) with θ2(∞), because their expressions

look similar for any givenφ0. Let F(x) = Si(x)−Si(2x)/2, the first time derivative ofF
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with respect tox yields

F
′
(x) =

sin(x)
x

− sin(2x)
4x

=
sin(x)

x
· (1− cos(x)

2
) > 0,

for ∀x∈ (−π,π). It means thatF(x) is monotonically increasing on the whole interval.

The graph ofSi(x)−Si(2x)/2(i.e. F(x)), Si(x) andSi(2x)/2 are depicted in Figure 4.1.
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Figure 4.1: Figures ofF(x) = Si(x)−Si(2x)/2, Si(x) andSi(2x) for x∈ (−π,π]. The
solid blue line is for the monotonically increasing functionF(x).

From this figure, it is clear that when 0< φ0 ≤ π, we haveθ1(t) < θ2(t) (specifically

θ1(∞) < θ2(∞)) while θ1(t) > θ2(t) (specificallyθ1(∞) > θ2(∞)) when−π < φ0 < 0.

It is also noted from the figure that the bigger the initialφ0, the more difference between

θ1(∞) andθ2(∞) will be resulted.

In the terms of turning of headingHc, we have the following conclusion:

Hc1−Hc2 =





λ |Si(φ0)− Si(2φ0)
2 |> 0 if φ0 6= 0

0 if φ0 = 0.
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In other words, when under control in Equation (3.9), the robot’s heading will travel

more than the counterpart under control in Equation (3.10) for any initial nonzeroφ0 ∈

(−π,π].

4.2.2 Unique Trajectory w.r.t. Gain Ratio λ

From the foregoing section, we can find that the headingsθ1(t) andθ2(t) are actually a

function ofφ(t) and gain ratioλ in that they can be rewritten into the following forms:

θ1(t) = θ0−φ0 +φ(t)+
λ
2

[
Si(2φ(t))−Si(2φ0)

]
,

θ2(t) = θ0−φ0 +φ(t)+λ
[
Si(φ(t))−Si(φ0)

]
.

And as mentioned, speciallyθ1(∞) andθ2(∞) are solely determined byλ for certain

initial conditions. These observations release strong signals that there may be a unique

relationship between the trajectory andλ . Hence we are inspired to find out the link-

age between them. For the case with control in Equation (3.9), we have the following

proposition:

Proposition 4.2.1 If the differential mobile robot is under control in Equation (3.9),

then its trajectory is solely determined by the gain ratioλ , whereλ ∈ (0,+∞) for certain

given initial conditions r0 andφ0.

For the other case with control in Equation (3.10) we have a similar assertion given by

the following proposition:
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Proposition 4.2.2 If the differential mobile robot is under control in Equation (3.10),

then its trajectory is solely determined by the gain ratioλ , whereλ ∈ (0,+∞) for certain

given initial conditions r0 andφ0.

For the sake of brevity, we only provide the proof for the latter case(see Appendix A.3)

in this chapter and leave the proof for the former proposition that is relatively simpler to

the readers.

As shown in Proposition 4.2.1 and 4.2.2, for any given initial conditions, the trajectory

of the robot is unique as long as gain ratioλ is fixed. This conclusion is very useful

in applications such as trajectory design, path planning, etc. For instance, we can de-

terminateλ in accordance with the desired trajectory and then anticipate the magnitude

of gain K1 andK2 according to the specifications on convergence rate ofr andφ and

technical specifications of the physical actuator.

4.2.3 Characteristics of Trajectory Curvature

Another appealing thing seems to be to comparatively investigate the curvature of the

trajectories of mobile robots under the controls in Equations (3.10) and (3.9). It turns out

that to directly analyze the exact curvature of the whole trajectory at an arbitrary moment

is not easy because of the difficulties in expressing curvature in forms of elementary

functions. However, to some extent we are able to extract some characteristics of the

curvature.

The curvature of the trajectory generated by a mobile robot isK (t) = |ω(t)|
|v(t)| . The case
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with control in Equation (3.9) is relatively simpler than the case with control in Equation

(3.10). Let us deal with the former case first. We can write the curvatureK1 as

K1(t) =
|K2φ0e−K2t +K1sin(φ0e−K2t)|

K1r0e−K1
∫ t
0 cos(φ0e−K2s)ds

.

The derivative ofK1 whenφ0 ∈ (0,π] can be calculated asdK1(t)/dt =
[
ω ′

(t)v(t)−

ω(t)v
′
(t)

]
/v2(t). Since the numerator determines the sign ofdK1(t)/dt, we are able to

judge the sign from it. LettingdK1(t)/dt = Num1/Den1 yields

Num1 = −[K2
2φ0 +K1K2φ0cos(φ0e−K2t)]

e−K2tK1r0e−K1
∫ t
0 cos(φ0e−K2s)ds+

K2
1r0e−K1

∫ t
0 cos(φ0e−K2s)ds[K2φ0e−K2t

+K1sin(φ0e−K2t)]

= K1r0e−K1
∫ t
0 cos(φ0e−K2s)ds[−K2

2φ0e−K2t

+K2
1 sin(2φ0e−K2t)/2

]
.

LettingA= φ0e−K2t and substitutingK1 = λK2, we will find thatλ 2sin(2A)/2−Awhere

A∈ (0,π] has the same sign as that ofdK1(t)/dt. Similarly we can conclude that in the

case withφ0 ∈ (−π,0), −λ 2sin(2A)/2+ A has the same sign ofdK1(t)/dt. In short,
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we can generalize these two facts into an functionS1 as

S1(A) =





λ 2sin(2A)/2−A if A∈ (0,π],

−λ 2sin(2A)/2+A if A∈ (−π,0),

whereλ ∈ [0,+∞). Then from this functionS1, we can try to extract some useful

information on curvatureK1(t). It of significance to find the invariant set ofΩλ given

by

Ωλ = {λ |S1(A) < 0,∀A∈ (−π,0)∪ (0,π]}.

This invariant setΩλ turns out to beΩλ = [0,1]. The illustration of functionS1(A) with

respect to a variety ofλ is shown in Figure 4.2. From this figure, it is obvious that for

theseλ ∈Ωλ , curvatureK1(t) is monotonically decreasing almost everywhere on time

domaint ∈ [0,+∞) except att = +∞ for any nonzeroφ0.
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Figure 4.2: Illustration ofS1(A) w.r.t A for gain ratiosλ = 0,1,2,3,4.

The special cases with nonzero initial conditionφ0 andt → ∞ have to be handled with
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care in that both the numerator and denominator ofK1(t) tend to zero ast→∞. It means

that L′Hôspital’s rule is applicable in such cases rather than the previously used general

differentiation ruledK1(t)/dt =
[
ω ′

(t)v(t)−ω(t)v
′
(t)

]
/v2(t). Considering the special

caseφ0 = 0 we always haveK1(t) = 0, the curvatureK1(t) at t = ∞ can calculated as

K1(∞) =





0 if λ < 1 or φ0 = 0,

2|φ0|
r0

if λ = 1,

∞ if λ > 1 andφ0 6= 0.

by invoking L′Hôspital’s rule.

From the above expression, it is noted that for any nonzeroφ0, λ = 1 is ”critical” in

the sense that any value ofλ below it will lead the curvatureK1(t) to be monotonically

decreasing on time domaint ∈ [0,+∞). Moreover, the curvature of trajectory at the

origin of the goal frame will be expected to be zero for anyλ < 1 otherwise it will be

infinity for any λ > 1. Thanks to this observation, we refer toλ = K1/K2 = 1 as the

”critical gain ratio”.

Now we move on to the more complicated case with control in Equation (3.10). The

curvatureK2 of the corresponding trajectory can be written as

K2(t) =
|K2φ0e−K2t +K1sin(2φ0e−K2t)/2|

K1r0e−K1
∫ t
0 cos2(φ0e−K2s)ds|cos(φ0e−K2t)|

.

LettingdK2(t)/dt = Num2/Den2, for anyφ0 ∈ (0,π/2) then we can write the numera-
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tor as

Num2 = −e−K2t [K2
2φ0−K1K2φ0cos(2φ0e−K2t)]

K1r0e−K1
∫ t
0 cos2(φ0e−K2s)dscos(φ0e−K2t)−

[K2φ0e−K2t +K1sin(2φ0e−K2t)][K2
2φ2

0 sin(φ0

e−K2t)e−2K2t −K1K2φ0e−K2t cos3(φ0e−K2t)]+

K1K2φ0e−K2t sin(φ0e−K2t)sin(2φ0e−K2t)/2−

K2
1 sin(2φ0e−K2t)cos3(φ0e−K2t)/2]

= K1r0e−K1
∫ t
0 cos2(φ0e−K2s)ds[−K2

2φ0

cos(φ0e−K2t)e−K2t −K2
2φ2

0 sin(φ0e−K2t)

e−2K2t −K2
2φ2

0 sin(φ0e−K2t)e−2K2t +

K2
1 sin(2φ0e−K2t)cos3(φ0e−K2t)/2

]
.

LettingA = φ0e−K2t andK1 = λK2 whereλ ∈ [0,+∞), then the following expression

λ 2sin(2A)cos3(A)/2−Acos(A)−A2sin(A),

whereA∈ (0,π/2) has the same sign as that ofdK2(t)/dt for anyφ0 ∈ (0,π/2). Since

K2 is an even function with respect toφ0, we can conclude that

−λ 2sin(2A)cos3(A)/2+Acos(A)+A2sin(A),

whereA∈ (−π/2,0) has the same sign as that ofdK2(t)/dt for φ0 ∈ (−π/2,0). How-
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ever, unfortunately we cannot simply extend the above results to the cases withφ0 ∈

(−π,−π/2) andφ0 ∈ (π/2,π] because the sign of the numerator undergoes a more so-

phisticated situation for these cases. One interesting thing is to find the approximate

value ofλ ∗ = min{λ1,λ2}, whereλ1 andλ2 can be determined by the following equa-

tions

λ1 = sup{λ |A+λ sin(2A)/2 < 0,∀A∈ (π/2,π]},

λ2 = sup{λ |A+λ sin(2A)/2 > 0,∀A∈ (−π,−π/2)},

respectively. It turns out that whenλ ∗ ≈ 4.6033 a functionS2(A) shown in Figure 4.3

has the same sign ofdK2(t)/dt. As to the special cases withA =±π/2 or equivalently

φ(t) =±π/2, we have curvatureK2 = ∞. we can make the following conclusions: the

sign ofdK2(t)/dt on time domain(0,+∞) can be determined from functionS2 as

S2(A)=





Acos(A)+A2sin(A)−λ 2sin(2A)cos3(A)/2 if A∈ (π/2,π],andλ < 4.6033,

−Acos(A)−A2sin(A)+λ 2sin(2A)cos3(A)/2 if A∈ (0,π/2),

Acos(A)+A2sin(A)−λ 2sin(2A)cos3(A)/2 if A∈ (−π/2,0),

−Acos(A)−A2sin(A)+λ 2sin(2A)cos3(A)/2 if A∈ (−π,−π/2),andλ < 4.6033,

for certain sets ofλ as designated in the above equation. The cases withλ ≥ 4.6033

whenA∈ (π/2,π]∪ (−π,−π/2) are not considered here.

Referring to Figure 4.3, it is obvious that unlike the case with control in Equation (3.9),

we cannot find the invariant set ofλ on the domain eitherφ0∈ (−π,0) or φ0∈ (0,π). In-

stead, we have the same invariant setΩλ = [0,1] on domainφ0 ∈ (−π/2,0) or (0,π/2).
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Figure 4.3: Illustration ofS2(A) w.r.t A for λ = 0,1,2,3,4.

Now it is time to investigate the all specials cases left, namelyφ0 = 0 andt → ∞ when

φ0 6= 0. Taking the special caseK2(t) = 0 whenφ0 = 0 into account, we can obtain the

curvature of trajectory at origin of the goal frame as given by the following equation by

invoking L′Hôspital’s rule again:

K2(∞) =





0 if λ < 1 or φ0 = 0,

2|φ0|
r0

if λ = 1,

∞ if λ > 1 andφ0 6= 0.

ComparingK2(∞) with K1(∞) obtained in previous analysis, it is remarkable to find

thatK2(∞) = K1(∞). In other words, the curvatures of trajectory at the origin of goal

frame under controls in Equations (3.10) or (3.9) turn on the same characteristics.

Similar to the characteristics of trajectory curvature under control in Equation (3.9),

there is a critical gain ratioλ = 1 for any |φ0| < π/2 in the sense that any value ofλ

beyond it will lead the curvature of trajectory at the origin of the goal frame be infinity
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while below it zero curvature is expected. Again it is observed that for any 0< |φ0| <

π/2 if we choose any gain ratioλ to be 0< λ < 1, the maximum curvature of the

trajectory happens at the very beginning momentt = 0. In other words,

K2(0) =
|φ0/λ +sin(2φ0)/2|

r0cos(φ0)
, whereλ ∈ (0,1),

is the maximum value of trajectory curvature for these cases. Compared withK1(0),

we haveK2(0)≥K1(0) andK2(0) = K1(0) holds only ifφ0 = 0 or φ0 = π. However

different from scenarios with control in Equation (3.9),K2 tends to infinity atφ(t) =

±π/2.

4.3 Robustness Analysis

More than stability issues, robustness of nonlinear feedback control is worthwhile to

study. Specifically in this chapter, robustness analysis for the nonlinear feedback control

represented by Equation (3.10) is to be performed to achieve a improved robust control.

Later on this robust control law will be applied to implementation of multiple robot

formation control.

4.3.1 Stable Zone

We refer to the model in Equation (3.18) as the real closed-loop system model. Then

our problem is to analyze the stability and robustness of this real-world model. We can
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decompose this model into two subsystems as follows.

ṙ = −K1(cos(φ))2r,

φ̇ = −K2φ −
(

K3−K1
2

)
sin(2φ).

Obviously except the special case with cos(φ(t)) ≡ 0, r(t) is at least asymptotically

convergent to zero. As toφ(t), the situation is more complicated.

Let K4 = (K3−K1)/2, then we have

φ̇ =−K2φ −K4sin(2φ) (4.8)

As to the subsystem denoted by Equation (4.8), construct a Lyapunov candidate asV =

1
2φ2. The derivative ofV with respect to time is

V̇ = φφ̇ =−K2φ2−K4φ sin(2φ). (4.9)

As shown by the closed-loop system equation in Equation (3.18), this system is time-

invariant. It means that LaSalle’s theorem is applicable. Therefore we are motivated to

find out the invariant setΣ = {(K1,K2,K3)|V̇ < 0}. To this end we leṫV = 0, then we

have to make eitherφ = 0 or φ =−K4/K2sin(2φ).

To find out the solution ofφ = −K4/K2sin(2φ) for φ ∈ [0,π), we perform numeri-

cal calculation in Matlab environment. There are two scenarios: eitherK4/K2 ≥ 0 or

K4/K2 < 0. The illustration of different solutions whenK4/K2 > 0 is shown in Figure
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4.4 while the case withK4/K2 < 0 is shown in Figure 4.5. The calculation shows that:

• (i) if K4/K2 ≥ 0 when 0≤ K4/K2 < c1, equationφ = −K4/K2sin(2φ) has only

one solution, i.e.,φ = 0,

• (ii) if K4/K2 < 0 whenc2 < K4/K2 < 0, equationφ = −K4/K2sin(2φ) has only

one solution, i.e.,φ = 0,

wherec1 andc2 are constants. The numerical calculations offer approximation values

of c1 andc2 asc1≈ 2.30 andc2≈−0.50.
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y=x
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Figure 4.4: Illustration of different solutions withK4/K2 > 0.

To sum up, the ratioK4/K2 should be within the range(c2,c1) to make subsystem Equa-

tion (4.8) asymptotically stable. Or in other words, the relationship amongK1,K2,K3 to

make subsystem Equation (4.8) stable is:K1 + 2c2K2 < K3 < 2c1K2 + K1 (K2 > 0) or

2c1K2 + K1 < K3 < K1 + 2c2K2 (K2 < 0). Illustrations of the stable zone are shown in

Figures 4.6 and 4.7 for the cases ofK2 > 0 andK2 < 0 respectively. It is noted that in
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Figure 4.5: Illustration of different solutions withK4/K2 < 0.

these two scenarios, the stable zone forms a wedge shape and all the sets of(K1,K2,K3)

within the zone (not including the edge) will stabilize the system.
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Figure 4.6: Illustration of stable zone withK2 > 0.

In practise,K2 is usually chosen to be positive. So we can further the above conclusions.

Any positiveK4 will make the subsystem stable and actually expedite the converging rate

of φ . In this case, the whole stable range ofK3 is K1 +2c2K2 < K3 < 2c1K2 +K1. The
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Figure 4.7: Illustration of stable zone withK2 < 0.

stable zone is shown in Figure 4.8. The stable zone is the whole wedge and is separated

by a plane withK3 = K1. The upper part of this wedge has the property ofK4 > 0

while the lower part withK4 < 0. The difference of these two parts of the zone lies in

that the sets of(K1,K2,K3) in the upper part contributes to expediting system response

while these sets in the lower parts will lag the system response when compared with the

nominal sets of parameters in the planeK3 = K1.

4.3.2 Improvements and Control Design Guidelines

Proposition 4.3.1 If K4 ≥ 0, namely, K3−K1 ≥ 0, φ(t) is exponentially convergent to

zero for arbitrary initial φ0.

The proof is pretty straightforward and hence omitted here for brevity.

Proposition 4.3.2 Sets of(K1,K2,K3) in the upper part of the wedge in Figure 4.8

expedites the response ofφ .
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Figure 4.8: Illustration of stable zone with practical concerns in the case whenK1 > 0
andK2 > 0. Note that the whole zone is separated by a planeK3 = K1, i.e.,K4 = 0.

Proof: See Appendix A.4. ¤

According to Proposition A.4, we can deliberately chooseK3 ≥ K1 to make the system

more robust. Obviously it is not a good strategy to chooseK3 = K1 in terms of robust-

ness. To improve it, specifically we can design real application control laws in light with

the following guidelines.

(1) As revealed in Figure 4.8,K2 should not be too close to zero as the biggerK2, the

wider zone between upper bound and lower bound.

(2) To maximize the stability zone for a given set of(K1,K2,K3), it is desirable to

chooseK3 = K1 +(c1 +c2)K2. In other words,(K1,K2,K3) is within the plane in

the middle of upper bound and lower bound as illustrated in Figure 4.8.

(3) To obtain comparatively large stability zone for a given set of(K1,K2,K3) while

keep the converging rate from being negatively affected, it is desirable to choose
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K3 = K1 +c1K2.

4.4 Numerical Examples

4.4.1 Typical Trajectories of Robots

To verify and illustrate the conclusions on the trajectory characteristics in the foregoing

context, we design experiments on a mobile robot that starting from four different points

(1,0), (0,1), (−1,0), (0,−1) on a 2D plane. The origin of the goal point frame is the

target and at each starting point initialφ0 is chosen to beπ/4. For all the experiments,

K1 = 1 is fixed whileK2 = K1/λ is varied with respect toλ . To show the typical scenar-

ios of trajectories based on different settings ofλ , we takeλ = 0.2,1,5 for each starting

point. The case with control in Equation (3.9) is depicted in Figure 4.9 and the part

of trajectories near the origin is highlighted in Figure 4.10 to show the characteristics

of trajectory curvature near the goal point. Correspondingly, Figures 4.11 and 4.12 are

dedicated to the case with control in Equation (3.10). To compare the trajectories under

these two different control laws, we put all the two kinds of cases withλ = 1 andλ = 5

together into Figure 4.13. And it is highlighted in Figure 4.14 to show more details of

the features of trajectories near target point.

From all these figures, all the trajectories show some common features. First, the lower

the gain ratioλ , the shorter the distance the robot needs to approach the origin. Second,

these trajectories with lowerλ also exhibit less turning of heading. Third, specifically

in the blow-ups i.e., Figures 4.10 and 4.12, the trajectories with gain ratio higher than
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the critical gain ratio (λ = 1) is quite different from those withλ ≤ 1. All the blue

trajectories (λ = 1) in the blow-ups ( referring to Figures 4.10 and 4.12) entry into

another quadrant before reaching the target point. Moreover from Figure 4.13 and its

blow-up in Figure 4.14, it is shown that under the same conditions, the robot under

control in Equation (3.9) turns a bit more than the one under control in Equation (3.10).

All of these observations are consistent with our theoretical analysis.
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Figure 4.9: Trajectories of robot starting at four different points on x- and y- axis with
initial φ0 = π/4 when applied with control law in Equation (3.9). The red color tra-
jectory stands for the case with critical gain ratio (λ = 1), blue color forλ = 0.2 and
black-color forλ = 5. Note that the portion within the rectangle is magnified in Figure
4.10.

4.4.2 Unique Trajectories of Robots w.r.t.λ

To verify the assertion that the trajectories of a differential mobile under controls in

Equations (3.9) and (3.10) are invariant to the gain ratioλ , we design several exper-

iments similar to those in previous section. For all the experiments in this section,

initially the robot is located at four different points(1,0), (0,1), (−1,0), (0,−1) on a
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Figure 4.10: Highlights of the trajectories near the goal point (referring to Figure 4.9).
Note that different from the red and black color trajectories, the blue one withλ = 5
entries into another quadrant.

2D plane with initialφ0 chosen to beπ/4. The target for each trajectory is the the origin

of the goal point frame.

For the cases with control in Equation (3.9), Figures 4.15, 4.16 and 4.17 show the unique

trajectories generated byK1/K2 = 1, K1/K2 = 5, K1/K2 = 0.2 respectively. For the

others with control in Equation (3.10), the unique trajectories corresponding toK1/K2 =

1, K1/K2 = 5, K1/K2 = 0.2 are depicted in Figures 4.18, 4.19 and 4.20 respectively. As

shown by all these figures, it is clear that the trajectory of the robot solely depends on

gain ratioλ .

4.4.3 MismatchingK3 and K1

A simulation in Matlab is designed to show two cases of mismatchingK3 andK1. In

case one, initial conditions are set to beφ0 = 1 rad andr0 = 1 and in case twoφ0 = π
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Figure 4.11: Trajectories of robot starting at four different points on x- and y- axis
with initial φ0 = π/4 when applied with control law in Equation (3.10). The red color
trajectory stands for the case with critical gain ratio (λ = 1), blue color forλ = 0.2 and
black color forλ = 5. Note that the portion within the rectangle is magnified in Figure
4.12.

rad andr0 = 1. The nominal gains are chosen asK1 = 20 andK2 = 1. Suppose there is

−6% deviation ofK3 with respect toK1, i.e.,K3 = 18.8 in case one and a positive 24%

deviation ofK3, i.e.,K3 = 24.8 in case two.

The simulation results of system response are depicted in Figure 4.21 with (a), (b) for

case one and (c), (d) for case two. From this figure, it is obvious that in these two cases

φ(t) fails to approach to zero due to−6% and 24% deviation ofK3 respectively.

4.4.4 Effects ofK3 on System Response

In this simulation we investigate the effects of mismatchingK3 on system response

through simulation. Initial conditions are set to beφ0 = 1 rad andr0 = 1 and gain

K1 = 20 andK2 = 1. We vary the value ofK3 with respect toK1. Refer to the stable
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Figure 4.12: Highlights of the trajectories near the goal point (referring to Figure 4.11).
Note that different from the red and black color trajectories, the blue one withλ = 5
entries into another quadrant.

zone illustrated in Figure 4.8, we deliberately choose several sets of(K1,K2,K3) from

upper part, separation plane (K1 = K3) and lower part respectively. According to design

guidelines, in this experiment, we chooseK3 = 22.30,21.8 from upper part andK3 = 20

for the nominal case andK3 = 19.2 from the lower part. The results are depicted in

Figure 4.22. From this figure, it is noted that compared withK3 = 20, a set in upper

part of the wedge in Figure 4.8 contributes to expediting the system’s response while

a set in lower part of the wedge will negative affect the system’s response. The most

significant effects of mismatchingK3 is on the converging rate of termφ(t). Since they

are all within the stable wedge, bothr(t) andφ(t) approach to zero as timet → 0.

To compare the energy needed for each controller, we define a functionJn, which is

describe by

Jn =
∫ t

0

(
v2(τ)+ω2(τ)

)
dτ.
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Figure 4.13: Comparison of the trajectories under two different control laws. The ”case
A” (represented by red color lines) in the figure denotes the case with control in Equation
(3.9) while ”case B” (represented by blue color lines) is for the case with control in
Equation (3.10). The portion within the rectangle is magnified in Figure 4.14.

In this simulation, the integral of the norm squared of the actual velocity signals for each

controller is shown in Table 4.1. From the figures shown in this table, the control laws

recommended by design guidelines seem to be more efficient than the nominal case with

K3 = K1 and the one with negative deviation (K3 = 19.2). And there is not significant

difference between the two recommended control laws, i.e.,K3 = 21.80 andK3 = 22.30

respectively.

Table 4.1: Comparison of the integral of the norm squared of the velocity input signals∫ 30
0

(
v2(t)+ω2(t)

)
dt.

K3 = 19.2 K3 = 20 K3 = 21.80 K3 = 22.30
331.8 129.8 69.78 63.87
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Figure 4.14: Highlights of the trajectories under two different control laws (referring to
Figure 4.13). The ”case A” (represented by red color lines) in the figure denotes the case
with control in Equation (3.9) while ”case B” (represented by blue color lines) is for the
case with control in Equation (3.10). Note that the robot’s heading in case A travels a
bit more that in case B.
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Figure 4.15: The same trajectory for different gain sets of(K1,K2) with control in Equa-
tion (3.9). For each gain set, the ratioK1/K2 = 1 is maintained to be the same.
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Figure 4.16: The same trajectory for different gain sets of(K1,K2) with control in Equa-
tion (3.9). For each gain set, the ratioK1/K2 = 5 is maintained to be the same.
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Figure 4.17: The same trajectory for different gain sets of(K1,K2) with control in Equa-
tion (3.9). For each gain set, the ratioK1/K2 = 0.2 is maintained to be the same.
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Figure 4.18: The same trajectory for different gain sets of(K1,K2) with control in Equa-
tion (3.10). For each gain set, the ratioK1/K2 = 1 is maintained to be the same.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X

Y

Trajectories of Robot Approaching the Origin with the Same λ=5

 

 
K

1
= 1, K

2
=0.2

K
1
=2, K

2
=0.4

K
1
=3, K

2
=0.6

Figure 4.19: The same trajectory for different gain sets of(K1,K2) with control in Equa-
tion (3.10). For each gain set, the ratioK1/K2 = 5 is maintained to be the same.
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Figure 4.20: The same trajectory for different gain sets of(K1,K2) with control in Equa-
tion (3.10). For each gain set, the ratioK1/K2 = 0.2 is maintained to be the same.

0 1 2
0

0.5

1

time(second)

r(
t)

(a)

0 5 10
0.4

0.6

0.8

1

time(second)

φ(
t)

(b)

0 1 2
0

0.5

1

time(second)

r(
t)

(c)

0 5 10
2

2.5

3

3.5

time(second)

φ(
t)

(d)

Figure 4.21: Illustration of mismatchingK3 andK1. In (a) and (b) initial conditions are
φ0 = 1 rad andr0 = 1 and gainK1 = 20, K2 = 1 andK3 = 18.8 (i.e.,−6% deviation).
And in (c) and (d) initial conditions areφ0 = π rad andr0 = 1 and gainK1 = 20,K2= 1
andK3 = 24.8 (i.e., 24% deviation).
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Figure 4.22: Illustration of the effects of mismatchedK3 on the system response. Ini-
tial conditions areφ0 = 1 rad. andr0 = 1 and gainK1 = 20, K2 = 1 and K3 =
19.2,20,21.80,22.30 respectively.
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4.5 Implementation

In previous sections of this chapter, a robust nonlinear feedback control has been pro-

posed. Based on this robust control law, a real implementation of multi-robot formation

control is to be presented.

4.5.1 Overview of the Implementation

A picture of the real implementation is presented by Figure 4.23. In this figure, a 4m

by 2.8m wooden test bed offers the field for a group of mobile robots. The MRKIT

mobile robots presented in Figure 4.23 with on-board infrared sensors and compass,

which are used in the experiments consist of the main platform to verify algorithms.

Each robot has two independently controlled wheels driven by stepper motors. A GPS

system is simulated by a vision system comprising vision frame grabber, CCD color

camera with lens, a working station, and wireless communication modules. Two web-

cam are mounted on the ceiling and can be used for robot tracking or video recording

and only one is showed in Figure 4.23. The key modules of this implementation are

connected as shown by Figure 4.25.

4.5.2 Parameters of MRKIT Mobile Robots

Each wheel of MRKIT robot is driven independently with step motor being controlled

by on-board micro-controller. The wheel velocity is controlled via PWM waveform and

is determined by an internal time intervalT in the micro-controller. The relationship
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Figure 4.23: Picture of real robots, test bed(on the floor), CCD color camera with wide-
angle lens and one web-cam(mounted on the ceiling).

between the velocityV of a wheel andT can be represented as

V =
Dπ
NP

,

whereD = 54 mm is the diameter of the wheel;N = 400 is the step of motor per revo-

lution; P is the time (second) per step andP = T·10−6

2.5 . Finally we arrive atV = 1060.288
T

m/s andT is a 16-bit integer, which can be set in micro-controller. Due to the finite

length ofT and physical limitations of motor,V has a minimumVmin = 0.0162 m/s and

a maximumVmax= 0.3 m/s.
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Figure 4.24: Picture of a MRKIT mobile robot with on-board color pads.

4.5.3 Vision System: Resolution and Noise Analysis

A vision system, comprising of CCD camera, lens, frame grabber and application pro-

gram as shown in Figure 4.25, is developed for tracking the mobile robots and detecting

their position/orientation. Its resolution is largely determined by the resolution of the

CCD camera and the optical system. In the experiment, the CCD camera is mounted on

a bracket fixed on the ceiling. Due to the limitation of ceiling height, the viewable area

on the test bed is 1800mm by 2480mm. The CCD camera has a resolution of 576 by

768 pixels. Accordingly calculation results show that along the x-axis, the resolution is

3.229mm per pix while along the y-axis, 3.177mm per pix.

To identify the robot’s position and orientation, a color pad is attached on the top of a

robot as shown in Figure 4.24. Each color pad has two different color 65mm-diameter
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Figure 4.25: Illustration of connection of the whole implementation.

circles aligned in a line. One circle is painted blue and the other one yellow. The center

of each circle can be determined using the image processing hardware and software,

namely the frame grabber and the corresponding vision processing software running

on working station. We can use coordinates of the centers of the two color circles to

calculate the position of the robot’s center and its orientation. Let(xa,ya) and(xb,yb)

denote the measured coordinates of the center of yellow circle and blue circle respec-

tively. Hence, the coordinates of the robot’s center can be represented as(xa+xb
2 , ya+yb

2 ).

Meanwhile the orientation of the robot can be calculated asθ = cos−1(xa−xb
ρ ), where

ρ =
√

(xa−xb)2 +(ya−yb)2.

The measurement of the position of each color circle is a resultant of its real position
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and the error signal together with noise. The position error is incurred by the hardware

of the system. For instance, the field is not even and can end up with position error.

Optical system is another source of error. The distortion of the lens on the margin of the

viewable area is relatively salient and such distortion in fact affects the accuracy of the

measurement. Roughly the measurement of position can be expressed in the following

equation.

Xm = xr +xe+xn,

wherexr is the real position;xe is the system error andxn the noise. Basic procedures

of image processing are employed. Calibration of the optical system is performed to

remove radial and tangential distortions, which are the major contributor ofxe. Effects

of lighting on the test bed are evaluated. The R, G, and B components of each pixel

on the color pad are determined through experiments. It is of interest and practically

importance to know the noise level of the measured signal. For any static robot on

the test bed, its real position and system error are always constant and contribute no

variation to the mean value ofXm and its variance. From this observation, it helps to

sample the measurement for a certain period and then use the spectrum analysis tools

to obtain information on the noise. A convenient way is to use the FFT technique. It is

well known that Microsoft Windows is not a real time operating system. For the purpose

of FFT, it is required to evenly sample the data. To solve this conflict, a high resolution

timer without accumulation error is in need. In this experiment, the multi-media timer

is used. It is a high resolution timer with accuracy and resolution of 1 millisecond while

the system resource used is relatively small. We set the sampling rate to be 500 Hz. A
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period of 2 minutes is used to sample the data and for example, the error signal along

x-axis is presented in Figure 4.26(figures of error signal along y-axis the associated

orientation error signal are omitted for the sake of brevity). Then we apply the FFT

technique and analyze its frequency components. It turns out that the noise signals on

x, y and orientation all show on the feature of Gaussian noise. The analysis shows that

δx = 0.142 pix,δy = 0.154 pixδθ = 0.0122 radius. Obviously, the noise level of position

signal is relatively low compared with the vision system’s resolution.
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Figure 4.26: Position error signal along x-axis with sampling ratef = 500Hz.
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Figure 4.27: Position error signal along y-axis with sampling ratef = 500Hz.
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Figure 4.28: Angular error signal with sampling ratef = 500Hz.
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Figure 4.29: Spectrum analysis of position error signal along x-axis with FFT transfor-
mation.
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Figure 4.30: Spectrum analysis of position error signal along y-axis with FFT transfor-
mation.
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Figure 4.31: Spectrum analysis of angular error signal with FFT transformation.
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4.6 Experimental Results

A scalable formation control scheme is introduced in [29]. The idea is that, instead of

being attracted to a predetermined point, each robot is to be attracted to the correspond-

ing segment, and once there, move along the segment to distribute themselves along the

trench in order to form a formation by maintaining the desired position in relation to

other robots. Aa shown in Figure 2.1, in this situation there are a series of segments

and a team of robots are supposed to fall into the assigned segments. Usually a segment

S is a curve defined by some smooth (i.e., at least twice-differentiable) function inR3

that passes through one or two formation vertices. And a robot will arrive at the nearest

point on the segment and then move along the curve of the segment.

A group ofn robots may be arranged in a certain formation. Certain pertinent locations

in a particular formation are defined as formation vertices. A detailed discussion on the

determination of formation vertices can be found in [29]. For the purpose of the work

reported in this thesis, it suffices to consider a formation vertex as a point inR3.

4.6.1 Experiment-1: Triangle Formation of Three Robots

In this experiment, it is assumed that assignment mechanism of segment is known and

initially all robots are static. Referring to Figure 3.4(a), three segments (straight lines)

are assigned to three robots respectively. For the first 8 seconds, each robot will try to

approach the nearest point on the segment and then three virtual points moving along

segments are assigned to each robot. These three virtual points form a triangle pattern
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and will stop at the vertices of segments. The velocity of virtual points are set to be

20 pix per second. During the process of formation, velocities and headings of each

robot are depicted in Figures 4.32 - 4.35. Snapshots of video (taken by web-cam) at

t = 0,4,8,12,16,20,24 seconds respectively are shown in Figure 4.36. The controller

parameters are set to beK1 = 0.1, K3 = 0.12 andK2 = 1.0. From these figures, it can

be seen that all the robots are attracted to the segment for the first 8 seconds and later

on form the triangular pattern while moving forward. The video fore this experiment is

available online athtt p : //youtu.be/wEQ 9HZUzhl.
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Figure 4.32: Velocity of robot 1 during 3-robot triangle formation control.

4.6.2 Experiment-2: Square Formation of Four Robots

In this experiment, four robots that are initially randomly scattered are required to

form a square patter. Referring to Figure 3.4(b), two segments (straight lines) are as-

signed. For the first 3 seconds, each robot will try to approach the corresponding nearest

point on the segment and then try to approach to four virtual points moving along seg-
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Figure 4.33: Velocity of robot 2 during 3-robot triangle formation control.

ments are assigned to each robot. These three virtual points form a triangle pattern

and will stop at the vertices of segments. The velocity of virtual points are set to be

20 pix per second. During the process of formation, velocities and headings of each

robot are depicted in Figures 4.37 - 4.41. Snapshots of video (taken by web-cam) at

t = 0,4,6,8,12,16,20 seconds respectively are shown in Figure 4.42. The controller

parameters are set to beK1 = 0.1, K3 = 0.12 andK2 = 1.0. From these figures that

all the robots are attracted to the segment for the first 3 seconds and later on form the

square pattern while moving forward. The video fore this experiment is available online

athtt p : //youtu.be/NJUSR6bvcTk.

4.6.3 Discussions on Locomotion Limitations of MRKIT Robots

Each wheel of MRKIT utilizes an independent step motor for locomotion. There are two

outstanding drawbacks that impede implementation. As indicated by Equation (3.10),
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Figure 4.34: Velocity of robot 3 during 3-robot triangle formation control.

the desired velocity is proportional to the distance to goal point (namely,r). If a robot is

initially placed far away from its goal point, the desired velocity will be relatively high.

However, step motor usually is weak on its maximum starting speed and starting torque.

If the gainsK1, K2, andK3 are set too high, a robot initially at standstill will immediately

miss its step at the very beginning of formation control. The other shortcoming arises

from the minimum speed of step motor. Due to the limitation of minimum speed, a

wheeled mobile robot in fact cannot reach a fixed goal point. Instead it will stop moving

once it is within a certain range with respect to its goal point, thus creating a dead-

zone. To reduce the size of dead zone, higher gain is required and thus increases the

risk of missing steps. Trade-off has to be done for real implementation. To overcome

such downside of locomotion, other motors with high starting torque such as permanent

magnet brushless DC motor is more suitable for real implementation.

Meanwhile it is worthwhile to note that step motors which drive MRKIT robots are
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Figure 4.35: Headings of all robots during 3-robot triangle formation control.

highly undesirable for controllers based on dynamics model given by Equation (3.4).

Because for this model it is the force inputs or torques inputs rather than velocity in-

put that directly applied on the actuators and step motors is usually controlled through

velocity inputs.
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(a) t=0s (b) t=4s
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Figure 4.36: Snapshots of 3-robot motion under triangle-formation control.
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Figure 4.37: Velocity of robot 1 during 4-robot square formation control.
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Figure 4.38: Velocity of robot 2 during 4-robot square formation control.
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Figure 4.39: Velocity of robot 3 during 4-robot square formation control.
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Figure 4.40: Velocity of robot 4 during 4-robot square formation control.
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Figure 4.41: Headings of all robots during 4-robot square formation control.
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(a) t=0s (b) t=4s
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Figure 4.42: Snapshots of 4-robot motion under square-formation control.
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4.7 Summary

In this chapter, we provided a detailed analysis of the qualitative characteristics of two

continuous nonlinear feedback controls of differential mobile robots. It shows that the

evolution of heading and trajectory characteristics of the robot are essentially similar

when subject to these two similar controls. Such information can facilitate real imple-

mentation when the final heading or trajectory curvature are concerned and may inspire

more attempts to seek for the essential linkages between proposed controllers and the

corresponding trajectories in future research work.

Also we studied the robustness of a nonlinear feedback control based on kinematic

model. It provides insight into the stability zone for a given set of controller gains

and it is found that under certain circumstances the closed-looped system may fails in

reaching the desired control objectives and performance. Thanks to the robustness anal-

ysis, we are able to improve the controller design by choosing proper controller gains

K3 whenK1 andK2 are given. This remedy successfully overcomes the drawbacks of

the common nonlinear control law discussed. More details of the improved control law

are revealed and facilitate real implementation.

In the second part of this chapter, a real implementation of multi-robot formation control

on the basis of the proposed robust nonlinear feedback control is presented. The analysis

on the vision subsystem shows that the noise level in the measurement of position and

orientation is acceptable compared with the system resolution. Two experiments on

multi-robot formation control, namely a three-robot triangle formation and a four-robot
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square formation, have been conducted successfully.
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Chapter 5

Formation Stability Using Artificial

Potential Trench Method

5.1 Motivations

To provide the needed scalability, the notion of artificial potential trenches [29] was in-

troduced. The idea is that, instead of being attracted to a predetermined point, each robot

is to be attracted to the bottom of the “valley” artificially created by a so-called potential

trench (or simply, trench), and once there, it moves along the trench to distribute them-

selves along the trench in order to form a formation by maintaining the desired position

in relation to other robots. The proposed artificial potential trench is illustrated in Figure

3.5.

Although extensive simulations have been performed in [29], explicit control laws and

stability of the corresponding controlled multi-robot formation are not addressed in this

paper. Our work aims to present multi-robot formation control laws with a solid stability

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.1 Motivations 130

proof on the basis of potential trench, a novel method proposed in the paper. Moreover,

as shown by Equation (33, 34) in previous work [29], the simulations are based on

kinematics model of differential mobile robots, where the force imposed on a robot can

determine its velocity directly. This is no problem with motion planning for a robot,

but definitely it is not the natural way that robot should react to force. Normally when

exposed to exogenous forces, the robot has one thing determinate, which is the acceler-

ation, not the velocity, because velocity is the integral of acceleration on time domain

plus the initial condition. Since we consider the potential trench and forces (generated

by trench), it is natural to deal with the dynamics model of non-holonomic robots. To

make the control laws and stability proof feasible, one way is to derive a feedback lin-

earization model of the robot. That is the well-known double integrator of look-ahead

control which is described by Equation (3.4).

Because the artificial potential trenchΦ(di,g) is a scalar function and it does not explic-

itly contain speed information of robot or goal point, the trench potential is a speed-

nulling potential. Therefore it is neat and appealing as it only cares about the displace-

ment of the robot’s current position to its target. If we can show that a properly designed

potential can stabilize a robot on its target point, then the problem of controlling a single

robot during formation of certain pattern is to find a suitable trench potential. In this

chapter, we investigate the stability of formation control based on the method of arti-

ficial potential trench and the results are from solid mathematical nonsmooth analysis.

We impose constraints on artificial potential trench to synthesize a control law that sta-

bilizes a team of robots on a given formation without considering specific requirements
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on the distance between any two robots. Such constraints provide sufficient conditions

for choosing proper potential functions and therefore facilitate the controller design.

5.2 Potential Trench Functions and Mobile Robot Track-

ing Control

5.2.1 Definition of Potential Trench Functions

Based on the knowledge of nonsmooth analysis stated in Chapter 3, a formal definition

of a potential trench function is given as follows:

Definition 5.2.1 A potential trench function is a real-valued mapΦ : R→ R with fol-

lowing properties:

(1) Φ is globally Lipschitz and regular on the domain.

(2) Φ is positive definite, i.e.,Φ(0) = 0 andΦ(x) > 0 for ∀x 6= 0.

(3) The Clarke’s generalized gradient ofΦ at x= 0 contains zero, i.e.,0∈ ∂Φ(0). ¤

Various types of functions can be constructed to be used as potential trench functions.

Detailed techniques to construct such functions are to be discussed later. Three typical

examples of potential trench function are highlighted in Examples 5.2.1, 5.2.2, and 5.2.3.

We consider the following scenario concerning the notion of forming a formation. Ini-

tially, a group of robots are assumed to be randomly scattered in an area, each within a

pre-defined distance from at least one other robot. We assume that a formation which the
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robots are to take up is known, and that a mechanism for assigning a robot to a particular

segment exists. (Discussion on these two issues can be found in [29].) The set of robots

that are assigned the same segment is referred to as ateam. A robot is said to conform

to a segment if it is located with certain tolerance on the segment. The individual teams

in the group is then required to approach and conform to their respective segments, thus

producing the overall formation.

5.2.2 A Single Robot Approaching and Conforming to a Segment

As shown in Figure 3.5, a robotr i is at certain position~r i off the segment, the set of

points representing certain geometric shapes. A segment may have either one or two

vertices to denote the end point of the curve of segment. For instance, in this figure, the

segment has one vertex. For each instantaneous position (i.e. current position)~r i , there is

a unique known goal pointqi,g (stationary or in motion) with its position denoted by~r i,g

on the segment for the robot to track. For each pair(~r i ,~r i,g), we can construct a potential

Φ(·), which is a scalar function ofdi,g = ‖~di,g‖ = ‖~r i,g−~r i‖, wheredi,g denotes the

distance from the current position of robotr i to its goal point on the segment. As shown

at the right upper corner of the Figure 3.5, the existence ofΦ(·) for each instantaneous

position~r i contributes a roughly ”U-shape” section with its bottom on the segment (note

that just for illustration here, the real shape is dependent on definition ofΦ(·)). If the

robotr i moves from one end point of the segment to another (e.g. vertex in Figure 3.5)

with nonzero‖~di,g‖, finally there will be a valley-shape trench with its bottom being the

segment curve due toΦ. Throughout this thesis, we refer to this valley-shape trench as
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Artificial Potential Trench, or for simplicity, Potential Trench and refer to the associated

Φ(·) as Potential Trench Function. The motivation of potential trench is to attract robots

in a team to the bottom of the trench, i.e., points on the segment.

However, it should be noted that there is a minor difference between the description of

potential trench in this thesis and the one in the original work [29]. Instead of fixing the

nearest point on the segment with respect to the robot as the goal point towards which

the robot will approach the segment (which is the case in [29]), we allow the goal point

to be any point on the segment subject only to proper choice ofΦ(di,g). This leads

to a framework of formation control that admits a wider range of formation-forming

behavior, as discussed subsequently.

Figure 3.6 illustrates the coordinates system for locating robots in a segment. The vector

~r0 defines the vertex, while~r i specifies the position of theith robot, whose leader is robot

i−1, as indicated by the vector~r i−1. Each robot has its own goal point on the segment.

For instance, the goal point for roboti is qi,g. We definite the displacement vector

~di,g =~r i,g−~r i with di,g andd̂i,g denoting its length and the corresponding unit vector in

the direction of~di,g respectively.

Proposition 5.2.1 A robot ri (whose goal point is specified by the twice-differentiable

vector~r i,g on a segment) is globally asymptotically stable with respect to~r i,g under the

control

~ui =~̈r i,g +ki ~̇di,g +Φ′
i,gd̂i,g, (5.1)
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whereΦ(di,g) is an admissible potential trench function,~̇di,g = d(~di,g)/dt,Φ′
i,g = d(Φ(di,g))/d(di,g),

d̂i,g = ~di,g/di,g, and ki is a positive scalar.

Proof: See Appendix A.5. ¤

Remark 5.2.1 On the right-hand-side of Equation (5.1) given in Proposition 5.2.1, the

first term~̈r i,g is the feed-forward control signal represented by the difference in acceler-

ation between the robot and the corresponding goal point, and vanishes (i.e.,~̈r i,g = 0)

when the goal point is moving at constant speed; the second term ki ~̇di,g contains the

difference in velocity between the robot and its goal point, and represents a damping

effect on the dynamics of the robot controlled by ui ; and the third term is derived from

the potential trench functionΦ, the derivative with respect to di,g.

5.2.3 Methods for Construction of Potential Trench Functions

To find out the admissible potential trench functions is key to the approach introduced

above. To this end, we introduce a few lemmas and propositions as shown below:

Lemma 5.2.1 For a real-valued map f: R→R and f(·)∈ L∞ space, define the function

F : R→R as F(x) =
∫ x

0 f (s)ds and denote the Clarke’s generalized gradient of F at each

point x as∂F(x), then

(1) F is Lipschitz continuous and regular;

(2) ∂F(x) = [ f−(x), f +(x)], where f−(x) and f+(x) denote the essential supremum

and essential infimum of f at x, and especially at those points where F is strictly

differentiable, generalized gradient reduces to∂F(x) = { f (x)}.
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Proof: See Appendix A.6. ¤

Lemma 5.2.2 Suppose a real-valued map f: R→ R and f(·) ∈ L∞ space. In addition,

f (x) satisfies x f(x) > 0 for all x /∈ {0}∪ΩµL=0, whereΩµL=0 denotes the union of all

sets of Lebesgue measure zero. Then the function F: R→R defined by F(x) =
∫ x

0 f (s)ds

has the following properties:

(1) F is positive definite;

(2) At the origin x= 0, 0∈ ∂F(0).

Proof: See Appendix A.7. ¤

Lemma 5.2.3 If a convex function F: R→R is continuously differentiable and positive

definite, then its derivative with respect to x, namely, f(x) = d(F(x))/dx satisfies f(0) =

0.

Proof: See Appendix A.8. ¤

For convex functions, there are a couple of desirable properties. The following Propo-

sitions 5.2.2 and 5.2.3 link convexity with Lipschitz condition and regularity which are

relevant to this topic. Both propositions are from the monograph [13] by F. H. Clarke

where detailed proofs are given.

Proposition 5.2.2 Let a real-valued map f: D⊂Rn→R be convex and be bounded on

a neighborhood of some point of U. Then, for and x in U, f is Lipschitz near x.

Proposition 5.2.3 Let a real-valued map f: D⊂ Rn→ R be Lipschitz near x.
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(1) If f is strictly differentiable at x, then f is regular at x.

(2) If f is convex, then f is regular at x.

From Propositions 5.2.2 and 5.2.3, we know that twice differentiable convex function

F(x) given in Lemma 5.2.3 is Lipschitz and regular.

In Lemma 5.2.2 and 5.2.3, we proposed two criteria for constructing proper poten-

tial trench function candidates. It is worthwhile to note that the former is essentially

bounded while the latter may not. Both of them can be applied to smooth functions.

However, the former is significantly helpful when dealing nonsmooth dynamics. Thanks

to this capability, Lemma 5.2.2 can be used to deal with the limitations of physical sys-

tems, for instance, the input saturation of real actuators which is very common in control

engineering.

Letting Φ be a continuously differentiable convex function seems desirable as it is en-

titled to a couple of desirable properties of convex function, which are very useful in

functional analysis, not to mention that the above proof of stability will be greatly sim-

plified. Due to the special properties of convex functions (for example, a local minimum

of a convex function is a global minimum), the potential trench function candidate can

be readily chosen. However, convexity requirement seems to be too strong and some re-

laxation is desirable. Basically, there are two reasons motivating this relaxation: firstly

a great number of functions in the real world fail to be continuously differentiable (for

instance, the absolute-value function is not differentiable atx = 0.); secondly, convex-

ity condition excludes many qualified potential trench function candidates. As shown in
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conditions of Lemma 5.2.2, a qualified potential trench function candidate does not need

be continuously differentiable. Moreover, even for the continuously differentiable po-

tential trench functions, them may not be convex. More details are revealed in Examples

5.2.1 - 5.2.3.

Example 5.2.1 A commonly used potential function is given by [50]:Φ(x)= αηm(x)/2,

whereα is a positive scaling factor, m= 1 or 2, andη(·) is a scalar function. Ifα = 2,

m= 1, andη(x) = |x|, thenΦ(x) = |x| which corresponds to an absolute-value func-

tion. The functionΦ(x) = |x| is differentiable almost everywhere with derivative(φ(x) =

dΦ(x)
dx ) φ(x) = 1 for x > 0 and φ(x) = −1 for x < 0. Although it is a convex function,

Lemma 5.2.3 is not applicable here since it is not differentiable at x= 0. It is easy

to show thatΦ(x) = |x| is a qualified potential trench function candidate by invoking

Lemma 5.2.2 and we can calculate its generalized gradient at x= 0 as∂Φ(0) = [−1,1]

which contains the origin x= 0.

Example 5.2.2 In [29], the authors used the potential trench function largely taking the

form Φ(x) = α(
√

x2 +a2−a), whereα is a positive scaling factor and a is a nonnega-

tive constant. The special case of a= 0 is already addressed in Example 5.2.1. Without

loss of generality, we assume thatα = 1 and a> 0, then the potential trench function

is Φ(x) =
√

x2 +a2−a. Its derivative can be calculate asφ(x) = x/
√

x2 +a2. Since

the derivative is monotonically increasing,Φ(x) =
√

x2 +a2−a is a convex function.

Furthermore, we can obtain the second derivative asφ ′(x) = a2/
√

x2 +a2 which is pos-

itive. This fact shows thatΦ(x) =
√

x2 +a2−a is strictly convex. It is easy to verify

that this potential trench function is positive definite. According to Lemma 5.2.3, it is a
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qualified potential trench function. Whereas Lemma 5.2.2 is also applicable as the first

derivativeφ(x) = x/
√

x2 +a2 is bounded on the domain.

Example 5.2.3 Here we show simple examples of potential trench function candidate

that are Lipschitz continuous but not convex. First we construct a function on domain

(−∞,+∞) as

F1(x) =





−x+1 x≤−1

2x2 −1 < x < 1

x+1 x≥ 1

,

of which the derivative can be calculated as

f1(x) =





−1 x <−1

4x −1 < x < 1

1 x > 1

.

Obviously, function F1 is Lipschitz continuous and its derivative is bounded although

the derivative is discontinuous at point x= 1 and x= −1. By Lemma 5.2.2, F1 is a

qualified potential trench function. But F1 is not convex. Second, we can construct a

smooth function that is continuously differentiable and Lipschitzian. Define a function

F2 on domain(−∞,+∞) as

F2(x) =





4
√−x−3 x≤−1

x2 −1 < x < 1

4
√

x−3 x≥ 1

,

of which the derivative can be calculated as

f2(x) =





− 2√−x
x≤−1

2x −1 < x < 1

2√
x x≥ 1

.
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It is easy to show that F2 is a qualified potential trench function by Lemma 5.2.2. How-

ever it is not convex thus Lemma 5.2.3 is not applicable in this case. The figures of all

the functions discussed in this example are illustrated in Figure 5.1.
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Figure 5.1: Figures of functionF1(x), f1(x), F2(x) and f2(x).

In fact, there are other approaches to construct admissible potential trench functions.

One convenient method is to leverage from available results on Lienard’s Equation.

The relevant notions and more examples of potential trench functions can be found in

Appendix A.9.

5.3 A Generic Tracking Control

Now with the definition of potential trench function and associated results, we can move

on to the generic tracking control problem of mobile robots in connection with artificial

potential trench scheme. To this end, we propose a stable tracking control law as pre-

sented in the following theorem.

Theorem 5.3.1 For twice-differentiable~r i,g and admissible potential trench function
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Φ(di,g) together with Ki(di,g) of which∂Ki(di,g) is positive for any nonzero di,g, a robot

r i is globally asymptotically stable on its goal point on the segment under the control

~ui =~̈r i,g +K′i,g~̇di,g +Φ′
i,gd̂i,g, (5.2)

where ~̇di,g is the derivative of displacement vector~di,g =~r i,g−~r i with respect to time,

Φ′
i,g = d

(
Φ(di,g)

)
/d(di,g), K′i,g = d

(
K(di,g)

)
/d(di,g) andd̂i,g = ~di,g/di,g is a unit vector.

Proof: See Appendix A.10. ¤

Remark 5.3.1 Theorem 5.3.1 extends Proposition 5.2.1 to relax the constraints on the

damping term K′(di,g). According to Theorem 5.3.1, K′(di,g) does not need to be smooth

thus greatly facilitates the controller design. It should be noted that the options of

K′(di,g) and Φ′
i,g can be independent without violating stability. It means that both

K′(di,g) and Φ′
i,g are allowed to be discontinuous and can be designed independently

on their own accord. With this observation and for the sake of focusing on the specific

research problems to be addressed in the upcoming context, the nonsmooth potentials

on Φi,g rather than the damping term will be emphasized.

5.4 Stability Analysis of Multi-Robot Formation Con-

trol

The foregoing analysis concerning a single robot can be extended to multiple robots

approaching a segment without considering the interaction between individual robots.
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Consider the same control strategy as Equation (5.1) for each robot in the chain provided

that each robot has its unique goal point on the segment. It is easy to assign goal points

to the chain. For instance, once the leader has been assigned a known goal point, for any

of the others the goal point of robotr i can be set as a point at a fixed distance behind the

current position of robotr i−1.

Theorem 5.4.1 Under the control given by Equation (5.1), a chain of N robots is asymp-

totically stable with respect to the given segment.

Proof: See Appendix A.11. ¤

Considering the following special case of Proposition 5.3.1: static segment formation

(i.e., when~̇r i,g = 0 and~̈r i,g = 0). Readily we will arrive at the following conclusions:

A robot r i can be globally asymptotically stabilized at a given fixed goal point on a

segment by the potential trench-augmented control

~ui =−ki~̇r i +Φ′
i,gd̂i,g, (5.3)

whereki is a positive scalar,Φ′
i,g = d(Φ(di,g))/d(di,g), and unit vectord̂i,g = ~di,g/di,g.

5.5 Comparison with Alternative Potential Field Meth-

ods

A great variety of potential field methods have been developed in the past decades for

mobile robots motion planning or navigation. The purposes of these methods normally
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are to guide a robot to approach an assigned goal point or a moving target in a dynamic

environment. Letq andqgoal denote the locations of a robot and its goal point respec-

tively, then the most commonly used attractive potential function can be represented by

the following form [6][50]:

Uatt(q) =
1
2

ξ ρm(q,qgoal), (5.4)

whereξ is a positive scalar,ρ(q,qgoal) is the distance between a robotq and goalqgoal,

and m is constant usually to be either 1 or 2. For instance, ifm = 1, the potential

described by Equation (5.4) turns out to conic in shape and the corresponding attractive

force will be a constant. On the other hand, ifm= 2, the attractive potential takes the

parabolic shape and its attractive force will be proportional toρ(q,qgoal) asFatt is ruled

by the following formula:

Fatt =−∇Uatt(q) =−ξ ρ(q,qgoal).

Conventional potential functions are designed to be smooth and thus they are differen-

tiable every where in their domains. However, the artificial potential trench function

defined in this chapter allows nonsmooth functions and thus provides more flexibilities

and design freedom. Obviously the potential in Equation (5.4) is suitable attractive a

robot to a static goal point. However, for a moving target in dynamic environments,

such a potential is far from satisfying as it does not taking the velocity of the target into
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account. Position error with respect to target is usually considered. For our case, we

synthesize the artificial potential trench into a controller design given by Equation (5.1)

and position error with respect to target is eradiated.

To overcome the drawbacks of conventional potentials in tracking moving targets, a

new potential field function is proposed in [27]. The conventional potential field given

by Equation (5.4) is based on only pure position information and therefore it is not

suitable for dynamic environments. Modifications have been made on Equation (5.4) in

[27] by taking into velocity information into account. Therefore a new potential field is

constructed as follows [27]:

Uatt(q,v) = αp||qtarg(t)−q(t)||m+αv||vtarg(t)−v(t)||n, (5.5)

whereq(t), qtarg(t) denote the positions of the robot and its target at timet, respectively;

v(t) andvtarg(t) denote the velocities of the robot and the target at timet, respectively;

||qtarg(t)− q(t)|| is the Euclidean distance between the robot and its target at timet;

||vtarg(t)− v(t)|| is the magnitude of the relative velocity between the target and the

robot at time t;αp, αp are scalar positive parameters;m, n are positive constants.

Obviously, Equation (5.5) combines the velocity information and position information

into a new potential field function. With the introduction of the velocity term||vtarg(t)−

v(t)||, a robot under this potential can approach a moving target. This is quite different

from our method. First, only smooth functions are considered in Equation (5.5) while
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artificial potential trench adopts nonsmooth potentials. Second, the velocity information

is directly combined with the overall potential field function and inevitably it aggravates

the complexity of control design and performance analysis. In our case, no explicit

velocity information is applied in constructing the artificial potential trench function.

Instead, we only synthesize velocity information into the controller design in Equation

(5.1). Our method successfully separated the velocity based potentials and position

based potentials. Therefore, it is entitled to more flexibilities. Third, even velocity

potential is constructed in Equation (5.5), tracking position error may result if ˙vtarg 6=

0. However, no such concerns in our method as the acceleration of target has been

taken into account in Equation (5.1) and therefore tracking position error in dynamic

environment is eradicated.

5.6 Simulation

In this section, we use the double integrator dynamic model of the differential robot as

described previously. For the sake of simplicity, all the constants in the model were set

to unity. All the simulations were done using MATLAB.

The simulation was implemented to verify the effectiveness of Proposition 5.3.1 and

Theorem 5.4.1. A team of fifteen robots (indexed from 1 to 15) are supposed to track

moving goal points on a sinusoid curve on a 2D plane. The team goal is a moving

object with motion equationx = 42+ t andy = sin(0.5(42+ t)) (t ≥ 0). Robotr1 will

track this team goal while the others will track their own goal points. The robotr i is to
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track goal pointqi,g with motion equationsx = 45− i + t andy = sin(0.5(45− i + t)),

where 2≤ i ≤ 15. Obviously all the goal points are evenly distributed alongx axis with

constant separation between two adjunct points being 3. Initially all robots are randomly

scattered within neighborhood of their own goal points and to avoid the unstable moving

backward of reference point, all robots are initially placed behind the corresponding goal

points. The position error alongx axis for robotr i is defined as∆ix = r ix−qi,gx, where

r ix andqi,gx are thex coordinates of robotr i and goal pointqi,g respectively. In a similar

way, the position error alongy axis is defined. Together with initial velocities, the initial

position errors are shown in Table 5.1.

Two kinds of potentials have been applied in this simulation. In the first case, we use

potentialΦ1(x) = 10(
√

x2 +1−1) and in the second case,Φ2(x) set to be 3.535x2 +

7.07|x| for |x| ≥ 1 and 3.535x2 for |x|< 1. Consequently we have derivatives ofΦ1 and

Φ1 as: Φ′
1(x) = 10x/

√
x2 +1 andΦ′

2(x) = sgn(x)min{7.07,7.07|x|} (for all x except

x = ±1). Therefore at specific pointsx = ±1, we have∂Φ1(1) = 7.07∈ ∂Φ2(1) and

Φ1(−1) =−7.07∈ ∂Φ2(−1).

Initial positions of robots and goal points are depicted in Figure 5.2. Snapshots of po-

sitions of each robot and the corresponding goal points are shown in Figures 5.3-5.6

for the first case with potentialΦ1 and Figures 5.9-5.12 for the second case withΦ2.

The trajectories of robotr1 and the last robotr15 are highlighted in Figures 5.7-5.8 for

the first case and Figures 5.13-5.14 for the second case. To compare the convergence

behavior of position error (∆ =
√

∆2
x +∆2

y) in the presence of two different potentials,

we especially choose the case of robotr5 and highlight them in Figure 5.15. It can be
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concluded from these simulation results that bothΦ1 andΦ2 can stabilize the whole

team when tracking moving goal points.

Table 5.1: Initial Position Errors and Velocities along x- and y- axis

robot position error∆x0 position error∆y0 velocityVx0 velocityVy0

r1 -1.9003 0.3772 0.0153 0.4055
r2 -0.4623 -1.7419 0.7468 0.0931
r3 -1.2137 -1.6676 0.4451 -0.1102
r4 -0.9720 0.3589 0.9318 0.3891
r5 -1.7826 -1.5746 0.4660 0.2426
r6 -1.5242 1.7684 0.4186 0.5896
r7 -0.9129 0.5885 0.8462 0.9137
r8 -0.0370 -1.2527 0.5252 0.0452
r9 -1.6428 1.9606 0.2026 0.7603
r10 -0.8894 1.4444 0.6721 -0.6541
r11 -1.2309 1.1889 0.8381 0.9595
r12 -1.5839 1.2051 0.0196 -0.4571
r13 -1.8436 -0.4152 0.6813 -0.4953
r14 -1.4764 0.9112 0.3795 0.7515
r15 -0.3525 1.2047 0.8318 0.4746
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Figure 5.2: Snapshot of trajectories of robots and their goal points att = 0 (i.e. initial
conditions).

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.6 Simulation 147

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

 

 

Figure 5.3: Snapshot of trajectories of robots and their goal points att = 1.6s under
potentialΦ1.
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Figure 5.4: Snapshot of trajectories of robots and their goal points att = 3.2s under
potentialΦ1.
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Figure 5.5: Snapshot of trajectories of robots and their goal points att = 4.8s under
potentialΦ1.
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Figure 5.6: Snapshot of trajectories of robots and their goal points att = 6.4s under
potentialΦ1.
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Figure 5.7: Trajectories of robotr1 (0≤ t ≤ 8s) under potentialΦ1.

−2 0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

 

 

Figure 5.8: Trajectories of robotr15 (0≤ t ≤ 8s) under potentialΦ1.
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Figure 5.9: Snapshot of trajectories of robots and their goal points att = 1.6s under
potentialΦ2.
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Figure 5.10: Snapshot of trajectories of robots and their goal points att = 3.2s under
potentialΦ2.
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Figure 5.11: Snapshot of trajectories of robots and their goal points att = 4.8s under
potentialΦ2.
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Figure 5.12: Snapshot of trajectories of robots and their goal points att = 6.4s under
potentialΦ2.
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Figure 5.13: Trajectories of robotr1 (0≤ t ≤ 8s) under potentialΦ2.
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Figure 5.14: Trajectories of robotr15 (0≤ t ≤ 8s) under potentialΦ2.
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Figure 5.15: Comparison of position errors of robotr5 under two different potentials.
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5.7 Conclusions

In this chapter, we investigate nonlinear tracking control when dealing with the stability

of controlling a mobile robot in connection with the method of artificial potential trench.

Various ways to construct potential trench functions have been proposed. The response

is revealed using available results on Lienard’s Equation. Based on these results, we

synthesize a control law that stabilizes a team of robots on a given formation without

considering specific requirement on the distance between any two robots and verify its

effectiveness through simulation.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



153

Chapter 6

Zoning Scheme

6.1 Motivations

In Chapter 5, a simple scenario for multi-robot formation control with artificial potential

trenches is addressed without considering robot to robot separations. However in practi-

cal applications, separations among robots is one of the key factors in formation control.

Referring to Figure 1.1(b), each robot can communicate with the rest within the group

via wireless signals and therefore a wireless communication network for the group is set

up to accomplish certain tasks in a cooperative and coordinated way. Important informa-

tion such as each robot’s own location within the map or the obstacles detected during

formation including location and obstacles’ shapes should be shared among the group as

each robot has limited capabilities of sensing nearby surroundings. To prevent possible

breakdown of radio linkage among robots because they are separated too far away, the

separations among robots need to be managed within reasonable range. Specifically,

if a group of mobile robots are organized in leader-follower pairs, separation between

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



6.1 Motivations 154

the leader and its follower must be controlled under an upper limit to prevent losing

communication linkage.

On the other hand, for the sake of collision avoidance among robots, the separation

between any follower and leader has to be greater than a lower limit to prevent collisions.

Moreover, even those robots which are not in leader-follower pairing the separation

between any robot and the others, which may not be its direct follower or leader, also

has to be under control. Hence, separations among any two robots must be sufficient to

ensure that each robot can move in a collision-free path. To meet the requirements on

separation management, azoning potentialwill be proposed. The basic idea of zoning

potential is that an attractive potential will be invoked once the separation is greater than

certain threshold trying to reduce the separation and a repulsive potential will be applied

once the separation is less than a threshold and will push the robot away from dangerous

areas to prevent collisions.

Although it is popular to assign goal points to usher robots as it is in [55, 17, 22], such

pre-determined goal points may not be necessary. To get rid of these goal points, a

convenient way is to attract the robots towards the assigned segment in certain direc-

tion. Consequently, a similar artificial potential trench as illustrated in Figure 3.5 is

also formed. In this way, the robot only needs to calculate how far it is away from the

segment in this direction and then can generate a valley-shaped trench to get the robot

stabilized on the segment. The benefits of removing goal points are obtained at the sac-

rifice of introducing a direction to attract the robots towards segment. The effects of the

assigned direction of attraction on robots also have to be addressed.
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Therefore this chapter focuses on separation management and removing pre-determined

goal points as well. A framework involving synthesizing artificial potential trench and

zoning potentials into formation controller design and the associated stability analysis

is to be developed.

6.2 Statements of Zoning Potentials

We consider the following scenario concerning the notion of forming a formation. Ini-

tially, a group of robots are assumed to be randomly scattered in an area, each within a

pre-defined distance from at least one other robot. We assume that a formation which the

robots are to take up is known, and that a mechanism for assigning a robot to a particular

segment exists. (Discussion on these two issues can be found in [29].) The set of robots

that are assigned the same segment is referred to as ateam. A robot is said to conform

to a segment if it is located with certain tolerance on the segment. The individual teams

in the group is then required to approach and conform to their respective segments, thus

producing the overall formation.

We investigate the process of a team approaching and then conforming to a given seg-

ment. This process can be divided into two phases: organization and coordination. Dur-

ing organization, the robots in a team are organized into leader-follower pairs. During

coordination, the robots in leader-follower pairs approach and conform to their assigned

segment while keeping within certain distance to each other.
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6.2.1 Organization

In the sequel, it is assumed that initially any robot in a team is within the communication

coverage of at least one other robot. A team is assigned a team goal, which can be a

target to be tracked or a formation vertex. The robot located nearest to the team goal

will be regarded as theteam leaderand indexed asr1. The robot closest tor1 will be-

come the follower (indexed asr2) of r1. If there are more than one such candidate, then

the robot (among all the candidates) nearest to the segment in terms of perpendicular

distance will become the follower ofr1. If neither of these criteria results in a unique

follower assignment, then a follower can be chosen byr1 randomly or by some arbitra-

tion protocol executed by the candidates. The above procedure is applied in assigning

a follower to r2, and so repeated until the leader-follower pairs are identified and the

robots in the team are indexed fromr1 to rn. We note that the team leaderr1 itself is also

a follower to the team goal. A team in which such leader-follower pairing for all robots

has been established is referred to as achain.

Remark 6.2.1 In the adverse cases where team-wide communication link is not avail-

able, a chain may still be set up through some recovery mechanism. The simplest so-

lution may be to have the robot that has lost communication reporting to the human

operator for instructions. Another possible solution may be to have the robot, with its

collision avoidance mechanism activated, approach the segment and move along it at

maximum speed towards the team goal until it is able to establish communication with

another robot in order to join the chain.
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6.2.2 Coordination

The objective in coordination is to control the chain to move towards and then conform

to its segment, with the requirement that the distance between a leader and its follower

be no greater than some limit ¯ρ and no smaller than some clearanceρ. To meet this

requirement, the immediate area surrounding a robot is divided into five zones, as il-

lustrated in Figure 6.1. For a follower located at the center of the concentric circles,

the radius ¯ρ represents the maximum allowable separation between itself and its leader.

This limit can be used to define the coverage area of the wireless communication sys-

tem installed on both robots. The radiusρ represents the minimum allowable separation

between the two robots. This can be used to represent the safe distance set in a collision

avoidance algorithm for both robots.

12345
ρ̂ ρ̌

ρ
ρ

ρ

Figure 6.1: Zones of interaction of a robot located at the center of the concentric circles.

The rings labelled as 2 and 4 are essential zones for coordination. If a follower detects

its leader to be in zone 4, then the follower must reduce the separation between itself

and the leader. On the other hand, if a robotr i detects another robot to be in its zone

2, thenr i must attempt to increase the separation between itself and that other robot. It

is desirable that the speed at which the robot maneuvers such changes in separation is
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inversely proportional to the distance between the other robot and the outer perimeter

(for attraction) and the inner perimeter (for repulsion) of the respective zones. Thus, in

actual implementation, limiting the maximum separation to some ˇρ ≤ ρ̄ reduces the risk

of breaking the leader-follower contact because the maximal speed is expected to come

into effect before the separation reach ˇρ. Similarly, limiting the minimum separation

to some ˆρ ≥ ρ reduces the risk of collision. The leader-follower pairing is maintained

wherever the leader is found to be in zone 3 of the follower. Zone 1 (i.e., the disk) is the

region around a robot that other robots are prohibited to enter so as to avoid collision.

We refer to zone 3 as theneutral zone. A chain in which the distance between a leader

and its follower is no greater than ¯ρ and no smaller thanρ is referred to as acoordinated

chain.

This zoning scheme allows flexibility in implementation of formation control to deal

with various situations. For instance, zone 5 represents a margin on the permissible sep-

aration between a leader and its follower. This margin provide a buffer zone in which

a follower can may be useful in reducing the probability of losing the communication

link between the leader and its follower due to the occurrence of unexpected events.

Similarly, and the size of zones 2 and 3 can be suitably set to accommodate different

densities of robot population in the segment. This requirement on separation has practi-

cal implications, specifically in collision avoidance among the robots and in maintaining

a wireless communication network within the multi-robot system.
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6.3 Direction of Attraction

As implied in the original approach of forming a formation based on the notion of ar-

tificial potential trench [29], each robot is assigneda priori a goal point (which could

be simply defined as the nearest point on the segment with respect to the position of the

robot). Such pre-fixing of the goal points restricts the motion of the robots when ap-

proaching the segment. We relax this restriction by introducing the concept of direction

of approach, which enables the robots to approach and stabilize on the segment (while

forming a formation) without the need to pre-define relevant goal points.

We consider the situation that, for a given robot, a direction has been specified for a

potential trench to attract the robot to approach a segment. We refer to this direction as

thedirection of attraction, and denote its unit vector by~ya. To form a (local) Cartesian

coordinates system, the other direction (with its unit vector denoted by~xa) is defined

the usual way. Given the current position of a robot, if the line starting from this initial

position and following~ya intersects the segment, we refer to the intersection point as the

(instantaneous) point of attraction on the segment. This is illustrated in Figure 6.2.

For a segment with a finite length, it is possible that, given a direction of attraction,

an instantaneous point of attraction may not exist when the robot is at a certain posi-

tion. This is the case for robot 2 as illustrated in Figure 6.2. We say that a direction

of attraction isproper if it meets the condition that an instantaneous point of attraction

exists for the entire motion trajectory of the robot during its approach to the segment.

This condition can be expressed in terms of a requirement on the projected length of
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Figure 6.2: Direction of attraction and controlled approach.

the segment on thexa-axis. Suppose that the robot has an initial speedv0 and an initial

heading at an angle ofθ with respect to~xa at the timet = 0. If we apply the feed-

back control~uix = −ki~̇r ix (whereki is a constant gain) to damp out the motion of the

robot along thexa-axis, then the dynamics of the robot along thexa-axis can be ex-

pressed as̈~r ix + ki~̇r ix = 0, with the initial condition thaṫ~r ix|t=t0 = v0(cosθ)~xa; that is,

ṙ ix = v0(cosθ)e−kit . The maximum distance that a robot may travel along thexa-axis,

denoted by ˆr ix, is r̂ ix =
∫ ∞

0 ṙ ixdt = v0cosθ/ki , which depends on the chosen direction of

attraction. To ensure that an instantaneous point of attraction exists whenever ˙r ix 6= 0, it

suffices to ensure that the projected length of the segment in the direction of~̇r ix is greater

than or equal to ˆr ix.

6.4 A Coordinated Chain Stabilizing on a Segment

To control a team (in approaching and stabilizing on a given segment) as a coordinated

chain, we augment the control as stated in Equation (5.1) with another potential function

solely for the purpose of keeping two robots within a range of each other. The idea is
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that, as a chain approaches the segment, a robot in the chain should normally stay within

the neutral zone of its follower. Action must be taken by the follower to enforce this

zoning requirement if the leader happens to enter either zone 2 or zone 4 of the follower.

A zoning potentialis introduced specifically for this purpose. This potential is realized

by a functionΨ, which takes on either of two forms, depending on the location of a

robot in the zoning scheme of another. A repulsive potentialΨ̂ comes into effect when

a robot finds its leader in its zone 2, while an attractive potentialΨ̌ is in effect when a

robot finds its leader in its zone 4. Specifically, we can choose

Ψ̌(di,i−1) =





β/(2δ m
a ) if ρ < di,i−1 < ρ̌,

c1/2 if ρ < di,i−1≤ ρ,

0 elsewhere,

Ψ̂(di,i−1) =





α/(2δ m
r ) if ρ < di,i−1 < ρ̂,

c2/2 if ρ̂ ≤ di,i−1 < ρ̌,

0 elsewhere,

whereδa = ρ̌ − di,i−1, δr = di,i−1− ρ, m (a constant) is either 1 or 2,c1 = β/(ρ̌ −

ρ)m, andc2 = α/(ρ̂−ρ)m. Therefore the function for the overall zoning potential, i.e.,

Ψ(di,i−1) = Ψ̂(di,i−1)+ Ψ̌(di,i−1), is absolutely continuous in the rangeρ < di,i−1 < ρ̌.

MoreoverΨ(di,i−1) is locally Lipschitz continuous and regular in the same range.

The repulsive potential specified above only ensures no collision between a robot and its

leader. To avoid collision between any two robotsr i andr j in a team (wherej 6= i−1),
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the repulsive potentials onr i is invoked whenever any robotrm (with m< i) enters zone

2 of r i . Specifically, the potential

Φi,p(di,p)+Ψi,i−1(di,i−1)+∑
j

Ψ̂i, j(di, j)

is applied on robotr i , where j < i−1. For the case ofj = i−1, Ψ̂i,i−1(di,i−1) is already

included inΨi,i−1(di,i−1).

Thus, throughout the process of approaching a segment as a coordinated chain, each

robot is subject to the influence of the potential trench function, and possibly additional

zoning potentials (attractive or repulsive) depending on the location of a robot with

respect to all other robots before it, in terms of the order of the leader-follower pairing.

Since these potentials are superimposed on each robot, a robot may experience the sit-

uation where the influence of these potentials exactly cancels out each other, resulting

in the robot being trapped in zone 2 or zone 4 of another robot and unable to move to-

wards the neural zone. We refer to a point in the motion trajectory of a robot where such

cancellation occurs as alocal minimum.

We next clarify some notations before presenting the synthesis of a control that enables

a team to approach a segment as a coordinated chain. Rewrite the vectors~r i and~ui in the

inertial coordinates frame as follows:~r i = r ix~j + r iy~k, and~ui = uix~j +uiy~k, where~j and~k

are the unit vector alongOX andOY directions (as indicated in Figure 6.3) respectively.

From the robot dynamics model (described in Chapter 3) we have ¨r ix = uix and ¨r iy = uiy.

Similarly, we can rewrite the vectors~r i,i−1 and~r i,p as:~r i,i−1 = r(i−1)x~j + r(i−1)y
~k and
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~r i,p = rpx~j + rpy~k, and so representing the vectors~di,i−1 and~di,p as: ~di,i−1 =~r i−1−~r i =

(r(i−1)x− r ix)~j +(r(i−1)y− r iy)~k and~di,p =~r i,p−~r i = (rpx− r ix)~j +(rpy− r iy)~k, respec-

tively, with di,i−1 ≡ ‖~di,i−1‖ =
(
(r(i−1)x− r ix)2 +(r(i−1)y− r iy)2

) 1
2 anddi,p ≡ ‖~di,p‖ =

(
(rpx− r ix)2 +(rpy− r iy)2

) 1
2 . The direction of attraction is along~di,p and~di−1,p for robot

r i andr i−1 respectively. Figure 6.3 illustrates the relevant vectors and angles discussed

above.
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Figure 6.3: Illustration of relevant angles and vectors.

Given admissibleΦ andΨ, along with the conditions that the chain leaderr1 reaches

~̇r1,g = 0 after a finite timeT∗1 , and that the ratioλi = ‖~̇r i,p‖/‖~̇r i‖ = (ṙ2
px+ ṙ2

py)
1
2/(ṙ2

ix +

ṙ2
iy)

1
2 (where‖~̇r i‖ 6= 0) is bounded, we have the following theorem.

Theorem 6.4.1 Consider the following control

~ui = ζ~j +ξ~k, (6.1)
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with

ζ = −ki ṙ ix +Φ′
i,pcosγp +Ψ′

i,i−1cosγi +δ1 + σ̂c,

ξ = −ki ṙ iy +Φ′
i,psinγp +Ψ′

i,i−1sinγi +δ2 + σ̂s,

where [·]′(·) = d
(
[·](d(·))

)
/d(d(·)), γp, γi and γi, j are the orientations of vectors~di,p,

~di,i−1 and ~di, j respectively,σ̂c = ∑ j Ψ̂′
i, j cosγi, j , σ̂s = ∑ j Ψ̂′

i, j sinγi, j , and1≤ j ≤ i−2.

The termsδ1 andδ2 are defined as follows:δ1 = Φ′
i,pλi cosφ if ‖~̇r i‖ 6= 0, andδ1 = 0, if

‖~̇r i‖= 0; δ2 = Φ′
i,pλi sinφ if ‖~̇r i‖ 6= 0 andδ2 = 0 if ‖~̇r i‖= 0, withφ = θi−(γp−ϕp)−π,

andθi andϕp being the orientations of vectors~̇r i and~̇r i,p respectively.

In the absence of local minima in the trajectories of the robots, a coordinated chain can

be stabilized within arbitrary small deviation from the segment by applying Equation

(5.1) on the chain leader and Equation (6.1) on all other robots in the chain.

Proof: See Appendix A.12. ¤

Remark 6.4.1 With reference to Equation (6.1), at a local minimum we have

Φ′
i,p(cosγp +λi cosφ) +Ψ′

i,i−1cosγi +∑ j Ψ̂′
i, j cosγi, j = 0

and

Φ′
i,p(sinγp +λi sinφ)+Ψ′

i,i−1sinγi +∑ j Ψ̂′
i, j sinγi, j = 0.

One way to recover from such a situation is to immediately (but temporarily) disable the

potential trench (by settingΦ′
i,p = 0) and reactivate it once the robot has escaped from

the local minimum.
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We note that the introduction of either the attractive zone (i.e., zone 4) or the repulsive

zone (zone 2) does not alter the equilibrium points of the dynamics of robot. In essence,

robots in these two zones will experience a force (in addition to the potential trench)

whose magnitude decreases rapidly with increasing inward separation from the outer

edge of zone 4 or outward separation from the perimeter of zone 1. If initially a follower

is in zone 2, 3, or 4 of its leader, it will stabilize on the segment within zone 3 (i.e., the

neutral zone) of its leader by the control given in Equation (6.1). In actual implementa-

tion, it is practical to require that, for the cases of ˇρ ≤ di,i−1≤ ρ̄ and 0< di,i−1≤ ρ, the

follower is to approach to, or separate from, its leader at full acceleration.

6.5 Simulation

A computer simulation (using MATLAB) has been conducted to demonstrate the effec-

tiveness of the proposed formation and zoning control of a coordinated chain. A group

of ten robots, indexed from 1 to 10, were initially randomly placed on a plane with non-

zero velocity. The robots were organized in leader-follower pairs. Only the goal point,

fixed at(70,70), of the first robot was specified. Table 6.1 shows the initial (randomly

selected) positions and velocities of each robot, while Table 7.1 lists the radii of the zon-

ing scheme. The segment consists of a straight line connecting(−5,−5) and(100,100).

For those robots below the segment such asr2 andr3, the direction of attraction was set

at 135◦ with respect to theX-axis, while for those robots above the segment such asr1

andr4, the direction of attraction was set at−45◦. Consequently, we have eitherλi =

‖~̇r i,p‖/‖~̇r i‖= |cos(θi−π/4)| or λi = ‖~̇r i,p‖/‖~̇r i‖= |cos(θi +π/4)|, which is bounded.
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The repulsive zoning potentialΨ̂(di,i−1) was set to be 5/(di,i−1−1)2 for 1 < di,i−1 < 4,

5/9 for 4≤ di,i−1 < 13, and 0 elsewhere, while the attractive zoning potentialΨ̌(di,i−1)

was set to be 5/(13−di,i−1)2 for 10< di,i−1 < 13, 5/9 for 1< di,i−1 ≤ 10, and 0 else-

where. The potential trench function was set asΦ(di,p) = 10
(

d2
i,p +1

) 1
2 −10. Figure

7.16 shows the segment and the initial positions of the ten robots.

Table 6.1: Initial positions and velocities of robots

robot initial position velocityVx0 velocityVy0

r1 (26.0026, 29.7094) 0.0153 0.0056
r2 (27.8260, 19.8633) 0.7468 0.4189
r3 (25.4281, 16.7758) 0.4451 -0.1422
r4 (14.8357, 21.3381) 0.9318 -0.3908
r5 (14.2419, 15.1141) 0.4660 -0.6207
r6 (13.7641, 8.8730) 0.4186 -0.6131
r7 (12.3089, 4.2053) 0.8462 0.3644
r8 (9.7197, 1.0574) 0.5252 -0.3945
r9 (1.5191, 3.0657) 0.2026 0.0833
r10 (0.7206, -1.0582) 0.6721 -0.6983

Table 6.2: Radii of zoning scheme.

ρ ρ̂ ρ ρ̌ ρ̄

1 4 10 13 30

Figure 6.5 illustrates the closed-loop system of an individual robot. The simulation was

run at a sampling rate ofTs = 0.01 second for a period of 300 seconds. For robotsr2 to

r10, the positions of their leaders were sampled every 0.01 second. The trajectories of

all robots were recorded every 0.01 second.

Figure 7.18 shows the positions of the ten robots at the end of simulations, while Fig-

ure 7.19 shows the distance between a robot and its leader. It can be seen from these
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Figure 6.4: The segment, goal point and initial positions of 10 robots.
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Figure 6.5: Structure of MATLAB simulation.

two figures that, although initially a robot may fall in zone 2 or 4 of its leader, it was

eventually steered by the zoning potential and the potential trench to enter and reside in

the neutral zone, leading to the final result that the robots approached and stabilized on

the segment as a coordinated chain with the team leaderr1 asymptotically reaching the

specified goal point.

To demonstrate the flexibilities of the zoning scheme, we modified the zoning parame-

ters to be as shown in Table 6.3. Consequently,Ψ̂(di,i−1) was modified to be 5/(di,i−1−

1.5)2 for 1.5 < di,i−1 < 4.5, 5/9 for 4.5≤ di,i−1 < 12, and 0 elsewhere, anďΨ(di,i−1)

was set to be 5/(12−di,i−1)2 for 9 < di,i−1 < 12, 5/9 for 1.5 < di,i−1 ≤ 9, and 0 else-
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Figure 6.6: Positions of robots at the end of simulation (t = 300 seconds).
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Figure 6.7: Distance between each robot and its leader.

where. All other conditions remained the same. Figure 7.20 shows the positions of the

ten robots at the end of simulations, while Figure 7.22 shows the distance between a

robot and its leader. The same convergent behavior of the ten robots is observed in this

case.

Table 6.3: Modified radius of zoning scheme.

ρ ρ̂ ρ ρ̌ ρ̄

1.5 4.5 9 12 30
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Figure 6.8: Positions of robots at the end of simulation (t = 300 seconds) with modified
zoning parameter values.

0 50 100 150 200 250
0

10

20

30

40

50

60

time(sec)

di
st

an
ce

Distance of robots with respect to the corresponding leaders

 

 
robot 1
robot 2
robot 3
robot 4
robot 5
robot 6
robot 7
robot 8
robot 9
robot 10

Figure 6.9: Distance between each robot and its leader for the case of modified zoning
parameter values.

6.6 Conclusions

The analysis reported in this chapter provides a novel framework in which the stabil-

ity of multi-robot formation based on the notion of artificial potential trench can be

analyzed. By introducing a zoning scheme and the associated zoning potentials it is

ensured in theory that a robot can maintain a certain separation from its direct leader

and follower without collisions with others in the team while forming a formation. This
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requirement on separation has significant practical implications, specifically in colli-

sion avoidance among the robots and in maintaining a wireless communication network

within the group.

The concept of direction of attraction proposed in this chapter make it possible for a

robot to approach the segment without a pre-assigned goal point. Another significance

of this new idea is that a team of robots can approach the segment in a coordinated

manner without the help of other methods such as virtual structure or virtual leaders.

Directions of attraction for each robot can be varied if necessary to enhance the flex-

ibilities or for the purpose of overcoming possible local minima. While the notion of

artificial potential trench provides scalability in multi-robot formation, the synthesized

controls, which is based on a complete nonsmooth analysis in this chapter guarantee

that such scalable formations are stable even under the constraint of coordination. Sim-

ulation in a workspace without obstacles shows the effectiveness and flexibilities of the

new controls.
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Chapter 7

Attracting Robots to Nearest Points on

Segments and A Novel Obstacle

Avoidance Scheme

7.1 Introduction

To remove pre-determined goal points, a new method based on the concept of direction

of attraction is proposed at Chapter 6. Actually, another intuitive and straightforward

idea is to drive any robot towards the nearest point on the segment. Letting the robot

itself autonomously find the nearest point on the segment, and then be attracted to fol-

low the shortest path from the instantaneous position of robot to the assigned segment

by artificial potential trench is the core of this idea. To this end, similar to the situations

depicted in Figures 3.5 and 3.6, an artificial potential trench that also features the shape

of a ”valley” with its bottom being the segment curve is presented in Figure 3.7. Obvi-

ously in this figure, the artificial potential trench attracts the robot towards the nearest
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point on the segment and therefore there is no goal point at all in this scenario.

The commonly used ”leader-follower” concept is also adopted in this chapter during

formation control. Figure 7.1 shows the coordinates system and relevant vectors for

one of such scenarios with two robotsr i andr i−1. Among themr i−1 is the leader and

r i is the follower. For each instantaneous position~r i and~r i−1 of robot r i andr i−1, we

suppose that there are uniquely known nearest pointsqi,ns andqi−1,ns respectively which

are either stationary or in motion. Their positions are indicated by~r i,ns and~r i−1,ns on the

segment for the robots to track. To distribute the robots along a segment and controlling

~di,ns, ~di−1,ns and~di,i−1 will be the main goal of formation control, where~di,i−1 denotes

the distance betweenr i−1 andr i given by~di,i−1 =~r i−1−~r i .
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Figure 7.1: Coordinates system for a leader-follower pairr i−1 andr i .

Consider a given segmentSand a coordinated chain consisting ofn robots, indexed from

r1 to rn, with the following characteristics:

(i) The team leader isr1.
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(ii) All leader-follower pairings are known.

(iii) The team goal-point which may be stationary or moving is known and is assigned

to be the goal point ofr1.

(iv) For robotsr i with i = 1, . . . ,n, the individual shape of each one is known.

(v) For each robot, the zoning radii are known.

(vi) For each obstacle, the boundary of its shape is known.

Determine a control that enables the coordinated chain to approach and attracts to the

corresponding nearest points on a given segment.

7.2 Mathematical Framework

7.2.1 Shortest Distance from a Robot to the Segment

To attract a robot to the nearest point on a given segment is always of significant impli-

cations when utilizing artificial potentials. As pointed out by the original work [29], the

nearest point on the segment to a robot is chosen to be the robot’s goal point. The dis-

tance from a robot’s instantaneous location, which is usually simplified as a single point

as it is in this dissertation, to the corresponding nearest point on the segment stands for

the shortest distance from robot to the segment.

In this sequel, we consider the segment and robot’s trajectory defined in confined space.

The segment is defined as a curveys = f (x), wherex ∈ [as,bs] while the robot’s tra-
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jectory is given asyt = g(x), wherex ∈ [at ,bt ]. And each segment has two vertices

according to [29]. Usuallyf = f (x) is smooth, andg = g(x) is not necessarily smooth.

It seems reasonable to assume thatg is locally Lipschitz on the domain. As illustrated

in Figure 7.2, for a point
(
x,g(x)

)
on the robot’s trajectory, there is a nearest pointqns

on the segment.

)(min xd
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(s egm en t) 

Vertex

Y

O X

(x,  g(x))

(tra j ec to ry )
R o b o t

nsq

sbsa ta
tb

)(xgyt =

)(xfys =

Z

Figure 7.2: Illustration of the shortest distance of a point(x,g(x)) on robot’s trajectory
(i.e., the curveyt = g(x) depicted by dot line) to a given segment (i.e., the curveys= f (x)
depicted by solid line).

For the location
(
x,g(x)

)
on trajectory, we can determine the nearest points on the seg-

ment by

dmin(x) = min
xs∈[as,bs]

{√
(x−xs)2 +

(
g(x)− f (xs)

)2
}

. (7.1)

As indicated by Equation (7.1), there may exist multiple nearest points althoughdmin(x)
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is uniquely determined. Based on definition ofdmin(x), a set of all of those points

denoted byqns which meets the following condition:

qns = argdmin(x) = arg min
xs∈[as,bs]

{√
(x−xs)2 +

(
g(x)− f (xs)

)2
}

, (7.2)

is the nearest points on the segment to a given location
(
x,g(x)

)
along the trajectory. The

trivial case of a single nearest point is simple and easy for controller design. However,

the multiplicity of nearest point greatly aggravates the mathematical complexity. To

deal with multiple nearest points, the original work [29] ”conceptually” proposed to

choose the special one, which is nearest to the origin among all these pointsqns, to

be the goal point for the robot to track without addressing the technical details. In the

sequel, we will continue to explore other aspects, such as control law, stability related to

this issue. Before discussing how to deal with multiple nearest points, it is necessary to

derive some essential mathematical characteristics of the nearest points and the shortest

distancedmin(x).

Sinceg(·) is locally Lipschitz, we have

|g(x+∆x)−g(x)|
|∆x| ≤ L,

or equivalently,−L|∆x| ≤ g(x+ ∆x)− g(x) ≤ L|∆x|, whereL is a positive constant.
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Lettingg(x+∆x) = g(x)+∆g(x), we have−L|∆x| ≤ ∆g(x)≤ L|∆x|. Thus,

(
g(x+∆x)− f (xs)

)2 =
(
g(x)+∆g(x)− f (xs)

)2

=
(
g(x)− f (xs))2 +2∆g(x)(g(x)− f (xs))+(∆g(x)

)2
.

7.2.2 Continuity of dmin(·)

Proposition 7.2.1 The function dmin(·) is continuous. ¤

Proof: See Appendix A.13. ¤

7.2.3 Locally Lipschitz ofdmin(·)

In proceeding context, we already showed thatdmin(x) is continuous on the domain. It is

natural to ask: Suppose thatg is not smooth but locally Lipschitz, what conclusion can

be drawn for the functiondmin? Is it differentiable everywhere or just locally Lipschitz?

The answers to these questions are provided by the following proposition.

Proposition 7.2.2 dmin(·) is locally Lipschitz. ¤

Proof: See Appendix A.14. ¤

Now, return to the questions posed at the beginning of this subsection. The foregoing

analysis shows thatdmin is indeed Lipshitz and may fail to be differentiable at certain

points. In other words,dmin may not be continuously differentiable everywhere. Never-
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theless, the fact thatdmin is locally Lipchitz, as revealed by Proposition 7.2.2, is sufficient

for a complete mathematical analysis.

Remark 7.2.1 The trajectory of a robot depends on its locomotion mechanism and the

control strategies applied on it. Sometimes, the trajectories are smooth and more often

they are not. For example, nonsmooth trajectories for a differential mobile robot are

usually expected. For real world mechanisms, the robot’s velocity is bounded and so is

its derivative with respect to time. To put it another way, the acceleration available to

a robot is bounded. Therefore it does make sense to assume that g is locally Lipschitz

rather than a smooth curve.

7.2.4 Motion of the Nearest Points and Presence of Transit Points

In the previous section, it is pointed out thatdmin is continuous and locally Lipschitz

indicatingdmin is likely to be continuously differentiable. Obviously, if Equation (7.2)

always guarantees a uniquely determined pointqns, the motion of nearest points is def-

initely continuous along the segment. In other words, the trajectory of near points is

either the whole segment, or merely a portion of it which is continuous. However, the

scenario may be quite different when uniqueness ofqns is not asserted.

Due to the presence of multiple nearest points, motion of the nearest point may be

discontinued along the segment. Here is an illustration for this phenomenon. Referring

to Figure 7.3 for example, there are two possible trajectories I and II for a robot and

both trajectories go through the same location, denoted by pointP, where the following
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relationship||PN1|| = ||PN2|| is met. It means that there are two nearest points (i.e.,

N1 andN2 respectively on the segment) dedicated to locationP. For trajectory II, it is

possible that motion of its nearest points is continuous nearN1 on the segment. But the

situation is quite different for trajectory I because afterP, the robot will be attracted by

certain point nearN2 rather thanN1, thus for trajectory I, the motion of nearest points

undergoes a ”jump” fromN1 to N2.

Segment
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T r a j ec to r y  I
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R o b o t
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Figure 7.3: Illustration of transition of the nearest points on the segment (dot line for
Trajectory I and solid line for Trajectory II).

We refer to nonadjacent pointsN1 and N2 as transit pointsas for certain location of

a given trajectory at these points continuity of trajectory of nearest points is broken.

Take the illustration presented in Figure 7.3 for example. The trajectory I at locationP

undergoes such a transition of nearest points. Furthermore a formal definition of transit

point is summarized as follows:

Definition 7.2.1 For a curve ys = f (x), where x∈ [as,bs] and a point P on the robot’s

trajectory given by yt = g(x), where x∈ [at ,bt ], two points N1 and N2 on the segment
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are referred as transit points if the following three constraints are met.

(i) The following equation holds at location P (with coordinates(xp,yp)) of the

robot’s trajectory:

{N1,N2}= argdmin(x)
∣∣
x=xp

= arg min
xs∈[as,bs]

{√
(xp−xs)2 +

(
yp− f (xs)

)2
}

.

(ii) There exist two open balls B1(N1, r) and B2(N2, r) centered at N1 and N2 respec-

tively with radius r such that

B1(N1, r)
⋂

B2(N2, r) = /0.

(iii) The trajectory of nearest point on the segment is discontinuous at N1 or N2. ¤

It is worthwhile to point out that as indicated in Figure 7.3, even Equation (7.1) has

multiple solutions, the motion of nearest points may still be continuous such as the case

for trajectory II. This observation implies that multiple nearest points may not necessar-

ily be transit points. However transits points always indicate the existence of multiple

nearest points. This fact is summarized in the following proposition.

Proposition 7.2.3 Transit points only exist where qns is not unique. ¤

Proof: See Appendix A.15. ¤

Proposition 7.2.3 can be useful when searching for transit points. A robot can check if

there exist multiple nearest points and then determine if a transit is necessary. However

this proposition fails to determine which multiple nearest points lead to transit point.

Neither can this proposition tell under what conditions a set of multiple nearest point has
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a ”transition”. Largely speaking, this question is related to the robot’s motion and even

its decision on which nearest point to pursue when multiple nearest points available.

For the robot illustrated in Figure 7.3, robot following trajectory II moves into the area

formed byN1PN2 and there is no transition. On the other hand, trajectory I ushers the

robot to undergo a transit of nearest points (fromN1 to N2). Nevertheless, it should be

noted that there is a special scenario where the trajectory cannot determine the transit

of nearest points. Suppose that a robot passes by locationP with exactly zero velocity,

then whether the robot has to transit nearest point depends on nothing with its trajectory

(obviously we do not know its trajectory after locationP at this moment). The robot

must make a decision and it is free to chooseN1 or N2 to be its nearest point to which

it will approach. Based on this observation, it is reasonable to make the following

assumption.

Assumption 7.2.1 The nearest point for a certain location of robot is uniquely deter-

mined by the robot even in the presence of multiple nearest points.

In other words, the above assumption points out that the robot is entitled to choosing one

of the multiple nearest point to approach for all the time. The issue of determining which

nearest point to track will be addressed later on especially when a robot’s leader already

stabilizes on the segment in association with zoning scheme. Mathematically transit

points pronounce the discontinuity of the motion of nearest points whereas physically

them give rise to ”sudden change” of attraction force which is pointed from location of a

robot to its nearest point when artificial potentials are applied. Since normally potential

functions are single-valued, ”sudden change” of attractive force is expressed in the sense
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of abrupt change of its direction rather than its amplitude. As far as stability of control

law is concerned, we need to evaluate the influence of such discontinuities and look into

a formal framework of a complete analysis. This is the main interest of the following

section.

7.3 Asymptotic Stability of Attracting a Robot to a Near-

est Point on the Segment

In order to attract a robot to a nearest point on the segment by employing artificial

potential trench method, we have to check the control law presented in previous chapter

and make necessary modifications. Now we set the goal point to be a nearest point on

the segment and apply the following control law for a robotr i :

~ui =~̈r i,ns+ki ~̇di,ns+Φ′
i,nsd̂i,ns, (7.3)

whered̂i,ns is a unit vector pointing from robot’s instantaneous locationr i to the nearest

pointqi,ns on segment. Note here we already made the assumption that the nearest point

for a certain location of robot is uniquely determined by the robot despite of presences

of multiple nearest points. Therefore the symbolqi,ns in Equation (7.3) is no longer a

set of multiple possible nearest points but a uniquely determined point instead at any
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time. Consequentlŷdi,ns is also unique. However, it is not the case for~̇di,ns, which is

time derivative.

As pointed out in proceeding sections, althoughdi,ns is continuous it may fail to be

differentiable at some points. It is not surprise that we encounter nonsmooth issues

again. The good news is that we already show thatdi,ns is locally Lipschitz as long as

the trajectory is locally Lipschitz. Thanks to Rademacher’s Theorem (which is stated

below),di,ns is almost everywhere differentiable (everywhere except on a set of Lebegue

measure 0)

Theorem 7.3.1 (Rademacher’s Theorem): A continuous map f: I −→R, where I is an

interval in R, is almost everywhere differentiable.

In other words, owing to nonsmooth analysis, we can discard all of those points where

di,ns fails to be differentiable. This observation is key for a complete stability analysis

of closed-loop system. Finally asymptoti stability of attracting a robot to a nearest point

on the segment is equivalent to prove the stability problem which is described by the

following differential equation:

~̈di,ns =−ki ~̇di,ns−Φ′
i,nsd̂i,ns.

If ~̇di,ns = ḋi,ns = 0 proves to be asymptotical stable at the origin, then it is clear that

the robot will be stabilized on the segment. For the sake of completeness, the detailed

procedures are shown below.
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Theorem 7.3.2 A robot ri (whose goal point is specified by the twice-differentiable vec-

tor ~r i,ns on a segment) is globally asymptotically stable with respect to~r i,ns under the

control

~ui =~̈r i,ns+ki ~̇di,ns+Φ′
i,nsd̂i,ns, (7.4)

whereΦ(di,ns) is an admissible potential trench function,~̇di,ns = d(~di,ns)/dt, Φ′
i,ns =

d(Φ(di,ns))/d(di,ns), d̂i,ns = ~di,ns/di,ns, and ki is a positive scalar.

Proof: See Appendix A.16. ¤

7.4 A Novel Obstacle Avoidance Method

In the real world, the presence of obstacles has to be taken into account for feasible

robot motion control and multi-robot formation control. For a robot trying to approach

a segment, a real obstacle or another robot in its way to the nearest points along the

assigned segment can be regarded as an ”obstacle”. In other words, in this thesis mean-

ing of the term ”obstacle” is inclusive of real obstacles or robots and therefore may

vary from robot to robot and from time to time depending on relative separations from

a specific robot to the others in a dynamic environment. Sometimes in order to avoid

excessive complexity and facilitate analysis, the obstacles under consideration are as-

sumed to be with convex shapes [27], like the ones used in analysis and simulations in

previous chapter. In contrast to this restrictive assumption, non-convex shape obstacles

are to be handled with a novel method in this chapter. Before proceeding, it makes sense

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



7.4 A Novel Obstacle Avoidance Method 184

to assume that the shape of any obstacle is known or is at least able to be detected by

robots’ on-board sensors or instruments such as laser distance meter or supersonic sonar

through team-wide coordination. In the upcoming context within this section, a more

detailed discussion on this prerequisite will be addressed.

7.4.1 Obstacles and Convex Hull

We refer to the outer boundary of any obstacle with arbitrary shapes asΩob, which can

be regarded as a set of points forming a closed contour. Readily we can representΩob

as

Ωob = {(x,Ωob(x)
) | ∀ qob∈Ω}, (7.5)

whereqob can be any point on the obstacle and it is contained byΩ, the area encircled by

obstacle’s boundary. For the sake of expression simplicity and as far as collision avoid-

ance requirement is concerned, it is sufficient and convenient to useΩob to denote an

obstacle. Generally speaking,Ωob may be a convex set such as obstacles with cylinder

shape or a non-convex set like crescent-shape obstacles. Figure 7.4 shows a type of non-

convex obstacle(in solid line) comprising of polygons. Crevices exist as the boundary

is not convex. Moreover, there exist other types of non-convex shape obstacles. In con-

trast to Figure 7.4 where crevices are outside of obstacle, Figure 7.5 illustrates another

example of obstacle(in solid line) with an internal cavity surrounded by the obstacle

itself.

One of the dominating threats of non-convex shape obstacles to a robot controlled under
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artificial potentials is that it may cause the robot stuck in crevices or cavities of the

obstacles. Several solutions have been proposed to cope with such kind of local minima

in preceding research work, such as the Instant Goal (IG) Method [28], Virtual Obstacle

Method [57]. In this chapter, however, we are going to deal with this issue from a novel

perspective. For any obstacleΩob, we define the corresponding convex closure as

Ω
′
ob = co{Ωob}= co{(x,Ωob(x)

) | ∀ qob∈Ω}. (7.6)

In this way, obstacles with non-convex shape can be transformed into ”virtual obsta-

cles” with convex boundaries. Figures 7.4 and 7.5 show two examples of non-convex

shape obstaclesΩob and the corresponding convex hullsΩ′
ob. Specifically in Figure

7.4, convex hull of the obstacle turns out to be a convex polygon. Readily it flows that

Ω′
ob = Ωob for convex shape obstacles andΩ′

ob⊂ Ωob for non-convex shape counter-

parts. To distinguish the actual obstacles boundaryΩob from its convex hullΩ′
ob, we

refer to the termsΩ′
ob as ”apparent obstacles” in this thesis.

Remark 7.4.1 The aforementioned prerequisite on knowledge of obstacles’ boundaries

can be met when such information is available or able to be acquired. For instance the

shape of a robot, which may be viewed as an obstacle by another one during formation,

is usually known beforehand. Such information of obstacle sometimes may be able to

be acquired through off-line surveillance or identification. However in real implemen-

tation especially for unconstructed environments, this prerequisite seems to be a little
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obΩ

'
obΩ

Figure 7.4: A non-convex obstacleΩob and its convex hullΩ′
ob. Note here the obstacle is

represented by shaded area while its boundaryΩob is in solid lines. The corresponding
Ω′

ob is depicted in dot lines, of which a minor portion on the left side of this figure
overlaps on the boundary.

bit restrictive. One example is illustrated in Figure 7.6, where two static concave ob-

stacles, which are very close to each other, are in the robot’s way to the segment. If all

boundary information for each obstacle is available, a combined apparent obstacle can

be calculated readily. However in this situation, not all boundary information are nec-

essarily needed for collision avoidance. Sometimes, incomplete information of obstacle

boundary under certain constraints may be sufficient for constructing or approximating

the convex hull. For instance, if boundary information of all these portions of obstacles

in Figure 7.6 below the curve P1P2 (depicted in a dot line) is known, it suffices for ob-

stacle avoidance purpose. The question here would rather be when and how to make

such a decision and under what conditions we can get approximately the same perfor-
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obΩ

'
obΩ

Figure 7.5: Another non-convex obstacleΩob and its convex hullΩ′
ob. Note here the

obstacle is represented by shaded area while its boundaryΩob is in solid lines. The
correspondingΩ′

ob is depicted in dot lines, of which a major portion overlaps on the
boundary.

mance based on only partial obstacles’ boundary information. Meanwhile in practical

implementations, each robot only has limited obstacle detection capability. Therefore

an intelligent sensor network based on information flow of multiple robots team-work

is critical to for apparent obstacle scheme. If no global information for each obstacle

is ready or available, then a solution has to figure out. We leave this study to further

work.

7.4.2 Combined Convex Hull

Furthermore, it is worthwhile to note that a robot may fall into ”crevices” or ”cavities”

formed by multiple obstacles even though they may not physically contact with each

other. For instance if two obstacles are located too close to form deep ”crevices” or
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minρ

ob1Ω

ob2Ω

Obstacles’ boundary information that 
is critical to collision av oidanceR obot

1P

2P

S eg ment
2V1V

3P

4P

Obstacles’ boundary information that 
is not critical to collision av oidance

Figure 7.6: Partial obstacles’ boundary information may be sufficient for collision avoid-
ance.

”cavities” such that there is insufficient separation between them to allow a robot to

pass through safely. Such a scenario is illustrated in Figure 7.7, where the minimum

separation of two obstacles (Ωob1 andΩob2), represented byρmin is less than the required

minimum clearanceρclearancefor a given robot. Although the obstaclesΩob1 andΩob2 in

Figure 7.7 are of non-convex shapes, it is worthwhile to point out that even two convex

shape obstacles may also contribute to the same phenomena as illustrated in Figure 7.8

where both obstaclesΩob1 andΩob2 are with convex shapes.

To avoid problematic local minima issues in such situations, the combined convex hull

of multiple obstacles rather than individual ones are calculated as follows:

Ω
′
combo= co

{
Ωob1

⋃
Ωob2

⋃
· · ·Ωobi

⋃
· · ·Ωobn

}
. (7.7)
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Note that for each of all these obstacles there exists at least one minimum separation

such that

ρ i, j
min < ρclearance, (7.8)

wherei 6= j. In other words, for any robot there must exist at least another one to which

the separation is less than the required clearanceρclearance. Similarly, to distinguish the

actual obstacles boundary from the corresponding combined convex hulls, we refer to

termsΩ′
comboas ”apparent obstacles”. By transforming a single non-convex obstacle or

a specific group of obstacles into convex ”apparent obstacles”, all the obstacles seen by

a robot are convex. Owing to this observation, the aforementioned obstacle-avoidance

method is thereafter referred to as ”apparent obstacle scheme” in this thesis.

minρ

'
comboΩ

ob1Ω

ob2Ω

Internal 
“ c av i ty ”

Figure 7.7: Illustration of a combined convex hullΩ′
comboresulting from two obstacles

Ωob1 andΩob2 between which the separation is too narrow for a robot to pass through
safely (here dot lines forΩ′

comboand shaded area for obstaclesΩob1 andΩob2 with solid
lines for their boundaries). Note that there is a ”cavity” between obstaclesΩob1 and
Ωob2 threatening a nearby robot to fall into local minima.
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minρ

'
comboΩ

ob1Ω

ob2Ω

Internal 
“ c av i ty ”

ob1Ω

Figure 7.8: Convex obstaclesΩob1 andΩob2 are located too close to form internal cav-
ity. Again the separation is too narrow for a robot to pass through safely (here dot
lines forΩ′

comboand shaded area for obstaclesΩob1 andΩob2 with solid lines for their
boundaries). Note that there is a ”cavity” between obstaclesΩob1 andΩob2 threatening
a nearby robot to fall into local minima.

7.4.3 Repulsive Forces with Apparent Obstacle Scheme

Apparent obstacle scheme is very useful and handy for obstacle avoidance purposes.

Except the aforementioned advantage of preventing local minima at crevices or cavi-

ties, it can simplify the calculation of repulsive force. For robotr i , the repulsive force

generated by apparent obstacle is governed by the following formula:

~Fi,rep =−
(

∇xΦob(x)|(dob
i,ns)

)
d̂ob

i,ns, (7.9)

whereΦob(x) is a scalar function whiledob
i,ns and d̂ob

i,ns denote the minimum distance

from robot to its nearest point on the apparent obstacle and the unit vector pointing from

instantaneous position ofr i to the nearest pointqob
i,ns respectively. The minus sign in

Equation (7.9) indicates that the force~Fi,rep is repulsive(trying to push the robot away).
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Now the problem of finding the nearest point arises again. The good news is that there

are no more multiple nearest points issues as revealed by the following proposition.

Proposition 7.4.1 For any arbitrary apparent obstacleΩ′
ob(or Ω′

combo) and robot’s lo-

cation denoted by point P0, if P0 /∈ Ω′
ob (or Ω′

combo) and P0 is not contained in the area

Ω′ encircled byΩ′
ob (or Ω′

combo), then it flows that: (i) the nearest point on the appar-

ent obstacle with respect to robot only dwells at its boundary; (ii) the nearest point is

unique. ¤

Proof: See Appendix A.17. ¤

Proposition 7.4.1 proves to be useful as it asserts that the nearest point on apparent

obstacle with respect to a robot is unique and consequently it excludes the routine to

deal with determining which nearest point to follow and moreover the calculation of

repulsive force generated by obstacle avoidance algorithms is greatly simplified. Take

the apparent obstacle illustrated in Figure 7.9 for example. Three repulsive force areas

I, II and III (depicted in dashed lines) which are facing the robot are highlighted and the

other repulsive force areas related to the rest of obstacle’s boundary are omitted in this

figure. The repulsive force area I and III are rectangle shape denoted byP1N1N2P2 and

P2N3N4P3 respectively. The sector-shape repulsive area IIP2N2N3 exists because once

a robot falls into this area, the nearest point on apparent obstacle with respect to robot

is fixed at pointP2. Moreover, in area I, the repulsive force is always in the direction

perpendicular toP1P2 and similarly the repulsive force in area III is perpendicular to

P2P3. However, a robot in area II will experience a repulsive force pointing from point
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P2 to its instantaneous location. Hence in this case, the direction of repulsive force

depends on robot’s location and this is different from the cases with area I and III where

the direction of corresponding repulsive force is fixed.
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Figure 7.9: Different repulsive force areas related to an apparent obstacle. All the three
repulsive force areas are depicted in dashed lines. Note that for illustration purpose,
only those areas facing the robot with respect to partial of the boundary (i.e.,P1P2 and
P2P3) are highlighted.

7.5 Nearest Points in the Presence of Obstacles

7.5.1 Encroachment of Segment Due to Obstacles

When a single obstacle gets too close to a segment, we are forced to modify the algo-

rithm described by Equation (7.2) when searching for nearest points or determining the
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transit points because a portion of the segment may be occupied by the obstacle and

therefore this portion cannot accommodate any robots. We refer to this phenomenon as

”encroachment” on segment.

Encroachment on segment is commonly encountered for multiple robot formation and

there are several other typical scenarios. For the sake of collision avoidance, a separation

threshold denoted byρclearancebetween an obstacle and a robot is usually predefined.

When the obstacle-to-robot separation is less thanρclearance, a repulsive force generated

by the obstacle will start to be applied on the robot. Based onρclearanceeach obstacle has

a repulsive zone which may comprise of several repulsive areas as illustrated in Fig 7.9.

Any robot within this repulsive zone will be pushed away by the corresponding repulsive

force resulting in virtual ”areas of clearance” prohibiting entry of any robots around the

obstacle. Consequently a single obstacle physically not touching any portion of the

segment but with its clearance areas covering some part of the segment also leads to

encroachment. Those portions of segment which are covered by an obstacle’s repulsive

zone are ”encroached” and have to be abandoned by algorithms seeking for nearest

points because a robot should not be ushered to these areas. While practically it is

admitted that collision may not be inevitable due to possible cancellation between the

repulsive force from obstacle and attractive force generated by nearest point, robots may

be trapped in local minima in such cases and consequently may fail to reach the desired

nearest point on the segment.

As mentioned earlier, a real robot may be regarded as an obstacle. Therefore the follow-

ers (robots) to this robot have to consider the encroachment on segment once the robot’s

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



7.5 Nearest Points in the Presence of Obstacles 194

repulsive zone covers certain part of the segment. The scenario gets more complicated

when multiple obstacles, rather than an individual one, together with multiple robots are

close to a segment resulting in encroachment. Especially when the obstacles are located

within certain crowned area of the segment leading to small separation among each of

them, the algorithms seeking for possible nearest points have to take more constraints

into account. It is true that if multiple obstacles (including real robots) get too close to

impede safely pass-through of robots as illustrated in Figure 7.7, they will be treated as

a combined apparent obstacle regardless whether they are close to segment or far away

from it. However beneath the above statement lies a simple fact that is worthwhile to

point it out. For robotr i , only its leader robots(i.e.,r1 throughr i−1) and all real obsta-

cles are viewed as ”obstacles”. It means that as far asr i is concerned, another robotr j

dwelling on the segment with its indexj > i has no encroachment on segment and will

not be involved in calculating apparent obstacle or combined obstacle, not to mention

reckoning on encroachment on segment due to its repulsive zone. This mechanism guar-

antees that a higher priority on determining nearest point on segment is always assigned

to leaders and therefore leader robots will push way any followers in their way to the

segment.

A simple illustration of encroachment on a segment is depicted in Figure 7.10, where the

obstacles(hatched areas) are deliberately replaced with ”apparent obstacle”Ω′
ob rather

thanΩob. There are four pointsE1 throughE4 which are the intersection points between

the segment and clearance of the ”apparent obstacle”. Note that the original segment is

encroached and some portions are unavailable for robots to dwell on. We denote the
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fragments of segment, which are available to robots asSV1E1, SE2E3,SE4V2 respectively.

For each fragment, we can evaluate if there is sufficient room to accommodate at least

one robot. Falling that the corresponding fragment should not be employed when seek-

ing or determining the nearest point on obstacles. By ruling out all the fragments with

insufficient room for at least one robot to reside, a set of qualified fragments will be

screened. For robotr i , we refer to such a set as ”set of qualified fragments” and denote

it asSqa
f g,i . Obviously the set of qualified segments for each robot maybe different.

Segment
'
ob1Ω

'
ob2Ω

1E

2E
3E

4E

1V

2V
R o b o t

Figure 7.10: Encroachment on segment due to the presence of obstacles. Note that the
hatched areas are for ”apparent obstacle”Ω′

ob1 andΩ′
ob2 respectively while the dashed

lines are for the corresponding safety clearance areas.

7.5.2 Seeking Algorithms for Nearest Points

Owing to encroachment incurred by obstacles, for each specific robot we have to identify

which portion of the segment is unable to accommodate at least one robot and then

calculate the set of qualified fragments. The algorithm seeking for nearest point on

segment for a given robot, denoted byr i , is summarized as follows:
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(1) calculate apparent obstaclesΩ′
ob (or Ω′

combo) among those real obstacles and those

robots indexed fromr1 throughr i−1 which are close to the segment;

(2) base on step (1), calculate clearance area for each apparent obstacle and determine

which portions of the segment are encroached;

(3) based on step (2), calculate the set of qualified fragmentsSqa
f g,i by discarding all

the fragments without sufficient room to accommodate at least one robot;

(4) onSqa
f g,i , invoke the formula presented in Equation (7.2) to calculate the near point

on the segment and check if multiple nearest points exist;

(5) if robot r i−1 is not settled on the segment and multiple nearest points found in step

(4), disable the attracting force instantaneously;

(6) if robot r i−1 is already settled on the segment and multiple nearest points found in

step (4), discard those near points which are out of the attractive zone of robotr i−1

and if the unique nearest point or none of the multiple nearest points are within

the attractive zone then invoke the formula presented in Equation (7.2) only on

those fragments which at least partially fall into the attractive zone ofr i−1;

(7) go to step (1) and repeat the procedures in step (2) through (6) for the next round

of seeking.

Remark 7.5.1 Step (5) is indispensable mainly because of two reasons. First it is rea-

sonable to instruct a robot to stop moving if it is sufficiently close to its nearest point on

a segment in practical implementations. Second if the nearest point is out of the attrac-

tive zone of ri−1, the highly undesired local minima issues may happen. Therefore we
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need to keep the nearest point within in the attractive zone of ri−1. Obviously since the

clearance areas of apparent obstacles are utilized in the calculation of Sqa
f g,i , the nearest

point for robot ri is already excluded from Sqa
f g,i and hence there is no chance for it to

fall into the repulsive zone of robot ri−1. Due to this observation, in step (5) we merely

need to deal with these nearest points out of attractive zone of ri−1.

Due to encroachments, following up the procedures described in the seeking algorithm,

the minimum distancedmin(x) between a robot and the segment based on the setSqa
f g,i

may be discontinued. However for each qualified fragment of segment, it is very inter-

esting to note that: (1)dmin(x) is continuous; (2)dmin(x) is locally Lipschitz as guar-

anteed by previously addressed mathematical properties ofdmin(x). Also, it can be

concluded that transition only exist when multiple nearest points are available no matter

whether they belong to the same segment fragment.

7.6 Local Minima and Solutions

It is no surprise that even with ”apparent obstacle scheme”, local minima may arise

under certain circumstances as long as there exists at least one trajectoryST such that

the following condition is met:

ST = {(x,y) | Σ~Fatt +Σ~Frep = 0}, (7.10)

where~Fatt and~Frep denote the attractive force and repulsive force applied on a given

robot respectively. A simplified example is shown in Figure 7.11, where the segment
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represented byV1V2 is a straight line andP1P2 of the apparent obstacle’s boundary hap-

pens to be also a straight line parallelling withV1V2. In this situation, a robot being

attracted to the nearest point on the segment is very likely to be captured in a local min-

imum as the attractive force~Fatt seems to cancel out repulsive force~Frep generated by

obstacle avoidance potentials.

Segment

1P 2P

1V 2V

R o b o t

A p p a r ent 
o b s ta c l e

attF
�

repF
�

T r a j ec to r y  w i th  
l o c a l  mi ni ma

Figure 7.11: Illustration of local minima with the ”apparent obstacle scheme”. The
specific trajectory featuring~Fatt cancelling out~Frep at any point along this line is repre-
sented by a dash line, which parallels with the segmentV1V2 and a portion of the obstacle
boundary (i.e.,P1P2).

Obviously, here the key point is thatP1P2 of the apparent obstacle parallels with segment

V1V2. As the segment is known andP1P2 is able to be detected by the robot, such a sit-

uation is predictable and can be prevented with simple solutions. A straightforward and

effective method is to form an auxiliary arc on the part of apparent obstacle to prevent

attractive force from cancelling out repulsive force. To this end, Figure 7.12 shows such

an effective solution to remove the existing local minima trajectory by forming an arti-

ficially created arc centered at pointP0 (on the segment) outside the apparent obstacle.
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Each point on the arcP1P3P2 has equal distance toP0. The introduce of arc will not

affect the nearest point on the segment. Hence direction of the attractive force~Fatt will

not be altered. On the other hand, direction on the repulsive force~Frep is indeed changed

due to the arc. For instance, for a robot location as shown in the figure, direction of the

repulsive force is no longer opposite to the attractive force. In this way, a robot can pass

by the obstacle free of a local minima trajectory as shown in Figure 7.11. The special

case when the attractive force is in the direction pointing fromP3 to P0 and meanwhile

the condition~Fatt =−~Frep is met is not a stable local minimum and thus does not affect

the conclusions drawn above.

Segment

2P

1V 2V

R o b o t
attF

�

repF
�

0P

1P
3P

A p p a r ent 
o b s ta c l e

A u x i l i a r y  a r c  to  
a v o i d  l o c a l  mi ni ma

Figure 7.12: An effective elegant solution to overcome the local minima dilemma dis-
cussed in Figure 7.11. The auxiliary arcP1P3P2 used to prevent local minima is depicted
in dot line. The distances fromP0 to P1, P3 andP2 are equal, namely||P0P1|| = ||P0P3||
=||P0P2||.

One more example describing another type of local minima is shown in Figure 7.13,

where a portion (P1P3P2) of the apparent obstacle boundary coincidentally to be an arc

centered at pointP0 on the assigned segment. A local minima trajectory exists in this
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special case and it turns out to be an arc centered at pointP0 simply because along the

trajectory the attractive force~Fatt exactly cancels out the repulsive force~Frep generated

by obstacle avoidance potentials. To deal with such an adverse situation, an effective

remedy is proposed by constructing two straight lines outside the apparent obstacle.

Specifically we can letP0P1⊥P1P4 andP0P2⊥P2P4, which is simple and convenient for

calculations. The introduce ofP1P4 andP2P4 alters the direction of repulsive force~Frep

and therefore successfully removes the existence of local minima trajectory.
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1V 2V
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attF

�
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�
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A u x i l i ar y  str ai gh t 
l i nes to  av o i d  
l o c al  mi ni ma 
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(a) (b)

Figure 7.13: One more example of local minima with ”apparent obstacle scheme”.
The left side figure, i.e.(a), illustrates the local minima trajectory (dashed line) due to
~Fatt cancelling out~Frep everywhere along this trajectory. The right side figure, i.e.(b),
presents a simple solution capable of removing the local minima trajectory by con-
structing two auxiliary straight linesP1P4 andP2P4 (doted lines) withP0P1⊥P1P4 and
P0P2⊥P2P4.

Remark 7.6.1 It is interesting to note that the area covered by apparent obstacle and

the additional arc shown in Figure 7.12 may not necessarily be convex. Whether it

is convex or not depends on the shape of the arc and the shape of apparent obstacle.
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However, the area surrounded by auxiliary lines (P1P4 and P2P4) and apparent obstacle

depicted in Figure 7.13 is convex. So to get the combined convex hull of the apparent

obstacle and the auxiliary arc or lines may be unnecessary unless it has to do so. Usually

we may let the auxiliary arc or lines disappear whenever a robot is not threatened by

such kind of local minima trajectory.

7.7 Recovery from Local Minima Caused by Moving Ob-

stacles

In previous sections, several possibilities of local minima associated with apparent ob-

stacle scheme are addressed in detail. It is already shown that local minima trajectory

only exists in certain special circumstances and can be handled with simple solutions.

For certainty, the proposed solutions in the previous section can prevent local minima

on the robot’s path approaching the assigned segment if all obstacles are static or if they

are separated faraway enough such that the interactions among multiple obstacles do

not affect the robot. In other words, the separations among these moving obstacles are

always greater than the safety clearanceρclearanceand consequently there is no need to

calculate the combined apparent obstacles.

Nevertheless there is another threat that moving obstacles can form a combined apparent

obstacle in which a robot is likely to be trapped inside. As a matter of fact one example

of such situations is illustrated in Figure 7.14, whereΩob1 is moving towards another

obstacleΩob2 and finally at certain point a combined apparent obstacle has to be formed
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and unfortunately the robot is suddenly surrounded within the newly crated apparent

obstacleΩ′
combo. Now the robot needs a method to recovery from such an adverse sit-

uation otherwise local minima may trap the robot. To this end, any robot falling into a

combined apparent obstacle will exert the following strategy to escape from local min-

ima. Immediately the attractive force generated by the nearest point (on the segment)

has to be suspended temporarily until the robot is fully rescued from apparent obstacles.

Meanwhile it will try to approach the nearest point outsideΩ′
comboat which the repulsive

force from the apparent obstacle attenuates to be zero. Take the robot in Figure 7.14 for

example, it will start recovery processes once it is sieged by the newly formedΩ′
combo

and discontinue the attractive force from the nearest point on segment until it reaches a

nearest pointN2 outside the apparent obstacle and at this point the repulsive force from

Ω′
comboreduces to be null.

minρ

'
comboΩ

ob1Ω

ob2Ω

moving 
d ir e c t ion

R ob ot

1P

2P

1N

2N

Figure 7.14: Illustration of local minima caused by moving obstacles and the associated
recovery method.
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7.8 Comparison with Alternative Obstacle Avoidance Method-

ologies

Since local minima has been a serious inherent problem with many forms of potential

field methods from the very beginning, tremendous efforts have been made to overcome

it in a great number of ways. It is noted that much of the endeavors has been directed

to change the attractive/repulsive potential functions such that the local minima along

the desired path will be removed. For example, Ge and Cui [26] proposed a new form

of potential function which is constructed by multiplying an commonly used existing

potential function with another term to prevent possible local minima. Specially this

method aims at improving the conventional potential function which can be given as

follows:

Urep(q) =





1
2η

(
1

ρ(q,qobs)
− 1

ρo

)2
, if ρ(q,qobs)≤ ρ0

0, if ρ(q,qobs) > ρ0

whereη is a positive scalar,ρ(q,qobs) denotes the minimal distance from the robotq

to the obstacle,qobs represents the point on the obstacle such that the distance between

this point and the robot is minimal between the obstacle and the robot, andρ0 is a

positive constant denoting the distance of influence of the obstacle. To overcome the

local minima caused by cancellation of repulsive force and attractive force at somewhere

other than the goal point, a new form of repulsive potential function is constructed in
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the following way [26]:

Urep(q) =





1
2η

(
1

ρ(q,qobs)
− 1

ρo

)2
ρn(q,qgoal), if ρ(q,qobs)≤ ρ0

0, if ρ(q,qobs) > ρ0

whereρ(q,qgoal) is the distance between the robotq and the goal pointqgoal. The trick

in the method is to manipulate the parameters of the whole potential functions (namely

the sum ofUrep(q) and attractive potentialUatt(q)) after introducing the special term

ρn(q,qgoal) such that the goal point will become the unique global minimum. In other

words, the previously existing local minimum phenomenon at somewhere other than the

goal point is removed if the parameters are properly selected. Consequently the new

potential field function usually takes on a sophisticated form and gives rise to compu-

tation or analysis complexity on designing suitable potential functions. Moveover, the

controller performance become harder to predict with sophisticated potential functions

such as the case in Ge and Cui method [26]. There is single obstacle considered and

the obstacle is assumed to be convex and interactions among multiple obstacles and the

more sophisticated situations with multiple moving obstacles are out of the scope of this

method.

Contrast to these traditional methods, apparent obstacle scheme attempts to solve the

issue from another perspective. The shapes of obstacles are considered and taken into

account during obstacle avoidance while the potential functions do not need to be recon-

structed even in the special occasions where local minima is still present with apparent

obstacle scheme.
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Virtual obstacle method is similar to our work in the sense that it does not need to change

the potential field function. Originally the concept of ”virtual obstacle” was proposed in

[57] to overcome the local minimum issue associated with potential field method. The

main idea is that when a robot approaches or encounters concave or concave-shaped

obstacles where a local minimum is most likely to occur, invoke the computation for in-

termediate via points to be used as temporary path targets, namely the so-called virtual

obstacle method. Finally the real line segment (of the obstacle) and virtual lines forms

the boundary of a virtual obstacle. Meanwhile if the robot is inside the concave obstacle,

then it has to navigate out of the obstacle via a local-minimum recovery scheme. This

method is similar to our apparent obstacle scheme. Both virtual obstacle method and

apparent obstacle scheme can handle with concave obstacle. Apparent obstacle is de-

rived from the convex hull of the obstacle boundary while virtual obstacle results from

combination of real line segment (of the obstacle) and virtual lines. Virtual obstacle

method assumes the boundary of obstacles consists of segment while apparent obstacle

scheme allow the obstacle to be with arbitrary shapes.

Apparent obstacle scheme can deal with multiple obstacles readily as it provides a math-

ematical calculation framework and addresses the conditions under which the combined

apparent obstacle has to be calculated. But in [57] the explicit mechanism is not stated.

Virtual obstacle method may guide a robot to enter dangerous areas, including deep

crevices or internal cavities of a single obstacle or crevices formed by multiple obstacles

because at these areas the robot is highly likely to be trapped and then has to resort to the

associated local minima recovery scheme in order to successfully approach the desired
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goal point. However, with apparent scheme, the robot usually is kept from moving into

such dangerous areas. Specifically, apparent obstacle are able to get rid of local minima

caused by either single static obstacle with crevices (or cavities) or multiple static obsta-

cles as shown in previous analysis and discussion. However there is no such guarantee

for the case of virtual obstacle method even for a single static concave obstacle. To some

extent, it heavily relies on recovery scheme to make it work. Moreover the scenario of

crowded multiple moving obstacles are discussed in our approach and only in such com-

plicated situations the recovery process which is already covered in the previous section

will be invoked. It is also worthwhile to point out that virtual obstacle method, like most

of other alternatives, is designed to navigate a robot to a predetermined goal point while

our method can cope with approaching the nearest point on a segment indicating the

goal point is not predetermined and is subject to possible aforementioned transitions.

Furthermore, it should be noted that essentially virtual obstacle method cannot eradi-

cate the issue local minima. For instance in the situation such as the one illustrated in

Figure 7.11, a robot navigated by virtual obstacle method is most likely to be trapped in

local minima. A formal discussion and possible solutions are missing from the original

work [57]. In contrast to virtual obstacle method, apparent obstacle scheme admits such

drawbacks and in our case formal solutions are figured out to guarantee a local minima

free path.

The Instant Goal (IG) method first proposed in [28] aims to solve the local minima

problem where robots are trapped in deep obstacle crevices by giving higher priorities

to instant goal than to the actual goal when the path to the actual obstacles obstructed. A
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simple vector representation of the local environment is introduced and integrated into

behavior-based system, where an instant goal driven behavior is generated to guide the

robot. The IG method [28] allows the obstacles to be concave. However in essence it is

a behavior-based strategy and no potential field topics are involved. Largely speaking it

can be viewed as a special behavior-based recovery scheme coping with local minima

on robot navigation for a single robot rather than a multi-robot system.

minρ

'
comboΩ

ob1Ω
ob2Ω

Trajectory B

R ob ot 1P

2P

0N

1N

S eg m en t
2V1V

Trajectory D

3P

2N

Trajectory C
Trajectory A

Figure 7.15: Comparison of possible trajectories with different obstacle avoidance algo-
rithms.

To highlight the significant differences among distinct obstacle avoidance methods, Fig-

ure 7.15 is depicted for this purpose. In this figure, there is one segment (simplified as

a straight lineV1V2) and a mobile robot which is initially parked at locationN0 and is

supposed to approach the nearest point on the segment. The robot at locations other than
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its initial placeN0 is depicted in shadows to indicate the possible routines under control

of different obstacle avoidance methods. Two static concave obstacles are in the robot’s

way to the segment and they are deliberately placed so close to form crevices that will

threaten the robot under potential field control to be stuck in local minima. Trajectory A

(depicted in a solid line) starting from robot’s initial locationN0 to pointN1 is expected

for most of the conventional potential field methods [50][6] without obstacle avoidance

mechanisms because the robot will be trapped at a local minimum pointN1. However

if effective obstacle avoidance methods are applied, the robot will be able to reach the

segment in different manners. Trajectory B is a possible routine if our Apparent Ob-

stacle Scheme is employed while C may result from Instant Goal(IG) Method [28]. A

robot under the control of Virtual Obstacle Method [57] may follow Trajectory D which

undergoes a rugged path caused by recovery processes in order to overcome the en-

countered local minima (namely at locationN1 andN2). Consequently it results in two

straight linesN1P1 andN2P2 respectively as recovery process has to be invoked twice. It

should be noted that a robot under the control by either Instant Goal(IG) Method [28] or

Virtual Obstacle Method [57] may pass through Trajectory A during its first stage of ap-

proaching to the segment. However, our scheme obviously is the only candidate among

the three methods to generate a smooth local-minima-free path even without invoking

recovery scheme in this case and the other two methods are likely to follow trajectories

passing by local minima locations and have to resort to the associated recovery methods

to survive.
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7.9 A Coordinated Chain Attracted to a Segment

To control a team (in approaching and being attracted to a given segment) as a coor-

dinated chain, we augment the control as stated in Equation (7.4) with other potential

functions solely for the purpose of keeping two robots within a range of each other and

avoiding collision with obstacles. The idea is that, as a chain approaches the segment,

except the repulsive forces due to obstacles a robot in the chain should normally stay

within the neutral zone of its follower. Action must be taken by the follower to enforce

this zoning requirement if the leader happens to enter either zone 2 or zone 4 of the

follower.

A zoning potentialis introduced specifically for this purpose. This potential is realized

by a functionΨ, which takes on either of two forms, depending on the location of a

robot in the zoning scheme of another. A repulsive potentialΨ̂ comes into effect when

a robot finds its leader in its zone 2, while an attractive potentialΨ̌ is in effect when a

robot finds its leader in its zone 4. Specifically, we can choose

Ψ̌(di,i−1) =





β/(2δ m
a ) if ρ < di,i−1 < ρ̌,

c1/2 if ρ < di,i−1≤ ρ,

0 elsewhere,

Ψ̂(di,i−1) =





α/(2δ m
r ) if ρ < di,i−1 < ρ̂,

c2/2 if ρ̂ ≤ di,i−1 < ρ̌,

0 elsewhere,
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where

di,i−1≡ ‖~di,i−1‖= ‖~r i−1−~r i‖=
(
(~r i−1−~r i)T(~r i−1−~r i)

) 1
2 , (7.11)

δa = ρ̌−di,i−1, δr = di,i−1−ρ, m(a constant) is either 1 or 2,c1 = β/(ρ̌−ρ)m, andc2 =

α/(ρ̂ −ρ)m. Therefore the function for the overall zoning potential, i.e.,Ψ(di,i−1) =

Ψ̂(di,i−1)+ Ψ̌(di,i−1), is absolutely continuous in the rangeρ < di,i−1 < ρ̌. Moreover

Ψ(di,i−1) is locally Lipschitz continuous and regular in the same range.

The repulsive potential specified above only ensures no collision between a robot and its

leader. To avoid collision between any two robotsr i andr j in a team (wherej 6= i−1),

the repulsive potentials onr i is invoked whenever any robotrm (with m< i) enters zone

2 of r i . Meanwhile, for to avoid collision with real obstacles, repulsive potential onr i

also include these from apparent obstacles. Specifically, the potential

Φi,total = Φi,ns(di,ns)+ Ψ̌i,i−1(di,i−1)+∑
k

Ψ̂ob
i,k(d

ob
i,k) (7.12)

is applied on robotr i , wheredob
i,k ≡ ‖~dob

i,k‖ = ‖~rob
k −~r i‖ =

(
(~rob

k −~r i)T(~rob
k −~r i)

) 1
2 , and

~dob
i,k denotes the vector pointing from the unique nearest point onk-th apparent obstacle

to robotr i , and~rob
k is the vector pointing from coordinates origin to the nearest point on

k-th apparent obstacle with respect to robotr i , and∑k Ψ̂i,k(dob
i,k) denotes sum of all the

repulsive forces due to obstacles, including real obstacles and robotsr1 throughr i−1. In

other words, sum of the potentials due to real robots presented by∑ j Ψ̂i, j(di, j), where

j = 1,2, ..., i − 1, is already integrated in∑k Ψ̂ob
i,k(d

ob
i,k) through the apparent obstacle

scheme.
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Thus, throughout the process of approaching a segment as a member of a coordinated

chain, each robot is subject to the influence of the potential trench function, and possi-

bly additional zoning potentials (attractive or repulsive) depending on its location with

respect to all other robots before it (in terms of the rank in the leader-follower pairings)

and repulsive potentials from real obstacles.

Theorem 7.9.1 Consider the following control

~ui =~̈r i,ns+ki ~̇di,ns+∇
(
Φi,total

)
, (7.13)

whereΦi,total is given by Equation (7.12),̇~di,ns= d(~di,ns)/dt, and ki is a positive scalar.

In the absence of local minima in the trajectories of the robots, a coordinated chain

can be attracted within arbitrary small deviation from the segment by applying Equa-

tion (7.4) on the chain leader and Equation (7.13) on all other robots in the chain.

Proof: See Appendix A.18. ¤

7.10 Simulation

A computer simulation (using MATLAB) has been conducted to demonstrate the effec-

tiveness of the proposed formation and zoning control of a coordinated chain. A group of

ten robots, indexed from 1 to 10, were initially randomly placed on a plane with non-zero

velocity. The robots were organized in leader-follower pairs. Only the goal point, fixed

at (100,100), of the first robot was specified. Figure 7.16 shows the initial (randomly

selected) positions and velocities of each robot, while Table 7.1 lists the radii of the zon-
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ing scheme. The segment consists of a straight line connecting(−5,−5) and(100,100).

Each robot in the team is attracted the corresponding nearest point on the segment. The

repulsive zoning potential̂Ψ(di,i−1) was set to be 5/(di,i−1−1)2 for 1 < di,i−1 < 4, 5/9

for 4≤ di,i−1 < 13, and 0 elsewhere, while the attractive zoning potentialΨ̌(di,i−1) was

set to be 5/(13−di,i−1)2 for 10< di,i−1 < 13, 5/9 for 1< di,i−1≤ 10, and 0 elsewhere.

The potential trench function was set asΦ(di,ns) = 10
(

d2
i,ns+1

) 1
2 −10.

Table 7.1: Radii of zoning scheme.

ρ ρ̂ ρ ρ̌ ρ̄
1 4 10 13 30
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Robot
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Figure 7.16: The segment, goal point and initial positions/velocities of 10 robots (the
arrow denotes initial velocity).

Figure 6.5 illustrates the closed-loop system diagram of an individual robot~r i , i > 1. The

simulation was run at a sampling rate ofTs = 0.01 second for a period of 200 seconds.

For robotsr2 to r10, the positions of their leaders were sampled every 0.01 second. The
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trajectories of all robots were recorded every 0.01 second.
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Figure 7.17: Diagram of an individual robot~r i for MATLAB simulation.

Figure 7.18 shows the positions of the ten robots at the end of simulations, while Fig-

ure 7.19 shows the distance between a robot and its leader. It can be seen from these

two figures that, although initially a robot may fall in zone 2 or 4 of its leader, it was

eventually steered by the zoning potential and the potential trench to enter and reside in

the neutral zone, leading to the final result that the robots approached the segment as a

coordinated chain with the team leaderr1 attracted to the specified goal point.

Now we consider the scenario with obstacle avoidance. There are four static cylinder

shape obstacles centered at(30,25), (40,43), (84,86), (92,90) respectively while set-

tings for the segment, team goal and robots’ initial conditions are the same as previous

simulation. Similarly zoning scheme is utilized to prevent robots from collision with

ρ = 1 denoting the size of an obstacle and ˆρ = 2, ρ = 3 for the edges of repulsive zone.

Figure 7.20 shows the positions of the ten robots during the simulations and to highlight

the interactive behavior between robots and obstacles, the trajectories of robotsr1 to r4

are presented in Figure 7.21. From these figures, it is clear that robots reach the segment
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Figure 7.18: Positions of robots during the simulation.

while keep colliding with obstacles. Figure 7.22 shows the distance between a robot and

its leader. The same convergent behavior of the ten robots is observed in this case.
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Figure 7.19: Distance between each robot and its leader.
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Figure 7.20: Positions of robots during simulation with obstacle avoidance.
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Figure 7.21: Trajectories of robotsr1 to r4 near obstacles (for obstacles, only ˆρ andρ
depicted).
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Figure 7.22: Distance between each robot and its leader for the case with obstacle avoid-
ance.
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7.11 Conclusions

In this chapter, a framework where a team of robots are attracted to the nearest points on

the segment while preventing from collisions with multiple obstacles (static or dynamic)

is established. A mathematical framework is developed to analyze the characteristics of

motion of the nearest point on the segment. The transition of nearest point is revealed

and the incurred discontinuity is well handled by nonsmooth analysis. A novel obsta-

cle avoidance method based on the new concept of apparent obstacle, together with the

associated local minima recovery mechanism is proposed to cope with concave obsta-

cles and multiple moving obstacles. Comparison between apparent obstacle scheme and

other alternative solutions is discussed in detail and the advantages and benefits of our

method is addressed. An elaborated algorithm dedicated to seeking for the nearest point

on a segment in the presence of obstacles is presented. The special occasions of local

minima are discussed and the corresponding simple solutions are provided. Theoreti-

cal analysis and computer simulation have been done to show the effectiveness of this

framework.
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Chapter 8

Input-to-State Stability

In previous chapters, stability of multi-robot formation control based on the notions

of segment and artificial potential trench have been studied extensively. Separations

among robots which are managed by zoning potentials and the comprehensive multi-

robot formation control by attracting each robot to the nearest point on the segment with

obstacles avoidance also have been investigated.

In multi-robot system during formation, it is interesting to study behavior of a single

robot’s states in response to inputs or external disturbances. Specifically input-to-state

stability of formation control is to be addressed.

8.1 Introduction

The notion of input-to-state stability of multi-robot formation control was first proposed

in [84] to characterize the internal stability of leader-follower formations. Some results
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on formation input-to-state stability are presented in the paper [84]. However, all the

results are acquired based on the notion of formation graph. On the basis of segments

and queues, input-to-state stability of formation control is to be studied in this chapter.

Definition of input-to-state stability (ISS) already has been reviewed in Chapter 3. To

facilitate stability analysis, some key concepts and an important theorem on ISS have to

presented. The notions ofK∞-function andK -function are given below.

Definition 8.1.1 A functionγ : R≥0 → R≥0 is a K -function if it is continuous, strictly

increasing andγ(0) = 0; it is a K∞-function if it is aK -function and alsoγ(s)→ ∞

as s→ ∞; and it is positive definite function ifγ(s) > 0 for all s > 0, andγ(0) = 0. A

functionβ : R≥0×R≥0 → R≥0 is a K L -function if for each fixed t≥ 0 the function

β (·, t) is aK -function, and for each fixed s≥ 0 it is decreasing to zero as t→ ∞.

The following theorem establishes the relationship between the existence of a Lyapunov

function and the input-to-state stability.

Theorem 8.1.1 [79] Let D = {x ∈ Rn | ‖x‖ < r}, Dd = {d ∈ Rm | ‖d‖ < rd}, and

f ,g : D× [0,∞)→ Rn be piecewise continuous in t and locally Lipschitz in x. Let V:

D× [0,∞)→ R be a continuously differentiable function such that

γ1(‖x‖)≤V(t,x)≤ γ2(‖x‖),
‖x‖ ≥ ρ(‖d‖) > 0 ⇒ ∂V

∂ t
+

∂V
∂x

f (x, t)+
∂V
∂x

g(x, t)d≤−γ3(‖x‖), (8.1)

∀(x, t)∈D× [0,∞) whereγ1, γ2, γ3 andρ are classK functions. Then, the system given

by Equation (3.28) is locally input-to-state stable withχ = γ−1
1 ◦γ2◦ρ, k1 = γ−1

2 (γ1(r)),
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and k2 = ρ−1(min{k1,ρ(rd)}). In addition, if D= Rn, Dd = Rm, andγ1 is a classK∞

function, then the system is input-to-state stable withχ = γ−1
1 ◦ γ2◦ρ.

8.2 Input-to-State Stability Analysis

Generally speaking, there are two basic control objectives in the formation control. One

is to drive the robots to get the desired formation pattern. This is guaranteed to be

achieved due to the presence of the potential trench and the force may be calculated

as the negative gradient of the potential. The other is to keep desired relative distance

between each robot. This could be achieved by the attractive potential and the force can

be derived as the negative gradient of the attractive potentials affecting the robots.

Therefore, we can decompose queue formation control into two smaller questions. First,

robots are attracted to the corresponding queue by artificial potential trench method, that

is ”approaching the queue”. Second, robots in the same queue start formation along the

queue curve, while keeping certain distances between each robot in line with formation

specifications, i.e. ”keeping desirable distance”.

In Chapter 4, based on kinetic model of mobile robots we have demonstrated that a team

of robots can approach the assigned segments and form the desired geometric pattern in

pursuit of virtual goal points moving on the segments. As revealed by Theorem 5.4.1,

which is based on dynamic model of mobile robot, robots are asymptotically stabilized

on the corresponding nearest points on the segment and thus forms the queue under the

control of artificial potential trench. Furthermore, Theorem 7.9.1 states that robots are
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attractive with respect to the nearest points on the segment in the presence of obstacles.

Now we are going to perform input-to-state stability analysis based on a more generic

model of mobile robots.

Suppose that there is a group ofNtot robots, whereNtot is a finite number. The group

of robots shall follow a desired trajectory while maintaining certain formation. Let us

consider the group ofNrob,i robots in queuei. For the j-th robot in queuei, its dynamics

can be described by the following Linear-Time-Invariant (LTI) control system as

ẋi, j = Ai, jxi, j +Bi, jui, j , (8.2)

wherexi, j ∈Rn is the state vector,ui, j ∈Rm is the control input,Ai, j ∈Rn×n, Bi, j ∈Rn×m

and(Ai, j ,Bi, j) is controllable.

In the potential trench method, each robot belonging to certain queue will be attracted to

the nearest point on this queue. In general 3-D space, letz= gvi(x,y) denote the shape

of queuei in a formation, where the functiongvi(x,y) is continuously differentiable over

the range in which the queue exists, and have to pass through all the formation vertices.

In addition, every point on the curve must be at a different distance from the origin.

This ensures that for any pointqi, j in the 3-D (R3) space, there will be a pointqi, jns on

gvi(x,y) that is nearest toqi, j , while maintaining as close a distance from the origin as

possible. The pointqi, jns can be found by

qi, jns = arg min
qs1∈Qn

(‖qs1‖), (8.3)
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whereQn is the set of points on the queue that satisfies

arg min
qs∈gi

(lQi(qs)), (8.4)

and

lQi(qs) = ‖qs−qi, j‖. (8.5)

For every pair of(qi, j ,qi, jns), it associates an error vector that describes the deviation

from the desired point in the queue for the robot as

ei, jns = xi, j −xi, jns, (8.6)

wherexi, jns denotes the state vector of the desired point in the queue.

Let the control input be

ui, j =−Ki, j(xi, j −xi, jns)+αi, j , (8.7)

with Bi, jαi, j =−Ai, jxi, jns.

The error dynamics is then given by

ėi, jns = (Ai, j −Bi, jKi, j)ei, jns. (8.8)

As (Ai, j ,Bi, j) is a pair of controllable matrices, the eigenvalues of the matrix(Ai, j −

Bi, jKi, j) can be arbitrarily set. Suppose that all the robots belong to queuei has reached
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to its desired pointqi, jns, i.e., the state vector can be described byxi, jns. Without loss

of generality, let us assume that ini-th queue, thej-th robot is supposed to keep certain

distance from the( j−1)-th robot and the distance is defined bydi, j ∈ Rn. Accordingly,

the error vector that describes the deviation from the specification can be defined by

ei, j = xi,( j−1)ns−xi, jns−di, j . (8.9)

Its dynamics is given by

ėi, j = ẋi,( j−1)ns−Ai, jnsxi, jns−Bi, jnsui, jns. (8.10)

Consider the following feedback law

ui, jns = Ki, jns(xi,( j−1)ns−xi, jns−di, j)+βi, jns, (8.11)

with Bi, jnsβi, jns =−Ai, jns(xi,( j−1)ns−di, j).

Thus, the closed-loop dynamics becomes

ėi, j = (Ai, jns−Bi, jnsKi, jns)ei, j + ẋi,( j−1)ns, (8.12)

and

ẋi, jns =−(Ai, jns−Bi, jnsKi, jns)ei, j . (8.13)
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Suppose that the( j−1)-th robot is to follow the( j−2)-th robot. Define the error by

ei, j−1 = xi,( j−2)ns−xi,( j−1)ns−di, j−1. (8.14)

Similarly considering the feedback law

ui,( j−1)ns = Ki,( j−1)ns(xi,( j−2)ns−xi,( j−1)ns−di, j−1)+βi,( j−1)ns, (8.15)

with Bi,( j−1)nsβi,( j−1)ns =−Ai,( j−1)ns(xi,( j−2)ns−di, j−1), we further have

ėi, j−1 = (Ai,( j−1)ns−Bi,( j−1)nsKi,( j−1)ns)ei, j−1 + ẋi,( j−2)ns, (8.16)

and

ẋi,( j−1)ns =−(Ai,( j−1)ns−Bi,( j−1)nsKi,( j−1)ns)ei, j−1. (8.17)

From Equation (8.17), Equation (8.12) can be re-written as

ėi, j = (Ai, jns−Bi, jnsKi, jns)ei, j +∆i, j , (8.18)

with ∆i, j = −(Ai,( j−1)ns−Bi,( j−1)nsKi,( j−1)ns)ei, j−1, which can be considered as a per-

turbed system with∆i, j being external disturbances. The system described by Equation

(8.18) is a nonvanishing perturbation system. And we can treat∆i, j as an input for the

Equation (8.18).

As (Ai, jns,Bi, jns) is a pair of controllable matrices, the eigenvalue of the matrix(Ai, jns−

Bi, jnsKi, jns) can be arbitrarily set. For the( j−1)← j (target←follower) pair whose dy-
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namic is given by Equation (8.18), the stability result is given in the following theorem.

Theorem 8.2.1 Consider the target-follower system described by Equation (8.18). If

(Ai, jns,Bi, jns) is a pair of controllable matrices then the system is input-to-state stable

with respect to∆i, j .

Proof: See Appendix A.19. ¤

8.3 An Example

Now based on Theorem 8.2.1 which is discussed in the previous section, an example is

given to show how the formation error of any robot on the segment can be affect by the

team leader, namely the first robot for a given segment. For the first robot in thei-th

queue, it is supposed to keep a certain distance to a fixed point rather than a robot. Thus,

the error dynamics is given by

ėi,1 = (Ai,1ns−Bi,1nsKi,1ns)ei,1. (8.19)

Consider the Lyapunov function candidate

Vi,1 = eT
i,1Pi,1ei,1. (8.20)

Its time-derivative along Equation (8.19) is

V̇i,1 =−eT
i,1Qi,1ei,1≤−λmin(Qi,1)‖ei,1‖2. (8.21)
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Following the similar analysis, we can obtain

‖ei,1(t)‖ ≤
√

λmax(Pi,1)
λmin(Pi,1)

‖ei,1(t0)‖e
− λmin(Qi,1)

2λmax(Pi,1) (t−t0)
. (8.22)

Thus,

‖ei,1(t)‖ ≤
√

λmax(Pi,1)
λmin(Pi,1)

‖ei,1(t0)‖. (8.23)

Therefore, we can conclude thatei,1(t) is uniformly bounded given any finite initial

conditionei,1(t0).

For the second robot in thei-th queue, from Equation (74), we can conclude that

‖ei,2(t)‖ ≤
√

λmax(Pi,2)
λmin(Pi,2)

‖ei,2(t0)‖e
− λmin(Qi,2)

2λmax(Pi,2) (1−θi,2)(t−t0)

+2
λ

3
2

max(Pi,2)µi,( j−1)

θi,2λmin(Qi,2)λ
1
2

min(Pi,2)
sup
τ≥t0

‖ei,1(τ)‖, (8.24)

i.e.,

‖ei,2(t)‖ ≤
√

λmax(Pi,2)
λmin(Pi,2)

‖ei,2(t0)‖

+2
λ

3
2

max(Pi,2)µi,( j−1)

θi,2λmin(Qi,2)λ
1
2

min(Pi,2)

√
λmax(Pi,1)
λmin(Pi,1)

‖ei,1(t0)‖, (8.25)
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and

‖ei, j(t)‖ ≤
√

λmax(Pi, j)
λmin(Pi, j)

‖ei, j(t0)‖e
− λmin(Qi, j )

2λmax(Pi, j )
(1−θi, j )(t−t0)

+2
λ

3
2

max(Pi, j)µi,1

θi, jλmin(Qi, j)λ
1
2

min(Pi, j)

√
λmax(Pi, j−1)
λmin(Pi, j−1)

‖ei, j−1(t0)‖

+
j−1

∏
k= j

[
2

λ
3
2

max(Pi,k)µi,(k−1)

θi,kλmin(Qi,k)λ
1
2

min(Pi,k)

]√λmax(Pi, j−2)
λmin(Pi, j−2)

‖ei, j−2(t0)‖+ ...

+
2

∏
k= j

[
2

λ
3
2

max(Pi,k)µi,(k−1)

θi,kλmin(Qi,k)λ
1
2

min(Pi,k)

]√λmax(Pi,1)
λmin(Pi,1)

‖ei,1(t0)‖. (8.26)

8.4 Additional Results

In fact, based on Theorem 8.2.1, additional results can be obtained. Boundness of for-

mation error is revealed by the following proposition.

Proposition 8.4.1 Queue formation error for any robot in a queue with finite length

is bounded if the initial formation errors of all the robots ahead and that of itself are

bounded. ¤

Proof: See Appendix A.20. ¤

Formation stability of each queue is worth investigating. Here, we treat each queue

formation as an independent interconnected system. Suppose a team ofm robots for the

ith queue are all attracted to respective nearest points on the queue curve, and is to form
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a specified pattern. This interconnected system can be represented as follows.

ėi,1 = (Ai,1ns−Bi,1nsKi,1ns)ei,1,

ėi,2 = (Ai,2ns−Bi,2nsKi,2ns)ei,2− (Ai,1ns−Bi,1nsKi,1ns)ei,1,

...

ėi,m = (Ai,mns−Bi,mnsKi,mns)ei,m− (Ai,(m−1)ns−Bi,(m−1)nsKi,(m−1)ns)ei,(m−1),

(8.27)

wherem denotes the length of theith queue, i.e., the maximum number of robots of

the queue. For convenience of expression, lete1 denoteei,1 and so on for the rest in

Equation (8.27). Then Equation (8.27) can be rewritten into the following form.

ė1 = (A1−B1K1)e1,

ė2 = (A2−B2K2)e2− (A1−B1K1)e1,

...

ėm = (Am−BmKm)em− (A(m−1)−B(m−1)K(m−1))e(m−1). (8.28)

Theorem 8.4.1 Consider the interconnected system of a queue formation described by

Equation (8.28), the queue formation is globally uniformly asymptotically stable.

Proof: See Appendix A.21. ¤

In real implementation of formation control, each robot is subject to malfunction or
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damaged due to internal failure or external forces. Therefore for such cases, the whole

team may lose some robot members.

Proposition 8.4.2 A Queue formation with finite length given by (8.28) remains glob-

ally uniformly asymptotically stable under structure changes, i.e., when any one or more

than one robots in queue quit or external robots join in. ¤

Proof: See Appendix A.22. ¤

Remark 8.4.1 Proposition 8.4.2 indicates that queue formation remains globally uni-

formly asymptotically stable when communication links among robots in the same queue

intermittently break down.

If the communication links among the robots in the same queue intermittently break

down, the follower robot on the side of the broken communication link will lose the

information of its leader, the one before it. Thus, all the robots behind this one will be

affected. All those robots losing information of their leaders can always be identified by

their own sensors.

A simple way to solve this trouble is to set the target of the whole queue to those robots

behind the broken communication links until the communication links resume. When the

communication links recover, the whole queue formation can be viewed as combination

of discrete robot teams on the same queue and it is globally uniformly asymptotically

stable as shown in the above proposition.
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8.5 Conclusions

In this chapter, the stability of the formation control of multiple robots using artificial

potential trench method and queue formation method is investigated. It is shown in this

chapter that the closed-loop system of each robot to its leader’s initial formation error

be Input-to-State stable and each queue formation is global uniformly asymptotically

stable. Furthermore, queue formation is robust when subject to structure changes or

intermittently communication link breakdown.
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Chapter 9

Conclusions

The focus of this dissertation is on the design of formation control for multi-robot sys-

tems based on the framework of queue and artificial potential trench method. Emphases

are placed on multiple robot formation control laws, separation management during

formation, collision prevention and obstacle avoidance, and stability analysis for the

synthesized formation controls.

9.1 Contributions of this Dissertation

Generally speaking, this thesis addresses the following topics: (1) comparative inves-

tigation of two existing nonlinear feedback controls and analysis on a novel improved

robust control for mobile robots; (2) real implementation and formation control exper-

iments for a multi-robot system; (3) extracting explicit control laws and performing

stability analysis which are missing from the original framework of queue and artifi-

cial potential trench method; (4) zoning potentials for distance maintaining; (5) stability
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analysis on attracting robots to the nearest points on a segment and the proposal of an

advanced obstacle avoidance scheme; (6) input-to-state stability.

First, we review the stability issues of nonlinear feedback control for differential mobile

robots. A novel perspective on how a family of nonlinear feedback controls can be

derived from Lyapunov function is presented. Then we extract the qualitative similar

characteristics of two continuous nonlinear feedback controls. More importantly, for the

first time, we reveal the robust control problem for a simple nonlinear tracking control

and solve it through stability analysis. Stable zone for a given gain set is identified and

guidelines for designing proper parameters are discussed. Due to the fruitful research,

an improved robust controller is proposed. Apart from robustness, the proposed new

method is capable of better performance such as faster response. This is revealed by

theoretical analysis and verified through computer simulation.

Second, real implementation and formation control experiments for a multi-robot sys-

tem are conducted. We integrate a series of hardware such as CCD color camera, frame

grabber, radio transmission modules, other subsystems and dedicated application pro-

grammes into a setup, which provides the platform for multiple robots formation control.

Noise analysis on the vision subsystem is accomplished. Finally three-robot triangle and

four-robot square pattern formations of MRKIT robots are successfully demonstrated to

show the effectiveness of theoretical analysis.

Third, based on the framework [29] of queue and artificial potential trench, we extract

explicit multi-robot formation control laws and accomplish stability analysis which are

not addressed in the original work [29]. Benefits and advantages of trench potentials
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(or speed-nulling potentials) are summarized. A refined concept of artificial potential

trench, which allows admissible potential functions to be nonsmooth, is defined for the

first time. Various ways of constructing admissible potential trench functions are pro-

posed. Stability of formation control based on the method of artificial potential trench is

investigated through a solid mathematical nonsmooth analysis. We impose constraints

on artificial potential trench to synthesize a control law that stabilizes a team of robots on

a given formation. It is done without considering specific requirements on the distance

between any two robots.

Fourth, we presented a complete stability of formation control for a team of robots op-

erating as a coordinated chain, namely a group of robots organized in leader-follower

pairs. Maximum and minimum separation constraints are imposed on a robot with re-

spect to its leader. New stable controls are synthesized based on the notions of artificial

potential trench. The introduction of the concept of zoning scheme, together with the

associated zoning potentials, ensures that a robot maintains a certain separation from its

leader while forming a formation. Computer simulation is conducted to demonstrate the

effectiveness of this approach on stable formation and zoning control. These results pro-

vide a novel framework, which can analyze the stability of multi-robot formation based

on the notion of artificial potential trench. While the notion of artificial potential trench

provides scalability in multi-robot formation, the controls presented in this thesis ensure

that such scalable formations are stable even under the constraint of coordination.

Fifth, we investigate a more generic formation control, which attracts a team of robots

to the corresponding nearest points on a segment with obstacle avoidance taken into
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account. A framework is developed to analyze mathematical characteristics of the mo-

tions of the nearest point on a segment. Phenomenon of nearest points’ transition is

revealed and the incurred discontinuity is well handled by nonsmooth analysis. We

propose a novel obstacle avoidance framework based on the new concept of apparent

obstacle scheme and the associated local minima recovery scheme. This new method

can cope with concave obstacles and multiple moving obstacles. Comparison between

the apparent obstacle avoidance method and other alternative solutions is presented and

the advantages of our method are summarized. A detailed algorithm searching for the

nearest point on a segment with the presence of obstacles is presented. The inherent lo-

cal minima problem of potential fields has been almost avoided effectively in our work.

The special cases of local minima and the corresponding simple solutions are discussed

in detail. Theoretical analysis and computer simulation are carried out to show the ef-

fectiveness of this framework.

Finally, stability of the formation control of multiple robots using artificial potential

trench method and queue formation method is investigated in a more generic form. It is

shown that the closed-loop system of each robot is input-to-state stable to its leader’s ini-

tial formation error and each queue formation is globally uniformly asymptotical stable.

Furthermore, queue formation is robust when subject to structural changes or intermit-

tent communication link breakdown.
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9.2 Directions of Future Work

From a novel perspective, we present a quick review on the stability issues of nonlinear

feedback control for differential mobile robots through Lyapunov function in Chapter

4. One interesting point worth noting is that a family of nonlinear control laws can

be derived from a generic Lyapunov function. Another worthwhile standpoint is that

these control laws may essentially have similar characteristics in common as we have

demonstrated on two similar nonlinear controls. More comparative quantitative analysis

on such nonlinear controls seems promising to provide interest for further research work,

which may facilitate real implementations and evaluation of controller performance.

The notion of direction of attraction proposed in this thesis makes it possible for a robot

to approach the segment without a pre-assigned goal point. Furthermore this new idea

can usher a team of robots to reach a segment in a coordinated manner without the help

of other methods such as virtual structure or virtual leaders. Directions of attraction

for each robot can be varied if necessary to enhance the flexibilities or for the pur-

pose of overcoming possible local minima. However, we do not address in detail the

consolidated framework for obstacle avoidance, which takes into account obstacles and

separations among robots. The extend, to which this method can cope with complicated

situations of obstacle avoidance, remains unknown. Investigation on this aspect may

lead to fruitful results of more flexible formation control scheme.

In obstacle avoidance and separation management via zoning potentials, the overall po-

tentials applied on a single robot do not consider the robot’s locomotion constraints,
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such as maximum acceleration capabilities or maximum allowable velocity. As typical

for other potential field methods, study on such constraints and its impact on perfor-

mance of the formation control remains challenging. We also note that for practical

implementations, the issue of boundedness of the potential functions used in the pro-

posed controls still needs to be resolved.

Most of the works presented in this thesis focus on the stability and zoning control

of the formation-forming process with or without obstacles. A logical extension is to

investigate the stability and robustness of a formation when it is in pursuit of a moving

goal point in complicated dynamic environments. This includes studying the ability

of the team to maintain formation while avoiding obstacles (static or dynamic) and to

reject disturbance experienced by the individual robots. For further research along this

direction, concepts and techniques associated with the subject of vehicle-platooning may

prove to be useful.

Based on the new concept of apparent obstacle scheme, and the associated local minima

recovery scheme, a novel obstacle avoidance framework is proposed, which can effec-

tively cope with concave obstacles and multiple moving obstacles without collisions.

However, there is a prerequisite; the boundary of an obstacle has to be identified before

the apparent obstacle scheme can be performed. This condition may seem to be too

strict in the complicated unconstructed dynamic environments, even though acquisition

of the obstacle’s boundary information through team-wide sensor network or coordina-

tion is promising and feasible. Sometimes global information on obstacles’ boundary

seems unnecessary as far as sensor’s detection capabilities and local obstacle avoidance
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are concerned. Discussion on this issue has been addressed in Chapter 7. Moreover,

another problem may arise when the apparent obstacle avoidance scheme is applied to

constrained environments where global information of obstacles’ boundary is unavail-

able or difficult to obtain. One example is shown in Figure 9.1 where a long narrow

corridor is formed by two walls; the boundary information of such obstacles may be

inaccessible to robots’ on-board sensors. The failure of the apparent obstacle scheme

Narrow corridor

R ob ot

W al l s
T h is  s ide  of  b ou n dary  (of  wal l )  
in f orm at ion  m ay  b e  u n av ail ab l e  

T h is  s ide  of  b ou n dary  (of  wal l )  
in f orm at ion  m ay  b e  u n av ail ab l e  

Figure 9.1: Long narrow corridors: an example of typical indoors environment.

to obtain obstacles’ boundary information should not impede the robot in Figure 9.1 to

pass through the narrow corridor if the separation of walls is wide enough. An impor-

tant question has to be answered. What kind of improvements can be made to make

the apparent obstacle scheme to work properly even with partial walls’ boundary infor-

mation? An improvement of apparent obstacle scheme by relaxing the prerequisite on

obstacles’ boundary information seems appealing. It may lessen the requirements on

detecting obstacles’ boundary and separations, not to mention the obvious benefits of
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passing through a narrow corridor and easing the demands for computation capabilities.
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Appendix

A.1 Proof of Proposition 4.1.1

The proof for this proposition is straightforward by constructing a Lyapunov function

candidate as

V =
1
2

r2 +
1
2

φ2. (1)

Simplifying Equation (4.2) leads to




ṙ

φ̇


 =




−g1(r,φ)cos(φ)

1
r g1(r,φ)+g2(r,φ)







r

φ


+




0

−g1(r,φ)sin(φ)




=




−rg1(r,φ)cos(φ)

g1(r,φ)sin(φ)+φg2(r,φ)


+




0

−g1(r,φ)sin(φ)




=



−rg1(r,φ)cos(φ)

φg2(r,φ)


 . (2)
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From Equations (2) and (4.3), the first time derivative ofV can be calculated readily as

V̇ = r ṙ +φφ̇

= −r2g1(r,φ)cos(φ)+φ2g2(r,φ)

= −K1φ2qrn+2(cos(φ))2p+2−K2φ2s+2≤ 0, (3)

thus completes the proof.

A.2 Proof of Proposition 4.1.2

Obviously, if we letn = p = q = s = 0, then Equation (4.4) can be reduced into the

simplest form as shown below:

v = K1r cos(φ),

ω = −K1sin(φ)cos(φ)−K2φ ,

which turns out to be Equation (3.10) that is first proposed in [53].

However, it is noted that control in Equation (3.10) is actually not the ”simplest”. We can

adopt another family of possible functionsg1(r,φ) andg2(r,φ) as: g1(r,φ) = K1rnφ2q,

andg2(r,φ) = −K2φ2s, wheren = 0,1,2, · · · , p = 0,1,2, · · · ands= 0,1,2, · · · . There-
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fore a more simplified control law can be found as follows:

v = K1r,

ω = −K1sin(φ)−K2φ ,

which is identical to the control law presented in Equation (3.9) by simply lettingn =

q = s= 0.

A.3 Proof of Proposition 4.2.2

To complete the proof of this proposition, we need to transform the solutionr(t) of the

closed-loop system into the following form:

r(t) = r0e−K1
∫ t
0 cos2(φ0e−K2s)ds

= r0e−K1
∫ t
0

1+cos(2φ0e−K2s)
2 ds

= r0e−
K1
2 te−K1

∫ t
0

cos(2φ0e−K2s)
2 ds

= r0e
−K1

2 t+ K1
2K2

∫ 2φ(t)
2φ0

cos(u)
u du

. (4)

We assume that there are two different sets of nonzero gains(K1,K2) and(J1,J2) that

meetsλ = K1
K2

= J1
J2

. Based on the results in Equation (4), the trajectory generated by the

gain set(K1,K2) will be solely determined byr1(t) andφ1(t), namely the solutions of
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the closed-loop system, as shown below:

r1(t) = r0e
−K1

2 t+ λ
2

∫ 2φ1(t)
2φ0

cos(u)
u du

,

φ1(t) = φ0e−K2t .

Similarly, the solutionsr2(t) andφ2(t) of the same closed-loop system corresponding to

another gain set(J1,J2) can be derived as

r2(τ) = r0e
− J1

2 τ+ λ
2

∫ 2φ2(τ)
2φ0

cos(u)
u du

,

φ2(τ) = φ0e−J2τ ,

whereτ denotes time in domain[0,+∞). For ∀t ∈ [0,+∞), we can always find aτ ∈

[0,+∞) by takingτ = K2
J2

t . Then it follows thatφ2(τ) = φ0e−J2τ = φ0e−K2t = φ1(t).

On the other hand, since we have

J1

2
τ =

J1

2
· K2

J2
t =

K1

2
· K2

K2
t =

K1

2
t,

then we arrive at the conclusion thatr2(τ) = r1(t). Thus the proof is completed.
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A.4 Proof of Proposition 4.3.2

It is noted that the equation

φ̇ =−K2φ −K4sin(2φ)

has a unique solution on time interval[0, t1) for any t1 > 0 becausef (φ) = −K2φ −

K4sin(2φ) is locally Lipschitz. Letp(t) = φ2(t), then

ṗ(t) = 2φφ̇

= −2K2φ2−2K4φ sin(2φ)

≤ −2K2φ2

= −2K2p(t).

Letq(t) be the solution of ˙q(t)=−2K2q(t) with q(0)= φ(0), given byq(t)= φ2(0)e−2K2t .

According to the comparison principle, the solutionφ(t) is defined for allt ≥ 0 and sat-

isfies

|φ(t)|=
√

p(t)≤ |φ(0)|e−K2t ,∀t ≥ 0,

thus the proof is completed.
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A.5 Proof of Proposition 5.2.1

Since~̈r i =~ui and~di,g =~r i,g−~r i , we have~̈di,g =−ki ~̇di,g−Φ′
i,gd̂i,g, which can be expressed

as

d
dt




~di,g

~̇di,g


 =




~̇di,g

−ki ~̇di,g−Φ′
i,gd̂i,g


 = f (~di,g, ~̇di,g). (5)

Equation (40) is time-invariant, with the origin~di,g = 0 being the equilibrium point since

for an admissibleΦi,g, 0∈ ∂Φ(0).

We choose the following Lyapunov function candidate (which is time-independent, Lip-

schitz and regular)

Vi = Vi(~di,g, ~̇di,g) =
1
2
~̇dT

i,g
~̇di,g +Φ(di,g) . (6)

By the Generalized Gradient Formula [14], the generalized gradient ofΦ(di,g) with

respect to~di,g is

∂Φ(~di,g) = co{lim ∇Φ(~d) | ~d→ ~di,g, ~d /∈Ω f }, (7)

with Ω f being the set of Lebesgue measure zero where the gradient ofΦ(~di,g) is not

defined. Furthermore the relationship

dΦ(~di,g)

d(~di,g)
=

dΦ(di,g)
d(di,g)

· d(di,g)

d(~di,g)
= Φ′

i,gd̂i,g,
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reduces Equation (42) to∂Φ(~di,g) = ∂Φd̂i,g. By the Chain Rule Theorem [77], we have

d
dt

Vi(~di,g, ~̇di,g) ∈a.e. ˙̃V i(~di,g, ~̇di,g), (8)

where ˙̃V i(~di,g, ~̇di,g) =
⋂

ξ∈∂Vi(~di,g,~̇di,g)
ξ TK[ f ](~di,g, ~̇di,g), with K being a map (as defined

and discussed in detail in [70]) having, for this case, the specific form

K[ f ](~di,g, ~̇di,g) =




~̇di,g

−ki ~̇di,g−∂Φ(di,g)d̂i,g


 . (9)

For brevity, we write˙̃V i(~di,g, ~̇di,g) simply as ˙̃V i in the sequel. From Equation (13), we

have

∂Vi(~di,g, ~̇di,g) =




∂Φ(di,g)d̂i,g

~̇di,g


 . (10)

Substituting Equations (45) and (44) into Equation (43) yields˙̃V i =−ki

∥∥∥~̇di,g

∥∥∥
2
, which is

negative semidefinite. By the nonsmooth version of LaSalle’s Theorem [77], the largest

invariant set isE = cl
(
{(~di,g, ~̇di,g)|0∈ ˙̃V i}

)
= (~0,~0), which implies that the origin is

asymptotically stable.

A.6 Proof of Lemma 5.2.1

1) Sincef (x) is essentially bounded, we can assume that there exists a positive constant

M such that| f (x)| ≤M for anyx /∈ Ω f , whereΩ f denotes any set of measure zero on
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which f (x) is unbounded. For any two pointsx andy in the domainR, we obtainF(y)−

F(x) =
∫ y

x f (s)ds≤M|y−x|. It means thatF is Lipschitzian on the whole domain.

By definition, we can calculate the generalized directional derivative (represented by

symbolFo(x;v)) and the usual one-sided directional derivative (represented by symbol

F ′(x;v)) of F atx in the direction ofv as

Fo(x;v) = lim
y→ x

t ↓ 0

sup
F(y+ tv)−F(y)

t

= lim
t↓0

∫ tv
0 f (s)ds

t
,

and

F ′(x;v) = lim
t↓0

F(x+ tv)−F(x)
t

= lim
t↓0

∫ tv
0 f (s)ds

t

respectively. It is shown above thatFo(x;v) = F ′(x;v) holds at any pointx in the domain.

Thus we can draw the conclusion thatF is regular.

2) A convenient way to complete the proof is to invoke the Generalized Gradient For-

mula Theorem [14]. Forδ -neighborhood of pointx, by this theorem, we can calculate

the gradient ofF(x) as

∂F(x) = co{lim∇F(xi) | xi → x,xi ∈ Br , andxi /∈Ω f },
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whereBr = [x−δ ,x+δ ] andΩ f denotes set of measure zero where the gradient ofF(x)

is not defined. Asf−(x) and f +(x) are the essential supremum and essential infimum

of f atx, then we have

∂F(x) = [ f−(x), f +(x)].

If F is strictly differentiable at pointx, it means thatf−(x) = f +(x) = f (x). Therefore

∂F(x) is reduced to∂F(x) = { f (x)}.

A.7 Proof of Lemma 5.2.2

1) It is obvious thatF(0) =
∫ 0

0 f (s)ds= 0. For an arbitrary small positive scalarε,

we investigate the integral off (x) on the interval[0,ε]. If there are no points in

this interval such that the conditionx f(x) > 0 fails, then we reach the conclusion that

the integralF(ε) =
∫ ε

0 f (s)ds> 0. If the interval contains points where the condi-

tion x f(x) > 0 does not hold, then without loss of generality, we can assume that

there areN points denoted by 0< x1 < x2 < · · · < xN−1 < xN < ε where the condition

x f(x) > 0 is not met. The whole interval[0,ε] is separated intoN+1 smaller intervals

as[0,x1),(x1,x2), · · · ,(xN−1,xN),(xN,ε). Then on each interval, the integral off (x) ex-

ists and is positive. Consequently the sum of all the integral of theseN + 1 intervals,

namely,F(ε) is greater than zero. In the case whenε < 0, through a similar method, the

same conclusion holds. Moreover, we can prove thatF(x) is monotonically increasing

on domain[0,+∞) and monotonically decreasing on domain(−∞,0]. Let us investigate

the interval[x,x+ ε], wherex≥ 0 andε is an arbitrary small positive scalar. Through
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similar procedures, we haveF(x+ ε) > F(x) thus F(x) is monotonically increasing

on domain[0,+∞). Similarly, we can prove thatF(x) is monotonically decreasing on

domain(−∞,0]. To sum up,F is positive definite.

2) From the proof procedures of Lemma 5.2.1, it is shown that at the origin, we have

∂F(0) = [ f−(0), f +(0)]. Since we havef (x) > 0 for x > 0 and f (x) < 0 for x < 0 from

the given conditionx f(x) > 0 for x 6= 0, then there must existf−(0)≤ 0 and f +(0)≥ 0.

Hence zero is contained in the set∂F(0).

A.8 Proof of Lemma 5.2.3

Here, we will apply a property of convex functions as follows:

Proposition A.8.1 A differentiable function of one variable is convex on an interval if

and only if its derivative is monotonically non-decreasing on that interval.

Suppose thatf (0) < 0, then there must exist an non-trivial interval[0,ε] such that on this

interval conditionf (x) < 0 strictly holds due to continuity off (from given condition

that F(x) is continuously differentiable.). So the integral off on this interval is less

than zero. Since the integral off on this interval can be represented by
∫ ε

0 f (s)ds=

F(ε)−F(0) = F(ε) becauseF(0) = 0. Therefore, we haveF(ε) < 0 which contradicts

the given condition thatF is positive definite. Similarly, we can prove thatf (0) > 0

will contradicts the positive definite condition too. Finally, we havef (0) = 0. Thus the

proof is completed .
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A.9 More Examples of Potential Trench Functions

Since we can decompose vector~r into scalar components in Cartesian coordinates, then

we can simplify the error dynamics into a differential equation which is commonly

referred to as Lienard’s Equation:

ẍ+k(x)ẋ+φ(x) = 0, (11)

which has been investigated for many years. In 1973, D. C. Benson published some

fundamental results [5] on the solution of this equation in the case of positive damping.

Some of these results can be used in this thesis. Two concepts have to be addressed

before presenting the relevant material. Both of the concepts and Corollary A.9.1 are

from Benson’s paper [5]. Regarding the Lienard’s Equation, we define two potential

functions as

K(x) =
∫ x

0
k(ξ )dξ

Φ(x) =
∫ x

0
φ(ξ )dξ

Definition A.9.1 (Oscillation at+∞:) A solution of Equation (11) is said to oscillate at

+∞ if it has a sequence of zeros tending to+∞ and if it is not identically zero on any

interval. ¤

Definition A.9.2 (Critical Damping:) The Equation (11) is said to has critical damping

at +∞ if
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(i) there exists a nonoscillatory (at+∞) solution to Equation (11), and

(ii) all solutions oscillate at+∞ provided that existη > 1 andε > 0 such that

Φ1(x)
K2

1(x)
≥ η

Φ(x)
K2(x)

for all x such that0 < |x|< ε. ¤

Corollary A.9.1 For Equation(11), let k(x) > 0 and xφ(x) > 0 for x 6= 0, then the zero

solution will be critically damped at+∞ if
∫ 1

0
1

K(x)dx= ∞ andΦ(x) = 1
8K2(x).

The above corollary is useful because it reveals the information on the solutions of

Equation (11) and also presents a hint to construct potential trench functions.

Example A.9.1 Let k(x) =C, where C is a positive scalar. Obviously we can obtain the

following results:

K(x) =
∫ x

0
k(ξ )dξ = Cx,

∫ 1

0+

1
K(x)

=
1
C

lnx
∣∣1
0+ = ∞.

Accordingly the trench potential function which leads to critical damping can be calcu-

lated as

Φ(x) =
1
8

K2(x) =
C2

8
x2,

φ(x) =
C2

4
x.

In fact, this example is the simplest case because the corresponding differential equation

can be solved readily and is very common in control engineering. It is observed that

Φ(x) = α
2 x2 is a commonly used attractive potential [26], whereα is a positive scalar.
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¤

Example A.9.2 If let k(x) = α|x|√
x2+a2 ,whereα > 0, a > 0 are all positive scalars and it

means K(x) =
∫ x

0 k(ξ )dξ = α ·sgn(x)(
√

x2 +a2−a). It is easy to check that
∫ 1

0+
1

K(x) =

∞ as shown by the following equation.

∫ 1

0+

1
K(x)

dx=

[
1
α

ln |x+
√

x2 +a2|−
√

x2 +a2 +a
αx

]1

0+

= ∞.

According we can invoke the Corollary A.9.1, and derive the potential trench function

as

Φ(x) =
1
8

K2(x) =
α2

8
(
√

x2 +a2−a)2.

And the correspondingφ can be derived as

φ(x) =
1
4

K(x)k(x) =
α2x3

4(x2 +a2 +a
√

x2 +a2)
.

¤

Example A.9.3 Let us consider the saturated potential trench functions taking the same

form as given by Example A.9.2. Without loss of generality, we assume that k(x) becomes

saturated when|x|> 1 as shown below:

k(x) =





α|x|√
x2+a2 |x| ≤ 1

α√
a2+1

|x|> 1
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Readily we can calculate the expression of K(x) as

K(x) =





α(x+a2)√
a2+1

−aα x > 1

α(
√

x2 +a2−a) |x| ≤ 1
α(x−a2)√

a2+1
+aα x <−1

According to the relationship thatφ(x) = 1
4K(x)k(x), we obtain the expression ofφ(x)

which leads to critical damping as shown be the following equation.

φ(x) =





1
4[α2(x+a2)

a2+1 − aα2√
a2+1

] x > 1

α2x3

4(x2+a2+a
√

x2+a2)
|x| ≤ 1

1
4[α2(x−a2)

a2+1 + aα2√
a2+1

] x <−1

¤

The concept of critical damping and Corollary A.9.1 is important in the sense that for

given trench potential function, the response is of practical implications. For some cases

overshooting (under-damping) is preferred and in some applications over-damping is

required. For the look-ahead control of mobile robots, overshooting is not preferred. To

cope with it, we can adjust the damping term to be critical damping or under-damping.

Take the damping term in Example A.9.2 for example, if we let

φ1(x) =
β 2x3

4(x2 +a2 +a
√

x2 +a2)
,

whereβ > α, obviously it will lead the zero solution to be over-damping.
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A.10 Proof of Theorem 5.3.1

In order to derive the error dynamics of~r i , combining the double integrator dynamics

for~r i and control law in Equation (5.2) with the knowledge~di,g =~r i,g−~r i yields,

~̈r i = ~̈r i,g +K′i,g~̇di,g +Φ′
i,gd̂i,g,

~̈di,g = −K′i,g~̇di,g−Φ′
i,gd̂i,g. (12)

Note that the error dynamics described by Equation (12) is time-invariant, which implies

that LaSalle’s Theorem is applicable. Also it should be noted that the origin~di,g = 0 is

the equilibrium of the error dynamics equation in thatΦ′
i,g = 0 according to the definition

of potential trench function.

First, we investigate the smooth case whenΦ(di,g) is continuously differentiable. For

this dynamics equation, we can construct the Lyapunov function candidate as

Vi = Vi(~di,g, ~̇di,g) =
1
2
~̇dT

i,g
~̇di,g +Φ(di,g). (13)

One can obtain the derivative of the scalardi,g with respect to time through the following

steps:

d
dt

d2
i,g =

d
dt

~dT
i,g

~di,g,

2di,gḋi,g = ~̇dT
i,g

~di,g + ~dT
i,g

~̇di,g,

ḋi,g = ~̇d
T

i,gd̂i,g, (14)
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recalling that the transpose of a scalar is equal to itself. Therefore, the time derivative

of the Lyapunov function can be calculated as

V̇i = ~̇dT
i,g

~̈di,g +Φ′
i,gḋi,g

= ~̇dT
i,g

(
~̈di,g +Φ′

i,gd̂i,g

)
. (15)

Now substituting Equation (12) into Equation (15) yields

V̇i =−K′i,g~̇d
T
i,g

~̇di,g =−K′i,g
∥∥∥~̇di,g

∥∥∥
2
≤ 0, (16)

which shows thaṫVi is negative semidefinite and is zero on the set where~̇d =~0. By

Equation (12) and conclusions from Lemma 5.2.2 or 5.2.3, the system cannot remain

in this set except at~d =~0. Therefore, by LaSalle’s Theorem,~d tends to zero and the

system is asymptotically stable.

Second, we deal with the nonsmooth case; namelyΦ(di,g) is not continuously differen-

tiable. It is known thatΦ(di,g) is differentiable almost everywhere. We rewrite Equation

(12) into the following form.

d
dt




~di,g

~̇di,g


 =




~̇di,g

−K′i,g~̇di,g−Φ′
i,gd̂i,g


 = f (~di,g, ~̇di,g). (17)

Again we construct the Lyapunov function candidateVi given by Equation (13) and it is
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noted thatVi is time-independent, Lipschitz and regular asΦ(di,g) is regular.

Note thatdi,g = di,g(d̂i,gd̂T
i,g) = ~di,gd̂T

i,g; henceΦ(di,g) is in fact a function of~di,g and for

brevity of notation we regard thatΦ(di,g) andΦ(~di,g) are exchangeable in this thesis.

Moreover, by Generalized Gradient Formula [14], we are able to calculate the general-

ized gradient ofΦ(di,g) with respect to~di,g as,

∂Φ(~di,g) = co{lim∇Φ(~d) | ~d→ ~di,g, ~d /∈Ω f }, (18)

whereΩ f is the set of measure zero where the gradient ofΦ(~di,g) fails to be defined.

Furthermore we have the following relationship

dΦ(~di,g)

d(~di,g)
=

dΦ(di,g)
d(di,g)

· d(di,g)

d(~di,g)
= Φ′

i,gd̂i,g,

which leads Equation (42) to being simplified as

∂Φ(~di,g) = ∂Φd̂i,g. (19)

According to Chain Rule Theorem [77], for the above time-independent Lyapunov func-

tion candidateVi(~di,g, ~̇di,g), its derivative with respect to time, i.e.,(d/dt)Vi(~di,g, ~̇di,g)

exists almost everywhere and

d
dt

Vi(~di,g, ~̇di,g) ∈a.e. ˙̃V i(~di,g, ~̇di,g), (20)
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where

˙̃V i(~di,g, ~̇di,g) =
⋂

ξ∈∂Vi(~di,g,~̇di,g)

ξ TK[ f ](~di,g, ~̇di,g).

One obtains∂Vi(~di,g, ~̇di,g) from Equation (13) as

∂Vi(~di,g, ~̇di,g) =




∂Φ(di,g)d̂i,g

~̇di,g


 . (21)

On the other hand, one can calculateK[ f ](~di,g, ~̇di,g) as

K[ f ](~di,g, ~̇di,g) = K




~̇di,g

−K′i,g~̇di,g−Φ′
i,gd̂i,g




=




~̇di,g

−∂K(di,g)~̇di,g−∂Φ(di,g)d̂i,g


 .

(22)

For the sake of brevity let̃̇V i denote˙̃V i(~di,g, ~̇di,g). Then Substituting Equation (45, 44)
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into Equation (43) yields,

˙̃V i ⊂




∂Φ(di,g)d̂i,g

~̇di,g




T

·




~̇di,g

−∂K(di,g)~̇di,g~̇di,g−∂Φ(di,g)d̂i,g




= ∂Φ(di,g)d̂T
i,g

~̇di,g−∂K(di,g)~̇dT
i,g

~̇di,g

−∂Φ(di,g)~̇dT
i,gd̂i,g. (23)

As shown in Equation (14), it is obvious that the scalar termd̂T
i,g

~̇di,g = ~̇dT
i,gd̂i,g = ḋi,g.

Therefore Equation (23) can be further simplified as

˙̃V i =−∂K(di,g)
∥∥∥~̇di,g

∥∥∥
2
.

Obviously, ˙̃V i is negative semidefinite. By the nonsmooth version of LaSalle’s Theorem

[77], we can determine the largest invariant setE as

E = cl
(
{(~di,g, ~̇di,g)|0∈ ˙̃V i}

)
= (~0,~0),

which implies that the origin is asymptotically stable.
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A.11 Proof of Theorem 5.4.1

Construct the Lyapunov function candidate according to Equation (13) for each robot in

the chain. Define the Lyapunov function candidate for the chain asV = ∑N
j=1Vj(~d j,g, ~̇d j,g).

Then

˙̃V =
N

∑
j=1

˙̃V j(~d j,g, ~̇d j,g) =−
N

∑
j=1

k j‖~̇r j −~̇r j,g‖2≤ 0

is negative semidefinite. And because equation˙̃V = ∑N
j=1

˙̃V j(~d j,g, ~̇d j,g) = 0 holds if and

only if ~̇r j =~̇r j,g for all j ∈ {1,2, ...,N}, by the nonsmooth version of LaSalle’s Theorem,

the chain is asymptotically stable on the segment.

A.12 Proof of Proposition 6.4.1

We first note that, regardless of the motion trajectory of its direct leader, a follower robot

r i in a coordinated chain under the control law given by Equation (6.1) can never exit the

region consisting of zones 2, 3, and 4 of its leader. This is because (i) the energy required

for r i to do so is infinite, i.e.,
∫ ρ̌

d◦ Ψ̌′(di,i−1)d(di,i−1) = ∞ or
∫ ρ

d◦ Ψ̂′(di,i−1)d(di,i−1) = ∞,

and (ii) the contribution ofΦi,p to the motion of the robot in terms of energy will be

finite due to the initial condition of finite instantaneous distancedi,p.

We outline the proof for Theorem 6.4.1 before presenting the detailed steps. From

Proposition 5.3.1, the team leaderr1 in a coordinated chain can be asymptotically sta-

bilized on the segment. For practical purpose, we can stopr1 when it is within an
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arbitrarily small deviationε to the segment after a finite period of timeT∗1 . For robot

r2 (whose leader isr1), we can construct a Lyapunov functionV2 and show that, under

the control given by Equation (6.1),̇V2|t>T∗1 ≤ 0 ast → ∞. We thus conclude thatr2

will also asymptotically stabilize on the segment, and so can be made to stop within an

arbitrarily small deviation to the segment after a finite period of timeT∗2 . This reasoning

concerningr2 can be similarly applied to all other robots, leading to the final conclusion

that the whole team can be controlled by Equation (6.1) to approach and stabilize on the

segment as a coordinated chain.

We now present the detailed proof. Let∆px = rpx−r ix, ∆py = rpy−r iy, ∆ix = r(i−1)x−r ix,

∆iy = r(i−1)y− r iy, ∆(i, j)x = r jx − r ix, and ∆(i, j)y = r jy − r iy. Now ‖~̇r i‖2 = ṙ2
ix + ṙ2

iy,

and cosγp = ∆px/di,p, sinγp = ∆py/di,p, cosγi = ∆ix/di,i−1 and sinγi = ∆iy/di,i−1, and

cosγ(i, j) = ∆(i, j)x/di, j and sinγ(i, j) = ∆(i, j)y/di, j . Sincedi,i−1≡ ‖~di,i−1‖=
(

∆2
ix +∆2

iy

) 1
2
,

di,p≡‖~di,p‖=
(
∆2

px+∆2
py

) 1
2 , di, j ≡‖~di, j‖=

(
∆2

(i, j)x +∆2
(i, j)y

) 1
2
, we haveḋi,i−1 =(∆ix∆̇ix+

∆iy∆̇iy)/di,i−1, andḋi,p =(∆px∆̇px+∆py∆̇py)/di,p, andḋi, j =(∆(i, j)x∆̇(i, j)x+∆(i, j)y∆̇(i, j)y)/di, j .

For a robotr i with i > 1, we construct a Lyapunov function candidateVi

Vi =
1
2
‖~̇r i‖2 +Φi,p(di,p)+ΨΣ

i, j , (24)

whereΨΣ
i, j = Ψi,i−1(di,i−1)+∑ j Ψ̂i, j(di, j), and augment the state with variablesdi,p and
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di,i−1 as

d
dt

[
ṙ ix ṙ iy di,p di,i−1 di,i−2 . . . di,1

]T

=
[

ζ ξ ḋi,p ḋi,i−1 ḋi,i−2 . . . ḋi,1

]T

= f (ṙ ix, ṙ iy,di,p,di,i−1,di,i−2, · · · ,di,1), (25)

which is invariant. SinceVi as defined in Equation (47) is time-independent, locally

Lipschitz and regular (becauseΦ andΨ are admissible), its generalized gradient is

∂Vi =
[
ṙ ix ṙ iy ∂Φi,p(di,p) ∂Ψi,i−1(di,i−1) . . . ∂ Ψ̂i,1(di,1)

]T

while K[ f ](ṙ ix, ṙ iy,di,p,di,i−1,di,i−2, · · · ,di,1) can be expressed as:

K[ f ](ṙ ix, ṙ iy,di,p,di,i−1,di,i−2, · · · ,di,1)

=
[
K[ f ](ζ ) K[ f ](ξ ) ḋi,p ḋi,i−1 ḋi,i−2 . . . ḋi,1

]T
.
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Now K[ f ](ζ ) andK[ f ](ξ ) can be expressed as follows:

K[ f ](ζ ) = −ki ṙ ix +∂Ψi,i−1(di,i−1)cosγi

+∂Φi,p(di,p)cosγp +K[ f ](δ1)

+∑
j

∂ Ψ̂i, j(di, j)cosγi, j ,

K[ f ](ξ ) = −ki ṙ iy +∂Ψi,i−1(di,i−1)sinγi

+∂Φi,p(di,p)sinγp +K[ f ](δ2)

+∑
j

∂ Ψ̂i, j(di, j)sinγi, j .

Invoking the Chain Rule Theorem yields

˙̃V
∗
i ⊂ ∂VT

i K[ f ](ṙ ix, ṙ iy,di,p,di,i−1,di,i−2, · · · ,di,1)

= − ki ṙ
2
ix + ṙ ix∂Ψi,i−1(di,i−1)cosγi + ṙ ixK[ f ](δ1)

+ ṙ ix∂Φi,p(di,p)cosγp + ṙ ix ∑
j

∂ Ψ̂i, j(di, j)cosγi, j

− ki ṙ
2
iy + ṙ iy∂Ψi,i−1(di,i−1)sinγi + ṙ iyK[ f ](δ2)

+ ṙ iy∂Φi,p(di,p)sinγp + ṙ iy ∑
j

∂ Ψ̂i, j(di, j)sinγi, j

+ ∂Φi,p(di,p)ḋi,p + ∂Ψi,i−1(di,i−1)ḋi,i−1. (26)
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Now,

ṙ ix∂Φi,p(di,p)cosγp + ṙ iy∂Φi,p(di,p)sinγp

= ‖~̇r i‖∂Φi,p(di,p)cos(γp−θi) , (27)

and

ṙ ix∂Ψi,i−1(di,i−1)cosγi + ṙ iy∂Ψi,i−1(di,i−1)sinγi

= ‖~̇r i‖∂Ψi,i−1(di,i−1)cos(γi−θi). (28)

For‖~̇r i‖ 6= 0 we haveK[ f ](δ1) = λi∂Φi,p(di,p)cosφ andK[ f ](δ2) = λi∂Φi,p(di,p)sinφ .

Hence,

ṙ ixK[ f ](δ1)+ ṙ iyK[ f ](δ2)

= −‖~̇r i,p‖∂Φi,p(di,p)cos(γp−ϕp). (29)

Furthermore we note that

∂Φi,p(di,p)ḋi,p = ∂Φi,p(di,p)[∆px∆̇px+∆py∆̇py]/di,p

= ‖~̇r i,p‖∂Φi,p(di,p)cos(γp−ϕp)−

‖~̇r i‖∂Ψi,i−1(di,i−1)cos(γp−θi), (30)
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and

∂Ψi,i−1(di,i−1)ḋi,i−1

= ∂Ψi,i−1(di,i−1)[∆ix∆̇ix +∆iy∆̇iy]/di,i−1

= −‖~̇r i‖∂Ψi,i−1(di,i−1)cos(γi−θi) . (31)

Sinceḋi, j = (∆(i, j)x∆̇(i, j)x+∆(i, j)y∆̇(i, j)y)/di, j , one obtainsḋi, j =−ṙ ix cosγi, j− ṙ iy sinγi, j ,

which means

∂ Ψ̂i, j(di, j)ḋi, j =−ṙ ix∂ Ψ̂i, j(di, j)cosγi, j − ṙ iy∂ Ψ̂i, j(di, j)sinγi, j .

Readily we reach the following equation:

∑
j

∂ Ψ̂i, j(di, j)cosγi, j ḋi, j

= −ṙ ix ∑
j

∂ Ψ̂i, j(di, j)cosγi, j

−ṙ iy ∑
j

∂ Ψ̂i, j(di, j)sinγi, j . (32)

Substituting Equations (27-32) into Equation (49) yields˙̃V
∗
i =−ki‖~̇r i‖2.

It is shown that all terms except(−ki ṙ2
ix−ki ṙ2

iy) on the right-hand-side of Equation (49)

cancel out, leading tȯ̃V
∗
i = −ki‖~̇r i‖2, which is negative semidefinite. The largest in-

variant setM is {ṙ ix, ṙ iy,di,p,di,i−1,di,i−2, · · · ,di,1}= {0,0,0,0,0, · · · ,0}. Therefore, the
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system is asymptotically stable.

A.13 Proof of Proposition 7.2.1

For the sake of simplicity, we define a functionD = D(x,xs) as follows:

D(x,xs) =
√

(x−xs)2 +
(
g(x)− f (xs)

)2
.

Then we can rewritedmin(x) as

dmin(x) = min
xs∈[as,bs]

{
D(x,xs)

}
.

Similarly, dmin(x+∆x) can be expressed in the following form:

dmin(x+∆x)

= min
xs∈[as,bs]

{√
(x+∆x−xs)2 +

(
g(x+∆x)− f (xs)

)2
}

= min
xs∈[as,bs]

{√
(x+∆x−xs)2 +

(
g(x)+∆g(x)− f (xs)

)2
}

= min
xs∈[as,bs]

{√
D2(x,xs)+2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2
}

Using the simple fact that

√
x+∆x≤√x+

√
|∆x|,
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we obtain

dmin(x+∆x)≤ min
xs∈[as,bs]

{
D(x,xs)+

√
|2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2|
}

.

Moreover, we can calculate the limit ofdmin(x+∆x) as

lim
∆x→0

dmin(x+∆x)

≤ lim
∆x→0

min
xs∈[as,bs]

{
D(x,xs)+

√
|2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2|
}

= min
xs∈[as,bs]

{
lim

∆x→0

(
D(x,xs)+

√
|2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2|
)}

= min
xs∈[as,bs]

{D(x,xs)}

= dmin(x) (33)

Similarly, we can deduce that

dmin(x+∆x)≥ min
xs∈[as,bs]

{
D(x,xs)−

√
|2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2|
}

,

because
√

x+∆x≥√x−
√
|∆x|.
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Therefore, we have the following relationship:

lim
∆x→0

dmin(x+∆x)

≥ lim
∆x→0

min
xs∈[as,bs]

{
D(x,xs)−

√
|2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2|
}

= min
xs∈[as,bs]

{
lim

∆x→0

(
D(x,xs)−

√
|2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2|
)}

= min
xs∈[as,bs]

{D(x,xs)}

= dmin(x) (34)

Obviously,

dmin(x)≤ lim
∆x→0

dmin(x+∆x)≤ dmin(x),

which means that

lim
∆x→0

dmin(x+∆x) = dmin(x).

Hence we conclude thatdmin is continuous.

A.14 Proof of Proposition 7.2.2

First, we check the simple case wheredmin(x) = 0. With the condition that

dmin(x) = min
xs∈[as,bs]

{√
(x−xs)2 +

(
g(x)− f (xs)

)2
}

= 0, (35)
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we know that there exists at least one value ofxs within interval [as,bs] that leads to

x = xs and g(x) = f (xs). Sincedmin(x) is nonnegative,dmin(x+ ∆x) is not less than

dmin(x). The upper bound ofdmin(x+ ∆x) can be determined through the following

steps:

dmin(x+∆x)

= min
xs∈[as,bs]

{√
D2(x,xs)+2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2
}

≤ min
xs∈[as,bs]

{
D(x,xs)+

√
|2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2|
}

≤ min
xs∈[as,bs]

{
D(x,xs)+

√
|2∆x(x−xs)+2∆g(x)

(
g(x)− f (xs)

)|+
√(

∆g(x)
)2 +(∆x)2

}

≤ min
xs∈[as,bs]

{
D(x,xs)+

√
|2∆x(x−xs)+2∆g(x)

(
g(x)− f (xs)

)|
}

+
√(

∆g(x)
)2 +(∆x)2. (36)

According to Equation (35), we have

min
xs∈[as,bs]

{
D(x,xs)+

√
|2∆x(x−xs)+2∆g(x)

(
g(x)− f (xs)

)|
}

= 0. (37)

Then it follows that Equation (36) can be further simplified as

dmin(x+∆x)≤
√(

∆g(x)
)2 +(∆x)2.
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From the above equation, it is easy to check that the ratio

dmin(x+∆x)−dmin(x)
|∆x| ≤ dmin(x+∆x)

|∆x| ≤
√

L2 +1,

is bounded.

Second, we consider the nontrivial case wheredmin(x) 6= 0. Note that inequality
√

Z+∆Z≤
√

Z+ ∆Z
2
√

Z
always holds as long asZ > 0 andZ+∆Z > 0. We can employe this fact to

determine the maximum value ofdmin(x+∆x).

dmin(x+∆x)

= min
xs∈[as,bs]

{√
D2(x,xs)+2∆x(x−xs)+(∆x)2 +2∆g(x)

(
g(x)− f (xs)

)
+

(
∆g(x)

)2
}

≤ min
xs∈[as,bs]

{
D(x,xs)+

2∆x(x−xs)+(∆x)2 +2∆g(x)
(
g(x)− f (xs)

)
+

(
∆g(x)

)2

2D(x,xs)

}

≤ min
xs∈[as,bs]

{
D(x,xs)+

∆Z(x,xs,∆x)
2D(x,xs)

}
,

where∆Z(x,xs,∆x) = 2∆x(x−xs)+(∆x)2+2∆g(x)
(
g(x)− f (xs)

)
+

(
∆g(x)

)2
as∆g(x)

can be viewed as certain unknown function of∆x. This result helps us to calculate and
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estimate the ratio

dmin(x+∆x)−dmin(x)
|∆x|

=
(

min
xs∈[as,bs]

{√
D2(x,xs)+∆Z(x,xs,∆x)

}
− min

xs∈[as,bs]
{D(x,xs)}

)
/|∆x|

≤
(

min
xs∈[as,bs]

{
D(x,xs)+

∆Z(x,xs,∆x)
2D(x,xs)

}
− min

xs∈[as,bs]
{D(x,xs)}

)
/|∆x|

≤
(

min
xs∈[as,bs]

{
D(x,xs)+

|∆Z(x,xs,∆x)|
2D(x,xs)

}
− min

xs∈[as,bs]
{D(x,xs)}

)
/|∆x|

≤ max
xs∈[as,bs]

{ |∆Z(x,xs,∆x)|
2D(x,xs)

}
/|∆x|

= max
xs∈[as,bs]





∣∣∣2(x−xs)+∆x+2∆g(x)
(
g(x)− f (xs)

)
/∆x+

(
∆g(x)

)2
/∆x

∣∣∣
2D(x,xs)





< ∞. (38)

Since we are able to choose sufficient small∆x to assure that|∆Z(x,xs,∆x)|/D(x,xs) =

|2∆x(x−xs)+(∆x)2+2∆g(x)
(
g(x)− f (xs)

)
+

(
∆g(x)

)2|/D(x,xs)< 1. Inequality
√

Z+∆Z≥
√

Z−|∆Z| ≥ √Z− ∆Z√
Z

always holds as long asZ > 0 and|∆Z| < 1. We can link this

fact to the value ofdmin(x+∆x) as follows:

dmin(x+∆x)

= min
xs∈[as,bs]

{√
D2(x,xs)+∆Z(x,xs,∆x)

}

≥ min
xs∈[as,bs]

{√
D2(x,xs)−|∆Z(x,xs,∆x)|

}

≥ min
xs∈[as,bs]

{
D(x,xs)− |∆Z(x,xs,∆x)|

D(x,xs)

}
.
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Again, we use the results obtained from above equation to show that

dmin(x+∆x)−dmin(x)
|∆x|

=
(

min
xs∈[as,bs]

{√
D2(x,xs)+∆Z(x,xs,∆x)

}
− min

xs∈[as,bs]
{D(x,xs)}

)
/|∆x|

≥
(

min
xs∈[as,bs]

{
D(x,xs)− |∆Z(x,xs,∆x)|

D(x,xs)

}
− min

xs∈[as,bs]
{D(x,xs)}

)
/|∆x|

≥ − max
xs∈[as,bs]

{ |∆Z(x,xs,∆x)|
D(x,xs)

}
/|∆x|

= − max
xs∈[as,bs]





∣∣∣2(x−xs)+∆x+2∆g(x)
(
g(x)− f (xs)

)
/∆x+

(
∆g(x)

)2
/∆x

∣∣∣
D(x,xs)



 ,

(39)

is also bounded.

To sum up, we can compare the two bounds from Equation (38) and (39) and assert that

the following condition:

|dmin(x+∆x)−dmin(x)|
|∆x|

≤ max
xs∈[as,bs]





∣∣∣2(x−xs)+∆x+2∆g(x)
(
g(x)− f (xs)

)
/∆x+

(
∆g(x)

)2
/∆x

∣∣∣
D(x,xs)





holds for sufficient small∆x such that|∆Z(x,xs,∆x)|/D(x,xs) = |2∆x(x−xs)+(∆x)2 +

2∆g(x)
(
g(x)− f (xs)

)
+

(
∆g(x)

)2|/D(x,xs) < 1.
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A.15 Proof of Proposition 7.2.3

It is straightforward to use contradiction to prove the above proposition. Suppose that

motion of the nearest points is discontinuous somewhere, say at non-adjacent pointsN1

andN2, for a robot located near positionP and meanwhileqns remains unique. Imme-

diately it follows that||PN1|| 6= ||PN2||, which obviously contradicts the conclusion that

dmin is continuous.

A.16 Proof of Theorem 7.3.2

Since~̈r i = ~ui and ~di,ns =~r i,ns−~r i , we have~̈di,ns = −ki ~̇di,ns−Φ′
i,nsd̂i,ns, which can be

expressed as

d
dt




~di,ns

~̇di,ns


 =




~̇di,ns

−ki ~̇di,ns−Φ′
i,nsd̂i,ns


 = f (~di,ns, ~̇di,ns). (40)

Equation (40) is time-invariant, with the origin~di,ns = 0 being the equilibrium point

since for an admissibleΦi,ns, 0∈ ∂Φ(0).

We choose the following Lyapunov function candidate (which is time-independent, Lip-

schitz and regular)

Vi = Vi(~di,ns, ~̇di,ns) =
1
2
~̇dT

i,ns
~̇di,ns+Φ(di,ns) . (41)

By the Generalized Gradient Formula [14], the generalized gradient ofΦ(di,ns) with
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respect to~di,ns is

∂Φ(~di,ns) = co{lim ∇Φ(~d) | ~d→ ~di,ns, ~d /∈Ω f }, (42)

with Ω f being the set of Lebesgue measure zero where the gradient ofΦ(~di,ns) is not

defined. Furthermore the relationship

dΦ(~di,ns)

d(~di,ns)
=

dΦ(di,ns)
d(di,ns)

· d(di,ns)

d(~di,ns)
= Φ′

i,nsd̂i,ns,

reduces Equation (42) to∂Φ(~di,ns) = ∂Φd̂i,ns. By the Chain Rule Theorem [77], we

have

d
dt

Vi(~di,ns, ~̇di,ns) ∈a.e. ˙̃V i(~di,ns, ~̇di,ns), (43)

where ˙̃V i(~di,ns, ~̇di,ns) =
⋂

ξ∈∂Vi(~di,ns,~̇di,ns)
ξ TK[ f ](~di,ns, ~̇di,ns), with K being a map (as de-

fined and discussed in detail in [70]) having, for this case, the specific form

K[ f ](~di,ns, ~̇di,ns) =




~̇di,ns

−ki ~̇di,ns−∂Φ(di,ns)d̂i,ns


 . (44)

For the sake of brevity, we writẽ̇V i(~di,ns, ~̇di,ns) simply as˙̃V i in the sequel. From Equation

(41), we have

∂Vi(~di,ns, ~̇di,ns) =




∂Φ(di,ns)d̂i,ns

~̇di,ns


 . (45)
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Substituting Equations (45) and (44) into Equation (43) yields˙̃V i =−ki

∥∥∥~̇di,ns

∥∥∥
2
, which

is negative semidefinite. By the nonsmooth version of LaSalle’s Theorem [77], the

largest invariant set isE = cl
(
{(~di,ns, ~̇di,ns)|0∈ ˙̃V i}

)
= (~0,~0), which implies that the

origin is asymptotically stable.

A.17 Proof of Proposition 7.4.1

The proof by contradiction is straightforward. We assume that there exists a nearest

point Pns that is not on the apparent obstacle boundary. Thus we havePns /∈ Ω′
ob(or

Ω′
combo) andPns∈ Ω′. Then a straight line linkingP0 andPns will intersect withΩ′

ob(or

Ω′
combo) at some point, which is denoted asP

′
ns. It is obvious that

||P0P
′
ns||< ||P0Pns||,

which contradicts the previous assumption thatPns is the nearest point. To complete the

proof, by contradiction, we refer to Figure 2. Without loss of generality, we assume that

there exist two pointsP1 andP2 on apparent obstacleΩ′
ob such that

||P0P1||= ||P0P2||

and
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Figure 2: Illustration a robot and the nearest point on an apparent obstacle (i.e., convex
hull) depicted in hatched area. The auxiliary arc is represented by dash line.

{P1,P2}= arg min
(xob,yob)∈Ω′

ob

{√
(xr −xob)2 +

(
yr −yob

)2
}

, (46)

where(xr ,yr)∈R2 is the coordinates of pointP0. Then we can construct an auxiliary arc

connectingP1 andP2 with its center atP0. An arbitrary pointPa on the straight lineP1P2

excludingP1 andP2 is picked up for study. SinceΩ′
is convex,P1 ∈ Ω′

andP1 ∈ Ω′
,

readily it follows from geometry that

Pa ∈Ω
′
,
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and

||P0Pa||< ||P0P1||.

However this conclusion contradicts the assumption thatP1 andP2 are the nearest point.

Thus the proof is completed.

A.18 Proof of Theorem 7.9.1

We first note that, regardless of the motion trajectory of its direct leader, a follower

robot r i in a coordinated chain under the control law given by Equation (7.13) can

never exit the region consisting of zones 2, 3, and 4 of its leader. This is because

(i) the energy required forr i to do so is infinite, i.e.,
∫ ρ̌

d◦ Ψ̌′(di,i−1)d(di,i−1) = ∞ or

∫ ρ
d◦ Ψ̂′(di,i−1)d(di,i−1) = ∞, and (ii) the contribution ofΦi,ns to the motion of the robot in

terms of energy will be finite due to the initial condition of finite instantaneous distance

di,ns and (iii) there are no other repulsive potentials cancelling out zoning potentials due

to r i−1 in the absence of local minima.

We outline the proof for Theorem 7.9.1 before presenting the detailed steps. From The-

orem 7.3.2 obviously the team leaderr1 in a coordinated chain can be asymptotically

stabilized at a nearest point on the segment without considering the presence of obsta-

cles. For practical purpose, we can stopr1 when it is within an arbitrarily small deviation

ε to the segment after a finite period of timeT∗1 . For robotr2 (whose leader isr1), we can

construct a Lyapunov functionV2 and show that, under the control given by Equation
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(7.13),V̇2|t>T∗1 ≤ 0 ast → ∞. We thus conclude thatr2 will be attracted on the segment,

and so can be made to stop within an arbitrarily small deviation to the segment after a

finite period of timeT∗2 . This reasoning concerningr2 can be similarly applied to all

other robots, leading to the final conclusion that the whole team can be controlled by

Equation (7.13) to approach the segment as a coordinated chain.

We now present the detailed proof. Without loss of generality and for the sake of com-

pleteness, it is convenient to definedi,0 = 0 andΨ̌i,0(di,0) = 0, namely the special case

with i = 1 for Ψ̌i,i−1(di,i−1) where there may have no actual leader assigned to robotr1.

Thus, for a robotr i with i ≥ 1, we construct a Lyapunov function candidate

Vi =
1
2
‖~̇di,ns‖2 +Φi,total.

With Equation (7.12),Vi can rewritten as

Vi =
1
2
‖~̇di,ns‖2 +Φi,ns(di,ns)+ Ψ̌i,i−1(di,i−1)+∑

k

Ψ̂ob
i,k(d

ob
i,k), (47)

and augment the state with variables~di,ns, ~di,i−1 and~dob
i,kas

d
dt

[
~di,ns ~̇di,ns ~di,i−1 ~dob

i,k
~dob

i,k−1 . . . ~dob
i,1

]T

=
[

~̇di,ns ~̈di,ns ~̇di,i−1 ~̇dob
i,k

~̇dob
i,k−1 . . . ~̇dob

i,1

]T

= f (~di,ns, ~̇di,ns, ~di,i−1, ~d
ob
i,k,

~dob
i,k−1,

~dob
i,1), (48)

which is invariant. Similar to the procedures shown in the proof of Theorem 7.3.2,Vi is
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actually a multi-variable functionVi = Vi(~di,ns, ~̇di,ns, ~di,i−1, ~dob
i,k,

~dob
i,k−1,

~dob
i,1). SinceVi as

defined in Equation (47) is time-independent, locally Lipschitz and regular (becauseΦ

andΨ are admissible), its generalized gradient is

∂Vi =
[
∂Φ(di,ns)d̂i,ns ~̇di,ns ∂ Φ̌(di,i−1)d̂i,i−1 ∂ Ψ̂(dob

i,k)d̂
ob
i,k . . . ∂∂ Ψ̂(dob

i,1)d̂
ob
i,1

]T

while K[ f ](~di,ns, ~̇di,ns, ~di,i−1, ~dob
i,k,

~dob
i,k−1,

~dob
i,1) can be expressed as:

K[ f ](~di,ns, ~̇di,ns, ~di,i−1, ~d
ob
i,k,

~dob
i,k−1,

~dob
i,1)

=
[
~̇di,ns K[ f ](~̇di,ns) ~̇di,i−1 ~̇dob

i,k
~̇dob

i,k−1 . . . ~̇dob
i,1

]T
.

Since~̈r i =~ui and~di,ns =~r i,ns−~r i , it flows that ~̈di,ns = −ki ~̇di,ns−∇
(
Φi,total

)
. Therefore

K[ f ](~̇di,ns) can be expressed as follows:

K[ f ](~̇di,ns) = −ki ~̇di,ns−∂ Ψ̌(di,ns)d̂i,ns

−∂Ψ(di,i−1)d̂i,i−1−∂ Ψ̂(dob
i,k)d̂

ob
i,k

−∂ Ψ̂(dob
i,k−1)d̂

ob
i,k−1− . . . −∂∂ Ψ̂(dob

i,1)d̂
ob
i,1.

Invoking the Chain Rule Theorem yields

˙̃V
∗
i ⊂ ∂VT

i K[ f ](~di,ns, ~̇di,ns, ~di,i−1, ~d
ob
i,k,

~dob
i,k−1, . . . ,

~dob
i,1)

= − ki ||~̇di,ns||2. (49)
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It can be shown that all terms except||~̇di,ns||2 on the right-hand-side of Equation (49)

cancel out, leading tȯ̃V
∗
i =−ki‖~̇di,ns‖2, which is negative semidefinite.

A.19 Proof of Theorem 8.2.1

Choose the Lyapunov function candidate as

Vi, j = eT
i, jPi, jei, j . (50)

Since(Ai, jns,Bi, jns) is controllable,Ki, jns can be chosen so that(Ai, jns−Bi, jnsKi, jns) is

Hurwitz. LettingQi, j = QT
i, j > 0, there existsPT

i, j = Pi, j > 0 (symmetric and positive-

definite) such that

Pi, j(Ai, jns−Bi, jnsKi, jns)+(Ai, jns−Bi, jnsKi, jns)TPi, j =−Qi, j . (51)

In particular, the Lyapunov function candidateVi, j satisfies the following properties

λmin(Pi, j)‖ei, j‖2≤Vi, j ≤ λmax(Pi, j)‖ei, j‖2, (52)

∂Vi, j

∂ei, j
(Ai, jns−Bi, jnsKi, jns)ei, j =−eT

i, jQi, jei, j ≤−λmin(Qi, j)‖ei, j‖2, (53)
∥∥∥∥

∂Vi, j

∂ei, j

∥∥∥∥ = ‖2eT
i, jPi, j‖ ≤ 2‖Pi, j‖‖ei, j‖= 2λmax(Pi, j)‖ei, j‖. (54)
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The time derivative ofVi, j along the trajectories of the perturbed system satisfies

V̇i, j = eT
i, j [P

T
i, j(Ai, jns−Bi, jnsKi, jns)+(Ai, jns−Bi, jnsKi, jns)TPi, j ]ei, j

−2eT
i, jPi, j(Ai,( j−1)ns−Bi,( j−1)nsKi,( j−1)ns)ei, j−1

= −eT
i, jQi, jei, j −2eT

i, jPi, j(Ai,( j−1)ns−Bi,( j−1)nsKi,( j−1)ns)ei, j−1

≤ −λmin(Qi, j)‖ei, j‖2 +2rλmax(Pi, j)µi,( j−1)‖ei, j‖2,

whereµi,( j−1) is the norm of matrix(Ai,( j−1)ns−Bi,( j−1)nsKi,( j−1)ns) described by,

µi,( j−1) = ‖(Ai,( j−1)ns−Bi,( j−1)nsKi,( j−1)ns)‖

= λ
1
2

max[(Ai,( j−1)ns−Bi,( j−1)nsKi,( j−1)ns)
T(Ai,( j−1)ns−Bi,( j−1)nsKi,( j−1)ns)].

Since

‖ei, j−1‖ ≤ r‖ei, j‖, (55)

And we can chooser < λmin(Qi, j)/[2λmax(Pi, j)µi,( j−1)]. Thus

V̇i, j ≤−
[
λmin(Qi, j)−2rλmax(Pi, j)µi,( j−1)

]
‖ei, j‖2≤ 0. (56)

Let r = θi, jλmin(Qi, j)/[2λmax(Pi, j)µi,( j−1)] with 0 < θi, j < 1, then

V̇i, j ≤−λmin(Qi, j)(1−θi, j)‖ei, j‖2≤ 0. (57)
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Note that in Equation (57)̇Vi, j = 0 if and only if ‖ei, j‖ = 0. In addition, according to

Theorem (8.1.1), the solutionei, j exists and satisfies

‖ei, j‖ ≤ β (‖ei, j(t0)‖, t− t0)+ χ
(

sup
τ≥t0

‖∆i, j(τ)‖
)
, (58)

whereχ = γ−1
1 ◦ γ2◦ρ with

γ1(‖x‖) = λmin(Pi, j)‖x‖2,

γ2(‖x‖) = λmax(Pi, j)‖x‖2,

γ3(‖x‖) = λmin(Qi, j)(1−θi, j)‖x‖2,

ρ(‖d‖) =
1
r
‖d‖. (59)

Accordingly, we have

ρ
(

sup
τ≥t0

‖∆i, j(τ)‖
)

=
1
r

sup
τ≥t0

‖∆i, j(τ)‖,

(γ2◦ρ)
(

sup
τ≥t0

‖∆i, j(τ)‖
)

= γ2

(
ρ
(

sup
τ≥t0

‖∆i, j(τ)‖
))

= λmax(Pi, j)
(1

r
sup
τ≥t0

‖∆i, j(τ)‖
)2

,

(γ−1
1 ◦ γ2◦ρ)

(
sup
τ≥t0

‖∆i, j(τ)‖
)

= γ−1
1

[
(γ2◦ρ)

(
sup
τ≥t0

‖∆i, j(τ)‖
)]

,

= 2
λ

3
2

max(Pi, j)µi,( j−1)

θi, jλmin(Qi, jλ
1
2

min(Pi, j)
sup
τ≥t0

‖∆i, j(τ)‖. (60)
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Thus,

χ
(

sup
τ≥t0

‖∆i, j(τ)‖
)

= 2
λ

3
2

max(Pi, j)µi,( j−1)

θi, jλmin(Qi, jλ
1
2

min(Pi, j)
sup
τ≥t0

‖∆i, j(τ)‖. (61)

For ease of discussion, let us define the following two sets

ΩI =
{

ei, j ∈ Rn
∣∣∣ ‖ei, j‖ ≤ ρ

(
sup
τ≥t0

‖∆i, j(τ)‖)
}

,

ΩO =
{

ei, j ∈ Rn
∣∣∣ ‖ei, j‖ ≥ ρ

(‖∆i, j(t)‖
) }. (62)

Note thatΩI ∪ΩO = Rn.

Let us discuss the following two cases: (i) the stateei, j(t) ∈ΩI ; and (ii)ei, j(t) ∈ΩO.

Case (i): If ei, j(t0) ∈ΩI , thenei, j will satisfy

‖ei, j(t)‖ ≤ γ−1
1 ◦ γ2◦ρ

(
sup
τ≥t0

‖∆i, j(τ)‖), ∀t ≥ t0 (63)

asγ−1
1 ◦ γ2(‖x‖)≥ ‖x‖.

Case (ii): If ei, j(t0) ∈ ΩO, we have Equation (57). Noting Equation (50), we further

have

V̇i, j ≤−λmin(Qi, j)
λmax(Pi, j)

(1−θi, j)Vi, j , (64)

i.e.,

V̇i, j ≤−γ3◦ γ−1
2 (Vi, j). (65)
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Integrating Equation (64) over[t0, t] yields

Vi, j(t)≤Vi, j(t0)e
− λmin(Qi, j )

λmax(Pi, j )
(1−θi, j )(t−t0)

, (66)

Noting Equation (52), we have

λmin(Pi, j)‖ei, j‖2≤Vi, j(t)≤Vi, j(t0)e
− λmin(Qi, j )

λmax(Pi, j )
(1−θi, j )(t−t0)

, (67)

i.e.,

‖ei, j‖2≤ Vi, j(t0)
λmin(Pi, j)

e
− λmin(Qi, j )

λmax(Pi, j )
(1−θi, j )(t−t0)

. (68)

Since

Vi, j(t0) = eT
i, j(t0)Pi, jei, j(t0)≤ λmax(Pi, j)‖ei, j(t0)‖2, (69)

we further have

‖ei, j(t)‖2≤ λmax(Pi, j)
λmin(Pi, j)

‖ei, j(t0)‖2e
− λmin(Qi, j )

λmax(Pi, j )
(1−θi, j )(t−t0)

, (70)

i.e.,

‖ei, j(t)‖ ≤
√

λmax(Pi, j)
λmin(Pi, j)

‖ei, j(t0)‖e
− λmin(Qi, j )

2λmax(Pi, j )
(1−θi, j )(t−t0)

. (71)

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



298

By defining

βV(x(t0), t− t0) , x(t0)e
− λmin(Qi, j )

λmax(Pi, j )
(1−θi, j )(t−t0)

.

β (x(t0), t− t0) , γ−1
1 (βV(γ2(x(t0), t− t0))), (72)

then Equation (71) can be expressed as

‖ei, j(t)‖ ≤ β (‖ei, j(t0)‖, t− t0). (73)

Thus, from Equations (63) and (73),

‖ei, j(t)‖ ≤ β (‖ei, j(t0)‖, t− t0)+ χ
(

sup
τ≥t0

‖∆i, j(τ)‖
)
, ∀t ≥ t0≥ 0 (74)

which completes the proof.

A.20 Proof of Proposition 8.4.1

As Equation (8.26) shows, if formation errors of all the robots ahead are bounded, then

each term multiplied by‖ei,( j−1)‖, ‖ei,( j−2)‖, · · · , ‖ei,1‖ is bounded. In other words, the

queue formation error ofjth robot with respect to initial formation errors of all those

robot ahead is bounded. Obviously if the initial formation error of itself is bounded, then

the first term in Equation(8.26) is bounded. Given a queue formation has finite length,

according the above statement,‖ei, j‖ is bounded.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



299

A.21 Proof of Theorem 8.4.1

Choose the Lyapunov function candidate for each robot in any queue of the whole for-

mation as

Vk = eT
k Pkek. (75)

wherek=1,2,...m. Andm denotes the length of the corresponding queue. Since(Ak,Bk)

in controllable,K j can be properly chosen such that(Ak,BkKk) is Hurwitz. Letting

Qk=QT
k > 0, there existsPT

k =Pk> 0 such that

Pk(Ak−BkKk)+(Ak−BkKk)TPk =−Qk. (76)

For each Lyapunov function in Equation (75), we have,

∥∥∥∥
∂Vk

∂ek

∥∥∥∥≤ 2λmax(Pk)‖ek)‖. (77)

Define a function∂hi j(ek) = ‖ek‖. Then Equation (77) can be rewritten as

∥∥∥∥
∂Vk

∂ek

∥∥∥∥≤ βk(ek),

βk = 2λmax(Pk). (78)
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And Vk satisfies

∂Vk

∂ek
(Ak−BkKk)ej ≤−λminQk‖ek‖2 =−αk∂hi2k(ek),

αk = λmin(Qk). (79)

We decompose the equations given by Equation (8.28) into 2 parts, one is the dynamic

of its own, and the other is the disturbance imposed on. The basic form is as below.

ėk = (Ak−BkKk)ek +gk(e),

gk(e) = −(Ak−1−Bk−1Kk−1)ei,k−1. (80)

wherek = 1,2, . . . ,mande= [e1 e2 · · · em]. And for the disturbance term of each robot,
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we have

‖g1(e)‖ = 0≤ γ11∂hi1(e1),

γ11 = 1,

‖g2(e)‖ = ‖− (A1−B1K1)e1‖ ≤ µ1‖e1‖= γ21∂hi1(e1),

γ21 = µ1 = λ
1
2

max[(A1−B1K1)T(A1−B1K1)],

...,

‖gm(e)‖ = ‖− (Am−1−Bm−1Km−1)em−1‖,

≤ µm−1‖em−1‖,

= γm(m−1)∂him−1(em−1),

γm(m−1) = µm−1 = λ
1
2

max[(Am−1−Bm−1Km−1)T(Am−1−Bm−1Km−1)]. (81)

S is anm×m matrix whose elements are defined by

si j =





αi−βiγii i = j,

−βiγii i 6= j.
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Then matrix S can be explicitly represented as below.

S=




s11 0 0 . . . 0

s21 s22 0 . . . 0

0 s32 s33
...

...

...
... .. . ... 0

0 . . . 0 sm(m−1) smm




. (82)

where





sii = λmin(Qi)−2λmax(Pi)

si(i−1) =−2λmax(Pi−1)µi−1≤ 0

si j = 0 j 6= i or j 6= i−1

(83)

D is an m×m unit matrix. NamelyD = diag(d1 d2 · · · dm) = I . It is obvious that

det(S) > 0 if properly choosePk andQk such that

λmin(Qk)−2λmax(Pk) > 0, (84)

And the Lyapunov functionV(t,e) of the whole queue meets the followings,

V(t,e) =
m

∑
k=1

dkVk(t,ek).

V̇(t,e)≤−1
2

∂hiT(DS+STD)∂hi. (85)

According to Lemma 9.7 and Theorem 9.2 of Nonlinear Systems by Khalil, the queue
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formation is globally uniformly asymptotically stable, thus completing the proof.

A.22 Proof of Proposition 8.4.2

When robots quit or join in the queue, we can establish a new interconnected system

after treating the following two cases:

case 1The queue formation is free of sequence, i.e., a robot can takes any assigned place

of sequence in the queue no matter what kind of the robot it is or what identity it has.

No further action needs at this stage.

case 2Each robot has its own sequence in the queue according to specification.

case 2.1When robots quit and no further adjustment of previous assignment after this

event, then no further action needs at this stage.

case 2.2When there is a new adjustment of sequence or there are new comers joining

in the queue, then a sorting of the robots needs. By properly choosing those robots to

move among the queue to form the desired sequence of the queue while the rest remains

static in the queue. Since the length of the queue is finite, this sorting can be finished

within finite times of sequence adjustment.

After this treatment, robots in the queue form the desired sequence. Then for those group

of robots in the queue, we can establish a new interconnected system as we did in proof

of Theorem 8.4.1. For this new interconnected system, following similar procedures and

applying Lemma 9.7 and Theorem 9.2 ofNonlinear Systemby Khalil, the conclusion
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holds.
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