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Summary

This thesis presents a segment-based probabilistic approach to recognize contin-

uous sign language sentences which are signed naturally and freely. We aim to

devise a recognition system that can robustly handle the inter-signer variations

exhibited in the sentences. In preliminary work, we considered isolated signs

which provided insight into inter-signer variations. Based on this experience, we

tackled the more difficult problem of recognizing continuously signed sentences

as outlined above. Our proposed scheme has kept in view the major issues in

continuous sign recognition including signer independence, dealing with move-

ment epenthesis, segmentation of continuous data, as well as scalability to large

vocabulary.

We use a discriminative approach rather than a generative one to better han-

dle signer variations and achieve better generalization. For this, we propose a

new scheme based on a two-layer conditional random field (CRF) model, where

the lower layer processes the four parallel channels (handshape, movement, ori-

entation and location) and its outputs are used by the higher level for sign recog-

nition. We use a phoneme-based scheme to model the signs, and propose a new

PCA-based representation phoneme transcription procedure for the movement

component. k-means clustering together with affinity propagation (AP) is used

to transcribe phonemes for the other three components.

The basic idea of the proposed recognition framework is to first over-segment

vii



SUMMARY

the continuously signed sentences with a segmentation algorithm based on min-

imum velocity and maximum change of directional angle. The sub-segments are

then classified as sign or movement epenthesis. The classifier for labeling the

sub-segments of an input sentence as sign or movement epenthesis is obtained by

fusing the outputs of independent CRF and SVM classifiers through a Bayesian

network. The movement epenthesis sub-segments are discarded and the recogni-

tion is done by merging the sign sub-segments. For this purpose, we propose a

new decoding algorithm for the two-layer CRF-based framework, which is based

on the semi-Markov CRF decoding algorithm and can deal with segment-based

data, compute features for recognition on the fly, discriminate between possibly

valid and invalid segments that can be obtained during the decoding procedure,

and merge sub-segments that are not contiguous. We also take advantage of the

information given by the location of movement epenthesis sub-segments to reduce

the complexity of the decoding search.

A glove and magnetic tracker-based approach was used for the work and raw

data was obtained from electronic gloves and magnetic trackers. The data used

for the experiments was contributed by seven deaf native signers and one expert

signer and consisted of 74 distinct sentences made up from a 107-sign vocabulary.

Our proposed scheme achieved a recall rate of 95.7% and precision accuracy

of 96.6% for unseen samples from seen signers, and a recall rate of 86.6% and

precision accuracy of 89.9% for unseen signers.
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The limits of my

language mean the

limits of my world.

Ludwig Wittgenstein

(1889-1951)

1
Introduction

Sign language is widely used by the deaf for communication and as the lan-

guage of instruction in schools for the deaf. In recent years, there has been

increasing interest in developing sign language systems to aid communication

between the deaf and hearing people.

Sign language is a rich and expressive language with its own grammar, rhythm

and syntax, and is made up of manual and non-manual signals. Manual signing

involves hand and arm gestures, while non-manual signals are conveyed through

facial expressions, eye gaze direction, head movements, upper torso movements

and mouthing. Non-manual signals are important in many areas of sign language

structure including phonology, morphology, syntax, semantics and discourse anal-

ysis. For example, they are frequently used in sentences that involve “yes-no

questions”, “wh-questions”, “negation”, “commands”, “topicalization” and “con-

ditionals”. In manual signing, four key components are used to compose signs,

1



1. Introduction

namely, handshape, movement, palm orientation and location; the systematic

change of these components produces a large number of different sign appear-

ances. Generally, the appearance and meaning of basic signs are well-defined in

sign language dictionaries. For example, when signing TREE, the rule is “The

elbow of the upright right arm rests on the palm of the upturned left hand (this is

the trunk) and twisted. The fingers of the right hand with handshape “5” wiggle

to imitate the movement of the branches and leaves.” [136]. Figure 1.1 shows the

appearance of the sign.

Figure 1.1: ASL sign: TREE.

Although rules are given for all basic signs, variations occur due to regional,

social, and ethnic factors, and there are also differences which arise from gender,

age, education and family background. This can lead to significant variations in

manual signs performed by different signers, and poses challenging problems for

developing robust computer-based sign language recognition systems.

In this thesis, we address manual sign language recognition that is robust

to inter-signer variations. Most of the recent works in the literature have ad-

dressed the recognition of continuously signed sentences, with focus on obtaining

high recognition accuracy and scalability to large vocabulary. Although these are

important problems to consider, many works are based on data from only one

2



1. Introduction

signer. Some works attempted to demonstrate signer independence but they were

mainly based on hand postures or isolated signs and hence limited in scope. This

thesis considers the additional practical problem of recognizing continuous man-

ually signed sentences that contain complex inter-signer variations which arise

due to the reasons mentioned above. As part of this problem, we also consider

approaches to deal with movement epenthesis (unavoidable hand movements be-

tween signs which carry no meaning) which presents additional complexity for

sign recognition. The inter-signer variations in movement epentheses themselves

are usually non-trivial and pose a challenge for accurate sign recognition. How-

ever, many works either neglect it or pay no special attention to the problem. In

works that do consider it explicitly, the common approaches are either to model

the movement epentheses explicitly, or assume that the movement epenthesis

segments can be absorbed into their adjacent sign segments. In this thesis, we

suggest that movement epenthesis needs to be handled explicitly, though without

elaborate modeling these “unwanted” segments.

In the next section, the background of American sign language (ASL) is first

presented followed by discussion of the nature of variations which arise in manual

signing in Section 1.2. Section 1.3 describes movement epenthesis in more detail.

Section 1.4 presents the motivation and Section 1.5 describes the research goals

of this thesis.

1.1 Background of American Sign Language

American Sign Language (ASL) is one of the most commonly used sign languages.

It is a complex visual language that is based mainly on gestures and concepts. It

has been recognized by linguists as a legitimate language in its own right and not a

derivation of English. ASL has its own specific rules, syntax, grammar, style and
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regional variations, and has the characteristics of a true language. Analogous

to words in spoken languages, signs are defined as the basic semantic units of

sign languages [144]. ASL signs can be broadly categorized as static gestures

and dynamic gestures. Handshape, palm orientation, and location are considered

as static in the sense that they can be categorized at any given time instant.

However, hand movement is dynamic and the full meaning can be understood

after the hand motion is completed.

1.1.1 Handshape

Handshape is defined by the configuration of fingers and palm and is highly iconic.

Bellugi and Klima [16] identify about 40 handshapes in ASL. In a static sign, the

handshape usually contributes a large amount of information to the sign mean-

ing. In dynamic signs, the handshape can either remain unchanged or make a

transition from one handshape to another. Typically, the essential information

given by the handshape is at the start and the end of the sign movement. Hand-

shape becomes the distinguishable factor for signs that have the same movement.

For example the signs FAMILY and CLASS shown in Figure 1.2 have the same

movement and they are differentiated only by the handshape “F” and “C”. In

addition, handshape is the major component when fingerspelling is required, for

example, when proper names and words that are not defined in the lexicon are

spelled letter by letter.

1.1.2 Movement

Twelve simple hand movements are identified in [16]. In ASL, many signs are

characterized by different movements such as the signs CHEESE and SCHOOL

in Figure 1.3. Hand movement in sign language is described through trajectory

shape and direction. Straight-line motion, circular motion, parabolic motion
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(a) FAMILY: handshape “F”.

(b) CLASS: handshape “C”.

Figure 1.2: ASL signs with different handshape.

etc, are some examples of trajectory shape. Direction is a crucial component of

movement which is used to specify the signer and an addressee. For example,

the hand movement in sign GIVE can be towards or away from the signer. The

former indicates that an object is given to the signer while the later denotes that

the signer gives an object to the addressee. This special group of signs, namely,

the directional verbs will be discussed in more detail in Section 1.1.5.

(a) CHEESE: twisting mo-
tion.

(b) SCHOOL: clapping mo-
tion.

Figure 1.3: ASL signs with different movement.

Hand movement usually carries a large amount of information about sign
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meaning. Many signs are made with a single movement which conveys the basic

meaning. Repetition of the movement, the size of the movement trajectory, the

speed and intensity of the movement give additional or different meanings to

a sign. Repetitive movement usually indicates the frequency of an action, the

plurality of a noun, or the distinction between a noun and a verb; the size of the

movement trajectory directly relates to the actual physical volume or size; speed

and intensity of the movement convey rich adverbial aspects of what is being

expressed [144].

1.1.3 Orientation

This refers to the orientation of the palm in relation to the body or the degree to

which the palm is turned. Due to physical restriction on human hand postures,

palm orientations can be broadly classified into approximately 16-18 significant

categories [16], e.g. palm upright facing in/out, palm level facing up/down, −45o

slanting up/down, etc. The signs STAR and SOCK are mainly differentiated by

the orientation of the palm while handshape and movement trajectory remain

the same for the two signs. Figure 1.4 shows the two signs.

1.1.4 Location

Location is described as the region where the sign is performed, relative to the

signer’s body, e.g. around the head, near the chin, around the chest etc. Many

of the signs are formed near the head and chest area because they can be easily

seen. The important location information is usually conveyed at the start and

end of a sign. About 12 locations are identified in [16].

An example of a minimal pair that is distinguished only by the location con-

sists of the signs MOTHER and FATHER which are shown in Figures 1.5(a) and

1.5(b). Very often, the location carries some meaning of the sign, for example,
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(a) STAR: palm-out.

(b) SOCK: palm-down.

Figure 1.4: ASL signs with different palm orientation.

location is used to differentiate gender in some signs. Signs related to males are

always signed at the upper part of the head while signs related to females are

signed at the lower part of the head. Figure 1.5 shows the signs FEMALE and

MALE as well as MOTHER and FATHER illustrating gender differentiation by

location. In addition, the signs HAPPY and SORRY in Figures 1.6(a) and 1.6(b)

are made near the heart showing that these are signs that are related to feelings

while the sign IMAGINE 1.6(c) which is related to mind is made near the head.

1.1.5 Grammatical Information in Manual Signing

Some signs in ASL are made according to context and modified systematically

to convey grammatical information. These “inflections” are conveyed by varying

the size, speed, tension, intensity, and/or number of repetitions of the sign. These

systematic variations are defined as inflections for temporal aspect.

In ASL, there is another important grammatical process called directional
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(a) MOTHER: at right cheek. (b) FATHER: at right temple.

(c) FEMALE: at right jaw. (d) MALE: at forehead.

Figure 1.5: Gender differentiation in ASL signs according to location.

(a) HAPPY: near the
heart.

(b) SORRY: near the
heart.

(c) IMAGINE: near the fore-
head.

Figure 1.6: ASL signs denotes different meanings in different location.

verbs which makes use of the movement path direction to identify the subject

and the object in a sentence. The subject is the doer of an action (signer) and

the object is the recipient of the action (addressee). For instance, when the

sentence, “I show you.” is signed, only SHOW is signed with the hand motion

moving from the signer to the addressee, i.e. from I to YOU. On the other hand,

when “You show me.” is signed, SHOW is signed with reversed hand movement

direction, i.e. from YOU (the addressee) to I (the signer). Figure 1.7 illustrates

two examples of the inflected sign SHOW. In directional verbs, the change in
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movement direction is usually accompanied by changes in location and/or palm

orientation. Also, the directionality of directional verbs is not fixed as it depends

on the location of the object or the addressee which can be anywhere with respect

to the signer.

(a) “I show you”.

(b) “You show me”.

Figure 1.7: Directional verb SHOW.

1.1.6 Non-Manual Signals

Complete meaning in sign language cannot be conveyed without non-manual sig-

nals. For example, the sentences “The girl is at home.” and “The girl is not

at home.” are manually signed as “GIRL HOME”. The difference is conveyed

through non-manual signals where head shaking and frowning denote the nega-

tion. Non-manual signals convey important grammatical information in ASL

using facial expressions, mouthing when signing, raising the eyebrows, shaking

the head, etc. For example, negative sentences are accompanied by a characteris-

tic negative head shake; “yes/no questions” are accompanied by raised eyebrows,

wide eyes, head forward; and “wh-questions” are marked by furrowed eyebrows,

head forward.
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1.1.7 One-Handed Signs and Two-Handed Signs

Some signs in ASL require one hand while others require both hands. In [20], one

hand is defined as the dominant hand and the other is defined as the dominated

hand. For two-handed signs, the dominant hand is used to describe the main

action while the dominated hand either serves as a reference or makes actions

symmetric to the dominant hand. One-handed signs are made with the domi-

nant hand only, and there is no restriction on the dominated hand in terms of

handshape, orientation, and location, though it should not have significant move-

ment. Its use depends on the preceding and following signs as well as the signer’s

habit.

1.2 Variations in Manual Signing

Variations occur naturally in all languages and sign language is no exception.

Variations in language are not purely random; some are systematic variations with

restricted dimensions, while some can vary in a greater range. These variations

can be minor; a circle signed by two signers can never be exactly the same.

Nonetheless, these variations are limited, i.e. a circle has to be signed to be “circle-

like” and not as a square; a handshape “B” should not be signed as a handshape

“A”, etc. Figure 1.8 shows an example of two signers signing the sentence YOU

PRINTING HELPI→YOU (HELPI→YOU denotes I-HELP-YOU; the annotation is

explained in detail in Appendix A.) with some variations. It is observed that the

position of the first sign YOU for signer 2 is relatively higher than that for signer

1 in relation to their bodies. In addition, signer 2 signs PRINTING twice while

signer 1 signs it once.

Variations in sign appearance can be attributed to several factors. Sign lan-

guage as any other language, evolves over time. For example, some two handed-
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(a) Signer 1: YOU. (b) Signer 2: YOU.

(c) Signer 1: PRINTING.

(d) Signer 2: PRINTING.

Figure 1.8: ASL sentence: YOU PRINTING HELPI→YOU.

signs such as CAT and COW have slowly become one-handed over the years.

This may lead to differences in the choice of signs being used by the younger

and older generations. Regional variability is another factor. Deaf people from

different countries use different sign languages, for example, ASL in America,

British sign language in the UK, Taiwanese sign language in Taiwan, to name

a few. However, even within a country, e.g. America, deaf people in California

may sign differently from deaf people in Louisiana. Social and ethnic influences

may also affect sign appearance. At the individual level, variation occurs simply

because of the uniqueness of individuals. Differences in gender, age, style, habit,
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education, family background, etc contribute to variations in sign appearance.

In ASL, variations which appear in the basic components, i.e. handshape,

movement, palm orientation and location, are classified as phonological variation

by linguists. Some handshapes are naturally close to each other, for example, the

signs with handshapes “S” and “A” as shown in Figure 1.9 can easily resemble

each other when they are signed loosely. Also, some handshapes may be used

interchangeably in certain signs, for example, signs such as FUNNY, NOSE, RED

and CUTE are sometimes signed with or without thumb extension [11]. Studies

in [101] show that signs with handshape “1” (index finger extended, all other

fingers and thumb closed) are very often signed as signs with handshape “L”

(thumb and index extended, all other finger closed) or handshape “5” (all fingers

open) by deaf people in America. Figure 1.10 shows the three handshapes. Some

examples of sign with handshape “1” are BLACK, THERE and LONG.

(a) “S”. (b) “A”.

Figure 1.9: Handshapes “S” and “A”.

(a) “1”. (b) “5”. (c) “L”.

Figure 1.10: Handshapes “1”, “5” and “L”.

Locations of a group of signs may also change from one part of the body to an-

other. For example, the sign KNOW is prescribed to be signed at the forehead in

12



1. Introduction

the ASL dictionary, but, it is frequently signed at a lower position near the cheek.

In [101], it was found that younger signers tend to make these signs below the

forehead more often than older signers. Also, men tends to lower the sign location

more than women. The movement path and palm orientation of a sign may also

be modified when making a sign; for example, signs with straight line movement

can often be signed with arc-shaped movement or with palm orientation changing

from palm-down to palm-left. Assimilation of handshape, movement, palm ori-

entation and location also occurs in compound signs. It refers to a process when

the two signs forming the compound sign begin to look more and more like one

another. For example in the compound sign THINK MARRY which means “be-

lieve” in English translation, the palm orientation of THINK assimilates to the

palm orientation of MARRY [101]. Some other phonological variations include

deletion of one hand in a two-handed sign and deletion of hand contact.

Figure 1.11 shows the variations in the sign CAT when it is made by three sign-

ers. Signers 1 and 2 make a one-handed sign while signer 3 makes it two-handed.

Also, the handshapes used by signer 1 and signer 2 are somewhat different. Signer

1 uses handshape “G” while signer 2 uses handshape “F” to make the sign for

CAT. Naturally, this causes variation in the palm orientation as well. Variation

in the movement component can also be observed in the same example. The

straight line hand trajectory made by signer 3 is larger compared to signers 1

and 2. Figure 1.12 further illustrates the variation in movement direction where

signer 1 signs GO with direction slightly towards his left but signer 2 moves her

hands straight in front of herself.

There can be systematic variation present in the grammatical aspect of sign

language and two of the grammatical processes were described briefly in 1.1.5.

Typological variations concerning sign order also occur where signs are arranged
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(a) Signer 1: CAT.

(b) Signer 2: CAT.

(c) Signer 3: CAT.

Figure 1.11: Signer variation: one-handed vs. two-handed, handshape and tra-
jectory size.

differently in sentences. Lastly, some signs can be made in unpredictable ways.

For example, in [101] it was reported that the sign for PIZZA was made in very

different ways: some signers fingerspelled it, some signed it as a person taking a

bite out of a piece of pizza, and some signed it as a round plate on which pizza

is served. These variants of the sign do not share handshapes, locations, palm

orientation and movement.

The above variations in sign language are related to the linguistic aspects,

and a sign language recognition system involving multiple signers must robustly
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(a) Signer 1: GO.

(b) Signer 2: GO.

Figure 1.12: Signer variation: movement direction.

handle these variations. In addition, physical variations (e.g. hand size, body

size, length of the arm, etc of the signers) also contribute to the complexity of

building a robust sign language recognition system.

1.3 Movement Epenthesis

Movement epenthesis refers to the transition segment which connects two ad-

jacent signs. This is formed when the hands move from the ending location of

one sign to the starting location of another sign, and does not carry any infor-

mation of the signs. Linguistic studies of movement epenthesis in the literature

are limited and there is no well-defined lexicon for movement epenthesis. Perl-

mutter [119] also showed that movement epenthesis had no phonological repre-

sentation. Though movement epenthesis may not carry meaning, it can have

a significant effect on computer recognition of continuously signed sentences, as

the transition period of the segment can even be as long as a sign segment. This
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problem needs to be addressed explicitly for robust sign language recognition.

It must be noted that movement epenthesis is a different phenomenon from co-

articulation in speech; co-articulation does occur in sign language, and manifests

itself in some signs as hold deletion, metathesis and assimilation [101].

There has not been much research in the phonology of movement epenthesis,

and variations in movement epenthesis are not well-characterized. As it is a

connecting segment between signs, its starting and ending locations would depend

on the preceding and succeeding signs, respectively. Also, it can be conjectured

that any variations in the adjacent signs may affect the movement epenthesis.

Hence, it is conceivable that the variations seen in movement epentheses, are

comparable to variations in sign. As there are no well-defined rules for making

such transitional movements, dealing with movement epenthesis adds significant

complexity to the task of recognizing continuous signs.

1.4 Research Motivation

The main motivation of our research is to develop a sign language recognition

system which will facilitate communication between the deaf and hearing people.

The deaf tend to be isolated from the hearing world, and face many challenges

in integrating with hearing people who do not know sign language. Technologies

may provide a solution to bridge the communication gap through a system for

translating sign language to spoken language/text or vice versa. Such a system

can be useful in many situations; for example, in an educational setting, a teacher-

student translation system will be useful for communicating knowledge effectively;

in emergencies, deaf people can make use of the translation system to seek help.

There are several useful applications of this nature, e.g. TESSA [25], an applica-

tion built by VISICAST, aims to aid transactions between a deaf person and a
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clerk in a Post Office by translating the clerk’s speech to British sign language.

VANESSA [55] is a newer and improved version of an application by VISICAT,

which provides speech-driven assistance for eGovernment and other transactions

in British sign language. VANESSA is an attempt to facilitate communication

between the hearing and deaf people so the latter can be easily assisted in filling

complicated forms, etc.

A practical sign language recognition system would need to recognize nat-

ural signing by different signers. In real communication, signs are not always

performed according to textbook and dictionary specifications. Signing is not

merely making rigidly defined gestures; it has to make communication effective

and natural. This implies that sign recognition systems must be robust to signer

variations. Analogous to speech recognition, we expect well-trained signer de-

pendent systems to outperform signer independent systems. Typically, in speech

recognition, the error rate of a well-trained speaker dependent speech recognition

system is three times less than that of a speaker independent speech recognition

system [66]. However, many hours worth of sign language sentences are required

to train a signer dependent system well, obtaining this data could be difficult or

even impossible. Hence, a signer independent system is definitely desirable in ap-

plications where signer-specific data is not available. Extensive work on speaker

independence has been done in speech recognition, but it has yet to receive much

attention in sign language recognition. In the latter, it is mostly considered in

works related to hand postures or isolated signs but works on continuously signed

sentences are limited. Many of the current “signer-independent” systems in the

literature rely on an adaptation strategy, where a trained system is adapted to a

new signer by collecting a small data from him/her. Adaptation is a promising

approach but it has limitations; these are discussed in more detail in Chapter 2.
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Thus, a signer independent system that uses no adaptation at all is ideal.

Although sign language has similarities with speech that can be exploited,

sign language exhibits both spatial and temporal properties. Unlike speech which

is a sequential process, the constituent components of sign language can occur

simultaneously, and each of the manual components, i.e. handshape, movement,

palm orientation and location can contribute differently to the variations in a sign.

We will study and analyze the effects of the variations on these components, and

develop an appropriate modeling framework to achieve robust recognition.

1.5 Research Goals

The main aim of this work is to devise a sign language recognition system to ro-

bustly handle signer variation in continuously signed sentences. Variation in sign

language is a broad and complex issue as described in Section 1.2. Our focus is on

the phonological variations in sign language, i.e. variations in handshape, move-

ment, palm orientation and location. These are variations arising from different

signers who sign naturally without restricting themselves to textbook definitions.

We also include directional verbs which exhibit variation in grammatical aspect.

Though phonological variation is our key focus, we also consider others such as

variations in sign order which can occur in natural signing. However, signs made

with completely different appearances are beyond the scope of this thesis.

To recognize continuously signed sentences, addressing the problem of move-

ment epenthesis is crucial. Approaches in speech recognition which deal with

co-articulation effects are not suited to handle the movement epenthesis prob-

lem. Often, the duration of movement epentheses can be comparable to that of

signs and we cannot näıvely assume that movement epenthesis segments can be

modeled as parts of the adjacent signs. Even locating the movement epenthesis
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segments is a difficult problem as there is no well-defined movement epenthesis

lexicon for reference. This difficulty is compounded in natural signing, but must

be addressed to successfully recognize signs. We aim to find a solution to handle

movement epenthesis in continuous sign language recognition.

In linguistics, a phoneme is defined as the smallest phonetic unit of a language.

However, there is no standard phoneme definition in sign language. Though

handshape, movement, palm orientation and location are characterized as the

phonological components of sign language, linguists define a variable number of

units for each component. Due to this ambiguity, phonemes are often defined by

using an unsupervised clustering algorithm in sign language recognition works.

This is a reasonable approach for the static components, i.e. handshape, palm

orientation and location, but it is difficult to cluster the dynamic movement

component by static clustering algorithms. Thus, we propose a strategy to define

“phonemes” for the movement component automatically from the data.

Although four components are commonly specified by sign linguists, many of

current works in sign language recognition do not differentiate between move-

ment and location explicitly. Frequently, either 2-D or 3-D positions of the hands

are tracked and used to represent movement and location. For complete repre-

sentation of sign language as suggested by linguists, we include the movement

component unambiguously in our modeling. Movement component is made up

of direction and trajectory shape which are heavily dependent on the start and

end point of a hand gesture. The feature extraction process for the movement

component is challenging in continuously signed sentences as information of the

start and end point of hand motion is usually not clear. In this thesis, we seek a

representation that can characterize direction and trajectory shape for the move-

ment component and work out a procedure to extract the movement features
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from continuously signed sentences.

1.6 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 summarizes related works

to give an overview of the recent state of the art in sign language recognition.

The overall modeling concept and proposed strategy for handling signer variation

is also described in this chapter.

Chapter 3 presents the framework and experimental results for recognition of

isolated signs based on Signing Exact English (SEE). This was our preliminary

investigation on variations in sign language and provides useful insights for sub-

sequent works on continuous signing. Chapter 4 proposes an automatic phoneme

transcription procedure which is based on Principal Component Analysis (PCA)

for the movement component and standard clustering algorithm for the other

components. We discuss the strategy to deal with movement epenthesis and

present a conditional random field (CRF)/support vector machine (SVM) based

modeling framework which discriminates between sign and movement epenthe-

sis in Chapter 5. Chapter 6 describes the final recognition framework based

on a two-layer CRF model. Experimental results for the different subsystems

are presented in Chapter 7. This chapter also describes the data collected for

the continuous signing recognition experiments using Cyberglove and magnetic

trackers. For the final recognition framework, comparison experiments based on

Hidden Markov Models (HMMs) are also given with results, analysis and discus-

sion. Lastly, Chapter 8 gives the conclusions of this thesis and suggests possible

extensions for future work.
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Everything has its wonders,

even darkness and silence,

and I learn,

whatever state I may be in,

therein to be content.

Helen Keller (1880-1968)

2
Related Works and Overview of

Proposed Approach

2.1 A Brief History

Research on computer recognition of sign language started during early 90’s with

recognizing static hand postures or fingerspelling handshapes. However, all four

components, i.e. handshape, movement, palm orientation and location are needed

for complete recognition of sign meaning. Promising results on handshape recog-

nition motivated more researchers to study and examine the dynamic aspects

of sign language, and many initial works addressed the simpler problem of rec-

ognizing isolated signs as a first step towards recognizing continuously signed

sentences.
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Sign language recognition experiments use either vision or glove and magnetic

tracker-based input. One of the earliest works on recognizing static handshape

is by Beale and Edwards [15] who used a vision-based approach to recognize

hand postures. Artificial neural networks (ANN) have been widely used for fin-

gerspelling handshape and isolated sign recognition, for example in [15, 30, 49,

64, 68, 74, 94, 147, 160, 171]. In more recent works, there has been a shift to-

wards using HMMs for dynamic sign language recognition, due to their capability

of handling spatio-temporal variations [1, 22, 59, 69, 70, 78, 103, 142, 145, 175,

179, 181]. Other approaches such as template matching [5, 57, 108], PCA-based

techniques [28], decision tree [63], discriminant analysis [26], graph or shape tran-

sition networks [50, 60], dynamic programming [29, 31, 86, 98, 131], unsupervised

clustering [112] were also explored. Most of these works used only one signer

for their experiments, and the number of signs was typically not more than 200.

Generally, ANN and HMM approaches provided better performance as compared

to other approaches, and recognition accuracy is ranging from 85.0% to 99.9%.

On the other hand, template matching approaches often yielded poorer accuracy.

Recently, recognizing continuously signed sentences has become the major

focus. Many works started by devising algorithms to recognize the basic meaning

of manual signs, but later, more researchers began to explore the grammatical

aspects of sign language including non-manual signals. There are many issues

to be addressed in continuous signing and many problems are yet to be solved.

These include segmentation of continuously signed sentences, scalability to large

vocabulary, dealing with movement epenthesis and co-articulation, robustness

to noise, etc. A comprehensive review of sign language research was presented

in [115]. Other good reviews can be found in [43, 100, 143]. In the subsequent

sections, we describe the progressive development of the state of the art in sign
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language recognition and discuss the major issues in continuous signing.

2.1.1 Recognition of Continuous Signing

Sign language gesturing in sentences is continuous, and needs to be deciphered

continuously. At the least, a practical sign language recognition system should

recognize continuous signing; a fully functioning system should be capable of

handling the grammatical aspects of sign language, including the non-manual

components.

The transition from isolated sign recognition to continuous signing was made

by Starner et al. [134, 135] who used HMMs to solve sentence-level ASL recog-

nition with a 40 word lexicon in a vision-based approach. Strict grammar rules

were applied in the system and the whole sign was taken as the smallest unit.

The results demonstrated high recognition accuracy. Since this work in the late

90’s, research in continuous sign recognition has increased tremendously. A good

example is the SignSpeak project [33, 34] for translation of continuous sign lan-

guage. They used a vision-based approach and tackled many problems in the

recognition of continuous signing. Their works include extracting features in

manual signs [39], tracking related techniques [35, 36, 38, 40], adapting speech

recognition techniques to sign language recognition [32], providing benchmark

databases [37], phonetic annotation [88] etc.

Good performance is certainly the ultimate goal of a sign language recogni-

tion system, but before this can be achieved, several problems need to be tackled

successfully. As mentioned earlier, there are many noteworthy issues in continu-

ous sign language recognition as compared to isolated signs, and thus, continuous

signing recognition is discussed in more detail with respect to the major issues in

the subsequent sections.
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2.2 Issue 1: Segmentation in Continuous Signing

Unlike isolated signs, the start and end points of a sign are not well-defined in

continuous signing. There are two ways to approach this problem, viz. explicit

segmentation, where segmentation is performed prior to the classification stage

and implicit segmentation, where segmentation is done along with classification.

In explicit segmentation the main concern is to choose the correct cues that

will allow inferring the physical transition points. Harling and Edwards [62] used

hand tension as a cue to perform segmentation on two British sign language sen-

tences. This was based on the idea that intentional gestures are made from one

position to another with a tense hand. They also pointed out that higher level

inputs such as grammar of the gestural interaction is crucial for segmentation

tasks. Minimum velocity of hand movement was used to indicate hand transition

boundaries in [87, 111]. Sagawa and Takeuchi [125] proposed that velocity alone

was inadequate to segment sign language sentences in general, and used a param-

eter defined as “hand velocity” which included changes in handshape, direction

and position. Minimal “hand velocity” was used as a candidate for a border. In

addition, a transition boundary was indicated when a change in the hand move-

ment direction was above a threshold. Recognition was carried out according

to the method presented in [126]. Wang et al. [164] also used a similar method

for trajectory segmentation. In Liang and Ouhyoung [96], transition boundaries

were identified with time-varying parameter (TVP) detections. They assumed a

gesture stream was always a sequence of transitions and posture holdings. When

the parameter TVP fell below a threshold, indicating a quasi-stationary segment,

it was taken to be a sign segment. 250 signs in Taiwanese sign language were

recognized with 80.4% accuracy by HMMs trained with 51 postures, 6 orienta-

tions and 8 motions. Gibet and Marteau [54] identified boundary points where
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the radius of curvature became small and there was a decrease in velocity. They

used the product of velocity and curvature to detect boundary points. Rao et

al. [123] used the spatio-temporal curvature of motion trajectory to describe a

“dynamic instant”, which is taken to be an important change in motion charac-

teristics such as speed, direction and acceleration. These changes were captured

by identifying maxima of spatio-temporal curvature. Walter et al. [162] used a

two-step segmentation algorithm for 2-D hand motion. They first detected rest

and pause positions by identifying points where the velocity dropped below a pre-

set threshold. After this, they identified discontinuities in orientation to recover

strokes (movement and hold) by applying Asada and Brady’s Curvature Primal

Sketch [8]. In [67], continuously fingerspelled signs consisting of 20 handshapes

and 6 local small movements at the palm area were investigated. A distance-based

hierarchical classifier was used for handshape and 1-NN or näıve Bayes classifiers

with genetic algorithm were used for movement. The handshape segments fol-

lowed by movement information was used to decode the meaning of the signs.

However, the evaluation of their final framework was not clear. They only tested

on two different spelled sentences and reported a total of 19 and 18 deletion errors

in each type of sentence.

Generally, these approaches devise rules to characterize boundary points based

on the selected features and appropriate tuning of threshold values. The effec-

tiveness of the segmentation algorithm depends on the selected features and the

chosen thresholds. Although velocity, change of directional angle, and curvature

are commonly used for identifying boundary points, other features such as those

used in [62, 72, 92] may also be useful. However, when more features are used,

the rules become complex and difficult to formulate. In addition, it is difficult

to set thresholds for the features when the sentences are signed naturally, as the
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variations are complex, and the signer’s habits, rhythms and speed will affect the

estimation of boundary points. Hence, it is necessary to have an effective algo-

rithm to handle the problem. Fang and Gao [45] used a recurrent neural network

to segment continuous Chinese sign language. The temporal data points were

labeled as left boundary, right boundary or interior of a segment. The features

for segmentation were automatically learned by a self-organizing map and the

segmentation accuracy was reported to be 98.8%. However, the nature of the

sentences used is not clear and, and training recurrent neural networks is not

straightforward. Bashir et al. [10] detected discontinuities in the motion trajec-

tory by using curvature to measure the sharpness of bend in 2-D curves. They

used hypothesis testing to locate the points of maximum change of the curva-

ture data. In [72], a hierarchical activity segmentation approach was proposed to

segment dance sequences. Force, kinetic energy and momentum were computed

from the velocity, acceleration and mass at the lowest level of the hierarchy, to

represent activity. Each choreographer profile was represented by a trained näıve

Bayesian classifier, and the average accuracy was 93.3%.

Besides the segmentation approach which relies on physical cues, other strate-

gies for temporal segmentation have also been proposed. Santemiz et al. [127]

aimed to extract isolated signs from continuous signing. They showed that mod-

eling the signs with HMMs using the segmented results from DTW provided

better performance than using HMMs or DTW separately, and they obtained

an accuracy of 83.42%. Lichtenauer et al. [97] proposed that time warping

and classification should be separated because of conflicting likelihood model-

ing demands. They used statistical DTW only for time warping and combined

the warped features with combined discriminative feature detectors (CDFDs)

and used quadratic classification on discriminative feature Fisher mapping (Q-
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DFFM). They showed that their strategy outperformed HMM and statistical

DTW in a proof-of-concept experiment. A unified spatial segmentation and tem-

poral segmentation algorithm was proposed in [4]. It consisted of a spatiotem-

poral matching algorithm, a classifier-based pruning framework which rejected

poor matches, and a sub-gesture reasoning algorithm that was able to identify

the falsely matched parts. They evaluated their algorithm on hand-signed digits

and continuous signing of ASL and good results were shown. In [95], continuous

gestures were segmented and recognized simultaneously. They either applied mo-

tion detection and explicit multi-scale search to step through all possible motion

segments, or used dynamic programming to detect the endpoints of a gesture.

The best recognition rate for two arm and single hand gestures was 96.4%.

In schemes that implicitly segment and recognize, HMMs are a widely used

solution. For continuous recognition, it is required to discover the most probable

hidden state sequence which produced the observation sentence. The Viterbi al-

gorithm in HMMs is a natural tool to find the single best state sequence for an

observation sequence. As search is carried out along with recognition, the sentence

is implicitly segmented. Some of the earliest works to use HMMs for continuous

sign recognition was by Starner et al. [134, 135]. Bauer et al. [12] used task beam

search along with continuous HMMs to recognize continuous signs from a single

colour video camera. They obtained 91.7% recognition rate based on a lexicon of

97 signs in German sign language (GSL). With the addition of bigram language

model [13], the recognition rate improved to 93.2%. Volger and Metaxas [152]

also used HMMs to recognize a 53 sign vocabulary. They attempted a temporal

segmentation of the data stream by coupling three-dimensional computer vision

with HMMs. The continuous data was segmented into parts with minimal ve-

locity and the segments were fitted to lines, planes or holds. A directed acyclic
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graph pooling the primitives was used to determine the sequence of signs and the

results served as a backup to check the Viterbi algorithm outputs. It was pointed

out in the work that requirement of large amount of training data and the lack

of contextual information are some of the major problems of using HMMs alone.

Furthermore, in practice, there is always the complexity of training HMMs. More

recently, Holden [65] used HMMs with grammars to recognize colloquial Auslan

phrases. Experiments were conducted with 163 sign phrases of varying grammat-

ical formations, and recognition accuracies of about 97% and 99% were obtained

at the sentence and sign levels, respectively. Maebatake et al. [102] applied multi-

stream HMMs to recognize 25 signed sentences consisting of 81 signs. They used

only location and movement components and hand position data was collected

with Polhemus FASTRAK. Different weights were assigned to the two compo-

nents to specify their importance. They achieved 75.6% accuracy with higher

weight given to the movement component. In [76], a threshold HMM was used

based on a parallel HMM network [153] and used to spot 8 signs from 240 video

clips. 95.6% detection rate and 93.2% realiability was obtained. Although the

accuracy was high, the experiment used only a small number of signs. In [140],

dynamic Bayesian network (of which HMMs are a special case) was used to rec-

ognize continuous hand gestures with a recall rate of 84.00% and precision rate

of 80.77%.

Recently, conditional random fields (CRFs) have provided a promising avenue

to work with sequential data. Their major advantage over HMMs is the relaxation

of the strong independence assumptions which are made in HMMs. CRFs were

first used by Lafferty and McCallum [91] to segment and label sequence data

for the parts-of-speech tagging problem. Subsequently, many works have used

CRFs to solve problems involving sequential data to recognize text, speech and
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sign language. The original framework of CRFs is not geared to handle frame-

based sequential features. Hence, many variants of CRFs have been proposed

and one example is the hidden CRF [122] for dealing with frame-based data as

encountered in speech or sign language recognition.

Applications of CRFs to sign language recognition have been relatively recent.

Yang and Sarkar [172] attempted to use CRFs to detect co-articulation in ASL

and obtained 85% detection accuracy. Lee et al. [139, 167, 168, 169, 170] used

a threshold model based on CRFs in a series of works for sign spotting. They

included an additional non-sign label in their CRF model but avoided using a

fixed threshold to discriminate between sign and non-sign patterns. In their

work, a CRF model was first trained without the non-sign samples. A threshold

model with CRF was then built by adding the label for non-sign patterns in the

trained CRF using the weights of the state and transition feature functions of

the original CRF. They adopted a threshold model proposed by Dugad et al. [75]

to compute the weights for the state feature functions of the non-sign patterns.

For the weights of the transition feature functions, they conjectured that the

frequency of non-sign patterns is larger than sign patterns, and formulated a way

to calculate the weights. They tested the framework on continuous ASL sentences

consisting of 48 signs and obtained 87.0% spotting rate and 93.5% recognition

rate on the spotted isolated signs. Later, they presented extensions to spot signs

and fingerspellings simultaneously using hierarchical CRFs [167, 168]; this was

able to distinguish signs, fingerspellings and non-signs, yielding 83.0% spotting

rate for signs and 78.0% spotting rate for fingerspellings. Besides hierarchical

CRFs, they also used a conventional semi-Markov [23] CRFs to perform sign

language spotting. Spotting rates for ASL and Korean sign language were 77.1%

and 71.0%, respectively.
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2.3 Issue 2: Scalability to Large Vocabulary

Another important objective is to accommodate a large vocabulary. There are

usually a few thousand signs in sign language lexicons and the vocabulary size

will keep increasing with the addition of new signs.

Analogous to speech recognition, signs can be broken down into phonemes

which are defined as the smallest contrastive units in a language model. The ra-

tionale for this representation is that a limited number of phonemes can be used to

represent a large number of signs. However, the major difficulty in sign language

is that unlike phonemes in speech which are linguistically well defined and can

be used without ambiguity to transcribe speech sentences, there is no consistent

phoneme lexicon in sign language, and is dependent on the modeling approach

and features used in different sign language recognition systems. There is also

no standard way of defining phonemes in sign language, and different schemes

have been used for phoneme transcription. Sign linguists such as Stokoe [137]

and Liddell and Johnson [99] offer some guidelines to model phonemes by distin-

guishing the basic components of a sign gesture as consisting of the handshape,

hand orientation, location, and movement. Stokoe emphasized the simultaneous

organization of these components while Liddell and Johnson’s Movement-Hold

model emphasized sequential organization.

Currently, there are two main approaches for phoneme transcription viz. 1)

transcription based on sign language models defined by sign linguists, and 2)

transcription which is dependent on the data collected and features used. In the

first approach, the sign components are quantized into limited categories and

sign language models such as Stokoe’s or Liddell’s are used to label the signs.

Vogler and Metaxas [154] adopted this approach and defined the phonemes for

movement and location, using Liddell’s model to recognize 22 ASL signs based on
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these phonemes. The small vocabulary size makes the transcription straightfor-

ward. They obtained an accuracy of 91.2%. Wang et al. [165] defined a phoneme

as the smallest unit that has meaning and can distinguish one sign from an-

other. They performed an extensive study of Chinese sign language (CSL) and

explicitly defined a large number of phonemes, about 2400 for CSL. However,

the transcription process and the resulting phonemes are not clearly described.

Similarly, a subword approach was adopted in [180]. They used adaptive boost-

ing (AdaBoost) and HMMs to recognize 102 single-handed subwords of Chinese

sign language with an accuracy of 92.7%. A manual transcription process can

be very laborious and time-consuming, and when the vocabulary size is large

this approach is unreliable and impractical. Hence, it is important to devise an

automatic method to define phonemes.

In the data dependent approach, many works use unsupervised learning to de-

fine phonemes automatically. Walter et al. [162] adopted a mixture density-based

clustering approach for transcribing phonemes from gesture trajectory segments.

Mixture parameters were determined using expectation maximization (EM) and

minimum description length (MDL) was used as the criterion to automatically

determine the number of clusters. Bauer and Kraiss [14] used k-means clustering

to self-organize trajectory segments into fenones. In this approach, the fenones

formed usually do not relate to phonetic concepts. Also, temporal segments may

not be properly aligned when segments are obtained from continuously signed

sentences. This poses problems for clustering algorithms such as k-means which

use the Euclidean distance measure. Hence, a complex clustering algorithm is

often required to handle the problem. Wang et al. [163] adopted dynamic pro-

gramming (DP) to segment the data streams, and a hybrid of neural networks and

k-means was used to cluster the segments. Fang et al. [46] proposed a temporal
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clustering algorithm to group segments using concatenated handshape, position

and orientation features of both hands. The temporal clustering algorithm was

based on a modified k-means algorithm proposed by Wilpon and Rabiner [166].

However, these are complex and computationally expensive. The work by Han

et al. [61] explored the modeling and segmentation techniques of the subunits

of sign language. Boundary points were identified by temporal discontinuities of

the hand motion. A clustering procedure utilizing spatio-temporal features was

used to obtain the subunits. They claimed that their proposed model was highly

correlated to linguistic models though their primary motivation was to achieve

scalability to large vocabulary. More recently, Nayak et al. [109, 110] attempted

to find subunits at the sentence level and defined signemes as the common parts

in signs. They first represented each sign sequence as a series of points in a low

dimensional space of relational distributions, and then performed speed normal-

ization to extract the signemes using a dynamic programming framework. Later

in [110], they improved the framework by using iterated conditional modes (ICM)

and more comprehensive experiments were conducted. They tested on 10 signs

from 136 sentences and obtained 98 correct, 20 partially correct and 18 incor-

rect cases out of 136 signemes. One key limitation of their proposed model is

that it works only with a single signeme instance, i.e. it requires several runs

to extract different signemes. Fenemes were defined in [177] as subwords which

were indistinguishable based on some discriminative features. They applied state

tying to the inseparable states detected by segmentally-boosted HMMs and this

provided them an intuitive indication of which segments came from the same

feneme. Though they showed that the fenemes obtained were perceptually mean-

ingful, the approach was sensitive to “bad signing”. In [61], a subunit was defined

as a motion pattern with interrelated spatio-temporal features. They detected
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the subunit boundary points using hand motion discontinuity obtained from mo-

tion speed and trajectory. Temporal clustering based on DTW was then applied

to obtain the subunits. From the works described so far, it is again apparent that

there is no standard definition for the smallest linguistic units in sign language,

and an automatic transcription procedure is required.

A multiple parallel channel framework is another strategy for scalability to

large vocabulary. In many of Gao’s works, e.g. [44, 45], the features from gloves

and trackers were tightly coupled into a combined feature vector for recognition.

However, in sign language, there are many simultaneous processes and thus, tight

coupling is unsuitable, especially for a signer independent system. Another dis-

advantage of this approach is that a larger number of classes would need to be

distinguished (i.e. the product of the number of classes in the individual chan-

nels). Bossard et al. [20] discussed the importance of simultaneous information in

a sign language system, where many elements occur simultaneously and proposed

a parallel channel framework. Several works of Vogler and Metaxes used this

modeling approach. Parallel Hidden Markov Models (PaHMMs) were proposed

in [153] to address the scalability problem. PaHMMs model N processes with N

independent HMMs with separate outputs based on the assumption that the sep-

arate processes change independently and produce independent outputs. Their

experimental results justified this assumption. In [155, 156], they further applied

the PaHMMs to a modified Movement-Hold model. Simultaneous inputs were

broken down into independent channels. One channel was used to describe the

“dominant” hand movement-hold segments and the body locations while other

channels were used to describe the “dominated” hand segments, handshape, hand

orientation and wrist orientation.
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2.4 Issue 3: Movement Epenthesis

In continuous sign language recognition, an important issue is to efficiently tackle

movement epenthesis, the extra connecting hand movement between two succes-

sive signs. The presence of movement epentheses (these are not defined in the

dictionary) adds to complexity in continuous sign recognition. Different signers

could have different ways of making the connecting movements as there are no

strict “rules” in the sign language lexicon which specify how a movement epenthe-

sis should look. Also, co-articulation effects, similar to speech are present, where

the appearance of the end and start points of the preceding and succeeding signs

are influenced. Signers who sign slowly will have minimal co-articulation between

signs while a fluent signer will sign faster with heavy co-articulation. An increase

in the co-articulation effect results in an increase in the statistical variability of

the signs, and a consequent decrease in the recognition rate.

Similar to speech recognition, implementing a context-dependent model was

one of the common ways to handle movement epenthesis in the early years. Vogler

and Metaxas [151] addressed the issue with bi-sign context-dependent HMMs.

The number of models required to cover all possible contexts on a 53 sign vo-

cabulary was originally 532 = 2809, but this was reduced to 337 models after

tying some of the HMM parameters together. Bigram language models were also

included to improve the experimental results, and a recognition rate of 91.7%

was obtained on the 53 sign vocabulary. A similar approach can be seen in Gao

et al. [52]. However, Gao employed dynamic programming to segment the train-

ing sentence into basic subword units, and obtained a recognition rate of 95.2%.

Wang et al. [164] pointed out that using a context-dependent model to solve the

movement epenthesis and co-articulation problem is not efficient especially when

the vocabulary size is large; the number of basic phonemes to be modeled is itself
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already large, and if movement epenthesis is also included, the number of possible

context-dependent phonemes i.e. “TRIPHONE” will be too large to be handled

efficiently. This approach is more suited for the co-articulation problem but not

for handling movement epenthesis, which is a non-trivial segment between signs,

and needs to be explicitly addressed. Movement epenthesis and co-articulation

should be differentiated as two separate problems in their own right. Context-

dependent models which are commonly used in speech recognition to solve the

co-articulation problem are not suitable to solve the movement epenthesis prob-

lem in sign language.

The movement epenthesis problem was implicitly addressed in Yuan [178]. It

was proposed that since linguistic restrictions were relatively loose in sign lan-

guage, a context-independent model could be used. Connections between two

subwords were classified into weak connections and strong connections. Strong

connections indicated the connection of subwords in one sign word and were

recognized with the use of subword trees to aid the Viterbi algorithm. Weak con-

nections indicated the connections of words without such a relationship. They

were recognized by constraining the Viterbi algorithm into every single model

and end score at each frame was compared. 70% accuracy was shown. A clearer

strategy to deal with movement epenthesis was to model the movement epenthesis

explicitly [151]. However, it was assumed that the number of movement epenthe-

ses was finite and limited. Phonemes for movement epenthesis were obtained by

k-means clustering. The main advantage of this approach was that the num-

ber of models required and the complexity were reduced. The accuracy with

this method was 95.83%. Gao et al. [47, 53] also adopted explicit modeling of

movement epenthesis and proposed transition movement models in their frame-

work. They observed that transition movements could be grouped and proposed a
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more general algorithm for temporal clustering with DTW. With this algorithm,

manual segmentation of the continuous signs was avoided as the algorithm could

automatically segment the transition movement with a bootstrap iteration. The

Viterbi algorithm serached for the final decoded path from the sign models and

transition movement models. Assan and Grobel [9] modeled transitions with

a separate single state HMM. Unigram language model was employed and 73%

recognition rate was achieved. In [17], continuous hand gesture segmentation and

gesture transition point detection were examined. The term “co-articulation” was

loosely used in their work to describe the transition points. They first detected

the gesture boundary points and the segments were matched with a finite state

machine for co-articulation detection. One of the drawbacks of this work is that

they assumed a clear “pause” between two gestures but this is not the case in

natural continuous signing. Explicit modeling of movement epenthesis though

apparently a feasible solution, adds complexity to the signer independent system

as variations in movement epenthesis could be large as well. Often, there are

more movement epenthesis models than phone models for signs even in a signer

dependent system. For example, Vogler [150] defined 78 phone models for signs

and 133 movement epenthesis models, which is 70% more movement epenthesis

models than phone models. The common way to reduce the number of movement

epenthesis is to cluster them, but this may result in a loss of modeling accuracy.

Recently, there has been more emphasis on the movement epenthesis problem

in some works. Yang and Sarkar started to examine the movement epenthesis

problem in [172]. They defined movement epenthesis as co-articulation with

longer durations. Their aim was to segment the signs in continuous signing by

using CRFs to detect the movement epenthesis frames in a video sequence. They

obtained 85.0% accuracy for segmenting ASL signs. However, the CRF-based
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approach was not extended in their later works. Instead, they adopted an en-

hanced level building algorithm for handling movement epenthesis in [173, 174].

They trained models based on signs only. The basic idea was to have trained

model signs using the space of probability functions (SoPF) with Mahalanobis

distance measure. The enhanced level building algorithm was used to simulta-

neously segment and match signs to continuous sign language sentences in the

presence of movement epenthesis. Movement epenthesis was automatically dis-

carded along the matching process. They enhanced the classical level building

(eLB) algorithm [106] based on dynamic programming and coupled it with a tri-

gram grammar, to obtain 83.0% word level recognition rate in [173]. Further

experiments were conducted in [174] where they tested their algorithm on ASL

data sets and compared the performance of their method with CRFs and latent

dynamic CRF-based approaches. They achieved 40% improvement over CRF-

based approaches in terms of frame labeling rate, and 70% improvement in sign

recogntion as compared to the unenhanced DP matching algorithm. The works

by Lee et al. [139, 167, 168, 169, 170] mentioned in Section 2.2 adopted the strat-

egy of spotting signs in continuously signed sentences and performed recognition

on the signs. In their approach, movement epenthesis segments are bypassed

automatically. The proposed CRF threshold models and hierarchical CRF-based

model showed promising performance. Kelly et al. [76, 77] also proposed a paral-

lel HMM threshold model to handle movement epenthesis in sign language based

on the threshold HMM proposed by Lee and Kim [93]. The key idea in threshold

HMM is that the likelihood can be used as an adaptive threshold for selecting

the proper gesture model. Hence, a dynamic threshold based on the likelihood

measure was computed in [76, 77] to distinguish between signs and movement

epentheses. Experiments conducted in [77] showed that 100 different types of
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movement epenthesis and eight different signs were identified.

2.5 Issue 4: Signer Independence

A practical requirement for a sign language recognition system is to be signer

independent. Presently, many of the continuous sign language recognition works

report results on a single signer, e.g. [9, 96, 164, 165, 170]. Most works by Bauer

and Vogler are also based on one signer. Other signer dependent works use more

signers but usually the same signers are used to train and test the system, for

example, [2, 28, 138]. Deng [28] used data from two non-native signers but tested

the system with unseen data from the same signers used for training and reported

an accuracy of 70.0%. A fuzzy-ruled approach was used in [138] to recognize 3-

D arm movements in Taiwanese sign language. 10 persons were asked to make

10 different arm movements and each arm movement was made 10 times. They

showed recognition rate of 96.6%. A large amount of data was collected from

60 volunteers in [2]. For each gesture, 40 out of the 60 samples were used for

training while the remaining 20 samples were used for testing. A recognition rate

of 87.0% was obtained; however the results were all on “seen” signers, i.e. those

who contributed data to the training set.

Signer independent recognition is challenging due to variations in handshape,

bodysize and gesturing habit or rhythm among signers as discussed in Chapter 1.

Kadous [71] attempted to investigate signer independence based on instance-

based learning and a decision-tree. In full round-robin tests by leaving one signer

out each time, unsatisfactory results, ranging from 12.0% to 15.0%, were obtained.

This demonstrated the difficulty of devising a signer independent system. The

framework may fail to work for a new signer without a proper strategy. Generally

there are two key strategies for signer independent recognition. One is to build
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a baseline recognition system using one signer or a few signers and adapt the

system to new signer using a small amount of data from the new signer. Another

approach is to devise a robust recognition algorithm that is designed to be tolerant

to signer variations and thus anticipate good generalization.

At present, this aspect has not received much attention in the literature. Most

works that considered signer independence dealt only with isolated signs recog-

nition. Waldron and Kim [160] used data from one signer to train their system

which consisted of 36 handshapes, 10 locations, 11 orientations and 11 hand move-

ments. They separately collected samples for 14 signs from six persons including

the signer who was used in training and used them for testing, a recognition

rate of 86.0% was achieved. A multilayer classifier using HMM and SVM was

used in [176] to recognize 4942 signs. They claimed to have a signer independent

system and reported results from three signers with an average recognition rate

of 89.40%. However, the training set was not clearly explained in their work.

Fang et al. [46] demonstrated signer independence in Chinese sign language with

large vocabulary. They used a fuzzy decision tree together with self-organizing

feature map/hidden Markov model (SOFM/HMM) to recognize 5113 signs. They

tested their framework with six signers and reported an average recognition rate

of 83.7% for the unseen signer. Zieren and Kraiss [182] achieved a recognition

rate of 99.3% for a person dependent system which recognized 232 isolated signs

in a controlled environment. They attempted to normalize the extracted fea-

tures to obtain person independent system, but this yielded only a recognition

accuracy of 44.1% for 221 isolated signs. This again shows that performance

can drop significantly due to strong interpersonal variance in signing. Aran and

Akarun [6] adopted a multi-class classification strategy using Fisher score to de-

vise a signer independent sign language system. 19 signs consisting of manual and
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non-manual components were used in their experiments. They performed eight-

fold, leave-one-out cross validation experiments. Best recognition rate of 65.71%

was obtained, outperforming the HMM approach which yielded 52.82% recogni-

tion rate. Ding and Martinez [31] adopted a vision-based approach to extract

handshape, movement and location features. They used video sequences from

10 different persons with each person performing 38 signs. Each component was

recognized separately with some generic approaches and a tree-based classifier

was used to combine the information of the three components for recognizing the

final sign. The average recognition rate on an unseen signer was 93.9%. In [3],

30 isolated signs were recognized with standard HMMs. They showed 96.74%

and 93.80% recognition rates in signer-dependent experiments with offline and

online mode. For signer independent experiment in offline mode, they used 1500

samples from eight signers to train the HMMs and tested with 3545 samples from

another 10 signers. In online mode, they trained the HMMs with 1800 samples

from eight signers and tested on 1500 samples from 10 different signers. The

respective results were 94.2% and 90.6%. Caridakis et al. [22] proposed a self

organizing Markov map to recognize hand gestures and targeted to tackle intra

and inter-person variation. Their approach involved transformation of a gesture

representation from a series of coordinates and movements to a symbolic form

and classification was based on probabilistic models. The framework was tested

on 30 artificial gestures but the number of persons involved in their experiments

was not clear. They conducted 10-fold cross validation experiment to evaluate

the generalization capability of the proposed method and reported recognition

rate of 93.0%. The work by Lichtenauer et al. [98] was slightly different. Instead

of recognizing different signs, they wanted to classify a sign as “correct” and “in-

correct”. A set of one-class classifiers was built and each classifier was used to
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judge the correctness of one sign. They extracted 3D coordinates of the hands

from stereo images and used statistical dynamic time warping to align the image

features with a fixed length feature model. The likelihood of the selected features

was calculated based on a Gaussian model. Their vocabulary consisted of 120

signs collected from 75 persons, and 75 examples were made for each sign. They

tested their system using 5-fold cross-validation. For each sign in each cycle,

samples from 60 persons was used for training and the remaining 15 for testing.

Classification accuracy of 96.5% was obtained.

The performance of the signer independent schemes proposed in different

works are generally good; however, these works are based only on hand postures

or isolated signs. Works on signer independence for recognition of continuous

signing are scarce. Fang et al. [44, 45] demonstrated some signer independent at-

tributes in their continuous recognition systems. A divide-and-conquer approach

was presented to recognize continuous signs from CSL. A recurrent network based

approach was first applied to segment the continuously signed sequences into iso-

lated signs. Outputs of the recurrent networks were then used as states of the

HMMs and Viterbi algorithm was applied to perform sign sequence decoding.

Three signers were asked to sign 100 sentences consisting of 208 signs twice.

They used partial data from two signers for training and left out one signer as

“unseen” by the system. They showed recognition accuracy of 85.0% for the

unseen signer while the standard HMM approach showed 81.2%. Nevertheless,

the nature of the signs and sentences in their works is not clear, nor how their

methodology adequately addresses signer independence. Farhadi et al. [48] pro-

posed a somewhat different approach based on transfer learning. The key idea

of transfer learning is to allow information obtained from learning one task to

be transferred to another. Their method relied heavily on the discriminative fea-
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tures which described the intrinsic properties of a sign. Logistic regression was

used to spot the word boundaries, and discriminative feature spaces based on

the dictionary were used to compare with the test image feature spaces. They

trained their system to recognize 90 signs and tested it on a new signer signing 40

signs in frontal view as well as 3/4 view, obtaining 64.17% and 62.5%, accuracy,

respectively. In [174], 10 sentences were collected from three signers and two ex-

periments based on 5 and all 10 sentences were conducted to test their proposed

enhanced level building recognition framework. Experiments by leaving one out

was carried out in a round robin manner. The best result was 80% but the worst

accuracy was lower than 30%.

The signer independent works we have described so far do not use adapta-

tion. Adaptation is common in speech recognition to generalize to a new speaker.

Some researchers have also examined this approach to sign language recognition.

An adaptation scheme was applied in [6] and three randomly selected examples

per sign were used for the adaptation. With the SFFS search strategy, the recog-

nition accuracy without adaptation was 65.21% while the result with adaptation

was 68.35%. Adaptation with MAP estimation was applied to Bayesian networks

trained to recognize 20 simulated isolated sign gestures in [114]. Data from three

signers was used to train the Bayesian networks, and one new signer was used for

testing. Accuracies of 52.6% and 88.5% were obtained for experiments without

adaptation and with adaptation, respectively. Agris et al. [159] devised a vision-

based recognition system that adapted to unknown signers to recognize 153 iso-

lated signs. Their adaptation algorithm was based on both maximum likelihood

linear regression (MLLR) and maximum a posteriori (MAP) estimation. Three

signers were used for training the signer independent model, and one signer was

used for testing. Supervised adaptation with 80 adaptation sequences yielded a

42



2. Related Works and Overview of Proposed Approach

recognition accuracy of 78.6% while the signer independent system without adap-

tation gave 55.5% recognition accuracy. Though promising results are shown in

the system, it recognizes only isolated signs. Also, only one signer was tested with

the system. They further extended signer independence works to recognition of

continuous signing in [157, 158]. In [158], a database was created to tackle signer

independence for continuous signing in German sign language. The database

comprised 450 basic signs making up 780 sentences signed by 20 different signers.

Preliminary recognition experiments were conducted based on the HMM frame-

work. For signer independent experiments with adaptation, accuracy of 70.4%,

67.8%, and 64.9% were reported for vocabulary size of 150, 300 and 450, respec-

tively. A more comprehensive work was carried in [157]. They applied rapid

adaptation for continuous sign language recognition with combined approach of

eigenvoice (EV), maximum likelihood linear regression (MLLR), and maximum a

posteriori (MAP). MLLR and MAP are two commonly used adaptation strategies.

The eigenvoice approach [90] mainly provides some constraints and thus reduces

the number of free parameters to be estimated during the adaptation process.

They found from experiments that the EV+MLLR+MAP approach provided the

best results. They tested on the full corpus consisting of 450 signs and 780 sen-

tences, with each sentence performed by 25 native signers. HMMs were trained

to perform classification and a baseline recognition accuracy of 65.3% was shown

for a leaving-one-out test. They obtained an increase in recognition accuracy to

75.8% with supervised adaptation using the EV+MLLR+MAP approach.

2.6 Issue 5: Beyond Recognizing Basic Signs

Thus far, most of the efforts have been in recognizing basic signs. Often, results in

the literature are reported on signs that are textbook based but signs vary accord-
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ing to situation. Moreover, meanings which are imparted by non-manual signs

and inflections have not received much attention. These are essential features

for clear, meaningful sign language communication and need to be considered

for a sign language recognition system to be fully functional. With respect to

grammatical aspects of manual signing, only Braffort [21] and Sagawa [124] have

looked at inflected signs in terms of spatio-temporal aspects. In Braffort [21],

signs were separated into conventional signs and non-conventional signs. The

non-conventional signs were those created depending on context. They further

distinguished variable signs as conventional signs that had one or more variable

parameters, depending on context. HMMs were used for classification. There

were two modules in the classifier, one for classifying the conventional signs and

the other for the non-conventional signs and variable signs. The assumption made

was that whenever a non-conventional sign or variable sign was input to a conven-

tional classifier module, it would be identified as an “unknown sign” and would

then be processed by the other module. After the classification, an interpreter

module was used to give more information or meaning to the signs. A set of

rules was devised to deal with the non-conventional and variable signs. However,

the implementation was not demonstrated fully. Through Braffort brought out

the issue of spatio-temporal inflections, the analysis of the problem was not deep

enough and the implementation of the proposed ideas was unclear. Sagawa [124]

made a more thorough analysis of directional verbs. They extracted parameters

that represented the spatial relationship between the inflected signs and the basic

sign. They investigated the difference between the direction of motion of the di-

rectional verb and the position where the basic sign related to it was represented.

Parameters like start and end position, angle and distance were used in their

analysis. Templates were made based on these parameters were used for recogni-
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tion. Experiments showed a promising detection rate of 93.4% for sign language

words related to the directional verb. In their work, the physical locations of

the signer and the addressee were restricted, and thus analysis and creation of

such templates was possible. However, in sign language the number of directional

verbs related to a basic sign is usually large as they depend on the location of the

subject that the signer is referring to. This method might be cumbersome in real

situations. Recently, Ong [114, 116, 117], brought out the aspects of other modi-

fications that affect grammatical information. Bayesian networks were employed

to decipher the basic meanings and the layered meanings caused by intensity, rate

and distance.

Non-manual signals are also important for the grammatical aspects of sign

language. Works which use both the manual and non-manual components for

the recognition of sign language are just beginning to appear. Fusion of non-

manual signals such as facial expressions and head nods and manual signing was

described [129]. They showed that the inclusion of non-manual information from

faces could decrease both, deletion and insertion errors in recognition of con-

tinuously signed sentences. A belief-based sequential fusion approach for the

non-manual signals and manual signs was used in [7]; the non-manual signals

included facial expressions and head/shoulder motion. In summary, the gram-

matical aspects of sign language present is a fertile area for further research.

2.7 Limitations of HMM-based Approach

As HMMs are the most commonly used approach in sign language recognition,

we provide more discussion on them here. Similar to speech recognition, HMMs

have been extensively employed in continuous signing recognition mainly because

of their ability to segment sequential data implicitly along with classification.
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As generative models, HMMs rely on non-discriminative training methods such

as maximum likelihood (ML) estimation or expectation maximization algorithm

(EM) in which the model of the joint probability of each class is trained sep-

arately by using the samples that belong to the class. In generative modeling,

parametric distribution of the observed data is always assumed. Though HMMs

have shown successful performance in many applications of sign language, the

main disadvantage of a generative model is the difficulty of verifying the correct-

ness of the joint probability model of the observed data. The problem becomes

obvious when the observed data exhibits large variation, and it becomes hard

to train a representative model to fit the underlying distribution of the observed

data. One may argue that if enough samples are available for training, the model

will be able to handle the variations well. However, getting adequate number of

representative training samples usually poses significant problems as in practice.

In addition, when models are trained with variations that are too large, the mod-

els become less distinctive and errors occur. It is pointed out in [19] that the

generalization performance of generative models is often found to be poorer than

that of discriminative models due to differences between the model and the true

distribution of the data. Hence, HMMs often require adaptation to new signer,

e.g. in [157, 159] or use of complex hybrid models of HMMs with other classifiers.

Works by Fang et al [44, 45] also possibly indicate that HMMs in combination

with other classifiers may be better suited to achieve signer independence. From

the above discussion, we conclude that standard HMMs are not the best approach

to deal with large signer variation.
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2.8 Overview of Proposed Modeling Approach

Based on the study of sign language works, we have identified that signer vari-

ations pose problems for developing a signer independent system, and have not

been sufficiently explored. It is näıve to expect that systems that are trained on

a single signer or a few signers will generalize well to new signers. Two indicative

works that highlight this difficulty are [71, 182]. Kadous [71] trained their system

on four signers and tested the system on an unseen signer and obtained only 12%-

15% accuracy. Zieren and Kraiss [182] obtained a recognition accuracy of only

44.1% for a person independent system with 221 isolated signs. This shows that a

good strategy to handle signer variations is important to recognize sign language

sentences from new signers. Our works with isolated signs which are presented in

Chapter 3 also indicate that variations in signing need to be handled with care to

develop a signer independent system. In addition, our survey of related works has

indicated several key issues in continuous signing to be segmentation, movement

epenthesis, and scalability to large vocabulary.

Based on the research in linguistics and our previous works, we infer that

variations in sign language occur differently in each component. Some signs tend

to have larger variation in handshape while other signs exhibit variations in other

components. Hence, it is easier to tackle phonological variation in each compo-

nent by adopting a multichannel framework, where each component is modeled

independently. A potential problem with this is that the assumption of chan-

nel independence may not be correct, however, it is an engineering tradeoff that

makes the recognition problem tractable. More importantly, each component is

handled separately according to its characteristics.

The physical variations can be handled at the feature level, by normalizing

the individual component feature vectors appropriately or by selecting invariant
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features which are more robust to these variations. The range of linguistic varia-

tions is broader and more difficult to deal with. Minor linguistic variations can be

dealt with at the feature level while most of the larger variation has to be tackled

at a higher level where the semantic meaning of the signs is formed. Hence, we

propose a multilayer framework to handle the variations. At the first level of

the framework, suitable features are selected and normalized. The variations are

expected to be handled statistically by a probabilistic model. At the higher level

where the semantic meaning of the signs is formed, another model is trained for

the linguistic variations which exhibit larger differences.

Variation in the movement component is more challenging to handle as com-

pared to the other three static components. Direct normalization cannot be

applied as the start and end points of a hand gesture are usually not known in

continuous signing. Hence, a different strategy is needed for the movement. We

devise a scheme which relies on a simple segmentation algorithm and a line fit-

ting approach to define unit directional vectors that characterize the direction

and trajectory shape.

In this thesis we also include directional verbs which exhibit variation in gram-

matical aspect of ASL. The grammatical variation in this type of inflected signs

appears systematic, but these signs are very context dependent, i.e. the positions

of the signer and addressee can vary. We treat directional verbs as basic signs

whose variations occur in the location and movement components. Hence, the

same modeling techniques used for basic signs are applied to the directional verbs.

At the first level of the framework, they are treated no differently from the basic

signs where they are modeled with four independent components. The meaning

of the directional verbs is handled flexibly at the second level of the framework

where they can either be decoded as a group of signs with the same basic meaning,
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e.g. HELPI→YOU, HELPYOU→ME or HELPYOU→GIRL are recognized as a group

of signs with action HELP or they can also be recognized separately as different

signs. For simplicity in modeling, we choose the latter decoding scheme.

Due to the considerations given previously, rather than modeling the move-

ment epenthesis explicitly, we train the recognition scheme based only on signs

and deal with the movement epenthesis problem during the sign sequence de-

coding process. In this work, we propose a discriminative approach based on

conditional random fields (CRFs) to achieve better generalization performance.

CRFs are a useful alternative to HMMs in linear sequence structure modeling

because they relax the strong independence assumption between the observation

variables, which are made in HMMs. The CRF-based recognition framework is

made up of two layers where each layer is designed to handle the signer variation

specifically. The following section presents the framework with further details.

2.8.1 Continuous Signing Recognition Framework

We adopt a glove-based approach in this thesis and the data collected using the

gloves and magnetic trackers are described in details in Chapter 7. We propose

a two-layer multichannel methodology that allows independent analysis and pro-

cessing of the input features of the components in the first level of the system.

Further recognition using the higher level descriptive components is carried out

at the second level of the system. The overall system is shown in Figure 2.1.

Various terms with reference to the framework are defined below:

1. Segment: A segment is part of the continuous observation data from a

sentence, which may or may not correspond to the start and end boundary

points of a sign. A sign segment is one whose beginning and end corresponds

to the start and end boundary points of a sign in a continuously signed
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sentence.

2. Sub-segment: A sub-segment is part of a segment which is obtained by

over-segmenting an observation sequence using a segmentation algorithm

described in Chapter 4.

3. Phoneme: The smallest phonetic unit in a language; each component has

its own defined phonemes. In our work, a phoneme is defined by a sequence

of subphones.

4. Subphone: Subphones are the basic units that make up a phoneme. Each

component has it own defined subphones, and they are obtained by clus-

tering the component features.

5. Sign: A gesture that carries the meaning of a word to convey an idea

and information. It consists of four components, namely handshape, hand

movement, location and orientation. A sign is made up of a combination of

phonemes from the four components.

Figure 2.1: Proposed segment-based ASL recognition system which consists of
a segmentation module, a classification of sign and movement epenthesis sub-
segment module, and a recognition module.
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Our proposed ASL recognition system is illustrated in Figure 2.1. We first

segment the continuous input sequences using a segmentation algorithm based

on minimum velocity and maximum directional angle change. This yields over

segmented points which include most of the true boundary points. The resulting

data stream consists of a sequence of sub-segments which can be part of signs

or movement epentheses. The next step labels the sub-segments as belonging to

sign or movement epenthesis with a CRF/SVM-based classifier. Ideally, all the

sign and movement epenthesis sub-segments will be classified accurately and the

movement epenthesis sub-segments will be discarded. In practice, this is diffi-

cult especially with data from signers who are not used to train the classifier.

Correct detection of the movement epenthesis sub-segments is a valuable piece

of information as it provides a clue to break the continuous sentence into smaller

partial sequences making the problem easier to tackle. On the other hand, missed

detection of the sign sub-segments may be problematic as dropping of the sign

sub-segments will lead to loss of information which reduces the recognition accu-

racy. Hence, our aim here is not to achieve a perfect classification performance

but to achieve a trade-off where as many movement epenthesis sub-segments as

possible are identified without discarding too many sign sub-segments. After

the sub-segments are labeled as sign or movement epenthesis, we retain only the

detected sign sub-segments and discard those labeled as movement epenthesis.

Subsequently, we work out a strategy to merge the remaining sub-segments to

form segments and perform recognition on these segments to obtain the final

sequence of the signs. We propose a CRF-based approach to merge the sub-

segments efficiently during the recognition process. During training, we train

the two-layer framework using only sign segments by removing all the movement

epenthesis segments manually. The first level of the recognition module consists
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of four channels which independently recognize a sequence of phonemes for the

four components. We define sequence of subphones as the input to the CRF-

based recognition scheme to recognize the component phonemes. At the second

level, phoneme output labels from each channel are combined and used as inputs

to recognize the signs in the sentence. For testing, we modified the decoding algo-

rithm based on the semi-Markov CRF proposed by Sarawagi and Cohen [128] to

cope with our two-layer multichannel framework. In addition, we also modified

the decoding algorithm to accommodate skip states so that it can deal with the

incorrectly classified movement epenthesis sub-segments. During the decoding

procedure, different combinations of the sub-segments are merged efficiently and

features are extracted on the fly. The best path is decoded similar to the Viterbi

algorithm.
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One hears only those

questions for which one

is able to find answers.

Friedrich Nietzsche

(1844-1900)

3
Recognition of Isolated Signs in Signing

Exact English

3.1 Scope and Motivation

In this chapter, signer variation is investigated using isolated signs from signing

exact English (SEE). This is a preliminary step towards our final goal of recog-

nizing continuously signed sentences in ASL. Isolated signs are examined because

they are more straightforward to deal with as they do not involve segmentation or

movement epenthesis problems. SEE is similar to ASL but it has more structured

grammatical aspects. Thus, we chose SEE because of its similarity to ASL and

closeness to spoken English.

Basically, SEE is based on ASL signs and expanded with words, tenses, suf-
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fixes and prefixes to give a clear and complete visual presentation of English.

It takes much of its vocabulary of signs from ASL. However, it often modifies

the handshapes used in ASL signs in order to incorporate the handshape used

for the first letter of the English word that the SEE sign is meant to represent.

Both SEE and ASL are characterized by handshape, orientation, location, hand

motion, facial expression, gaze, eyebrow movement and lip motion. Generally,

similar recognition strategies can be used for both, but the meanings of the rec-

ognized words and the formulation of sentences would be different as they follow

different basic syntax and grammar rules.

We perform the investigation with a hierarchical classification approach that

uses Fisher’s linear discriminant (FLD) and a decision tree for handshape recog-

nition, and a vector quantization principal component analysis (VQPCA) based

method for isolated movement trajectory. We also devise a classifier for location

and combine the results from the three component classifiers to recognize SEE

signs at the sign level.

In the following, Section 3.2 describes our modeling framework for handshape

recognition based on a decision tree-based classification scheme using FLD. In

Section 3.3, we present the modeling framework for isolated movement trajectory

recognition based on VQPCA. We present the schemes for location recognition

and sign-level recognition in Section 3.4. Section 3.5 gives the experimental details

with results, analysis and discussion, and Section 3.6 gives a summary of the work.

3.2 Handshape Modeling and Recognition

We classify 27 handshapes which are used most frequently in SEE including the

26 letters of the alphabet and 6 other important handshapes, i.e. BENT, FLAT,

SMALL-C, I-L-HAND, BENT-V and L-1-HAND. The exact handshape appear-

54



3. Recognition of Isolated Signs in Signing Exact English

ances can be found in [58]. Among the letters, some have the same handshapes,

and differ only in the orientation of the palm. Regardless of orientation, we group

together letters that have the same handshape. For example, the letters “D” and

“Z”, “G” and “Q”, “H” and “U”, “I” and “J” as well as “P” and “K”, are not

differentiated and are grouped together. We use a decision-based approach using

the optimal FLD-based classifier [42] at each node. With a decision tree approach,

not only can a lower dimensional problem be solved at each level, but also the

number of classes to be considered at each node is greatly reduced.

3.2.1 Handshape Classification with FLD-Based Decision

Tree

The main issue in specifying the tree-structured classifier is to decide the num-

ber of classes at each level, and we do this by using prior knowledge of the 27

handshapes. For example, we specify three classes at the first level based on the

second joint of the ring and middle fingers as follows:

• ω1 (both fingers are bent): A, C, D, E, G, I, J, L, M, N, O, Q, S, T, X, Y,

Z, SMALL-C, I-L-HAND, BENT-V, L-1-HAND

• ω2 (the ring finger is bent while the middle finger is straight): H, K, P, R,

U, V

• ω3 (both fingers are straight): B, F, W, BENT, FLAT

The reasonableness of this grouping can be verified by studying the scatter

distributions of projected handshape data. Figure 3.1(a) shows the scatter plot

of the projected data of the three classes (ω1, ω2 and ω3), where it is seen that the

three classes are compact and well-separated. However, if the three groups had

been incorrectly chosen, it is possible that they would have been non-compact
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and/or non-separable, and thereby suggest a different grouping. For example, if

Class “A” which naturally belongs to ω1 is put into ω2, the scatter plot of the

projected data changes to the one shown in Figure 3.1(b). Clearly, ω1 and ω2 are

not separable in this case indicating that Class “A” is better grouped into ω1.

(a) Scatter plot of the initial three-
class data grouping for the decision tree-
based handshape classifier.

(b) Scatter plot of the three-class data
when class “A” is grouped into ω2.

Figure 3.1: Scatter plots of FLD projected handshape data.

The subclasses at level 2 are obtained by further dividing each of the subclasses

at level 1 into two subclasses. In the decision tree, the splitting of each class

and the discrimination process are repeated until all the individual handshapes

are specified at the leaf nodes of the tree. For example, the classification of

the handshape “H”, follows the bold path shown in Figure 3.2, using a simple

decision rule at each level. The subclasses at each level of the decision tree are

summarized in Figure 3.3. The shaded boxes denote the final handshapes that

will be recognized at the leaf nodes of the decision tree.

During testing, the feature vector is input at the root, and projection and

classification are carried out at every intermediate node encountered in the clas-

sification path until the leaf node is reached to yield the final classification. At

each node due to dimensionality reduction by FLD, the features are only 1-D or

2-D. Unlike NNs where key architectural parameters need to be estimated, the

only parameter to set in our approach is the number of classes at each node of the
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Figure 3.2: Handshape classification with decision tree and FLDs.

Figure 3.3: Subclasses of the handshapes at each level of the linear decision tree.

tree. Furthermore, unlike [26], our tree-based approach overcomes the problem

of complete re-training if a new handshape needs to be included, as we group

the handshapes using prior knowledge before performing FLD projection. Thus,

if the new handshape falls into existing groups at the higher levels, there is no

need to re-train at these higher levels; re-training may only be needed below a

certain level when there is no match to existing groups. In the best possible case,

we would only need to re-train the classifier at the lowest level node (leaf) that

yields the actual class of the sign. In the worst case, the entire tree would need

to be re-trained, but this is unlikely for handshapes used in SEE.
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3.3 Movement Trajectory Modeling and Recog-

nition

In the SEE lexicon there are 15-20 non-periodic and about 6 periodic trajectory

shapes. Of these, it is found that 11 trajectories are used most often (about

97% of the time) [58], and these are considered here. The remaining trajectory

shapes are quite distinct, and can easily be incorporated in our approach. Fig-

ure 3.4(a) shows seven non-periodic trajectories, ωn1 − ωn7, in a planar view and

Figure 3.4(b) shows four types of periodic trajectories, ωp1 − ωp4. Category ωp1

represents a trajectory from a regular circular motion, and is periodic in nature.

However, when signing, many people actually sign this as a spiral with variable

radius. This latter gesture is not periodic but signers use these gestures loosely

to convey the same meaning. Hence, in order to recognize this category reliably

despite natural human variations, we added a non-periodic spiral trajectory class,

ωn8. If the final classification procedure labels the trajectory as ωn8 or ωp1, it is

taken as the periodic circular trajectory.

(a) Non-periodic trajectories. (b) Periodic trajectories.

Figure 3.4: Movement trajectories.

Here, we propose a novel scheme to recognize the hand motion trajectory of

isolated gestures which can be both periodic and non-periodic [82]. It consists of a

periodicity detection module followed by a classification module to recognize the

two groups of gestures separately. This approach is useful because periodic ges-

tures need to include a few cycles, and this takes longer to perform; on the other
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hand, if they were to be classified along with non-periodic gestures the feature

vector length would need to be much longer resulting in increased computational

times and complexity of the system.

We use a Fourier analysis approach related to [146] for periodicity detec-

tion, and the VQPCA clustering method proposed by Kambhatla and Leen [73]

for trajectory recognition. VQPCA is a hybrid method of clustering and local

PCA which makes no assumptions regarding the underlying data distribution,

and finds locally linear representation of the data. The standard PCA-based ap-

proach for recognition is global in nature, and yields poor results when the data

is subject to natural transformations such as rotation, translation and scaling.

To overcome this, several works e.g. [118, 133] have proposed manually assign-

ing data to different sets based on their transformation characteristics and then

calculating different eigenspaces. This manual procedure is circumvented in the

VQPCA approach which combines clustering with PCA, and we have used this

to advantage for recognizing movement trajectories. Though the training process

can be computationally expensive, we believe that its practical advantage - no te-

dious manual labeling process is necessary - significantly outweighs the increased

computations.

3.3.1 Periodicity Detection

For periodicity detection, the raw 3-D position vectors pt = [pxt, pyt, pzt]
T from

the tracker at time t are used to estimate the instantaneous speed along the

trajectory as

|vt| =
√

p′
t · p

′
t, (3.1)

where p′
t = [p′xt, p

′
yt, p

′
zt]

T and p′xt = pxt − px(t−1), etc.

To calculate the speed, the temporal sampling interval is assumed to be unity.
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The speed along the trajectory retains the periodic nature of the signing, and is

used for detecting periodicity. No normalization or scaling of the raw position

data is done for computing speed. However, due to inertia of hand, starting

and ending speeds at the two ends of a trajectory could be slower than normal.

Using such non-representative samples in periodicity calculation could lead to

errors. Hence, we discard samples at the beginning and end of a trajectory if the

estimated hand speed is below a threshold. The steps of periodicity detection are

described as follows:

i) As first difference is used to compute speed, smooth the speed vector |vt|

with a 5-point moving average filter to yield |vs,t|.

ii) Subtract the average value of the speed from the smoothed speed signal to

obtain

|ṽs,t| = |vs,t| − |v̄s|, (3.2)

where |v̄s| is the average value of |vs,t| over the complete trajectory. This

is a useful step since the zero frequency component is usually quite large,

and can overwhelm other peaks in the spectrum of the speed signal.

iii) Compute the autocorrelation function of the level shifted speed signal |ṽs,t|,

and its discrete Fourier transform , S(f̂), as the spectral estimate of the

speed signal.

iv) If the trajectory is periodic, there will be a significant sharp peak at the

fundamental frequency. If

S(f̂k) > µ̂+Kσ̂, (3.3)

where µ̂ and σ̂ are the mean and standard deviation of the spectral samples,

and K is an empirically determined constant, it is taken as an indication
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of a periodic trajectory. We experimentally found that using K > 2 is too

stringent and K < 2 gives too many false peaks. Hence, we use K = 2 in

our implementation.

3.3.2 Movement Trajectory Classification with VQPCA

After periodicity detection, any given trajectory in 3-D space is re-sampled by

linear interpolation to L samples or 2L samples, based on its classification as non-

periodic or periodic, respectively (L is specified in Section 3.5.2). Trajectories

for a given sign may have variations in location and size, arising from signer

differences. Also, different signs can have the same trajectory shape but different

trajectory sizes. However, the size component plays a role in only a subset of

SEE signs, and can be classified separately. Hence, we do not consider it here,

and normalize for translation and size by shifting the re-sampled trajectory to

be centered at its mean, and normalizing it to unit length. These normalized

3-D gesture trajectories are used to form feature vectors of dimension N = 3L

or N = 6L, and used to classify trajectory shapes of non-periodic and periodic

trajectories, respectively, by the VQPCA method.

Each SEE trajectory shape is characterized by an independent VQPCA model

which naturally accommodates different orientations and directions - properties

that make it easy to add new signs. Among the three descriptors of trajectories,

viz. shape, orientation and direction, it is natural to categorize trajectories at

the highest level by shape and then by orientation and direction. Hence, we use

a VQPCA model to represent each gesture with different trajectory shape. The

clusters formed within each VQPCA model can then be expected to represent

different orientations and directions. For example, the signs AM (move slanting

forwards), A (move sideways) and ABLE (move downwards) have the same tra-
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jectory shape (straight line in ωn1) but with different orientations and directions;

these will lie in different orientations and direction clusters. We trained eight

different VQPCA models for each of the non-periodic hand trajectory shapes

considered, and four models for periodic trajectory shapes.

During training, in each iteration, the VQPCA algorithm [73] first partitions

the data, and then computes the local PCA of vectors in each cluster. The

partitioning is done by assigning a vector to the cluster which gives minimum

reconstruction error for that vector. After training, the representation obtained

is the centroid and the leading eigenvectors in each cluster. To use reconstruction

error as the clustering criterion in the training algorithm, two important param-

eters need to be specified. One is choice of the number of leading eigenvectors

(mi) to be selected in each cluster. This is specified to retain 95% of the energy of

the subspace. The other parameter is the number of clusters (Q) in each VQPCA

model; this is specified to be the number of trajectory orientations and directions

with the same shape.

For subsequent classification, a trajectory vector is projected onto the local

PCA subspaces of each VQPCA model and reconstructed. The vector is classi-

fied to the model which globally yields the smallest reconstruction error to yield

the trajectory shape. The specific cluster within the VQPCA model gives the

trajectory orientation and direction.

3.4 Sign-Level Recognition

We now integrate the component classifiers in order to recognize complete SEE

signs from a vocabulary of 28 sign words, made up of 18 different handshapes

and 9 different trajectory shapes. We use the previously trained handshape and

movement trajectory classifiers, along with a location classifier, independently in
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each channel, and use table look-up to recognize the complete sign.

The start and end locations of the trajectories were used for classifying loca-

tion. Here, the two dimensions of the tracker data representing the frontal plane

of the signer were clustered into five groups to represent the five signing areas

indicated in Figure 3.5. Thresholds (θi) were then set along the vertical axis to

partition the signing areas.

In the handshape channel, signs can have fixed or dynamic handshapes. For

the latter case, the starting and ending handshapes are important, while transi-

tion handshapes convey no meaningful information. We classify the handshapes

at every time instant, and if more than 90% of the handshapes of a sign word

are recognized as belonging to a single class, the sign word is taken to have the

handshape of the majority class. Otherwise, the sign word is considered to have

dynamic handshape, and the first and last 5% of the data are used to classify the

starting and ending handshapes, respectively.

Figure 3.5: 5 signing spaces for hand location.

From the movement component, when we used the previously trained VQPCA

models for classifying the new test data acquired for sign-level recognition, we

found that the accuracy degraded for the circle trajectory compared to the others.

This was found to be due to larger inter- and intra-person variation when signing

the circle. Hence, to ensure good performance, more clusters were added to the
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circle VQPCA model previously obtained. This yielded better representation

of the direction and orientation plane of the circle. For retraining the circle

model, however, we used only the initial training data acquired for the trajectory

classification experiment.

3.5 Experimental Results

The CyberGlover and Polhemus FASTRACKr system as described in Chapter 7,

Section 7.2 was used to acquire the finger angles for the handshape and hand

positions for movement trajectory. The detailed configuration of the hardware

and the data collected for this part of the experiment can be found in [84].

3.5.1 Handshape Recognition

The data for handshape recognition was provided by 12 signers, denoted as

P1, P2, . . . , P12. The signers consisted of males and females as well as expert

and non-expert signers. These details are given in Table 3.1. Each of the 12 sign-

ers performed each of the 27 handshapes 40-50 times. The training set included

data from five signers, with all data from one signer and 70% of the data from

the other four signers. The remaining 30% of the data from these four signers

and all the data contributed by the seven unseen signers (i.e. signers whose data

was not used for training) was used for testing. Of the four signers in the training

set, three were expert signers while the fourth was not.

Table 3.1: Summary of the signers’ status.

Person P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Gender F F F F F F F M M M M M

Expert signer Yes Yes Yes No No No No Yes Yes No No No

Figure 3.6 shows the confusion matrix obtained for the linear decision tree

classifier for recognizing handshapes. Generally, good results were obtained for all
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the classes except for handshape “R” which had a relatively low recognition rate of

85.7%. It is observed from the confusion matrix that handshape “R” is likely to be

recognized as handshapes “H/U”, “K/P” or “V”. Generally, handshapes which

are close in appearance and are loosely signed, are more likely to be confused

during recognition. For example, “A” vs. “T”; “H/U” vs. “R”; “I/J” vs. “Y”;

“V” vs. “H/U”; “FLAT” vs. “B” and “SMALLC” vs. “X” (see Figure 3.6). The

sensors of the CyberGlover do not give very distinctive measurements for some

of these handshapes. For example, for “U” and “R”, only slight differences can

be observed in the middle finger PIJ angle as well as the middle-ring abduction

angle. As for handshapes “U” and “V”, the small difference is in the index-

middle abduction angle. This accounts for the relatively high errors. The highest

error arose from misclassification of “R” to “K/P” even though the two exemplar

handshapes are somewhat different from each other. However, inter- and intra-

signer handshape variations may have caused the two classes of handshapes to

overlap.

Table 3.2 shows handshape recognition results for the test data of individual

signers using the FLD-based tree classifier. As can be seen, the recognition results

are very good across all signers. The average recognition rate for unseen signers

is 96.1%, while it is 99.6% if the signers are included in the training set (seen

signers). As a point of comparison, if the training set was changed to include two

expert and two non-expert signers (one expert signer less compared to previous

case), the average recognition rate for the unseen and seen signers dropped slightly

to 94.9% and 97.6%, respectively. The good performance on unseen signers is

encouraging. When acquiring data from the Cyberglover, hand size which is

likely to be different for males and females did not appear to affect the recognition

results. On the other hand, whether a person is an expert signer or not affects
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the recognition results. It is observed from the table that recognition results for

expert signers are extremely good, e.g. P1, P2, P3 and P9, while for non-expert

signers the recognition results are lower, e.g. recognition rate for signer P6 is

89.5%.

Figure 3.6: Confusion matrix for handshape recognition by the decision tree
classifier.

3.5.2 Movement Trajectory Recognition

The experimental data was obtained from 10 signers with all performing the 11

classes of trajectory shapes. Each person contributed about 90 samples for each

gesture class, where each trajectory shape was signed in at least three different

orientations or directions, to correspond to SEE signs. All the collected data

was used to test the periodicity detection algorithm described in Section 3.3.

Figures 3.7 and 3.8 show plots of the speed and power spectrum of a periodic
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Table 3.2: Handshape recognition results for individual signers.

Recognition rate (%)

Signer not in training set Signer in training set

P4 95.9 P1 99.3

P5 99.7 P2 99.0

P6 89.5 P3 100.0

P7 94.4 P12 100.0

P9 99.9 - -

P10 98.9 - -

P11 94.7 - -

Average = 96.1 Average = 99.6

gesture (ωp4) and a non-periodic gesture (ωn1), respectively, where it can be seen

that the spectral peak for periodic signals is considerably larger than the one for

non-periodic signals, showing that they can be reliably discriminated.

The periodicity detection results are summarized in Tables 3.3 and 3.4. The

raw periodicity detection accuracy for ωn8/ωp1 is not meaningful as the periodic

circular motion (ωp1) is also loosely signed by subjects as a spiral (ωn8) which

is not a periodic trajectory (see also Section 3.3). The recognition accuracy of

this category can only be inferred in conjunction with trajectory classification

accuracy for the nominal periodic circular gestures. On the whole, the average

periodic/non-periodic detection rate is quite good at 97.2%. The periodicity

detection algorithm works very well when strong periodicity is exhibited, i.e.

there are sufficient number of repetitions. Error in detection increases when the

periodicity cue is weak, e.g. when a gesture is repeated only twice. This explains

the somewhat lower accuracy compared to non-periodic signals.

For trajectory classification, as mentioned in Section 3.3.2, before being input

to the VQPCA algorithm, non-periodic and periodic trajectories were re-sampled

to L = 60, and L = 120 samples, respectively, and were normalized for translation

and size. Training data from only four signers was used for the VQPCA algorithm.
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(a) Periodic (ωp4). (b) Non-periodic (ωn1).

Figure 3.7: Speed plots for a periodic and non-periodic movement trajectory.

(a) Periodic (ωp4). (b) Non-periodic (ωn1).

Figure 3.8: Power spectra for a periodic and non-periodic movement trajectory.

Table 3.3: Detection of non-periodic gestures by Fourier analysis.

Non-periodic movement trajectory

ωn1 ωn2 ωn3 ωn4 ωn5 ωn6 ωn7

Accuracy (%) 100 99.9 100 92.7 100 99.9 99.0

Table 3.4: Detection of periodic gestures by Fourier analysis.

Periodic movement trajectory

ωn8/ωp1 ωp2 ωp3 ωp4

Accuracy (%) - 92.0 91.3 96.8

From these signers, 70% of the data of each class was used for training and the

remaining 30% was used for testing. In addition, all the data from the remaining

six unseen signers was used for testing. Each trajectory shape was learned and

represented by one VQPCA model. We used 4 to 7 clusters in each of the models.
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The number of retained eigenvectors in each cluster ranged from 2 to 17.

Figure 3.9 shows the trained centroids of different clusters for different ori-

entations and directions for two of the trajectories (circle and v-shape) obtained

by VQPCA. Each VQPCA model consists of four clusters representing four dif-

ferent orientations or directions. Examination of the VQPCA model for each of

the trajectories showed that clusters had correctly formed according to specific

orientations and directions.

(a) Model 2 (circle). (b) Model 6 (v-shape).

Figure 3.9: Centroids of clusters in VQPCA models for circle and v-shape trajec-
tories.

Tables 3.5 and 3.6 give the average recognition results for all the gestures

from the test set. Taverage represents results for the unseen 30% of the data

of the four signers used for training while Saverage represents results for all the

data contributed by the six unseen signers. As can be observed from the tables,

VQPCA gives very good classification results for both the non-periodic gestures

and periodic gestures. For the unseen test data of the four signers whose data was

used for training the classifier (Taverage), the total average recognition rate for both

periodic and non-periodic gestures was 99.7%. The total average classification

rate for the test data from unseen signers (Saverage) was also good at 97.3% for non-

periodic gestures and 97.0% for periodic gestures. From the high classification

accuracy of the ωn8/ωp1 class, we can infer that the periodicity classifier works
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reliably for the periodic circular gesture also.

Table 3.5: Average recognition rates with VQPCA for non-periodic gestures.

wn1 wn2 wn3 wn4 wn5 wn6 wn7 wn8 Average

Taverage (%) 100 98.7 100 100 99.4 100 100 99.4 99.7

Saverage (%) 96.8 95.8 98.2 98.1 96.4 95.9 99.8 97.7 97.3

Table 3.6: Average recognition rates with VQPCA for periodic gestures.

wp1 wp2 wp3 wp4 Average

Taverage(%) 100 100 100 98.9 99.7

Saverage(%) 99.8 93.9 99.1 95.3 97.0

3.5.3 Recognition of Complete SEE Signs

Here, the classifiers which were trained separately for handshape, trajectory and

location recognition were integrated to recognize complete isolated SEE signs.

To evaluate sign recognition performance, we acquired a new data set for 28

SEE signs from four signers. Each person was asked to sign each sign word

10 times. Some of the sign words were completely new, and did not appear

in component classifier training. For example, the sign word OVAL which has a

circular trajectory shape was used for testing, although the VQPCA classifier was

trained with movement data from the sign words ABOUT, APPROXIMATE and

TWIRL, representing different orientations and directions of the circle model.

A total of 1120 handshapes from the sign words were tested using the pre-

viously trained linear decision tree classifier. This yielded a recognition rate of

94.6%, which is slightly worse than the handshape recognition rate of 96.1% ob-

tained for unseen signers in Section 3.5.1. This could be attributed to the fact

that signers tend to be less conscious about handshape when signing a complete
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sign word which is more than just a handshape. Hence, handshapes like “A” and

“S” might be signed with larger variability.

In movement recognition, when only trajectory shapes were considered, a

recognition rate of 96.3% was obtained for the 1120 trajectories. This result

is comparable to our previous trajectory shape experiment described in Sec-

tion 3.5.2, showing that our VQPCA-based algorithm retains its good perfor-

mance for trajectory shape recognition. The recognition rate was somewhat lower

at 92.2% when direction of movement and orientation of the trajectory plane were

included.

For recognizing location, the location space was divided into five areas as

described in Section 3.4. The start and end locations of a trajectory were ex-

tracted for recognition, and an accuracy of 99.0% was obtained. For overall sign

recognition, the results from the three classifiers were used in a table look-up

procedure. Accuracy of the combined sign recognition system was computed by

considering a sign word to be correctly recognized only if the recognition results

from handshape, movement and location classifiers were all correct. This yielded

a sign-level recognition rate of 86.8%.

We note here that even though a completely new set of data from new signers

was acquired, separately trained classifiers as indicated above have yielded high

accuracy for sign-level classification, indicating the feasibility of recognizing sign

words with the component classifiers developed here.

3.6 Summary

We have presented a scheme to recognize isolated SEE signs based on combining

the component classifiers for handshape, movement trajectory and location. On a

28-sign SEE vocabulary, the sign word recognition scheme yielded 86.8% accuracy.
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Handshape and movement are the most important components of SEE signs,

and we have proposed robust and effective methods for recognizing them. The

proposed handshape recognition and trajectory recognition algorithms both show

good generalization ability to signers who were not used to train the system, which

is an important consideration in practice.

For the component classifiers, handshape recognition using a decision tree

based classifier with Fisher’s linear discriminant yielded an average recognition

rate of 96.1% on unseen signers. Fourier analysis was used to detect periodic

movement trajectories, and this yielded an average accuracy of 97.2%. Gener-

ally, the experiments show that signer independence is viable if the phonological

variation in sign language is handled properly.

Besides demonstrating good classification results and generalization to un-

seen signers, some valuable observations for our subsequent work on continuous

signing are also noted. From the experiments, we observe that variation in hand-

shape data due to physical hand size variations are small, and are easily handled

by appropriate normalization. Rather, a more noticeable impact is seen in the

classification results when the handshape variation is caused by different ways of

signing. For example, the confusion between “U”, “V” and “R” etc as discussed in

Section 3.5.1 can easily occur if the signers are asked to make the signs naturally,

without constraints. Also, whether a person is an expert signer or not affects

the classification performance. This further underscores the idea that linguis-

tic variations which occur in sign language due to different signers’ style, habit,

education, family background etc as discussed in Chapter 1, must be robustly

handled in developing a signer independent system.

Other useful observations can also be made from the movement component

experiments. The unique habits of individual signers, give rise to variations in
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the trajectory shape, motion direction, size and shape, which must be handled

robustly for recognition. Here, with isolated signs, the VQPCA method has been

used under the assumption that the end points of a trajectory have been accu-

rately identified, and that the number of sample points in the input trajectories

to VQPCA are fixed. Hence, normalization for size and translation can be done

easily and the experiments demonstrate satisfactory results on unseen signers.

However, when the work is extended to continuously signed sentences, the start

and end points of a sign are no longer known, and simple normalization is not

feasible. This issue needs to be addressed carefully for extension to continuous

signing.
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What matters deafness

of the ears when the

mind hears?

The one true deafness,

the incurable deafness,

is that of the mind.

Victor Hugo (1802-1885)

4
Phoneme Transcription for Sign

Language

4.1 Overview of Approach

An automatic phoneme transcription procedure is an essential step towards build-

ing practical sign language recognition systems that scale well with vocabulary

size, and thus it is important to devise an efficient strategy for consistent phoneme

transcription from continuously signed sentences. We propose such a scheme,

designed to accommodate naturally signed ASL sentences rather than only text-

book signs. A set of phonemes is defined for each of the four parallel components.

Signed sentences can then be labeled with a sequence of these phonemes to in-

fer the lexical meaning of signs. Here, we present a novel approach to transcribe
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phonemes for the trajectory in the hand movement channel and use simple cluster-

ing algorithms for the other three components, i.e. handshape, palm orientation,

and location.

The remainder of this chapter is organized as follows. Background on Bayesian

networks is given in Section 4.2. Section 4.3 describes our phoneme transcrip-

tion procedure for the movement component which includes a segmentation al-

gorithm and a PCA-based transcription method. In Section 4.4, the phoneme

transcription procedure for the static components (handshape, palm orientation

and location) is described. Section 4.5 summarizes our phoneme transcription

scheme.

4.2 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) where each node represents

a random variable and each directed edge between nodes represents a probabilistic

dependency. Absence of edges in the graph implies conditional independence and

this allows the joint distribution of a set of random variables, Z = (Z1, Z2, . . . , Zd),

to be factored as a product of local conditional probabilities:

p(Z1, Z2, . . . , Zd) =
d
∏

i=1

p(Zi|ΓZi
), (4.1)

where ΓZi
denotes the set of parents of random variable Zi. Often, the structure of

the network is manually defined using domain knowledge of the problem although

the structure can be derived from training data. Thus, we only need to estimate

network parameters from training data when the network structure is known. If

all the node values are known at training time, the goal of learning is to find

the values of network parameters using maximum likelihood (ML) estimation or

Bayesian estimation. In the case of missing values, the EM algorithm can be used
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to find a locally optimal maximum-likelihood estimate of the parameters. After

training, the network is used to infer the probability of a query node given the

observed values of the evidence nodes in response to a test query.

The likelihood is written as

p(D|θ) = p(z1, . . . , zN|θ)

=
N
∏

r=1

p(zr|θ)

=
N
∏

r=1

d
∏

i=1

p(Zi = zri |ΓZi
= γr

Zi
,θi),

(4.2)

where θi is the vector of parameters for the distribution p(Zi|ΓZi
). The log-

likelihood is

log p(D|θ) =
N
∑

r=1

d
∑

i=1

log p(Zi = zri |ΓZi
= γr

Zi
,θi), (4.3)

which is maximized to obtain the parameters as

θ̂ML = argmax
θ

log p(D|θ)

= argmax
θ

N
∑

r=1

d
∑

i=1

log p(Zi = zri |ΓZi
= γr

Zi
,θi).

(4.4)

Hence, we have an independent estimation problem for each θi,

θ̂i = argmax
θi

N
∑

r=1

log p(Zi = zri |ΓZi
= γr

Zi
,θi). (4.5)

For a Bayesian network with discrete nodes, we have θijk , p(Zi = k|ΓZi
= j)

and the ML parameter estimate is given as

θ̂ijk =
Nijk

∑

j′ Nij′k

, (4.6)

where Nijk is the number of times Zi = k and ΓZi
= j occur in the observation

data set.
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4.3 Phoneme Transcription for Hand Movement

Trajectory

We propose an automatic phoneme transcription procedure for the movement

component which saves time and intensive labor required for manual transcrip-

tion. There are two steps in transcribing phonemes from continuously signed

sentences, viz., segmentation of the hand trajectories, followed by phoneme tran-

scription.

Several works have considered automatic trajectory segmentation for various

purposes. In our work, we consider segmenting naturally signed ASL sentences

by adopting Sagawa and Takeuchi’s [125] approach of using minimum velocity

and maximum change of directional angle as the basis for segmentation. This

leads to considerable oversegmentation of the trajectories, however, such that

the true segment boundary points are highly likely to be a subset of this initial

segmentation. Simple thresholding to reduce the oversegmentation did not work

well enough as many of the true boundary points were discarded as well. Hence,

we investigated more refined methods to identify the true boundary points and

minimize the false alarms; one was a rule-based method while the other was based

on Bayesian networks. In order to further improve the detection accuracy of the

true boundary points obtained for each sentence, we used majority voting using

several examples of a sentence.

For phoneme transcription, we extracted PCA-based features from the seg-

ments and clustered them. Even though the hand movement trajectory of a

complete sentence may be a complex 3-D curve, we can expect that the individ-

ual segments obtained will correspond to lines or planar curves. Hence, PCA of

these segments will directly yield the directions of the lines and the planes of the

curves. We applied PCA to each segment, and clustered features by k-means to
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define phonemes with geometric meaning. Our approach of using PCA features

alleviates some of the problems in [14, 46, 162, 163] by allowing the use of sim-

ple k-means, rather than complex algorithms to cluster the temporal segments.

Further, unlike the phonemes obtained in [14], the phonemes obtained by our ap-

proach are related to phonetic concepts which are more meaningful for describing

sign language. Other works have also used PCA-based features to perform ges-

ture or sign language recognition. Nam and Wohn [107] projected the 3-D hand

trajectory to a plane found by PCA, and used a chain encoding scheme for rep-

resenting the hand movement path for recognition. In related work, Vogler [154]

used the first and the second eigenvalues from PCA to differentiate between lines

and curves and used them as global features for sign language recognition. How-

ever, they did not explore this further. We believe that this is a good starting

point to facilitate phoneme transcription.

4.3.1 Automatic Trajectory Segmentation

We investigated two schemes to classify the oversegmented points as true bound-

ary points or false alarms. One is a rule-based scheme and the other is based on a

näıve Bayesian network. For each scheme, the segmented trajectories from several

examples of the same sentence are used in a majority voting scheme to further

refine the results. Finally, one of the schemes is chosen for phoneme transcription

based on performance characteristics.

4.3.1.1 Initial Segmentation

Temporal segmentation is implemented by detecting points of minimal velocity

and maximal change of directional angle. The continuous raw 3-D hand trajectory

data is first interpolated and smoothed using splines. This step is useful for more

accurate and reliable velocity and directional angle computation. Figure 4.1
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shows an example of original and splined hand trajectories of a sentence. Velocity

vt is estimated as

vt = pt+1 − pt, (4.7)

where pt = (xt, yt, zt) is the 3-D position at time t.

Figure 4.1: Original and splined trajectories.

The directional angle change, θt, is computed as the angle between two vectors

formed by three consecutive 3-D positions as shown in Figure 4.2. Thus

cos(θt) =
u1 · u2

‖u1‖‖u2‖
, (4.8)

where u1 = pt − pt−1 and u2 = pt+1 − pt.

Figure 4.2: Directional angle.

The initial segment boundaries are marked at the points of local velocity

minima and maxima of directional angle change. These are processed by i) rules

or ii) näıve Bayesian network to identify true boundary points and minimize the

false boundary points.
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4.3.1.2 Rule-Based Classifier

The rules for the classifier are formulated based on observation and features that

characterize the boundary points; these features are summarized in Table 4.1.

minVel and maxAng are binary features to indicate a point of minimal velocity

and a point of maximal change of directional angle, respectively. normVel is

the normalized velocity with respect to the peak, lying in [0-1], and dirAng is

the absolute directional angle change of a point in [0◦-180◦]. lftValley(Pvl/Hvl)

and rgtValley(Pvr/Hvr) characterize the valley associated with a velocity mini-

mum. Similarly, lftPeak(Pal/Hal) and rgtPeak(Par/Har) characterize the peak

associated with an angle maximum. Figure 4.3 illustrates the definitions of these

parameters.

Table 4.1: Features characterizing velocity minima and maxima of directional
angle change.

Feature Description

minVel Binary indicator for a local minimum of velocity.

maxAng Binary indicator for a local maximum of directional

angle change.

normVel Normalized velocity values.

dirAng Absolute angle values.

lftValley Pvl/Hvl (see Figure 4.3).

rgtValley Pvr/Hvr (see Figure 4.3).

lftPeak Pal/Hal (see Figure 4.3).

rgtPeak Par/Har (see Figure 4.3).

The rules are summarized in Table 4.2. Rule 1 checks if a boundary point

corresponds to a local minimum of velocity and maximum change of directional

angle, and indicates a strong potential boundary point if both are true. Rules 2,

3 and 4 examine the characteristics of a valley in the velocity profile and a peak in

the change of directional angle profile. A true detection should be characterized

by a deep valley while a shallow valley is possibly a false alarm. A true maximal
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Figure 4.3: Definition of parameters for features described in Table 4.2.

Table 4.2: Formulated rules.
Rule Description

Rule 1 §if (minVel = TRUE) and (maxAng = TRUE), check Rule 2

elseif (minVel = TRUE) and (maxAng = FALSE), check Rule 3

else check Rule 4

Rule 2 if (lftValley > T1 or rgtValley > T2)

and (lftPeak > T3 or rgtPeak > T4), detection = TRUE POINT

else detection = FALSE ALARM

Rule 3 if (lftValley > T1 or rgtValley > T2), check Rule 5

else detection = FALSE ALARM

Rule 4 if (lftPeak > T3 or rgtPeak > T4), check Rule 5

else detection = FALSE ALARM

Rule 5 if (normVel <= T5 and dirAng >= T6)

or (dirAng >= T7 and normVel <= T8), detection = TRUE POINT

else detection = FALSE ALARM

note: Ti, i = 1,2,. . .,8, are thresholds found empirically, and (T5 < T8), (T7 > T6).

§the condition “(minVel = FALSE) and (maxAng = FALSE)” will not occur.

angle change is characterized by relatively sharp peak. Rule 5 checks the values

of the normalized velocity and directional angle change. A point with a high

velocity value, and a low directional angle change is likely to be a false alarm,

while a point with a low velocity value and a high directional angle change is a

potential boundary point. However, we relax these conditions and accept a point
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with a very low velocity (T5) but moderately high directional angle change (T6)

as a true boundary point. On the other hand, if this condition is not met, but

the point exhibits a very high directional angle change (T7) and moderately low

velocity (T8), we also consider it as a true boundary point. The threshold values

(Ti) are found empirically as described in Section 7.3.

4.3.1.3 Näıve Bayesian Network Classifier

The näıve Bayesian network classifier has the structure shown in Figure 4.4. The

query node, Detection is the node whose value is to be inferred, and the four

observed nodes are maxAng, minVel, normVel and dirAng. The description

of each node is given in Table 4.3.

Figure 4.4: Näıve Bayesian network for classifying segmentation boundary points.

All the nodes have a finite number of discrete states, and their distribution

is represented by a conditional probability table (CPT). During training, as the

values of all the nodes are known, the CPTs are learned by maximum likeli-

hood estimation as described in Section 4.2. When a test point is queried, the

trained network is used to infer the probability of the query node (TruePoint or

FalseAlarm) given the observed values of the evidence nodes. The detection rule

is

Sdetect = argmax
j={TruePoint,FalseAlarm}

p(Γ = j)
m
∏

i=1

p(Zi = zi|Γ = j), (4.9)

where Sdetect will be assigned as a true boundary point or false alarm.
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Table 4.3: Summary of the näıve Bayesian network nodes and their values.

Node Variable State Description

Detection Γ TruePoint, FalseAlarm True boundary point or

false alarm.

maxAng Z1 Yes, No Indicator for a local

maximum of directional

angle.

minVel Z2 Yes, No Indicator for a local

minimum of velocity.

normVel Z3 Low, Medium, High Discretized normalized

velocity values.

dirAng Z4 Low, Medium, High Discretized absolute angle

values.

4.3.1.4 Voting Algorithm

The segment boundary points obtained from trajectories of different samples

belonging to the same sentence may not be consistent, as Figure 4.5 shows. Hence,

we further refined performance by using majority voting to increase confidence

in a point if it appeared consistently in all the trajectories. In order to find

corresponding points, we first aligned the sample trajectories belonging to the

same sentence by dynamic time warping (DTW). Each point then votes for the

neighborhood it belongs to. For example, in Figure 4.5, at location R1, F2 is

missing and the number of votes for a true boundary point is two out of three;

thus, the point at R1 is taken as a true boundary point. On the other hand, at

R2, G1 and G2 are missing, and the point at R2 is taken to be a false alarm.

4.3.2 Phoneme Transcription

The segmented sentences consist of sign and movement epenthesis segments and

the latter are discarded by inspection. Only the remaining sign segments are used

for phoneme transcription. The segments obtained can have different lengths, lo-
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Figure 4.5: Three sample trajectories from the same sentence to illustrate major-
ity voting process.

cations, orientations and directions of motion in the 3-D signing space. The

segment boundary points may also be noisy due to slight deviations in segment

boundaries from the segmentation algorithm. Co-articulation and movement

epentheses in naturally signed continuous sentences also contributes to this. For

example, Figure 4.6 shows a segment which is essentially a straight line, but has a

small extraneous part that arises from co-articulation and movement epenthesis.

4.3.2.1 Descriptors for Trajectory Segments

The variations in the segments of naturally signed sentences make direct clus-

tering difficult. Hence, we suggest a better representation to enable the use of

simple clustering algorithms. For this, we characterize a trajectory segment by
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Figure 4.6: Straight line segment with a small portion arising from co-articulation
and movement epenthesis.

the plane in which it lies, its shape, direction of motion, size and position. Curves

are described by all the above features, while lines are described only by their

direction, size and position. PCA of the position vectors can easily differentiate

lines (1-D) from curves (2-D) based on eigenvalues. For a line, the first eigenvalue

(when ordered from largest to smallest) greatly exceeds the second, and we use

this fact to easily separate lines and curves. Based on normalized eigenvalues

Ei =
λi

∑3
j=1 λj

, i = 1, 2, 3, (4.10)

a segment is determined to be a line if E1 > 0.95, and a 2-D curve, otherwise.

Following this determination, a set of features is extracted as described below.

1) Plane of the Trajectory Segment : The normal to the plane in which the curve

lies in 3-D space can be obtained by the vector cross product

ni = ei1 × ei2, (4.11)

where ni is the normal to the plane, and (ei1, e
i
2) are the first and second principal

components (PCs) of the ith segment. As there are two possible directions for

ni in 3-D, we adopt a fixed convention to choose its direction. Also, since two

combinations of ±ei1 and ±ei2 correspond to the normal direction chosen, we use
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one of the pairs as our first and second PCs.

2) Direction of Motion: We use dominant motion direction to describe direction

for lines, and clockwise/anticlockwise sense for circles. As for arcs, both are used.

Dominant Direction. Though the direction of a line can be simply computed

from the starting position and the ending position of the trajectory segment, to

reduce sensitivity to noise, the dominant direction is obtained based on the first

PC, ei1 which is along the direction of the largest variance in the data. As both

ei1 and −ei1 can be considered to be valid directions of maximum variance, we

resolve this ambiguity as follows:

i) Compute a unit vector from the starting point to the ending point of the

segment as

wi =
pi
n − pi

1

‖pi
n − pi

1‖
, (4.12)

where pi
1 and pi

n are the starting and ending points of the ith segment,

respectively.

ii) Compute

θ1 = cos−1(wi · e
i
1), (4.13)

θ2 = cos−1(wi · −e
i
1). (4.14)

The dominant direction is chosen to point in the PC direction that is closer

to wi by choosing ei1 if θ1 < θ2, and −e
i
1, otherwise.

Clockwise and Anticlockwise Motion. We project the curve onto the plane de-

fined by (4.11) to determine whether the motion is clockwise or anticlockwise as

follows:
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i) The first turning point, q, of the curve is located, for example, as in Fig-

ure 4.7(a) or 4.7(b). The curve is then rotated so that q lies on the positive

horizontal axis. The corresponding rotated trajectories are as shown in

Figures 4.7(c) and 4.7(d), respectively.

Figure 4.7: (a), (b) Projected trajectories and (c), (d) corresponding rotated
trajectories.

ii) Clockwise and anticlockwise motion sense can then be found by the follow-

ing rule:

motion =







clockwise if (x ↑, y ↑) or (x ↓, y ↓) as t ↑

anticlockwise if (x ↑, y ↓) or (x ↓, y ↑) as t ↑
. (4.15)

3) Shape: Both arcs and circles are initially classified as curves, but need to be

distinguished based on shape of the segments in the 2-D principal subspace. This

is done with Fourier descriptors, which are extracted following the steps below.

i) The trajectory segment is resampled to a fixed number of samples, N ,

equally spaced in arc length. N is chosen to be a power of 2 to facilitate

the application of the fast Fourier transform (FFT). We used N = 64.
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ii) The projected 2-D curve coordinates are used to define a complex signal

zt = xt + iyt, t = 0, 1, ..., N − 1, (4.16)

where x and y are the x- and y-coordinates in the projected plane.

iii) The motion direction of the projected trajectory segment (clockwise or an-

ticlockwise) affects the ordering of the Fourier descriptors. To remove this

sensitivity, we re-ordered the projected segment from the last sample to the

first, if its motion sense was found to be anticlockwise.

iv) The DFT of z = [z0, z1, ..., zN−1] is obtained as F̂ = [f̂0, f̂1, ..., f̂N−1].

v) Invariance to translation is obtained by removing the first element (DC

component) in F̂. Rotation invariance is achieved by removing the phase

information, i.e. using only the absolute values of f̂k. Scale normalization

is obtained by dividing the Fourier coefficients by |f̂1|. The final Fourier

descriptors are given as

F̃ =

[

|f̂2|

|f̂1|
,
|f̂3|

|f̂1|
, ...,
|f̂N−1|

|f̂1|

]

. (4.17)

For discriminating only between circles and arcs, the first and last n elements in

F̃ were used, and n = 5 was found to be sufficient.

4) Size and Position: The maximum range in each of the x-, y-, z-coordinates is

found, and the largest range is taken to represent the size. Position is described

by using only the starting and ending positions of the segments. As these can

be noisy, we represent the start and end positions of the segment by the mean

values of the first and last 5% of the segment points.
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4.3.2.2 Transcribing Phonemes with k-means

There are two alternatives for defining phonemes by clustering. We can either

concatenate the extracted features and cluster these vectors or cluster each fea-

ture separately. We adopted the latter approach as it is simpler and allows simple

geometric interpretation of the clusters. Figure 4.8 shows the transcription proce-

dure. The 3-D trajectory segments are first segregated into lines or curves based

on the principal eigenvalue found by PCA of each segment. The features used

for lines are dominant direction, size and position. All the features described

in Section 4.3.2.1 are used for arcs and circles, with the exception of dominant

direction for circle. The individual features are clustered by k-means. Table 4.4

summarizes possible clusters for each feature and this serves as a guideline to

determine the number of clusters for each feature. The actual number of clusters

is found empirically.

The phonemes are then defined by grouping the trajectory segments which

have the same geometric feature descriptions. For example, all the trajectory

segments which are identified as lines with Dominant Direction = “down”, Size

= “small”, and Position = “mouth”, are considered as a cluster (phoneme).

Table 4.4: Possible clusters for the descriptors.

Descriptors Clusters

Plane xy-,yz-,xz-,±45◦-planes

Shape circles, arcs

Dominant Direction up,down,left,right,away,toward

Motion Sense clockwise,anticlockwise

Size large,small

Position 12 positions (refer to [16])
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Figure 4.8: Phoneme transcription procedure for the hand movement component.

4.4 Phoneme Transcription for Handshape, Palm

Orientation and Location

Phonemes for these static components are obtained by clustering. As the glove

and trackers are synchronized, the four components are expected to be aligned,

and we assume that the segments in the static components coincide with the

segments in the movement component obtained by the automatic segmentation

algorithm. The raw data described in Section 7.2 was used, i.e. 16-D handshape,

9-D palm orientation and 3-D location data. We normalized the handshape fea-

tures to unit length to discount variations in hand size. The phonemes of the three

components are defined independently based on the segments in the individual

channels but the same procedure described below was applied to them.

We divided each segment intoM intervals with equal arc length, and used only

the means of the first and last intervals to form the feature vectors for clustering.

We also tried dividing a segment into M equal time intervals, i.e. equal number of
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data points in each interval. However, we found that this approach was affected

by the signing habit and speed variations of different signers as some signers

tended to remain longer at the start and end of a hand movement trajectory.

Hence, we adopted the “equal arc length” approach which is less sensitive to

these variations.

The means of the starting and ending intervals of a segment were concatenated

to form the feature vectors, which were clustered by k-means to define phonemes.

To decide the optimum number of clusters (k̂) for each component, we can try

using guesses for k̂ using guidelines given by linguists. However, this may not

correspond to the true distribution of the data. Also, another problem with k-

means clustering is that random initialization can cause slow convergence and

difficulty in finding a good solution on a large data set. Hence, we used the

affinity propagation algorithm to estimate k̂ and provide a good initial starting

partition for the k-means algorithm.

4.4.1 Affinity Propagation

Affinity propagation (AP) proposed by Frey and Dueck [51] is a message-passing

clustering algorithm in which all data points are considered as potential exem-

plars, and form the nodes of a network. Real-valued messages are transmitted

recursively along edges of the network until a good set of exemplars and corre-

sponding clusters emerges. The input to AP consists of a collection of real-valued

similarities between data points. When the objective is to minimize squared error,

the similarity between each pair of points is set to the negative squared Euclidean

distance between them. The similarity s̃(i, k) indicates how well the data point

with index k is suited to be the exemplar for data point i. Each data point k is

given a “preference” value s̃(k, k) and data points with larger values of s̃(k, k) are
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more likely to be chosen as exemplars. “Preference” values influence the number

of identified exemplars (number of clusters). A common value is used if all the

data points are equally suitable as exemplars. Median of the input similarities

results in a moderate number of clusters and minimum of the similarities leads

to a small number of clusters.

There are two kinds of messages exchanged between data points, viz. “re-

sponsibility” and “availability”. The “responsibility” r(i, k), sent from point i

to candidate exemplar k, reflects the accumulated evidence for how well-suited

point k is to serve as the exemplar for point i, taking into account other poten-

tial exemplars for point i. The availability a(i, k), sent from candidate exemplar

point k to point i, reflects the accumulated evidence for how appropriate it would

be for point i to choose point k as its exemplar, taking into account the support

from other points that point k should be an exemplar. The AP algorithm is

summarized in Table 4.5.

Table 4.5: Affinity propagation algorithm.

AP algorithm:

1) Initialize the “availabilities” a(i, k) = 0.

2) Update the “responsibilities” using rule:

r(i, k)←− s̃(i, k)− max
k′s.t.k′ 6=k

a(i, k′) + s̃(i, k′).

3) Update the “availabilities” using rule:

a(i, k)←− min{0, r(k, k) +
∑

i′s.t.i′ 6=i,k

max{0, r(i′, k)}}.

The “self-availability” a(k, k) is updated differently:

a(k, k)←−
∑

i′s.t.i′ 6=k

max{0, r(i′, k)}.

4) Terminate the message-passing procedure after the

maximum number of iterations is met or after changes

in the messages fall below a threshold or after the local

decisions stay constant for some number of iterations.
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4.4.2 Transcription Procedure for the Static Components

The same phoneme transcription procedure is used for the handshape, palm orien-

tation, and location as the three static components exhibit similar characteristics.

The primary limitation of affinity propagation is the requirement of a large mem-

ory space. The method requires four Np ×Np matrices, where Np is the number

of data points to be clustered. In our problem, the total number of sign segments

obtained was 10852. Though only training segments are involved in the cluster-

ing, the number is still large. Hence, we chose to run the AP algorithm several

times with a subset of segments which were randomly selected from the training

pool by keeping all other parameters of AP fixed. The final exemplars were used

as the initial conditions for k-means. The set of segments that provided mini-

mum k-means clustering error was selected. The parameter “preference” in AP

affects the number of clusters obtained. We will describe the parameter selection

in Chapter 7 where the experimental results are presented and discussed. The

phoneme transcription procedure is summarized below:

i) Pick Np sign segments randomly from the entire training data set.

ii) Divide each segment into M intervals of equal arc length and compute

the mean vectors of the samples within the starting and ending intervals.

These are concatenated together to form the feature vector for clustering.

For example, the 16-D starting and ending handshape mean vectors are

concatenated to form a 32-D feature vector for the handshape component.

iii) Compute the similarity measure based on Euclidean distance and run the

AP algorithm with the Np data points.

iv) Use the “exemplars” and k̂ found by the AP algorithm as the initial cen-

troids and number of clusters, respectively, for k-means clustering.
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v) Run k-means with all the training samples using the initialization parame-

ters obtained from the AP algorithm. The final centroids obtained are used

as the templates for the phonemes. A phoneme label j is given to a sample

if it is found closest to the jth cluster.

4.5 Summary

We devised an automatic procedure to temporally segment naturally signed

ASL hand trajectories. Two segmentation algorithms based on rules and näıve

Bayesian network classifiers were proposed for obtaining true segmentation points

and eliminating false alarms. Experimental results presented in Chapter 7 show

that the Bayesian network segmentation performed better and it is thus chosen

to segment the hand movement trajectories in our automatic transcription proce-

dure. This transcription scheme relied on effective feature representation. PCA

was used to simplify the problem significantly by projecting 3-D hand trajectory

segments to 1-D (lines) or 2-D (curves). High level features which described the

geometry of the segments were extracted in the projected space. The same seg-

mentation points obtained for the movement component were used for the static

components (handshape, orientation and location). The clustering procedure

described in Section 4.4 was used to define the phonemes for the static compo-

nents. Experimental results for phoneme transcription are described in detail in

Chapter 7 along with other results.
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Silence is as deep

as eternity; speech,

shallow as time.

Thomas Carlyle

(1795-1881)

5
Segment-Based Classification of Sign and

Movement Epenthesis

5.1 Overview of Approach

Continuously signed sentences include sign information as well as movement

epentheses, and these need to be distinguished from each other for sign recogni-

tion. Explicit modeling of movement epentheses may not be the best approach

for this purpose due to two important reasons. Firstly, there is limited study by

linguists on movement epentheses and hence appropriate linguistic models are

lacking. Secondly, the idea of modeling “unwanted” segments is moot, especially

as large variations due to different signers can be expected. Hence, we propose

an approach which uses only signs to train the recognition framework and deals
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with movement epentheses during the decoding process.

Some works, for example, [77, 170, 173, 174] also adopted a similar view. How-

ever, [173, 174] only used a single channel for processing and recognition, making

it vulnerable to signer variations, and limiting generalization to new signers. In-

deed, in their experiments with three signers, inconsistency was observed in the

recognition results for a new signer. They reported recognition results of 80%,

slightly more than 50% and less than 30% for three rounds of leave-one-out ex-

periments with 10 sentences. The limited generalization could also be due to the

generative modeling they used for signs. Furthermore, their sign based modeling

approach may not be scalable to large vocabulary compared to a phoneme-based

approach. Both of the other works [77, 170] were based on threshold models

trained with only one signer, and the threshold parameters were required to be

derived from the training data. However, finding good threshold values may

be difficult when the problem is extended to several signers and the recognition

framework may not perform robustly with new signers.

If a recognition framework for continuously signed sentences is trained only

with sign information, then the sign segments must be obtained as accurately

as possible for input to the decoder during recognition. This implies the need

for a segmentation algorithm and an accurate classifier to label the segments as

belonging to sign (SIGN ) or movement epenthesis (ME ). In this chapter, we

focus on these two aspects.

Our classifier is based on CRFs and SVMs, and the required background

on these models is given for completeness in Sections 5.2 and 5.3, respectively.

In Section 5.4 we describe the rationale for the segmentation algorithm chosen.

Section 5.5 describes the original frame-based features obtained in the four com-

ponent, and the higher level features extracted for classification. Section 5.6
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describes the classification algorithm for sign and movement epenthesis sub-

segments. Here, the sub-segments are classified independently by a CRF model

and a SVM, and their outputs are fused with a Bayesian network for improved

accuracy. The chapter is summarized in Section 5.7.

5.2 Conditional Random Fields

A conditional random field (CRF) is a discriminative probabilistic model whose

underlying conditional structure allows relaxing the strong independence assump-

tions between the observed variables which are made in HMMs, and thereby

simplifies the problem. CRFs also avoid the label bias problem [91] which oc-

curs in maximum entropy Markov models (MEMMs) [104] and other conditional

Markov models based on directed graphical models. CRFs have shown success in

many works including parts-of-speech (POS) tagging [91], shallow parsing [130],

name entity recognition [80], morphological analysis [89], gene prediction [27],

and speech recognition [105], to name a few. We provide a brief introduction

and discussion of CRFs in the next section based on [18, 81, 161]. Excellent

comprehensive tutorials of CRFs can be found in [81, 141, 161].

Probabilistic graphical models are schematic representations of probability

distributions [18]. A graph is made up of nodes representing random variables,

which are connected by edges denoting the relationships between the variables.

Conditional independence allows complex probability distributions to be factor-

ized into a product of factors. This reduces the complex learning or inferencing

computations significantly. Based on the definition of conditional independence,

the absence of an edge between two random variables implies that the random

variables are conditionally independent given all other random variables in the

model. Notationally, conditional independence is denoted as p(a|b, c) = p(a|c),
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where a and b are independent given a random variable c. The conditional inde-

pendence properties can be represented by the directed graph shown in Figure 5.1.

Generally, graphical models can be represented as directed or undirected graphs.

Näıve Bayes and HMMs are two common examples of directed graphical mod-

els. Examples of undirected graphical models are maximum entropy models and

CRFs. More detail on graphical models can be found in [18]. Here, we provide

the background for training an undirected graphical model, viz., the linear-chain

CRF, and the associated inferencing technique.

Figure 5.1: Graph to represent conditional independence properties.

5.2.1 Linear-Chain CRFs

A conditional random field is an undirected graphical model, globally conditioned

onX, the random vector representing observation sequences. Formally, the model

allows computing the probability p(y|x), where y = (y1, . . . . . . , yn) ∈ Y are the

possible outputs and x = (x1, . . . . . . , xn) ∈ X are the input observations. A

linear-chain CRF whose graphical structure is illustrated in Figure 5.2 has a spe-

cialized linear structure, modeling the output variables as a sequence. In linear-

chain CRFs, the joint distribution of y is factorized into real-valued potential

functions. Each potential function operates on pairs of adjacent label variables

yj and yj+1. The conditional probability of y, in a linear-chain CRF can be
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Figure 5.2: Graphical model of a linear-chain CRF.

written as

p(y|x) =
1

Z(x)
exp

( n
∑

j=1

m
∑

i=1

λifi(yj−1, yj ,x, j)

)

, (5.1)

where Z(x) is a normalization term in the range of [0, 1], given as

Z(x) =
∑

y∈Y

exp

( n
∑

j=1

m
∑

i=1

λifi(yj−1, yj ,x, j)

)

. (5.2)

The index j specifies the position in the input sequence x and λi are weight

parameters to be estimated from training data. Each fi(yj−1, yj,x, j) is either a

state function f s
i (yj,x, j) or a transition function f t

i (yj−1, yj ,x, j), so that we can

write

m
∑

i=1

λifi(yj−1, yj ,x, j) =
t

∑

i=1

νif
s
i (yj,x, j) +

m
∑

i=t+1

µif
t
i (yj−1, yj ,x, j), (5.3)

where the state and transition functions are weighted by the parameters νi and

µi, respectively. This formulation is used in our framework that uses linear-chain

CRFs. For simplicity in notation, the training and inferencing procedures are

explained with respect to (5.1).

5.2.2 Parameter Estimation

In linear-chain CRFs, the parameters θ = {λ1, λ2, . . . , λm} are estimated from

the training data D = {xk,yk}
N

k=1 where xk = {xk
1, x

k
2, . . . , x

k
n} is the kth input
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sequence and yk = {yk1 , y
k
2 , . . . , y

k
n} is the kth predicted output sequence. Param-

eter estimation for CRFs is typically performed by using maximum-likelihood

where the conditional log-likelihood, L, is maximized based on the training data

D. The conditional log-likelihood is given as

L(θ) =
N
∑

k=1

log p(yk|xk). (5.4)

By substituting (5.1) into (5.4), we get,

L(θ) =
N
∑

k=1

log

[

exp(
∑n

j=1

∑m

i=1 λifi(y
k
j−1, y

k
j ,x

k, j))
∑

ŷ∈Y exp(
∑n

j=1

∑m

i=1 λifi(ŷkj−1, ŷ
k
j ,x

k, j))

]

=
N
∑

k=1

n
∑

j=1

m
∑

i=1

λifi(y
k
j−1, y

k
j ,x

k, j)−
N
∑

k=1

log Z(xk).

(5.5)

Regularization is often applied to avoid overfitting. There are two common choices

of penalty, viz. L1-norm (5.6) proposed by Goodman [56] and the L2-norm (5.7).

C is a free parameter that determines the weight of the penalty term and is

introduced to allow tuning for best performance. L1-norm is used to encourage

sparsity in the trained parameters, but the maximization lacks a closed form

solution, and thus numerical optimization is required.

L(θ) =
N
∑

k=1

n
∑

j=1

m
∑

i=1

λifi(y
k
j−1, y

k
j ,x

k, j)−
N
∑

k=1

log Z(xk)− C
m
∑

i=1

|λi|

2
, (5.6)

L(θ) =
N
∑

k=1

n
∑

j=1

m
∑

i=1

λifi(y
k
j−1, y

k
j ,x

k, j)−
N
∑

k=1

log Z(xk)− C
m
∑

i=1

|λi|
2

2
. (5.7)

For the optimization of (5.7), the derivative of the first term yields the expected

value of a feature fi under the empirical distribution,

Ẽ(fi) =
N
∑

k=1

n
∑

j=1

fi(y
k
j−1, y

k
j ,x

k, j). (5.8)
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The derivative of the second term gives the expectation of fi with respect to the

model distribution,

E(fi) =
N
∑

k=1

∑

ŷ∈Y

p(ŷk|xk)
n

∑

j=1

fi(ŷ
k
j−1, ŷ

k
j ,x

k, j). (5.9)

Ẽ(fi) is computed by counting the frequency of each feature fi which occurs

in the training data. It is impractical to compute E(fi) directly as there is a

combinatorial explosion of output sequence labels in evaluating the summation.

Hence, a forward-backward algorithm as used in HMMs with slight modification

is used to compute E(fi).

5.2.3 Inference

Inferencing in CRFs is formulated as finding the most likely output label se-

quence y∗ given the observations x. The recursive Viterbi algorithm is applied

to efficiently find the most probable path as

y∗ = argmax
y

p(y|x). (5.10)

The Viterbi recursion is given as

δj(q) = max
q̂∈Q

δj−1(q̂)Ψj(q̂, q,x), (5.11)

where

Ψj(q̂, q,x) = exp

( m
∑

i=1

λifi(yj−1 = q̂, yj = q,x, j)

)

. (5.12)

The essence of the Viterbi algorithm lies in the recursive nature of the term δj(q)

which stores the highest score along any path through point j which ends in state

q. Table 5.1 summarizes the Viterbi algorithm for output path decoding in CRFs.

Ωj(q) is an array introduced to keep track of the most probable path to state q
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at position j.

Table 5.1: Viterbi algorithm.

Viterbi algorithm:

1) Initialize Ω1(q) to zeros and δ1(q) to the corresponding start

state probability values.

2) Perform recursion steps on δj(q) and update the Ωj(q) as

follows,

δj(q) = max
q̂∈Q

δj−1(q̂)Ψj(q̂, q,x), ∀ q ∈ Q, 1 ≤ j ≤ n,

Ωj(q) = argmax
q̂∈Q

δj−1(q̂)Ψj(q̂, q,x).

3) At the end of the recursive steps, keep the end state with

highest probability:

p∗ = max
q̂∈Q

δn(q̂),

y∗n = argmax
q̂∈Q

δn(q̂).

4) Perform backtracking as follows,

y∗t = Ωt+1(y
∗
t+1).

5.3 Support Vector Machines

Support vector machines (SVMs) are motivated with a view to train linear

machines with large margins. The underlying concept in SVMs is to use an

appropriate nonlinear mapping to project data to high dimension so that two-

class data can be separated by a hyperplane with minimal error. The commonly

used SVMs were first proposed by Cortes and Vapnik [24] and are formulated as

follows.

Given instances x̌i, i = 1, . . . ,M with labels y̌i ∈ {1,−1}, the training of

SVMs begins by choosing the nonlinear mapping functions that map the input

to a higher dimension. The choice of the mapping function is often problem

dependent and examples of common kernels are linear, sigmoid, polynomial and

Gaussian radial basis functions. In the training of SVMs, the goal is to minimize
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the weight vectors a,

min
a,b,ξ

1

2
aTa+ C̃

M
∑

i=1

ξi (5.13)

subject to y̌i(a
Tϕ(x̌i) + b) ≥ 1− ξi, (5.14)

ξi ≥ 0, i = 1, . . . ,M, (5.15)

where ϕ(x̌i) maps x̌i into a higher dimensional space and C̃ > 0 is a scalar

constant for regularization. Given the training data, this problem is often solved

using quadratic programming though other schemes have also been devised.

In standard SVMs, the output is a distance measure between a test pattern

and the decision boundary. When SVMs are used with other probabilistic models

such as HMMs or CRFs, it is important for the SVM output to represent posterior

class probability. Platt [120] modeled the class conditional densities p(f(x̌)|y̌ =

+1) and p(f(x̌)|y̌ = −1) using Gaussians of equal variance and computed the

posterior probability of a class given the SVM output as

p(y̌ = +1|f(x̌)) =
1

1 + exp(Af(x̌) + B)
, (5.16)

where f(x̌) is the SVM output, x̌ is the input pattern, y̌ is the class variable,

and the parameters A, B are found by maximum likelihood estimation from the

training set (see [120]).

5.4 Segmentation

Ideally, if test sentences could be perfectly segmented and labeled as SIGN or ME

segments, the sign segments could be decoded to recognize the signs. However,

perfect segmentation is difficult. Experimental results for the Bayesian network

and rule-based segmentation algorithms of Chapter 4 on the movement channel

showed a best accuracy of about 95% for boundary point detection. Though
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our experiments indicated that this level of accuracy is tolerable for automatic

phoneme transcription, the decoding performance may degrade. On the other

hand, the initial segmentation algorithm of Section 4.3.1.1, which marks bound-

ary points at locations of minimum hand velocity and maximal change of direc-

tional angle, finds 99.9% of the true boundary points, but yields a high false alarm

rate, i.e. the sequences are over-segmented. Hence, we tried other methods to

maintain this high accuracy while reducing the false alarm rate, such as merging

the sub-segments obtained from the initial segmentation algorithm by using pe-

nalized likelihood estimation, using criteria such as minimum description length

(MDL) or Bayesian information criterion (BIC), to trade off model accuracy and

complexity. However, the performance did not improve.

Hence, our strategy is to use only the initial segmentation algorithm in view of

its high detection rate, and deal with the over-segmentation problem in a different

way. That is, with the high detection rate, we anticipate that if the sub-segments

can be correctly labeled as sign or movement epenthesis and merged properly,

then the sign sequence in a sentence can be decoded with high accuracy. This

is the crucial starting point for our proposed idea which adopts a segment-based

approach to recognize the continuously signed sentences, rather than the usual

frame-based sequences (the term “sequence” is used in the rest of this thesis to

refer to sequential data in a sentence). Here, we aim to classify as many movement

epenthesis sub-segments as possible without mislabeling any sign sub-segment in

the sequence. The locations of the detected movement epenthesis sub-segments

provide useful information for the final decoding algorithm, and thereby simplify

the sign recognition problem significantly.

The initial segmentation algorithm is applied to the movement channel, and

the boundary points obtained are also applied to the other three channels, as we
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assume that information in all channels evolves synchronously. Next we propose

an appropriate representation for the sub-segments in the movement channel and

extract appropriate features from it for classifying the sub-segments into SIGN

and ME.

5.5 Representation and Feature Extraction

The raw data obtained from the glove and trackers are described in Section 7.2,

and consist of handshape (16-D vectors), palm orientation (9-D vectors) and

position (3-D vectors), obtained at frame rates. These raw vectors need to be

appropriately normalized prior to feature extraction. The 16-D handshape vectors

are normalized to unit length to discount hand size variations. The raw position

vectors yield data for the movement channel and location channel. Usually a few

vectors at the beginning and end of a segment are used to obtain location channel

information.

For the movement channel, the basic descriptors are the movement direction

and trajectory shape, rather than raw position vectors. These descriptors need

to be invariant to location and size of trajectory, and hence care is required when

obtaining them from the raw position data. For example, the position vectors for

a circular hand movement made in the chest area, will be different for the same

movement made in the head area, and hence, normalization is necessary to simply

the recognition step. However, in continuous signing, direct normalization based

on the entire signed sentence is not appropriate as there may be variations from

sign to sign. Normalization based on segments is also not straightforward as the

start and end points of a movement segment are unknown. Hence, we adopt a

representation described below for the sub-segment trajectories in the movement

channel, that can reduce these sensitivities.
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5.5.1 Representation

A possible approach to represent the direction and trajectory shape is to normal-

ize the difference between the current previous position vectors to a unit vector

and represent the trajectory by a sequence of unit vectors, as for example in [79].

However, this process can be sensitive to noise and other variations that may be

present from sequence to sequence. Hence, for robustness, we fit lines to the tra-

jectory in each sub-segment using the end-point fitting algorithm [41]. Figure 5.3

shows two samples of the movement trajectory of a sign that exhibits obvious

differences. By line fitting, some of the variations can be eliminated to make the

piecewise linear representation of the two curves become more consistent. The

line fitting procedure is applied to each sub-segment and is described as follows.

(a) Curve 1. (b) Curve 2.

Figure 5.3: Fitting lines to curves.

i) Fit each sub-segment with lines using the iterative end-point fitting algo-

rithm shown in Table 5.2. Figure 5.4 illustrates an example where a line

through the two ends points (A and B) is first fitted, and distances between

the points on the curve and the line are computed. The maximum distance

is then located (point C). If this maximum distance (D) exceeds a preset

threshold, point C is used to find new lines through A and B. The process

continues until all maximum distances are smaller than a preset threshold.

Figure 5.5 shows an example of the lines fitted to a 3-D hand movement

trajectory.

ii) After the line fitting process, the unit directional vectors of the lines com-

puted at every sample point represent the sub-segment trajectory (and their
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collection over all sub-segments represent the entire trajectory).

Table 5.2: Iterative end-point fitting algorithm.

Iterative end-point fitting algorithm:

1) Given a curve, fit an initial line by

connecting the end points of the curve.

2) Compute the distances from each point on the

curve to this line, and check

if all distances < ε, stop,

where ε is a tolerance measure,

else go to step 3.

3) Find the point furthest from the line and break

the curve into two segments representing two

new curves. Fit lines to the two new curves

separately with their end points. Repeat Step 2.

Figure 5.4: End point fitting algorithm.

Figure 5.5: 3D hand movement trajectory fitted with lines.

At the end of the processing described above, we have a sequence of frame-

based vectors in the four channels, as follows: 1) handshape (normalized for hand

size), and 2) movement component represented by a sequence of unit vectors at
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every frame instant, extracted as described above, 3) no change in orientation

vectors, and 4) location channel represented by position vectors (no change). We

denote this as the set of “normalized” vectors.

5.5.2 Feature Extraction for Classification

We extract effective features from the sub-segments (consisting of the normal-

ized vectors) and train a classifier to label a sub-segment as sign or movement

epenthesis. The inputs to the classifier consist of features extracted from the four

parallel handshape (H), movement (M), orientation (O) and location (L) sub-

sequences. Figure 5.6 illustrates an example for the sentence GO MY HOME

consisting of 10 sub-segments in each channel. The superscript “ME” denotes

movement epenthesis sub-segments while others denote sign sub-segments (sign

sub-segments can also be labeled generically as “SIGN”). The goal here is to clas-

sify the sub-segments as SIGN or ME. We define lSj as the set of sub-segments

from the four channels, i.e. lSj = {lHj,
lMj,

lOj,
lLj}, l = {SIGN ,ME} is the

label variable and j = 1, 2, . . . , T , where T is the number of sub-segments in a

sequence.

Figure 5.6: The sub-segment sequences in the four parallel channels.

The features extracted from the component sub-segments are explained below.

Tables 5.3 and 5.4 summarize the details of the state and transition features,

respectively, for the CRF. Table 5.5 summarizes details of the features extracted
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for the SVM.

i) hand start, hand end, orien start, orien end, loc start, loc end,

mov start, mov end: The “start” and “end” features of each component

are computed by taking the mean of the first or last 5% of data from the

sub-segments.

ii) hand msdif ,orien msdif : Given a c point sub-segment, this feature is

the mean of rt − rt−1, where r is the raw feature vector of the component

and t = 2, 3 . . . , c.

iii) loc mean: This is computed by taking the mean of the position vectors of

the sub-segment.

iv) mov dom: The dominant direction is obtained based on the first eigenvec-

tor as described in Chapter 4.

v) arc length: The arc length of the sub-segment is computed as
∑c

t=2 ‖(pt−

pt−1)‖, where pt = (xt, yt, zt) is the tth 3-D position vector.

vi) tri feature: The trigram features denote triplets that use not only the

feature at the current time instant but also features from previous (or fu-

ture) two time instants. For example, for a handshape sequence, H =

(H1, H2, H3, H4, . . . , HT ), for j = 3, “H1H2H3” and “H3H4H5” form the

tri feature. This applies to all the features listed in Table 5.3 except for

arc length.

vii) diff strhand,diff strorien: These features are computed by taking the

difference of the ending handshape (or palm orientation) of the previous

sub-segment and the starting handshape (or palm orientation) of the current

sub-segment.
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viii) diff mloc,diff mdom: These are computed by taking the difference of

the mean hand positions (or dominant directions) of current and previous

sub-segments.

ix) comb arc: The current and previous sub-segments are merged and their

combined arc length is calculated.

The number of discrete symbols for CRF features was obtained experimentally.

We clustered the data points for each feature (e.g. hand start which is 16-D) into

k̂ clusters using k-means. To determine the best value for k̂, we trained a CRF

based on the target feature (i.e. only one feature is used such as hand start), and

repeated the procedure for different k values. The highest classification accuracy

from the CRF for different k’s was used to decide the “best” k̂ to represent a

feature (these values are shown in Tables 5.3 and 5.4). For the SVM, all the

individual component features were cascaded to form a 126-D feature vector for

input to the classifier.

5.6 Sub-Segment Classification

In practice, perfect labeling of sign and movement epenthesis sub-segments is not

possible, but we aim to detect as many movement epenthesis sub-segments as pos-

sible with minimal mislabeling of any sign sub-segments in the sequence, as a good

starting point for the decoding algorithm. With this view we trained both SVMs

and CRFs independently for sub-segment classification as SIGN or ME, with ex-

tracted features from the four component sub-segments (lHj,
lMj,

lOj,
lLj). The

CRF and SVM both use the same set of basic features except that the features

for the SVM are raw features while the features for the CRF are discretized into

a finite symbol set. The settings and procedures for training the CRF and SVM

are described in Section 7.4.
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Table 5.3: State features for CRF.
Component State feature Description No. of

symbols

Handshape hand start Starting handshape of each 70

sub-segment.

hand end Ending handshape of each 70

sub-segment.

hand msdif Mean of the adjacent handshape 70

differences of each sub-segment.

Orientation orien start Starting palm orientation of 50

each sub-segment.

orien end Ending palm orientation of 50

each sub-segment.

orien msdif Mean of the adjacent palm 80

orientation differences of

each sub-segment.

Location loc mean Mean of the hand positions of 50

each sub-segment.

loc start Starting hand position of each 50

sub-segment.

loc end Ending hand position of each 50

sub-segment.

Movement mov dom Dominant direction of hand 60

motion of each sub-segment.

mov start Starting direction of hand 60

motion of each sub-segment.

mov end Ending direction of hand 60

motion of each sub-segment.

Others arc length Arc length of each sub-segment. 10

tri features Trigram features. -

We observed that while the CRF and SVM classifiers provided good accuracy,

there was scope for improvement by fusing their outputs. For this purpose, we

computed the SVM and CRF output probabilities and fused them with other

useful features using a Bayesian network.
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Table 5.4: Transition features for CRF.
Transition Description No. of

feature symbols

label SIGN or ME. 2

diff strhand Difference of the end handshape of 70

previous sub-segment and the start

handshape of the current sub-segment.

diff strorien Difference of the end palm orientation of 80

previous sub-segment and the start palm

orientation of the current sub-segment.

diff mloc Difference of the mean of the hand 60

positions of current and previous

sub-segments.

diff mdom Difference of the mean of the dominant 70

direction of the hand motion of current

and previous sub-segments.

comb arc Combined arc length of current and 10

previous sub-segments.

5.6.1 Fusion with Bayesian Network

The fusion of different classifiers aims to yield a more accurate classification de-

cision than any single classifier. We used a Bayesian network to combine the

outputs of the CRF and SVM. We defined three query nodes viz. fLabel,

svmErr, and crfErr, and seven observed nodes viz. svmProb, svmLab,

svmPos, crfProb, crfLab, crfPos and arcLen. The structure of the net-

work is shown in Figure 5.7 and was specified using prior knowledge; all the

nodes have finite discrete states which are described in Table 5.6. The observed

nodes svmPos and crfPos are defined to have four states which are illustrated

by the following example. Given a SVM or a CRF detected sequence Ŝ =

{
SIGN

Ŝ1,
ME

Ŝ2,
ME

Ŝ3,
SIGN

Ŝ4,
SIGN

Ŝ5,
SIGN

Ŝ6}, we identify four cases for the posi-

tions of the sub-segments as follows. We group together sub-segments which have
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Table 5.5: Features for SVM.
Component Feature Description Length

Handshape hand start Starting handshape of each sub-segment. 16-D

hand end Ending handshape of each sub-segment. (each

hand msdif Mean of the adjacent handshape feature)

differences of each sub-segment.

diff strhand Difference of the end handshape of

previous sub-segment and the start

handshape of the current sub-segment.

Orientation orien start Starting palm orientation of each 9-D

sub-segment. (each

orien end Ending palm orientation of each feature)

sub-segment.

orien msdif Mean of the adjacent palm orientation

differences of each sub-segment.

diff strorien Difference of the end palm orientation

of previous sub-segment and the start

palm orientation of the current

sub-segment.

Location loc mean Mean of the hand positions of each 3-D

sub-segment. (each

loc start Starting hand position of each feature)

sub-segment.

loc end Ending hand position of each sub-segment.

diff mloc Difference of the mean of the hand

positions of current and previous

sub-segments.

Movement mov dom Dominant direction of hand motion of 3-D

each sub-segment. (each

mov start Starting direction of hand motion of feature)

each sub-segment.

mov end Ending direction of hand motion of

each sub-segment.

diff mdom Difference of the mean of the dominant

direction of the hand motion of current

and previous sub-segments.

Others arc length Arc length of each sub-segment. 1-D

comb arc Combined arc length of current and (each

previous sub-segments. feature)
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the same consecutive labels: {
SIGN

Ŝ1}, {
ME

Ŝ2,
ME

Ŝ3}, {
SIGN

Ŝ4,
SIGN

Ŝ5,
SIGN

Ŝ6}.

The aim is to use the error pattern based on the positions of the sub-segments

within a segment to improve the accuracy. The first group consists of only

one sub-segment and
SIGN

Ŝ1 is labeled as “single position”. To distinguish sub-

segments at the group edges,
ME

Ŝ2 and
SIGN

Ŝ4 are labeled as “left position” while

ME

Ŝ3 and
SIGN

Ŝ6 are labeled as “right position”. The last case is
SIGN

Ŝ5 which

lies between edges and is labeled as “other position”. Given a set of training data

D = {z1, z2, . . . , zN} and network structure as shown in Figure 5.7, the network

parameters θ (conditional probability table (CPT) of the nodes) are estimated

by ML estimation, as described in Chapter 4.

Figure 5.7: Bayesian network for fusing CRF and SVM outputs.

Experiments were conducted based on the classifier described above and the

results are given in Chapter 7. However, in order to prevent too much sign in-

formation from being lost by misclassification which is important in the final

recognition step, we relaxed the probability threshold used in the Bayesian net-

work classifier, i.e. instead of using 0.5 as the threshold for SIGN and ME sub-

segments, we adjusted the threshold to minimize the number of missed SIGN s

at the expense of having more false alarms (ME sub-segments being classified as

SIGN ). Hence, at the end of this subsystem, the sub-segment labels are obtained
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Table 5.6: Summary of the Bayesian network.

Node State Description

fLabel SIGN, ME Sign or movement epenthesis sub-segment.

svmErr Yes, No Detection by SVM is an error or not.

crfErr Yes, No Detection by CRF is an error or not.

svmProb 1-10 Quantized SVM output probabilities.

svmLab SIGN, ME Label from SVM.

svmPos 1-4 Position of the sub-segment from SVM

classifications.

crfProb 1-10 Quantized CRF output probabilities.

crfLab SIGN, ME Label from CRF.

crfPos 1-4 Position of the sub-segment from CRF

classifications.

arcLen 1-10 Quantized arc length.

based on the relaxed threshold for the SIGN /ME decision, and all sub-segments

labeled as ME are discarded and the positions are recorded.

5.7 Summary

The hand movement trajectory was segmented by marking the point of mini-

mum velocity and maximum directional angle change (the initial segmentation

algorithm of Chapter4). The same segment boundary points were used for all the

other channels as well. Appropriate features were extracted from corresponding

sub-segments in each channel. In the movement channel, a piecewise linear repre-

sentation of the sub-segment trajectories was obtained before feature extraction,

with a view to reduce noise and sample to sample variations in the curves. SVMs

and CRFs were investigated individually to classify the sub-segments as SIGN

or ME. Based upon the performance characteristics, it appeared that accuracy

could be improved by fusing the results. This was done by using a Bayesian net-

work. The labeled sub-segments are incorporated into the recognition framework

as described in the next chapter.
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Kindness is the language

which the deaf can hear

and the blind can see.

Mark Twain (1835-1910)

6
Segmental Sign Language Recognition

6.1 Overview of Approach

To recognize continuously signed sentences that exhibit variations caused by dif-

ferent signers, we propose a discriminative CRF model to yield better generaliza-

tion compared to generative models. We use a two-layered CRF model as shown

in Figure 6.1, where the lower layer performs basic phoneme recognition inde-

pendently in the four component channels, each with its unique set of subphones

and phonemes. The second layer fuses the four component phonemes together

to recognize the signs. For training, all the movement epenthesis segments are

discarded and only the sign segments are used. During testing, different com-

binations of sub-segments (as obtained in Chapter 5) are merged and evaluated

for recognition. For this, we modify the decoding algorithm of the semi-Markov
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CRFs proposed by Sarawagi and Cohen [128] and devise an efficient approach to

decode the sign sequences in sentences.

Figure 6.1: Overall recognition framework.

A semi-Markov CRF is a sequence model which relaxes the Markov assump-

tion. It is used with the motivation that segments and features extracted from

them can be more meaningful and expressive and thus yield better discriminative

performance. Here, all the samples in a segment share the same label. Semi-

Markov CRFs were first used in [128] for name entity recognition. They were

also used for gesture and activity recognition [132, 148]. Another noteworthy

application was in speech recognition where Zweig and Nguyen [183] made use of

interesting segment-level features to recognize continuous speech sentences. Their

approach outperformed an HMM-based approach by 2%.

In our CRF-based recognition framework, we start with segmented sentences

(or sequences) where each sequence S = {S1, . . . , Sn} consists of n sub-segments

comprising the normalized feature vectors as described in Section 5.5.1. A conve-

nient approach to model the sequence of sub-segments is the semi-Markov CRFs.

For this modeling, we first need to extract features from the sub-segments
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to form the corresponding input observation sequence x = {x1, . . . , xn}. In this

formulation, the term sub-segment is used to refer to an xj in the input obser-

vation sequence x, and the term “segment” is used to refer to a collection of

contiguous xj’s in x. Segment length is the number of sub-segments in a seg-

ment. We use ut and vt to indicate the start and end positions of a segment in

x, where ut and vt correspond to the sub-segment index in the input observation

sequence, and 1 ≤ ut ≤ vt ≤ |x|. The length of the output label sequence y

depends on the final number of segments obtained by combining sub-segments in

x. Now, let s = {s1, s2, . . . , sp} ∈ S denote a sequence of segments of x, where

st = {ut, vt, yt} is a segment with start position ut, end position vt, and a label

yt ∈ Y. A segment feature function is defined as gi(s,x, t) = gi(yt−1, yt,x, ut, vt),

and θ = {γ1, γ2, . . . , γh} are the parameters to be estimated in

p(s|x) =
1

Z(x)
exp

( p
∑

t=1

h
∑

i=1

γigi(s,x, t)

)

, (6.1)

where

Z(x) =
∑

s∈S

exp

( p
∑

t=1

h
∑

i=1

γigi(s,x, t)

)

. (6.2)

Given training data, D = {xk, sk}
K

k=1, the log-likelihood with L2-norm regular-

ization is written as

L(θ) =
K
∑

k=1

p
∑

t=1

h
∑

i=1

γigi(s
k,xk, t)−

K
∑

k=1

log Z(xk)− C
h

∑

i=1

|γi|
2

2
. (6.3)

The parameter estimation procedure for semi-Markov CRFs is similar to the

conventional linear-CRFs as described in Section 5.2. The main difference is

that the start and end positions of the segments are taken into consideration

during training in semi-Markov CRFs. More details of the training procedure of

semi-Markov CRFs can be found in [128].
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Inferencing in semi-Markov CRFs is formulated to find the best segment path

given θ and x as

s∗ = argmax
s

p(s|x)

= argmax
s

p
∑

t=1

h
∑

i=1

γigi(s,x, t)

= argmax
s

p
∑

t=1

h
∑

i=1

γigi(yt−1, yt,x, ut, vt).

(6.4)

Let L be the upper bound on segment length and let qs1:r denote the set of all

possible segments in x′ = {x1, . . . , xr}, where x
′ is the input observation sequence

from position 1 to r ≤ n, such that the last segment has label q and ending

position r. Let ηr(q) denote the largest value of p(s′|x) for any s′ ∈ qs1:r. The

recursive formulation in semi-Markov CRFs is similar to the Viterbi algorithm

and is written as:

ηr(q) =























max
q̂,d=1,...,L

ηr−d(q̂)Φ
′
(r−d+1):r(q̂, q,x) if r > 0,

1 if r = 0,

0 if r < 0,

(6.5)

where

Φ′
(r−d+1):r(q̂, q,x) = exp

( h
∑

i=1

γigi(yt−1 = q̂, yt = q,x, r − d+ 1, r)

)

. (6.6)

The best segment path is traced by maxq̂∈Y η|x|(q̂).

However, one of the disadvantages in using the above (conventional) semi-

Markov CRF for our problem is that it is highly dependent on the initial segmen-

tation algorithm which yields the sub-segment sequences. Generally, we cannot

expect the same break points or the same number of sub-segments to occur in

two samples of the same sentence. For example, the segment S̃1 in Figure 6.2

may have three sub-segments with different break points when the initial seg-
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mentation algorithm is applied to another sample of the sentence (consisting of

the same underlying sign segments which need to be recovered). If features are

extracted directly from these sub-segment sequences, we may have very different

representation for the input observation sequences used to train and test the semi-

Markov CRF. Also, the features extracted from individual sub-segments may not

be representative enough to characterize the signs when they are combined to-

gether. More importantly, semi-Markov CRF cannot be straightforwardly used

for phoneme-based modeling. If it is used to model the four parallel component

channels independently, different segmentation may be obtained in different chan-

nels after decoding. This makes the sign sequence decoding procedure difficult

as a more complex algorithm is needed to combine the information for final sign

level segmentation.

In our case, we need a strategy that allows merging the original sub-segments

together and recomputing features from the merged sub-segments. Our approach

is to use only complete sign segments extracted from the signed sentences to

train the recognition framework based on conventional linear CRFs as described

in Section 5.2, and propose a new decoding algorithm for our two-layered CRF

based on the decoding procedure used in semi-Markov CRFs, that can merge sub-

segments optimally to recover signs. We describe the training of the proposed two-

Figure 6.2: The test sub-segments and their corresponding clean segments.

layered CRF framework in the next section (Section 6.2). The key recognition and

decoding procedures are given in Section 6.3. The chapter ends with a summary

presented in Section 6.4.
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6.2 Training the Two-Layered CRF Framework

To obtain appropriate training data from the signed sentences, the näıve Bayesian

network segmentation algorithm given in Chapter 4 is first used to identify the

boundary points. The few errors that result from automatic segmentation are

manually corrected with the help of simultaneously recorded video sequences.

Based on the identified boundary points and the video sequences, the movement

epenthesis segments are easily discarded, and only the remaining clean sign seg-

ments are used for training.

An input observation consists of a sequence of feature vectors extracted from

the sign segments of a sentence that remain after the movement epenthesis

segments have been removed. We use
ℓsj
S̃j to denote a sign segment, where

ℓsj
S̃j = {

ℓhj
H̃j,

ℓmj
M̃j,

ℓoj
Õj,

ℓlj
L̃j}, comprises the corresponding segments for

handshape, movement, orientation and location components at the phoneme

level, ℓsj is a label associated with the sign level segment, {ℓhj, ℓmj, ℓoj, ℓlj} are

respective component labels at the phoneme level and j is the position of the

segment in the sequence. For the kth sentence with c sign segments, we have

S̃k = {
ℓs1
S̃k
1 , . . . ,

ℓsc
S̃k
c }, H̃

k = {
ℓh1

H̃k
1 , . . . ,

ℓhc
H̃k

c }, M̃
k = {

ℓm1

M̃k
1 , . . . ,

ℓmc

M̃k
c },

Õk = {
ℓo1
Õk

1 , . . . ,
ℓoc
Õk

c}, L̃
k = {

ℓl1
L̃k
1, . . . ,

ℓlc
L̃k
c}. Features are extracted based

on these sign segments and used to train the conventional CRFs in each channel

independently. For clarity and convenience, we will drop the subscripts or super-

scripts whenever they are not required for discussion. Figure 6.3 illustrates the

features extracted at each layer and layer outputs, and the details are explained

in the following sections.
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Figure 6.3: Input feature vectors extracted and their respective outputs at each
level.

6.2.1 Training at the Phoneme Level

The lower level of Figure 6.1, shows the four independent channels which use

CRFs to recognize the phonemes of the four components. The boundary points

obtained by using the Bayesian network of Chapter 4 from the movement com-

ponent are used for other components as well, and thus segments in all channels

are aligned in time. For phoneme recognition, we define subphones as inputs

to the lower level CRFs and represent a phoneme by a sequence of subphones.

The handshape, movement, orientation and location training sequences at the

phoneme level are denoted as Dh = {x̃k
h, ỹ

k
h}, Dm = {x̃k

m, ỹ
k
m}, Do = {x̃k

o , ỹ
k
o},

Dl = {x̃
k
l , ỹ

k
l }, for k = 1, . . . , N , where x̃k

h = {x̃k
h1, . . . , x̃

k
hc}, x̃

k
m = {x̃k

m1, . . . , x̃
k
mc},

x̃k
o = {x̃k

o1, . . . , x̃
k
oc}, and x̃k

l = {x̃k
l1, . . . , x̃

k
lc} are the kth input observation se-

quences, and ỹk
h = {ỹkh1, . . . , ỹ

k
hc}, ỹ

k
m = {ỹkm1, . . . , ỹ

k
mc}, ỹ

k
o = {ỹko1, . . . , ỹ

k
oc}, and
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ỹk
l = {ỹkl1, . . . , ỹ

k
lc} denote the corresponding label sequences which are obtained

from the phoneme transcription procedures described in Chapter 4. x̃k
hj , x̃

k
mj, x̃

k
oj,

x̃k
lj represents the jth input feature vector in the respective component and the

elements of the vectors correspond to the subphone labels.

The above is clarified by the illustration in Figure 6.4. To extract the features

for subphones from the H̃j, M̃j , Õj, L̃j segments, each segment is divided into

M = 10 sub-segments with equal arc length to yield H̃j = {hj1, hj2, . . . , hj10},

M̃j = {mj1,mj2, . . . ,mj10}, Õj = {oj1, oj2, . . . , oj10}, L̃j = {lj1, lj2, . . . , lj10}. Fea-

tures extracted from these sub-segments are clustered to define subphone labels

using a procedure similar to that used to define the static component phonemes

(Section 4.4). The only difference is that feature vectors extracted from the indi-

Figure 6.4: Phonemes and subphones.

vidual sub-segments are directly used for clustering (instead of concatenating the

starting and ending feature vectors of the sub-segments). The same procedure is

applied to the four components to extract the respective subphone labels and is

described below.

i) Pick Nq sign segments randomly from the entire training data set (Nq ≫

the number of signs in the database).
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ii) Divide each segment into M intervals and compute the mean values of the

vectors within the interval, e.g. for handshape component, the mean of the

16-D handshapes in the interval is computed. The total number of vectors

for clustering is thus M ×Nq.

iii) Compute the similarity measure based on Euclidean distance and run the

AP algorithm with the M ×Nq data points.

iv) Use the k̂ exemplars found by the AP algorithm as the initial centroids for

k-means.

v) Run k-means with all the mean vectors using the initial centroids obtained

from the AP algorithm. The final centroids obtained are used as the tem-

plates for the subphones. A subphone label ĵ is given to an interval if its

mean vector is found closest to the ĵth cluster.

The basic state features in each CRF are the 10 subphone labels extracted

from each segment in the component sequences. We also extract n-gram features

from across the segments as well as from within the segments in a sentence.

Here, we choose n = 3 for both type of features. For example, in a sequence

of handshape segments in a sentence, H̃ = {H̃1, H̃2, H̃3, H̃4, H̃5}, each segment

H̃j consists of a sequence of subphones, H̃j = {hj1, hj2, . . . , hj10}, j = 1, . . . , 5.

Due to the causal nature of the decoding algorithm, the trigram features across

segments are computed using only the previous segments, i.e. for a handshape

subphone at time instant j and subphone location i, the trigram state feature

is obtained by using the subphone labels of “h(j−2)ih(j−1)ihji”. However, for the

n-gram feature within segments, it is obtained by using the subphone labels of

“hj(i−1)hjihj(i+1)”. These are illustrated in Figure 6.5. The transition features

are the labels of the adjacent segments. These features are used to train the four
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phoneme level linear CRFs independently with the conventional approach.

Figure 6.5: N-gram features based on the respective sub-segments.

6.2.2 Training at the Sign Level

After the phoneme level training, all the component sequences in the training sen-

tences are input to the parallel CRFs at the lower level independently for decoding

using conventional CRF decoding algorithm. The decoded output phoneme se-

quences are used to train the sign level CRF. The training samples,Ds = {x̃
k
s ,y

k
s},

k = 1, . . . , N are used to train the sign level CRF, where x̃k
s = {x̃k

s1, . . . , x̃
k
sc} is

an input observation sequence at the sign level and ỹk
s = {ỹks1, . . . , ỹ

k
sc} is the

corresponding output sequence where ỹksj is one of the R sign labels {SIGN κ} for

κ = 1, . . . ,R. We define (see Figure 6.3) x̃k
sj = (ỹkhj, ỹ

k
mj , ỹ

k
oj , ỹ

k
lj, ỹ

k
aj) as the j

th in-

put feature vector of the kth sequence to the sign level CRF consisting of phoneme

label outputs from the four parallel CRFs and a segment arc length label, where

the subscripts h, m, o and l denote the CRF outputs from the handshape, move-

ment, orientation and location channels, respectively. We quantized the segment

arc length into six symbols by simple thresholding and the jth segment’s arc

length label in the kth sequence is denoted as ỹkaj. For sign level recognition, we
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computed the n-gram features across segments and used the adjacent sign labels

as the transition features. The arc length feature, ỹa ∈ 1, . . . , 6, and the number

of symbols for ỹh, ỹm, ỹo and ỹl are determined experimentally as described in

Section 7.5.

6.3 Modified Segmental Decoding Algorithm

After the CRF-based classifier is trained, it is used to recognize test sentences

which have been segmented by the initial segmentation algorithm, and whose

sub-segments have been classified as SIGN or ME (Chapter 5). Several issues

need to be addressed during decoding. Firstly, the start and end points of the sign

segments are unknown and need to be efficiently recovered by proper merging of

the sub-segments. Secondly, though the test sequence has been segmented and

the sub-segments have been classified as SIGN or ME, the classification scheme

cannot be expected to be error free especially on data from new signers. Hence,

simply discarding the sub-segments labeled as ME at this stage, and presenting

only the sub-segments labeled as SIGN to the decoder will be suboptimal.

Hence, we develop a new decoding procedure which modifies the semi-Markov

CRF decoding algorithm described in Section 6.1, and it is devised to have the

following characteristics:

i) Ability to efficiently evaluate different merging combinations of sub-segments

for recognition.

ii) When a hypothesized segment is recognized by the CRF-based classifier

as a particular sign, there should provide a mechanism to further indicate

whether the classification is one of the valid sign labels, or it is an unknown

sign.
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iii) A sub-segment can merge not only with its adjacent sub-segments, but

also with sub-segments which are separated from it by Ms number of sub-

segments.

The merging procedure based on the modified semi-Markov CRFs is described in

Section 6.3.1. Section 6.3.2 describes the inclusion of a two class SVM to provide

an UNCLASSIFIED label for use in the recognition procedure. Section 6.3.3

presents a method to allow the CRFs to skip states followed by the complete

decoding procedure. The complexity of the decoding procedure is discussed in

Section 6.3.4.

6.3.1 The Basic Algorithm

We start by presenting the merging and classification procedure used in the pro-

posed decoding algorithm. For simplicity of explanation, we assume that the

movement epenthesis sub-segments have been removed correctly and that we

only have a sequence of sign sub-segments. If they are merged correctly, the sign

segments would be available for sign recognition. Figure 6.2 shows an example

of a sequence of test sub-segments with respect to the actual sign segments. Seg-

mentation of this test sentence has yielded nine sub-segments; the sign segment

and their boundary, however are unknown. Hence, the decoding algorithm must

find the merging of the sub-segments that yields the most likely sign sequence. In

this example {S1, S2},{S3, S4},{S5, S6, S7} and {S8, S9} would need to be merged

together for recognizing the sign sequence.

Our strategy is to consider merging adjacent sub-segments, hypothesize that

the merged sub-segments form correct sign segments, and select the labels for the

hypothesized segments with a Viterbi-like procedure to compute the most likely

sign sequence. In our algorithm, the features are computed dynamically based
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on the merged sub-segments during the decoding process, i.e. every hypothesized

segment is divided into M intervals and features are extracted from them. As

different merging combinations are considered at each step, the length of the final

decoded sign labels may be different from the length of the input sub-segment

sequence. To reflect this, we modify the recursion in (6.5) as follows.

To modify the decoding algorithm in Section 6.1, we need to redefine some

terms used in the formulation. Here, s = {s1, s2, . . . , sp} denotes a sequence of

segments formed by merging the sub-segments in the sub-segment sequence S =

{S1, . . . , Sn}, and x̂ denotes an arbitrary input observation sequence consisting

of feature vectors extracted from the merged sub-segments in S. Hence, ut and

vt in st = (ut, vt, yt) are the sub-segment positions in S which describe the start

and end positions of the tth segment, and yt is the label assigned to the segment.

The inferencing is formulated to find the best segment path

s∗ = argmax
s

p(s|x̂). (6.7)

Similar to (6.5), we define L as the upper bound on the number of sub-

segments to be merged to form a segment, and use qs1:r to denote the set of all

possible partial merging in S′ = {S1, . . . , Sr}, such that the last segment which

is yielded by merging the sub-segments, has label q and ending position r. To

further facilitate the decoder formulation, we define x̂j1:j2 as an input observation

sequence with sub-segments merged from position j1 to j2. Let δr(q) denote the

largest value of p(s′|x̂′) for any s′ ∈ qs1:r. The modified recursive term is written

as:

δr(q) =























max
q̂,d=1,...,L

δr−d(q̂)Φr(q̂, q, x̂(r−d+1):r) if r > 0,

1 if r = 0,

0 if r < 0,

(6.8)
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where

Φr(q̂, q, x̂(r−d+1):r) = exp

( h
∑

i=1

λifi(yt−1 = q̂, yt = q, x̂(r−d+1):r

)

, (6.9)

and x̂(r−d+1):r denotes an input observation sequence with merged sub-segments

from position r−d+1 to position r. Though (6.5) and (6.8) appear to be similar,

the important distinction is that in the latter case the sub-segments are actually

merged and feature vectors are then extracted from these merged sub-segments.

In our formulation, r denotes the position of the sub-segment in the sequence S

and d denotes the length of a hypothesized segment (the number of sub-segments

to be merged).

Now, we extend the algorithm to the two-layered CRFs. One way to perform

decoding in the two-layered CRFs is to first decode the component phoneme se-

quences independently in the four channels and use the outputs from the phoneme

level CRFs to further decode the sign sequence. The main problem with this ap-

proach is that different sub-segment merging combinations may form in the dif-

ferent channels as the four components are decoded independently. This leads to

higher complexity for sign level recognition due to inconsistent segment lengths.

Furthermore, independent merging of sub-segments in each channel may not be

reliable. Hence, we adopt an approach which allows the phoneme level and sign

level decoding procedures to proceed simultaneously, where the decoded compo-

nent phonemes are fused for sign recognition as the decoding proceeds. In this

scheme, the proposed decoding algorithm is used for the sign level CRF only and

the conventional decoding algorithm is used for the phoneme level CRFs. At the

phoneme level, parallel decoding of the partial phoneme sequences is carried out

and the output information from the partial sequences is combined and used to

compute the recursive term for sign level recognition.
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Given a sentence consisting of n sub-segments, with S = {S1, . . . , Sn} at

the sign level and H = {H1, . . . , Hn}, M = {M1, . . . ,Mn}, O = {O1, . . . , On}

and L = {L1, . . . , Ln} at the phoneme level, the decoding procedure for the

two-layered CRFs is described below. For illustration, we also provide a simple

example to explain the proposed decoding procedure. Assume that we have four

sub-segments in a sequence consisting of two sign segments as shown in Figure 6.6

and let L = 2.

Figure 6.6: A sequence with four sub-segments.

i) For r = 1, we need to compute the recursive term δ1(q) with {S1:1} at the

sign level, where the notation Sr1:r2 denotes segments merged from position

r1 to r2. However, this requires the phoneme labels for the corresponding

merged sub-segments from the component channels, {H1:1,M1:1, O1:1, L1:1}.

The merged sub-segments are hypothesized as correct sign segments and

each segment {H1:1,M1:1, O1:1, L1:1} is divided into 10 intervals from which

the mean features are extracted. These features from the hypothesized

segment in each channel are decoded independently by the respective CRFs

using the standard CRF decoding algorithm. The phoneme label outputs

from the CRFs are concatenated to form an input feature vector to compute

δ1(q). In the example of Figure 6.6, δ11(q) and δ21(q) are computed for d = 1

and d = 2, respectively as shown in Figure 6.7. The highest value of δ1(q)

given by d = 1 and some value of q̂, is selected and it is highlighted in

Figure 6.7.

ii) For r = k, k > 1, δr(q) is computed by first finding the “best” possible
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Figure 6.7: An example to illustrate the decoding procedure.

merging combination for the sub-segments in the partial sign sequence from

position r = 1 to r = k − d at the sign level. This is done by performing

a backtracking for the partial sign sequence S = {S1, . . . , Sk−d} using the

modified decoding algorithm as described earlier to form the hypothesized

sequence Ŝ = {S1:k′
1
, . . . , Sk′s:k−d, Sk−d+1:k}. The same sub-segment merging

that is hypothesized at the sign level is applied to the component phoneme

level and features are extracted from these merged sub-segments. These

features are input to the respective parallel CRFs for decoding using the

conventional approach and the last phoneme label outputs from the decoded

segments are combined and used to compute δr(q). For the example in

Figure 6.6, at r = 3 we need to compute the recursive term for δ3(q). The

partial sequences required for computation at the phoneme level are H =

{H1, H2, H3}, M = {M1,M2,M3}, O = {O1, O2, O3}, L = {L1, L2, L3},

corresponding to the sign level sub-segment sequence, S = {S1, S2, S3}. To

compute δ3(q) (at r = 3), two possible ways of merging sub-segments need

to be considered, i.e. S3:3 for d = 1 and S2:3 for d = 2. For S2:3, the

only possible merging is Ŝ = {S1:1, S2:3}, for which a likelihood δ13(q) can be

calculated. For computing this, sub-segments 2 and 3 from each component
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need to be merged, features extracted from them and classified to phoneme

labels by the four CRFs. For d = 1, segment 3 is not merged with previous

segments, and so the possibilities to consider are Ŝ1 = {S1:1, S2:2, S3:3} and

Ŝ2 = {S1:2, S3:3}. However, δ2(q) at r = 2 already records which of the

mergings {S1:1, S2:2} or {S1:2} has higher likelihood. Suppose {S1:2} has the

higher likelihood. Then, the likelihood of the merged sequence {S1:2, S3:3}

is calculated as δ23(q). If δ13(q) is larger than δ23(q), then the merged sub-

segment sequence at r = 3 is {S1:1, S2:3}; else,it is {S1:2, S3:3}.

iii) At the end of the recursive steps, backtracking is performed to retrieve the

sign sequence. In the example given in Figure 6.7, the best value of δ4(q)

is obtained when d = 2 for some q̂. Backtracking from here leads to δ2(q)

which also has a best value when d = 2 for some q̂. With this approach,

we merge {S1, S2} at step 2 and {S3, S4} at step 4 and along with this the

signs are also recovered by tracing the best possible state sequence.

6.3.2 Two-Class SVMs

Thus far, the modified decoding algorithm described in Section 6.3.1 makes a

force assignment of one of the 107 sign labels (with the maximum likelihood) to

the hypothesized segments regardless of whether the segments correspond to sign

labels or not. Also, test sentences will consist of sign and movement epenthesis

sub-segments which have been misclassified. Thus, hypothesized segments may

actually contain movement epenthesis segments for which the modified CRF al-

gorithm has not been trained. Hence, it is desirable to have a mechanism to

provide additional information to the decoding algorithm to ascertain whether a

hypothesized segment can be one of the valid signs or not.

A possible approach is to add an UNCLASSIFIED class to the CRFs, and
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train the CRFs to recognize this in addition to the valid signs. However, it is dif-

ficult to obtain representative UNCLASSIFIED samples to discriminate against

a large number of signs. Often, a very large number of negative samples is re-

quired which can easily overwhelm the number of the sign samples. In [170] the

invalid patterns are added to the trained CRF by using some threshold models

to compute new weights for the state and transition feature functions of the UN-

CLASSIFIED class. However, a threshold-based approach may not be suitable to

handle signer variations and it is difficult to use simple classifier to discriminate

an UNCLASSIFIED class against a large number of sign classes. In addition,

the feature function weights for the invalid class are computed based on all the

sign patterns. Thus, every new sign that is added to the system will affect the

thresholds, and the new feature function weights for the UNCLASSIFIED class

need to be found.

A simpler approach that we adopt is to use two-class SVMs for each sign

to discriminate between valid and invalid segments. This approach reduces the

complexity of the problem significantly from a large multi-class problem to a set of

two-class problems. Also, if a new sign is added to the system, the trained SVMs

will not be affected and only one new SVM needs to be trained for the new sign.

The main task in this approach is to generate samples of the UNCLASSIFIED

class. The positive samples can be obtained easily by using the sign segments

from a particular class. To generate negative samples, the sub-segment sequences

of the training sentences can be used to form all possible segments by incorrect

merging, but the number of generated negative samples will be too large, leading

to a large imbalance in training the two-class SVMs. Hence, we propose a simple

approach to generate a subset of representative negative samples for each class

of signs, as follows. Given a partial sequence of correct segments, find the class
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label of the next hypothesized segment if it is obtained from wrongly merged

sub-segments. Then, decode the segment formed by incorrect merging and use

the segment as a negative sample with respect to its identified class label. This

step is repeated for all training sequences with and without movement epenthesis

segments. The following gives an example to explain the procedure to generate

the negative samples.

i) Given a sequence of n sub-segments (for example, n = 6) as S = {SIGN 1S1,

SIGN 1S2,
MES3,

SIGN 2S4,
SIGN 3S5,

SIGN 3S6}, and an upper bound L for the

length of the invalid segments (L is the same as the maximum segment

length used in the decoding algorithm). Suppose L = 5 in this example.

ii) Starting from r = 1, where r is the index for the position of the sub-segment

in the sequence, {S1:2} is used as a positive sample for class SIGN 1. The

segments {S1:1, S1:3, S1:4, S1:5} which do not correspond to valid signs are

input to the two-layer CRF to obtain a sign label for each segment. These

segments serve as negative examples for the respective decoded signs. Here,

we use only the conventional linear-CRF decoding algorithm for decoding

as the merged sub-segments are already given.

iii) For r > 1, we attempt to generate negative samples only at positions where

the preceding partial sequence forms a valid segment formed by correctly

merged sub-segments. Thus, at r = 2 we do not generate any negative

samples as {S1:1} is an invalid partial sequence. At r = 3, the negative

samples are generated as {S3:3, S3:4, S3:5, S3:6} and the sequences of Ŝ1 =

{S1:2, S3:3}, Ŝ2 = {S1:2, S3:4}, Ŝ3 = {S1:2, S3:5}, Ŝ4 = {S1:2, S3:6} are formed

and decoded. The class labels for the negative samples are obtained from

the decoded sign sequence. The same procedure is applied for the remaining
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sub-segments.

iv) We repeat the steps for the same sequence with movement epenthesis sub-

segments removed, i.e. MES3 for this example. We discard repeated negative

samples if they are identical to samples generated in the sequence with

movement epenthesis.

In general, there is a possibility that no negative samples are generated for

some signs in which case, these signs need to be handled separately. However,

there was no such problem in our data set. All the generated negative samples for

a sign are used with the positive samples to train a two-class SVM. As the SVMs

are incorporated into our proposed CRF-based decoding procedure, SVMs with

probabilistic outputs as described in Section 5.3, are used. The features used for

training the SVMs are similar to the features used for training the SIGN /ME

classifier of Chapter 5 and are listed in Table 6.1. Here, the only difference is

that we do not use the transition features described in Chapter 5 as the two-

class SVMs need to discriminate using only local features of given segments. The

features listed in Table 6.1 are concatenated to form 126-D real-valued feature

vectors for input to the two-class SVMs.

The two-class SVMs are integrated into the decoding algorithm by having

additional steps in the maximization of the likelihood. Instead of directly obtain-

ing the maximum and making a forced choice for sign label, the most likely sign

label for each hypothesized segment is first determined, and the two-class SVM

for the selected class is used to check if the hypothesized segment is valid. Only

the valid hypothesized segments are passed to the usual decoding procedure to

obtain the most likely sign label. In case all hypothesized segments are declared

as invalid by the two-class SVMs, we fall back on the usual decoding procedure

using simple maximization. We denote this function as “svmmax()”.
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Table 6.1: Features for SVM.
Component Feature Description Length

Handshape hand start Starting handshape of each segment. 16-D

hand end Ending handshape of each segment. (each

hand msdif Mean of the adjacent handshape feature)

differences of each segment.

hand std Handshape standard deviation of each

segment.

Orientation orien start Starting palm orientation of each segment. 9-D

orien end Ending palm orientation of each segment. (each

orien msdif Mean of the adjacent palm orientation feature)

differences of each segment.

orien std Palm orientation standard deviation of

each segment.

Location loc mean Mean of the hand positions of each 3-D

segment. (each

loc start Starting hand position of each segment. feature)

loc end Ending hand position of each segment.

loc std Location standard deviation of each

segment.

Movement mov dom Dominant direction of hand motion of each 3-D

segment. (each

mov start Starting direction of hand motion of each feature)

segment.

mov end Ending direction of hand motion of each

segment.

mov std Movement standard deviation of each

segment.

Others arc length Arc length of each segment. 1-D

num seg Number of sub-segments merged. 1-D

6.3.3 Modified Decoding Algorithm with Skip States

As the SIGN and ME classifier in Chapter 5 is not error free, the final test

sequences may include sub-segments which are actually movement epenthesis and

be missing some of the actual sign sub-segments which may have been erroneously

classified as ME and discarded. The modified decoding algorithm described in

Section 6.3.1 assumed for simplicity that sub-segment classification is perfect, so
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that sub-segments were merged with their immediate neighbors without skipping

any of the sub-segments. However, if a sequence consists of movement epenthesis

sub-segments erroneously labeled as SIGN, it would be desirable to skip these sub-

segments. To accommodate this, we modify the decoding algorithm as follows.

Let Ms be the maximum number of states that can be skipped. Together with

the inclusion of the two-class SVMs in the decoding algorithm, the recursive term

can be rewritten as

δr(q) =



























svmmax
q̂, d=1,...,L,
ts=0,...,Ms

δr−d−ts(q̂)Φr(q̂, q, x̂(r−d+1):r) if r > 0,

1 if r = 0,

0 if r < 0,

(6.10)

where ts denotes the number of states to be skipped and the remaining terms are

the same as in (6.8) and (6.9).

Suppose S = {S1, S2, S3} is a test sequence with a classification error only in

sub-segment 2 (i.e. it is actually not SIGN, but ME ). If no skip state is allowed,

S2 has to be included to evaluate the most likely path even though it is in error,

and three possible segment sequences Ŝ1 = {S1, S2, S3}, Ŝ2 = {S1:2, S3} and

Ŝ3 = {S1, S2:3} would need to be evaluated. In the extended decoding algorithm

with skip state, direct transition from S1 to S3 becomes possible. Then, if the

sequence Ŝ4 = {S1, S3} is found to have higher likelihood, it will be selected as

the most likely segment sequence, excluding the incorrectly classified S2.

The SIGN and ME labels of the sub-segments provided by the classifier of

Chapter 5 can also be used to break the complete sequence into partial sequences;

i.e. the positions of the ME sub-segments which have been discarded can be used

as indicators of potential boundary points across which merging is not necessary.

Hence, when an ME label is encountered, the sequence is broken into two inde-
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pendent partial sequences and sub-segments from the two partial sequences are

never merged. This reduces the decoding computations for the sign sequence

significantly. The complete modified decoding algorithm is given as follows.

i) Given a sequence of sub-segments S = {S1, . . . , Sn}, with Sj classified as

SIGN or ME.

ii) The recursive term in (6.10) is computed for all partial sequences with an

appropriate choice of Ms. Increasing Ms > 0 increases the computational

cost. When ME sub-segment is encountered, the search ends and further

sub-segment merging is stopped. The next partial sequence is treated as a

new sequence and merging is only done with succeeding sub-segments.

iii) The computation of the recursive term is continued until the end of the

sequence or until an ME label is encountered, and backtracking retrieves

the sign sequence.

6.3.4 Computational Complexity

The inferencing computation for semi-Markov CRFs is more expensive than con-

ventional linear-CRFs as it needs to consider several potential segment lengths d

to maximize the likelihood. However, the additional cost is only linear in L [128]

which is no more expensive than order-L linear CRFs. The additional compu-

tational cost for order-L CRFs is exponential in L. In our case, computational

cost of the basic decoder is similar to semi-Markov CRFs, but additional com-

putational cost is incurred to maximize over possible skip states ts. Again, the

additional cost is linear in (Ms + 1). Thus, the proposed inferencing procedure

incurs additional cost which is linear in L× (Ms+1) as compared to conventional

linear-CRFs. We observed in our data that a movement epenthesis segment often
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consists of one to six ME sub-segments. After discarding the ME sub-segments

using the SIGN /ME classifier, the maximum number of consecutive ME sub-

segments that are erroneously classified as SIGN in a sign segment is about two.

Hence, we chose Ms = 2 for our problem. Compared to linear-CRFs and semi-

Markov CRFs, the increase in computational cost by using the two-class SVMs

(to classify segments as valid or invalid signs) and extracting features on the fly

along with the inferencing procedure is minor.

6.4 Summary

In this important part of the work, we devised a two-layer CRF-based frame-

work to recognize continuously signed sentences from multiple signers. The first

layer of the framework was used to recognize component phoneme sequences in-

dependently and their output labels were combined to decode sign sequence at

the sign level. For training, the phoneme transcription procedure described in

Chapter 4 was used to train the phoneme level CRFs, and the phonemes outputs

were used to train the sign level CRF. For decoding, sub-segments and their la-

bels as obtained from the classifier proposed in Chapter 5 were used as inputs to

the proposed segmental CRF decoding algorithm, where subphones were used as

basic elements. The decoding algorithm was devised to merge the sub-segments

to form sign segments for robust sign sequence recognition. The algorithm was

extended to include two-class SVMs which were used to classify hypothesized

segments during decoding as valid or invalid, and thus relieve the decoder from

making an incorrect forced choice. For handling possible erroneous movement

epenthesis sub-segments remaining in sentences, the decoder was modified to

consider sub-segments that were non-contiguous.
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True creativity often starts

where language ends.

Arthur Koestler

(1905-1983)

7
Experimental Results and Discussion

7.1 Experimental Schemes

We present experimental results in this Chapter for the different subsystems in our

approach to recognize naturally signed continuous sentences, viz. 1) the segmen-

tation algorithms and phoneme transcription procedures of Chapter 4 (subsystem

1), 2) the SIGN /ME sub-segment classifier of Chapter 5 (subsystem 2), and 3)

the two-layer CRF recognition framework of Chapter 6 (subsystem 3). For sub-

systems 2 and 3, we used the complete data set, but for subsystem 1, we used

only a subset of the data as this part of the experiments served as a preliminary

evaluation of the segmentation algorithms and the phoneme transcription proce-

dures. In addition, we conducted preliminary evaluation of phoneme transcription

procedure only for the movement component as this is a novel approach, unlike
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the straightforward approach that was adequate for the static components. The

selected segmentation algorithms as well as the proposed phoneme transcription

procedures for all components were then applied to the entire data in subsys-

tem 3 where they were used to train the phoneme classifiers in the recognition

framework.

In the following, the data collected for the experiments is described in Sec-

tion 7.2. Details of the experiments and results for subsystems 1, 2 and 3 are

presented in Sections 7.3, 7.4 and 7.5, respectively. The experiments for obtaining

the final phonemes in the four channels based on the complete set of data are

also presented in Section 7.5. Section 7.6 summarizes the results obtained.

7.2 Data Collection for Continuous ASL

We used a CyberGlover [149] and Polhemus FASTRACKr system [121] to

acquire the handshape, palm orientation and hand position data. The tracker and

glove data were synchronized at a frame rate of about 31.10 ms. The 18 sensors

in the glove yielded readings of the joint and abduction angles of the fingers as

well as the wrist pitch and yaw. The trackers were attached to the back of each

of the signer’s hands and a third to the base of the signer’s spine, to serve as

a reference for discounting the variation in the position, and facing orientation

of the signer relative to the transmitter. We adopted the same procedures given

in [113] (Appendix C) to calculate the relative readings for the position and

orientation of the hands. This raw data consists of 16-D, 9-D and 3-D feature

vectors for handshape, palm orientation and location, respectively. We used only

16-D glove angles and discarded the wrist pitch and yaw which are not related

to handshape. The 9-D feature vector for palm orientation is made up of three

unit vectors corresponding to the x-axis, y-axis and z-axis which measure the
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hand rotations in the x-y plane as well as the palm direction (z-direction). The

3-D position vector of the hand is used to estimate location. All the experiments

in this work were conducted using the four components from the right hand,

obtained from tracker and glove data. For each sentence, a corresponding video

sequence of the frontal view of the signer was also recorded. This served as a

useful visual aid during manual processing of glove and tracker data to generate

appropriate training sets for various experiments.

The data for the continuous sign recognition experiments was obtained from

eight signers including seven deaf persons and a hearing person. The seven deaf

subjects were native signers of the local sign language and the last was an ex-

pert signer. The signed sentences were performed continuously, without pauses

between signs and closely followed ASL grammar. There were in total 74 distinct

sentences from a 107-sign vocabulary that included basic signs and signs with

directional verb inflections. Each sentence was made up of 2 to 6 signs. The

average number of samples per signer for each distinct sentence was between 3

and 10, providing a total of 2393 sentences and 7786 signs. Table A.1 in Ap-

pendix A lists the 107-sign vocabulary which consists of 72 different basic lexical

words and Table A.2 lists the 42 inflected directional verbs. The ASL sentences

collected contained most of the variations in sign language that were described in

Chapter 1, the exception being lexical variation, where a sign can be performed

with completely different appearances.

7.3 Subsystem 1: Experiments and Results

In this part of the work, we used only the 3-D position (x,y,z) coordinates of the

right hand obtained from the Polhemus FASTRACKr trackers. In addition, a

video of the frontal view of the signer was used to facilitate manual segmentation
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of the sentences and phoneme transcription by visual observation. We conducted

several experiments to evaluate the automatic rule-based trajectory as well as the

näıve Bayesian network segmentation procedures and the phoneme transcription

process. The evaluations are based on 25 ASL sentences signed 5-10 times by a

deaf signer (one of the eight signers described in Section 7.2). Various subsets of

this data were used for different experiments described below.

7.3.1 Automatic Trajectory Segmentation

To assess the performance of automatic trajectory segmentation, “ground truth”

segment boundary points were manually marked by an expert signer. We use

the terms “true segment/boundary point” and “false alarm” only in relation to

points manually marked by the expert signer. Manual segmentation involves dif-

ficult judgements and guesses, and it would be optimistic to label this as “ground

truth”. In the segmentation algorithms, the initial segments were obtained from

all samples of the 25 sentences by automatically locating the points of minimal ve-

locity and maximal change of directional angle. This yielded 1996 initial segment

boundary points.

We conducted two experiments on these segmented points with the näıve

Bayesian network classifier (Experiment NB) as well as with the rule-based clas-

sifier (Experiment RB1). To use the rules in Table 4.2 for processing this initial

segmentation in Experiment RB1, threshold values (Ti) are needed for the fea-

tures. To obtain these thresholds, we picked two training samples each from 13

randomly picked sentences, which yielded 330 initial segment points. Of these

188 points were false alarms and 142 true boundary points in relation to the man-

ually marked points. The required features (velocity and change of directional

angle) were then extracted from this training data, and the threshold value for

143



7. Experimental Results and Discussion

each feature was set by examining its distribution. We used the same training

data to extract features described in Section 4.3.1.3 to train the näıve Bayesian

network classifier in Experiment NB.

We divided the data into three groups to assess the rule-based and näıve

Bayesian network classifiers. Experiment EP1 assessed performance only on the

training samples; Experiment EP2 assessed performance on the same training

sentences but with unseen samples. Experiment EP3 used completely unseen

sentences. Table 7.1 summarizes the classification accuracy of the näıve Bayesian

network classifier and rule-based classifier (in square parenthesis). For näıve

Bayesian network classifier, the false alarms in Experiments EP1, EP2 and EP3

were 10.6%, 8.7% and 13.7%, respectively, showing that the classifier is able to

keep the false alarms to a relatively low level. In addition, the classification

accuracies in the three experiments were 94.4%, 89.1% and 88.1%, respectively,

showing that the classifier is also robust to unseen samples and sentences. The

corresponding results for the rule-based classifier were 6.9%, 7.7% and 11.4%

(false alarms), and 87.3%, 88.0% and 83.1% (detection accuracies), respectively.

Generally, the two sets of results are comparable; the näıve Bayesian classifier

yielded better detection accuracy though with somewhat more false alarms com-

pared to the rule-based classifier.

For further comparison between the rule-based scheme and the Bayesian net-

work scheme, we devised a set of rules shown in Table 7.2, which used the same

features as the Bayesian network, i.e. maxAng, minVel, normVel and dirAng

(Experiment RB2). Comparative results are given in Table 7.1 (in round paren-

thesis). Although the detection accuracies obtained in RB2 are better in EP1,

EP2 and EP3 compared to those in NB and RB1, there is a significant increase in

false alarm rates, and hence the simplified rule-based scheme is not viable. The
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Table 7.1: Classification accuracies of Experiment NB, Experiment RB1 (in
square parenthesis) and Experiment RB2 (in round parenthesis).

Experiment EP1 EP2 EP3

(Seen sentence (Seen sentence, (Unseen sentence

and sample) unseen sample) and sample)

Total no of points 330 674 992

True boundary points 142 284 379

Detected points 134, 94.4% 253, 89.1% 334, 88.1%

[124, 87.3%] [250, 88.0%] [315, 83.1%]

(134, 94.4%) (268, 94.4%) (349, 92.1%)

False alarms 20, 10.6% 34, 8.7% 84, 13.7%

[13, 6.9%] [30, 7.7%] [70, 11.4%]

(53, 28.2%) (102, 26.2%) (212, 34.6%)

Missed points 8, 5.6% 31, 10.9% 45, 11.9%

[18, 12.7%] [34, 12.0%] [64, 16.9%]

(8, 5.6%) (16, 5.6%) (30, 7.9%)

rule-based classifier in RB2 detects the true segmentation points about 8% and

4% better than the rule-based and näıve Bayesian network classifiers in RB1 and

NB, respectively, but it is about 21% and 19% worse in its ability to discard false

alarms, respectively.

Table 7.2: Formulated rules.
Rule Description

Rule 1 §if (minVel = TRUE) and (maxAng = TRUE),

detection = TRUE POINT

else, check Rule 2

Rule 2 if (normVel <= T5 and dirAng >= T6)

or (dirAng >= T7 and normVel <= T8),

detection = TRUE POINT

else detection = FALSE ALARM

note: Ti, i = 5,6,7,8, are the same thresholds as in Table 4.2.

§the condition “(minVel = FALSE) and (maxAng = FALSE)” will not occur.

Between the rule-based classifier of Table 4.2 and the näıve Bayesian network

classifier, we chose the latter for our final segmentation scheme, as it dispensed
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with the need to manually set several thresholds that are required in the rule-

based scheme. Using the näıve Bayesian network classifier to classify all samples of

each of the 25 sentences, and the voting algorithm of Section 4.3.1.4 to consistently

specify the final segmentation points for each set of sentences, the results in

Table 7.3 were obtained, with an overall detection accuracy of 92.5%.

Table 7.3: Final classification accuracies for 25 sentences.
Category No of points

Labeled true boundary points 133

Detected true boundary points 123

False alarms 9

Missed points 10

7.3.2 Phoneme Transcription

For purposes of comparison, we obtained phoneme transcriptions in two different

ways. In Experiment PT1, the transcription process was manual. For this exper-

iment, an expert signer specified the trajectory segments in one sample of each of

the 25 sentences according to sign linguistics, in conjunction with the initial seg-

ments obtained at points of velocity minima and/or maxima of directional angle

change, and the video of the signer as visual aid. Based on this collective infor-

mation, the expert signer identified 173 segments consisting of 84 sign segments

in the 25 sentences.

As a basis of comparison for the automatic phoneme transcription procedure

of Section 4.3.2, the expert signer also manually transcribed these 84 sign seg-

ments into phonemes by visual observation. The video was used together with

an ASL dictionary for manual transcription. This manual approach yielded 33

phonemes, and when the same 84 sign segments were automatically transcribed

by the procedure of Section 4.3.2 (Experiment PT2), we obtained 36 phonemes.
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The phoneme clusters obtained by both approaches were checked by plotting

the trajectories of cluster members. We observed that the clusters obtained by

the automatic procedure were generally more consistent and the cluster members

were closer in appearance. On the other hand, some phoneme clusters speci-

fied by manual transcription were poorly formed. This can be expected as it is

difficult to maintain consistency in manual transcription. Also, relying on the

video clips during this process could have led to errors when there were visual

occlusions. In the automatic transcription process, the PCA process separates

the segments into lines, or planar curves and circles, and each feature of these

categories is individually clustered. This simplifies checking the validity of the

clusters as the number of clusters obtained for each feature is greatly reduced.

Figures 7.1(a) and 7.1(b) show one of the clusters (phonemes) obtained by the

automatic and manual phoneme transcription processes, respectively. It can be

seen that the cluster formed by automatic phoneme labeling is more consistent.

Another attractive benefit of automatic phoneme transcription is the significant

reduction in time and labor as compared to manual transcription.

Figure 7.1: Clusters obtained (trajectories are normalized).

From this part of the experiment, we found that the näıve Bayesian network

classifier yielded the best performance. We have also verified that the automatic
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phoneme transcription procedure yields comparable number of sign phonemes

when compared to the manual procedure. In addition, the automatic transcrip-

tion procedure yielded more consistent clusters showing promising performance.

Hence, we adopted the näıve Bayesian network scheme for segmenting training

sentences and the PCA-based automatic transcription procedure for transcribing

the movement phonemes used in the subsequent experiments. More details for

the automatic segmentation algorithm and phoneme transcription works can be

found in [83, 85].

7.4 Subsystem 2: Experiments and Results

All the samples from the eight signers as described in Section 7.2, consisting of

74 distinct sentences and 107-sign vocabulary were used for the experiments to

evaluate sub-segment labeling. A total of 47086 sub-segments were obtained from

the initial segmentation algorithm. The training and testing were done using a

full round robin procedure by leaving one signer out as an unseen signer (i.e.

signer whose data was not used for training) each time. We also used 80% of the

data from seven signers for training and the remaining 20% as unseen samples

from seen signers for testing. We first trained CRFs and SVMs to classify the

sub-segments and investigated their performance independently, followed by the

Bayesian network fusion scheme.

7.4.1 Results with Conditional Random Fields

Based on the extracted state features and transition features, we trained a linear-

chain CRF, where the features listed in Tables 5.3 and 5.4 were used to specify a

set of feature functions (func1, func2, . . . , funcN), examples of which are shown

in Table 7.4. If Nc is the number of symbols for each feature and Lc is the number
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of output classes, then (Nc×Lc) state feature functions and (Nc×Lc×Lc) tran-

sition feature functions can be specified. The important settings for training and

testing the CRF are summarized in Table 7.5. We conducted three different sets

Table 7.4: Example of CRF state feature functions.

func1 = if (output = SIGN and hand start = “1”) return 1 else return 0.

func2 = if (output = ME and hand start = “1”) return 1 else return 0.

func3 = if (output = SIGN and hand start = “2”) return 1 else return 0.

func4 = if (output = ME and hand start = “2”) return 1 else return 0.

.

.

.

.

Table 7.5: Settings used for CRFs.

Setting Description

Output labels Two class: SIGN and ME

No. of state features 25

No. of transition features 6

Optimization Quasi-newton algorithm (LBFGS)

Regularization L2-norm

Decoding Viterbi algorithm

of experiments. The first experiment was to estimate k̂, the number of discrete

symbols used for each feature. The second experiment evaluated the performance

and effect of L1 and L2-norm regularization methods on the classification rates.

The last set experiments used the best performing CRF to obtain the final CRF

classification result.

7.4.1.1 Determination of k̂ Discrete Symbols

The original real-valued features based on handshape, movement, orientation and

location components were converted to discrete symbols by k-means before being
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used as inputs to CRFs. We used only the training data to find the clusters,

and the trained centroids were labeled as 1, 2, . . . ,C. All cluster members were

assigned the same numeric symbol as their cluster centroid. For test data, the

feature vector was given a number symbol corresponding to its closest cluster.

To determine the optimal number of clusters k̂ for each feature, we searched in

a range of potential values based on the number specified by linguists. For every

k, we trained a CRF to classify the sub-segments as SIGN or ME based only on

the single feature using the training data, and selected the k̂ = k which yielded

the best accuracy. For example, if there were about 40 handshapes defined by

linguists, we searched for k̂ in the range of 30-80 in steps of 5 or 10 for the state

or transition features related to handshape. Table 7.6 shows the best k̂ values for

each feature and their corresponding classification results.

Table 7.6: Best k̂ for state and transition features.
Feature k̂ Accuracy (%) Feature k̂ Accuracy (%)

hand start 70 65.8 mov dom 60 66.8

hand end 70 64.8 mov start 60 65.5

hand msdif 70 67.6 mov end 60 65.6

orien start 50 66.9 arc length 10 59.1

orien end 50 64.5 diff strhand 70 61.2

orien msdif 80 64.3 diff strorien 80 66.7

loc mean 50 64.4 diff mloc 60 67.8

loc start 50 67.5 diff mdom 70 71.6

loc end 50 64.4 comb arc 10 59.8

7.4.1.2 L1-Norm and L2-Norm Regularization

Regularization was applied to CRFs to avoid overfitting. We used the L1-

norm (5.6) and L2-norm (5.7) and compared their results. L1-norm is typically

used to obtain sparse parameters making the problem more interpretable and

computationally manageable. However, the main problem with L1-norm is that
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it is not differentiable at zero, and the standard gradient-based optimization algo-

rithms such as the LBFGS quasi-Newton methods cannot be applied. Rather, it

requires numerical optimization which often leads to instability in computation.

We randomly selected a subset of data from one signer and split the data into

training and testing samples. We used all the features as described in Tables 5.3

and 5.4 to train a CRF to classify the sub-segments as SIGN or ME. Table 7.7

shows the classification results obtained by using the L1-norm and L2-norm by

varying C, a free parameter which weights the penalty term.

Table 7.7: Performance of L1-norm and L2-norm.
Classification accuracy (%)

L1-norm L2-norm

C Training Testing No. of Training Testing No. of

sample sample features sample sample features

0.001 57.4 58.8 8 76.6 74.0 497326

0.01 82.1 80.4 7049 99.0 87.3 497326

0.20 83.8 81.8 14775 99.8 87.5 497326

0.40 89.1 85.8 34434 100.0 87.4 497326

0.60 88.9 85.7 56571 100.0 87.4 497326

0.80 89.3 85.8 91640 100.0 87.2 497326

1.00 91.4 86.7 114196 100.0 87.3 497326

5.00 94.2 87.3 493646 100.0 87.2 497326

10.0 94.5 87.0 494563 100.0 87.1 497326

From Table 7.7, it is observed that the L2-norm performs better than the L1-

norm at the expense of using more features. The L2-norm accuracy is consistently

around 87% on testing samples, while the L1-norm accuracies increase with the

number of features retained. As this gets closer to the total number of features,

the accuracy increases close to that of the L2-norm. Though the L1-norm offers a

tradeoff between accuracy and computational cost, its accuracies are below that

of the L2-norm. As we did not face any computational problems in working with

the total number of features, we chose to use the L2-norm.
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7.4.1.3 Classification with CRFs

We conducted two different experiments for classifying the SIGN and ME sub-

segments. All sentences were used for this part of the experiment. Experiment

C1 used 70% of the data from each signer and tested on the remaining data

from the same signer. This was to evaluate the performance of the classifier on

unseen samples from the same signer used to train the model. Experiment C2

evaluated the performance on samples from an unseen signer. For this, we used

a full round robin procedure by leaving one signer out in each round as described

in Section 7.4. Tables 7.8 and 7.9 summarize the classification results obtained

by CRFs in Experiments C1 and C2, respectively.

Table 7.8: Experiment C1 (single signer) - Classification of SIGN and ME.

Classification accuracy with

CRFs and SVMs (in parenthesis) (%)

Signer Seen signer, Seen signer,

seen sample unseen sample

S1 100.0 (99.5) 92.9 (94.7)

S2 100.0 (99.3) 92.1 (94.4)

S3 100.0 (98.4) 87.2 (89.9)

S4 100.0 (99.2) 88.0 (92.2)

S5 100.0 (99.1) 91.1 (92.8)

S6 100.0 (99.3) 92.3 (95.3)

S7 100.0 (99.8) 92.8 (96.3)

S8 100.0 (99.5) 91.4 (94.3)

Save 100.0 (99.3) 91.0 (93.7)

A good value of C was determined experimentally as C = 0.085; however,

the classification results were not very sensitive to the parameter C. Generally,

accuracy was consistently good for unseen samples from seen signers and averaged

91%. An average classification accuracy of 85.7% was obtained for unseen signers

in Experiment C2. This shows that the trained CRFs can generalize quite well
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Table 7.9: Experiment C2 (multiple signer) - Classification of SIGN and ME.

Classification accuracy with

CRFs and SVMs (in parenthesis) (%)

Round Seen signer, Seen signer, Unseen signer

seen sample unseen sample unseen sample

R1 99.4 (95.6) 90.4 (92.2) 85.0 (86.0)

R2 99.5 (95.9) 90.5 (92.4) 87.1 (87.5)

R3 99.5 (96.1) 91.5 (93.0) 86.3 (87.0)

R4 99.5 (96.0) 91.0 (92.9) 82.5 (83.8)

R5 99.5 (95.9) 90.6 (92.6) 86.0 (84.2)

R6 99.5 (95.7) 90.8 (92.3) 84.8 (84.5)

R7 99.4 (95.6) 90.4 (92.0) 87.6 (86.6)

R8 99.4 (95.8) 90.4 (92.3) 86.0 (85.3)

Rave 99.5 (95.8) 90.7 (92.5) 85.7 (85.6)

to data from new signers.

7.4.2 Results from Support Vector Machines

The features listed in Table 5.5 were concatenated to form 126-D real-valued

feature vectors as inputs to the SVMs. The elements of the feature vectors were

normalized to have zero mean and unit variance. We used Gaussian radial basis

functions as the kernels for the SVMs. The regularization parameter C̃ was tuned

experimentally and we used C̃ = 5. We conducted two experiments similar to

the CRF classification experiments as described in Section 7.4.1.3. The SVM

classification results are also summarized in Tables 7.8 and 7.9 (in parenthesis).

The classification results of SVMs and CRFs are comparable and consistent.

SVMs performed about 2% better than CRFs for unseen samples from seen sign-

ers. For unseen signers, both classifiers yielded rather consistent classification

accuracies for all eight rounds with CRFs and SVMs yielding average accuracies

of 85.7% and 85.6%, respectively. The main disadvantage of SVMs as compared

to CRFs is that they require longer training time because the feature vectors are
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high dimensional.

Generally, SVMs treat every sub-segment as an individual isolated input while

CRFs encode the transition characteristics of the sub-segments in a sentence.

The errors made by both approaches are different although they show similar

classification accuracies. Figure 7.2 shows an example of the CRF and SVM

classification outputs for a sentence COME WITH ME made by an unseen signer.

Except for identical errors made in sub-segment S17, the errors from the SVM

and CRF were different. The CRF made an error in S8 while the SVM detected

the sub-segment correctly. On the other hand, when the SVM made errors in S7

and S15, the CRF classified the sub-segments correctly. Hence, we conjectured

that the classification accuracy may be further improved by combining the two

experts if they are able to complement each other.

Figure 7.2: CRF and SVM outputs for the sentence COME WITH ME.

7.4.3 Fusion Results with Bayesian Networks

We repeated Experiment C2 by using the Bayesian network shown in Figure 5.7.

As observed from Table 5.6, we need the error outputs of the CRF and SVM

for training the Bayesian Network. However, the classification accuracies for

the training samples with CRF and SVM were 99.5% and 95.8%, respectively.

Thus, there were too few error samples from the CRF to train the Bayesian

network. Hence, we lowered the value of the parameter C in (5.7) to C = 0.015, to

obtain 4-5% errors (Table 7.10 summarizes the classification results thus obtained)

and trained the Bayesian network. The real-valued features were quantized as

described in Table 5.6. The conditional probability table (CPT) of the discrete
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nodes were learned by maximum likelihood estimation. During testing, the nodes

crfErr, svmErr and fLabel were inferred based on the input observations. The

final classification accuracy shown in Table 7.11, is improved compared to CRF

and SVM results, for both unseen samples from seen signers as well as unseen

signers. For the unseen samples from seen signer, an average improvement of

2.4% was obtained when compared to the CRF, and a marginal improvement of

0.6% was obtained when compared to the SVM. However, for unseen signers, the

Bayesian network gave an average improvement of about 2.5% in classification

accuracy as compared to both CRF and SVM. More importantly, the Bayesian

network was more consistent across the unseen signers. From Table 7.11, it is

observed that the worst accuracy of 86.9% was obtained in R4 when Signer 4

was tested as a new signer. In comparison, if only the CRF or SVM was used

individually, the result for R4 would have been as low as 82.5% (CRF) or 83.8%

(SVM). Accuracy for unseen signers is important for the later part of our work

when we need to incorporate the classified SIGN and ME labels into the final

recognition scheme.

Table 7.10: Classification with less overfitted CRFs.
Classification accuracy (%)

Round Seen signer, Seen signer, Unseen signer,

seen sample unseen sample unseen sample

R1 95.1 89.3 84.2

R2 94.9 88.8 87.3

R3 95.4 90.0 84.1

R4 95.4 89.7 82.9

R5 95.0 88.9 85.0

R6 95.1 89.2 84.1

R7 95.0 89.2 87.2

R8 95.0 89.2 85.8

Rave 95.1 89.3 85.1
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Table 7.11: Classification with Bayesian network.

Classification accuracy (%)

Round Seen signer, Seen signer, Unseen signer,

seen sample unseen sample unseen sample

R1 98.8 92.8 87.4

R2 98.9 92.9 89.5

R3 99.0 93.7 88.9

R4 98.9 93.2 86.9

R5 98.9 93.2 87.4

R6 98.8 92.9 87.3

R7 98.8 92.7 89.5

R8 98.8 93.1 88.3

Rave 98.9 93.1 88.2

Here, we also analyzed the errors made by the Bayesian network. Among

the errors, the number of false alarms (ME sub-segments classified as SIGN ) is

slightly more than the number of missed SIGN s. Table 7.12 presents the propor-

tion of false alarms and misses in the errors obtained from all the experiments,

indicating an average of 6 − 12% more false alarms than misses. In our work,

missed SIGN s are more of a concern as they entail permanent loss of information;

false alarms can still be dealt with in the decoding algorithm. For analysis, we

categorized the errors into four groups, viz. 1) left edge error (E1), 2) right edge

error (E2), 3) single segment error (E3) and 4) random error (E4). Figure 7.3

illustrates these errors and Table 7.13 shows the proportion of the different errors

obtained by the Bayesian network. Often, the random errors create complexity

for the decoder as they split a segment into arbitrary fragments which may change

the intrinsic characteristics of the original sign. Single segment errors cause com-

plete loss of the sign. The edge errors are less severe as they imply partial loss of

information and there is still a possibility of correct decoding. Fortunately, from

Table 7.13, the percentage of random errors is relatively small, and most of the
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errors appear at the edges of the segments.

Table 7.12: Error analysis of false alarms and misses from the Bayesian network.

Number of false alarms and misses in the errors (%)

Round Seen signer, Seen signer, Unseen signer

seen sample unseen sample unseen sample

False Misses False Misses False Misses

alarm alarm alarm

R1 57.4 42.6 52.9 47.1 57.9 42.1

R2 55.3 44.7 54.2 45.8 54.6 45.4

R3 57.1 42.9 52.4 47.6 58.9 41.1

R4 57.9 42.1 53.6 46.4 56.7 43.3

R5 52.9 47.1 53.4 46.6 72.6 27.4

R6 55.0 45.0 52.6 47.4 40.0 60.0

R7 56.2 43.8 53.0 47.0 53.3 46.7

R8 55.9 44.1 52.6 47.4 45.9 54.1

Rave 56.0 44.0 53.1 46.9 55.0 45.0

Figure 7.3: Error types.

7.5 Subsystem 3: Experiments and Results

For the sign recognition experiments, we used all the samples from eight signers

as described in Section 7.2, consisting of 74 distinct sentences from a 107-sign

vocabulary, comprising in total 2393 sentences and 10852 sign instances. The

trained two-layered CRF classifier was used to recognize the continuously signed

sentences. We tested the classifier in a full round robin procedure by leaving one

signer out as an unseen signer in each round. For training, we selected 80% of

the data randomly from each of the seven signers and used the remaining 20% as

157



7. Experimental Results and Discussion

Table 7.13: Error types.

Proportion of error types (%)

Round Seen signer, Seen signer, Unseen signer

seen sample unseen sample unseen sample

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

R1 28.8 46.6 6.1 18.4 40.2 38.8 5.1 15.9 31.4 39.2 5.8 23.5

R2 25.7 48.0 6.1 20.3 39.7 40.3 6.3 13.7 33.7 39.6 5.5 21.2

R3 29.0 53.1 3.4 14.5 37.8 44.5 3.0 14.7 29.5 31.9 5.8 32.9

R4 27.4 51.9 3.0 17.8 39.7 39.0 5.1 16.2 40.7 39.9 14.6 4.9

R5 26.7 51.6 3.7 18.0 38.7 40.2 6.7 14.4 44.9 37.8 4.1 13.3

R6 28.6 50.9 5.6 14.9 39.2 40.3 5.7 14.8 33.8 37.0 10.4 18.8

R7 29.0 45.6 4.7 20.7 39.7 41.1 4.5 14.8 30.9 42.7 9.3 17.1

R8 26.3 52.5 5.0 16.3 41.1 39.3 5.3 14.4 43.2 30.0 4.5 22.2

Rave 27.7 50.0 4.7 17.6 39.5 40.4 5.2 14.9 36.0 37.3 7.5 19.2

unseen samples from seen signers for testing. The following sections describe the

experiments to verify the various subsystems and the final classifier.

7.5.1 Phoneme and Subphone Extraction

The phonemes of the four components were defined and extracted mainly for

training the linear-CRFs in the four parallel channels at the phoneme level. The

transcription procedures described in Chapter 4 were used to define the compo-

nent phonemes using the training data in each round of the experiments. The

phonemes for the movement component were obtained by using the transcription

procedure with PCA-based representations. For the other three components, we

randomly selected 5000 segments (i.e. Np = 5000) for AP clustering. Features

from the starting and ending intervals of each segment were concatenated, re-

sulting in 5000 feature vectors for AP clustering. The “preference” parameter

in the AP algorithm affects the number of phonemes obtained. It was set to

ρs̃min, where s̃min is the minimum value of pairwise data point similarities based

on Euclidean distance and ρ is a scaling constant for parameter tuning. The
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AP clustering algorithm was run with different scale factors for 10 sets of 5000

randomly chosen segments to find the best number of clusters for representing

the phonemes. We used the exemplars obtained from AP clustering to initialize

the k-means algorithm for final clustering. The scale factors which led to the

smallest errors from k-means were chosen. The different scale factors that were

tried for handshape, orientation and location were from the sets {1.50, 1.60, 1.70},

{3.50, 4.00, 4.50} and {1.20, 1.30, 1.40, 1.50, 1.60, 1.70} from which we chose 1.70,

4.50 and 1.30, respectively.

The subphones for each component were extracted by using the method

described in Section 6.2.1 which is similar to the phoneme extraction proce-

dure for the static components. We randomly selected 1000 segments (Nq =

1000) and clustered them by AP. Each segment was divided into 10 intervals

and the mean feature vector was obtained for each interval. Thus, the total

number of feature vectors for clustering the subphones using AP was 10000.

The different scale factors tried for handshape, movement, palm orientation and

location were from the sets {1.25, 1.50, 1.75}, {0.50, 0.75, 1.00, 1.25, 1.50, 1.75},

{1.00, 1.25, 1.50, 1.75, 2.00}, and {0.30, 0.40, 0.50, 0.60}, respectively. Following

the procedure in phoneme definition, the final scale factors were chosen as 1.25,

1.00, 2.00, 0.30 for handshape, movement, orientation and location, respectively.

The “best” number of phonemes and subphones was obtained experimentally

and Table 7.14 summarizes the number of phonemes and subphones selected for

the components in each round. The numbers of phonemes and subphones that

we obtained were comparable to those defined by linguists.
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Table 7.14: Number of phonemes and subphones for handshape, movement, ori-
entation and location components.

Number of phonemes Number of subphones

Round H M O L H M O L

R1 33 39 30 25 40 50 41 46

R2 30 39 32 25 40 48 43 43

R3 30 39 30 28 39 48 40 47

R4 31 39 31 30 46 52 40 48

R5 32 40 29 28 41 51 43 43

R6 31 39 33 28 38 52 40 42

R7 35 39 32 25 40 49 40 46

R8 37 41 30 26 37 53 41 45

7.5.2 Sign vs. Non-Sign Classification by SVM

The procedure of Section 6.3.2 was used to generate the SIGN κ, κ = 1, . . . , 107

and UNCLASSIFIED training segments from the training sentences, and test

segments from the test sentences. The features listed in Table 6.1 were con-

catenated to form 126-D real-valued feature vectors for input to two-class SVMs

with Gaussian radial basis functions as the kernels. The elements of the feature

vectors were normalized to zero mean and unit variance. The SVMs provided

probability outputs and a threshold of 0.5 was used to differentiate the SIGN κ,

κ ∈ {1, . . . , 107} and UNCLASSIFIED classes. Different cost functions C̃ were

tuned experimentally for each SVM.

Table 7.15 shows the overall classification results for all the eight rounds of

experiments. We obtained average accuracies of 94.8% and 93.4% for unseen sam-

ples from seen signers and unseen signers respectively. Though these test samples

do not represent the actual pool of UNCLASSIFIED and SIGN κ segments that

will be formed during the decoding procedure, it is a subset of the possible sam-

ples, and is a promising indicative result. These SVMs were integrated into the

decoding algorithm and their functionality was further verified in the recognition
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experiments.

Table 7.15: Overall sign vs. non-sign classification accuracy with two-class SVMs.

Classification accuracy (%)

Round Seen signer, Seen signer, Unseen signer,

seen sample unseen sample unseen sample

R1 97.4 95.0 94.2

R2 97.4 95.0 92.6

R3 96.8 94.7 92.5

R4 97.5 95.1 93.6

R5 97.1 95.0 93.3

R6 96.6 94.6 93.7

R7 96.6 94.4 93.5

R8 96.7 94.5 93.8

Rave 97.0 94.8 93.4

7.5.3 Continuous Sign Recognition Results

The proposed recognition framework was designed to be robust to variations

in sign language from the feature level to the sign level, as described in Chap-

ter 1. Since the training of CRFs is supervised, we need to address word order

variations in sentences, i.e. test sentences which have different word order from

training sentences. To deal with this type of variation, identified pairs of signs

that tended to be swapped in order and duplicated the same weights for the sign

label transition features of these sign pairs such that the sign pairs were equally

likely to transit from one to the other. This strategy was applied to the sign

level CRF only. We conducted several progressive experiments to evaluate the

two-layered CRF-based classifier. The settings for training the phoneme level and

sign level CRFs are summarized in Table 7.16. The recognition performance of

the continuously signed sentences was evaluated based on substitution, deletion

and insertion errors. We used “recall” and “precision” to measure recognition
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Table 7.16: Settings used for training phoneme and sign level CRFs.

Setting Phoneme level Word level

Output label The phonemes defined for 107 signs

each component by the

transcription procedure

No. of state features 30 10

No. of transition features 1 1

Optimization Quasi-newton algorithm (LBFGS)

Regularization L2-norm

Decoding Modified segmental decoding algorithm

accuracy, computed as

Recall =
Nc

Nc +Ns +Nd

, (7.1)

Precision =
Nc

Nc +Ns +Ni

, (7.2)

where Nc, Ns, Nd, Ni are the number of correct classification, substitution, dele-

tion and insertion errors, respectively.

For a basic comparison with our method, we trained standard left to right

HMMs to recognize the 107 signs for each experiment. The observation sequences

to train the HMMs were obtained by concatenating the normalized vectors (de-

scribed in Section 5.5.1) from all the components to form 31-D feature vectors.

We modeled each sign with 3-5 states and each state was represented by a single

Gaussian with full covariance matrix. The Viterbi algorithm was used to decode

the sign sequences. For training, the transition probabilities were set to be equi-

probable except for the invalid transitions, whose probabilities were set to zero.

We divided the sign segments from the training data into 3-5 sub-segments with

equal arc length and used them to initialize the Gaussian parameters in each

state. We attempted to use the same approach used in the CRF-based frame-

work to tackle the word order issue in the sentences. However, the performance
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was not as good as the naturally trained parameters. Hence, we did not adjust

the HMM parameters. We used standard HMMs as benchmarks for all the ex-

periments conducted, rather than sophisticated HMM-based algorithms, as work

in the literature shows that standard HMM performance does not deviate sub-

stantially from the latter. For example, Vogler [153] compared their PaHMMs to

standard HMMs and obtained sign recognition accuracies of 94.23% and 93.27%,

respectively.

7.5.3.1 Clean Sign Segment Recognition

To systematically evaluate the two-layered CRF framework, we first checked per-

formance by assuming known boundary points of the segments in test sequences,

i.e. a sequence of isolated sign segments, obtained after discarding the move-

ment epenthesis segments. The features were extracted directly from the sign

segments. The decoding procedure is straightforward for purely sign segment

sequences. The component phonemes were decoded independently in the four

parallel channels and together with the arc length labels of the sign segments,

the phoneme label outputs of the four components were concatenated at every

time instant. There were input to the sign level CRF and the standard CRF

decoding algorithm was applied to obtain the sign sequences. The regularizing

parameters C were tuned experimentally in the range C = 0.1 − 0.8 for both

phoneme and sign level CRFs during training. Table 7.17 shows the recognition

results for the test sentences consisting of sequences of clean segments. These

results serve to indicate the upper bound for the accuracy of our CRF-based clas-

sifier, assuming perfect segmentation. We obtained an average accuracy of 98.0%

for unseen samples from seen signers and 90.8% for samples from unseen signers

indicating good performance and good generalization. Table 7.18 presents sign

recognition accuracy based on only one component. As expected, the accura-
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cies are much lower if only one component is used especially for unseen signers.

This demonstrates the importance of using all four components for sign language

recognition, though in our work, handshape seems to be the more influential

among the four components.

Table 7.17: Recognition accuracy for clean segment sequences using two-layered
CRFs.

Recognition accuracy (%)

Round Seen signer, Seen signer, Unseen signer,

(Ri) seen sample (SS) unseen sample (SU) unseen sample (UU)

R1 100.0 97.8 91.8

R2 100.0 97.5 90.8

R3 100.0 98.4 88.9

R4 100.0 97.8 92.8

R5 100.0 97.4 96.1

R6 100.0 98.0 88.0

R7 100.0 98.3 89.1

R8 99.9 98.6 89.1

Rave 100.0 98.0 90.8

Table 7.18: Recognition accuracy based on individual components.

Recognition accuracy (%)

Handshape Movement Orientation Location

Ri SS SU UU SS SU UU SS SU UU SS SU UU

R1 91.5 86.8 62.2 89.3 68.6 48.1 92.7 83.9 49.9 93.1 82.5 40.5

R2 91.6 86.4 67.0 90.2 70.6 27.8 94.9 84.5 10.5 93.6 81.6 23.6

R3 91.2 85.8 67.5 89.7 69.1 46.7 93.0 84.5 44.5 93.2 84.1 36.8

R4 91.0 86.0 74.3 90.2 70.4 50.5 92.9 84.1 56.2 94.5 82.7 55.2

R5 90.8 86.1 85.4 89.1 67.6 45.6 90.2 80.6 61.7 91.8 81.3 50.2

R6 90.5 85.9 64.7 89.7 69.4 50.5 92.1 83.6 47.9 93.2 81.1 45.5

R7 91.5 87.1 22.3 89.5 69.2 47.2 93.1 83.6 40.2 92.2 81.1 40.9

R8 91.9 87.8 58.7 89.3 70.6 56.5 92.2 82.4 44.8 92.7 83.3 47.0

Rave 91.3 86.5 62.8 89.6 69.4 46.6 92.6 83.4 44.5 93.0 82.2 42.5

164



7. Experimental Results and Discussion

7.5.3.2 Recognition of Sign Sentences with Unknown Boundary Points

The next set of experiments considered continuously signed sentences which were

automatically segmented, and movement epenthesis sub-segments in all sentences

were manually discarded. This left only sign segments in the testing sentences,

though with unknown segment boundary points. We conducted three experiments

to verify the proposed decoding algorithm as described in Sections 6.3.1 and 6.3.2

(without skip states). This is sufficient to deal with sign sentences that do not

contain movement epenthesis; the main task for the decoding algorithm is to

merge the sub-segments and recognize the sign sequences correctly without the

need to skip any sub-segments. The first two experiments were based on trained

CRFs while the third used HMMs (trained as described in Section 7.5.3). For

the first experiment, we used the modified segmental CRF decoding procedure

without two-class SVMs and skip states, while two-class SVMs were used in the

decoding procedure for the second experiment.

Table 7.19: Recognition accuracy with modified segmental CRF decoding proce-
dure without two-class SVMs and skip states.

Recognition accuracy (%)

Seen signer, Seen signer, Unseen signer,

seen sample unseen sample unseen sample

Round Recall Precision Recall Precision Recall Precision

R1 98.4 98.4 96.7 96.5 87.7 91.1

R2 98.9 99.1 97.2 97.3 88.8 91.0

R3 98.7 98.7 96.5 97.4 84.2 87.1

R4 98.3 98.5 96.3 96.2 88.7 89.4

R5 98.2 98.2 96.3 96.5 93.8 93.5

R6 98.2 98.4 96.7 96.9 87.6 88.0

R7 98.6 98.7 96.9 96.8 88.4 88.4

R8 98.6 98.6 96.9 97.2 84.2 87.6

Rave 98.5 98.6 96.7 96.9 87.9 89.5

The recognition results shown in Tables 7.19 and 7.20 for the first and second
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Table 7.20: Recognition accuracy with modified segmental CRF decoding proce-
dure with two-class SVMs but without skip states.

Recognition accuracy (%)

Seen signer, Seen signer, Unseen signer,

seen sample unseen sample unseen sample

Round Recall Precision Recall Precision Recall Precision

R1 98.9 98.4 97.4 96.9 89.8 91.3

R2 99.3 99.2 97.9 97.4 89.7 92.0

R3 98.9 98.4 97.8 97.8 86.4 89.6

R4 98.8 98.5 97.2 96.9 88.4 87.6

R5 98.1 97.9 97.4 96.9 93.9 93.0

R6 98.2 98.1 97.2 97.2 89.4 88.1

R7 98.9 98.5 97.2 96.0 88.9 89.3

R8 98.7 98.1 97.8 97.3 86.7 89.1

Rave 98.7 98.4 97.5 97.1 89.2 90.0

Table 7.21: Recognition accuracy with HMM-based approach.

Recognition accuracy (%)

Seen signer, Seen signer, Unseen signer,

seen sample unseen sample unseen sample

Round Recall Precision Recall Precision Recall Precision

R1 99.0 98.9 98.9 98.3 77.8 62.6

R2 99.0 99.0 99.2 98.4 53.4 57.7

R3 99.3 98.7 99.3 97.2 77.7 54.5

R4 99.0 99.0 99.1 97.6 78.7 62.0

R5 98.8 99.0 98.2 96.9 77.9 57.8

R6 98.7 99.1 98.2 96.1 66.2 48.4

R7 97.7 99.5 97.4 97.5 56.7 65.3

R8 99.5 98.9 99.6 98.3 68.0 50.1

Rave 98.9 99.0 98.7 97.5 69.6 57.3

experiments are comparable. The modified segmental decoding algorithm with

two-class SVMs performed slightly better and showed about 1% improvement

on the recall rates for both unseen samples from seen and unseen signers. The

recall rates of the modified segmental decoding algorithm with two-class SVMs

were 97.5% and 89.2% for unseen samples from seen signer and unseen signers,
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respectively. These are close to the clean segment recognition accuracies of 98.0%

and 90.8%, respectively. Table 7.21 shows the recognition performance with the

standard HMM approach. The recognition accuracies are very good for unseen

samples from seen signers and even outperforms our proposed framework slightly.

However, when the HMM-based framework was tested with samples from unseen

signers, the accuracy dropped drastically, yielding an average recall rate of 69.6%

and precision accuracy of 57.3%. Our decoder outperformed it by 19.6% and

32.7% for recall and precision, respectively. This shows that as generative models,

HMMs may not be good for generalization to new sign sequences from unseen

signers.

We further tested the HMM-based framework by using a single signer, a pro-

tocol that has been widely used in many works in the literature. Table 7.22

summarizes the results for the eight individual signers. Good recognition accu-

Table 7.22: HMM recognition accuracy with single signer.

Recognition accuracy (%)

Seen signer, Seen signer,

seen sample unseen sample

Signer Recall Precision Recall Precision

S1 99.3 94.5 99.1 92.8

S2 98.5 96.7 95.5 96.3

S3 97.3 94.1 95.5 91.1

S4 100.0 100.0 99.6 98.8

S5 96.0 92.4 95.1 89.9

S6 94.7 90.2 91.1 86.3

S7 96.0 93.1 93.9 90.5

S8 95.4 91.6 93.4 87.4

Save 97.2 94.1 95.4 91.6

racies for the unseen testing samples are obtained and this further shows that

HMMs are good for recognizing sequences from subjects seen during training.

Comparing results from Table 7.21 and Table 7.22, we observe an obvious drop
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in recall rate from 98.7% to 95.4% and precision accuracy from 97.5% to 91.6%.

This can be largely attributed to the decrease in the number of training samples.

For the single signer experiment, the number of samples used to train the 107

signs is roughly seven times less than the number of samples used in the experi-

ments where the training samples were obtained from seven signers. This again

shows the sensitivity of HMMs to training sample size.

7.5.3.3 Recognition of Sentences with Movement Epenthesis

Thus far, all experiments considered recognizing signs from continuously signed

sentences after manually discarding movement epenthesis segments. The last part

of the experiments was to evaluate performance on the complete problem where

movement epenthesis sub-segments may present in the test sequences due to

automatic segmentation and sub-segment classification errors. Here, the complete

decoding algorithm with all the proposed features is used.

Before we present the final results, we note the difficulty of applying the

conventional HMM-based approach to this problem. As discussed earlier, one

possible approach to deal with movement epenthesis segments is to model them

explicitly, which is arguably wasteful. Another common approach allows move-

ment epenthesis segments to be part of their adjacent sign segments. We tried

this strategy to train HMMs for recognizing the 107 signs using samples from

seven signers. However, it was difficult to train the HMMs correctly due to large

variations in the movement epenthesis segments. Hence, we used a very simpli-

fied data set. We randomly selected five sentences from the 74 distinct sentences

and trained HMMs to recognize these five sentences. We conducted two sets of

experiments based on this simple data set, where we trained HMMs to recognize

the five sentences with and without movement epenthesis. The HMMs modeled

only signs and three states were used to represent each sign segment. For the
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first experiment, movement epenthesis segments were manually discarded and not

used during training and testing. For the second experiment, we used training

sequences consisting of both sign and movement epenthesis to train the HMMs.

We started with training the HMMs using 80% of the samples from one signer and

tested on the remaining unseen samples from the same signer. For single signer,

results for the five sentences were consistent and we obtained 100.0% accuracy for

both experiments using sentences with and without movement epenthesis. We

conducted further experiments by adding samples from another six signers to

train the HMMs, and Table 7.23 summarizes the results. In this case, the recall

Table 7.23: Recognition of five sentences with and without movement epenthesis
using HMMs.

Recognition accuracy (%)

SS SU UU

Recall Precision Recall Precision Recall Precision

Without ME 97.3 98.7 96.1 98.3 95.0 81.0

With ME 91.0 100.0 91.1 98.8 91.3 81.9

rate decreased. The decrease in recall rate is more obvious in the experiment

with movement epenthesis showing the potential problems with the HMM-based

approach. Though this data set is quite small and simple, the 9% drop in accu-

racy is quite large, and again indicates the inability of the HMM-based approach

to handle variation from new signers.

For our proposed strategy, we started by investigating the effects of false

alarms and misses obtained from the sub-segment classifier of Chapter 5. Two

experiments were conducted, viz. 1) the outputs from the sub-segment classifier

were used directly (Experiment D1) 2) the Bayesian network sub-segment classi-

fier was tuned to recover more missed points at the expense of having more false

alarms (Experiment D2). We discarded the sub-segments labeled asME and used

169



7. Experimental Results and Discussion

the remaining sub-segments in the sequences, assuming that they were correct,

and hence, needed to be merged. Hence, we used our modified segmental CRF

decoding algorithm without the two-class SVMs and skip states. For comparison,

we also used the previously trained HMMs based on only sign data to decode the

sequences. Tables 7.24 and 7.25 present the recognition accuracy of experiments

D1 and D2, respectively, where HMM accuracies are given in parenthesis.

Table 7.24: Recognition accuracy for Experiment D1.

Recognition accuracy with our approach and HMMs (parenthesis) (%)

Seen signer, Seen signer, Unseen signer,

seen sample unseen sample unseen sample

Ri Recall Precision Recall Precision Recall Precision

R1 98.7 (98.9) 98.2 (98.1) 95.7 (98.2) 95.2 (95.3) 84.2 (76.1) 85.7 (58.5)

R2 98.2 (98.7) 98.1 (97.7) 95.7 (98.0) 95.3 (93.2) 78.7 (54.2) 82.5 (53.4)

R3 98.3 (99.0) 97.9 (97.4) 95.6 (98.4) 95.6 (90.2) 77.3 (75.6) 83.8 (48.1)

R4 97.8 (98.8) 97.7 (97.8) 95.5 (98.4) 95.2 (91.7) 84.2 (77.8) 83.6 (55.7)

R5 97.8 (98.5) 97.8 (97.3) 94.9 (97.3) 94.7 (90.5) 90.5 (73.4) 89.6 (51.5)

R6 97.9 (98.7) 97.9 (98.2) 94.9 (97.6) 95.2 (92.2) 81.0 (63.6) 83.3 (45.4)

R7 98.6 (97.7) 98.1 (98.8) 95.9 (96.9) 95.3 (94.1) 77.0 (55.2) 77.9 (60.8)

R8 98.0 (99.3) 97.8 (97.2) 95.2 (98.6) 95.0 (91.7) 81.3 (64.3) 86.4 (44.7)

Rave 98.2 (98.7) 97.9 (97.8) 95.4 (97.9) 95.2 (92.4) 81.8 (67.5) 84.1 (52.3)

Table 7.25: Recognition accuracy for Experiment D2.

Recognition accuracy with our approach and HMMs (parenthesis) (%)

Seen signer, Seen signer, Unseen signer,

seen sample unseen sample unseen sample

Ri Recall Precision Recall Precision Recall Precision

R1 98.1 (98.9) 98.2 (99.0) 95.5 (98.3) 96.0 (97.1) 82.6 (76.9) 86.7 (62.9)

R2 98.7 (98.9) 99.0 (99.0) 95.3 (98.5) 96.2 (97.2) 80.2 (51.7) 86.1 (55.3)

R3 98.6 (99.3) 98.6 (98.7) 95.6 (98.4) 96.7 (95.9) 81.0 (74.3) 87.0 (51.3)

R4 98.2 (98.9) 98.4 (98.9) 94.9 (98.3) 95.1 (96.2) 85.4 (77.5) 87.4 (61.6)

R5 98.0 (98.7) 98.1 (98.9) 94.6 (97.8) 95.4 (95.8) 90.1 (75.1) 91.7 (58.1)

R6 97.9 (98.6) 98.1 (98.9) 95.2 (97.4) 96.0 (94.4) 81.4 (63.2) 85.1 (47.6)

R7 98.3 (97.6) 98.6 (99.3) 95.7 (97.3) 95.9 (96.6) 80.7 (54.3) 82.8 (63.4)

R8 98.5 (99.4) 98.4 (98.8) 95.3 (98.8) 96.4 (97.4) 80.8 (67.6) 87.0 (51.3)

Rave 98.3 (98.8) 98.4 (98.9) 95.3 (98.1) 96.0 (96.3) 82.8 (67.6) 86.7 (56.4)
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The results in Table 7.24 show that both the proposed approach and the

HMM-based approach perform well for unseen samples from seen signers. This

is not surprising as the average classification accuracy of the sub-segment clas-

sifier for unseen samples from seen signers is 93.1% and we can expect that the

recognition accuracies will not deviate appreciably from the experiments without

movement epenthesis shown in Tables 7.19 and 7.21. However, there are obvious

decreases in the recognition accuracy from 87.9% to 81.8% and 89.5% to 84.1% for

recall and precision in samples from unseen signers with our approach. Similarly

in the HMM experiment, the recall rate dropped from 69.6% to 67.5% and the

precision dropped from 57.3% to 53.3%. When we relaxed the decision boundary

threshold of the Bayesian network, we obtained some improvement for both our

approach and the HMM-based approach as shown in Table 7.25. In Experiment

D1, the recalls and precisions for unseen samples, seen signer and unseen signer

were (95.4%, 95.2%) and (81.8%, 84.1%), respectively, and the corresponding

results in Experiment D2 were (95.3%, 96.0%) and (82.8%, 86.7%), respectively.

To improve performance, we applied the modified segmental CRF decoding

procedure with the two-class SVMs and skip states to the sequences obtained

from the sub-segment classifier as in Experiment D2. We tested for two different

values of maximum number of skip states, Ms = 1, 2. We found experimentally

that both Ms = 1 and 2 yielded comparable results. Hence, we chose Ms = 1 for

less computational cost. The final recognition accuracy is presented in Table 7.26.

With our decoding algorithm with two-class SVMs and skip states, we were able

to achieve a recall rate of 95.7% and precision accuracy of 96.6% for unseen sam-

ples from seen signers. As for unseen signers, we obtained 86.6% recall rate and

89.8% precision accuracy. These results are close to the clean segment results

where we obtained 98.0% for unseen samples from seen signers and 90.8% for
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Table 7.26: Recognition accuracy with modified segmental CRF decoding proce-
dure with two-class SVMs and skip states

Recognition accuracy (%)

Seen signer, Seen signer, Unseen signer,

seen sample unseen sample unseen sample

Round Recall Precision Recall Precision Recall Precision

R1 98.4 98.7 95.9 96.4 88.3 91.8

R2 98.3 99.1 96.5 97.1 85.2 89.7

R3 97.7 98.6 95.3 96.3 83.6 90.2

R4 97.7 98.3 94.5 96.0 88.5 88.0

R5 97.5 98.2 96.0 96.4 92.6 92.5

R6 97.4 98.1 95.7 97.0 85.2 89.4

R7 97.9 98.5 95.6 96.9 84.2 86.2

R8 97.4 98.2 95.9 96.5 85.1 90.3

Rave 97.8 98.5 95.7 96.6 86.6 89.8

unseen signers. These results are also close to the experiments where we assumed

the movement epenthesis segments were removed perfectly. The corresponding

recognition accuracies shown in Table 7.20 for the experiments using sentences

without movement epenthesis are 97.5%, 97.1%, 89.2% and 90.0%. The experi-

mental results demonstrate that our CRF-based framework can cope with signer

variations in sign language, showing good generalization to new signers. Com-

pared to many of the signer independent systems without adaptation surveyed

in the literature, we have obtained high recognition accuracy for continuously

signed sentences by unseen signers. Even works with adaptation as presented

in [157], achieved a recognition accuracy of only 75.8%. Hence, our results show

good performance with respect to the state of the art.

7.6 Summary

For subsystem 1, the näıve Bayesian network classifier was selected as the most ef-

ficient segmentation algorithm. It yielded 88.1% accuracy and 13.7% false alarms
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on unseen, naturally signed sentences. The trajectory segmentation approach

based on Bayesian network is promising. The results of the automatic phoneme

transcription approach show that the segments obtained are useful for sign lan-

guage phoneme transcription and recognition. Further, the experimental results

show that our automatic approach is more accurate than manual trajectory seg-

mentation and phoneme transcription, while significantly saving time consuming

human labour required in the manual approach. An automatic approach will be

even more important for large vocabulary systems where manual transcription is

impractical.

For subsystem 2, the CRF yielded 85.7% sub-segment classification accuracy

on naturally signed sentences by unseen signers while the SVM also yielded com-

parable accuracy of 85.6%. Based on observations of the errors obtained by the

CRF and SVM, we used a Bayesian network to fuse the outputs from the two clas-

sifiers. The experimental results showed an improvement in accuracy to 88.2% for

unseen signers. From the experimental results, we also observed that the results

on unseen signers obtained by the Bayesian network were more consistent than

the results yielded individually by the CRF and SVM. This outcome is essential

for our subsequent works.

For subsystem 3, the best recognition accuracy was achieved by incorporating

the two-class SVMs and the state skipping function in the proposed decoding

algorithm. We obtained a recall rate of 95.7% and precision accuracy of 96.6%

for unseen samples from seen signers as well as a recall rate of 86.6% and precision

accuracy of 89.8% for unseen signers. In comparison, the HMM-based approach

failed to provide good results for unseen signers in our experiments. Our strategy

works well for sentences that have been seen by the system and also yields good

performance for recognizing naturally signed sentences from new signers.
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We can do anything

we want to do if we

stick to it long enough.

Helen Keller (1880-1968)

8
Conclusions

The key contribution of this thesis was in devising a segment-based sign recogni-

tion approach that is robust to different variations which arise in continuous sign

language sentences. Current works in the literature have largely ignored the prob-

lem of signer independent continuous sign language recognition, a crucial aspect

necessary for using these systems in practice. We believe our work contributes to

progress in this area.

Moving away from the conventional HMM-based recognition approach which

is mainly generative, we have demonstrated that the underlying characteristics of

a discriminative model are more suitable to deal with variations in sign language

and provide better generalization. For this purpose, we devised a robust CRF-

based recognition framework which shows high degree of generalization to unseen

signers without using any adaptation algorithm. More specifically, the thesis

makes the following contributions:
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i) The framework was designed to tolerate variations in continuous sign recog-

nition. We demonstrated the viability of using CRFs in the parallel channels

which is commonly modeled with HMMs. The multi-channel methodology

with CRFs allows variations in the components to be tackled independently

and more efficiently. We also adopted two-layer CRFs for phoneme level

and sign level recognition allowing feature level variation as well as sign level

variation to be handled separately. All these characteristics contribute to

the good recognition performance obtained in our experiments for recog-

nizing continuously signed sentences by unseen signers. In addition, the

parameters of the model pertaining to the parallel phoneme level CRFs as

well as the word level CRF are learned independently making the training

tractable and fast.

ii) We have devised a novel and efficient decoding algorithm for the two-

layered CRFs by modifying the semi-Markov CRF inferencing algorithm.

We proposed a method to include an “UNCLASSIFIED” class in the CRF-

based framework by using two-class SVMs. This reduces the complexity in

the decoder, where sub-segments need to be merged, and their likelihoods

evaluated. We also introduced skip states into the decoding algorithm to

accommodate merging of sub-segments that are not contiguous, with the

motivation to compensate for errors in the sub-segment classification algo-

rithm. Unlike many layered models where decoding is performed separately

in different channels or levels, producing either top-down or bottom-up in-

formation flow, the data streams at different channels and levels of our

proposed framework are modeled simultaneously. The final inferencing re-

sults are obtained based on instantaneous fusion of information from the

phoneme and sign levels and this leads to natural synchronization between
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the streams of data. Our CRF-based decoding framework has yielded high

recognition accuracy for decoding continuously signed sentences by unseen

signers, yielding 86.6% recall and 89.8% precision rates. These high rates

have been achieved without any adaptation procedure for new signers.

iii) Our view is that modeling movement epentheses is not a good idea for devel-

oping signer independent systems as it may include large variations that are

not systematic. Hence, in our proposed framework, movement epenthesis

segments are differentiated from sign, and discarded from test sentences,

before decoding for signs. Any errors in this are dealt with dynamically

during decoding. Further, as opposed to the conventional perception of

movement epenthesis as a non-informative segment which is merely for a

transition from one sign to another, we suggest that it provides information

that is useful to the decoder. We presented a strategy to identify the loca-

tions of movement epentheses in a sentence by training a classifier for SIGN

and ME sub-segments. This helps to break down a sentence into smaller

sequences, and thereby reduce the decoding complexity significantly. This

classifier was a Bayesian network which fused outputs from a SVM and a

CRF.

iv) We presented a new phoneme transcription procedure for the movement

component using a PCA-based representation, and used AP and k-means

clustering algorithms to define and extract phonemes for the other three

(static) components. The phonemes were automatically extracted to facili-

tate training of the parallel CRFs at the phoneme level. As there is still no

consensus among linguists on a phonological model for signs, our approach

offers a systematic way to transcribe phonemes in sign language. Though

it is a data-driven approach, the phonemes defined were observed to have
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linguistic meaning.

v) Though four components are commonly described in sign language, most

of the previous works do not model them fully in four separate channels.

Our work closely follows the sign language model defined by linguists, and

includes all the four components, viz. handshape, movement, palm orien-

tation and location in our recognition framework. Modeling the movement

component as a separate channel is difficult as it requires features that

evolve as a quasi-stationary process and at the same time are invariant

to position [113]. We proposed simple and efficient line fitting procedure

to extract features for the movement component in continuously signed

sentences, and demonstrated that the movement features are effective for

continuous sign recognition.

8.1 Future Works

Although the dominant hand carries more information, there are several two

handed signs in sign language. In future work, it would be useful to include data

from both hands for continuous sign recognition. Normally, the non-dominant

hand expresses relative spatial relation and is also used in symmetrical signs.

Including the non-dominant hand data may entail additional channels in the

phoneme level of our CRF-based framework.

Currently, the segmentation errors made by the näıve Bayesian network classi-

fier were corrected manually before phoneme transcription is carried out. It would

be desirable to further improve the classification rate by using more efficient fea-

tures to further reduce the manual work required. The main disadvantage of the

decoding algorithm for the two-layer CRF is that it runs much slower than the

linear CRF for large number of sub-segments in the sequence. Hence, it would
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be useful to devise a search algorithm which can decode the path of the sign

sequence more efficiently such as [148].

Grammatical information of sign language is another important aspect which

should not be neglected. Sign language communication will not be complete

without the grammatical information provided by inflected signs and non-manual

signs. Inflections give layered or added meanings to a sign. Though we have in-

cluded directional verbs in our experiments, there are other important inflections

in sign language which can be investigated.

The non-manual channel is another important aspect for complete under-

standing of sign language communication. Often, gesture researchers neglect this

aspect which is related to face recognition, expression recognition, lip motion

tracking etc. Extracting information from the non-manual channel and fusing it

with the manual channel present many challenging research problems.
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Appendix A

Table A.1 lists the 72 basic signs used in the experiments. Seven verbs are used

to form 42 directional verbs as shown in Table A.2. The annotation VERBP1→P2

is explained as follows. VERB refers to the root verb in the basic signs, and P1

is the subject and P2 is the object. For example, HELPI→YOU is denoted as “I

help you” in English sentence. “I” used in the annotation refers to the signer and

the positioning of the addressees “YOU”, and two other non-present referents

“GIRL” and “JOHN” is shown in Figure A.1. “YOU” is assumed to be right

in front of the signer; “GIRL” is roughly to the right of the signer; “JOHN” is

roughly to the left of the signer.

Figure A.1: Positions of the signer and addressees.
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Table A.1: Basic signs.

Category Basic signs

Nouns BABY, BIBLE, BOOK, BOX, BUILDING, CAT,

EMAIL,, GIRL, FISH, HOME, HORSE, JOHN,

LECTURE, PAPER, PEN, PICTURE, PLACE,

SIGN-LANGUAGE, STONE, WINTER

Pronouns I, ME, MY, YOU, YOUR

Verbs BLAME, COME, DRIVE, EAT, GIVE,

GO, HELP, KEEP, LOOK, MEET, PREACH,

PRINT, SEND, SHOW, TAKE, TEACH, WORK

Modal verbs MUST

Adjectives AFRAID, A-LOT, BEAUTIFUL, BLACK,

BORING, CLEAN, CLEAR, COLD, DIRTY,

EVERYDAY, FAST, HEAVY, HOT, HUNGRY,

IMPORTANT, MAD, OLD, SICK, SLOW,

UGLY, WRONG

Adverbs HERE, LATER, NONE, THAT, THERE

Prepositions WITH

Interjections PLEASE, WOW

Table A.2: Directional verbs.
Basic verbs Inflected directional verbs

TEACH TEACHI→YOU, TEACHI→GIRL, TEACHI→JOHN

BLAME BLAMEI→YOU, BLAMEI→GIRL, BLAMEI→JOHN

BLAMEYOU→ME, BLAMEGIRL→ME, BLAMEJOHN→ME

GIVE GIVEI→YOU, GIVEI→GIRL, GIVEI→JOHN

GIVEYOU→ME, GIVEGIRL→ME, GIVEGIRL→YOU

GIVEJOHN→YOU, GIVEGIRL→JOHN

HELP HELPI→YOU, HELPI→GIRL, HELPI→JOHN

HELPYOU→ME, HELPYOU→GIRL, HELPYOU→JOHN,

HELPGIRL→ME, HELPGIRL→YOU, HELPJOHN→ME,

HELPJOHN→YOU, HELPGIRL→JOHN

SEND SENDI→YOU, SENDI→GIRL, SENDI→JOHN

TAKE TAKEI→YOU, TAKEI→GIRL, TAKEI→JOHN

SHOW SHOWI→YOU, SHOWI→GIRL, SHOWI→JOHN

SHOWYOU→ME, SHOWGIRL→ME, SHOWGIRL→YOU

SHOWJOHN→ME, SHOWJOHN→YOU
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