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Abstract 

 

The progress of continuous scaling of metal-oxide-semiconductor field-effect 

transistors (MOSFET) technology is accompanied by many novel materials and 

advanced process technologies. High-k dielectrics materials and Germanium (Ge) are 

two most promising aspects for the further improvement when the international 

technology roadmap for semiconductors (ITRS) hits 22nm and below. High-k 

dielectrics gate oxide is critical to replace current SiO2 with thickness limitation of 

2nm and alternative high mobility Ge channel can dramatically improve the device 

performance. 

 

This thesis examines the interface and surface properties of Ge and high-k materials 

SrTiO3 (STO) from both the experiment and first-principles calculation. In the 

experiment part, Ge is grown on top of the STO (100) substrate through direct DC 

sputtering with atomic oxygen source treatment. From high resolution XRD results, it 

can be concluded that 500 °C substrate temperature leads to the single crystalline Ge 

(111) thin film while 650 °C substrate temperature changes the thin film to Ge (100). 

This single crystalline structure and clean interface are verified by HRTEM images. 

STEM EDX line-scan reveals the phenomenon of Ge diffusion at interface, which is 

much more serious at higher deposition temperature. The stable surface bonding is 

Ge-TiO2 terminated instead of -SrO in the Si and high-k interface. XPS analysis of 

the Ge thin films shows the existence of oxidation states at the interface, which is a 
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mix of Ge2O (Ge
1+

) and GeO (Ge
2+

) components. The HRTEM and AFM images of 

samples with 6mins deposition time present the Nanocrystal (NC) islands for the Ge 

and the density is around 3.68×10
12

cm
-2

. This highly integrated NCs (~10
12

 cm
−2

) is 

very useful for the application of floating – gate (FG) in the nonvolatile memory 

(NVM) technology.  

 

In the first-principles calculation part, Hybrid-functionals calculations have been 

employed to study interfacial electronic properties of perovskite SrTiO3 (001)/Ge 

(100). It is found that the Ge surface states of Ge p-(2×1) can be effectively removed 

either by one Sr or two O atoms, and the surface passivated by two oxygen atoms is 

more energetically favorable. Interface structure of SrTiO3 with TiO2 terminated 

surface is more stable despite the different surface chemical environments of Ge, and 

the interface structures without dangling bonds show semiconductor character. It is 

also noted that the relative stability of the insulating interface structures is not affected 

by the external electric field. 
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Chapter 1 

Introduction 

 

1.1 Si based MOSFET and Scaling Technology 

 

We have stepped into the “silicon age” for more than 60 years since the first 

semiconductor transistor was invented in December 1947 by John Bardeen and Walter 

Brattain at Bell Labs. [1] After the birth of the first generation metal oxide 

semiconductor field effect transistor (MOSFET) in 1960, [2] the integrated circuits 

(IC, also known as microchips or microcircuits), where MOSFET plays an important 

role for the core electronic devices, have been successfully revolutionizing the world 

for the past half century. (See Fig. 1.1 for a typical MOSFET)   

 

 

Figure 1.1. Schematic of a typical bulk MOSFET structure. Four terminals 

are denoted as Gate (G), Source (S), Drain (D), and Body (B). Geometry 

parameters are denoted as gate length (L) and gate width (w).  
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In order to continuously improve the speed and the functionality of the IC, scaling of 

MOSFET technology is a must trend for increasing both the package density and 

performance. This scaling behavior as the IC driving force has been vividly described 

and predicted by Gordon Moore at 1960: the size of the transistor will be reduced by 

two times and the density of devices in a chip will be double for every 18 months (Fig. 

1.2). [3, 4] The Semiconductor Industry Association (SIA) has also been publishing 

the international technology roadmap for semiconductors (ITRS) since 1992 to reveal 

the semiconductor industry’s future technology trends and requirements (Fig. 1.3). [6]  

 

 

Figure 1.2. Historical trend agrees with the Moore’s Law. Number of 

transistor in the Intel Micro Processor increases exponentially over time. 

[5]  



 

3 
 

 

Figure 1.3. Near-term high-performance logic technology requirements in 

ITRS 2005. [6] 

 

The enhancement of various electrical parameters of MOSFET (such as gate length, 

gate width, gate thickness and power supply voltage) is the key concept for the 

MOSFET scaling according to the roadmap and already proposed by Dennard in 1974. 

[7] In Fig. 1.1, it is a typical four-terminal bulk MOSFET and the saturated drain 

current is given by Equation 1.1, where C is the inversion capacitance, (Vg-Vth) is the 

gate overdrive, µeff is the effective carrier mobility. 

 

                  (1.1) 

 

According to Eq. (1.1), in order to achieve a higher drive current (Idsat), we can either 

increase gate overdrive power (Vg - Vth), effective carrier mobility (µeff), width (w), 

inversion capacitance (C) or reduce channel length (L). The increase of width is 
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contrary with the scaling rule and the increase of power has the reliability concerns. 

Besides them, the decrease of gate length can cause short channel effect and currently 

the gate length has already reached its fundamental limit. [8] The only parameters left 

behind are the effective carrier mobility (µeff) which is the channel carrier mobility 

and inversion capacitance(C) which is related to the gate dielectric. Many novel 

device technologies and new materials have been proposed to solve the ultimate 

scaling issues for future MOSFET by improving these two parameters, e.g. high 

mobility channel materials and high-k dielectric. These approaches which are also 

named performance boosters by ITRS can control the short channel effect (SCE) 

while maintain continuous performance enhancement (Fig. 1.4). [9]  

 

 

Figure 1.4. A schematic showing a possible combination of technology 

boosters. In the front end, device has high-k dielectric, metal gate 

electrode, and thin body, high mobility InGaAs for n-FET and Ge for 

p-FET. The back end interconnect includes low-k dielectric and low 

resistive metal Cu. [9] 
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1.2  High-k Dielectrics and Ge Channel in MOSFET  

1.2.1 Introduction of High-k Dielectrics Materials 

 

As mentioned in section 1.1, one major approach to enhance MOSFET performance is 

to increase the inversion capacitance(C). Currently in the industry the major material 

used for gate dielectric are SiO2 (dielectric constant is 3.9) and SiON (for high 

performance technologies, dielectric constant is around 7). In order to meet the 

scaling requirement, the thickness of the gate dielectric continues to scale down till 

1.5nm. [10, 11] Although this gate dielectric oxide thickness scaling can keep 

improving the device performance, it will reach the limit of around 2nm, below which 

the gate leakage current density Jg could become unacceptably high (see Fig. 1.5). 

Accordingly, it will also increase the static power and degrade device performance. 

[12, 13] 

 

Figure 1.5. Gate leakage current, JG (SiON-based devices), and equivalent 

oxide thickness (EOT) of CMOS technologies, vs. the expected production 

year of these technologies.  When the leakage current flowing through the 

SiON layer exceeds the ITRS requirements (here for low stand -by power 

technologies), an alternative gate dielectric should be used.  
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By introducing high-k gate dielectrics to replace the traditional SiO2 or SiON, the 

physical thickness of the high-k gate dielectric can be much thicker compared to the 

physical thickness of the SiO2 dielectric with the same equivalent oxide thickness 

(EOT can be described at equation 1.2 below).  

 

               (1.2) 

 

where tx is the physical thickness of the alternative oxide film and kx is its dielectric 

constant, e.g. an oxide film with a dielectric constant of 7.8 can be approximately 

twice as thick as a SiO2 film, while still having the same capacitance per unit area to 

maintain gate control over a MOSFET. [12] Therefore, the leakage current will be 

much smaller even for the EOT less than 1nm. That's to say, high-k materials as the 

gate oxide can enable the possibility of device scaling.  

 

Some requirements for selecting the high-k materials for Si-MOSFET are summarized 

by M.Houssa: [13] 

 

1. The relative dielectric constant of the high-k material should be somewhere 

between 10 and 30, which will give rise to fringe fields from the gate to the 

drain or source and these fields can degrade short channel performances.  
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2. The dielectric material must be an insulator with a band gap larger than 5 eV 

and the band offsets with silicon must be sufficient. Generally, increasing 

dielectric constant leads to lower conduction and valence band offset for 

materials in contact with silicon, and there is an inverse relationship between 

dielectric constant and the band gap [14]. To prevent conduction by Schottky 

emission of electrons or holes into their respective bands, i.e. reduce leakage 

current, the barrier at each band must be greater than 1 eV. As a comparison, 

the band gap of SiO2 is 9 eV, and the conduction and valence band offsets with 

Si are 3.1 eV and 4.8 eV, respectively. 

 

3. Interface preparation and quality are important for layer growth. 

 

4. Low interface trap defect density, Dit, is typically less than 10
11

 cm
-1

 eV
-1

. 

 

5. Thermodynamic stability is essential for direct contact with Si. The oxides 

must have a large Gibbs free energy of formation to prevent reaction with Si. 

Oxygen diffusion coefficients must be low as they will cause uncontrolled 

interfacial layer (re)growth. 
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Table 1.1. Static dielectric constant (K), experimental band gap and (consensus) 

conduction band offset on Si of the candidate gate dielectrics. 

 

Table 1.1 shows the properties of a wide variety of high-k materials. These years, 

most of them have been studied and indentified as promising gate dielectrics 

candidates. In the semiconductor industry, Intel has been already using Hf-based 

high-k dielectrics (HfO2 or nitride HfSiOx) for its 45nm technology. Among these 

high-k materials in the list, SrTiO3 has the highest dielectric constant ~2000; while 

this materials is rarely studied as a candidate for gate dielectrics in Si-MOSFET, due 

to its small band gap(~3.2 eV) and small conduction band offset(~0 eV) which could 

cause large leakage current. In our study, Ge with smaller band gap (~0.6 eV) is 

adopted instead of Si. [16] Taking the advantage of high dielectric constant and small 

lattice mismatch to Ge, we will focus on SrTiO3 in this thesis from first-principles 

calculation and experimental respects. 
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1.2.2 Introduction of Ge Channel 

 

One of the most important performance boosters is using the transport enhanced 

channel to replace the traditional Si based channel in the MOSFET. As stated in 

section 1.1, another parameter to increase the saturation current (Ion) with the device 

scaling is effective carrier mobility (µeff). The saturation current (Ion) can be 

represented by equation 1.3: 

 

              (1.3) 

 

where q is the elemental charge, N
source

s is the surface carrier concentration near the 

source edge, and vs is the carrier velocity near the source edge which is proportional 

to the mobility [17, 18]. Especially for the channel length less than 10nm, the carrier 

transport is dominated by full ballistic transport. The transistor speed is no longer 

determined by saturation velocity but by source injection velocity. Therefore, there is 

a must to replace the conventional silicon channel with novel materials with high 

mobility for the future generation nanoelectronics. 

 

The characteristics of potential alternative channel materials like Ge, main III-V 

semiconductors (GaAs, InSb and InP) are listed in Table 1.2. Among these materials, 

it is noted that Ge is the only material that offers high mobility enhancement for both 

hole and electron with appropriate bandgap. In addition, its low melting point ensures 
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that the dopant activation temperature is as low as 400°C-500°C. [19, 20] 

 

 

Table 1.2. Material characteristics of alternative channel materials [16] 

 

Although III-V semiconductors have higher electron mobility, Ge can provide the 

highest hole mobility among the main semiconductors, and it has already been 

demonstrated that compressively strained Ge p-MOSFETs provide ten times or higher 

hole mobility against Si p-MOSFETs. [21-24] The compatibility of Ge with both 

nMOSFET [25] and pMOSFET [26] has also been proven. It’s even reported that hole 

mobility enhancement of as high as ten is obtained by combing both Ge channel (GOI 

with 93% Ge content) and compressive strain, [26] which can further indicate that Ge 

is one of the most important future channel materials.  

 

Although Ge is a promising material to be the channel in the MOSFET, there are still 
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many issues yet to be solved: [26] 

 

(1) Gate-insulator formation with high-quality MIS interfaces, the poor properties of 

germanium oxides and lack of good quality gate dielectric greatly hinder the 

development of Ge MOS device. For example, it is reported that the high density of 

interface traps of the gate stacks is one of the possible reasons for the low mobility of 

Ge nMOSFET [27]; 

(2) High-quality Ge or GOI channel layer formation; [28 - 32] 

(3) Formation of low-resistivity S/D junctions;  

(4) Improvement of poor performance of n-channel MOSFETs;  

(5) Reduction in large leakage current;  

(6) Appropriate CMOS structures and integration technologies.   

 

In this thesis, we will focus on the point (1) and (2) to discuss about first-principles 

study of interface of high-k material (STO) with Ge, and experimental study of crystal 

growth of Ge on high-k material (STO) for future application of GOI channel 

formation. 
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1.2.3 Literature Review of Ge with High-k Dielectrics 

 

 

By successfully implementing Ge as MOSFET channel materials integrated with 

high-k dielectrics materials, state of the art researches mainly focus on two fields: (1) 

Ge on top of the high-k dielectrics material, which constitutes the structure called 

Germanium-on-insulator (GeOI); (2) high-k material on top of the Ge, which forms 

the stack of high-k gate oxide and Ge active channel.  

 

The first important application of high-k dielectrics in the Ge channel based MOSFET 

is the GeOI, which combines high mobility of charge carriers with the advantages of 

an Silicon-on-insulator (SOI) structure. It is also an attractive integration platform for 

the future IC technology. As the replacement for the SOI structure, a truly realization 

of MOSFET on a fully epitaxial structure GeOI channel must involve two material 

problems: a uniform epitaxial oxide is needed, and a uniform epitaxial semiconductor 

must be grown. [33] 

 

Traditionally, amorphous SiO2 is used as electrical isolation layer; while for the GeOI, 

this isolation layer can be any suitable oxide like SiO2 or high-k materials with proper 

lattice constant which serves not only the electrical isolation function but also the 

buffer layer between Ge cannel and Si substrate.  

 

Large dimension of Ge layers has been directly deposited on Si by using low growth 
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temperature 300–340 °C early at 1994. [34, 35] Due to the large lattice mismatch 

between Si and Ge (4.2%), the three-dimensional island nucleation is inhibited, [36 - 

39] which is good to get a flat Ge layer. However, this large lattice mismatch could 

also induce high threading dislocation density. The post annealing at 750–890 °C is 

necessary and effective to repair this defect but could cause another problem that Si 

diffuses from substrate into the Ge film and reduce the purity of Ge epilayer. [40 - 43] 

Many reports also represent other methods to grow Ge channel on Si substrate, e.g. 

selective growth on patterned Si substrate [44-47] and growth on compositionally 

graded SiGe buffers. [48, 49] Although these approaches can provide relatively large 

area Ge epilayer, all of them suffer from the same problem: direct contact of Ge and 

Si can easily induce Si impurities at Ge epilayer. [50] Also, several micrometers SiGe 

buffer layer located in the interface of Ge and Si also put up a question for industry to 

integrate Ge into Si-based device. [51]    

 

All these difficulties can be overcome in the GeOI fabrications. The most common 

methods for the GeOI fabrication are Ge condensation technique [52] and smart cut 

technique (or layer transfer technique). [53] Ge condensation technique or 

oxidation-induced Ge condensation is based on oxidation of SiGe epitaxially grown 

on the SOI substrate. This method can be useful for the local and thin GeOI formation. 

The Ge epilayer thickness is controlled by the Ge fraction and the SiGe layer 

thickness. The major drawback is the high thermal budget (>1000°C) and the 

oxidation induced plastic deformation. Smart cut technique nowadays is the most 
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widely used approach for GeOI fabrication. Usually for thick Ge film formation, bond 

and grinding method is used [54]; for thin Ge film growth, grind and etch-back 

method is applied where compositionally graded SixGey is the chosen buffer layer 

[55]. Only one of these two methods can be used for one single wafer which is not 

applicable for the wafer level GeOI fabrication. Smart cut technology can be efficient 

to get both benefits. The basic process flow includes oxide formation, ion 

implantation, hydrophilic bonding to a Si base substrate, followed by Ge film transfer 

and finishing steps. Wafer diameters from 100 to 200mm with the thickness range 

from 200 down to below 50 nm were demonstrated [56 - 58]. However, this method 

requires complex processing and has difficulty in obtaining very high-quality Ge 

crystals. 

 

In recent years, single crystalline high-k dielectrics have been studied as potential 

epitaxial templates for Ge epitaxy. The first report about Epitaxial silicon and 

germanium on buried insulator heterostructures with single crystalline oxide dielectric 

buffer layer was published by N. A. Bojarczuk et al. in 2003. [33] By using the solid 

phase epitaxy, the structure of Si(111)/substrate/LaYO/Si and 

Si(111)/substrate/LaYO/Ge (see Fig 1.6(a)) has been grown. It’s noted that the 

thickness of the Ge is 4nm and the solid phase epitaxial transformation temperature 

for Ge is 450 °C, which is lower than that for Si (around 580°C). Based on this 

heterostructure, Ge channel MOSFET is also fabricated and the output characteristics 

in Fig 1.6(b) demonstrate a field effect charge inversion in the epitaxial germanium 



 

15 
 

channel by applying a field through the buried epitaxial LaYO gate dielectric.  

 

J.W. Seo et al. reported the (001) oriented Si based GeOI in 2007. [59] They 

fabricated the GeOI on (001)-Si substrate by using Sr(Hf,Ti)O3 / Si template. Two 

steps growth process is applied in this experiment: Firstly, crystalline (001) oriented 

islands are seeded at 610°C; secondly, the Ge growth is continued at a lower 

temperature of 350°C, which promotes homogeneous coverage of the oxide. They 

concluded the crystallinity of the islands strongly depended on the temperature (below 

610°C can only get amorphous Ge) while the further increase of the growth 

temperature did not change the three-dimensional growth. This is the reason behind 

this high to low temperature growth process. Although the epi-Ge film quality is good, 

the low mobility and high density of defects still make it far from device fabrication. 

 

 

         
Figure 1.6. (a) the drain to source current (Id) plotted against the drain to 

source voltage (Vd) as a function of different gate voltages (Vg) in the 

GeOI-MOSFET; (b) high resolution transmission electron micrograph of an 

epitaxial Si(111)/LaYO/Ge structure.  

 

Another popular high-k oxide dielectric material as buffer layer for GeOI application 
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is Pr2O3. Schroeder’s group has made a lot of contributions for this study. [60 - 68] 

Single crystalline Ge layers were integrated on Si (111) by MBE as well as CVD via 

MBE grown Pr oxide heterostructures Ge(111)/Pr2O3(111)/Si(111). High-to-low 

temperature growth steps are also adopted by using 550 °C to get crystalline Ge (111) 

seed islands and subsequently by 300 °C substrate temperature to deposit large single 

crystalline and fully relaxed Ge (111) layers. Their findings reveal that the Pr oxide 

buffer systems can be used to functionally tailor some important heteroepitaxy 

parameters. 

 

 

Figure 1.7. Overview of important epitaxy parameters to achieve the 

integration of high quality semiconductor layers via oxide heterostructures 

on Si. 

 

Overall, the GeOI has three major advantages from Fig 1.7: Lattice misfit engineering, 

Interface reactivity engineering and Surface wetting engineering. [61] They can also 

be extended to all possible oxide heterostructures which can be grown single 
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crystalline on Si to achieve the integration of single crystalline alternative 

semiconductor layers on Si. In this thesis, we choose SrTiO3 as the substrate to 

evaluate the growth behavior of Ge on the top. As SrTiO3 is proven to be easily and 

epitaxially grown on the Si, this study can finally broaden the topic to Ge/SrTiO3/Si 

based Ge-FET and other related devices. 

 

The second hot topic is that the high-k material as the function of gate oxide on top of 

the active Ge channel. In the early development stage of Ge MOSFET, germanium 

oxynitride (GeON) is used as gate dielectrics instead of GeO2. [69, 70] As the 

continuous downscaling of roadmap, GeON could introduce very high leakage current, 

especially for the EOT of gate oxide smaller than 20A. [71] Under this condition, 

high-k material must to be implemented as gate dielectrics for the future Ge 

MOSFET. 

 

Many research groups have reported growth of high-k oxides on Si and Ge substrate, 

such as HfO2 and ZrO2. For HfO2, which is proven to be very good high-k dielectrics 

replacement of SiO2 for the Si MOSFET, it encounters the difficulty when comes to 

Ge. Some reports found that the formation of Germanide between HfO2 and Ge 

interface would cause large leakage current in devices like GeON. [72, 73] Compared 

with HfO2, ZrO2 is a better choice for Ge instead of Si substrate. A layer of unstable 

silicide is formed by the reaction of ZrO2 and Si surface which can lead to high 

leakage current. In contract, ZrO2 is the first high-k material demonstrated in the Ge 
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MOSFET and it shows no interfacial layer at the interface of ZrO2 and Ge channel. 

[74] The peak hole mobility of this ZrO2/Ge FET is as high as 313 cm2/V·s while the 

problem is also from high leakage current. [75] Although many high quality single 

crystalline high-k dielectrics materials have been epitaxially grown on Si, such as 

SrTiO3 [76], ZrO2 [77], and HfO2 [78], very few are reported on Ge substrate. Kim et 

al. reported the epitaxial deposition of ZrO2 on Ge (001) substrate by atomic layer 

deposition in 2003. [79] Large frequency dispersion and hysteresis from C-V test 

from this sample illustrate the poor interface of this epitaxial grown thin film. 

Therefore, we need to investigate more on the other suitable high-k materials on the 

Ge substrate, where the small lattice mismatch between the selected high-k oxide and 

the Ge is the essential for epitaxial growth. Similar to the GeOI application, we also 

choose SrTiO3 on Ge as the study model in this thesis. 
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1.3 Motivation, Scope and Thesis Organization 

 

Although plenty of works have been done on the study of interface of Ge and high-k 

materials both in the aspects of Ge growth on high-k buffer layer (GeOI) and high-k 

dielectric on Ge channel, there are many problems needed to be solved before the 

application for the future Ge-MOSFET, especially in the sub-22nm regime. Some 

major challenges are listed below: 

 

1. Si and Ge diffusion at high temperature during the deposition growth will 

form undesirable inter-layer and cause high leakage current for the device. We 

have to look for more suitable candidates as the buffer layer to grow single 

crystalline Ge channel in the Ge-MOSFET. 

 

2. Current cost of high quality GOI fabrication is expensive and the process is 

very complex, therefore, alternative simple deposition methods need to be 

investigated. 

 

 

3. Despite the large amount of demands in the near future, there are limited 

studies on the surface passivation of Ge and approximate high-k dielectrics 

materials which are suitable for Ge-based electronic devices. 

   

4. More studies about the physical properties of interface of high-k oxide and Ge 
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need to be carried out for the engineering desires respective to the different 

device electrical requirements. 

 

The objectives of this thesis are to address these challenges mentioned above by 

focusing on two areas:   

 

1. To experimentally grow high quality single crystalline Ge on SrTiO3 substrate 

and do the physical characterizations to study its interface/surface properties 

and thermal stability.  

 

2. To theoretically investigate the structural and electronic properties of the 

model of SrTiO3 on Ge substrate through first-principles calculation with and 

without external electric field. 

 

The main issues discussed in this thesis are documented within 4 chapters and 

organized as following:  

 

In chapter 2, we briefly describe some typical fabrication processes and equipments 

for the growth of epitaxial layer, as well as some characterization techniques and tools 

for the subsequent material study. Besides, we also discuss some basic theories of 

first-principles calculation and modeling. 
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In chapter 3, we present results of experimental study on the growth of the crystalline 

Ge layer on top of the SrTiO3 (100) substrate. We found that the orientation of Ge 

strongly depended on the substrate temperature during the process. Higher 

temperature around 650°C leads to Ge (001); while at 500°C Ge (111) with good 

crystalline quality is formed. TEM, XRD, XPS and STEM EDX line-scan results 

show the clear evidence on these findings.  

 

In chapter 4, we focus on Hybrid-functionals based first-principles study of the 

models for SrTiO3 (100) on top of the Ge (100) substrate. We found that the Ge 

surface can be effectively passivated either by Sr or O atoms, and the O atom 

passivation is more energetically favorable. Interface structure of SrTiO3 with TiO2 

termination on Ge surface is more stable despite the different surface chemical 

environments of Ge, and the relative stability of this stable structure is not affected by 

the external electric field. 

 

Finally, we summarize this thesis with conclusions and make some recommendations 

for the future work. 
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Chapter 2 

Methodology 

 

Many techniques can be used to study the physical properties of this Ge/High-k 

dielectrics material system from both the experimental and theoretical aspects. For the 

thin film growth, mainly three categories of deposition methods are suitable: (1) 

physical vapor deposition (PVC), e.g., evaporation method, reactive PVD and 

Sputtering; (2) chemical vapor deposition (CVD), e.g., low pressure CVD, plasma 

enhanced CVD and metal organic CVD; (3) and other depositions such as reactive 

deposition and molecular beam epitaxy (MBE). In this chapter, we will only focus on 

the details of sputtering with the atomic oxygen source, which is the method adopted 

for the Ge thin film growth for this thesis.  

 

Besides the deposition, many different characterization methods are available for 

those important properties of thin films. Some most common measurement techniques 

are listed here. Spectrophotometer and ellipsometer can be taken to measure the 

thickness and the optical properties of thin film. For the crystal structure, transmission 

electron microscopy (TEM) and X-ray diffraction (XRD) are the best choice. Some 

more, we can use scanning electron microscope (SEM) and atomic force microscopy 

(AFM) to study the surface microstructure. AES, XPS, EDAX and SIMS are the four 

common methods for the chemical and elemental Composition. As varying from 
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application to application, we can combine some of these methods for the thin film 

study. In this chapter and also this thesis, we will introduce four characterization 

techniques: TEM, XRD, XPS and AFM. 

 

The theoretical techniques for the selected model study include empirical (or 

semi-empirical) and first-principles methods. In the last part of this chapter, 

first-principles calculation with VASP and CASTEP codes will be briefly discussed 

which are used as theoretical method for this thesis.  
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2.1 Thin Film Deposition Methods - Sputtering  

 

Sputtering and sputter deposition are widely used techniques for the erosion of 

surfaces and the deposition of films. Sputtering is also called sputter etch, where 

atoms are ejected from a solid target material due to bombardment of the target by 

energetic particles. Sputter deposition is a well known physical vapor deposition 

(PVD) method of depositing thin films on semiconductor.  

 

Generally, sputtering occurs whenever an energetic particle strikes a surface with 

enough energy to dislodge an atom from the surface. The incident particle can be any 

species, e.g. atoms, ions, electrons, photons, and neutrons as well as molecules and 

molecular ions. But for practical case, sputtering almost always utilizes ion 

bombardment, either with inert gas ions such as Ar+ and Kr+, or small molecular ions 

such as N2+ and O2+. As the Incident particle energies are required to be in the range 

of hundreds of eV, ions are the better choice compared to the neutral atoms. Therefore, 

an acceleration voltage of a few hundred volts within a vacuum chamber is configured 

as the plasma system, which can serve to generate and accelerate the ions.  Based on 

the different source for producing plasma, there are three major classes of systems for 

sputtering application. 

 

(a) DC diode system, which is just consisted of an anode and a cathode 

inside a vacuum system. Under some proper conditions with adequate voltage 
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across the electrodes and the appropriate gas pressure, the gas will breakdown into 

plasma. Near the cathode is a dark space or sheath in which there is a very large 

electric field. Therefore the negatively biased target plate (cathode) is bombarded 

by argon ions at about 10 mTorr pressure. (Fig. 2.1(a))  In the Chapter 3, the 

experiment is conducted under DC diode sputter system and the details of 

conditions will be discussed later. 

 

(b) RF diode system, compared to the DC diode system, the only difference 

is the power supply is not a DC and running at a high frequency (normally it is 

13.56MHZ), see Fig. 2.1(b). The RF diode operates in a slightly different way 

than the DC diode: for a small part of the RF cycle, the cathode and anode are 

electrically reversed. This eliminates charge buildup on an insulating surface by 

providing an equal number of ions and electrons. This allows insulators and 

metals to be sputtered in reactive environments which is not possible with DC 

system due to charge. Secondary, the electrons oscillating in the RF field is more 

efficient within plasma, and for the same power level RF sputtering can have 

higher deposition rate. The limitation for the RF diode is that a high voltage 

(>2000 V) is required during the process.  

 

 

(c) Magnetrons system, where a static magnetic field configured is used at 

the cathode plate, and the magnetic field is located parallel to the cathode surface, 

see Fig. 2.2. As the magnet behind the target creates a field to confines the 
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electron movement, the ionization is more efficient compared to the diode system 

and therefore can dramatically increase the deposition rate at a low power (only 5 

to 20 kW). The working voltage for magnetrons system is around 500 V and 

working pressure is about 0.1 to 10 mTorr.   

 

 

Figure 2.1. Schematic sputtering systems (a) DC and (b) RF [1]  

 

 

 

Figure 2.2. The magnetic field configuration for a circular planar 

magnetron cathode. [2] 
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2.2 Materials Characterization Techniques 

2.2.1 Transmission Electron Microscopy   

 

Transmission electron microscopy (TEM) is a microscopy technique where electron 

beams are transmitted through an ultra thin specimen, interacting with the specimen 

as it passes through. By focusing the electron beam, diffraction patterns can be 

measured from the microscopic region and often a single microcrystal is selected for 

this diffraction measurement. The images of the electron intensity emerging from the 

sample can be finally generated at the optics of electron microscopes. The 

configuration of TEM is very similar to a transmission light microscope, which 

including: light source, condenser lens, specimen stage, objective lens and projector 

lens. The only difference is the electromagnetic lens is employed for the electron 

beam instead of glass lenses for the visible light. (See Fig. 2.3) 

 

The basic function of TEM is to take the images such as interfaces, dislocations and 

second phase particles. This is due to the diffraction contrast where the variations in 

the intensity of electron intensity emerging from the sample. More-ever, the images of 

columns of atoms can be achieved by using high resolution transmission electron 

microscopy (HRTEM), where the phase of the diffracted electron wave can be 

preserved and interferes constructively or destructively with the phase of the 

transmitted wave.  High-angle annular dark field imaging method, which by 

increasing the scattering angles to minimize electron interference behavior, can 
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greatly enhance the quality of high resolution images of columns of atoms. In this 

thesis, we get some clear pictures of the interface of Ge (100) and STO (100) through 

HRTEM. 

 

Figure 2.3. Schematic of TEM (left) and STEM (right) [3]  

 

Besides the basic function of TEM, many modes are available for utilizing various 

measurements. Below are these techniques: [4] 

 

 Conventional imaging (bright-field and dark-field TEM) 

 Electron diffraction (selected area electron diffraction, SAD) 

 Convergent-beam electron diffraction (CBED) 

 Phase-contrast imaging (high-resolution TEM, HRTEM) 

 Z-contrast imaging 
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 Energy-dispersive x-ray spectroscopy (EDS) 

 Electron energy-loss spectroscopy 

 

Most of these techniques are useful in the mode of scanning transmission electron 

microscopy (STEM), where a 1 to 10 Å focused beam of electrons moves in a 

television style raster pattern across the target thin sample and the emitted data such 

as x-rays, secondary electrons and backscattered electrons can be acquired as the 

basic information provided for above mentioned techniques. (See Fig. 2.3) The 

transmitted electrons in the STEM can also be detected with a moving detector to 

serve the conventional TEM imaging. For instance, an image of the distribution of Fe 

in a thin sample can be measured in synchronization with the raster pattern. Besides 

this, either the emission of Fe Kα x-rays can be observed by EDS spectrometer or the 

numbers of transmitted electrons that undergo energy losses greater than that of the Fe 

L-edge can be detected from EELS spectrometer.  In the STEM, Z-contrast is by 

using an annular dark-field detector for high angle annular dark-field imaging 

(HAADF) and HAADF is using incoherent elastic scattering of electrons to form 

images of atom columns. With the help of HAADF-STEM with EDX line-scan, we 

not only get the images of atom columns for the Ge (100) and STO (100) but also see 

the profiling of the different elements in Chapter 3. 
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2.2.2 X-ray Diffraction  

 

 

X-ray diffraction (XRD) is versatile, non-destructive technique which reveals 

information about the crystallographic structure, chemical composition, and physical 

properties of materials and thin films. Fundamental principles of XRD comes from 

Bragg's law (see Fig. 2.4), which states general relationship between the wavelength 

of the incident X-rays, angle of incidence and spacing between the crystal lattice 

planes of atoms in equation: n λ = 2d sinΘ. This theory determines the scattering 

angles at which the peaks of strong scattered intensity may occur and can be the direct 

evidence for the periodic atomic structure of crystals postulated for several centuries. 

 

 

Figure 2.4. Bragg's Law reflection. The diffracted X-rays exhibit 

constructive interference when the distance between paths ABC and A'B'C' 

differs by an integer number of wavelengths (λ)  

 

The basic structure of an X-ray diffractometer consists of three elements: an X-ray 
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tube, a sample holder, and an X-ray detector. Figure 2.5 is the schematic of a simple 

XRD. X-ray is generated at X-ray tube through the collision between high-speed 

electrons and a metal target (Cu, Al, Mg or Mo). Generated monochromatic X-rays 

collimate and direct go onto the sample material at holder. The holder and the detector 

keep rotating to record the intensity of the reflected X-rays from different location of 

sample. Diffraction occurs only when Bragg’s Law is the satisfied condition for 

constructive interference. Therefore, only the geometry of the incident X-rays reflects 

the sample under this condition, constructive interference occurs and a peak in 

intensity occurs. After the data collection, X-ray signals are converted to the count 

rate which is then output to a device such as a printer or computer monitor.   

 

Figure 2.5. Schematic of a Powder X-ray diffracto=meters 

 

One of the most important applications of XRD is to measure the thin film parameters 

in semiconductor manufacturing even with the thickness less than 2nm. For example, 
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the proportion of crystallinity in films that is nominally amorphous, the composition 

of the crystalline components of the material, the grain size of a crystalline material, 

the stress in a crystalline material and the distribution of crystallite orientations within 

a polycrystalline material. [5] In this thesis, the thin film sample morphology is 

characterized by high resolution x-ray diffraction (XRD, PANalytical X'Pert PRO 

MRD XL) 
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2.2.3 X-ray Photoemission Spectroscopy 

 

X-Ray Photoelectron Spectroscopy (XPS), also called Electron Spectroscopy for 

Chemical Analysis (ESCA), is a high-energy version of the photoelectric effect based 

spectroscopic technique. [6, 7] It is primarily designed for identifying the chemical 

elements at the sample surface except hydrogen and helium. Because the diameters of 

these orbitals are too small, reducing the catch probability to almost zero. Current 

XPS technique give the allowance to measure many properties of materials, e.g. 

elemental composition of the surface (top 1–10 nm usually), empirical formula of 

pure materials, elements that contaminate a surface, chemical or electronic state of 

each element near the surface, uniformity of elemental composition across the top 

surface (or line profiling or mapping) and uniformity of elemental composition as a 

function of ion beam etching (or depth profiling). 

 

The working principle can be illustrated at below Fig. 2.6. Incident X-rays with 1000 

– 2000 eV energy hit the sample and eject photoelectrons from it. According to 

one-electron model and the conservation of energy, the measured energy of the 

ejected photoelectrons at the spectrometer, Ekinetic, can be related to the binding energy 

of the electron Ebinding and X-ray photons energy Ephoton in the equation 2.1.[8] 

 

Ephoton = Ephoton - Ebinding – φ + ψ            (2.1) 
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where φ is the work function of the analyzer, and ψ is the energy shift due to net 

surface charges of the sample. Fine tuned calibration will make – φ + ψ equal to zero. 

Electron binding energy is affected by its chemical surroundings which make XPS 

suitable to determine the chemical states in addition to the elemental identification. 

Also, XPS is less destructive and more surface-sensitive compared to other similar 

techniques. 

 

 
Figure 2.6. Electronic processes in X-ray photoelectron spectroscopy [9]  

 

In this thesis, VG ESCA LAB-220i XL is the specified XPS to study the interface 

elemental states and chemical states between Ge (111) thin film and STO (111) 

substrate. We can see this XPS system in Fig. 2.7, which includes an X-ray gun in the 

UHV main chamber, a monochromator, an ion sputtering gun, a flood electron gun 

and an energy analyzer. The best energy resolution of this XPS system is about 0.45 

eV, and the accuracy of the observed binding energy is within 0.02 to 0.03 eV. 
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Figure 2.7. Overview of the VG ESCALAB 220i-XL XPS system. 
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2.2.4 Atomic Force Microscopy 

 

Atomic force microscopy (AFM) is a scanning probe microscopy (SPM) technique 

based surface analytical method to generate very high-resolution images of a surface 

and provide some topographic, chemical, mechanical and electrical information about 

the sample surface. The AFM can examine any sufficiently rigid surface in air, liquid 

or even vacuum.  

 

Fig. 2.8 is the basic schematic of a scanning AFM, where 1 is Laser diode; 2 is 

cantilever; 3 is mirror; 4 is position-sensitive photodetector; 5 is electronics; and 6 is 

scanner with sample. In the case of scanned probe, it is the tip that is scanned instead 

of the sample. By repeating the processes of measuring the forces acting on the sharp 

tip at cantilever (made from silicon or silicon nitride) through photodetector, the 

sample surface image can be drawn with very high resolution from 2D or 3D view. 

The forces available for the deflection of cantilever in AFM consist of mechanical 

contact force, van der Waals forces, capillary forces, chemical bonding, electrostatic 

forces and magnetic forces depending on the situations.  

 

Many modes can be employed to suit for different applications in AFM, such as 

contact mode, lateral force microscopy, noncontact mode, dynamic force / 

intermittent-contact / “tapping mode” AFM, force modulation and phase imaging. In 

this thesis, normal contact mode is chosen to analysis surface roughness and 

http://en.wikipedia.org/wiki/Van_der_Waals_force
http://en.wikipedia.org/wiki/Capillarity
http://en.wikipedia.org/wiki/Chemical_bond
http://en.wikipedia.org/wiki/Coulomb%27s_law
http://en.wikipedia.org/wiki/Coulomb%27s_law
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topographic of the grown Ge (111) thin film. 

 

 
Figure 2.8. Schematic diagram of a scanned-sample AFM [10]  
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2.3 First-principles Calculations 

 

First-principles calculation, or ab initio calculations, are the calculation methods to 

predict the atomic and molecular structure directly from the first-principles of 

quantum mechanics, without using quantities derived from input parameters.  

The history of ab initio calculation begins with the basic fundamental of quantum 

mechanics, time-dependent Schrodinger equation of the many body system. [11]  

 

                 (2.2) 

 

where  is the many body wavefunctions for the N electronic eigenstates, an 

anti-symmetric function of the electronic coordinates  , and E is 

the total energy. The Hamiltonian  is given by 

 

        (2.3) 

 

where  is the external potential imposed by the nuclear 

configuration  and  is the electron - electron interaction given by the 

Hartree term . 

 

Later in 1960s, Kohn proposed the famous density functional theory (DFT) which 
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makes an important process after the many body system. [12, 13] DFT theory 

basically includes two theorems for electron function ρ(r): 

 

(1) If the number of electrons in the system is conserved, the external potential V 

(r) uniquely determines the ground state density ρ0(r). 

(2) There exist a universal functional of ρ, E[ρ], which is minimized by the 

ground state density ρ0 (r). 

 

Within DFT, the many body problem of interacting electrons is presented to a reduced 

system of single-particle Schrodinger equations (Kohn–Sham equations). [13] 

 

        (2.4) 

 

where the first term in the Kohn-Sham equation is the kinetic energy, and the 

following terms are the Coulomb (or Hartree, or Electron to electron interactions), the 

exchange-correlation (xc) and the external (e.g. the ionic) potentials, respectively. 

Comparing with time-dependent Schrodinger equation of the many body system, this 

single-particle Schrodinger equations is much easier for the practical model and must 

be solved self-consistently (SCF, for self-consistent field) and iteratively.    

 

Among all terms in Eq. (2.4), only exchange-correlation (xc) is an unknown function 

to solve this Kohn-Sham equation. To apply this DFT equation into real system, many 
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approximate formulas have been proposed for the exchange-correlation function. By 

considering data reliability and computational cost, local density approximation (LDA) 

is the most suitable assumption. [13,14-18] In the LDA, xc functional is reduced to a 

function of the local charge density that has been calculated accurately and 

interpolated using parameterized forms in Eq. 2.5. 

 

           (2.5) 

where εxc is the exchange-correlation energy per electron.   

 

In order to get a more accurate approximations, generalized gradient approximation 

(GGA) is proposed, which takes into account the gradient of the electron density (Eq. 

2.6) comparing to the LDA with a homogeneous electron density in small region r. 

[19,20] 

 

                      (2.6) 

 

For the system containing large amount of particles (around 10
23 

for solid), Bloch’s 

theory and suppercell approximation are introduced. Bloch’s theory is adopted in the 

system with electron moving in periodic potential. Suppercell approximation is useful 

for the system without periodic symmetry in all the three dimensions. For example, in 

the interface system in chapter 4, we build the model by constructing the periodically 
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separated supercells of GE/STO plus separated vacuum layers with thickness thicker 

than 10 Å. Typically, the supercells are chosen in such a way that they contain two 

interfaces that are equivalent in terms of stoichoimetry and geometry, to avoid electric 

fields due to unbalanced charges. 

 

As this thesis is focus on the interface of semiconductor, pseudopotential 

approximation is an efficient approach, at which only the valence electrons 

responsible for the formation of the chemical bonds and determine the relevant 

low-energy physical properties of the system are thought to make the contribution to 

the system. The pseudopotential derived from solved self-consistently calculations for 

the isolated atom with an all-electron technique describes the effects of the nucleus 

and of the core electrons on the valence electronic states [21-25]. For periodic solids, 

a plane-wave basis set up to a certain kinetic energy cutoff is generally used to expand 

the single-particle electronic orbitals. Therefore, this pseudopotential approximation 

allows the expansion of electronic wavefunctions with much smaller number of 

plane-wave basis sets. 

 

In this thesis, we use VASP (Vienna ab initio simulation package) [25, 26] and 

CASTEP (Cambridge serial total energy package) [27] as the first-principles 

calculations codes. Both the codes belong to DFT scope and applying the ultrasoft 

pseudopotentials or the PAW method and a plane wave basis set. 
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Chapter 3 

Experimental Study of Ge Thin Films Growth on 

SrTiO3 

 

3.1 Introduction 

 

The integration of Ge channel to the Si substrate is of the current research and 

development (R & D) interest for a number of future silicon technologies. As 

mentioned from previous chapter, the conventional method of direct Ge deposition on 

Si substrate through heteroepitaxial growth will cause the diffusion of Si into the Ge 

layer at high temperature and the formation of an undesirable thick SiGe layer during 

the annealing process. To avoid such critical problem, we can use a single crystalline 

oxide as a buffer layer between Ge and Si (GeOI fabrication). Up-to-date GeOI 

process approaches have been reviewed in chapter 1, and the drawbacks of them are 

high associated cost and the complex process. Therefore, we need to find a 

cost-effective way to build GeOI structure by choosing some more suitable candidate 

high-k material and deposition method.  

 

Among various high-K oxide materials, SrTiO3 (STO) is known for its excellent 

insulating properties, such as large band gap, high dielectric constant, good 

mechanical properties, and high thermal stability. In particular, the lattice constant 
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mismatch between STO (100) and Ge (110) is very small, about 2.3%. This indicates 

that in principle it is possible to epitaxially grow high quality Ge thin films on STO 

(100) substrate or buffer layer. The growth of epitaxial layer of STO on the top of Si 

substrate with TiO2-SrO-Si structure has been widely reported [1], which makes the 

integration of Ge on Si wafer through STO buffer layer feasible. However, there have 

been limited studies on epitaxial growth of Ge on STO.  

 

In this chapter, we report results of epitaxial growth of Ge on STO (100) substrate by 

using ultra-high vacuum sputtering. We found that the orientation of the deposited 

crystalline Ge can be controlled by varying growth parameters such as substrate 

temperature, which provides us a simple way to control the desired orientation of the 

grown Ge surface on STO substrate.   
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3.2 Experiment Details 

 

Commercially available SrTiO3 with (100) orientation was used in this experiment. 

The model of DC sputtering tool used was TORUS UHV SOURCE TM3U and the 

detail parameters can refer to the details as below. Single crystal Ge was used as target 

and the RF atom source from Oxford Applied Research (OAR) was employed as 

atomic oxygen source. The sample morphology was characterized by ex situ high 

resolution x-ray diffraction (XRD, PANalytical X'Pert PRO MRD XL) and ex situ 

High resolution transmission electron microscopy (HRTEM). The chemical 

composition was analyzed by in situ x-ray photoemission spectroscopy (XPS, VG 

ESCA LAB-220i XL).  

 

STO (100) substrate (10100.3 mm) was pre-cleaned using acetone and ethanol in 

an ultrasonic cleaner before the deposition. Then the sample was transferred into an 

ultra high vacuum (7.0 10
−10

 mbar) chamber and was thermally annealed at 600 °C 

for 20 mins to remove Carbon based contaminations. To minimize the undesirable 

oxygen vacancies of STO, the STO substrates were treated by using atomic oxygen 

source (Oxford Applied Research) with an oxygen partial pressure of 310
-5

 mbar at 

300 °C for 30 mins. After the surface treatment, the STO substrates were in situ 

transferred into a DC sputtering system, of which single crystal Ge was used as the 

target to deposit Ge on STO with fixed argon partial pressure of 1.110
-3

 mbar and 

DC power of 100 W, respectively. The orientation and quality of the deposited Ge 
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were controlled by varying growth conditions such as sputtering time and substrate 

temperature in the range of 400 - 700 °C. The post deposition annealing (PDA) was 

conducted for all samples at the temperature of 500 °C to reduce the threading 

dislocation density.  

 

The samples with a deposition time of 6 mins were used to study interface properties 

by using high resolution x-ray photoemission spectroscopy (XPS), and the samples 

with a deposition time of 60 mins were used to study the epitaxial growth of Ge/STO 

heterostructure using high resolution x-ray diffraction (XRD) and transmission 

electron microscopy (HRTEM).  Both the samples with deposition times of 6 mins 

and 60 mins are used to study the surface prosperities of grown Ge on STO substrate 

through Atomic force microscopy (AFM). 
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3.3 Results and Discussions 

 

Ge thin films were deposited on STO (100) substrate at temperatures varying from 

400 to 700 °C with fixed optimized argon partial pressure, and the crystalline 

structures of the grown Ge thin films were characterized by using high resolution 

x-ray diffraction. Fig. 3.1(a) shows the XRD θ-2θ scan results for the sample grown at 

the sputtering temperature of 500 °C for 60 mins. It clearly shows that the dominant 

peak is from Ge (111) plane besides sharp peaks of crystalline STO (100) substrate, 

indicating that the epitaxial relationship is Ge (111) || STO (100) for the grown Ge 

thin films on STO (100) substrate at 500 °C. The inset in Fig. 3.1(a) is the Ge (111) 

omega peak, and the full width at half maximum (FWHM) of this peak is only 0.336 

deg. This shows a good quality of the grown crystalline Ge (111) thin films. The 

in-plane rotation of these two sample are identified by the Phi (Φ)  scan with 

in-plane directions of Ge [100] and STO [111], indicating that the rotation angle is 45° 

for all four peaks as shown in Fig. 3.2. 

 

The XRD pattern shown in Fig. 3.1(a) is for the sample grown under higher substrate 

temperature (650 °C) for 60 mins. Together with strong peaks from STO (100) 

substrate, Ge (400) peak is observed. This Ge (400) peak indicates the formation of 

Ge thin film with (100) orientation. Thus, at the substrate temperature of 650 °C, the 

epitaxial orientation between Ge thin films and STO turns into Ge (100) || STO (001). 

The Ge (400) omega peak is presented in the inset of Fig. 3.1(b), the FWHM of which 
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is 0.420 deg, indicating the high quality of the grown Ge (100) thin films on STO 

(100) by using this sputtering process.  

 

 

 

Figure 3.1. XRD θ-2θ scan of Ge films deposited on STO (100) at 

temperatures of (a) 500 °C and (b) 650 °C, respectively. The insets show 

the ω peaks of (b) Ge (111) and Ge (400) peaks, respectively.  
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Figure 3.2. XRD phi (Φ) scans of Ge (111) plane and STO (111) plane for 

Ge sputtered on STO (100) at 500 °C 

 

These results are consistent with previous experimental results. For instance, Seo et al. 

[2] found the formation of Ge (111) thin films on La2O3 substrate at 400 °C, while 

Bojarczuk et al. [3] reported epitaxial growth of Ge (100) on (LaxY1-x)2O3 at 650 °C 

by using molecular beam epitaxy. This change of preferred crystalline orientation 

from Ge (111) at 500 °C to Ge (100) at 650 °C results from the change of surface 

energy of Ge layers and interface energy between Ge layers and STO substrate at the 

initial growth stage at the different growth temperatures. For Ge, the most 

energetically favorable surface is (111) surface and (100) is the next most stable 

surface [4, 5]. At the lower substrate temperature, surface energy is dominant for the 

formation of surface orientation, thus at 500 °C Ge (111) is formed on STO substrate. 

At higher substrate temperature, the interface energy increases due to enhanced 

interaction between Ge and the substrate. Competition between the interface energy 

and the surface energy affects the orientation of the grown Ge thin films. When the 

interface energy dominates over the surface energy, it is possible for other surface 
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orientations such as Ge (100) to be formed on STO substrate. [6] Therefore, our 

results show that by carefully controlling the substrate temperature, we can 

manipulate the growth of the preferable surface orientation of crystalline Ge thin films 

on STO substrate by using sputtering.                                         

              

To further study the epitaxial relationship between Ge and STO, high resolution 

transmission electron microscopy (HRTEM) images of the samples grown at 500 °C 

and 650 °C were taken and are shown in Fig. 3.3. It is clear in Fig. 3.3(a) that the 

well-defined Ge layers with good quality of crystallinity are formed on STO substrate, 

in good agreement with the XRD results. Besides, the interface of this heterostructure 

is very sharp, and transition from STO to Ge without any disoriented layers can be 

clearly seen. The line-scan of elements from scanning transmission electron 

microscopy (STEM) shown in Fig. 3.4(a) further confirms the high quality interface. 
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Figure 3.3. Cross section HRTEM images of the Ge films deposited on STO 

(100): (a) the formation of crystalline Ge (111) on STO (100) at the 

substrate temperature of 500°C, (b) a schematic interfacial atomic structure 

for Ge (111)/STO (100), (c) the formation of crystalline Ge (001) on STO 

(100) at the substrate temperature of 650°C, and (d) a schematic interfacial 

atomic structure for Ge (001)/STO (100).  

 

To better understand the crystalline interface of Ge (111) / STO (100), we propose a 

model for the atomic interface structure based on the orientation relationship between 

Ge (111) and STO (100), as shown in Fig. 3.3(b), in which (2 3 3)  Ge (111) 

surface was stretched by 9.4% and 2.3% respectively to match (3 3) STO (100) in 

surface symmetry and lattice constant. Figure 3.3(c) and (d) show the TEM images 

and proposed atomic interface structure for Ge (001)/STO (100), respectively. It is 

seen clearly from Fig. 3.3(c) that the epitaxial Ge thin films were grown on STO (100) 

substrate with good crystalline quality and sharp interface. A slightly disoriented layer 
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is found at the interface. This may attribute to mutual diffusion of interfacial atoms at 

high growth temperature. The orientation relationship in interfacial model of Fig. 

3.3(d) is similar to that for STO (100)/Si (100). As mentioned above, the Ge (100) 

surface matches well with STO (100) both in surface lattice symmetry and constant 

(only 2.3% lattice mismatch). We believe that this small surface strain may facilitate 

the formation of Ge (100) on STO (100).  
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Figure 3.4. STEM EDX line-scan of interfacial chemical compositions for 

the Ge films on STO (100) at temperature of: (a) 500 °C and (b) 650 °C. 

The vertical line indicates the position of the Ge/STO interface.  

 

The interfacial chemical compositions of these samples have been studied also by 

using STEM with EDX line-scan, as shown in Fig. 3.4. At the temperature 500 °C 

(Fig. 3.4(a)), a small amount of Ge diffused into the STO. The phenomenon of Ge 

diffusion into high-K oxide layers has been well studied recently [7-9], and Ge oxide 

layers are often found at the interface. When the temperature increased to 650 °C, 

more Ge would diffuse into STO substrate (see Fig. 3.4(b). At this high substrate 

temperature the STO (001) surface is Ti-rich, which indicates that the interfacial 

bonding of this sample is Ge-TiO2. It is quite different from the interface of 

epitaxially grown STO on Si substrate. For the interface of STO (001)/Si (100), the 

STO (001) is also rotated 45° in-plane to match Si (100) substrate, but it is found that 

SrO terminated interfacial bonding structures are more energetically favorable [10, 

11]. This difference indicates different interface stabilities between Si/high-K and 

Ge/high-K oxide stacks due to different chemical reactivities of Ge and Si. As 

discussed above, Ge diffused easily into substrate even at the low processing 

temperature, which causes the decrease of electrical properties significantly. Thus, 

oxide layers such as STO are highly desired to serve as a buffer layer between Ge and 

Si to be effective barrier against Ge and other impurity diffusion.  

 

In addition, Hall measurement was conducted for these samples to study the carrier 

type and mobility. The carrier in the sample at 500 °C is p-type with a measured 
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mobility of 36 cm2/V.s, while it becomes n-type with a mobility of 22 cm2/V.s for the 

sample at 650 °C. Both n and p-type carrier concentrations are around ~10
19

 cm-3, 

which lead to the low mobility in both of samples. For the n-type Ge, it might be 

attributed to the lattice dislocation or Ge vacancy defect [2], and the diffused metal 

atom into Ge thin films might cause the detected p-type carrier. 

 

 

Figure 3.5. The XPS core-level spectra of Ge 3d for the Ge thin films 

grown on STO (100) with the deposition time of 6 mins and the substrate 

temperature of (a) 500 °C and (b) 650 °C.  

 

In order to have a profound understanding of chemical composition of Ge and STO at 

interface, high resolution in situ x-ray photoemission spectroscopy (XPS) study was 

performed. Figure 3.5 shows Ge 3d core level peaks for the samples grown at 500 °C 

and 650 °C, respectively. The charging effect induced by the photoemission was 

corrected using the C 1s as reference (284.50 eV). Fitting of the Ge 3d core level to 

the Gaussian curves reveals two and three peak components for the sample with the 

substrate temperature 500 °C and the sample with the substrate temperature 650 °C, 

respectively. The peaks at 29.20 eV and 29.80 eV in Fig. 3.5(a) come from the 
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elemental Ge doublets, which indicates the high resolution of our XPS system. No 

other Ge peaks were found. We can, therefore, conclude that there is no Ge 

sub-oxidation states formed at the interface of this sample prepared at the low 

temperature.  

 

From Fig. 3.5(b), two peaks of elemental Ge doublets are also extracted from the data. 

In addition, an extra peak is found at 30.70 eV. The reported chemical shift of Ge
1+

 

peak and Ge
2+

 peaks to the Ge 3d peak are 0.70±0.05 eV and 1.70±0.10 eV, 

respectively [12,13]. This extra peak at 30.70 eV indicates that there are Ge oxidation 

states at the interface, which are a mix of Ge2O (Ge
1+

) and GeO (Ge
2+

) components. 

This result agrees well with the TEM images and STEM EDX line-scan for the 

interfaces. Therefore, the diffusion of Ge at high substrate temperature into the STO 

leads to the formation of Ge oxide layers at the interface.  

 

It is well known that the growth of Ge on the epitaxial oxide is indeed of 

three-dimensional Volmer-Weber-type. According to the assumption from L. Largeaua 

and Patriarche et al. [13] that Ge NC present large contact angles (sometimes higher 

than 90°) and round profiles can indicate a large interfacial energy. Therefore, at the 

very early stages of Ge growth, Ge adatoms first nucleate and form localized platelets 

on the STO surface, due to large interface energy, three-dimensional mutually isolated 

Ge nanocrystals (NC) instead of continuous flat layer are formed at the surface of 

STO. It can also be proven from the HRTEM picture in Fig. 3.6. Ge NC`s contact 



 

64 
 

angles are not fixed by the stabilization of facets, but by the interface energy and the 

surface energies of the STO of the Ge platelets. The dimension of the NCs is about 

20nm which also matches the report from Largeaua et al. [14], where the average 

lateral size is 25.2+/-11.6. 

 
Figure 3.6. Cross section HRTEM images of the Ge films deposited on STO 

(100) at the substrate temperature of 650°C for 6 mins: (a) 10nm scale, (b) 

2nm scale 
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The surface properties of Ge grown at the surface of STO are also investigated 

through AFM. In Fig. 3.7(b), after 6mins deposition of Ge at the temperature of 

500°C, we can see many round shaped NCs formed at the surface. The surface 

roughness is 5.471nm the density of NCs is around 3.68×10
12

cm
-2

. This high density 

and highly integrated NCs can be very useful for the application of floating-gate (FG) 

flash memory cells or so-called nonvolatile memory (NVM) technology, in which the 

use of discrete, mutually isolated NC’s instead of continuous FG layers attracted more 

attention. Hence, uniformly distributed NC’s with a sharp size distribution and a high 

density of 10
12

 cm
−2

 are generally targeted to guarantee manufacturability with 

sufficient storage capacity and high reliability. [15] Some reports have reveals the 

possible self-assembled Ge NCs system by Choi et al. [16-18]. From the result of high 

density up to 10
12

 cm
−2 

in this thesis, we can provide the alternative way to get the Ge 

NCs through simple direct sputtering. 

 

In Fig. 3.7(a), we can see the round shape Ge NCs disappear after 60mins deposition. 

Some large Ge clusters are formed at the surface with the dimension up to several um 

but the roughness is as high as 47.094nm. The roughness is directly correlated with 

the coalescence of islands formed during the film growth. Thus, in order to obtain a 

flat Ge, the three-dimensional growth has to be suppressed and lateral growth needs to 

be promoted. Some reports have suggested taking a two temperature deposition 

method which uses high temperature to get single crystal Ge island followed by low 

temperature to laterally grow the Ge. [2, 19]  
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Figure 3.7. AFM images of the Ge films deposited on STO (100) at the 

substrate temperature of 500°C for: (a) 60mins, (b) 6mins  
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3.4 Conclusions 

 

In conclusion, high quality (100) and (111) oriented single crystalline Ge have been 

successfully grown on the top of SrTiO3 (100) surface by using sputtering. We have 

shown that by varying the substrate temperature, two types of orientations of Ge can 

be selectively grown. At high temperature, the out-diffusion of Ge will cause the 

disoriented interface and the formation of Ge oxide layer. Our works demonstrate that 

SrTiO3 has the potential in the application of the germanium on buried insulator field 

effect transistors. To better understand the interface between Ge and STO, in next 

Chapter, first-principles calculations will be carried out to study the interface 

satiability, and the related electronic properties. 
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Chapter 4 

First-principles Calculation Study of Interface 

Properties of SrTiO3 and Ge  

 

4.1 Introduction  

 

In chapter 3, the crystalline Ge thin films with (100) or (111) surface orientation on 

SrTiO3 substrate have been grown by sputtering and investigated experimentally. 

Besides this application of GeOI, high-k dielectrics material is very useful to be gate 

oxide for the Ge-MOSFET. In both cases, the interfacial structures between Ge and 

high-k oxides are of great importance for the determination of related electronic and 

electrical properties, and need to be theoretically studied. 

 

Extensive studies have been carried out on the interface between STO and Si both 

experimentally and theoretically. [1, 3 – 6] For instance, STO can be epitaxially 

grown on Si with high quality and without the formation of silicon oxide transition 

layers. [1] The interfacial properties of SrTiO3/Si have been studied by density 

functional theory calculations also, of which it was reported that the band offsets at 

SrTiO3 and Si interface can be tuned to some extent by controlling interfacial 

chemical environment. [3, 6] But conduction band offset of SrTiO3/Si is still too small, 

resulting in large tunneling current in MOS devices. [6, 7] The band gap of Ge is 

much smaller than that of Si, and thus the valence band offset between SrTiO3 and Ge 
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may be increased. In addition, the lattice constant mismatch between Ge (110) and 

perovskite SrTiO3 is small, about 2.3%, which is favorable for epitaxial growth of 

SrTiO3 on Ge substrate. However, the understanding of the interfacial properties at 

SrTiO3 and Ge is still limited, which is crucial to develop SrTiO3 and Ge based 

electronic applications, as it has been pointed out that the different interfacial 

chemical bonding can dramatically affect electronic properties of the interface. [2, 8]  

 

In this chapter, via first-principles hybrid functional calculations, we report results of 

interfacial properties of SrTiO3 on Ge substrate, of which the insulating Ge surface 

can be achieved by the passivation of either one Sr atom or two O atoms on per Ge 

unit cell with 2×1 reconstruction, and these different surface chemical environments 

do not have significant effects on the interfacial stability of SrTiO3/Ge, but alter the 

related band offsets much. Besides, it is also found that the stability of the insulating 

SrTiO3/Ge is insensitive to the applied external electric field. 
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4.2 Computational Details 

 

All calculations were carried out by using Vienna ab-initio simulation package (VASP) 

[9, 10] based on density functional theory (DFT) with projector augmented-wave 

(PAW) method [11], in which the hybrid functional induced by Heyd, Scuseria, and 

Ernzerhof [12] was used for the exchange-correlation energy. A cutoff energy of 400 

eV was used for plane wave expansion of electron wave function. For Ge primitive 

cell, the first Brillouin zone was sampled by a 10×10×10 k-point mesh within the 

Monkhorst-Pack scheme, and an 8×8×8 k-point mesh was used for bulk STO. For the 

interface structures, there are 6 layers of STO on (2×1) Ge (001) surface with 11 

layers, in which dangling bonds at Ge bottom surface are saturated by H atoms and a 

4×8×1 k-point mesh was applied. A 12 Å vacuum layer along (001) direction of the 

interface structures was applied to minimize surface interaction, and all structures 

were fully relaxed until the force acting on each atom was smaller than 0.02 eV/Å. In 

section 4.3.4, the electric field was applied along z direction by the planar dipole layer 

method integrated in VASP to study the electric field effects on interfacial properties. 

[13] 
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4.3 Results and Discussions 

4.3.1 Ge and STO Bulks  

 

The conventional approximations for exchange-correlation energy in DFT such as 

local density approximation (LDA) or generalized gradient approximations (GGA) 

often underestimate band gap of semiconductor or insulator. For instance, Ge, a 

well-known semiconductor with a bang gap about 0.67 eV, while in standard DFT 

calculation with LDA or GGA, it is gapless, which is a challenging issue as many 

related important electronic properties cannot be predicted well. An alternative 

approach is to mix a fraction of the non-local exact exchange to a semi-local exchange 

expression, which can produce an improved band gap in most cases. Here, we adopted 

HSE06 format hybrid function, which is based on PBEsol functionals calculation for 

the semi-local exchange and correlation part. [12] The calculated band gap using the 

hybrid functional is about 0.68 eV, in contrast with the zero band gap by LDA or GGA 

functional. The comparison for the GGA and hybrid functional calculated structural 

and band gap of Ge is summarized in Table 4.1, which clearly shows that the HF 

gives a better description of the structure and band gap for Ge. 

 

 

Table 4.1. Structural and electronic properties of bulk Ge. 
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The calculated lattice constant of cubic perovskite structure of STO is 3.91 °A, which 

is in good agreement with experimental results and previous calculations. [15, 16] The 

in-plane surface lattice constant mismatch between STO (001) and Ge (100) is only 

about 2.7%, resulting in a small interfacial strain to facilitate the crystalline growth. 

STO can be used for Ge-based electronics in two ways. One is to serve as a high-k 

dielectric, of which the first several STO layers are strained to match Ge lattice 

constant during the epitaxial growth process. The other is to be the substrate to grow 

Ge (GeOI), and in this case Ge is stressed. In this study, we focus on the epitaxial 

growth of STO on Ge (100) surface, in which the c-STO is in-plane strained with 

a║=aGe/√2=4.009 °A, and lattice constant c is contracted to 3.862 °A accordingly. This 

tensile strain on STO does not change its pm3m symmetry, but causes the reduction of 

band gap, as shown in Fig. 4.1(a). The HF calculated band for perovskite STO 

without strain is about 3.08 eV [20], close to experimental value (3.20 eV) [15], and 

this value is much improved compared with conventional GGA calculated band gap 

(1.97 eV). With the 2.7% tensile strain, the band gap is reduced to 2.74 eV, and the 

PDOS shows that this reduction is mainly from the down shift of Ti 3d orbital at the 

conduction band edge (Fig. 4.1(b)). It is noted that the strain induced band gap 

reduction has been found also in other systems such as ZrO2/Si. [17]  
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Figure 4.1. (a) Total DOS of STO with/without tensile strain. (b) Projected 

Ti 3d DOS of STO with and without strain.  
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4.3.2 Endogenous Passivation of Ge Surface 

 

For Ge (1×1) (001) surface, there are two dangling bonds per atom at the surface 

originating from the discontinuity of periodic lattices. To minimize total energy, 

surface reconstruction is preferable. At room temperature, Ge (001) surface has a 

p-(2×1) reconstructed structure, in which the neighboring surface atoms form 

dimmers, resulting in decreased dangling bonds at the surface. 

 

From the charge-neutrality view, the two dangling bonds at Ge p-(2×1) surface can be 

passivated by one Sr or O atom endogenously during the growth of STO, as shown in 

the inset of Fig. 4.2(a) and (b) shows, respectively. For Sr passivated Ge surface, 

electrons transferred from Sr to the Ge atom, making the Ge atom negatively charged, 

while for O passivated Ge surface, Ge is positively charged due to the stronger 

electronegativity of O atom, similar to the ZrO2/Si interface. [17, 18] Fig. 4.2(a) is the 

calculated DOS of Ge surface passivated by a Sr atom, and as expected the surface 

states are fully removed with a gap about 0.28 eV. In contrast, when Ge surface is 

passivated by an O atom, the DOS (Fig. 4.2(b)) is cross over Fermi level, indicating a 

metallic surface. The relaxed surface structure shows that the Ge p-(2×1) surface 

structure was destroyed by the strong electronegative O atom, leading to two dangling 

bonds that induce surface states in mid gap. These two dangling bonds can be further 

passivated by one more O atom. The relaxed surface and the corresponding electronic 

structures are shown in Fig. 4.2(c), from which we can see that the Ge surface is well 
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passivated and recovers semiconductor character with a gap about 0.22 eV. In 

principles, these two more dangling bonds can also be passivated by the introduction 

of one more Sr atom (Fig. 4.2(d)), but the calculated DOS is metallic, which is 

attributable to strong repulsive interaction between Ge and large Sr atoms. Thus, to 

endogenously passivate Ge (001) surface effectively during the growth of STO, the 

introduction of one Sr or two O atoms per unit on Ge (001) surface is feasible. 

 

 
Figure 4.2. Total DOS of Ge surface passvitated by a Sr atom (a), a O atom 

(b), two O atoms (c), and two Sr atoms (d) (the insets are the corresponding 

atomic structures).  

 

The relative stability of adatoms at Ge surface is given by the adsorption energy, and 

lower adsorption energy is related to a more stable adsorption configuration. The 

calculated adsorption energy for a Sr atom and two O atoms on Ge p-(2×1) surface is 
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about -1.18 and -12.79 eV, respectively. The lower adsorption energy means that the 

O passivated Ge surface is more stable. But, this low adsorption energy also suggests 

the favorable formation of Ge oxide on Ge, which is consistent with previous 

experimental results that Ge oxide layers are found to be easily formed between 

high-k dielectric and Ge due to the diffusion of O atom into Ge substrate or improper 

oxygen partial pressure. [19–21] Thus, during the passivation process, the oxygen 

chemical potential should be carefully controlled to avoid the formation of a thick Ge 

oxide layer, as it is well known that Ge oxide is not a good dielectric, which may 

decrease electrical properties of electronic devices severely. 
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4.3.3 Interfacial Structures and Stability of STO/Ge 

 

For epitaxial growth of STO on Ge, there are many possibilities for the interfacial 

structures, even for direct stacking. Based on the interface of ZrO2/Si, Robertson et al. 

proposed an interfacial bonding rule for insulator/semiconductor interface, which is a 

useful guidance to build possible interface structures. [18] For the possible interfacial 

structures of STO on a Sr or two O atoms passivated Ge (001) surface, due to 

transformation symmetry constrain, Ge, Sr or O atoms in the surface are within an 

irreducible triangle, which is consisted of Sr and O atoms for SrO terminated STO 

surface or Ti and O atoms for TiO2 terminated STO surface. Thus, for two O atoms 

passivated Ge (001) surface, we proposed 8 possible interfacial structures in term with 

different surface terminations (SrO or TiO2) of STO at the interface, and similarly, 

there are also 8 possible interface structures for STO with SrO or TiO2 termination on 

1 Sr atom passivated Ge surface. All the interface structures are shown in Fig. 4.3 and 

Fig. 4.4, from which it is noted that there is no dangling bond in all interface 

structures. After relaxation, although each layer in STO and Ge surface are neutral, 

significant bonding relaxation is observed at the interfacial layers, due to the 

discontinuity of chemical environment and strong interactions between Ge and STO 

layers. At the middle layers the atomic bondings recover their bulk character. 

 

For an interface structure, the stability is determined by its interface formation energy. 

Smaller interface formation energy is related to a more stable interface structure.  
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Figure 4.3. Interface structures for STO on Ge passivated by two O atoms  

 

 

Figure 4.4. Interface structures for STO on Ge passivated by a Sr  atom 

 

For STO on Sr or O atoms passivated Ge surface, the related interface formation 

energy can be simplified as: 

              (4.1) 
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Where Etotal is the total energy of the interface slab, ESTO is the total energy of STO 

top layers, and EGe−passivated is the total energy of passivated Ge surface, respectively. 

Eothers includes the upper surface energy of STO and the energy related to the H atoms, 

and A is the basal area of the interface supercell. The calculated interface formation 

energies for all proposed interface structures are summarized in Table 4.2 and Table 

4.3. For two O passivated Ge surface, the most stable interface structure among the 

structures we proposed is structure 3c, which is TiO2 terminated STO on Ge (100) 

surface and is 0.24 eV lower than the next stable interface structure (3-e), as shown in 

the Table II. For Sr passivated Ge surface, the most energetically favorable interface is 

structure 4-a. It is also TiO2 terminated STO surface on Ge, and has at least 0.47 eV 

energy over other interface structures. These results indicate that STO is preferable to 

form TiO2 terminated surface on Ge substrate, despite the different Ge surface 

chemical environments. In contrast, for interface structures of STO / Si, the most 

studied interface structure is SrO terminated STO on Sr passivated Si surface [3, 22], 

partially due to that the formation of metallic interface of Silicide is undesirable in 

real electronic applications, because when STO with TiO2 terminated surface on Si, 

the metallic interface may be formed due to the diffusion of Ti atoms into Si substrate 

during the thermal annealing process. It is also reported the formation of 

Ti-Germanide in between metal and Ge by thermal annealing, but this Germanide 

does not decrease the electrical properties much. [8, 23] 
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Table 4.2. Relative interface formation energy of STO on O passivated Ge (100). 

 

 

Table 4.3. Relative interface formation energy of STO on Sr passivated Ge (100). 

 

4.3.4 Electronic Properties at STO/Ge Interface 

 

The electronic structure of an interface structure is of great importance for 

applications. An interface structure with metallic character is undesired because this 

may result in large tunneling current. Moreover, the band offset between high-k oxide 

and semiconductor should be larger than 1 eV at least in order to minimize the 

standby leakage current. In addition, to reduce interfacial charge trapping density, the 

interfacial dangling bonds induced gap states should be minimized also.  

 

Since the interface structure 3-c and 4-a is the most energetically favorable for Sr or O 

passivated Ge, respectively, the corresponding relaxed interface slabs were used to 

calculate electronic properties such as DOS and projected DOS (PDOS) on each atom. 

Figure 4.5 shows the calculated total DOS and PDOS of interface slab 3-c, of which 

the total DOS clearly shows semiconductor character of this interface structure. From 

the PDOS, it is noted that the PDOS of Sr, Ti, O, and Ge atoms at the middle layer of 
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the interface slab is similar to that in respective bulks, and the oscillation is mainly at 

the layers near interfacial region, consistent with the structural relaxation results. 

Similarly, there is no gap state of the DOS and PDOS for interface slab 4-a (Fig. 4.6), 

due to perfect interfacial bonding. 

 

Band offsets at dielectric/semiconductor interface is an important quantity because 

they determine the tunneling chance for interfacial carriers. Lower band offsets are 

related to higher tunneling possibility, and thus larger leakage current. Since the 

valence band edge of STO is mainly from O 1s, the valence band offset (VBO) at the 

interface such as STO/Ge can be roughly estimated from the rigid shift of DOS of 

middle Ge 3d and O 1s atoms with their bulk counterparts. [24] The calculated rigid 

shift of DOS for the interface structure 3-c and 4-a is shown in Fig. 4.7 and Fig. 4.8, 

which clearly show that due to different interfacial net dipoles, the rigid shit of the 

core levels such as O 1s and Ge 3d between the interface structure and the bulk varies 

much. The VBO for the interface 3-c and 4-a is estimated to be 1.35 and 2.25 eV, 

respectively. It is noted that the different interface structures lead to the variation of 

the VBO, indicating the possibility of band offset tailoring by controlling the 

interfacial bonding, which is in agreement with previous studies. [3, 17] The band 

offsets at STO/Ge interface have been estimated to be 0.37 (CBO) and 2.0 eV (VBO) 

by Robertson et al. [25] by using charge neutrality level (CNL) method. The band 

offsets are slightly different with those we obtained, which may be attributable to the 

interfacial bonding effects including in our estimations. 
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Figure 4.5. The total and projected DOS for the interface structure 3 -c 
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Figure 4.6. The total and projected DOS for the interface structure 4 -a 
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Figure 4.7. The rigid shift of O 1s and Ge 3d (inset) DOS between interface 

structure 3-c and the related bulk 

 

 

Figure 4.8. The rigid shift of O 1s and Ge 3d (inset) DOS between interface 

structure 4-a and the related bulk 
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4.3.5 Electric Field Effects on Interfacial Properties 

 

Electric field has great effects on physical and chemical properties of materials at 

nano scale. For instance, the introduction of electric field can alter the absorption of 

molecules or clusters on oxide substrates, and it is also reported that electric field may 

change the magnetic properties of magnetic tunneling junctions. [26, 27] In this study, 

we applied external electric filed on the interface structures to examine the change 

interface stability. The calculated dependence of interfacial formation energy for the 

interface structures 3-c, 3-f, 4-a, and 4-d on the electric field is shown in Fig. 4.9(a) 

and (b), respectively. It is clearly seen that with the increase of electric field, all the 

four interface structures become more stable as their formation energy decreases, and 

the introduction of electric field does not change the relative stability of the interface 

structures. For example, TiO-3 is the most stable structure for STO on O passivated 

Ge (001) without electric field, and with 0.5 V/Å electric field, it is still the most 

stable. These results indicate that the insulating interface structure is robust against 

external influence. 
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Figure 4.9. The dependence of interface stability on the external electric 

field: (a) interface structure 3-c and (b) interface structure 4-a. 
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4.4 Conclusions 

 

In conclusion, we have used first-principles calculations to investigate structural and 

electronic properties of perovskite STO on Ge (001) substrate with the effects of 

different surface chemical treatments and external electric fields. It is found that the 

dangling bonds at Ge (001) (2×1) surface can be effectively passivated either by one 

Sr or two O atoms, and O passivated Ge surface is more stable, indicating high 

possibility of forming Ge oxide layers between Ge and STO. The calculated interface 

formation energy shows that STO terminated with TiO2 is more preferably formed on 

Ge surface, and perfect interfacial bonding excludes the mid gap states, resulting in 

semiconductor like electronic properties. In addition, the relative stability among the 

insulating interface structures is insensitively with the applied electric field. 
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[11] P. E. Bl öchl, Phys. Rev. B. 50, 17953 (1994). 

[12] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). 

[13] J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992). 

[14] L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys. 134, 024116 (2011). 

[15] M. Cardona, Phys. Rev. 140, A651 (1965). 

[16] S. Piskunov, E. Heifetsb, R. I. Eglitisa, and G. Borstela, Comp. Mater. Sci. 29, 

165 (2004). 



 

91 
 

[17] Y. F. Dong, Y. P. Feng, S. J. Wang, and A. C. H. Huan, Phys. Rev. B 72, 045327 

(2005). 

[18] P. W. Peacock and J. Robertson, Phys. Rev. Lett. 92, 057601 (2004). 

[19] V. V. Afanas’ev and A. Stesmans, Appl. Phys. Lett. 84, 2319 (2004). 

[20] M. Yang, R. Q. Wu, Q. Chen, W. S. Deng, Y. P. Feng, J. W. Chai, J. S. Pan, and S. 

J. Wang, Appl. Phys. Lett. 94, 142903 (2009). 

[21] M. Yang, W. S. Deng, Q. Chen, Y. P. Feng, L. M. Wong, J. W. Chai , J. S. Pan, S. 

J. Wang, C. M. Ng, Appl. Surf. Sci. 256, 4850 (2010). 

[22] I. N. Yakovkin and M. Gutowski, Phys. Rev. B 70, 165319 (2004). 

[23] D. Han, Y. Wang, D. Y. Tian, W. Wang, X. Y. Liu, J. F. Kang, and R. Q. Han, 

Micro. Engin. 82, 93 (2005). 

[24] A. A. Demkov, R. Liu, X. D. Zhang, and H. Loechelt, J. Vac. Sci. Technol. B bf 

18, 2388 (2000). 

[25] J. Robertson and B. Falabretti, Mater. Sci. Engin. B, 135, 267 (2000). 

[26] B. Yoon and U. Landman, Phys. Rev. Lett. 100, 056102 (2008). 

[27] J. M. Rondinelli, M. Stengel, and N. A. Spaldin, Nat. Nanotech. 3, 46 (2008). 

 

 

 



 

92 
 

Chapter 5 

Conclusions and Future Works 

 

5.1 Conclusions 

 

The interaction of high mobility Germanium (Ge) layers with high-k oxides enables 

the possibility for the further scaling down of the MOSFET technology in the near 

future. This thesis mainly studies the interface properties of the high-k oxide materials 

(SrTiO3) and the Ge through first-principles calculations and the experimental 

characterizations. 

 

From the introduction and literature review chapter, many reports point out that the 

applications of high-k materials and high mobility Ge channel are two of the key 

elements to push the further downscaling of the MOSFET technology and IC industry. 

Integration of single crystaline Ge channel on top of the Si substrate encounters the 

difficulties to achieve both the high-quality Ge layer with defect free interface of 

Ge/Si by direct growth of Ge thin film on Si. Some researches have proven the GeOI 

fabrication through condensation technique and smart cut technique for both the chip 

and wafer level, but the cost is quite expensive. Single crystalline high-k dielectrics as 

the buffer layer has attracted bunches of interests recently. Within these high-k 

materials, LaYO and Sr(Hf,Ti)O3 have been widely reported. Before the application 
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of high-k in the GeOI for industry, more studies need to be carried on those potential 

materials and the deposition techniques. High-k material as the gate dielectric layer 

together with Ge-channel is the other very hot topic. For the Ge MOSFET in the 

sub-22 nm regime, both GeO2 and GeON gate dielectric could introduce high leakage 

curren. Some groups have reported some high-k oxide on Ge substrate such as SrTiO3, 

ZrO2 and HfO2 to replace the traditional gate dielectrics. These findings are still 

limited by the poor interface and the high leakage current due to the low quality 

high-k thin films. Therefore, further investigations are needed to find the other 

suitable high-k materials on Ge and their physical behaviours. 

 

In the first half of the thesis, we focus on the experiment aspect of material growth 

and characterizations. A layer of single crystalline Ge (111) is successfully deposited 

on top of SrTiO3 (111) at the sputtering temperature of 500 °C. By ramping the 

substrate temperature to 650 °C, single crystalline Ge (100) thin film show up at the 

same SrTiO3 (111) substrate. The sharp Ge (100) and Ge (111) peak from XRD θ-2θ 

scan from both samples prove the good quality of the grown crystalline Ge. This 

phenomenon can be explains by the balance of surface energy of Ge layers and 

interface energy between Ge layers and STO substrate at the initial growth stage at the 

different growth temperatures. From the HRTEM pictures, sharp and defect free 

interface of Ge/Si can be clearly observed. Ge diffusion problem is caught by STEM 

with EDX line-scan, where higher temperature can lead to more Ge diffuse into the 

STO substrate. The other interesting finding from this STEM is that the interfacial 



 

94 
 

bonding of the Ge/STO interface is Ge-TiO2, which is quite different from the Si-SrO 

interface boinding for Si/STO. XPS analysis also illustrate the existing of Ge2O (Ge
1+

) 

and GeO (Ge
2+

) components caused by the Ge diffusion. Although the measured 

mobility is not very high for these samples, we expect further optimization of the 

experiment can achieve better results. 

 

In the second half of the thesis, first-principles calculation is carried out to study the 

interfacial electrical structures of SrTiO3 (100) and Ge (100). By employing the 

HSE06 format hybrid functional, we can get more accurate band gap of Ge (0.68eV) 

with 5.672Å lattice constant. The tensile strain is introduced in order to epitaxially 

grow STO on Ge (100) substrate, which can reduce the band gap of STO from 3.08eV 

to 2.74eV. One Sr or two O atom can be used to passivate the Ge p-(2×1) surface, and 

the O passivation is more favorable from the results of adsorption energy. Eight 

possible interfacial structures each in term with different surface terminations (SrO or 

TiO2) of STO at the interface of one Sr atom or two O atom passivated Ge surface are 

proposed in this study. According to the formation energy definition, interface 

structure of SrTiO3 with TiO2 termination on Ge surface is more stable, which is 

consistent with the experiment results in chapter 3. The valance band offset estimated 

for these two TiO2 terminated structure are 1.35 eV and 2.25 eV, respectively, which 

is based on the rigid shift of DOS of middle Ge 3d and O 1s atoms with their bulk 

counterparts. After we add in the external electric field, the formation energies 

decrease for all the possible structures, which can conclude that the relative stability 
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of the insulating interface structures is not affected by external influences. 

 

5.2 Future Works 

 

 

From the experimental aspect of fabrication of single crystaline Ge thin film on top of 

high-k material STO, there are two areas can be further improved and studied. Firstly, 

we can utilize double temperature steps Ge growth process to achieve both high 

quality and smooth Ge film on STO. This method is reported recently by some 

research groups for Ge/PrO2 and Ge/SHO. [1, 2] At the initial stage, high temperature 

can result high crystallinity Ge seed islands due to the three dimensional growth mode. 

Following by reducing the temperature, e.g. 300 °C, the Ge growth rate can be 

lowered to about 0.01 nm/s, which is the two-dimensional growth mode. By 

combining and tuning these two growth stages, it is expected to get a atomically 

smooth and single crystalline Ge (100) or Ge (111) thin film.  

 

Secondly, we can further fabricate Ge on insulater/high-k(STO) field effect transistor. 

After optimizing the Ge deposition on STO, we can easily build Ge/STO/Si stack as 

the technique of STO growth on Si substrate is well known. By simply doping the Ge 

film with boron and Si substrate with n-type dose, this GeOI heterostructure can be 

treated as the MOSFET, [3] where heavily doped Si is the bottom gate electrode and 

STO is the oxide (thickness can be controlled). Nearly all the characterizations of the 
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typical MOSFET can be carried on this similar Ge MOSFET and which can be very 

helpful for the future application in the foundry industry. 

 

Both experimental and computational studies can be also carried out on effects of 

intrinsic and extrinsic defects in STO and Ge on electronic and electrical properties of 

Ge and STO based electronic devices. It has been reported that the defects in high-k 

oxides affects the electrical properties of Si based MOS devices significantly, which 

may induce large leakage current or cause Fermi Level pinning. The related study in 

high-k oxide and Ge is still needed in order to develop high performance Ge based 

electronic devices. 
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