
 I 

CYTOTOXICITY OF GOLD NANOPARTICLES  
IN VITRO 

 
 
 
 
 

LI JIA’EN JASMINE 
(B.Sc, (Hons.), NUS) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A THESIS SUBMITTED  
 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 
 

DEPARTMENT OF ANATOMY 
 

FACULTY OF MEDICINE 
 

NATIONAL UNIVERSITY OF SINGAPORE 
 

2011 
 



 II 

ACKNOWLEDGEMENTS 
 

First and foremost, my deepest gratitude goes to my supervisor Professor 

Bay Boon Huat. Through your guidance and support I would not have had the 

opportunity nor the motivation to go so far during the course of my Doctor of 

Philosophy studies. Your care and concern has truly been invaluable to me. I have 

learned from you not only the skills required as a researcher but also the strength 

of character as a person. 

I deeply appreciate my co-supervisor, Assistant Professor Lanry Yung Lin 

Yue from Chemical and Biomolecular Engineering, Faculty of Engineering. 

Thank you for always asking the hard and probing questions. We have learned so 

much from one another even though we come from different disciplinary 

backgrounds.  

My sincere appreciation goes to Professor Ling Eng Ang, the former Head 

of Department of Anatomy, and Associate Professor Samuel Tay, Deputy Head, 

for the opportunity to pursue my PhD studies and their continual support for my 

candidature as a graduate student in this department. 

This work would not have been possible without the help and 

collaborative efforts of many others who have provided the use of their lab 

facilities and expertise in their area of knowledge. I am honoured and grateful to 

have worked with each one of you during the course of my study. 

Thanks goes to my co-workers at Dr Lanry’s lab, Dr Deny Hartono, Ms 

Weiling and Ms Huang Shu-Ying. Thank you, not just for supplying the bloodline 

of this project, the nanogold solution, but also for the fun times and the 

friendships made.  



 III 

 I would also like to thank Associate Professor Yu Liya E. and Dr 

Balasubramanian Suresh Kumar from the Division of Environmental Science and 

Engineering, Faculty of Engineering. You have always been generous in sharing 

resources and your expert knowledge in the analytical sciences.  

 Professor Ong Choon Nam and Ms Zou Li from Department of 

Epidemiology and Public Heath. Greatly appreciate the support and collaborative 

work on the analytical studies. 

 Thanks to Associate Professor Manoor Prakash Hande, Mr Resham Lal 

Gurung and Ms Lim Shi Ni from the Department of Physiology for the use of the 

lab facilities and generous assistance with the genotoxicity assays. I really 

appreciate the giving of your time and resources for this work as well as the warm 

reception which has made working in the lab so enjoyable. 

Ms Chan Yee Gek and Mdm Wu Ya Jun for your selfless help in all things 

microscopy. Thank you for always making yourselves available when I needed 

help and to take time out to train me in the art of specimen processing and 

microscopy imaging. It has really been a joy and pleasure to work with the both of 

you.  

I would like to thank Assoc Professor Benny Tan and Mdm Fan Lu for use 

of laboratory facilities at the Department of Pharmacology.  

Much joy and appreciation goes to my co-workers and friends, past and 

present at the Department of Anatomy. First thanks goes to my mentor, Dr Li 

Ying Hui who helped to pioneer this project. Dr Daina Lim, Dr Lai Yiyang, Dr 

Yu Yingnan for their advice, assistance and friendship along the way. Ms Ng 

Cheng Teng, thank you for soldiering on with me through many uncertainties and 

new territories. Your companionship and cheerful spirit has been a source of 



 IV 

encouragement to me in this project. Mr Lo Soo Ling, thanks for your friendship 

and all the times spent at the proteomic analysis lab, I would not have such nice 

gel pictures if not for your patience and hard work. My fellow lab-mates Ms 

Cheng Yujuan, Ms Chua Pei Jou, Ms Alice Zin Mar Lwin, Ms Guo Tian Tian and 

Mr Ding Jian thank you for your kindness, fun and friendships. Your presence has 

made working in the lab a truly enjoyable experience. Students past and present, 

Ms Pearl Toh, Ms Tay Weilin, Ms Grace Yong and Ms Joanna Lim. It has truly 

been a joy to teach and mentor each one of you. Your desire to learn and 

teachable hearts has made teaching so rewarding for me. 

 I am grateful for the love and support from friends in the department, Dr 

Cao Shoufeng, Ms Qiu Lifeng and Dr Pooneh Ardestani whose prayers and 

encouragement have helped to keep me going on this journey.  

Next, I would like to appreciate all the assistance and help I have received 

through the years from the staff of the Department of Antomy, Mrs Yong Eng 

Siang, Mrs Ng Geok Lan, Ms Violet Teo, Mrs Singh, Mr Poon Zhung Wei and 

Ms Bay Song Lin. 

 I would like to acknowledge the National University of Singapore for the 

provision of the Graduate Research Scholarship to pursue my PhD degree. 

Lastly I would like to dedicate this thesis to my parents to have been my 

quiet pillars of support in all of the big and little ways.  

 



 V 

TABLE OF CONTENTS 
  

Page 
List of Tables………………………………………………………………… IX 
List of Figures………………………………………………………………... X 
List of Publications…………………………………………………………... XIII 
List of Abbreviations………………………………………………………… XV 
  
Summary……………………………………………………………………... 1 
  
Chapter 1: Introduction……………………………………………………. 4 
  
1.1 Nanotechnology………………………………………………………….. 5 

1.1.1 Definition of “Nano-“………………………………………………. 5 
1.1.2 A Brief History of Engineered Nanoparticles………………………. 6 
1.1.3 Applications of Nanotechnology…………………………………… 6 
1.1.4 Gold and Gold Nanoparticles (AuNPs)…………………………….. 7 

  
1.2 Impact of Nanoparticles on Safety and Health……………………….. 8 

1.2.1 Hazards and Risks………………………………………………….. 9 
1.2.2 The Lung as Main Route of Entry………………………………….. 10 
1.2.3 Translocation and Deposition of Nanoparticles in the Body……….. 11 
1.2.4 Inflammation in Pulmonary Toxicity……………………………...... 12 

  
1.3 Nanotoxicology………………………………………………………….. 13 

1.3.1 Intrinsic Toxicity of Nanoparticles………………………………..... 13 
1.3.2 Size of Nanoparticles……………………………………………….. 14 
1.3.3 Elemental Constituent of NPs………………………………………. 15 
1.3.4 Surface Functionalizations…………………………………………. 15 

  
1.4 Manifestations of Nanoparticle Toxicity……………………………….. 16 

1.4.1 Cytotoxicity ………………………………………………………… 16 
1.4.2 Oxidative Stress ………………………………………………...….. 17 
1.4.3 Nanogenotoxicity………………………………………………….... 19 
1.4.4 Autophagy…………………………………………………………... 21 

  
1.5 Current Knowledge on the Toxicity of AuNPs………………………… 25 

1.5.1 Toxicity of Gold Nanoparticles ……………………………….......... 25 
1.5.2 Toxicity Of AuNP in vitro ………………………………………..... 26 
1.5.3 Toxicity of AuNP in vivo …………………………………………... 28 

 
1.6 Scope of Study…………………………………………………………... 30 
  
Chapter 2: Materials and Methods………………………………………... 31 
  
2.1 Cell Culture……………………………………………………………... 32 
  
2.2 AuNP  Synthesis and Preparation……………………………………... 32 
  



 VI 

2.3 Treatment with AuNP…………………………………………………... 33 
  
2.4 Transmission Electron Microscopy (TEM)……………………………. 34 

2.4.1 Sample Processing and Imaging for TEM………………………….. 34 
2.4.32 EDX Energy Dispersive X-ray (EDX) Analysis............................... 35 

  
2.5 Scanning Electron Microscopy (SEM)…………………………………. 35 

2.5.1 Sample Processing for SEM…………………………………........... 35 
2.5.2 Critical Point Drying (CPD) and Carbon Coating………………….. 35 
2.5.3 Scanning Electron Microscopy……………………………………... 36 

  
2.6 Cell Viability Assays…………………………………………………….. 36 

2.6.1 Trypan Blue Cell Counting………………………………………..... 36 
2.6.2 Cell Viability Assay with MTS assay……………………………..... 37 

  
2.7 Gene Expression Profiling………………………………………………. 37 

2.7.1 RT2 Profiler PCR Arrays…………………………………………… 37 
2.7.2 Extraction of Total RNA and First Strand cDNA synthesis………... 38 
2.7.3 Real Time Reverse Transcription-Polymerase Chain Reaction 
(Realtime RT-PCR)………………………………………………….......... 

 
40 

  
2.8 Lipid Hydroperoxide Assay…………………………………….............. 42 
  
2.9 Inductively coupled plasma mass spectrometry (ICP-MS)…………. 42 

2.9.2 Microwave Digestion of Biological Samples……………………. 43 
2.9.2 ICP-MS Analysis………………………………………………… 44 

  
2.10 Proteomics Analysis……………………………………………………. 44 

2.10.1 Harvesting Cells & Protein Extraction…………………………..... 44 
2.10.2 Western Blotting…………………………………………………... 45 
2.10.3 Two Dimensional Gel Electrophoresis (2D-GE)………………….. 45 
2.10.4 Protein Visualization and Image Analysis………………………… 47 
2.10.5 In-gel Reduction, Alkylation and Trypsin Digestion of Protein 
Spots ……………………………………………………………………… 

 
48 

2.10.6 MALDI TOF/TOF MS and Protein Identification………………… 48 
  
2.11 Measurement of DNA damage………………………………………… 49 

2.11.1 DNA Extraction…………………………………………………… 49 
2.11.2 HPLC analysis……………………………………………………... 51 
2.11.3 Alkaline Single-Cell Gel Electrophoresis (Comet Assay)………… 51 
2.11.4 Fluorescence In Situ Hybridisation (FISH)……………………….. 52 

  
2.12 Rat Lung Tissues and AuNP Inhalation Exposure…………………... 53 
  
2.12 Statistical Analysis……………………………………………………... 53 
  
Chapter 3: Results…………………………………………………………… 55 
  
3.1 Internalization and Biodistribution of AuNPs into MRC-5 cells ……. 56 

3.1.1 Light Microscopy and Transmission Electron Microscopy (TEM)… 56 



 VII 

3.1.2 Scanning Electron Microscopy (SEM)…………………………....... 59 
3.1.3 Time-point Tracking of AuNP uptake…………………………….... 60 
3.1.4 Verification of AuNPs with EDAX Microanalysis……………....... 62 

  
3.2 Cell Viability on AuNP treatment…………………………………….... 64 

3.2.1 Trypan Blue Exclusion Assay for Cell Viability…………………… 64 
3.2.2 Gene Profiling on the Cell Cycle Pathway………………………..... 66 

  
3.3 Oxidative Stress………………………………………………………….. 72 

3.3.1 Lipid Hydroperoxide Assay………………………………..……….. 72 
3.3.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)……….. 73 
3.3.2 Malondialdehyde Adducts on Western Blots……………………….. 74 
3.3.3 Oxidative Stress Pathway Gene Profiling…………………………... 75 

  
3.4 Proteomic Analysis………………………………………………………. 79 

3.4.1 Two Dimensional Gel Electrophoresis and Mass Spectrometry……. 79 
3.4.2 Real time RT-PCR………………………………………………….. 84 

  
3.5 DNA damage…………………………………………………………….. 86 

3.5.1 Measurement of 8-OHdG……………………………………...……. 86 
3.5.2 Single-Cell Gel Electrophoresis (Comet Assay)……………………. 88 
3.5.3 Florescence In Situ Hybridization (FISH Assay)…………………... 89 

  
3.6 Autophagy……………………………………………………………….. 91 

3.6.1 Autophagosome Formation Under TEM…………………………… 91 
3.6.2 ATG Protein Expression in Western Blotting………………………. 92 

  
3.7 Small Airways Epithelial Cells (SAEC)………………………………... 94 

3.7.1 Uptake of AuNP into SAEC………………………………………... 94 
3.7.2 Cell Viability Assay with Trypan Blue Cell Counting……………... 97 
3.7.3 Oxidatve Stress…………………………………………………....... 99 

3.7.3.1 Lipid hydroperoxide assay…………………………………. 99 
3.7.3.2 Real-time RT-PCR…………………………………………. 100 

3.7.4 DNA damage……………………………………………………….. 101 
  
3.8 In vivo studies on AuNP inhalation exposure in rats………………….. 102 
  
Chapter 4: Discussion……………………………………………………….. 104 
  
4.1 Uptake of AuNP in fibroblast cells……………………………………... 105 

4.1.2 Appearance of AuNP upon cellular uptake………………………… 105 
4.1.2 Localisation of AuNPs in cells…………………………………....... 107 

  
4.2 AuNP treatment on cell viability……………………………………….. 108 

4.2.1 AuNP Treatment Effect on Cell Cycle Genes……………………… 109 
4.2.2 AuNP Treatment Effect on Cell Cycle-Related Proteins…………… 110 

  
4.3 Oxidative stress………………………………………………………….. 112 

4.3.1 Lipid Peroxidation………………………………………………….. 113 
4.3.2 Upregulation of Oxidative Stress Genes……………………………. 114 



 VIII 

4.3.3 Differential Expression of Oxidative Stress-Related Proteins……… 115 
  
4.4 Autophagy………………………………………………………………... 117 

4.4.1 Significance of ATG Proteins Upregulation in AuNP treatment........ 118 
4.4.2 Oxidative Stress as Autophagy Inducer…………………………….. 119 
4.4.3 Other factors contributing to autophagy……………………………. 120 
4.4.4 Implications  for NP induced autophagy……………………………. 121 

  
4.5 Nanogenotoxicity………………………………………………………… 122 

4.5.1 Genotoxicity of AuNPs…………………………………………....... 122 
4.5.2 Other Factors Affecting DNA Damage Response in AuNP 

treatment…………………………………………………………...... 
 

123 
4.5.3 Tumorigenicity of nanomaterials (NM)…………………………….. 124 
4.5.4 Limitations of Current Research …………………………………… 125 

  
4.6 Response of Fibroblast vs Epithelial Cells to AuNPs…………..……... 126 
  
4.7 In Vivo Study…………………………………………………………….. 127 
  
4.8 Conclusion………………………………………………………………... 129 
  
4.9 Future Studies in the field of Nanotoxicology………………................. 131 
  
Chapter 5: References………………………………………………………. 134 



 IX 

LIST OF TABLES 
 

TABLE TITLE PAGE 
1.1 Selected literature on the toxicity of AuNP in vitro 

 
26 

1.2 Selected literature on the toxicity of AuNPs in vivo 
 

28 

2.1 Primer Sequences used in Realtime RT-PCR 
 

41 

2.2 Conditions for Microwave Digestion System 
 

43 

3.1 Full listing of genes in the Human Cell Cycle pathway RT2 
Profiler PCR array 
 

67 

3.2 Results of the 19 significantly downregulated genes in cell 
cycle PCR array 
 

70 

3.3 Full listing of genes in the Human Oxidative stress and 
Antioxidant pathway RT2 Profiler PCR array 
 

75 

3.4 Results of the 4 significantly upregulated genes in the 
Oxidative stress and Antioxidant PCR Array 
 

78 

3.5 List of protein spots undergoing quantitative changes with 
AuNP treatment as identified by MALDI-TOF/TOF MS 
 

80 

3.6 HPLC data from MRC-5 cells treated for 72 hours with 0.5 
nM, 1 nM gold nanoparticles and control 
 

87 

3.7 Summary of chromosomal aberrations detected from FISH 
analysis 
 

89 



 X 

LIST OF FIGURES 
 

FIGURE TITLE PAGE 
1.1 Appearance of 20 nm size AuNPs under incident light and 

TEM 
 

8 

1.2 Possible mechanistic pathway on exposure to nanoparticles 
 

18 

1.3 Mechanism of action for maturation and elongation of the 
autophagosome membrane 
 

24 

2.1 Dynamic Light Scattering (DLS) graph of AuNP in 
solution 
 

33 

3.1 Control and AuNP treated MRC-5 cells as seen under light 
microscopy 
 

56 

3.2 Comparison of MRC-5 cells of control and 1 nM AuNP 
treatments 
 

57 

3.3 Dose dependent uptake of AuNPs in MRC5 cells after 72 h 
treatment 
 

58 

3.4 Scanning electron microscopy (SEM) of AuNP 
 

60 

3.5 TEM micrographs of MRC-5 cells after 6 h and 12 h 
treatment with 1 nM AuNPs 
 

61 

3.6 Verification of AuNPs with EDAX Microanalysis system 
 

63 

3.7 Percentage non-viability of MRC-5 cells after 24 h, 48 h 
and 72 h AuNP treatment 
 

64 

3.8 MTS cell viability assay of MRC-5 cells treated with 
AuNP for 72 h 
 

65 

3.9 Cell count after 72 h treatment with AuNP in MRC-5 cells 
 

66 

3.10 Western Blot of MAD2 and Cyclin B2 in AuNP treated 
samples 
 

71 

3.11 Lipid hydroperoxide assay (LPO assay) of control, AuNP 
treated and hydrogen peroxide treated samples 
 

72 

3.12 Inductively coupled plasma mass spectroscopy (ICP-MS) 
analysis 
 

73 

3.13 Whole cell lysate western blot against MDA protein 
adducts 

74 



 XI 

 
3.14 Validation of RT2 Profiler PCR assay with western blot 

 
79 

3.15 Representative map of silver-stained 2 dimensional 
electrophoresis from MRC-5 whole cell lysate focused on 
a non-linear pH 4-7 IPG strip 
 

80 

3.16 Two-dimensional electrophoresis (2D-GE) of AuNPs 
treated cellular protein extracts 
 

83 

3.17 Western blotting of oxidative stress related proteins 
hnRNP and PDIA3 proteins 
 

84 

3.18 Fold change of PDIA3, VATB and hnRNP C1/C2 genes 
from real time RT-PCR analysis at 24h and 48h post 
AuNP treatment 
 

85 

3.19 Analysis of 8-hydroxydeoxyguanosine (8OHdG) DNA 
using HPLC in MRC fibroblasts treated with AuNPs for 
72 hours 
 

86 

3.20 Comet assay on control and AuNP treated MRC-5 lung 
fibroblasts 
 

88 

3.21 Fluorescence In Situ Hybridization (FISH) analysis of 
control and AuNP treated MRC-5 lung fibroblasts (1nM 
concentration and 72h) 
 

90 

3.22 TEM images of autophagosomes and cellular structures in 
MRC-5 cells treated with AuNPs for 72 h 
 

91 

3.23 Western blots of MAP-LC3 protein expression after 48 h 
and 72 h treatment with 1nM AuNP 
 

92 

3.24 Western blots of autophagy proteins at 72h AuNP 
treatment 
 

93 

3.25 Light microscopy photos of SAEC. The cells were treated 
with 1 nM AuNP for 72 h 
 

94 

3.26 Transmission electron micrographs of SAEC 
 

95 

3.27 Verification of elemental gold in AuNPs in SAEC cells 
with EDAX Microanalysis system 
 

96 

3.28 Trypan blue cell viability assay on AuNP treated SAEC 
 

97 

3.29 Total cell count of the SAEC cells after 72 h of AuNP 
treatment 
 

98 



 XII 

3.30 Lipid hydroperoxide assay of SAEC 
 

99 

3.31 Fold change of 3 significantly differentially expressed 
genes in SAEC upon AuNP treatment 
 

100 

3.32 Single cell gel electrophoresis (Comet assay) on SAEC 
 

101 

3.33 Fold change of 9 selected oxidative stress genes on AuNP 
exposed rats 
 

102 

3.34 Fold change of 5 cell cycle related genes on AuNP 
exposed rats 
 

103 

4.1 Possible oxidative stress pathway upon AuNP treatment 
 

112 

4.2 Induction of autophagy after AuNPs treatment in cells 
 

118 

4.3 Overview of the major areas of interest regarding AuNP 
cytotoxicity in this thesis 

130 



 XIII 

LIST OF PUBLICATIONS 
 
Journals 
 
1. Li, J., Zou, L., Hartono, D., Ong, C.N., Bay, B.H., and Yung, L.Y. (2008). Gold 
Nanoparticles Induce Oxidative Damage in Lung Fibroblasts In Vitro. Adv Mater 
20, 138-142. 
 
2. Li, J.J., Hartono, D., Ong, C.N., Bay, B.H., and Yung, L.Y. (2010). Autophagy 
and oxidative stress associated with gold nanoparticles. Biomaterials 31, 5996-
6003. 
 
3. Ng, C.T., Li, J.J., Bay, B.H., and Yung, L.Y. (2010). Current studies into the 
genotoxic effects of nanomaterials. J Nucleic Acids, pii 947859. 
 
4. Li, J.J., Muralikrishnan, S., Ng, C.T., Yung, L.Y., and Bay, B.H. (2010). 
Nanoparticle-induced pulmonary toxicity. Exp Biol Med (Maywood) 235, 1025-
1033. 
 
5. Li, J.J., Lo, S.L., Ng, C.T., Gurung, R.L., Hartono, D., Hande, M.P., Ong, C.N., 
Bay, B.H., and Yung, L.Y. (2011). Genomic instability of gold nanoparticle 
treated human lung fibroblast cells. Biomaterials 23, 5515-5523. 
 
6. Lim Z.Z.J., Li J.J., Ng C.T., Yung L.Y., Bay B.H. (2011). Gold nanoparticles in 
cancer therapy. Acta Pharmacol Sin, 32, 983-990 
 
Book Chapters 
 
1. Ng C.T., Li, J.J., Perumalsamy R., Watt F., Yung L.Y.L., Bay B.H. Localizing 
cellular uptake of nanomaterials in vitro by transmission electron microscopy. In: 
A. Méndez-Vilas and J. Díaz, editors. Microscopy: Science, Technology, 
Applications and Education. Spain: Formatex; 2010. pp. 316 – 320. 
 
2. Li, J.J., Scully, O., Subramhanya, K., Yung L.Y.L., Bay B.H. Autophagy 
induced by nanomaterials. In: Nikolai V. Gorbunov, editor. Autophagy: 
Principles, Regulation and Roles in Disease. US: Nova; 2011. 
 
 
Meeting proceedings 
 
Poster presentations 
 
1. Li, J., Zou, L., Hartono, D., Ong, C.N., Bay, B.H., and Yung, L.Y. Cytotoxic 
Effects of Gold Nanoparticles on Human Lung Fibroblast cells In Vitro. In the 
Proceedings of the International Anatomical Sciences and Cell Biology 
Conference, 26-29 May 2010, Singapore. Awarded a Merit award. 
 
 
 
 



 XIV 

2. Li, J., Zou, L., Hartono, D., Ong, C.N., Bay, B.H., and Yung, L.Y. Gold 
Nanoparticles Induces Oxidative Stress on Human Lung Fibroblast In Vitro. In 
the Proceedings of Nanotoxicology 2010, 2-4 June 2010, Edinburgh, United 
Kingdom. 
 
Oral presentations 
 
1. Li, J.J., Bay, B.H and Yung, L.Y. In Vitro Toxicity of Gold Nanoparticles on 
Human Lung Fibroblast Cells. In Proceedings of the 2007 Annual Meeting of the 
American Institute of Chemical Engineers (AIChE), 3-5 November 2007, Salt 
Lake City, USA. 
 
2. Li, J.J., Ong, C.N., Yung, L.Y. and Bay, B.H. Cytotoxicity of Gold 
Nanoparticles in Lung Fibroblasts In Vitro. In Proceedings of 26th Annual 
Conference of The Microscopy Society of Thailand, 28-30 January 2009, Chiang 
Mai, Thailand. Invited paper. 
 
3. Li, J.J., Yung, L.Y. and Bay, B.H. Cytotoxicity of Gold Nanoparticles in 
Human Lung Fibroblasts In Vitro. In Proceedings of The Inaugural Yong Loo Lin 
School of Medicine Graduate Scientific Congress, 25 January 2011, Singapore. 



 XV 

LIST OF ABBREVIATIONS 
 
2D-GE Two-dimensional gel electrophoresis 
8 OHdG 8-hydroxy-2'-deoxyguanosine 
ANOVA Analysis of Variance 
AgNP Silver nanoparticles 
ATG 5 Autophagy related protein 5 
ATG 6 Autophagy related protein 6 (Beclin-1) 
ATG 7 Autophagy related protein 7 
ATG 12 Autophagy related protein 12 
ATM  Ataxia telangiectasia mutated 
Au Gold 
AuNP Gold nanoparticle 
β-actin Actin, beta 
BPE bovine pituitary extract 
BRCA1 Breast cancer 1, early onset 
BSA Bovine serum albumin 
Cd-SeNP Cadmium-selenium nanoparticle 
CNT Carbon nanotube 
Cox-2 Cyclooxygenase 2 / Prostaglandin endoperoxide synthase 2 
Ct Threshold cycle 
CtBP2 C terminal-binding protein II  
CTAB cetyltrimethylammonium bromide 
DAPI 4’, 6-diamidino-2-phosphamide 
DEPC Diethyl polycarbonate 
DLS Dynamic Light Scattering 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
dNTP Deoxynucleotide triphosphate 
DTT Dithiothreitol 
ECL Enhanced chemiluminescence 
E. coli Escherichia coli 
EDAX Electron  
EDTA Ethylenediaminetetraacetic acid 
eIF2-beta Eukaryotic translation intiation factor 2 
EST Embryonic stem cell test 
FBS Fetal bovine serum 
FISH Florescence in situ hybridization 
FITC Fluorescein Isothiocyanate 
G3PDH Glyceraldehyde 3-phosphate dehydrogenase 
Gpx1 Glutathione peroxidase 1 
GSTP1-1 Glutathione S transferase P 
H2O2 Hydrogen peroxide 
hEGF Human epithelial growth factor 
Hmox1 hemeoxygenase (cycling) 1 
hnRNP C1/2 Heterogeneous nuclear ribonucleoproteins C1/2 
HPLC High performance liquid chromatography 
HPT hypoxanthine 
hSRBC protein kinase C delta-binding protein 



 XVI 

ICRP International Commission on Radiological Protection 
IL Interleukin 
IP Iron-sulfur protein 
IP3 Inositol triphosphate 
LDH Lactate dehydrogenase 
LDL Low-density lipoprotein 
LKB1-AMPK Liver Kinase B1- AMP-activated protein kinase 
LysRNA Lysyl-tRNA synthase 
MAD2 MAD2 mitotic arrest deficient-like 1 
MDA Malondialdehyde 
MAP-LC3 Microtubule-asociated proteins 1A/B light chain 3 
mRNA messenger ribonucleic acid 
MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- 

(4-sulfophenyl)-2H-tetrazolium 
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
MWCNT Multi-walled carbon nanotube 
NADH Nicotinamide adenine dinucleotide hydroxide 
NF-κB Nuclear factor kappa B 
NHEJ Non-homologous end joining 
NM Nanomaterial 
NP Nanoparticle 
NDUFS1 NADH ubiquinone oxidoreductase 
OSR1 Oxidative stress responsive 1 
PARP-1 poly(ADP-ribose) polymerase 1 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PDGF Platelet derived growth factor 
PDIA3 Protein disulfide isomerase associated 3 
PE Polyethylene 
PEG Polyethylene glycol 
PGE2 Prostaglandin E2  
PM Particulate matter 
PNK Polynucleotide kinase 
PRP / Prx 2 Peroxiredoxin 2 
PVDF Polyvinyl difluoride 
QD Quantum dots 
RNH Ribonuclease Inhibitor 
ROS Reactive oxygen species 
RPMI Roswell Park Memorial Institute 
RT-PCR Reverse transcription polymerase chain reaction 
SAEC Small airways epithelial cells 
SCN1 Secernin-1 
SDS Sodium dodecyl sulphate 
SEM Standard error mean 
SEM Scanning electron microscope 
SOD Superoxide dismutase 
SPFH2 Erlin 2 
STAT1 signal transducer and activator of transcription 1 
SWCNT Single-walled carbon nanotube 
TBS Tris buffered saline 



 XVII 

TCPT Translationally-controlled tumour protein  
TEM Transmission electron microscopy 
TEMED Tetramethylethylenediamine 
TGF-β tumor growth factor beta  
TGF-β1 transforming growth factor beta-1 
TiO2NP Titanium oxide nanoparticle 
TNF-α Tumour necrosis factor α 
TRITC Tetramethyl Rhodamine Isothiocyanate 
TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling 
TXNL1 Thioredoxin-like protein isoform 1 
Txrnd Thioredoxin reductase 1 
UCH-L1 Ubiquitin carboxyl terminal hydrolase isozyme L1 
UFP Ultrafine particle 
Vim Vimentin 
VATB V-type proton ATPase subunit B 
 
 



 1 

SUMMARY 

 The meteoric rise in the use of nanotechnology in recent years has 

heralded a new era of engineering. Researchers are now presented with a new sort 

of material which has proven to be more flexible, versatile and stronger than their 

bulk counterparts. Optimism for the potential of nanomaterials is high, with 

funding for nanoresearch set to reach 1 trillion US dollars by 2015. Nanoparticles 

(NPs) refers to particles of a general spherical shape and the diameter of the 

sphere lying in the 1 to 100 nm range. Gold nanoparticles (AuNPs) are just one 

type of such NPs and they possess characteristics that are different from their bulk 

counterparts. While bulk gold is a solid, inert, bright yellow metal, AuNPs can 

exist in a spectrum of colours at different nanosizes, able to form colloids in 

solution and may possess biological reactivity different from bulk gold. 

As with any new and emerging technologies, it is the uncertainties of the 

unknown effects and impact that these NPs will have on the lives of people and 

society. Over the last five years, there has been an exponential increase in 

nanotoxicology studies on the effect of NM on human health and the environment. 

However, the toxicity profiles of many NPs are still yet to be determined. The 

difficulty is compounded by the fact that NPs are available in different sizes, 

shapes, elemental makeup and surface functionalizations. 

 The hypothesis of this study is that AuNPs exert cytotoxic and genotoxic 

effects on lung cells in vitro. This thesis aims to study the effect of AuNPs on 

human lung cells in vitro, investigating various aspects of toxicity including 

uptake of AuNPs into cells, cell viability, DNA damage, presence of oxidative 

stress and proteomic changes upon AuNP treatment. 
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 AuNPs were readily taken up by lung cells but at the same time cause 

large vacuoles to form in the cell cytoplasm. Lung fibroblast cells (MRC-5) 

showed high tolerance for the AuNPs, with no significant cell death but a 

significant decrease of total cell numbers at 1 nM concentration at 72 h treatment. 

Small airways epithelial cells (SAEC) were more sensitive to AuNP treatment and 

showed both a significant increase in percentage of non-viability and decrease in 

total cell count. The decrease in cell count was also reflected in the 

downregulation of various cell cycle genes observed. 

 A variety of methods were used to assess DNA damage. High performance 

liquid chromatograpghy (HPLC), single-cell gel electrophoresis assay (Comet 

assay) and fluorescence in situ hybridizaton (FISH) assay and results consistently 

showed DNA damage was significantly higher in AuNP treated cells compared 

with the untreated controls. Two dimensional gel electrophoresis (2D-GE) was 

done to look at proteomic changes upon AuNP treatment. There were 16 proteins 

which were significantly up or down-regulated in the AuNP treated samples. 

These proteins had functions related to cell cycle or oxidative stress pathways 

which correlates well with our previous data.  

 In the course of the study, it was observed that there was formation of 

autophagosomes in the AuNP treated cells. Western blotting with antibodies 

against autophagosome proteins also verified that autophagy maybe initiated on 

AuNP treatment. This could be a likely explanation for cell survival despite the 

harsh treatment with AuNPs as autophagy could be the cell survival mechanism in 

times of stress. In addition, realtime RT-PCR was performed on some AuNP 

exposed rat lung tissues samples. The results only proved significant for the 
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upregulation of Cox-2 but the fold change trend in the other genes were quite 

consistent with our in vitro data. 

In sum, the presence of AuNPs in the cell is likely to induce generation of 

ROS leading to oxidative stress and subsequent cytotoxicity effects which 

includes lipid peroxidation, DNA damage, differential expression of cell cycle 

genes and various proteins. Oxidative stress also triggers the phenomenon of 

autophagy which could be the cell survival mechanism aiding the cell to escape 

death in times of stress. This could be the reason why, in the face of such 

oxidative damage within the cell, there is still high cell viability upon AuNP 

treatment. These data are useful for the scientific community with intent in 

nanotoxicology in the pursuit of safe and effective use of AuNPs in future 

therapeutic applications. 
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1.1 Nanotechnology 

 Nanotechnology is said to be the latest frontier for the next generation of 

technological advancements. The word “nano” certainly has been making waves 

not just in the research field but also in popular culture. With funding for 

nanoresearch set to reach 1 trillion US dollars by 2015 (Roco, 2005), there is 

much optimism and expectations of what nanotechnology is able to do.  

 

1.1.1 Definition of “Nano-“ 

 Nanotechnology may be defined as the study of the applications and the 

materials at the nanoscale. The term “nano” is taken from the Greek meaning 

“dwarf” therefore referring to objects of minute proportions (Joachim, 2005). 

“Nano” is also the term used for the metric prefix to denote the billionth of unit 

measurement. Nanomaterials, in this case, may be taken generally to refer to 

materials with at least one dimension in the nanometer (nm) range (Auffan et al., 

2009). Nanoparticles (NPs) are a subset of this group and taken more specifically 

to refer to materials of a general spherical shape and the diameter of the sphere 

lying in the 1 to 100 nm range. In recent times however, the term most likely 

refers to engineered nanoparticles. The term ‘engineered’ is used to denote NPs 

synthesized in a controlled setting as opposed to the free generation of NPs in the 

environment, for example, generation of sparks in metal friction or carbon 

particulates in combustion (Donaldson et al., 2005). Unless otherwised specified, 

the term ‘nanoparticles’ (NPs) in this thesis refers specifically to engineered 

nanoparticles. 
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1.1.2 A Brief History of Engineered Nanoparticles (NPs) 

 Nanomaterials (NM) have appeared in history through time, even if they 

were not known nor called by that term. Works of art like the Lycurgus Cup 

(www.britishmuseum.com) from the 4th Century Rome that changes colour in 

light (due to the presence of gold nanoparticles) and the beautiful stained glass 

windows of the 16th century (Chang, 2005) are some excellent examples. Even 

these ancient craftsmen were aware that by putting a little silver or gold into glass 

would produce the beautiful shades of colour in stained glass. However, the 

concept for modern day nanotechnology may be recalled from an after-dinner 

speech by Richard P. Feymann to the American Physical Society in 1959 

(Feynman, 1991). It was much later that the term “Nanotechology”, coined by 

Norio Taniguchi in 1974 at the University of Tokyo, was brought into common 

usage. One of the very first NP innovations came in the form of carbon fullerenes 

(C60) known as ‘Buckyballs’ named after the designer R Buckminister Fuller. The 

material is extremely malleable, light and strong, so different from other carbon 

products. It brought about a new wave of innovation and possibilities for the use 

of this novel material. Other carbon nanoproducts were soon developed, the single 

and multi-walled carbon nanotubes, metal and metal oxide NPs and more recently, 

the use of new rare earth elements like ceria and polymer or plastic nano-sized 

particles. 

 

1.1.3 Applications of Nanotechnology 

Currently in the nanotechnology research field, there are many on-going 

research projects investigating novel and innovative ways to apply these new 

nanomaterials for a myriad of technologies ranging from cutting edge spacecraft 
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materials to the everyday household wares and anti-microbial clothings. In the 

biomedical field the list is just as diverse with the these main areas making the 

primary focus of researchers in the life sciences; imaging, drug delivery, 

photothermal therapy and diagnostic applications (Brigger et al., 2002; De Jong 

and Borm, 2008; Kumar et al., 2007; LaRocque et al., 2009).  

 

1.1.4 Gold and Gold Nanoparticles (AuNPs) 

Gold is a bright, shiny, yellowish metal, which is highly valued throughout 

human history across society and period. It has long been considered an inert, 

noble metal with some therapeutic and even medicinal value. Even now, gold salts 

and compounds are still routinely prescribed to treat ailments such as rheumatoid 

arthritis (anti-inflammatory drugs from gold, Auranofin® and Tauredon®) (Shaw, 

1999). As such, gold nanoparticles (AuNPs) are thought also to be relatively 

biocompatible and non-cytotoxic (Connor et al., 2005). Colliodal gold, as AuNPs 

suspended in solution may be called, has properties far different from the bulk 

metal. For example, gold metal, as we know has a shiny yellowish colour but 

AuNPs may appear in red (Figure 1.1, A), blue, green or brown depending on the 

shape and size of the particles (Alkilany and Murphy, 2010). The individual 

particles can only be seen under very high magnification under electron 

microscopy (Figure 1.1, B). These colours come about due to the phenomenon 

called localized surface plasmon resonance (LSPR). It occurs when metallic NPs 

are excited by light, the narrow range of frequencies of incident light induces 

resonant conduction band electron oscillation.  
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Figure 1.1:  Appearance of 20 nm diameter sized gold nanoparticles (AuNP) 
under (A) incident light and (B) transmission electron microscope (TEM). The 20 
nm sized AuNPs appear wine red in colour and the solution is clear without any 
particulates in suspension. Under high magnification in TEM, the AuNPs may be 
seen to have a generally spherical shape and the particles of an average diameter 
length of 20 nm. Scale bar  =  100 nm. 
 

Faraday was one of the earliest scientist to describe this gold solution 

(Edwards and Thomas, 2007), a form of gold derived from citrate reduction of 

gold salts with yet undetermined biological properties. In the modern biomedical 

sciences, AuNPs are being developed as novel gene and drug delivery agents 

(Everts et al., 2006; Paciotti et al., 2004), transfection vectors (Noh et al., 2007), 

agents in imaging techniques (Kumar et al., 2007) and photothermal therapy 

(Wang et al., 2010a). Many researchers have commented that AuNP is one of the 

material of choice in biomedical research as they are considered to be relatively 

biocompatible, versatile and easy to synthesize (Goodman et al., 2004). 

 

1.2 Impact of Nanoparticles on Safety and Health 

Although nanotechnology has brought about new possibilities for many 

novel technologies, toxicity and safety issues always emerges as a concern. As 
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with any new and emerging technologies, it is the uncertainties of the unknown 

effects and impact that these NPs will have on the lives of people and society.  

As more nanomaterials products are developed and brought into regular use, there 

is an increasing risk of exposure to these nanomaterials in workplace as well as 

from environmental exposure. Over the last five years, there has been an 

exponential increase in nanotoxicology studies on the effect of NM on human 

health and the environment. Recent research has brought to light concerns over 

the safety of use of these nanomaterials (Oberdorster et al., 2005a) and also the 

long-term adverse effect of their use. The environmental impact of nanomaterial 

exposure has also been carefully studied alongside toxicological studies on NP 

impact on human health (Donaldson et al., 2004).  

 

1.2.1 Hazards and Risks 

‘Hazard’ may be defined as the source of harm or the inherent toxicity of a 

substance while ‘risk’ is the potential of the hazard to cause harm (Hristozov, 

2009; Warheit et al., 2008). Therefore, this gives rise to the more pertinent 

questions should be that are NPs hazardous and what are the risks of NP toxicity? 

While it may be currently challenging to address these issues fully, it is essential 

to first address some basic questions regarding the risk framework. 

There is also the ‘known risks’ and ‘potential risks’. The former refers to 

cases whereby there is an established cause and effect to the hazard and toxicity 

and prevention is possible if the cause is removed. However, ‘potential risk’ 

comes in when the relationship between the cause and effect is not well known 

and there is an air of suspicion rather than awareness used to deal with the hazard. 

This is very much the case for NPs at this point in time.  
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Risk assessment for NPs are recommended to follow the four stages of risk 

assessment for chemicals (Hristozov, 2009): 

(1) Identify hazards 

(2) Assess dose-response 

(3) Evaluate exposure  

(4) Characterize risk 

In this study, points (1) and (2) would be more pertinent in this study with regards 

to AuNPs in an in vitro setting. These are still early days as more research is 

generated and more is known about the limitations and extent of NP toxicity, then 

more thorough risk assessment and toxicity profile for NPs will be required. 

Research on NP safety, particularly those dealing with respiratory 

concerns really developed from air particulate studies by Oberdorster and 

colleagues (Oberdorster et al., 2005b).  As such, impact of NPs on lung and 

respiratory diseases is one of the primary focuses of research in NP toxicity 

studies. There are several areas of concern regarding pulmonary health since the 

airways are also considered the first line of exposure to the environment and 

atmosphere. The cells lining the airways are the body’s first line of defence 

against pollutants. 

 

1.2.2 The Lung as Main Route of Entry 

The human lung is a vulnerable organ for nanotoxicity as there is 

approximately 2300 km of airways and 300 million alveoli, giving rise to a large 

surface area which is in contact with the environmental atmosphere and the 

ultrafine particulate pollutants present in it (Hoet et al., 2004). Even though nasal 

cilia and mechanical actions such as coughing could trap and expel larger size 
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particles from the airways, they may not be so effective with NPs. Their small size 

allows them to easily invade into the deep air spaces of the alveoli and readily 

taken up by lung epithelial cells and fibroblasts. 

In addition, there is just 0.5 micron of a single cell layer that separates 

inhaled air from the blood capillaries, which makes for a poor barrier against the 

entry of NPs from the alveolar lumen into the blood circulation. Because much of 

the concern regarding exposure to NP toxicity comes from either accidental or 

indirect release of NP as aerosols into the atmosphere during the manufacturing 

process, the respiratory system and lungs invariably becomes the first line of 

contact and main route of entry of atmospheric NP into the body. 

 

1.2.3 Translocation and Deposition of Nanoparticles in the Body 

After the respiratory system is exposed to ultrafine particles (UFPs), 

translocation to other organs is rapid and the particles may appear in the liver, 

heart and nervous system in a matter of hours (Brown et al., 2002; Kreyling et al., 

2002; Oberdorster et al., 2004). Stuart suggests that there are three main 

mechanisms of particulate matter (PM) deposition in the lungs, which are 

impaction, sedimentation and diffusion (Stuart, 1984), and for PM > 100µm, 

particles in the range of 0.1 µm and 50 µm, and ultrafine particles respectively.  

UFPs deposit themselves in the respiratory system by diffusional displacement. 

This deposition is dependent on the size of particles and this may occur in the 

nasal cavity, conducting airways, and the alveoli. Larger particles (with diameter 

greater than 1 µm) get deposited on the epithelial surface. These may however be 

cleared by bodily responses like coughing, or by mucociliary transport, and/or 

phagocytosis by macrophages (Gehr et al., 2000; Geiser et al., 2003; Schurch et 
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al., 1990). Conversely, UFPs seem to penetrate these boundary membranes 

rapidly (Geiser et al., 2003; Oberdorster et al., 2004; Schurch et al., 1990). 

Besides, there have been in vitro studies to prove that UFPs induce oxidative 

stress and mitochondrial damage via penetration into the mitochondria of 

epithelial cells; and that UFPs are more potent than PM2.5 and PM10 (Li et al., 

2003). 

 

1.2.4 Inflammation in Pulmonary Toxicity  

Among all the adverse effects caused by NP, inflammation appears to be 

the common factor. In fact, different types of NPs can induce different 

inflammatory reactions. For example, SWCNT (single-wall carbon nanotubes) 

were found to be more toxic in comparison to other NPs with regards to inducing 

dose-dependent epithelioid granuloma as well as interstitial inflammation in the 

lungs (Lam et al., 2004). The oxidative stress leads to activation of different 

transcription factorswhich subsequently induces up-regulation of pro-

inflammatory protein synthesis (Schins et al., 2000). Pulmonary inflammation 

may also result in changes in membrane permeability, which in turn can lead to 

particle distribution extending beyond the lung and indirectly affecting 

cardiovascular performance (Harder et al., 2005; Zhu et al., 2009). Moreover, NPs 

have the potential to enter the brain (Oberdorster et al., 2004) and blood 

circulation (Nemmar et al., 2001) and subsequently other major organs. However, 

as inhalation was not used as a mode of delivery of the NPs to the lungs in these 

animal studies, the relevance of these observations in humans is yet to be 

established. Moreover, for a clearer understanding of their potential for such 

effects, areas of study must encompass firstly, particle characteristics and dose 
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effects that influence the translocation processes and secondly, clearance 

mechanisms and kinetics. 

 

1.3 Nanotoxicology 

The study of the toxicity of NPs is a new and developing field. Only in the 

last three years or so has the number of published papers on the topic risen 

exponentially (Pumera, 2011). However, the toxicity profiles of many NPs are 

still yet to be determined. The difficulty is compounded by the fact that NPs are 

available in different sizes, shapes, elemental makeup and surface 

functionalization. However, there are a few factors that have been identified or 

predicted to be affecting NP toxicity in vitro and in vivo. 

 

1.3.1.1 Intrinsic Toxicity of Nanoparticles 

Literature on particulate matter (PM), especially work on PM with less 

than 10µm diameter (PM10), formed the basis for extensive studies into 

nanotoxicology and are the first proponents of the “NP hypothesis” (Borm et al., 

2006). The hypothesis suggests that NPs are the main drivers of pro-inflammatory 

effects in cases of PM toxicity because they are the main particulate type found in 

PM mixtures, thus implying that NPs may possess some intrinsic toxicity, 

meaning that the toxic effects could be attributed to NPs alone and not due to 

other external factors such as surface functionalizations.  

The small size of NP suggests a high surface area per unit mass, and from 

particle toxicology this is correlated to higher reactivity (Donaldson et al., 2005). 

In addition, the larger the surface area also leads to a higher possibility for the 

formation of free radicals (i.e, superoxide anions or hydroxyl radicals), which 
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consequently drives oxidative stress. This is especially so for metal based NPs and 

forms the underlying mechanism responsible for inflammatory responses to NP 

exposure (Byrne and Baugh, 2008). Certain heavy metal NPs like cadmium 

quantum dots (QDs) and silver NPs (AgNPs) are also known to be highly toxic 

(Hsin et al., 2008; Lovric et al., 2005). It should be noted that though most NP 

agglomerate readily, this agglomeration only reduces particle number without 

affecting the total surface area. Therefore while size does play a big part in 

particle toxicity, the shape of the NP as well as the surface modifications may also 

affect the uptake and risk of toxicity (Tsuji et al., 2006; Warheit et al., 2005).  

 

1.3.2 Size of Nanoparticles 

Size of the NPs affects the biodistribution and translocation of the NPs 

into the respiratory tract. Generally, the smaller the NP size, the easier it is to 

reach the deep air spaces in the lungs. In a model of the human respiratory system 

developed by the International Commission on Radiological Protection (ICRP), 

NPs in the 10-30 nm range showed the highest deposition fraction in the lung 

alveoli (Oberdorster et al., 2004). Hence, the 20 nm diameter size of the AuNPs 

used in this study is also of practical importance and more accurately reflect the in 

vivo situation.  

Many studies have attributed the size of the NPs to play an important role 

in regards to toxicity. The smaller the particle, the greater the surface area is to 

volume ratio will be and hence there may be a greater likelihood for biological 

reactions to take place. It is generally considered that 50 nm size particles are 

good enough to be easily taken up by cells (Alkilany and Murphy, 2010), particles 
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with diameters 20 nm and below start to display some toxic effects (Chen et al., 

2009) and those smaller than 2 nm show the greatest toxicity (Pan et al., 2009). 

 

1.3.3 Elemental Constituents of NPs 

Some elements are also intrinsically more toxic than others.  Heavy metals 

even in their bulk form, are already well known to be toxic in the human body. 

The metallic nature of the metal derived NPs and the presence of transition metals 

encourages the production of reactive oxygen species (ROS) leading to oxidative 

stress (MacNee and Donaldson, 2003). Elemental metal NPs like cadmium 

(quantum dots) and silver are known to induce oxidative stress and apoptosis in 

various cell types (Arora et al., 2008; Kirchner et al., 2005) as well as in vivo 

(Bar-Ilan et al., 2009). Silver nanoparticles (AgNPs) causes decreased 

proliferation and DNA damage in human cells (Asharani et al., 2009a; Asharani et 

al., 2009b). Cadmium NPs can also induce oxidative stress, genotoxicity (Choi et 

al., 2008; Gagne et al., 2008; Li et al., 2009b) and lung inflammation in rats 

(Jacobsen et al., 2009).  

 

1.3.4 Surface Functionalizations 

The addition of functional groups on NPs adds on another dimension to 

the diversity of NPs. These modifications can also change the behaviour or 

properties of the NPs.  Adding amine tags on AuNPs can make them less toxic 

than the naked NPs (Lee et al., 2008; Takahashi et al., 2006). Conjugation with 

immunogenic peptides can also ameliorate toxicity of AuNPs (Chen et al., 2009). 

Opsonization, in this case it is the coating of NPs with a protein (for example, 

fibronogen, serum or albumin), makes the NPs more attractive to be endocytosed 
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by cells or phagocytes (Nativo et al., 2008) thereby increasing the risk of NP 

toxicity within the cell. Applying different charges on the NP surface can also 

affect hydrophilicity of NP and subsequently the ease of uptake into the cell and 

type of cell death as well (Schaeublin et al., 2011).  

 

1.4 Manifestations of Nanoparticle Toxicity 

1.4.1 Cytotoxicity  

The most fundamental issue of any toxicity study is the question: does the 

drug (or NP in this case) cause cell death and to what extent? Some studies report 

an adverse reaction to AuNPs (Cho et al., 2009) while others showed little or 

limited toxicity (Connor et al., 2005). 

Many assays and experimental techniques have come out of the need to 

first measure the cell viability upon treatment of NP. Common assays in use are 

the colorimetric assays like MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays which give a 

colored formazan product upon reaction with reductase produced by living cells. 

The intensity of the dye is then measured with a spectrophotometer to determine 

the number of viable cells. The lactate dehydrogenase (LDH) assay is another 

popular cell viability test. LDH secretion into media is a direct measurement for 

non-viable cells due to disruption of the cellular membrane in dead cells (Kim et 

al., 2009). Another relatively simple method is to stain cells with propidium 

iodide (PI) for flow cytometry. Cells are counted and sorted whether they pick up 

the PI dye (for dead cells) or not (for viable cells). Microscopy options are also 

available for probing with fluorescence tagged cell cytoxic biomarkers. Lastly, the 
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trypan blue cell exclusion assay, which is based on the uptake of the trypan blue 

dye by dead cells,but not live cells. Cell counting and scoring of dead-live cells 

are done by hand and thus this method is more laborious and time-consuming than 

the others.  

Although these colorimetric and fluorimetric assays are useful and 

relatively simple to do, there are some disagreements on whether they are suitable 

to be used for all NPs (Worle-Knirsch et al., 2006). In some circumstances, the 

NP may interfere with the colorimetric readings leading to false positives and 

inaccurate results. AuNPs for example are able to absorb visible light (in the 350 

nm to 750 nm spectrum) and have a range of absorbance wavelengths from 450 

nm to about 550 nm, which could interfere with MTT and MTS assays. Moreover, 

it is also possible for AuNPs to quench fluorescent signals (Willets and Van 

Duyne, 2007). Caution is advised when performing such measurements; therefore 

in this study the trypan blue cell viability assay method was selected as the 

preferred method for assessing cell viability due to the interference of AuNPs in 

the colorimetric detection readings. 

 

1.4.2 Oxidative Stress 

The body system is constantly in a state of homeostasis and oxidative 

stress is simply a result of a disruption in that carefully maintained state of 

equilibrium. Exposure to NPs is known to cause an increase in reactive oxygen 

species (ROS). If the more ROS produced is more than what the system can cope 

with, it tips the balance towards a state of oxidative stress. ROS generation by 

NPs could be due to three factors as outlined by Knaapen et al. (Knaapen et al., 

2004):  
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(i) active redox cycling on the surface of NPs, particularly the metal-based NPs 

(Fahmy and Cormier, 2009; Lopez and Norskov, 2002), 

(ii) oxidative groups functionalized on NPs and  

(iii) particle-cell interactions, especially in the lungs where there is a rich pool of 

ROS producers like the inflammatory phagocytes, neutrophils and macrophages.  

Overproduction of ROS activates a series of cytokine cascades, which includes an 

upregulation of interleukins (IL), kinases and tumor necrosis factor α (TNF-α) 

pro-inflammatory signaling processes as a counter reaction to oxidative stress 

(Fujii et al., 2001) (Figure 1.2).  

 

 

Figure 1.2: Possible mechanistic pathway for pulmonary toxicity induced by 
exposure to NPs. Exposure to NPs may lead to oxidative stress due to increased 
production of reactive oxygen species (ROS) and downstream signaling responses 
which promote fibrosis and produce genotoxicity. (Bonner, 2002, 2007; Mroz et 
al., 2008) 
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Studies on titanium oxide NPs (TiO2NPs) and C60 fullerenes have shown 

that these NPs cause an up-regulation of pro-inflammatory enzymes such as IL-1, 

TNF-α, IL-6, MIP and MCP in rodent lungs (Park et al., 2010; Park et al., 2009). 

When receptor tyrosine kinases, mitogen-activated protein (MAP) kinases and 

transcriptional factors such as nuclear factor (NF)-κB and STAT-1 are activated, 

the genes involved in inflammation and fibrosis are transcribed and expressed 

(Bonner, 2002, 2007). Stimulation of interleukin IL-1β and TNF-α heightens 

expression of pro-fibrotic proteins. More specifically, the latter is known to up-

regulate the production of transforming growth factor (TGF)-β1, which 

potentiates collagen deposition by fibroblasts (Sime et al., 1998) while the former 

is associated with expression of platelet-derived growth factor (PDGF)-AA and its 

receptor, PDGF receptor-α, which increases proliferation of myofibroblasts, and 

subsequently promotes the formation of immature collagenous tissue within the 

lung (Bonner, 2002). 

The harmful effects of ROS and oxidative stress may be manifested 

through damage of DNA, oxidations of polydesaturated fatty acids in lipids and 

oxidations of amino acids in proteins (Limbach et al., 2007). Although these 

effects may be seen in varying degrees of severity in several nanomaterial studies, 

there is still no conclusive data for AuNP induction of oxidative stress.  

 

1.4.3 Nanogenotoxicity 

Nanogenotoxicity is another sub-branch in the field of nanotoxicity 

research which studies the genotoxic effects of nanomaterials both in vitro and in 

vivo. There is also an increasing amount of literature on this subject in recent 

years (Singh et al., 2009). Although there are no conclusive links with NP-induced 
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genotoxicity and lung cancer from past epidemiological studies and in vivo rodent 

experiments, some researchers have pointed out that long term inflammation and 

oxidative stress present in tissue environment eventually induces DNA damage in 

cells and tissues (Singh et al., 2009). This is of particular concern especially if the 

NPs continue to generate an oxidative environment in the cell that causes gene 

mutations/deletions. This can lead to larger scale mutagenesis and carcinogenicity, 

and subsequently development of tumours and cancer (Knaapen et al., 2004). 

Already, more evidence has emerged regarding the DNA damaging properties of 

certain classes of NPs, particularly the metal based NPs like AgNP, silica dioxide 

(SiO2) NPs and titanium oxide (TiO2) NPs (Asharani et al., 2009b; Schins et al., 

2002; Trouiller et al., 2009).  

One proposed mode of action for NP genotoxicity is the ability of 

signaling peptides functionalized on carbon nanotubes (CNTs) that enables them 

to enter the nucleus via nuclear pores (Pantarotto et al., 2004). It has yet to be 

shown that such CNTs are able to cause genotoxicity but it is thought that there is 

a greater risk of genotoxicity when NPs are able to get in close proximity to DNA. 

There are other different mechanisms that may be specific to the elemental 

composition and shape of NPs, which could lead to DNA damage such as single-

strand breaks, double-strand breaks, DNA deletions and genomic instability in the 

form of increase in 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels (Falck et al., 

2009; Yang et al., 2009). While some researchers have found that exposure to 

TiO2NPs in rats could cause formation of lung granulomas (Park et al., 2009), 

others have cautioned that appearance of granulomas does not necessarily mean 

that the tissue is cancerous as most tissues probably remain benign (Muller et al., 

2009). As most reports regarding NP toxicity reports have been deduced from 
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experiments involving UV or irradiation exposure, the clinical relevance of these 

mechanistic experiments are questionable (Roller, 2009). Nevertheless, a recent 

study has shown that TiO2 NPs may be able to switch on regressive cancer cells. 

Pre-implantation of TiO2NP in vivo and later co-culturing a regressive cancer cell 

line over the implantation site, was found to induce tumorigenic characteristics 

such as upregulation of tumor growth factor beta (TGF-β) and prostaglandin E2 

(PGE2) (Onuma et al., 2009). According to Mroz and colleagues, long term 

exposure to NPs, like nanoparticulates in PM10, can displayed genome instability 

under comet assay analysis, alter cell cycle kinetics in flow cytometry and induce 

protein expression of p53 and DNA repair related proteins, all of which are seen 

in irradiated cells (Mroz et al., 2008). Hence they postulate that these NPs could 

activate signaling pathways similar to ionizing radiation, resulting in 

carcinogenesis as a consequence of errors in DNA replication. DNA repair in 

ionizing radiation requires activation of ATM (Ataxia telangiectasia mutated), a 

serine/ threonine-specific kinase and subsequently, the ubiquitylation signaling 

cascade and sumoylation pathway. However, as cancer is a multifactorial disease, 

there may not be only one defining cause for an individual to develop neoplasm. 

Instead it may be more pertinent to place the risk factor from NP exposure 

alongside other risk factors for cancer as well. 

 

1.4.4 Autophagy 

Autophagy in the Greek simply refers to “self” (auto) and “eating” 

(phagy), may be described as a process of degradation of cellular components in 

the lysosomal pathway. The function of autophagy is still not clearly understood 

but it is generally thought to be a natural process to maintain cellular homeostasis 
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as well as a cellular response to metabolic stresses like starvation, infection or 

disease progression. It was only fairly recent that autophagy was recognized as a 

type II programmed cell death and a cell survival mechanism in times of stress 

(Kiffin et al., 2006; Tsujimoto and Shimizu, 2005). It is found to be implicated in 

several diseases and cellular stresses such as starvation, development, innate and 

adaptive immunity, aging, tumorigenesis and stress-induced differentiation 

(Galluzzi et al., 2008). This phenomenon is really a multi-faceted process. At the 

basal level it helps to maintain cell homeostasis, in the recycling and renewal of 

old cell organelles (Ebato et al., 2008). Under acute stress it protects and promotes 

cell survival by removing damaged organelles and providing much needed 

nutrients in times of starvation (Lum et al., 2005). However if the cell is subjected 

to a prolonged period under stressful conditions, it may exacerbate autophagy and 

drive the cell towards cell death (Levine and Yuan, 2005; Schweichel and Merker, 

1973). This dual role of autophagy is closely related as both pathways share some 

common cell-signaling proteins, for example the ATG6 protein Beclin-1, which 

play prominent roles in driving the cell towards either fate, cell survival or 

apoptosis and cell death (Scarlatti et al., 2009).  

The whole process is made up of multiple steps and is tightly regulated 

with a host of autophagy proteins and their complexes with other related 

molecules. In a general overview of this process, parts of the cytoplasm and 

organelles targeted for degradation are sequestered into double membrane vesicle 

forming an autophagosome. This eventually fuses with a lysosome or endosome 

for breakdown and the products subsequently recycled for use in the cell or 

exocytosed (Mehrpour et al., 2010). These events may be classified into 5 stages: 

1) nucleation, the assembling of the phagophore, 2) Expansion, the extension of 
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the phagophore and elongation of the autophagosome membrane, 3) Completion, 

the autophagosome is completed and characteristic double membrane is clearly 

seen, 4) Fusion, the autophagosome is fused with a lysosome forming an 

autolysosome and 5) Degradation, when the autolysosomal contents are degraded 

by the lysosomal hydrolases, after which they are later recycled in the cell 

cytoplasm or targeted for exocytosis. 

The consensus nomenclatures for autophagy proteins are ATG 

(AuTophaGy-related) and genes are denoted as Atg. Thus far, 31 ATG proteins 

have been identified as listed by Klionsky and co-workers (Klionsky et al., 2003; 

Yang and Klionsky, 2009). Out of these, there are about 3 or 5 subgroups of 

proteins involved in the formation of the autophagosome that make up the core 

machinery (Tanida, 2011; Yang and Klionsky, 2009). Some of the key players 

which are more critical to the autophagosome membrane elongation and 

maturation are ATG 12, ATG 8 (commonly known as microtubule-associated 

protein 1 light chain 3 (MAP-LC3), ATG 5, ATG 6 (Beclin 1) and ATG 7 in 

mammalian autophagy (Figure 1.3).  

Particularly for MAP-LC3, it exists as two forms LC3-I and LC3-II, the 

latter being a characteristic marker for the mature autophagosome and often used 

as a positive indication of the presence of autophagy (Kabeya et al., 2004).  

There are currently few studies on nanomaterial induced autophagy and none 

besides our study implicating AuNP in induction of autophagy. Stern and co-

workers were one of the first in describing this phenomenon, induction of 

autophagy in porcine renal cells treated with cadmium-selenium quantum dots 

(Stern et al., 2008). Subsequent studies into other nanomaterials such as rare earth 
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oxides NPs and fullerenes also found these to induce or mediate autophagy in 

other cell types (Li et al., 2009a; Yamawaki and Iwai, 2006).   

 

 

Figure 1.3: Mechanism of action for maturation and elongation of the 
autophagosome membrane. This diagram shows the major players in the 
formation of the autophagosome including ATG 8 (LC3) activation and 
recruitment to the growing autophagosome membrane and ATG 5, ATG 12, 
ATG16 forming key components of the membrane as well. ATG 4, ATG 3, ATG 
7 and ATG 10 are also essential catalysts for the activation and priming of the key 
components in autophagy. 
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1.5 Current Knowledge on the Toxicity of AuNPs 

1.5.1 Toxicity of Gold Nanoparticles 

Toxicity studies on AuNPs have been on the increase in recent years. 

While there is a general concensus that gold compounds are cytotoxic (Coronnello 

et al., 2005), it is not so clear in the case of AuNPs. Some have reported the 

biocompatibility of AuNPs (Connor et al., 2005; Shukla et al., 2005) and its 

suitability for use in biomedical applications yet others have have found AuNPs to 

affect dermal fibroblast cell proliferation and migration (Pernodet et al., 2006). 

The characteristics and surface functionalization of the AuNP in question do play 

a part in determining its toxicity profile. The smaller the AuNP diameter, the 

greater the toxicity, particularly those of diameter less than 10 nm seem to exert 

the most toxic effect, resulting in cell death by necrosis (Pan et al., 2007). 

Hydrophilicity and a cationic surface modification also renders the AuNP to be 

more cytotoxic (Chompoosor et al., 2010). Results from in vivo studies are also 

mixed. Generally, most have that found AuNPs are readily taken up and 

translocated to various organs systems relatively quickly upon exposure. 

However, there are few reported signs of toxicity in treated animals which 

developed adverse effects (Chen et al., 2009; Cho et al., 2009). The route of 

AuNP administration may also affect the extent of toxicity, for instance oral 

administration and intraperitonal injection of AuNPs in mice show- evidence of 

increased toxicity over tail vein injection (Zhang et al., 2010). 

The current information available on the toxicity of AuNPs in vitro and in vivo are 

shown below. 
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1.5.2 Toxicity of AuNPs in vitro 

Some  available literature on AuNP-induced toxicity in vitro is listed in Table 1.1 

Table 1.1: Selected literature on toxicity of AuNP in vitro. ‘-‘ denotes 
information unavailable. 
 
Particle 

Type 
Particle 

Characteristics 
Cell Line Cytotoxicity 

Tests 
Findings References 

Sphere,  
2 nm 

Cationic and 
anionic side 
chains 
 

Cos-1 red 
blood cells 

MTT assay Cationic side chains are 
moderately toxic, 
anionic quite nontoxic 

(Goodman et 
al., 2004) 

Sphere, 
18 nm 

Surface 
modifiers: 
citrate, biotin; 
glucose, 
cycteine; CTAB 
 

K562 
leukemia cell 
line 

MTT assay AuNP is not toxic (Connor et al., 
2005) 

Sphere, 
35 nm 

lysine / poly-L-
lysine capped 

RAW264.7 
macrophage 
cells 

Trypan blue 
exclusion assay, 
MTT assay 

AuNPs are 
biocompatible and non-
cytotoxic. 
 
 

(Shukla et al., 
2005) 

Sphere, 
2.8 nm 

Surface 
functionalized 
with Tat protein 

hTerT-BJ1 
primary 
human 
fibroblast 

MTT assay AuNP take up by cells. 
Tat protein confers 
specific localization to 
nucleus. No cytotoxic 
effect up to 5 µM 
AuNP dose. 
 
 

(de la Fuente 
and Berry, 
2005) 

Sphere, 
60 nm 

PEG coating Escherichia 
coli 

Growth rate 
measured as 
optical density of 
bacterial culture 
over time 
 
 

Growth of E. coli was 
uninhibited. 

(Williams et al., 
2006) 

Sphere, 
0.8 - 15 
nm 

- L929 mouse 
fibroblast, 
HeLa 
epithelial 
cells, J774A1 
macrophages, 
SK-Mel-28 
melanoma 
cells 
 
 

MTT assay, 
Flow cytometry 

Size dependent 
cytoxicity to AuNP. 
Cells were most 
sensitive to 1.4 nm but 
15 nm were non-toxic. 

(Pan et al., 
2007) 

Rod,  
18x40nm 

Various poly-
electrolyte 
coating 

HeLa cells Trypan blue 
exclusion assay, 
MTT assay, 
Gene expression 
microarray. 

No toxicity and no 
upregulation of 
cytotoxicity markers. 
Varying PE coating and 
surface charge can 
manipulate uptake of 
Au nanorod. 
 

(Hauck et al., 
2008) 
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Sphere, 
10 nm 

- Ovarian 
granulosa 
cells 

24 h treatment 
with AuNP 

1, 3, 5 h AuNP 
incubation increases 
estrogen amount in 
cells. After 24 h, 
decreased E2 secretion 
due to impairment of 
cholesterol to 
pregnenolone 
conversion. 
 

(Stelzer and 
Hutz, 2009) 

Sphere, 
1.5 nm 

Positive, 
negative and 
neutral surface 
charge 

Human 
Keratinocyte  

Assessment of 
cellular 
morphology, the 
mitochondrial 
function and 
mitochondrial 
membrane 
potential, 
intracellular 
calcium, DNA 
damage related 
gene expression 
and p53/caspase 
localization. 

Dose dependent 
toxicity (10 µg/ml – 25 
µg/ml). Charge 
determines cell death 
type: with charge 
results in apoptosis, 
neutral charge results in 
necrosis. 

(Schaeublin et 
al., 2011) 

Sphere gellan gum 
capped 

LN-229 
human 
glioma cell 
line, NIH3T3 
mouse 
embryonic 
fibroblast cell 
line 

Cellular uptake Taken up by cancer 
cells but not normal 
fibroblast cells. 

(Dhar et al., 
2010) 

Particle, 
15 nm 

citrate capped HeLa cells, 
U937 

WST-8 reagent, 
Trypan blue, 
LDH assay, 
Flow cytometry, 
TUNEL assay 

Media type affects 
uptake and toxicity. 
RPMI cell culture 
media increase uptake 
and toxicity in cell lines 

(Maiorano et 
al., 2010) 

Sphere,  
2 nm 

pentanthiol 
capped 

HeLa cells Alamar blue, 
comet assay 

Cationic AuNP are 
cytotoxic and 
genotoxic. Extent of 
DNA damage decrease 
with particle 
hydrophobicity. AuNP 
induces endogenous 
ROS production 

(Chompoosor et 
al., 2010) 

Sphere, 
12 nm 

Hyaluronan 
coated 

Embryonic 
Stem cells 

Embryonic stem 
cell (EST) test, 
MTT assay 

AuNP are weakly 
cytotoxic 

(Di Guglielmo 
et al., 2010) 

Sphere, 
15 nm 

- Triple co-
culture. A549 
alveolar 
epithelial 
cells, human 
blood 
monocyte 
derived 
macrophage 
(MDM), 
dendritic cells 
(MDDC). 

Gene expression 
profile of 
inflammatory 
biomarkers 

No induction of pro-
inflammatory 
biomarkers. 

(Brandenberger 
et al., 2010) 
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1.5.3 Toxicity of AuNP in vivo 

Some available  literature on AuNP-induced toxicity in vivo is listed in Table 1.2 

Table 1.2: Selected literature on the toxicity of AuNPs in vivo. ‘-‘ denotes 
information unavailable. 
 

Particle 
Type 

Particle 
Characteristics 

Animal Experimental 
Outline 

Findings References 

Sphere,  
30 - 110 
nm 

- Wistar 
Rats 

Inhalation 
exposure to 
aerosolized 
AuNP for 5 and 
15 days. 
Followed by 
harvesting of 
organs for 
microarray and 
lipidomic 
analysis of the 
lung. 

Significant amount of 
AuNPs in the lung after 
5 days exposure, 
significant detection in 
other organs after 15 
days. Microarray 
showed downregulation 
of muscle related genes. 
Lipidomic analysis 
showed decrease of 
phosphatidylserine 36:1 
species. 
 

(Yu et al., 
2007) 

Sphere, 
13 nm 

PEG-coated BALB/c 
mice 

Injection via tail 
vein.  

Induce acute 
inflammation and 
apoptosis in liver. 
Accumulation in liver 
and spleen for up to 7 
days. 
 

(Cho et al., 
2009) 

Au-Au2S - KM mice Dose: 1 – 300 
mg/kg. Scored 
for toxic effect, 
behaviour. Blood 
biochemical 
parameters taken. 

AuNP preferentially 
accumulate in liver, 
spleen, kidney and 
lungs. Toxicity 
tendency at 200 – 300 
mg/kg dose. Blood 
biochemical parameters 
not significantly 
different from control. 
 

(Huang et al., 
2008) 

Sphere - Dutch-
belted 
male 
rabbits 

Intravitreal 
injection of 
AuNP into right 
eye. Left for 8 
and 29 days 
before sacrifice. 
Dose at 67 
µmol/0.1 ml and 
670 µmol /0.1 
ml. 
 

No evidence of toxicity 
to retina or optic nerve. 
Absence of oculr 
inflammation and 
cataract/ 

(Bakri et al., 
2008) 

Sphere,  
3-100 nm 

- BALB/c 
mice 

Intraperitoneal 
injection 

At dose 8, 17, 12, 37 
nM of AuNP causes 
fatigue, loss of appetite, 
change of fur colour, 
weight loss in treated 
mice. 

(Chen et al., 
2009) 
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Sphere, 20 
nm 

naked Rats Instillation, 405 
µg/ml / rat 

No difference in 
pulmonary and 
systemic toxicity 
between aggregates and 
single particles. 
 

(Gosens et al., 
2010) 

Sphere, 
13.5 nm 

citrate coated mice 1) Oral 
administration 
2) Intraperitoneal 
injection 
3) Tail vein 
injection 

No apparent toxicity at 
low doses. Oral and 
intraperitoneal injection 
shows high toxicity. 
Tail vein injection may 
be a safer route of 
administration. 

(Zhang et al., 
2010) 

Sphere, 2 
nm 

pentanethiol 
coated 

Oryzias 
latipes 
(Fish) 

20 nM dose in 
water tank 

Cationic, hydrophoic 
AuNP aids penetration 
into circulatory system 
induce mortality in  
24 h 
 

(Zhu et al., 
2010) 

Sphere, 
5.3 nm 

- Mytilus 
edulis 
(shellfish) 

2 Dimensional 
gel 
electrophoresis, 
lysosomal 
membrane 
stability 
 

Oxidative stress 
induction within 24 h of 
AuNP exposure 

(Tedesco et 
al., 2010b) 

Sphere, 
12.5 nm 

- C57/BL6 
mice 

Intraperitonal 
injection of 100 
µl AuNP at doses 
40, 20, 400 
µg/kg/day 
 

AuNPs able to cross 
blood brain barrier. No 
toxicity, no subacute 
physiological damage 

(Lasagna-
Reeves et al., 
2010) 

Sphere, 3, 
10, 50, 100 
nm 

- Zebrafish 
embryos 

Embryos exposed 
to AuNP or a 
water control and 
scored for toxic 
effects 
 

AuNPs readily taken up 
by embryos but showed 
less than 3% mortality 
at 120 h post-
fertilization 

(Bar-Ilan et 
al., 2009) 

Sphere,  
20 nm 

- Wistar rats Single 
intravenous 
injection of 
AuNP for 1 day, 
1 week, 1 month 
and 2 months. 
Gene expression 
microarray. 

Biodistribution in more 
than 25 organs. 
Consistent 
accumulation in liver 
and spleen. Differential 
expression of lipid 
metabolism, 
detoxification, cell 
cycle, anti-oxidant 
defence response and 
circadian rhythm 
related genes 

(Balasubra-
manian et al., 
2010) 
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1.6 Scope of Study 

Nanotechnology as a new and emerging technology, standards of exposure and 

safety are yet to be established. The hypothesis of this study is that 20 nm 

AuNPs exert cytotoxic and genotoxic effects on human lung fibroblasts and 

epithelial cells in vitro. 

 

The objectives of this study are to: 

1. Evaluate the uptake of 20 nm AuNPs into the human MRC-5 lung fibroblast, 

and the human small airways epithelial cells (SAEC) and its biodistribution in the 

cell and morphological effects by light and electron microscopy. 

2. Assess the cell viability, oxidative stress, genotoxicity after treatment with 20 

nm AuNPs in MRC-5 lung fibroblasts  and SAECs. 

3. Analyse the cell cycle and oxidative stress pathway genes following exposure 

to 20 nm AuNPs treatment in MRC-5 lung fibroblasts.  

4. Proteomics analysis in 20 nm AuNP-treated MRC-5 lung fibroblasts. 

5. Investigate the differential gene expression in lung tissues of 20 nm AuNP 

inhalation exposed rats. 
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Chapter 2 

Materials and Methods 
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2.1 Cell Culture 

MRC-5 fetal lung fibroblasts (ATCC No. CC-171) were cultured in RPMI 

1640 media supplemented with 10% FBS and 100 units/ml penicillin, 100 µg/ml 

streptomycin. Small airways epithelial cells (SAEC; Lonza) were cultured in 

Small Airway Basal Medium (SABMTM) supplemented with proprietary 

SingleQuots growth supplements which includes bovine pituitary extract (BPE), 

hydrocortisone, human epithelial growth factor (hEGF), epinephrine, insulin, 

tiiodothyronine, transferring, gentamicin/amphotericin-B and retinoic acid. Cell 

cultures were maintained in a in an atmosphere of 5% CO2 and 37˚C.  

Both cell line were routinely maintained through passaging of cell culture 

once or twice a week. Cells were washed in 1 x PBS and trypsinized by the 

addition of 0.5 x trypsin or 1 x trypsin for MRC-5 and SAEC cells respectively. 

 

2.2 AuNP Synthesis and Preparation 

Colloidial AuNPs is a wine red solution. To synthesize particles at average 

of 20 nm size in 2 nM concentration, 95 mL of an aqueous chlorauric acid 

solution containing 5 mg of Au was brought to a boil, and 5 mL of 1 % sodium 

citrate solution was added to this boiling solution. The solution first changed to a 

bluish color, then purplish, and eventually to wine red, further boiled for 30 min 

and was then left to cool to room temperature. 20 nm diameter size AuNPs were  

chosen for use in this study as they are stable in solution and the 20 nm size 

particles were found to be have the highest deposition fraction in the lung aveoli 

(as previously mentioned on pg 14).  
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2 nM concentration was used as it was a more efficient starting concentration to 

work on for the purpose of concentrating and coating the AuNPs with FBS to 

produce a stock solution of 10 nM AuNPs. 

Characterization analysis was done by Deny Hartono and Huang Shu-Ying 

from A/P Yung’s lab. Size distribution of the AuNP particles were found to be 

consistent with an average diameter of 20 nm through Dynamic Light Scattering 

(DLS) method (Figure 2.1). The zeta-potential which gives the surface charge of 

the AuNPs was measured at -16.8 mV. The AuNP solution was subsequently 

concentrated and coated with FBS through incubation in 37˚C water-bath for 6 

hours. The AuNPs were washed in 1 x PBS and reconstituted to give a 10 nM 

gold nanoparticle solution. This solution was then sterile filtered through a 0.2 µm 

pore-size sterile filter prior to treatment. 

 

Figure 2.1: Dynamic Light Scattering (DLS) graph of AuNP in solution. The % 
intensity measured peaked sharply at 20 nm diameter size showing that a large 
majority of the particles measured had a size distribution of about 20 nm in 
diameter. 
 

2.3 Treatment with AuNP 

The cells were seeded at a density of 8 x 104 cells/well in six-well plates 

(Nunc, Denmark) and cultured for 1 day before treatment. Concentrations of 1, 
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0.5 and 0.1 nM gold nanoparticles were prepared from 10 nM sterile-filtered stock 

solution of nanogold by dilution with culture media. The cells were washed twice 

with 1 x PBS before treatment with the different concentrations of AuNPs for 24, 

48 and 72 h. Control wells were replaced with fresh culture media. The 

experiment was repeated in triplicates. 

 

2.4 Transmission Electron Microscopy (TEM) 

 TEM images allows one to view high powered images of the cellular 

crosssection and visualize organelles and other cellular structures. This technique 

was employed in order to visualize the AuNPs inside the cells to evaluate AuNP 

uptake and localization within the cell. 

 

2.4.1 Sample Processing and Imaging for TEM 

MRC-5 cells were seeded on 4-chambered coverglass (Lab-tek Chambered 

Coverglass System) at a density of 2 x 104/ml (14000 cells/well). After 72 h of 

culture, cells were fixed with 2.5% glutaraldehyde and washed 3 times with 1 x 

PBS. Subsequently, post-fixation with 1% osmium tetroxide was performed 

followed by dehydration with ascending series of alcohol before being embedded 

in araldite for 24 h. Ultrathin sections of 99 nm thickness were cut with a glass 

knife on the Reichert Ultracut E ultramicrotome, mounted onto copper grids and 

doubly stained with uranyl acetate and lead citrate. Images were acquired using 

Olympus EM208S transmission electron microscope at voltage level of 100.0 

KeV. Duplicate samples per treatment were processed for TEM and only the 72 h 

1 nM treatment and control were repeated in a separate experiment in duplicates. 
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2.4.2 EDX Energy Dispersive X-ray (EDX) Analysis 

In order to verify the dense spots are AuNPs, TEM samples from the 

previous step were used for EDX analysis. The elemental composition of the TEM 

specimens was analysed on the CM120 BioTWIN by the Philips EDAX 

Microanalysis system and software.  

 

2.5 Scanning Electron Microscopy (SEM) 

2.5.1 Sample Processing for SEM 

Cells were seeded at a seeding density of 4 x 104 cells / ml on 12 mm 

diameter round cover glass slips and later treated with AuNPs following the steps 

as described in section 2.3. After 72 h, cells were fixed with 2.5% glutaraldehyde 

and washed 3 times with 1 x PBS. The samples were then dehydrated through the 

ethanol series dehydration method with 2 changes of 100 % ethanol at the last 

stage. Samples with AuNPs only did not undergo ethanol series dehydration steps. 

A drop from the 10 nM stock AuNP solution was dropped onto a 12 mm round 

glass cover slip coated prior with poly-L-lysine and allowed to dry in air. Samples 

after drying were used immediately for the next step. Samples were replicated in 

duplicates. 

 

2.5.2 Critical Point Drying (CPD) and Carbon Coating 

Samples on the glass cover slips were placed into a metal container and 

then into the chamber inside the critical point dryer (Balzers CPD 030, Bal-tec, 

Liechtenstein). The procedure was carried out as per the manufacturer’s 

instruction. The chamber was first cooled to 4˚C and then liquid carbon dioxide 

pumped in for 10 mins before the ethanol is drained out. This process is repeated 
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for about 3-4 times to remove the alcohol in the samples. The last step involves 

heating the chamber til about 42˚C and the pressure built up is slowly released by 

hand. The glass cover slips are removed and mounted onto metal stubs with silver 

paint. The samples were subsequently coated with a fine spray of carbon and oven 

dried overnight before viewing. 

 

2.5.3 Scanning Electron Microscopy 

Samples were viewed on the JEOL JSM-6701F, field emission scanning electron 

microscope at a voltage level of 10.0 KeV. Typical three-dimensional surface 

images of the cell and of the AuNPs were captured. In addition, a backscattered 

electron (BSE) imaging was produced to view the AuNPs on and under the cell 

surface. A composite photo of both views was overlaid to create the SEM photos.  

 

2.6 Cell Viability Assays  

2.6.1 Trypan Blue Cell Counting 

Cells (MRC-5 and SAEC cell lines) were cultured onto 4-well plates 

(NUNC, Denmark) at a seeding density of 4 x 104 cells/ml (or 8 x 104 cells/well). 

After treatment if AuNPs at specific time points of 24, 48 and 72 hours, the cells 

were trypsinized with 0.25% trypsin-EDTA (Invitrogen, US). The collected cells 

were centrifuged at 1000 rpm and resuspended in culture media. The cell 

suspension were resuspended in 0.4% Trypan Blue solution (Sigma, US) in a 1:1 

volume ratio and counted using the glass hemocytometer. For each treatment, 3 

replicates were performed. Cells that were stained blue by the Trypan Blue 

solution were counted as non-viable cells and the total number of cells, viable and 

non-viable cells were counted in person with the aid of a punch counter and 



 37 

recorded. Subsequently, the percentage of non-viable cells were calculated with 

this data as such: 

 
% Cell Non-viability = Number of stained (non-living) cells x 100% 
   Total cells counted (stained + unstained) 
 

Total cell count was calculated as such: 

Cell concentration (cells/ml)     =  Average cell count per square of the 
four corner squares in the 
hemocytometer x dilution factor 

 

Total cell count  (cells) = cell concentration x total volume 

 

2.6.2 Cell Viability Assay with MTS assay 

Cells were seeded on to 96 well culture plate at 4000 cells / well. They 

were cultured for 1 day before treatment with the gold nanoparticles at 0, 0.1, 0.5 

and 1 nM concentrations. MTS assay was carried out on the fourth day, 72 h after 

nanogold treatment with the CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay kit (Promega, US). This assay measures the formazan product 

of metabolized MTS in living cells which is directionally proportional to the 

number of living cells in the culture. The absorbance of the formazan at 490 nm 

was measured with the Genois ELISA plate reader. Experiment was repeated in 5 

replicates. 

 

2.7 Gene Expression Profiling 

2.7.1 RT2 Profiler PCR Arrays  

Cells were seeded on 6-well plates and treated with 1 nM AuNP for 72 h 

as previously described  (Section 2.3). After the 72 h treatment timepoint, RNA 
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extraction was performed with the Qiagen RNeasy Microkit (Qiagen, Germany). 

First strand cDNA synthesis (C-02) and realtime PCR were carried with 

proprietary kits and reagents from Superarray, Biosciences according to 

manufacturer’s instructions. Gene expression profiling of 84 key genes from 

selected pathways were simultaneously assayed with the RT2 Profiler PCR array 

plate (Superarray, Biosciences). There were 2 pathway arrays used in this thesis, 

Human Cell Cycle pathway (PAHS-020) and the Human Oxidative Stress and 

Antioxidant Defence pathway (PAHS-065). Triplicate samples of AuNP treated 

and control cells were prepared, one array plate for each sample, the PCR run was 

carried out on the 7000 Real-Time PCR from Applied Biosystems (ABI, USA), 

following manufacturer’s instructions. Statistical analysis was performed through 

t-tests in Excel (Microsoft) data analysis template also provided by the 

manufacturer. 

 

2.7.2 Extraction of Total RNA and First Strand cDNA synthesis 

Cell cultures were seeded and treated with AuNP as described above. Rat 

lung tissue samples were prepared as in section 2.10 and received frozen at -80°C. 

Total RNA was extracted from treated cells and/or from frozen rat lung tissue 

samples with the RNeasy Minikit using the proprietary reagents and spin column 

(Qiagen, Germany). Cell culture samples were homogenized by passing the lysate 

8 times through a 22-guage needle and syringe. Rat lung tissues were first 

weighed and them homogenased in lysis buffer (buffer RLT from RNeasy 

Minikit) with a rotor homogenizer for at least 40 secs. After the homogenization 

of each sample, 70% ethanol was added, mixed by pipetting and then alioquoted 

into a RNeasy Mini spin column. Subsequent steps were completed as directed in 
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the RNeasy Minikit protocol and the total RNA were eluted with RNase free 

water and used immediately for the next step.  

First strand cDNA synthesis was produced with the Superscript III™ first 

strand synthesis kit (Invitrogen) following the manufacturer’s instructions. 

Around 1 – 2 µl of total RNA extracted previously was mixed with the following 

reagents to form master mix 1: 

 1 µl Random Hexamer (50 ng/µl) 

 1 µl dNTPs (10 mM) 

 n µl total RNA sample (up to 8 µl of total RNA) 

 x µl DEPC water (to top up total volume to 10 µl) 

These samples were then incubated at 65 oC for 5 mins in a thermocycler (Thermo 

Hybaid, UK) followed by a cooling period of 1 mins at 4 oC.  

A second master mix is prepared and the total volume of 10 µl of master 

mix 2 was added to each sample. Each sample reaction is made up as follows: 

2 µl 10x RT buffer 

 4 µl 25 mM MgCl2 

 2 µl 0.1 M DTT 

 1 µl RNAseOUT (40 U/µl) 

 1 µl SuperScript III (200 U/µl) 

The cDNA synthesis master mixes were incubated in the thermocycler at the 

following conditions: 25 oC for 10 mins, 50 oC for 50 mins, 85 oC for 5 mins. The 

cDNA product was then either used immediately or stored at -20 oC for later use.  
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2.7.3 Real Time Reverse Transcription-Polymerase Chain Reaction  

(Realtime RT-PCR) 

Real time PCR was performed on the HT7900 FAST Realtime PCR 

system from Applied Biosystems (ABI, USA). The FAST system was used in all 

the PCR runs using the FAST SYBR green cocktail from Applied Biosystems 

(ABI, USA). Each sample of the real time RT-PCR reaction was prepared thus:  

 5 µl FAST SYBR Green Master Mix (ABI Biosystems) 

 0.5 µl each of forward and reverse primers 

 1 µl of cDNA template 

 3 µl top up with RNase free water 

A total volume of 10 µl of the reaction mixture was added into each well of a 96-

well reaction plate. The instrument is then set up for the run. The conditions of the 

FAST thermal cycling run are as follows: Initial activation 20 sec at 95 oC, 

followed by 40 cycles of melting at 95 oC for 1 sec, annealing of primer and 

extension at 60 oC for 20 sec. This is subsequently followed by a dissociation 

curve analysis to verify the specificity of the amplification process and detect the 

presence of primer-dimers. This portion of the run has been programmed to 

elevate the temperature of the samples over several minutes. During the run, the 

realtime PCR machine is able to monitor the decrease in SYBR Green dye 

fluorescence due to the dissociation of the dye from double stranded DNA. A 

single sharp peak in the dissociation curve plot represents specific amplification. 

Table 2.1 lists the primer sequences that were used in these experiments for the 

relevant in vitro and in vivo samples. Primers were designed using the Primer-

BLAST tool found on the National Center for Biotechnology Information (NCBI) 

website (http:// www.ncbi.nlm.nih.gov/). The primer design utilizes the PRIMER3 
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software and its specificity was verified by the NCBI’s Basic Local Alignment 

Search Tool (BLAST) program and database. 

 

Table 2.1: Primer Sequences used in Realtime RT-PCR 

Human cell cultures 
Gene Name Forward Reverse 
Glyceraldehyde 3-
phosphate dehydrogenase 
(GAPDH) 

GAAGGTGAAGGTCGGAGTCAACG TGCCATGGGTGGAATCATATTGG 

Protein disulfide isomerase 
associate 3 (PDIA3) 

CAGGCCTACCCTGGTGATTA TAGAACTGCACCCAGCAGTG 

V-type proton ATPase 
subunit B (VATB) 

GAGGGGCAGATCTATGTGGA GGCTTCTTCTCCAACGACAG 

Hetrogeneous nuclear 
ribonucleus protein C1/C2 
(hnRNP C1/C2) 

TGTGGAGGCAATCTTTTCGA TGATACACGCTGACGTTTCG 

Rat lung tissues 
Gene Name Forward Reverse 
Glyceraldehyde 3-
phosphate dehydrogenase 
(GAPDH) 

AGTCTACTGGCGTCTTCACCA AGTTGTCATGGATGACCTTGG 

Beta-actin CCCTGGCTCCTAGCACCAT ATAGAGCCACCAATCCACACAGA 
Cyclooxygenase 2 (Cox-2) GCACAAATATGATGTTCGCATTCT GAACCCAGGTCCTCGCTTCT 
Peroxiredoxin II (Prx II) GAGGGAAGTACGTGGTCCTCT GGTAGGTCATTGACTGTGATCTG 
Cyclin B1 TGATACTCCCTC TCCAAG AATGCACCATGTCGTATG 
Cyclin B2 GCAGTGCCTCGTCCGCACTT TGAGGTTTCTTAGCCACTTGAGCCG 
MAD2 AGAGGAGCCATTAGGGCGCCAT CCCGGCCCAGGCAGCTTATCT 
BRCA1 CCAAACAAAGGCGTCACCAGGC ATCCAGACGCCACTGAGTCCGG 
Cyclin F TGCCAGTGTGTGGGCATCTGC GCCTCATCCGACACAGACAAGCC 
HPxT CCCTCAGTCCCAGCGTCGTGATTA GGCCACAATGTGATGGCCTCCC 
Catalase (Cat) CCCGAGTCCAGGCTCTTCT CGGCCTGTACGTAGGTGTGA 
Glutathione peroxidase 1 
(Gpx 1) 

TAGGTCCAGACGGTGTTC GATACCAGGAATGCCTTAGG 

Glutathione peroxidase 3 
(Gpx 3) 

GGCTTTGTGCCTAATTTCCA CCCACCAGGAACTTCTCAAA 

Hemeoxygenase (cycling) 
1 (Hmox 1) 

GGCTGTGAACTCTGTCTC GGCATCTCCTTCCATTCC 

Superoxide disutase 1 
(SOD 1) 

CGTCATTCACTTCGAGCAGA AAAATGAGGTCCTGCAGTGG 

Superoxide dismustase 
(SOD 2) 

GGCCAAGGGAGATGTTACAA GCTTGATAGCCTCCAGCAAC 

Thioredoxin reductase 1 
(Txnrd 1) 

TCAAGGTGACCGCTAAGTCC TCTTCCCGGTCTTTTCATTG 
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2.8 Lipid Hydroperoxide Assay 

Lipid Hydroperoxide (LPO) Assay Kit (Caymen Chemical Company) 

measures the amount of hydroperoxides directly, utilizing the redox reactions with 

ferrous ions to give ferric ions. These ferric ions in turn are detected with 

thiocynante ion as the chromogen. Lipid hydroperoxides were extracted in 

chloroform from sonicated samples following manufacturer’s instructions. After 

addition of the chromogen for colour development, the samples were aliquoted 

onto 96-well glass plate and readings taken on a multi-well plate 

spectrophotometer. A positive control sample was included as a validation of the 

assay technique. Cells were treated with 10 nM hydrogen peroxide (H2O2) for 1 h 

prior to extraction. The LPO assay relies on colour development and absorbance 

of the dye to determine the amount of lipid hydroperoxide present in the samples. 

The presence of AuNPs in the samples may interfere the dye absorbance reading 

since AuNPs exhibit strong surface plasmon absorption from 480 to 590 nm 

region.  

 

2.9 Inductively coupled plasma mass spectrometry (ICP-MS) 

To ensure that there were no interference from AuNPs, the samples after 

lipid extraction were analysed with inductively coupled plasma mass spectrometry 

(ICP-MS) to evaluate the amount of AuNPs present in the sample and its potential 

effect on the LPO assay. Similarly, protein extracts for the 2-D electrophoresis 

and western blotting applications were also analysed. 
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2.9.1 Microwave Digestion of Biological Samples 

Triplicate samples of lipid extract in choloroform and protein extracts in 

water were used in this assay. Due to procedural loss during the performance of 

the assay, which includes variation in instrument performance, 200 µL of 1 ppm 

cadmium ions (Merck, Germany) was spiked into each tissue sample and serves as 

an internal standard. Nitric acid was first added to facilitate digestion, hence 2 mL 

of 69.5% HNO3 (Fluka, Switzerland) and 1.5 mL of 30% H2O2 (Merck, for trace 

analysis) were added to individual samples in the quartz inserts. Additionally, 

5 mL of ultrapure water and 1 mL of 30% H2O2 (Merck, Germany) were also 

added to the Teflon vessel in which the quartz inserts were placed into. The 

Teflon vessels were then placed into the rotor and then the rotor contraption is 

placed into the microwave system.  

The optimized digestion program for the closed-pressurized microwave digestion 

was set as follows: 

 

Table 2.2: Conditions for microwave digestion system. 

Step Microwave Power (W) Time (min) 
1 205 3 
2  0.5 
3 205 5 
4  0.5 
5 450 5 
6  0.5 
7 600 5 
8 650 5 
9  2 

10 Ventilation 15 
Total Time 41.5 
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The rotor with the quartz vessels were On completion of the microwave digestion, 

individual samples were diluted to 20 ml and transferred to a cleaned vial 

(Wheaton, USA), and stored in the dark at 4°C prior to ICP-MS analysis.  

 

2.9.2 ICP-MS Analysis 

Calibration standards of HAuCl4 (Sigma–Aldrich, USA) in five 

concentrations (0.2, 2, 4, 10, and 20 µg/L) were analysed with each batch of 

samples. Ultrapure water was used to blank instrument readings. ICP-MS 

instrument from Perkin Elmer, Massachusetts, USA. Readings were collected by 

the proprietary software from Perkin Elmer, USA and statistical analysis was 

performed to assess significance of AuNP quantity between samples. 

 

2.10 Proteomics Analysis 

2.10.1 Harvesting Cells & Protein Extraction 

Cells were washed once in PBS and twice in 0.35 M sucrose to minimize 

contamination from salt. The cells were then scraped in 0.35 M sucrose containing 

proteinase inhibitor mix (Amersham Biosciences). The cell pellets were collected 

after centrifugation at 2000 rpm for 5 min at 4°C and was subsequently 

resuspended in lyses buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 20 

mM dithiothreitol, 0.5% Pharmalyte pH 4-7, proteinase inhibitor mix and nuclease 

mix (Amersham Biosciences). Protein concentrations were determined using a 2-

D Quant Kit (Amersham Biosciences).  
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2.10.2 Western Blotting 

The extracted proteins were resolved on SDS page gel and transferred onto 

PVDF membrane via semidry transfer (BioRad). Membranes were blocked in 5% 

non-fat milk and washed in Tris-buffered saline in 1% Tween. Membranes were 

incubated with primary antibody and then with corresponding secondary antibody, 

developed with chemiluminescence substrate (Pierce) and visualised on a XPress 

CL blue ray film (Pierce). Optical densities of bands were measured on the GS710 

Densitometer and band intensities were analysed with Quantity One image 

analysis software (Biorad, USA). 

Primary antibodies used were as follows: MAD2 (sc-28261), cyclin B2 

(sc-28303) were purchased from Santa Cruz (Santa Cruz, US). Malondialedhyde 

(MAD) (ab27642), PNK (ab4191), COX-2 (ab6665), PDIA3 (ab10287) and 

hnRNP C1/C2 (ab10294) were all obtained from Abcam (Cambridge, UK). 

Antibodies to autophagy proteins were purchased from Abgent (San Diego, US), 

MAP-LC3 (ATG 8) (AM1800a), BECN1 (ATG 6) (AP1818c), APG 5 

(AP1812b/a), APG 7 (AP1813d) and APG 12 (AP1816a).  

 

2.10.3 Two Dimensional Gel Electrophoresis (2D-GE) 

The 2D-GE technique is a useful tool for global proteomic analysis in 

toxicity research, and they play an increasingly important role in toxicity 

biomarker discovery and validation (Johnson et al., 2008; Sheehan, 2007). Studies 

which employ this proteomic technique have been used in experiments involving 

silica nanoparticles (Yang et al., 2010), multi-walled carbon nanotubes 

(Witzmann and Monteiro-Riviere, 2006), titanium dioxide nanoparticles (Liu et 
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al., 2010), airborne particulate matter (Jeon et al., 2011) and silver nanoparticles 

(Lok et al., 2006) but there are few on AuNPs (Tedesco et al., 2010a). 

The 18cm immobilized pH gradient (IPG) dry strip pH 4-7 (Amersham 

Biosciences) were rehydrated for 16 h in reswelling tray with 350 µl rehydration 

solution containing 7 M urea, 2 M thiourea, 4% CHAPS, 20 mM dithiothreitol, 

and 0.5% Pharmalyte pH 4-7 (Amersham Biosciences). For analytical and 

preparative gels, approximately 80ug and 240 µg, respectively, of protein was 

loaded into the rehydrated IPG strip pH 4-7 using the cup-loading method. The 

first dimensional isoelectric focusing (IEF) was carried out on IPG strips pH 4-7 

at 20°C with a maximum current setting of 50 µA/strip using Ettan IPGphor3 IEF 

unit (Amersham Biosciences). The IEF run was carried out under the following 

conditions: (i) 300V, 450 Vhr; (ii) 500 V, 250Vhr; (iii) 1000 V, 1000 Vhr; (iv) 

1000 - 8000 V, 3500 Vhr and (v) 8000 V, 32000 Vhr. Voltage increases for (i), 

(ii), (iii), and (v) were performed “stepwise”, while the increase for (iv) was 

carried out on a “linear gradient”. Prior to the transfer of the strips to the second 

dimensional SDS gel, equilibration of the strips were achieved in two steps; the 

first in an equilibration buffer made up of 6 M urea, 30% w/v glycerol, 2% w/v 

SDS, 75 mM Tris-HCl (pH 8.8), 0.002% BPB and 1% w/v dithiothreitol and the 

second in a similar buffer containing 2.5% w/v iodoacetamide in place of 

dithiothreitol. After being transferred onto the second dimensional SDS-PAGE 

gel, the strips were sealed with 0.5% w/v agarose. SDS-PAGE was performed on 

1.0 mm, 9%T polyacrylamide gels at a constant power of 10 W per gel at 16°C by 

using Ettan DALTsix electrophoresis system (Amersham Biosciences). All 

samples were run in triplicate to ensure reproducibility. 

 



 47 

2.10.4 Protein Visualization and Image Analysis  

2-D gels were visualized by staining with PlusOne silver staining kit (GE 

Healthcare). The gels were fixed in 30% ethanol, 10% acetic acid in water 

overnight followed by twice washing in water for 5 min each. Then the gels were 

immersed in 30% ethanol, 0.2% w/v sodium thiosulfate and 6.8% w/v sodium 

acetate in water for 60 min. After the gels were rinsed four times with water for 15 

min each, they were incubated in chilled 0.25% w/v silver nitrate solution for 60 

min. After discarding the silver nitrate solution and rinsing with two changes of 

water for 1 min each, the gels were developed in 0.03% w/v formaldehyde in 

2.5% w/v sodium carbonate. When the desired intensity was attained, the 

developer solution was discarded and the gel incubated with 1.46% w/v EDTA 

disodium dihydrate for 60 min to halt the reaction. The staining procedure was 

completed by three rinses with water for 15 min each and the resultant silver 

stained gels were subsequently scanned by the Image Scanner (Amersham 

Biosciences). Firstly, the image analysis was done by selecting the best gels. 

These are gels that were chosen from triplicate experiments based on the highest 

image resolution and number of spots. Only spots that displayed obvious 

differences were analysed for differential expression. After which, all the best gels 

were collectively analysed and consistent spots, in which at least four out of six 

pairs of samples, were picked out and labeled on a master gel. All the triplicate 

gels were subsequently re-analysed with ImageMaster 2D Platinum 6.0 

(Amersham Bioscience).  
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2.10.5 In-gel Reduction, Alkylation and Trypsin Digestion of Protein Spots 

Selected silver-stained protein spots were manually excised and cut up into 

smaller pieces. These gel pieces were then washed in 100 µl of 50 mM 

ammonium bicarbonate in 50% acetonitrile, dehydrated in 100 µl of 100% 

acetonitrile and dried in a Speedvac for 20 min. After that, the gel pieces were 

reswelled in 20 µl of solution containing 10 mM dithiothreitol in 100 mM 

ammonium bicarbonate and incubated at 57°C for 1 h. This solution was 

subsequently replaced with 20 µl of solution containing 55 mM iodoacetamide in 

100 mM ammonium bicarbonate and incubated in the dark, at room temperature 

for 1 hr, with occasional vortexing. The liquid phase was aspirated and the gel 

pieces were then washed in 100 µl of 100 mM ammonium bicarbonate. The 

solution was removed and the gels were dehydrated in 100 µl of 100% 

acetonitrile. The above wash and dehydration steps were repeated twice. The final 

solution was removed and gel pieces were dried in a Speedvac for 20 min. The gel 

pieces were digested with 10 µl of 0.01 µg/µl sequencing grade modified trypsin 

(Promega) in 50 mM ammonium bicarbonate and incubated at 37°C for 14 h. To 

enhance peptide extraction, 10ul of 0.1% trifluoroacetic acid in 50% acetonitrile 

was added to the gel pieces for final extraction.  The extracts were dried in a 

Speedvac for 45 min.  

 

2.10.6 MALDI TOF/TOF MS and Protein Identification 

Dried extract was re-dissolved in 1 µL of matrix solution containing 5 

mg/ml of a-cyano-4 hydroxycinnamic acid (CHCA) in 0.1% trifluoroacetic acid 

and 50% acetonitrile. After which, the extract was spotted onto the MALDI target 

plate and allowed to dry in air. This is followed by the Mass Spectrometry 
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analysis on the Applied Biosystems 4800 Proteomics Analyser MALDI-TOF/TOF 

Mass Spectrometer (Framingham, MA, USA).  The GPS explorer™ software 

Version 3.6 (Applied Biosystems) was used to create and search files with 

MASCOT search engine (Version 2.1; Matrix Science) for peptide and protein 

identification. 

 

2.11 Measurement of DNA damage  

To ascertain if AuNPs could induce oxidative DNA damage, the quantity 

of 8 hydroxydeoxyguanosine (8-OHdG), an established marker for cellular 

oxidative stress (Valavanidis et al., 2009), was analysed. 8-OHdG causes 

mutagenicity through G·C to T·A transversions resulting in 8-OHdG·A mispaired 

bases. Its production is induced by reactive oxygen species (ROS), particularly the 

hydroxy radical which is primarily responsible for the hydroxylation of 

deoxyguanosine to 8-OHdG. After treating with 0 (control), 0.5 and 1 nM AuNPs 

for 72 h, DNAs were extracted from the MRC-5 fibroblasts by the method 

described by Huang et al. (Huang et al., 2001). The quantity of 8-OHdG was 

measured using a Shimadzu LC-10AD HPLC equipped with an autosampler. The 

amounts of 8-OHdG in the samples were expressed relative to the amounts of 

deoxyguanosine (dG) as calculated from the response on the electron capture 

detector (ECD) at 700 mV. 

 

2.11.1 DNA Extraction 

Cells were cultured and treated as described previously and incubated for 

72 h. The amounts of cells used for DNA extraction was about 1 x 107. It was 
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found that 1 nM nanogold could destroy DNA so that 20 flasks of cells (double of 

control) were used in DNA extraction. 

DNA was extracted from MRC-5 cells by the method described by Huang 

et al. (Huang et al., 2001). Cells (107 – 2 × 107) were washed in 3 ml ice-cold 

nuclei isolation solution [10 mM Tris⋅HCl, pH 8.0, 1% (v/v) Triton X, 0.32 M 

sucrose, 0.2 mM EDTA, 0.1 mM DTPA, and 5 mM MgCl2]. The nuclei were 

suspended in 1.5 ml RNase solution (10 mM Tris⋅HCl, pH 8.0, 5 mM EDTA, and 

0.1 mM DTPA). DNase-free RNase (1 µl) was then added and mixtures were 

incubated at 37°C for 0.5 h. The nuclei suspension was then mixed with 1.5 ml 

cell lysis solution [10 mM Tris⋅HCl, pH 8.0, 1%(v/v) SDS, 5 mM EDTA, and 0.1 

mM DTPA]. Proteinase K (20 µl of 20 µg/µl) was added and incubated at 55°C 

for 1 h, followed by an additional 10 µl proteinase K and incubation for 2 h more. 

After cooling the solution on ice, 1 ml protein precipitation solution was added 

and shaken vigorously. Precipitated protein was removed by centrifugation and 

the supernatants were extracted with equal volume of chloroform:isoamyl alcohol 

(24:1, v/v). The upper aqueous phase was treated again with 1 µl DNase-free 

RNase for 15min at 37°C. The aqueous phase was extracted once more with equal 

volume of chloroform: isoamyl alcohol. DNA was precipitated in the aqueous 

phase with equal volume of ice-cold isopropanol and stored at -20°C overnight. 

After centrifugation, DNA was washed twice with 70% ethanol and dissolved in 

HPLC grade water for immediate enzymatic digestion after measuring the ratio of 

260/280. In the enzymatic digestion, 20 µl of the 5 µg/µl concentrated 100µg 

DNA were diluted to 87 µl HPLC water. After addition of 10 µl 100 mM MgCl2 

and 1 µl 1M Tris⋅HCl (pH 7.4), 2 µl of 20 U/µl DNase I were added for 0.5 h 

incubation at 37°C. After adjusting the pH to 5.2 with 1 µl of 3 M sodium acetate 
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(pH 8.0), the fragmented DNA was digested with 1 µl of NP1 (1 U/µl) for 1 h. 

After bring the acidic pH back to neutral with 10 µl of 1 M Tris⋅HCl (pH 8.0), 1 

µl of AP (1 U/µl) was added, followed by 1 h incubation. 

 

2.11.2 HPLC analysis 

A spectra series HPLC (Shimadzu, LC-10AD) equipped with autosampler 

was used. Separations were performed using dual columns. First column (Gemini, 

C6, 50 × 3.00 mm, 5 µl) was to roughly separate dG and OHdG from the digested 

DNA solution. A divert valve was inserted to collect the part containing dG and 

OHdG and they were transfered to the second column (Waters, C18, 150 × 4.6 

mm, 5 µl) which coupled to an ECD (ESA, CoulArray 5600 A). The solvent 

system used was a mixture (pH 4.7, which adjusted by acetic acid) of 6% 

methanol, 20 mM sodium acetate. The flow rate on the first column was 0.4 

ml/min and followed with 1.0 ml/min of methanol to remove impurities. The flow 

rate on the second column was 1.0 ml/min. The amount of OHdG in the samples 

was expressed relative to the amounts of dG as calculated from the response on 

the ECD at 700 mV. 

 

2.11.3 Alkaline Single-Cell Gel Electrophoresis (Comet Assay)  

Cells were cultured in 6-well plates and treated with AuNP as previously 

described. After 72 h treatment, cells were harvested and washed twice in 1 x PBS 

before resuspending in PBS. Cell density was checked by pipetting 5 µl of cell 

suspension on microscope slides and noting the spread of the cells. Each well on 

the comet slide gel should contain approximately 2 x 104 cells. The cells were 

embedded in 0.8% low melting agarose (Pronadisa, Spain) on comet slides 
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(Trevigen, USA) and lysed in prechilled lysis solution (2.5 M NaCl, 0.1 M EDTA, 

10 mM Tris base, pH 10) with 1% Triton X (Trevigen, USA) for 1 h at 4 °C. Cells 

were then subjected to denaturation in alkaline buffer (0.3 M NaCl, 1 mM EDTA) 

for 40 min in the dark at room temperature. Electrophoresis was performed at 25 

V and 300 mA for 20 min. The slides were immersed in neutralization buffer (0.5 

M Tris-HCl, pH 7.5) for 15 min followed by dehydration in 70% ethanol. The 

slides were air-dried and stained with SYBR green dye. The tail moments of the 

nuclei were measured as a function of DNA damage. Analysis was done using 

comet imager v1.2 software (Metasystems GmbH, Germany), and 100 comets 

were analysed per concentration. 

 

2.11.4 Fluorescence In Situ Hybridisation (FISH) 

The FISH assay detects and identifies types of DNA damage and 

aberrations. MRC-5 cells were treated in the typical condition of 1 nM AuNP for 

72 h and allowed to grow for another 24 h in the absence of AuNPs. The cells 

were subsequently arrested at mitosis by treatment with colcemid (0.1 µg/ml) in 

media. Cells were then fixed in Carnoy’s fixative and then incubated with a 

hypotonic solution (0.075 M KCl) at 37 °C for 15 min. Subsequently, cells were 

stained with telomere specific peptide nucleic acid (PNA) probes labeled with 

Cyc3 and centromere specific PNA probes labeled with FITC. The cells were 

counterstained with 4′,6-diamidino-2-phenylindole (DAPI) to visualize the 

chromosomes. Metaphase spreads (50 per treatment) were captured on a Zeiss 

Axioplan 2 imaging fluorescence microscope (Carl Zeiss, Germany) and analysed 

using the in situ imaging software (Metasystems GmbH, Germany). 
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2.12 Rat Lung Tissues and AuNP Inhalation Exposure 

Male adult Wistar rats used in this experiment were subjected to inhalation 

exposure of AuNPs in a whole body exposure chamber following the protocol as 

described by Yu et al. (Yu et al., 2007). The aerosal generation system (TSI Inc. 

Minnesota, USA) introduced the aerosolized AuNP into the chamber, which 

housed 4 rats at a time. A total of 6 rats were used for the purpose of this 

experiment in this study. The rats were divided into 2 groups, (i) the exposure 

group were exposed to aerosolized AuNPs for 6 h per day for 5 consecutive days 

for 3 weeks (a total of 15 days exposure) and (ii) the control group of unexposed 

animals were kept away from the exposure chamber.  

These animals were sacrificed 2 days after the last exposure and the lungs 

organs harvested and snap frozen in liquid nitrogen for storage. Samples and 

instruments were washed thoroughly and care was taken to prevent contact of fur 

to tissues in order to prevent transfer of AuNP residues on the external surfaces of 

the rat body to the organ tissues. Associate Professor Yu Liya E. and Dr 

Balasubramanian Suresh Kumar from the Division of Environmental Science and 

Engineering, Faculty of Engineering performed the above in vivo procedures. The 

frozen lung tissue samples were a generous gift from them. 
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2.12 Statistical Analysis 

Statistical analysis of the values for all experiments are expressed as mean 

± standard deviation of two independent experiments. The data were analysed 

using Student’s t test or an unpaired t-test for two treatment samples or One-Way 

ANOVA (Graphpad Prism, USA) for data with 3 or more treatment groups 

together with a post-hoc Tukey’s Test to compare the statistical significance 

between individual treatments. Those with P-value < 0.05 are considered as 

significant. 
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Chapter 3 

Results 
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3.1 Internalization and Biodistribution of AuNPs into MRC-5 cells 

3.1.1 Light Microscopy and Transmission Electron Microscopy (TEM) 

There were no visible alterations in the cell morphology between the 

treated and control groups (Figure 3.1). However, AuNPs taken up by the MRC-5 

lung fibroblasts may also under light microscopy as bright blue spots (Figure 3.1, 

B) as they become highly aggregated due to 72 h treatment with AuNPs. 

 

Figure 3.1: Control and AuNP treated MRC-5 cells as seen under light 
microscopy. Large aggregates of the gold particles may also be seen under light 
microscopy as bright blue spots in the cell cytoplasm, clustering around the 
nucleus (B), which were not observed in the untreated control (A). Scale bars = 
100 µm. Insets in both show a close-up view of the cells in the respective 
treatments. Black arrows point to AuNP aggregates in the cell cytoplasm. 
 

It was also observed that AuNP clusters accumulated in endosomes and 

lysozomes in the cytoplasm (Figure 3.2, E and F), which is not surprising as these 

are the eventual endpoints of ingested materials marked for degradation (Griffiths 

et al., 1988).  

The AuNPs mostly gathered in clusters inside cellular vesicles. In some 

cases, scattered AuNPs were found in the cytosol. The AuNP-treated fibroblasts 

appeared to be highly active with many of them exhibiting large numbers of 
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vacuoles in the cytoplasm (Figure 3.2 B) as compared with the untreated control 

(Figure 3.2 A), with many of which contained large clusters of AuNPs. 

 

Figure 3.2: Comparison of MRC-5 cells of control and 1 nM AuNP treatments. 
(A and B) Low magnification micrographs. Control cell in (A) shows a  healthy 
cell with intact cell organelles while in (B) the AuNP treatment caused formation 
of numerous large vacuoles in the cytoplasm of AuNP treated cells giving it an 
unhealthy perforated appearance. (A) Scale bar = 1 µm; (B) Scale bar = 5µm. (C 
and D) High magnification micrographs. Vacoules of control cells (C) do not have 
the appearance of the dark dense spots of AuNPs while in (D) there are many 
clusters of the AuNP in the vacuoles. Scale bar = 0.2 µm. (E and F) Cellular 
localization of AuNP in MRC-5 after 72h treatment with 1nM AuNP. Black 
arrows point to AuNP clusters inside the cell. (E) AuNP in cell cytoplasm 
enclosed within an endosome. Scale bar = 1 µm. (F) AuNPs found clustering in a 
lysosome. Scale bar = 0.2 µm.  
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vacuoles in the cytoplasm (Figure 3.2 B) as compared with the untreated control 

(Figure 3.2 A), with many of which contained large clusters of AuNPs. This is 

more clearly seen in the high magnification micrographs of the control and 1 nM 

AuNP treated cells, where the vacuoles contain large clusters of dark dense spots 

of AuNPs (Figure 3.2 D) which are absent in the vacuoles of the untreated control 

(Figure 3.2 C).  

 
 
Figure 3.3: Dose dependent uptake of AuNPs in MRC5 cells after 72 h treatment 
with (A) 0.1 nM, (B) 0.5 nM and (C) 1 nM concentration of AuNPs in culture 
media. Magnification x 44 000, Scale bar = 0.2 µm. (D) Micrograph taken at a 
lower magnification of cells treated with 1 nM concentration of AuNP for 72 h. 
Appearance of large vacuoles with AuNPs within in the cell cytoplasm is very 
pronounced. Magnification x 11 000, Scale bar = 1 µm. Red letter N indicates 
nucleus. Black arrows point to AuNP clusters. 
 

The quantity of AuNPs observed correlated with the concentration of nanogold 

treatment. 1 nM treated cells had the highest amount of AuNPs clustered in the 
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vesicles while the 0.1 and 0.5 nM treated cells had smaller clusters (Figure 3.3, A, 

B and C). Additionally, most of the vesicles containing the AuNPs were seen 

clustering around the nucleus (Figure 3.3, D) although some AuNPs clusters could 

be found in other areas of the cytoplasm as well. 

 

3.1.2 Scanning Electron Microscopy (SEM) 

The AuNP treated cells were prepared for scanning electron microscope 

(SEM) to observe any changes on the cell surface due to ingestion of the AuNPs. 

Using the back scattering technique, AuNPs were detected as bright white spots 

possessing an average diameter of 20 nm (Figure 3.4, A). They also typically 

appeared with a halo surrounding the clusters or individual particle due to the 

critical drying process and may also be indicative of the serum coating that were 

given to the particles prior to treatment in media. In contrast, such bright white 

spots were not detected in the control samples as can be seen in Figure 3.4 B. 

Additionally, the surface of the untreated control appear relatively smooth while 

the AuNP treated samples had typical “bumps”, which were identified as AuNP 

clusters (Figure 3.4 D) on the cell surface. What was interesting to see was the cell 

membrane in the act of engulfing a cluster of AuNPs (Figure 3.4 C). The 

invagination of the cell membrane and the attachments to the cluster of AuNPs to 

the mouth of the invagination suggests that the uptake process of AuNPs into the 

cell be endocytosed. Chithrani and Chan have demonstrated that transferrin coated 

AuNPs entered cells via the clathrin-mediated endocytosis pathway (Chithrani and 

Chan, 2007), which suggests that the serum coated AuNPs could also be taken up 

into lung fibroblast cells in a similar manner. 
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Figure 3.4: Scanning electron microscopy (SEM) of AuNP. (A) Serum coated 
AuNPs as they appear under SEM. The halo around the particles may be due to 
the critical drying process and the serum coating. (B) Control cells without AuNP 
treatment. (C) A cluster of AuNPs in the act of being engulfed on the cell surface. 
(D) Typical appearance of AuNP clusters on the cell surface. Scale bar = 100 nm. 
 

3.1.3 Time-point Tracking of AuNP Uptake 

In order to find out the time frame in which the cells ingests these 

particles, the fibroblast cells were treated with AuNPs over a range of time 

periods of 6 h, 12 h, 24 h and 48 h at the typical treatment concentration of 1 nM. 

However it was the 6 h and 12 h periods that gave the most contrast under TEM. 

At 6 h, barely any AuNPs, individual particles or clusters, could be detected while 

after 12 h treatment, multiple clusters of AuNP could be seen in vacuoles and in 

the cytoplasm (Figure 3.5, A and B).  
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Figure 3.5: TEM micrographs of MRC-5 cells after 6 h and 12 h treatment with 1 
nM AuNPs. (A) This series of micrographs show the absence of AuNPs at 6 h. 
Although there were dark spots observed (A’) in the cellular cytoplasm, they turn 
out to be dense cellular granules (A’’). (B) At 12 h, it was obvious that the AuNP 
had been taken up by the cells, accumulating mainly in vacuoles. (C) Also at 12 h, 
it was observed that the cells are also able to take up the AuNPs through the cell 
podia as seen in the series of magnified images of the cross section of the 
lamellopodia located away from the main cell body.  
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Another interesting observation is that the uptake process could also take 

place at the lamellopodia outside of the main cell body (Figure 3.5, C). Here, the 

invagination of the cell membrane on the podia in a cross sectional view around 

the cluster of AuNPs may be clearly seen 

 

3.1.4 Verification of AuNPs with EDAX Microanalysis  

In the midst of these interesting observations, there is a need to verify that 

the electron dense particles are AuNPs. TEM specimens were subjected for 

elemental analysis with a CM120 BioTWIN electron microscope coupled with a 

Philips EDAX Microanalysis system. The fibroblasts treated with AuNPs showed 

the presence of Au as indicated by the two peaks corresponding to the gold M 

shell (2.2 KeV) and L shell (9.7 KeV) (Figure 3.6). These peaks were absent in 

the control samples (Figure 3.6 B). The 1 nM treatment sample, registered a P/B 

ratio (ratio of the intensity of the detected element against the background) of 4.60 

while the P/B value of 1.10 in the control implies no difference from the 

background (for the element to be significantly present in the sample, the P/B 

ratio value needs to be 3.0 and above). Hence the electron dense dark spots in 

these samples are verified to be AuNPs. 
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Figure 3.6: Verification of AuNPs with EDAX Microanalysis system. (A) The 
dense cluster of AuNPs was identified as gold as evidenced by the peaks on the 
graph corresponding to the Au M shell (2.2 KeV) and L shell (9.7 KeV). The 1nM 
treatment sample, registered a P/B ratio (ratio of the intensity of the detected 
element against the background) of 4.60 while the P/B value of 1.10 in the control 
implies no difference from the background (for the element to be significantly 
present in the sample, the P/B ratio value needs to be 3.0 and above). (B) 
However, no peaks were detected at these positions in the control sample. Inserts 
include the TEM micrographs of the section taken for EDAX microanalysis and 
the calculated values as processed by the software.   
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3.2 Cell Viability on AuNP treatment 

3.2.1 Trypan Blue Exclusion Assay for Cell Viability 

To evaluate if AuNPs had an effect on cell proliferation and death, cell 

viability was determined with Trypan Blue exclusion together with One Way 

ANOVA with post hoc Tukey’s Test (Graphpad Prism). Cell viability assay with 

the trypan blue exclusion test show that MRC-5 cells are still viable at 24, 48 and 

72 hours of incubation with the gold nanoparticles in media (Figure 3.7). MTS 

assay at 72 hours treatment further confirmed that there was no loss in cell 

viability (Figure 3.8). This is inline with previous reports that these particles do 

not cause acute cytotoxicity and is relatively biocompatible (Connor et al., 2005).  

 

 

Figure 3.7: Percentage non-viability of MRC-5 cells after (A) 24 h, (B) 48 h and 
(C) 72 h AuNP treatment. There seems to be a dose dependent relationship with 
increasing percentage non-viability against increasing AuNP treatment 
concentration. However, the results are not significant (p-value > 0.05).  
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Figure 3.8: MTS cell viability assay of MRC-5 cells treated with 0, 0.1, 0.5 and 1 
nM concentrations of AuNP for 72 h. Results were not significant for all 
concentrations on statistical analysis with One-way ANOVA, which indicates that 
there was no loss in cell viability on AuNP treatment. However, there is the 
possibility of interference from the AuNPs in photospectrometer absorbance 
readings resulting in higher than expected values. Hence the non-absorbance 
reliant method like the trypan blue assay is a better indicator of cell viability. 
 

However there was a significant difference in the total number of cells at 

72 hours following AuNP treatment and untreated cells (Figure 3.9; One way 

ANOVA p value < 0.05). Cells treated with 1 nM concentration of AuNPs had 

significantly lower total cell count than controls (Tukey’s test, p-value < 0.05). 

The significant decrease in cell numbers after 72 h of treatment with 1 nM AuNPs 

indicates that nanogold may inhibit cell proliferation.  
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Figure 3.9: Cell count after 72 h treatment with AuNP in MRC-5 cells. Only the 1 
nM concentration showed significantly lower cell count as compared to the 
control. Thus may indicate that AuNPs could possibly inhibit cell proliferation. 
 
 

3.2.2 Gene Profiling on the Cell Cycle Pathway 

To further evaluate the expression of cell cycle genes following exposure 

of AuNPs, expression profiling of 84 key cell cycle related genes from MRC 

fibroblasts (1nM AuNPs for 72 hours and control) was conducted using the 

Human Cell Cycle RT2 Profiler PCR Array System (SuperArray, Bioscience 

Corp., USA). Full listing of the genes is found in Table 3.1. Statistical analysis 

was performed using Student’s t-tests. All the genes were detected in both the 

treated and control samples, with expression of 19 genes significantly reduced in 

the treated cells (Table 3.2; p value < 0.05).  
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Table 3.1: Full listing of genes in the Human Cell Cycle pathway RT2 Profiler 
PCR array. Total of 90 genes (inclusive of 5 house keeping genes). Gene symbols 
and gene names together with a short description of the genes is as provided, 
based on the gene table in the manufacturer’s product specification sheet 
(Superarray, Bioscience Corporation, USA). The fold change results and the 
respective p - value of each gene is as listed. Significant changes are highlighted 
in red. 
 

Gene  
Symbol 

Gene 
Name 

Description Fold 
Change 

p - value 

ABL1 
 

ABL/JTK7 
 

V-abl Abelson murine leukemia viral oncogene 
homolog 1 

1.16 
 

0.8833 
 

ANAPC2 APC2 Anaphase promoting complex subunit 2 1.49 0.4882 
ANAPC4 APC4 Anaphase promoting complex subunit 4 0.92 0.3370 
DIRAS3 ARHI/NOEY2 DIRAS family, GTP-binding RAS-like 3 0.71 0.1116 

ATM 
 

AT1/ATA 
 

Ataxia telangiectasia mutated (includes 
complementation groups A, C and D) 

1.02 
 

0.5820 
 

ATR FRP1/MEC1 Ataxia telangiectasia and Rad3 related 0.84 0.0214 
BAX Bax zeta BCL2-associated X protein 1.17 0.8350 

BCCIP TOK-1 BRCA2 and CDKN1A interacting protein 1.05 0.8802 
BCL2 Bcl-2 B-cell CLL/lymphoma 2 0.77 0.2432 
BIRC5 API4/EPR-1 Baculoviral IAP repeat-containing 5 (survivin) 0.63 0.1220 

BRCA1 
BRCAI/BRCC

1 Breast cancer 1, early onset 0.65 0.0018 
BRCA2 BRCC2/FACD Breast cancer 2, early onset 0.85 0.2302 
CCNB1 CCNB Cyclin B1 0.63 0.007 
CCNB2 HsT17299 Cyclin B2 0.57 0.0041 
CCNC Cyclin C Cyclin C 0.76 0.0479 

CCND1 
 

BCL1/ 
D11S287E 

Cyclin D1 
 

1.08 
 

0.7447 
 

CCND2 KIAK0002 Cyclin D2 2.59 0.4468 
CCNE1 CCNE Cyclin E1 1.28 0.5084 
CCNF FBX1/FBXO1 Cyclin F 0.67 0.0424 

CCNG1 CCNG Cyclin G1 0.88 0.1828 
CCNG2 Cyclin G2 Cyclin G2 1.01 0.0705 
CCNH CAK/p34 Cyclin H 0.73 0.0233 
CCNT1 CCNT/CYCT1 Cyclin T1 0.81 0.1355 
CCNT2 CCNT2 Cyclin T2 1.39 0.0543 
CDC16 

 
APC6 

 
CDC16 cell division cycle 16 homolog  
(S. cerevisiae) 

4.55 
 

0.4627 
 

CDC2 
 

CDK1/DKFZp
686L20222 

Cell division cycle 2, G1 to S and G2 to M 
 

0.75 
 

0.0177 
 

CDC20 
 

p55CDC 
 

CDC20 cell division cycle 20 homolog  
(S. cerevisiae) 

0.81 
 

0.0393 
 

CDC34 
 

E2CDC34/ 
UBE2R1 

Cell division cycle 34 
 

1.26 
 

0.5257 
 

CDK2 p33(CDK2) Cyclin-dependent kinase 2 0.97 0.2041 

CDK4 
CMM3/PSK-

J3 Cyclin-dependent kinase 4 1.05 0.8440 
CDK5R1 

 
CDK5P35/ 

CDK5R 
Cyclin-dependent kinase 5, regulatory subunit 1 
(p35) 

0.87 
 

0.3923 
 

CDK5RAP
1 

C20orf34/C42 
 

CDK5 regulatory subunit associated  
protein 1 

0.89 
 

0.5089 
 

CDK6 
 
 

PLSTIRE 
 
 

Cyclin-dependent kinase 6 
 
 

1.40 
 
 

0.1362 
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CDK7 
 
 

CAK1/ 
CDKN7 

 

Cyclin-dependent kinase 7  
(MO15 homolog, Xenopus laevis, cdk-activating 
kinase) 

1.07 
 
 

0.8498 
 

 
CDK8 

 
K35 

 
Cyclin-dependent kinase 8 
 

0.90 
 

0.3121 
 

CDKN1A 
 

CAP20/CDKN
1 
 

Cyclin-dependent kinase inhibitor 1A  
(p21, Cip1) 

1.47 
 

0.1631 
 

CDKN1B 
 

CDKN4/KIP1 
 

Cyclin-dependent kinase inhibitor 1B  
(p27, Kip1) 

0.87 
 

0.3744 
 

CDKN2A 
 

ARF/CDK4I 
 

Cyclin-dependent kinase inhibitor 2A (melanoma, 
p16, inhibits CDK4) 

1.25 
 

0.5623 
 

CDKN2B 
 

INK4B/MTS2 
 

Cyclin-dependent kinase inhibitor 2B  
(p15, inhibits CDK4) 

1.20 
 

0.6249 
 

CDKN3 
 

CDI1/CIP2 
 

Cyclin-dependent kinase inhibitor 3 (CDK2-
associated dual specificity phosphatase) 

0.84 
 

0.2325 
 

CHEK1 CHK1 CHK1 checkpoint homolog (S. pombe) 0.97 0.4697 
CHEK2 CDS1/CHK2 CHK2 checkpoint homolog (S. pombe) 0.76 0.0281 
CKS1B 

 
CKS1/ 

PNAS-16 
CDC28 protein kinase regulatory  
subunit 1B 

0.90 
 

0.2125 
 

CKS2 CKSHS2 CDC28 protein kinase regulatory subunit 2 0.72 0.0418 
CUL1 Cul1 Cullin 1 1.33 0.2407 
CUL2 MGC131970 Cullin 2 0.71 0.4210 
CUL3 Cullin-Cul3 Cullin 3 1.04 0.7144 

DDX11 
 

CHL1/CHLR1 
 

DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 
11 (CHL1-like helicase homolog, S. cerevisiae) 

1.76 
 

0.4704 
 

DNM2 DYN2/DYNII Dynamin 2 0.97 0.5535 
E2F4 

 
E2F-4 

 
E2F transcription factor 4,  
p107/p130-binding 

0.94 
 

0.6560 
 

GADD45A 
 

DDIT1/ 
GADD45 

Growth arrest and DNA-damage-inducible, alpha 
 

0.94 
 

0.0679 
 

GTF2H1 
 

BTF2/TFIIH 
 

General transcription factor IIH, polypeptide 1, 
62kDa 

0.91 
 

0.4023 
 

GTSE1 B99 G-2 and S-phase expressed 1 0.87 0.1464 
HERC5 CEB1 Hect domain and RLD 5 1.48 0.6718 
HUS1 Hus1 HUS1 checkpoint homolog (S. pombe) 0.85 0.0337 

KNTC1 ROD Kinetochore associated 1 0.70 0.1011 
KPNA2 

 
IPOA1/QIP2 

 
Karyopherin alpha 2  
(RAG cohort 1, importin alpha 1) 

1.17 
 

0.4043 
 

MAD2L1 
 

HSMAD2/ 
MAD2 

MAD2 mitotic arrest deficient-like 1 (yeast) 
 

0.54 
 

0.0039 
 

MAD2L2 
 

MAD2B/ 
REV7 

MAD2 mitotic arrest deficient-like 2 (yeast) 
 

1.04 
 

0.6758 
 

MCM2 
 

BM28/CCNL1 
 

MCM2 minichromosome maintenance deficient 2, 
mitotin (S. cerevisiae) 

1.02 
 

0.6515 
 

MCM3 
 

HCC5/ 
P1-MCM3 

MCM3 minichromosome maintenance deficient 3 
(S. cerevisiae) 

0.77 
 

0.0227 
 

MCM4 
 

CDC21/ 
CDC54 

MCM4 minichromosome maintenance deficient 4 
(S. cerevisiae) 

0.69 
 

0.1500 
 

MCM5 
 
 

CDC46/ 
P1-CDC46 

 

MCM5 minichromosome maintenance deficient 5, 
cell division cycle 46  
(S. cerevisiae) 

0.92 
 
 

0.0299 
 
 

MKI67 KIA/Ki-67 Antigen identified by monoclonal antibody Ki-67 0.92 0.2188 
MNAT1 MAT1/RNF66 Menage a trois 1 (CAK assembly factor) 0.91 0.4853 
MRE11A 

 
ATLD/ 
HNGS1 

MRE11 meiotic recombination 11 homolog A  
(S. cerevisiae) 

0.93 
 

0.0795 
 

NBN AT-V1/AT-V2 Nibrin 0.81 0.0297 
PCNA MGC8367 Proliferating cell nuclear antigen 0.92 0.4660 
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RAD1 HRAD1/REC1 RAD1 homolog (S. pombe) 1.34 0.0741 
RAD17 

 
CCYC/ 

HRAD17 
RAD17 homolog (S. pombe) 
 

0.86 
 

0.4884 
 

RAD51 
 

BRCC5/ 
HRAD51 

RAD51 homolog  
(RecA homolog, E. coli) (S. cerevisiae) 

1.22 
 

0.7677 
 

RAD9A RAD9 RAD9 homolog A (S. pombe) 0.77 0.2291 
RB1 

 
OSRC/RB 

 
Retinoblastoma 1  
(including osteosarcoma) 

1.55 
 

0.6296 
 

RBBP8 CTIP/RIM Retinoblastoma binding protein 8 0.75 0.0059 
RBL1 CP107/PRB1 Retinoblastoma-like 1 (p107) 0.81 0.2668 
RBL2 P130/Rb2 Retinoblastoma-like 2 (p130) 0.89 0.6530 
RPA3 REPA3 Replication protein A3, 14kDa 1.85 0.3549 

SERTAD1 
 

SEI1/ 
TRIP-Br1 

SERTA domain containing 1 
 

1.04 
 

0.6709 
 

SKP2 FBL1/FBXL1 S-phase kinase-associated protein 2 (p45) 2.14 0.4915 
SUMO1 GMP1/PIC1 SMT3 suppressor of mif two 3 homolog 1 (yeast) 1.00 0.4179 
TFDP1 DP1/DRTF1 Transcription factor Dp-1 1.07 0.8048 

TFDP2 
DP2/Dp-2 

 
Transcription factor Dp-2  
(E2F dimerization partner 2) 

1.21 
 

0.5301 
 

TP53 
LFS1/TRP53 

 
Tumor protein p53  
(Li-Fraumeni syndrome) 

1.24 
 

0.6456 
 

UBE1 
 

A1S9/A1S9T 
 

Ubiquitin-activating enzyme E1 (A1S9T and 
BN75 temperature sensitivity complementing) 

0.98 
 

0.2760 
 

B2M B2M Beta-2-microglobulin 0.94 0.2661 
HPRT1 

 
HGPRT/HPRT 

 
Hypoxanthine phosphoribosyltransferase 1  
(Lesch-Nyhan syndrome) 

0.71 
 

0.0039 
 

RPL13A RPL13A Ribosomal protein L13a 1.27 0.2241 
GAPDH G3PD/GAPD Glyceraldehyde-3-phosphate dehydrogenase 1.10 0.8865 
ACTB b-Actin Actin, beta 1.14 0.8610 
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Table 3.2: Results of the 19 significantly downregulated genes in cell cycle PCR 
array. Results expressed in fold change with its corresponding p-value. A 
description of each gene’s relevant protein function is also included in the table. 
 
Gene Name Description Protein Function Fold 

Change 
p-value 
(< 0.05) 

FRP1/MEC1 
 
 

Ataxia telangiectasia and 
Rad3 related 
 

Protein kinase, cell cycle arrest, 
DNA repair in response to DNA 
damage, associated with BRCA1 

0.84 
 
 

0.0214 
 
 

BRCAI/BRCC1 
 

Breast cancer 1,  
early onset  

Maintaining genomic stability 0.65 
 

0.0018 
 

CCNB Cyclin B1 Cell cycle regulation 0.63 0.007 
HsT17299 Cyclin B2  Cell cycle regulation 0.57 0.0041 
Cyclin C Cyclin C Phosphorylate RNA polymerase II 0.76 0.0479 
FBX1/FBXO1 
 

Cyclin F 
 

Phosphorylation dependent 
ubiquitination  

0.67 
 

0.0424 
 

CAK/p34 
 
 

Cyclin H 
 
  

phosphorylate CDC2 and CDK2 
kinases, RNA polymerase protein 
complex component 

0.73 
 

 

0.0233 
 
 

CDK1/DKFZp6
86L20222 

Cell division cycle 2,  
G1 to S and G2 to M 

Cell cycle regulation 0.75 
 

0.0177 
 

p55CDC 
 
 

CDC20 cell division cycle 
20 homolog  
(S. cerevisiae) 

Regulatory protein 0.81 
 
 

0.0393 
 
 

CDS1/CHK2 
 

CHK2 checkpoint 
homolog (S. pombe) 

Cell cycle checkpoint regulator, 
associate with BRCA1 

0.76 
 

0.0281 
 

CKSHS2 
 

CDC28 protein kinase 
regulatory subunit 2 

CDK binding 0.72 
 

0.0418 
 

Hus1 
 
 

HUS1 checkpoint 
homolog (S. pombe) 
 

Cell cycle arrest in response to 
DNA damage, complex with RAD9 
and RAD1 

0.85 
 
 

0.0337 
 
 

HSMAD2/ 
MAD2 

MAD2 mitotic arrest 
deficient-like 1 (yeast) 

Mitotic spindle assembly 
checkpoint 

0.54 
 

0.0039 
 

HCC5/ 
P1-MCM3 
 

MCM3 minichromosome 
maintenance deficient 3 
(S. cerevisiae) 

Initiation of genome replication 0.77 
 
 

0.0227 
 
 

CDC46/ 
P1-CDC46 
 
 

MCM5 minichromosome 
maintenance deficient 5, 
cell division cycle 46  
(S. cerevisiae) 

Initiation of genome replication 0.80 
 
 
 

0.0081 
 
 
 

ATLD/HNGS1 
 
 

MRE11 meiotic 
recombination 11 
homolog A (S. cerevisiae) 

homologous recombination, 
telomere length maintenance, and 
DNA double-strand break repair. 

0.92 
 

 

0.0299 
 
 

AT-V1/AT-V2 
 
 

Nibrin 
 
 

DNA double-strand break repair 
and DNA damage-induced 
checkpoint activation 

0.81 
 
 

0.0297 
 
 

CTIP/RIM 
 

Retinoblastoma binding 
protein 8 

Cell proliferation regulation, 
modulate functions of BRCA1 

0.75 
 

0.0059 
 

HGPRT/HPRT 
 
 
 

Hypoxanthine 
phosphoribosyltransferase 
1 (Lesch-Nyhan 
syndrome) 

Hypoxanthine-guanine 
phosphoribosyltransferase  
[Nucleotide transport and 
metabolism] 

0.71 
 
 
 

0.0039 
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MAD2, Cyclin B2 (HsT17299) and Cyclin B1 (CCNB), which are associated with 

the cell cycle, were found to be the most downregulated. Expression of BRCA1, 

Hus1, ATLD/HNGS1, AT-V1/AT-V2 which are DNA damage response genes 

and involved directly with maintaining genomic integrity, were also significantly 

decreased. The remaining genes encode proteins that are associated with the 

above genes or support the functions of the aforementioned genes (Table 3.2). 

Western blot was next performed with antibody probes to MAD2 and Cyclin B2 

to track if these changes were reflected at the protein level. Both showed positive 

results in the detection of downregulation of protein expression in the treated 

samples (Figure 3.10). 

 

 

 

 

Figure 3.10: Western Blot of MAD2 and Cyclin B2 in AuNP treated samples. A 
similar downregulation of protein expression was observed and correlated with 
the findings from the RT-PCR results.  
 

Cell cycle regulatory genes like MAD2, HsT17299 and CCNB were also 

found to be most significantly downregulated in mRNA transcripts of the treated 

samples. MAD2 is MAD2 mitotic arrest deficient-like 1 which regulates the 

mitotic spindle checkpoint while HsT17299 and CCNB are Cyclin B2 and Cyclin 
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B1 respectively, regulators of the cell cycle at the G2/M phase. A decrease in 

expression of these critical checkpoint proteins would significantly inhibit cellular 

proliferation. Moreover, the AuNPs were coated with FBS prior to use in 

treatment hence this decrease in cell numbers may not be due to reduction of 

serum in media. It is likely that nanogold may interact with the proteins in the cell 

cycle pathways however the connections and exact mechanisms are not clearly 

understood.  

 

3.3 Oxidative Stress 

3.3.1 Lipid Hydroperoxide Assay 

The hydroperoxide concentration was found to be significantly higher in 

treated cells than the control cells (Figure 3.11; p-value < 0.05). This provides 

evidence that AuNP treatment could generate oxidative stress in MRC-5 lung 

fibroblasts.  

 

Figure 3.11: Lipid hydroperoxide assay (LPO assay) of control, AuNP treated 
and hydrogen peroxide treated samples. AuNP treated cells produce significantly 
more hydroperoxide compared with control (* p-value < 0.05). Hydrogen 
peroxide treatment serves as positive control for assay (** p-value < 0.01 
compared with control). Error bars = SEM. 
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3.3.2 Inductively Coupled Plasma Mass Sepctormetry (ICP-MS) 

To allay the concern that the presence of AuNP in cells may interfere with 

the assay absorbance due to the strong surface plasmon effect, trace gold content 

in AuNP treated samples was analysed via inductively coupled plasma mass 

spectroscopy (ICP-MS). The result (Figure 3.12) showed that the gold 

concentration in treated samples was negligible (< 10ppb), implying that there 

was little interference from AuNP in the assays.  

 

Figure 3.12: Inductively coupled plasma mass spectroscopy (ICP-MS) analysis 
was done to quantify the amount of AuNPs carried over into the extraction 
samples after treatment. Two kinds of samples (A) lipid extract in chloroform and 
(B) protein extract in lysis buffer and water were used in two separate analysis 
experiments. Triplicate samples were used for each treatment group and triplicate 
readings were taken for each sample on the ICP-MS equipment.  Both the lipid 
and protein extract results showed that the amount of AuNP quantified in the 
samples is negligible (< 10 parts per billion), implying that there is little influence 
from AuNP in the colorimetric assays. 
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3.3.2 Malondialdehyde Adducts on Western Blots 

In addition, malondialdehyde (MDA) modified protein adducts were 

evaluated by western blotting as a further verification of the presence of lipid 

peroxidation. MDA is a byproduct of lipid oxidation by free radicals and ROS and 

this aldehyde reacts readily with protein or DNA forming adducts which are 

considered to be highly genotoxic. Clearly, the amount of proteins alkylated by 

MDA was significantly more in the AuNP treated samples than that in control 

samples (Figure 3.13; p-value < 0.05), particularly the 2 prominent bands at the 

70kDa and 75kDa regions. 

 

Figure 3.13: Whole cell lysate western blot against MDA protein adducts 
showing significant increase in OD values of AuNP treated cells (OD p-value < 
0.05). Error bars = SEM. 
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3.3.3 Oxidative Stress Pathway Gene Profiling 

Gene profiling was done on selected oxidative stress related molecules that 

were affected by AuNP treatment using the RT2 Profiler PCR array (oxidative 

stress pathway, full set of genes are listed in Table 3.3). There were 4 out of the 

84 genes found to be significantly upregulated in AuNP-treated lung fibroblasts 

(Table 3.4, p-value < 0.05).  

 
Table 3.3: Full listing of genes in the Human Oxidative stress and Antioxidant 
pathway RT2 Profiler PCR array. Total of 89 genes (inclusive of 5 house keeping 
genes). Gene symbols, gene names, together with a short description of the genes 
is as provided, based on the gene table in the manufacturer’s product specification 
sheet (Superarray, Bioscience Corporation, USA). The fold change results and 
their respective p – values are also listed. Statistically significant changes are 
highlighted in red. 
 

Gene 
Symbol 

Gene Name Description Fold 
Change 

p - value 

ALB GRX2 Albumin   0.91 0.5909 
ALOX12 

 
GABABL/ 

PGR28 
Arachidonate 12-lipoxygenase 
  

1.09 
 

0.7958 
 

ANGPTL7 GSHPX1 Angiopoietin-like 7  0.68 0.3951 
AOX1 

 
GI-GPx/ 
GPRP 

Aldehyde oxidase 1  
 

1.23 
 

0.2245 
 

APOE 
 

GPx-P/ 
GSHPx-3 

Apolipoprotein E  
 

1.42 
 

0.2483 
 

ATOX1 
 

MCSP/ 
PHGPx 

ATX1 antioxidant protein 1 homolog (yeast)  
 

1.00 
 

0.9764 
 

BNIP3 
 

GPX5 
 

BCL2/adenovirus E1B 19kDa interacting 
protein 3  

0.90 
 

0.6041 
 

CAT Gpx6 Catalase  1.13 0.4883 
CCL5 

 
CL683/ 
GPX6 

Chemokine (C-C motif) ligand 5  
 

0.66 
 

0.1072 
 

CCS MGC78522 Copper chaperone for superoxide dismutase  1.20 0.4568 
CSDE1 

 
GSHS 

 
Cold shock domain containing E1,  
RNA-binding  

1.17 
 

0.1914 
 

CYBA 
 

GSTZ1-1/ 
MAAI 

Cytochrome b-245, alpha polypeptide 
  

1.27 
 

0.2839 
 

CYGB 
 

BAP-135/ 
BAP135 

Cytoglobin  
 

1.38 
 

0.3042 
 

DGKK CK1/EHK1 Diacylglycerol kinase, kappa  1.31 0.3837 
DHCR24 SPO 24-dehydrocholesterol reductase  1.48 0.1174 
DUOX1 

 
COLEC1/ 
HSMBPC 

Dual oxidase 1  
 

0.96 
 

0.9268 
 

DUOX2 GST-III Dual oxidase 2  1.31 0.3837 
DUSP1 

 
myelo- 

peroxidase 
Dual specificity phosphatase 1  
 

1.29 
 

0.2056 
 

EPHX2 SYM1 Epoxide hydrolase 2, cytoplasmic  1.31 0.3837 
EPX LOC389611 Eosinophil peroxidase  0.91 0.7729 
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FOXM1 GIF/GIFB Forkhead box M1  1.17 0.2960 
GLRX2 

 
CXCDC2/ 

MTLT 
Glutaredoxin 2  
 

0.89 
 

0.3527 
 

GPR156 
 

NCF1A/ 
NOXO2 

G protein-coupled receptor 156  
 

1.01 
 

0.9317 
 

GPX1 
 

NOXA2/ 
P67-PHOX 

Glutathione peroxidase 1 
  

0.91 
 

0.5627 
 

GPX2 
 

NM23-H5/ 
NM23H5 

Glutathione peroxidase 2 (gastrointestinal) 
 

0.77 
 

0.5481 
 

GPX3 
 

HEP-NOS/ 
INOS 

Glutathione peroxidase 3 (plasma)  
 

1.11 
 

0.5260 
 

GPX4 
 

NOX5A/ 
NOX5B 

Glutathione peroxidase 4  
(phospholipid hydroperoxidase)  

1.24 
 

0.3008 
 

GPX5 
 

MTH1 
 

Glutathione peroxidase 5 
 (epididymal androgen-related protein)  

0.90 
 

0.8053 
 

GPX6 Nbla00307 Glutathione peroxidase 6 (olfactory)  1.10 0.8333 
GPX7 OSR1 Glutathione peroxidase 7  0.97 0.8865 
GSR 

 
CLIM1/ 
CLP-36 

Glutathione reductase  
 

0.85 
 

0.7512 
 

GSS IPCEF1 Glutathione synthetase  1.15 0.3164 
GSTZ1 

 
PNK 

 
Glutathione transferase zeta 1 
(maleylacetoacetate isomerase)  

1.13 
 

0.2953 
 

GTF2I 
 

MSP23/ 
NKEFA 

General transcription factor II, i  
 

1.32 
 

0.0719 
 

KRT1 
 

NKEFB/ 
PRP 

Keratin 1 (epidermolytic hyperkeratosis) 
  

1.31 
 

0.3837 
 

LPO 
 

AOP-1/ 
AOP1 

Lactoperoxidase  
 

1.31 
 

0.3837 
 

MBL2 
 

AOE37-2 
 

Mannose-binding lectin (protein C) 2,  
soluble (opsonic defect)  

1.31 
 

0.3837 
 

MGST3 
 

ACR1/ 
AOEB166 

Microsomal glutathione S-transferase 3  
 

1.04 
 

0.7765 
 

MPO 1-Cys/AOP2 Myeloperoxidase  0.73 0.5614 
MPV17 KIAA1415 MpV17 mitochondrial inner membrane protein  0.97 0.7168 
MSRA MBPH Methionine sulfoxide reductase A  0.34 0.3895 
MT3 

 
ASCR/ 
CD230 

Metallothionein 3  
 

0.50 
 

0.3063 
 

MTL5 
 

COX1/ 
COX3 

Metallothionein-like 5, testis-specific (tesmin) 
  

1.22 
 

0.1046 
 

NCF1 
 

COX-2/ 
COX2 

Neutrophil cytosolic factor 1,  
(chronic granulomatous disease, autosomal 1)  1.14 0.7086 

NCF2 
 
 

D2S448/ 
D2S448E 

 

Neutrophil cytosolic factor 2  
(65kDa, chronic granulomatous disease,  
autosomal 2)  

1.20 
 
 

0.2147 
 
 

NME5 
 

FLJ25471 
 

Non-metastatic cells 5, protein expressed in 
(nucleoside-diphosphate kinase)  

0.94 
 

0.4729 
 

NOS2A 
 

CKBBP1/R
OC2 

Nitric oxide synthase 2A  
(inducible, hepatocytes)  

0.68 
 

0.5759 
 

NOX5 
 

APC7/CSR 
 

NADPH oxidase, EF-hand calcium binding 
domain 5  

0.91 
 

0.8791 
 

NUDT1 
 

AD-015/ 
ADO15 

Nudix (nucleoside diphosphate linked moiety 
X)-type motif 1  

1.14 
 

0.0713 
 

OXR1 SELP/SeP Oxidation resistance 1  0.91 0.8328 
OXSR1 

 
COLEC7/ 

PSP-D 
Oxidative-stress responsive 1  
 

1.30 
 

0.0373 
 

PDLIM1 H-SGK2 PDZ and LIM domain 1 (elfin)  0.92 0.7943 
PIP3-E 

 
SIR2L/ 
SIR2L2 

Phosphoinositide-binding protein PIP3-E  
 

0.76 
 

0.5485 
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PNKP ALS/ALS1 Polynucleotide kinase 3'-phosphatase  1.59 0.0386 
PRDX1 

 
IPO-B/ 

MNSOD 
Peroxiredoxin 1  
 

1.00 
 

0.9737 
 

PRDX2 EC-SOD Peroxiredoxin 2  1.29 0.0414 
PRDX3 

 
C20orf139/

Npn3 
Peroxiredoxin 3  
 

0.50 
 

0.3388 
 

PRDX4 
 
 

DKFZp686J
1430/ 
SOK1 

Peroxiredoxin 4 
 
  

0.99 
 
 

0.9018 
 
 

PRDX5 MSA/TPX Peroxiredoxin 5  1.14 0.2322 
PRDX6 

 
CMD1G/ 

CMH9 
Peroxiredoxin 6  
 

1.26 
 

0.1177 
 

PREX1 
 
 

DKFZp434
H0311/ 
SPTRX 

Phosphatidylinositol 3,4,5-trisphosphate-
dependent RAC exchanger 1 
 

1.57 
 
 

0.2248 
 
 

PRG3 
 

GRIM-12/ 
TR 

Proteoglycan 3  
 

1.31 
 

0.3837 
 

PRNP 
 
 

SELZ/TR 
 
 

Prion protein (p27-30) (Creutzfeldt-Jakob 
disease, Gerstmann-Strausler-Scheinker 
syndrome, fatal familial insomnia)  

0.53 
 
 

0.7665 
 
 

PTGS1 
 
 

B2M 
 
 

Prostaglandin-endoperoxide synthase 1 
(prostaglandin G/H synthase and 
cyclooxygenase)  

1.34 
 
 

0.1879 
 
 

PTGS2 
 
 

HGPRT/ 
HPRT 

 

Prostaglandin-endoperoxide synthase 2 
(prostaglandin G/H synthase and 
cyclooxygenase)  

1.47 
 
 

0.0379 
 
 

PXDN RPL13A Peroxidasin homolog (Drosophila)  1.23 0.0679 
PXDNL 

 
G3PD/ 
GAPD 

Peroxidasin homolog (Drosophila)-like  
 

1.24 
 

0.5688 
 

RNF7 PS1TP5BP1 Ring finger protein 7  1.12 0.3162 
SCARA3 GRX2 Scavenger receptor class A, member 3  1.39 0.0569 

SELS 
 

GABABL/ 
PGR28 

Selenoprotein S 
  

1.34 
 

0.0647 
 

SEPP1 GSHPX1 Selenoprotein P, plasma, 1  0.86 0.3312 
SFTPD 

 
GI-GPx/ 
GPRP 

Surfactant, pulmonary-associated protein D 
  

1.70 
 

0.1395 
 

SGK2 
 

GPx-P/ 
GSHPx-3 

Serum/glucocorticoid regulated kinase 2  
 

1.40 
 

0.3661 
 

SIRT2 
 

MCSP/ 
PHGPx 

Sirtuin (silent mating type information 
regulation 2 homolog) 2 (S. cerevisiae)  

1.35 
 

0.1520 
 

SOD1 
 

GPX5 
 

Superoxide dismutase 1, soluble (amyotrophic 
lateral sclerosis 1 (adult))  1.07 0.5305 

SOD2 Gpx6 Superoxide dismutase 2, mitochondrial  1.10 0.3821 
SOD3 

 
CL683/ 
GPX6 

Superoxide dismutase 3, extracellular  
 

0.99 
 

0.9787 
 

SRXN1 MGC78522 Sulfiredoxin 1 homolog (S. cerevisiae)  1.46 0.0818 
STK25 

 
GSHS 

 
Serine/threonine kinase 25  
(STE20 homolog, yeast)  

1.10 
 

0.6343 
 

TPO 
 

GSTZ1-1/ 
MAAI 

Thyroid peroxidase  
 

1.35 
 

0.5574 
 

TTN 
 

BAP-135/ 
BAP135 

Titin 
 

0.77 
 

0.5276 
 

TXNDC2 
 

CK1/EHK1 
 

Thioredoxin domain containing 2 
(spermatozoa)  3.74 0.1001 

TXNRD1 SPO Thioredoxin reductase 1  0.91 0.7870 
TXNRD2 

 
COLEC1/ 
HSMBPC 

Thioredoxin reductase 2  
 

1.04 
 

0.8400 
 

B2M GST-III Beta-2-microglobulin  1.08 0.4824 
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HPRT1 
 

myelo- 
peroxidase 

Hypoxanthine phosphoribosyltransferase 1 
(Lesch-Nyhan syndrome)  

0.87 
 

0.2463 
 

RPL13A SYM1 Ribosomal protein L13a  1.12 0.0696 
GAPDH LOC389611 Glyceraldehyde-3-phosphate dehydrogenase  0.89 0.4809 
ACTB GIF/GIFB Actin, beta  1.08 0.6149 

 
 
Table 3.4: Results of the 4 significantly upregulated genes in the Oxidative stress 
and Antioxidant PCR Array. 
 
Gene Description Protein Function Fold 

Change 
p-value 
(< 0.05) 

OXSR1 Oxidative-stress 
responsive 1 

Regulates actin 
cytoskeleton and kinases 
in response to 
environmental stress 

1.30 0.0373 

PNKP 
 
 

Polynucleotide 
kinase 3'-
phosphatase  

Involved in DNA double-
strand break repair by 
NHEJ 

1.59 
 
 

0.0386 
 
 

PRDX2 Peroxiredoxin 2  Antioxidant 1.29 0.0414 
PTGS2 
 

Cyclooxygenase-2 
 

Enzyme in prostaglandin 
biosynthesis 

1.45 
 

0.0379 
 

 

Polynucleotide kinase 3’-phosphatase (PNK) and the cyclooxygenase 2 

(COX-2) were the highest positively altered genes, followed by oxidative stress 

responsive 1 (OXSR1) and peroxiredoxin 2 (PRDX2) genes. Expression of PNK 

and COX-2 proteins were also concomitantly and significantly increased with 

AuNP treatment compared to control (Figure 3.14, A and B; p-value < 0.05). 
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Figure 3.14: Validation of RT2 Profiler PCR assay with western blot. Blots 
probed against (A) PNK and (B) COX-2 antibodies showing upregulation of PNK 
and COX-2 proteins in AuNP treated samples and their corresponding graphs of 
optical densities (OD p-values <0.05). Error bars = SEM. 
 

3.4 Proteomic Analysis 

3.4.1 Two Dimensional Gel Electrophoresis and Mass Spectrometry 

In this study, 16 proteins were found to be differentially expressed in the treated 

samples. The location of these proteins are indicated on a representative gel map 

(Figure 3.15) and also in Table 3.5.  
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Figure 3.15: Representative map of silver-stained 2 dimensional electrophoresis 
from MRC-5 whole cell lysate focused on a non-linear pH 4-7 IPG strip. Sixteen 
proteins identified were labeled with their respective Swiss-Prot accession 
numbers. 
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Table 3.5: List of protein spots undergoing quantitative changes with AuNP 
treatment as identified by MALDI-TOF/TOF MS. 
 
Protein name a) Accession 

no. a) 
Protein score/  
% coverage b) 

Mr (Da)/PI 
b) 

Control vs 
treatment c, 
d) 

t-test        
p-value 

NADH-ubiquinone 
oxidoreductase 

P28331 664/45 80443/ 5.89 +12.1171 <0.0001 

Lysyl-tRNA synthetase Q15046 130/11 68461/ 5.94 +2.7730 0.0052 
440/25 54454/ 6.78 Not detected      

in control 
NA 

428/36 54454/ 6.78 Not detected     
in control 

NA 

Protein disulfide-isomerase 
associated 3 

P30101 

926/45 54454/ 6.78 +1.4547 0.0461 
V-type proton ATPase 
subunit B 

P21281 891/60 55708/ 5.40 +3.2155 0.0383 

Secernin-1 Q12765 141/13 47020/ 4.69 -1.5945 0.0041 
Vimentin P08670 794/66 49680/ 5.19 -1.8346 0.0023 
Ribonuclease inhibitor P13489 102/42 51766/ 4.71 +1.6793 0.0195 
Eukaryotic translation 
initiation factor 2 subunit 2  

P20042 84/15 38706/ 5.60 +1.5887 0.0031 

430/25 32375/ 4.94 -1.7400 0.0006 
54/15 32375/ 4.94 -1.8196 0.0007 

Heterogeneous nuclear 
ribonucleoproteins C1/C2 

P07910 

55/12 32375/ 4.94 -1.6838 0.0061 
Erlin-2 O94905 216/51 38044/ 5.47 +1.5043 0.0004 
Protein kinase C delta-
binding protein 

Q969G5 429/38 27685/ 6.05 -1.5111 0.0013 

Thioredoxin-like protein 1 O43396 129/53 32630/ 4.84 -2.3040 0.0002 
C-terminal-binding protein 2 P56545 125/33 49427/ 6.47 -1.5745 0.0024 
Ubiquitin carboxyl-terminal 
hydrolase isozyme L1 

P09936 287/48 25151/ 5.33 +2.3386 0.0085 

Glutathione S-transferase P P09211 406/47 23569/ 5.43 +2.8476 0.0026 
Translationally-controlled 
tumor protein 

P13693 184/45 19697/ 4.84 +2.9485 0.0019 

a) Protein name and accession numbers were derived from Swiss-Prot  
b) Protein score, percentage of coverage and Mr (Da)/PI were derived from 
MASCOT 
c) Protein spots were quantified based on the normalized average percentage of 
volume derived from ImageMaster 2D Platinum 6.0 software analysis 
d) Approximate fold-changes of protein expression were derived from the ratio of 
normalized average percentage of volume of treatment to control protein spots or 
vice versa. A “+” indicates up-regulation in the nano gold particles treated 
samples while “–” indicates down-regulation 
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The identities of these proteins were revealed by mass spectrometry as 

shown in Figure 3.16. Of particular interests are the proteins associated with the 

oxidative stress pathways. There was a 12 fold up-regulation of NADH 

ubiquinone oxidoreductase (NDUFS1) and a 2.7 fold up-regulation for disulfide 

isomerase associated 3 (PDIA3) protein (also known as ER60 or ERp57), an 

endoplasmic reticulum protein associated with cellular stress (Frickel et al., 2004) 

(Figure 3.16, Table 3.5; p-value < 0.05). The heterogeneous nuclear 

ribonucleoproteins C1/2 (hnRNP C1/2), an mRNA binding protein involved in 

mRNA export, localization, translation and stability (Dreyfuss et al., 2002) 

showed significant downregulation by almost 2-fold with AuNP treatment as 

compared to control (Table 3.5,  p-values < 0.01). Thioredoxin-like protein 

isoform 1 (TXNL1), a thioredoxin which is involved in regulating oxidative stress 

(JimÈnez et al., 2006) was observed to be down-regulated by more than 2-fold in 

the treated samples (Table 3.5, p-value = 0.0002). Western blotting also 

confirmed significant downregulation of hnRNP C1/2 expression (Figure 3.17; p-

value < 0.01) and increased PDIA3 protein expression in AuNP-treated samples 

(Figure 3.17; p-value < 0.01). 
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Figure 3.16: Two-dimensional electrophoresis (2D-GE) of AuNPs treated cellular 
protein extracts. Arrows with respective labels indicate protein spots with 
significant differences in expression. Comparing control and AuNP treated 
samples reveal spot differences. Upon mass spectrometry analysis, protein spots 
were identified as indicated. 
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Figure 3.17: Western blotting of oxidative stress related proteins hnRNP and 
PDIA3 proteins. (A) hnRNP antibodies probe for both C1 and C2 isoforms 
visualised as 2 bands at band size 41kDa and 43kDa. Optical density of band 
intensity of control compared with AuNP treated samples show down-regulation 
of hnRNP protein expression (p-value < 0.01). (B) Conversely, probing with 
PDIA3 antibodies reveal an upregulation in AuNP treated samples. Optical 
density of band intensity is significantly higher in AuNP treatment compared to 
control (p-value < 0.01). Error bars  = SEM. 
 

3.5.2 Real time RT-PCR 

The proteomic result was validated with real time RT-PCR for a few 

selected genes. Although the results were not significant, a trend was detected in 

the gene expression of PDIA3, VATB and hnRNP C1/C2 over 24 h and 48 h time 

period, which corresponded with the upregulation and downregulations in the 

proteomic results (Figure 3.18). 
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Figure 3.18: Fold change of PDIA3, VATB and hnRNP C1/C2 genes from real 
time RT-PCR analysis at 24h and 48h post AuNP treatment. Although results 
were not significant, the trend in gene expression corresponds with the results in 
the proteomics assay. PDIA3 and VATB gene expressions showed an 
upregulation in fold change with time while hnRNP C1/C2 gene expression 
exhibited a downward trend that matched the decrease in the protein expression 
level. 
 

The 2D-GE proteomic technique was employed to uncover more of the 

cellular changes occurring within the MRC-5 fibroblasts during AuNP treatment. 

Proteins found to be differentially expressed were found to cover a range of 

functions including oxidative stress response as well as regulation of cell cycle 

and cytoskeleton. AuNP treatment also caused sustained DNA strand breaks and 

chromosomal breaks induced by oxidative stress (Section 3.3). The proposed 

conclusion from these experiments is that these changes reflect the state of 

oxidative stress inside the cell and they are cellular responses of protection and 

repair.  
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3.5 DNA damage 

3.5.1 Measurement of 8-OHdG 

It was found that 8-OHdG/106dG value in 1 nM AuNP treated cells was 

significantly higher than the control (Figure 3.19, p-value < 0.05; Table 3.6). This 

provided clear evidence that there was oxidative DNA damage when MRC-5 

fibroblasts were treated at higher concentrations of AuNPs (1 nM concentration).  

 

 

Figure 3.19: Analysis of 8-hydroxydeoxyguanosine (8OHdG) DNA using HPLC 
in MRC fibroblasts treated with AuNPs for 72 hours. The ratio of 8OHdG/106dG 
is presented as the means ± standard error of the mean of 3 independent 
experiments. P-value = 0.0019 (One Way ANOVA); * p-value < 0.05 when 
comparing 1nM treatment with control and 0.5nM treatment 
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Table 3.6: HPLC data from MRC-5 cells treated for 72 hours with 0.5 nM, 1 nM 
 gold nanoparticles and control. 
 

dG OHdG 

 
Amount 
of DNA 
(µg) 

Injection 
volume 
(µL) 

HPLC 
height, 
µA 

Conc., 
µM 

HPLC 
height, 
nA 

Conc., 
nM 

OHdG/106dG 
1LOD 

(10nM) 

MRC 5, 
control,1 42 30 2.37 340.84 1.37 12.61 37.0 - 

MRC 5, 
control,2 50 30 2.47 355.43 - 10 28.1 2LDL 

MRC 5, 
control,3 40 30 3.38 428.41 1.38 13.82 32.3 - 

MRC 5, 
0.5nM,1 50 30 2.83 408.31 1.96 18.01 44.1  

MRC 5, 
0.5nM,2 50 30 2.72 392.48 - 10 25.5 2LDL 

MRC 5, 
0.5nM,3 50 30 3.08 398.15 - 10 25.1 2LDL 

MRC 5, 
1.0nM,1 50 30 2.07 298.55 5.70 52.44 175.7 - 

MRC 5, 
1.0nM,2 50 30 2.48 356.60 5.51 50.68 142.1 - 

MRC 5, 
1.0nM,3 50 30 3.08 398.03 10.13 102.29 257.0 - 

 

1LOD (10nM): limit of detection of 10nM was determined as the two-times 
signal-to-noise ratio of a standard solution OHdG. 

2LDL: low detection limit 
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3.5.2 Single-Cell Gel Electrophoresis (Comet Assay) 

The comet assays showed positive results for DNA damage in the AuNP 

treated MRC-5 lung fibroblasts. Comet tail moments were found to be 

significantly higher in the treated group than in the control (Figure 3.20, p-value  

< 0.05).  

 

Figure 3.20: Comet assay on control and AuNP treated MRC-5 lung fibroblasts. 
Cells were treated for 72h in 1nM AuNP and subsequently run on alkaline 
electrophoresis and stained in SYBR green which visualizes the comet “tail”, the 
length of which is an indicator of DNA damage. (A)Control cells show little to no 
tail. (B) AuNP treated cells display a comparatively longer tail, indicative of the 
presence of higher DNA damage, particularly strand breaks. (C) Analysis of 100 
cells per treatment captured by the software showed that AuNP treated cells have 
significantly higher DNA damage than control (p-value < 0.05). Tail moment is 
used as the comparative value. Error bars = SEM. 
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3.5.3 Fluorescence In Situ Hybridization (FISH Assay) 

As shown by FISH, AuNP treated cells had a significant > 4 fold increase 

in aberrations per cell as compared to the controls (Figure 3.21, A and Table 3.7; 

p-value < 0.0001). All aberrations observed were chromosomal breaks with the 

majority being undetectable telomeres (Figure 3.21, C). No chromosomal fusions 

were found. It would appear that that short-term AuNP treatment is likely to cause 

chromosomal breaks in MRC-5 fibroblasts that persist even after one population 

doubling. 

 

Table 3.7: Summary of chromosomal aberrations detected from FISH analysis. 

 No. of 
metaphase 
spreads 

No. of 
undetectable 
telomeres 

No. of 
chromosome 
breaks 

No. of 
breaks/ No. 
of metaphase 
spreads 

% of cells with 
chromosomal 
aberrations 

Control 50 27 3 0.6 42% 
AuNP treated 50 87 10 1.94 82% 
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Figure 3.21: Fluorescence In Situ Hybridization (FISH) analysis of control and 
AuNP treated MRC-5 lung fibroblasts (1nM concentration and 72h). 50 cells per 
treatment were analysed and found to have a higher incidence of chromosomal 
aberrations in the AuNP treated cells as compared with the untreated controls. Red 
arrows point to chromosomal aberrations. (A) Bar chart of average number of 
aberrations per cell (n=50). There is a significant >4 fold difference between 
control and treated cells (p-value < 0.0001). Error bars = SEM. (B) Metaphase 
spreads of control and AuNP treated cells respectively. (C) (i) undetectable 
telomeres and (ii) chromosomal breaks and were the aberrations detected. No 
fusion was observed. 
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3.6 Autophagy 

3.6.1 Autophagosome Formation under TEM 

A number of AuNPs were found clustered in vesicles containing cell-

membrane like debris in the cytoplasm which are typical features of 

autophagosomes (Figure 3.22, A-E). Some of the cellular materials were found in 

characteristic double membrane vesicles (Figure 3.22, B and C).  

 

 

Figure 3.22: TEM images of autophagosomes and cellular structures in MRC-5 
cells treated with AuNPs for 72 h. Black arrows point to AuNP clusters. 
Autophagosome formations in AuNP treated cells as indicated by red letters AP. 
Lysosomes are labelled in white Ly. Scale bars as indicated in figure. (A, B and 
C) Autophagosomes contain large amounts of cellular debris within a double 
membrane. Some APs may contain AuNP clusters within (A) while others (B and 
C) do not. (D) High magnification view of a large vacuole containing large 
clusters of AuNPs and cellular debris, possibly an autolysosome, a fusion of an 
autophagosome with a lysosome. (E and F) Besides these large vacuoles, the 
treated cells also contain large numbers of dense endosomes and lysosomes. 
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3.6.2 ATG Protein Expression in Western Blotting 

In light of this finding, western blots on the protein extracts from control 

and AuNP treated cells, probing for autophagy protein microtubule-associated 

protein 1 light chain 3 (MAP-LC3) over 48 h and 72 h treatment with AuNPs. The 

conjugated MAP-LC3-II protein expression of the cells was significantly higher 

than the controls (Figure 3.23; p-value < 0.05) which correlates with 

autophagosome formation (Mizushima and Yoshimori, 2007).  

 

Figure 3.23: Western blots of MAP-LC3 protein expression after 48 h and 72 h 
treatment with 1nM AuNP. Significant upregulation in MAP-LC3 II protein 
expressions at both 48 h and 72 h treatment with AuNP, comparing control with 
treated samples (OD p-value < 0.05). Error bars = SEM. MAP-LC3 I refers to the 
cytosolic form of the protein while the MAP-LC3 II form is found on membranes 
of autophagosomes and serves as an indicator of autophagosome formation. 
 

Next, the protein expression of 4 other autophagy proteins associated with 

autophagosome formation were also evaluated. At 72 h, autophagy gene 7 (ATG 

7) protein was found to be significantly higher in AuNP treated samples than in 

control (Figure 3.24, p-value < 0.05). However, western blots of other proteins 
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like ATG 5, BECN1 (or ATG 6), ATG 12 protein expressions were slightly higher 

in treated and the OD values were not significant when compared with controls 

(Figure 3.24, C and D). 

 

Figure 3.24: Western blots of autophagy proteins at 72h AuNP treatment. (A) 
ATG 5 (B) ATG 7 (C) BECN1 (ATG 6) (D) ATG 12 showed similar upregulation 
in protein expression but only ATG 7 significantly so (OD p-value < 0.05). Error 
bars = SEM. 
 

Of the five autophagy proteins investigated, it was found ATG 7 and 

MAP-LC3-II to have significantly higher expression in treated samples. ATG 7 is 

known to be an essential enzyme in the 2 major autophagy conjugation systems 

(Tanida et al., 2001). It activates ATG 12 for downstream conjugation to ATG 5 

and catalyses MAP-LC3-I to the autophagosomal marker MAP-LC3-II; both 

proteins are key activators and constituents of the autophagosome membrane 

formation process (Geng and Klionsky, 2008; He and Klionsky, 2009). While 

higher expressions of ATG 7 could translate to an increase of autophagosome 

activation, not seeing a corresponding change in other ATG protein expression 

levels may imply that these proteins were transiently expressed.  
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3.7 Small Airways Epithelial Cells (SAEC) 

With regards to the results obtained from the MRC-5 cells, it is also 

important to look at lung epithelial cells, which are closely related often found in 

close proximity to the fibroblast cells. The primary cell line, small airway 

epithelial cells (SAEC, Lonza, US) were used in a few selected experiments to 

complement the work on the MRC-5 cells. 

 

3.7.1 Uptake of AuNP into SAEC  

Uptake of AuNP into SAEC is similar to MRC-5 cells. The cell 

morphology appears largely no different from the untreated controls. Also similar 

to the treated MRC-5 cells, when large aggregates of AuNP accumulates in the 

SAEC, they appear as bright blue spots in the cell cytoplasm (Figure 3.25, B).  

 

Figure 3.25: Light microscopy photos of SAEC. The cells were treated with 1 nM 
AuNP for 72 h. (A) Control and (B) AuNP treated. Similar to the MRC-5 
treatment, the treated cells appear to have large aggregates of AuNP clusters that 
appear blue under light microscopy. Insets are a magnified picture of the cells in 
each respective treatment. Scale bars = 200µm.  
 

The AuNP clusters are more clearly seen under TEM. Again, like the MRC-5 cells 

they are readily taken up by the SAEC and tend to accumulate in the cellular 
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vacuoles. While the control cells also possess large vacuoles in the cytoplasm, the 

vacuoles in the treated SAEC look larger and lend a perforated appearance to the 

cell (Figure 3.26, A and B). The large AuNP clusters also accumulate mainly in 

these vacuoles and tend to stick to the sides of the vacuoles or with the cell debris 

found inside (Figure 3.26, D). The cytoplasm may also contain smaller AuNP 

clusters or individual particles (Figures 3.26, C).  

 

Figure 3.26: Transmission electron micrographs of SAEC. (A) Untreated control. 
Magnification = 5600x. Scale bar = 1 µm  (B) Low magnification of the AuNP 
treated SAEC. Magnification = 2200x. Scale bar = 1 µm. Compared with the 
controls, the AuNP treated SAEC possess more and larger vacuoles in the 
cytoplasm surrounding the nucleus. Black arrows point to AuNP clusters. (C) 
However, clusters of AuNPs more typically accumulates in the vacuoles while 
some small individual clusters and particles may be found in the cytoplasm. 
Magnification = 28000x. Scale bar = 0.5 µm. (D) Larger clusters usually associate 
with cell debris in the vacuoles. Magnification = 28000x. Scale bar = 0.2 µm. 
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Similarly, as with the MRC5, the presence of AuNP was verified with 

EDX analysis and the results showed that indeed the small dense particles 

observed in the TEM samples were indeed gold. Both the M and L shells of gold 

reading in the AuNP treated samples showed a P/B value greater than 3.0 hence 

showing that gold is significantly present in the samples (Figure 3.27). 

 

Figure 3.27: Verification of elemental gold in AuNPs in SAEC cells with EDAX 
Microanalysis system. The dense cluster of AuNPs were identified as gold as 
evidenced by the peaks on the graph corresponding to the Au M shell (2.2 KeV) 
and L shell (9.7 KeV). The treated sample, registered a P/B ratio (ratio of the 
intensity of the detected element against the background) of 59.80. A P/B ratio 
value of 3.0 and above is indicative that the element is significantly present in the 
sample. Insert reflects the calculated values as processed by the software (EDAX 
Microanalysis, Phillips).   
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3.7.2 Cell Viability Assay with Trypan Blue Cell Counting 

Cells were treated in the same manner as with the MRC-5 trypan blue 

experiments. The SAEC show more sensitivity towards AuNP treatment 

compared to the MRC-5 cells (Figure 3.28). At every timepoint of 24, 48 and 72 

h, the 1 nM AuNP treatment showed a significant increase in % non-viable cells 

(Figure 3.28; p-value < 0.05).  

 

Figure 3.28: Trypan blue cell viability assay on AuNP treated SAEC. Results of 
the percentage non-viability reflected in (A) 24 h (B) 48 h (C) 72 h time points. 
Each timepoint represents a separate and independent assay. For each assay, each 
treatment was repeated in triplicates. Only the 1 nM AuNP treatment at each 
timepoint was found to cause significant increase in the percentage of non-viable 
cells (p-value < 0.05).  
 

The total number of cells counted turned out to only be significant 

different at 72 h of AuNP treatment (Figure 3.29; p-value < 0.05). The cell 

numbers were significantly lower at 72 h for the 0.5 nM and 1 nM treatment 

concentrations, which suggests that the AuNP treatment could inhibit SAEC, cell 

proliferation.  
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Figure 3.29: Total cell count of the SAEC cells after 72 h of AuNP treatment. At 
72 h post AuNP treatment, both the 0.5 nM and 1 nM treatment show a significant 
decrease in total cell numbers (p-value < 0.05).  
 

Again these results indicate that SAEC may be more sensitive to AuNP 

treatment than MRC-5 cells since a lower concentration and shorter treatment 

period is able to bring about a significant difference. 
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3.7.3 Oxidative Stress 

3.7.3.1 Lipid hydroperoxide assay 

This is one of the two representative experiments for oxidative stress had 

been replicated with the SAEC. The results show a positive for oxidative stress in 

AuNP treated cells. There was a significant increase in hydroperoxide 

concentration in treated samples compared with the control (Figure 3.30; p-value 

< 0.05).  

 

 

Figure 3.30: Lipid hydroperoxide assay of SAEC. Graph of the hydroperoxide 
concentration after the typical treatment of 1 nM AuNP for 72 h. There is a 
significant increase in the hydroperoxide concentration after AuNP treatment 
compared to the untreated control (p-value < 0.05).  
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3.7.3.2 Real-time RT-PCR  

Four oxidative stress related genes, polynucleotide kinase 3’-phosphatase 

(PNK), cyclooxygenase 2 (COX-2), oxidative stress responsive 1 (OXSR1) and 

peroxiredoxin 2 (PRDX2), were selected based on the significant results in the 

oxidative stress gene profiling array with AuNP treated MRC-5. The SAEC cells 

were similarly treated with 1 nM AuNP for 72 h. Of these four, three were found 

to be significantly upregulated in AuNP treated SAEC cells compared to the 

untreated control (Figure 3.31; p-value < 0.05). Only the oxidative stress 

responsive 1 (OXSR1) gene did not show any significant difference in expression.  

 

 

Figure 3.31: Fold change of 3 significantly differentially expressed genes in 
SAEC upon AuNP treatment (p-value < 0.05). Cells were treated for 72 h at 1 nM 
AuNP concentration. (A) Cyclooxygenase 2 Cox-2 (B) Polynucleotide kinase 3’-
phosphatase (PNK) and (C) peroxiredoxin 2 (PRDX2). Error bars = SEM. 
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3.7.4 DNA damage 

The single cell gel electrophoresis experiment was the representative 

experiment for DNA damage replicated on the SAEC. The results for the assay 

showed a significant increased DNA damage in AuNP treated cells compared with 

untreated controls (Figure 3.30, p-value < 0.05). This indicated that AuNPs may 

also induce DNA breaks similar to those found in MRC-5 cells. 

 

 

Figure 3.32: Single cell gel electrophoresis (Comet assay) on SAEC. As with the 
MRC-5 cells, the SAEC were similarly treated for 72h in 1nM AuNP and 
subsequently run on alkaline electrophoresis and stained in SYBR green which 
visualizes the comet “tail”, the length of which is an indicator of DNA damage. 
(A) Analysis of 100 cells per treatment captured by the software showed that 
AuNP treated cells have significantly higher DNA damage than control (p-value < 
0.05). Tail moment is used as the comparative value. Error bars = SEM. (B) 
Control cells show little to no tail. (C) AuNP treated cells display a comparatively 
longer tail, indicative of the presence of higher DNA damage, particularly strand 
breaks. 
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3.8. In Vivo Rodent Studies on Inhalation Exposure of AuNPs  

RNA extracted from frozen rat lung tissues were used for these next set of 

real time PCR experiments. The 9 oxidative stress genes of interests include: 

catalase, cyclooxygenase 2 (cox-2), glutathione peroxidase 1 (Gpx1), gluthathione 

peroxidase 3 (Gpx3), hemeoxygenase (cycling) 1 (Hmox1), peroxiredoxin 2 

(Prx2), superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2) and 

thioredoxin reductase 1 (Txnrd 1). Of the 9 oxidative stress pathway genes, only 

Cox-2 was found to be significantly upregulated (Figure 3.33; p-value < 0.05).  

 

Figure 3.33: Fold change of 9 selected oxidative stress genes on AuNP exposed 
rats compared with samples from the unexposed controls. Of these 9 genes, only 
Cox-2 expression was found to be significantly upregulated in AuNP exposed 
group which corresponded with our in vitro data (p-value <0.05). Error bars = 
SEM, n = 6. 
 

Following that, another set of 5 cell cycle genes were assayed with the 

same samples. These cell cycle genes were selected because they were the 5 most 

downregulated genes from the gene profiling array following the in vitro 

fibroblast data. These 5 genes are: breast cancer 1 (BRCA1), cyclin B2, cyclin F, 
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hypoxanthine (HPT) and MAD2 mitotic arrest deficient-like 1 (MAD2). Primers 

were constructed for the in vivo experiments based on the rat homologs of the 

human genes. With the exception of Cyclin F and MAD2, cell cycle genes largely 

showed a trend of downregulation in AuNP exposed mice, which also matches 

with our in vitro data (Section 3.2.2, 3.3.3 and 3.7.3.2). However, the mRNA 

expression levels for the AuNP exposed lung for all 5 genes tested were not 

significantly different from the control samples (Figure 3.34, p-value > 0.05). 

 

 
Figure 3.34: Fold change of 5 cell cycle related genes on AuNP exposed rats 
compared with samples from the unexposed controls. Although the results were 
not significant, the trend shows a downregulation of cell cycle genes (with the 
exception of Cyclin F and MAD2), which corroborated with our in vitro data. 
Error bars = SEM, n = 6.  



 104 

 
 

 

 

 

 

 

 

 

Chapter 4 

Discussion 

 



 105 

4.1 Uptake of AuNP in Lung Cells 

4.1.2 Appearance of AuNP upon cellular uptake 

 AuNPs were taken up easily by human embryonic MRC-5 lung fibroblast 

cell line as well as in the small airways epithelial cells (SAEC) primary culture. 

After 72 h of AuNP treatment, particles may become highly aggregated in the cell 

cytoplasm that they appear as bright blue spots under light microscopy. It may be 

reasoned that the plasmon resonance of the AuNPs is influenced by the size of the 

NPs and hence, the large clustering and aggregation changes the appearance of the 

NPs and the way light is scattered on the surface of the particles (Link and El-

Sayed, 2003). Therefore the clusters appear blue in colour instead of the original 

wine red colour of the 20 nm sized AuNPs.  

Other than the clustering of AuNPs in the cell cytoplasm, the two cell lines 

(MRC-5 lung fibroblasts and SAEC) do not have any observerable changes in 

morphology on AuNP treatment. However under TEM, the treated cells appear 

unhealthy, sporting large vacuoles containing large clusters of AuNPs and may be 

indicative of an adverse reaction to the presence of the AuNPs. This is also 

consistent with observations found in other NP studies, particularly in the lung 

macrophages (Takenaka et al., 2006). In addition, some double membranous 

vesicles containing cellular debris was observed in the cytoplasm of the MRC-5 

cells which is indicative of autophagy. This phenomenon will be discussed in the 

later chapter (Section 4.4). 

Uptake of the AuNP into cells may be influenced by a number of factors 

particularly the size, shape and surface functionalizations. Endocytosis of NPs are 

strongly size-dependent and on both theoretical models and practice, it has been 

shown that 50 nm is the optimal size of uptake of NPs (Wang et al., 2010b; Zhang 
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et al., 2009). Regarding shapes, spherical particles were found to be taken up more 

readily by cells compared with rod-shaped AuNPs (Chithrani et al., 2006). One 

reason could be that rods take up more receptor binding space hence reducing the 

efficiency and time taken for intracellular uptake into the cells. Lastly, different 

complex or modifiers on the AuNP surface, influences the path of uptake of the 

NPs into the cells (de la Fuente et al., 2006). In addition, coating the NP with 

serum or opsonization, also renders the particle more “appetizing” to cells as well. 

There is also growing interest about the particle-organism interactions as it is 

increasingly clear that issues on NPs uptake into cells are not dependant on just 

the characteristics listed above but also on the protein corona surrounding the NP 

and its interaction with the serum in media and on the cell surface (Chithrani and 

Chan, 2007). 

There are six known ways of internalization of materials into the cell. 

Besides passive permeation, there is phagocytosis (cell eating), micropinocytosis 

(cell drinking), caveolin dependent and clathrin dependent endocytosis as well as 

the caveolin and clathrin independent methods (Mukherjee et al., 1997). While it 

maybe possible for the AuNPs to enter into the cell through unassisted methods 

(Geiser et al., 2005), it is more likely that AuNPs would be taken into the cells 

through the process of endocytosis (Chithrani and Chan, 2007). This is due more 

to the surface charge on the NP, which would either facilitate or hinder the 

movement through the lipid double membrane. It is still debatable by which route 

of endocytosis AuNPs are taken up the cell, although most researchers do believe 

that clusters of NPs are most likely taken up through receptor-mediated 

endocytosis (RME).  
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The results from this study also correlate well with the above observations. 

SEM micrographs of the AuNP cluster being engulfed on the cell membrane 

surface suggests that an assisted form of endocytosis is at play. Formations of 

clarithin like structures attaching the cluster of AuNP to the cell surface 

membrane gives some indication that this is the method of choice of entry of 

AuNP into the cell. TEM micrographs also suggest that the AuNPs may be taken 

up by the cells’ filopodia. This interesting observation is also seen in another 

highly motile and invasive breast cancer cell line, MDA-MB-231 breast cancer 

cells. NPs endocytosed by the cells first show up in the lamelliapodia and 

filopodia of this breast cancer epithelial cell line thereby causing a delination in 

these cellular structures upon exposure to quantum dots (Parak et al., 2002). The 

paper also proposes that as the motile cells move, it may also adsorb NPs onto the 

cell surface and this initiates the uptake of NPs into the cell body.  

More studies on mechansim of cellular uptake of AuNPs  is called for and 

it would be interesting to observe the process of uptake and  rate, at more time 

points as well as introduce endocytic inhibitors to elucidate the exact mechanistic 

processes. 

 

4.1.2 Localisation of AuNPs in cells. 

The NPs are mainly located in clusters within cellular vesicles. Also, it is not 

uncommon for the NPs to be found located in the cytoplasm as well. The amount 

of AuNPs ingested into the cell is dependent on the time and concentration of the 

AuNP exposure. This is observed in other AuNP studies as well and appears to be 

a generic behaviour of NP uptake into cellular compartments (Chithrani et al., 

2006; Mironava et al., 2010). Similar observations of AuNPs residing mainly in 
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the vesicles of macrophages after the NPs have been taken up had also been 

reported (Shukla et al., 2005). Although individual particles of AuNPs has been 

sighted in the nucleus, it is a rare observation. Further investigation is needed to 

ascertain that it is not an artifact.  

Additionally, AuNP clusters tend to be accumulated in endosomes and 

lysozomes in the cytoplasm, which is not surprising as these are the eventual 

endpoints of ingested materials marked for degradation (Griffiths et al., 1988). 

The AuNP treated fibroblasts appear to be highly active with many of them 

exhibiting large numbers of vacuoles in the cytoplasm, containing large clusters of 

AuNPs. The fact that the NPs were taken up by the cells provide weightage that 

the effects observed in later experiments may be due to interaction of these 

particles with the various organelles and biological molecules inside the cells. 

Whatever impact that AuNP treatment has on the cells could at least be be in part 

due to the direct contact of the AuNP present in the cellular compartments. 

 

4.2 AuNP Treatment and Cell Viability  

In this study, AuNP treatment was found to be not significantly 

detrimental to cell viability. However, MRC-5 fibroblast cell numbers after 72 h 

treatment was significantly lower than untreated cells, therefore suggesting that 

AuNP treatment could affect cell proliferation as well as cell survival. SAEC 

primary epithelial cells appear to be more sensitive to AuNP treatment, where 

even at 24 h post treatment, AuNP treatment the % non-viability is significantly 

higher at 1 nM concentration compared with the control. 
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4.2.1 AuNP Treatment Effect on Cell Cycle Genes 

In the cell viability assays, there were no significant increase in % non-

viable cell counts between the control and AuNP treated lung fibroblast cells. 

However, there was a significant decrease in cell count after 72 h of treatment 

with 1nM AuNPs, showing that AuNPs inhibited cell proliferation. This is most 

likely be explained by downregulation of specific cell cycle genes. MAD2 

regulates the mitotic spindle checkpoint while Cyclin B2 and Cyclin B1 are 

regulators of the cell cycle at the G2/M phase. It is likely that AuNPs influence 

cell cycle pathways, inducing a reduction in the expression of critical checkpoint 

proteins that significantly inhibit cellular proliferation. 

The detection of DNA damage and downregulation of DNA repair genes 

suggest that AuNPs at 1 nM concentration may interact directly or indirectly with 

regulators of genomic integrity. It is currently not certain how the AuNPs are 

involved in DNA damage as the particles were not found in the nucleus but 

mainly located in cytoplasmic vesicles. It has also been shown that AuNPs 

localized to membranous structures can non-specifically interact with proteins in 

vitro leading to abnormal protein production in cells (Khan et al., 2007; Pernodet 

et al., 2006). Another possible mechanism causing the DNA damage could be 

ROS since other known toxic NPs like cadmium have been reported to induce 

cytotoxicity and DNA damage through production of excessive ROS (Che et al., 

2003; Lovric et al., 2005; Papageorgiou et al., 2007). Interestingly, 

downregulation of DNA repair genes was also observed. In fact, tumour 

suppressor genes like BRCA1 are also known to have some measure of control 

over DNA non-homologous end joining (NHEJ) and knockdown of this gene 

could lead to carcinogenesis (Bruun et al., 2003; Zhang and Powell, 2005).  
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4.2.2 Effect of AuNP Treatment on Cell Cycle-Related Proteins 

It was not only on the mRNA level where differential expression of cell 

cycle genes was detected. Information obtained from the 2D-GE results also 

reflected a change in the protein expression of certain cell cycle-related proteins. 

These proteins are mainly involved as cell cycle regulators or have involvement in 

the cell cytoskeleton or even possibly tumorigenesis. Vimentins (Vim) are 

intermediary filaments found abundantly in fibroblast cells (Perreau et al., 1988). 

Secernin-1 (SCN1) is a cytosolic protein with roles in the regulation of exocytosis 

in mast cells and recently found to be a prognostic marker for gastric cancer 

(Miyoshi et al., 2010; Way et al., 2002). Translationally-controlled tumour protein 

(TCPT) stablizes microtubules and has calcium binding properties (Yarm, 2002). 

Early translation factor proteins are the eukaryotic translation intiation factor 2 

(eIF2-beta) (Price and Proud, 1994) and lysyl-tRNA sythase (lysRNA), the latter 

also has roles as a proinflammatory signaling molecule and can cause cell toxicity 

when bound to mutant form of superoxide dismutase (Kawamata et al., 2008; Park 

et al., 2005). The upregulation of these proteins in our study signals the role of 

these proteins in AuNP-induced oxidative stress in fibroblasts.  

For other cell cycle proteins, the C terminal-binding protein II (CtBP2) is 

known as a co-repressor of transcription (Castet et al., 2004) with important 

regulatory roles in development and oncogenesis (Chinnadurai, 2002). V-type 

proton ATPase subunit B2 (VATB2) is part of a larger complex of V-ATPases 

proton pumps that acidify endocytic and exocytic organelles (Beyenbach and 

Wieczorek, 2006). Erlin 2 (SPFH2) belongs to a family of prohibitin proteins on 

the endoplasmic reticulum that degrade Inositol triphosphate (IP3) receptors on 

the ER membrane (Pearce et al., 2007), dysregulation of this protein could disrupt 
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cellular signaling pathways. Glutathione S transferase P (GSTP1-1) is a 

detoxification enzyme that catalyzes the conjunction of various hydrophilic 

compounds and electrophillic compounds with glutathione (Kolwijck et al., 2009). 

Ribonuclease inhibitor (RNH) in tissues has strong affinity binding to 

ribonucleases and recent studies show that it may have anti-tumor effects in 

hematopoietic cells (Fu et al., 2005). Not much is known about protein kinase C 

delta-binding protein (hSRBC) however it may possess some tumor suppressor 

properties in primary lung cancers (Zochbauer-Muller et al., 2005). The ubiquitin 

carboxyl terminal hydrolase isozyme L1 (UCH-L1) is a thiol protease that has 

been reported to possess tumor suppressor characteristics in nasopharyngeal 

carcinomas (Li et al., 2010). 

Taken together, these results indicate the vast complexicity of AuNP 

treatment on human fibroblast and epithelial cells and may be particularly 

affecting the cell cycle regulation and transcription regulators thereby resulting in 

an overall decrease in cell proliferation. AuNPs may therefore induce some degree 

of cytotoxicity in human lung fibroblasts. It is shown in this present study that 

AuNPs inhibit cell proliferation by downregulating cell cycle genes. Furthermore, 

AuNPs not only cause oxidative damage but also affect genes associated with 

genomic stability and DNA repair. 
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4.3 Oxidative Stress  

Having shown that oxidative stress is present in cells treated with AuNPs, 

it may be possible that oxidative stress induced by AuNPs could be the underlying 

mechanism for the other effects of toxicity such as decrease in cell cycle 

dysregulation and DNA damage (Figure 4.1). Oxidative stress is often found to 

precede these phenomena and the effector of changes in various cell-signaling 

pathways.  

 

 

Figure 4.1: Possible oxidative stress pathway upon AuNP treatment and the 
regulatory effects and interactions of significantly upregulated oxidative stress 
genes with selected pathways, signal transduction, DNA-nucleotide excision 
repair, cell survival, apoptosis and proliferation. DNA repair protein XRCC1, was 
identified by the program to have direct protein-protein interaction with the 3’ 
polynucleotide kinase (PNKP) protein as well as direct regulatory influence on 
Cox-2. This pathway map was constructed with the genes that were differentially 
regulated in the oxidative stress gene profiling array and generated with the 
Pathway Studios software (Ariadne Genomics, US).  
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4.3.1 Lipid Peroxidation 

Oxidative stress in vitro caused by AuNP treatment is not an isolated phenomenon 

and it has been seen in other cell types such as HeLa cells (Pan et al., 2009), with 

other kinds of NPs,  for example copper oxide, silica oxide and ferric oxide 

(Fahmy and Cormier, 2009) and is also reported in in vivo studies on fish 

(Tedesco et al., 2010b). Oxidation reactions are naturally occurring processes are 

important to maintain the homeostatic balance in cells, where an imbalance on 

either end will be detrimental to the normal functioning of the cell. Imbalances 

such as the overproduction of ROS could cause an environment of stress within 

the cell and damage manifested in the oxidative damage of protein, lipids and 

DNA (Camhi et al., 1995). Oxidative damage to lipids (lipid peroxidation) is due 

to the degradation of polyunsaturated fatty acids by peroxides. Many of the 

products of these reactions are highly reactive aldehydic intermediates which 

readily form adducts with macromolecules such as proteins and phospholipids 

(Uchida, 2000). These products also then generate a chain reaction on their own, 

producing even more free radicals that could acerbate the oxidative stress 

environment.  

There are a variety of ways how oxidative stress may be assessed and 

measured in in vitro situations. Two assays were used to evaluate the presence and 

extent of damage caused by oxidative stress due to AuNP treatment; measurement 

of the lipid hydroperoxide, one of the initial products from lipid peroxidation and 

the other detects the adducts in on lysine residues caused by malondialdehyde 

(MDA), the most abundant aldehyde produced from the peroxidation reactions 

(Requena et al., 1997). Both these assays proved positive for the presence of 

oxidative damage. Particularly MDA, a toxic molecule, is known to be elevated in 
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various diseases and is implicated in mutagenesis and carcinogenesis (Marnett, 

2002; Niedernhofer et al., 2003) verifying that ROS induce genotoxicity. MDA 

modified proteins can also alter cellular functions and decrease cell proliferation 

(Rittie et al., 2002), adding onto the evidence for changes in cell cycle regulation 

seen in the AuNP treated cells. 

However, it is interesting to note that MDA was also found to be 

negatively influencing lysosomal proteins and autophagy (Krohne et al., 2010) but 

these pathways may be cell-specific and influenced by other factors. More still 

needs to be done to elucidate the effect AuNP treatment has on lipid peroxidation 

in the cell and how the MDA and other products of lipid peroxidation influences 

cellular responses within the cell. 

 

4.3.2 Upregulation of Oxidative Stress Genes 

Among the oxidative stress genes evaluated, two genes stood out from the 

rest. Expression of PNK and COX-2 genes were upregulated and the protein 

expressions were also concomitantly and significantly increased with AuNP 

treatment compared to control. The protein is induced upon stress and the 

functions are well known. The PNK protein is known to function in DNA double 

strand break repair (Jilani et al., 1999). COX-2 a stress inducible enzyme, is 

expressed only in certain cell types and is an indicative marker of inflammation 

(Vane et al., 1994). Its association with oxidative stress has only been recently 

established as 4-hydroxynonenal, another aldehydic product of lipid peroxidation, 

was found in combination with oxidized low-density lipoprotein (LDL), to be 

potent inducers of COX-2 (Kumagai et al., 2004). It is likely that MDA could 

induce COX-2 expression in a similar manner to 4-hydroxynonenal as MDA 
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adducts are present in LDL (Requena et al., 1997). The increase in aldehydic 

products of lipid peroxidation together with the oxidative modification of LDL 

could contribute to induction of COX-2 expression (Uchida, 2008). On the other 

hand, MDA is  known to be a product of prostaglandin biosynthesis (Smith et al., 

1976), therefore setting up a feedback loop by which the production of MDA 

further induces expression of COX-2.  

The results validate the notion that AuNP induces oxidative stress in 

human lung fibroblast cells. However, the repair mechanism for damaged DNA in 

the lung fibroblasts may be functionally intact as upregulation of PNK in treated 

cells may be indicative of the response by the cellular repair system reacting to the 

oxidative DNA damage induced by the AuNP treatment. However, upregulation 

of genes such as peroxiredoxin 2 (PRP), another antioxidant and OSR1, a MAP4 

Kinase activated by osmotic stresses (Chen et al., 2004), conferred protection 

against oxidative stress. 

 

4.3.3 Differential Expression of Oxidative Stress-Related Proteins 

In this present study, the NDUFS1 protein, which is the core and largest 

subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase 

(also known as complex I), was found to be highly upregulated in AuNP treated 

lung fibroblasts. NDUFS1 is the most basic unit required for catalysis reactions. 

Complex I functions in the transfer of electrons from NADH to the respiratory 

chain with ubiquinone as the immediate electron acceptor. It has an iron-sulfur 

protein (IP) component that forms part of the active site crevice where NADH is 

oxidized. Hence, complex 1 is known to be the major source of superoxide O2 and 
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ROS in human fibroblasts (Iuso et al., 2006) which correlates with induction of 

oxidative stress in AuNP treated cells.  

AuNP treatment also affects other oxidative stress related proteins, 

particularly the antioxidant proteins. PDIA3, better known as ER60 or ERp57, is 

known to display protective ability against H2O2 toxicity (oxidative stress) and 

upon binding to protein Ref-1, are involved in activation of a number of 

transcription factors (Grillo et al., 2006). Not surprisingly, the upregulation of this 

protein is also accompanied by a similar upregulation of various transcription and 

translation factors in the 2D-GE results. This same complex has also been 

implicated in DNA repair, as cellular sensors for DNA damage mismatch repairs 

(Jin et al., 1997; Krynetski et al., 2003). Increased expression of PDIA3, which 

has an antioxidant function, is also an appropriate cellular response to oxidative 

stress and DNA damage caused by AuNP treatment. TXNL1, which is reported to 

be protective against glucose deprivation cytotoxicity (JimÈnez et al., 2006) was 

also down-regulated. Both PDIA3 and TXNL1 are part of the thioredoxin 

superfamily of which is also known to regulate cellular redox potential and 

prostaglandin synthase (Daiyasu et al., 2008). 
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4.4 Autophagy  

The act of ”self-cannibalization”, as autophagy may be described, may not 

be a unique response of NPs but this study is one of the first to report this 

phenomenon in relation to AuNPs. The function of autophagy is still not clearly 

understood but it is generally thought to be a natural process to maintain cellular 

homeostasis as well as a cellular response to starvation, infection or disease 

progression. It was only until recently that this has been recognized as a type II 

programmed cell death and a cell survival mechanism in times of stress (Kiffin et 

al., 2006; Tsujimoto and Shimizu, 2005). However, few works have demonstrated 

that NPs could induce autophagy. The more prominent ones include cadmium-

selenium (Cd-Se) NPs in porcine kidney cells (Stern et al., 2008),  quantum dots 

in human mesenchymal stem cells (Seleverstov et al., 2006), fullerenes in cancer 

cells (Wei et al., 2010) and here in this study, AuNPs induces the formation of 

autophagosomes in human lung fibroblast cells (Figure 4.2). Many papers have 

also reiterated that this phenomenon is very likely a common reaction of NP 

treatment in vitro as it is also observed across different cell types and with 

different kinds of NPs. It is, however, dependent on the NP size and the speed of 

metabolic clearance of the NP from the cell (Zabirnyk et al., 2007). In other 

words, the smaller NP diameter size and the longer NP exposure inside the cell 

seem to favour autophagosome formation. 
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Figure 4.2: Induction of autophagy after AuNPs treatment in cells. Presence of 
AuNPs in cell cytoplasm causes increased ROS formation which in turn causes 
oxidative damage to cell constituents. Autophagy is induced to clear and degrade 
damaged organelles and protect the cell from oxidative cell death. AuNPs may be 
subsequently engulfed by autophagosomes and along with the products of 
lysosomal degradation be excreted out of the cell or retained in the cell. 
 

4.4.1 Significance of ATG Proteins Upregulation after AuNP treatment 

Of the five autophagy proteins investigated, ATG 7 and MAP-LC3-II were 

found to have significantly higher expression in treated samples. ATG 7 is known 

to be an essential enzyme in the 2 major autophagy conjugation systems (Tanida 

et al., 2001). It activates ATG 12 for downstream conjugation to ATG 5 and 

catalyses MAP-LC3-I to the autophagosomal marker MAP-LC3-II; both proteins 

are key activators and constituents of the autophagosome membrane formation 

process (Geng and Klionsky, 2008; He and Klionsky, 2009). While higher 

expressions of ATG 7 could translate to an increase of autophagosome activation, 

not seeing a corresponding change in other ATG protein expression levels may 
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imply that these proteins were transiently expressed. Interestingly, when ATG 7 is 

deleted or knocked down, it impairs cell survival and causes fatality in irradiated 

mice, showing how essential this gene is in the protection of cell viability towards 

environmental stresses (Mortensen et al., 2011). 

 

4.4.2 Oxidative Stress as Autophagy Inducer 

One of the leading causes of autophagy is oxidative stress and this 

association has been well established (Chen et al., 2008). ROS is the main player 

in the autophagy response to oxidative stress (Kaushik and Cuervo, 2006; Scherz-

Shouval and Elazar, 2011). This group of small, highly reactive molecules such as 

superoxide, hydroxyl radicals arising from oxygen, nitrogen oxides, peroxide free 

radicals from hydrogen peroxide capable of oxidizing a variety of cell components 

including lipids, proteins and DNA. Under normal circumstances, ROS is 

produced as by-products of oxidative metabolism and maintained at a low level 

useful for cell signaling purposes.  In times of stress, the regulation of ROS level 

is disrupted resulting in wide-spread damage to cell constituents and prolonged 

exposure to such a situation often leads to diseases like cancer or cell death (Azad 

et al., 2009). 

The hypothesis is that while AuNP treatment induces oxidative stress, the 

cell may be able to avoid cell death through autophagic pathways. Organelles, 

proteins or lipids damaged by ROS may be efficiently cleared by internalization 

into and subsequent digestion in autophagosomes (Kiffin et al., 2006) thereby 

rescuing the cell from apoptosis. It is also likely that the oxidative environment, 

caused by the presence of AuNP in the cell media, could trigger off the autophagic 

process (Huang and Shen, 2009; Moore, 2008), rather than a direct cellular 
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reaction to AuNP presence in the cell. Others suggest that there may be localized 

sites of oxidative stress around clusters of metal-based NPs, therefore containing 

the extent of damage in the cells (Funnell and Maysinger, 2006). The lung is the 

especially susceptible to oxygen toxicity as it comes in contact with oxygen in 

atmospheric air all the time. Hence, it does possess some endogenous anti-oxidant 

defence against such occurrences (Ryter and Choi, 2010). However, at times when 

the first tier of defence cannot restore cell homeostasis, cells enter into a stress 

situation which calls for the induction of autophagy to arrest and contain the 

damage inflicted by ROS (Moore, 2008).  

On another note, NPs may be able to induce autophagy through an 

oxidative stress independent pathway (Johnson-Lyles et al., 2010). Therefore, not 

all autophagy processes are initiated by oxidative stress. The mechanism for this 

mode of action is still unclear and requires for more in-depth studies into this area.  

 

4.4.3 Other Factors Contributing to Autophagy 

DNA damage or sustained loss of genomic integrity may also induce 

autophagy. The HPLC, comet and FISH assays have shown that AuNPs are able 

to induce DNA damage through oxidative stress. Some recent papers suggest that 

in such cases, DNA damage induced by oxidative stress activates poly(ADP-

ribose) polymerase 1 (PARP-1) which in turn activates autophagy through a novel 

LKB1-AMPK (Liver Kinase B1-AMP-activated protein kinase) signalling 

pathway (He and Klionsky, 2009; Huang et al., 2009; Munoz-Gamez et al., 2009). 

On the other hand, knocking down ATG 5 and ATG 7 causes cells to be more 

susceptible to oxidative stress induced cell death (Huang et al., 2009). This may 
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be a possible explanation why cells continue to thrive despite the harsh treatment 

with NPs.  

With regard to COX-2, a previous study showed that when celecoxib, a 

COX-2 inhibitor is applied, it promoted cell growth arrest and autophagy in 

glioblastoma cells (Kang et al., 2009). Yet others report no difference in COX-2 

expression when autophagy is inhibited (Bauvy et al., 2001). It appears that there 

may be more than one autophagy signalling pathway involved and thus regulation 

of these could be controlled by other signalling proteins or factors wich are yet 

unknown. 

 

4.4.4 Implications for NP Induced Autophagy 

The topic of autophagic cell death and survival induced by NPs is still an 

under developed field and there is much to understand about the processes of the 

cellular response to these changes in exposure to AuNPs. Implications for the NP 

autophagic response does not only concern the lung but also various organ 

systems as it may also have an impact on neurodegenerative diseases as well as 

cancer, metabolic disorders, inflammation and myopathies (Stern and Johnson, 

2008). 
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4.5 Nanogenotoxicity 

4.5.1 Genotoxicity of AuNPs 

Many genotoxic research on NPs are centered on metal-based NPs as they 

are found to possess DNA-damaging effects in vitro. Silver, titanium oxide, cobalt 

and iron oxide are just some of the examples of these. There are currently only a 

handful of studies reported on the genotoxicity of AuNP both in vitro and in vivo 

and the general consensus is that AuNP may possess little or weak genotoxicity 

abilities. One of the few studies on NP genotoxicity investigated the effect of 

various common NPs in the lungs of ApoE knockout mice. It described AuNPs as 

possessing the least inflammatory and DNA-damaging ability in comparison with 

carbon black, QDs (cadmium-selenium NP) and CNT (Jacobsen et al., 2009).  

In contrast, this study showed that AuNP can have potent DNA damaging 

ability with the onset of oxidative stress upon AuNP treatment. However, the 

cytotoxicity and genotoxicity potential of AuNP can be enhanced by modifying 

surface functionalisation on the AuNP, such as putting on a positive charge on the 

particle and making it more hydrophobic (Chompoosor et al., 2010). Another in 

vivo study yielded some positive results to the presence of genotoxicity including 

the modulation of genes related to DNA repair in AuNP fed zebrafish (Geffroy et 

al., 2011). 

AuNPs appear to be popularly employed in many novel cancer therapies 

targeting DNA damage of cancer cells together with routine cancer drugs (such as 

cisplatin), radiation or other photothermal therapy (Atkinson et al., 2010; Jain et 

al., 2011; Zheng and Sanche, 2009). Most have reported that while AuNP does not 

necessarily induce DNA damage, it acts to enhance the treatment of anti-cancer 

drugs or radiation therapy administered. In addition, the action of the 
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photomutagenicity may not necessarily be due to AuNP but to the Au3+ ions 

residues after AuNP synthesis (Wang et al., 2011). Light irradiation on these Au3+ 

ions may induce formation of superoxide radicals, which would also add on to the 

oxidative stress and DNA damage. On the other hand, some researchers have made 

use of the colorimetric properties of AuNPs to develop an assay for the detection 

of oxidative DNA damage (Shen et al., 2009). The exact mechanism of action for 

DNA damage effect is yet to be clearly elucidated in AuNP treated cells. 

 

4.5.2 Other Factors Affecting DNA Damage Response in AuNP treatment 

Gathering the results from realtime PCR gene profiling assays and 2D-GE, 

there were quite a few significant differential expression of genes and proteins in 

the AuNP treated samples.  

The downregulation of heteogeneous nuclear ribonucleus protein C1/C2 

(hnRNP C1/C2) expression provides further evidences to its contribution to AuNP 

toxicity and its role in times of cellular stresses. The main function of this protein 

is binding to pre-mRNA and nucleates the assembly of 40S hnRNP particles 

(Huang et al., 1994). They also modulate the stability and the level of translation 

of bound mRNA molecules. Interestingly, downregulation of hnRNP C1/C2 also 

sensitizes cells to stress (Hossain et al., 2007). Moreover, a number of studies 

have linked hnRNP C1/C2 with repair of DNA strand breaks (Haley et al., 2009; 

Lee et al., 2005), together with its role in coordinating DNA repair mechanisms in 

the cell. HnRNP C1/C2 also has close association with telomerase and thereby 

influences repair and maintenance functions (Ford et al., 2000). 

These findings seem to indicate that AuNP involvement in the NHEJ 

pathway of DNA damage repair in the treated lung cells. The comet and the FISH 
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assays in this current study also showed evidence of DNA and chromosomal 

breaks. Therefore, it is plausible that AuNPs can induce DNA damage and impair 

DNA repair responses through the dysregulation of DNA repair genes involved in 

the NHEJ pathway leading to persistent DNA damage. Moreover, there was also 

an upregulation of PNK gene, another gene known to be involved with the NHEJ 

pathway (Chappell et al., 2002; Jilani et al., 1999) from the oxidative stress 

pathway gene profiling studies, thereby corroborating the results from these 

different studies. 

 

4.5.3 Tumorigenicity of Nanomaterials (NM) 

While it has been shown in many in vitro experiments that NMs are able to 

induce DNA damage and some form of mutagenesis, there is still a lack of 

evidence for tumorigenicity of NPs. Of note, in vivo studies involving MWCNT 

has demonstrated formation of mesotheliomas in rodents (Sakamoto et al., 2009; 

Takagi et al., 2008). Widespread deposition of MWCNT was observed in the 

peritoneal cavity where the nanotubes were injected. In the study by Sakamoto, 

they have even found mesotheliomas in the peritoneal cavity away from the 

original site of injection, suggesting that MWCNTs may easily translocate and 

also exert effects away from organ of exposure. Both studies emphasized on the 

persistency, size and shape on the carcinogenic potential of MWCNTs. While 

such studies may provide some insight into the outcome of NM toxicity, one must 

take into account the differences in how the nanotubes were prepared as well as 

the experimental design. Muller et al. conducted similar tests on MWCNT but 

reported no carcinogenicity after a 2-year period of exposure (Muller et al., 2009). 

They speculate that tumour formation could be dependant on size and length of 
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the nanotubes administered and the p53 knockout mice used in the Takagi study 

produced a more sensitive carcinogenic reaction (Takagi et al., 2008). However, 

NMs can induce oxidative stress and trigger inflammatory responses, which could 

form the starting point for carcinogenesis to occur. Nanomaterials that are highly 

reactive are also more likely to absorb endogenous substances, react with proteins 

and enzymes, triggering cytokine release. This would mediate inflammatory 

responses and potentially initiate a series of toxic responses far from the initial site 

of deposition (Bergamaschi et al., 2006; Borm and Kreyling, 2004). C60 fullerene, 

for example, was reported to cause photo-induced DNA damage by interacting 

with biological reducing agents such as NADH to cleave supercoiled DNA 

(Wang et al., 2009). Similarly, exposure to CNT in atmospheric air pollution has 

been associated with adverse cardiovascular effects by causing aortic DNA 

damage, platelet aggregation and enhances vascular thrombosis through 

inflammatory events (Radomski et al., 2005). 

 

4.5.4 Limitations of Current Research  

There are also certain shortcomings in the current research field. The 

short-term nature of toxicology tests in the treatment period of NMs generally 

lasts only up to three days, which implies that testing is limited to acute toxicity. 

In vitro and in vivo genotoxicity testing will have to be conducted for longer 

periods to observe if there are long-term effects of NMs such as tumour formation 

and carcinogenesis. Treatment intervals will have to go beyond days to weeks or 

even months in animal studies. It will also be useful to look at the clearance of 

NMs from the body and to study if there is a preference for accumulation in 

certain organs and any effect from biopersistence of such NMs.  
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Currently, there is a sore lack of studies reported on the gentoxic ability of 

AuNPs. More needs to be known and the mechanisms of action understood as 

AuNPs may have the potential and capability to be used as potent cytotoxic and 

gentoxic agents in cancer therapies. 

 

4.6 Response of Fibroblast vs Epithelial Cells to AuNPs 

Two cell lines were used in this study. MRC-5 is a human lung fibroblast 

cell line while SAEC is a primary cell line of small airways epithelial cells. 

Epithelial cells are the cells that line the airway vessels. As such, these cells are 

constantly exposed to many stress-inducing elements from atmospheric air 

breathed into the body. Fibroblast cells are the cells in connective tissue located in 

the interstitial space. These two cell lines are different and also behave differently 

from one another (Gadbois and Lehnert, 1997). However, comparing the reactions 

and response from one cell line to the other would lead us to understand more on 

how cells would behave in vivo. In this study, it appears that the epithelial cells 

also take up AuNP readily and are more sensitive to AuNP toxicity than the 

MRC-5 fibroblasts. This presents certain issues of concern and what it pertains to 

inhalation exposure of AuNPs. Issues like clearance and retention time of the NPs 

are also worth looking into as the extent of NP toxicity in these cells depends on 

these factors.  

Currently, there are few studies which look into different cell-cell 

interactions with regards to NP toxicity. However, there are surprising results in 

certain fibroblast-epithelial cell interactions. In the case of a study done on breast 

cancer carcinomas, autophagy induced in tumour-associated fibroblast cells may 

also protect the surrounding cancerous epithelial cells from cell death (Martinez-
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Outschoorn et al., 2010). This suggests that not just the cell condition but also the 

cellular microenvironment may play a part in cellular toxicity as well. A 

suggestion for future studies would be to look at co-culture studies of epithelial 

cells and fibroblasts to look at cell-cell interactions and cross-talk on exposure to 

AuNPs. 

 

4.7 In Vivo Study 

There is an increasing call for toxicological in vitro data to be backed up 

by in vivo data (Fischer and Chan, 2007). Therefore, rat lung tissue samples were 

obtained to conduct a complementary study to the in vitro results. Evalutating the 

gene expression levels of several selected cell cycle, oxidative stress and anti-

oxidant associated genes, a similar trend of gene expression levels were observed 

although results are not significant for a large number of the genes studied. 

By and large, the trend observed in the mRNA gene expression studies of  

in vitro and in vivo data does correlate fairly well although they were found not to 

be significant after statistical analysis. The only gene that turned out to be 

significant in both the in vitro and in vivo data is Cox-2. This suggests that 

exposure to AuNPs may create a stressful environment in the tissues hence the 

upregulation of such stress inducible genes to counteract its effects. It is also 

possible that such mechanisms are mediated through oxidative stress in the 

tissues. Although results were not significant, many of the cell cycle genes were 

downregulated, correlating with the gene profile array results taken from lung 

fibroblast cells. On the other hand, the oxidative stress related genes showed 

mostly a trend of downregulation, which is the opposite of the gene profiling 

results. Majority of the genes showing a downward trend in the in vivo samples 
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are anti-oxidants but it is the stress response genes which were upregulated in 

vitro. Perhaps, a more rigorous study with a larger sample size is needed to make 

a more valid conclusion. 

While in vitro allows the researcher to study into greater depths into the 

mechanisms and signaling pathways upon AuNP treatment, in vivo data is also 

important for study into the reactions and interactions in the tissue or organ 

system. Despite the advancement in NP toxicological research in the past few 

years, little is still known about the pharmacokinetics of NPs (Fischer and Chan, 

2007). The path of the NP through the body is dependant on several factors: 

(1) Route of entry 

The six main routes of entry of NPs into the body are: inhalation, intraperitonal, 

dermal, subcutaneous, oral and intraveneous. Depending on the application and 

the administration of the AuNPs, into the body is also as varied. How NPs enter 

also directly affects how quickly they are distributed around the body and issues 

of persistence and clearance from the body. 

(2) Interactions 

There are a few issues that affect pharmacokinetics of NPs in the body but most 

particularly with regards to the protein-NP interactions. Protein corona coating 

affects the uptake, biodistribution and interactions in the body (De et al., 2007). 

Different kinds of serum proteins may preferentially adsorbed onto NPs hence 

modifying the surface functionalization (Cedervall et al., 2007). Moreover, 

adsorption onto NP surface can also change the protein conformation (Lundqvist 

et al., 2004) and thereby its potential interactions and uptake into tissue 

compartments. 
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(3) Biopersistance and Clearance 

Biopersistence of NMs, whether in cells or tissues, do pose a certain degree of 

adverse health effect and could be a major contributing factor to nanotoxicity 

(Sanchez et al., 2009). For instance, when the clearance rate is slower than the 

accumulative rate of the inhaled NMs, the NMs will tend to remain in the lungs, 

thereby increasing the exposure to the potentially mutagenic substances and 

increasing the risk of toxicity and disease development. This is especially 

worrisome when a couple of papers have shown that AuNPs are able to persist in 

vivo for a period up to 4 months with preferential accumulation in the liver and 

spleen (Balasubramanian et al., 2010; Goel et al., 2009).  More study is required 

especially in the area of renal clearance and fecal excretions to better understand 

how NPs may be safely applied in therapeutic applications. 

 

4.8 Conclusion 

This study has shown that AuNP does induce some cytotoxic effects on lung cells 

in vitro as well as in AuNP exposed lung tissue in vivo. Treatment with AuNP 

decreases cell proliferation, induces DNA damage, autophagy as well as 

differential gene and protein expressions, all concomitant with oxidative stress 

(Figure 4.3). 
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Figure 4.3: Overview of the major areas of interest regarding AuNP cytotoxicity 
covered in thesis. Based on previous published literatures, AuNPs may be first 
taken into the cell via clarithin-mediated endocytosis, hence the presence of large 
numbers of vacuoles with AuNP clusters as seen in the TEM photos. The presence 
of AuNP in the cell is likely to trigger off generation of ROS leading to oxidative 
stress and subsequent cytotoxicity effects include lipid peroxidation, DNA 
damage, differential expression of cell cycle genes and various proteins. Oxidative 
stress also triggers the phenomenon of autophagy which could be the cell survival 
mechanism aiding the cell to escape cell death in times of stress. This could be the 
reason why, in the face of such oxidative damage within the cell, there is still high 
cell viability upon AuNP treatment. These results are useful for the nanotoxicolgy 
scientific community in the pursuit of safe and effective use of AuNPs in future 
therapeutic applications. 
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 As the field of nanotechnology grows and develops, the health and safety 

aspects of this field should also be growing and developing alongside it. For every 

new and emerging technology, the risks and hazards of such should also be 

adequately evaluated. AuNP is just one of the many NMs in such a situation and 

hence there has been a growing concern worldwide for the use of AuNPs in both 

medical applications as well as safety concerns in workplace exposure. This study 

has looked at the some of the cytotoxic effects of AuNPs on lung cells through in 

vitro situation as well as the cellular response of the cells to AuNP treatment. 

These results are a valuable addition to the growing knowledge of AuNP toxicity 

and also useful for the nanotoxicology scientific community for the continued 

development of safe and effective therapeutic, diagnostics medical applications. 

 

4.9 Future Studies in the field of Nanotoxicology 

This study has opened up new avenues of study and contributed to the 

cumulative  data on the toxicological profile of AuNPs. The mechanics and 

intricacies of the signaling pathways involved upon AuNP treatment and the 

cellular response, AuNP effects and cellular reactions in epigenetics and wider 

cell-cell interactions are areas yet to be explored. Global gene expression studies 

like microarray analysis could be carried out to elucidate the differential gene 

expression changes upon AuNP treatment. In addition, the toxicological profile of 

AuNPs in other types of cell lines such as cancer cell lines and stem cell lines may 

also be interesting avenues of investigation. Other possibilities include 

establishing a co-culture system of two or more cell types to further explore the 

cell-cell interactions. Such systems may include a layer of lung epithelial cell 

culture over the lung fibroblast cells and investigate how treatment of the 
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epithelial layer affects the fibroblast layer, simulating the in vivo environment. 

More indepth in vivo studies can be carried out with regard to the toxicity of acute 

and chronic administration of  AuNPs 

The mode of uptake of these NPs into the cell is also another possible area 

of study. Cells may be treated with a variety of drugs that hinder endocytosis prior 

to AuNP treatment, the results will establish if uptake process is dependent or 

independent on endocytosis. These experiments are not limited to AuNPs alone. 

Silver NPs and silica NPs are also viable materials to explore their cytotoxic 

effects as they are also widely used in many applications. Engineers are producing 

many novel and rare earth based NPs, like ceria oxide NP, neodymium NP and 

gadolinium NP, which may also be interesting NPs to look into as their 

toxicological profiles are still not well-known. 

Besides investigations on the adverse effects of NMs, the field of 

nanotoxicology also encompasses continuous monitoring and risk assessment of 

NMs. Despite the many nanotoxicological studies that are ongoing, there are 

questions that need to be answered and concerns addressed. There is difficulty in 

interpreting data in view of variable parameters utilized in studies for example, the 

sizes of the NMs and its composing materials. The most critical research gap is 

the lack of studies on real-time NM exposure. Moreover, there is a need for long-

term NM exposure assessment in establishing the potential linkage of NMs with 

tumourigenesis. At the industry level, close monitoring and follow-up on the 

levels of emissions from NMs production industries are essential in protecting 

public health and our environment. However, there still exists a lack of 

appropriate epidemiological studies and equipment for accurate collection of data 

in assessing the real risk of NM exposure in the workplace. Despite the promising 
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applications of NMs, there are still doubts regarding their safety. There is some 

certainty that NMs do pose a certain degree of health risk that would require 

further investigation. A proper guideline on NM usage is imperative to ensure the 

safety of NMs for consumer usage and environment. 
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Nanomaterials, defined as any materials possessing at least
one dimension in the nanometer scale, are found to have
many uses and potential applications in the fields of biology
and medicine. Gold nanoparticles (AuNPs) in particular are
being developed as novel gene and drug delivery agents,[1,2]

transfection vectors, DNA-binding agents as well as various
imaging systems[3] because of the inertness of bulk gold.[4] Re-
cent research findings have brought to light concerns over the
safety of nanomaterials and long-term adverse effect of their
use. In this study, we demonstrate that AuNPs can induce
DNA damage and inhibit cell proliferation in human embryo-
nic lung fibroblasts. Furthermore, we found downregulation
of genes associated with regulation of the cell cycle and DNA
repair. The results shown here are substantially different from
the general perception that AuNPs only possess limited cyto-
toxicity.

Most gold complexes, for example gold(III) porphyrins and
gold(III) polyamines, are known to be cytotoxic[5,6] and have
been found to cause DNA damage and be cytotoxic to leuke-
mic cells.[7] However, AuNPs at zero-valency state have gener-
ally been considered to be biocompatible owing to the relative
inertness of gold in bulk form.[8,9] At nanometer-size, how-
ever, many metals are known to display very different charac-

teristics and reactivity than their bulk counterparts.[10] As
more applications for nanomaterials products are developed
and brought into regular use, there is an increasing concern
on the risk of toxicity of these nanomaterials to humans. Re-
cent research has brought to light concerns over the safety
and long-term adverse effect of use of these nanomateri-
als.[11,12] Various reports have highlighted the potential toxici-
ty caused by NPs, particularly in organs at the frontline of ex-
posure such as respiratory organs and skin. Carbon nanotubes
have been found to cause formation of lung granuloma in
mice.[13] Citrate-stabilized AuNPs have also been found to af-
fect dermal fibroblast cell proliferation and migration.[14]

Furthermore, AuNPs functionalized with quaternary amine
have been shown to be moderately toxic to mammalian cells
and Escherichia coli.[4] Inhalation of air-borne NPs also poses
a risk to human health through possible damage not only to
the respiratory organs, but also that these NPs are able to
translocate to the central nervous system and the brain.[15]

Hence, it is essential to establish the toxicity of these NPs as
well as the safety and risks involved in the use of these NPs in
therapeutics and research.

To assess the potential cytotoxicity of AuNPs, we selected
the MRC-5 human fetal lung fibroblast cell line (ATCC
No. CC-171) and exposed them to different concentrations of
20 nm AuNPs. The AuNPs were synthesized from aqueous
chlorauric acid solution via citrate reduction.[16,17] The AuNP
solution was subsequently passivated with fetal bovine serum
(FBS) at 37 °C for 6 h to mimic the real event, since protein
adsorption is known to occur when foreign materials enter hu-
man body. MRC-5 lung fibroblasts at a density of 8 × 104 cells
well–1 in six-well plates were exposed to 0.1, 0.5, and 1 nM
AuNPs for 24, 48, and 72 h. Control wells were incubated only
with fresh culture media, and experiments were repeated in
triplicates. To assess if the AuNPs were taken up by the fibro-
blast cells, the cells were examined by transmission electron
microscopy (TEM). There were no visible alterations in the
cell morphology between the treated and control groups at
different time points (Fig. 1A and B; additional images of cell
culture can be found in the Supporting Information). How-
ever, AuNPs taken up by the fibroblasts could be identified,
and they showed up as dark dense clusters under TEM
(Fig. 1D). In contrast, no cluster was found in the control
group (Fig. 1C). The AuNPs mostly gathered in clusters inside
cellular vesicles. In some cases, scattered AuNPs were found
in the cytosol (circled in Fig. 1E). The quantity of AuNPs ob-
served correlated with the concentration of AuNP treatment.
1 nM treated cells had the highest amount of AuNPs clustered
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in the vesicles, while the 0.1 and 0.5 nM treated cells had
smaller clusters. Additionally, most of the vesicles containing
the AuNPs were seen clustering around the nucleus (Fig. 1E).
Recently, Chithrani and Chan have demonstrated that trans-
ferrin coated AuNPs entered cells via the clathrin-mediated
endocytosis pathway,[18] which suggests that the serum-coated
AuNPs could be taken up by the lung fibroblasts in a similar
manner.

To verify that the electron-dense particles were AuNPs, the
TEM specimens were subjected to elemental analysis with a
CM120 BioTWIN electron microscope coupled with a Philips
EDAX Microanalysis system. The fibroblasts treated with
AuNPs showed the presence of Au as indicated by the two
peaks corresponding to the gold M shell (2.2 KeV) and L
shell (9.7 KeV). The 1 nM treatment sample, registered a P/B
ratio (ratio of the intensity of the detected element against
the background) of 4.60, while the P/B value of 1.10 in the
control implied no difference from the background (for the
element to be significantly present in the sample, the P/B ratio
value needs to be 3.0 or above). Magnified TEM images and
EDAX analysis results can be found in the Supporting Infor-
mation.

We further evaluated if AuNPs had an effect on cell prolif-
eration and death. Cell viability was determined with Trypan
Blue exclusion together with one-way analysis of variance
(ANOVA) with post hoc Tukey’s Test (Graphpad Prism). The
result showed that there was no significant difference in the
percentage of non-viable cells (i.e., no difference in cell death)
between the treatment and control groups after 24, 48, and
72 h incubation with the AuNPs (Fig. 2A to C). However,
there was a significant difference in the total number of cells
at 72 h following AuNP treatment (Fig. 2D; one way ANOVA
p value < 0.05). Cells treated with 1 nM concentration of
AuNPs had a significantly lower total cell count than controls

(Tukey’s test, p value < 0.05). The decrease in total cell num-
ber with no increase in non-viable cells in the 1 nM treated
case may imply that cell proliferation was inhibited at this
concentration. Since the AuNPs were coated with FBS, this
decrease in cell numbers was probably not due to depletion of
serum protein in media.

To ascertain if AuNPs could induce oxidative DNA dam-
age, we analyzed the quantity of 8 hydroxydeoxyguanosine
(8OHdG), which is an established marker of cellular oxidative
stress.[19] 8OHdG causes mutagenicity through G·C to T·A
transversions, resulting in 8OHdG·A mispaired bases.[20] Its
production is induced by reactive oxygen species (ROS), par-
ticularly the hydroxy radical which is primarily responsible for
the hydroxylation of deoxyguanosine to 8OHdG.[21,22] After
treating with 0 (control), 0.5, and 1 nM AuNPs for 72 h,
DNAs were extracted from the MRC 5 fibroblasts by the
method described by Huang et al.[23] The quantity of 8OHdG
was measured by using a Shimadzu LC-10AD high-perfor-
mance liquid chromatography (HPLC) instrument equipped
with an autosampler. The amounts of 8OHdG in the samples
were expressed relative to the amounts of deoxyguanosine
(dG) as calculated from the response on the electron capture
detector (ECD) at 700 mV. We found that the 8OHdG/106dG
value in 1 nM AuNP treated cells was significantly higher
than the control (Fig. 2E, p value < 0.05). This provided clear
evidence that there was oxidative DNA damage when MRC-
5 fibroblasts were exposed to AuNPs at 1 nM concentration.

To further evaluate the expression of cell cycle genes fol-
lowing exposure of AuNPs, expression profiling of 84 key cell
cycle related genes from MRC fibroblasts (1 nM AuNPs for
72 h and control) was conducted using the Human Cell Cycle
RT2 Profiler PCR Array System (SuperArray, Bioscience
Corp., USA). Statistical analysis was performed using Stu-
dent’s t-tests. All the genes were detected in both the treated
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Figure 1. A,B) Optical microscopy images of MRC-5 lung fibroblasts at 72 h after seeding. A) Untreated cells, and B) cells treated with 1 nM AuNPs.
C–E) Transmission electron microscopy images of lung fibroblasts after 72 h culture. C) Untreated cells, (D) 1 nM AuNP treatment, and (E) 1 nM
AuNP treatment showing the presence of AuNPs in vesicles which cluster around the nucleus (N). Arrows indicate AuNP clusters in vesicles. Circles
indicate AuNP clusters in cytosol. For (A–B) 10× magnification, bar = 190 lm, (C–D) 44000× magnification, bar = 0.2 lm, and (E) 11000× magnifica-
tion, bar = 1.0 lm.



and control samples, with expression of 19 genes significantly
reduced in the treated cells (Table 1; p value < 0.05). MAD2,
Cyclin B2 (HsT17299) and Cyclin B1 (CCNB), which are as-

sociated with the cell cycle, were found to be the most down-
regulated. Expression of BRCA1, Hus1, ATLD/HNGS1,
AT-V1/AT-V2, which are DNA damage response genes and
involved directly with maintaining genomic integrity, was also
significantly decreased. The remaining genes encode proteins
that are associated with the above genes or support the func-
tions of the aforementioned genes, and are provided in Sup-
porting Information Table S1.

The significant decrease in cell count after 72 h of treat-
ment with 1 nM AuNPs (showing that AuNPs inhibited cell
proliferation) could most likely be explained by downregula-
tion of specific cell cycle genes. MAD2 regulates the mitotic
spindle checkpoint while Cyclin B2 and Cyclin B1 are regula-
tors of the cell cycle at the G2/M phase. It is likely that AuNPs
influence cell cycle pathways, inducing a reduction in the ex-
pression of critical checkpoint proteins which significantly in-
hibit cellular proliferation.

The detection of DNA damage and downregulation of
DNA repair genes suggest that AuNPs at 1 nM concentration
may interact directly or indirectly with regulators of genomic
integrity. It is currently not certain how the AuNPs are in-
volved in DNA damage as the particles were not found in the
nucleus but mainly located in cytoplasmic vesicles. Pernodet
et al. have shown that AuNPs localized to membranous struc-
tures can nonspecifically interact with proteins in vitro, lead-
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Figure 2. A–C) Cell count of non-viable MRC lung fibroblasts with different concentrations and duration of exposure to AuNPs. A) 24 h, B) 48 hm, and
C) 72 h. Error bar = standard error of the mean. D) Total cell count in the lung fibroblasts after 72 h treatment with AuNPs versus control. Error bar =
standard error of the mean. E) Analysis of 8-hydroxydeoxyguanosine (8OHdG) DNA using HPLC in MRC fibroblasts treated with AuNPs for 72 h. The
ratio of 8OHdG/106dG is presented as the means ± standard error of the mean of three independent experiments. p value = 0.0019 (One Way ANO-
VA); * p value < 0.05 when comparing 1 nM treatment with control and 0.5 nM treatment.

Table 1. Genes downregulated following exposure to 1 nM 20 nm size
AuNPs, showing fold difference and p values.

Gene Fold Difference p value

FRP1/MEC1 0.84 0.0214

BRCAI/BRCC1 0.65 0.0018

CCNB 0.63 0.0070

HsT17299 0.57 0.0041

Cyclin C 0.76 0.0479

FBX1/FBXO1 0.67 0.0424

CAK/p34 0.73 0.0233

CDK1/DKFZp686L20222 0.75 0.0177

p55CDC 0.81 0.0393

CDS1/CHK2 0.76 0.0281

CKSHS2 0.72 0.0418

Hus1 0.85 0.0337

HSMAD2/MAD2 0.54 0.0039

HCC5/P1-MCM3 0.77 0.0227

CDC46/P1-CDC46 0.80 0.0081

ATLD/HNGS1 0.92 0.0299

AT-V1/AT-V2 0.81 0.0297

CTIP/RIM 0.75 0.0059

HGPRT/HPRT 0.71 0.0039



ing to abnormal protein production in cells.[14,24] Another
possible mechanism causing the DNA damage could be the
generation of ROS caused by AuNPs, as other known toxic
NPs like cadmium have been reported to induce cytotoxicity
and DNA damage through production of excessive
ROS.[5,25–27] Interestingly, we also observed that there was
downregulation of DNA repair genes. In fact, Zhang et al.
have recently reported that knockdown of DNA damage re-
sponse genes in human cells could lead to carcinogenesis.[28]

In conclusion, AuNPs may induce some degree of cytotoxic-
ity in human lung fibroblasts. We have shown that AuNPs in-
hibit cell proliferation by downregulating cell cycle genes.
Furthermore, AuNPs not only cause oxidative damage but
also affect genes associated with genomic stability and DNA
repair.

Experimental

Cell Culture: MRC-5 fetal lung fibroblasts (ATCC No. CC-171)
were cultured in RPMI 1640 media supplemented with 10% FBS and
100 units mL–1 penicillin, 100 lg mL–1 streptomycin in an atmosphere
of 5% CO2 and 37 °C. Only cell cultures with passage 20 or less were
used in these experiments.

AuNP Synthesis and Preparation: To synthesize particles at average
of 20 nm size in 2 nM concentration, 95 mL of an aqueous chlorauric
acid solution containing 5 mg of Au was brought to boiling point, and
5 mL of 1% sodium citrate solution was added to this boiling solution.
The solution which first changed to a bluish color, then purplish, and
eventually to wine red, was further boiled for 30 min and then left to
cool to room temperature. The AuNP solution was subsequently con-
centrated and coated with FBS by incubating in a 37 °C water-bath for
6 hours. The AuNPs were washed in phosphate buffer saline (PBS) to
remove excess FBS, residual gold salt, and citrate, and were subse-
quently reconstituted to give a 10 nM nanoparticle solution. This solu-
tion was then sterile filtered through a 0.2 lm pore-size sterile filter
prior to treatment.

Treatment of MRC-5 Cells with AuNPs: MRC-5 cells were seeded
at a density of 8 × 104 cells/well in six-well plates (Nunc, Denmark)
and cultured for 1 d before treatment. Concentrations of 0.1, 0.5, and
1 nM AuNPs were prepared from 10 nM sterile-filtered stock solution
of AuNPs by dilution with culture media. The cells were washed twice
with PBS before treatment with the different concentrations of
AuNPs for 24, 48, and 72 h. Control wells were replaced with fresh
culture media without AuNPs (see Cell Culture for media composi-
tion). The experiment was repeated in triplicates.

Trypan Blue Cell Viability Assay: Cells were trypsinized with 0.25%
trypsin-EDTA (Invitrogen, USA), centrifuged at 1000 rpm and subse-
quently resuspended in culture media. The cells were stained with
0.4% Trypan Blue solution (Sigma, USA) and counted with a glass he-
mocytometer.

DNA Extraction from MRC-5 Cells: Cells were cultured and treat-
ed with AuNPs as described previously and incubated for 72 h. The
number of cells used for DNA extraction was about 107. We found
that 1 nM AuNPs could destroy DNA so twice the numbers of cells
compared to control were used in DNA extraction. Cells (1–2 × 107 in
number) were washed in 3 mL ice-cold nuclei isolation solution
(10mM Tris·HCl, pH 8.0, 1% (v/v) Triton X, 0.32 M sucrose, 0.2 mM
EDTA, 0.1 mM diethylene triamine pentaacetic acid (DTPA), and
5 mM MgCl2). The nuclei were suspended in 1.5 mL RNase solution
(10 mM Tris·HCl, pH 8.0, 5 mM EDTA, and 0.1 mM DTPA. 1 lL
DNase-free RNase was then added and the mixtures were incubated
at 37 °C for 0.5 h. The nuclei suspension was then mixed with 1.5 mL
cell lysis solution (10 mM Tris·HCl, pH 8.0, 1% (v/v) SDS, 5 mM
EDTA, and 0.1 mM DTPA). Proteinase K (20 lL of 20 lg lL–1) was

added and incubated at 55 °C for 1 h, followed by an additional 10 lL
proteinase K and incubation for 2 h more. After cooling the solution
on ice, 1 mL protein precipitation solution was added and shaken vig-
orously. Precipitated protein was removed by centrifugation and the
supernatants were extracted with equal volume of chloroform : isoa-
myl alcohol (24:1, v/v). The upper aqueous phase was treated again
with 1 lL DNase-free RNase for 15 min at 37 °C. The aqueous phase
was extracted once more with equal volume of chloroform : isoamyl
alcohol. DNA was precipitated in the aqueous phase with equal vol-
ume of ice-cold isopropanol and stored at –20 °C overnight. After cen-
trifugation, DNA was washed twice with 70% ethanol and dissolved
in HPLC-grade water for immediate enzymatic digestion after
measuring the A260/280 ratio. In the enzymatic digestion, 20 lL of
5 lg lL–1 (making a total of 100 lg) DNA were diluted to 87 lL in
water. After addition of 10 lL of 100 mM MgCl2 and 1 lL of 1 M
Tris·HCl (pH 7.4), 2 lL of 20 U lL–1 DNase I were added for 0.5 h
incubation at 37 °C. After adjusting the pH to 5.2 with 1 lL of 3 M
sodium acetate (pH 8.0), the fragmented DNA was digested with 1 lL
of Nuclease P1 (1 U lL–1) for 1 h. The acidic pH was titrated to neu-
tral with 10 lL of 1 M Tris·HCl (pH 8.0), 1 lL of AP (1 U lL–1) was
added, followed by 1 h incubation.

HPLC Analysis: A spectra series HPLC (Shimadzu, LC-10AD)
equipped with an autosampler was used. Separations were performed
using dual columns. First column (Gemini, C6, 50 × 3.0 mm) was to
roughly separate dG and 8OHdG from the digested DNA solution. A
divert valve was inserted to collect the part containing dG and
8OHdG and they were transferred to the second column (Waters, C18,
150 × 4.6 mm) which was coupled to an electrochemical detector
(ECD) (ESA, CoulArray 5600A). The solvent system used was a mix-
ture with pH 4.7 (adjusted by acetic acid) comprising 6% methanol
and 20 mM sodium acetate. The flow rate on the first column was
0.4 mL min–1 and followed with 1 mL min–1 of methanol to remove
impurities. The flow rate on the second column was 1 mL min–1. The
amounts of 8OHdG in the samples were expressed relative to the
amounts of dG as calculated from the response on the ECD at
700 mV.

Gene Expression Profiling: Expression profiling of 84 key cell cycle
related genes in 72 h 1 nM AuNPs treated MRC-5 cells against un-
treated MRC-5 cells, was performed using the Human Cell Cycle RT2

Profiler PCR Array System (SuperArray, Bioscience Corp., USA) fol-
lowing the manufacturer’s instructions.

Transmission Electron Microscopy: MRC-5 cells were seeded on
4-chambered coverglass (Lab-tek Chambered Coverglass System) at a
density of 2 × 104 cells mL–1 (14000 cells/well). After 72 h of culture,
cells were fixed with 2.5% glutaraldehyde and washed three times
with PBS. Subsequently, post-fixation with 1% osmium tetroxide was
performed followed by dehydration with ascending series of alcohol
before embedding in araldite. Ultrathin sections were cut and doubly
stained with uranyl acetate and lead citrate. Images were acquired
using the Olympus EM208S transmission electron microscope.

Energy Dispersive X-ray (EDX) Analysis: The elemental composi-
tion of the TEM specimen was analyzed by the CM120 BioTWIN
electron microscope and Philips EDAX Microanalysis system.

Statistical Analysis: Graphpad Prism statistical analysis software
was used in all statistical analysis, except for the PCR array data
which was analyzed with Student’s t-test in Microsoft Excel.
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a b s t r a c t

Elemental metal nanoparticles like cadmium and silver are known to cause oxidative stress and are
also highly toxic. Yet for gold nanoparticles (AuNPs), it is not well established whether these
particles are biologically toxic. Here we show that AuNPs, which were taken up by MRC-5 human
lung fibroblasts in vitro, induce autophagy concomitant with oxidative stress. We also observed
formation of autophagosomes together with the uptake of AuNPs in the lung fibroblasts as well as
upregulation of autophagy proteins, microtubule-associated protein 1 light chain 3 (MAP-LC3) and
autophagy gene 7 (ATG 7) in treated samples. AuNP treated cells also generated significantly more
lipid hydroperoxides (p-value< 0.05), a positive indication of lipid peroxidation. Verification with
western blot analysis for malondialdehyde (MDA) protein adducts confirmed the presence of
oxidative damage. In addition, AuNP treatment also induced upregulation of antioxidants, stress
response genes and protein expression. Exposure to AuNPs is a potential source of oxidative stress in
human lung fibroblasts and autophagy may be a cellular defence mechanism against oxidative stress
toxicity.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Nanotoxicity is an emerging field of research, a response to
growing uses of nanosized materials in a slew of technological
applications and consumer products [1]. Early research into toxic
effects of ultrafine carbon particles and carbon nanotubes high-
lighted the potential health risks from exposure of these particles in
our environment [2]. These particulates are potentially hazardous
when it comes in contact with the human body, especially the
respiratory system being the most vulnerable route of entry. In vivo
studies in rats exposed to aerosols of gold nanoparticles (AuNPs)
revealed that the nanoparticles were rapidly taken into the system
with the highest accumulation in the lungs, aorta, oesaphagus and
olfactory bulb [3]. Moreover, particles of nano-dimension are
believed to be more biologically reactive than their bulk counter-
parts due to their small size and larger surface area to volume
ratio [1].

Gold in its bulk form has long been considered an inert,
noble metal with some therapeutic and even medicinal value,
hence gold nanoparticles (AuNPs) are thought also to be rela-
tively non-cytotoxic [4]. Yet there are differing reports of the

extent of the toxic nature of these particles owing to the
different modifications of the AuNP, surface functional attach-
ments and the shape and diameter size of the nanospheres [5,6].
Moreover, the metallic nature of the metal derived NPs and the
presence of transition metals encourages the production of
reactive oxygen species (ROS) leading to oxidative stress [7e9].
Elemental metal NPs like cadmium and silver are known to
induce oxidative stress and apoptosis in various cell types
[10,11]. In spite of this, the link between AuNP and oxidative
stress is not well established. Most often, the harmful effects of
ROS may be manifested through damage of DNA, oxidations of
polyunsaturated fatty acids in lipids and oxidations of amino
acids in proteins [12]. Previously, we have shown that DNA
damage occurs in AuNP treated lung fibroblast cells [13]. In this
study, we evaluated the presence of oxidative damage in lipids
and proteins of AuNP treated lung fibroblast cells, as well as
gene profiling of oxidative stress markers and found evidence of
autophagosome formation.

2. Materials and methods

2.1. Cell culture

MRC-5 human fetal lung fibroblast cells (ATCC No.: CCL-171) were cultured in
RPMI media supplemented with 10% fetal bovine serum (FBS) in 100 mg/ml peni-
cillin/streptomycin in 37 �C 5% CO2 incubator.

* Corresponding authors. Tel.: þ65 6516 1699; fax: þ65 6779 1936.
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2.2. AuNP synthesis and preparation

Gold nanoparticles (AuNPs), 20 nm in diameter, were prepared in citrate
reduction of gold salts as previously described [13]. The citrate buffer was removed
and the nanoparticles were coated with fetal bovine serum, washed and recon-
stituted in phosphate buffer saline (PBS) solution. The size and zeta potential of
resultant AuNPs were measured using dynamic light scattering (Zetasizer NanoZS,
Malvern, UK) at 25 �C. With FBS coating, the size of AuNPs increased from
22.1�1.9 nm to 35.5� 3.9 nm, and the zeta potential changed from �40.6� 2.1 mV
to�11.3�1.1 mV. These values were in agreement with the literature values [14,15].
The AuNP solution was then sterile filtered before addition into treatment media.

2.3. AuNP treatment

MRC-5 lung fibroblasts were seeded in 6 wells cell culture plates (NUNC,
Denmark) at a seeding density of 4�104 cells/ml and treated with 1 nM concen-
tration of AuNP in growth media the following day. Control cells were cultured in
growth media. Treated and control cells were then incubated for 72 h before
harvesting.

2.4. Transmission electron microscopy (TEM)

MRC-5 lung fibroblasts were seeded onto 4-chambered coverglass (Lab-tek
Chambered Coverglass System) at a density of 2�104 cells/ml (14,000 cells/well).
After 72 h of culture, cells were fixed with 2.5% glutaraldehyde and washed 3 times
with PBS. Subsequent post-fixation with 1% osmium tetroxide followed by dehy-
dration with ascending series of alcohol before embedding samples in araldite.
Ultrathin sections were cut and doubly stained with uranyl acetate and lead citrate.
Images were acquired using the Olympus EM208S transmission electron
microscope.

2.5. Oxidative stress PCR array

RNA from samples was extracted with the RNeasy Microkit (Qiagen). Reverse
transcription and realtime PCR were carried with proprietary kits and reagents from
Superarray, Biosciences according to manufacturer’s instructions. 84 key genes from
oxidative stress pathway were simultaneously assayed with the RT2 Profiler PCR
array plate (Superarray Biosciences).

Fig. 1. Cellular localization of AuNP in MRC-5 after 72 h treatment with 1 nM AuNP. Black arrows point to AuNP clusters inside the cell. (A and B) Control and AuNP treated MRC-5
cells as seen under light microscopy. Large aggregates of the gold particles may also be seen under light microscopy as bright blue spots in the cell cytoplasm, clustering around the
nucleus (B) which were not observed in the untreated control (A). Scale bars¼ 100 mm. Insets in both show a close-up view of the cells in the respective treatments. (C) AuNP in cell
cytoplasm enclosed within an endosome. Scale bar¼ 0.5 mm. (D) AuNPs found clustering in a lysosome. Scale bar¼ 0.2 mm. (E) Low magnification TEM shows numerous large
vacuoles found in the cytoplasm of AuNP treated cells. Scale bar¼ 5 mm.
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2.6. Lipid hydroperoxide assay

Lipid Hydroperoxide (LPO) Assay Kit from Caymen Chemicals. Lipid hydroper-
oxides were extracted in chloroform from sonicated samples following manufac-
turer’s instructions. A positive control sample was included as a validation of the
assay technique. Cells were treated with 10 mM hydrogen peroxide (H2O2) for 1 h
prior to extraction. To ensure that there were no interference from AuNPs, the
samples after lipid extraction were analysed with inductively coupled plasma mass

spectrometry (ICP-MS, Perkin Elmer) to evaluate the amount of AuNPs present in the
sample and its potential effect on the LPO assay.

2.7. Western blotting

Cells were washed in PBS and in 0.35 M sucrose solution. Samples were then
scraped and collected in 0.35 M sucrose containing protease inhibitor mix (Amer-
sham Biosciences). The cell pellets were collected and resuspended in lyses buffer

Fig. 2. TEM images of autophagosomes and cellular structures in MRC-5 cells treated with AuNPs for 72 h. Black arrows point to AuNP clusters. Autophagosome formations in AuNP
treated cells as indicated by red label “AP”. Lysosomes are indicated by white label “Ly”. Scale bars as indicated in figure. (A, B and C) Autophagosomes contain large amounts of
cellular debris within a double membrane. Some APs may contain AuNP clusters within (A) while others (B and C) do not. (D) High magnification view of a large vacuole containing
large clusters of AuNPs and cellular debris, possibly an autolysosome, a fusion of an autophagosome with a lysosome. (E and F) Besides these large vacuoles, the treated cells also
contain large numbers of dense endosomes and lysosomes.

Fig. 3. Western blots of MAP-LC3 protein expression after 48 h and 72 h treatment with 1 nM AuNP. Significant upregulation in MAP-LC3-II protein expressions at both 48 h and 72 h
treatment with AuNP, comparing control with treated samples (OD p-value< 0.05). Error bars¼ SEM. MAP-LC3-I refers to the cytosolic form of the protein while the MAP-LC3-II
form is found on membranes of autophagosomes and serves as an indicator of autophagosome formation.
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containing 7 M urea, 2 M thiourea, 4% CHAPS, 20 mM dithiothreitol, 0.5% Pharmalyte
pH 4e7, proteinase inhibitor mix and nuclease mix (Amersham Biosciences). Protein
concentrations were determined using a 2-D Quant Kit (Amersham Biosciences).
The proteins were resolved on SDS page gel and transferred onto PVDF membrane
via semidry transfer (BioRad). Membranes were blocked in 5% non-fat milk and
washed in Tris-buffered saline in 0.1% Tween. Membranes were incubated with
primary antibody and then in corresponding secondary antibody with 3 washing
step in between. Protein bands were developed with chemiluminescence substrate
(Pierce) and visualised on XPress CL blue ray film (Pierce). Optical densities of bands
weremeasured on the GS710 Densitometer and band intensities were analysed with
Quantity One image analysis software (Biorad).

2.8. Statistical analysis

Graphpad Prism statistical analysis software was used in all statistical analysis,
except for the PCR array data which was analysed with Student’s t-test in Microsoft
Excel.

3. Results and discussions

3.1. Internalization of AuNPs in cells

After 72 h of AuNP treatment, particles may be so highly
aggregated in the cell cytoplasm that they appear as bright blue
spots under light microscopy (Fig. 1A and B). Additionally, we
noticed that AuNP clusters accumulated in endosomes and lyso-
zomes in the cytoplasm (Fig. 1C and D), which is not surprising as
these are the eventual endpoints of ingested materials marked for
degradation [16]. The AuNP treated fibroblasts appeared to be
highly active with many of them exhibiting large numbers of
vacuoles in the cytoplasm (Fig. 1E), with many of which contained
large clusters of AuNPs.

3.2. Autophagosome formation induced by AuNPs

A number of AuNPs were found clustered in vesicles containing
cell-membrane like debris in the cytoplasm which are typical
features of autophagosomes (Fig. 2AeE). Some of the cellular
materials were found in characteristic double membrane vesicles
(Fig. 2B and C). In light of this finding, we performed western blots
in protein extracts from the cells to probe for autophagy protein
microtubule-associated protein 1 light chain 3 (MAP-LC3) over 48 h
and 72 h treatment with AuNPs. The conjugated MAP-LC3-II
protein expression of the cells was significantly higher than the
controls (Fig. 3, p-value< 0.05) which correlates with

autophagosome formation [17]. Next, we looked at the 4 other
autophagy proteins associated with autophagosome formation. At
72 h, autophagy gene 7 (ATG 7) protein was found to be signifi-
cantly higher in AuNP treated samples than in control (Fig. 4B,
p-value< 0.05). However, western blots of other proteins like ATG
5, BECN1 (or ATG 6), ATG 12 protein expressions were slightly
higher in treated and the OD values were not significant when
compared with controls (Fig. 4A, C and D).

While the link between oxidative stress leading to autophagy is
quite established [18], few works have demonstrated that nano-
particles could cause autophagy. The function of autophagy is still
not clearly understood but it is generally thought to be a natural
process to maintain cellular homeostasis as well as a cellular
response to starvation, infection or disease progression. It was only
until recently that this has been recognized as a type II pro-
grammed cell death and a cell survival mechanism in times of stress
[19,20]. The hypothesis is that while AuNP treatment induces
oxidative stress, the cell may be able to avoid cell death through
autophagic pathways. It is also likely that the oxidative

Fig. 4. Western blots of autophagy proteins at 72 h AuNP treatment. (A) ATG 5 (B) ATG 7 (C) BECN1 (ATG 6) (D) ATG 12 showed similar upregulation in protein expression but only
ATG 7 significantly so (OD p-value< 0.05). Error bars¼ SEM.

Fig. 5. Lipid hydroperoxide assay (LPO assay) of control, AuNP treated and hydrogen
peroxide treated samples. AuNP treated cells produce significantly more hydroper-
oxide compared with control (*p-value< 0.05). Hydrogen peroxide treatment serves as
positive control for assay (**p-value< 0.01 compared with control). Error bars¼ SEM.
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environment could trigger off the autophagic process [21,22],
rather than a direct cellular reaction to AuNP presence in the cell.
Others like Funnell and Maysinger suggest that there may be
localized sites of oxidative stress around clusters of metal-based
nanoparticles, therefore containing the extent of damage in the
cells [23].

Of the 5 autophagy proteins investigated, we found ATG 7 and
MAP-LC3-II to have significantly higher expression in treated
samples. ATG 7 is known to be an essential enzyme in the 2 major
autophagy conjugation systems [24]. It activates ATG 12 for
downstream conjugation to ATG 5 and catalyses MAP-LC3-I to the
autophagosomal marker MAP-LC3-II; both proteins are key acti-
vators and constituents of the autophagosome membrane forma-
tion process [25,26]. While higher expressions of ATG 7 could
translate to an increase of autophagosome activation, not seeing
a corresponding change in other ATG protein expression levels may
imply that these proteins were transiently expressed. We had
previously found AuNPs to induce DNA damage possibly through
oxidative stress [13]. Some recent papers suggest that in such cases,
DNA damage induced by oxidative stress activates poly(ADP-
ribose) polymerase 1 (PARP-1) which in turn activates autophagy
through a novel LKB1-AMPK signalling pathway [26e28]. On the
other hand, knocking down ATG 5 and ATG 7 causes cells to be
more susceptible to oxidative stress induced cell death [27]. This
may be a possible explanation why cells continue to thrive despite
harsh treatment with nanoparticles.

3.3. Oxidative stress induced by AuNPs

With regards to our previous findings on oxidative DNA damage
induced by AuNPs, [13] here we further attempted to validate the
presence of oxidative stress in cells by measuring the hydroper-
oxide concentration in lipid extracts of treated and control samples.
We found that the hydroperoxide concentration was significantly
higher in treated cells than the control cells (Fig. 5; p-value< 0.05).
This provides evidence that AuNP treatment could generate
oxidative stress in MRC-5 lung fibroblasts. To allay the concern that
the presence of AuNP in cells may interfere with the assay absor-
bance due to the strong surface plasmon effect, trace gold content
in AuNP treated samples was analysed via inductively coupled
plasma mass spectroscopy (ICP-MS). The result (Fig. S1 in
Supplementary Information) showed that the gold concentration
in treated samples was negligible (<10 ppb), implying that there
was little interference from AuNP in the assays. In addition, we
evaluated malondialdehyde (MDA) modified protein adducts by
western blotting as a further verification of the presence of lipid
peroxidation. MDA is a byproduct of lipid oxidation by free radicals
and ROS and this aldehyde reacts readily with protein or DNA
forming adducts which are considered to be highly genotoxic.
Clearly, the amount of proteins alkylated by MDA was significantly
more in the AuNP treated samples than that in control samples
(Fig. 6; p-value< 0.05), particularly the 2 prominent bands at the
70 kDa and 75 kDa regions.

3.4. Gene profiling of AuNP treated MRC-5 cells

We investigated other oxidative stress related molecules that
were affected by AuNP treatment using the RT2 Profiler PCR array
(oxidative stress pathway, full set of genes are listed in Table 2). We
found 4 out of the 84 genes to be significantly upregulated in AuNP
treated lung fibroblasts (Table 1, p-value< 0.05). Polynucleotide
kinase 30-phosphatase (PNK) and the cyclooxygenase 2 (COX-2) were
the highest positively altered genes, followed by oxidative stress
responsive 1 (OXSR1) and peroxiredoxin 2 (PRDX2) genes. Expression
of PNK and COX-2 proteins was also concomitantly and

significantly increased with AuNP treatment compared to control
(Fig. 7A and B, p-value< 0.05). The PNK protein is known to
function in DNA double strand break repair [29]. COX-2 a stress
inducible enzyme, is expressed only in certain cell types and is an
indicative marker of inflammation [30]. Its association with
oxidative stress has only been recently established as 4-hydrox-
ynonenal, another aldehydic product of lipid peroxidation was
found, in combination with oxidized low density lipoprotein (LDL),
to be potent inducers of COX-2 [31]. It is likely that MDA could also
induce COX-2 expression in a similar manner to 4-hydroxynonenal

Fig. 6. Whole cell lysate western blot against MDA protein adducts showing significant
increase in OD values of AuNP treated cells (OD p-value< 0.05). Error bars¼ SEM.

Table 1
PCR Array RT2 Profiler results showing genes that were significantly upregulated.

Gene Fold regulation p value (<0.05)

OXSR1 Oxidative-stress responsive 1 1.30 0.0373
PNK Polynucleotide kinase 30-phosphatase 1.59 0.0386
PRDX2 Peroxiredoxin 2 1.29 0.0414
COX-2 Cyclooxygenase-2 1.45 0.0379
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as MDA adducts are also present in LDL [32]. The increase in
aldehydic products of lipid peroxidation together with the oxida-
tive modification of LDL could contribute to induction of COX-2
expression [33]. On the other hand, MDA is also known to be
a product of prostaglandin biosynthesis [34], therefore setting up
a feedback loop by which the production of MDA in turn further
induces expression of COX-2.

The results put together validate the notion that AuNP induces
oxidative stress in human lung fibroblast cells. However, the repair
mechanism for damaged DNA in the lung fibroblasts may be
functionally intact as upregulation of PNK in treated cells may be
indicative of the response by the cellular repair system reacting to
the oxidative DNA damage induced by the AuNP treatment.
However, there was upregulation of such genes such as

Table 2
Gene Table of the 84 genes assayed with Human Oxidative Stress pathway PCR array RT2 Profiler.

Gene Description Fold change p-value Gene Description Fold change p-value

ALB Albumin �1.10 0.5909 MTL5 Metallothionein-like 5, testis-specific (tesmin) 1.22 0.1046
ALOX12 Arachidonate 12-lipoxygenase 1.09 0.7958 NCF1 Neutrophil cytosolic factor 1, (chronic

granulomatous
disease, autosomal 1)

1.14 0.7086

ANGPTL7 Angiopoietin-like 7 �1.47 0.3951 NCF2 Neutrophil cytosolic factor 2 (65 kDa, chronic
granulomatous disease, autosomal 2)

1.20 0.2147

AOX1 Aldehyde oxidase 1 1.23 0.2245 NME5 Non-metastatic cells 5, protein expressed in
(nucleoside-diphosphate kinase)

�1.07 0.4729

APOE Apolipoprotein E 1.42 0.2483 NOS2A Nitric oxide synthase 2A (inducible,
hepatocytes)

�1.48 0.5759

ATOX1 ATX1 antioxidant protein 1 homolog (yeast) �1.00 0.9764 NOX5 NADPH oxidase, EF-hand calcium binding
domain 5

�1.10 0.8791

BNIP3 BCL2/adenovirus E1B 19 kDa interacting
protein 3

�1.11 0.6041 NUDT1 Nudix (nucleoside-diphosphate linked
moiety X)-type motif 1

1.14 0.0713

CAT Catalase 1.13 0.4883 OXR1 Oxidation resistance 1 �1.10 0.8328
CCL5 Chemokine (CeC motif) ligand 5 �1.52 0.1072 OXSR1 Oxidative-stress responsive 1 1.30 0.0373
CCS Copper chaperone for superoxide dismutase 1.20 0.4568 PDLIM1 PDZ and LIM domain 1 (elfin) �1.09 0.7943
CSDE1 Cold shock domain containing E1, RNA-binding 1.17 0.1914 PIP3-E Phosphoinositide-binding protein PIP3-E �1.31 0.5485
CYBA Cytochrome b-245, alpha polypeptide 1.27 0.2839 PNKP Polynucleotide kinase 30-phosphatase 1.59 0.0386
CYGB Cytoglobin 1.38 0.3042 PRDX1 Peroxiredoxin 1 �1.00 0.9737
DGKK Diacylglycerol kinase, kappa 1.31 0.3837 PRDX2 Peroxiredoxin 2 1.29 0.0414
DHCR24 24-dehydrocholesterol reductase 1.48 0.1174 PRDX3 Peroxiredoxin 3 �2.00 0.3388
DUOX1 Dual oxidase 1 �1.04 0.9268 PRDX4 Peroxiredoxin 4 �1.01 0.9018
DUOX2 Dual oxidase 2 1.31 0.3837 PRDX5 Peroxiredoxin 5 1.14 0.2322
DUSP1 Dual specificity phosphatase 1 1.29 0.2056 PRDX6 Peroxiredoxin 6 1.26 0.1177
EPHX2 Epoxide hydrolase 2, cytoplasmic 1.31 0.3837 PREX1 Phosphatidylinositol 3,4,5-trisphosphate-

dependent
RAC exchanger 1

1.57 0.2248

EPX Eosinophil peroxidase �1.10 0.7729 PRG3 Proteoglycan 3 1.31 0.3837
FOXM1 Forkhead box M1 1.17 0.2960 PRNP Prion protein (p27-30) (Creutzfeldt-Jakob

disease, GerstmanneStrauslereScheinker
syndrome, fatal
familial insomnia)

�1.89 0.7665

GLRX2 Glutaredoxin 2 �1.13 0.3527 PTGS1 Prostaglandin-endoperoxide synthase 1
(prostaglandin G/H synthase and
cyclooxygenase)

1.34 0.1879

GPR156 G protein-coupled receptor 156 1.01 0.9317 PTGS2 Prostaglandin-endoperoxide synthase 2
(prostaglandin G/H synthase and
cyclooxygenase)

1.47 0.0379

GPX1 Glutathione peroxidase 1 �1.10 0.5627 PXDN Peroxidasin homolog (Drosophila) 1.23 0.0679
GPX2 Glutathione peroxidase 2 (gastrointestinal) �1.30 0.5481 PXDNL Peroxidasin homolog (Drosophila)-like 1.24 0.5688
GPX3 Glutathione peroxidase 3 (plasma) 1.11 0.5260 RNF7 Ring finger protein 7 1.12 0.3162
GPX4 Glutathione peroxidase 4 (phospholipid

hydroperoxidase)
1.24 0.3008 SCARA3 Scavenger receptor class A, member 3 1.39 0.0569

GPX5 Glutathione peroxidase 5 (epididymal
androgen-related protein)

�1.11 0.8053 SELS Selenoprotein S 1.34 0.0647

GPX6 Glutathione peroxidase 6 (olfactory) 1.10 0.8333 SEPP1 Selenoprotein P, plasma, 1 �1.17 0.3312
GPX7 Glutathione peroxidase 7 �1.03 0.8865 SFTPD Surfactant, pulmonary-associated protein D 1.70 0.1395
GSR Glutathione reductase �1.18 0.7512 SGK2 Serum/glucocorticoid regulated kinase 2 1.40 0.3661
GSS Glutathione synthetase 1.15 0.3164 SIRT2 Sirtuin (silent mating type information

regulation 2 homolog) 2 (S. cerevisiae)
1.35 0.1520

GSTZ1 Glutathione transferase zeta 1
(maleylacetoacetate isomerase)

1.13 0.2953 SOD1 Superoxide dismutase 1, soluble (amyotrophic
lateral sclerosis 1 (adult))

1.07 0.5305

GTF2I General transcription factor II, i 1.32 0.0719 SOD2 Superoxide dismutase 2, mitochondrial 1.10 0.3821
KRT1 Keratin 1 (epidermolytic hyperkeratosis) 1.31 0.3837 SOD3 Superoxide dismutase 3, extracellular �1.01 0.9787
LPO Lactoperoxidase 1.31 0.3837 SRXN1 Sulfiredoxin 1 homolog (S. cerevisiae) 1.46 0.0818
MBL2 Mannose-binding lectin (protein C) 2, soluble

(opsonic defect)
1.31 0.3837 STK25 Serine/threonine kinase 25 (STE20 homolog,

yeast)
1.10 0.6343

MGST3 Microsomal glutathione S-transferase 3 1.04 0.7765 TPO Thyroid peroxidase 1.35 0.5574
MPO Myeloperoxidase �1.37 0.5614 TTN Titin �1.29 0.5276
MPV17 MpV17 mitochondrial inner membrane protein �1.03 0.7168 TXNDC2 Thioredoxin domain containing 2

(spermatozoa)
3.74 0.1001

MSRA Methionine sulfoxide reductase A �2.91 0.3895 TXNRD1 Thioredoxin reductase 1 �1.10 0.7870
MT3 Metallothionein 3 �1.99 0.3063 TXNRD2 Thioredoxin reductase 2 1.04 0.8400
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peroxiredoxin 2 (PRP), another antioxidant and OSR1, a MAP4Kinase
activated by osmotic stresses [35], which conferred protection
against oxidative stress.

With regard to COX-2 and autophagy, a previous study showed
that when celecoxib, a COX-2 inhibitor, is applied, it promoted cell
growth arrest and autophagy in glioblastoma cells [36]. Yet others
report no difference in COX-2 expression when autophagy is
inhibited [37]. It appears that there may be more than one autoph-
agy signalling pathway involved and thus regulation of these could
be controlled by other signalling proteins or factors yet unknown.

4. Conclusion

We surmise that the effect of the treatment of AuNP induces
oxidative damage in lung fibroblast cells, pulling together a myriad
of antioxidants and stress response proteins in a defence pathway.
While the presence of AuNP could create an oxidative environment,
it also affects the regulation of cellular stress response mechanisms
and at the same time induces the formation of autophagosomes,
possibly to protect the cell from succumbing to oxidative stress.
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color images can be found in the on-line version, at doi:10.1016/j.
biomaterials.2010.04.014.

References

[1] Lanone S, Boczkowski J. Biomedical applications and potential health risks of
nanomaterials: molecular mechanisms. Curr Mol Med 2006;6:651e63.

[2] Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging
discipline evolving from studies of ultrafine particles. Environ Health Perspect
2005;113(7):823e39.

[3] Yu LE, Yung L-YL, Ong C-N, Tan Y-L, Balasubramaniam KS, Hartono D, et al.
Translocation and effects of gold nanoparticles after inhalation exposure in
rats. Nanotoxicology 2007;1(3):235e42.

[4] Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are
taken up by human cells but do not cause acute cytotoxicity. Small 2005;1
(3):325e7.

[5] Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S.
Modification of gold nanorods using phosphatidylcholine to reduce cytotox-
icity. Langmuir 2006;22(1):2e5.

[6] Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, et al. Size-dependent
cytotoxicity of gold nanoparticles. Small 2007;3(11):1941e9.

[7] MacNee W, Donaldson K. Mechanism of lung injury caused by PM10 and
ultrafine particles with special reference to COPD. Eur Respir J 2003;21
(40):47Se51S.

[8] Jia HY, Liu Y, Zhang XJ, Han L, Du LB, Tian Q, et al. Potential oxidative stress of
gold nanoparticles by induced-NO releasing in serum. J Am Chem Soc
2009;131(1):40e1.

[9] Durocher S, Rezaee A, Hamm C, Rangan C, Mittler S, Mutus B. Disulfide-linked,
gold nanoparticle based reagent for detecting small molecular weight thiols. J
Am Chem Soc 2009;131(7):2475e7.

[10] Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE, et al.
Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005;5
(2):331e8.

[11] Arora S, Jain J, Rajwade JM, Paknikar KM. Cellular responses induced by silver
nanoparticles: in vitro studies. Toxicol Lett 2008;179(2):93e100.

[12] Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. Exposure of
engineered nanoparticles to human lung epithelial cells: influence of chemical
composition and catalytic activity on oxidative stress. Environ Sci Technol
2007;41(11):4158e63.

[13] Li JJ, Zou L, Hartono D, Ong C-N, Bay B-H, Yung LYL. Gold nanoparticles induce
oxidative damage in lung fibroblasts in vitro. Adv Mater 2008;20(1):138e42.

[14] Caracciolo G, Callipo L, De Sanctis SC, Cavaliere C, Pozzi D, Lagana A. Surface
adsorption of protein corona controls the cell internalization mechanism of
DC-Chol-DOPE/DNA lipoplexes in serum. Biochim Biophys Acta (BBA) e Bio-
membranes 2010;1798(3):536e43.

[15] Hartono D, Bi X, Yang K-L, Yung LYL. An air-supported liquid crystal system
for real-time and label-free characterization of phospholipases and their
inhibitors. Adv Funct Mater 2008;18(19):2938e45.

[16] Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S. The mannose 6-
phosphate receptor and the biogenesis of lysosomes. Cell 1988;52(3):329e41.

[17] Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy
2007;3(6):542e5.

[18] Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Oxidative stress
induces autophagic cell death independent of apoptosis in transformed and
cancer cells. Cell Death Differ 2008;15(1):171e82.

[19] Kiffin R, Bandyopadhyay U, Cuervo AM. Oxidative stress and autophagy.
Antioxid Redox Signal 2006;8(1e2):152e62.

Fig. 7. Validation of RT2 Profiler PCR assay. Blots probed against (A) PNK and (B) COX-2 antibodies showing upregulation of PNK and COX-2 proteins in AuNP treated samples and
their corresponding graphs of optical densities (OD p-values< 0.05). Error bars¼ SEM.

J.J. Li et al. / Biomaterials 31 (2010) 5996e60036002



Author's personal copy

[20] Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell
death. Cell Death Differ 2005;12(Suppl. 2):1528e34.

[21] Moore MN. Autophagy as a second level protective process in conferring resis-
tance toenvironmentally-inducedoxidative stress.Autophagy2008;4(2):254e6.

[22] Huang Q, Shen HM. To die or to live: the dual role of poly(ADP-ribose)
polymerase-1 in autophagy and necrosis under oxidative stress and DNA
damage. Autophagy 2009;5(2):4.

[23] Funnell WR, Maysinger D. Three-dimensional reconstruction of cell nuclei,
internalized quantum dots and sites of lipid peroxidation. J Nano-
biotechnology 2006;4(1):10.

[24] Tanida I, Tanida-Miyake E, Ueno T, Kominami E. The human homolog of
Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple
substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol
Chem 2001;276(3):1701e6.

[25] Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in
macroautophagy. ‘protein modifications: beyond the usual suspects’ review
series. EMBO Rep 2008;9(9):859e64.

[26] He C, Klionsky DJ. Regulation mechanisms and signaling pathways of
autophagy. Annu Rev Genet 2009;43(1):67e93.

[27] Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(ADP-
ribose) polymerase-1 in modulation of autophagy and necrosis under oxida-
tive stress. Cell Death Differ 2009;16(2):264e77.

[28] Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R,
Martin-Oliva D, de Murcia G, et al. PARP-1 is involved in autophagy induced
by DNA damage. Autophagy 2009;5(1):61e74.

[29] Jilani A, Ramotar D, Slack C, Ong C, Yang XM, Scherer SW, et al. Molecular
cloning of the human gene, PNKP, encoding a polynucleotide kinase 30-

phosphatase and evidence for its role in repair of DNA strand breaks caused
by oxidative damage. J Biol Chem 1999;274(34):24176e86.

[30] Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, et al.
Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflam-
mation. Proc Natl Acad Sci U S A 1994;91(6):2046e50.

[31] Kumagai T, Matsukawa N, Kaneko Y, Kusumi Y, Mitsumata M, Uchida K. A
lipid peroxidation-derived inflammatory mediator: identification of 4-
hydroxy-2-nonenal as a potential inducer of cyclooxygenase-2 in macro-
phages. J Biol Chem 2004;279(46):48389e96.

[32] Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, Baynes JW, et al.
Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine
residues in native and oxidized human low-density lipoprotein. Biochem J
1997;322(Pt 1):317e25.

[33] Uchida K. A lipid-derived endogenous inducer of COX-2: a bridge between
inflammation and oxidative stress. Mol Cells 2008;25(3):347e51.

[34] Smith JB, Ingerman CM, Silver MJ. Malondialdehyde formation as an indicator
of prostaglandin production by human platelets. J Lab Clin Med 1976;88
(1):167e72.

[35] Chen W, Yazicioglu M, Cobb MH. Characterization of OSR1, a member of the
mammalian Ste20p/germinal center kinase subfamily. J Biol Chem 2004;279
(12):11129e36.

[36] Kang KB, Zhu C, Yong SK, Gao Q, Wong MC. Enhanced sensitivity of celecoxib
in human glioblastoma cells: induction of DNA damage leading to p53-
dependent G1 cell cycle arrest and autophagy. Mol Cancer 2009;8:66.

[37] Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E. Autophagy delays sulindac
sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-
29. Exp Cell Res 2001;268(2):139e49.

J.J. Li et al. / Biomaterials 31 (2010) 5996e6003 6003



lable at ScienceDirect

Biomaterials xxx (2011) 1e9
Contents lists avai
Biomaterials

journal homepage: www.elsevier .com/locate/biomater ia ls
Genomic instability of gold nanoparticle treated human lung fibroblast cells

Jasmine J. Li a,d, Soo-Ling Lo a, Cheng-Teng Ng a,d, Resham Lal Gurung b, Deny Hartono d,
Manoor Prakash Hande b, Choon-Nam Ong c, Boon-Huat Bay a,*, Lin-Yue Lanry Yung d,*

aDepartment of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
bDepartment of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
cDepartment of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
dDepartment of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 119260, Singapore
a r t i c l e i n f o

Article history:
Received 16 February 2011
Accepted 6 April 2011
Available online xxx

Keywords:
Gold nanoparticles
Proteomic analysis
Lung fibroblast
Genotoxicity
* Corresponding author. Tel.: þ65 6516 1699.
E-mail addresses: antbaybh@nus.edu.sg (B.-H

(L.-Y.L. Yung).

0142-9612/$ e see front matter � 2011 Elsevier Ltd.
doi:10.1016/j.biomaterials.2011.04.023

Please cite this article in press as: Li JJ, et al.
doi:10.1016/j.biomaterials.2011.04.023
a b s t r a c t

Gold nanoparticles (AuNPs) are one of the most versatile and widely researched materials for novel
biomedical applications. However, the current knowledge in their toxicological profile is still incomplete
and many on-going investigations aim to understand the potential adverse effects in human body. Here,
we employed two dimensional gel electrophoresis to perform a comparative proteomic analysis of AuNP
treated MRC-5 lung fibroblast cells. In our findings, we identified 16 proteins that were differentially
expressed in MRC-5 lung fibroblasts following exposure to AuNPs. Their expression levels were also
verified by western blotting and real time RT-PCR analysis. Of interest was the difference in the oxidative
stress related proteins (NADH ubiquinone oxidoreductase (NDUFS1), protein disulfide isomerase asso-
ciate 3 (PDIA3), heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and thioredoxin-like
protein 1 (TXNL1)) as well as proteins associated with cell cycle regulation, cytoskeleton and DNA
repair (heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and Secernin-1 (SCN1)). This
finding is consistent with the genotoxicity observed in the AuNP treated lung fibroblasts. These results
suggest that AuNP treatment can induce oxidative stress-mediated genomic instability.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The current knowledge of the toxicological profile of gold
nanoparticles (AuNPs) is incomplete and this is inhibiting their
use in many clinical applications including diagnostic imaging [1],
drug delivery [2,3] and photothermal therapy [4]. Bulk gold is
a yellow solid and relatively inert, while AuNPs at nanosize appear
wine red in solution and their biological activity is still not entirely
understood. The unique characteristics and properties of the
nanosized particles also make it hard to predict their biological
reactivity. Some studies have suggested that AuNPs may cause
toxicity in vitro, citing oxidative stress and DNA damage as results
of AuNP treatment [5,6,7]. In vivo studies also reflect similar
observations; AuNPs exhibited pulmonary toxicity and genotox-
icity in mice as well as oxidative stress in aquatic species [8,9]. One
study on inhalation exposed rats to AuNPs also showed
. Bay), cheyly@nus.edu.sg
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differential expression in global gene analysis in various organ
tissues [10]. As we had previously reported, AuNP treatment also
induces oxidative stress, autophagy and DNA damage in vitro
[5,11]. It would seem that, there is still a need to perform in depth
investigations on the toxicity profile of AuNPs for its use in bio-
applications to be safe and meaningful.

Proteomic techniques, such as two dimensional gel electro-
phoresis (2D-GE), are useful tools in the field of drug and
toxicity studies. In 2D-GE, proteins are separated according to 2
measures, firstly by their isoelectric points and secondly by
molecular weight through SDS-PAGE gel electrophoresis. It is
one of the most common tools currently used in toxicity studies
today. Coupling it with mass spectrometry, specifically the
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI TOF MS), allows the identification of
protein biomarkers of disease progression or predictive markers
of toxicogenesis [12]. The use of proteomic techniques in toxi-
cological studies is steadily growing as the field relies more
heavily on molecular data to identify critical protein changes
and pathways to provide a reliable predictive platform for drug
development and toxicological profiling [13,14]. A number of
anoparticle treated human lung fibroblast cells, Biomaterials (2011),
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researches have classified the use of proteomics in toxicity
studies into two levels. Tier I analysis refers to global protein
mapping and profiling for differential expression while Tier II
involves elucidating the protein functions and interactions as
well as how specific post-translational modifications and their
threedimensional structure affect these processes [14].

The primary focus of the current study was on the quantifi-
cation and identification of proteins (Tier I analysis) and its
differential expression upon AuNP treatment since nanomaterial-
induced toxicological profiles are still largely unknown. We per-
formed a comparative analysis of the protein expression profile of
AuNP treated and control human fetal MRC-5 lung fibroblasts. To
confirm the proteomic findings, selected protein expression results
were verified by western blotting and real time RT-PCR analysis. In
addition, we further correlated the above investigations with the
alkaline single-cell gel electrophoresis assay (comet assay) and the
fluorescence in situ hybridization (FISH) assay to assess DNA
damage and chromosomal aberrations caused by in vitro exposure
to AuNPs.
Fig. 1. Representative map of silver-stained two dimensional electrophoresis from MRC-5 w
were labeled with their respective Swiss-Prot accession numbers.
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2. Materials & methods

2.1. Cell culture

The cells used were MRC-5 human fetal lung fibroblast cells (ATCC No.: CCL-171)
cultured in RPMI 1640 media and supplemented with 10% fetal bovine serum (FBS)
in 100 mg/ml penicillin/streptomycin in a 37 �C, 5% CO2 incubator.

2.2. AuNP synthesis and preparation

Gold nanoparticles (AuNPs) of 20 nm in diameter, were prepared in citrate
reduction from gold salts. The nanoparticles were spun down to remove the citrate
buffer and subsequently coated with fetal bovine serum, washed and reconstituted
in phosphate buffer saline (PBS) solution to form the stock solution. The AuNP stock
solution was then sterile filtered before addition into treatment media.

2.3. AuNP treatment

MRC-5 cells were seeded in 6 wells cell culture plates (NUNC) at a seeding
density of 4 � 104 cells/ml and treated with 1 nM concentration of AuNP in growth
media the following day. Control cells were cultured in growth media. Treated and
control cells were then incubated for 72 h before harvesting.
hole cell lysate focused on a non-linear pH 4e7 IPG strip. Sixteen proteins identified
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Table 1
List of protein spots undergoing quantitative changes with AuNP treatment as identified by MALDI-TOF/TOF MS.

Protein namea Accession no.a Protein score/%
coverageb

Mr (Da)/PIb Control vs
treatmentc,d

t-test
(p-value)

NADH ubiquinone oxidoreductase P28331 664/45 80,443/5.89 þ12.1171 <0.0001
Lysyl-tRNA synthetase Q15046 130/11 68,461/5.94 þ2.7730 0.0052
Protein disulfide isomerase associated 3 P30101 440/25 54,454/6.78 Not detected in control NA

428/36 54,454/6.78 Not detected in control NA
926/45 54,454/6.78 þ1.4547 0.0461

V-type proton ATPase subunit B P21281 891/60 55,708/5.40 þ3.2155 0.0383
Secernin-1 Q12765 141/13 47,020/4.69 �1.5945 0.0041
Vimentin P08670 794/66 49,680/5.19 �1.8346 0.0023
Ribonuclease inhibitor P13489 102/42 51,766/4.71 þ1.6793 0.0195
Eukaryotic translation initiation factor 2 subunit 2 P20042 84/15 38,706/5.60 þ1.5887 0.0031
Heterogeneous nuclear ribonucleoproteins C1/C2 P07910 430/25 32,375/4.94 �1.7400 0.0006

54/15 32,375/4.94 �1.8196 0.0007
55/12 32,375/4.94 �1.6838 0.0061

Erlin 2 O94905 216/51 38,044/5.47 þ1.5043 0.0004
Protein kinase C delta-binding protein Q969G5 429/38 27,685/6.05 �1.5111 0.0013
Thioredoxin-like protein 1 O43396 129/53 32,630/4.84 �2.3040 0.0002
C-terminal-binding protein 2 P56545 125/33 49,427/6.47 �1.5745 0.0024
Ubiquitin carboxyl terminal hydrolase isozyme L1 P09936 287/48 25,151/5.33 þ2.3386 0.0085
Glutathione S-transferase P P09211 406/47 23,569/5.43 þ2.8476 0.0026
Translationally-controlled tumor protein P13693 184/45 19,697/4.84 þ2.9485 0.0019

a Protein name and accession numbers were derived from Swiss-Prot.
b Protein score, percentage of coverage and Mr (Da)/PI were derived from MASCOT.
c Protein spots were quantified based on the normalized average percentage of volume derived from ImageMaster 2D Platinum 6.0 software analysis.
d Approximate fold-changes of protein expression were derived from the ratio of normalized average percentage of volume of treatment to control protein spots or vice

versa. A “þ” indicates upregulation in the nano gold particles treated samples while “e” indicates downregulation.
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2.4. Protein extraction

Cells were washed once in PBS and then twice in 0.35 M sucrose to minimize
contamination with salts. The cells were then harvested with a cell scrapper in
0.35 M sucrose containing proteinase inhibitor mix (Amersham Biosciences). The cell
pellets were collected after centrifugation at 2000 rpm for 5 min at 4 �C and was
subsequently resuspended in lyses buffer containing 7 M urea, 2 M thiourea, 4%
CHAPS, 20 mM dithiothreitol, 0.5% Pharmalyte pH 4e7, proteinase inhibitor mix and
nuclease mix (Amersham Biosciences). Protein concentrations were determined
using a 2 D Quant Kit (Amersham Biosciences).
2.5. Two dimensional gel electrophoresis (2D-GE)

For analytical and preparative gels, approximately 80 ug and 240 ug respectively,
of proteins were loaded into the rehydrated 18 cm non-linear Immobilized pH
gradient (IPG) strip (pH 4e7) using the cup-loading method. The first dimensional
isoelectric focusing (IEF) run was carried out using the following conditions: (i)
300 V, 450 V h; (ii) 500 V, 250 V h; (iii) 1000 V,1000 V h; (iv) 1000e8000 V, 3500 V h
and (v) 8000 V, 32,000 V h. Voltage increases for (i), (ii), (iii), and (v) were performed
on a “stepwise” basis, while the increase for (iv) was on a “linear gradient”. This was
followed by the second dimensional SDS-PAGE, performed on 1.0 mm 9% poly-
acrylamide gels at a constant power of 10 W per gel at 16 �C by using Ettan DALTsix
electrophoresis system (Amersham Biosciences). All samples were run in triplicate
to ensure reproducibility.
2.6. Protein visualization and image analysis

2 D gels were visualized by staining with PlusOne silver staining kit (GE
Healthcare) according to manufacturer’s instructions. Silver-stained gels were
scanned by an image scanner and all the triplicate gels were then analyzed with
ImageMaster 2D Platinum 6.0 (GE Healthcare).
2.7. In-gel reduction, alkylation and trypsin digestion of protein spots

Silver-stained protein spots were excised manually and cut into small pieces.
The gel pieces were dehydrated in 100 ml of 100% acetonitrile, dried and rehydrated
in 20 ul of solution containing 10 mM dithiothreitol in 100 mM ammonium bicar-
bonate. Further preparation involved repeated wash and dehydration steps with
ammonium bicarbonate and acetonitrile. The gel pieces were subsequently digested
with 10 ml of 0.01 mg/ml sequencing grade modified trypsin (Promega) in 50 mM

ammonium bicarbonate and incubated at 37 �C for 14 h. To enhance peptide
extraction, 10 ml of 0.1% trifluoroacetic acid in 50% acetonitrile was added to the gel
pieces for final extraction. The extracts were dried in a Speedvac before mass
spectrometry analysis.
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2.8. MALDI-TOF/TOF MS and protein identification

Dried extract was re-dissolved in 1 ml of matrix solution containing 5mg/ml of a-
cyano-4 hydroxycinnamic acid (CHCA) in 0.1% trifluoroacetic acid and 50% aceto-
nitrile. The extract was spotted onto the MALDI target plate, and allowed to dry in
air, prior to mass spectrometry analysis using an Applied Biosystems 4800 Proteo-
mics Analyzer MALDI-TOF/TOF Mass Spectrometer (Framingham). For the purposes
of peptide and protein identification, the GPS explorer� software Version 3.6
(Applied Biosystems) was used to create and search files with the MASCOT search
engine (Version 2.1; Matrix Science).

2.9. Western blotting

Protein extracted from cell lysates as described abovewas resolved on SDS-PAGE
gel and transferred onto PVDFmembrane via semidry transfer (BioRad). Membranes
were blocked in 5% non-fat milk andwashed in Tris-buffered salinewith 0.1% Tween.
Membranes were incubated with primary antibody, followed by the corresponding
secondary antibodywith 3washing steps in between. Protein bands were developed
with chemiluminescence substrate (Pierce) and visualized on XPress CL blue ray film
(Pierce). Optical densities of bands were measured on the GS710 Densitometer and
band intensities were analyzed with Quantity One image analysis software (Biorad).
Primary antibodies usedwere as follows: PDIA3 (ab10287, Abcam) and hnRNP C1/C2
(ab10294, Abcam).

2.10. Real time RT-PCR

MRC-5 cells were treated with AuNPs for 48 h prior to RNA extraction with
RNeasy Mini kit (Qiagen). Total RNA was then converted to cDNA with the Super-
script III First Strand cDNA Synthesis kit (Invitrogen). Subsequently, real time PCR
was carried out on an ABI 7900HT system using the FAST format and SYBR green
mastermix (Applied Biosystems). Primer sequences for the genes of interest are
listed as follows: Protein disulfide isomerase associate 3 (PDIA3/ERp57) AAG CTC
AGC AAAGAC CCA AA (forward), CAC TTA ATT CAC GGC CAC (reverse); V-type proton
ATPase B2 (VATB) GAG GGG CAG ATC TAT GTG GA (forward), GGC TTC TTC TCC AAC
GAC AG (reverse); heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP CI/C2)
TGT GGA GGC AAT CTT TTC GA (forward), TGA TAC ACG CTG ACG TTT CG (reverse);
housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) GAA GGT
GAA GGT CGG AGT CAA CG (forward), TGC CAT GGG TGG AAT CAT ATT GG (reverse).
Fold change was calculated with the DD2CT method.

2.11. Alkaline single-cell gel electrophoresis (comet assay)

Treated cells were harvested and washed twice in PBS before resuspending in
phosphate buffer saline solution (PBS). The cells were embedded in 0.8% low
melting agarose (Pronadisa, Spain) on comet slides (Trevigen) and lysed in pre-
chilled lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris base, pH 10) with 1%
Triton � (Trevigen) for 1 h at 4 �C. Cells were then subjected to denaturation in
anoparticle treated human lung fibroblast cells, Biomaterials (2011),



Fig. 2. Two dimensional gel electrophoresis (2D-GE) of AuNPs treated cellular protein extracts. Arrows with respective labels indicate protein spots with significant differences in
expression. Comparing control and AuNP treated samples reveal spot differences. Upon mass spectrometry analysis, protein spots were identified as indicated.
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alkaline buffer (0.3 M NaCl, 1 mM EDTA) for 40 min in the dark at room temper-
ature. Electrophoresis was performed at 25 V and 300 mA for 20 min. The slides
were immersed in neutralization buffer (0.5 M Tris-HCl, pH 7.5) for 15 min fol-
lowed by dehydration in 70% ethanol. Subsequently they were air-dried and
stained with SYBR green dye. The tail moments of the nuclei were measured as
a function of DNA damage. Analysis was done using comet imager v1.2 software
(Metasystems GmbH). 50 comets were analyzed per concentration. Experiments
were done in duplicates.
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2.12. Florescence in situ hybridization assay (FISH assay)

The FISH assay detects and identifies types of DNA damage and aberrations.
MRC-5 cells were treated in the typical condition of 1 nM AuNP for 72 h and allowed
to grow for another 24 h in the absence of AuNPs. The cells were subsequently
arrested at mitosis by treatment with colcemid (0.1 mg/ml) in media. Cells were then
fixed in Carnoy’s fixative and then incubated with a hypotonic solution (0.075 M KCl)
at 37 C for 15 min. Subsequently, cells were stained with telomere specific peptide
anoparticle treated human lung fibroblast cells, Biomaterials (2011),



Fig. 2. (continued).
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nucleic acid (PNA) probes labeled with Cyc3 and centromere specific PNA probes
labeled with FITC. The cells were counterstained with 40 ,6-diamidino-2-phenyl-
indole (DAPI) to visualize the chromosomes. Metaphase spreads (50 per treatment)
were captured on a Zeiss Axioplan 2 imaging fluorescence microscope (Carl Zeiss)
and analysed using the in situ imaging software (Metasystems GmbH).

2.13. Statistical analysis

All statistical analyses were performed on the Graphpad Prism 4.0 software.
Statistical analyses of the values for all experiments are expressedasmean� standard
deviation. The data were analyzed using Student’s t test or One-Way ANOVA
(Graphpad Prism, USA). Those with p < 0.05 are considered as significant.

3. Results

3.1. Two dimensional gel electrophoresis

Sixteen proteins were found to be differentially expressed in the
treated samples (Fig. 1, Table 1, p < 0.05). The identities of these
proteins were revealed by mass spectrometry as shown in Fig. 2. Of
particular interests are many of the proteins associated with the
Fig. 3. Western blotting of oxidative stress related proteins hnRNP and PDIA3 proteins. (A) h
41 kDa and 43 kDa. Optical density of band intensity of control compared with AuNP trea
Conversely, probing with PDIA3 antibodies reveal an upregulation in AuNP treated samples.
control (p-value < 0.01). Error bars ¼ SEM.
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oxidative stress pathways. There was a 12 fold upregulation of
NADH ubiquinone oxidoreductase (NDUFS1) and a 2.7 fold upre-
gulation for disulfide isomerase associated 3 (PDIA3) protein (also
known as ER60 or ERp57), an endoplasmic reticulum protein
associated with cellular stress [15] (Fig. 2 & Table 1; p < 0.05). The
heterogeneous nuclear ribonucleoproteins C1/2 (hnRNP C1/2), an
mRNA binding protein involved in mRNA export, localization,
translation and stability [16] showed significant downregulation by
almost 2 fold with AuNP treatment as compared to control (Table 1,
p < 0.01). Thioredoxin-like protein isoform 1 (TXNL1), a thio-
redoxin which is involved in regulating oxidative stress [17] was
observed to be down-regulated by more than 2 fold in the treated
samples (Table 1, p ¼ 0.0002). Western blotting also confirmed
significant downregulation of hnRNP C1/2 expression (Fig. 3,
p < 0.01) and increased PDIA3 protein expression in AuNP treated
samples (Fig. 3, p < 0.01). In addition, several proteins associated
with cell cycle regulation, cytoskeleton and DNA repair were also
affected (Table 1). They include heterogeneous nuclear ribonucleus
protein C1/C2 (hnRNP C1/C2) and Secernin-1 (SCN1).
nRNP antibodies probe for both C1 and C2 isoforms visualised as 2 bands at band size
ted samples show downregulation of hnRNP protein expression (p-value < 0.01). (B)
Optical density of band intensity is significantly higher in AuNP treatment compared to

anoparticle treated human lung fibroblast cells, Biomaterials (2011),



Fig. 4. Fold change of PDIA3, VATB and hnRNP C1/C2 genes from real time RT-PCR
analysis at 24 h and 48 h post AuNP treatment. Although results were not signifi-
cant, the trend in gene expression corresponds with our results in the proteomics
assay. PDIA3 and VATB gene expressions showed an upregulation in fold change with
time while hnRNP C1/C2 gene expression exhibited a downward trend that matched
the decrease in the protein expression level.

Fig. 5. Comet assay on control and AuNP treated MRC-5 lung fibroblasts. Cells were treated
SYBR greenwhich visualizes the comet “tail”, the length of which is an indicator of DNA dam
longer tail, indicative of the presence of higher DNA damage, particularly strand breaks. (C)
cells have significantly higher DNA damage than control (p-value < 0.05). Tail moment is u
colour in this figure legend, the reader is referred to the web version of this article).
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3.2. Real time RT-PCR

We further validated our proteomic results with real time RT-
PCR for a few selected genes. Although the results were not
significant, we detected a trend in the gene expression of PDIA3,
VATB and hnRNP C1/C2 over time, which corresponded with the
upregulation and downregulations in our proteomic results
(Fig. 4).
3.3. Genomic instability assays

The comet assays showed positive results for DNA damage in the
AuNP treated MRC-5 lung fibroblasts. Comet tail moments were
found to be significantly higher in the treated group than in the
control (Fig. 5C, p< 0.05). As shown by FISH, AuNP treated cells had
a significant> 4 fold increase in aberrations per cell as compared to
the controls (Fig. 6A, p < 0.0001). All aberrations observed were
chromosomal breaks with the majority being undetectable telo-
meres (Fig. 6C). No chromosomal fusions were found. It would
appear that that short-term AuNP treatment is likely to cause
chromosomal breaks in MRC-5 fibroblasts that persist even after
one population doubling.
for 72 h in 1 nM AuNP and subsequently run on alkaline electrophoresis and stained in
age. (A) Control cells show little to no tail. (B) AuNP treated cells display a comparatively
Analysis of 100 cells per treatment captured by the software showed that AuNP treated
sed as the comparative value. Error bars ¼ SEM (For interpretation of the references to

anoparticle treated human lung fibroblast cells, Biomaterials (2011),



Fig. 6. Fluorescence In Situ Hybridization (FISH) analysis of control and AuNP treated MRC-5 lung fibroblasts (1 nM concentration and 72 h). 50 cells per treatment were analyzed
and found to have a higher incidence of chromosomal aberrations in the AuNP treated cells as compared with the untreated controls. Red arrows point to chromosomal aberrations.
(A) Bar chart of average number of aberrations per cell (n ¼ 50). There is a significant > 4 fold difference between control and treated cells (p-value < 0.0001). Error bars ¼ SEM. (B)
Metaphase spreads of control and AuNP treated cells respectively. (C) Chromosomal breaks and undetectable telomere were the aberrations detected. No fusion was observed (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this articl).
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4. Discussion

The 2D-GE technique is a useful tool for global proteomic
analysis in toxicity research, and they play an increasingly impor-
tant role in toxicity biomarker discovery and validation [18,19].
Studies which employ this proteomic technique have been used in
experiments involving silica nanoparticles [20], multi-walled
carbon nanotubes [21], titanium dioxide nanoparticles [22],
airborne particulate matter [23] and silver nanoparticles [24] but
there are few on AuNPs [25].

In this present study, the protein NDUFS1 is the core and largest
subunit of the mitochondrial membrane respiratory chain NADH
dehydrogenase (also known as complex I) was found to be highly
upregulated in AuNP treated lung fibroblasts. NDUFS1 is the most
basic unit required for catalysis reactions. Complex I functions in
the transfer of electrons from NADH to the respiratory chain with
ubiquinone as the immediate electron acceptor. It has an iron-
sulfur protein (IP) component that forms part of the active site
crevice where NADH is oxidized. Hence, complex 1 is known to be
the major source of superoxide O2 and ROS in human fibroblasts
[26] which correlates with our previous findings of induction of
oxidative stress in AuNP treated cells [5].

AuNP treatment also affects other oxidative stress related
proteins, particularly the antioxidant proteins. PDIA3, better known
as ER60 or ERp57, is known to display protective ability against H2O2

toxicity (oxidative stress) and upon binding to protein Ref-1, are
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involved in activation of a number of transcription factors [27]. Not
surprisingly, the upregulation of this protein is also accompanied by
a similar upregulation of various transcription and translation factors
in the 2D-GE results. This same complex has also been implicated in
DNA repair, as cellular sensors for DNA damage mismatch repairs
[28,29]. Increased expression of PDIA3, which has an antioxidant
function, is also an appropriate cellular response to oxidative stress
and DNA damage caused by AuNP treatment. TXNL1, which is
reported to be protective against glucose deprivation cytotoxicity
[17] was also down-regulated. Both PDIA3 and TXNL1 are part of the
thioredoxin superfamily of which is also known to regulate cellular
redox potential and prostaglandin synthase [30].

The downregulation of heterogeneous nuclear ribonucleus
protein C1/C2 (hnRNPC1/C2) expression is another point of interest.
The main function of this protein is binding to pre-mRNA and
nucleates the assembly of 40S hnRNP particles [31]. They also
modulate the stability and the level of translation of bound mRNA
molecules. Interestingly, downregulation of hnRNP C1/C2 sensitizes
cells to stress [32].Moreover, a numberof studieshave linkedhnRNP
C1/C2 with repair of DNA strand breaks [33,34], implicating its role
in coordinating DNA repair mechanisms in the cell. Our findings are
believed to point towards the non-homologous end-joining (NHEJ)
pathway of DNAdamage repair in the AuNP treated lung fibroblasts.
The comet and the FISH assays in this current study also showed
evidence of DNA and chromosomal breaks. Therefore, it is plausible
that AuNPs can induce DNA damage and impair DNA repair
anoparticle treated human lung fibroblast cells, Biomaterials (2011),
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responses through the dysregulation of DNA repair genes involved
in the NHEJ pathway [11] leading to persistent DNA damage. In our
previous paper [5], we found upregulation of polynucleotide kinase
(PNK) gene, another gene known to be involved with the NHEJ
pathway [35,36] corroborating the results of this present study.

The rest of the differentially expressed proteins are mainly
involved as cell cycle regulators or have involvement in the cell
cytoskeleton or even possibly tumorigenesis. Vimentins are inter-
mediary filaments found abundantly in fibroblast cells [37].
Secernin-1 (SCN1) is a cytosolic protein with roles in the regulation
of exocytosis in mast cells and recently found to be a prognostic
marker for gastric cancer [38,39]. Translationally-controlled tumor
protein (TCPT) stablizes microtubules and has calcium binding
properties [40]. Early translation factor proteins are the eukaryotic
translation initiation factor2 (eIF2-beta) [41] and lysyl-tRNAsythase
(lysRNA), the latter also has roles as a proinflammatory signaling
molecule and can cause cell toxicity when bound to mutant form of
superoxide dismutase [42,43]. The upregulation of these proteins in
our study signals the role of these proteins in AuNP-induced
oxidative stress in fibroblasts. Another cell cycle protein includes
the C-terminal-binding protein II (CtBP2) is known as a corepressor
of transcription [44] with important regulatory roles in develop-
ment and oncogenesis [45]. V-type proton ATPase subunit B2
(VATB2) is part of a larger complex of V-ATPases proton pumps that
acidify endocytic and exocytic organelles [46]. Erlin 2 (SPFH2)
belongs to a family of prohibitin proteins on the endoplasmic
reticulum that degrade IP3 receptions on the ER membrane [47],
dysregulation of this protein could disrupt cellular signaling path-
ways. Glutathione S transferase P (GSTP1-1) is a detoxification
enzyme that catalyzes the conjunction of various hydrophilic
compounds and electrophilic compounds with glutathione [48].
Ribonuclease inhibitor (RNH) in tissueshas strong affinity binding to
ribonucleases and recent studies show that it may have anti-tumor
effects in hematopoietic cells [49]. Notmuch is known about protein
kinase C delta-binding protein (hSRBC) however it may possess
some tumor suppressor properties inprimary lung cancers [50]. The
ubiquitin carboxyl terminal hydrolase isozyme L1 (UCH-L1) is a thiol
protease that has been reported to possess tumor suppressor char-
acteristics in nasopharyngeal carcinomas [51].

5. Conclusion

We have employed the use of 2D-GE proteomic technique to
uncover more of the cellular changes occurring within the MRC-5
fibroblasts during AuNP treatment. Proteins that were differen-
tially expressed were found to cover a range of functions including
oxidative stress response as well as regulation of cell cycle and
cytoskeleton. AuNP treatment also caused sustained DNA strand
breaks and chromosomal breaks induced by oxidative stress. We
propose that these changes reflect the state of oxidative stress inside
the cell and they are cellular responses of protection and repair.
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Abstract
In recent decades, advances in nanotechnology engineering have given rise to the rapid development of many novel

applications in the biomedical field. However, studies into the health and safety of these nanomaterials are still lacking.

The main concerns are the adverse effects to health caused by acute or chronic exposure to nanoparticles (NPs),

especially in the workplace environment. The lung is one of the main routes of entry for NPs into the body and, hence, a

likely site for accumulation of NPs. Once NPs enter the interstitial air spaces and are quickly taken up by alveolar cells,

they are likely to induce toxic effects. In this review, we highlight the different aspects of lung toxicity resulting from NP

exposure, such as generation of oxidative stress, DNA damage and inflammation leading to fibrosis and pneumoconiosis,

and the underlying mechanisms causing pulmonary toxicity.
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Introduction

The study of nanotechnology has emerged in the last few
decades due to advances in the field of engineering,
which have facilitated rapid and mass production of engin-
eered nanomaterials. These particles, defined as having at
least one dimension in the nanoscale, are so small that
they can easily enter or diffuse through pores of mem-
branes. They also possess characteristics much different
from their bulk counterparts. Nanomaterials form the foun-
dation for the development of ground-breaking nanomedi-
cal devices applied in drug delivery and biomarker
discovery, as well as in molecular diagnostics.1 Even now,
various nanomaterials are increasingly incorporated into
many consumer items, such as clothing and plastic
wares,1,2 thus increasing the risk of human contact and
exposure to nanomaterials, not just in the industrial work
places, but also in the home environment.

The future prospects for nanotechnology are bright and
promising. While the attention of current researchers has
been toward enhancing the applications of this novel tech-
nology, comparatively less research has been performed
to assess the potential deleterious health effects of these
unique materials. The sheer diversity of size, shape, struc-
ture and elemental constituents, including surface modifi-
cations of engineered nanoparticles (NPs), makes their

evaluation tedious and challenging. Adding to the con-
fusion, older literature would use the term ultrafine particles
(UFPs) to define both engineered NPs as well as ‘uninten-
tionally generated NP’, including combustion-derived pro-
ducts such as carbon black. With such a blanket term
used, it would give misleading reports if toxicity were to
be due to engineered NPs where properties are better estab-
lished than the accidental NPs generated (of which com-
ponents are an unknown mixture).

There are three main routes of entry of the NPs into the
human body. First, NPs are inhaled into the body from
atmospheric air via the upper respiratory tract. Exposure
to metal NPs like iron, nickel and titanium oxide NPs
(TiO2NPs), as well as the carbon-based NPs in the work
place environment has become a common event.3,4 Oral
ingestion and entry via the dermal route, either by injection
into the dermal layer or absorption through the pores of the
skin, are mainly mediated by exposure from therapeutic or
cosmetic applications.5 We have opted to focus on the res-
piratory route, which is the most important consideration
for study of atmospheric exposure to NPs. The lungs
would be the first line of contact for particles that gained
entry into the body and hence the most likely organ for
accumulation and long-term exposure. In one inhalation
study, the lung showed the highest bioavailability of gold
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nanoparticles (AuNPs) within five days of NP exposure and
significant accumulation over 15 days exposure.6 The data
from another report also highlighted that aggregates of
silver NPs (AgNPs) could be retained in the lung for
seven days, while the non-aggregated ones can easily trans-
locate to other organs.7 These studies remain even more
important as more NPs are increasingly being manufac-
tured, leading to increased occupational exposure and
release into the atmospheric environment.8

In this review, we will examine the issue of lung injury
and diseases induced by nanotoxicity, with a distinct
focus on metal-based engineered NPs. At times, we will
refer to early studies on UFP pollutants because they are
the foundation for much of the present research into the pul-
monary toxicity of NPs. As the field continues to develop
and mature, it may not be long before safety evaluation of
engineered NPs becomes a prerequisite before use in biome-
dical applications.9 – 11

Intrinsic toxicity of NPs

It has been known for some time that NPs are not innocuous
but may harbor harmful effects. The ‘NP hypothesis’ first
originated from information available on particulate
matter (PM), especially work on PM with less than 10 mm
diameter (PM10), which formed the basis for extensive
studies into nanotoxicology.12 The hypothesis suggests
that NPs are the main drivers of proinflammatory effects
in cases of PM toxicity because they are the main particulate
type found in PM mixtures, thus implying that NPs may
possess some intrinsic toxicity. What are the properties of
NPs that would give rise to toxic effects? One would be
the small size of NPs as it would give rise to a high
surface area per unit mass, and from what we know about
particle toxicology, this is often correlated with higher reac-
tivity.12 In addition, the larger surface area also leads to
an increased possibility for the formation of free radicals
(i.e. superoxide anions or hydroxyl radicals), which conse-
quently drive oxidative stress, especially for metal-based
NPs. Thus, this forms the underlying mechanism respon-
sible for inflammatory responses to NP exposure.13

Certain NPs such as heavy metal cadmium quantum dots
and AgNPs are also known to induce oxidative stress and
are highly toxic.14,15 However, not all cases of oxidative
stressed are caused by direct effects of NPs. Metal contami-
nants on the cell surface have also been shown to be the
main causative agents that generate free radicals.16 While
size does play a big part in particle toxicity, the shape of
the NP as well as the surface modifications may also affect
their uptake and toxic potential.17,18

Another effect of the large surface area per unit mass of
the NP is that it may be responsible for the adsorption of
various organic compounds from ambient air and this
phenomenon enhances biological interactions within the
organism.19 It has been shown by a number of epidemiolo-
gical studies that airborne PM from combustion sources like
motor vehicles or industrial exhausts contributes to respirat-
ory and cardiovascular morbidity and mortality.20 – 22 A
specific toxicological role has been observed for particles

with diameter ,0.1 mm (UFPs in particular), which are
generated in incomplete fuel combustion. UFPs have been
found to induce inflammatory and prothrombotic
responses, promote atherosclerosis, thrombogenesis and
may be the cause of other cardiovascular events.23 Besides
affecting lung physiology, these particulates have also
been shown to affect the autonomic nervous system or, in
other cases, act directly on cells in various organs and
may possess mutagenic potential.24,25

The lung as a route of entry

The human lung is a vulnerable organ for NP invasion as
there is approximately 2300 km of airways and 300 million
alveoli, giving rise to a large surface area, which is in
contact with the environmental atmosphere and the ultrafine
particulate pollutants present in it.2 Even though nasal cilia
and mechanical actions, such as coughing, could trap and
expel larger size particles from the airways, they may not
be so effective in getting rid of NPs. The small size of NPs
allows them to easily penetrate into the deep air spaces
of the alveoli (Figure 1) and be readily taken up by lung
epithelial cells and fibroblasts (Figure 2).

There is only a single-cell layer that separates inhaled air
from the blood capillaries, which makes for a poor barrier
against the entry of NPs from the alveolar lumen into the
blood circulation (Figure 1). UFPs from combustion
engines are not taken up by macrophages in the lungs
and instead translocate to other organs beyond the lungs
as evidenced by controlled clinical and animal studies.4,26

NPs have been reported to cross the alveolar–capillary
barrier (with the aid of caveolae) into the circulatory
system.27 Some research groups have found that AuNPs
and carbon-based NPs could potentially overcome the

Figure 1 Entry of NPs into alveolar cells and the pulmonary circulation. NP,

nanoparticle
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blood–brain barrier and translocate to the brain by the
uptake of these NPs through the olfactory bulb.6,28

Because much of the concern regarding exposure to NP tox-
icity in the workplace comes from either accidental or indir-
ect release of NP as aerosols into the atmosphere during the
manufacturing process, the respiratory system invariably
becomes the first line of contact and main route of entry
of atmospheric NPs into the body.

Translocation and deposition of NPs
in the body

Once the respiratory system is exposed to UFPs, trans-
location to other organs is rapid and the particles may
appear in the liver, heart and nervous system in a
matter of hours.28 – 30 The main mechanisms of NP depo-
sition in the lungs are impaction (PM .100 mm), sedimen-
tation (particles in the range of 0.1 and 50 mm) and
diffusion (UFPs).31 Whether UFPs accumulate in the nasal
cavity, conducting airways, and the alveoli by diffusional
displacement are dependent on the size of the particles.
Larger particles (with diameter greater than 1 mm) deposited

on the epithelial surface may, however, be cleared by bodily
responses, such as coughing, or by mucociliary transport,
and/or phagocytosis by alveolar macrophages.32 – 34

Conversely, UFPs seem to penetrate cellular membranes
rapidly.28,33,34 Besides, there have been in vitro studies
showing that UFPs induce oxidative stress and mitochon-
drial damage via penetration into the epithelial cells, and
that UFPs are more potent than PM2.5 and PM10.35

The lung is not just an entry point for NPs, but as a result
of the close connection with the circulatory system, NPs in
the lungs have the potential to translocate to other organs
quite readily. Exposure of rats to AuNPs showed that
inhaled NPs accumulate significantly in the lungs and are
detected in other organs a few weeks later.6 In another in
vivo study, AuNPs injected intravenously into rats were
found to accumulate in the liver and kidneys up to one
month postinjection, implying that these organs may be
reservoirs for NP deposition and that there could be an inhi-
bition of natural excretion of NP from the body.36 Therefore,
it would seem that the smaller the size of the NPs, the wider
will be the biodistribution in the body, and the longer the
biopersistence (which reduces clearance from the body),
the greater will be the impact on toxicity in cells, tissues

Figure 2 TEM of MRC-5 human lung fibroblast and primary human SAECs treated with AuNPs. MRC lung fibroblasts and SAECs were routinely cultured in four-

chambered coverglass (Lab-tek Chambered Coverglass System, Nalge Nunc International, Rochester, NY, USA) at a density of 7000 cells/well and exposed to

1 nmol/L AuNPs (20 nm in diameter) for 72 h. Post-treatment, cells were fixed in 3% glutaldehyde, osmicated with 1% osmium tetroxide, dehydrated and embedded

in araldite. Ultrathin sections were cut and viewed in an Olympus EM208S TEM after double staining with uranyl acetate and lead citrate. (a) Low magnification image

of an MRC-5 fibroblast. Scale bar ¼ 5 mm. (b) Higher magnification with arrows pointing to AuNP clusters in cellular vacuoles present in the cytoplasm of the fibro-

blasts. Scale bar ¼ 0.2 mm. (c) Low magnification image of an SAEC. Scale bar ¼ 5 mm. (d) AuNP clusters are also similarly deposited in the vacuoles present in the

cytoplasm of the SAEC. Scale bar ¼ 0.5 mm. TEM, transmission electron microscopy; SAEC, small airways epithelial cell; AuNP, gold nanoparticle
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and organ systems. To understand the effect of NPs in the
lung, we will next consider the mechanisms associated
with NP toxicity at the cellular level.

Underlying cellular mechanisms
of NP-induced toxicity

Ineffective clearance of NPs

The epithelial cells in the respiratory tract are covered and
protected by a thin liquid layer called the epithelial lining
fluid, which is composed of various neutralizing agents.37

The main component is surfactant whose main function is
to displace PM ,6 mm in order to facilitate mucociliary
clearance.34 Proteins in the surfactant play a role in opsoni-
zation as well as in the clearance of PM by macrophages.37

Furthermore, UFPs are physically aggregated into agglom-
erates, thus making them easy targets of phagocytosis by
the macrophages, in particular the alveolar macrophages,
on the epithelial surfaces of the alveoli.33,34 Their primary
role is to engulf and process particles that are not cleared
by mucociliary action and coughing.38,39 However, depend-
ing on the level of agglomeration of NPs, macrophages may
not be efficient in clearing them, resulting in granulomatous
lesions.35 Also, when alveolar macrophages are activated
following PM phagocytosis, substantial amounts of
oxygen radicals, proteolytic enzymes, proinflammatory
mediators and growth-regulating proteins are released,
which may lead to both acute and chronic lung inflam-
mation.40,41 These mediators may also stimulate epithelial
and endothelial cells and promote leukocyte recruitment
into the lungs.42 Furthermore, studies have elicited that
lung epithelial cells, when exposed to PM, produce a spec-
trum of proinflammatory mediators that attract leukocytes
and upregulate adhesion molecules on their cell surface so
as to recruit leukocytes into the air spaces.43 – 46

Surface functionalization on NPs is also another factor
that affects uptake, penetration and clearance. While there
is no unique functionalization that is specific for lung epi-
thelium, it is possible to develop specific targets for one
cell type, for example, nanodrugs that target cancer
cells.47,48 Just as size of the NPs determines the depth of
penetration into lungs, surface modifications can also
affect cellular targeting of NPs. This brings us to the ques-
tion as to how ‘sticky’ are NPs to their target sites and
their rate of clearance from the body. However, few research
studies have attempted to address this issue. A study by
Kim et al.49 showed that AgNPs preferentially accumulate
in the liver and kidneys. NP accumulation in the kidneys
is gender specific, with a two-fold higher amount of
AuNPs accumulating in female than in male mice. Choi
et al.50 have observed that quantum dots less than 5 nm in
size could be completely excreted from the kidneys.

Oxidative stress

Exposure to NPs and PMs are known to cause an increase in
reactive oxygen species (ROS), which could lead to oxidative
stress. ROS generation by NPs could be due to three factors as
outlined by Knaapen et al.:51 (i) active redox cycling on the

surface of NPs, particularly the metal-based NPs;52,53 (ii) oxi-
dative groups functionalized on NPs; and (iii) particle–cell
interactions, especially in the lungs where there is a rich
pool of ROS producers like the inflammatory phagocytes,
neutrophils and macrophages. Overproduction of ROS acti-
vates a series of cytokine cascades, which include an upregu-
lation of interleukins (IL), kinases and tumor necrosis factor
(TNF-a) proinflammatory signaling processes as a counter
reaction to oxidative stress45 (Figure 3). Studies on TiO2NPs
and C60 fullerenes have shown that these NPs induce
elevation of proinflammatory enzymes, such as IL-1,
TNF-a, IL-6, macrophage inhibitory protein and monocyte
chemotactic protein in rodent lungs.54,55 When receptor tyro-
sine kinases, mitogen-activated protein kinases and transcrip-
tional factors, such as nuclear factor-kB and signal transducer
and activator of transcription 1, are activated, the genes
involved in inflammation and fibrosis are transcribed and
expressed.56,57 Stimulation of IL-1b and TNF-a heightens
the expression of profibrotic proteins. More specifically, the
latter is known to upregulate the production of transforming
growth factor (TGF)-b1, which potentiates collagen depo-
sition by fibroblasts,58 while the former is associated with
the expression of platelet-derived growth factor (PDGF)-AA
and its receptor, PDGF receptor-a, which increases
proliferation of myofibroblasts, promoting the formation of
immature collagenous tissue within the lung.57

Genotoxicity

NanoGenotoxicology is yet another new term that was
coined to represent the growing trend of research into

Figure 3 Possible mechanistic pathway for pulmonary toxicity induced by

exposure to NPs. Exposure to NPs may lead to oxidative stress due to

increased production of ROS and downstream signaling responses that

promote fibrosis and produce genotoxicity. NP, nanoparticle; ROS, reactive

oxygen species
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NP-induced genotoxicity and carcinogenesis (an excellent
review on the genotoxicity of nanomaterials is given by
Singh et al.59). Although there are still no conclusive links
with NP-induced genotoxicity and lung cancer from past
epidemiological studies and in vivo rodent experiments,
some researchers have pointed out that long-term inflam-
mation and oxidative stress present in tissue environment
eventually induces DNA damage in cells and tissues.59

This is of particular concern, especially if the NPs continue
to generate an oxidative environment in the cell that causes
gene mutations/deletions. This can lead to larger-scale
mutagenesis (Figure 3) and carcinogenicity, and sub-
sequently development of tumors and cancer.51 Already,
more evidence has emerged regarding the DNA damaging
properties of certain classes of NPs, particularly the metal-
based NPs like AgNPs, AuNPs and TiO2NPs.60 – 63 One pro-
posed mode of action for NP genotoxicity is the ability of
signaling peptides functionalized on NPs such as carbon
nanotubes (CNTs) that enable them to enter the nucleus
via nuclear pores.64 It is yet to be shown that such CNTs
are able to cause genotoxicity, but it is believed that
there is a greater potential of damage when NPs are able
to get in close proximity to DNA. There are also other
different mechanisms that may be specific to the elemental
composition and shape of NPs, which could lead to
DNA damage such as single-strand breaks, double-strand
breaks, DNA deletions and genomic instability in
the form of increase in 8-hydroxy-20-deoxyguanosine
levels.65,66 While some researchers have found that
exposure to TiO2NPs in rats could cause formation of
lung granulomas,54 others have cautioned that appearance
of granulomas does not necessarily mean that the tissue is
cancerous as most tissues probably remain benign.67 As
most reports regarding NP toxicity were observed from
experiments involving ultraviolet or irradiation exposure,
the clinical relevance of these mechanistic experiments
are questioned.68 Nevertheless, a recent study has shown
that TiO2NPs may be able to switch on regressive cancer
cells. In vivo preimplantation of TiO2NP, followed by
co-culturing of a regressive cancer cell line over the implan-
tation site, was observed to induce tumorigenic character-
istics such as an upregulation of TGF-b and prostaglandin
E2.69 According to Mroz et al.70 cells with long-term
exposure to NPs, like nanoparticulates in PM10, displayed
genome instability under comet assay analysis, altered
cell cycle kinetics in flow cytometry and induced protein
expression of p53 and DNA repair-related proteins,
similar to that observed in irradiated cells. Hence, they pos-
tulate that these NPs could activate signaling pathways
similar to ionizing radiation, resulting in carcinogenesis as
a consequence of errors in DNA replication. DNA repair
in ionizing radiation requires activation of ataxia telangiec-
tasia mutated protein, which is a serine/threonine-specific
kinase, and subsequently, the ubiquitylation signaling
cascade and sumoylation pathway. A postulated mechan-
ism for the repair of damaged DNA from exposure to
NPs based on the ionizing radiation model is shown in
Figure 4. However, as cancer is a multifactorial disease,
there may not be only one defining cause for an individual
to develop neoplasm. Instead, it may be more pertinent

to place the risk factor from NP exposure alongside other
risk factors for cancer as well.

Inflammation of lung tissues
induced by NPs

Among all the adverse effects caused by NPs, inflam-
mation (a biological reaction of tissues to harmful
stimuli) appears to be the most common factor. In fact,
different types of NPs can induce diverse inflammatory
responses in the lung. For instance, the toxicity of single-
wall CNTs in inducing epithelioid granulomas and inter-
stitial inflammation in mice lungs seven and 90 days
after intratracheal instillation has been reported to be
higher as compared with other NPs, like carbon black
and quartz particles.71 Oxidative stress is most likely the
major underlying mechanism driving inflammation
responses by NPs, which lead to the activation of different
transcription factors with subsequent enhanced synthesis of
proinflammatory proteins. TiO2NPs are able to induce pul-
monary neutrophilia mediated via increased production of
neutrophil-attracting chemokines CXCL1, TNF-a and
IL-8,72,73 together with a surge in counts of eosinophils and
lymphocytes in the bronchoalveolar lavage fluid.74 CNTs
and NPs are also believed to cause adverse effects through
inflammation and induction of proinflammatory molecules.75

However, it must be noted that some researchers have found
metal contaminants (such as iron and nickel) in the nanotube
production process to be the main causative agent of oxi-
dative stress.16,76 Pulmonary inflammation may also result
in changes in membrane permeability, which in turn can
result in particle distribution extending beyond the lung
and indirectly affecting cardiovascular performance.24,77

Moreover, NPs have the potential to enter the brain28 and
blood circulation,78 and subsequently other major organs,

Figure 4 Postulated mechanism for the repair of damaged DNA on exposure

to NP based on the ionizing radiation model. NP, nanoparticle; ATM, ataxia tel-

angiectasia mutated
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inciting inflammation in these places. Needless to say,
inflammation arising as a result of NP exposure could lead
to pulmonary diseases or exacerbation of existing lung
disorders.

Lung disorders that may arise from
NP exposure

Pulmonary fibrosis

Pulmonary fibrosis occurs as a result of increased tissue
reactivity leading to the formation and accumulation of
fibrous connective tissue. Fibrosis can take many forms,
varying from severe forms that cause distortion of lung
architecture, inducing bronchiectasis and chronic respirat-
ory infection, to milder forms, which comprise of restrictive
ventilatory defects causing hypoxemia, cor pulmonale and
pulmonary hypertension.79,80 The first step in pulmonary
fibrosis is inflammatory response when immune cells com-
prising macrophages and neutrophils are excessively acti-
vated. These immune cells release toxic mediators, which
result in the loss of epithelial integrity and promotion of
tissue injury. When this happens, the cell normally
employs a repair mechanism wherein mesenchymal cells
are activated. These mesenchymal cells have a three-fold
role, which includes extracellular matrix deposition,
re-epithelialization and restoration of normal lung architec-
ture. However, certain patients show an abnormality in
tissue remodeling and excessive matrix deposition, which
leads to progressive scarring and fibrosis.80 Recently, some
researchers have also observed the presence of multiwalled
CNTs (MWCNTs) in the subpleural region in lungs of mice
giving rise to fibrosis and scarring.81 This has become a
matter of grave concern as non-clearance and persistence
of MWCNTs could cause inflammation in the sensitive
mesothelium, leading to mesothelioma formation. Another
study also suggests that pulmonary fibrosis induced by
MWCNTs may be exacerbated in people with existing
lung inflammation.82 As aptly put by Byrne and Baugh,13

the irregularity in tissue remodeling and fibrosis, with refer-
ence to particle inhalation, may be due to an exaggerated
inflammatory response that is driven by inability to clear
toxic particles from the lungs via the usual protective mech-
anisms. This whole cascade may be initiated by interactions
of alveolar macrophages with lung epithelial cells, or even
directly by interstitial fibroblasts.13

The extent of fibrotic response may also determine the
severity of loss of tissue function. Generally fibrosis occurs
in the following sequence:83 (a) organization of the imma-
ture fibrinous tissue with the formation of new blood
vessels and increased blood supply; (b) proliferation of
myofibroblasts; (c) increased deposition of extracellular
matrix; and finally (d) scar formation. Under conditions of
normal lung function, immature intralumenal collagenous
tissue may be eliminated by the fibrinolytic system with
concomitant apoptosis of myofibroblasts, thus favoring
re-epithelialization.84 Depending on the degree of injury to
the alveoli, removing the continual exposure to NPs may
allow re-epithelialization. In chronic cases of injury,
however, lung function may be lost.

Pneumoconiosis

Pneumoconiosis, an occupational lung disease, is clinico-
pathologically classified into two categories, fibrotic and
non-fibrotic. While the fibrotic process involves focal
nodular or diffuse fibrosis, non-fibrotic lesions involve
particle-laden macrophages, with minimal or no fibrosis.85

The former comprises silicosis, coal worker’s pneumoconio-
sis, asbestosis and berylliosis, which are caused by sus-
tained inhalation of silica particles, washed coal particles,
asbestos fibers and beryllium particles, respectively.13

Non-fibrotic lesions cover siderosis, stannosis and baritosis
that are caused by particles of iron oxide, tin oxide and
barium sulfate, respectively. Among these pulmonary
lesions, silicosis, coal worker’s pneumoconiosis and asbesto-
sis dominate the clinical cases.85 Over the last three decades,
death rates due to asbestosis have increased tremendously,
overwhelming the decrease in death rates due to the other
two types of pneumoconiosis.86 Here it is to be noted that
these clinical conditions are influenced by a multitude of
particle types, varying in size and concentration. These par-
ticulate clouds are mineral and combustion-derived, and are
found most commonly in developing nations. NPs are the
most toxic of the particles found in particulate clouds and
are the most significant contributors to fibrogenicity.87 It is
hypothesized that NPs could also behave like asbestos in
vivo since some NPs, particularly the carbon rods, have
similar shape, size and properties. A study showed evidence
of asbestos-like pathogenic behavior of MWCNTs in mice,
inducing inflammation and formation of graulomas.88

Although there have not been any confirmed reported clini-
cal cases of engineered NP-induced pulmonary fibrosis, it
should be remembered that the rapidly increasing exposure
levels may cause serious issues, considering the extent to
which NPs are integrated into technology.71

Exacerbation of asthma

Asthma is a disease whereby inflammation of the airways
induces lung hypersensitivity, and hence asthmatic individ-
uals are more likely to be vulnerable to NP-induced lung
toxicity. Many early studies have shown that deposition
of fine particles are most enhanced in the lungs of
patients with chronic obstructive lung disease, including
asthma.89,90 Since inhaled UFPs have higher deposition effi-
ciency in the pulmonary region, more UFPs are retained in
the lung with each breath in comparison with larger par-
ticles.89,91,92 In cases of asthmatic patients, airway obstruc-
tion causes air trapping and thus an increase in alveolar
volume, causing a net increase in UFP deposition through
diffusion, although impairment of alveolar ventilation may
prove inhibitory. Since alveolar volume increases during
exercise, the deposition in healthy individuals is also
higher during exercise than while at rest. However, this
increase is not significant in asthmatic patients, perhaps
because the increased alveolar volume and airway turbu-
lence is innately present.93 Dead space ventilation increases
the minute respiration of patients with obstructive lung
disease.94 This phenomenon along with hyperinflation,
which is seen even in mild cases of asthma, is speculated
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to increase the diffusional deposition of UFPs in the distal
airways and alveoli. The increase in particle number in the
lung has been reported to be 74% in asthmatic patients com-
pared with healthy subjects.93 Therefore, it would appear
that greater NP deposition in the lung would exacerbate
airway inflammation in susceptible individuals.

Another concern would be how the use of steroids in
asthmatic individuals would affect NP lung toxicity.
Steroids, such as the various forms of corticosteroids, are
used in the treatment of asthma as it helps to control and
reduce inflammation in the airways by inhibiting cyclooxy-
genases and production of superoxides.95,96 How effective
steroids are in counteracting NP toxicity is still not known.
Our preliminary study has shown that dexamethasone did
not affect the viability of NP-treated lung epithelial cells in
vitro (Figure 5). Even so, there are proponents for the
novel use of platinum NPs as an antioxidant treatment for
pulmonary inflammation.97 Moreover, fullerenes (C60 NPs)
have also been reported to exert anti-inflammatory
properties.98

Conclusion

It is still early days in the study of NP-induced pulmonary
toxicity and there is a diversity of factors that need to be
taken into consideration before we can truly understand
the impact of NP exposure on human health. Even in
studies of nanotoxicology, many have called for greater
caution in making conclusions about the relevance of any
toxicological study on NPs. A recent clinical case study of
workers developing pulmonary disease from NP exposure
had received criticism from field experts for presumptuous
conclusions drawn outside of the study’s limitations.99,100

In the meantime, the cautionary procedure would be to

handle the use of engineered NPs with discretion and
with appropriate workplace and safety protocols.
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Nanotechnology has created opportunities for engineers to manufacture superior and more efficient devices and products.
Nanomaterials (NMs) are now widely used in consumer products as well as for research applications. However, while the lists
of known toxic effects of nanomaterials and nanoparticles (NPs) continue to grow, there is still a vast gap in our knowledge about
the genotoxicity of NMs. In this paper, we highlight some NMs of interest and discuss the current in vivo and in vitro studies into
genotoxic effects of NMs.

1. Introduction

Materials in the nanoscale are used in many commercial
products and industrial practices in the new millennium.
They are now increasingly found in plastic wares, clothing,
cosmetics, electrical appliances, and even food products.
Their applications also extend into the biomedical field and
healthcare, particularly in medical imaging and diagnosis,
pharmaceuticals, drug delivery, and therapy [1]. The demand
for nanomaterials (NMs) in the market in the areas defined
above is escalating and estimated to reach sales of up to
US$1 trillion by 2015 [2]. The recent burgeoning research
interest and development of NMs, nanotechnology, and
nanomedicine have led to a vast potential for novel ways
of rapid disease diagnosis, treatment, and enhancement of
the quality of life. NMs consist of one or more compo-
nents present in various forms that possess at least one-
dimensional structure of diameters in the range of 1 to
100 nm [3]. Engineered NMs, including nanoparticles (NPs)
and nanofibres, are generally categorized into four classes,
which include carbon-based materials, metal-based materi-
als (quantum dots, nanosilver, and nanogold), dendrimers
(nanosized polymers), and composites. Their characteristic
features are durability, high conductivity, and reactivity
[4].

Many researchers have commented that in actuality, there
is still much more to be understood about nanomaterials,
especially with regard to the health risks and hazards. The
Royal Society and Royal Academy of Engineering first raised
this concern in 2004 [5]. This has paved the way for a
rapid increase in investigational studies in the toxicity of
nanobased materials, in particular, genotoxicity studies of
NMs and nanoparticles (NP). A quick search through the
Pubmed literature database shows that the bulk of the
research articles on NM genotoxicity were published within
the past 3 years. As the development of nanotechnological
applications continue to grow, it is anticipated that there will
be an even greater demand for safety and health and risk
assessments studies in the coming years. There have been
excellent reviews regarding the methodologies for studying
NM-induced toxicity [6–8].

In this paper, we would like to briefly discuss the
methodologies currently available for genotoxic studies and
present a survey of the in vitro and in vivo genotoxicological
studies of NMs conducted in recent years.

2. Methodologies in Genotoxicity Studies

The study of NM toxicology has its roots in ultrafine particle
study, mostly starting out as particulate matter (PM10) and

mailto:antbaybh@nus.edu.sg
mailto:cheyly@nus.edu.sg
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carbon black. The first wave of nanotoxicological studies
were assessments of NM cytotoxicity which had been com-
prehensively outlined by Lewinski et al. [9]. Currently, there
is an increasing focus on specific nanotoxic effects, and thus
the advent of a subfield called “nanogenotoxicology” [10]
which generally refers to the study of toxic effects of NMs
on genomic stability and integrity. Common in vitro tests for
measuring insults to DNA would centre on single-strand and
double-strand breaks, mutations, deletions, chromosomal
aberrations, impairment in DNA repair and cell-cycle while
tumorigenesis and carcinogenicity are the main focus in in
vivo studies. There are as many different kinds of NMs as
there are elements and compounds. NMs, depending on the
size, shape, elemental materials, and the surface functional
groups were observed to have a range of detrimental
effects on cells. Compounding the difficulties in toxicological
studies, Stone et al. [6] and Landsiedel et al. [7] reiterated
that based on existing knowledge, specific NMs probably
induce definitive genotoxic effects. Nevertheless, some of the
more common tests used in current genotoxic studies are
described below.

2.1. In Vitro Techniques and Approaches

2.1.1. Ames Test (Bacterial Reversion Mutation Test). This test
is used to assess the mutagenicity of a chemical compound
[11]. Various strains of the histidine dependent bacterium,
Salmonella typhimurium, contain mutations in the genes that
impair synthesis of histidine required for cell growth. Test
substances or compounds are added to different areas on
the agar plate, and the bacterium is then plated onto the
minimal histidine media. The test compound is deemed to
have mutagenic potential if it is able to cause mutations that
allow the bacterium to revert back its histidine synthesis
ability. The downside of this test is that it is difficult to
translate prokaryotic data for eukaryotic genotoxicity testing,
and the test is known to generate false positive results [12].
Specific to NM toxicity testing, there are doubts if the Ames
test is accurately representative of genotoxicity. Some NMs
are not able to cross the bacterial wall, and some kill the test
organism as they are bactericidal [7]. Therefore, data should
be followed up with other tests after the initial screening.

2.1.2. Comet Assay (Single-Cell Gel Electrophoresis Assay).
This is a simple, inexpensive, and sensitive technique to
test for DNA damage. It was first described in 1988 by
Singh et al. [13] and has since become the standard test
for DNA damage. Cell samples from in vitro or in vivo
experiments are first suspended in low melting point agarose
and cast onto microscope slides. The cells are lysed so that
only the DNA remains, which is then made to undergo-
electrophoresis in order to separate the DNA strands based
on molecular weight. The DNA strains are subsequently
stained with, for example, SYBR green dye and viewed under
a fluorescence microscope. Under specific conditions, this
test is able to distinguish single-and double-strand breaks
in DNA. It is a quick way to assess DNA lesions and extent
of genotoxicity in individual eukaryotic cells. However, due

to its sensitivity, samples should be handled appropriately to
ensure reproducibility of the results.

2.1.3. Micronucleus Test (MN)/Cytokinesis Block Micronucleus
Test (CBMN). This assay is based on scoring the number
of micronuclei (MNi) in treated cells [14]. MNi are formed
during anaphase from chromosomal fragments or whole
chromosomes that are left behind when the nucleus divides.
Over time, the assay has evolved to include a pretreatment
with cytochalasin-B (Cyt-B), a cytokinesis blocking agent
that inhibits cell-division, thereby giving the cells a binucle-
ated appearance. This enables more accurate scoring and the
ability to sieve out the dividing cells (where MNi would be
found) from the nondividing ones, thereby reducing the inci-
dence of false positives. The CBMN method is now routinely
used for measuring chromosome breakage, impairment in
DNA repair, chromosome loss, nondisjunction, necrosis,
apoptosis and cytostasis.

2.1.4. Hydroxy-Deoxyguanosine (8-OHdG) Analysis. Oxida-
tive stress is considered one of the foremost reasons for
DNA damage. Reactive oxygen species (ROS) generated in
metabolizing cells could attack DNA base guanine forming
the 8-OHdG lesions, which is known to have mutagenic
potential and hence used routinely as a biomarker for
carcinogenesis [15]. There are a few methods to measure
the extent of 8-OHdG lesions and the most established is
HPLC (high-performance lipid chromatography), which is
often coupled with mass spectrometry, also known as the
HPLC-MS/MS. Other methods include performing antibody
probes for DNA repair proteins or posttreatment with the
enzyme formamidopyrimidine DNA N-glycosylase before
quantitative analysis with the comet assay to determine DNA
strand breaks [16].

2.2. In Vivo Approaches. There is a need for validation of
animal models for studies in NM toxicity. The difficulties lie
in devising the correct approach in interpreting the studies
and deciding on the parameters that should be considered in
examining NM toxicity in in vivo systems. Many investigators
have administered NMs through inhalation exposure or
orally, ingestion by feed or water supply, and direct instil-
lation or injection into the body. Usually, the subsequent
bioavailablity and translocation of the NMs are evaluated,
including the organ of entry as well as in other organs
where accumulation is more significant. The tests used for
assessment of genotoxicity are similar to those used in the in
vitro studies.

3. Nanomaterials and their Genotoxic Status

A summary of some of the current genotoxic studies in
nanomaterials are shown in Tables 1 and 2, which display the
in vivo and in vitro studies, respectively.

3.1. Carbon Fullerenes. Carbon fullerenes, which are ultra-
fine particulate matter, are one of the most ubiquitous NMs
found [46]. They are generally present in polluted air as



Journal of Nucleic Acids 3

Table 1: Selected in vivo genotoxicity studies on NMs.

Type of NP Size and form
Experimental
design/genotoxic tests

Summary of findings References

C60
fullerenes

spheres
Bone marrow micronucleus
test on
ICR mice

No in vivo clastogenic ability
of C60 up to 88 mg/kg

Shinohara et al.; 2009 [17]

C60
Single-walled
carbon
nanotubes
(SWCNT)

spheres

Oral administration at
doses of 0.064 and
0.64 mg/kg of body weight.
8-OHdG analysis

Both NPs were associated
with increase in 8-OHdG in liver
and lungs.
No impairment of DNA
repair system

Folkmann et al.; 2009 [18]

SWCNT
Multi-walled
carbon
nanotubes
(MWCNT)

nanotubes
Oral administration and
urinary samples collected
for Ames test

No urinary mutagenicity
Szendi and Varga 2008
[19]

Carbon
black (CB)
C60
SWCNT
AuNP
Cd quantum
dots (QDs)

nanospheres

Apo E knockout mice
Timepoints at 3 and 24
hours; NP administered by
instillation

Increase in cytokines gene
expression. ApoE −/−mice are
sensitive to particle induced
inflammation.
DNA damage in order of.
QD>CB>SWCNT> C60, Au

Jacobsen et al.; 2009 [20]

TiO2
anatase/rutile
21 nm

TiO2 ingested through
drinking water at
concentrations of
60, 120, 300, 600 μg/mL.
Comet assay
MN test
gamma-H2AX
immunostaining
8-OHdG analysis

Increase in 8-OHdG and
gamma-H2AX foci. indicative
of DNA double-strand
breaks. MN. shows increase
in DNA deletions.

Trouiller et al.; 2009 [21]

Ag 60 nm

Oral administration
in Sprague-Dawley rats
over
a period of 28 days;
doses at 30, 300 and
1000 mg/kg.

No significant genotoxicity
in bone marrow.
(micronucleated
erythrocytes)

Kim et al.; 2008 [22]

Silica
amorphous
37 and 83 nm

Inhalation study where
mice were exposed to
3.7× 107 and 1.8× 108

particles/cm3

No significant pulmonary,
inflammatory, genotoxic or
adverse lung
histopathological effects

Sayes et al.; 2010 [23]

they are often released in soot resulting from the process
of fuel combustion. Engineered carbon fullerenes are stable,
soccer ball-like carbon atoms with hexagonal and pentagonal
shapes. The most notable fullerene would be C60, a highly
reactive biomolecules that has the ability to cross blood brain
barrier (BBB) [47]. C60 fullerene is highly used in industry
as catalysts, reactive oxygen species scavengers [48] and tools
in drug delivery systems [49].

Since the early 1990s, there have been concerns about
the potential dermal and inhalation effects of fullerenes
due to their strong oxidizing and phototoxic properties
[50]. In vitro experiments have shown C60 to be generally
noncytotoxic with no mutagenic response [17, 24] in
Chinese hamster ovary (CHO-K1) cells and mouse lung
epithelial cells [28] using the Ames test and CBMN tests,
respectively. Another report has found that C60 treatment

also increases formamidopyrimidine [fapy]-DNA glycosylase
(FPG) sensitive sites, accounting for short-term DNA strand
damage. Xu et al. observed that C60 induced an increase
in mutation yield in primary mouse embryo fibroblast cells
and dose-dependent formation of free radical ONOO− [25]
using dihydrorohodamine radical probes. However, in the
in vivo setting, C60 treatment was found to be associated
with increased DNA damage 8-hydroxydeoxyguanosine (8-
OHdG) in mouse lung and liver [18]. Not surprisingly,
inflammatory cytokines such as the interleukins and MIP
and MCP genes were found to be upregulated although C60
extent of damage was lower as compared to other NMs.

3.2. Carbon Nanotubes. Carbon nanotubes are the byprod-
ucts of combustion, which are commonly present in air
pollution and soot. Engineered carbon nanotubes can also
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Table 2: Selected in vitro genotoxicity studies on NMs.

Type of NP Size and form
Experimental
design/genotoxic tests

Summary of findings References

Carbons

C60 0.92 m2/g surface area Ames test
No mutagenic response,
and no incidence of
chromosomal aberration

Shinohara et al.; 2009
[17]

C60 polyhydroxylated

CHO-K1 cells
chromosome aberration
assay
CBMN test

No genotoxicity at all doses
(11−221μM)

Mrdanović et al., 2009
[24]

C60 nanospheres

Mouse primary embryo
fibroblasts
Dihydrorhodamine 123
radical probe

Increased mutation yield
and induces kilo-based pair
deletion mutations in
transgenic mouse cells.
Dose-dependent formation
of ONOO−

Xu et al.; 2009 [25]

SWCNT
-MWSCNT

nanotubes

Human lymphocytes in
culture CBMN test
Sister Chromatid Exchange
(SCE) assay

No genotoxicity effects but
SWCNT induces mitotic
inhibition

Szendi and Varga; 2008
[19]

MWSCNT agglomerates

V79 cells treated for 18 h
and 30 h at 2.5, 5 and
10μg/mL.
Chromosome aberration
test Ames test

No mutagenic or
clastogenic effects

Wirnitzer et al., 2009
[26]

MWSCNT nanotubes

Ames test on Salmonella
typhimurium TA 98 and TA
100 strains, and on
Escherichia coli WP2uvrA
strain, in presence and in
absence of the metabolic
activation system S9

No mutagenic effects Di Sotto et al.; 2009, [27]

C60

SWCNT
Carbon black
(CB)

0.7 nm (C60)
0.9−1.7 nm (SWCNT)
14 nm (CB)

FE1-muta trademark
mouse lung epithelial cell
line comet assay
FE1-MML mutagenicity
analysis
c11 mutation analysis

No cell death. Slower
proliferation and cell-cycle
arrest at G1 with SWCNT.
Mutant frequency
unaffected by 576 h
exposure

Jacobsen et al., 2008 [28]

Metals

Alumina
(Al2O3)
Cobalt
Chromium
alloy (CoCr)

bare

Human primary fibroblasts
over 5 days
CBMN assay
gamma-H2AX immuno
staining
cytogenetic analysis (FISH)

At 24 h, Al2O3 increase
micronucleus binucleated
cells, chromosomal loss,
gain, and polyploidy.
At 24 h, CoCr induce
dose-dependent increase in
micronucleus binucleated
cells, chromosomal loss,
gain, deletions, and
polyploidy.

Tsaousi et al.; 2010, [29]

Co
20 nm
500 nm

Balb/3T3 cells at 1−100μM
dose concentrations.
CBMN test
Comet assay

Significant results for
CBMN and comet assay
but no dose-dependency.
Increase of type III foci

Ponti et al.; 2009 [30]

Co 100−500 nm

Peripheral blood leulocytes
at 24, 48 h timepoints in
10−5M and 10−4M dose
concentrations
CBMN test
Comet assay

Induces DNA damage
Genotoxic effects
modulated by donor
characteristics and/or Co2+
release.

Colognato et al.; 2008
[31]
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Table 2: Continued.

Type of NP Size and form
Experimental
design/genotoxic tests

Summary of findings References

Al2O3

TiO2
nanoparticles

CHO-K1 cells
Micronucleus (MN) test
Sister chromatid exchange
(SCE)

MN frequencies increase at
0.5 and 1μg/mL TiO2 and
0.5−10μg/mL AL2O3.
SCE higher at 1−5μg/mL
TiO2 treatment, and at
1−25μg/mL Al2O3

Di Virgillio et al.; 2010
[32]

TiO2
rutile/anatase
fine rutile

Human bronchial epithelial
cells (BEAS 2B) with
1−100μg/cm2 at 24, 48, and
72 h.
Comet assay
MN test

Both induce DNA damage
at all treatment times. Only
nanosize rutile increase
frequency of MN cells at
10, 60μg/cm2, 72 h.

Falck et al.; 2009 [33]

TiO2 with p,p′-DDT

Human embryo L-02
hepatocyte 0.01, 0.1,
1μg/mL treatment
concentrations
Flow cytometry with
DCFH-DA probe
8OHdG analysis
Comet assay
MN test

TiO2 enhances
photocatalysis. Increases
oxidative stress, DNA
adducts, DNA strand
breaks, and chromosome
damage

Shi et al.; 2010 [34]

TiO2
2−30 nm (mean at
15 nm)

NIH3T3 human fibroblasts
HFW cells
Short-term treatment at 24,
48 and 72 h.
Long-term treatment, cell
passage every 3 days with
NP media.
Flow cytometry with
H2DCFDA probes

Short-term increased cell
survival and growth.
Long-term G2/M delay and
slower cell-division with
aberrant multipolar
spreads. Overall
disturbance in cell-cycle
progression, duplicate
genome segregation, and
chromosomal instability

Huang et al.; 2009 [35]

Cell-cycle analysis
Cell-division analysis
Confocal microscopy

TiO2

Fe2O3

anatase <100 nm
<100 nm

Human lung fibroblasts
IMR-90 and BEAS-2B cells
Electron paramagnetic
resonance (EPR)
8-OHdG analysis

TiO2 treatment showed no
DNA breakage, DNA
adduct nor free radical
generation. Fe2O3 had
significant DNA damage
after 24 h in IMR-90 cells

Bhattacharya et al.; 2009
[36]

TiO2

nanoparticles
rutile
anatase

Mouse primary embryo
fibroblasts
Dihydrorhodamine 123
radical probe

Increased mutation yield
and induces kilo-based pair
deletion mutations in
transgenic mouse cells.
Dose-dependent formation
of ONOO−

Xu et al.; 2009 [25]

TiO2 100 nm

Human lymphoblastoid
cells. Treatment with 26,
65, 130μg/mL at 6, 24, 48 h.
CBMN test
Comet assay
Hypoxanthine-guanine
phosphoribosyltransferase
(HPRT) gene mutation
assay

130 μg/mL treatment
increases MNBC frequency
2-3 folds and 2.5 fold in
mutation frequency.
65μg/mL treatment induce
5 fold increase in comet tail
moments

Wang et al.; 2007 [37]
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Table 2: Continued.

Type of NP Size and form
Experimental
design/genotoxic tests

Summary of findings References

ZnO nanospheres

Human epidermal cell line
(A431)
Treatment at 0.8,
0.008g/mL Comet assay

Significant DNA damage in
comet assay. Induces
oxidative stress

Sharma et al.; 2009 [38]

Ag 30 nm, nanospheres
Medaka fish cell lines
Treatment at 0.05, 0.1, 0.3
μg/cm2

Chromosomal aberration
and aneuploidy

Wise et al.; 2010 [39]

Ag 6−20 nmstarch coated

IMR-90 and human
glioblastoma cells U251
Comet assay
CBMN
Annexin V propidium
iodide
staining

DNA aberrations more
prominent in cancer cells
with more chromosomal
aberrations.

Asharani et al.; 2009 [40]

Ag

25 nm
polysaccharide
surface functionalized
and
uncoated
nanospheres

Mouse embryonic stem
cells and embryonic
fibroblasts Immuno blot
Immunoflorescence

Upregulation of p53, Rad
51 and phosphorylated
H2AX protein expression.
Coated AgNP show more
severe damage than
uncoated AgNP

Ahamed et al.; 2008 [41]

Au
20 nm
Serum coated

Human fetal lung
fibroblasts cells (MRC-5)
treated with nAu at 0,
0.5 and 1 nm
concentrations.
8-OHdG analysis

Significant DNA damage in
1 nm treatment compared
to control.

Li et al.; 2008 [42]

Platinum (Pt NP)
5−8 nm capped with
poly-vinyl alcohol

Human cell line

p53 activation, p21
downregulation. Increase
of DNA damage, arrest at
cell-cycle S phase and
apoptosis

Asharani et al.; 2010 [43]

Other Nanomaterials

Nanoceria (CeO2) nanoparticles

Human lens epithelial cells
at 5, 10μg/mL
concentrations
SCE
Comet assay (alkaline)

No DNA damage nor SCE
Pierscionek et al.; 2010
[44]

Polymer NP
lyophilized PELGE
and PLGAnp

CHO cells
MN test
SCE

No significant difference in
MN assay and no cell-cycle
delay. SCE found to be
higher in 5 kinds of
PELGE-NP than in
negative controls

He et al.; 2009 [45]

come in a variety of shapes and conformations, with the
most common being the single-walled carbon nanotubes
(SWCNTs) and the multiwalled carbon nanotubes (MWC-
NTs). They are also found in a wide range of applications
in the industry as composites, polymers, as well as in
the biomedical and pharmaceutical fields. Great physical
strength, flexibility, electrical conductivity, insolubility and
nonbiodegradability are among the valued properties of
carbon nanotubes [51]. On the other hand, it has been
postulated that these nanotubes could possess health hazards
upon inhalation as their durability, biopersistency, and
long and thin shape resembling asbestos fibers [52]. In

addition, trace contaminations with iron and nickel have
been reported to be the major cause of toxicity in carbon
nanotubes [53].

There is a scarcity of information regarding SWCNTs
and genotoxicity. SWCNTs have been reported to induce
slower proliferation rate and cell-cycle arrest at G1 phase
in mice lung epithelial cells [28] and mitotic inhibition in
human lymphocyte cultures [19]. In in vivo experiments,
oral administration of SWCNTs in mice is found to be
associated with increase in 8-OHdG levels in liver and lung
[18]. SWCNTs, compared to carbon black, only causes mod-
erate inflammation in ApoE knockout mice [20]. However,
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agglomerates of MWCNTs were found to possess neither
clastogenic nor mutagenic effects [19, 26, 27] when put
under the Ames test and chromosome aberration test.

3.3. Titanium Dioxide and Zinc Oxide Nanoparticles (TiO2

and ZnO NPs). TiO2 and ZnO NPs, which have the proper-
ties of high refractive index and brightness, are regularly used
as whitening pigments or reflective optical coats [54]. These
specific properties lead to the application in commercial
products such as paint and whitening agents in food products
[55]. Nanoparticulate suspensions of ZnO and TiO2 also
appear transparent in air and liquid under visible light. As
such, ultrafine TiO2 is also extensively used in cosmetics,
skin care, and sunscreen products, as their application does
not leave unsightly white residue on skin unlike bulk TiO2

[56]. ZnO is quite well known to be cytotoxic to cells in
culture [57], while the toxicity of TiO2NP is rapidly gaining
attention due to the increased use and applications in many
accessible medical and cosmetic products. TiO2NP comes
in two common shapes, namely, the rutile and anatase
forms. Although both are found to be genotoxic, one study
showed that the anatase form induced greater DNA damage
in human bronchial epithelium [33]. TiO2NP could also
increase cell sensitivity to phototoxicity [34], as well as
induce more DNA adducts, strand breaks, base-pair muta-
tions and chromosomal damage [21, 25, 37]. Interestingly,
Huang et al. reported that while long-term exposure to
TiO2NP slowed down cell-division and induced aberrant
multipolar spreads, chromatin alignment, and segregation,
short-term exposure increased cell survival and growth and
number of multinucleated cells [35]. Another group of
investigators did not observe DNA breakage under TiO2NP
treatment but found positive DNA adduct formation and
free radical generation [36].

Although ZnONPs are probably the less studied of the
two, there is also evidence to suggest that they may also
induce significant DNA damage through oxidative stress,
albeit with less obvious effects than in TiO2NPs [38].

3.4. Aluminium Oxide Nanoparticles (Al2O3NPs). Al2O3NP,
or alumina NP as it is commonly known, belongs to a class
of materials known as nanoceramics. It is widely used in
industrial and medical product such as orthopaedic parts
and composite repellants. However, the toxic and genotoxic
effects of Al2O3NP are not well known, and there are very
few research studies on the toxicity of this material. Thus far,
Al2O3NPs were found to significantly increase micronucleus
frequencies, chromosomal loss, and gain mutations as well as
polyploidy but no sister chromatid exchanges were found to
take place [29, 32].

3.5. Cobalt and Cobalt-Chromium Nanoparticles (CoNPs and
CoCrNPs). Cobalt and its alloy are commonly used in hip
joint replacements and other orthopedic joint replacements.
Unfortunately, the friction produced in movement of the
replacement joints generate NPs of the metal which could
reach out and affect the surrounding tissue and even
lymphocytes, thereby lead to some concerns regarding the

genotoxicity observed from clinical studies [58]. Hence,
much interest was generated to study the effects of these
wear particles and a significant amount of research into Co
and CoCr NPs are centered around these issues. The results,
although not surprising, are generally aligned to positive
indications of genotoxicity. Analysis of peripheral blood
leukocytes of patients with cobalt alloy joint replacements
showed positive DNA damage in comet assays [31]. However,
it was also suggested that these results could possibly be
modulated by donor characteristics and may be due to
Co2+ release instead of CoNPs per se. Recent studies show
that by 24 h, CoCrNPs induced a dose-dependant increase
in micronucleus containing cells as well as chromosomal
loss, gains, deletions, and polyploidy [29]. In a separate
study with CoNPs on Balb/3T3 cells, there were significant
results in micronuclei and comet assay for NP induced
DNA damage but the results were not dose-dependent
[30].

3.6. Quantum Dots. Quantum dots are crystalline semi-
conducting NPs. They are comprised of a metalloid crys-
talline core and a “cap” or “shell” that shields the core or
renders the dots biologically compatible [4]. The metalloid
crystalline core is normally made up of heavy metals like
cadmium and lead or sometimes from other semiconductor,
noble, and transition metals. These are also quantum dots
that are coated with materials such as polyethylene glycol,
zinc sulphide, or polyacrate [59] Quantum dots are used
in composites, paints, inks, solar cells, and optoelectronics
[4]. Due to their bright fluorescence, narrow emission, broad
UV excitation, and photostability, they have been used as
alternative fluorescent dyes for labeling cell structure in vitro
and for fluorescence imaging in vivo [60].

They are considered one of the most toxic of substances
and there are many studies showing the acute cytotoxicity
of quantum dots [61]. The cadmium and lead metals
themselves are considered potent human carcinogens. Cad-
mium induces DNA damage and mutation through ROS
production and inhibition of DNA repair and methylation
[62]. It also incites disruption of E-cadherin cell-to-cell
adhesion which could lead to tumor formation. Lead and
its compounds are listed under group 2B of possible human
carcinogens in IARC reports [63], as they are found to induce
lipid peroxidation and inhibit enzymes and antioxidants
thereby putting the cell under an environment of oxidative
stress [64]. However, few have ventured into exploring the
genotoxicity of such QDs. One experiment with Apo E
knockout mice showed that such mice were more sensitized
to QD-induced inflammation, upregulating gene expressions
of cytokines, IL-6, Mip 2 and Mcp signaling molecules
[20].

3.7. Silver and Gold Nanoparticles (AgNPs and AuNPs).
AgNPs and AuNPs are the most marketable NPs and widely
used in consumer products. AgNPs are particulary known
for their antimicrobial qualities, while AuNPs are used in
bioimaging and diagnosis applications. They are also easily
synthesized from their salt compounds and are convenient
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to handle, which also makes them another popular choice
of NMs to work with. What is of concern is that several
studies have found AgNPs to be toxic in aquatic animals
[65] and AuNPs to possess some degree of toxicity in vitro
[66]. Many researchers have focused on AgNPs because of
the acute toxicity shown in vitro experiments. AgNPs were
found to induce DNA damage in human glioblastoma cells
as well as chromosomal aberrations in human fibroblast
cells [40]. Other genotoxic reactions include upregulation
of p53 and DNA repair protein Rad51 observed in mouse
embryonic stem cells and fibroblasts [41]. In the same study,
AgNP when functionalized with polysaccharide on its surface
was more DNA damaging than uncoated AgNPs. In long-
term rodent studies, oral administration of high-dose AgNPs
for 28 days resulted in liver damage but no significant
genotoxicity in erythrocytes and bone marrow [22]. A
number of studies have also shown that AgNP treatment
induced DNA damaging effects on aquatic and plant cells
with impairment of cell-division [39, 65]. Although less
dramatic than AgNPs, AuNPs are also able to induce DNA
damage in the form of single-strand lesions in human lung
fibroblasts [42].

3.8. Other Nanoparticles. There are a few research groups
working with new types of NPs. The rare earth metal
cerium oxide NPs (nanoceria) is one example. Researchers
have found nanaoceria to be a radical scavenger with
antiinflammatory effects [67] which causes no DNA damage
[44]. They are currently being developed for application
in human lens epithelium. Although this is a promising
NM for future applications, it has also been reported that
nanoceria exerts differential growth in soybean seedlings
[68]. Silica NPs, or often known as mesoporous silica, are
also popular materials for development of drug delivery and
cell-imaging systems [69, 70]. There are few genotoxicity
studies on silica NPs but a notable one by Sayes et al. [23]
has shown that there are no significant inflammatory or
genotoxic effects in mouse lungs on short-term exposure.
Metal NPs such as platinum NPs (PtNPs) and iron oxide
Fe2O3NPs are also popular alternatives. There is one report
on PtNP toxicity which showed an increase in DNA damage
concurrent with p53, p21 downregulation, and cell-cycle
arrest at the S-phase [43]. Fe and Fe2O3NPs are also
known to be toxic and can cause significant DNA damage
[36].

Other particles of note are the nanopolymers. Although
there is a wide variety of such nanopolymers, they are gener-
ally known as a family of compounds that consists of chain
units, which could be fashioned into nano-sized particles.
These are also largely being developed for use in drug delivery
[71]. Current genotoxicity studies suggest that some of these
nanopolymers show antiinflammatory properties and also
non or limited DNA damage [45, 72]. However, a recent
report has implicated long-term nanopolymer exposure to
pulmonary fibrosis and granuloma formation, resulting in
two fatal deaths [73]. This case cannot be taken in isolation
and others have raised the concern that the workplace
condition as well as health or other pre-dispositions of the
workers involved should be considered [74].

4. NMs and Carcinogenesis

While it has been shown in many in vitro experiments
that NMs are able to induce DNA damage and some
form of mutagenesis, there is still a lack of evidence for
tumorigenicity of NPs. Of note, in vivo studies involving
MWCNT has demonstrated formation of mesotheliomas
in rodents in works by Takagi and colleagues [75] and
Sakamoto et al. [76]. Wide spread deposition of MWCNTs
were observed in the peritoneal cavity where the nanotubes
were injected. In the study by Sakamoto et al., they have
even found mesotheliomas in the peritoneal cavity away from
the original site of injection, suggesting that MWCNTs may
easily translocate and also exert effects away from organ of
exposure. Both studies emphasized on the persistency, size
and shape on the carcinogenic potential of MWCNTs. While
such studies may provide some insight into the outcome of
NM toxicity, one must take into account the differences in
how the nanotubes were prepared as well as the experimental
design. Muller et al. conducted similar tests on MWCNTs
but reported no carcinogenicity after a 2 year period of
exposure [77]. They speculate that tumor formation could be
dependent on size and length of the nanotubes administered
and the p53 knockout mice used in the Takagi study
produced a more sensitive carcinogenic reaction. However,
NMs can induce oxidative stress and trigger inflammatory
responses, which could form the starting point for carcino-
genesis to occur. NMs that are highly reactive are also more
likely to absorb endogenous substances, react with proteins
and enzymes, trigger cytokine release. This would mediate
inflammatory responses and potentially initiate a series of
toxic responses far from the initial site of deposition [78, 79].
C60 fullerene, for example, was reported to cause photo-
induced DNA damage by interacting with biological reduc-
ing agents such as NADH to cleave supercoiled DNA [80].
Similarly, exposure to carbon nanotubes in atmospheric air
pollution has been associated with adverse cardiovascular
effects by causing aortic DNA damage, platelet aggregation
and enhances vascular thrombosis through inflammatory
events [81].

Biopersistence of NMs pose a certain degree of adverse
health effect. For instance, when the clearance rate is slower
than the accumulative rate, the NMs will remain in the lungs;
and those containing mutagenic substances will increase
the risk of developing cancer. To address this concern,
Sera et al. conducted a mutagenicity test using 3 different
strains of Salmonella and found C60 Fullerene to exert
mutagenic activity due to the oxidized phospholipids in rat
liver microsoms [82].

There are also certain shortcomings in the current
research field. The short-term nature of toxicology tests in
the treatment period for NMs generally lasts only up to
three days, which implies that testing is limited to acute
toxicity. In vitro and in vivo genotoxicity testing will have
to be conducted for longer periods to observe if there are
long-term effects of NMs such as tumour formation and
carcinogenesis. Treatment intervals will have to go beyond
days to weeks or even months in animal studies. It will also
be useful to look at the clearance of NMs from the body and
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to study if there is a preference for accumulation in certain
organs and any effect from biopersistence of such NMs.

On the public front, safety measures have been imple-
mented to safeguard the public health. The International
Agency for Research on Cancer (IARC) recently classified
TiO2 as a potential Group 2B human carcinogen. This deci-
sion was made on the experimental animal carcinogenicity
data [83]. There had been four previous epidemiological
studies conducted among the male production workers at
TiO2 industry from Western Europe and North America.
After comparing the risk for lung and kidney cancer with
the general population, they concluded that these data
were not supportive enough to conclude the association
between occupational exposure of TiO2 and cancer risk.
Hence, data collected were inadequate in classifying TiO2 as
potential carcinogen. However, there was sufficient animal
carcinogenicity data that provided evidence of TiO2-induced
carcinogenicity. Several TiO2 exposure routes were chosen
for experimental animal studies. These include oral, inhala-
tion, intratracheal, subcutaneous injection, and intraperi-
toneal administration. Researchers observed an increase in
tumor incidence in these experimental animals upon TiO2

exposure. After considering other relevant data such as
clearance kinetics of TiO2 and micronucleus formation, a
conclusion that TiO2 possess possible carcinogenicity to
human was made.

5. Conclusion

The field of nanotoxicology, besides investigations on the
adverse effects of NMs, also include continuous monitoring
and risk assessment of NMs. Despite the many nanotoxi-
cological studies that are ongoing, there are questions that
need to be answered and addressed. There is difficulty in
interpreting data in view of variable parameters utilized
in the study, for example, the sizes of the NMs and its
composing materials. The most critical research gap is the
lack of studies on real-time NM exposure. Moreover, there
is a need for long-term nanomaterials exposure assessment
for studies on tumourigenesis. At the industry level, close
monitoring and followup on the levels of emissions from
NM production industries are essential in protecting public
health and our environment. However, there still exists a
lack of appropriate epidemiological studies and equipment
for accurate collection of data in assessing the real risk
of NM exposure in the workplace. Despite the promising
applications of NMs, there are still doubts regarding their
safety. There is some certainty that NMs do pose a certain
degree of health risk that would require further investigation.
A proper guideline on NM usage is imperative to ensure the
safety of NMs for consumer usage and environment.
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Introduction
According to the World Health Organization (WHO), cancer 
accounted for 7.9 million deaths in 2007 making it the lead-
ing cause of death in the world.  Deaths from cancer around 
the globe are expected to climb upwards with an estimated 
12 million deaths by cancer in 2030[1].  The frontiers of can-
cer research are therefore consistently challenged in order to 
advance the most effective means of cancer diagnosis, moni-
toring and treatment.  Findings gleaned from cancer research 
would inevitably benefit mankind and save countless lives.  

Current therapies employed for the treatment of cancer 
include surgery, chemotherapy and radiation therapy among 
others.  While these methods have been accepted and prac-
ticed for decades, they have their drawbacks and side effects.  
Surgical removal of tumors is restricted mainly to large, resec-
table and accessible tumors.  Chemotherapeutic drugs target 
rapidly dividing cells, and thus not only kill cancer cells, but 
also destroy normal cells like bone marrow cells and immune 
cells[2].  This gives rise to widespread “collateral damage” in 
the patient’s body.  Radiation therapy involves the use of high-
energy radiation like X-rays and gamma rays to destroy tumor 
cells, and inevitably causes deleterious effects to healthy tis-
sues along the radiation path[3].  

In light of the shortcomings of current treatment modalities 
for cancer, a critical thrust towards improving cancer therapy 
is to specifically target therapeutic agents to tumor cells while 
sparing healthy tissues from harm.  This is one of the emerging 
interests in nanotechnology research.  Nanotechnology refers 
to the manufacture of materials having nanoscale dimensions 
between 1 nm and 100 nm[4].  The small size of these nano-
materials confers their uniqueness with chemical and physical 
properties that are distinct from their bulk materials[5].  The 
rapid expansion in nanomaterial research increases the future 
prospect of novel diagnostic methods and treatment of dis-
eases that plague mankind.  This branch of nanotechnology in 
disease diagnosis, monitoring and treatment has been termed 
“nanomedicine” by the National Institutes of Health in the 
USA[4].  

Among the many nanomaterials being developed for nano-
medicine applications, this review will focus on gold nano-
particles (AuNPs) and their potential as tumor sensors, drug 
delivery agents and enhancers in plasmonic photothermal 
therapy for the eradication of cancers.  The use of AuNPs is 
gaining popularity in these areas of research for several rea-
sons.  Firstly, AuNPs are considered to be relatively biologi-
cally non-reactive and therefore suitable for in vivo applica-
tions compared to the very toxic cadmium and silver NPs[6] 
although various groups (as explained in the later sections) are 
challenging this view.  Other advantageous qualities include 
the strong optical properties of AuNPs due to localized sur-
face plasmon resonance (LSPR)[7], easily controllable surface 
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chemistry which enables versatility in adding surface func-
tional groups[8], and lastly, the ease in control over particle size 
and shape during synthesis[9].  AuNPs may be considered to 
be fully multifunctional, with the possibility of combining dif-
ferent desired functionalities in one molecular-sized package.  
All these factors contribute to the strong interest and prefer-
ence for the use of AuNPs over other NPs[10].  Examples of 
other nanomaterials for biomedical applications can be found 
in other published papers which expound on the utilization of 
quantum dots[11, 12], functionalized fullerene-based nanomateri-
als[13] and magnetic NPs[14, 15] for the diagnosis and treatment of 
human diseases.

AuNPs and cytotoxicity
As the utility of AuNPs largely depends on the degree of 
inherent toxicity, studies on the toxicological profile of these 
NPs are discussed proceeding to their usage in cancer man-
agement.  Since NPs exhibit properties which are markedly 
different from that of their much larger counterparts, their 
behaviour and effects cannot be extrapolated from informa-
tion derived from their bulk materials.  Bulk gold has gen-
erally been considered an inert metal valued for medicinal 
purposes[16] and AuNPs have been thought to be likewise.  In 
the literature, AuNPs have been reported to lack the ability to 
induce adverse and acute toxicity[17] and are thus deemed to be 
biocompatible entities for use in biomedical applications[17, 18].  
However, recent studies have shown that there could be more 
to AuNP toxicity than already surmised and that the extent 
of toxicity response is closely associated with the size of the 
AuNPs[19, 20].  Investigations have revealed that decreasing the 
size of NPs correlated with more widespread tissue distribu-
tion, heightened potential to deeper penetration within certain 
tissues, more effective internalization by cells, and increased 
toxic effects[21].  In terms of surface functionality, studies have 
shown that modification of the AuNP surface affect its uptake, 
interactions with cellular constituents and cytotoxicity[22, 23].

In vitro studies on cytotoxicity of AuNPs
Multiple studies have shown that AuNPs exert their cytotox-
icity through the induction of oxidative stress.  For example, 
when exposed to 1.4 nm AuNPs, HeLa cervical carcinoma cells 
exhibited increased reactive oxygen species (ROS) production 
and oxidative stress, leading to protein and lipid oxidation, 
severely impaired mitochondrial function, and eventually cell 
death[23].  The same investigators showed that Z-VAD-fmk, a 
caspase inhibitor was unable to rescue the cells from dying, 
leading to the conclusion that cells were killed by necrosis.  
Furthermore, genome-wide mRNA expression analysis veri-
fied that treatment with AuNPs caused up-regulation of 
stress-related and inflammation-related genes and a concomi-
tant decrease in the expression of cell cycle genes.  It appears 
that continual production of endogenous ROS within the cell 
exhausted the intracellular antioxidant pool and therefore 
induced irreversible damage that eventually lead to necrosis.

Oxidative stress was observed in MRC-5 fetal human lung 
fibroblast cells following exposure to 20 nm AuNPs[24] with 

concomitant down-regulation of cell cycle genes such as 
Cyclin B2 and B1 and DNA damage response genes.  In a 
follow-up study, the same investigators observed the presence 
of autophagy (validated by biochemical and morphological 
parameters) concurrent with oxidative stress in the lung fibro-
blasts following uptake of AuNPs[25].  It was also demonstrated 
in the same study that AuNP treatment led to the up-regula-
tion of antioxidants and expression of stress-response genes 
and proteins, lending support to the hypothesis that oxidative 
stress could be a manifestation of AuNP cytotoxicity.  

In vivo studies on cytotoxicity of AuNPs
In a recent study, blue mussel Mytilus edulis was observed 
to experience oxidative stress within 24 h of exposure to 
AuNPs[26], indicating the possible impact of AuNPs to the eco-
system and aquatic animals.  The same investigators also pro-
posed the use of M edulis as an ideal animal model for envi-
ronmental toxicology studies of NPs.  Another in vivo study 
utilized zebrafish embryos to assess the feasibility of AuNPs as 
probes for embryonic imaging[27].  In this study, the real-time 
effects of AuNPs on zebrafish embryos were investigated, and 
results showed that owing to the random diffusion of AuNPs 
to various parts of the embryo, toxic effects influencing the 
developmental outcome of the embryo were largely stochastic 
in nature.  Among the 76% of zebrafish embryos that survived, 
only a minority (2%) of zebrafish embryos exhibited defor-
mities while the remaining 74% developed normally.  The 
authors therefore proposed that given its relatively non-toxic 
nature, AuNPs could be exploited for in vivo imaging applica-
tions for embryonic studies.

For mammals, however, there is at present limited informa-
tion regarding the in vivo toxicity of AuNPs.  Studies have 
largely focused on the biodistribution of AuNPs in the body.  
A rat model study revealed the size-dependent organ distribu-
tion of AuNPs following intravenous (iv) administration.  For 
10 nm AuNPs, the distribution was found to be widespread, 
permeating the blood and organs of the cardio-respiratory 
system, immune system (such as spleen and thymus) and 
reproductive system, liver, kidney, and brain, whereas larger 
AuNPs (50, 100, and 250 nm) were localized only to the blood, 
liver and spleen[28].  A similar study conducted using 15, 50, 
100, and 200 nm AuNPs showed that while the AuNPs with 
the largest dimension could only accumulate minimally in 
organs following iv administration into mice, AuNPs with 
the smallest dimension were detected in all tissues including 
blood and other organs such as the liver, lung, spleen, kidney, 
brain, stomach, and heart[29].  The results imply that smaller 
size AuNPs are more accessible to various tissues in the body 
and therefore the propensity to cause widespread harm, if any.  

Another group of researchers assessed the in vivo toxicity 
of 13 nm AuNPs coated with poly (ethylene) glycol (PEG) in 
mice and showed that following iv injection of AuNPs, the 
NPs accumulated in mouse liver and spleen for up to a week, 
and induced acute inflammation and apoptosis in the liver[30].  
The same group of investigators also demonstrated that iv 
administration of 4 nm or 100 nm PEG-coated AuNPs in mice 
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induced up-regulation of common genes associated with 
apoptosis, cell cycle, inflammation, and metabolic process in 
liver tissues[31].

A major challenge in the field of investigating in vivo cyto-
toxicity of NPs is the plausibility of translating observed cel-
lular and immunological toxicity in animal models to humans, 
since there are distinct intra- and interspecies variations which 
need to be considered.  

Applications of AuNPs in cancer management 
AuNPs as sensors for probing and imaging tumor cells
AuNPs are good candidates for labelling applications because 
of their ability to interact strongly with visible light.  Upon 
exposure to light, free electrons in gold atoms are excited to a 
state of collective oscillation known as surface plasmon reso-
nance (SPR), conferring gold the ability to absorb and scatter 
visible light[32].  In labelling applications, AuNPs are targeted 
and accumulated at the site of interest and based on their 
optical scattering properties, they enable visualization of the 
region under study.  AuNPs may then be detected by any of 
the following ways: phase contrast optical microscopy, dark 
field microscopy, photothermal imaging, and photoacous-
tic imaging[33].  In addition, owing to its high atomic weight, 
AuNPs remain the preferred label for visualization and 
immuno-staining at the ultrastructural level using transmis-
sion electron microscopy[34].  

A crucial step in successful cancer therapy involves early 
diagnosis.  The strong optical scattering properties of AuNPs, 
coupled with their relative biocompatibility, make them 
suitable as probes for cancer imaging.  Through the conju-
gation of antibodies specific for antigens overexpressed on 
tumor cells, AuNPs can be directed to tumor cells, thus pin 
pointing their precise location in the body (Figure 1).  It has 
been demonstrated that antibody-conjugated hollow gold 
nanospheres can be used for the surface-enhanced Raman 

spectroscopy (SERS) imaging of tumor biomarkers which are 
overexpressed in MCF7 breast cancer cells[35].  Raman scatter-
ing is a phenomenon that results from the inelastic collision 
of photons with molecules where energy, which is either lost 
or gained, translates to a change in the frequency of the scat-
tered photons.  This unique shift of frequency depends on the 
characteristic energy of molecular vibrations constituting the 
signal, hence a Raman spectrum consisting of different signals 
from molecular vibrations forms a “vibrational fingerprint” 
of a molecule[36].  In SERS, these Raman signals are amplified 
several folds by nanostructures present in the vicinity of the 
molecules.  Gold and silver have been shown to cause signifi-
cant enhancement[37] and are thus the favoured nanostructures 
used as sensors[24].  By attaching a reporter to SERS sensors, 
targeted sensitive probing of molecules or structures within 
cells may be achieved[36].

Recent studies have demonstrated the potential use of 
AuNPs for in vivo targeted imaging of cancer using Raman 
spectroscopy.  Large optical enhancements can possibly be 
achieved in the detection of tumors in live animals owing 
to the 14–15 orders of magnitude signal amplification by 
AuNPs[38].  Following the conjugation of AuNPs with appro-
priate ligands, cancer markers such as epidermal growth factor 
receptors present on the surface of human cancer cells and in 
xenograft tumor models could be targeted for detection.  This 
shows the potential of using AuNPs for biomedical imaging 
in live subjects.  However, it is important to note that the suc-
cessful optical imaging performed in mice cannot be directly 
scaled up for in vivo imaging of human subjects because the 
optical signals possess limited tissue penetration ability[39].  At 
present, optical imaging only appears useful for tissues close 
to the skin surface or accessible by endoscopy.  Hence, addi-
tional technological improvements are needed before Raman 
scattering by AuNPs can be used in a clinical setting.  

The utility of AuNPs as novel biosensors for the detection of 
tumor cells can be demonstrated through the use of a screen-
printed carbon electrode (SPCE) coupled with a NP-based 
electrocatalytic method[40].  Using this technique, in situ tumor 
cell proliferation was detected and quantified via the reaction 
of cell surface proteins with specific antibodies conjugated to 
AuNPs.  Human tumor HMy2 cells (human leukocyte antigen 
(HLA-DR) class II positive B cells) and human tumor PC-3 
cells (HLA-DR class II negative prostrate carcinoma) were first 
grown on the surface of SPCEs, following which they were 
incubated with a commercial monoclonal antibody (mAb) spe-
cific to DR molecules conjugated to AuNPs (direct method) or 
unconjugated mAb followed by secondary antibodies conju-
gated to AuNPs (indirect method).  When hydrogen ions were 
catalytically reduced to hydrogen in the presence of AuNPs, 
the amount of AuNPs (and thus a corresponding indication of 
the quantity of attached tumor cells) could be quantified.  In 
both methods, the AuNP immunosensor was able to distin-
guish DR-positive tumor cells from DR-negative tumor cells, 
showing the efficiency of this novel biosensor in detecting spe-
cific tumor cells.  

Figure 1.  Schematic diagram showing the localization of antibody 
conjugated gold to receptors present on the plasma membrane of cells.
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AuNPs as drug delivery agents targeted to cancer cells
A prominent application of AuNPs is their use as vehicles for 
delivery of molecules into cells.  AuNPs have been described 
as “promising nanocarriers for therapeutics” owing to their 
ease of synthesis and functionalization, relative biocompatibil-
ity[41] as well as low toxicity in preliminary assays[9].  However, 
various factors need to be considered in designing an effective 
drug delivery system.  The properties of AuNPs such as their 
size, charge and surface chemistry have been shown to affect 
the uptake of AuNPs into cells as well as their subsequent 
intracellular fate.  In addition, effective drug delivery strate-
gies must take into account the nature of drug-AuNP interac-
tion (covalent/non-covalent binding) as well as the means 
of drug release following introduction of the drug-AuNP 
complexes to cells[42].  If AuNPs are used solely as carriers into 
cells, it is also critical to monitor any toxic effects of residual 
materials in the cell after delivery; a biodegradable NP vec-
tor whose lifespan is limited to the therapeutic window of the 
drug would be ideal[43].  If the NP vector is cleared from the 
system once its purpose is reached, it will reduce exposure 
and limit its toxic effects in the body.  

Another issue of concern is the penetration rate of AuNPs 
into tumors and the specificity of the target sites.  Particularly, 
the epithelial and endothelial barriers are considered to be the 
main hindrance for the NPs to overcome.  Penetration enhanc-
ers like metalloproteases against basement membranes and 
toxins against intracellular tight junctions, may be useful in 
aiding the uptake of drug-loaded AuNPs into the tumor[44].  
Another factor to be considered is the AuNP retention in 
blood circulation.  Some researchers have found that particle 
retention is also size-dependent and longer circulation time is 
correlated to higher rate of reaching tumor target[45].  In addi-
tion, most studies have only investigated on drug delivery to 
solid tumors, where it is site specific and easier for quantifica-
tion of results.  It remains to be seen if AuNPs will be effective 
against non-solid cancers like leukemia where strategies for 
targeting and treating such cancers can be different from that 
for solid tumors.

Drug attachment and release from NPs is another challeng-
ing area.  While the ease of surface modification is what makes 
AuNP attractive for drug delivery, the strength of drug attach-
ment and timing of the release needs to be suitably controlled 
to produce the highest therapeutic efficacy.  Foremost, the 
method of release at the tumor site is dependent on how the 
drug is attached to the AuNP, whether covalently or through 
non-covalent binding.  Generally, drugs in the active form 
are loaded non-covalently while the covalent-conjugation of 
the drug to AuNP is in the pro-drug form, thereby requiring 
a second reaction to release the drug from the attachment as 
well as to activate it.  Although there have been quite a num-
ber of strategies proposed for the triggering of drug release at 
the tumor site, they can generally be narrowed down to three 
methods: light or photothermal release[46, 47], glutatione-medi-
ated[48], and non-covalent encapsulation of the active drug 
with subsequent off-loading by diffusion through the mem-
brane[9].  The others are principally a modification of one or 

a combination of these methods.  Thus far, the in vitro works 
done by Kim et al[9] have yielded promising results.  However, 
more work is required as there is still the need to assess if 
these methods are practical for application in vivo.  

Similarly in the field of cancer therapy, AuNPs are cur-
rently being explored as potential drug delivery agents for the 
introduction of drugs into tumor cells[49].  Cells are known to 
take up colloidal AuNPs of various shapes and sizes[22] either 
by specific (via ligand-receptor interaction) or non-specific 
means.  An example of AuNPs being taken up by breast 
cancer cells in vitro is shown in Figure 2.  In order to ensure 
the specific killing of cancer cells while sparing healthy cells, 
AuNPs were conjugated with appropriate surface ligands 
which directed them only to tumor cells (Figure 3).  Huang et 
al (2008) have described two methods for tumor targeting: the 
first involved conjugation of AuNPs to PEG, and the second 
involved conjugation of AuNPs with specific antibodies which 

Figure 2.  Transmission electron microscopy (TEM) of AuNP treated MCF-7 
breast cancer cells.  The cells were treated with 1 nmol/L AuNP for 72 h.  
(A) A cluster of AuNPs (indicated by an arrow) is found in the cytoplasm 
of a cell.  Bar=0.2 µm.  (B) TEM specimens were subjected for elemental 
analysis with a CM120 BioTWIN electron microscope coupled with a 
Philips EDAX Microanalysis system.  The electron dense particles in AuNP 
treated cells showed the presence of two peaks corresponding to the gold 
M shell (2.2 KeV) and L shell (9.7 KeV).  The treatment sample, registered 
a P/B ratio (ratio of the intensity of the detected element against the 
background) of 230.27 (Au L shell).  For the element to be significantly 
present in the sample, the P/B ratio value needs to be 3.0 and above.  
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bind unique biomarkers expressed on tumor cells[50].  PEG 
prevented AuNP aggregation and lengthened their retention 
time in blood.  This facilitated the preferential accumulation 
of AuNPs in tumor cells over healthy cells because of the 
elevated permeability of poorly differentiated blood vessels 
around tumors following angiogenesis (Figure 4), as well as 
the decreased clearance rate caused by the deficit of functional 
lymphatic vessels in tumors[4].  Using PEG is considered a pas-
sive targeting approach, as opposed to the active targeting of 
tumor cells through the help of specific antibodies.  Following 
cellular uptake, AuNPs are stored in endosomal/lysosomal 
vesicles.  In order to liberate these AuNPs and introduce the 
drug which has been delivered into the cell cytoplasm, the 
NPs need to be modified by the conjugation of membrane-
translocating sequence-based peptides which enable them to 
traverse monolayers[51].  

Tumor necrosis factor-alpha (TNF-α) is a potent, multi-

functional cytokine which not only plays a critical role in 
inflammation and immunity, but also exhibits anticancer 
properties[52].  However, its systemic toxicity due to their indis-
criminate actions on both normal and malignant tissues is well 
established[16].  Indeed, it was shown in one study using the 
mouse model that increasing doses of native TNF correlated 
with the severity of toxicities observed[49].  In the same study, 
it was revealed that in contrast to native TNF, TNF conjugated 
to a colloidal gold platform interspersed with thiol-derivatized 
PEG was more efficacious in reducing tumor burden in a colon 
cancer xenograft model, without causing death of the animals.  

A Phase 1 clinical trial on the PEGylated colloidal gold–TNF 
construct (CYT-6091) conducted in patients with advanced 
stage solid cancers has shown potential[53].  The CYT-6091 
complex appears to be well-tolerated in this first clinical trial 
on human subjects although fever developed in two patients, 
which was not unexpected (as evidenced by preclinical data) 
and were easily controlled.  It is unclear if the fever was due 
to a reaction to the AuNPs or the recombinant TNF (rhTNF) 
construct.  It appears that the AuNP and rhTNF construct 
produces less adverse reaction than the rhTNF alone even at 
the highest drug-AuNP concentrations in the pre-clinical find-
ings.  Dose-limiting toxic reaction of hypotension was also not 
seen in any patient under the trial although there were some 
retrafficking of leukocytes.  AuNPs were found in the tumor 
as well as in the liver biopsies but no toxic adverse effects 
were observed.  In sum, the authors concluded that the clinical 
results correlated well with the preclinical data, which bodes 
well for future translational studies for AuNPs.  However, it 
must be borne in mind that data generated with one type of 
AuNP may not be extrapolated to other kinds of AuNPs with 
a different shape, size or surface modification.

In a separate study, the effect of incorporating PEG-coated 
AuNPs with TNF-α for the targeting killing of SCK mammary 
carcinomas grown in mice combined with heat treatment has 
also been investigated[54].  While AuNPs loaded with TNF-α 
alone and heat treatment alone showed tumor growth delay, 
the most drastic effect was observed when TNF-α loaded 
AuNPs were intravenously introduced, followed by local 
heating.  This combination treatment proved effective in 
decreasing the in vivo and in vitro tumor cell survival rates, 
demonstrating the prospect of using AuNPs as drug delivery 
carriers coupled with subsequent thermal treatment for effec-
tive eradication of tumor cells.  

The effects of AuNPs conjugated with methotrexate (MTX) 
in inducing cytoxicity in vitro and anti-tumorigenic effects in 
vivo have been reported[55].  It was observed that accumulation 
of Au-MTX in tumor cells occurred more rapidly and at higher 
concentrations than those treated with free MTX.  As a result, 
enhanced cytotoxic effects were also present in several tumor 
cell lines compared with an identical dosage of free MTX.  
These results warrant further investigation as they suggest 
that the conjugation of AuNPs with a chemotherapeutic drug 
such as MTX was more efficacious than the administration of 
free MTX alone, displaying the potential of AuNPs as drug 
carriers targeting only tumor cells.  

Figure 3.  Schematic diagram showing AuNP carriers conjugated with 
anticancer drugs and ligands which are recognized by receptors on the 
surface of tumor cells. 

Figure 4.  Schematic diagram showing accumulation of ligand-targeted 
gold nanoparticles conjugated with anticancer drugs in cancer cells 
mediated via extravasation of the gold nanocarriers through gaps in the 
endothelial cells (“leaky tumor vasculature”).
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However, given the vast array of AuNPs of different shapes 
and sizes, it is still unclear which type(s) of AuNPs would be 
the most suitable for drug delivery applications[39].  It is likely 
that this variety of AuNPs will be custom made to suit the 
needs for patient treatment.  The use of AuNPs in such a man-
ner is not without its disadvantages.  There are inherent prob-
lems and potential problems to the use of NPs in the delivery 
of drugs to the target site such as size of the NP and drug 
conjugate, intratumoral pressure and differential expression of 
receptors at the tumor site.  Optimism towards the utilization 
of AuNPs as drug delivery vectors into cells should be kept in 
check as many of the complications regarding targeted drug 
delivery as well as the toxicity of NPs to cells is a concern yet 
to be fully addressed.  Therefore, the use of AuNPs prior to 
appropriate assessment of their toxic effects may reap more 
harm than benefit.  

AuNPs in plasmonic photothermal therapy
Traditionally, heat has been used in the treatment of cancer 
via the induction of hyperthermia, a condition in which cells 
are subjected to high temperatures which kill them.  While the 
sources of heat varies from microwaves, radiowaves, ultra-
sound waves to laser light in the past, such approaches to 
cancer therapy have not been widely used because of the con-
sequential damage to normal tissues surrounding the targeted 
tumor.  With the advent of nanotechnology, diverse nano-
structures have been manufactured for the purpose of photo-
thermal therapeutics.  Noble metal NPs such as AuNPs (and 
including Au nanospheres, nanorods, and nanocages) attract 
particular interest because they possess enhanced absorption 
cross-sections[50, 56].  Their strong absorbance enables effective 
laser therapy with minimal “collateral damage” to the sur-
rounding healthy tissue.  The mechanism by which AuNPs 
exert their photothermal effect is through SPR.  This leads to 
the formation of a heated electron gas which then cools rap-
idly within about 1 ps through exchanging energy with the 
NP lattice.  The NP lattice in turn heats up the surrounding 
environment through the rapid transfer of energy spanning 
only about 100 ps[57].  The speed at which energy is converted 
and dissipated to the surrounding environment presents an 
efficient means of rapidly inducing hyperthermia in the vicin-
ity of AuNPs following irradiation with light.  Irreversible cell 
damage resulting from denaturation of proteins and disrup-
tion of cell membrane will occur in the areas subjected to high 
temperatures.  

The underlying concept of using antibody-conjugated 
AuNPs hinges on the necessity of tumor cells in express-
ing characteristic biomarkers, which are otherwise absent or 
expressed in significantly lower levels in normal cells.  The 
successful detection and eradication of breast carcinoma cells 
overexpressing human epidermal growth factor receptor 2 
(HER2) through the usage of anti-HER2 immunotargeted gold 
nanoshells with subsequent irradiation by near infra-red light 
to potentiate the gold nanoshells-induced photothermal effect 
has been reported[58].  The antibody-mediated targeting of 
AuNPs to tumor cells was considered to be the more specific 

and efficient of the two approaches to tumor targeting.  It is 
apparent from here that plasmonic AuNPs exhibit vast poten-
tial in the field of photothermal cancer therapy by providing a 
means to specifically target tumor cells.  

AuNPs in radiation therapy
Numerous studies have revealed that AuNPs may have 
important applications as radiosensitizers (which are drugs 
that potentiate the effect of radiation for cancer therapy).  A 
study on mice bearing subcutaneous EMT-6 mammary carci-
nomas showed that not only were AuNPs (1.9 nm in diameter) 
non-toxic in nature and cleared from the body via the kidneys, 
they possessed the ability to enhance the effect of X-ray ther-
apy leading to a remarkable survival rate of 86% as opposed 
to 20% with X-rays alone and 0% with AuNPs alone[59].  How-
ever, it is crucial to note that while 1.9 nm AuNPs seem to 
show potential as radiation enhancing agents, a recent study 
discovered evidence for acute cytotoxicity, DNA damage and 
apoptosis mediated by oxidative stress induced by cellular 
uptake of 1.9 nm AuNPs[60].  There is a need for further under-
standing of cellular responses to AuNPs when exploring their 
potential to be used in radiation therapy to cure cancer.

The effectiveness of AuNPs as radiosensitizers seems to be 
closely related to their surface functionality.  While the above 
studies utilized uncoated AuNPs, another study showed that 
5 nm AuNPs coated with the gadolinium chelating agent 
dithiolated diethylenetriaminepentaacetic gadolinium (Au@
DTDTPA:Gd) did not exhibit radiosensitizing effect in both 
tumor cells in vitro and in vivo models (MC7-L1 tumor-bearing 
mice)[61].  Instead, a chemotherapeutic effect was observed, 
which warrants further investigation.  The authors suggest 
that the radiosensitizing properties of AuNPs could possibly 
be strongly reliant on the nature of their coating.  However, 
the discrepancy over the radiosensitizing effects of AuNPs 
may also be attributed to the different dimensions of AuNPs 
used as well as the type of tumor cells under study.  

AuNPs as antiangiogenic agents
Interestingly, AuNPs have been reported to possess antiangio-
genic property[62].  The exact mechanism of action is still not 
clearly understood but it was observed that AuNPs bind pref-
erentially to vascular permeability factor/vascular endothelial 
growth factor (VPF/VEGF)-165 and basic fibroblast growth 
factor (bFGF) primarily through the heparin-binding domain.  
This has led researchers to suggest that AuNPs are able to 
inhibit angiogenesis by preventing the downstream signaling 
effects of these mitogens on angiogenesis in cancer cells[63].

Conclusion
The field of NP research presents exciting potential for bio-
medical applications.  Together with an expanding knowledge 
base on the properties and effects of AuNPs, they are currently 
explored as potential tools for cancer therapy.  Presently, 
exploiting AuNPs as sensitive probes in the detection and 
imaging of tumors for diagnostic purposes, delivery agents 
for the specific targeting of chemotherapeutic drugs to tumor 
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cells, and enhancers in plasmonic photothermal therapy and 
radiation therapy for the eradication of tumor cells appear to 
show promise.  In nanomedicine, the ultimate aim is to utilize 
NPs efficiently for the in vivo targeted killing of tumor cells 
with no or minimal side effects.  However, even the concept of 
attaching ligands to the NPs so as to allow them to hone to the 
tumor appears logical and simple but is in fact fraught with 
difficulties.  In this light, NP research is still at its infancy since 
many factors remain to be optimized before the application of 
NPs in cancer therapy becomes a clinical reality.
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