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CHAPTER 1

Introduction

“The time has come,” the Walrus said,

“To talk of many things;

Of shoes–and ships–and sealing wax–

Of cabbages–and kings–

And why the sea is boiling hot–

And whether pigs have wings.”

–Lewis Carroll, Through the Looking-Glass

This thesis addresses the electromagnetic inverse scattering problems, i.e., to

reconstruct, from the scattered electromagnetic signal, the internal constitution of

the domain of interest. We will cover both point-like and extended scatterers,

and both full-data and phaseless-data measurements. This introductory chapter

provides a general description of this subject.

1.1 What is inverse scattering problem?

According to the definition by Keller [1], two problems are inverse to each other

if the formulation of each of them requires full or partial knowledge of the other.
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The following two problems serve as a good illustrative example.

1. Given the density distribution of the earth, calculate the gravitational field

due to the earth;

2. Infer the density distribution of the earth from the gravitational field due to

the earth.

Both problems are formulated exactly by Newton’s law of gravity, and the known

information in one problem is just the unknown in the other, so they are inverse to

each other.

Conventionally, one of these two problems is referred to as forward (direct)

problem, and the other as inverse problem. Roughly speaking, the forward problem

is to find the observable data (gravitational field, for example), given the model

parameter (density distribution, for example); while the inverse problem is to the

contrary, that is to find the model parameter (density distribution, for example),

given the observable data (gravitational field, for example). Rigorously speaking,

the identification of the direct and inverse problem is based on Hadamard’s

concept of the ill-posed problem, originating from the philosophy that a well-posed

mathematical model for a physical problem must have three properties: uniqueness,

existence, and stability. Of the two problems, the well-posed one is referred to as

the forward problem, and the ill-posed one as the inverse problem.

The forward and inverse scattering problems are related to the physical

phenomenon of electromagnetic scattering, which is illustrated in Fig. 1.1. The

incident electromagnetic wave is scattered by the objects, and the scattered

electromagnetic signal (field or intensity) is related to the internal electric

characteristic of the domain. The forward scattering problem is to determine
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the scattered electromagnetic signal basing on the characteristics of the scatterer.

The inverse scattering problem is inverse to the direct scattering problem, i.e., to

determine the characteristics of an object (its shape, internal structure, etc.) from

measurement data of scattered electromagnetic signal.

The inverse scattering technique is one of the most important approaches for

attaining a quantitative description of the electrical and geometrical characteristics

of the scatterer, and has found vast number of applications, such as echolocation,

geophysical survey, remote sensing, nondestructive testing, biomedical imaging

and diagnosis, quantum field theory, and military surveillance.

In view of the fact that the inversion method ought to be designed in accordance

to the characteristics of the specific problem, we necessarily classify inverse

scattering problems in terms of the categories of the scatterers or the measurement

data. If the scatterer’s size is much smaller than the wavelength, such scatterer is

referred to as the point-like scatterer. In contrast, the extended scatterer is of the

size which is comparable to or larger than the wavelength of the electromagnetic

wave. If the measured data of scattered electromagnetic signal contains both

intensity (or amplitude) and phase information, the problem is a full data (FD)

inverse scattering problem. Under certain circumstances, however, acquiring

the phase information of the measured electromagnetic field becomes a more

formidable and more expensive task, compared with obtaining the amplitude

information of the field. As a matter of fact, it has been reported in [2–4] that

the accuracy of the measured phase cannot be guaranteed for frequencies higher

than tens of gigahertz. If the phase information of the scattered field is unavailable,

it is a phaseless data (PD) inverse scattering problem.
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Figure 1.1: Setup for Inverse Scattering Experiment
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1.2 Review of the approaches to inverse scattering
problems

Instead of considering all possible inverse scattering approaches, we shall focus

our review on a selection relevant to our project scope.

1.2.1 Inversion methods for full-data measurement

1.2.1.1 Inversion methods for extended scatterers

The inverse scattering problems concerning extended scatterers, i.e. the

scatterers whose dimensions are comparable to the wavelength of the illuminating

electromagnetic wave, requires to reconstruct the electrical and geometrical

characteristics of the scatterers from the scattered signal (field or intensity).

It is well known that the challenge of the inverse scattering problem arises

from its property of being ill-posed. By Hadamard’s definition [5], a problem is

ill-posed if its solution meets at least one of the three conditions: nonexistence,

non-uniqueness, instability. The existence of the solution has been mathematically

proven in [6]. The non-uniqueness of the inverse scattering under single incidence

can be perfectly overcome by multiple incidence [6]. The instability, unfortunately,

cannot be completely eliminated, even though it can be relieved to some extent

by applying certain regularization scheme, such as the Tikhonov regularization

method [5–11], the multiplicative regularization scheme [12–14], and the truncated

singular value decomposition [15–17].

Another obstacle to an easy solution of the inverse scattering problem is the

nonlinearity relationship between the scattered field and the relative permittivity

of the scatterers [6, 18]. In order to overcome the nonlinearity which exacerbates



6 Chapter 1. Introduction

the difficulty of finding the solution, approximate inversion methods have been

proposed and found many practical applications. In these approximate methods,

the scattered field is approximated by the linear functional of the scatterer, and

consequently the inversion problem is notably simplified.

One way of obtaining the linear relation is to use the incident electromagnetic

wave at sufficiently high frequency, so that its traveling can be described by

a ray-like model, and the multi-path effects can be neglected. For such high

frequency wave, the phase delay and the amplitude attenuation is linearly related

to the scatterer’s property[18]. The X-ray computed tomography (CT) [19] is a

practical example of this approach, where the reconstruction is conducted using

the back-projection algorithm with great success.

At lower frequencies, the straight-line ray model is not applicable, and the

diffraction effect cannot be omitted. Some solutions to such problems apply the

Born approximation and Rytov approximation model [20] to linearize the problem.

Both of these linear approximations require the contrast between the scatterers and

the background is small, while the former is more suitable at low frequencies, and

the latter at higher frequencies. A representative iterative method of this sort is the

Born iterative method (BIM) [21, 22], where the Born approximation is used to

approximate the total field with the incident field.

Born approximation is also employed in distorted Born iterative method

(DBIM) [9, 23, 24], which is a full-wave method, and thus does not belong to

the category of linear methods, such as BIM. From the point view of algorithm, the

difference between BIM and DBIM is that the Green’s function used in DBIM is

updated in each iteration, but it is not so in BIM. This difference causes the DBIM
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to converge faster with lower error estimate, but BIM is more robust. An obvious

drawback of BIM and DBIM is that each step of the iteration requires the solution

of a forward or direct problem, which is computationally expensive for practical

applications.

In the framework of nonlinear scattering model, such as the source type integral

equation (STIE), some researchers have successfully cast the inverse scattering

as an optimization problem where a nonlinear functional is minimized. One

method of this sort is the modified gradient method [25], which is inspired by the

over-relaxation method in solving the forward scattering problem. In this method,

the nonlinearity relationship is retained, and the errors in both the field equation

and in data equation are minimized by updating simultaneously the field and the

contrast. Though inspired by the modified gradient method [25], the contrast source

inversion (CSI) method [14, 26–28] distinguishes itself in the sense that the contrast

sources (induced current) and the contrast itself are alternatively updated in each

step of iteration. It is reported that the CSI method outperforms the modified

gradient method in terms of computational speed and memory requirement and the

readiness of accommodating a priori information [14, 26–28]. The subspace-based

optimization method (SOM) was proposed in [29], and has been found to be

rapidly convergent, robust against noise, and able to reconstruct scatterers with

complicated shapes. SOM was inspired by the multiple signal classification

(MUSIC) algorithm [7, 30, 31] and the two-step least squares method [32, 33].

The essence of SOM is that the contrast source is partitioned into the deterministic

portion and the ambiguous portion. The former is readily obtained by the spectrum

analysis, while the latter can be determined by various optimization means.
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Boundary integral formalism is a framework frequently employed for

reconstructing the shape of homogeneous objects in homogeneous background. In

this formulation, the global optimization techniques are employed to reconstruct

scatterers’ boundary, including the well known generic algorithm [4, 34–37],

differential evolution strategy [38–41], simulated annealing [42], Tabu list [34],

etc. These methods do not require the analytical formulation of the cost functional

and of its gradient, but normally consume noticeably long computational time and

can only produce a quasi-local solution instead of a truly global optimum, given

finite CPU time in reality. In addition, some researchers couple the line-search

optimization algorithms with the equivalent boundary integral formalism to

minimize a cost function, so as to reconstruct the boundary of scatterers [43–45].

Furthermore, the level set technique [46] is also applied in the equivalent boundary

integal model, which exhibits the potential to use the limited amount of available

data to directly reconstruct scatterers for certain structures or features and to

accordingly incorporate available prior information into the reconstruction.

There are some other important noteworthy methods for reconstructing

extended scatterers. The iterative multi-scaling approach [47] belongs to the family

of multi-resolution algorithms[48], which employs a non-uniform discretization

of the domain of interest to achieve the optimal trade-off between the achievable

spatial resolution accuracy and the limited amount of information collected during

the data acquisition. For the real-time detection of buried objects and also for

large values of the contrast function, the learning-by-examples techniques [49–51]

have been shown to be very effective and attractive methods to avoid the necessity

of large computational resources, in the presence of either single-illumination
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or multi-illumination acquisition systems, which have been successfully adopted

in the framework of inverse scattering problems. The qualitative approaches,

such as the MUSIC algorithm and the linear sampling method (LSM), are also

implemented with notable computational speed and very little a priori information

for detecting efficiently the scatterer’s support or to locate the scatterers without

resource to nonlinear optimization methods.

1.2.1.2 Inversion methods for point-like scatterers

Point-like scatterers are conventionally defined as the scatterers whose

dimensions are so much smaller than the wavelength of the illuminating

electromagnetic wave that it permits a long-wavelength approximation [52]. As a

matter of fact, when solving numerically inverse scattering problems for point-like

scatterers, we usually assume that each scatterer occupies a single subunit of

discretization. If the number of detectors is more than the number of scatterers, as

is normally the case, a one-to-one mapping exists between the induced currents and

the scattered fields, which guarantees fortunately that imaging point-like scatterers

is a mathematically well-posed problem. However, we still have to tackle the

difficulty of inverse scattering of point-like scatterers which mainly arises in the

inherent nonlinearity.

For certain practical applications, it suffices to retrieve only the information

regarding the locations of the point-like scatterers, which is therefore referred to

as the qualitative imaging problem. The focusing techniques provide one way of

qualitatively imaging point-like scatterers. As an example, the DORT, which is the

French acronym for Decomposition of the Time Reversal Operator (Dec̀mposition

de l’Opèrateur de Retournement Temporel) [53–67], takes advantage of the
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invariance of wave propagation under time reversal. It is a selective detection

and focusing technique, i.e., it focuses synthetic waves at the point of interest.

In this method, an array of transceivers are utilized to measure the inter-element

impulse responses of each pair of transceivers in the array. As the result of

the measurement, the time reversal operator is generated. This operator is then

diagonalized and the analysis of its eigenvectors provides the internal information

of the domain of investigation. Another representative focusing technique is

the synthetic aperture focusing technique (SAFT) [68, 69], which was originally

proposed to improve the image quality of a fixed-focus imaging system. In SAFT,

the pulse-echo measurements are conducted at multiple transceiver locations.

Then, the measurement data are processed (specifically, delayed and summed)

to generate a map of the domain of interest. The applicability of DORT and

SAFT is limited to the situations where the targets are well-resolved, where

the antenna array is not sparse, and where the antennas are regularly arranged.

In contrast, the multiple signal classification (MUSIC) method exhibits superior

performance in situations that are too harsh for DORT or SAFT. The MUSIC

method is an improvement of the Pisarenko’s method [70], based on the idea of

using average value to enhance the performance of the Pisarenko estimator. In

MUSIC, we analyze the eigen-space to estimate the the frequency content of a

signal or autocorrelation matrix. It has been utilized to address the electromagnetic

inverse scattering problem for no more than a decade, firstly for the scalar wave

and 2-D scenario [71, 72], and later extended to the vetorial wave and 3-D scenario

[31, 33, 73–79].

In cases where a qualitative imaging is not sufficient, people demand
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quantitative imaging of scatterers, i.e., both the location and the electrical

characteristic of the scatterers. References [30, 32, 80] provide noniterative

methods for obtaining scattering strengths of point targets, after locating the targets

with MUSIC in advance. Noticing the sparsity in the signal to be reconstruct,

some researchers proposed a number of compressive-sensing-based approaches to

the inverse scattering problems of point-like scatterers by exploiting either basis

pursuit techniques [81–83] or Bayesian approaches [84–86].

1.2.1.3 A brief introduction to fast forward scattering algorithms

In the course of inverse scattering, one needs to compute repeatedly the forward

solutions. For practical large-scale problems, for instance, a large 3D inverse

scattering problem with objects embedded in either homogeneous medium or in

layered media, this need usually imposes a very heavy burden in both CPU time

and memory consumption. To ameliorate this problem, some fast algorithms are

often applied as a forward solver within the inversion scheme. During the past two

decades, there have been a large number of substantial techniques published on fast

algorithms expediting the procedure of forward scattering. In this thesis, however,

we use straightforward CDM and MoM, instead of incorporating these accelerating

algorithms into the inversion scheme, since fast forward solvers are not the main

focus of this thesis and may prevent the readers from judging clearly and fairly

the performance of only the core idea of the inversion algorithm. Nonetheless a

brief review of a few important accelerating algorithms, such as the fast multipole

method (FMM) and conjugate gradient fast Fourier transform (CG-FFT), are still

mention-worthy, in view of their practical significance.

The fast multipole method (FMM) was proposed to solve the integral equation
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of scattering for Helmholtz problems [87], and was later generalized to the

multilevel fast multipole algorithm (MLFMA) [88, 89]. The FMM and its

hierarchical extension MLFMA, provide an efficient way for computing large-scale

forward electromagnetic scattering problems, with the computational complexity

scaling linearly with the number of scattering elements for volumetric scatterers

[90, 91]. The conjugate gradient (CG) method combined with the fast Fourier

transform (FFT) is another efficient means frequently applied as a fast forward

scattering solver for large-scale problems [90, 92, 93], where CG algorithm

is an efficient method to solve linear system equations, and FFT is used to

evaluate rapidly the cyclic convolution and the cyclic correlation, so the burden

of Sommerfeld integrals’ evaluation is reduced to a minimum.

1.2.2 Inversion methods for phaseless-data measurement

One of the severe limitations of the aforementioned approaches lies in the need

to measure both the amplitude (intensity) and the phase of the scattered fields,

and that is why these methods are conventionally referred to as full-data inverse

scattering approaches. It is commonly acknowledged that phase is generally more

difficult to measure than amplitude. As a matter of fact, researchers have observed

[2, 3, 94] that the accuracy of phase measurements cannot be guaranteed for

operating frequencies approaching the millimeter-wave band and beyond, due to

the fact that the phase data is more prone to noise corruption during measurement

than the amplitude data. Consequently, the adoption of phaseless (intensity-only)

inverse scattering techniques is mandatory at optical frequencies, and strongly

suggested at microwave and millimeter wave frequencies. Despite the lack of phase

information compounded by marked ill-posedness and nonlinearity, the phaseless
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inverse scattering problem is still solvable, either by the indirect approach (phase

retrieval) or by the direct approach.

As rigorously elaborated in [95, 96], the physical principle of the indirect

approach mainly involves two important concepts: (1) the minimally redundant

finite-dimensional representation of the scattered fields; (2) the degrees of free of

the scattered fields as a function of the incidence and the observation variables,

which indicates the maximum amount of information on the scatterer that can

be extracted from scattering measurements. Specifically, the indirect approach

splits the problem into two steps [97–99]. In the first step, the scattered field

(essentially the phase information) is estimated from the measurement of the

intensity of the total field usually in an iterative manner, so as to covert a phaseless

inverse scattering problem to a full-data inverse scattering problem. After that,

as the second step, various full-data inverse scattering methods, which have been

introduced in previous sections, can be readily adopted to reconstruct from both

amplitude and phase information. The indirect approaches have been successfully

exploited to address the phaseless inverse scattering problems, as reported in [97]

for synthetic data on a closed curve, and then in [98] for synthetic data on open

lines, and also in [99] for experimental data.

In contrast to the two-step indirect approach, the direct approach generates

the reconstruction straightforwardly from the measured amplitude (intensity).

Actually, most direct approaches to phaseless inverse scattering problems were

extended from their counterparts for the full-data inverse scattering problems. In

the context of diffraction tomography (DT), for instance, the original algorithms

are based on both amplitude and phase information. It was extended later
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to the phaseless case in [100], where, given weak scatterers, the the Rytov

approximation is used to generate a linear mapping from the index perturbation

of the object to the phase. Similarly, the distorted Born iterative method (DBIM)

inspired the proposition of the distorted Rytov iterative method with phaseless

data (PD-DRIM) [101, 102], for both lossy and lossless objects. The contrast

source inversion (CSI) and multiplicative regularized CSI (MRCSI) methods,

which were originally developed for full-data inverse scattering, have been

extended to the phaseless inverse scattering problem[103, 104] so as to obviate

the need for measuring phase. In this resultant customized algorithms, referred

to as phaseless-data contrast source inversion (PD-CSI) and the phaseless-data

multiplicative regularized contrast source inversion (PD-MRCSI), the term of the

cost function regarding the field equation has been redefined accordingly. It

was reported that the initial guess provided by the back-projection algorithm is

necessary for rapid convergence and correct result for these two methods. Whereas

the original version of the SOM outlined in [29, 105–107] requires the full set of

amplitude and phase measurements for the scattered fields, a phaseless data version

of the SOM [108] (referred to as PD-SOM) is afterwards proposed to handle

inverse scattering problems without recourse to phase measurements. Furthermore,

in the emerging framework of compressive sensing, we successfully formulate

the intrinsically nonlinear phaseless inverse scattering problem for point-like

scatterers, and solve it by convex programming [109].
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1.3 Mathematical and physical preliminaries

This section is intended to be a brief yet self-contained introduction of some

useful mathematical and physical knowledge, which is to be heavily involved in

succeeding chapters. We refer interested readers to [18, 110–118] for a detailed

treatment.

1.3.1 Maxwell’s equations and constitutive relationships

The four Maxwell’s equations first appeared in the famous paper “A Dynamical

Theory of the Electromagnetic Field”, written by James Clerk Maxwell, published

in 1865. They describe in full generality the laws of classical electrodynamics,

which can be viewed as a limit of latter-developed quantum electrodynamics for

small momentum and energy transfers, and large average numbers of virtual or real

photons [111]. The Maxwell’s equations in differential and integral forms are given

in Eq. (1.1) and Eq. (1.2), respectively.

∇×H = J+
∂D

∂t
Ampère’s Law (1.1a)

∇× E = −∂B

∂t
Faraday’s Law (1.1b)

∇ ·D = ρ Coulomb’s Law (1.1c)

∇ ·B = 0 Gauss’s Law (1.1d)
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∮
∂S

H · dl = If,S +
∂ΦD,S

∂t
Ampère’s Law (1.2a)∮

∂S

E · dl = −∂ΦB,S

∂t
Faraday’s Law (1.2b)∫∫

∂V

⊂⊃ D · dA = Qf (V ) Coulomb’s Law (1.2c)∫∫
∂V

⊂⊃ B · dA = 0 Gauss’s Law (1.2d)

where D is electric displacement; E is the electric field strength; B is the magnetic

flux density; H is the magnetic field strength; J is the electric current density; ΦD,S

is the electric flux; ΦB,S is the magnetic flux; If,S is the electric current; and Qf is

the electric charge.

In addition to Maxwell’s equations, we also need the constitutive relationships

describing the characteristics of the medium in which the field and wave exist. For

anisotropic medium, the constitutive relationship is shown in Eq. (1.3).

D = ε · E

B = µ ·H
(1.3)

Most problems studied in this thesis consider only the case, where the

permittivity tensor of anisotropic medium in principal system is described by

ε = diag[εx, εy, εz], and the permeability tensor is replaced by a scalar µ.

D = diag[εx, εy, εz] · E

B = µH
(1.4)

In some problems, we will consider only the simple isotropic media, which is

described by
D = εE

B = µH
(1.5)



1.3. Mathematical and physical preliminaries 17

1.3.2 Helmholtz equations in homogeneous media

In this section, we solve 1-D, 2-D, and 3-D Helmholtz equations in

homogeneous media, with plane, line, and point sources, respectively. The

solutions are useful in the our later derivation of Green’s function.

1.3.2.1 1-D Helmholtz equations with plane source

Consider the 1-D Helmholtz equation Eq. (1.6) about f(z) in homogeneous

media,

(
d2

dz2
+ k2)f(z) = −δ(z), (1.6)

where the δ(z) is plane source on the xy plane.

When z ̸= 0, δ(z) = 0, and the equation becomes

(
d2

dz2
+ k2)f(z) = 0.

Its general solution is f(z) = Aeikz + Be−ikz, where A and B are constants. In

view of the physical facts that the wave propagates in +z direction when z > 0,

and in −z direction when z < 0, we can give the solution as f(z) = Ceik|z|, where

C is the constant to be determined.

Now take the integral of the two sides of Eq. (1.6) in the interval (−∆,∆), and

let ∆ → 0. The right side becomes

lim
∆→0

∫ ∆

−∆

−δ(z) = −1.

The left hand side becomes

lim
∆→0

∫ ∆

−∆

(
d2

dz2
+ k2)Ceik|z|dz = 2Cik.
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Finally, we get C = i
2k

, and the solution f(z) = i
2k
eik|z|.

1.3.2.2 2-D Helmholtz equations with line source

Consider the 2-D Helmholtz equation Eq. (1.7) about f(x, y) in homogeneous

media,

(∇2
t + k2)f(x, y) = −δ(x)δ(y), (1.7)

where the ∇t =
∂2

∂x2 +
∂2

∂y2
, and δ(x)δ(y) is the line source.

Due to the obvious ϕ symmetry, and the identity δ(x)δ(y) = δ(ρ)
2πρ

, we can

transform Eq. (1.7) to Bessel equation of zeroth order Eq. (1.8)[
1

ρ

d

dρ
(ρ

d

dρ
) + k2

]
f(ρ) = −δ(ρ)

2πρ
. (1.8)

For ρ ̸= 0, this equation becomes[
1

ρ

d

dρ
(ρ

d

dρ
) + k2

]
f(ρ) = 0.

In view of the fact that there is a singularity at ρ = 0 and the wave must be

propagating outward, we find the solution to be f(ρ) = CH
(1)
0 (kρ), where C is a

constant to be determined.

Now take the integral of the two sides of Eq. (1.8) in the circular region (radius

is ∆) and let ∆ → 0. The right side becomes

lim
∆→0

∫ 2π

0

∫ ∆

0

−δ(ρ)

2πρ
ρ dϕdρ = −1.

The left hand side becomes

lim
∆→0

∫ 2π

0

∫ ∆

0

[
1

ρ

d

dρ
(ρ

d

dρ
) + k2

]
f(ρ)ρ dϕdρ = 4iC.

In the above derivation, the asymptotic property of Hankel’s function is used,
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H
(1)
0 (ξ) = 2i

π
ln(ξ). Finally, we get C = i

4
, and the solution f(ρ) = i

4
H

(1)
0 (kρ).

1.3.2.3 3-D Helmholtz equations with point source

Consider the 3-D Helmholtz equation Eq. (1.9) about f(x, y, z) in

homogeneous media,

(∇2 + k2)f(x, y, z) = −δ(x)δ(y)δ(z), (1.9)

where the ∇2 = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
, and δ(x)δ(y)δ(z) is the point source.

Due to the obvious ϕ and θ symmetry, and the identity δ(x)δ(y)δ(z) = δ(r)
4πr2

,

we transform Eq. (1.9) to Eq. (1.10)[
1

r2
d

dr
(r2

d

dr
) + k2

]
f(r) = − δ(r)

4πr2
. (1.10)

For r ̸= 0, this equation becomes[
1

r2
d

dr
(r2

d

dr
) + k2

]
f(r) = 0.

It is easy to find the general solution to the above equation to be f(r) =

A e−ikr

r
+ B eikr

r
, where A and B are contants. Since the wave must be propagating

outward, the solution should be f(ρ) = C eikr

r
, where C is a constant to be

determined.

Now take the integral of the two sides of Eq. (1.10) in the sphere region (radius

is ∆) and let ∆ → 0. The right side becomes

lim
∆→0

∫ π

0

∫ 2π

0

∫ ∆

0

− δ(r)

4πr2
dθdϕdr = −1.
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The left hand side becomes

lim
∆→0

∫ π

0

∫ 2π

0

∫ ∆

0

[
1

r2
d

dr
(r2

d

dr
) + k2

]
f(r)dθdϕdr = −4πC.

Finally, we get C = 1
4π

, and the solution f(ρ) = 1
4π

eikr

r
.

1.3.3 Dyadic Green’s function in homogeneous media

Throughout this thesis, “Green’s function” means “field due to a point or line

source”. The “dyadic (tensor) Green’s function” provides an attractive way of

compact formulation of some electromagnetic problems, by indicating the linear

relationship between a vector field and a vector current source.

In this section, we give the derivation of 1-D Green’s function, as well as 2-D

and 3-D dyadic Green’s functions, starting from Eq. (1.1). We introduce the vector

and scalar potentials A and Φ defined as B = ∇ × A and E = −∂A
∂t

− ∇Φ,

respectively, and substitute them into Eq. (1.1). For time-harmonic fields, an

equivalent set of equations are found to be

∇ ·A− iω

c2
Φ = 0 Lorenz gauge (1.11a)

∇2Φ + k2Φ = −ρ/ε0 (1.11b)

∇2A+ k2A = −µ0J (1.11c)

where k = ω/c is the wave number.

The above equation about A is clearly the Helmholtz equations whose solution

has been given in 1.3.2, so we get

A(r) =

∫∫∫
eik|r−r′|

4π|r− r′|
µ0J(r

′)dr′.
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It follows that the electric field is

E(r) = iωµ0

∫∫∫
(I+

1

k2
∇∇) · eik|r−r′|

4π|r− r′|
J(r′)dr′.

It is convenient to introduce the dyadic Green’s function

G(r, r′) = (I+
1

k2
∇∇)

eik|r−r′|

4π|r− r′|
,

so the electric field can be expressed in a compact form

E(r) = iωµ0

∫∫∫
G(r, r′) · J(r′)dr′.

Suppose the source is invariant along the ẑ direction, the three-fold integral can be

reduced by removing the integral over z-axis by using the identity,∫ ∞

z=−∞

eik|r−r′|

4π|r− r′|
=

i

4
H

(1)
0 (kρ).

In transverse magnetic (TM) case, the source is invariant along the ẑ-direction and

has only the ẑ component. Using the above identity, the TM Green’s function can

be derived as

GTM(r, r′) =
i

4
H

(1)
0 (kρ).

In transverse electric (TE) case, the source is invariant along the ẑ-direction and

has only the x̂ and ŷ component. Using the identity, we can also derive the TE

Green’s function as
GTE(r, r

′) =x̂x̂g11 + x̂ŷg12

+ŷx̂g21 + ŷŷg22
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where

g11 = H
(1)
0 (k0|r− r′|) +H

(1)
2 (k0|r− r′|) cos2 γ − H

(1)
1 (k0|r− r′|)
k0|r− r′|

,

g22 = H
(1)
0 (k0|r− r′|) +H

(1)
2 (k0|r− r′|) sin2 γ − H

(1)
1 (k0|r− r′|)
k0|r− r′|

,

g12 = g21 = H
(1)
2 (k0|r− r′|) sin γ cos γ,

γ = tan−1

(
y − y′

x− x′

)
.

1.3.4 Green’s Function for cylindrical geometry

The cylinder geometry is involved in the succeeding chapters and so we derive

the Green’s function for cylindrical structures in this section. First, consider the

background where free space surrounds a cylinder with its center located at the

origin (0, 0). The radius of the cylinder is R, and its relative permittivity is εr.

Figure 1.2: Illustration of Graf’s addition theorem

Next, consider a transmitter (TX) located at rt = (ρt, θt), a receiver (RX)

located at rr = (ρr, θr), both in terms of the original polar coordinate system (O)

whose origin is at the center of the cylinder. Consider a shifted polar coordinate

system (T) whose origin is at the position of TX. The location of RX with respect
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to the coordinate system (T) is denoted as rrt = (ρtr, θ
t
r), where the superscript ‘t’

signifies that the origin of the frame of reference is TX, the origin of coordinates

system (T). Obviously, we know that rrt = rr − rt The problem is this: Find

Green’s Function for the following four situations in Table 1.1, respectively.

Table 1.1: Four types of Green’s function for cylinder background

N.O. of situation Location of TX Location of RX Notation of Green’s
Function

1 Inside cylinder Inside cylinder Gii(ρt, θt, ρr, θr)
2 Inside cylinder Outside cylinder Goi(ρt, θt, ρr, θr)
3 Outside cylinder Inside cylinder Gio(ρt, θt, ρr, θr)
4 Outside cylinder Outside cylinder Goo(ρt, θt, ρr, θr)

Graf’s addition theorem expands a displaced cylinder harmonic as a linear

superposition of the undisplaced cylinder harmonics. It will be repeatedly referred

to, in particular, for a special case, which is given in Eq. (1.13) for the sake of

convenience

H
(1)
0 (kρtr) =

{∑∞
n=−∞ Jn(kρt) · e−inθt ·H(1)

n (kρr) · e−inθr , if ρt < ρr,∑∞
n=−∞H

(1)
0 (kρt) · e−inθt ·H(1)

n (kρr) · e−inθr , if ρr < ρt
(1.13)

Now we will derive Green’s function for situation 1 and situation 2 :

Gii(ρt, θt, ρr, θr) and Goi(ρt, θt, ρr, θr).

Green’s function is basically the electric field caused by a unitary current

source. For the first and second situation, the source is put inside the cylinder.

The field inside the cylinder due to the source is

Einc(ρ, θ) = −ωµ0

4
H

(1)
0 (kcρ

t)
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In this equation, kc = ω
√
µ0εc = ω

√
µ0εrε0 is the wave number inside the cylinder.

The field outside the cylinder is

Eout(ρ, θ) = −ωµ0

4

∞∑
n=−∞

bn ·H(1)
n (k0ρ) · einθ

The field inside the cylinder due to scattering is

Ein(ρ, θ) = −ωµ0

4

∞∑
n=−∞

cn · Jn(kcρ) · einθ

Noting that the boundary condition to be matched is at ρr = R > ρt, we use Graf’s

addition theorem to expand Einc as

Einc(ρ, θ) = −ωµ0

4
H

(1)
0 (kcρ

t)

= −ωµ0

4

∞∑
n=−∞

Jn(kρt) · e−inθt ·H(1)
n (kρr) · e−inθr

= −ωµ0

4

∞∑
n=−∞

an ·H(1)
n (kρr) · e−inθr .

(1.14)

In the last expression,an = Jn(kρt) · e−inθt .

The boundary condition that the tangential electric and magnetic fields are

continuous on the boundary yield

an ·H(1)
n (kcR) + cn · Jn(kcR) = bn ·H(1)

n (k0R)

ankc ·H(1)′
n (kcR) + cnkc · J ′

n(kcR) = bnk0 ·H(1)′
n (k0R)

Solving the two equations, we obtain

bn = an
kc ·H(1)

n (kcR) · J ′
n(kcR)− kc ·H(1)′

n (kcR) · Jn(kcR)
kc ·H(1)

n (kcR) · J ′
n(kcR)− k0 ·H(1)′

n (k0R) · Jn(kcR)

After calculating bn, we can also get cn.

cn =
bn ·H(1)

n (k0R)− an ·H(1)
n (kcR)

Jn(kcR)
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Finally, we get Green’s functions for the first and second situations as follows.

Gii(ρt, θt, ρr, θr) = Einc(ρr, θr) + Ein(ρr, θr)

= −ωµ0

4

∞∑
n=−∞

[
an ·H(1)

n (kcρr) + cn · Jn(kcρr)
]
· e−inθr

Goi(ρt, θt, ρr, θr) = Eout(ρr, θr)

= −ωµ0

4

∞∑
n=−∞

bn ·H(1)
n (k0ρr) · e−inθr

By the similar token, we derive Green’s function for situation 3 and situation

4: Gio(ρt, θt, ρr, θr) and Goo(ρt, θt, ρr, θr). The field outside the cylinder due to the

source is

Einc(ρ, θ) = −ωµ0

4
H

(1)
0 (k0ρ

t)

The field outside the cylinder due to scattering is

Eout(ρ, θ) = −ωµ0

4

∞∑
n=−∞

bn ·H(1)
n (k0ρ) · einθ

The field inside the cylinder due to scattering is

Ein(ρ, θ) = −ωµ0

4

∞∑
n=−∞

cn · Jn(kcρ) · einθ

In this equation, kc = ω
√
µ0εc = ω

√
µ0εrε0 is the wave number inside the cylinder.

Noting that the boundary condition to be matched is at ρr = R < ρt, we use

Graf’s addition theorem to expand Einc as

Einc(ρ, θ) = −ωµ0

4
H

(1)
0 (k0ρ

t)

= −ωµ0

4

∞∑
n=−∞

H(1)
n (k0ρt) · e−inθt · Jn(k0ρ) · e−inθ

= −ωµ0

4

∞∑
n=−∞

an · Jn(k0ρ) · e−inθ



26 Chapter 1. Introduction

In the last expression, an = H
(1)
n (k0ρt) · e−inθt .

The boundary condition that the tangential electric and magnetic fields are

continuous on the boundary yield

bn ·H(1)
n (k0R) + an · Jn(k0R) = cn · Jn(kcR)

bnk0 ·H(1)
n

′
(k0R) + ank0 · J ′

n(k0R) = cnkc · J ′
n(kcR)

Solving the two equations, we obtain

bn = an
k0 · Jn(kcR) · J ′

n(k0R)− kc · Jn′(kcR) · Jn(k0R)
kc ·H(1)

n (k0R) · J ′
n(kcR)− k0 ·H(1)

n

′
(k0R) · Jn(kcR)

cn =
bn ·H(1)

n (k0R) + an · Jn(k0R)
Jn(kcR)

Finally, we get Green’s functions for the third and fourth situations as follows.

Goo(ρt, θt, ρr, θr) = Einc(ρr, θr) + Ein(ρr, θr)

= −ωµ0

4

∞∑
n=−∞

[
an · Jn(k0ρr) + bn ·H(1)

n (k0ρr)
]
· e−inθr

Gio(ρt, θt, ρr, θr) = Ein(ρr, θr)

= −ωµ0

4

∞∑
n=−∞

cn · Jn(kcρr) · e−inθr

1.3.5 Lippmann-Schwinger equation

In this section, we derive the Lippmann-Schwinger equation [5], which

describes the electromagnetic scattering phenomenon. As shown in Fig. 1.3, we

divide the domain of interest into two mutually-disjoint portions: the one occupied

by the scatterers is Vscat, and the other one occupied by the background media

(supposed to be free-space) is Vbg. The constitutive relationship is described by

D(r) =

{
ε(r) · E(r), r ∈ Vscat

ε0E(r), r ∈ Vbg

(1.15)
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Figure 1.3: Dividing the domain of interest

From Maxwell’s equations Eq. (1.1) and the above constitutive relationship

Eq. (1.15), we get

∇× E(r)− iωµ0H(r) = 0, r ∈ Vbg ∪ Vscat (1.16a)

∇×H(r)− iωε0E(r) = 0, r ∈ Vbg (1.16b)

∇×H(r)− iωε0εr(r) · E(r) = 0, r ∈ Vscat (1.16c)

Using the equivalence principle [113], Eq. (1.16) can be simplified by replacing

the scatterers with equivalent induced polarization currents J(r). Thus, Eq. (1.16)
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is reduced to Eq. (1.17)

∇× E(r)− iωµ0H(r) = 0, r ∈ Vbg ∪ Vscat (1.17a)

∇×H(r)− iωε0E(r) = J(r), r ∈ Vbg ∪ Vscat (1.17b)

where

J(r) = 0 r ∈ Vbg (1.17c)

J(r) = −iωε0[I− εr(r)] · E(r) r ∈ Vscat. (1.17d)

Solving Eq. (1.17) yields the Lippman-Schwinger integral equation Eq. (1.18),

E(r) = Einc(r) + iωµ0

∫∫∫
Vscat

G(r, r′) · J(r′)dr′, r ∈ Vbg ∪ Vscat. (1.18)

where Einc(r) is the solution of sourceless counterparts of the integral equation

Eq. (1.17).

1.3.6 The method of moments (MoM)

The method of moments (MoM) is a numerical technique converting integral

equations, such as the Lippmann-Schwinger equation Eq. (1.18), into a linear

system that can be solved numerically using a computer. In this section, the method

of moments (MoM) is derived from the Lippmann-Schwinger equation. We will

consider only the anisotropic media and the weak form MoM (to be discussed

shortly), since they are sufficient for the problems studied in this thesis. For the

case of the general bianisotropic media and the strong form MoM, the readers are

referred to [114].

In order to solve the Lippmann-Schwinger equation Eq. (1.18) numerically, the

scatterer Vscat is discretized into a union of non-overlapping subunits Vm (m =
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1, 2, · · · , N ), so that Vscat =
∪N

m=1 Vm. The volumetric capacity of Vm is vm =∫∫∫
Vm

dr. Let rm be a distinguished point lying inside Vm, and let Em = E(rm) be

the actual field at rm.

Conventionally, we require

1. Vm is homogeneous,

2. the maximum linear extent 2am of Vm is such that k0am < 0.1,

so the long-wavelength approximation can be applied: E(r) = Em, ∀r ∈ Vm.

The difficulty in numerically solving the Lippmann-Schwinger equation

Eq. (1.18) lies in the problem of the integral of dyadic Green’s function in

the source region. Fortunately the weak form approximation provided in [114]

paves the way. Suppose V is electrically small enough for long-wavelength

approximation and r0 is a point inside V , we have Eq. (1.19),

lim
V→0

∫∫∫
V

G(r, r′) · J(r′)dr′ ≈ − 1

k2
0

L · J(r0) (1.19)

where the evaluation of the depolarization dyadic L is dependent on the shape

of subunit. It is worth mentioning that the condition of infinitesimal principal

volume (V → 0) coupled with an inhomogeneous limiting procedure may cause

troubles in numerical calculations, and these troubles can be avoided by some

alternative methods provided by some recent study [119], which considers a finite

size principal volume instead of an infinitesimally small principal volume and does

not contain the source dyadic term. The details about these recent development

[119], however, is beyond the scope of this thesis. The results of L for typical

shapes are given in two tables provided by [115].



30 Chapter 1. Introduction

Figure 1.4: Evaluation of 2-D depolarization dyadic L [115]
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Figure 1.5: Evaluation of 3-D depolarization dyadic L [115]
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Now we are able to reduce the Eq. (1.18) to

Em = Einc
m − iωµ0

1

k2
0

Lm · Jm +
N∑

n=1
n̸=m

iωµ0Gm,n · Jn, m = 1, 2, · · · , N. (1.20)

where Einc
m = Einc(rm), Jm = J(rm), Gm,n = G(rm, rn).

Eq. (1.20) is then transformed to the compact linear system of MoM.

Einc(rm) =
N∑

n=1

Am,n · E(rn), m = 1, 2, · · · , N, (1.21)

where

Am,m = I− Lm · [I− εrm], m = 1, 2, · · · , N,

and for m ̸= n

Am,n = k2
0vnGm,n · [I− εrm], m, n = 1, 2, · · · , N.

Once Em has been calculated, Jm is determined using Eq. (1.17). Finally, the

scattered field is computed as

Escat(r) = iωµ0

N∑
n=1

vnG(r, rn) · J(rn). (1.22)

1.3.7 The coupled dipole method (CDM)

In MoM, we consider E(rn), the actual field at the subunit Vn, while in the

coupled dipole method (CDM), we consider Etot(rn), which is interpreted as the

field exciting the subunit Vn. As a matter of fact, Etot(rn) is the sum of the incident

field and the scattered field from all the other subunits, and its linear relation with
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E(rn) can be readily derived from Eq. (1.20) as shown in Eq. (1.23).

Etot
m = Einc

m +
N∑

n=1
n̸=m

iωµ0Gm,n · Jn

= Em + iωµ0 ·
1

k2
0

Lm · Jm

=
[
I+ Lm ·

(
I− εrm

)]
· Em

m = 1, 2, · · · , N.

(1.23)

Let Pm =
[
I+ Lm ·

(
I− εrm

)]
. So J is also linearly associated with Etot,

Jm = iωε0

(
I− εrm

)
·Pm

−1
· Etot

m . (1.24)

Now we are able to get the linear system of CDM Eq. (1.25), which seems

similar to Eq. (1.21)

Einc
m =

N∑
n=1

Qm,n · Etot
n , m = 1, 2, · · · , N, (1.25)

where

Qm,m = I,

and for m ̸= n

Qm,n = k2
0vnGm,n ·

(
I− εrn

)
·Pn

−1
.

Once Etot has been calculated, Jm is determined using Eq. (1.24). Finally, the

scattered field is computed as

Escat(r) = iωµ0

N∑
n=1

vnG(r, rn) · J(rn). (1.26)
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1.3.8 A glimpse at Wirtinger calculus for optimization

In research of many engineering problems (not only the electromagnetic inverse

scattering), one often has to use line search algorithms to address the optimization

of scalar real function of complex variables. To determine the search direction,

although using the real gradient is always correct, this way is rather awkward and

inconvenient since the problem is defined in the framework of complex domain.

Fortunately, the derivation can be greatly simplified if we apply the complex

derivative (gradient) operator defined in the Wirtinger calculus, termed as Wirtinger

derivatives. Interested readers are referred to [116–118] for an extended discussion.

Despite its usefulness, the Wirtinger derivative often causes confusion, because

it is not consistent with the standard definition of complex derivative in standard

complex variables courses. According to the standard definition of complex

derivative, the derivative of a function f(z) = u(x, y)+iv(x, y) of complex number

z exists if and only if it satisfies the Cauchy-Riemann conditions

∂u

∂x
=

∂v

∂y
, (1.27a)

∂v

∂x
= −∂v

∂y
, (1.27b)

Such function is termed as holomorphic (analytic in z).

By this definition, the scalar real function of complex variables is not

holomorphic, so its standard derivative does not even exist. In Wirtinger calculus,

however, as long as a function f(z) is differential with respect to x and y, its
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Wirtinger derivative can be defined as

∂f

∂z
, 1

2

(
∂f

∂x
− i

∂f

∂y

)
(1.28a)

∂f

∂z∗
, 1

2

(
∂f

∂x
+ i

∂f

∂y

)
(1.28b)

where the superscript ∗ signifies complex conjugate. It follows that(
∂f

∂x
+ i

∂f

∂y

)
= 2

∂f

∂z∗
, (1.29)

so instead of calculating the derivative with respect to x and y respectively, we

only need to calculate the Wirtinger derivative with respect to z∗. The Wirtinger

derivatives of most common functions with respect to a single variable are listed

in Table 1.2. It is naturally generalized to the Wirtinger derivative of a scalar real

Table 1.2: Wirtinger derivatives

f(z) ∂f(z)
∂z

∂f(z)
∂z∗

cz c 0
cz∗ 0 c
zz∗ z∗ z

function f(z) with respect to multiple variables (z = [z1, z2, · · · , zn]T ), i.e., the

Wirtinger gradient, which is conveniently defined accordingly:

∇zf ,


∂f
∂z1
∂f
∂z2...
∂f
∂zn



∇z∗f ,


∂f
∂z∗1
∂f
∂z∗2...
∂f
∂z∗n
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The Wirtinger gradient of most common functions are listed in Table 1.3, where

the superscript H signifies Hermitian.

Table 1.3: Wirtinger gradients

f(z) ∇zf ∇z∗f

cT z = zT c c 0
cT z∗ = zHc 0 c
zHz = zT z∗ z∗ z

zHMz = zTMz∗ M
T
z∗ Mz

1.4 Synopsis of this thesis

The author’s original contribution is described in the remainder of this

thesis, where the specific electromagnetic inverse problems of different sorts

are addressed, covering both the full-data and the phaseless data measurement,

and both point-like and extended scatterers. These sub-topics are discussed in

individual chapters.

In Chapter 2, we describe the formulation of the electromagnetic inverse

scattering problem of extended scatterers, with the measurement data being

the scattered electromagnetic field. This problem is solved by the full-data

subspace-based optimization method (FD-SOM). In addition, a comparison among

the variants of FD-SOM is also presented, which indicates the optimum choice for

specific problems.

Chapter 3 presents the phaseless-data subspace-based optimization method

(PD-SOM), which deals with the inverse scattering problem of reconstructing

extended scatterers with intensity-only measurement.
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In Chapter 4, we formulate in the framework of compressive sensing (CS)

the problem of imaging point-like scatterers with phaseless-data and describe the

compressive phaseless imaging through minimizing a convex functional.

Chapter 5 concludes the thesis with suggestions for future work.





CHAPTER 2

Full Data Subspace-based
Optimization Method

“Curiouser and curiouser!”

—-Lewis Carroll, Alice’s Adventures in Wonderland

2.1 Original contributions

Recently, a full data subspace-based optimization method (FD-SOM or briefly

SOM) was proposed in[29] to solve the electromagnetic inverse scattering problem,

which has been found to be rapidly convergent, robust against noise, and able to

reconstruct scatterers with complicated shapes. The essence of SOM is that the

contrast source is partitioned into the deterministic portion and the ambiguous

portion. The former is readily obtained by the spectrum analysis, while the

latter can be determined by various optimization means. The original SOM was

published in [29], where the coefficient vector αn
p (refer to Section 3 of [29]

or Section 2.4.2 of this chapter for the detail) is treated as a function of the

scattering strength ξ (refer to Section 2 of [29] or Table 2.1 of this chapter for the

detail) in the least squares sense, and ξ is determined by minimizing a nonlinear
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objective function. Subsequently, a combination of CSI and SOM, which we

shall conveniently refer to as CSI-like SOM was proposed in [120]. For the

CSI-like SOM, the ambiguous portion is determined by an algorithm sharing

some common features with CSI, i.e., αn
p and ξ being alternatively updated [120].

As a consequence, the matrix inverse operation can be avoided so as to reduce

considerably the computational cost.

Sections 2.2 and 2.3 generalize the SOM method for extension to the transverse

electric (TE) case, where the electric field is transverse to the longitudinal direction

of the two-dimensional system, in both the framework of the coupled dipole

method (CDM) and the framework of the method of moments (MoM). It is worth

highlighting that this generalization is not a simple mathematical replacement of

TM parameters by their corresponding TE counterparts. The analysis involves a

vector wave for the TE case since the electric field is in the transverse plane; for

the TM case, on the other hand, the electric field is in the longitudinal direction

and thus it is effectively a scalar electric field. As a consequence, the TE case

is mathematically more complex than the TM case. In addition, the total electric

field incident upon a subunit is not equal to the electric field inside the subunit,

and the scattering strength of the subunit becomes a nonlinear function of relative

permittivity. In comparison, for the TM case, the total electric field incident upon

a subunit is equal to the electric field inside the subunit, resulting in a simple

linear relationship of the scattering strength to the relative permittivity. Another

significant difference between these two cases is that the electric field for the TE

case is oriented differently for different incidence directions, hence allowing for

enhanced capability in probing the two-dimensional structure of scatterers.
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The original contributions in sections 2.2 and 2.3 may be summarized as

follows:

(a) It generalizes the SOM method to the TE case, which is physically different

from and mathematically more complex than the TM case.

(b) By analyzing the role of the dimension of the signal subspace, we show that

it behaves somewhat as a regularization parameter, balancing the error of

the measured data and the error of the physical model. It is encouraging to

find that there is a wide range of dimensions of the signal subspace yielding

satisfactory reconstruction results.

(c) We show that for the TE case the electric field is oriented differently for

different incidence directions, thus allowing for a better capability of probing

the two dimensional structure of scatterers. Numerical results show that the

reconstructed pattern in the TE case is smoother than that in the TM case.

(d) There is a dominance of numerical results presented in the literature for the

TM case. We present, instead, numerical results for several scatterers of

complex geometries under TE incidence.

After that, a comparative study of the variants of SOM is provided in section

2.4, where the original contributions may be summarized as follows:

(a) Firstly, for transverse electric (TE) case, it provides the user of SOM with

the empirical formulas for the choice of the number of leading singular

values and the definition of a practically effective criterion of terminating

the optimization iteration.
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(b) Secondly, on the basis of a number of numerical simulations, we evaluate

comparatively the performance of the three variants of SOM in TE case

in terms of computational cost and the reconstruction capability. In

order to support a relatively thorough analysis, the numerical experiments

are designed to cover different working conditions, including different

complexity levels of the patterns, different noise levels, both lossless and

the lossy scatterers, and so on. For SOM, the calculation of the ambiguous

portion plays a dominant role in determining the computational cost and the

reconstruction capability of the algorithm. Therefore the exploration for

the optimal method in this regard through a detailed comparative analysis

is valuable in research and necessary in application. The main conclusion

is that the CSI-like SOM surpasses the other two variants in terms of

computational cost and the reconstruction capability.

(c) Thirdly, it proposes a novel variant of SOM, where the cost function remains

identical to that in CSI-like SOM, however, both αn
p and ξ are concurrently

updated in each iteration. This novel variant makes our comparative study

complete.

2.2 FD-SOM in the framework of CDM

2.2.1 Formulation of the forward scattering problem

In this section, we consider a two-dimensional setting under TE incidence

for the inverse problem where the cylindrical dielectric scatterers (which are

inhomogeneous in the x-y plane but invariant in the z direction) are located in the

domain D ⊂ R2 in the x-y plane. The geometry of the inverse scattering problem
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is shown in Fig. 2.1. Nt unit magnetic current line sources (TE polarization)

are arranged at rtp (p = 1, 2, · · · , Nt) in a circle around the scatterers, which

are illuminated successively by the sources with the incident waves expressed as

Hinc
p (r) = ẑH inc

z,p (r) = ẑ
i

4
H

(1)
0 (k0 · |rtp − r|), and Einc

p (r) = x̂Einc
x,p (r) + ŷEinc

y,p (r)

can be obtained by Ampère’s Law. The scattered waves are received by Nr

receivers located at rrq (q = 1, 2, · · · , Nr), which are also placed in a circle

surrounding the scatterers. The inverse problem consists of determining the relative

permittivity profile of the scatterers, given a set of NtNr scattering data, Escat
p (rrq),

where p = 1, 2, · · · , Nt; q = 1, 2, · · · , Nr. In practice, the domain D is discretized

into a total number of Nd subunits, with the centers of the subunits located at rm

(m = 1, 2, · · · , Nd), and the problem then reduces to determining ε(rm).

 

 

Domain

Transmitter

Receiver

y

x

Figure 2.1: Geometry of the inverse scattering problem.

The total electric field incident upon the mth subunit is denoted as Etot(rm) =

x̂Etot
x (rm) + ŷEtot

y (rm). Collectively, they satisfy the following self-consistent
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relationships [114, 121, 122],

Etot
p,x(rm) = Einc

p,x (rm) +

Nd∑
n=1
n̸=m

ik0η0ξ(rn)[g11(rm, rn)E
tot
p,x(rn) + g12(rm, rn)E

tot
p,y(rn)],

(2.1a)

Etot
p,y(rm) = Einc

p,y (rm) +

Nd∑
n=1
n̸=m

ik0η0ξ(rn)[g21(rm, rn)E
tot
p,x(rn) + g22(rm, rn)E

tot
p,y(rn)],

(2.1b)

(m = 1, 2, ..., Nd),

where the subscript p means that the incident field is due to the pth source

antenna; the subscripts x and y denote the x- and y- components, respectively;

the superscript inc refers to the incident field radiated by the line sources; the

superscript tot represents the summation of all the fields incident upon the subunit,

including the fields due to the transmitting sources and the induced sources; k0 and

η0 are the free-space wave number and impedance respectively; ξ(rn) denotes the

scattering strength of nth subunit; and gab(rm, rn) is the element of the following

two-dimensional dyadic Green’s function [112], with respect to two locations rm

and rn,

g(rm, rn) =

(
g11(rm, rn) g12(rm, rn)

g21(rm, rn) g22(rm, rn)

)
.

After the Etot is obtained, the scattered field is given by

Escat
p,x (rrq) =

Nd∑
n=1,

ik0η0ξ(rn)[g11(r
r
q, rn)E

tot
p,x(rn) + g12(r

r
q, rn)E

tot
p,y(rn)], (2.2a)

Escat
p,y (rrq) =

Nd∑
n=1,

ik0η0ξ(rn)[g21(r
r
q, rn)E

tot
p,x(rn) + g22(r

r
q, rn)E

tot
p,y(rn)], (2.2b)

(q = 1, 2, ..., Nr).

The small square subunits, which are chosen in the numerical simulations, can
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be well approximated by circles of equal area [113], therefore in Eq. (2.1) and

Eq. (2.2), the scattering strength reads ξ(rn) = −2i
k0
η0
An

εr(rn)− 1

εr(rn) + 1
, where An

and εr(rn) denote the area and the relative permittivity of the nth subunit. This

parameter relates the induced contrast displacement current in the nth subunit to

the total incident electric field by

Idx(rn) = ξ(rn)E
tot
x (rn), (2.3a)

Idy (rn) = ξ(rn)E
tot
y (rn). (2.3b)

The combination of Eq. (2.3) and Eq. (2.1) yields

I
d

p = ξ(E
inc

p +GD · Idp), (2.4)

where

I
d

p = [Idp,x(r1), I
d
p,x(r2), ..., I

d
p,x(rNd

), Idp,y(r1), I
d
p,y(r2), ..., I

d
p,y(rNd

)]T

(the superscript T represents the transpose operator) and

E
inc

p = [Einc
p,x (r1), E

inc
p,x (r2), ..., E

inc
p,x (rNd

), Einc
p,y (r1), E

inc
p,y (r2), ..., E

inc
p,y (rNd

)]T

are both column vectors of size 2Nd;

ξ = diag[ξ(r1), ξ(r2), ..., ξ(rNd
), ξ(r1), ξ(r2), ..., ξ(rNd

)]

is a diagonal matrix of size 2Nd × 2Nd;

GD =

(
GD11 GD12

GD21 GD22

)
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is a matrix of size 2Nd × 2Nd with

GDab(m,n) =

{
ik0η0 · gab(rm, rn), m ̸= n

0, m = n
, (a, b = 1, 2; m,n = 1, 2, ..., Nd).

Similarly, substituting Eq. (2.3) into Eq. (2.2) gives

E
scat

p = GS · Idp, (2.5)

where

E
scat

p = [Escat
p,x (rr1), E

scat
p,x (rr2), , ..., E

scat
p,x (rrNr

), Escat
p,y (rr1), E

scat
p,y (rr2), ..., E

scat
p,y (rrNr

)]T

is a column vector of size 2Nr;

GS =

(
GS11 GS12

GS21 GS22

)

is a matrix of size 2Nr × 2Nd with

GSab(q, n) = ik0η0 · gab(rrq, rn), (a, b = 1, 2; q = 1, 2, ..., Nr; n = 1, 2, ..., Nd).

Eq. (2.4) and Eq. (2.5) are referred to as state equation and field equation

respectively, and they constitute the basic equations for use in the inverse scattering

problem.

2.2.2 Inversion algorithm

Following the SOM algorithm proposed in [29], the induced currents due

to the pth incidence (I
d

p) on scatterers are decomposed into two orthogonally

complementary parts, i.e., the deterministic part I
s

p and the ambiguous part I
n

p .

It can be expressed as I
d

p = I
s

p+I
n

p = I
s

p+V
n
·αn

p , where V
n

is the noise subspace

composed of the last 2Nd − L right singular vectors, αn
p is a vector of coefficients
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to be determined by optimization, and L is the total number of singular values that

are above a predefined noise-dependent threshold [29]. After I
s

p is determined by

the singular value decomposition (SVD), the εr of the scatterers can be obtained by

minimizing the objective function which can be expressed explicitly as

f(εr) =
1

2

Nt∑
p=1

[
||GS · V

n
· αn

p +GS · Isp − E
scat

p ||2

||Escat

p ||2
+

||A · αn
p −Bp||2

||I
s

p||2

]2
(2.6)

where A = V
n
−ξ ·(GD ·V

n
) and Bp = ξ ·(Einc

+GD ·I
s

p)−I
s

p are both functions of

the Nd× 1 relative permittivity vector εr. Note that αn
p can be obtained by the least

squares solution [29]. In numerical simulations, we use the Levenberg-Marquardt

algorithm to minimize the objective function. It is worth mentioning that the

parameter to be optimized in Eq. (2.6) is relative permittivity, which is different

from [29] where the scattering strength is optimized.

The main feature of the proposed SOM lies in the following two aspects: First,

deterministic current I
s

can be obtained straightforwardly by the SVD, without

recourse to optimization; Second, the dimension of the space of ambiguous current,

which is to be reconstructed by optimization methods, is smaller than that used

in the traditional optimization methods. These two features reduce the degree of

non-linearity of the inverse scattering problem; as a result, the SOM significantly

speeds up the convergence and performs robustly in presence of noise.

2.2.3 Numerical results

All the numerical simulations reported in this section are based on the same

set of values assigned to the following parameters. The line sources (transmitting

antennas) are evenly distributed on a circle of radius 5λ, with locations (5λ ·
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cos
2πp

Nt

, 5λ · sin 2πp

Nt

) p = 1, 2, ..., Nt. A total number of Nr = 30 receivers are

also evenly distributed on a circle of radius 5λ, with locations (5λ · cos 2πq
Nr

, 5λ ·

sin
2πq

Nr

) q = 1, 2, ..., Nr. In order to avoid the inverse crime [6], we first

check the validity of the forward solver Eq. (2.4) and Eq. (2.5) by comparing

it with another numerical method, the method of moments (MoM) [113]. The

difference between the scattered fields produced by these two methods is negligibly

small, which proves the validity of the forward solver. The scattered field is

recorded in the format of the multi-static response (MSR) matrix K whose size

is 2Nr × Nt [30]. Gaussian white noise κ is thereafter added to the MSR matrix,

and the resultant noise-corrupted matrix K + κ is treated as the measured MSR

matrix which is used to reconstruct the scatterers. The noise level is quantified in

signal-to-noise ratio (SNR) as 20 · log ||K||F
||κ||F

, where || · ||F denotes the Frobenius

norm of a matrix [105]. We choose free space as the initial guess in the optimization

problem, i.e., εr(rm) = 1, m = 1, 2, ..., Nd.

The previous TM case reported in paper [29] reconstructs the pattern of an

annulus in the presence of 10dB and 20dB noise level. Although the reconstructed

pattern in [29] clearly exhibits the central hole, its quality suffers from the flaw

that the value of εr fluctuates noticeably along the annulus. This drawback may

be attributed to the reason that for the TM mode all the incident electric fields

are oriented in the longitudinal direction, and therefore contain limited amount of

information about εr, which is non-uniform in the transverse plane. In contrast,

for TE mode, the orientation of the electric field varies in the transverse plane for

every incidence direction, and hence the scattered wave might be able to provide

additional information about εr and upgrade the quality of the reconstructed
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pattern. To demonstrate this, a numerical experiment is performed to reconstruct

the identical scatterer by using the SOM algorithm under the same conditions

adopted in [29] except for the switch to TE incidence. The result, as illustrated

in Fig. 2.2, shows a smoother pattern with much less fluctuation of εr along the

annulus, compared with Fig. 3 and Fig. 4 in [29]. In presence of noise, for the

SOM algorithm, choosing an appropriate value for the number of leading singular

values (L) from the spectrum of the the matrix GS (shown in Fig. 2.3) not only

improves the convergence speed and the quality of the reconstructed patterns, but

also strengthens the immunity to noise. It has been observed during the course of

this investigation that a quantitative study of the exact choice of L proves difficult,

mainly because it is a problem that depends on individual situations. Nevertheless,

from the qualitative point of view, there may roughly exist a range of values for

L over which optimal reconstruction could be achieved. If L is too large (i.e. on

the right side of the optimal range), although the field equation is well satisfied

and the convergence can be swiftly reached, the increase in the residue occurs due

to the error of the physical model. On the other hand, if L is too small (i.e. on

the left side of the optimal range), less deterministic current is determined and the

dimension of the noise subspace is large. Consequently, the convergence becomes

more time-consuming. Another numerical experiment has been performed to study

the relation between L and absolute residue that is defined as the arithmetic mean

of the absolute value of the difference between the exact relative permittivity and

the reconstructed relative permittivity. From the result, shown in Fig. 2.4, it can be

seen that, for the pattern of annulus, the absolute residue saturates after about 15

iterations, and the optimal range, corresponding to the minimum absolute residue,
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Figure 2.2: An annulus with inner radius 0.15λ and outer radius 0.3λ. (a). Exact
permittivity. (b) Reconstructed permittivity for SNR=20dB. (c) Reconstructed
permittivity for SNR=10dB.
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is found to be from 10 to 35, where the optimal balance is reached between the

error of the field equation and the error of the state equation. This is an encouraging

result, since the value of L does not critically depend on any parameter and there is

a wide continuous range of integer values of L yielding satisfactory reconstruction

results.
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Figure 2.3: Singular values of the matrix GS in the first numerical simulation.
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Figure 2.4: Absolute residue versus number of iterations for different values of L

To challenge the SOM algorithm for the TE case, the next numerical experiment

deals with a more complex pattern, where a circle (with relative permittivity of 2.5

and radius of 0.15λ) is placed in the central hole of a concentric annulus (with
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relative permittivity of 2 and inner and outer radii of 0.4λ and 0.6λ respectively) in

a square domain (with width of 1.6λ) discretized into a grid of 40 × 40 subunits.

Since this pattern is more complicated than the one adopted for the first experiment

(Fig. 2.2), the number of transmitting antennas is increased to Nt = 14. In

addition, L is chosen to be 10, and SNR is increased to 10dB. The exact pattern

and the inverse result obtained after 20 iterations are presented in Fig. 2.5(a)(b)

respectively, where the reconstructed pattern seems rather close to the original one,

and the gap (with width of 0.25λ) can be clearly seen between the central circle and

the annulus. For the final example, a set of digit patterns (with relative permittivity

of 2) is reconstructed by the SOM algorithm under TE incidence. The set of

patterns in Fig. 2.6 has not been reported elsewhere in the literature for use in the

inverse scattering (to the best of the author’s knowledge). The domain is a rectangle

of size 1.4λ× 0.7λ which has been discretized into a grid of 40× 20 subunits. The

number of incidence is increased to Nt = 20 because of the complexity of the

patterns. For the numerical experiment, the SNR is 20dB and the value of L is

chosen to be 7. Fig. 2.7 shows that the original digits can be easily identified from

the reconstructed patterns obtained after 20 iterations.

2.3 FD-SOM in the framework of MoM

2.3.1 Formulation of the forward scattering problem

We consider a two-dimensional setting under TE incidence for the inverse

problem. The configuration of the experiment is the same as described in section

2.2.

The electic field integral euqation (EFIE) [113] can be expressed as the
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Figure 2.5: The pattern consisting of a circle and an annulus. (a) Exact relative
permittivity. (b) Reconstructed relative permittivity for SNR=10dB.
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relationship between the incident electric field Einc(rm) = x̂Einc
x (rm)+ŷEinc

y (rm)

and the equivalent electric polarization current densities J(rm) = x̂Jx(rm) +

ŷJy(rm), which is known as the MoM method [113],

Einc
p,x (rm) =

Nd∑
n=1

Anη0
4k0

[
∂2H

(1)
0 (kρmn)

∂xn∂yn
Jp,y(rn)

− ∂2H
(1)
0 (kρmn)

∂y2n
Jp,x(rn)

]
+

Jp,x(rm)

θ(rm)
, (2.7a)

Einc
p,y (rm) =

Nd∑
n=1

Anη0
4k0

[
∂2H

(1)
0 (kρmn)

∂xn∂yn
Jp,x(rn)

− ∂2H
(1)
0 (kρmn)

∂x2
n

Jp,y(rn)

]
+

Jp,y(rm)

θ(rm)
, (2.7b)

(m = 1, 2, ..., Nd),

where the subscript p means that the incident field is due to the pth source

antenna; the subscripts x and y denote the x- and y- components, respectively;

the superscript inc refers to the incident field radiated by the line sources; k0 and

η0 are the free-space wave number and impedance respectively; An denotes the

area of the nth subunit. and ρmn is the distance between two locations rm and rn,

ρmn =
√
(xm − xn)2 + (ym − yn)2,

and

θ(rm) =
jk0
η0

· ε(rm)− 1

ε(rm)
.

Eq. (2.7) can be expressed in a compact form as

J
d

p = θ(E
inc

p +GD · Jd

p), (2.8)
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where

GD =

(
GD11 GD12

GD21 GD22

)
with

GD11(m,n) =


η0An

4k0
· ∂

2H
(1)
0 (kρmn)

∂y2n
, m ̸= n

lim
ρmn→0

η0An

4k0
· ∂

2H
(1)
0 (kρmn)

∂y2n
, m = n

GD12(m,n) = GD21(m,n)

=

−η0An

4k0
· ∂

2H
(1)
0 (kρmn)

∂xn∂yn
, m ̸= n

0, m = n

GD22(m,n) =


η0An

4k0
· ∂

2H
(1)
0 (kρmn)

∂x2
n

, m ̸= n

lim
ρmn→0

η0An

4k0
· ∂

2H
(1)
0 (kρmn)

∂x2
n

, m = n

(m,n = 1, 2, ..., Nd).

After obtaining the current densities J(rm), the scattered field can be determined

as

Escat
p,x (rrq) =

Nd∑
n=1

η0An

4k0

[
∂2H

(1)
0 (kρqn)

∂y2n
Jp,x(rn)

− ∂2H
(1)
0 (kρqn)

∂xn∂yn
Jp,y(rn)

]
, (2.9a)

Escat
p,y (rrq) =

Nd∑
n=1

η0An

4k0

[∂2H
(1)
0 (kρqn)

∂x2
n

Jp,y(rn)

− ∂2H
(1)
0 (kρqn)

∂xn∂yn
Jp,x(rn)

]
, (2.9b)

(q = 1, 2, ..., Nr),
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Similarly, it can be expressed in compact form as

E
scat

p = GS · Jd

p, (2.10)

where

GS =

(
GS11 GS12

GS21 GS22

)
with

GS11(q, n) =
η0An

4k0

∂2H
(1)
0 (kρqn)

∂y2n
,

GS12(q, n) = GS21(q, n) = −η0An

4k0

∂2H
(1)
0 (kρqn)

∂xn∂yn
,

GS22(q, n) =
η0An

4k0

∂2H
(1)
0 (kρqn)

∂x2
n

,

2.3.2 Inversion algorithm

Following the SOM algorithm proposed in [29], the equivalent electric

polarization current density due to the pth incidence (J
d

p) on scatterers is

decomposed into two orthogonally complementary parts, i.e., the deterministic part

J
s

p and the ambiguous part J
n

p . It can be expressed as J
d

p = J
s

p+J
n

p = J
s

p+V
n
·αn

p ,

where V
n

is the noise subspace composed of the last 2Nd − L right singular

vectors, αn
p is a vector of coefficients to be determined by optimization, and L

is the total number of singular values that are above a predefined noise-dependent

threshold [29]. After J
s

p is determined by the singular value decomposition (SVD),

the εr of the scatterers can be obtained by minimizing the objective function which

can be expressed explicitly as
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f(εr) =
1

2

Nt∑
p=1

[ ||GS · V
n
· αn

p +GS · Js

p − E
scat

p ||2

||Escat

p ||2

+
||A · αn

p −Bp||2

||Js

p||2

]2
(2.11)

where A = V
n
− θ · (GD · V

n
) and Bp = θ · (Einc

+ GD · Js

p) − J
s

p are

both functions of the Nd × 1 relative permittivity vector εr. Note that αn
p can

be obtained by the least squares solution [29]. In numerical simulations, we use

the Levenberg-Marquardt algorithm to minimize the objective function. It is worth

mentioning that the parameter to be optimized in Eq. (2.11) is relative permittivity,

which is different from [29] where the scattering strength is optimized.

2.3.3 Numerical results

All the numerical simulations reported in this section are based on the same

set of values assigned to the following parameters. The line sources (transmitting

antennas) are evenly distributed on a circle of radius 5λ, with locations

(5λ · cos 2πp
Nt

, 5λ · sin 2πp

Nt

) p = 1, 2, ..., Nt, to prevent the super-resolution

phenomenon. A total number of Nr = 30 receivers are also evenly distributed on

a circle of radius 5λ, with locations (5λ · cos 2πq
Nr

, 5λ · sin 2πq

Nr

) q = 1, 2, ..., Nr.

In order to avoid the inverse crime [6], we first check the validity of the forward

solver Eq. (2.8) and Eq. (2.10) by comparing it with another numerical method,

the coupled dipole method (CDM). The difference between the scattered fields

produced by these two methods is negligibly small, which proves the validity of

the forward solver. The scattered field is recorded in the format of the multi-static

response (MSR) matrix K whose size is 2Nr ×Nt [30]. Gaussian white noise κ is
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thereafter added to the MSR matrix, and the resultant noise-corrupted matrix K+κ

is treated as the measured MSR matrix which is used to reconstruct the scatterers.

The noise level is defined in dB as done in [29]. We choose free space as the initial

guess in the optimization problem, i.e., εr(rm) = 1, m = 1, 2, ..., Nd.

The first numerical experiment investigates an annulus pattern (with relative

permittivity of 2.5 and inner and outer radii of 0.15λ and 0.3λ respectively) which

is the same pattern as in Fig. 3 in [29]. The value of L is chosen to be 9, where

the singular values noticeably change the slope in the spectrum of the matrix GS as

shown in Fig. 2.8; this criterion is supported by the systematic work in [96, 123].

Using the SOM algorithm under the same conditions adopted in [29] except for

the switch to TE incidence and the MoM framework, we obtain the reconstructed

results after 20 iterations, as illustrated in Fig. 2.9 (b),(c) for 20dB and 10dB noise

respectively, which are rather close to the exact pattern in Fig. 2.9 (a).
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Figure 2.8: Singular values of the matrix GS in the first numerical simulation.

The second numerical experiment deals with a more complex and challenging

pattern, where a circle (with relative permittivity of 2.5 and radius of 0.15λ) is

placed in the central hole of a concentric annulus (with relative permittivity of 2

and inner and outer radii of 0.4λ and 0.6λ respectively) in a square domain (with
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Figure 2.9: An annulus with inner radius 0.15λ and outer radius 0.3λ. (a). Exact
permittivity. (b) Reconstructed permittivity under 20dB Gaussian white noise. (c)
Reconstructed permittivity under 10dB Gaussian white noise.
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width of 1.6λ) discretized into a grid of 40×40 subunits. Since this pattern is more

complicated than the one adopted for the first experiment (Fig. 2.9), the number of

transmitting antennas is increased to Nt = 14. In addition, L is chosen to be 10, and

10dB noise is added into the scattering data. The exact pattern and the inverse result

obtained after 20 iterations are presented in Fig. 2.10(a)(b) respectively, where the

reconstructed pattern seems rather close to the original one, and the gap (with width

of 0.25λ) can be clearly seen between the central circle and the annulus.

2.4 Comparison among the variants of SOM

2.4.1 The forward scattering problem

The configuration studied in this section is similar to that in Section 2 of [105],

and is the same as described in section 2.2.

For reader’s convenience, Table 2.1 lists the information about the variables

involved in the formulation of the forward scattering problem. The state equation

(Eq. (2.12)) and the field equation (Eq. (2.13)) constitute the basic equations for

use in the inverse scattering problem. Their detailed derivation has already been

furnished in [105]. The state equation, which describes how the induced contrast

displacement current is generated by an incident field, can be expressed as

I
d

p = ξ · (Einc

p +GD · Idp), (2.12)

where the scattering strength ξ is a function of relative permittivity. The field

equation, which describes the relationship between the scattered field and the

induced current, can be written as

E
scat

p = GS · I
d

p. (2.13)
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Figure 2.10: The pattern consisting of a circle and an annulus. (a) Exact relative
permittivity. (b) Reconstructed relative permittivity with 10dB Gaussian white
noise.
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Table 2.1: Variables used in the formulation of the forward scattering problem
Variable Name Size Meaning

E
inc

p
2Nd × 1

electrical field incident to the scatter
from the pth transmitting antenna

E
scat

p 2Nr × 1 scattered electrical field due to pth incidence

I
d

p
2Nd × 1

induced contrast displacement
current due to pth incidence

ξ 2Nd × 2Nd diagonal matrix of scattering strength

GS 2Nr × 2Nd
Green’s function matrix describing the scattering
from object to the receiving antennas

GD 2Nd × 2Nd
Green’s function matrix describing the multiple
scattering effect

2.4.2 Subspace-based optimization method and its variants

The following is a brief review of the SOM. The SVD of GS can be expressed as

GS = U ·Σ·V
∗
. The induced currents (I

d

p) on scatterers due to the pth incidence are

partitioned into two orthogonally complementary portions (viz., the deterministic

portion I
s

p and the ambiguous portion I
n

p) in the following manner: I
d

p = I
s

p+ I
n

p =

V
s
· αs

p + V
n
· αn

p , where V
s

(which comprises the first L right singular columns

of the V matrix [105]) is the basis of the signal subspace, V
n

(which comprises the

last 2Nd −L right singular columns of the V matrix [105]) is the basis of the noise

subspace, L is the total number of singular values in the Σ matrix that are above

a predefined noise-dependent threshold [120, 124–126], and αs
p and αn

p are two

vectors of coefficients for the deterministic and ambiguous portions, respectively.

The coefficients for the deterministic portion can be uniquely determined by the

linear relationship, as conducted in [29]. After that, the ambiguous portion can be

determined by three variants of SOM.

For the original SOM [29], the ambiguous portion is calculated by solving
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the field equation in the least squares sense, and expressed as αn
p(ξ) =

(A
∗
·A)−1(A

∗
·Bp) , where A = V

n
− ξ ·GD · V

n
, Bp = ξ · (Einc

p +GD · Isp)− I
s

p,

(·)∗ is the Hermitian operator. The scattering strength is determined by minimizing

the objective function

f(ξ) =
Nt∑
p=1

||GS · V
n
· αn

p(ξ) +GS · I
s

p − E
scat

p ||2

||Escat

p ||2
+

||A(ξ) · αn
p(ξ)−Bp(ξ)||2

||Isp||2
(2.14)

The Levenberg-Marquardt (LM) or conjugate gradient (CG) method can be used to

solve for the unknowns.

For the CSI-like SOM [120], not only ξ but also the ambiguous portion (αn
p)

are regarded as unknown variables, and a different objective function is minimized

f(αn
1, α

n
2, . . . α

n
Nt
, ξ) =

Nt∑
p=1

||GS · V
n
· αn

p +GS · I
s

p − E
scat

p ||2

||Escat

p ||2
+
||A(ξ) · αn

p −Bp(ξ)||2

||I
s

p||2
(2.15)

by alternatively updating αn
p and ξ.

In this chapter, we propose a new variant of SOM, where the objective function

is also Eq. (2.15), the same as the one in CSI-like SOM, while both αn
p and ξ are

concurrently updated in each iteration using conjugate gradient method. The idea

can be expressed as the following algorithm, where x = [αT
1 , α

T
2 , · · · , αT

Nt
, ξ

T
]T, ξ

denotes a column vector formed from the elements of the main diagonal of ξ, the

superscript T denotes the transpose operator.

Step 1 Calculate GS, GD, and obtain I
s

p using the SVD of GS, ;

Step 2 Initial step, k=0.

2.1 Make initial guess: ξ0 is obtained by using free space as the starting

position (ε(rm) = 1, m = 1, 2, · · · , Nd); set αn
p,0 = 0, where p =
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1, 2, · · · , Nt; let x0 = [αT
1,0, α

T
2,0, · · · , αT

Nt,0, ξ
T

0 ]
T.

2.2 Evaluate cost function: f0 = f(x0).

2.3 Set search direction: p0 = −▽x f0.

Step 3 3.1 Compute step length ak using one-dimensial line search algorithm.

3.2 Update variables by setting xk+1 = xk + akpk;

3.3 Calculate next search direction pk+1 = − ▽x fk+1 + βk+1pk, where

βk+1 =
▽xf

T
k+1 ▽x fk+1

▽xfT
k ▽x fk

and fk+1 = f(xk+1),

Step 4 If the termination criterion is met, stop iteration; otherwise k = k + 1, go to

Step 3.

When CG is used in the CSI-like SOM, the step length has an analytical

solution [120], but this is not the case for the new variant, where, instead, the

one-dimensional line search algorithm presented in [127] is used to determine the

step length ak. The idea of the line search algorithm is that we try out a sequence

of candidate values for the step length, and stop to accept one of these values when

certain conditions, such as the Wolfe conditions [127], are satisfied. The difference

in how to calculate step length may cause the computational cost per iteration of

the new variant to be higher than that of the CSI-like SOM.

2.4.3 Numerical Simulations and Comparisons

In this section, we intend to evaluate and compare the three variants’

performance, such as the computational cost and the quality of the reconstructed

profile. For this purpose, we will utilize the three methods to reconstruct a number

of complex patterns. For a fair comparison, CG instead of LM is used in the original

SOM. Because the fast Fourier transform (FFT) cannot be readily applied for an
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arbitrary shape of domain, it is not used in CSI-like SOM for the generality of the

comparison. The data reported in this section are based on our simulations on a

IBM workstation with 16 GB memory and two Intel Octal-Core Xeon processors

at 2.83 GHz.

The numerical experiments are designed based on the idea that different

working conditions should be considered in order to make a relatively exhaustive

assessment.

(I) We have considered different complexity levels of the patterns of scatterers.

For example, the square pattern in Experiment 1 is the easiest one; and the

Austria pattern in Experiment 6 is the most difficult one.

(II) We have considered different noise levels. After showing the first two

experiments, which are performed under relatively lower noise level, we

intentionally chose a very high noise level (higher than most normal cases)

for the remaining experiments. Consequently, we suppose the conclusions

obtained from these simulations are convincingly valid for common inverse

scattering problems.

(III) We have considered both the lossless and the lossy scatterers. For example,

the scatterers in the first two experiments are objects with conductivity, and

the scatterers in the remaining experiments are lossless.

(IV) We have also considered the special case where the scatterer profile consists

of parts with different permittivities, as shown in Experiment 5.

For all the following numerical simulations, the same set of values are assigned

to the following parameters. Nt line sources (transmitting antennas) are evenly
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distributed on a circle of radius 5λ, with locations (5λ·cos 2πp
Nt

, 5λ·sin 2πp

Nt

) p =

1, 2, ..., Nt. A total number of Nr receivers are also evenly distributed on a circle

of radius 5λ, with locations (5λ · cos 2πq
Nr

, 5λ · sin 2πq

Nr

) q = 1, 2, ..., Nr. The

scattered field is recorded in the format of the multi-static response (MSR) matrix

K whose size is 2Nr × Nt [30]. White Gaussian noise (WGN) κ is thereafter

added to the MSR matrix, and the resultant noise-corrupted matrix K+κ is treated

as the measured MSR matrix which is used to reconstruct the scatterers. The noise

level is quantified in percentage form as ρ =
||κ||F
||K||F

· 100%, where || · ||F denotes

the Frobenius norm of a matrix. We choose free space as the initial guess in the

optimization problem, i.e., εr(rm) = 1, m = 1, 2, ..., Nd.

The choice of Nt and Nr determines the number of independent data and the

choice of Nd determines the number of unknown data; these choices play an

critical role when the deterministic optimizer is used to solve the inverse scattering

problem. It has also been pointed out that in order to avoid local minima it is

necessary to increase the ratio between the number of independent data and the

number of unknown parameters [96, 123, 128]. Consequentially, once Nt and Nr

have been fixed, it is not sensible to overly refine the grid of discretization (i.e., to

set Nd a overly large number) in the presence of false solutions. On the other hand,

higher value of Nt, Nr, and Nd will incur higher measurement or computational

cost. In our experiment, the values of these parameters are chosen the same as it

was done for similar cases in the previously published papers [29, 105, 126, 129],

where the configurations have been shown to be efficient.

The issue of choosing the number of leading singular values L has been well

studied in [29, 105, 129], and it has been observed that there is a wide continuous
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range of integer values of L yielding satisfactory reconstruction results. In our

simulations, an empirical guideline is adopted and proves to be practically helpful,

i.e., we choose L to be the largest integer so that the Lth singular value is larger

than σmax · ρ, with σmax being the largest singular value of the SVD of GS. The

convergence criterion is defined as that the optimization terminates if either of the

following two conditions is fulfilled: (1) there is little reduction of the cost function

(for example, △f < 0.01) in five consecutive iterations; (2) the value of cost

function becomes smaller than a tolerance value, which is given by an empirical

formula, tol ≈ Nt ·
ρ2

(1 + ρ)2
. The idea for setting such a tolerance value is that,

in the objective functions, Eq. (2.14) and Eq. (2.15), the total relative mismatch

accounts for all Nt incidences, and once the total relative residue is reduced to

the order of relative noise, the optimization algorithm should be stopped [5]. The

empirical rules for choosing L and tol require the value of noise level, which may

not be difficult or expensive to measure or estimate in some applications. Even

if the noise level is unavailable, we can still deliberately choose a value which,

based on common sense, must be higher than the real noise level, for instance

30% or 40%, and then apply the empirical rules. The resultant parameters L and

tol obtained this way are also conservative estimates. Fortunately, it has been

shown that conservative choice of the parameters can still produce satisfactory

reconstruction patterns in our numerical experiments [29, 105, 129]. The only

loss due to the unavailability of noise level is the higher computational cost, which

is caused by the smaller dimension of signal subspace.
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2.4.3.1 Experiment 1: the pattern of a square

The first experiment considers a lossy scatterer with square pattern (0.4λ ×

0.4λ) and relative permittivity of 1.5 + 0.2i, in the presence of 10% noise, which

corresponds to the signal-to-noise ratio (SNR) 20dB. The object is centered at the

origin of the x-y plane and the selected domain (which is a square of 0.8λ for each

side) has been discretized into a grid of 25 × 25 subunits. Nt = 10 transmitting

antennas and Nr = 30 receiving antennas are placed around the domain. The

number of leading singular values L is chosen to be 11. The exact pattern and

the inversion results obtained using the original SOM, CSI-like SOM, and the new

variant are presented in Fig. 2.11(a)(b)(c)(d), respectively. The number of iterations

needed to reach convergence and the computational time per iteration are listed in

Table 2.2.

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

x(    λ   )
(a1)

 

 

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

(b1)

λ

−0.4−0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

(c1)

λ

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

(d1)

y
(λ

)

1

1.2

1.4

1.6

1.8

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

(a2)

 

 

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

(b2)

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

(c2)

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

(d2) 0

0.1

0.2

0.3

0.4

0.5

y
(λ

)

y
(λ

)

x(    λ   ) x(    λ   ) x(    λ   )

x(    λ   ) x(    λ   ) x(    λ   ) x(    λ   )

y
(λ

)
y

(λ
)

y
(λ

)

y
(λ

)

y
(λ

)

Figure 2.11: The pattern of an annulus. (a1),(a2) Exact patterns of the real part
and the imaginary part of relative permittivity. (b1),(b2) Reconstructed patterns of
the real part and the imaginary part using the original SOM under 10% Gaussian
white noise. (c1),(c2) Reconstructed patterns of the real part and the imaginary part
using the CSI-like SOM under 10% Gaussian white noise. (d1),(d2) Reconstructed
patterns of the real part and the imaginary part using the novel variant of SOM
under 10% Gaussian white noise.
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2.4.3.2 Experiment 2: the pattern of a hollow square

In our second experiment, we consider a lossy scatterer with hollow square

pattern and relative permittivity of 1.5 + 0.2i in the presence of 10% noise. The

size of the pattern is 0.55λ × 0.55λ, and the central hole is 0.25λ × 0.25λ. The

object is centered at the origin of the x-y plane and the selected domain (which is

a square of 0.8λ for each side) has been discretized into a grid of 25× 25 subunits.

Nt = 10 transmitting antennas and Nr = 30 receiving antennas are placed around

the domain. The number of leading singular values L is chosen to be 11. The

exact pattern and the inversion results obtained using the original SOM, CSI-like

SOM, and the new variant are presented in Fig. 2.12(a)(b)(c)(d), respectively. The

number of iterations needed to reach convergence and the computational time per

iteration are listed in Table 2.2.
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Figure 2.12: The pattern of a hollow square. (a1),(a2) Exact patterns of the
real part and the imaginary part of relative permittivity. (b1),(b2) Reconstructed
patterns of the real part and the imaginary part using the original SOM under 10%
Gaussian white noise. (c1),(c2) Reconstructed patterns of the real part and the
imaginary part using the CSI-like SOM under 10% Gaussian white noise. (d1),(d2)
Reconstructed patterns of the real part and the imaginary part using the novel
variant of SOM under 10% Gaussian white noise.
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Table 2.2: Comparison of the performance of the three variants of SOM in the
numerical experiments

Original SOM CSI-like SOM New variant of SOM
Number of Time per Number of Time per Number of Time per
iterations iteration (s) iterations iteration (s) iterations iteration (s)

Exp. 1 10 17.4 28 0.14 19 0.84
Exp. 2 7 17.7 30 0.14 23 0.82
Exp. 3 5 16.5 9 0.13 7 0.64
Exp. 4 15 211 18 0.91 40 4.3
Exp. 5 6 267 12 0.92 8 4.5
Exp. 6 12 256 40 0.93 30 4.6

2.4.3.3 Experiment 3: the pattern of an annulus

The third experiment considers the pattern of an annulus in the presence of

31.6% noise, which corresponds to the signal-to-noise ratio (SNR) 10dB. The

annular scatterer (with relative permittivity of 3 and inner and outer radii of 0.15λ

and 0.3λ respectively) is centered at the origin of the x-y plane and the selected

domain (which is a square of 0.8λ for each side) has been discretized into a grid of

25 × 25 subunits. Nt = 10 transmitting antennas and Nr = 30 receiving antennas

are placed around the domain. The number of leading singular values L is chosen

to be 9. The exact pattern and the inversion results obtained using the original

SOM, CSI-like SOM, and the new variant are presented in Fig. 2.13(a)(b)(c)(d),

respectively. The number of iterations needed to reach convergence and the

computational time per iteration are listed in Table 2.2.

2.4.3.4 Experiment 4: the pattern of two overlapping annuli

Our fourth numerical experiment considers the structure of two overlapping

annuli, which are situated at (0.2λ, 0.2λ) and (−0.2λ,−0.2λ) in the x-y coordinate

system respectively, with relative permittivity being εr = 2. The inner and outer
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Figure 2.13: The pattern of an annulus. (a). Exact pattern of relative permittivity.
(b) Reconstructed pattern using the original SOM under 31.6% Gaussian white
noise. (c) Reconstructed pattern using the CSI-like SOM under 31.6% Gaussian
white noise. (d) Reconstructed pattern using the novel variant of SOM under 31.6%
Gaussian white noise.
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radii of each annuli are 0.5λ and 0.7λ respectively. The square domain (2λ × 2λ)

is centered at the origin, and discretized into a grid of 40 × 40 subunits. The

number of transmitting antennas is Nt = 10, and the number of receiving antennas

is Nr = 30. In addition, L is chosen to be 19, and 31.6% noise is added into the

scattering data. The exact pattern is shown in Fig. 2.14(a), and the inversion result

obtained using the three variants of SOM in Fig. 2.14(b)(c)(d) respectively. The

number of iterations needed to reach convergence and the computational time per

iteration are listed in Table 2.2.

Compared with the original SOM, The CSI-like SOM and the new variant of

SOM give slightly better reconstructed patterns, which are closer to exact pattern.

The number of iterations needed to reach convergence and the computational time

per iteration are listed in Table 2.2, where the CSI-like SOM requires fewest

iterations and lowest time per iteration, while the original SOM is slowest.

2.4.3.5 Experiment 5: the pattern of a circle and a concentric annulus

In the fifth example, we try to reconstruct the pattern of a circle and a concentric

annulus in the presence of 31.6% noise. The circle (with relative permittivity of 2

and radius of 0.15λ) is placed in the central hole of a concentric annulus (with

relative permittivity of 3 and inner and outer radii of 0.4λ and 0.6λ respectively).

For the domain of interest, we have chosen a square region (with width of 1.6λ),

which is discretized into a grid of 40 × 40 subunits. The domain is surrounded

by Nt = 14 transmitting antennas and Nr = 30 receiving antennas. We choose

the number of leading singular values L to be 14. The exact pattern and the

reconstructed results obtained using the three variants of SOM are presented

in Fig. 2.15(a)(b)(c)(d) respectively. The number of iterations needed to reach
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Figure 2.14: The pattern consisting of two overlapping annuli. (a). Exact pattern
of relative permittivity. (b) Reconstructed pattern using the original SOM under
31.6% Gaussian white noise. (c) Reconstructed pattern using the CSI-like SOM
under 31.6% Gaussian white noise. (d) Reconstructed pattern using the novel
variant of SOM under 31.6% Gaussian white noise.
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convergence and the computational time per iteration are listed in Table 2.2.
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Figure 2.15: The pattern consisting of a circle and an annulus. (a). Exact pattern
of relative permittivity. (b) Reconstructed pattern using the original SOM under
31.6% Gaussian white noise. (c) Reconstructed pattern using the CSI-like SOM
under 31.6% Gaussian white noise. (d) Reconstructed pattern using the novel
variant of SOM under 31.6% Gaussian white noise.

2.4.3.6 Experiment 6: the ’Austria’ profile

For the final example, we try to reconstruct the ’Austria’ pattern in a square

domain with width of 2λ in the presence of 31.6% noise. The discs of radius 0.2λ

are centered at (0.3λ, 0.6λ) and (−0.3λ, 0.6λ). The ring has an exterior radius

of 0.6λ and an inner radius of 0.3λ, and is centered at (0λ,−0.2λ). The relative

permittivity of the discs and ring is 3. The domain is surrounded by Nt = 20

transmitting antennas and Nr = 30 receiving antennas. We choose the number of
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leading singular values L to be 16. The exact pattern and the reconstructed results

obtained using the three variants of SOM are presented in Fig. 2.16(a)(b)(c)(d)

respectively. The number of iterations needed to reach convergence and the

computational time per iteration are listed in Table 2.2.
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Figure 2.16: The Austria pattern. (a). Exact pattern of relative permittivity. (b)
Reconstructed pattern using the original SOM under 31.6% Gaussian white noise.
(c) Reconstructed pattern using the CSI-like SOM under 31.6% Gaussian white
noise. (d) Reconstructed pattern using the novel variant of SOM under 31.6%
Gaussian white noise.

2.4.3.7 Comparison and discussion

An investigation into the simulation results in Fig. 2.11, Fig. 2.12, Fig. 2.13,

Fig. 2.14, Fig. 2.15, Fig. 2.16, and Table 2.2 generates the following performance

assessment on the three variants.
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(a) The CSI-like SOM is capable of reconstructing the complex pattern that

is beyond the capability of the other two methods, or in other words,

although none of the deterministic methods is guaranteed to find the global

optimum in highly nonlinear problems, the CSI-like SOM, compared with

the other two variants, is more likely to converge to the global optimum.

Fig. 2.11,Fig. 2.12, Fig. 2.13, Fig. 2.14, and Fig. 2.15 show that each of the

three variants of SOM can successfully reconstruct the pattern of a square,

a hollow square, an annulus, the pattern of two overlapping annuli, and the

pattern of a circle and a concentric annulus, respectively. In Experiment 6,

however, as shown in Fig. 2.16, only the CSI-like SOM can produce the

reconstructed pattern which exhibits the contour of the exact pattern that is

satisfactory considering the the complexity of the pattern and the presence of

31.6% noise.

(b) While it might seem intuitively reasonable that updating all the unknown

variables concurrently in each iteration (as in the original SOM and the new

variant of SOM) may take fewer iterations than updating them alternatively

per iteration (as in the CSI-like SOM), this is not generally true. For

instance, as shown in Table 2.2, in Experiment 1,2,3,5 and 6, the original

SOM and the new variant take fewer iterations than the CSI-like SOM

does, however, it is not the case in Experiment 4. This may be due to

the key issue that the sampling of the solution space for these two types

of optimization is different, although the landscape of the cost function is

the same. Another possible but non-rigorous explanation which may be

suggested is that when CG is utilized in the CSI-like SOM, the objective
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function is quadratic in terms of the step length [120], so the step length can

be readily obtained; when CG is utilized in the original SOM and the new

variant of SOM, however, the dependence of the cost function upon the step

length is so complicated that the step length has to be calculated through

the one-dimensional line search algorithm (see Section 2.4.2), which may

potentially increases the number of iterations required.

(c) As shown in Table 2.2, the computational time per iteration of CSI-like SOM

is approximately 1/4 of that of the new variant, while the computational

time per iteration of the original SOM is significantly higher than that of the

other two. This is mainly because the matrix inverse operation is required

in the original SOM, but it is avoided in the other two methods. As a

result, the computational complexity of CSI-like SOM and the new variant is

O(N2
d), while the computational complexity of the original SOM is O(N3

d).

In addition, the line search algorithm may incur more computational time

for the original SOM and the new variant of SOM compared to the CSI-like

SOM.

(d) In terms of the total computational time (the product of number of iterations

and the computational time per iteration), CSI-like SOM outperforms

noticeably the other two variants.

2.5 Conclusion and Discussion

In sections 2.2 and 2.3, we extend the application of the FD-SOM to the TE

case, within the frameworks of both CDM and MoM, so as to reconstruct the

relative-permittivity profiles of extended scatterers in two-dimensional settings.
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The results of the TE-incidence experiments confirm that the SOM algorithm

is capable of reconstructing objects of complex shapes. What is more, the

reconstructed patterns for the TE case exhibits better quality than those obtained

under TM incidence. In our numerical experiments, the number of leading singular

values (L) acts to balance the error of the data equation and the error of the physical

model.

In section 2.4, a comparative study on three variants of SOM is conducted

on the basis of several numerical experiments, to find the optimal solution to the

determination of the ambiguous portion, which has a dominant influence upon the

computational cost and reconstruction capability of SOM. The simulation for TE

case shows that the CSI-like SOM outperforms the other two methods, in that it

requires lowest computational time to reach convergence; and it can reconstruct

some complex patterns which is beyond the capability of the other two variants.

The comparison made in the thesis provides useful guidelines for the use of SOM

method in solving inverse scattering problems.

For a complete introduction to FD-SOM, it is worth mentioning its other

important developments here. [107] proposed the twofold subspace-based

optimization method (TSOM) boosting the convergence of optimization, by

restricting the induced current in some lower-dimensional subspace and thereby

generating a good initial guess. After that, the large computational complexity

and memory demand due to singular value decomposition, as is one of the

predominantly expensive parts of SOM, has been considerably ameliorated by

the FFT twofold subspace-based optimization method (FFT-TSOM) [130], where

the discrete Fourier bases are used to construct a current subspace that is a good
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approximation to the original current subspace spanned by singular vectors.





CHAPTER 3

Phaseless Data Subspace-based
Optimization Method

“From a long view of the history of mankind – seen from, say, ten thousand years

from now, there can be little doubt that the most significant event of the 19th

century will be judged as Maxwell’s discovery of the laws of electrodynamics.

The American Civil War will pale into provincial insignificance in comparison

with this important scientific event of the same decade.”

–Richard Phillips Feynman

3.1 Original contributions

It is commonly acknowledged that phase is generally more difficult to measure

than amplitude. As a matter of fact, researchers have observed [2, 3, 94]

that the accuracy of phase measurements cannot be guaranteed for operating

frequencies approaching the millimeter-wave band and beyond. To overcome this

inherent drawback, several methods have been proposed [97–99, 101–104, 131]

to reconstruct the scatterers by utilizing only phaseless data so as to obviate the

need for measuring phase. Due to the fact that the phase information of the field
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is more prone to noise pollution than the amplitude information, under certain

circumstances, these methods using only phaseless data are able to produce the

same result as, or even better result than the methods using both amplitude and

phase information can do.

Whereas the original version of the SOM outlined in [29, 105–107] requires

the full set of amplitude and phase measurements for the scattered fields, we shall

resort to the phaseless data approach and develop another version of the SOM

to handle inverse scattering problems without recourse to phase measurements.

To differentiate between these two versions of the SOM, we borrow the prefix

terminology coined by other researchers [103]: the original SOM (based on the

full set of data) and the revised SOM (based only on amplitude data) will, for

convenience, be referred to as full data SOM (FD-SOM) and phaseless data

SOM (PD-SOM), respectively. It should be worth highlighting that although we

will capitalize on the SOM’s two essential features of analyzing the spectrum of

the scattering operator and partitioning the contrast source into two orthogonally

complementary portions, the PD-SOM differs fundamentally from the FD-SOM

due to the unavailability of phase data. The original contributions in this chapter

may be summarized as follows:

(a) Noting that the PD-SOM cannot follow the FD-SOM in employing the

singular value decomposition (SVD) procedure to evaluate the deterministic

portion of the induced currents, we have opted for a novel optimization

method based on the dominant contribution to the scattered fields. And for

determining the ambiguous portion and relative permittivity, we have decided

to replace the objective function employed in the FD-SOM because of the
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benefits that can be accrued by choosing a different definition for use in the

PD-SOM.

(b) Studys upon illumination’s influence on microwave imaging [47, 132–

136] have shown the significance and necessity of further research on

transverse electric (TE) illumination. For example, [136] shows that the

TE illumination can present better reconstruction accuracy compared to the

TM illumination when dielectric scatterers are dealt with; and [47, 135]

report that inversion of a combination of the TE and transverse magnetic

(TM) illuminations, either simultaneously or alternatively, may produce

the possibility of better reconstruction. Nevertheless, the numerical results

reported thus far in the literature are predominantly for the TM case. Hence,

in this chapter, we shall apply the PD-SOM to study several scatterers of

complex geometries under TE incidence. But we should also add the claim

that our proposed method can equally be extended to TM and 3-D inverse

scattering problems as well.

(c) We have found from our numerical trials that the PD-SOM is able to

reconstruct patterns of complex geometry with rapid convergence even in

the presence of high-level noise and there is less critical dependence on initial

guesses when running the algorithm.

3.2 Formulation of forward scattering problem

We consider a two-dimensional configuration under TE incidence where the

cylindrical dielectric scatterers (which are inhomogeneous in the x-y plane but

invariant in the z direction) are located in the domain D ⊂ R2 in the x-y plane. As
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depicted in Fig. 3.1, Nt unit magnetic-current line sources (with TE polarization)

have been placed at rtp (p = 1, 2, · · · , Nt) in a circle around the domain D. The

dielectric scatterers are illuminated by each of these line sources successively in

turn and Ampère’s Law may be utilized to express the incident TE waves from the

pth line source in the following form: Hinc
p (r) = ẑH inc

z,p (r) = ẑ
i

4
H

(1)
0 (k0 · |rtp− r|),

and Einc
p (r) = x̂Einc

x,p(r) + ŷEinc
y,p(r). The scattered signal is then received by Nr

receivers which are placed at rrq (q = 1, 2, · · · , Nr) in another circle surrounding

the domain D.

 

 

Domain

Transmitter

Receiver

y

x

Figure 3.1: Geometry of the inverse scattering problem.

For the full data (FD) approach, there is a need to collate both amplitude and

phase information of the scattered wave received by all of the Nr receivers. For the

phaseless data (PD) approach, however, the available information is the intensity of

the total received field (i.e., the sum of the scattered field and the field radiated by

the transmitting antennas). The PD inverse problem thus consists of determining

the relative permittivity (εr) profile of the scatterers, given a set of 2NtNr scattering

data, where each data is a scalar intensity of x or y component of the total field.

In practice, the domain D is discretized into a total number of Nd subunits, with
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the centers of the subunits located at rm (m = 1, 2, · · · , Nd), and the PD inverse

problem then reduces to determining εr(rm) instead.

Table 3.1: Variables used in the formulation of the forward scattering problem
Variable Name Size Meaning

E
inc

p
2Nd × 1

electrical field incident to the scatter
from the pth transmitting antenna

E
rad

p
2Nr × 1

electrical field incident to the receiving
antennas from the pth transmitting antenna

E
scat

p 2Nr × 1 scattered electrical field due to pth incidence

I
d

p
2Nd × 1

induced contrast displacement
current due to pth incidence

F p 2Nr × 1
square of intensity of total received
field due to pth incidence

ξ 2Nd × 2Nd diagonal matrix of scattering strength

GS 2Nr × 2Nd
Green’s function matrix describing the scattering
from object to the receiving antennas

GD 2Nd × 2Nd
Green’s function matrix describing the multiple
scattering effect

Table 3.1 lists the variables required for the formulation of the forward

scattering problem: of these variables, the definitions for E
inc

p , E
scat

p , I
d

p , ξ, GS

and GD follow what we previously adopted in [105]. The variable E
rad

p , which

represents the field radiated by the pth transmitting antenna and received by the

Nr receiving antennas, can be expressed as a column vector of size 2Nr in the

following manner:

E
rad

p = [Erad
p,x (r

r
1), E

rad
p,x (r

r
2), ..., E

rad
p,x (r

r
Nr
), Erad

p,y (r
r
1), E

rad
p,y (r

r
2), ..., E

rad
p,y (r

r
Nr
)]T .

Without any loss of generality, the phaseless data may conveniently be taken

to be the square of the intensity of the total received field, and denoted by Fp(r
r
q),

where p = 1, 2, · · · , Nt; q = 1, 2, · · · , Nr. It is known that the square of the
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intensity of the total received field due to the pth transmitting antenna can be recast

as a column vector of size 2Nr in the following form:

F p =
(
E

rad

p + E
scat

p

)∗
◦
(
E

rad

p + E
scat

p

)
, (3.1)

where ◦ denotes the Hadamard product (or Schur product) [137], which is an

element-wise product, and the superscript ∗ denotes the complex conjugate.

We need to utilize two relationships to describe the forward scattering

phenomenon. The first relationship, which describes how the induced contrast

displacement current is generated by an incident field, can be expressed as

I
d

p = ξ(E
inc

p +GD · Idp). (3.2)

The second equation, which describes the relationship between the scattered field

and the induced current, can be written as

E
scat

p = GS · I
d

p. (3.3)

Eq. (3.2) and Eq. (3.3) are referred to as the state equation and the field

equation, respectively, and their detailed derivation has already been furnished

in [105]. They, in conjunction with Eq. (3.1), the intensity equation, constitute

the foundation for the PD inverse scattering problem.

3.3 Phaseless Data Subspace-based optimization
method

In inverse scattering, the state equation remains the same for both PD and FD

approaches. The essential difference between the two is that the intensity equation
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for the PD approach is dissimilar from its counterpart, the field equation for the

FD approach. Nevertheless, it is still possible to employ the SOM to solve the PD

inverse scattering problem and we shall investigate in this section the similarities

and differences between PD-SOM and FD-SOM.

The first step of PD-SOM is actually similar to that outlined for the FD-SOM

([29, 120, 129]). The SVD of GS can be expressed as GS = U · Σ · V
∗
. The

induced currents (I
d

p) on scatterers due to the pth incidence are partitioned into two

orthogonally complementary portions (viz., the deterministic portion I
s

p and the

ambiguous portion I
n

p) in the following manner: I
d

p = I
s

p+ I
n

p = V
s
·αs

p+V
n
·αn

p ,

where V
s

(which comprises the first L right singular columns of the V matrix) is the

basis of the signal subspace, V
n

(which comprises the last 2Nd − L right singular

columns of the V matrix) is the basis of the noise subspace, L is the total number

of singular values in the Σ matrix that are above a predefined noise-dependent

threshold [29, 120, 129], and αs
p and αn

p are two vectors of coefficients for the

deterministic and ambiguous portions, respectively. It should be pointed out

that the deterministic portion and the ambiguous portion of the induced current

are different from the radiating current and the non-radiating current commonly

employed in, for example, [15, 48]. A detailed discussion on the difference

between these two classifications has been provided earlier in [120, 126].

The second step of PD-SOM is for the purpose of evaluating the deterministic

portion I
s

p (or, more specifically, its coefficient vector αs
p). Although this can be

handled by the SVD procedure for the FD-SOM, we are unable to proceed likewise

for the PD-SOM because the mapping from the induced current to the measured

data is no longer linear due to the lack of the phase information. If there is no E
rad

p
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term in our field expression, it is possible for the mapping to become linear by

changing the bases as explained earlier in [129] (but then quadratic constraints will

have to be introduced in the process). However, the presence of E
rad

p here changes

the linearity of the mapping.

Since the straightforward linear inversion in FD-SOM cannot be applied to the

PD scenario and linear mapping cannot be realized as in the case without E
rad

p ,

we need to explore other approaches to addressing the problem. From the fact

that, in the first step, the deterministic portion corresponds to the first L largest

singular values obtained in the SVD of GS, we infer that the major contribution to

the scattered electromagnetic field is due to the deterministic portion. It follows

that the dominant contribution to the intensity of the total field is due to the E
rad

p

and the deterministic portion. This inference paves the way for estimating the

deterministic portion I
s

p by solving an nonlinear optimization problem. Using this

idea, an objective function is proposed as follows,

αs
p = argmin

αs
p

∥∥∥Fmea,p −
(
E

rad

p +GS · V
s
· αs

p

)∗
◦
(
E

rad

p +GS · V
s
· αs

p

)∥∥∥, (3.4)

where Fmea,p denotes the square of the measured intensity vector due to the

pth incidence. The objective function in this optimization problem is a quartic

polynomial and the gradient of the function can be computed in a straightforward

manner. Following [29] and references therein, the Levenberg-Marquardt (LM)

algorithm, which is a mixture of the Gauss-Newton algorithm and the method of

gradient decent, is efficient in solving nonlinear least squares problems. We employ

the LM algorithm to minimize the error function, and we have found from the

experience gained during our numerical simulations that the convergence is very
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fast, which is shown by the numerical results in the next section.

After the deterministic portion has been evaluated, the third step of the

PD-SOM is to determine the εr profile of the scatterers by minimizing the sum of

relative mismatches in both state equation and in intensity equation. The relative

residue in the state equation is defined to be

∆state =
Nt∑
p=1

||A · αn
p −Bp||2

||Isp||2
, (3.5)

where A = V
n
− ξ · GD · V

n
, and Bp = ξ · (Einc

p + GD · Isp) − I
s

p. Due to the

truncation of the singular values, the relative residue in the intensity equation can

be defined as

∆intensity =
Nt∑
p=1

||Fmea,p − C
∗
p ◦ Cp||2

||Fmea,p||2
, (3.6)

where Cp = E
rad

p + GS · Isp + GS · V
n
· αn

p . It is recommended that αn
p (which

is also a function of εr) be obtained by the least squares solution [29], i.e., αn
p =

(A
∗
· A)−1 · (A

∗
·Bp).

The relative permittivity is obtained by minimizing the following objective

function.

εr = argmin
εr

(∆state +∆intensity). (3.7)

We observe the following when utilizing the Levenberg-Marquardt algorithm to

minimize the second objective function:

(a) Computing the derivative of the objective function is more involved in the

PD-SOM than that in the FD-SOM.

(b) The relative mismatch in the state equation is the same for both PD-SOM

and FD-SOM.
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(c) The relative mismatch in the intensity equation for the PD-SOM is quite

different from its counterpart (i.e., the field equation for the FD-SOM) due

to the lack of phase information.

(d) The convergence can be rapidly reached, normally in 10 iterations. Please

refer to the next section for details

3.4 Numerical results

The numerical results for the two examples presented in this section are

based on the same set of values assigned to their configuration parameters. The

line sources (serving as transmitting antennas) are evenly distributed on a circle

of radius 5λ, with their locations given by (5λ · cos 2πp
Nt

, 5λ · sin 2πp

Nt

) p =

1, 2, ..., Nt. A total number of Nr = 30 receivers are also evenly distributed

on a circle of radius 5.5λ, with their locations given by (5.5λ · cos 2πq
Nr

, 5.5λ ·

sin
2πq

Nr

) q = 1, 2, ..., Nr. The reason for such a configuration of receivers

and transmitters is simply to avoid the overlap between them, and numerical

simulations show that the reconstruction is equally successful for many other

configurations without overlap between transmitters and receivers. We first check

the validity of the forward solver Eq. (3.2) and Eq. (3.3) by comparing with a

different numerical method (viz., method of moments) [113]; we have since found

that the difference between the scattered fields computed by these two methods is

negligibly small and thus affirmed the validity of the forward solver. The scattered

field is then recorded in the format of the multi-static response (MSR) matrix K

with size of 2Nr×Nt [30]. White Gaussian noise κ is thereafter added to the MSR

matrix, and the resultant noise-corrupted matrix K + κ is treated as the measured
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MSR matrix which we utilized to reconstruct the scatterers. The noise level is

quantified in percentage form as
||κ||F
||K||F

· 100%, where || · ||F denotes the Frobenius

norm of a matrix. We have found from preliminary trials that it is sufficient to select

20 and 10 iterations for the second and third steps, respectively, of the PD-SOM.

The first test structure is depicted in Fig. 3.3(a) where the annular scatterer

(with relative permittivity of 2.5 and inner and outer radii of 0.15λ and 0.3λ

respectively) is centered at the origin of the x-y coordinate system and the selected

domain (which is a square of 0.8λ for each side) has been discretized into a grid

of 25 × 25 subunits. The reason for this particular choice of structure is that it

was previously studied in [29, 105] for the FD case, where the reconstructions

were based on both phase and amplitude data with 10% and 31.6% levels of

noise added during the simulations. The numerical results reported in [29, 105]

may thus be compared with what we can obtain here by utilizing only phaseless

data where we have increased the noise level to 50% and employed Nt = 10

transmitters successively in turn. When applying the SOM in the presence of noise,

choosing an appropriate value for the number of leading singular values (L) from

the spectrum of the the matrix GS [29] not only improves the rate of convergence

and the quality of the reconstructed patterns, but also strengthens the immunity

to noise; we infer from the singular values plotted in Fig. 3.2 that L should be

chosen as 9, where there is a noticeable change of slope in the spectrum of the

matrix GS. To initiate the optimization process, it is convenient to choose free

space with εr(rm) = 1, m = 1, 2, ..., Nd as the default for the initial guess. As can

be seen from Fig. 3.3, the reconstructed pattern satisfactorily exhibits the scatterer’s

key features (including the annular contour and the central hole), which is rather
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successful considering the 50% noise level. To the best of the author’s knowledge,

PD reconstruction result in presence of such high noise level has thus far not been

reported.
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Figure 3.2: Singular values of the matrix GS in the first numerical simulation.

Other researchers [12, 14, 26–28] have cautioned that choosing a proper starting

point is crucial for their algorithms to eventually yield satisfactory reconstructed

results; e.g., the simulation example provided in Fig.5 of [103] shows a random

initial guess failing to reconstruct the profile. Hence, there is a need for us to

check the robustness of the PD-SOM to the choice of initial guesses. Starting

from a random initial guess with εr assuming uniform distribution from 0 to 1, as

portrayed in Fig. 3.4(a), we have found that the PD-SOM is still able to reconstruct

the pattern reproduced in Fig. 3.4(b) where the key features of the annular contour

and central hole remain evident even in presence of 50% white Gaussian noise.

We have additionally repeated the experiment so as to test for L = 1, which is

close to the contrast source inversion (CSI) due to that L cannot be zero [120],

and the unsuccessful reconstruction in Fig. 3.4(c), where the key features are no

longer discernible, highlights the significance of introducing spectrum analysis in
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Figure 3.3: An annulus with inner radius 0.15λ and outer radius 0.3λ. (a). Exact
relative permittivity. (b) Reconstructed relative permittivity with 50% Gaussian
white noise.
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the SOM. It has been observed in [120] that choosing a value of L that is either too

large or too small will lead to poor reconstruction. However, the performance of

the algorithm does not critically depend on the value of L, since there is a range

of consecutive integers for L; e.g., we observe that all integer values from 5 to 11

lead to reconstructions that are comparable to Fig. 3.4(b) for the annular structure

in the presence of 50% white Gaussian noise.

The second test structure is more complex. As depicted in Fig. 3.5(a), a circle

(with relative permittivity of 2 and radius of 0.15λ) is placed in the central hole of

a concentric annulus (with relative permittivity of 1.6 and inner and outer radii

of 0.4λ and 0.6λ respectively). For the domain of interest, we have chosen a

square region (with width of 1.6λ), which is discretized into a grid of 30 × 30

subunits. A similar pattern had previously been reconstructed in [105] by FD-SOM

with Nt = 14 transmitting antennas in the presence of 31.6% noise. The inverse

result reconstructed by the PD-SOM is reproduced in Fig. 3.5(b) for the same set of

operating parameters; even without the benefit of phase information, all the main

features of the scatterer’s structure can be identified clearly from the reconstructed

pattern (including the gap with width of 0.25λ between the central circle and

the concentric annulus). To the best of the author’s knowledge, such a complex

structure has thus far not been adopted to test the PD retrieval algorithms.

In order to evaluate the convergence rate of the two optimizations (step 2 and

step 3) used in PD-SOM, two convergence plots are exhibited in Fig. 3.6 and

Fig. 3.7. Fig. 3.6 shows the convergence of the second step, i.e., to determine

the deterministic portion, where “Experiment 1" means the reconstruction of an

annulus from the initial guess of free space, as illustrated in Fig. 3.3; “Experiment
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Figure 3.4: The exact relative permittivity pattern is shown in Fig. 3.3 (a). (a)
Initial guess generated by random numbers. (b) Reconstructed relative permittivity
with L = 9. (c) Reconstructed relative permittivity with L = 1.
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Figure 3.5: The pattern consisting of a circle and an annulus. (a) Exact relative
permittivity, (b) Reconstructed relative permittivity with 31.6% Gaussian white
noise.
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2" means the reconstruction of the pattern consisting of a circle and an annulus

from free space initial guess, as illustrated in Fig. 3.5; and the residual is defined

as the value of objective function, Eq. (3.4). It should be highlighted that

although, for the sake of simplicity, only the result due to the first incidence is

shown as a representative example of fast convergence, we have learnt from our

numerical experience that the convergence rate is similar for the results due to other

incidences. Fig. 3.7 shows the convergence of the third step, i.e., to determine the

profile of relative permittivity, where the residual is defined to be the the value of

objective function, Eq. (3.7). As shown in Fig. 3.6 and Fig. 3.7, it requires only 20

and 10 iterations to reach convergence for step 2 and step 3, respectively.
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Figure 3.6: Residual versus number of iterations in the optimization
for determining the deterministic portion corresponding to the first
incidence.“Experiment 1" means the reconstruction of an annulus from the
initial guess of free space, as illustrated in Fig. 3.3; “Experiment 2" means the
reconstruction of the pattern consisting of a circle and an annulus from free space
initial guess, as illustrated in Fig. 3.5; and the residual is defined as the value of
objective function, Eq. (3.4).
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Figure 3.7: Absolute residue versus number of iterations in the optimization for
determining relative permittivity. The residual is defined to be the the value of
objective function, Eq. (3.7).

3.5 Conclusion

In this section, we have proposed the novel PD-SOM for reconstructing the

permittivity profiles of scatterers from phaseless measurements. In general, the lack

of phase information has caused the inherent difficulty of the PD inverse scattering

problem to be considerably higher when compared with its FD counterpart.

Consequently, the PD-SOM is more complex than the FD-SOM. The principal

difference between the two lies in the second step of the algorithm, where the

PD-SOM requires a quartic polynomial to be minimized when solving for the

deterministic portion of the induced current.

Two numerical experiments involving the TE-incident illumination of scatterers

with complex shapes have been conducted in order to ascertain the performance of

PD-SOM. The satisfactory resemblance of the reconstructed patterns Fig. 3.3 and

Fig. 3.5 to their scatterers’ geometrical and permittivity profiles offers convincing

evidence that the PD-SOM is capable of reconstructing complicated patterns with

rapid convergence (with only 20 and 10 iterations for second and third steps
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respectively) and robust immunity to noise (of up to 50% and 31.6% for the two

numerical experiments). It has also been observed in Fig. 3.4 that the PD-SOM

shows reduced dependence on initial guesses due to the incorporation of spectrum

analysis. Although our numerical results are for scatterers under TE incidence

(since the corresponding case of TM incidence has been widely considered by

others), it should be pointed out that the PD-SOM can be readily extended to 2-D

TM and 3-D cases as well.





CHAPTER 4

Compressive Phaseless Imaging
(CPI)

“There is an enormous redundancy in every well-written book. With a

well-written book I only read the right-hand page and allow my mind to work

on the left-hand page. With a poorly written book I read every word.”

–Marshall McLuhan

4.1 Original contributions

The novel approach to addressing the inverse scattering problem of small

objects proposed in this chapter is motivated by the development of an

emerging technique in the area of applied mathematics and signal processing, i.e.

compressive sensing, also known as compressed sensing, compressive sampling,

or sparse sampling. The recent explosion of this technique is attributed to

the important contributions by Donoho, Candès, Romberg, and Tao [138–141].

Compressive sensing allows us to acquire and compress efficiently signals having

a sparse or compressible representation in terms of an incoherent projecting basis

or dictionary, and to reconstruct exactly the signal with overwhelming probability,
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from dramatically under-sampled measurement, whose number is much lower

than required by the celebrated Shanon-Nyquist theorem [140, 141]. For many

physical signals in the real world being sparse in certain domain, compressive

sensing has rapidly arrested considerable attention and interest in a broad diversity

of applications, such as data compression, channel coding, data acquisition, and

imaging applications (biomedical sensing, nondestructive testing) [142, 143].

A number of compressive-sensing-based approaches have been developed

to address the inverse scattering problems by exploiting either basis pursuit

techniques [81–83, 144, 145] or Bayesian approaches [84, 86]. In the former

methods [81–83], high-frequency or Born approximations are used to linearize

the intrinsically nonlinear inverse scattering problem, so as to recast it in the

framework of compressive sensing where the location and the relative permittivity

information are reconstructed. The latter methods [84, 85, 146] avoid the linear

approximations by recasting successively the imaging problem into the framework

of Bayesian compressive sampling (BCS), and invoking some prior (such as

hierarchical sparseness prior or Laplace prior) to model the scatterers’ geometry.

In this chapter, we aim at formulating the inverse scattering problem in the

framework of compressive sensing in a manner without suffering the severe

limitation caused by linear approximations. The proposed formulation consists

of two steps. In the first step, the induced current is determined by basis pursuit

technique, i.e., by solving a convex programming problem. After acquiring the

induced current, the inverse problem is reduced to an over-determined linear

problem of small size, and is therefore easily solved by least square methods in

the second step. After that, the exact internal constitution in the domain of interest
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can be reconstructed with overwhelming probability and computational efficiency.

4.2 Phaseless Imaging in the Framework of
Compressive Sensing

4.2.1 Description of Physical Setup

We shall consider a two-dimensional scattering problem (ẑ is the longitudinal

direction) under time-harmonic (single frequency) transverse magnetic (TM)

electromagnetic wave illumination. We shall first restrict formulation and

algorithm to homogeneous background medium, free space for instance, and then

extend them to heterogeneous background medium in Subsection 4.2.5. Since it

is a scalar wave problem, we will henceforth conveniently suppress the unit vector

ẑ, wherever we refer to the electric field and the induced current throughout this

chapter.

A total number of Ns scatterers of small yet finite size are embedded in a

domain of interest D, which is discretized into a total number of Nd subunits,

with the centers of the subunits located at rdm (m = 1, 2, · · · , Nd), and the area and

relative permittivity of the mth subunit are denoted by Am and εr(rm), respectively.

The dimension of these small scatterers is much smaller than the wavelength,

so that they are referred to as point-like scatterers, and consequently, for fine

discretization, we can assume each point-like scatter just occupies a subunit with

good approximation. The presence of point-like scatterers leads to the contrast

in relative permittivity between the point-like scatters εr(rdm) and the surrounding

background medium εsmr , which, for free space in our problem, is equal to 1. This
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contrast, denoted by χ(rdm) (m = 1, 2, · · · , Nd), is defined as

χ(rdm) =

{
εr(r

d
m)− εsmr , if the subunit is a point-like scatterer,

0, otherwise.

In our problem, we assume the point-like scatterers are perfect (lossless) dielectric

objects, so that the value of contrast is a real number. Outside the domain of interest

D, a total number of Nt transmitters (TX) are located at rtp (p = 1, 2, · · · , Nt), and

they successively illuminate the domain. For the convenience of formulation, we

consider the illumination of time harmonic electromagnetic wave due to unitary

line sources. The scattered fields are received by a total number of Nr receivers

(RX), which are arranged at rrq (q = 1, 2, · · · , Nr), also outside the domain of

interest,

4.2.2 Formulation of scattering phenomenon in homogeneous
background medium

The incident field from the pth TX at rtp to the observation position r is

expressed as in Eq. (4.1).

Einc(r, rtp) = −iωµ · g(r, rtp), (4.1)

where ω is temporal frequency, µ is permeability, g(r, rtp) =
i
4
H

(1)
0 (k0|r − rtp|) is

the two-dimensional free space Green’s function, H1
0 (·) is Hankel function, and k0

stands for the free space wave number.

The total incident electric field onto the mth subunit at rdm, due to the direct

incidence from the pth TX at rtp and the resultant scattering from other subunits,

is denoted by Etot(rdm, r
t
p), and it satisfies the following self-consistent Foldy-Lax
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equation [129, 147, 148], as shown in Eq. (4.2).

Etot(rdm, r
t
p) = Einc(rdm, r

t
p) +

Nd∑
n=1
n̸=m

k2
0 ·An · g(rdm, rdn) ·Etot(rdn, r

t
p) · χ(rdn), (4.2)

The received field Erec(rrq, r
t
p) for the qth RX at rrq due to the illumination from the

pth RX at rtp is the sum of two portions: the first portion is equal to the measured

field in the absence of the small scatterers, denoted as Erad(rrq, r
t
p), the second

portion represents the influence of the presence of the point-like scatterers, and is

denoted as Epls(rrq, r
t
p), as expressed in Eq. (4.3).

Erec(rrq, r
t
p) = Erad(rrq, r

t
p) + Epls(rrq, r

t
p). (4.3)

For free space background medium,

Erad(rrq, r
t
p) = −iωµ · g(rrq, rtp), (4.4)

Epls(rrq, r
t
p) =

Nd∑
n=1

k2
0 · An · g(rrq, rdn) · Etot(rdn, r

t
p) · χ(rdn). (4.5)

The measured data is the intensity of total received electric field given by Eq. (4.6).

Arec(rrq, r
t
p) =

√
Erec(rrq, r

t
p)E

rec(rrq, r
t
p)

∗. (4.6)

The forward scattering problem is to calculate the received intensity, given the

contrast information in the domain of interest, and the inverse scattering problem

is just the opposite, that is to determine the contrast information given the measured

intensity. As demonstrated in Eq. (4.2) to Eq. (4.6), the inverse scattering problem

is intrinsically nonlinear. Nevertheless, many linear approximate models are

broadly applied in the regimes of optical imaging. A typical example among these

models is the Born approximation [18, 112, 148, 149]. The Born approximation
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states that the effect of multiple scattering can be neglected, and Etot(rdn, r
t
p) can be

approximated by Einc(rdn, r
t
p) in the cases where scatterers having weak contrasts

and small size are sufficiently separated. Eq. (4.7) follows as a consequence of

applying Born approximation.

Epls(rrq, r
t
p) ≈

Nd∑
n=1

k2
0 · An · g(rrq, rdn) · Einc(rdn, r

t
p) · χ(rdn)

=

Nd∑
n=1

−iωµ · k2
0 · An · g(rrq, rdn) · g(rdn, rtp) · χ(rdn)

=

Nd∑
n=1

yqpn · χ(rdn),

(4.7)

where we use the definition yqpn = −iωµ · k2
0 · An · g(rrq, rdn) · g(rdn, rtp) to simplify

the expression.

Without any loss of generality, the phaseless data may conveniently be taken

to be the square of the intensity of the total received electric field, and denoted

by F rec(rrq, r
t
p), where p = 1, 2, · · · , Nt; q = 1, 2, · · · , Nr, with the definition in

Eq. (4.8).

F rec(rrq, r
t
p) = Erec(rrq, r

t
p)E

rec(rrq, r
t
p)

∗

=
[
Erad(rrq, r

t
p) + Epls(rrq, r

t
p)
] [
Erad(rrq, r

t
p) + Epls(rrq, r

t
p)
]∗

= Erad(rrq, r
t
p)E

rad(rrq, r
t
p)

∗
+ Epls(rrq, r

t
p)E

pls(rrq, r
t
p)

∗

+ 2Re
{
Erad(rrq, r

t
p)E

pls(rrq, r
t
p)

∗
}

(4.8)

where the notation Re() stands for the real-part operator.

We define F rad(rrq, r
t
p) = Erad(rrq, r

t
p)E

rad(rrq, r
t
p)

∗ and F pls(rrq, r
t
p) =

F rec(rrq, r
t
p) − F rad(rrq, r

t
p), and it is obvious that they are known information in
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the phaseless imaging problem. Substitution with Eq. (4.7) yields

Epls(rrq, r
t
p)E

pls(rrq, r
t
p)

∗
=

Nd∑
n=1

Nd∑
m=1

yqpn · yqpm ∗ · χ(rdn) · χ(rdm),

and

2Re
{
Erad(rrq, r

t
p)E

pls(rrq, r
t
p)

∗
}
=

Nd∑
m=1

2Re
{
Erad(rrq, r

t
p)y

qp
m

∗} · χ(rdm).

Now Eq. (4.8) is consequently transformed to

F pls(rrq, r
t
p) =

Nd∑
m=1

2Re
{
Erad(rrq, r

t
p)y

qp
m

∗} · χ(rdm) + Nd∑
n=1

Nd∑
m=1

yqpn · yqpm
∗ · χ(rdn) · χ(rdm).

(4.9)

For convenience of description, we simplified the F pls(rrq, r
t
p) and χ(rdm) to

succinct notations F pls
q,p and χm. It is known that the square of the total received

intensity can be recast as a column vector of length NrNt in the following form:

F
pls

=
[
F pls
1,1 , F

pls
2,1 , · · · , F

pls
Nr,1

, F pls
1,2 , F

pls
2,2 , · · · , F

pls
Nr,2

, · · · , F pls
1,Nt

, F pls
2,Nt

, · · · , · · · , F pls
Nr,Nt

]T
,

where the superscript T stands for the transpose operator.

The contrast information can be recast as a column vector of length Nd in the

following form:

χ = [χ1, χ2, · · · , χNd
]T.

We also build a vector of length Nd(Nd + 1)/2 to record the information of the
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products of contrast, which is written in a column vector as follows.

λ = [χ1χ1, χ1χ2, χ1χ3, χ1χ4 · · · , χ1χNd
,

χ2χ2, χ2χ3, χ2χ4, · · · , χ2χNd
,

χ3χ3, χ3χ4, · · · , χ3χNd
,

χ4χ4, · · · , χ4χNd
,

· · · , · · · , · · ·,

χNd
χNd

]T

Combining χ and λ, we define a vector ρ of length Nd(Nd+1)/2+Nd as follows:

ρ =
[
χT, λ

T
]T

.

Now Eq. (4.9) can be expressed in a compact form Eq. (4.10):

F
pls

= Aρ (4.10)

where A is a [NrNt]-by-[Nd(Nd + 1)/2 + Nd] matrix, whose elements can be

determined by the coefficients in Eq. (4.9). Now the phaseless imaging problem is

reduced to finding the contrast vector χ given F
pls

.

4.2.3 Applicability of Compressive Sensing

We know, from Eq. (4.10) and the definition of vector ρ, that the problem of

recovering χ from F
pls

is intrinsically nonlinear, and therefore the framework of

compressive sensing seems not applicable to this problem. However, if we simply

ignore the complicated nonlinear relation between χ and λ
T

and treat each entry of

ρ as an independent variable, it can be regarded as a linear problem. This idea also

provides the possibility of modeling the problem of imaging with phaseless data in
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the framework of compressive sensing.

In order to evaluate the applicability of compressive sensing, we also examine

two principles on which compressive sensing relies. These two principles are,

as discussed in [141], sparsity, which pertains to the signal of interest, and

incoherence, which pertains to the sensing modality. In the cases of sparsity and

incoherence, the signal can be recovered accurately (or even perfectly) based on

measurement by solving a convex programming problem.

In our modeling of the problem of imaging with phaseless measurement, the

signal of interest corresponds to the contrast information, which is represented

by vector ρ. Suppose only S of the Nd subunits are occupied by the point-like

scatterers (S << Nd), the number of nonzero elements in vector λ is S(S + 1)/2,

and the number of nonzero elements in vector ρ is S + S(S + 1)/2, thus ρ can

be regarded as a rather sparse signal, in view of the fact that the length of ρ is

Nd(Nd + 1)/2 +Nd.

The random detector arrays has been a problem of longstanding interest for

the purpose of improving the quality of imaging with a relatively small number of

antennas [82, 83, 150, 151]. Recently, [82, 83] give a rigorous analysis of the

single-input-multiple-output (SIMO), multiple-input-single-output (MISO), and

multiple-input-multiple-output (MIMO) measurements for compressed sensing

theory with and without the Born approximation.Furthermore, it is reported that

random sensor arrays are consistent with the theory of compressive sensing, and is

a good way of realizing incoherence measurement [150, 151]. The fulfillment of

both sparsity and incoherence validates the applicability of compressive sensing in

imaging with phaseless measurement.
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4.2.4 Phaseless Imaging with Compressive Sensing

By the compressive sensing theory, the problem of imaging with phaseless data

can be transformed to a linear programming problem, that is, the location and

electrical characteristics of the point-like scatterers can be accurately reconstructed

from the randomly measured electromagnetic field with high probability. In the

case of no noise or low noise, the sparse signal can be reconstructed by solving the

following optimization problem as shown in (4.11).

ρopt = argmin
ρ

∥∥∥ρ∥∥∥
l0
, subject to F

pls
= Aρ (4.11)

Since the l0 -norm minimization problem is non-deterministic polynomial-time

hard and thus computationally infeasible, in practice, we consider instead its

convex relaxation, which is also knows as the basis pursuit (BP) problem as

shown in (4.12), and can readily be solved by linear and quadratic programming

techniques.

ρopt = argmin
ρ

∥∥∥ρ∥∥∥
l1
, subject to F

pls
= Aρ (4.12)

After obtaining ρopt, we can simply extract its first Nd elements, which is the

recovered contrast vector χ.

Since the real measurement is inevitably corrupted by at least a small amount of

noise, a robust reconstruction method should be able to overcome such non-ideality.

Fortunately, the theorem of Compressive Sensing states that if we hold an “sensing

matrix”A obeying the hypothesis of the restricted isometry property (RIP),

robust and exact reconstruction from noisy data is still guaranteed [140, 141].

For phaseless imaging problem, the “sensing matrix”A is so complicated that

theoretical validation of its RIP is not finished. However, the numerical simulation
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in the next section successfully recover the signal by solving a linear programming

problem with quadratic constraints, as shown in (4.13), or by solving a linear

programming problem with residual correlation (also referred to as the Dantzig

selector [152]), as shown in (4.14).

ρopt = argmin
ρ

∥∥∥ρ∥∥∥
l1
, subject to

∥∥∥(A · ρ− F
pls
)
∥∥∥
2
< ε (4.13)

ρopt = argmin
ρ

∥∥∥ρ∥∥∥
l1
, subject to

∥∥∥AT
(A · ρ− F

pls
)
∥∥∥
∞
< ε (4.14)

4.2.5 Phaseless Imaging of point-like scatterers in
heterogeneous background medium

In many real world problems, such as through-wall imaging and nondestructive

evaluation, it is often necessary to conduct phaseless imaging in heterogeneous

background medium. Although the above-described approach is designed for

imaging point-like scatterers embedded in homogeneous background medium, it

is possible to extend the formulation and algorithm to the case of heterogeneous

background medium, as long as the distribution and character of the objects,

which form the heterogeneous medium background, are a priori information. It

is noteworthy that the background-forming objects do not include the unknown

point-like scatterers.

With the knowledge of the heterogeneous medium background, we are able to

derive and calculate the four types of Green’s functions listed in Table 4.1. Since

Green’s Function can be interpreted as a mapping from a unitary source to an

observation point, we explain the meaning of the four types of Green’s function

by specifying the location of the unitary source and position of the observation

point in the columns “From” and “To” of Table 4.1. Now, in order to generalize
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Table 4.1: Four types of Green’s functions

Green’s Function From To
grt(rrq, r

t
p) TX @ rtp RX @ rrq

gdt(rdm, r
t
p) TX @ rtp Subunit @ rdm

gdd(rdn, r
d
m) Subunit @ rdm Subunit @ rdn

grd(rrq, r
d
m) Subunit @ rdm RX @ rrq

our formulation and approach to the case of heterogeneous background medium,

the only necessary modification is to replace g(rdn, r
t
p), g(r

r
q, r

d
m), and g(rrq, r

t
p) with

gdt(rdn, r
t
p), g

rd(rrq, r
d
m), and grt(rrq, r

t
p), respectively, in Eq. (4.2) to Eq. (4.7).

4.3 Numerical Experiments

In this section, we present simulation results that illustrate the performance of

the formulation of phaseless imaging as convex programs, (4.12) for the noiseless

case and (4.14) for noisy case. The convex problem is then solved by the

“L 1-MAGIC” solver [153], which is based on standard interior-point methods,

and is suitable for large-scale problems.

We employ a SIMO data acquisition scheme: (1) a single TX antenna (Nt = 1)

is placed at a position randomly chosen in the annulus-shaped region surrounding

the domain of interest; (2) a total number of Nr RX antennas are placed at random

positions also in the annulus; (3) overlap between these antennas should be avoided.

For all the three simulation, we use a same annulus-shaped detection region

centered at the origin, with its inner and outer radii being 3λ and 6λ respectively,

as illustrated in Fig. 4.1. The scenario considered here is chosen so that it is

comparable to the results previously reported in [143, 154].

Noise corruption of the electric field is realized by the following procedure.
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Figure 4.1: Configuration of physical setup

The received field is recorded in the format of the multi-static response (MSR)

matrix K with size of Nr × Nt [105]. White Gaussian noise κ is thereafter added

to the MSR matrix, and the resultant noise-corrupted matrix K+κ is treated as the

measured MSR matrix which we utilized to reconstruct the scatterers. The noise

level is quantified in signal-to-noise ratio (SNR) as 20 · log ||K||F
||κ||F

, where || · ||F

denotes the Frobenius norm of a matrix [105].

In the first simulation shown in Fig. 4.2(a), we consider two point-like

scatterers, with relative permittivities being 1.5 and 1.6 respectively, placed at at

(0.7λ,−0.7λ) and (−0.7λ, 0.7λ) in the domain of interest, which is a 2.0λ-by-2.0λ

square and has been discretized into a grid of 10 × 10 subunits. Nr = 20 RX

antennas are placed randomly in the annulus-shaped region. Fig. 4.2(b) shows the

retrieved image without the presence of additive noise, where the locations and

permittivities of the two small scatterers are exactly recovered. Fig. 4.2(c) and (d)

show the images reconstructed from the data corrupted by additive Gaussian white

noise with SNR = 20dB and SNR = 10dB, respectively. Both of them reflect

the exact locations and characteristics of the scatterers, though noticeable blurred

parts due to noise corruption are observed and Fig. 4.2(d) is obviously worse than
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Fig. 4.2(c), because of higher SNR.
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Figure 4.2: The pattern consisting of two point-like objects. (a) Exact pattern of
relative permittivity. (b) Reconstructed pattern obtained by solving (4.12) with
no noise added into measurement. (c) Reconstructed pattern obtained by solving
(4.13) with Gaussian white noise added into measurement (SNR=20 dB). (d)
Reconstructed pattern obtained by solving (4.13) with Gaussian white noise added
into measurement (SNR=10 dB).

The choice of Nr is an interesting and meaningful topic in the sense of reducing

the measurement cost, and thus has been discussed in the seminal work in [96].

We also investigate this issue within the framework of compressive sensing, by

sweeping the value of Nr from 6 to 22 with step being 2 in the experiment without

presence of additive noise. The results are reproduced in Fig. 4.3 and Fig. 4.4. In

Fig. 4.4, the error is defined as the norm of the difference between the exact pattern

(εr) and the reconstructed pattern (εrecr ):
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err = ∥εr − εrecr ∥ ,

where

εr =
[
εr(r

d
1), εr(r

d
2), · · · , εr(rdNd

)
]T

εrecr =
[
εrecr (rd1), ε

rec
r (rd2), · · · , εrecr (rdNd

)
]T

The results indicate that, in order to guarantee the good performance of

compressive sensing, Nr must be larger than a threshold value (around 18 as

shown in Fig. 4.4). According to the theory of compressive sensing [138–141],

this threshold value is dependent on the sparsity of the signal. On the other hand,

after exceeding the threshold, diminishing benefit can be gained by further increase

in the number of RX antennas. This observation is also consistent with the theory

of compressive sensing [139–141].

The second test configuration is more complex. As depicted in

Fig. 4.5(a), five point-like scatterers are placed at (0.85λ,−0.55λ), (−0.6λ, 0.55λ),

(0.15λ,−0.1λ),(0.7λ, 0.7λ),(−0.7λ,−0.45λ), with their relative permittivities

being 1.8, 2.0, 1.6, 1.7, and 1.9, respectively, in a selected domain of interest, which

is a square of 2.0λ for each side, and has been discretized into a grid of 12 × 12

subunits. As elaborated in [138–141], the minimum number of samples required

by compressive sensing increases with the sparsity: m ≥ C ·S · log(n/S), where m

is number of samples, n is the dimension of unknown signal, S is sparsity, and C

is some constant depending on each instance. Therefore, in our problem, although

the exact analytic expression of number of measurement depending on number of

point-like scatterers is not available, more measurement is required to cope with

the increase in the number of nonzero entries (sparsity). Accordingly, we arrange
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Figure 4.3: Reconstructed patterns in the first experiment without noise for the
number of RX antennas being 6, 8, 10, 12, 14, 16, 18, 20, 22 in (a), (b), (c), (d),
(e), (f), (g), (i), respectively.
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Nr = 50 RX antennas placed randomly in the annulus-shaped region. Fig. 4.5(b)

and Fig. 4.5(c) exhibit the retrieved images in the absence and presence of additive

noise (SNR = 20dB), respectively, where both locations and permittivities of the

five small scatterers are exactly recovered. It is also observed that excessive noise

corruption prevents our method from reconstructing the exact image, as shown in

Fig. 4.5(d), where SNR = 10dB.
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Figure 4.5: The pattern consisting of five point-like objects. (a) Exact pattern of
relative permittivity. (b) Reconstructed pattern obtained by solving (4.12) with
no noise added into measurement. (c) Reconstructed pattern obtained by solving
(4.13) with Gaussian white noise added into measurement (SNR=20 dB). (d)
Reconstructed pattern obtained by solving (4.13) with Gaussian white noise added
into measurement (SNR=10 dB).

We examine the performance of our approach for heterogeneous background

medium in the third numerical experiment, which is similar to the practical crack

detection in cylindrical parts. The cylindrical background medium is shown in

Fig. 4.6(a) as a circular region with radius being 2λ and relative permittivity being
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1.1. In the circular object, there are two cracks (point-like scatterers) located

at (0.7λ,−0.7λ), (−0.7λ, 0.7λ), with relative permittivities being 1.8 and 1.9,

respectively. The domain of interest is centered at the origin (a square of 2.0λ for

each side, and has been discretized into a grid of 10×10 subunits. We use Nr = 30

RX antennas placed randomly in the annulus-shaped region of detection. For this

kind of background medium, the four types of Green’s functions have closed-form

and is derived by using the Graf’s addition theorem [62, 155]. For more complex

heterogeneous background medium, the close-form Green’s function may not be

available, and thus we have to calculate numerically the value of Green’s function

as done, for instance, in [156]. After solving the optimization problem, the

retrieved images in the absence and presence of additive noise (SNR = 20dB)

are shown in Fig. 4.6(b) and Fig. 4.6(c), respectively, where both locations and

permittivities of the two small scatterers are clearly identified.

4.4 Conclusion

In this chapter, we present an approach to imaging the locations and characters

of sparsely distributed point-like dielectric scatterers by utilizing intensity-only

measurement, with or without the corruption of additive Gaussian white noise.

Our formulation of phaseless imaging is based on the knowledge of the intensity

of total measured electric field, which is more realistic from the standpoint of

practical application, compared with the previously published modeling [143].

It is shown that, despite being an intrinsically nonlinear problem, the phaseless

imaging problem can be reformulated as a linear system, provided that a proper

bases are chosen; and the problem is then solved by minimizing a linear objective
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Figure 4.6: The pattern consisting of two point-like objects in a cylindrical
heterogeneous background medium. (a) Exact pattern of relative permittivity.
(b) Reconstructed pattern obtained by solving (4.12) with no noise added into
measurement. (c) Reconstructed pattern obtained by solving (4.13) with Gaussian
white noise added into measurement (SNR=20 dB).
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functional with constraints in the framework of compressive sensing. We can

easily extend the proposed formulation and algorithm to the case of heterogeneous

background medium, if the distribution and character of the objects, which form the

heterogeneous medium background, are a priori knowledge. This extension paves

the road of employing the compressive-sensing-based approach to many real-world

imaging problems involving heterogeneous background medium. The numerical

simulations confirm that this approach is able to provide exact image of the domain

of interest with efficiency and robustness against noise. It is note-worthy that our

method is limited by the Born approximation, so the reconstruction scheme should

be redesigned under circumstances where the Born approximation does not hold.

Extension of our method to the general situation without Born approximation,

together with the mathematical and theoretical justification of the robustness of

our method, form our ongoing research effort.



CHAPTER 5

Future Work

“Now this is not the end. It is not even the beginning of the end. But it is,

perhaps, the end of the beginning.”

–Winston Churchill

Investigation for better formulation and more efficient algorithms of the inverse

scattering problems is always of our interest, and we will definitely proceed with

our best endeavor in this aspect. On the other hand, we should never neglect

the significance of other works which also deserve our attention for the sake of

real-world application of our inversion algorithm.

The practical applicability of the inverse scattering methods proposed in this

thesis is limited partly due to its expensive computational cost. This limitation

manifests itself especially when we have to perform large-scale and real-time

inverse scattering with intensity-only measurements. Fortunately, the way of

accelerating the computationally intensive inverse scattering algorithms is paved

by the recent progress in high performance computing (HPC) technologies based

on various hardware platforms, for instance, the message passing interface (MPI)

for distributed memory system, and open multi-processing (OpenMP) for the

shared memory system, open computing language (OpenCL) or compute unified



124 Chapter 5. Future Work

device architecture (CUDA) for graphics processing unit (GPU) programming,

and field-programmable gate array (FPGA) high performance computing. These

technologies have prove efficient way of enhancing the efficiency of intensive

scientific computation for a wide range of practical applications. Generally

speaking, we will have to parallize our inverse scattering algorithm and take full

advantage of the advanced parallel programming platform. The possible specific

future work in this regard may include selecting the proper parallel programming

platform based on the balance between performance and expense, transforming the

serial algorithm to its parallel counterpart, and testing and tuning algorithm so as

to optimize computational efficiency.

Another crucial future work is about the practical experiment of inverse

scattering. From the viewpoint of application, this necessary work is still far

from satisfactory, and is therefore partially responsible for the inverse scattering

remaining as a scientific research in laboratory rather than as a mature and

reliable technology in industry. Even in the inverse scattering research community,

researchers often have to face the lack of real experiment database for specific

scenario of interest. Encouragingly, in the recent two decades, a few database

of inverse scattering experiment have been produced and opened to the inverse

problems community. The Ipswich database [157–159] and the Fresnel database

[160, 161] published the the far-field scattered data measured with a bi-static,

mechanically scanned system, which is followed by the EIGOR database [162]

providing the near-field multi-static data. These progress, however, have not

completely addressed the insufficient coupling between inverse scattering theory

and experiments, in the sense of real-world application. This demands our future
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work regarding the inverse scattering experiment. The specific topic may focus

on the compensation of drift error, the design of the measurement antennas, the

calibration of the coupling among antennas, the problem of noise corruption, etc.

These constitute our future research plan.
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