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SUMMARY 
 

Tol2 enhancer-trap transgenic line SqET4 is widely used for studies of development and disease 

of mechanosensory hair cells. We showed that it represents Tg:atp2b1a-EGFP. This provided a 

possibility to study a function of Atp2b1a/PMCA1. Combining the morpholino mediated-

knockdown and small molecule inhibition, I showed that deficiency of Atp2b1a results in 

auditory and vestibular defects due to defects of Ca2+ export by mechanosensory hair cells. 

Acting downstream of the transcriptional regulator Atoh1a, Atp2b1a plays a crucial role in 

division of terminally determined mechanosensory hair cells progenitors. Serendipitously, 

another domain of GFP/Atp2b1a expression was identified in the ultimobranchial bodies (UB) of 

SqET4. In mammals UB gives rise to the calcitonin-producing cells of the thyroid gland. Since 

in zebrafish UB remains a separate organ, SqET4 provided a useful tool to study the anatomy 

and function of developing UB. In particular, a connection between UB and pharyngeal dentition 

and function of Atp2b1a during bones calcification was demonstrated. 
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1.1 Outline of this thesis 
 

The present chapter illustrates the background, objectives and systems involved in this study. A 

detailed description of the materials and experimental methods used in this work is provided in 

Chapter 2. In Chapter 3, I have presented experimental evidence to show that SqET4 represents 

Tg(atp2b1a-EGFP) and based on that, I was able to address the functional role of Atp2b1a in the 

developing lateral line and ultimobranchial body. Functional knockdown of atp2b1a was 

achieved using specific antisense morpholino and small molecular inhibitor. A brief overview of 

other expression domains of atp2b1a is also included. In Chapter 4, I discussed all the findings. 

And in the final chapter, I have provided a concluding perspective on how these two seemingly 

unrelated models of development (i.e. otoliths formation and bone calcification) can be possibly 

converged. 

 

1.2 Zebrafish and Enhancer Trap Transgenics 
 

Several unique features of zebrafish (Danio rerio) have enabled researchers around the world to 

embrace this little organism as the model of choice for studying developmental biology. High on 

this list of advantages is the embryo’s optical transparency, which have made in vivo imaging a 

practical and much simpler affair. And when coupled with high resolution imaging systems such 

as multi-channel confocal system, this marriage between powerful systems has often resulted in 

successful observation of both meaningful and crucial developmental events not possible with 

bigger animals. Successful advancements in zebrafish genome sequencing project have also 
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made understanding developmental biology-related questions from a genetic perspective 

possible. 

Evidence of effective transposition of heterologous transposons Tol2 from Oryzias latipes 

(Kawakami et al., 2000) and Sleeping Beauty from salmonid (Davidson et al., 2003) in the 

zebrafish genome opened new opportunities for reverse genetics and transgenesis based 

applications. The generation of Enhancer Trap transgenic zebrafish lines (ET lines) reported by 

the Korzh lab (Parinov et al., 2004) has created an excellent resource of ET lines for carrying out 

such analysis. In brief, they have successfully made use of a transposable element, namely Tol2 

transposon derived from medaka fish to generate a library of interesting Tol2 insertion transgenic 

lines. This element uses conservative (“cut and paste”) transposition mechanism, meaning it is 

excised from the donor site when the whole element moves to the new position. Enhanced green 

fluorescent protein (EGFP) was used as a reporter to fully utilize the nature of live embryos’ 

optical clarity. When these random insertions occurred within the vicinity of an enhancer present 

in the genome, enhancers are considered metaphorically “trapped” to activate reporter gene 

expression even at considerable distance in orientation-independent manner and ideally, in a 

tissue specific manner.  

Enhancers are highly conserved non-coding elements (HCNEs); sequences are of interest 

for their potential to regulate gene production (Bejerano et al., 2004; Sandelin et al., 2004; 

Woolfe etal., 2005). HCNEs in plants and animals are highly associated with transcription 

factor binding sites and other cis-acting regulatory elements. Conserved non-coding sequences 

can be important sites of evolutionary divergence (Navratilova et al., 2009) as mutations in these 

regions may alter the regulation of conserved genes, producing species-specific patterns of gene 

expression. Due to the random nature of Tol2 genomic insertions, single and multiple insertions 
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can be expected. And in cases where single insertion has been identified through molecular 

method (i.e. TAIL-PCR), stable lines were generated and they can be experimentally verified to 

ascertain their potential of representing the trapped gene at the transcript level. 

This simple construct (Fig. 1A) employs the Tol2 enhancer which carries the EGFP 

reporter downstream of a krt4 minimal promoter. Activity of this promoter is induced once it 

lands under control of a chromosomal enhancer (Bellen, 1999). Identification of the regulated 

genes can be challenging since enhancer can activate the reporter outside of genes. The key to 

identify the regulated gene is the enhancer trap line’s expression should faithfully recapitulate 

the regulated gene’s expression pattern, which many of such successful cases have already been 

reported elsewhere (Perrimon et al., 1991; Bellen, 1999). 

 

1.3 Research Objectives 
 

In this thesis work, I have focused on one such ET line, primarily due to its untapped potential in 

representing its trapped gene. SqET4 is the ET line, where EGFP expression takes place in 

mechanosensory hair cells (Parinov et al., 2004; Choo et al., 2006). The “Achilles’ heel” of the 

SqET4 line, however, is the lack of information about the gene(s) expression pattern it mimics, 

and therefore the current deficit in understanding the developmental process reflected by GFP 

expression in vivo. Several questions need to be answered to anchor the fast-growing SqET4-

related literature to a particular molecular mechanism: i) which gene’s expression pattern is 

revealed by GFP expression in SqET4? ii) How are the transient hair cell precursors related to 

Atoh1-positive precursors? iii) How does this gene activity contributes to development and/or 
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mechanosensory hair cells regeneration? iv) Is this gene relevant within the context of auditory 

and (or) vestibular functions of the animal? 

 Since its inception, SqET4 has become widely embraced as a living marker for studying 

the molecular developmental program of these cells (Faucherre et al., 2009; Feijoo et al., 2009; 

Froehlicher et al., 2009; Gleason et al., 2009; Hernandez et al., 2007; Lopez-Schier and 

Hudspeth, 2006; Nagiel et al., 2008; Nechiporuk and Raible, 2008; Sarrazin et al., 2006). We 

mapped the insertion of SqET4 to a position adjacent to a plasma membrane Ca2+ ATPase. In 

addition to its expression in mechanosensory hair cells, I have characterized other expression 

domains of atp2b1a. Interestingly, 1 have found and studied a previously uncharacterized 

expression domain of atp2b1a which corresponds to the developing Ultimobranchial body (UB). 

The primary objective of this project aims to define developmental role(s) of atp2b1a in these 

tissues that expresses it. 
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Figure 1: Schematic representation of enhancer trap (ET) construct. A) The Tol2 element contains 

the EGFP reporter gene under control of a short 460-bp krt4 promoter. Expression of the reporter is 

induced when it is inserted near an enhancer (Parinov et al., 2004). B) Generation of ET transgenic lines 

by co-injecting Tol2 transposon construct and transposase mRNA to induce transposition.  
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1.4 Plasma Membrane Ca2+ ATPase 
 

The plasma membrane Ca2+-ATPases (PMCA1-4) in mammals are encoded by four genes 

(Atp2b1-4) and a diverse set of protein isoforms is produced in result of alternative splicing 

(Keaton et al., 1993; reviewed in Berridge, 2009). Despite the large molecular diversity within 

the PMCA family, the overall structure of all members is very similar. All PMCA isoforms have 

10 transmembrane domains, with the largest cytoplasmic loop connecting TM4 and TM5 of 

particular significance because it contains the ATP-binding domain as well as a phosphorylation 

site that is phosphorylated during each pump cycle. At the C-terminus lies a calmodulin binding 

domain where it acts as a sensor for Ca2+ ions (Fig. 2B).  

 In mice, Atp2b1 is broadly expressed. Since Atp2b1 mutant embryos are embryonic 

lethal (Okunade et al., 2004) there is a paucity of information about a function of this gene 

during development of vertebrates. This is contrast to its relative Atp2b1b (PMCA2), which 

expression in mice is more restricted and mutation causes deficiency restricted to 

mechanosensory hair cells resulting in deafness and ataxia (Ficarella et al., 2007; Tempel and 

Schilling, 2007; reviewed in Hughes et al., 2006; Street et al., 1998). Atp2b1 is duplicated in 

teleosts, which along with other factors such as evolutionary dependent differential expression in 

mice and zebrafish seemingly contributed into making one of the two Atp2b1-related genes of 

zebrafish – atp2b1a responsible for development of sensory hair cells in zebrafish (McDermott 

et al., 2007; Cruz et al., 2009; Go et al., 2010). This led to suggest that in teleosts Atp2b1a acts 

as a functional homologue of Atp2b1b (PMCA2) of mammals (Lafont et al., 2010). And yet 

atp2b1a is broadly expressed similar to its counterpart in mammals with transcripts being present 

not only in mechanosensory cells of the inner ear and lateral line, but also in the midbrain, 

somites, UB, heart and possibly, the statoacoustic ganglion where the nature of expression needs 
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to be further defined. Hence it is unclear whether Atp2b1a acts as a functional homolog of 

Atp2b2. 

 

 

Figure 2. Calcium regulation at cellular level and PMCA. [Ca2+] gradient across cell membrane is 

tightly regulated to maintain resting [Ca2+]I at 10 - 100 nM and excited [Ca2+]I at 500 – 1000 nM. Ca2+ 

clearance can be achieved by a variety of “ATP-driven pumps” to prevent Ca2+ overloading. A) Ca2+ 

regulation at cellular level with PMCA playing a active role in maintenance of resting [Ca2+]I (highlighted 

in red dashed box; reviewed by M. Berridge (2009). B) Structural features of the PMCA pump (Reviewed 

by Strehler et al., (2007). 

 

1.5 Mechanosensory Hair Cells 
 

Mechanosensory hair cells are present within the inner ear of all vertebrates as sensory patches. 

These sensory patches are named according to their location within the inner ear, such as the 

anterior and posterior macula and various cristae (anterior, posterior and medial) which develop 

later during development (Fig. 3). It is also present on the skin of fish and amphibian as part of 
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the lateral line system. The specific expression of SqET4 in mechanosensory hair cells of lateral 

line was what attributed to its popularity as an in vivo model of hair cells development.  
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Figure 3. Developmental of zebrafish inner ear. Inner ear development commences with the initial 

appearance of the otic placode during embryonic stage. The entire hearing apparatus develops with 

increasing complexity till post-embryonic stages (72 hpf). (A) Dorsal view of a 5 dpf zebrafish larvae. 

Dashed line indicates the developing otocysts. (B) Lateral view of larval inner ear. Otoliths are visible 

(marked “o”). Asterix marked the neuroepithelium, posterior crista. (C) Diagrammatic representation of 

the larval ear illustrating all five sensory patches. Dashed lines indicate the semicircular canals formed. 

(D) Diagram of the adult zebrafish ear. The colours correspond to the same sensory patches in C. (Source: 

Nicolson T. 2005) 
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The lateral line is a sensory organ system that develops from the specification of early 

precursor cells and results in the terminal differentiation of lineage-committed precursors into 

specialized cells – mechanosensory hair cells (Itoh and Chitnis, 2001; Lopez-Schier et al., 2004; 

Haas and Gilmour, 2006; Froehlicher et al., 2009). Morphologically, the lateral line represents a 

linear arrangement of mechanosensory neuromasts distributed on the surface of the fish head and 

body (Fig. 4; reviewed in Moorman, 2001; Ghysen and Dambly-Chaudiere, 2007). Each 

neuromast consists of a central core of mechanosensory hair cells and a surrounding group of 

several subtypes of support cells (Hernandez et al., 2007).  

 

Figure 4. Lateral line system of fish. (A) Bodily location of lateral lines. 3 branches are apparent 

(anterior, posterior and dorsal lateral lines). (B) longitudinal section of a canal; (C) superficial neuromast 

illustrating mechanosensory hair cells as sense hair which are innervated. 
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The mechanosensory hair cells of the lateral line are highly differentiated and developed 

a special type of long cilium on its apex called, kinocilium. This is usually accompanied by 

numerous shorter stereocilia. These structures can be physically deflected by stimuli such as 

water current. This resulted in depolarization or hyperpolarization of the hair cell and enables 

transduction of stimuli into electrical signals (Fettiplace and Hackney, 2006). In fish and 

amphibians, these hair cells are embedded in a protective jelly-like protrusion called, the cupula 

(Fig. 4 & 5). In contrast, the support cells provide cohesive support (Cotanche et al., 1992; 

Warchol et al., 2007), perform secretory functions (Cotanche et al., 1987; Epstein and Cotanche, 

1995) and generate new mechanosensory hair cells during normal development and regeneration 

(Balak et al., 1990; Raphael, 1992; Stone et al., 1994; Bermingham-McDonogh and Rubel, 2003; 

Fig. 5). 

 

Figure 5. Neuromast and Enhancer Trap (ET) transgenic lines. A library of ET transgenic lines with 

characteristical expressions in various cell types of the zebrafish lateral line systems (Parinov et al., 2004; 

Choo et al., 2006; Go et al., 2010). 
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 In zebrafish, the mechanosensory hair cells differentiate following terminal division of 

the transient hair cell precursor (Lopez-Schier and Hudspeth, 2006; Behra et al., 2009), which is 

reminiscent of that during Drosophila neurogenesis where the transient precursor, the ganglion 

mother cell (GMC), terminally divides to generate two neurons/glial cells (Bossing et al., 1996; 

Schmid et al., 1999).  

The early events involved in the specification of mechanosensory hair cells are still not 

fully understood. Several signaling pathways govern this process, including Wnt (Ma and Raible, 

2009), Fgf (Lecaudey et al., 2008) and Notch (Itoh et al., 2001), which results in activation of the 

transcription factor, Atoh1, in specified hair cell precursors that are required for mechanosensory 

hair cells differentiation (Millimaki et al., 2007). In the fly CNS, the homologue of atoh1a – ato 

– is indispensable in embryonic precursors and in the neurons they generate. Similarly, during 

cortical neurogenesis in mammals, radial glia produce a restricted, neuronal intermediate 

precursor cell (also referred to as a basal progenitor cell), which in turn gives rise to cells 

populating the embryonic subventricular zone (reviewed in Kriegstein and Alvarez-Buylla, 

2009). In contrast, in the mouse inner ear, the term progenitor was traditionally used to define an 

earlier, common ancestor of the support cells and mechanosensory hair cells. Thus, in the inner 

ear of Atoh1 (Math1)-deficient mice, only mechanosensory hair cells, and not the common 

progenitors of mechanosensory hair cells and support cells, are believed to be absent 

(Bermingham et al., 1999; reviewed in Bertrand et al., 2002).  

 

1.6 The Ultimobranchial body 
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UB is a derivative of the pharyngeal pouch which has been found in all vertebrates, at least 

during early stage of its development. At present, it seems unlikely to provide a consistent 

picture of the formation of UB since it varies differently amongst vertebrates. In many mammals 

including humans, it is an embryological structure of neural crest-derived lineage that gives rise 

to C-cells (reviewed by Bourque and Houvras, 2011), also known as parafollicular cells of the 

thyroid gland (Fig. 6). Fusion takes place between the developing thyroid diverticulum and C-

cells after both components arrive at a position deep in the cervical mesenchyme (De Felice and 

Di Lauro, 2004). In vertebrates other than mammals (fish, amphibian and birds), UB remains 

separate from the thyroid gland (Le Douarin et al., 1974; Le Lievre et al., 1975; Alt et al., 2006) 

since migration of C-cells never took place. 
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Figure 6. Calcitonin-producing cells of the Ultimobranchial body (UB). A) The thyroid gland controls 

how quickly the body uses energy, makes proteins, and controls how sensitive the body is to 

other hormones. It participates in these processes by producing thyroid hormones, the principal ones 

being  triiodothyronine (T3) and thyroxine (T4). The thyroid also produces calcitonin, which plays a role 

in calcium homeostasis. B) Pattern of the branchial arches. I-IV branchial arches, 1-4 branchial 

pouches (inside) and/or pharyngeal grooves (outside). The parafollicular cells are the progeny of 

the ultimobranchial bodies, which arise from the rudimentary 5th pair of pharyngeal pouches (red dashed 

circle; source: Wikimedia Common). C) Micrograph of monkey thyroid follicles. (source: Basic 

Histology, a text and atlas, p. 425, Figure 21-18). 
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The importance of UB is recognized primarily due to its role in regulating Ca2+ at tissue 

level (Fig. 7). UB produces the hypocalcaemic polypeptide hormone, calcitonin (CT). CT is 

encoded by calcitonin gene-related polypeptide alpha gene (calca). In teleosts, calcitonin has 

been linked to hyper- and hypo-calcemia depending on physiological context (Wagner et al., 

1997; Oughterson et al., 1995; Suzuki et al., 1999; Najib and Fouchereau-Peron, 1994; Lafont et 

al., 2010). calca also encodes the calcitonin-gene related peptide (CGRP) known for its effect as 

a powerful vasodilator. In mammals, calca is expressed in C-cells of the thyroid gland (De Felice 

and Di Lauro, 2004).  

CT is known to play prominent roles in regulating free Ca2+ level in lower vertebrates 

(Fig. 7). And yet, among factors regulating Ca2+ metabolism, CT plays an important and yet 

incompletely understood role in mammals. Until now a lack of genetic markers of C-cells 

hampered the progress of understanding the in vivo functions of UB, other than its purported 

functions of secreting two Ca2+-regulating peptide hormones; CT and calcitonin gene-related 

peptide (CGRP). In addition, the understanding of its related carcinoma, medullary thyroid 

cancer (MTC); a form of thyroid carcinoma which originates from C-cells is particularly 

challenging using mammalian models since the location of C-cells is much harder to define 

within the thyroid gland. Studying development of C-cells in lower vertebrates will theoretically 

be simpler since both organs remained separated during the animal’s lifetime. Such approach 

presents an opportunity to understand the disease development of C-cells in the absence of a 

thyroid niche. 
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Figure 7. Regulation of Ca2+ at tissue level. Ca2+ homeostasis is controlled by three hormones: 

calcitonin, parathyroid hormone and vitamin D. Each of these hormones act on bone cells and other 

tissues to raise or lower the concentration of Ca2+ in the blood. 
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CHAPTER 2 

Materials and Methods 
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2.1 DNA Applications 
 

Table 1. Vectors and Commercial Competent Cells used in this study 
 

Vectors 

pGem®-Teasy (Promega,USA) 

pcDNA3.1™(-) (Invitrogen, USA) 

pEGFP-N2 (BD Biosciences Clontech, USA) 

Host Bacteria 

XL1-Blue (Stratagene) 

DH5α 

 
Table 2. Bacteria Selection 

 
Name Descriptions 

Carbenicillin Stock 10 mg carbenicillin sodium salt in 1 ml of water, 
filter sterilized. 

Kanamycin Stock 10 mg in 1 ml of water, filter sterilized. 

Isopropyl-1-thio-β-D-galactoside (IPTG) 20 mg/ml in sterile water 

5-Bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal) 20 mg/ml in N,N dimethylformamide 

 
Note. For Blue-White Selection of clones, IPTG and X-Gal were mixed at 1:5 (making 50 µl) and spread onto agar 
plates with appropriate selection antibiotics. The agar plates were dried in 37°C dry incubator before storage or use.  
 

Table 3. Bacterial Culture Media 
 

Media Components 

Luria-Bertani (LB) broth Premixed from Media Prep 

LB broth/carbenicillin 75 μg/ml carbenicillin in LB 

LB broth/kanamycin 40μg/ml kanamycin in LB 

LB broth agar 15 g agar in 1 liter of LB broth 

LB broth agar/ carbenicillin 100 μg/ml ampicillin in LB agar 

LB broth agar/ kanamycin 40μg/ml kanamycin in LB agar 
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LB broth/glycerol  20% (v/v) glycerol in LB broth 

TSBG solution  

 

85% (v/v) LB broth, 5% (v/v) 
DMSO, 10% (w/v) PEG, 10 mM 
MgCl2, 10 mM MgSO4, 20 mM 
glucose 

 
 

2.1.1 Long-term Storage of Bacteria 
 

Bacterial strains were stored long term at low temperatures (-80°C) in 15 to 40% (v/v) glycerol. 

A fresh colony was inoculated in 3 ml of LB or LB with specific antibiotics in a 15 ml tube. It 

was cultured at 37°C until late log or stationary phase (usually overnight). 0.5 ml of LB 

broth/glycerol was added to 0.5 ml of the bacterial culture (frozen stock will contain 25% 

glycerol) in a sterile labeled cryo-vial before being frozen at -80 °C. To revive bacteria from the -

80°C stock, a sterile pipette tip was used to scrape some of the frozen medium and then streaked 

on appropriate culture plate e.g. L/A agar. The frozen stocks should not be thawed because each 

freeze-thaw cycle will result in a 50% loss in cell viability. 

 

2.1.2 Competent Cell Preparation 
 

A single host bacterial colony was inoculated into 3 ml LB and cultured overnight at 240 rpm, 

37°C. 0.2 ml of the saturated culture was then inoculated into 200 ml pre-warmed LB in a 500 

ml flask. The culture was incubated at 37°C, with vigorously shaking at 240 rpm until it reached 

exponential phase of approximately A600 0.5 (took approximately 3 hrs) and chilled on ice for 

15 mins. The bacterial culture was harvested by centrifugation at 4000 rpm for 10 min at 4°C. 

The cell pellet was carefully resuspended in 15 ml of ice -cold autoclaved 1M CaCl2 solution and 
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incubated on ice for 10 minutes and spun again at 4000 rpm for 10 mins. The bacterial cells were 

then resuspended in 4 ml sterile, ice-cold 0.1 M CaCl2/15% glycerol. Finally competent bacterial 

cells were aliquoted in 100 μl and quick-freezed using liquid nitrogen and stored at -80°C until 

use. 

 

2.1.3 Transformation of Bacterial Competent Cells 
 

Transformation was carried out in 1.5 ml Eppendorf tube(s). 10 μl of ligation reaction was added 

to 100 μl of E.coli competent cells. This mixture was then incubated on ice for 30 mins. Cells 

were heat-shocked in 42°C water bath for 45 s. Cells were then immediately transferred to an ice 

bath for 2 mins. 900 μl TSBG recovery media was added into the tube and was then placed in a 

37°C shaker for 1 hr at 240 rpm. Subsequently, 50 μl was plated onto LB agar plates with 

appropriate antibiotics. For blue/white screening of recombinants, 40 μl of X-Gal and 10 μl of 

IPTG were added to the bacterial suspension before the content was plated onto LB agar plates 

containing the appropriate antibiotics. 

 

2.1.4 Polymerase Chain Reaction (PCR) 
 

PCR reaction was carried out in Programmable Thermal Controller PTC-100 (MJ Research Inc. 

USA). Template DNA (genomic DNA / plasmid / purified DNA) or bacterial culture containing 

putative transformants (2 μl) were amplified in a reaction volume of 20-100 μl. Each reaction 

mixture consists of 1× PCR buffer (New England BioLabs Inc), 200 μM of dNTPs, 1 μM of 5’- 

and 3’- primers and Dynazyme (New England BioLabs Inc, USA) (2 units / 100 μl of PCR 

reaction). A master mix was usually prepared, dispensed into individual 0.2 ml PCR tubes and 
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respective DNA template was added to each reaction. The reactions were carried out for 35 

cycles and each cycle begin with 0.5 min of denaturation at 94°C, followed by 0.5 min annealing 

at the desired temperature and extension at 72°C for х min (approximately 1 min for each kb of 

expected amplified product). In order to ensure complete elongation of all PCR products, a 5 min 

extension of 72 °C was included after the last cycle and the reaction samples were stored at 4 °C 

until further analysis. 

 
 

2.1.5 Cloning of PCR Products 
 

To clone PCR products, proper restriction sites were included at the ends of each PCR primer. 

The restriction sites selected are present in the multiple cloning site of cloning vectors and absent 

inside the DNA product. To ensure optimal restriction digest of PCR products, flanking 

nucleotide sequences were added 5’ to the restriction site of the primer. The PCR products were 

separated on agarose gels and the desired DNA fragment was excised and purified with 

QIAquick® gel extraction kit (Qiagen, USA). Alternatively, PCR products were amplified by 

Taq DNA polymerase or Dynazyme (New England BioLabs Inc, USA), purified and directly 

cloned into pGem®-Teasy vector (Promega Corporation, USA). 
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Table 4. Ligation reaction set-up 
 

Normal Ligation Set up Rapid Ligation Set up 

 T4 DNA Ligase 1U, 2 μl T4 DNA Ligase 3U/ μl, 1 μl 

10× T4 DNA Ligase 
Buffer 2 μl 

2X Rapid Ligation Buffer (Roche 
Diagnostics, Germany), 2 μl 

Vector DNA 1× Vector DNA 1× 

Insert DNA At least 3× 
that of vector DNA 

Insert DNA At least 3× that of 
vector DNA 

ddH20 Top it up to 20 μl ddH20 Top it up to 20 μl 

 
 

Normal ligation was performed in Programmable Thermal Controller (PTC-100, Biorad) set at 

16°C for 16 hr. Rapid ligation reaction (Roche) was incubated at room temperature for 1 hr or at 

4 °C, overnight to obtain maximal number of transformants. Shrimp Alkaline phosphatase 

(Promega Corporation, USA) was used to dephosphorylate linearized vector to prevent re-

annealing. And in order to melt any termini that may have re-annealed, vector and insert DNA in 

H2O was warmed to 45 °C for 5 min in a sterile microfuge tube before the addition of 10× T4 

DNA ligase buffer and the enzyme. 

 
 

2.1.6 Restriction Enzyme Digestion 
 

There are generally 2 types of restriction digest: a diagnostic and a preparative digest. A 

diagnostic restriction digest is performed on a small scale to screen for positive recombinants. 

The larger scale preparative restriction digest is performed to make recombinant constructs that 

require further manipulations such as sub-cloning into other expression constructs of interest. 
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Table 5. Restriction digestion set-up 
 

Diagnostic Digestion (single RE) Preparative Digestion (single RE) 

DNA e.g. plasmid, 0.5 μg DNA, 5-20 μg 

10× Reaction Buffer, 2 μl 10× Reaction Buffer, 6 μl 

Restriction enzyme, 2 U Restriction enzymes, 10 – 40 U 

100X BSA (if required), 1 μl  100X BSA (if required), 1 μl 

Autoclaved H2O Top up to 20 μl Autoclaved H2O Top up to 60 μl 

 
 

The above reaction was treated as mentioned for diagnostic digestion and incubated at the 

recommended temperature (usually 37°C) for a standard period of 3 hr. After incubation, gel 

loading buffer was added to the reaction mix and the sample was loaded onto an agarose gel. 

Agarose gel electrophoresis was performed until digested fragments were well separated. The 

band of interest was cut out of the gel as an agarose block. Purification continued with 

QIAquick® gel extraction kit (Qiagen, Germany). 

 

2.1.7 Agarose Gel Electrophoresis 
 

To prepare 100 ml of a 1% (w/v) agarose solution, 1 g of agarose was added to 100 ml of 1×TAE 

and heated in a microwave. The solution was cooled to 55 °C and ethidium bromide was added 

to a final concentration of 0.5 μg /ml. The gel was allowed to solidify in a gel casting tray. 

Before loading of samples, the gel was covered with electrophoresis buffer (the same buffer used 

to prepare the agarose) and 1 μl of 6x gel loading dye was added to every 5 μl of DNA sample. 

Electrophoresis was performed at 100 volts until dye markers had migrated an appropriate 

distance. DNA band in the agarose gel was visualized under UV trans-illuminator at 304 nm. 
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2.1.8 DNA Gel Purification 
 

DNA samples were separated by gel electrophoresis and the fragment to be cloned was cut out of 

the gel and purified by QIAquick® gel extraction kit (Qiagen, Germany). 3 volumes of buffer 

QG was added to each volume of agarose and incubated at 50 °C until the gel slice had 

completely dissolved. The sample was applied to QIAquick column to bind DNA. This was then 

spun down at 14000 rpm for 1 min to allow binding of DNA onto the QIAquick column. 

The flow through was discarded. Washing was done by the addition of 750 μl PE buffer into the 

QIAquick column and spun at 14000 rpm for 1 min. The flow through was discarded. An 

additional 1 min of centrifugation was carried out to remove any residual ethanol. 40 μl of 

nuclease-free water was added into the QIAquick column with sterile micro-centrifuge tube and 

allowed to stand for 1-2 mins. The column was then spun at 14000 rpm for 1 min and the DNA 

stored at -20°C for longer term. For short-term storage, DNA was stored at 4°C. 

 
 

2.1.9 Small-scale Purification of Plasmid DNA 
 

Small-scale preparation of plasmid DNA was carried out using AxyPrep Plasmid Miniprep kit 

(Axygen Biosciences, USA). 1 ml of overnight bacteria culture in LB medium with the 

appropriate antibiotic was harvested by centrifugation at 13000 rpm for 10 mins using the 5417C 

tabletop centrifuge (Eppendorf, Germany). After decanting the culture medium, the pellet was 

resuspended in 250 μl of cell resuspension solution (S1 with added 100 mg/ml RNase A). 250 μl 

of cell lysis solution (S2) was added to each sample of the bacterial resuspension and mixed by 

inverting the Eppendorf tube 4-5 times. Within 5 mins, 350 μl of Neutralization Buffer 
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(S3) was added into each tube and mix by inverting 4-5 times. The neutralized mixture (with 

white precipitate) was then spun down at 14000 rpm for 10 mins at room temperature. The 

supernatant was then decanted into a spin column with a 2 ml collection tube. The spin column 

with the collection tube was then spun down at 14000 rpm for 1 min at room temperature. The 

flow through was then discarded. 700 μl of Wash solution with ethanol (Buffer W2) was added 

into the spin column. This was spun at 14000 rpm for 1 min at room temperature. The flow 

through was again discarded. This washing step was repeated once. This tube was then spun at 

14000 rpm for 2 mins at room temperature. The spin column was then transferred to a sterile 1.5 

ml micro-centrifuge tube. Plasmid was eluted by the addition of 60 μl of nuclease-free water into 

the spin column. The spin column was then discarded and DNA stored at -20°C. The DNA was 

then quantified by using Nanodrop 1000 spectrophotometer (Thermo Scientific, US). 

 

2.1.10 Midi-Scale Purification of Plasmid DNA 
 

QIAGEN-tip 100 (QIAGEN, Germany) was used to isolate ultrapure plasmid for microinjection 

into zebrafish embryos. E. coli cells were lysed by the alkaline/SDS lysis treatment, followed by 

binding of plasmid DNA to QIAGEN anion-exchange resin. Plasmid DNA was eluted in a high 

salt buffer and then concentrated and de-salted by isopropanol precipitation. Briefly, 50 ml 

bacterial suspension containing transformed E. coli was lysed with alkali. The cell debris and 

chromosomal DNA was precipitated with SDS and potassium acetate. After pelleting the debris 

the plasmid DNA in clarified cell lysate was passed through the pre-equilibrated QIAGEN 

cartridge by gravity flow. The column was washed twice with 10ml Buffer QC and plasmid was 

eluted with 5ml buffer QF. Eluted DNA was precipitated with 3.5 ml of isopropanol at room 

temperature and centrifuged at 4,500 g, 4°C for 45 min. The DNA pellet was rinsed with 70% 
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(v/v) EtOH and centrifuged for 10 min at 13,000 rpm, room temperature. The pellet was dried 

and suspended in 100 µl sterile TE buffer, pH8.0. DNA was stored at 4°C for short-term or -

20°C for longer term. 

 

2.2 RNA Procedures 
 

2.2.1 Isolation of total RNA from Zebrafish Embryos 
 

Total RNA was extracted from dechorionated zebrafish embryos using RNeasy® mini kit 

(Qiagen, Germany). Zebrafish embryos were collected at desired stages and placed in 1.5 ml 

Eppendorf tube. Excess liquid was siphoned out from the tube. 350 μl of RLT buffer containing 

β-mercaptoethanol was added into the tube and the embryos were passed through a 23G sterile 

needle for at least 5 times to disintegrate embryos. The lysate was then spun down at 14000 rpm, 

RT, for 3 mins. The supernatant was decanted into a sterile 1.5 ml Eppendorf tube. 350 μl of 

70% ethanol was added into the clear lysate and mixed well. This mixture was transferred to an 

RNeasy mini spin column sitting in a 2 ml collection tube. The column was then spun at 10000 

rpm for 15 sec. The flow through was discarded. 350 μl of RW1 buffer was pipetted into the 

RNeasy column to wash, the column was centrifuged at 10000 rpm for 15 sec. The flow through 

was discarded. In-column DNA digestion was performed by adding 80 μl of RNase-free DNAse 

(10 μl DNAse diluted with 70 μl RDD buffer; Qiagen, Germany) incubation mix was then added 

directly onto the RNeasy silica-gel membrane and allowed to stand on the bench at room 

temperature for 15 mins. After which, another 350 μl RW1 buffer was added into the RNeasy 

column and spun down at 10000 rpm for 15 sec. The flow through was discarded. 500 μl of RPE 

buffer was pipetted on the column and spun down at 10000 rpm for 15 sec. The flow through 
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was discarded and the washing step was repeated with another 500 μl of RPE buffer. The column 

was then spun at 10000 rpm and for 2 mins and the flow through discarded. The column was 

then spun down for an additional 1 min to remove any residual trace of ethanol. Column was 

then transferred to a sterile 1.5 ml Eppendorf tube. Total RNA was eluted by the addition of 

40 μl of RNase-free water onto the RNeasy membrane and spun for 2 mins. The RNA was then 

quantified by using the Nanodrop 1000 spectrophotometer (Thermo Scientific, US). 

 

2.2.2 One-step RT-PCR 
 

Total RNA (DNAse I treated) was isolated from zebrafish embryos using RNeasy® Mini Kit 

(Qiagen, Germany). cDNA for RT-PCR analysis was synthesized using Qiagen® OneStep 

RT-PCR kit (Qiagen, Germany) containing an optimized combination of Omniscript reverse 

transcriptase, Sensiscript reverse transcriptase and HotStartTaq DNA polymerase and the 

reaction was carried out according to the manufacturer's instructions. The technique was used to 

amplify atp2b1a transcripts from wild type and zebrafish embryos for making antisense probe in 

whole mount in situ hybridization experiments. Primers used are listed in Table 10. cDNA 

synthesis at 50°C for 30 mins, followed by denaturation at 94°C for 15 mins for 1 cycle followed 

by 40 cycles of [94°C for 1 min, 61°C for 1 min and 72°C for 1 min] and final extension at 72°C 

for 5 mins. The annealing temperature was changed according to the primer design. 
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Table 6. Primers Used in RT-PCR 
 

Gene Direction Sequence (5’ – 3’) 

atp2b1a Forward GAGAGATCTAGAAGACATGGCTAACAACTCATACAG 

atp2b1a Reverse CTCTCTCCCTAGGTCAAAGGGACGTCTCTAG 

β-actin Forward CTTCCTTCCTGGGTATGGAATC 

β-actin Reverse CGCCATACAGAGCAGAAGCCA 

 
 

2.2.3 First-strand cDNA Synthesis 
 

First-strand cDNA was synthesized using the Superscript First Strand Synthesis Kit (Invitrogen, 

US). Briefly, 600 ng of purified total RNA was added to 10 mM oligo(dT), 10 mM dNTP mix 

and topped up to 10 µl with DEPC water. This mixture was incubated at 65°C for 5 mins and 

quick chilled on ice for another 3 mins. 25 mM MgCl2, 10X First Strand buffer, 0.1M DTT & 

RNase Out (400 U/µl) were added to the mixture and incubated at 42°C for 2 mins. After which, 

2 µl of Superscript II Reverse Transcriptase (50 U/µl) was added into the same tube and 

incubated at the same temperature for 1 hr, followed by 70°C for 15 mins. 1 µl of RNase H was 

added and the mixture was incubated at 37°C for 20 mins and chilled at 4°C. Aliquots of 

synthesized first strand cDNA were stored at -20°C until use. 

 

2.2.4 Long-range PCR 
 

Full length atp2b1a transcript was amplified from purified first-strand cDNA using the long-

range Roche Expand Long Template PCR system. The PCR reaction mix contained 10X Buffer 

1 (with 17.5 mM MgCl2; suitable for amplifying template length ranging 0.5 kb to 9.0 kb), 10 
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mM dNTP mix, gene specific forward and reverse primers for atp2b1a at 10 mM each, first 

strand cDNA template, 3.75 U of Expand Long Template Enzyme mix and topped up to 50 ul 

with sterile ddH20. The PCR mixture was incubated in the following temperature profile: initial 

denaturation at 94°C for 2 mins; 10 cycles of denaturation at 94°C for 10 s, followed by 

annealing at 55°C for 30 s and followed by elongation at 68°C for 4 mins (since predicted full 

length of amplicon was 4 kb). The reaction mixture was then subjected to another 25 cycles of 

denaturation at 94°C; 15 s, annealing at 55°C; 30 s, elongation at 68°C; 4 min with additional 20 

s added to each successive cycle. The final elongation was completed at 68°C for 7 mins and 

cooled to 4°C for storage and use. 

 

2.2.5 Messenger RNA Synthesis for Rescue Experiments 
 

Sense mRNA was synthesized using mMessage mMachine kit (Ambion, USA) according to 

manufacturer’s instruction. Table 11 details the reaction set up: 

 
Table 7: Components of in vitro mRNA synthesis 

 
Component Amount 

2X NTP/CAP 10 ul 

10X reaction buffer 2 ul 

Linearized DNA 
template 

1 ug 

Enzyme Mix 2 ul 

Nuclease-free water top up to 20 ul 

 
Reaction mix was incubated at 37°C for 2 hours. 1 µl of Turbo DNase was mixed in and resumed 

incubation for another 15 mins to eliminate the DNA template. After which, the synthesized 
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mRNA was clean-up using Qiagen RNA clean up procedure and eluted at 30 µl with RNase-free 

water. Synthezied RNA was stored at -20°C and used within 1 month. Full length atp2b1a 

mRNA was designed to omit the priming site of atp2b1a-MO. In most cases, 1 nl of 500 pg/nl 

mRNA was co-microinjected with morpholino into zebrafish embryos.  

 

2.2.6 Quantitative Real-time PCR  
 

2 groups of pharynx explants (150/group) were excised from 3.5 dpf 4% PFA-fixed control and 

morphant larvae. Total RNA was extracted using Qiagen RNeasy kit and treated with DNaseI 

according to manufacturer’s instruction. Quality of RNA was confirmed by Nanodrop 

absorbance measurement. cDNA was synthesized from total RNA with oligo (dT) priming using 

Superscript II reverse transcriptase (Invitrogen). Gene specific primer sets were designed based 

on Danio rerio ZV8 genomic assembly (see Table 12 for primer list). Primer sets were designed 

to span an exon-exon junction to avoid interference from genomic DNA and were tested for 

specificity using PCR (Qiagen) from cDNA template of AB embryos to verify production of a 

single band of the predicted size. Amplicons were PCR-purified (Fermentas) and sequenced for 

confirmation. Quantitative real-time PCR was performed using DNA Engine Opticon System 

(MJ Research) with SYBR green fluorescent label. Samples contained 1× SYBR green master 

mix, 0.1 - 0.5 µmol of each primer and 1 μl of test cDNA at 1 ng/µl for a final volume of 50 μl. 

Samples were run in triplicate (50 pharynx/pool) in coated 96-well plates (MJ Research). Data 

generated were compiled and analyzed for CT values by using the accompanying Opticon 

Monitor software. Student's t-test was used to analyze differences in mean CT values between 
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non-MO injected control and morphant pharynx tissues to determine significant differences in 

expression following morpholino knockdown. Significance was set at P < 0.05. 

 

Table 8. Primers used for quantitative real-time PCR analysis 

Gene Primer (5’-3’) Location; size 
(bp) 

Tm Accession no. 

atp2b1a F) AGACATGGCTAACAACTCATACAG 

R) TCGCAGTTCCATAAGAGAGCGCAGCT 

exon20-exon21; 
112 bp 

55 oC NW_001878904 

integrin αV F) AAGATGAGCAGAGCCAGAAGCAGC 

R) AATCCTGAGCTCCCAACCAGCACT 

exon2-exon3; 
137 bp 

55 oC NW_001879461 

calca F) ATGGTTATGTTGAAGATCTCCGCTT 

R) CAATCTTCTCGCCTCGTAGTCGCT 

exon2-exon3; 
151 bp 

55 oC NW_001879254 

cx43 F) TAGACGTCCAGGTCATCAGG 

R) CGACTACCCTGATGATACACAT 

exon1             
144 bp 

55 oC NW_003040660 

dlx2b F) CGCAGACCCAGGTGAAGATATG 

R) GTGGGAAATCCCAACCTGCT 

exon2-exon3; 
150 bp 

55 oC NM_131297 

b-actin 1 F) CGAGCAGGAGATGGGAACC 

R) CAACGGAAACGCTCATTGC 

exon3             
102 bp 

60 oC NW_001878018 

 
Note: Primer sets spanned an exon-exon junction to avoid errors due to contaminating genomic DNA. Primer sets 
were tested for specificity using standard RT-PCR and zebrafish embryo cDNA as template to verify production of a 
single band of the predicted size. Amplicons were sequenced verified. 
 
 
 

2.3 Zebrafish 
 

2.3.1 Fish Maintenance 
 

http://www.ncbi.nlm.nih.gov/nuccore/NW_001878904
http://www.ncbi.nlm.nih.gov/nuccore/NW_001879461
http://www.ncbi.nlm.nih.gov/nuccore/NW_001879254
http://www.ncbi.nlm.nih.gov/nuccore/NW_003040660
http://www.ncbi.nlm.nih.gov/nucleotide/136255621?report=genbank&log$=nuclalign&blast_rank=1&RID=TB14WVWN01N
http://www.ncbi.nlm.nih.gov/nuccore/NW_001878018
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Zebrafish embryos (Danio rerio) were obtained from the fish facility of the Institute of 

Molecular and Cell Biology. The fish were maintained according to the method described 

(Westerfield, 1995). Fishes were fed three times per day with brine shrimps or commercial fish 

flakes. They were kept under photoperiod cycle set at 14 hrs of daylight and 10 hrs of darkness. 

Crosses were set after the third meal at 1800 hr with a divider and wire mesh. 

Divider was removed at desired time to stimulate spawning behavior. Embryos were then 

collected by a sieve and rinsed thoroughly to remove any waste materials attached to the chorion. 

 

2.3.2 Stages of Embryonic Development 
 

In developmental studies, the accurate staging series is a tool important for defining the timing of 

various developmental events. The embryos used were raised at 28.5°C and staged according to 

standard practice (Kimmel et al., 1995). Embryos which were used for analysis at stages beyond 

36 hpf were treated with 1-phenyl-2-thiourea (PTU; 1.5 mg/ml) at 19 hpf to prevent the 

formation of melanin (Westerfield, 1995). The approximate stage of a live embryo was 

determined by examination under a dissecting stereomicroscope (Leica, Germany). 

 

2.3.3 Microinjection into Blastula Stage Zebrafish Embryos 
 

Micro-needles were pulled from borosilicate capillaries with filament (Sutter Instruments) using 

its Micropipette Puller (model P-97). For pan-embryonic microinjections, capillaries of inner 

diameter 0.58 mm were used while 0.50 mm capillaries were used for blastomeres injections. 

Morpholinos and plasmid DNA samples for injection were prepared at different concentrations 

in 1X Danieu solution (58 mM NaCl; 0.7 mM KCl; 0.4 mM MgSO4; 0.6 mM Ca(NO3)2; 0.5 
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mM HEPES, pH 7.6). Samples were injected into the cytoplasmic stream of 1- 2 cell stage 

zebrafish embryos using a MPPI-2 pressure injection system (Applied Scientific Instrumentation, 

USA). Injected zebrafish embryos were raised in 1X egg water (1 ml contains 10% NaCl; 0.3% 

KCl; 0.4% CaCl2; 1.63% MgSO4.7H2O).  

 

2.3.4 Design of Antisense Morpholinos 
 

Morpholinos (MOs) were obtained from Gene Tools, LLC, USA. The antisense oligonucleotide 

sequences were designed to bind to the 5’UTR or flanking sequences including the initiation 

methionine or sequence at exon-intron junctions. To minimize the possibility of non-specific 

effects, at least two MOs complementary were designed to non-overlapping sequences for each 

gene. MOs were resuspended from lyophilized powder, and then diluted to 1 mM stock in 1X 

Danieau’s solution and stored in dark at 4°C as working solutions or -80°C for prolonged 

storage. The MOs were diluted to the appropriate concentrations and these were injected into the 

yolk cell of one to two cell stage embryos. The designs of MOs used were based on 

recommendations provided by Gene Tools, LLC 

Morpholinos used in this study are listed in Table 9. ATG start site blocking MO, 

atp2b1a-MO was used for experiments since the splice MO (GTE22CA1MO) resulted in similar 

but more severe phenotype. atp2b1a-MO included the predicted ATG start codon. In all studies, 

1 nl of 10 ng/nl control or 5 ng/nl of atp2b1a-MO or 3 ng/nl of zf-p53-MO were injected into 1–

2-cell stage embryos.  

 
 
 
 
 
 



49 
 

Table 9. A List of Morpholinos Used in This Study. 
 

Gene Sequence (5’-3’) Reference 

atp2b1a -MO CCATGTCTCCCGACCACACCTTGTC Go et al., 2010 

5M-atp2b1a-MO CGATCTCTCGCGAGCACAACTTGTC Go et al., 2010 

GTE22CA1MO AACGCGCACTCACACCCGACAGTGG Unpublished 

5M_GTE22CA1MO AAGGCCCACTCAGACCCCACACTGG Unpublished 

atoh1a-MO ATCCATTCTGTTGGTTTGTGCTTTT Millimaki et al., 2007 

ascl1a-MO CCATCTTGGCGGTGATGTCCATTTC Amoyel et al., 2004 

ascl1b-MO TCGTAGCGACGACAGTTGCCTCCAT Amoyel et al., 2004 

calca-MO CATGGTCCCCTTAAGATGCTCAGCT Lafont et al., 2010 

zf-p53-MO GCGCCATTGCTTTGCAAGAATTG Gene Tools LLC 

                 
  Note: 5 Mismatches for control 5M-atp2b1a-MO were underlined  

 
 

2.3.5 Embryo Anesthesia 
 

When viewing live embryos after 19 hpf, the embryos may twitch or move which affects the 

process of imaging. Anesthetic was used to facilitate embryo manipulation. 400 mg of Tricaine 

(aka. MS-222; 3-amino benzoic acid ethyl ester) (Sigma, USA) powder was dissolved in 97.9 ml 

of sterile water and the pH was adjusted to 7 using Tris pH 8.0. Usually, 5 μl of this solution was 

added in a Petri dish with selected embryos and after a few seconds, the embryos could be 

transferred for viewing. 

 

2.3.6 Behavioral Assay 
 



50 
 

Auditory and vestibular functions were assayed as described (Riley and Moorman, 2000). 2dpf 

larvae were stimulated by touch with a needle. Normal larvae show controlled linear motion by 

traversing across a 6 cm Petri dish in a straight line. Larvae with vestibular defect swam in rapid, 

irregular arcs, or in a circle. The ability to maintain a dorsal-side up posture for more than 30 

seconds was checked to define the defect of balance. Auditory ability was tested at 7 dpf by 

tapping the side of the Petri dish. Touch response was used to define motor ability. Each 

individual larva was assayed three times and those with at least one normal response were 

considered to be normal. 

 

2.3.7 16-cell Blastomeres Injection 
 

Fertilized eggs were collected at the 1-cell stage and allowed to develop to the 8-cell stage either 

at room temperature or at 28°C. At the 8-cell stage, embryos were transferred to a 25 mm tissue 

culture dish. De-chorionation was unnecessary. About 30 embryos were transferred to a Petri 

dish with molded agar (1.5% agarose in egg water) injection wells prepared earlier. Wells of 1.5 

mm are ideal. Excess water was removed by Kimwipes tissue paper. Since a micro-manipulator 

was mounted on the right hand side, embryos were then oriented with the blastomeres facing 45o 

right, so that the central blastomeres can be easily recognized. Not more than 200 pl of reagents 

(MO + Texas Red tracer) was injected per blastomere per embryo. After injection, egg water was 

added slowly to the side of the dish to cover embryos and was left undisturbed in the agar wells 

until 2 hrs later in 28°C incubator to prevent injected embryos from bursting. After which 

embryos were collected in a glass Petri dish with egg water and allowed to develop to 4 hpf, then 

inspected under a UV florescence microscope. Properly injected embryos should have labeled 
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clones in the centre of the blasdoderm viewed from the animal pole and a perfect cone when 

viewed from the side. Only these embryos were selected and allowed to develop further. The 

others, where the clones were not in the centre were discarded. This was done to ensure that only 

ectodermal derivatives were labeled. 

 
 

2.4 Functional Assays 
 

2.4.1 Pharmacological Treatment 
 

Embryos were treated with neomycin (neomycin sulfate, Sigma Aldrich) as described (Harris et 

al. 2003). The activity of PMCA was blocked via the administration of its inhibitor, 5(6)-

carboxyeosin (CE; Sigma Aldrich). The chemical was dissolved in 0.1% DMSO (final 

concentration 0.05%) for stock and further diluted to the working concentration (50 µM) with 

embryo medium. For hair cells treatment, embryos were incubated in CE for 6 hrs at 28°C. 

Embryos were mounted ventral side faced up in 0.5% low melting agarose. For UB treatment, 

CE was administered at 10 µM and 3 small boluses (~500 pkl/bolus) were microinjected in 

succession into the pericardium chamber of embryos. Injection in small bolus helps prevent 

cardiac arrest. Vehicle control (0.1% DMSO) marked by Texas-Red tracer dye was injected 

similarly. Effect of CE treatment was observed after 6 hrs incubation at 28°C. 

 

2.4.2 Acid-free Dual Staining of Bones and Cartilage 
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In order to visualize the progression of bone calcification over a period of developmental stages, 

an acid-free staining method was required. For most conventional cartilage staining, Alcian Blue 

8GX has been the histo-dye of choice. But these staining protocols would require dissolving 

Alcian Blue 8GX powder in acetic acid, which would then makes it impossible to visualize any 

calcification signal in parallel. The dual-staining procedure use for this study was successfully 

adapted from Walker and Kimmel, 2006’s work.  

Briefly, an acid-free double stain solution was prepared in 2 parts. Part I was the Alcian 

Blue 8GX for blue cartilage staining which contained 0.4% Alcian Blue (w/v) in 70% ethanol, 

containing the crucial 150 mM MgCl2 for clearing up non-specific Alcian Blue staining. Note 

that Alcian Blue 8GX powder does not dissolve readily in ethanol thus it has to be dissolved 

progressively with higher concentrations of ethanol. Part II was Alizarin Red S for red calcified 

bone staining which contained 0.5% (w/v) Alizarin Red S in ddH2O. Eventually, 1 ml of Part I 

was mixed with 10 µl of Part II for the dual-staining solution. Larvae of at least 3 dpf were fixed 

with 4% PFA/PBS for 2 hr at room temperature. The fixative was later replaced by 50% ethanol 

and dehydrated for 10 mins with constant rocking. The alcohol was replaced with the dual-

staining solution and stained overnight at room temperature with constant rocking. Pigmentation 

was removed on the next day by bleaching in 1.5% H2O2 in 1% KOH for 20 mins. The bleaching 

solution was replaced by a progressive glycerol exposure mixed in 0.25% KOH (i.e. 25%, 50%, 

75% to 100%) and rocked overnight at room temperature for tissue clearance. For older larvae 

(e.g. 6 and 7 dpf), few nights of constant rocking was necessary to clear the tissues sufficiently to 

reveal specific bone staining. 

 

2.4.3 Vital Dye Staining on Live Embryos 
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Vital dyes which detect specific signals were used during this study. Prime advantage of using 

vital staining procedure was the ability to obtain crucial information on live embryos which will 

otherwise be missed using fixed specimen. Data was collected and analyzed via various means of 

microscopy described in Section 2.8. Table 10 has listed the type of vital dyes used in this study, 

along with their working concentrations. 

 
Table 10: Vital dyes used and their working dilution 

 
Vital Dye Signals or Structures stained Working Dilution Ordering info. 

DASPEI hair cells and ionocytes 1 mM in egg water Invitrogen; D426 

MitoTracker Red mitochondria and cell membrane 1 µM in egg water Invitrogen; I34154 

Bodipy Texas Red Cell membrane 1 µM in egg water Invitrogen; I34407 

Calcium Crimson AM Intracellular Ca2+ 1 µM in egg water Invitrogen; C3018 

Rhodamine Phalloidin F-actin, stereocilia to be determined by user Invitrogen; R415 

Alizarin Red S calcified bone 25 µg/ml in egg water Sigma Aldrich; A5533 

Calcein calcified bone 25 µg/ml in egg water Sigma Aldrich; C0875 

Acridine Orange Apoptotic cells 150 mg/ml in egg water Sigma Aldrich; A6014 

 
 

2.4.4 Bone Mineralization Assay 
 

Dual-stage bone staining of the developing opercle was performed as described (Kimmel et al., 

2010). Briefly, Alizarin Red S (AR) and Calcein were able to function as vital stains, 

highlighting bones that are in the process of calcification or calcified bones. AR is able to emit 

florescence signal at 580 nm when excited at between 530-560 nm while Calcein is able to 

florescent at 517 nm when excited at 494 nm. Vital stains were dissolved in 1X egg water from 
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stock solutions. Larvae were stained successively by first pulse exposed to AR (50 µg/ml) for 2 

hours at 3 dpf, with a period of washing out before being incubated in Calcein (50 µg/ml) at 

28°C up to 3 days until observation under a dual channel confocal microscope. The initial pulse 

to AR labeled the entire bone matrix present at the time of the pulse. It is important to note that 

this dye-bone staining appeared stable with little or no decrease detected in intensity over the 

subsequent 3-day incubation. 

 

2.4.5 Live Ca2+ Imaging 
 

Chemical Ca2+ indicator was used to obtain representative Ca2+ profile of live embryos, in 

particular the sensory hair cells of neuromasts and inner ear. Live embryos were collected at 

appropriate stages and stained with 1 µM Calcium Crimson AM (CC; Invitrogen, Molecular 

Probes; Fig. 8), dissolved in 1X egg water. After incubation at 28°C in the dark for 1 hr, embryos 

were washed 3 times, 10 mins each with 1X egg water to removed unstained dye and mounted 

for live confocal imaging as described in Section 2.8.1. High resolution confocal images were 

obtained as described in Section 2.8.2. Through such manipulation, sensory hair cells of the 

lateral line were able to pick up the staining efficiently. For visualizing hair cells located deeper 

within the confinement of the otic vesicles, it was necessary to microinject small volume of <200 

pkl of the indicator directly into the otic vesicle. Single-line analysis measuring relative 

fluorescence level of signal emitted by CC was performed on hair cells by confocal software 

described in Section 2.8.2. 
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Figure 8: Chemical Calcium Indicator; Calcium Crimson AM. A) Ca2+-dependent fluorescence 

emission spectra of the Calcium Crimson indicator. B) Fast confocal recording of spontaneous Ca2+ 

sparks in a rat ventricular myocyte (Invitrogen, Molecular Probe, USA). C) SqET4 vitally stained with 

Calcium Crimson AM (Go et al., 2010).The acetoxymethyl (AM) ester derivatives of fluorescent 

indicators and chelators make up one of the most useful groups of compounds for the study of live cells. 

Modification of carboxylic acids with AM ester groups results in an uncharged molecule that can 

permeate cell membranes. Once inside the cell, the lipophilic blocking groups are cleaved by nonspecific 

esterases, resulting in a charged form that leaks out of cells far more slowly than its parent compound. 

Frequently, hydrolysis of the esterified groups is essential for binding of the target ion. AM ester is 

colorless and non-fluorescent until hydrolyzed. This property is useful in diagnosing spontaneous 

hydrolysis during storage.  

 

2.4.6 Birefringency of somite 
 

Somite’s integrity of larvae was assessed by its level of birefringency. Normal forming somite 

exhibit high level of birefringency post-somitogenesis and is observable under a polarized light 

source. In this case, an Olympus Stereomicroscope SZX-12 was fitted with a polarizer light filter 

(Olympus SZX-AN, Japan). Zebrafish larvae were contained in a glass Petri dish and 

birefringency of somites can be easily visualized through the eye piece of the stereomicroscope, 

which appeared as bright white fluorescence in dark field.  
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2.4.7 Hanging Drop Culture 
 

Hanging-drop cultures were done with animal caps from embryos at 50% epiboly as previously 

described (Steinberg and Takeichi 1994). Briefly, embryos were injected with lysine-fixable 

fluorescein- or Texas Red conjugated dextran (mw. 70 kDa) into 1-cell stage embryos. Atp2b1a-

MO was co-injected with fluorescein-dextran. Embryos were grown to 50% epiboly and the yolk 

cell was removed manually. The resultant animal caps (n=15 each for fluorescein and Texas Red 

labeled) were mixed together in an Eppendorf tube and mechanically dissociated in 300 μl of 

L15 medium with a 200 μl pipette. Drops of 30 μl each were placed on a plastic Petri dish cover 

and carefully inverted, creating hanging-drops. Dishes were then taped with surgical tape (3M 

Micropore™, NDC 8333-1530-1), to prevent contamination while still allowing airflow) and 

incubated at 28°C overnight. Fluorescent images were obtained by imaging with Olympus 

Fluoview FV1000 upright confocal system (Olympus, Japan).  

 

2.5 In situ Hybridization 
 

2.5.1 Antisense Probe Synthesis 
 

7 to 10 μg of plasmid DNA was linearized at the 5’ end of the cDNA insert by a preparative 

restriction enzyme at 37°C for 3 hrs. 1μg of linearized DNA was used to synthesize the 

DIG/fluorescein probe. The reaction was performed at 37°C for 2 hrs in a total volume of 20 μl 

containing 2 μl of 10X transcription buffer (Ambion, USA), 2 μl of DIG/Fluorescein-NTP mix 

[10 mM ATP, 10 mM CTP, 10 mM GTP, 6.5 mM UTP and 3.5 mM DIG/Fluorescein-UTP 

(Boehringer Mannheim, Germany)], 1 μl of RNase inhibitor (40U/ μl) (Promega, USA). 2 μl of 
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RNase-free DNase I was used to digest the DNA template at 37°C for 15 mins following this 

reaction. Antisense probes used in this study were generated from cDNAs and are listed in Table 

11. 

 

Table 11. A List of Molecular Markers Used in this Study. 
 

Gene Vector Restriction enzyme RNA Polymerase  Reference 

egfp pBluescript SacI T7 Teh et al.,  

atp2b1a pGEM-Teasy SacII SP6 Go et al., 2010 

atoh1a pGEM-Teasy SpeI T7 IMAGE clone: 7428977 

sox2 pCMVSport6 EcoRI T7 IMAGE clone: 6801649 

tacstd pGEM-Teasy SacII SP6 Villablanca et al., 2006 

calca pGEM-Teasy SpeI T7 Alt et al., 2006 

 
 

2.5.2 RNA Probe Clean Up 
 

Sample was adjusted to a volume of 100 μl with RNAse-free water. 10 μl of β-mercaptoethanol 

was added to 1 ml of RLT buffer. This was followed by the addition of 350 μl of the RLT buffer 

to the diluted RNA sample that was subsequently mixed with 250 μl of 96-100% ethanol. This 

whole volume was then transferred to an RNeasy mini spin column that had been inserted into a 

collection tube. The spin column and collection tube was spun at 10000 rpm for 15 sec. The flow 

through was then discarded. 500 μl of RPE buffer was pipetted into the spin column and spun at 

10000 rpm for 15 sec. Flow through was discarded and replaced with another 500 μl of RPE 

buffer. The column was spun at 10000 rpm for another 2 min. The RNeasy column was then 

removed and placed onto a new 1.5 ml Eppendorf tube and 30-50 μl of RNase-free water was 
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added into the RNeasy column and allowed to stand for 1 min. RNA probe was then eluted out 

by micro-centrifuging the column at 10000 rpm for 1 min. The RNA probe was then stored at -

80°C. 

 

2.5.3 Fixation of Staged Embryos 
 

Embryos were dechorionated manually using a pair of 26 gauge hypodermic needles and fixed 

overnight at room temperature. Staged embryos were chilled on ice for 5 mins to straighten their 

body and fixed in 4% PFA(paraformaldehyde) /PBS (0.8% NaCl; 0.02% KCl; 0.0144% 

Na2HPO4; 0.024% KH2PO4, pH 7.4) for 12 to 24 hrs at room temperature. Embryos younger 

than 15 hpf were fixed before dechorionation and the chorion was removed afterwards. Embryos 

older than 16 hpf were dechorionated before fixation. After fixation, the embryos were washed in 

PBST (0.1% Tween-20 in PBS) thrice for 5 mins each on nutator. 

 

2.5.4 Proteinase K (PK) Treatment 
 

This step is carried out for embryos that are older than 14 somites (>16 hpf). Embryos were 

treated with 10 μg/ml of PK (Roche) in PBST at room temperature. The time of exposure to PK 

is dependent on the stage of the embryos and the specific activity of PK, which vary from batch 

to batch. In general, the guidelines are listed in Table 12. Embryos were post-fixed in 4% 

PFA/PBS for 20 mins at room temperature. Embryos were then washed in PBST thrice for 5 

mins each. 
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Table 12. Permeabilization of Zebrafish Embryos and Larvae by Proteinase K (PK) 

 
Embryo 

stage (hpf) 
Time of PK 

Treatment (mins) 

<24 3 

24-32 5 

33-36 10 

37-40 15 

>41 20 

 

It is important to note that for staining lateral line cells, PK treatment was usually avoided since 

it will removed some peripheral tissues which inevitably affects the final outcome of the 

staining.  

 

2.5.5 Pre-hybridization 
 

Pre-hybridization was performed by replacing PBST with pre-hybridization buffer [50% 

formamide; 5X SSC; 50 μg/ml heparin; 500 μg/ml torula RNA; 0.1% Tween-20; pH 6.0 (pH 

adjusted by citric acid)]. And the tube was placed at 68°C for at least 4 hrs. 

 

2.5.6 Hybridization 
 

2 - 4 μl of DIG-labeled probe (signal intensity dependent) was diluted in 300 μl of hybridization 

buffer and denatured at 70°C for 5 mins, followed by 5 mins on ice. Selected embryos were 

placed in a 1.5 ml Eppendorf tube with the original pre-hybridization solution removed and 

replaced with probe added in pre-hybridization solution. The reaction was incubated overnight at 



60 
 

68°C in a circulating water bath. The next morning, the embryos were incubated in four changes 

of washing solution containing decreasing percentage of formamide in 2X SSCT. The four 

washing solutions contained stepwise decrease in formamide from 50% formamide in 2X SSCT 

at the first wash to 12.5% of formamide in 2X SSCT at the last wash. All washings were 

conducted in the 68°C water bath for a period of 15 min per wash. This was followed by the fifth 

wash with 2X SSCT without formamide for 15 min. And the final wash of 0.2X SSCT at 68°C 

for 1 hr. 

 

2.5.7 Preparation of Pre-adsorbed Anti-DIG Antibody 
 

Commercial anti-DIG Fab-AP antibodies (Roche Diagnostics, Germany) should be pre-

incubated with intact biological specimen, to decrease the staining background and to increase 

signal-to-noise ratio. In most cases, anti-DIG-AP antibodies was diluted to 1:200 in PBS 

containing 5% blocking reagent (Roche Diagnostics, Germany) and incubated with 4% PFA 

fixed zebrafish embryos on a nutator at 4°C overnight. After that, the antibody solution was 

transferred to a new tube and diluted to 1:2000 and 1:500 with PBS in 5% blocking reagent, 10 

μl of 0.5 M EDTA (pH 8.0) and 5 μl of 10% sodium azide in a final volume of 10 ml to prevent 

bacterial growth. The pre-absorbed antibody was stored at 4°C and can be reused up to 3 times. 

 

2.5.8 Incubation with Pre-absorbed Antibodies 
 

After hybridization and post hybridization washes, the embryos were incubated in PBS 

containing blocking solution for a minimum of 1 hr at room temperature to remove background 
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signal generated from non-specific binding of antibodies. After removing the blocking solution, 

the embryos were incubated with pre-absorbed anti-DIG-AP antibody at 4°C overnight. 

 

2.5.9 DIG and Fast Red Staining 
 

After antibody incubation, embryos were washed 4 times 20 min each in PBS followed by 2 

times 15 min each in detection buffer (100 mM Tris pH9.5, 5 mM Mg Cl2, 100 mM NaCl). 

NBT/BCIP color substrate development was performed in the presence of 0.3375 μg/ml of 

nitroblue tetrazolium (NBT) (Sigma-Aldrich, USA) and 0.175 μg/ml of 5-bromo, 4-chloro, 3-

indolil phosphate (BCIP) (Sigma-Aldrich, USA) dissolved in detection buffer. Fast red staining 

was prepared by dissolving 1/2 of the fast red tablet (Roche Biochemicals, Switzerland) in 1ml 

detection buffer (100 mM Tris pH8.2, 5 mM Mg Cl2, 100 mM NaCl). The content was clarified 

by centrifugation and mixed with equal part of Naphthol AS-MX phosphate (Sigma, MO, USA) 

solution (500 μg/ml in fast red detection buffer). Color development was allowed to proceed in 

the dark and monitored occasionally under light microscopy until the desired intensities were 

achieved. For control and experimentally injected sets of embryos, the staining procedures were 

initiated and stopped at the same time. The staining reaction was stopped by washing 2 times 5 

min each with PBST followed by 4% PFA fixation for a minimum period of 20 min before 

storing stained embryos in PBS containing 50% glycerol. 

 

2.5.10 Two Color In situ Hybridization 
 

In two-color whole mount in situ hybridization, two distinct RNA probes labelled with DIG or 

Fluorescein were applied to the same embryos in equal ratio. After incubation at 68°C overnight, 
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the probe in hybridization solution was removed and washing was carried out as stated in section 

2.5.6. The DIG detection was carried out first and the procedure is as described in section 2.5.9. 

Following the DIG staining with NBT/BCIP, the embryos were washed with Maleic acid buffer 

(MA; 0.15M maleic acid; 0.1 M NaCl; pH 7.5) twice for 10 mins. To remove the phosphatase 

activity of first antibody, the embryos were incubated with glycine buffer (0.1 M, pH 2.2) for 30 

mins at room temperature. After that, the embryos were washed with PBST four times for 10 

mins each and then incubated in blocking buffer (5% Blocking reagent in MA buffer, Roche, 

Germany) at room temperature for 1 hr. Embryos were subsequently incubated with anti-

Fluorescein-AP antibody overnight at 4°C. To detect the fluorescein signal, the embryos were 

washed with MA buffer (50 mM maleic acid; 100 mM NaCl) at room temperature for 4 times 20 

min each. After which, the MA buffer was replaced with fast-red staining as stated in section 

2.5.9. 

 

2.6 Cryostat Sectioning 
 

2.6.1 Mounting Specimen for Cryostat Sectioning 
 

Fixed or stained embryos were first transferred into molten 1.5% Bacto-agar - 5% sucrose in a 

detached Eppendorf cap at 50°C. A syringe needle was used to adjust the embryo in a desired 

orientation in a gradually hardening agar. After the agar block solidified, a small trapezium-

shaped agar block was cut with razor blade to mount the sample in the proper position. The block 

was then transferred into 30% sucrose solution and allowed to stand at 4°C overnight. 
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2.6.2 Freezing and Collecting Sectioned Specimens 
 

Subsequently, the block was placed on the frozen surface of a layer of frozen tissue freezing 

medium (Tissue-Tek O.C.T., Sakura, Japan) on a pre-chilled (-20°C) tissue holder or chuck. The 

block was then coated with one drop of freezing medium and frozen in liquid nitrogen until the 

block had solidified completely. The frozen block was placed into a cryostat chamber (Leica, 

Germany) for 30 mins to be equilibrated with temperature of chamber that is at -25°C. Normally, 

12 μm thick sections were cut and collected on a Leica CM1900 Cryostat (Leica, Germany) and 

the sections were transferred onto warmed polysine charged slides (Thermo-Scientific). The 

slides were dried at 42°C on the hotplate for 30 mins. The sections were rinsed briefly with 

PBST and cover slips were placed on the slides with several drops of 50% glycerol/PBS or 

Vectashield mounting medium with DAPI counter stain (Vecta Labs, US) for protection of 

fluorescence staining. The slides were sealed with nail polish and ready for observation under 

microscope. 

 

2.7 Protein Applications 
 

2.7.1 Immunohistochemical Staining 
 

Fresh embryos were collected at appropriate stages and were fixed with 4% PFA/PBS overnight 

at RT. 5X PTU was added to prevent pigmentation for later stage embryos. The next morning, 

the embryos were washed in PBST thrice for 5 mins each and replaced with 100% methanol for 

storage at -20°C. Embryos were rehydrated in a stepwise fashion of decreasing MeOH 

concentration in 1X PBST (75%, 50%, 25% MeOH/1X PBST). To improve antigen retrieval by 
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antibody, embryos were equilibrated in 150 mM Tris-HCl, pH 9.0 for 5 mins and heat treated at 

70°C for 15 mins in a water bath (Inoue and Wittbrodt 2011). Embryos were washed with dH20 

twice for 5 mins each and treated with ice cold acetone at -20°C for 20 mins to improve 

permeability. Acetone was washed away by rinsing six times with 1X PBST for 5 mins each and 

replaced with blocking reagent (Roche Diagnostics, Germany) for at least an hour. Primary 

antibodies were added at appropriate working dilutions in PBDT (1X PBS, 1% BSA, 1% DMSO, 

0.5% Triton-X100, ddH2O) and allowed to detect from overnight to 3 days in 4°C. After which, 

the primary antibodies were removed and washed with 1X PBST for 4 times at 20 mins each. 

Embryos were re-blocked with the same blocking reagent for another hour at room temperature. 

Appropriate Alexa Fluor-conjugated secondary antibodies were added. Secondary detection was 

allowed to occur for at least 2 hours to overnight in 4°C. After that, the antibodies were removed 

and the same washing steps followed. To preserve staining, embryos were kept in 50% 

glycerol/50% PBST or Vectashield mounting medium (Vecta Labs, US) at 4°C until use.   

Embryos were prepared for viewing and photography as stated in section 2.8. Table 13 lists the 

primary and secondary antibodies used in this study along with their working dilutions. 
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Table 13: Primary and Secondary antibodies used 
 

Antibody Host animal Working dilution Order info. 

anti-acetylated tubulin mouse 1:500 Sigma-Aldrich; T6793 

anti-Sox2 rabbit 1:100 Millipore; AB5603 

anti-Calcitonin mouse 1:500 Thermo-Scientific; MA3-021A 

anti-CGRP rabbit 1:100 Millipore; AB15360 

anti-GFP mouse 1:200 Santa Cruz; sc9996 

anti-GFP rabbit 1:500 Clontech; 63246 

anti-GFP rabbit 1:500 Abcam; AB6556 

anti-dsRed rabbit 1:500 Clontech 

Alexa Fluor 635 Phalloidin N.A. 1:500 Molecular Probe; A34054 

Alexa Fluor 488 mouse 1:200 Molecular Probe; A11017 

Alexa Fluor 488 rabbit 1:200 Molecular Probe; A11008 

Alexa Fluor 594 mouse 1:200 Molecular Probe; A11005 

Alexa Fluor 594 rabbit 1:200 Molecular Probe; A11072 

  
 

2.7.2 Cell Proliferation Assay (BrdU assay) 
 

The whole-mount cell proliferation assay was performed on both control and morphant embryos 

at 55hpf, as described by Shepard et al (2004). Briefly, embryos were incubated in cold 10 mM 

BrdU/15% DMSO (Amersham Biosciences, RPN20) in embryo medium for 20 min before 

allowing embryos to develop at 28.5oC for 15min. Embryos were then fixed with 4% PFA/PBS 

for 2 h before transferring to methanol overnight at 20oC. Embryos were re-hydrated with graded 

methanol, digested in proteinase K and refixed. Embryos were then incubated in monoclonal 

anti-BrdU at 1:100 dilution and rabbit anti-phospho-histone 3 antibody of 1.33µg/ml overnight at 
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4 oC. BrdU and anti-pH3-labeled cells were detected using Alexa fluor 488 and Alexa fluor 594 

secondary antibodies (Invitrogen, Molecular Probes), respectively. For imaging, embryos were 

mounted in the lateral orientation in VectaShield (Vector Laboratories Inc, H-1000). BrdU-

labeled cells and anti-pH3-labeled cells were counted using 63X objective and Normarski optics 

of Zeiss LSM 510 Inverted Confocal Microscope. 

 

2.8 Microscopy 

 

2.8.1 Embryo Mounting and Imaging Using Upright Light Microscope 
 

This procedure was performed for imaging stained embryos by whole mount in situ hybridized 

embryos. Stained embryos were transferred to 3% methyl cellulose on a concaved glass slide and 

conveniently orientated by manipulating embryos by dissection needles under a dissection 

microscope. For flat specimen, the yolk of the selected embryo was removed completely with 

needles. The de-yolked embryo was then placed onto a slide with a small drop of 3% methyl 

cellulose and adjusted to a proper orientation by a needle. Excess liquid was removed with tissue 

paper. Digital images were taken using a camera mounted to an AX-70 microscope (Olympus, 

Japan) with iSolution lite ver. 7.8 imaging software supplied by the MicroOptics. Brightness and 

contrast of images were adjusted as a whole by Adobe Photoshop CS ver.3 & 4. 

 

2.8.2 Multi-channels Viewing and Confocal Microscopy 
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EGFP expression in live transgenic embryos was monitored under an Olympus SXZ16 or a Leica 

MZ FLIII stereomicroscope equipped with UV epifluorescence light source (ebq100, Leica). For 

detailed analysis, embryos were anesthetized as described in Section 2.3.5. For confocal 

imaging, embryos were live-mounted in 2% low melting agarose in Mat-Tek confocal dish for 

inverted configuration of the confocal system. Confocal images were acquired using Zeiss 

LSM510 and later, LSM700 scanning confocal systems (Carl Zeiss Inc., Germany) using lasers 

at appropriate wavelengths and bandpass filters. For time-lapse imaging, mounted embryos were 

covered with 1X egg water supplemented with PTU and triciane and maintained at 28°C using 

the fitted thermostat chamber. Time interval was specified over a 15 hr period and assembled 

into a final movie at a frame rate of 300 ms. Z-stacks images were taken at desired intervals 

using a 10X Plan-Neofluar 0.3 objective and 63X water immersion objective. Raw images were 

collected, processed and analyzed using the LSM510 Image Browser software and its later 

updated version, the ZEN 2009 lite version (Carl Zeiss Inc., Germany). 
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CHAPTER 3 

Results 
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3.1 atp2b1a in Mechanosensory Hair Cells 

 

3.1.1 Cloning and expression analysis of atp2b1a 
 

The sequences flanking the Tol2 insertion in SqET4 were obtained using TAIL-PCR (Parinov et 

al., 2004). Using BLAST analysis, the insertion was mapped to Chr. 4. This insertion is 97.4 kb 

away and in the opposite orientation to the Atp2b1a coding sequence located within the genomic 

clone DKEY-18O7 (Fig. 9A). We then cloned atp2b1a mRNA (GenBank accession no. 

HM449162). By RT-PCR, a low level of maternal atp2b1a transcript was detected (Fig 9B, Lane 

1 & 2). It declined at 3hpf, and then increased at 5hpf (possibly due to an activation of zygotic 

transcription) followed by one more increase at segmentation stage (12hpf) (Fig. 9B).  

Whilst atp2b1 and gfp genes were in opposite orientation, their expression patterns were 

similar (Fig. 9A & C-K) and identical to a number of ESTs corresponding to atp2b1a (Rauch et 

al., 2003; Thisse et al., 2001; Thisse and Thisse, 2004). In sensory patches of the inner ear and in 

lateral line neuromasts, both transcripts were detected in the position of mechanosensory hair 

cells (Fig. 9C, D). In the L1 neuromast of 48hpf SqET4 embryo, a tight cluster of these cells was 

detected, with each cell projecting a kinocilium from its apical tip (Fig. 9E). Our analysis 

demonstrated co-localization of atp2b1a, egfp and EGFP in hair cells of the inner ear at 48hpf 

(Fig. 9F-H). These markers were observed in newly deposited neuromasts, as well as in a 

proneuromast of the posterior lateral line primordium (PLLP, black dashed line, Fig. 9I, J, K). 

During 3h period, when the primordium migrates from somite 6 (S6) to S8, the hair cell 

precursors divided in the trailing region of the primordium (Fig. 9, K-N). Thus, atp2b1a 

expression was initiated very early during development of the mechanosensory cells. This is in 
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concert with earlier observations from Lopez-Schier and Hudspeth (2006) that showed that GFP 

in SqET4 was expressed in transient progenitors prior to their terminal division, resulting in the 

formation of hair cells. These results demonstrate that SqET4 represents the Tg:atp2b1a-GFP 

line. As the expression of atp2b1a (and that of EGFP in SqET4) marks the initial stages of 

mechanosensory hair cells formation, we hypothesized that Atp2b1a is required for hair cell 

differentiation. 
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Figure 9: Expression pattern of atp2b1a transcript recapitulates that of egfp in SqET4. (A) Insertion 

of Tol2 (triangle, green line) was mapped to the Chr. 4 near the atp2b1a. The sequence of 8-bp target site 

duplication is in lowercase. Arrows indicate the directions of transcription for EGFP and atp2b1a. The 

genomic clone, DKEY-18O7, contains the Tol2 insertion and atp2b1a. The coordinates of the DKEY-

18O7 sequence corresponding to the Tol2 insertion and translation initiation (ATG) and termination 

(TGA) codons of the atp2b1a are shown above. Note that DKEY-18O7 sequence represents the reverse 

complement of atp2b1a sequence. (B) Semi-quantitative detection of atp2b1a expression using RT-PCR. 

(C & D) Both atp2b1a and egfp transcripts of SqET4 were detected in neuromasts of the anterior (data not 

shown) and posterior lateral line. (E) Mechanoreceptor of L1 neuromast of 48hpf-old SqET4 larvae 

showing a tight cluster of mechanoreceptor cells and kinocilium bundle. (F & G) Cross-sections of 48hpf-

old SqET4 after WISH detecting atp2b1a and egfp in the inner ear hair cells. (H) Composite picture of 

48hpf-old SqET4 showing expression of EGFP in mechanoreceptors of anterior and posterior macula. (I 

& J) Expression of atp2b1a and egfp in the newly deposited neuromast, as well as the mechanosensory 

hair cell precursor of the proneuromast (black dashed line). (K) Confocal scan of Bodipy-stained SqET4 

(red) revealing the primordium of lateral line (38hph). (K - N) Time-lapse monitoring of neuromast 

deposition during 3h migration of primordium from somite 6 (S6) to somite 8 (S8), showing mitotic 

division of hair cell precursors (marked by EGFP of SqET4) during neuromast deposition upon 

proneuromast reaching the primordium trailing edge (line). (I-K ) arrow indicates direction of prim1 

migration. Abbreviations: hc: hair cells; ov: otic vesicle; am: anterior macula; pm: posterior macula; s: 

somites; ao: anterior otolith; po: posterior otolith, nm: neuromast; pnm: pro-neuromast; prim1: primary 

primordium of posterior lateral line. 
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3.1.2 atp2b1a functions in the context of lateral line development  
 

In the absence of mutants affecting atp2b1a, a role for this gene in hair cell development was 

studied using the morpholino (MO)-mediated knockdown (KD) approach. The translation-

blocking MO efficiently down-regulated the GFP expression of the reporter construct (Fig. 10), 
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and affected GFP expression in the lateral line of SqET4 and in tp53 morphants (Fig. 11C).  Co-

injection with tp53 MO eliminates off-target effects that are associated with tp53-mediated 

apoptosis. This demonstrates both tissue- and target-specificity of atp2b1a MO. The position of 

neuromasts was affected in SqET4 morphants. We counted total number of neuromasts and total 

number of hair cells of L2 and L3 neuromasts of 18 embryos per treatment, staged at 48hpf. 

Morphant embryos displayed less neuromasts (reduced to 32%) and hair cells per neuromast (L2 

and L3 combined: reduced to 33.3%); (Fig. 12A to B'; Table 14). Division of hair cells during 

neuromast formation was perturbed in atp2b1a morphant (Fig. 12B & 13). The effect of atp2b1a 

MO was partially reversed by co-microinjection of atp2b1a mRNA, which moderately restored 

neuromast position, caused a two-fold increase in neuromast number (increased to 58.7%), and a 

three-fold increase in hair cell number (L2 and L3 combined: increased to 73%); (Fig. 12C, C'; 

Table 14). Thus, Atp2b1a has a functional role in neuromast and hair cell development. 
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Figure 10: Control experiment showing the specificity of atp2b1a morpholino used throughout this 

study. A target construct containing the target sequence of the morpholino; 5’UTR-CA1 was cloned in-

frame to pEGFP-N2 vector.  (A & B) Brightfield versus florescence images of control embryos injected 

only with the above target construct. (C & D) Brightfield versus florescence images of control embryos 

co-injected with target construct and control morpholino. (E & F) Brightfield versus florescence images 

of control embryos co-injected with target construct and atp2b1a morpholino was able to shuts down 

EGFP expression completely. 
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Figure 11: Control experiment showing that the effect of atp2b1a morpholino is not due to 

activation of Tp53. A & B illustrates the control situation of deployed neuromasts at 48hpf. B is a double 

transgenic of SqET4 crossed with SqET20 which provided additional EGFP signal from support cells of 

neuromast and inter-neuromast cells. Co-injection of atp2b1a morpholino with zf-p53 morpholino does 

not affect the outcome of atp2b1a morpholino knockdown phenotype in the PLL neuromasts (C). (A’, B’, 

C’) Magnified view of L1 neuromast compares the division plane of hair cells. (n = 10).  
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Figure 12: Rescue of atp2b1a morphants using full-length atp2b1a mRNA. (A) Confocal stack image 

of the PLL neuromasts (L1 to L7) in control SqET4 embryo. (A’) Magnified view of L2 and L3 

neuromasts of control SqET4. (B) The number of neuromasts in atp2b1a morphant is reduced (L1 to L3). 

The body axis of the morphant appears bended. (B’) Magnified view of atp2b1a morphant L2 and L3 

neuromasts show reduction of mechanosensory cells and intensity of GFP signal. (C) Co-injection of 

atp2b1a morpholino with atp2b1a mRNA increased the number of neuromasts (L1 to L4) found more 

anterior, similar to that in control, and the body axis has straightened. (C’) Magnified view of L2 and L3 

neuromasts of morphants after mRNA rescue demonstrate more intense GFP expression. (D, E) Statistical 

analysis of the atp2b1a mRNA rescue showed an increase in the number of neuromasts as well as 

mechanosensory hair cells of L2 and L3 neuromasts. Horizontal bar – S. D. (n = 61). 
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MO dose No 
neuromast  

One 
neuromast  

Two 
neuromasts  

>Three 
neuromasts  

0.3pg  0  26.6%  5.2%  67.8%  

0.6pg  16.4%  58.6%  9.5%  13.8%  

 

Table 14: Reduction of number of neuromasts caused by atp2b1a knockdown is dosage-dependent. 

Number of neuromasts was estimated at 2 dpf from counting groups of EGFP positive mechanosensory 

hair cells of posterior lateral line of morphant embryos/larvae of SqET4 transgenic line.  (N = 50) 

 

 

 

Figure 13: atp2b1a knock down disrupted the rapid cell proliferation of hair cells in developing 

neuromast. A1-A4 shows the time-lapse monitoring of the development of control L2 neuromast of 

SqET4 from 40hpf to 55hpf. Beginning with two mature (based on stronger intensity of EGFP signal) hair 

cells at 40h, L2 neuromast developed rapidly to a cluster of around 6 mature hair cells by 55h. (B1-B4) 

L2 neuromast of Atp2b1a morphant developed significantly slower than control with two mature hair 

cells at 40h and 55h. (n = 6).  

 

3.1.3 atp2b1a regulates dynamics of Ca2+ in developing and mature hair cells 
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Given the reported activity of Atp2b1 proteins in Ca2+ export, we analyzed the Ca2+ levels in 

wild type embryos and atp2b1a morphants. In vivo staining of neuromasts by Ca2+ reporter dye 

(Calcium Crimson AM) revealed a signal associated with the cupula of hair cell bundle (Fig. 

14A, orthogonal sections: Ai & Aii, 3D projection: Aiii), outside of the cell body (Fig. 14E to 

Eii).  In contrast, in atp2b1a morphants, Ca2+ signal on cupula was reduced (Fig. 14B, 

orthogonal sections: Bi & Bii, 3D projection: Biii) and Ca2+ was predominantly detected inside 

the cells (Fig. 14F to Fii), signifying that Atp2b1a is largely responsible for export of Ca2+.  

Treatment of gastrulating embryos with the PMCA inhibitor, 5(6)-carboxyeosin (CE, 

Kurnellas et al. 2005) blocked Ca2+ export from hair cells and reduced the number of neuromasts 

and hair cells (Fig. 14F and Table 15), similar to that in the atp2b1a morphants. When assessed 

with Ca2+ reporter dye, a profile similar to morphant was resulted (Fig. 14C, orthogonal sections: 

Ci & Cii, 3D projection: Ciii, 14G to Gii). In contrast, thapsigargin, a SERCA-specific inhibitor, 

had no such effect on hair cells (data not shown).  

Upon co-microinjection of MO and atp2b1a mRNA, Ca2+ was detected at some distance 

from hair cell bodies (Fig. 14D, orthogonal sections: Di & Dii, 14D projection: Diii), suggesting 

not only restoration of Ca2+ export, but the additional restoration of Ca2+ signal of cupula. Ca2+ 

signal of rescued morphant hair cells was detected largely outside the cell bodies; similar to 

control (14H to Hii). 
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Figure 14: atp2b1a is required for Ca2+ extrusion from mechanosensory hair cell. Calcium Crimson 

AM (CC) was used as an in vivo indicator of intracellular Ca2+ level in SqET4 transgenics. Ca2+ is 

predominantly localized within the cupula. (Ai & Aii) Orthogonal sections of control L1 neuromast 

(55hpf); (Aiii) 3D projection (42o along Y-axis) of the same neuromast depicting the spread of Ca2+ along 

cupula. (Bi & Bii) Orthogonal sections of Atp2b1a morphant L1 neuromast (55hpf), (Biii) 3D projection 

of the same neuromast. (Ci & Cii) Orthogonal sections of carboxyeosin-treated L1 neuromast (55hpf), 

(Ciii) 3D projection of the same neuromast. Green and red box indicates plane of orthogonal section; blue 

box indicates z-depth of the confocal stack. In controls, intracellular Ca2+ is kept low. (Di & Dii) 

Orthogonal sections of a neuromast after atp2b1a mRNA rescue. (Diii) 3D projection of the neuromast. 

(E) Intensity profiling (x-axis: distance in microns VS y-axis florescence intensity) of EGFP v. CC in 

5dpf control L1 neuromast across two planes of measurement (white dashed lines). Within hair cells CC 

was detected only at low level (Ei). The intensity of CC peaks (Eii) at the level of the stereocilia. (F) In 

morphants intracellular Ca2+ is high (3-fold difference). (Fi, Fii) Intensity profiling of EGFP v. CC in 5dpf 

morphant L1 neuromast across the plane of measurement. The intensity of CC at the level of hair cells is 

high. (N = 10). Intensity profiling of EGFP v. CC in 5 dpf 5(6)-carboxyeosin (CE) treated embryo (Gi, 

Gii). The intensity of CC at the level of hair cells is high. (N = 18). (Hi, Hii) Intensity profiling of EGFP 

v. CC in 5dpf atp2b1a mRNA rescued-morphant L1 neuromast across two planes of measurement. CC 

was low within hair cells (Hi). The intensity of CC peaks (Hii) at the level of stereocilia. (N = 10). Refer 

to Table 15 for post treatment results of neuromast and hair cell counts. 
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 Control  (48hpf)  Morphant 
(48hpf)  

CE-Treated 
(48hpf)  

mRNA rescued 
(48hpf)  

Number of 1o 

neuromast 
135            

(100%) 
43.2             

(32%) 
36              

(26.7%) 
79.2           

(58.7%) 

Number of hair 
cells (L2) 

108            
(100%) 

34.8           
(32.2%) 

43.2            
(40%) 

75.6            
(70%) 

Number of hair 
cells (L3) 

90              
(100%) 

31              
(34.4%) 

37.8             
(42%) 

68.4            
(76%) 

 

Table 15: Neuromast and hair cells count in embryos of SqET4 transgenics after atp2b1a 

knockdown, mRNA rescue and PMCA inhibitor (5(6)-Carboxyeosin) treatment. A number of 

primary neuromasts as well as hair cells within individual neuromast at 48hpf decreased after MO 

knockdown or PMCA inhibitor treatment at 6hpf. Upon co-injection of a morpholino and a full-length 

atp2b1a mRNA morphants phenotype partially improved. (Percentage values in bracket, N = 18 for all 

treatment).  

 

3.1.4 Formations of kinocilium was affected in atp2b1a morphants 
 

We have also examined the integrity of kinocilia and stereocilia of L1 neuromast by whole-

mount immuno-staining with anti-acetylated tubulin antibody which labels kinocilium and Alexa 

Fluor 635 Phalloidin, which marks F-actin in the stereocilia respectively (Lόpez-Schier et al., 

2004). Kinocilia in control L1 neuromast were in abundance, organized and well-projected (Fig. 

15A & Ai). In both morphant (Fig. 15B & Bi) and PMCA inhibitor-treated larvae (Fig. 15C & 

Ci) situations, kinocilia were both sparse and truncated. Heights of kinocilia were measured from 

3D-rendered images of L1 neuromast using Zeiss confocal software, where both morphant and 

PMCA inhibitor-treated had their kinocilia heights reduced by as much as 4 folds (Table 16). 

The number of stereocilia was counted from Phalloidin stained cuticular plates at the level of 
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stereocilia and both morphant and PMCA-treated larvae had stereocilia number reduced by 

almost 5 folds (Table 16). Rescued larvae have regained both its kinocilia’s height and 

stereocilia to a level almost comparable to control L1 neuromast. Fig. 15Aii, Bii, Cii & Dii are 

enlarged images of actin signal (white dashed box), revealing in morphant and PMCA inhibitor-

treated larvae, reduced number of actin-rich cuticular plates and in addition, the lack of hair cell 

polarity in these populations as seen in control and rescued larvae (yellow dashed line). Hence, 

Atp2b1a is required to regulate Ca2+ levels in mechanosensory hair cells and their environment 

and/or affect formation of secondary structures such as stereocilia and kinocilia (reviewed in 

Manor and Kachar, 2008). 
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Figure 15. Formation of hair cells secondary structures was affected in morphants neuromasts. The 

integrity of stereocilia of L1 neuromast for control and morphant larvae was accessed by anti-acetylated 

tubulin antibody (green) which labels kinocilium, and Alexa Fluor 635 phalloidin (red) which marks actin 

in the stereocilia. A, B, C & D compares control, morphant, 5,6 carboxyeosin-treated and mRNA rescued 

larvae respectively at maximum projection . Length of kinocilium was negatively affected by atp2b1a 

knockdown and Atp2b1a inhibitor treatment. Ai, Bi, Ci & Di shows merged signals of kinocilium and 

actin-rich cuticular plate. Aii, Bii, Cii & Dii are enlarged images of actin signal (white dashed box), 

revealing reduced number of actin-rich cuticular plates and lack of hair cell polarity as seen in control and 

rescued larvae (yellow dashed line). Scale bar at 5 µM. 
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 Control              
(5 dpf)  

Morphant         
(5 dpf)  

CE-Treated       
(5 dpf)  

mRNA rescued 
(5 dpf)  

Height of kinocilia 24.7 µM     (0.51)             6.12 µM       (0.8) 5.96 µM     (0.47) 20.8 µM    (1.25) 

Number of stereocilia 10.8            (0.84) 2.2              (0.45) 2.4              (0.55) 6.4             (0.55) 

  

Table 16: atp2b1a knockdown and PMCA inhibitor treatment negatively affects kinocilium of 

neuromast. 3D rendered images were generated from z-stack of L1 neuromast at 5 dpf. Height of 

kinocilia of L1 neuromast was measured from GFP-signal of anti-acetylated tubulin staining on kinocilia 

using confocal software. The number of stereocilia was counted from neuromasts co-stained with Alexa 

Fluor 635 Phalloidin, which labels actin-rich cuticle plates at the level of stereocilia. (Standard deviation 

values in bracket, N = 5 for all treatment). 

 

3.1.5 Late phenotypes of atp2b1a morphants 
 

Next, we investigated the Ca2+ profile of mechanosensory hair cells in the inner ear after 

microinjection of Calcium Crimson AM into this organ. In morphants, mechanosensory cells of 

posterior macula failed to form. Ca2+ was only detected in mechanosensory cells of the anterior 

macula sensory patch (Fig. 16A - C”). The otoliths were smaller than control (Fig. 16C). In order 

to study the late auditory/vestibular phenotype in detail, morphant larvae were tested individually 

for their ability to maintain controlled linear motion during a startle response induced by gentle 

physical stimulus (i.e. touching the tip of larvae tail with a dissecting needle). Larvae that failed 

to respond to such stimulus at 2 dpf or swam in rapid, irregular arcs were classified into three 

phenotypes: circling, imbalanced and non-touch responsive (Riley and Moorman, 2000). The 

hearing ability was linked to the later development of the lagenar sensory patch (Whitfield et al., 

2002). The hearing assay was therefore carried out at 7 dpf by tapping the side of the 10-cm Petri 

dish, and larvae that failed to respond were classified as deaf. Each larva was assayed three 
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times, and those that reacted normally at least once were considered to be unaffected. 

Upon touch, the normal larvae traversed the plate in a straight line without rolling or 

veering (Riley and Moorman, 2000), but 2 dpf morphants were clearly affected, with 30% 

circling, 41.6% unable to maintain a dorsal side-up posture and 0.05%  non-touch responsive, 

and of the 7 dpf morphants, 68.5% were classified as deaf (Fig. 16; Table 17). Thus, the initial 

abnormality of mechanosensory hair cells in the lateral line and inner ear of Atp2b1a morphants 

leads to later defects in the auditory and vestibular system. 

 

Figure 16: Mis-regulation of Ca2+ in mechanosensory cells by atp2b1a knockdown led to auditory / 

vestibular phenotypes of late atp2b1a morphant. Calcium Crimson AM was injected into the otic 

vesicle to examine the Ca2+ profile of the inner ear. A strong Ca2+ signal was observed at the tips of 

kinocilium located at two sensory patches, as marked by EGFP of SqET4. Both anterior and posterior 

otoliths were strongly labeled by Calcium Crimson AM (A-B’). In morphant mechanosensory cells, a 

Ca2+ signal was consistently detected within the cell bodies. Otoliths (stained negatively for Calcium 

Crimson AM) were observed to be smaller than control (C-C”). In morphant mechanosensory cells of 

posterior macula failed to form. Table 17 details the classes of phenotypes observed. Embryo phenotypes 

were classified into four categories: circling, imbalanced, non-touch responsive and deaf (Riley et al. 

2000). A significant proportion of the tested morphants were classified as deaf. Larvae were tested 

individually for their ability to maintain controlled linear motion during a startle response induced by a 

gentle physical perturbation. Larvae which failed to respond to such stimulation at 2dpf or swam in rapid, 

irregular arcs were classified.  The deafness assay was performed at 7dpf due to the later development of 

lagenar sensory patch for more robust hearing ability (Whitfield et al. 2002). In normal response, the 

larvae traversed the plate in a straight line without rolling or veering. Each larva was assayed three times 

and larvae with at least one normal response were grouped as normal. (N.T. - not tested). 

a Touching the tip of larvae tail with a dissecting needle.  
b Deafness assay by tapping the side of the 10-cm Petri dish.  

Abbreviations: ao: anterior otolith; hc: hair cells; k: kinocilium; ov: otic vesicle; po: posterior otolith.  
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3.1.6 atp2b1a expression is downstream of and regulated by atoh1a  
 

The proneural transcription factor, Atoh1a, acts as a determinant of hair cells (Millimaki et al., 

2007). Thus, we decided to explore an interaction between atoh1a and atp2b1a. Double WISH 

shows co-localization of atp2b1a and atoh1a in mechanosensory cells of the ear and neuromasts 

(Fig. 17; A, B). Co-localization was also detected in proneuromasts located in posterior end of 

PLLP (Fig. 17; C)). While the expression of atoh1a in the anterior part of the PLL primordium 
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of atp2b1a morphants was relatively normal at 36hpf, there was an increase in the number of 

atoh1a-expressing cells in the posterior-most cluster corresponding to the pro-neuromast (Fig. 

18; A, D) and L2 neuromast (Fig 18; H, L; N=15). Furthermore, atoh1a expression increased in 

the anterior and posterior macula of the inner ear in atp2b1a morphants (Fig. 18; G, K; N = 5). 

These findings suggest that the knockdown of atp2b1a blocked hair cell development at the stage 

of atoh1a-positive precursors. 

 

Figure 17: atp2b1a co-localized with atoh1a in hair cells of neuromast and inner ear. Shown here by 

two-color in situ hybridization, atp2b1a‘s expression in the optic tectum does not overlap with atoh1a‘s 

expression in the cerebellum (A). Spatial co-localization of these two genes was detected in deposited 

supra-orbital neuromast as well as sensory patch of the inner ear (B, arrows). atoh1a is expressed in four 

distinct proneuromasts (C: black and white arrows) located within the pllp and co-localized with atp2b1a  

expression only in the proneuromast located at the posterior end of pllp as well as deposited neuromast L1 

at 36 hpf. Abbreviations: ot: optic tectum; cb: cerebellum; rl: rhombic lip; ov: otic vesicle; sp: sensory 

patch; OC nm: occipital neuromast; L1 nm: first deposited neuromast of posterior lateral line; pllp: 

posterior lateral line primordium  
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The knockdown of atoh1a blocked atp2b1a expression in the 36hpf PLL primordium 

(Fig.18B), without affecting the level of atoh1a expression (Fig. 18E; N=15). In SqET4 atoh1a 

knockdown abolished formation of neuromasts and hair cells (not shown). These experiments 

suggested that in precursors of mechanosensory hair cells atoh1a acts in an epistatic manner 

upstream of atp2b1a. 

In order to assess the integrity of the migrating primordium and neuromast, tacstd was 

used as a marker. The zebrafish homolog of mammalian TACSTD (tumor-associated Ca2+ signal 

transducer), tacstd is expressed in cells of the migrating primordium and neuromasts 

(Villablanca et al., 2006; Fig. 18C, J), other than hair cells. In atp2b1a morphants expression of 

tacstd appeared to have expanded, based on its in situ hybridization signal (Fig. 18F, N; N=10). 
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In the screen for new ET lines (Kondrychyn et al., 2009; Poon et al., 2010), the SqET33-

mi60a transgenic line with insertion close by lnfg (encoding a component of the Notch signaling) 

and GFP expression in support cells was identified. These cells also express Sox2 (Fig. 18I, Q); a 

transcription factor involved in self-renewal of undifferentiated stem cells (Hernandes et al., 

2006). In control neuromasts, support cells formed a tight cluster immediately below and around 

GFP-negative hair cells seen as dark shadows (Fig. 18O). In morphant neuromasts, the support 

cells increased in number and dispersed between the mantle cells that form the outer rim of the 

neuromast (Fig. 18P). Furthermore, sox2 expression increased in morphant neuromasts (Fig. 

18M; N=13). Taken together, these results indicated that a block in hair cell differentiation in 

atp2b1a morphants leads to the accumulation of undifferentiated precursors. 

 

Figure 18: atp2b1a acts downstream of atoh1a. (A) atoh1a expressed in several clusters corresponding 

to proneuromasts of the PLLP (white triangles). Knockdown of atoh1a removes atp2b1a expression 

completely in pro-neuromasts at 36 h (B), but does not affect intensity of its own RNA (E). (D) 

Knockdown of atp2b1a does not affect atoh1a expression in the proneuromasts. In the deposited 

neuromast at 48 h, atoh1a is expressed in a few central cells corresponding to hair cell precursors (H). In 

atp2b1a morphant, clusters of hair cell precursors are larger (L). (G &H) Cross-section of atoh1a-stained 

inner ear at 48 h revealed elevated expression of atoh1a in morphant saccular macula (yellow arrowhead). 

(C) tacstd is expressed in migrating PLLP as well as deposited neuromast. In 48 hpf atp2b1a morphant, 

expression of tacstd increased both in newly deposited neuromast (C & F) and mature neuromast (J & N), 

where a cluster of cells expressing tacstd expanded. (I) sox2 at 48 h is expressed in the support cells of 

neuromast. sox2 expression in morphants increased (M). (O) Support cells of the 5 dpf control L1 

neuromast in SqET33-mi60a (white arrowhead). Hair cells appear as GFP negative shadows (blue 

arrowhead). (P) Support cells of morphant neuromast at 5 dpf in SqET33-mi60a. Morphant support cells 

spread to the outer rim of neuromast, unlike compact group of support cells in control restricted to the 

neuromast inner core (N = 10). (Q) Co-immunostaining shows colocalization of Sox2 and GFP in support 

cells of SqET33-mi60a. (Scale bar = 5 µm). Legends: migrating PLLP (black dashed line); otic vesicle 

(white dashed line); neuromast (yellow dashed line). Abbreviations: sm: saccular macula; hcp: hair cell 
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precursors; sc: support cells; pc: peripheral cells, hc: hair cells. 
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3.1.7 atp2b1a and cell proliferation in neuromasts 

Recently, specific populations of neuromast cells were proposed to differentiate in the following 

sequence:  mantle cell, support cell, hair cell precursor and hair cell (Ghysen and Dambly-

Chaudiere, 2007). Given the obvious changes in cell number detected in these populations in the 

morphants, we sought to compare the cell proliferation rate in 55hpf control and morphant 

neuromasts using a short pulse (15 min) of BrdU labeling followed by an anti-phosphohistone 

H3 antibody, which detects cells in the M-phase of cell cycle. Under these conditions, very few 

M-phase or BrdU-labeled cells were detected in control neuromasts L1-3 (Fig. 19A, C, E) unlike 

that in morphants (Fig. 19B, D, F; orthogonal sections: B', D', F'; Table 18), where a several fold 

increase in cell proliferation was observed. This indicates that the atp2b1a-dependent mechanism 

of hair cell differentiation negatively controls the proliferation of hair cell precursors. 

 

Figure 19: Increase in proliferation in neuromast peripheral cells in the atp2b1a morphant. A, C & 

E, Control neuromasts (L1-L3). B, D & F - atp2b1a morphant neuromasts (L1-L3). At a given point, 

control neuromasts contain very little, if any, BrdU-positive cells, unlike the morphant neuromasts. Z-

stack images were taken at depth 8.0 - 13.3µm (depending of neuromast age). White arrows indicate 

BrdU-positive cells. Red arrows indicate pH3-positive cells. Analysis of positive cells was restricted 

within neuromast as demarcated by white dashed line based on DIC images of neuromasts. B’, D’ & F’ 

shows orthogonal sections of morphant neuromasts that reveal BrdU-positive cells not visible in a single 

section. (Scale bar = 5 μm). 

 



92 
 

 

 

 

 

 

 

 



93 
 

 Marker  L1 L2 L3  

Control (55h)  BrdU cells  0.27 (0.46)  0.33 
(0.49) 

0.61   
(0.5)  

 aPH3 cells  0.56 (0.51) 0.39 
(0.61)  

0.27 
(0.46) 

 Hair cells  5.17 (0.79) 4.56 
(0.62) 

4.20 
(0.43) 

Morphant (55h)  BrdU cells  3.11 (0.41)  1.94 
(0.72)  

1.50 
(0.71)  

 aPH3 cells  1.06 (0.87) 0.78 
(0.65)  

0.22 
(0.43)  

 Hair cells  2.06 (0.64)  1.83 
(0.38)  

1.78 
(0.43) 

 

Table 18: The number of S-phase cells in neuromasts morphant increased. The numbers of positive 

cells for BrdU and anti-phosphohistone3 were counted for L1, L2 and L3 neuromasts and mean was 

calculated and shown in the table. The number of hair cells was counted in embryos/larvae of SqET4 

transgenic line from a separate experiment. (Standard deviation values in bracket, N = 18) 

 

3.1.8 atp2b1a expression is induced during hair cell regeneration 

The hair cells of the lateral line are the subject of cell regeneration investigations following insult 

with agents known to cause deafness in humans. To evaluate a role of atp2b1a in the 

regeneration of hair cells, embryos were exposed to sub-lethal concentrations of neomycin, 

which is known to ablate hair cells (Coffin et al., 2009; Harris et al., 2003; Owens et al., 2008). 

As expected, neomycin induced apoptosis of hair cells in neuromasts of the double transgenic 

embryos SqET4/ET20, where mantle (SqET20+) cells remained and hair cells (SqET4+) 

disappeared (Fig. 20A to B’). We then monitored the regeneration of hair cells in the L3 

neuromast using the hair cell-specific vital dye, DASPEI (Fig. 20C to J), and whole-mount in 
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situ hybridization (WISH) using the anti-atp2b1a probe (Fig. 20K to R). Neomycin-ablated hair 

cells were observed post-treatment (Fig. 20D; black arrows). Regeneration was first detected one 

hour after treatment (T+1h) by DASPEI staining (Fig. 20E; white arrow), concomitant with the 

expression of atp2b1a (Fig. 20M; yellow arrow) that increased from T+1h to T+6h, followed by 

EGFP in SqET4 at around T+1.5h (data not shown). Thus, the expression of atp2b1a correlates 

with the initial phase of regeneration of hair cells, similar to that in the development of these 

cells. 
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Figure 20: Expression of atp2b1a correlates with regeneration of hair cells. (A to B’) Neomycin 

treatment eliminated hair cells of neuromasts, as shown here by double transgenic SqET4-ET20 with 

GFP-positive mantle, support (data not shown) and hair cells. (C-J) L3 neuromasts stained by DASPEI. 

Regeneration could be detected one hour post treatment (T+1h), when DASPEI staining (white arrow) 

was detected. (K to R) atp2b1a expression analyzed by WISH.  atp2b1a transcript detected T+1h 

onwards (yellow arrow) increasing from T+1h to T+6h. Abbreviations: hc: hair cells; sc: support cells. 
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3.2 atp2b1a in Ultimobranchial Body (UB) 
 

3.2.1 atp2b1a is expressed in UB of the developing zebrafish 

atp2b1a functions during division of the terminal progenitor of  mechanosensory hair cells and 

differentiation of these cells in the lateral line and inner ear (Go et al., 2010). At 72 hpf, whole-

mount in situ hybridization (WISH) also detects small bilateral domains of strong expression of 

atp2b1a at the level of the atrial pole of the heart (Fig. 21A). In the lateral view these cells are in 

line with the posterior end of the otic vesicle (Fig. 21A). This expression domain is also present 

during later development (Fig.21E). In adults it was found next to the pharynx (not shown). 

Time-lapse imaging of SqET4 transgenics in vivo revealed that in this domain GFP began 

expressing at 55 hpf in a thin sheet of cells behind the heart and close to the yolk surface (Fig. 

22). At 60.5 - 62.5 hpf these cells delaminate and form a separate cell cluster. Cross-section at 

this level shows the bilateral cluster ventral of the pharynx that contains atp2b1a-positive cells 

with characteristic glandular morphology (Fig. 21B). calcitonin (calca) is a known UB marker 

(Alt et al., 2006). It is expressed in the same population of cells as atp2b1a (Fig. 21C, D). In 

addition, immuno-detection of calcitonin peptide (CT) co-localized with EGFP signal of SqET4 

at 6 dpf (Fig. 21G-I). We concluded that these domains of atp2b1a expression represent the 

developing UB.  
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Figure 21: atp2b1a is expressed in the ultimobranchial bodies (UB) of the developing zebrafish. A 

depicts the strong expression of atp2b1a at UB at 72 hpf (A: white arrow). The expression at UB is in line 

with the posterior end of the otic vesicle (A: white encircle) when viewed laterally (A: white dashed line). 

(B) Cross section at the level of UB clearly shows that expression of atp2b1a is bilateral and atp2b1a-

positive cells exhibit a glandular morphology.  C shows a later stage larva at 120 hpf with four UB 

expressing atp2b1a transcripts (black arrows). D shows a similar stage specimen with four UB stained 

positive by UB molecular marker, calca. Immuno-detection of calcitonin (CT) shows co-localization with 

EGFP signal of SqET4 in UB (E-G; white arrows). Abbreviations: e: eye; ov: otic vesicle, n: notochord; 

p: pharynx; pm: posterior macula; ub ultimobranchial bodies; h: heart  
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Figure 22: Time-lapse recording of UB development in SqET4 (55 – 69 hpf). EGFP reporter 

expression at UB was detected from 55 hpf onwards (white arrow) as a thin sheet of cells behind the heart 

(white dashed line) and close to the yolk surface and gradually developed into a ball-like structure. Shown 

here are frame-freeze at 2 hours intervals. A SqET4 larva was mounted on its left side. Movie was taken 

using Zeiss LSM 700 confocal system with 488 nm laser and fitted with temperature chamber set at 28 

deg C. Abbreviations: e: ear; h: heart; s: somites; y: yolk. 

 

3.2.2 Close 3D contact of UB and pharyngeal teeth 

High-resolution confocal imaging at 96 hpf revealed the characteristic shape of UB representing 

a cluster of highly granulated cells thus suggesting that these cells are secretory. The cluster 

contains an inner lumen (Fig. 23A, B). Given expression of atp2b1a in UB, vital staining with 

Calcium Crimson AM (CaC) was performed. The staining revealed a single Ca2+-rich tubular 

structure embedded in the lumen, which projects beyond UB (Fig. 23C, D). Nomarski imaging of 

larvae after atp2b1a staining by WISH also revealed similar tubules associated with atp2b1a-
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positive UB clusters (Fig. 23E). To address whether this tubules could represent a blood vessels, 

SqET4 transgenics were crossed with Tg(fli:EGFP) transgenics expressing GFP in vascular 

endothelial cells (Isogai et al., 2001).  In compound transgenics the Ca2+ staining did not co-

localize with GFP expression. This ruled out the possibility that the tubule represents a blood 

vessel. Given the presence of Ca2+ signal at the surface of the tubule, it could represent a bone. 

Indeed, at 7 dpf Alizarin Red S (AR), a histochemical dye of calcified bones, stained the Ca2+-

rich tubule confirming that it contains calcified bone material (Fig. 23F, G). At this stage AR 

staining reveals some bones that are easy to identify, i.e. the 5th ceratobranchial bone (Cb5) and 

cleithrum (Cl).  These structures along with blood vessels provide useful landmarks suggesting 

that the UB-associated Ca2+-rich tubule represents the first-formed pharyngeal tooth, 4V1 

(Borday-Birraux et al., 2006). At 7 dpf, a strong association of fli:EGFP-positive blood vessels 

with both Cb5 and cl was detected. However, there are no fli:EGFP expression domains in the 

proximity of UB even after beginning of calcification of 4V1. This suggests that calcification of 

pharyngeal teeth does not involve vascular circulation. Therefore an alternative mode of Ca2+ ion 

transportation should be involved. This analysis revealed that the UB develops in close contact 

with the pharyngeal teeth 4V1 suggesting that Atp2b1a functions during early calcification of 

these structures. 

 

3.2.3 UB cells provide Ca2+ for developing pharyngeal teeth 

To determine whether atp2b1a plays a role in calcification of pharyngeal teeth two different 

approaches were used. First, the gene-specific knockdown of atp2b1a by the 5’-ATG antisense 

translation-blocking morpholino (MO) was performed (Go et al., 2010) and the Ca2+ profile in 
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UB was analyzed with Calcium Crimson AM in atp2b1a morphants (Fig. 23H). Second, 10 µM 

of PMCA inhibitor [5(6)- Carboxyeosin (CE)] was delivered locally in vicinity of UB by 

injection into the pericardium of 5 dpf larva (Fig. 23J) and the effect of this treatment was 

analyzed one day after injection (Fig. 23I). In both cases the specific Ca2+ signal detected in the 

pharyngeal dentition 4V1 of controls (Fig. 23D) was replaced by dispersed staining of morphant 

UB cells (Fig. 23H; N = 55) and CE-treated larvae (Fig. 23I; N = 10). Furthermore, CE treatment 

affected morphology of UB cells. The block of Atp2b1a resulted in Ca2+ retention in UB cells in 

illustration that UB supplies Ca2+ for developing pharyngeal teeth.  
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Figure 23: GFP-positive UB in SqET4 enhancer trap line are connected to the developing 

pharyngeal dentitions. High resolution confocal image shows a characteristic organization of UB, which 

consists of a cell cluster formed around an internal channel (A; yellow arrow). UB cells (green) appear to 

be highly granulated. (B) Orthogonal section of UB reveals an internal lumen. (C) Orthogonal view of UB 

stained with Calcium Crimson AM (CaC; red), the lumen is formed by the Ca2+-rich tubular structure. (D) 

Vital staining of UB (green) with CaC (red) illustrates the close association between UB and the first 

pharyngeal dentitions. (E) Nomarski image of WISH of atp2b1a ; revealing pharyngeal teeth (orange 

arrows) association with atp2b1a expressing cells (red arrows). (F) Compound SqET4/Tg(fli1:EGFP) 7 

dpf larvae; the 5th ceratobranchial arch region with blood vessels AA5 and AA6. Green - a combined 

EGFP signal of two transgenes, red - Alizarin Red (AR) fluorescence. A diagram showing the composite 

signals from confocal z-stack, with blood vessels in green and AR-stained mineralized bones in red (G). 

The Ca2+ signal in the pharyngeal dentition 4V1 of controls is reduced in Atp2b1a morphants (H) and 

upon treatment by 5,6-carboxyeosin (CE) (I). In both K and L, Ca2+ signals were detected within 

intracellular spaces (white arrows). The morphogenesis of UB was affected by CE treatment as well. 

EGFP signal is from SqET4 (green), Ca2+ signal is visualized by Calcium Crimson AM (CC) in K and L 

(red signals). (J) Illustration of CE delivered into the pericardium by microinjection (marked by 0.05% 

DMSO control marked by Texas Red tracer) of 5 dpf larvae. Abbreviations: nm: neuromasts; cb5: 

ceratobranchial 1-5; cl: cleithrum; 4V1: 1st-forming pharyngeal dentition; e: eyes; AA5, AA6 and LDA; 

blood vessels at branchial arch region; UB: utimobranchial bodies  
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3.2.4 During early differentiation of UB cells ascl1 acts upstream of atp2b1a 

In order to understand a role of atp2b1a in UB development, we make use of the EGFP 

expression in both left and right UB of SqET4 transgenics as an indicator of knockdown 

efficiency. The control 5-mismatch MO had no effect on expression of GFP in the UB (not 

shown). In contrast, atp2b1a translation-blocking MO abolished GFP expression in the UB (Fig. 
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24A - B’, C; p < 0.05). The GFP expression in the UB was rescued by co-injection of the full-

length atp2b1a mRNA lacking the MO target site (Fig. 24C).  

 Atoh1a regulates atp2b1a transcription in mechanoreceptors (Go et al., 2010) suggesting 

that a member of a family of bHLH transcription factors could regulate transcription of atp2b1a 

in UB. Mash1 was previously reported to regulate calcitonin-producing cells (C-cells) in the 

thyroid gland of mammals (Kameda et al., 2007). In zebrafish C-cells are represented by UB (Alt 

et al., 2006). To find which transcription factor regulates an expression of atp2b1a, we injected 

antisense-MO for ascl1a, ascl1b (Amoyel et al., 2004) and atoh1a, (Millimaki et al., 2007). 

Either ascl1a or ascl1b knockdown inhibits GFP expression in the UB of SqET4 (p < 0.05) 

producing a phenotype very similar to that of atp2b1a knockdown (Fig. 24C). Co-injection with 

full-length atp2b1a mRNA in both cases did not result in any degree of rescue (Fig. 24C). This 

strongly suggests that atp2b1a expression is under control of Ascl1, which is similar to that in 

the C-cells of the mammalian thyroid gland. Such similarity illustrated conservation of this 

process in evolution between teleosts and mammals. On the other hand, knockdown of atoh1a 

was much less efficient (Fig. 24C) in inhibiting atp2b1a. Atoh1a's expression is absent in UB, 

thus limits the similarity of the molecular machinery of differentiation of mechanosensory hair 

cells and UB cells.  

 

3.2.5 atp2b1a knockdown caused a defect in calcification of bones  

To understand further a role of Atp2b1a in calcification of bones in zebrafish larvae, the bone-

cartilage dual staining with Alcian blue (AB) and Alizarin red (AR) (Walker and Kimmel, 2006) 

was used.  In  the 4 dpf controls dentine calcification starts from the pharyngeal teeth (4V1) and 



104 
 

progressively spreads to the later forming 5th ceratobranchial bone (Cb5) and other pharyngeal 

teeth (3/5V1; Fig. 25A). We first determined that injected morphants were not developmentally 

delayed in respect of uninjected controls by comparing their hatching rates (Fig. 26A). In 

addition, sizes of developing liver (marked by lfabp-RFP) (Korzh et al., 2008) and pancreatic 

beta cells (insulin-GFP) (Verbruggen et al., 2010) were measured from confocal stacked images 

at 6 dpf (Fig. 26B). Liver and pancreas were chosen as positive markers of development as both 

organs do not express atp2b1a. In morphants calcification of dentition was delayed until 5 dpf, 

when a tiny signal was detected at the tip of 4V1. At 7 dpf this pharyngeal dentition is the only 

structure showing bone calcification in morphants (Fig. 25B; N = 10 larvae per stage analyzed). 
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Figure 24: atp2b1a knockdown abolished EGFP expression in UB of SqET4. (A & B) are maximal 

projection images of z-stack of 109 micron thick; comparing ventrally-mounted control SqET4 larvae and 

atp2b1a morphant SqET4 larvae at 72 hpf. Specific EGFP expression at the UB at 72 hpf was visible in 

control (indicated as Left UB and Right UB). In general, UB are bilateral and are positioned in line with 

the pectoral fins (dashed arc). (A’) and (B’) compares the EGFP intensity analyzed by confocal software. 

In comparison when atp2b1a was knocked down, EGFP expression was undetected at the same region of 

analysis. EGFP signal at UB was analyzed after knockdown of various transcription factors thought to be 

involved in regulating UB development; atoh1a, ascl1a and ascl1b. In addition, Calca knockdown shows 

no effect on EGFP signal. All injected larvae were similaly analyzed by confocal for EGFP intensity at 

the left and right UB and the resulting mean of EGFP intensity was being compared (C). EGFP signal at 

both UB was partially recovered by co-injecting atp2b1a morpholino with full-length atp2b1a mRNA 

without MO targeting site. The same mRNA failed to rescue neither ascl1a nor ascl1b morpholino 

injected larvae. N = 20 larvae per treatment were analyzed by confocal for EGFP intensity. P value was 

set at < 0.05. Error bar indicates standard deviation. Abbreviations: ov: otic vesicles; ba: branchial 

arches; h: heart; y: yolk cell; pf: pectoral fins  
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Figure 25: atp2b1a is required for calcification of early-forming bones in zebrafish larvae. A & B 

compares bone calcification pattern (3-7 dpf) in control and morphant larvae as detected by Alcian blue 

(AB) and Alizarin red (AR) dual staining at the level of cb5. In controls, bone calcification starts in the 

pharyngeal dentitions 4V1 and followed by cb5 and later pharyngeal dentitions (3/5V1). In morphants 

minimal level of calcification was detected with signal at the tip of 4V1 and absent in cb5 and 3/5V1. 

Similarly, C & D compares calcification pattern at the head region (4-7 dpf) in control and morphant 

larvae. In control larvae, otoliths (oto) of the inner ear achieved complete calcification as early as 4 dpf 

while this is severely delayed in morphants. In addition, calcification of both ceratohyal (ch) and 

notochord (nc) was absent in morphant larvae. (n = 10). E) atp2b1a transcripts were detected at weak 

level in cartilages at 72 hpf. (F& F’) Immuno-detection of EGFP in 4 dpf SqET4 detected expression in 

core of ch cartilage. B) Enlargement of image A) clearly shows the cytoplasmic localization of EGFP in 

these cells when co-localized with DAPI nuclear stain. Abbreviations: cb1-5: ceratobranchial arches 1-5; 

4V1: 1st-forming pharyngeal dentition; oto: otoliths; ch: ceratohyal; nc: notochord; ch: ceratohyal; ub: 

ultimobranchial bodies  

 



108 
 

 

 



109 
 

 

Figure 26: General development was not delayed in injected atp2b1a morphants. (A) Comparison of 

hatching rate between uninjected controls and injected morphants. Morphants’ hatching rate followed 

closely of that in uninjected controls. Results were collated from two separate injection experiments 

where N = 380 embryos per group and expressed as percentage hatched. (B) Sizes of developing liver 

(marked by lfabp:RFP) and pancreas (insulin:GFP) were compared between controls and morphants 

larvae at 6 dpf. Measurements (µm) were made from confocal stack images taken by Zeiss LSM700 

confocal system (see insert for illustration). All embryos were similarly raised in 28 oC incubator.   
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 Supporting data obtained from the osteoblasts reporter line Tg(osx-mCherry) 

(Spoorendonk et al., 2008), reveals that an early calcification of pharyngeal teeth takes place in 

the absence of function of osterix-positive odontoblasts. These cells were not detected in PD at 

4.0 dpf stage, but were present after 5.5 dpf, when they associate closely but do not overlap with 

UB (Fig. 27B). This indicated that Atp2b1a is required for calcification of structures adjacent to 

UB such as pharyngeal dentitions and Cb5. 

 

 

Figure 27: Osteoblasts were detected at pharyngeal dentitions (PD) after 5.5 dpf. A) Maximum 

projection image of Tg(osx:mCherry) transgenic line mounted ventrally indicate presence of osteoblasts 

at multiple bone-forming sites at 5.5 dpf; br, op and cl. Osteoblasts present at PD were not visible from 

this confocal stack. B) Osteoblasts at PD were visible on dissected pharynx tissue. C) Osteoblasts at PD 

associates closely but do not overlaps with UB. Abbreviations: br: branchiostegal ray; op: operculum; cl: 

cleithrum; cb5: 5th ceratobranchial arch; 4V1: first forming pair; 3V1: second forming pair; UB: 

Ultimobranchial bodies.  

 

 The progression of bone calcification in other early calcifying bones such as operculum 

was shown using Alizarin red (AR) and Calcein (green) vital staining (Kimmel et al., 2010). 

Larvae were stained successively, first, by Alizarin Red S for 2 hours at 3 dpf, and, second, 
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incubated in calcein up to 3 days until observation. Both ventral (v) and posterior apices (p) of 

the control operculum expanded in contrast to that in morphant (Fig. 28C, D). In addition, a 

negative effect on distribution of bone-matrix forming osteoblasts was observed in the 

operculum of Tg(osx-mCherry) (Spoorendonk et al., 2008) morphants. Here osteoblasts failed to 

reach the growing edges of v-p apices (Fig. 28E, F). This illustrated that UB not only regulates 

calcification of adjacent bones, but also exerts a long-range effect on bone calcification. 

 

Figure 28: Bone matrix progression at developing operculum was severely affected in atp2b1a 

morphant larvae. A & B compares control and morphant situation, showing progression of calcification 

at a developing operculum (op) by differential live staining larvae by Alizarin red (AR) and calcein 

(green). Calcification at morphant operculum was severely retarded at ventral-posterior (vp) edges. C & D 

usesTg(osx-mCherry) for comparing distribution of osteoblasts at op. In control larvae, osteoblasts were 

closely associated with the growing joint socket (js) and vp edges and were observed to outline 

predominantly at the expanding edges; jp & jv  apices (E: red arrows), which were absent in morphant op. 

(D) In morphant larvae, osx:mCherry-expressing cells were only accumulating in js apex. C & D are 

maximum intensity projections of 70 micron z-stack. Abbreviations: js: joint socket; v: ventral apex; p: 

posterior apex; e: eye; ie: inner ear; cl: cleithrum; op: operculum 
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3.2.6 atp2b1a knockdown affects expression of genes expressed in UB and pharyngeal 
dentition  
 

To check the effect of Atp2b1a deficiency on genes expressed in UB, such as calca (Lafont et 

al., 2010), and pharyngeal dentition; itg αV, cx43 (Ablooglu et al., 2007); and dlx2b (Borday-

Birraux et al., 2006) quantitative RT-PCR was used. To exclude a contribution of transcripts 

present in other tissues, total RNA was prepared from the pharynges isolated from 3.5 dpf larvae 
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(Fig. 29; N = 50 pharynges/pool; 3 replicates). Expression levels were normalized using the 

housekeeping gene, β-actin1 and presented as fold-change. Quantitative RT-PCR showed 3-fold 

reduction in atp2b1a levels in the morphant, suggesting that atp2b1a regulates its own 

expression. The expression of structural genes of pharyngeal dentition was reduced too: itg αV - 

one-fold and cx43 - more than 5-folds. Interestingly, expression of transcription factor dlx2b 

almost doubled, suggesting a feedback mechanism to compensate a loss of Atp2b1a activity. It 

seems that dlx2b may act as a transcriptional regulator of atp2b1a similar to ascl1 (Fig. 24C). 

Importantly, calca transcriptional level was reduced almost 2-folds (Fig. 29).  

 At the same time, immuno-detection on calcitonin gene-related peptide (CGRP) indicated 

significant reduction in early bone-forming regions in the vicinity of UB, i.e. cleithrum, 

operculum and ceratobranchial bone (Fig. 30B). These results indicated that atp2b1a is required 

to regulate expression of calca and CGRP. To further explore a connection between calca and 

atp2b1a, calca morpholino (Lafont et al., 2010) was injected in SqET4, but atp2b1a expression 

was not affected (Fig. 24C), suggesting that in UB cells atp2b1a may act in an epistatic manner 

upstream of calca.  
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Figure 29: atp2b1a knockdown resulted in mis-regulation of UB specific genes. Real-time qPCR of 

UB calca from control and morphant larvae at 3.5 dpf. In addition, expression levels for known 

pharyngeal dentitions (PD) molecular markers (itg αV, cx43 & dlx2b) were quantified from the same pool 

of test cDNA. Results are represented as fold-changes (mean ± SEM) compared to un-injected control 

group. cDNA was converted from total RNA extracted from pharynx explants (insert: pharynx excised 

from SqET4 with embedded UB) to exclude gene expression from non-related tissues (N = 50 

pharynx/pool; 3 replicates; error bar represents S.E.M.). Expression levels were normalized with house-

keeping gene, B-actin1 (Table 8 for a list of gene-specific primers used). 
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Figure 30: atp2b1a regulates production of calcitonin gene-related peptide (CGRP) hormone. (A) 

CGRP immuno-reactive cells of control embryos at 72 hpf. (B) Significant reduction in CGRP immuno-

reactive cells was apparent at regions of developing bones (yellow arrows; cl, op and cb, (blue: DAPI; 

red: CGRP, scale bar: 100 µm). (C) Quantification (mean cell numbers) of CGRP immuno-reactive cells 

located in cl, op and cb respectively from both left and right sides of larvae (N = 15; error bar represents 

standard deviation). Abbreviations: ov: otic vesicle; op: operculum; pf: pectoral fin; cl: cleithrum; cb: 

ceratobranchial; h: heart; y: yolk. 
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3.3 Other Expression Domains of atp2b1a 
 

As mentioned in earlier parts of this thesis, SqET4 has broader expression domains other than 

mechanosensory cells (Chapter 3.1) and ultimobranchial bodies (Chapter 3.2). Since these EGFP 

signals remain observable in adult stages, analysis in adult stages is thus possible. Without going 

into too much detail, I describe here these expression domains of SqET4 and the significance of 

the results.  Some of which can be interesting to follow up if one wishes to do so.  

 

3.3.1 atp2b1a can be regulated by Delta-Notch signaling and is required for the normal 
development of optic tectum and sensory patches  
 

Not only is atp2b1a an excellent molecular marker for the developing optic tectum (from 19 hpf 

onwards, data not shown), but its expression in this region can be regulated by Delta-Notch 

signaling as evident in mindbomb mutants. Here, atp2b1a was significantly upregulated in both 

the mutant optic tectum and inner ear. In the inner ear, atp2b1a’s up-regulation represents a 

premature production of mechanosensory cells from support cells (due to a lack in lateral 

inhibition in mindbomb). But interestingly, the optic tectum experienced a similar over-

production phenotype. These cells in optic tectum are atp2b1a positive, but their nature and their 

source(s) are currently unknown.  On top of that, expression level of atp2b1a can be knockdown 

by atp2b1a morpholino, and thus affects optic tectum‘s development (Fig. 31G & H). 
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Figure 31: atp2b1a can be regulated by Delta-Notch signaling and is required for the normal 

development of optic tectum and sensory patches. (A) atp2b1a is express in the optic tectal region 

from 19h (not shown) and reaches its peak by 24h in the embryonic brain. (B) This expression faithfully 

recapitulates egfp expression of SqET4. In mindbomb mutants (mibta52b), mis-regulated delta gene 

expression results in failure of Delta-Notch signalling. Most dramatically, the sensory patches in mutant 

ear, which consist solely of hair cells, are produced in great excess and prematurely. This phenotype is 

apparent when mib is crossed with SqET4 transgenic line (C & D). atp2b1a transcript expression domain 

increase prematurely in mib mutant (E & F). Confocal images of SqET4 shows that knockdown of 

Atp2b1a affected the development of optic tectum when EGFP expression was significantly reduced (G & 

H). Abbreviation: ot: optic tectum; ov: otic vesicles; e: eye  
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3.3.2 atp2b1a is required for muscle development 
 

Here atp2b1a was shown to be expressed in early somites at 15 hpf, but SqET4’s expression 

doesn’t come on early enough in the same region. Nonetheless it is visible from 22 hpf onwards. 

Atp2b1a knockdown has resulted in some loss of somite integrity (as evident from lowered 

birefringence level in somites; Fig. 32D). And this was precisely the reason that drove me to take 

an alternate approach to ascertain the morphant phenotype seen in lateral line neuromast defects. 

Diffusion of morpholino was restricted to lateral line cells (and at the same time somites was 

avoided) by injecting morpholino in central cells of a16-cells blastomeres (Fig. 33). 

 

Figure 32: atp2b1a is required for muscle development. Atp2b1a is expressed in the muscle lineage. 

(A) Flat mount of the anterior posterior part of the embryo at 12 somites. (B) Lateral view of trunk region 

above yolk extension at 24 hpf. Muscle birefringence is used to assess muscle integrity (C) Control 

embryo display normal level of birefringence whereas atp2b1a morphant show reduced birefringence (D). 

Confocal z-stack images of control SqET4 and atp2b1a morphant were taken from lateral view and then 

tilted to oblique angle (E, F) and orthogonal views of stacks of confocal images (E’, F’) to illustrating the 

defective horizontal myoseptum (white dashed line box) in atp2b1a morphant at 48hpf. Embryos were 

stained by Mito-Tracker Red to reveal mitochondrial-active neuromasts. Control (E, E’) neuromasts were 

labeled with Mito-Tracker Red whereas mitochondrial-active neuromast was absent in atp2b1a morphant 

(F, F’). (Scale bar = 50 µm). Abbreviations: s, somites; ac, adaxial cells  
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Figure 33: Control experiment showing that lateral line phenotype of atp2b1a knockdown is 

independent from its muscle phenotype. 16-cell stage injection (Fong et al., 2005) was used to restrict 

distribution of morpholino to lateral line cells. One half of the injected SqET4 embryo was targeted. 

Texas-Red staining indicates the localization of the injected atp2b1a morpholino, showing that in this 

case the right half of the embryo (morphant side) is atp2b1a-deficient. The left half with low Texas-Red 

staining was used as an internal control (control side). The comparison of the anterior lateral line and 

inner ear at the morphant and control sides at 48hpf showed marked reduction of GFP in these organs at 

the morphant side (A). Similarly, (B) showed reduction of EGFP expression in neuromast L2 and L3 at 

the morphant side. (C) Comparison of the number of neuromasts deployed on the control and morphant 

(MO) side showed significantly fewer neuromasts at the morphant side by 3dpf. (D) Comparison of the 

number of GFP-positive hair cells within L2 and L3 neuromast showed significantly fewer hair cells on 

the morphant side by 3dpf. Horizontal bar represents standard deviation. (n = 32). (E, F) Neuromasts L2 

and L3; (E,  E’) control morpholino; (F, F’) morphants. Texas-Red (TR) staining indicates the localization 

of the injected morpholino in SqET4 at 48hpf, illustrating presence of neuromasts, but differentiation of 

mechanoreceptors is affected. (n = 20). Abbreviations: AL; anterior lateral line neuromast, OV; otic 

vesicle, PM; posterior macula, L; posterior lateral line neuromast, hc; hair cell, s; somites 

 



122 
 

 

 

3.3.3 Early function of atp2b1a is required for normal cell adhesion 
 

The reason why cell adhesion was looked into was due to an observation of sporadic lateral line 

neuromasts deposition pattern which differs very much from the normal, regulated pattern. We 
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hypothesized the reason could be due to a defective posterior lateral line primordium (pLLp) 

migration as result from the atp2b1a knockdown, since atp2b1a transcript (as well as in SqET4 

expression) was first detected in the posterior end of a migrating pLLp. An experiment with 

hanging drop culture (Fig. 34A) was chosen to assay atp2b1a’s relevance to cell adhesion 

function. The experiment was found suitable as animal caps from embryos at 4 hpf were required 

to carry out the experiment. Since atp2b1a is maternally deposited, it should be present by 4 hpf 

for this assay. The results from this experiment fitted nicely with the homotypic binding model 

of c-cadherins (Ca2+-dependent cell adhesion): i.e. modulating expression level where two cell 

lines expressing the same type of cadherin but in different amounts, also segregate from each 

other. The cells with the higher expression levels (Fig. 34F wild-type green cells) move to the 

interior of the aggregates while the cells with the lower expression levels (Fig. 34H; atp2b1a 

knockdown red cells) formed an outer shell. It is possible that a disruption of the level of 

extracellular Ca2+ required for normal cell adherence was achieved from atp2b1a’s knockdown. 
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Figure 34: Early function of atp2b1a is required for normal cell adhesion. A) Hanging drop 

experimental procedure. Animal caps were excised from two populations of donor embryos at 4 hpf, with 

donar 1 and donar 2 being wildtype embryos with different tracer dyes. Cells were dissociated and 

incubated overnight as hanging drop. Under such conditions, wildtype cells can form cell aggregates 

without any distinction between the two donars. In control (B to D), dis-associated cells at 4hpf labeled 

with fluorescein (green) and Texas-red-co-injected with 5-mismatched control morpholino (red) formed 

aggregates after 24 hours incubation in L15 medium supplemented with Pan/Strep antibiotics (hanging 

drop culture). Both red and green cells were able to intermix equally well to form cell aggregates (white 

arrows). By contrast, in morphant situation (F to H) where conditions were similar, except control 

morpholino was replaced by atp2b1a morpholino, red cells were only seen to associate with green wild-

type cells by forming a “shell” outside the green cells aggregates (yellow arrows). E and I depicts a 

rotation at Z-axis by 60 degrees of z-stack images of these cell aggregates taken by confocal microscopy. 

White dashed circles singles out these cell aggregates, showing that in control (D), red cells were present 

with the core of the aggregates, whereas in morphant, red cells were excluded from the core of cell 

aggregates. (N = 60 cell aggregates/treatment). 
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3.3.4 atp2b1a has roles in heart valves’ function 
 

SqET4 expresses weak EGFP signal in atrial-ventricular valve (AV valve) and this signal 

increases upon atp2b1a knockdown (Fig. 35B & B’). Morphologically, defective heart looping, 

pericardial edema, decrease heart beat and abnormal blood pooling were observed in these 

morphants. 
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Figure 35: atp2b1a required for heart atrio-ventricular valves’ function. (A & A’) EGFP signal was 

detected in embryonic heart valves. (B & B’) atp2b1a morphant phenotype of embryonic heart shows 

significant increase in EGFP signal in these presumptive heart valves, while heart looping was also being 

affected by the knockdown. (C & C’) EGFP signal was also detectable in heart valves at adult stage. 

Abbreviations: v: ventricle; a: atrium; VB valve: Ventricle-Bulbus valve; AV valve: Atrium-Ventricle 

valve  
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3.3.5 atp2b1a is expressed in statoacoustic ganglion 

SqET4 expresses EGFP in presumptive statoacoustic ganglion of the inner ear at larval stages. 

EGFP signal was detected in these presumptive neurons (until proven with appropriate markers) 

located dorsally from otic sensory patches from 4 dpf onwards. A posterior bundle of cells 

appeared initially as loose clusters of cells (Fig. 36A’). At a later stage, the anterior bundles of 

these neuron-like cells increase greatly in terms of number and the elaborateness of their axonal 

projections. Such elaborateness of axons in the inner ear correlates well with the on-going 

maturation of inner ear sensory patches, i.e. the anterior and posterior maculae. The anterior and 

posterior bundles were seen connected by a “bridge of axonal projections” (red dashed lines). 

Atp2b1a is similarly expressed in the same region at transcript level (Fig. 36C). 

 

Figure 36: atp2b1a is express in presumptive statoacoustic ganglion of the inner ear. (A & A’) EGFP 

signal was detected in presumptive statoacoustic ganglion located dorsally from otic sensory patches from 

4 dpf onwards. A posterior bundle of cells appeared initially as loose clusters of cells. (B & B’) At later 

stage, the anterior bundles of these neuron-like cells increase greatly in terms of number and the 

elaborateness of their axonal projections. Such elaborateness of axons in the inner ear correlates well with 

the on-going maturation of inner ear sensory patches, i.e. the anterior and posterior maculae. The anterior 

and posterior bundles were seen connected by a “bridge of axonal projections” (red dashed lines). (C) In 

situ hybridization of atp2b1a at 6 dpf demonstrated similar expression. Abbreviations: ot: optic tectum; 

ov: otic vesicle; mb: midbrain; hb: hindbrain; nm: neuromasts  
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Discussion 
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4.1 atp2b1a  in mechanosensory hair cells 
 

SqET4 transgenics (Parinov et al., 2004) has grown to be a popular in vivo tool for studying the 

development and regeneration of sensory mechanosensory hair cells in the lateral line, including 

the evolution of mechanoreception, planar cell polarity, the terminal division of a transient hair 

cell progenitor, and hair cell regeneration (Faucherre et al., 2009; Feijoo et al., 2009; Froehlicher 

et al., 2009; Gleason et al., 2009; Hernandez et al., 2007; Lopez-Schier and Hudspeth, 2006; 

Nagiel et al., 2008; Nechiporuk and Raible, 2008; Sarrazin et al., 2006).  As such, it became 

increasingly necessary to link the GFP expression pattern in this transgenic line with a particular 

molecular developmental mechanism. The proximity of the SqET4 insertion site and atp2b1a, 

along with the similarity of the gfp and atp2b1a expression patterns, suggested that SqET4 

represents the Tg:atp2b1a-GFP line. By linking this marker with atp2b1a, we have demonstrated 

that the function of atp2b1a might be linked to some of the aforementioned events. Furthermore, 

this finding has linked SqET4 with the regulation of intracellular Ca2+, a fundamental process of 

cell division, differentiation and physiology. The functional analysis of the zebrafish Atp2b1a 

has revealed its role in several aspects of mechanosensory hair cell development and physiology. 

Amongst these, hair cell proliferation and regeneration are of particular interest due to its 

established connection to deafness, which affects a large proportion of the human population.  

One of the four mammalian Atp2b genes, Atp2b2, has been linked to deafness and ataxia 

(Ficarella et al., 2007; reviewed in Hughes et al., 2006; Tempel and Schilling, 2007). In 

mammals, Atp2b1 is broadly expressed, and mutant embryos are embryonic lethal (Okunade et 

al., 2004).  The duplication of this gene in teleosts, along with differences in embryogenesis and 

experimental approaches in mice and zebrafish, could have helped to contribute to the 
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implication of the second gene of this family, atp2b1a, in the development of sensory hair cells, 

and thus alluding to the role of Ca2+ signaling in this process. Early EST-based expression 

analyses demonstrated the presence of atp2b1a transcripts in mechanosensory cells in the lateral 

line, optic tectum, otic vesicle and somites (Rauch et al., 2003; Thisse et al., 2001; Thisse and 

Thisse, 2004). Based on the effect of the PMCA inhibitor, 5(6)-carboxyeosin, atp2b1a seems to 

be the only PMCA that is active in PLLP and primary neuromasts; this illustrates the 

involvement of different PMCAs in evolutionarily divergent fish and mice. For this hypothesis to 

be validated, further study of the activity of other members of the PMCA family in zebrafish is 

warranted.   

Ca2+ ions at physiological, intracellular concentrations (10 -100 nM) regulate various 

aspects of cell physiology in a concentration-dependent manner, such as cell division and 

differentiation at low concentrations, and the inhibition of cell differentiation and even cell death 

at high concentrations (Kawano et al., 2006; Ntambu and Takova, 1996; reviewed in Florea and 

Busselberg, 2009; Slusarski and Pelegri, 2007). Based on preliminary results, apoptosis was put 

forward to explain the reduction of hair cells due to Atp2b1a deficiency (Cruz et al., 2009). This 

view is in conflict with our data showing that upon depletion of Atp2b1a the committed hair cells 

precursors fail to divide. Furthermore, even the weakly GFP-positive transient precursors failed 

to form (Fig. 13), suggesting that in the absence of Atp2b1a activity the process of hair cell 

differentiation stops prior to the formation of transient precursors of hair cells. Indeed, since 

Atp2b1a functions to export Ca2+ (Wanaverbecq et al., 2003; reviewed in Brini, 2009), its 

deficiency should induce an increase in intracellular Ca2+, and lead to differentiation failure. Our 

experiments revealed that the knockdown of atp2b1a increased intracellular Ca2+ levels of hair 

cells (Fig. 14, 16), in parallel with a block in hair cell precursor division (Fig. 12,13), an increase 
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in atoh1a/sox2/tacstd-positive cells and disorganization of the support cells cluster (Fig. 18b). 

Mis-regulation of Ca2+ in differentiating hair cells has resulted in phenotypic lack of secondary 

structures such as stereocilia and kinocilia (Fig. 15), which are required for transducing sound 

waves and motion into electrical signals for the sense of hearing. Stereocilia length could be 

directly impacted by Ca2+-dependent actin-myosin interactions in the stereocilia (Glenney et al., 

1981; Oertner et al., 2005; Fettiplace et al., 2006; Grati et al., 2006; reviewed in Manor and 

Kachar., 2008).  

In the inner ear, the same observation was made: an accumulation of atoh1a-positive 

cells in the saccular macula (Fig. 18K), which primary function is hearing (Riley and Moorman, 

2000). This observation, coupled with the fact that 68.5% of morphant embryos were classified 

as deaf (Fig. 16), strongly suggests that Atp2b1a is required for development of auditory 

function. This implies that Atp2b1a plays a role in differentiation of hair cells in zebrafish, 

similar to Atp2b2 in the inner ear of mammals (Ficarella et al., 2007; Hughes et al., 2006; 

Tempel and Schilling 2007).  These findings validate the use of this transgenic line as a model to 

assess the involvement of Ca2+ signaling in hearing-related disorders. 

 During neurogenesis in the fly CNS and the cortex of mammals, and during hair cell 

development in zebrafish, the transient precursors give rise to two differentiating neural cells in a 

process regulated by ato/atoh1 (Bossing et al., 1996; Kriegstein and Alvarez-Buylla, 2009; 

Lopez-Schier and Hudspeth, 2006; Schmid et al., 1999; our results - Fig. 18L). In contrast, in the 

mice inner ear, the transient precursors of hair cells are currently not defined, although the 

intermediate “differentiating” hair cells have been recognized (Kelley, 2006). Thus, in the inner 

ear of Atoh (Math1)-null mice, only mechanosensory hair cells are believed to be absent 

(Bermingham et al., 1999; reviewed in Bertrand et al., 2002). This may be because the 
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intermediate precursor of hair cells remains elusive in this model species.  

Overall, our results have demonstrated that the knockdown of Atp2b1a affected export of 

Ca2+ and blocked hair cell differentiation prior to formation of the transient precursors of hair 

cells. Thus, formation of this cell type depends upon Atp2b1a regulation of intracellular Ca2+. At 

the same time this developmental process negatively regulates a number of support cells and 

Atoh1a-positive committed precursors. At first, this may sound paradoxical unless one considers 

that during normal development a pool of support cells is continuously depleted by the 

elimination of cells giving rise to transient precursors and eventually to hair cells. Thus, when 

this process is incomplete, the earlier types of precursors accumulate. It is not clear at the 

moment whether the differentiated hair cells actively control proliferation of the support cells in 

a negative feedback loop that may involve Notch signaling (Itoh and Chitnis, 2001; Li et al., 

2010; Kelley et al., 2006).  

We observed that atp2b1a expression was induced in regenerating hair cells (Fig. 20). 

This observation is consistent with that of Ma and Raible, 2009, reporting a marked elevation of 

atoh1a expression in the first 24 h after neomycin treatment. During hair cell development, 

Atoh1a acts in an epistatic manner upstream of Atp2b1a, similar to that which is observed during 

regeneration of these cells. So, it seems that a functional link of these two genes represents an 

important part of a universal, developmental program that is responsible for formation of hair 

cells in various situations.  

Previous studies have noticed that, despite the progress in understanding the various 

transient states through which differentiating cells pass on the way to becoming mechanosensory 

hair cells, an understanding and discovery of corresponding in vivo markers has lagged behind 
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(Ghysen and Dambly-Chaudiere, 2007). Our work closed this gap at two important nodes: (1) by 

characterizing a function of Atp2b1a we not only linked it with SqET4 at the level of transient 

committed hair cell precursors. Importantly, these results illustrated a role of Atp2b1a in 

regulation of export of intracellular Ca2+during differentiation of mechanosensory hair cells (Fig. 

38). (2) The characterization of the SqET33-mi60a transgenic line presented a possibility to 

monitor in vivo not only the final phase of differentiation of mechanosensory hair cells, but to 

record much earlier events taking place at the level of support cells. 

 

       Figure 37: A model for atp2b1a’s role in the development of mechanosensory hair cells. 
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4.2 atp2b1a in Ultimobranchial body (UB) 
 

The function of calcitonin-producing cells (C-cells) in zebrafish has never before been 

experimentally dealt with largely due to a shortage of useful genetic markers. This study 

represents a first attempt to fill this gap. We began the study of atp2b1a role in the UB by 

characterizing the GFP expression in the UB of SqET4, which starts as early as 55 hpf (Fig. 22), 

whereas WISH detects atp2b1a transcripts in the UB from 72 hpf (Fig. 21). Thus expression of 

GFP reveals an activity of the regulatory machinery behind expression of atp2b1a almost one 

day earlier than mRNA could be detected by WISH. This may be due to a relatively low level of 

atp2b1a transcripts in the UB. Such observation is important since calca encoding the calcitonin 

polypeptide alpha (CT) is a known definitive marker of C-cells in zebrafish (Alt et al., 2006). Its 

transcript expression could be detected from 60 hpf, or slightly after GFP expression in the same 

region making this transgenic line a sensitive tool for detection of events related to activity of 

Atp2b1a. Immuno-co-localization of CT with SqET4 in UB has reinforced this idea (Fig. 21).  

High-resolution imaging of UB demonstrated that it consists of secretory cells assembled 

as distinct clusters with characteristic inner lumen occupied by a Ca2+-rich pharyngeal tooth (PD; 

Fig. 23). This suggests a direct involvement of UB in calcification of PD mediated by Atp2b1a. 

In mammals, Ca2+-ATPase was histochemically detected in cells forming teeth - ameloblasts and 

odontoblasts (Borke et al., 1993; 1995). This suggests that a role of Atp2b1a in formation of PD 

is evolutionary conserved. Atp2b1a could perform a binary function in PD formation. First, by 

exporting Ca2+ Atp2b1a supplies an essential component of calcification and, second, acting as 

phosphatase in hydrolysis of ATP, it provides Pi for tissue mineralization (Nakano et al., 2007).  
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Atp2b1a may regulate the formation and function of UB at several levels. First, this 

enzyme seems to be involved in regulation of formation of UB similar to that in neuromasts of 

the lateral line and sensory patches of the inner ear, where it was shown to act during formation 

and division of the terminal progenitor of mechanosensory cells. Second, retention of Ca2+ in 

atp2b1a-expressing morphant cells indicates a deficiency of Ca2+ export in target tissues (Go et 

al., 2010). 

A perturbation of Atp2b1a function results in Ca2+ retention inside UB cells of morphant 

as well as PMCA inhibitor-treated larvae (Fig. 23). Supporting data obtained from the 

osteoblasts reporter line Tg(osx-mCherry), reveals that an early calcification of pharyngeal teeth 

takes place in the absence of function of osterix-positive odontoblasts. These cells were not 

detected in PD at 4.0 dpf stage, but were present after 5.5 dpf, when they associate closely but do 

not overlap with UB (Fig. 27). We show that calcification of PD has commenced between 3.5 to 

4.0 dpf (Fig. 25). Therefore, a transition between the odontoblast-independent phase of 

calcification to the odontoblast-dependent phase of this process could therefore occur already 

after initiation of calcification and, perhaps, under its influence. This morphogenetic switch 

taking place between 4.0 to 4.5 dpf possibly signifies the beginning of enameloid mineralization, 

which in zebrafish is relatively short (Isokawa et al., 1970; Inoue et al., 1973; Van der Heyden et 

al., 2000). Taken together the presented evidence strongly suggests that an early odontoblast-

independent phase of calcification starts in sites associated with UB.  

In the atp2b1a morphants calcification was affected also in other anterior bones without 

sites of Atp2b1a expression in close vicinity such as operculum, where appearance of osterix-

positive osteoblasts was affected (Fig. 28). Mouse osteoblasts are known to express E-cadherin. 

This renders these cells to be responsive to extra-cellular Ca2+ providing means for cell adhesion 
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(Babich et al., 48). It is likely that osterix-positive osteoblasts in operculum require adequate 

levels of extra-cellular Ca2+ to maintain integrity, cell adhesion and signalling through cadherin-

mediated interactions during formation of this bone. This also suggests that UB had a long-range 

effect on calcification. Two plausible explanations should be discussed here. First, UB may 

provide enough Ca2+ to support bone calcification at a distance due to Ca2+ diffusion along a 

concentration gradient or by active cellular transport (Martin 1994). Since UB is not vascularized 

at least until 7 dpf this process seems to be independent of vascular circulation (Fig. 23). Second, 

UB secretes two hormones regulating Ca2+ metabolism - CT and calcitonin-gene related peptide 

(CGRP) (Grunditz et al., 1986). CT acts via its receptor CTR present in bones, whereas CGRP 

could act on carbonic anhydrase to regulate mineralization (Cudennec et al., 2006; Lafont et al., 

2010). Not surprisingly the level of calca transcripts and CGRP was sharply reduced in the 

atp2b1a morphant (Fig. 29 & 30). The knockdown of calca caused no effect on the levels of 

atp2b1a in UB (Fig. 24) suggesting that atp2b1a acts upstream of calca. Thus, a failure of UB 

formation in morphants would account for deficiency of calcitonin and CGRP transcripts.  

To gain information on possible transcriptional regulation of atp2b1a in UB, an analysis 

of a related bHLH transcription factor, Mash1 was considered as another candidate due to its 

involvement in C-cells development in mouse (Kameda et al., 2007). In zebrafish Mash1 is 

represented by the two related genes ascl1a and ascl1b. Based on the analysis of these 

morphants, it seems that these genes share a responsibility for regulation of atp2b1a in UB. 

Evidently, supplementing either ascl1a or ascl1b morphants with atp2b1a mRNA was unable to 

rescue both phenotypes in UB (Fig. 24). 

To obtain better resolution on the analysis of molecular markers of pharyngeal teeth, only 

pharynges containing EGFP-marked UB (isolated from SqET4 larvae) was analysed (Fig. 29). 
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Dlx2b is a transcription factor required for normal morphogenesis of pharyngeal teeth of 

zebrafish (Jackman and Stock 2006).  Dlx2b transcript level increased by two-folds in atp2b1a 

morphants, suggests a feedback mechanism to compensate the loss of Atp2b1a activity. Fgf 

signalling pathway has been shown to act upstream of teleost dlx2b in oral and pharyngeal teeth 

(Jackman et al., 2004). It would be interesting to see if such feedback regulation involves Fgf 

signalling components to promote activation of Fgf-responsive Ca2+ channels such as those 

observed in neonatal rat cardiomyocytes (Merle et al., 1995) and Xenopus nervous system (Lee 

et al., 2009). In contrast, the structural genes of PD (connexin 43 and integrin αV subunit) were 

down-regulated (five-folds and one-fold, respectively). This was expected due to a collapse of 

structural integrity of UB in morphants (Fig. 23). 

PMCA being a highly specific outwardly directed transporter for Ca2+ has been suggested 

to play a key role in bone mineralization (Carafoli 1991; Abramowitz and Suki 1996). Three 

isoforms of PMCA have been found in osteoblastic cells, primarily PMCA1, but also PMCA2 

and PMCA4 (Nakano et al., 2007; Stains et al., 2002). Whereas a function of PMCA1 in 

mammals was confirmed during mineralization of osteoblasts in culture (Nakano et al., 2007), it 

was not shown whether it functions in the same way during bone development in vivo. There are 

a few factors to be considered here. Atp2b1a is neither expressed in bone primordia, nor is EGFP 

in SqET4 expressed in a manner suggesting a direct role of this Ca2+ pump in osteoblasts during 

bone formation. Atp2b1a is expressed in somites, suggesting an early role of Atp2b1a in 

providing Ca2+ where it could be required for bone matrix mineralization by osteoblasts 

differentiated from sclerotome-derived progenitor cells (Inohaya et al., 2007). In the present 

study, our analysis was restricted to more anterior regions, where somites are not present. Here 

Atp2b1a seems to be involved in bone formation indirectly by exporting Ca2+ from UB, which 
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expresses this Ca2+ pump, and, in addition, via production of calcitonin. The latter is known to 

regulate Ca2+ levels having strong hypocalcaemic effect in blood. This could be achieved, for 

example, by stimulation of recruitment of Ca2+ from blood and other body fluids into bones and 

other Ca2+ deposits, including otoliths that are deficient in atp2b1a morphants (Cruz et al., 2009; 

Go et al., 2010).  

 

Figure 39: A model for atp2b1a’s role in facilitating calcification of pharyngeal dentition and other 

bones. 
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CHAPTER 5 

Conclusions 
 

“Remember the person who, when he was asked why he was working so hard on something that 
would come to the attention of scarcely anyone: I will be satisfied with a few, he answered, I will 

be satisfied with one, I will be satisfied with no one.” 
 

Michel de Montaigne, Essais, Livre I, Chap. XXXVIII 
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CONCLUSIONS 

 

In zebrafish, the mechanosensory cells and the ultimobranchial bodies (UB) are two cell lineages 

where outwardly extrusion of Ca2+ ions mediated by the plasma membrane Ca2+ pump, Atp2b1a 

was found to be required for their respective development and functioning. A “see-saw” 

relationship between intracellular and extracellular Ca2+ mediated by this ATP-driven Ca2+ 

exporter was observed in both situations; where too much inside and too little outside can created 

their own class of problems.  

In mechanosensory cells, Atp2b1a was found to be an important regulator of intracellular 

Ca2+ level. Atp2b1a actively maintains a purposefully low intracellular Ca2+ level to ensure that 

it remains sensitive to its sensory triggers. Disruption to its Ca2+ homeostatic state first halted a 

progression of mechanosensory cells differentiation from its transient precursor state to a 

terminally differentiated state. This eventually left the inner ear and neuromasts with subnormal 

numbers of mechanosensory cell. And the phenotype subsequently propagated to a level where 

severe consequence in auditory and vestibular development resulted. 

Atp2b1a’s parallel function is to pump Ca2+ ions outwards and Ca2+ ions could then 

travels to its target tissues by diffusion. We have determined that this function of Atp2b1a is 

necessary to facilitate calcification of several developing bones, where a constant supply of raw 

materials for bone matrix development is essential. We have identified atp2b1a to be expressed 

in UB, and elucidated a role of Atp2b1a in mediating direct calcification of pharyngeal dentitions 

(PDs). And in hindsight, we may be the first to provide evidence to show that calcification of 

PDs could be regulated by UB in zebrafish. We have also realized Atp2b1a could in parallel 

mediate other long-range calcification events of distantly located bones by regulating the levels 
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of two bone-promoting endocrine hormones, calcitonin and related CGRP peptide. This study is 

of interest both for demonstrating a role for at least one PMCA in biomineralization and 

characterizing ultimobranchial body anatomy and function. We are at a beginning of 

understanding the regulatory network that maintains Ca2+ homeostasis of a developing 

vertebrate. Zebrafish does not develop oral dentitions but nevertheless retained its ability to form 

pharyngeal dentitions like many cypriniforms. This work validates efforts of several laboratories 

aiming to establish zebrafish as a model to study biomineralization of dentitions, etc. (Borday-

Birraux et al., 2006; Jackman and Stock, 2006; Stock et al., 2006; Stock, 2007Pasco-Viel et al., 

2010). 

In this work I have extensively employed antisense morpholino technology to 

knockdown genes of interest due to the absence of mutants. Unlike the situation in mice, being 

able to analyze the gene’s phenotype from a non-lethal morphant clearly is an advantage. In the 

case of a classical developmental mutant where a gene’s function is completely abrogated, and 

the observed phenotype is usually attributed to the knockout of the gene, such genetic analysis 

can provide straightforward answers. With the recent availability of targeted mutagenesis 

technologies mediated by “Zinc Finger Nuclease (ZFN)” or plant pathogens derived 

“Transciption Activator-like Effector Nucleases (TALEN)”, could be used to generate “null 

mutants” of Atp2b1a, so as to generate more understanding on the gene’s function. And that 

could be a valid future direction. But in retrospect, I would still have made use of morpholino 

knockdown technology even if a mutant for Atp2b1a will become available at some point in 

future, since morpholino-mediated knockdown provides additional levels of analysis by being 

able to restrict morpholino’s presence in both spatial and temporal terms.  
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Another possibility is to verify a co-regulation pathway for the models presented in this 

thesis, i.e. otoconial and bone development. Both developmental processes have been shown to 

involve similar sets of processes (reviewed by Hughes et al., 2006) and shown here in this thesis 

to require the same Ca2+ pump. Like bones, otoconia are complex calcium carbonate (CaCO3) 

biominerals in the utricle and saccule of the vertebrate inner ear that requires local increase of 

Ca2+ to facilitate mineralization. These "ear stones” are required for normal balance and the 

sensation of linear acceleration (gravity). In mammals, the majority of otoconia is generated only 

in the embryonic ear and must be maintained throughout life. Ectopic otoconia found in 

semicircular canal of the ear may cause abnormal sensations of dizziness and loss of balance, a 

condition referred to as Benign Positional Vertigo (BPV). And like mammals, teleost have 

otoconial-like structures more commonly known as otoliths and they continue to grow 

throughout the life of the fish, with daily accretion of layers of extracellular matrix proteins and 

deposited CaCO3. Yaoi and colleagues (2003) have proposed a regulatory relationship between 

calcitonin and otoconin 22; a major core protein of otoconia. To support this idea, we have 

identified calca (the gene encoding for calcitonin peptide) to have expression in the same set of 

mechanosensory cells within the inner ear (data not shown). Since atp2b1a is also required to 

regulate calca level in UB for bone development, the same relation may perhaps hold true in 

otolith formation. 

  



144 
 

REFERENCES 
 
Ablooglu A.J., Kang J., Handin R.I., Traver D., Shattil S.J.. The zebrafish vitronectin receptor: 
characterization of integrin aV and B3 expression patterns in early vertebrate development. Dev. 
Dyn. 236 (2007):2268-2276. 
 
Abramowitz J., Gonzalez J.M., Rouse D., Suki W.N., Differential expression of plasma 
membrane calcium pump mRNA isoforms in rat-osteoblast-like cells. Miner. Electrolyte Metab. 
21 (1995):367-374. 
 
Abramowitz J., Suki W.N., Ca2+-ATPase and bone cell mineralization. Miner. Electrolyte Metab. 
22 (1996):336-344. 
 
Alt B., Reibe S., Feitosa N.M., Elsalini O.A., Wendl T., Rohr K.B., Analysis of origin and 
growth of the thyroid gland in zebrafish. Dev. Dyn. 235 (2006):1872-1883. 
 
Amoyel M., Cheng Y.C., Jiang Y.J., Wilkinson D.G., Wnt1 regulates neurogenesis and mediates 
lateral inhibition of boundary cell specification in the zebrafish hindbrain. Development 132 
(2004):775-785. 
 
Balak K.J., Corwin J.T., Jones J.E., Regenerated hair cells can originate from supporting cell 
progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system, J. 
Neurosci. 10 (1990):2502–2512. 

Barbiero G., Munaron L., Antoniotti S., Baccino F.M., Bonelli G., Lovisolo D., Role of mitogen-
induced calcium influx in the control of the cell cycle in Balb-c 3T3 fibroblasts, Cell Calcium 18 
(1995):542-56. 

Berridge M., OFF Mechanisms. In: Cell Signaling Biology (2009). Portland Press Limited. 
 
Behra M., Bradsher J., Sougrat R., Gallardo V., Allende M. L., Burgess S. M., Phoenix is 
required for hair cell regeneration, PLoS Genetics 5 (2009):1-14. 

Bejarano G., Phesant M., Makunin I., Stephen S., Kent W.J., Mattick J.S., Haussler D., 
Ultraconserved elements in the human genome, Science 304 (2004):1321-1325. 

Bermingham-McDonogh O., Rubel E.W., Hair cell regeneration: winging our way towards a 
sound future, Curr. Opin. Neurobiol. 13 (2003):119–126. 

Bermingham N.A., Hassan B.A., Price S.D. et al., Math1: an essential gene for the generation of 
inner ear hair cells, Science 284 (1999):1837-41. 

Bertrand N., Castro D.S., Guillemot F., Proneural genes and the specification of neural cell 
types, Nat. Rev. Neurosci. 3 (2002):517-30.  

Bourque C. and Honvras Y., Hooked on zebrafish: Insights into development and cancer of 
endocrine tissues. Endocr. Relat. Cancer 18 (2011): R149-R164. 
 



145 
 

Borday-Birraux V., Van der Heyden C., Debias-Thibaud M., Verreijdt L., Stock D.W., et al., 
Expression of Dlx genes during the development of the zebrafish pharyngeal dentitions: 
evolutionary implications. Evol. Dev. 8 (2006):130-141.  
 
Borke J.L., Zaki A. el-M., Eisenmann D.R., Mednieks M.I., Localization of plasma membrane 
Ca2+ pump mRNA and protein in human ameloblasts by in situ hybridization and 
immunohistochemistry. Connect Tissue Res. 33 (1995):139-144. 
 
Borke J.L., Zaki A.E., Eisenmann D.R., Ashrafi S.H., Ashrafi S.S. Penniston J.T., Expression of 
plasma membrane Ca2+ pump epitopes parallels the progression of enamel and dentin 
mineralization in rat incisor. J. Histochem. Cytochem. 41 (1993):175. 
 
Bossing T., Udolph G., Doe C.Q., Technau G.M. The embryonic central nervous system lineages 
of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the 
neuroectoderm, Dev. Biol. 179 (1996):41-64. 
 
Brini M., Plasma membrane Ca2+-ATPase: from a housekeeping function to a versatile signaling 
role, Pflugers Arch - Eur. J. Physiol. 457 (2009):657-664. 
 
Brini M., Leva F.D., Domi T., Fedrizzi L., Lim D., Carafoli E., Plasma-membrane calcium 
pumps and hereditary deafness, Biochem. Soc. Trans. 35 (2007):913–918. 
 
Carafoli E., The calcium pumping ATPase of the plasma membrane. Annu. Rev. Physiol. 53 
(1991):531-547. 
 
Choo B.G.H., Kondrichin I., Parinov S. et al., Zebrafish transgenic Enhancer TRAP line database 
(ZETRAP), BMC Dev. Biol. 6 (2006):5. 

Clark M.S., Bendell L., Power D.M., Warner S., Elgar G., Ingleton P.M., Calcitonin: 
characterisation and expression in a teleost fish, Fugu rubripes. J. Mol. Endocrinol. 28 
(2002):111–123. 
 
Coffin A.B., Owens K.N., Raible D.W., and Rubel E.W., Extracellular divalent cations modulate 
aminoglycoside-induced hair cell death in the zebrafish lateral line, Hear. Res. 253 (2009):42-51. 

Cotanche D.A., Regeneration of the tectorial membrane in the chick cochlea following severe 
acoustic trauma, Hear. Res. 30 (1987):197–206. 

Cotanche D.A., Henson M.M., Henson O.W. Jr., Contractile proteins in the hyaline cells of the 
chicken cochlea, J. Comp. Neurol. 324 (1992):353–364. 

Cruz S., Shiao J.C., Liao B.K., Huang C.J., Hwang P.P., Plasma membrane calcium ATPase 
required for semicircular canal formation and otolith growth in the zebrafish inner ear, J. Exp. 
Biol. 212 (2009):639-47. 

Cudennec B., Rousseau M., Lopez E., Fouchereau-Peron M., CGRP stimulates gill carbonic 
anhydrase activity in molluscs via a common CT/CGRP receptor. Peptides 27 (2006):2678-2682. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Borke%20JL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zaki%20A%20el-M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Eisenmann%20DR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mednieks%20MI%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/7554945


146 
 

David S., Gerhard H., Walter G., The fates of the blastomeres of the 16-cell zebrafish embryo, 
Development 120 (1994):1791-1798. 

De Felice M. and Di Lauro R., Thyroid development and its disorders: genetics and molecular 
mechanisms. Endo. Rev. 25 (2004):722-746. 
 
Epstein J.E. and Cotanche D.A., Secretion of a new basal layer of tectorial membrane following 
gentamicin-induced hair cell loss, Hear. Res. 90 (1995):31–43. 

Faucherre A., Pujol-Martı J., Kawakami K., Lopez-Schier H., Afferent Neurons of the Zebrafish 
Lateral Line Are Strict Selectors of Hair-Cell Orientation, PLoS ONE 4 (2009):e4477. 

Feijóo C.G., Saldias M.P., De la Paz J.F., Gómez-Skarmeta J.L., Allende, M.L., Formation of 
posterior cranial placode derivatives requires the Iroquois transcription factor irx4a, Mol. Cell. 
Neurosci. 40 (2009):328-337.  

Fettiplace R., Hackney C.M., The sensory and motor roles of auditory hair cells, Nat. Rev. 
Neurosci. 7 (2006):19–29. 

Ficarella R., Di Leva F., Bortolozzi M., Ortolano S., Donaudy F., Petrillo M., Melchionda S., 
Lelli A., Domi T., Fedrizzi L., Lim D., Shull G.E., Gasparini P., Brini M., Mammano F., 
Carafoli E., A functional study of plasma-membrane calcium-pump isoform 2 mutants causing 
digenic deafness. Proc. Natl. Acad. Sci. USA.104 (2007):1516–1521. 
 
Florea A-M., Busselberg D., Anti-cancer drugs interfere with intracellular calcium signaling, 
Neurotoxicology. 30 (2009):803-10. 

Fong S.H., Emelyanov A., Teh C., Korzh V., Wnt signalling mediated by Tbx2b regulates cell 
migration during formation of the neural plate, Development 132 (2005):3587-3596. 

Froehlicher M., Liedtke A., Groh K. et al., Estrogen receptor subtype beta2 is involved in 
neuromast development in zebrafish (Danio rerio) larvae, Dev. Biol. 330 (2009) 32-43. 

Gilbert S.F., Developmental biology. Sunderland, MA: Sinauer Associates, Inc. (2003):749 p. 
 
Ghysen A., and Dambly-Chaudière C., The lateral line microcosmos, Genes Dev. 21 
(2007):2118-2130. 

Gleason M.R., Nagiel A., Jamet S., Vologodskaia M., López-Schier H., Hudspeth A.J., The 
transmembrane inner ear (Tmie) protein is essential for normal hearing and balance in the 
zebrafish, Proc. Natl. Acad. Sci. USA. 106 (2009):21347-21352.  

Glenney J.R. Jr, Kaulfus P., Matsudaira P., Weber K., F-actin binding and bundling properties of 
fimbrin, a major cytoskeletal protein of microvillus core filaments, J. Biol. Chem. 256 
(1981):9283–9288. 

Go W., Bessarab D., Korzh V., Atp2b1a regulates Ca2+ export during differentiation and 
regeneration of mechanosensory hair cells of zebrafish. Cell Calcium 48 (2010):302-313. 
 



147 
 

Grati M., Schneider M. E., Lipkow K., Strehler E. E., Wenthold R. J., Kachar B., Rapid turnover 
of stereocilia membrane proteins: evidence from the trafficking and mobility of plasma 
membrane Ca2+-ATPase 2, J Neurosci. 26 (2006):6386–6395. 

Grunditz T, Ekman R, Håkanson R, Rerup C, Sundler F, Uddman R., Calcitonin gene-related 
peptide in thyroid nerve fibers and C cells: effects on thyroid hormone secretion and response to 
hypercalcemia. Endocrinol.119 (1986):2313-2324. 
 
Harris J.A., Cheng A.G., Cunningham L.L., MacDonald G., Raible D.W., Rubel E.W., 
Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio 
rerio), J. Assoc. Res. Otolaryngol. 4 (2003):219–234. 

Hernandez P.P., Moreno V., Olivari F.A., Allende M.L., Sub-lethal concentrations of waterborne 
copper are toxic to lateral line neuromasts in zebrafish (Danio rerio), Hear. Res. 213 (2006):1-10. 

Hernandez P.P., Olivari F.A., Sarrazin A.F., Sandoval P.C., Allende M.L., Regeneration in 
zebrafish lateral line neuromasts: Expression of the neural progenitor cell marker sox2 and 
proliferation-dependent and-independent mechanisms of hair cell renewal, Dev. Neurobiol. 67 
(2007):637-654. 

Hughes I., Thalmann I., Thalmann R., Ornitz D.M., Mixing model systems: using zebrafish and 
mouse inner ear mutants and other organ systems to unravel the mystery of otoconial 
development. Brain Res. 109 (2006):58-74. 
 
Husain M., Jiang L., See V., et al., Regulation of vascular smooth muscle cell proliferation by 
plasma membrane Ca2+-ATPase. Am. J. Physiol. 272 (1997):C1947-59. 

Inoue D. and Wittbrodt J.. One for all – A highly efficient and versatile method for fluorescent 
immunostaining in fish embryos, PLoS ONE 6 (2011):e19713. 
 
Inoue Y., Uchino S., Asano T., Hasegawa S., Fujioka Y., The mineralization pattern of 
developing fish tooth enameloid using X-ray probe microanalyzer, historadiography and 
radioactive tracer (45Ca). J. Nihon Univ. Sch. Dent. 15 (1973):52–57. 
 
Isogai S., Horiguchi M., Weinstein B.M., The vascular anatomy of the developing zebrafish: an 
atlas of embryonic and early larval development. Dev. Biol. 230 (2001):278-301. 
 
Isokawa S., Tsuboushi M., Aoki K., Imai M., Kawai A., Tsuchida S., Studies on the developing 
enameloid of a fish (Hoplognathus fasciatus). I. Mineralization pattern of enameloid matrix. J. 
Nihon Univ. Sch. Dent. 12 (1970):43–49. 
 
Itoh M. and Chitnis A.B., Expression of proneural and neurogenic genes in the zebrafish lateral 
line primordium correlates with selection of hair cell fate in neuromasts, Mech. Dev. 102 
(2001):263-266. 

Jackman W.R, Stock D.W., Transgenic analysis of Dlx regulation in fish tooth development 
reveals evolutionary retention of enhancer function despite organ loss. Proc. Natl. Acad. Sci. 
U.S.A. 103 (2006):19390-19395.  



148 
 

 
Kameda Y., Nishimaki T., Miura M., Jiang S.X., Guillemot F., Mash1 regulates the development 
of C Cells in mouse thyroid glands. Dev. Dyn. 236 (2007):262-270.  
 
Kawano S., Otsu K., Kuruma A. et al., ATP autocrine/paracrine signaling induces calcium 
oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium. 39 
(2006):313-24. 

Keeton T.P., Burk S.E., Shull G.E., Alternative splicing of exons encoding the calmodulin-
binding domains and C termini of plasma membrane Ca2+-ATPase isoforms 1, 2, 3, and 4. J. 
Biol. Chem. 268 (1993):2740-2748. 
 
Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.F., Stages of embryonic 
development of the zebrafish, Dev. Dynam. 203 (1995):253–310. 

Kimmel C.B., DeLaurier A., Ullmann B., Dowd J., McFadden M., Modes of developmental 
outgrowth and shaping of a craniofacial bone in zebrafish. PLoS One 5 (2010):e9475. 

Kondrychyn I., Garcia-Lecea M., Emelyanov A., Parinov S., Korzh V., Genome-wide analysis of 
Tol2 transposon reintegration in zebrafish, BMC Genomics. 10 (2009):418. 

Korzh V., Transposons as tools for enhancer-trap screens in vertebrates, Genome Biol. 8 (2007): 
Suppl. 1:S8. 
Korzh V., Sleptsova-Friedrich I Liao J, He J, Gong Z, Expression of zebrafish bHLH genes ngn1 
and nrD define distinct stages of neural differentiation, Dev. Dynam. 213 (1998):92-104. 

Kozel P.J., Friedman R.A., Erway L.C., Yamoah E.N., Liu L.H., Riddle T., Duffy J.J., 
Doetschman T., Miller M.L., Cardell E.L., Shull G.E., Balance and hearing deficits in mice with 
a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J. Biol. Chem. 
273 (1998):18693–18696. 
 
Kriegstein A., Alvarez-Buylla A.,The glial nature of embryonic and adult neural stem cells, 
Annu. Rev. Neurosci. 32 (2009):149-84. 

Kurnellas M.P., Nicot A., Shull G.E., Elkabes S., Plasma membrane calcium ATPase deficiency 
causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in 
multiple sclerosis and spinal cord injury, The FASEB J. 19 (2005):298-300. 

Lafont A.G., Wang Y.F., Chen G.D., Liao B.K., Tseng Y.C., Huang C.J. and Hwang P.P., 
Involvement of calcitonin and its receptor in the control of calcium regulating-genes and calcium 
homeostasis in zebrafish (Danio rerio). J. Bone Miner. Res. 26 (2010):1072-1083. 
 
Lafont A.G., Dufour S., Fouchereau-Peron M., Evolution of the CT/CGRP familia comparative 
study with new data from models of teleosts, the eel, and cephalopod molluscs, the cuttlefish and 
the nautilus. Gen. Comp. Endocrinol. 153 (2007):155-169.  
 



149 
 

Lecaudey V., Cakan-Akdogan G., Norton W.H.J., Gilmour D., Dynamic Fgf signaling couples 
morphogenesis and migration in the zebrafish lateral line primordium, Development. 135 (2008): 
2695-2705. 

Le Douarin N., Fontaine J., Le Lievre C., New studies on the neural crest origin of the avian 
ultimobranchial glandular cells—interspecific combinations and cytochemical characterization 
of C cells based on the uptake of biogenic amine precursors. Histochem. 38 (1974):297–305. 
 
Le Lievre C.S., Le Douarin N.M., Mesenchymal derivatives of the neural crest: analysis of 
chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 34 (1975):125–154. 
 
Liao B.K., Deng A.N., Chen S.C., Chou M.Y., Hwang P.P., Expression and water calcium 
dependence of calcium transporter isoforms in zebrafish gill mitochondrion-rich cells, BMC 
Genomics. 8 (2007):354. 

Lipskaia L. and Lompré A.M., Alteration in temporal kinetics of Ca2+ signaling and control of 
growth and proliferation, Biol Cell. 96 (2004):55-68. 

López-Schier H., Starr C.J., Kappler J.A., Kollmar R., Hudspeth A.J., Directional cell migration 
establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish, Dev. 
Cell. 7 (2005):401-412. 

López-Schier H. and Hudspeth A. J., A two-step mechanism underlies the planar polarization of 
regenerating sensory hair cells, Proc. Natl. Acad. Sci. USA. 103 (2006):18615-20. 

Ma E.Y. and Raible D.W., Signaling pathways regulating zebrafish lateral line development, 
Curr. Biol. 12 (2009):R381-386. 

Manor U. and Kachar B., Dynamic length regulation of sensory stereocilia, Semin. Cell. Dev. 
Biol. 19 (2008):502-510. 

Martin B., Mathematical model for the mineralization of bone. J. Ortho. Res. 12 (1994):375-383. 
 
McDermott B.M. Jr, Baucom J.M., Hudspeth A.J., Analysis and functional evaluation of the 
hair-cell transcriptome, Proc. Natl. Acad. Sci. USA. 10 (2007):11820-5. 

Meszaros J.G., Karin N.J., Osteoblasts express the PMCA1b isoform of the plasma membrane 
Ca2+-ATPase. J. Bone Miner. Res. 10 (1993):1235-1240. 
 
Millimaki B.B., Sweet E.M., Dhason M.S., Riley B.B., Zebrafish atoh1 genes: classic proneural 
activity in the inner ear and regulation by Fgf and Notch, Development 134 (2007):295-305. 

Moorman S.J., Development of sensory systems in zebrafish (Danio rerio), ILAR J. 42 
(2001):292-298.  

Najib L. and Fouchereau-Peron M., Calcitonin gene-related peptide stimulates carbonic 
anhydrase activity in trout gill membranes. Gen. Comp. Endocrinol. 94 (1994):166-170. 
 



150 
 

Nagiel A., Andor-Ardo D., Hudspeth A.J., Specificity of Afferent Synapses onto Plane-Polarized 
Hair Cells in the posterior Lateral Line of the Zebrafish, J. Neurosci. 28 (2008):8442-8453.  

Nakano Y., Addison W.N. and Kaartinen M.T., ATP-mediated mineralization of MC3T3-E1 
osteoblast cultures. Bone 41 (2007):549-561. 
 
Navratilova P., Fredman D., Hawkins T.A., Turner K., Lenhard B., Becker T.S., Systematic 
human/zebrafish comparative identification of cis-regulatory activity around vertebrate 
developmental transcription factor genes. Dev. Biol. 327(2009):526-540. 
 
Nechiporuk A. and Raible D.W., FGF-Dependent Mechanosensory Organ Patterning in 
Zebrafish, Science 320 (2008):1774-1777. 

Nicolson T. The Genetics of Hearing and Balance in Zebrafish, Annu. Rev. Genet. (2005): 39:9-
22. 

Ntambi J.M. and Takova T., Role of Ca2+ in the early stages of murine adipocyte differentiation 
as evidenced by calcium mobilizing agents, Differentiation. 60 (1996):151-8.  

Oertner T.G. and Matus A., Calcium regulation of actin dynamics in dendritic spines, Cell 
Calcium. 37 (2005):477–482. 

Okunade, G. W., Miller, M. L., Pyne, G. J., Sutliff, R. L., O’Connor, K. T., Neumann, J. C., 
Andringa, A., Miller, D. A., Prasad, V., Doetschman, T., Paul, R. J., and Shull, G. E., Targeted 
ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping 
function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for 
PMCA4. J. Biol. Chem. 279 (2004):33742–33750 
 
Olson S., Wang M.G., Carafoli E., Strehler E.E., McBride O.W., Localization of two genes 
encoding plasma membrane Ca(2+)-transporting ATPases to human chromosomes 1q25-32 and 
12q21-23, Genomics. 9 (1991):629-641. 

Owens K.N., Cunningham D.E., Macdonald G., Ultrastructural analysis of aminoglycoside-
induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response, J. 
Comp. Neurol. 502 (2007):522-543. 

Owens K.N., Santos F., Roberts B. et al., Identification of genetic and chemical modulators of 
zebrafish mechanosensory hair cell death, PLoS Genet. 4 (2008):e1000020.  

Oughterson S.M., Munoz-Chapuli R., De Andres V., Lawson R., Heath S., Davies D.H., The 
effects of calcitonin on serum calcium levels in immature brown trout, Salmo trutta. Gen Comp 
Endocrinol. 97 (1995):42-48. 
 
Parinov S., Kondrichin I., Korzh V. Emelyanov A., Tol2 transposon-mediated enhancer trap to 
identify developmentally regulated zebrafish genes in vivo, Dev. Dynam. 231 (2004):449-459. 

Pasco-Viel E., Charles C., Chevret P., Semon M., Tafforeau P., et al., Evolutionary trends of the 
pharyngeal dentition in cypriniforms (Actinopterygii: Ostariophysi). PLoS ONE 5 
(2010):e11293. 



151 
 

 
Poon K.L., Liebling M., Kondrychyn I., Garcia-Lecea M., Korzh V., Zebrafish Cardiac Enhancer 
Trap Lines: New Tools for in vivo Studies of Cardiovascular Development and Disease, Dev. 
Dynam. 239 (2010):914-926. 

Raphael Y., Evidence for supporting cells mitosis in the chick cochlea, J. Neurocytol. 31 
(1992):663–671. 

Rauch G.J., Lyons D.A., Middendorf I., Friedlander B., Arana N., Reyes T., Talbot W.S., 
Submission and Curation of Gene Expression Data. ZFIN Direct Data Submission (2003) 
(http://zfin.org). 

Renn J., Winkler C., Schartl M., Fischer R., Goerlich R., Zebrafish and medaka as models for 
bone research including implications regarding space-related issues. Protoplasma 229 
(2005):209-214. 
 
Riley B.B. and Moorman S.J., Development of utricular otoliths, but not saccular otoliths, is 
necessary for vestibular function and survival in zebrafish, J. Neurobiol. 43 (2000):329-337. 

Sandelin A., Bailey P., Bruce S., Engstrom P.G., Klos J.M., Wasserman W.W., Ericson J., 
Lenhard B., Arrays of ultraconserved non-coding regions span the loci of key developmental 
genes in vertebrate genome, BMC Gen. 5 (2004): 99. 

Sarrazin A.F., Villablanca E.J., Nunez V.A., Sandoval P.C., Ghysen A., Allende M.L., Proneural 
gene requirement for hair cell differentiation in the zebrafish lateral line, Dev. Biol. 295 (2006) 
534-545. 

Schmid A., Chiba A., Doe C.Q., Clonal analysis of Drosophila embryonic neuroblasts: neural 
cell types, axon projections and muscle targets, Development. 126 (1999):4653-89. 

Setsuko L.M., Lisa L.C., Lynne A.W. et al., Developmental differences in susceptibility to 
neomycin-induced hair cell death in the lateral line neuromasts of zebrafish (Danio rerio), Hear. 
Res. 186 (2003):47-56. 

Shepard J.L., Stern H.M., Pfaff K.L., Amatruda J.F., Analysis of the cell cycle in zebrafish 
embryos. The Zebrafish: Cellular and Developmental Biology, 2nd Ed. Methods Cell Biol. 76 
(2004):109-125. 

Slusarski D.C. and Pelegri F., Calcium signaling in vertebrate embryonic patterning and 
morphogenesis, Dev. Biol. 307 (2007):1-13. 

Spoorendonk K.M., Peterson-Maduro J., Renn J., Trowe T., Kranenbarg S., Winkler C., Schulte-
Merker S., Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial 
skeleton, Dev. 135 (2008) 3765-3774. 

Stains J.P., Weber J.A., Gay C.V., Expression of Na+/Ca2+ exchanger isoforms (NCX1 and 
NCX3) and plasma membrane Ca2+ ATPase during osteoblast differentiation. J. Cell Biochem.84 
(2002):625-635. 
 

http://zfin.org/


152 
 

Stock D.W., Zebrafish dentition in comparative context. J. Exp. Zool. B Mol. Dev. Evol. 308B 
(2007):523-549. 
 
Stock D.W., Jackman W.R., Trapani J., Developmental genetic mechanisms of evolutionary 
tooth loss in cypriniform fishes. Development 133 (2006):3127-3137.  
 
Stone J.S. and Cotanche D.A., Identification of the timing of S phase and the patterns of cell 
proliferation during hair cell regeneration in the chick cochlea, J. Comp. Neurol. 341 (1994):50–
67. 

Street  V.A., McKee-Johnson J.W., Fonseca R.C., Tempel B.L., Noben-Trauth K., Mutations in 
a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice, Nat. Genet. 19 
(1998):390–394. 

Suzuki N, Suzuki D, Sasayama Y, Srivastav AK, Kambegawa A, Asahina K., Plasma calcium 
and calcitonin levels in eels fed a high calcium solution or transferred to seawater. Gen Comp 
Endocrinol. 114 (1999):324-329. 
 
Takahashi K. and Kitamura K., A point mutation in a plasma membrane Ca2+-ATPase gene 
causes deafness in Wriggle Mouse Sagami. Biochem. Biophys. Res. Commun. 261 (1999):773–
778. 
 
Tempel B.L. and Shilling D.J., The plasma membrane calcium ATPase and disease, Subcell. 
Biochem. 45 (2007):365-83. 

Thisse, B., Pflumio, S., Fürthauer, M. et al., Expression of the zebrafish genome during 
embryogenesis (NIH R01 RR15402), ZFIN Direct Data Submission (2001): (http://zfin.org).  

Thisse B. and Thisse C., Fast Release Clones: A High Throughput Expression Analysis, ZFIN 
Direct Data Submission (2004): (http://zfin.org). 

Tomita M., Reinhold M.I., Molkentin J.D. Naski M.C., Calcineurin and NFAT4 induce 
chondrogenesis. J. Biol. Chem. 272 (2002):42214-42218. 
 
Ton C. and Parng C.,The use of zebrafish for assessing ototoxic and otoprotective agents, Hear. 
Res. 208 (2005):79-88. 

Van der Heyden C., Huysseune A., Sire J.-Y., Development and fine structure of pharyngeal 
replacement teeth in juvenile zebrafish (Danio rerio) (Teleostei, Cyprinidae). Cell Tiss. Res. 302 
(2000):205-219. 
 
Villablanca E.J., Renucc A., Sapède D. et al., Control of cell migration in the zebrafish lateral 
line: implication of the gene "tumour-associated calcium signal transducer," tacstd, Dev. Dynam. 
235 (2006):1578-88. 

Wagner G.F., Jaworski E.M., Radman D.P., Salmon calcitonin inhibits whole body Ca2+ uptake 
in young rainbow trout. J. Endocrinol. 155 (1997):459-465. 
 

http://zfin.org/


153 
 

Walker M.B. and Kimmel C.B., A two color acid-free cartilage and bone stain for zebrafish 
larvae. Biotechnic and Histochem. 82 (2006):23-28. 
 
Wanaverbecq N., Marsh S.J., Al-Qatari M., Brown D.A., The plasma membrane calcium-
ATPase as a major mechanism for intracellular calcium regulation in neurones from the rat 
superior cervical ganglion, J. Physiol. 550 (2003):83-101. 

Warchol M.E., Characterization of supporting cell phenotype in the avian inner ear: implications 
for sensory regeneration, Hear. Res. 227 (2007):11–18. 

Webb S.E., and Miller A.L., Ca(2+) Signalling and early embryonic patterning during zebrafish 
development, Clin. Exp. Pharmacol. Physiol. 34 (2007):897-904. 

Westerfield M., The Zebrafish Book: a Guide for the Laboratory Use of Zebrafish, The 
University of Oregon Press (2000). 

Whitfield T.T., Riley B.B., Chiang M.Y., Phillips B., Development of the zebrafish inner ear, 
Dev. Dynam. 223 (2002):427-458. 

Woolfe A., Goodson M., Goode D.K., Snell P., McEwen G.K., Vavouri T., Smith S.F., North P., 
Callaway H., Kelly K., Walter K., Abnizova I., Gilks W., Edwards Y.J., Cooke J.E., Elgar G., 
Highly conserved non-coding sequences are associated with vertebrate development, PLoS Biol. 
3 (2005): e7. 

Yamoah E.N., Lumpkin E.A., Dumont R.A., Smith P.J., Hudspeth A.J., Gillespie P.G., Plasma 
membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia, J. Neurosci. 18 (1998) 610-24.  
 
Yaoi Y, Suzuki M, Tomura H, Sasayama Y, Kikuyama S, Tanaka S. Molecular cloning of 
otoconin-22 complementary deoxyribonucleic acid in the bullfrog endolymphatic Sac: effect of 
calcitonin on otoconin-22 messenger ribonucleic acid levels. Endocrinol.144 (2003): 3287–3296. 
 

 


	ACKNOWLEDGEMENTS
	SUMMARY
	List of Tables
	List of Figures
	List of Abbreviations
	Publications
	CHAPTER 1
	Introduction
	1.1 Outline of this thesis
	1.2 Zebrafish and Enhancer Trap Transgenics
	1.3 Research Objectives
	1.4 Plasma Membrane Ca2+ ATPase
	1.5 Mechanosensory Hair Cells
	1.6 The Ultimobranchial body

	CHAPTER 2
	Materials and Methods
	2.1 DNA Applications
	2.1.1 Long-term Storage of Bacteria
	2.1.2 Competent Cell Preparation
	2.1.3 Transformation of Bacterial Competent Cells
	2.1.4 Polymerase Chain Reaction (PCR)
	2.1.5 Cloning of PCR Products
	2.1.6 Restriction Enzyme Digestion
	2.1.7 Agarose Gel Electrophoresis
	2.1.8 DNA Gel Purification
	2.1.9 Small-scale Purification of Plasmid DNA
	2.1.10 Midi-Scale Purification of Plasmid DNA

	2.2 RNA Procedures
	2.2.1 Isolation of total RNA from Zebrafish Embryos
	2.2.2 One-step RT-PCR
	2.2.3 First-strand cDNA Synthesis
	2.2.4 Long-range PCR
	2.2.5 Messenger RNA Synthesis for Rescue Experiments
	2.2.6 Quantitative Real-time PCR

	2.3 Zebrafish
	2.3.1 Fish Maintenance
	2.3.2 Stages of Embryonic Development
	2.3.3 Microinjection into Blastula Stage Zebrafish Embryos
	2.3.4 Design of Antisense Morpholinos
	2.3.5 Embryo Anesthesia
	2.3.6 Behavioral Assay
	2.3.7 16-cell Blastomeres Injection

	2.4 Functional Assays
	2.4.1 Pharmacological Treatment
	2.4.2 Acid-free Dual Staining of Bones and Cartilage
	2.4.3 Vital Dye Staining on Live Embryos
	2.4.4 Bone Mineralization Assay
	2.4.5 Live Ca2+ Imaging
	2.4.6 Birefringency of somite
	2.4.7 Hanging Drop Culture

	2.5 In situ Hybridization
	2.5.1 Antisense Probe Synthesis
	2.5.2 RNA Probe Clean Up
	2.5.3 Fixation of Staged Embryos
	2.5.4 Proteinase K (PK) Treatment
	2.5.5 Pre-hybridization
	2.5.6 Hybridization
	2.5.7 Preparation of Pre-adsorbed Anti-DIG Antibody
	2.5.8 Incubation with Pre-absorbed Antibodies
	2.5.9 DIG and Fast Red Staining
	2.5.10 Two Color In situ Hybridization

	2.6 Cryostat Sectioning
	2.6.1 Mounting Specimen for Cryostat Sectioning
	2.6.2 Freezing and Collecting Sectioned Specimens

	2.7 Protein Applications
	2.7.1 Immunohistochemical Staining
	2.7.2 Cell Proliferation Assay (BrdU assay)

	2.8 Microscopy
	2.8.1 Embryo Mounting and Imaging Using Upright Light Microscope
	2.8.2 Multi-channels Viewing and Confocal Microscopy


	CHAPTER 3
	Results
	3.1 atp2b1a in Mechanosensory Hair Cells
	3.1.1 Cloning and expression analysis of atp2b1a
	3.1.2 atp2b1a functions in the context of lateral line development
	3.1.3 atp2b1a regulates dynamics of Ca2+ in developing and mature hair cells
	3.1.4 Formations of kinocilium was affected in atp2b1a morphants
	3.1.5 Late phenotypes of atp2b1a morphants
	3.1.6 atp2b1a expression is downstream of and regulated by atoh1a

	3.2 atp2b1a in Ultimobranchial Body (UB)
	3.2.6 atp2b1a knockdown affects expression of genes expressed in UB and pharyngeal dentition

	3.3 Other Expression Domains of atp2b1a
	3.3.1 atp2b1a can be regulated by Delta-Notch signaling and is required for the normal development of optic tectum and sensory patches
	3.3.2 atp2b1a is required for muscle development
	3.3.3 Early function of atp2b1a is required for normal cell adhesion
	3.3.4 atp2b1a has roles in heart valves’ function


	CHAPTER 4
	Discussion
	4.1 atp2b1a  in mechanosensory hair cells
	4.2 atp2b1a in Ultimobranchial body (UB)

	CHAPTER 5
	Conclusions
	REFERENCES

