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Abstract

Database columns are the very basic units in databases, and they determine

how databases are designed, as well as how database queries are processed.

In this thesis, we study one particular property about database columns–the

column heterogeneity. Our study consists of three parts. The first part is on

the intra-column heterogeneity, i.e., the heterogeneity within a database col-

umn. The measure of column heterogeneity is defined based on the syntactic

types of the values in a column. The subsequent two parts then discuss the

inter-column heterogeneity, i.e., the heterogeneity when multiple database

columns are taken into consideration. We propose validating schema match-

ing, which is to prevent database columns from becoming more heteroge-

neous. The schema matching validator includes a measure of integratability,

a procedure of extracting sub-string matches, and an invalidation certificate

as evidence of two columns being not integratable. The last part of this thesis

focuses on the problem that arises from the data management of emerging

community databases. An out-of-the-box approach that separates users’ ac-

tions from database operations is proposed. This approach evaluates the

heterogeneity across different database columns, and thus makes semantic

influences among those columns. With these, this thesis shows how to deal

with column heterogeneity in databases.
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Chapter 1

Introduction

1.1 Columns in Relational Databases

Since Relational Database Management System (RDBMS) was introduced

by Codd [Cod70], database column has become a fundamental concept in

RDBMS. Codd defined database columns in the following way:

Given sets S1, S2, · · · , Sn (not necessarily distinct), R is a relation

on these n sets if it is a set of n-tuples each of which has its first

element from S1, its second element from S2, and so on. More

concisely, R is a subset of the Cartesian product S1×S2×· · ·×Sn.

We shall refer to Sj as the jth domain of R.

• The ordering of columns is significant–it corresponds to the

ordering S1, S2, · · · , Sn of the domains on which R is defined.

• The significance of each column is partially conveyed by la-

beling it with the name of the corresponding domain.

A tuple is thus an ordered list of elements from columns in a relation.

Such elements are often referred to as data values or simply values. Since

8



Chapter 1: Introduction 9

data values at the same position of all tuples are from the same domain, each

column in relational model can be viewed as a set of values and is labeled by

the name of the corresponding domain.

Columns form the basis of a relational schema, which is a formal language

describing tables in a database and relationships among such tables. On the

other hand, Structured Query Language (SQL), which is the query language

for relational databases, is also defined on top of database columns, for cre-

ating, querying and manipulating relational databases. Therefore, database

columns are considered as pillars in a modern RDBMS.

In recent years, column-oriented storage models are drawing special at-

tentions from the database community. Due to the slow increase in disk

bandwidth, a column-oriented DMBS [SAB+05] is able to avoid reading val-

ues from irrelevant columns to the main memory, and to only read values

from columns that are required by a query. This has again emphasized the

importance of database columns from a storage model perspective.

1.2 Heterogeneous Columns

As database columns play such a significant role in RDBMS, the heterogene-

ity of columns in a database can severely affect the quality of the database.

By Codd’s definition [Cod70], values at the same position of all tuples are

expected to come from the same domain, and thus these values are also

expected to have the same type. We use the following example to elaborate.

Example 1.1. Column year consists of values which can be interpreted as

years, like 1999 and 2012. Values like 2010.3 and yyyy.mm are not expected

as they are of different types.

We say a column is homogeneous if its values are of the same type,
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otherwise, it is called heterogeneous.

From the database design point of view, having homogeneous columns is

better than having heterogeneous column. Database efficiencies are largely

dependent on the indexes, which are usually built on one or a few columns.

Suppose a database designer wishes to build an index for a heterogeneous

column, he would have to choose an index that caters all types of values in

this column. However, if the column is homogeneous, the database designer

can choose an index which is optimized for values for this particular type, thus

improve the efficiency. Homogeneous columns are therefore more favorable

to database designers and database administrators.

From a database user’s perspective, homogeneous columns are also better.

In order to perform database queries, one has to understand what are the

columns and what each column is about, and then write the database query

accordingly. With heterogeneous columns, it is certainly more difficult to

understand what the columns are about, and the query result is also harder

to decipher. For instance, one may check the first few tuples in a column

and obtained an idea about the column content. But she may get some

“surprising” values of other types, as she thought the column is homogeneous

and its values are of the same type as the first few values she saw. Thus

database users also prefer homogeneous columns over heterogeneous columns.

Although database columns are designed with the favor of homogene-

ity, columns can still gain a significant amount of heterogeneity as database

evolves. This is particularly true when there is no database administrator

around, e.g., a community-based database system. Everyone has the privi-

lege to access the database and modify the database, thus columns become

more and more heterogeneous. Even for databases with administrators, the

growth of heterogeneity happens too, like in the following example.
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Example 1.2. Imagine there is a customer database designed in last century,

which records their home addresses in the column address and the phone

numbers in the column contact. With more and more people having an

email address as their preferred way of being contacted, they may just leave

only their email addresses as a contact. Now the database administrator

has to decide which column the email addresses should be put in as there

was no column designed for email addresses at the time the database was

created. Fortunately, this is an easy choice to make, the heterogeneity of

that column will increase, no matter whether he puts email addresses in the

column address or in the column contact. This is because the type of email

addresses is different from either the type of home addresses or the type of

the phone numbers.

1.3 Column Heterogeneity and Data Quality

From the above examples, we understand that heterogeneous columns altered

the intended way of database design, which may also lead to subsequent

degradation of data quality. We give the following example.

Example 1.3. Assume the database administrator in Example 1.2 puts email

addresses in column contact, the column of phone numbers. Another database

administrator is going to perform a database operation that inserts the coun-

try code in front of the phone numbers as the database is going to include

international customers. If she does not know the column contact also con-

tains email addresses as described in Example 1.2, inserting the country code

to every value in the column contact will immediately make email addresses

invalid.

Data quality is a serious concern in every data management application,
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as poor data quality can severely degrade common business practices. In-

dustry consultants often quantify the adverse impact of poor data quality in

the billions of dollars annually.

Data quality issues have been studied quite extensively in the litera-

ture [DJ03]. In particular, a variety of quality measures have been proposed,

e.g., accuracy, freshness and completeness, to capture common sources of

data quality degradation [Wid05]. Data profiling tools like Bellman [DJMS02]

compute concise summaries of the values in database columns, to identify

various errors introduced by poor database design. These include approxi-

mate keys (the presence of null values and defaults in a column may result

in the approximation), and approximate functional dependencies in a table

(possibly due to inconsistent values).

In order to improve data quality, the heterogeneous columns in a database

are to be identified first. As columns are to be compared on their degree

of heterogeneity, it is not adequate to flag one column as a heterogeneous

column. Instead, a real number should be given to a column to tell how

heterogeneous this column is. We therefore propose a measure, called column

heterogeneity to measure the heterogeneity within a column. This measure

makes columns comparable on the scale of column heterogeneity, and helps

discover the most heterogeneous column in a database, on which the database

administrator will take further actions, e.g., horizontal split that column into

a few columns to make every part from the split homogeneous.

However, the column heterogeneity needs to satisfy certain criteria to

correctly capture the homogeneity within a column. This will be discussed

in detail in Chapter 4.
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1.4 Column Heterogeneity and Data Integra-

tion

It is not enough to just identify heterogeneous columns and do data cleansing

on such columns; it is in fact more important to prevent database columns

from getting more heterogeneous, as prevention is the best medicine.

As discussed in Example 1.2, the heterogeneity is introduced when values

from new types are inserted into a database which was not designed for such

types. It becomes more serious when multiple databases are to be integrated,

as any unforeseen mismatch between different types of values will result in

the growth of heterogeneity.

Example 1.4. Consider column contact in one table consisting of a large

number of phone numbers and a small number of email addresses, while col-

umn contact from another table is composed by a major portion of phone

numbers and a minor portion of home addresses. If the database adminis-

trator who is assigned with the task of integrating the two databases into one

did not know that the two contact columns are of different types of values,

and thought both of them are just phone numbers, she would have matched

these two columns and merged values under the same column in the inte-

grated database. By doing so, the heterogeneity of the new column contact

is higher than the heterogeneity of either contact column from the two orig-

inal database, which is not desired.

Hence, there ought to be a procedure that checks whether the two columns

to be integrated will become a more heterogeneous column if integrated to-

gether. As the basic operator which associates a column from one database

to a column from another database is usually referred to as column match,

we call the above procedure that performs the checking on the heterogeneity
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as column matching validation, which declares if a candidate column match

is valid or not. This column matching validation is essential to any schema

matching method since it denies any candidate column match that degrades

the quality of the database.

Note that there is no requirement on the homogeneity of the candidate

columns, i.e., the columns to be integrated are not necessarily homogeneous.

Even if the columns are heterogeneous, as long as the heterogeneity does

not increase after integration, it is considered as a valid match. In the above

example, if both columns are mixtures of phone numbers and email addresses

with the same distribution, the heterogeneity will remain the same if the two

columns are integrated into one. Therefore, the match between the two

original columns is valid.

In fact, it is also possible to have an integrated column with reduced

heterogeneity. The column match validation should announce valid for such

scenarios.

We will re-visit this problem of multi-column matching validation in

Chapter 5.

1.5 Column Heterogeneity and Data Seman-

tics

For the above two problems described in Sections 1.3 and 1.4, the heterogene-

ity is something to be avoided, i.e., we favor columns with less heterogeneity,

or a database integration is considered valid only if the heterogeneity does

not increase. In this section, we introduce another interesting problem which

does not prefer homogeneous or heterogeneous columns, and deems hetero-

geneous columns as informative as homogeneous columns.



Chapter 1: Introduction 15

Conventionally, only users with at least some database knowledge perform

database queries, as in order to query a database, a user has to understand

the database in the first place, e.g., what columns to query, and how the

query should be formalized or optimized.

However, as database technologies advance, database user community has

become larger and larger. Even for people who do not have any database

knowledge, they are also able to search information on-line, without knowing

they are actually querying some database in the world. It is therefore desired

to reduce the barrier of utilizing databases to allow common users to do

other kinds of database manipulation apart from querying. For example, if

users are able to insert tuples into databases, they will contribute a large

community database, which is valuable for studying community problems.

A potential danger of allowing community users to modify database is

that their actions may alter the original database structure, i.e., its schemas.

Database schemas are the blueprints on how databases are constructed and

operated; it is usually forbidden to mess up with schemas. Making changes

to schema needs data experts to translate from tuples in the old schemas

to tuples in the new schemas. Community users hardly know or care about

what schema is, and they should not be expected to take only “right” actions

so that the schema is well maintained.

Therefore, we want to achieve both of the following:

• a well-formed database that follows certain schemas; and

• a free-and-easy way to enable community users to access and manipu-

late the database

This sounds contradicting, but it is this third problem that we target

at: providing a platform for community users to access, manipulate and
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Database Operations

User Interactions

The Separation

Figure 1.1: Separation between users and databases

contribute to a database with schemas properly maintained. Let us as-

sume that users have a very generic way of accessing and manipulating the

database, i.e., pairing the semantics and the values. For example, if they

were to query for John’s phone number, they would submit a query like

“query (name = ‘John’, phone = ?)”; and if they wish to submit a tuple,

they would probably write in this way “insert (name = ‘John’, phone =

‘123-456-7890’)”.

This is a basic and intuitive way of dealing with a database, without

knowing the details of the database. However, from the database manage-

ment point of view, this simple way of accessing databases is not acceptable,

as it may corrupt the schemas. Therefore, it should not be allowed to access

the databases directly. Instead, there ought to be a separation that serves as

a proxy to the community users, i.e., it interprets users’ request, and carry

out the “right” database operations, so that the database schemas are well

protected.
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As shown in Figure 1.1, the separation now blocks users directly accessing

the database. This separation interprets users’ interactions from above, and

translate to database commands below, to operate the databases. Similarly, if

there are results from different databases, the separation also need to combine

them and then present to the user who issued the query.

Although the platform provided to users is easy and intuitive, the chal-

lenges are now transferred to the separation, which is understanding the

users’ intentions from their semantics. The following example demonstrates

why this separation takes semantics into consideration.

Example 1.5. In a typical customer database, there are two columns associ-

ated with phone numbers, one is called phone, and the other is called mobile,

since the original database designer intends to put customers’ land numbers

in the column phone, and to put customers’ mobile numbers in the column

mobile. However, this is unknown to the community users, and when they

issue queries like “query (name = ‘John’, phone = ?)”, they just want

to find a number to call, no matter it is a land line or a mobile line. If this

separation only looks at the column phone, there will be no result if John’s

tuple is only associated with a mobile number, but not a land number. There-

fore, this separation needs to understand that the query issuer’s intention is

to search through both column phone and mobile.

Given that database columns are potentially heterogeneous, it is not

straightforward to associate such columns with the semantics. In Chapter 6,

we will solve this problem of establishing relationship between semantics and

heterogeneous columns.
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1.6 Thesis Organization

This thesis is organized as follows. We will give a brief literature review

in Chapter 2. Some basic but important concepts in information theory

will then be introduced in Chapter 3. This chapter will also present the

information bottleneck method, which is the basis of our clustering method

used throughout the thesis. The following three chapters, Chapters 4, 5

and 6 will address the three problems proposed in Sections 1.3, 1.4 and 1.5

respectively. Subsequently, we will conclude in Chapter 7.

This thesis is written based on the three conference papers [DKO+06,

DKS+08, LADT11] that have been published before, corresponding to each

of the three technical chapters, Chapter 4 [DKO+06], Chapter 5 [DKS+08]

and Chapter 6 [LADT11].



Chapter 2

Literature Review

We now give an introductory review on relevant literature related to col-

umn heterogeneity. This literature review consists of three parts. The first

part talks about data quality, and supports the motivation for studying the

column heterogeneity measure in Chapter 4. We then review techniques on

schema matching and mapping, to explain the necessity of having a validator

for multi-column schema matching in Chapter 5. The last part of the review

is on a few novel database models, while we will see in Chapter 6, how we

can combine our column heterogeneity and such database model to manage

data from the semantics perspective.

2.1 Data Quality

Data quality issues have been studied quite extensively in the literature [DJ03,

JD03, BCS04]. A variety of quality metrics have been proposed, e.g., accu-

racy, freshness and completeness, to associate with and query along with the

data [MRV99, Wid05]. Mihaila et al. [MRV99] associate quality parameters

with data, and extend SQL to control data retrieval based on the values of

19
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these parameters. Widom [Wid05] proposed the Trio model for integrated

management of data, accuracy, and lineage, focusing on data model (TDM)

and query language (TriQL) issues.

When fields have poor quality data, record linkage techniques using ap-

proximate match predicates are fundamental [KS05]. These techniques re-

turn pairs of tuples from the tables. Each pair tagged with a score, signifying

the degree of similarity between the tuples in the pair according to the spe-

cific approximate match predicate. Such approximate join operations have

received much research attention in recent years, due to their significance

and practical importance [CGGM03, KMS04].

Data profiling tools like Bellman [DJMS02] collect concise summaries of

the values of the database fields. These summaries (set and multiset signa-

tures based on min hash sampling and min hash counts) allow Bellman to

determine data quality problems like (i) fields that are only approximate keys

(the presence of null values and defaults may result in the approximation),

(ii) approximate functional dependencies in a table (possibly due to inconsis-

tent values), and (iii) approximate joinable keys/foreign keys. However, such

profiling tools do not currently help with our heterogeneity problem. The

desiderata of our heterogeneity problem will be further discussed in Chap-

ter 4.

2.2 Schema Matching and Mapping

Schema matching and schema mapping have been studied extensively. The

survey by Rahm and Bernstein [RB01] lays out a general ontology of ap-

proaches, classified by the level of granularity (schema-level, data-level, the

kinds of rules generated (1-1, 1-m), and other factors. A later survey by Doan
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and Halevy [DH05a] covers more recent work, as well as related research in

AI and machine learning.

To the best of our knowledge, there is no prior work that formulates the

idea of matching schema based on inferred syntactic types from string data,

although the paper by Doan, Domingos and Halevy [DDH01] does hint at

this in their discussion of possible base learners. The work by Embley et

al. [EXD04] uses data frames and domain ontologies to match schema; these

notions together instantiate a syntactic type, but are constructed from do-

main knowledge, rather than inferred from the data. There are however a

number of works that use statistical and/or machine learning methods to

learn properties of an attribute from data and examples. The SEMINT al-

gorithm of Li and Clifton [LC00] builds discriminant vectors from numerical

data and trains a neural network to learn attributes from data. SEMINT

maps strings to numerical attributes by computing statistics on string length.

Berlin and Motro [BM01, BM02] use example data and conditional probabil-

ity to weigh matches between individual attributes, and use a global matching

algorithm to find a schema matching. Kang and Naughton [KN03] employ

a similar idea, using the mutual information of two columns as a measure of

how likely they are to be matched to each other. In their scheme, the data

is effectively treated as categorical. Other related works in this area include

the work of He, Chang and Han [HCH04] that uses correlation mining to

determine schema matches on the deep web. For related work in the AI

community, we refer the reader to the survey by Doan and Halevy [DH05a].

A comprehensive schema mapping tool that incorporates learning-based

matching methods is Clio [YMHF01]. Clio helps users define schema map-

pings - the source and target schemas can be any combination of relational

and XML schemas. It incorporates an attribute matcher component that
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suggests likely mappings by analyzing the schemas and underlying data, us-

ing a Naive-Bayes-based matching algorithm. Clio then also interprets these

mappings to construct a set of database queries that transform and integrate

source data to conform to the target schema. Such queries can be used to

populate data warehouses or to define views and virtual tables in federated

database environments.

In Chapter 5, we validate schema, rather than discovering them. One

schema validation method is SPIDER [CT06a], by Chiticariu and Tan. SPI-

DER is a data-driven debugger for schema mappings, which works on top of

Clio and operates with schema mappings based on a nested extension of tuple

generating dependencies and equality generating dependencies. At the core

of SPIDER is the notion of routes, which describes the relationship between

source and target data with the schema mapping. SPIDER incorporates

polynomial time algorithms for computing all routes for selected source or

target data, and produces a complete, polynomial size representation of the

(possibly exponential) set of all routes.

A feature of our method is the ability to validate schema matches when

the data itself exhibits no match, but sub-strings of the data items match

each other. The most closely related work is by Warren and Tompa [WT06],

who study the discovery of multi-column schema mappings. In one sense,

their problem is harder than ours, because they discover potential schema

maps, while we validate such maps. However, their method assumes explicit

value mappings, and in that sense inhabits a more restricted space than our

approach. Our approach focuses on the syntactic types, and makes use of

these syntactic types to validate the schema matching or the schema map-

ping. Thus it is more general than the work in [WT06].
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2.3 Database Relaxation and Probabilistic

Databases

New database models have emerged over the years, to better handle data

with noise, as well as handle data with uncertainties. For example, there are

techniques that make databases less constrained by schemas, as by integrat-

ing with other databases with noise, schemas are hard to obey at all times.

This drives researchers to study on malleable schemas [DH05b, ZGBN07] or

even database without specific schemas like Bigtable [CDG+06, CDG+08], or

wide-table [CBN07, LHLG09]. Conceptually, Bigtable maps a unique tuple

ID and a unique column ID to a data value. Each row of data only relates

a small fraction of the total number of columns, which is in the magnitude

of hundreds or thousands. Bigtable is totally schema free, the user can just

insert his own data into an appropriate column without worrying about the

schema of the database. User may even create a new column if there is no

existing column that suits the data that is to be entered. Another column-

wise storage, wide-table, stores column names and values in pairs. However,

under both data models, one value is assigned to a unique column, which

makes it impossible to process a column whose name does not match with

the query.

Once the database constraints are relaxed, uncertainty is involved. In-

stead of a tuple being either an answer to a given query or not in RDBMS,

each tuple in probabilistic databases is associated with a probability to match

the query. Studies on probabilistic databases have been ongoing for many

years [RS08, DRS09]. Both our work and current researches on probabilis-

tic databases are focusing on finding an effective method for probabilistic

data management and query processing. However, there are three essential
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differences, namely, uncertainty types, data modeling and query processing.

More researches on probabilistic databases have been done to deal with the

uncertainty about row existing [GZM09, SIC07], value existing or both of

them [Wid05, GS06].

Possible world is a popular model used for probabilistic database to re-

solve semantic ambiguity[SIC07, LD09]. We shall see in Chapter 6 that,

possible world semantic does not fit to our framework, as we do not con-

sider the uncertainty across columns to be mutually exclusive. There are

correlations between columns, which allow us to adopt statistical inference

to explore a more generic relationship between values and columns.

Since there exist uncertainties in the data, researchers also need to con-

sider uncertainties when such data is being integrated, especially when schemas

are heterogeneous. The majority of researches in data integration or infor-

mation integration maps heterogeneous schema to one centralized mediated

schema. But it is not easy to figure out a mediated schema that every other

schema can be squeezed through without losing any information. Prior work

on probabilistic mediate schema and probabilistic schema mapping have been

proposed by Dong and Halevy [DHY07, DSDH08]. A mediated schema based

on the source attribute clustering is constructed, and the probabilistic schema

mapping is produced at the same time. To assign the probability of the pos-

sible mediated schema, it is assumed that the attributes in the source data

are mutually exclusive with each other. In addition, only the more frequent

attributes are considered, and the less frequent ones are just omitted. In

Chapter 6, columns with similar semantics can coexist in our system, and

values associated with one column can be inferred to other columns with

similar semantics. At the same time, our method is mediated schema free,

meaning our approach can be used for community data management pur-
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poses, where no one defines the mediate schema and the mappings to the

mediate schema.



Chapter 3

Preliminaries

In this chapter, we will review some basic concepts in Information Theory.

Most of the definitions here are taken from the information theory text book

Elements of Information Theory [CT06b].

3.1 Information Theory

Entropy

Let X be a discrete random variable in the space of X , and the probability

mass function p(x) = pX(x) = Pr{X = x}, x ∈ X . For convenience, we write

pX(x) as p(x); and p refer to different probability mass functions with differ-

ent random variables. For example, p(x) and p(y) denote pX(x) and pY (y)

respectively, so they are considered as different probability mass functions.

Definition 3.1. The entropy H(X) of a discrete random variable X is de-

fined by

H(X) = −
∑
x∈X

p(x) log p(x) (3.1)

26
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As p(x) ≤ 1, ∀x ∈ X , we have

Corollary 3.2. H(X) ≥ 0.

Joint Entropy

Definition 3.3. The joint entropy H(X, Y ) of a pair of discrete random

variables (X, Y ) with a joint distribution p(x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (3.2)

Conditional Entropy

Definition 3.4. The conditional entropy H(Y |X) of a pair of discrete ran-

dom variables (X, Y ) with a joint distribution p(x, y) = p(x)p(y|x) is defined

as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (3.3)

With the definitions of joint entropy and conditional entropy, we have the

following chain rule.

Theorem 3.5 (Chain Rule).

H(X, Y ) = H(X) +H(Y |X) (3.4)



Chapter 3: Preliminaries 28

Proof.

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)−
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −
∑
x∈X

p(x) log p(x)−
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= H(X) +H(Y |X)

The following corollary illustrates the relationship between three condi-

tional entropies with three random variables involved.

Corollary 3.6.

H(X, Y |Z) = H(X|Z) +H(Y |X,Z)

Kullback-Leibler Divergence and Relative Entropy

Definition 3.7. The Kullback-Leibler divergence ( KL divergence for short)

between two probability mass function p(x) and q(x) is defined as

DKL[p‖q] =
∑
x∈X

p(x) log
p(x)

q(x)
(3.5)

In this definition, we define 0 log 0
q

= 0 and p log p
0

= ∞, based on conti-

nuity theorem.

As DKL[p‖q] can be written as

DKL[p‖q] = Ep[log
p(X)

q(X)
] (3.6)
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It is also known as the relative entropy or cross entropy as it is a measure of

the inefficiency of assuming that the distribution is q when the true distri-

bution is p.

The KL divergence is non-negative, as shown in the following corollary.

Corollary 3.8.

DKL[p‖q] ≥ 0

and

DKL[p‖q] = 0 ⇐⇒ p = q

Proof. Jensen’s inequality [BV04] states

f(E[X]) ≤ E[f(X)]

for a convex function f defined on a random variable X.

As − log(·) is a convex function, we have,

− log(E[g(X)]) ≤ E[− log(g(X))] (3.7)

where g(·) is a function from X to positive real numbers, i.e., g : X → <+.

Define g(x) = q(x)
p(x)

for all x ∈ X following probability distribution p(x),

by Equation 3.7,

DKL[p‖q] = Ep[log
p(X)

q(X)
]

=
∑
x∈X

p(x) log
p(x)

q(x)

=
∑
x∈X

p(x)− log
q(x)

p(x)

≥ − log
∑
x∈X

p(x)
q(x)

p(x)

= − log 1

= 0
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In general, KL divergence is not symmetric and does not satisfy the tri-

angle inequality. Nevertheless, it is still regarded as a “distance” between

two probability distributions.

Mutual Information

Definition 3.9. Consider two random variables X and Y with a joint proba-

bility mass function p(x, y) and marginal probability mass functions p(x) and

p(y). The mutual information I(X;Y ) is the relative entropy between the

joint distribution and the product distribution p(x)p(y), i.e.,

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(3.8)

Corollary 3.10.

I(X;Y ) = H(X)−H(X|Y )

Proof.

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x|y)

p(x)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x|y)

p(x)

=
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y)−
∑
x∈X

∑
y∈Y

p(x, y) log p(x)

=
∑
y∈Y

∑
x∈X

p(x, y) log p(x|y)−
∑
x∈X

p(x) log p(x)

= −H(X|Y ) +H(X)

where the last equation is given by Equation 3.1 and Equation 3.3.
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I(X ; Y )H(X|Y ) H(Y |X)

H(X) H(Y )
H(X, Y )

Figure 3.1: Relationships among entropy, joint entropy, conditional entropy

and mutual information.

By symmetry, I(X;Y ) = H(Y )−H(Y |X). With Theorem 3.5, the chain

rule theorem, we have I(X;Y ) = H(X) +H(Y )−H(X, Y ).

As shown in Figure 3.1, if the two circles represent H(X) and H(Y )

respectively, the intersection of the two circles then represents the mutual

information I(X, Y ) and the union of the two circles represents the joint

entropy H(X, Y ).

Jensen-Shannon divergence

Since KL divergence is not symmetric, Jensen–Shannon divergence [Lin91]

(JS divergence for short) is developed based on KL divergence as a symmetric

measure between two distribution.

Definition 3.11. The Jensen-Shannon divergence ( JS divergence for short)
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between two probability mass function p(x) and q(x) is defined as

DJS(p, q, π1, π2) = π1 ·DKL[p‖r] + π2 ·DKL[q‖r] (3.9)

where 0 ≤ π1, π2 ≤ 1, π1 + π2 = 1, and

r = π1 · p+ π2 · q

is considered as a distribution between p and q.

When π1 = π2 = 1
2
, DJS(p, q, 1

2
, 1

2
) = DJS(q, p, 1

2
, 1

2
) is a symmetric “dis-

tance” between probability distributions p and q.

Next we will give a brief introduction on the Information Bottleneck

Method method, which is the underlying clustering method that we will be

using throughout the thesis.

3.2 the Information Bottleneck Method

Here we give a very brief introduction to the information bottleneck method.

For readers who wish to check the details of the information bottleneck

method, they may proceed to Slonim’s thesis [Slo03].

As illustrated in Figure 3.2, the information bottleneck method connects

three spaces, X , Y and T . X and Y are known, whereas T can be considered

as a compressed space for X , and T tries to preserve as much information as

X preserves about Y .

The information bottleneck method is an EM -like algorithm that iter-

ates through an E-step and an M-step to an optimal solution for T . In

the E-step, p(Y |T ) is fixed, the information bottleneck method looks for the

optimal p(T |X). While in the M-step, p(T |X) is fixed, the information bot-

tleneck method seeks for the best p(Y |T ). Since we want to minimize I(T ;X)
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X

T

Y

I(T ; X) I(T ; Y )

min max

constant I(X ; Y )

Figure 3.2: The information bottleneck method tries to squeeze as much

information as X about Y, i.e., I(X;Y ), through the bottleneck T , so that

I(T ;Y ) can be as close as I(X;Y )

and maximize I(T ;Y ) at the same time, we use a function L, called as IB

functional to balance these two quantities through a parameter β, i.e.,

L = I(T ;X)− β · I(T ;Y )

In M-step, as p(T |X) is given, the solution maximizes I(T ;Y ) is p(t) =
∑

x∈X p(x)p(t|x)

p(y|t) = 1
p(t)

∑
x∈X p(x, y)p(t|x)

(3.10)

Thus L can be written as a function of p(T |X).

By setting ∂L
∂p(t|x0)

= λ0 ∀ t ∈ T where λ0 is the Lagrange multiplier

associated with x0 ∈ X since
∑

t∈T p(t|x0) = 1, we have

p(t|x) =
p(t)

Z(x, β)
e−β·DKL[p(y|x)‖p(y|t)] (3.11)

where Z(x, β) is the normalization function to ensure
∑

t∈T p(t|x) = 1.

Note that parameter β controls the compression of X . When β = 0,

according to Equation 3.11, p(t|x) is the same for all t. Therefore, every
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x ∈ X will have the identical clustering, which makes all x ∈ X under one

cluster. On the other extreme, if β =∞, every x ∈ X is a assigned into the

nearest t, thus L is minimized when there is one t for each distinct x, which

puts every distinct x ∈ X into an individual cluster.

Given parameter β, the iIB algorithm interates between Equation 3.10

and Equation 3.11, and stops when there is no change in p(T |X).

Unlike k-means clustering controls the compression of the original data

by the number of cluster k, the amount of compression of the iIB clustering

is controled by parameter β here. We shall see how to choose the best β in

Chapter 4.



Chapter 4

Intra-Column Heterogeneity:

The Column Heterogeneity

Measure

Database column is a fundamental unit in database design and manipulation,

which makes column heterogeneity a serious concern in every data manage-

ment application. Textbook database design teaches that it is desirable for a

database column to be homogeneous, i.e., all values in a column should be of

the same “type”. If a database column contains several different types of val-

ues, each type should be represented in separate columns. Such heterogeneity

of values within the same column is called intra-column heterogeneity. We

say a column is homogeneous if it contains homogeneous values. For exam-

ple, the column in Table 4.1(a) contains only email addresses and is quite

homogeneous, even though there appears to be a wide diversity in the actual

set of values present. Such homogeneity of database column values has ob-

vious advantages, including simplicity of application-level code that accesses

and modifies the database.

35
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CUSTOMER ID CUSTOMER ID

lkjkjjk@321.zzz.info lkjkjjk@321.zzz.info

h8742@yyy.com h8742@yyy.com

kkjj+@haha.org kkjj+@haha.org

qwerty@keyboard.us qwerty@keyboard.us

555-1212@fax.in 555-1212@fax.in

alpha@beta.ga (908)-555.1234

john.smith@noname.org 973-360-0000

jane.doe@1973law.us 360-0007

gwb.dc@universe.gov 8005551212

jamesbond.007@action.com (877)-807-4596

(a) (b)

CUSTOMER ID CUSTOMER ID

lkjkjjk@321.zzz.info 123-45-6789

h8742@yui.com 135-79-2468

kkjj+@haha.org 159-24-6837

qwerty@keyboard.us 789-12-3456

555-1212@fax.in 987-65-4321

alpha@beta.ga (908)-555.1234

john.smith@noname.org 973-360-0000

jane.doe@1973law.us 360-0007

gwb.dc@universe.gov 8005551212

8778074596 (877)-807-4596

(c) (d)

Table 4.1: Example homogeneous and heterogeneous columns.
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In practice, operational databases evolve over time to contain a great deal

of “heterogeneity” in database column values. Often, this is a consequence

of large scale data integration efforts that seek to preserve the “structure” of

the original databases in the integrated database, to avoid having to make

extensive changes to legacy application level code. For example, one applica-

tion might use email addresses as a unique customer identifier, while another

might use phone numbers for the same purpose. When their databases are

integrated into a common database, it is feasible that the CUSTOMER ID col-

umn contains both email addresses and phone numbers, both represented as

strings, as illustrated in Table 4.1(b). A third independently developed appli-

cation that used, say, social security numbers as a customer identifier might

then add such values to the CUSTOMER ID column, and when its database is in-

tegrated into the common database. As another example, two different inven-

tory applications might maintain machine domain names (e.g., abc.def.com)

and IP addresses (e.g., 105.205.105.205) in the same MACHINE ID column for

the equivalent task of identifying machines connected to the network. While

these examples may appear “natural” since all of these different types of

values have the same function, namely, to serve as a customer identifier or

a machine identifier, potential data quality problems can arise in databases

that are accessed and modified by legacy applications that are unaware of

the heterogeneity of values in the column.

For example, an application that assumes that the CUSTOMER ID column

contains only phone numbers might choose to “normalize” column values by

removing all special characters (e.g., ‘-’, ‘.’) from the value, and writing it

back into the database. While such a transformation is appropriate for phone

numbers, it would clearly mangle the email addresses represented in the col-

umn and can severely degrade common business practices. For instance, the
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unanticipated transformation of email addresses in the CUSTOMER ID column

(e.g., “john.smith@noname.org” to “johnsmith@nonameorg”) may mean

that a large number of customers are no longer reachable.

Locating poor quality data in large operational databases is a non-trivial

task, especially since the problems may not be due to the data alone, but also

due to the interactions between the data and the multitude of applications

that access this data (as the previous example illustrates). Identifying hetero-

geneous database columns becomes important in such a scenario, permitting

data quality analysts to then focus on understanding the interactions of ap-

plications with data in such columns, rather than having to simultaneously

deal with the tens of thousands of columns in today’s complex operational

databases. If an analyst determines that a problem exists, remedial actions

can include:

• Modification of the applications to explicitly check for the type of data

(phone numbers, email addresses, etc.) assumed to exist in the table,

or

• A horizontal splitting of the table to force homogeneity, along with a

simpler modification of the applications accessing this table to access

and update the newly created tables instead.

We next identify desiderata that a column heterogeneity measure should

intuitively satisfy, followed by a discussion of techniques to quantify column

heterogeneity that meet these desiderata.
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4.1 Heterogeneity: Desiderata

Consider the example shown in Table 4.1. This illustrates many of the issues

that need to be considered when coming up with a suitable measure for

column heterogeneity.

Number of Semantic Types: Many semantically different types of val-

ues (email addresses, phone numbers, social security numbers, circuit iden-

tifiers, IP addresses, machine domain names, customer names, etc.) may be

represented as strings in a column, with no a priori characterization of the

possible semantic types present.

Intuitively, the more semantically different the types of values there are in

a database column, the greater the heterogeneity should be; thus, heterogene-

ity is better modeled as a numerical value rather than a Boolean (yes/no).

For example, we can be confident that a column with both email addresses

and phone numbers (e.g., Table 4.1(b)) is more heterogeneous than one with

only email addresses (e.g., Table 4.1(a)) or only phone numbers.

Distribution of Semantic Types: The semantically different types of

values in a database column may occur with different frequencies.

Intuitively, the relative distribution of the semantically different types of

values in a column should impact its heterogeneity. For example, we can be

confident that a column with many email addresses and many phone numbers

(e.g., Table 4.1(b)) is more heterogeneous than a column that has mainly

email addresses with just a few outlier phone numbers (e.g., Table 4.1(c)).

Distinguishability of Semantic Types: Semantically different types

of values may overlap (e.g., social security numbers and phone numbers) or

be easily distinguished (e.g., email addresses and phone numbers).
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Intuitively, with no a prior characterization of the set of possible seman-

tic types present in a column, we cannot always be sure that a column is

heterogeneous, and our heterogeneity measure should conservatively reflect

this possibility.

The more easily distinguished are the semantically different types of val-

ues in a column, the greater should be its heterogeneity. For example, a

column with roughly equal numbers of email addresses and phone numbers

(e.g., Table 4.1(b)) can be said to be more heterogeneous than a column with

roughly equal numbers of phone numbers and social security numbers (e.g.,

Table 4.1(d)), due to the greater similarity between the values (and hence

the possibility of being of the same unknown semantic type) in the latter

case.

4.1.1 Semantic Types and Syntactic Types

In reality, semantics are the interpretations in one’s mind, which are difficult

to capture. Once they are materialized to any form of representations, e.g.,

words, speeches, or pictures, the semantics may have changed as the inter-

pretations of the readers may be different from the original interpretations

of the writer, who materialize the semantics to the representations.

In contrast to semantic types, types of representation are termed as syn-

tactic types. For example, there are two syntactic types in Table 4.1(b),

each representing one semantic type, email addresses and phone numbers.

We have a correspondence between syntactic types and semantic types here.

However, this is not true in all cases. There are cases where one se-

mantic type is associated to several syntactic types. For instance, the 20th

day of June 2006 can be written as “06/20/2006” (American), “20/06/2006”

(British) or “2006-06-20” (Chinese). Each representation is a distinct syn-
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tactic type, but they are of the same semantic type. The reciprocal is also

true, i.e., one syntactic type can be interpreted as different semantic types.

For example, phone numbers and fax numbers are of the same syntactic type,

but they are semantically different. Even for one particular value, semantics

can be different, depending on individuals’ interpretation. Take “TT” for ex-

ample, it means a crying emoticon in an on-line chatting environment, and

it also means one of the car models made by manufacturer Audi. This is the

intrinsic factor of semantics, that the semantics only make sense with human

beings’ interpretations.

Capturing the semantics of one individual value is difficult, however, when

values are grouped together, it is easier to identify their semantics, provided

that those values are assumed to be semantically homogeneous. The semantic

types can be inferred from the syntactic types. We will come back to semantic

types in Chapter 6, we now focus on syntactic types of values in database

columns, as the identification of syntactic types is the prerequisite of the

identification of semantic types. Our column heterogeneity thus refers to the

heterogeneity of syntactic types in a column.

4.2 Quantifying Column Heterogeneity

Given the desiderata outlined above, we now present a step-wise development

of our approach to quantify database column heterogeneity.

A first approach to obtaining a heterogeneity measure is to use a hard

clustering. By partitioning values in a database column into clusters, we can

get a sense of the number of different syntactic types of values in the data.

However, merely counting the number of clusters does not suffice to quantify

heterogeneity. Two additional issues, as outlined above, make the problem
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challenging: the relative sizes of the clusters and their distinguishability. A

few phone numbers in a large collection of email addresses (e.g., Table 4.1(c))

may look like a distinct cluster, but should not impact the heterogeneity of

the column as much as having a significant number of phone numbers with

the same collection of email addresses (e.g., Table 4.1(b)). Again, a social

security number (see the first few values in Table 4.1(d)) may look similar to

a phone number, and we would like the heterogeneity measure to reflect this

overlap of sets of values, as well as be able to capture the idea that certain

data might yield clusters that are close to each other, and other data might

yield clusters that are far apart.

To take into account the relative sizes of the multiple clusters, cluster en-

tropy is a better measure for quantifying heterogeneity of data in a database

column than merely counting the number of clusters. Cluster entropy is

computed by assigning a “probability” to each cluster equal to the fraction

of the data values it contains, and computing the entropy of the resulting

distribution [CT06b].

Consider a hard clustering T = {t1, t2, . . . , tk} of a set of n values in X ,

where T is a partition on X , i.e., for each xi ∈ X , there is one and only one tj

that xi belongs to. Each cluster tj has nj values, where n1 +n2 + . . .+nk = n.

We denote pj =
nj

n
as the fraction of the data values cluster tj contains. Then

the cluster entropy of the hard clustering T is the entropy of the cluster size

distribution, defined as

H(T ) = −
k∑
j=1

pj log(pj)

By using cluster entropy, the mixture of email addresses and phone numbers

in column Table 4.1(b) is −1
2

log 1
2
− 1

2
log 1

2
= 1, while the mixture in column

Table 4.1(b) is − 9
10

log 9
10
− 1

10
log 1

10
= 0.469, which is lower than the value
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of heterogeneity in Table 4.1(b). This matches the intuition as Table 4.1(c)

is less heterogeneous as it consists of mainly email addresses.

The cluster entropy of a hard clustering does not effectively take into ac-

count distinguishability of syntactic types in a column. For example, given

a column with an equal number of phone numbers and social security num-

bers (e.g., Table 4.1(d)), hard clustering could either determine the column

to have one cluster (in which case its cluster entropy would be 0, which is

the same as that of a column with just phone numbers) or have two equal

sized clusters (in which case its cluster entropy would be log 2, which is the

same as that of a column with equal numbers of phone numbers and email

addresses as in Table 4.1(b)). Intuitively, however, the heterogeneity of such

a column should be somewhere in between these two extremes to capture the

uncertainty in assigning values to clusters due to the syntactic similarity of

values. Soft clustering has the potential to address this problem; each data

value in soft clustering has the flexibility of assigning a probability distribu-

tion for its cluster membership, instead of belonging to a single cluster, as in

hard clustering. Heterogeneity can now be combined from the two concepts:

the cluster entropy and the soft clustering.

Therefore, we propose a measure of database column heterogeneity, namely,

Heterogeneity

= the “cluster entropy” of a soft clustering of the data

The discussion about the “cluster entropy” of a soft clustering will be left

to later sections.

In Section 4.1, we gave a brief introduction on column heterogeneity and

the desiderata that a column heterogeneity measure should intuitively satisfy.

We also discussed how the column heterogeneity should be quantified and

claimed that the column heterogeneity is the “cluster entropy” of a soft
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clustering of the data.

In the next sections, we will go into the details of column heterogeneity

measure by first claiming that the “cluster entropy” of a soft clustering is

actually a quantity called mutual information. As the heterogeneity measure

relies on a soft cluster, we will then discuss how soft clustering is chosen.

Lastly, some technical details will be given, followed by a series of experiments

to verify the correctness of our column heterogeneity measure.

4.3 Mutual Information: the Column Het-

erogeneity

We first give the definition of Mutual Information here.

Let T = {t1, t2, . . . , tk} be a soft clustering of a data set X = {x1, x2, . . . , xn},
each xi is associated with probability p(xi) where

∑n
i=1 p(xi) = 1. Fur-

ther, let p(tj|xi) be the posterior probability of xi belonging to tj where∑k
j=1 p(tj|xi) = 1, and p(tj) =

∑n
i=1 p(xi, tj) is the marginal probability over

X for all 1 ≤ j ≤ k. Using conditional probabilities, p(xi, tj) = p(xi)·p(tj|xi),
we have p(tj) =

∑n
i=1 p(xi)·p(tj|xi) for all 1 ≤ j ≤ k, the Mutual Information

is then defined as

I(X , T ) =
n∑
i=1

k∑
j=1

p(xi, tj) log
p(xi, tj)

p(xi) · p(tj)

=
n∑
i=1

k∑
j=1

p(xi)p(tj|xi) log
p(tj|xi)
p(tj)

=
n∑
i=1

p(xi)
k∑
j=1

p(tj|xi) log
p(tj|xi)
p(tj)

Recall that the Kullback–Leibler divergence (KL divergence) from proba-
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bility distribution q to probability distribution p

DKL[p‖q] =
∑
x

p(x) log
p(x)

q(x)

Therefore, the Mutual Information is

I(X , T ) =
n∑
i=1

p(xi)
k∑
j=1

p(tj|xi) log
p(tj|xi)
p(tj)

=
n∑
i=1

p(xi)DKL[p(t|xi)‖p(t)]

= Ex{DKL[p(t|x)‖p(t)]}

From the equation above, the mutual information can be understood as

the expected KL divergence from p(t|x) to p(t). In hard clustering, p(t|x)

has only one element being one with the rest being zero for all x. Thus

DKL[p(t|x)‖p(t)] = log 1
p(t0)

, where t0 is the cluster such that p(t0|x) = 1.

Ex{DKL[p(t|x)‖p(t)]} =
∑
x

p(x) log
1

p(t0)

=
∑
t

∑
x∈t

p(x) log
1

p(t)

=
∑
t

p(t) log
1

p(t)

= H(T )

From the equation above, we see that mutual information is a generaliza-

tion of cluster entropy in the soft clustering case.

We can now restate our heterogeneity measure as

Heterogeneity

= the mutual information between a soft clustering and the data

The mutual information depends on the choice of the soft clustering, in

the next section, we will discuss how we choose the soft clustering.
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4.3.1 A Canonical Soft Clustering

There are numerous methods for performing soft clusterings. Perhaps the

most well known among them is the class of methods known as expectation-

maximization, or EM [DLR77]. EM returns a probabilistic assignment of

points to clusters. The main problem with this method (and others like it) is

that they require the user to fix k, the number of clusters, in advance. One

can circumvent this problem by finding the “right” value of k using model

checking criteria like AIC [Aka74], BIC [Sch78] and others, but these are all

based on assumptions about the distributions the data is drawn from, using

maximum likelihood methods to estimate the “most likely” value of k.

A different approach is to use the idea of rate-distortion from information

theory [CT06b]. There are two parameters that constrain any clustering

method. The first is representation complexity R, or how much compression

one can achieve by clustering. Let T be a compressed representation of X , a

standard measure for R from information theory is the rate of coding when

compressing X to T . Formally, R is the mutual information between the

data X and the compressed representations (clusters) T , i.e., R = I(T ;X).

A detailed explanation of quantity R is beyond the scope of this thesis,

readers may refer to any information theory book, e.g. [CT06b].

The second is the quality Q, or how accurately the clustering reflects the

original data. Often, it is more convenient to think of the error E, which is

typically some constant minus Q. The error E is measured by the distortion

of representing X using T , i.e., the average distance to the cluster centers
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over all clusters.

E = 〈d(xi, tj)〉p(xi,tj)

=
n∑
i=1

k∑
j=1

p(xi, tj)d(xi, tj)

=
n∑
i=1

k∑
j=1

p(xi)p(tj|xi)d(xi, tj) (4.1)

For any fixed level of compression (this is analogous to fixing k), one can

determine the best quality representation, and for any fixed quality level,

one can determine the best compression possible. There exists a trade-off

between compression R and quality Q. Low value of R implies more compact

representations. For example, when R = 0, X and T are independent, i.e.,

knowing about T does not give any information about knowing X, thus we

can consider a clustering T with R = I(T ;X) as all x ∈ X are clustered into

one single cluster, which gives the worst quality since every x is treated the

same.

On the other extreme, when R = I(T ;X) ≤ H(X) reaches the maximum

H(X), each x ∈ X is placed in separate clusters of its own. In this case, there

is no distortion (best possible quality), as d(xi, tj) = 0 for all p(tj|xi) = 1. In

rate-distortion theory, compression R and quality Q are parameterized by a

single Lagrange parameter β, so that the two quantity R and Q are balanced

by

F(β) = R− β ·Q (4.2)

through β.

For each choice β, there exists a soft clustering which gives the optimal

solution with respect to function F . The soft clustering then corresponds to

a point whose x-coordinate and y-coordinate represent the compression Rβ



Chapter 4: The Column Heterogeneity Measure 48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

I(
T

;Y
)/

I(
X

;Y
)

I(T;X)/H(X)

Rate-Distortion Curve

K=10
K=20
K=30
K=40
K=50
K=75

K=100
K=150
K=200
K=250
K=300

Diagonal

Figure 4.1: Rate-Distortion curve for a mixture of make values and model

values from table autosforsale-2. Note that the trade-offs achieved are

better than those achieved by fixing K, the number of clusters, to any specific

value.

and the quality Qβ respectively. By changing β, the point (Rβ, Qβ) moves

along a concave curve known as the rate-distortion curve (see Figure 4.1).

Choosing β = 0 implies that quality does not matter, the only objective

is to minimize R. Thus the optimal clustering is the one that all x ∈ X
are in the same cluster. This clustering makes both R and Q zero, thus

corresponds to the origin of the rate-distortion graph, with x-axis and y-axis

being compression and quality respectively. Letting β go to ∞ is equivalent

to making compression irrelevant; maximizing Q is the sole objective. In this

case, each x ∈ X forms an individual cluster (this is the top right point of

the curve). Note that the slope of the curve at any point is 1
β
.



Chapter 4: The Column Heterogeneity Measure 49

It is important to note that each point on the rate distortion curve is a soft

clustering that uses as many clusters as needed to obtain the optimal value

of the rate distortion functional F(β), for the corresponding value of β. Any

fixed choice of the number of clusters to use will ultimately be suboptimal,

as the data separates into more and more clusters. As shown in Figure 4.1,

each curve is obtained by the compression and quality values achieved by

soft clusterings with different β using a fixed number K of clusters. For each

such number K, there is a point at which the corresponding curve separates

from the rate-distortion curve, and proceeds along a suboptimal path (less

compression, lower quality). As it is not possible to supply infinite number

of clusters, the envelope curve of all curves determined by different K is the

optimal rate-distortion curve.

The choice of a soft clustering is thus made by choosing β. Normalizing

the x-coordinate and y-coordinate by the maximum value of R and Q, the

rate-distortion curve goes from (0, 0) to (1, 1). We choose the point of di-

minishing returns ; namely the point at which the slope of the curve is one.

The reason for our choice is two-fold. First, the point of diminishing returns,

because it has unit slope, is the point after which the benefits of increased

quality do not pay for the increasing amount of compression needed for the

representation. Second, this point is the closest point to the (0, 1) point,

which is the point representing perfect quality with no compression space

penalty.

In the next section, we will further quantify compression and quality with

respect to the information bottleneck method.
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4.3.2 The Information Bottleneck Method

Our proposed choice of β is quite general, and is independent of both the

distance function used, and any distributional assumption. To perform the

clustering though, we must fix a representation for the data, and an ap-

propriate distance function. As pointed out by Banerjee et al. [BMDG05],

choosing any Bregman distance yields a meaningful rate-distortion frame-

work, and thus the choice of distance depends on the data representation

used.

Choosing `22 as the distance function yields an EM-like method, which

would be appropriate for vector data. Our data are strings, which we choose

to represent as q-gram distributions. A q-gram of a string s is any sub-

string of s of length exactly q. For example, the set of 1-grams of a string is

the multi-set of all the letters in the string. A natural distributional model

for string data is a multinomial distribution (for example, the naive Bayes

method), and the corresponding Bregman distance is the Kullback-Leibler

distance. Using this measure yields a familiar formulation; the information

bottleneck method of Tishby, Pereira and Bialek [TPB99, Slo03].

In [Slo03], each x ∈ X is represented as a probability distribution in

the space of Y , i.e., (p(y1|xi), p(y2|xi), . . . , p(yd|xi)) for each xi ∈ X , where

d = |Y|. In our problem, Y is chosen to be the space of q-grams, which are

strings of length not more than q. In general, q is small and q-grams are the

basic elements composing longer strings.

The information bottleneck method takes Y and T as conditionally in-

dependent given X . Given the cluster distribution p(tj|xi) : 1 ≤ i ≤
n, 1 ≤ j ≤ k, and the representation of x ∈ X in the space of Y , i.e.,



Chapter 4: The Column Heterogeneity Measure 51

p(yl|xi) : 1 ≤ i ≤ n, 1 ≤ l ≤ d,

p(tj) =
n∑
i=1

p(xi, tj)

=
n∑
i=1

p(xi) · p(tj|xi) (4.3)

p(yl|tj) =
n∑
i=1

p(xi, yl, tj)

p(tj)

=
1

p(tj)

n∑
i=1

p(xi) · p(yl|xi) · p(tj|xi) (4.4)

With the above definition of p(yl|tj), we have both x ∈ X and t ∈ T expressed

as probabilistic distributions in the space of Y . So the distance from xi to tj in

Equation 4.1 is defined by the KL divergence from p(y1|xi), p(y2|xi), . . . , p(yd|xi))
to p(y1|tj), p(y2|tj), . . . , p(yd|tj)). Therefore, the distortion defined in Equa-

tion 4.1 is quantified by

〈d(xi, tj)〉p(xi,tj) + I(T ;Y )

=
n∑
i=1

k∑
j=1

p(xi)p(tj|xi)DKL[p(y|xi)‖p(y|tj)]

+
k∑
j=1

l∑
l=1

p(tj, yl) log
p(tj, yl)

p(tj)p(yl)

=
n∑
i=1

k∑
j=1

d∑
l=1

p(xi, tj)p(yl|xi) log
p(yl|xi)
p(yl|tj)

+
n∑
i=1

k∑
j=1

l∑
l=1

p(xi, tj, yl) log
p(yl|tj)
p(yl)

=
n∑
i=1

k∑
j=1

l∑
l=1

p(xi, tj, yl)[log
p(yl|xi)
p(yl|tj) + log

p(yl|tj)
p(yl)

]

=
n∑
i=1

d∑
l=1

p(xi, yl) log
p(yl|xi)
p(yl)

= I(X;Y )
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Hence, the error E is expressed by I(X;Y )−I(T ;Y ), and by Equation 4.2,

F(β) = I(T ;X)+βI(X;Y )−βI(T ;Y ). This also implies quality Q is upper

bounded by I(X;Y ), while compression R is upper bounded by H(X) since

I(T ;X) = H(X) − H(X|T ) ≤ H(X). The normalized x-coordinate and

y-coordinate of a point on the rate-distortion curve are given by I(T ;X)
H(X)

and

I(T ;Y )
I(X;Y )

respectively, where T is the soft clustering corresponding to the point

with a given β. Therefore, the choice of β that yields the point of unit slope

on the normalized rate-distortion curve is given by β∗ = H(X)
I(X;Y )

, i.e., β∗ gives

the point of diminishing returns, proposed in section 4.3.1.

Next, we use the iIB algorithm [Slo03] to compute the soft clustering

with the β∗ calculated from the data.

4.3.3 Estimating Heterogeneity

Once we compute a soft clustering using the method described above, we

need to estimate its heterogeneity. The central idea of this chapter is that

the entropy of a soft clustering is a good measure of data heterogeneity.

However, cluster entropy is defined only for a hard clustering. Since we

know that any hard clustering can be expressed in terms of probabilistic

cluster assignments using only zero and one for probabilities, (and uniform

priors on the elements x), we would like the measure that we propose to tend

towards (hard clustering) cluster entropy in this limiting case.

Using Cluster Marginals

The first approach that comes to mind is to determine the marginals p(tj) =∑n
x=1 p(xi)p(tj|xi). Our measure is then the entropy of the resulting distribu-

tion. Clearly, if all assignments are 0-1 and p(x) = 1
n
, p(tj) =

|{xi|p(tj |xi)=1}|
n

,

and this reduces to H(T ). However, by aggregating the individual cluster
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membership probabilities, we have lost crucial information about the data.

Consider two different soft clusterings of two points x1, x2 into two clusters

t1, t2. In the first clustering, p(t1|x1) = 0.9, p(t1|x2) = 0.1. In the second clus-

tering, p(t1|x1) = p(t1|x2) = 0.5. Both clusterings yield the same marginal

p(t) and thus would have the same cluster entropy using the proposed mea-

sure. However, it is clear that in the first clustering, x1 is essentially in t1

and x2 is essentially in t2 (0.9 can be replaced by any number 1− ε for this

purpose), and so the cluster entropy should be close to log 2. In the second

clustering, however, t1 and t2 are indistinguishable, which means that there

is effectively only one cluster, with a cluster entropy of zero.

Two issues are illuminated by this example. First, aggregating cluster

probabilities is not an appropriate equivalent of cluster entropy. Second, the

number of clusters in a soft clustering is an irrelevant parameter. This is

because two clusters having identical cluster membership probabilities will

be collapsed (intuitively because they are indistinguishable from each other).

Note that the membership probabilities p(t|x) for a point x do not have to

be identical for this to happen.

Using Superpositions of Hard Clusterings

The second approach we might take is to view the probabilistic assignments

as the convex superposition of different hard clusterings. In this view, the

assignments reflect the superposition of different “worlds”, each with its own

hard clustering. In this case, our strategy is clear; we assign each point to

a cluster using the distribution p(t|x), and compute the cluster entropy of

the resulting hard clustering. Doing this repeatedly and taking an aggregate

(mean or median) gives us an estimate. Note that this approach will yield

H(T ), as desired, when applied to a single hard clustering, because each
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point is always assigned to a specific cluster.

However, the second approach in the above example outlines a problem

with this strategy. If a set of points have identical cluster memberships in a

set of clusters, then in any particular sample, the points might be distributed

among many clusters, rather than all being placed together as they should.

For example, in some samples, x1 might be placed in t1, and x2 might be

placed in t2, and in others, they might be placed together. To address this

problem, we have to merge clusters that have similar cluster membership

probabilities, using a threshold parameter and some appropriate merging

strategy.

The result of doing this, for multiple data sets and over the range of values

for β, is referred to as sampled cluster entropy and is shown in Figure 4.2.

In the figure, the x-axis represents β/β∗.

Observe that for all data sets, this measure exhibits a clear minimum

around β = β∗. It turns out that the relative ordering of the heterogeneity

values at this value of β correctly reflects the underlying heterogeneity in the

data.

The above measure appears quite suitable as a measure of heterogeneity.

However, computing it requires at least two parameters; the threshold pa-

rameter that decides when the clusters are merged, and a parameter deciding

the number of samples required to get an accurate estimate. In the absence

of a rigorous theoretical analysis, the choice of values for these parameters

will inevitably need to be determined experimentally.

Using Mutual Information I(T ;X)

A more compact solution exploits the relationship betweenH(T ) and I(T ;X).

Rate-distortion theory tells us that I(T ;X) is a measure of compression
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Figure 4.2: Sampled cluster entropy of the mixture from columns mileage,

model and price in table autosforsale-2 as a function of β/β∗ on a log-

scale.

complexity; it is not hard to see that if the assignments p(t|x) are 0-1,

H(T |X) = p(xi)[−
∑k

j=1 p(tj|xi) log p(tj|xi)] = 0, then

I(T ;X) = H(T )−H(T |X) = H(T )

Thus, the measure of heterogeneity (and of cluster entropy for a soft cluster-

ing) we propose is I(T ;X).

A brief illustration of this idea is presented in Figure 4.3. For each value of

β and for multiple data sets, we plot I(T ;X) for the soft clusterings obtained

using iIB. On the x-axis, we plot β relative to the chosen value β∗ = H(X)
I(X;Y )

.

As β increases from zero, there is a sharp increase in I(T ;X) as β approach

β∗. This increase occurs for all the data sets, and in roughly the same place.
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Figure 4.3: I(T ;X) of the mixture from columns mileage, model and price

in table autosforsale-2 as a function of β/β∗ on a log-scale.

The measure of heterogeneity of a data set is then the value of I(T ;X)

at the point β = β∗ (i.e at β/β∗ = 1 on the graph). As we shall see experi-

mentally in Section 4.5, this measure of heterogeneity correctly predicts the

true underlying heterogeneity in the data.

I(T ;X) increases monotonically; sampled cluster entropy as described

above exhibits a series of (increasing) local minima. It is interesting, and an

indication of the robustness of our proposed choice of β, that both measures,

while approaching the problem of heterogeneity differently, display the same

properties: namely, a sharp change close to β = β∗, and a correct ordering

of data sets with respect to their true underlying heterogeneity at this point.

We can now summarize the entire algorithm in Algorithm 1.
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Algorithm 1 Computing Heterogeneity.

1: Convert input strings to distribution of q-grams

2: Compute the weight for each q-gram

3: Compute the weighted probabilistic vector p(Y |x) in the space of q-grams

for each value x

4: Add the background if necessary

5: Compute β∗ = H(X)
I(X;Y )

6: Compute soft clustering using iIB with β set to β∗

7: Estimate the heterogeneity by computing I(T ;X)

Given our choice of I(T ;X) as the preferred measure of heterogeneity and

the cluster entropy of a soft clustering, when we refer to cluster entropy in

the rest of this chapter, we mean I(T ;X), unless otherwise indicated.

4.4 Methodology

The previous sections described our general framework for quantifying col-

umn heterogeneity. We now present an instantiation of our framework based

on the representation of string data using a multinomial distribution of q-

grams, and the details of our algorithm implementation. The input to the

algorithm consists of a column of data, viewed as a set of strings X.

4.4.1 Preparing The Data

Weighted q-gram Vectors

We treat all data as strings, regardless of content. We represent strings

using q-gram distributions. For each string, we extract all its q-grams, and

construct a histogram, with the entry for each q-gram recording its frequency.
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Using a large value of q seemingly allows us to capture more sophisti-

cated patterns in the data; however, since the number of potential q-grams

(the number of “dimensions”) grows exponentially with q, the effect of these

(fewer number of) q-grams is muted. Algorithms that manipulate these rep-

resentations will also perform much worse as q increases. We have discovered

in our experiments that setting q = 2 provides a good balance between the

efficiency of the computation and the accuracy of the results. Therefore, we

construct 1− and 2−grams for all strings.

Let the set of q-grams be Y . For each q-gram y, let f(x, y) be the number

of occurrences of y in x, and let p(y) be the fraction of strings containing

y. We construct a matrix S whose rows are the strings of X and whose

columns are q-grams, and the entrymxy = f(x,y)·w(y)
Z

, where Z is a normalizing

constant so that the sum of all entries in M is 1, and

w(y) = H(p(y)) = −p(y) log p(y)− (1− p(y)) log(1− p(y))

Note that setting w(y) = − log(y) would yield the standard IDF weighting

scheme.

In information retrieval, where q-gram representations are most prevalent,

individual terms are weighted based on measures like term frequency (t.f) and

inverse document frequency (i.d.f.). The primary purpose of information

retrieval systems is search, and so rare terms (having a large i.d.f.) are

important to reduce the size of search results.

Note that standard IDF weighting is not appropriate for our application.

IDF weighting was designed to aid in document retrieval, and captures the

idea of “specificity”, that a few key phrases could be very useful at identifying

relevant documents. IDF weighting captures this by over-weighting terms

with low relative occurrence.

However, for heterogeneity testing, specificity means that certain rare
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terms occur only in a few strings. We are not concerned with such outliers,

and IDF weighting will only give such strings artificially high importance.

Rather, robust heterogeneity testing requires us to to identify terms that

distinguish large sets of data from each other; the entropy weighting scheme

captures this as it is maximized when p = 0.5, and decays symmetrically in

either direction.

Adding Background Context

Any clustering makes sense within a context; a high concentration of points in

a small range is significant only if viewed against a relatively sparse, larger

background. For example, the collection of strings in Table 4.1(a) form a

cluster only with respect to the set of all strings. If the background for this

data is only the set of email addresses, then this set has no apparent unusual

properties.

For heterogeneity testing, an appropriate background is the space of all

strings. This needs to be introduced into each data set in order to define

the “bounding volume” of the space. As we represent data as distributions,

the background consists of random distributions, chosen from the space of all

distributions. These are added to the data before soft clustering is performed,

and are then removed1.

It is well known that the uniform distribution over the d-dimensional

simplex is a Dirichlet distribution, and thus a uniform sample from this space

is obtained by the following a simple procedure. Sample d points x1, x2, . . . xd

from an exponential distribution with parameter 1, and normalize the values

by dividing each by
∑d

i=1 xi. The resulting d-vector is a uniform sample from

1This is reminiscent of the subtractive dithering used in signal processing to improve

quantization.
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Figure 4.4: A flowchart for heterogeneity estimation.

the simplex [Dev86]. A uniform sample from an exponential distribution is

computed by sampling r uniformly in [0 . . . 1) and returning the value ln(1/r).

To generate the background, we use a set of q-grams disjoint from the

q-grams in Y , of the same cardinality as Y . Using the above procedure, we

generate |X| points, yielding a matrix N that is then normalized so all entries

sum to 1. Both S and N have dimension |X| × |Y |.
We fix a parameter 0 < λ < 1 (the mixing ratio) that controls the mixture

of data and background context. The final joint density matrix M is of

dimension 2|X| × 2|Y |, containing λS as its first |X| rows and |Y | columns

and (1 − λ)N as its last |X| rows and |Y | columns. Note that M is a valid

joint distribution since its entries sum to 1. We will use notation and refer

to the rows of M as X and the columns as Y in what follows.

4.4.2 Computing β∗ And Clustering the Data

In Section 4.3.2, we derived an expression for the value of β corresponding to

the point on the rate-distortion curve that balanced error and compression.

This value of β is given by β∗ = H(X)
I(X;Y )

. We compute this from the matrix

M , using only the data rows and columns. We use the standard empirical

estimator for entropy (which treats the normalized counts as fractions).

Given M and β∗, we now run the iIB algorithm [Slo03] for computing the

information bottleneck. This algorithm is a generalization of the standard

expectation-maximization method. Although the algorithm generates a soft
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clustering, it requires as input a target set of clusters (not all of which may

be used in the output). We specify a very large number of clusters (|X|/2).

Empirically, we see that this is sufficient to find a point on the rate distortion

curve. We emphasize here that we do not need to fix a number of clusters in

advance; the number of clusters that we supply to iIB is merely an artifact of

the implementation and only needs to be a very loose upper bound. It only

affects the running time of the algorithm, and not the final heterogeneity

measure computed.

The output of this algorithm is a soft clustering T , specified as the condi-

tional probabilities p(t|x), from which the cluster masses p(t) and the cluster

centers p(y|t) can be derived using Bayes’ Theorem and the conditional inde-

pendence of T and Y given X, as defined in Equation 4.3 and Equation 4.4.

We depict the algorithm in Figure 4.4, paralleling the steps of algorithm 1.

4.5 Experiments

4.5.1 Datasets Description

IBM Many Eyes Dataset

The main set of data is obtained from IBM Many Eyes2, by IBM Research

and the IBM Cognos software group. As any user in the world is allowed to

upload their data, Many Eyes thus have many heterogeneous tables of differ-

ent schemas, and becomes a good dataset for us to study on. We downloaded

more than 47,000 tables, from which, we selected those relevant to automo-

biles, e.g., records about car models, sales of cars, fuel economy statistics,

carbon dioxide emissions. Out of these tables, we removed those without

2http://www-958.ibm.com/software/data/cognos/manyeyes/
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significant number of rows, and has a result of 100 tables. These 100 tables

contribute 1219 columns and approximately 1 million values (989 thousand)

in total. For all the experiments in this thesis, we will use the selected

columns from Many Eyes dataset to validate.

For this chapter, we artificially mix a few syntactic types from table

autosforsale-2 into one column, so that the controlled heterogeneity is

available to us, to validate the proposed measure of heterogeneity.

4.5.2 Validation of Choice of β∗

The first validation is on the choice of β∗. Figures 4.2 and 4.3 have shown the

effects of sampled cluster entropy and our proposed heterogeneity measure,

I(T ;X), while changing β is a log scale. When β is near to β∗, the sampled

cluster entropy reaches its local minimum, and I(T ;X) shows the clusters

start splitting near β∗, as I(T ;X) ≈ 0 means clusters are identical.

4.5.3 Validation of Heterogeneity Measure

We now demonstrate the value of the cluster entropy I(T ;X) near β∗ =

H(X)
I(X;Y )

.

Figure 4.5 plots I(T ;X) as a function of β
β∗

ranging from 0.95 to 1.05.

The mixture column is mixed with equal proportion from the three columns:

mileage, model and price.

Note there is a clear distinction between the following two groups:

1. 1-mixtures: {mileage}, {model}, {price}, and 2-mixture {mileage,
price}

2. 2-mixtures {mileage, model}, {model, price} and 3-mixture {mileage,
model, price}
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Figure 4.5: The heterogeneity measure of a column mixed from equal amount

of mileage, model and price near β∗

The reason is as follows. Both mileage and price are of the same syn-

tactic type, and in the table autosforsale-2, both are digits with commas

serving as delimiters for every three digits. Therefore, it is not surprising

that mileage and price are of the same syntactic type, and when they are

mixed together, our heterogeneity measure marks the mixture as long as

those 1-mixtures.

However, when either mileage or price is mixed with model, both the

heterogeneity measures increase significantly. This is due to the fact that

model is of a very different syntactic type from either mileage or price.

The curve for the only 3 mixture {mileage, model, price} is actually lower

than the two 2-mixtures with model. This is determined by the proportion

of the two syntactic types, which reflects our requirement for heterogeneity
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Figure 4.6: The heterogeneity measure of a column mixed from mileage,

model and price in the ratio 1:2:1 near β∗

measure to capture the distribution of the types in Section 4.1. As the 2-

mixture {mileage, model} consists of half of the two syntactic types each,

the uncertainty about the syntactic types is more than the uncertainty of the

mixture, where 2
3

of the values are of the same type with the remaining 1
3

of

the other type, which is the case for 3-mixture {mileage, model, price}.
However, if we change the ratio of the mixture columns, for example,

we mix the three types, mileage, model and price in the ratio of 1:2:1,

the heterogeneity measure is maximum for the 3-mixture {mileage, model,

price}, as shown in Figure 4.6, since each syntactic type contributes half.

If we further increase the proportion of mileage in the mixture, as

shown in Figure 4.7, we will have similar cluster entropy for the 2-mixture

{model, price} and the 3-mixture {mileage, model, price} as both are
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Figure 4.7: The heterogeneity measure of a column mixed from mileage,

model and price in the ratio 3:2:1 near β∗

distributed in 1
3

and 2
3
.

4.5.4 Validation of Soft Clustering

The cluster entropy of soft clustering, I(T ;X) appears to capture our intu-

itive notion of heterogeneity. However, it is derived from a soft clustering

returned by the iIB algorithm. Does that soft clustering actually reflect

natural groupings in the data? It turns out that this is indeed the case. In

Figure 4.8, we display bitmaps that visualize the soft clusterings obtained

for different mixtures. In this representation, columns are clusters, rows are

data, and darker probabilities are larger. For each data value, its correspond-

ing row in the bitmap then represents its cluster membership distribution,
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(a) mileage, model

(b) mileage, model, Background

(c) mileage, price

(d) mileage, price, Background

Figure 4.8: The soft clustering of columns mixed by {mileage, model} and

by {mileage, price}

i.e., p(t|x) for each x ∈ X . A collection of data values having the same

cluster membership distributions represents the same cluster. For clarity,

we have reordered the rows so that all data values coming from the same

source are together, and we reordered the columns that have similar p(t|x)

distributions.

The two bitmaps in Figure 4.8(a) and (b) (bitmap (b) has incorporated

with the soft clustering of the background as well) are the soft clustering of

the mixed column from mileage and model from table autosforsale-2. Fig-

ure 4.8(a) and (b) show that the clusters separate out quite cleanly, clearly

displaying the different number of sources in the mixture. Note that this

number is the natural number of cluster iIB achieved, without having to

specify k. However, we do not observe a separation from bitmaps in in Fig-

ure 4.8(c) and (d), as the syntactic types of mileage are similar to that of

price. Thus values from mileage have similar cluster membership distribu-

tions with values from price, reinforcing our observation that they form two
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(a) No Background

(b) With Background (Data only)

(c) With Background

Figure 4.9: The soft clusterings of the column model without and with back-

ground

very close (not well-separated) clusters.

In addition to performing soft clustering and computing cluster entropy,

our algorithm adds in background context to aid in the clustering process.

In the next experiment, we establish the need for this step.

4.5.5 Validation of Background Addition

An important aspect of our algorithm is the addition of a background context,

as discussed in Section 4.4.1. We argued that intuitively, the effect of this

addition is to “expand” the space being clustered, so a set of points that is

highly clustered shows up clearly in contrast to the background. Obviously,

if the background level is too high, any data will get swamped, and if too

low, will be useless.
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(a) No Background

(b) With Background (Data only)

(c) With Background

Figure 4.10: The soft clusterings of the mixture {mileage, model} without

and with background

We further illustrate this effect by Figure 4.9 and Figure 4.10. As pre-

dicted, when a background context is not added, the data spreads over all

clusters in unpredictable ways, as shown in Figure 4.9(a). Adding back-

ground in immediately and predictably collapses the data into a few clusters,

as in Figure 4.9(c). The cluster distributions for the original data values,

Figure 4.9(b), become very homogeneous, showing the data values form one

cluster. As two sets of data with different syntactic types naturally provide

this contrast to each other, the background seems unnecessary, as shown in

Figure 4.10. However, without knowing the syntactic types, adding back-

ground is hence necessary to prevent the above situation.
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4.5.6 Performance

The experiments are carried on a machine with Intel Core 2 Duo CPU at the

speed of 2.53GHz. For each mixture in Table 4.2, we sampled 200 rows, and

presented them using 1-grams or using both 1-grams and 2-grams. We then

added in 200 rows of background with λ = 0.5. The run time for each iIB

iteration is listed in Table 4.2.

Mixture
Time per iIB iteration

1-grams 1-grams and 2-grams

mileage 0.15 0.94

model 0.37 4.82

price 0.16 0.96

mileage, model 0.39 4.98

mileage, price 0.16 0.97

model, price 0.40 5.03

mileage, model, price 0.40 5.05

Table 4.2: Runtime (in seconds) of the different mixtures for each iteration

Mixtures with model took more time for each iteration as the type model

generates more q-grams than the others. We can improve the performance

by retaining only important q-grams, which will be discussed in Chapter 6.

4.6 Summary

In this chapter, we proposed the column heterogeneity measure, as the mu-

tual information between the data values and a particular soft clustering on

their types. This particular soft clustering is computed at an optimal trade-
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off between clustering space and clustering quality. Our technique treats all

data values as weighted vectors of q-grams, and clusters them in a probabilis-

tic space. Background context is added to provide contrast to the clusters,

in order to identify columns with just one type of values.

However, we did not give a solution on how to stop columns from be-

coming more heterogeneous. In the next chapter, we will propose a solution

to prevent forming more heterogeneous columns when multiple columns are

integrated together.



Chapter 5

Inter-column Heterogeneity (I):

Multi-column Heterogeneity

In Chapter 4, we discussed the intra-column heterogeneity, i.e. the hetero-

geneity among values within the same database column. From this chap-

ter onwards, our focus is shifted to heterogeneity across multiple database

columns. Conventional data integration techniques often require columns to

be integrated to be homogeneous, and perform column matching based on the

similarities between such homogeneous columns. However, database columns

are not always homogeneous, thus it is necessary to study whether heteroge-

neous columns can be integrated. On the other hand, some database columns

are not so homogeneous as what a database administrator or an integration

tool thinks. Their decisions may be made by looking at the column names or

sampling a few values from the columns. A matching validator is therefore

needed to evaluate whether a match between multiple columns makes sense.

This chapter addresses the problem of validating matching among multiple

possibly heterogeneous columns. We will begin this chapter by discussing

the necessity of validating schema matching.

71
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5.1 Validating Schema Matching: the Moti-

vation

Schema matching is an important problem in the realm of database inte-

gration. The basic operator is called Match [RB01], and associates schema

elements from one database with schema elements from another database,

as a prelude to schema mapping and database integration. Early approaches

to schema matching were based on identification using only schema labels.

This was followed by techniques that took into account the actual data in

the columns being matched. When schema matching is performed between

databases that are likely to contain the same data (e.g., the catalogs of dif-

ferent on-line book sellers), the matching can check for occurrences of the

same values across the databases. To allow for the possibility that schema

matching is performed between databases that contain different data (as is

more commonly the case), there has been work on describing data in a col-

umn via aggregate distributions and using inferences on these distributions

to identify matches. Schema matching has numerous applications, and is an

area of extensive study; surveys by Rahm and Bernstein [RB01] and Doan

and Halevy [DH05a] cover the major issues in this area, as well as much of

the relevant literature.

Essential to the success of schema matching (and hence of database inte-

gration) is a validator that, given a candidate match, declares it to be valid or

not. If a schema matching is declared to be invalid, a good validator should

provide a “certificate of invalidation”. It is harder to provide a “proof” of a

valid matching, since such a proof merely implies the lack of contradicting

evidence. Every technique for discovering schema matchings in the literature

implicitly includes a validator, possibly in conjunction with a search strategy
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for identifying candidate matchings. In this chapter, we focus on the valida-

tion aspect of schema matchings and hence our technique can be combined

with any search strategy that helps identify candidate matchings.

5.1.1 String Values and Syntactic Types

Surprisingly, despite the prevalence of string values in databases (e.g., per-

son names, company names, building locations, email addresses), and the

vast amount of work in schema matching, little attention has been paid to

validating matchings of string-valued schema elements. Exceptions include

systems like CUPID [MBR01] and the work by Embley et al. [EXD04] that

consider multi-column matchings of the form “concatenate FN and LN” (i.e.,

full string concatenation), and the work by Warren and Tompa [WT06] who

study the discovery and validation of multi-column sub-string matchings of

the form “concatenate the first 7 characters of LN and the first character of

FN”. A limitation of these previous techniques is that their validator can be

used only in database integration scenarios where matching schema elements

have the same values, but not in the more common case where matching

schema elements have different string values (for example, when two merg-

ing companies integrate their customer databases).

The central idea of this chapter is based on the intuition that the set

of string values in a column has a syntactic type that is characterized by

the distributions of q-grams (short sub-strings) of the string data in that

column. Hence, columns related by a schema matching are expected to have

a similar syntactic type, even when they have different values. Comparing

two string-valued columns then becomes the problem of estimating a distance

between the distributions corresponding to their syntactic types. Building on

these intuitions, this chapter addresses the challenging problem of validating
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americaDB

propId propTitle piFN piLN coPiName

2005CN0734 who likes xml john pardon wei li

2006CN0732 what’s not to like about xml johny walker wenyuan dai

chinaDB

proposalInfo piName coPiName

1136-AA-654 2005 i like xml too li mingfei johnston christopher

1136-B-45 2006 the future of xml yu kai pitts daniel

Table 5.1: americaDB and chinaDB: Schema and Sample Data

multi-column schema matchings by syntactic type of their string values.

5.1.2 Illustrative Example

Validating by type forces us to revisit some of our basic ideas about match-

ing (and mapping) schemas. Consider two databases maintaining informa-

tion about collaborative multi-national research proposals, americaDB and

chinaDB: americaDB tracks all research proposals where the primary inves-

tigator is based in the US, and chinaDB tracks all research proposals where

the primary investigator is based in China. Their schemas and some sample

data are given in Table 5.1.

Note that all the data in these database are represented as strings. This is

fairly prevalent in real databases, due to the flexibility afforded by the use of

strings. When exploring and validating schema matchings between these two

databases, possibly to create an integrated target database chinamericaDB

with the schema (propTitle, americaPerson, chinaPerson), there are sev-

eral issues that need to be addressed.
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No guarantee of common data

There is no guarantee that the principal investigators or co-principal investi-

gators in one database will be present in the other database. Thus validating

a candidate schema matching cannot be based on entire string values. How-

ever, there is the possibility of using q-grams to aid in the schema matching.

Note (in the data of Table 5.1) that 2-grams like “jo” and “on” seem to occur

more commonly in American names while 2-grams like “ai” and “ei” seem

to occur more commonly in Chinese names. By looking at 2-grams, one

could invalidate a candidate matching between americaDB.coPiName and

chinaDB.coPiName.

Simple and composite matchings

This example illustrates the presence of both simple and composite match-

ings. For example, the matching between americaDB.coPiName and chinaDB

.piName is a simple 1-1 matching, and should be validated. Since the in-

tegrated database chinamericaDB uses single columns to represent both

American names and Chinese names, the validator would need to be able

to validate a multi-column composite matching between concat (americaDB

.piLN, americaDB.piFN) and chinaDB.coPiName, but invalidate a candi-

date multi-column composite matching between concat (americaDB.piFN,

americaDB .coPiName) and chinaDB.coPiName.

Sub-string matchings

Since propId is not part of the target schema, in order to populate attributes

like propTitle in the integrated database chinamericaDB, one would need

to validate a matching between americaDB.propTitle and sub-strings from

(chinaDB.proposalInfo), i.e., sub-string (chinaDB.proposalInfo). How-
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ever, if there is a candidate matching between americaDB.propTitle and

chinaDB.proposalInfo, it should not be validated.

5.1.3 Integratability

How then do we determine if two string-valued columns may be matched? To

do this, we introduce the notion of integratability. Suppose that we are trying

to determine whether the data in columns C and C ′ possess the same syn-

tactic type, and thus are candidates for matching/integration. Our solution

is the following simple idea:

If the syntactic type structure of the columns C and C ′ is similar,

then in any reasonable clustering, data from both columns will

populate each cluster in roughly the same ratios.

An example of this idea is shown in Figure 5.1. In both panels, the data

is depicted geometrically, with crosses representing data from one column,

and squares from the other. In the left hand panel, the two columns exhibit

similar type distributions, and a reasonable clustering puts the same relative

fractions of data from the two columns in each cluster. Note that unless the

two columns have exactly the same number of items, these ratios need not

be balanced (i.e., 50-50). All we expect is that the proportion is relatively

constant across clusters.

In the right hand panel, the data from the two columns separate out into

different clusters, and thus there are clusters with widely varying fractions

of crosses and squares.

This notion can be made precise in an information-theoretic manner; in

a later section we will see that this idea translates into computing a certain

kind of conditional entropy. A key aspect of this notion is that it allows us to
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Figure 5.1: Computing integratability between two sets of data. In each case,

a candidate clustering is given. The two sets are marked with crosses and

squares.
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exploit context ; since the data from both columns are clustered together, the

process discovers commonalities between the data that may not be apparent

if the two columns were clustered independently. It also allows us to quantify

the degree of integratability in a purely generic manner, with no recourse to

metric spaces and embeddings of data.

How do we find such a reasonable clustering? There are different ways

one might go about this, and indeed our approach does not rely on the use of

a particular clustering method. However, our method is most powerful when

the clustering itself imposes no additional constraints (like a fixed number

of clusters, or even a hard assignment of items to clusters). Thus, in order

to be as general as possible, we will use a soft clustering formulation; since

any hard clustering can be viewed as a special soft clustering, this does not

restrict us in any way.

To compute this soft clustering, we will exploit the iIB-based clustering

in Chapter 4, where we have derived a measure of heterogeneity based on

information-theoretic considerations, and compute a soft clustering of data

as a by-product.

5.1.4 Validating Sub-string Matches

The second component of our type-based schema matching approach is a

method for detecting semantic types embedded in string data. String data

may have complex internal structure, and it is often the case that a schema

match arises by splitting a string value into sub-strings, and matching the

sub-strings with elements from another schema. Formally, this means that

we need some kind of sub-string extraction oracle that, when applied to a

column of string-valued data, returns a new column on which we can run an

integratability check. However, the only information we have regarding the
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location of these sub-strings is the column we wish to integrate with.

Our idea is thus as follows: rather than examining strings in the column

for obvious internal delimiters that might mark the boundaries of a relevant

sub-string, we use the target column to find such sub-strings. We use type

information extracted from this column to segment each string and return

the most promising candidate sub-string. We do this by evaluating the likeli-

hood of individual q-grams of the string appearing in strings from the target

column. If we find a set of contiguous q-grams that have an unusually high

likelihood, we have found our desired candidate sub-string.

5.1.5 Validating Composite Matchings

Extending schema matchings and mappings to types allows us to capture

composite associations that would be difficult via value-based methods. Cer-

tain composite associations can reduce to a simple matching problem. For

example, determining whether the concatenation of data from two columns

matches with data from another column reduces to validating a simple match.

Consider however, the problem of determining whether one set of columns

jointly matches another set of columns. In this case, there are really two un-

derlying problems. Suppose the joint matching is intrinsically unordered,

in the sense that the order of composition of columns doesn’t matter when

checking for a match. In our example from Section 5.1.2, this happens when

matching names; since labeling of names as first and last may be inconsis-

tent, especially when dealing with names from Asian countries. In this case,

any approach based on concatenation of column values will struggle to find

a match, because there may be no consistent way of ordering data to find

a match. Using our distributional approach however, we are indifferent to

the issue of finding orderings. We can concatenate the columns and do a
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type-based validation for the super-columns; the q-gram extraction approach

allows us to identify common regions without needing to consider their loca-

tion.

Conversely, if the data is ordered (and thus column data can be concate-

nated to form one super-column), the problem does not reduce to validating

a single match by type for the reasons outlined above. But it also can-

not be reduced to a set of simple matches because distributional equality on

the marginals does not imply distributional equality on the joint distribution.

Here, introducing positional information helps us identify such matches. This

allows us to generalize our type-based validation to composite matching as

well.

5.1.6 Invalidation Certificate

Recall that if a schema matching is declared to be invalid, a good validator

should provide a “certificate of invalidation”. The final component of our

approach is a certificate of invalidation, presented as a “bar code”, which

will come from the clustering itself. A low integratability score indicates

that the data from the two columns separate into different clusters in our

soft clustering, which can be presented to the user.

In this chapter, we will first present a generic type-based measure of

matching among multiple columns, based on information-theoretic consid-

erations, and an algorithm to compute this measure in Section 5.2. In Sec-

tion 5.3, an algorithm for “splitting” the string values in a column is proposed

to identify sub-strings that are likely to match with the values in another col-

umn. This is then followed by Section 5.4, which describes procedures for

validating single column and multi-column schema matchings based on the

tools developed above. If the algorithm fails to validate a schema matching,



Chapter 5: Multi-column Heterogeneity 81

an invalidation certificate is provided, which is discussed in Section 5.5. Sec-

tion 5.7 will give an experimental study that demonstrates the effectiveness

of our technique.

5.2 A Measure of Integratability

Let {C1, C2} be two columns of data that we wish to integrate based on

their syntactic types. A soft clustering T on the union of all columns, i.e.,

C1 ∪ C2, associates one conditional probability distribution p(t|x) for each

value x ∈ C1∪C2, which represents the syntactic type of value x. Considering

the union of the columns to have unit probability mass, we then define

p(Ch) =
|Ch|

|C1|+ |C2| h = 1, 2

where |Ch| is the weight of column Ch, which can be set equal to its cardinality

if all items are considered equally significant.

As p(t|x) represents the syntactic type of value x, the syntactic type of

column Ch is thus an aggregation over all x ∈ Ch, i.e., the syntactic type

distribution for each column Ch is computed as

p(t|Ch) =
p(t, Ch)

p(Ch)
=

∑
x∈Ci

p(t, x)

p(Ci)

=

∑
x∈Ci

p(x)p(t|x)

p(Ci)
(5.1)

By our informal definition of integratability, the two columns have the

same type structure if the two type distributions are similar. A standard

measure for comparing distributions p and q is the Kullback–Leibler diver-

gence (KL divergence) DKL[p‖q]. This distance is asymmetric and can be un-

bounded if the target distribution (i.e. p) support is not a subset of the source

distribution (i.e. q) support. Also, we would like to incorporate the relative
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mass difference between p(C1) and p(C2). Therefore, we will use a symmetric

variant, the Jensen–Shannon divergence, defined for α + β = 1, α, β > 0 as

DJS(p, q, α, β) = α ·DKL[p‖m] + β ·DKL[q‖m] (5.2)

where m = α · p+ β · q.
The Jensen–Shannon divergence can thus be interpreted as the average

distance to the (weighted) centroid of the two distributions. The distance

between the two type distributions is then Djs(p(t|C1), p(t|C2), p(C1), p(C2)).

Lemma 5.1. If α = p(C1), β = p(C2), and p(t|Ch) are defined as Equa-

tion 5.1 for h = 1, 2, then α · p(t|C1) + β · p(t|C2) = p(t).

Proof. ∀tj ∈ T

α · p(tj|C1) + β · p(tj|C2) = p(C1)p(tj|C1) + p(C2)p(tj|C2)

= p(tj, C1) + p(tj, C2)

= p(tj)

Therefore,

α · p(t|C1) + β · p(t|C2) = p(t)

Theorem 5.2. Given two columns C1 and C2, the JS divergence between the

syntactic types of column C1 and C2, as defined in Equation 5.2, is the mutual

information between the syntactic types and the column set C = {C1, C2};
i.e.,

DJS(p(t|C1), p(t|C2), p(C1), p(C2)) = I(C;T )

Proof. Let α = p(C1) and β = p(C2), by Lemma 5.1,

α · p(t|C1) + β · p(t|C2) = p(t)
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Therefore,

DJS(p(t|C1), p(t|C2), p(C1), p(C2))

= α ·DKL[p(t|C1)‖p(t)] + β ·DKL[p(t|C2)‖p(t)]

= p(C1)
k∑
j=1

p(tj|C1) log
p(tj|C1)

p(tj)
+ p(C2)

k∑
j=1

p(tj|C2) log
p(tj|C2)

p(tj)

=
k∑
j=1

p(tj, C1) log
p(tj, C1)

p(tj)p(C1)
+

k∑
j=1

p(tj, C2) log
p(tj, C2)

p(tj)p(C2)

=
k∑
j=1

∑
h=1,2

p(tj, Ch) log
p(tj, Ch)

p(tj)p(Ch)

= I(C;T )

Intuitively, I(C;T ) is larger when the distributions are more distinct,

which is to say the two columns are less integratable. I(C;T ) has a maximum

value of min(H(C), H(T )). In fact, since I(C;T ) = H(C)−H(C|T ), we can

write a normalized expression for I(C;T ) as

I(C;T )

H(C)
= 1− H(C|T )

H(C)
(5.3)

It is more convenient for a measure of integratability to be larger when the

two columns are more integratable, and so we will actually use the expression

H(C|T )
H(C)

as the measure of integratability.

Computationally, H(C|T ) is easy to compute and interpret. Consider

the probability p(Ci|t) that denotes the fraction of mass of each column Ci

present in the cluster t. We can define an entropy H(C|t) as the entropy

of this (two-atom) distribution. It is not hard to see that H(C|T ) is then

the weighted average of this expression over all clusters t (weighted by the

cluster weights p(t)).
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Assume that both columns have the same size, and thus p(C1) = p(C2).

If the two columns were integratable, we would expect roughly half the mass

of each cluster to belong to each column, and the entropy of this distribution

would then be large. Averaging over all clusters, we get an estimate of

how balanced the clusters are between the two columns, and that gives our

measure of integratability.

We can compute this measure for the two instances depicted in Figure 5.1.

In both examples, there are 15 crosses and 11 squares, and therefore H(C) =

0.983. For the left side, H(C|T ) = 0.98, and therefore the integratability is

0.998. On the right side, H(C|T ) = 0.795, and thus the integratability is

0.81, which is less than 0.998, as expected.

Our measure of integratability H(C|T )
H(C)

naturally extends to the multi-

column scenario. Instead of having a two-atom distribution for H(C|t),
H(C|t) is now of the same size as the set of columns, with each p(Ch|t)
representing the probability of a value x belongs to column Ch, given that

x is of syntactic type t. Therefore, when columns are similar in syntactic

types to one another, H(C|t) is close to H(C) for all t. Hence, H(C|T )
H(C)

is

close to 1. Similarly, Equation 5.3 can be generalized to multi-column too.

However, Theorem 5.2 is extensible only if JS divergence is generalized on a

set of distributions {p1, p2, . . . , pn} as follows:

DJS(p1, p2, . . . , pn, π1, π2, . . . , πn) = H(
n∑
i=1

πipi)−
n∑
i=1

πiH(pi)

where πi is the weight for pi with
∑

i πi = 1.

5.3 Extracting a Match

A measure of integratability allows us to determine whether two columns

of data have the same type. A more general kind of schema match occurs
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when a single column (which we call the heterogeneous column) contains

parts that have the same type with other columns. We came across one such

example in the example from Section 5.1.2, when attempting to populate

the attribute propTitle. In such cases, one would not expect a simple

column-level comparison to detect type similarities; instead, what we need is

a method for determining a sub-string of a column that matches types with

another column.

As before, let C1 and C2 be the two columns under consideration. Let C1

be the heterogeneous column i.e, the column from which we wish to extract

a sub-string whose type matches that of C2 (which we call the corpus). For

each string s ∈ C1, we therefore need to determine a sub-string w(s) such

that the set of strings {w(s)|s ∈ C1} integrates with C2.

Suppose we have a procedure to compute a candidate w(s). We can then

test the efficacy of this procedure by integrating the resulting strings with

C2, using the method outlined in Section 5.2. A good procedure will generate

a high integratability score.

One of generating a sub-string is by considering absolute positions in

a string. For example, the sub-string extraction described by Warren and

Tompa [WT06] calls for specific offsets into a string to generate the target

string. We refer to such a sub-string as “syntactic”, because the rule for

constructing it is independent of the string contents.

It is possible (although inefficient) to search over all such syntactic rules

to find the correct sub-string. However, in general such an approach will fail

to capture many kinds of heterogeneous data, whose values may be derived

semantically from different sources. This motivates our approach, which

is based on using the type of the homogeneous column in order to extract

relevant sub-strings.
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5.3.1 Finding A Large Bump

We assume that a string in the column C1 is of the form awb, where w

is a string whose type matches that of C2 and a, b are arbitrary strings.

If this is the case, then we expect that a representation of w in the type

space will match closely with a representation of strings in C2, whereas the

representations of a, b will not match.

We build a histogram on strings that characterizes the corpus C2; in

practice, this is done by fixing a parameter q and computing frequency counts

for all q-grams that occur in any string of C2.

Now for each string s ∈ C1, we extract its q-grams and assign to each

a weight that equals the relative frequency of this q-gram in the histogram

constructed above. Let the relative range of these frequencies (the ratio of

the largest to smallest) be denoted by r.

Treating these relative frequencies as likelihoods, we expect that if w

indeed matches strings in C2, then the likelihood of q-grams in w should be

significantly higher than the likelihood of q-grams in the remainder of the

string. In other words, as we move from left to right along s, we should see

a jump in likelihood where w starts, and a corresponding dip where it ends.

The magnitude of a jump that constitutes a significant event is a subjec-

tive choice, depending on r. A good choice for the jump magnitude is r/2,

for reasons we shall see later.

Consider a scenario where the corpus consists of different kinds of numeric

sequences. A possible likelihood plot for the string scro5127777 might look

like Figure 5.2. Here, the jump (the shaded region) marks the beginning of

the relevant sub-string.

The figure also illustrates how finding a significant transition is not suf-

ficient. In the above example, there is no way to determine which of the
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Figure 5.2: Using a jump in likelihood to indicate an interesting transition

strings 512, 5127, 51277 etc. are the appropriate strings to return, without

making some kind of ad hoc choice.

Therefore, rather than defining a transition as a sufficiently large jump

from one q-gram to the succeeding one in a string, we define a transition as

a separation of likelihoods into two sets, low and high, such that the smallest

likelihood in high is significantly larger than the highest likelihood in low.

If such a separation exists, then it is easy to identify the corresponding

sub-string: we label all q-grams as being either high or low, and take the

longest sub-string consisting of high q-grams.

Figure 5.3 depicts how this works, with the string scro512arch. Here, we

can identify a clear gap of size r/2 that separates the q-grams into regions.

The resulting sub-string that the algorithm returns is shaded in the figure.

The choice of r/2 as the gap width guarantees that we find at most one

high sub-string. If we find no region, we deem the whole string to be high

and return it as is.
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Figure 5.3: Using low and high regions to find an interesting sub-string

5.3.2 Combining Integratability with Sub-string Matches

In practise, we combine the measure of integratability and sub-string matches

together, to predict the most likely relation between two columns. This

procedure is illustrated as follows.

1. Compute the measure of integratability of two given columns. If the

integratability is high, we say these two columns are integratable.

2. If the above integratability is low, we treat either column as a corpus to

extract sub-strings from the other column. Compute the integratability

between an original column and the sub-strings extracted from the

other column. If one integratability is high, we say the column (where

the sub-strings are extracted from) is sub-string integratable with the

other column.

3. If the integratability computed in the above step is still low, we then

compute the integratability of the two sets of sub-strings, and claim

the two columns are dual-partially integratable if the integratability is

high.
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The latter two cases are both considered partially integratable, and it is

useful when dealing with columns composed from a few semantic or syntactic

types. This will be exemplified in Section 5.7.

5.4 (In)Validating Schema Matchings

Having developed tools for comparing and extracting types, we now apply

them to different schema validation scenarios.

5.4.1 1-1 schema matching

The first scenario is a match between two columns, under the assumption

that data in the first matches the type of data in the second, for example, the

matching between americaDB.coPiName and chinaDB.piName. We compute

integratability as described in Section 5.2. We have observed that integrata-

bility values close to 1.0 are reliable indicators of a valid match; in any case,

comparing integratability values is a reliable way of deciding which matches

are more accurate than others.

5.4.2 1-N or N-1 matchings

A schema mapping differs from a match in that the specific function relating

elements of one schema to another is described, in addition to the element

associations as well. A simple example of a multi-column schema mapping is

the LOGIN-ID example of Warren and Tompa [WT06], where the LOGIN-ID

field concatenates the first character of the first-name field, the first char-

acter of the middle-name field, and the entire last-name field. Such a map

is called a 1-N mapping, since one element (LOGIN-ID) is mapped to mul-

tiple elements. Another example is from our schema integration problem in
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Section 5.1.2; here, an example of an M-1 matching is the matching between

concat (americaDB.piLN, americaDB.piFN) and chinaDB.coPiName.

If the schema mapping is provided, then validating such a mapping can

be done in the same way as we validated the 1-1 column match. The map is

used to construct mapped entries from the destination schema, and then the

original schema data and this new set of entries is checked for integratability.

5.4.3 Compositional matchings

In the introduction, we distinguished between ordered and unordered compo-

sitional matchings. As we argued there, unordered compositional matchings

can be validated by using a simple matching strategy; the use of distributions

over q-grams allows us to use the above method for validation.

Here we consider ordered compositional matchings. Note that even if the

compositional matching consists of a conjunction of 1-1 matchings, we cannot

use 1-1 matching validation to validate it. This comes from observing that a

distribution (i.e type) on a composition cannot always be reduced to product

of distributions (i.e composition of types) on the individual matchings.

Therefore, we use an extended representation of the data that encodes

the positional information. The idea is as follows. Rather than treating data

from each element separately, we construct one large tuple that concatenates

all M schema elements in the appropriate order. When constructing q-grams

for this tuple, we extend the representation with positional information. For

example, if a tuple is formed by concatenating the strings abcd and tybc,

then rather than extracting one 2-gram bc with a count of two, we extract

two 2-grams of the form (bc, 1) and (bc, 2). We can now do an integratability

calculation using this q-gram representation.
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5.4.4 Sub-string Matches

Another kind of matching that has no analog in the value-based world is a

sub-string matching. In this scenario, a schema matcher proposes a match

between two columns of a table, but the actual matching types are parts

of the values. Again, using the multinational research proposal example,

we need to use sub-string matching to populate attributes like propTitle

in the integrated database chinamericaDB from americaDB.propTitle and

sub-string(chinaDB.proposalInfo).

A simple example of this phenomenon occurs when matching a table that

uses passport ID strings to identify people with another that uses birth date

information (in combination with other fields). Many passport IDs have birth

date information encoded within the string itself, and in order to construct

a matching, we would need to extract relevant sub-strings from one or both

columns and compare their types.

In general, the match might occur between sub-strings of both columns.

Here, we consider the simpler case in which a sub-string of one column must

match another column in its entirety. We use the procedure of Section 5.3 to

extract sub-strings from the column data, and then perform an integratability

check between the set of extracted sub-strings and the other column.

5.5 An Invalidation Certificate

The type-based validation methods described above all end with an inte-

gratability calculation, returning a value that ranges between 0 and 1 and is

larger when the two schema elements being matched are believed to be more

similar in type.

Our experiments have shown that for elements that are integratable, the
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score returned is typically very close to 1, and as the score decreases, the

integratability (as perceived by the user) decreases rapidly. Since the scale

of the measurement is based on entropy calculations, this “log-scale” behavior

is perhaps not surprising.

However, a deeper understanding of the score returned requires us to look

beyond the number itself. The integratability measure is computed from a

soft clustering of the data; in the process of doing this research, we discovered

that the soft clustering contains information that enhances our understanding

of the measure.

A hard clustering is easy to represent by listing the partitions. A soft

clustering is harder to visualize because points spread their mass across mul-

tiple clusters. Moreover, as pointed out in Chapter 4, even the notion of a

cluster is not well defined. Two distinct clusters in a solution are not really

distinct if the membership probabilities p(t|x) are identical for both of them.

We will visualize integratability using a “bar-code” idea borrowed from

Chapter 4. Consider an image with one row for each item in either of the

two columns, grouped so that rows for items in C1 appear above rows for

items in C2. Each column of this image corresponds to a cluster t, and has a

variable width proportional to p(t) (variable width is implemented by using

multiple pixels). The content of a column is the value p(t|x), represented in

log-scale with darker shades signifying higher probabilities.

Since a soft clustering might spread mass between clusters that are essen-

tially identical, we need to group the columns of such clusters together, so

as to make the representation more meaningful. Two clusters are similar if

their cluster membership vectors p(t|x) are similar. Using this observation,

we can group clusters together, and reorder the columns so that all groups

appear together.
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An Example

We illustrate the idea of a bar code with three simple examples, drawn from

the name dataset (for more details on the dataset, see Section 5.7). One of

the integratability tests described in Section 5.1 was a test to see whether two

columns of names corresponded to the same nationality. Suppose we were to

compare the lists of American and German names. Figure 5.4(a) illustrates

what the bar-code looks like. As described above, rows are indexed by the

data, and columns are indexed by the clusters. Each entry of the bar-code

represents a particular cluster membership probability p(t|x), with a darker

color representing a higher value (in log-scale). All entries of the first data

source appear above those of the second.

The integratability of these two sources is very high; notice that in the bar

code, the two horizontal strips look almost identical. This means that each

cluster contains the same mass from both data sets, implying integratability.

Note that given the Germanic roots of many American names, this result is

not particularly surprising.

At the other extreme, consider doing the same with Chinese and German

names. The integratability score is 0.24, which is much lower, and predicts

that the data sets should be separated into separate clusters. As Figure

5.4(b) shows, this is exactly what happens. The top and bottom strips are

almost complementary to each other, indicating that most clusters contain

mostly one kind or the other, and rarely both. The shades are also deep,

indicating not only a difference, but a strong difference.

An intermediate example can be seen by integrating American and Rus-

sian names, which bear some, but not significant resemblance. The integrata-

bility score here is 0.61, and as Figure 5.4(c) shows, the top and bottom strips

are not as sharply different as in the Chinese-German case, and neither are
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(c) Integratability of Russian and American names = 0.738

Figure 5.4: Certificates for 3 Pairs of name data

they as identical as in the American-German case. Remember that the in-

tensity of the shading indicates the probability mass, and in this case the

shading is weaker, indicating that even when there appear to be differences,

it is not as significant.

5.6 Methodology

The algorithm to compute the measure of integratability is rather similar

to the one estimating the heterogeneity. The differences are the sub-string
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Algorithm 2 Computing Integratability.

1: Convert input strings to distribution of q-grams, and calculate H(C)

2: Extract sub-string with respect to each other as corpus if necessary

3: Compute the weight for each q-gram

4: Compute the weighted probabilistic vector p(Y |x) in the space of q-grams

for each value x

5: Compute β∗ = H(X)
I(X;Y )

6: Compute soft clustering using iIB with β set to β∗

7: Compute H(C|T ) by p(t|x)

8: Compute the integratability by computing H(C|T )
H(C)

extraction, weighting the q-grams and computing H(C|T ). The first and the

last differences are explained in great detail throughout earlier sections. We

now explain the weighting scheme of the q-grams.

5.6.1 Weighting the q-grams

Again, in our setting, weighting schemes like i.d.f are not appropriate, as

our goal is to determine whether two columns of data can be integrated.

Therefore, q-grams that distinguish one set of data from another are more

important than q-grams that are either rare or frequent.

In Chapter 4, we maximize the weights of q-grams whose probabilities

appearing in the set of values are around 0.5, since those q-grams have the

“highest” distinguishing power. However, in the setting of measuring inte-

gratability, such q-grams may not be powerful. Consider integrating columns

of data with the same number of items. A q-gram with no distinguishing

power will appear in roughly the same number of items in each column. A

q-gram with high distinguishing power will occur mostly in one column or
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the other. For example, a q-gram which appears in only one column with

0.1 probability is considered more powerful than another q-grams appearing

uniformly with probability 0.5 in all columns.

There are different ways of constructing a measure that captures this idea.

Our approach is as follows. For a q-gram q, we compute the number of times it

appears in each column, and call these frequencies f1, f2, . . . , fm. Normalizing

each fh by nh, the number of values in each column, and taking the largest

difference among all fh

nh
, i.e., p′ = max fh

nh
−min fh

nh
or p′ = min fh

nh
−max fh

nh
,

we get the quantity p′ that ranges between −1 and 1. It will be convenient

to work with the range [0, 1], so we scale and shift p′, obtaining p = 1+p′

2
.

This new variable has a range of [0, 1], and is 0 or 1 when the q-gram ap-

pears exclusively in one or the other column. It takes the value 0.5 when

the q-gram appears equally often in both. We desire a function that is

symmetric around 0.5 and is maximized at the boundaries. Any appro-

priately chosen convex function suffices; we will use shifted negative entropy

W (p) = 1 −H(p), where H(p) = −p log p − (1 − p) log(1 − p), where log is

of base 2.

Once the frequency counts are weighted using the above method, we

normalize the histograms, yielding a distribution for each string.

5.7 Experiments

5.7.1 Datasets

Besides the many eyes dataset, we will use the following dataset here to

demonstrate the idea of using integratability better.
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UVa Name Dataset

This dataset, called name dataset, is downloaded from the ACM Program-

ming contest on-line judge, provided by Universidad de Valladolid1. There

is a list of authors who submitted their solutions to the on-line judge2. We

downloaded this list without accessing their profiles. From this list, we ex-

tracted their names, as well as their nationalities from the national flag at-

tached to each user. Names are grouped by the nationalities, forming one

column for each nationality.

5.7.2 Validation of Integratability Measure

In this section, we first apply our integratability measure on columns related

to “car models” from the many eyes dataset.

Suppose someone thinks these 6 columns are related, car@vehicles,

car line@fuel-economy-stats, car name@cars-17, g model@googlebase vehicle,

model@autosforsale-2 and vehicle name@car-data. As she is not sure if

these columns are integratable, she then use our proposed method to com-

pute the mutual integratability among the 6 columns. Results are shown in

Table 5.2.

First it is evident that the measure satisfies reflexivity; every column is

integratable with itself. The columns are quite similar with each other since

someone already thinks they are related by looking at their names, so this is

reflected in the high integratability scores for pairs. By observing that col-

umn vehicle name@car-data has relatively low integratabilities compared

to other columns: except for car name@cars-17, all other integratabilities

are below 0.7. This is a strong signal for column vehicle name@car-data to

1http://acm.uva.es
2http://acm.uva.es/problemset/rankauthjudge.php
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Column A Column B Integratability

car@vehicles

car 1.000000

car line 0.819051

car name 0.862825

g model 0.856623

model 0.804910

vehicle name 0.647728

car line@fuel-economy-stats

car line 1.000000

car name 0.781879

g model 0.765946

model 0.789608

vehicle name 0.661030

car name@cars-17

car name 1.000000

g model 0.729814

model 0.792743

vehicle name 0.792847

g model@googlebase vehicle

g model 1.000000

model 0.738048

vehicle name 0.576021

model@autosforsale-2
model 1.00000

vehicle name 0.649472

vehicle name@car-data vehicle name 1.000000

Table 5.2: Integratability of Columns on car models. The table names for

column B are omitted due to the space constraint.
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Names from Integratability Integratability

Different Region with CN Names with US Names

CN Names 1.000000 0.545518

HK Names 0.816060 0.732209

SG Names 0.870063 0.840161

JP Names 0.350561 0.580060

US Names 0.545518 1.000000

DE Names 0.399300 0.999930

ES Names 0.384223 0.887577

RU Names 0.267962 0.737690

Table 5.3: The Integratability of the Names of People from Different Regions

have different syntactic types than others. Further checking on this column

discovered that this column describes a lot more than just car models, e.g.,

one of its values “Audi A4 3.0 Quattro 4dr auto” includes car manufac-

turer, model, engine size, car class and transmission. Therefore, it is less

integratable with other columns which only record car models.

In the name dataset, we test the integratabilities between names of people

from different regions in the world. For example, mainland Chinese usually

use the romanization of their Chinese names as their names in the Latin

system. Chinese people from Hong Kong or Singapore will probably use the

anglicization of their Chinese names, with another English name as a prefix

or suffix, like Simon Cheung. Therefore, we do expect that Hong Kong or

Singapore names are more similar to Western names in syntactic types.

From Table 5.3, we discovered that both Hong Kong names and Singa-

pore names are indeed more likely to integrate with either Chinese names
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or American names than the other. At the same time, American names are

more likely to integrate with names from Hong Kong or Singapore rather

than names from mainland China. This matches with our intuition that

Hong Kong and Singapore names are a combination of Chinese names and

English names, and it is noteworthy that a purely information-theoretic ap-

proach is able to capture this. The other interesting remark is that, as

Germanic languages are most similar to themselves, but less similar to Latin

languages, and least similar to Slavic languages, the integratabilities between

names from such languages show the consistent ranking, i.e., American names

are most similar to German names, then followed by Spanish names, next

followed by Russian names.

Investigating further the properties of this measure, the example shown in

Figure 5.5 is instructive. In this example, we showed the certificates obtained

for the integratability of pairs of name sets between Chinese, Hong Kong and

American names. Figure 5.5(c) shows the overlap between Hong Kong and

American names is more significant than that between Chinese and American

names (Figure 5.5(b)), but not as much as that between Chinese and Hong

Kong names (Figure 5.5(a)), which matches the integratability measure we

listed in Table 5.3. Note that transitivity does not hold; although names

from China and America both integrate well with names from Hong Kong,

they do not integrate well with each other.

5.7.3 Validation of Sub-string Extraction

In this section, we will first validate our method of sub-string extraction

by getting sub-strings from a potentially heterogeneous column against one

homogeneous column (the corpus).

From Table 5.2, we noticed that column vehicle name@car-data does
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Figure 5.5: Certificates for 3 Pairs of name data

not integrate well with others because it is of a composition of several fields,

which are treated differently in other tables. Therefore, we need to perform

the sub-string extraction procedure to generate another set of string values,

which are of better integratability.

As previously we discovered, column vehicle name@car-data.tsv is a

composite column, including several fields that are recorded separately in

most other files. Thus we use one column which contains only an atomic field

to extract the similar sub-strings by the method proposed in Section 5.3.

There are also false positives like “ord” extracted from “honda accord ex
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Strings in Sub-string Extracted with Corpus

vehicle name@car-data.tsv g make@googlebase vehicle

...
...

cadillac xlr convertible 2dr cadillac

chevrolet aveo ls 4dr hatch chevrolet

acura tsx 4dr acura

chrysler concorde lxi 4dr chrysler

infiniti g35 sport coupe 2dr infiniti

jaguar x-type 2.5 4dr jaguar

nissan murano sl nissan

toyota avalon xls 4dr toyota

volvo s80 t6 4dr volvo
...

...

Table 5.4: Exact sub-strings which are similar to

g make@googlebase vehicle from composite column

vehicle name@car-data.tsv

2dr”. This is probably due to the high frequency of the word “ford”. Higher

precision methods are more complicated and have to be tuned according to

the specific set of values. Our method proposed in Section 5.3 provides a

generic way to extract sub-strings with simple heuristics.

In the second experiment, we attempt to extract Chinese names from

strings concatenated from Chinese names and American names. The result

is shown in Table 5.5, and the right column contains sub-strings extracted

from the left column. The text in italics in the left column of Table 5.5 is the

original Chinese names which we used to construct the concatenated string.
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Concatenated String Sub-string Extracted

...
...

chen yangamit singh chen yang

chen liandrew conner chen liand

lai wendavid musicant lai wenda

li chengdavid strawn li cheng

li zhentingdenny vandenberg li zhenting

liu songevan davis liu songe

ma xiaoilya kozavchinsky ma xiao

niu chuanxinjack hudson niu chuan

ren xiao yinjason winokur ren xiao yinj

wang tingjiwon kim wang ting
...

...

Table 5.5: Chinese Names Extraction from a Heterogeneous Column of Chi-

nese Names and American Names

We underline the incorrect portions of the extracted strings.

5.7.4 Validation of Compositional Matchings

In this section, we will show how the positional encoding described in Sec-

tion 5.4 allows us to distinguish between correctly and incorrectly ordered

compositions. Given a matching that indicates source field “A” in table 1

maps to target field “C” in table 3, source field “D” in tables 2 maps to target

field “B” in table 1, and “F” in table 3 maps to “G” in table 2. We construct

two columns from the mapping: the first column contains fields “A”, “D”

and “F”, separated by “|” (suppose “|” does not appear in any of the values).
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(a) make|model vs g make|g model: 0.749511

(b) make|model vs g model|g make: 0.309306

Figure 5.6: Integratability helps identifying potential incorrect mappings

between two tables.

For example, if string “a”, “d” and “f” are the instances of fields “A”, “D”

and “F” respectively, the first column will have a row “a|d|f”. Similarly, we

construct the second column from fields “C”, “B” and “G”, separated by “|”.

If this mapping is valid, the two columns will have the same syntactic

type. We illustrate this by constructing a correct and incorrect matching

from two pairs of columns and allowing the positional encoding approach to

distinguish the two.

We first select columns make, model from table mpg.tsv, and columns

g make, g model from table googlebase vehicle.tsv. Figure 5.6(a) shows

the integratability when make is matched with g make and model is matched

with g model, where the certificate shows the strings constructed with such

mapping are similar. However, in Figure 5.6(b), when make is matched with

g model while model is matched with g make, both low integratability and

the certificate say this mapping is not valid.
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(a) CN|US Names vs US|CN Names: 0.682351

(b) CN|US Names Set A vs CN|US Names Set B: 0.948135

Figure 5.7: Positional information affects integratability.

Figure 5.7 shows that when two columns contain values from the same set

of single-type columns but with different order, positional encodings allow

us to distinguish between them using our measure of integratability. The

certificate shows that a mapping which accidentally made a wrong match

between Chinese names and American names can be discovered, since the

integratability between the two columns constructed by the wrong mapping

is low.

5.7.5 Integratability between two Heterogeneous Columns

An interesting question that we did not fully address was how extraction of

sub-strings will work if both columns under consideration were heterogeneous

themselves. For example, we could concatenate Chinese names and Japanese

names to obtain a new column which consists of strings concatenated from

Chinese names followed by Japanese names. Such columns obtained by such
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Column A Column B Integratability

CN Name US Name 0.545518

CN Name-JP Name US Name-JP Name 0.932994

CN Name-RU Name US Name-RU Name 0.939777

Table 5.6: Integratability of sub-strings between two horizontally heteroge-

neous columns

concatenation are horizontally heterogeneous.

One approach to deal with this case is to run two instances of sub-string

extraction. We use the first column as a corpus to extract the sub-strings

from the second column. This will give us a set of sub-strings which are most

similar to the first column. We then do the same thing again, but using the

second column as corpus to extract sub-strings from the first column. Lastly,

we put the two sets of sub-strings together and compute their integrability.

Table 5.6 shows the integratability between two pairs of columns: CN

Name-JP Name against US Name-JP Name, and CN Name-RU Name against US

Name-RU Name. The first row, the integratability between CN Name and US

Name, provides a reference point for the latter rows. We see that in both

cases, sub-string extraction from both columns is moderately successful at

extracting the relevant common portions from both strings; the integratabil-

ity scores are much higher than the scores for the base (non-integrable) pair

of Chinese and American Names.

5.7.6 Performance

The performance is largely dependent on the clustering algorithm developed

in Chapter 4. However, as the column heterogeneity measure for one column

is not a concern here, the background addition is no longer necessary. The
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computation of integratability is actually faster than the computation of

column heterogeneity given the same amount of data values and the same

representation of those values.

Sub-string extraction is faster than the computation of integratability as

no iterative computation is involved, and the computation of the probabilities

of the 2-grams is just a single scan over all data values.

5.8 Summary

In this chapter, we discussed mainly on validation of schema matchings

through the types of values across multiple columns. We first proposed a

measure of integratability based on conditional entropy of the columns given

the type information. Intuitively, the higher the measure is, the more inte-

gratable the columns are. However, low integratability is a signal to suggest

the columns are not to be integrated, else the integrated column is likely to

be more heterogeneous than the original columns. Our measure of integrata-

bility can be plugged into any data integration tool, to provide a validation

after an integration plan is drafted. Database administrator may look at the

integratabilities and re-examine some of the column matchings or mappings.

Together with the measure of integratability, we have also proposed the

procedure to extract sub-strings. This made the integratability avaible on

the sub-string level, which is more applicable when handling horizontally

heterogenous columns.

In Chapter 4 and Chapter 5, we prefer homogeneous columns than het-

erogeneous ones, and we prevent databases from becoming more heteroge-

neous. However, we can also make column heterogeneity useful, which will

be demonstrated in Chapter 6.



Chapter 6

Inter-column Heterogeneity

(II): Capturing the Semantics

In Chapter 1, we have motivated the need of having a user-friendly platform

for easy access, manipulation and contribution to databases. However, this

will be costly if such a platform operates directly on the databases as most

users do not have the basic database knowledge. It is therefore desired to

have a separation between such platform and databases, which is able to in-

terpret users’ intentions, and chooses only the “right” actions to operate the

databases. Semantics then come into the picture since users’ simple instruc-

tions have to be understood from the semantics perspective, as discussed in

Example 1.5.

In Chapters 4 and 5, we elaborated the syntactic types of values within

a column and across multiple columns. However, the syntactic types are not

the same as the semantic types. Section 4.1.1 illustrated the relationship

between syntactics and semantics, i.e., semantics are represented, delivered

through syntactics. It also pointed out the key differences between syntactic

types and semantics types:

108
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• Syntactics are objective, while semantics are subjective; and

• There is no direct mapping from syntactics to semantics

The first difference tells us it is more challenging to capture the semantics

than to study the syntactics, as we need to learn how people interpret. The

second difference says the mappings from syntactics to semantics are usually

done manually. For example, when filling up the credit card information at a

payment web-page, everyone is required to fill in the expiry date in a certain

format, like yyyy–mm or mm/yy, otherwise the system will reject. By doing

this, the syntactics for the semantics “date” is made explicit. So is the

mapping from the syntactics back to the semantics. Explicitly defining the

syntactics for each of the semantics is tedious and very unlikely, as every word

in a dictionary has its own semantics. Such manual work can be only done

for some important semantics, e.g, the semantics in a semantic hierarchy in

a certain domain. As users are free to choose any semantics, it is necessary

to have a mechanism that interprets users semantics.

In this chapter, we will propose a solution that interprets users’ semantics,

along with a procedure that makes users’ data available to databases and

other users. We next look at what are the desiderata for such a mechanism

in order to capture semantics.

6.1 Semantics: Desiderata

As our general solution is a separation layer that separates users’ actions

from database operations, community users are then isolated from access-

ing the database directly. But this requires the separation layer to play two

roles. First it plays the role of interpreter, which understands a user in her

own language. For example, one may issue a command like insert (make:
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toyota, model: prius, price: 20000, mileage: 10000). This sep-

aration layer then interprets this command, and understands that the user

wants to insert a quadruple (toyota, prius, 20000, 10000), which is la-

beled by (make, model, price, mileage) respectively. On the other hand,

with this quadruple, the separation layer should act like a database expert

to insert it properly into the database. In conventional databases, we expect

the insert operation to be always specified with a table name and column

names. However, given that users have no knowledge about the database,

the separation layer needs to figure out which table and what are the columns

to be inserted. Similarly, for users who issue database queries, this separa-

tion layer ought to interpret the queries, perform the query operations in the

database like an expert, and then present the results back to the user.

In order to establish such an intelligent separation layer, we have to over-

come at least three major challenges. The first challenge is on the interpre-

tation of users’ actions.

6.1.1 Interpreting Users

Example 6.1. Alice inserted 100 records with the make of cars named as

make, while Bob inserted another 100 car records with the same attribute

named as manufacturer. If our separation layer blindly inserted the data

into the column whose name is either make or manufacturer, we would

have encountered the following problem. When Carol retrieves these data,

she can only get half of the records no matter whether she uses make or

manufacturer. This is because, by blind insertion, there is no connection

between make and manufacturer, but human beings consider them highly

related as they carry the same semantics and expect getting all results by

querying just one of them.
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Hence our separation layer must be intelligent enough to associate at-

tribute names with similar semantics. In fact, users are not aware of what

attributes are used in the database. What they want is just to indicate the

semantics of the values. Inspired by the method of tagging multimedia ob-

jects to facilitate searching, like in Flickr1 and YouTube2, we allow users to

describe the semantics of data values by tags. Tags merely represent the se-

mantics of values, not to match elements in the schemas like what attribute

names do. Note that the problem in Example 6.1 exists because one data

value is either associated to column make, or column manufacturer, but not

both. When the semantics of values are represented by tags, there is no such

constraint, i.e., one value can be associated with multiple tags. In Exam-

ple 6.1, if a value is inserted with tag make, the separation layer should then

associate another tag manufacturer to this value since the separation layer

is intelligent enough to know the semantics of make and manufacturer are

similar.

In the following, a tag is called the original tag of a value if the tag is

used when this value is contributed. So our problem now is how to associate

the original tag of one value to other tags that other users may use. One

solution is to set up a mapping from one tag to a set of tags with similar

semantics. The following example explains why this does not work.

Example 6.2. (i) retrieve the contact of an agent with email js@a.com; (ii)

retrieve the contact of an agent with phone 567-1234. The two contact refer

to two different things. In the first query, it requires a result that is not an

email address, while for the second query, the required result is not a phone

number. The semantics of contact is similar to both email and phone,

1http://www.flickr.com
2http://www.youtube.com



Chapter 6: Capturing the Semantics 112

therefore, simply tying tags with similar semantics is not feasible since the

semantics do depend on the query context.

Therefore, establishing mappings from one tag to another is not an ap-

propriate way of associating tags, as the semantics of the tags are content-

related. We need a better way to associate one tag with another.

6.1.2 Data Storage

Here comes our second problem–how do we store the data? Since users do not

know anything about databases, the separation layer must be able to store

users’ data properly. As relations can be arbitrary, we allow data to be stored

without specifying a schema. Structures like Google’s BigTable [CDG+06,

CDG+08] and wide-table [CBN07, LHLG09] suit our need. Such structures

contain one single table with thousands of columns. Each row can be a

relation of any type, which can relate to only a few or a few dozens of

columns. Thus such tables are extremely sparse, with many empty cells.

In this chapter, we implement our ideas on wide-table, as it makes our idea

easier to understand. In fact, our idea is a generic approach as long as

database operations are carefully designed in accordance to the underlying

data model. Our data model will be elaborated more in Section 6.2.

6.1.3 Uncertainty in Querying

Unlike querying data from a well structured database where it is deterministic

if a tuple matches the query, there are three types of uncertainties as follows:

• Uncertainty in interpreting a query specified by a user, which is exem-

plified by Example 6.2.
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• Uncertainty in matching tuples to a query.

• Uncertainty in matching different values from one tuple to a query.

We first illustrate the uncertainty in matching different tuples to a given

query by Example 6.3, which is presented below.

Example 6.3. (i) Retrieve the manufacturer of model X5; (ii) Retrieve the

brand of model X5. Coincidentally, there is a car model X5 by BMW, and

there is also a cell phone model X5 by Sony Ericsson. When retrieving

the result, both BMW and Sony Ericsson are candidates. There is however

some differences between asking about manufacturer and brand. Most of

the time, the make of a car is referred as manufacturer more than brand,

but the make of a cell phone is referred as brand more than manufacturer.

Therefore the answer for (i) is more likely to be BMW while the answer for (ii)

is more likely to be Sony Ericsson. When matching tuples to the query, as

there is no definite answer, tuples are matched with likelihoods. The result

should be ranked according to such likelihoods so that most likely results are

to be presented first.

Even for one tuple, there are multiple values that could be the answer

to the query. Example 6.4 then explains the last type of uncertainty: the

uncertainty in matching different values within the same tuple.

Example 6.4. Retrieve the contact of an agent with phone 234-7890. For

the tuple which matches with phone number 234-7890, there are two values

which can be mapped to contact, abc@def.com and 123, Main St. When

this happens, there should be a likelihood that associates abc@def.com to

contact, and another likelihood that associates 123, Main St to contact.

Therefore, besides calculating likelihoods for tuples, likelihoods should also

associate values to tags.
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Considering the three challenges introduced in the above three sections,

we propose a novel data model, called probabilistic tagging, which tackles the

first and the third challenges, whereas the second challenge is taken care by

wide-table, as we shall see in the next section.

6.2 Probabilistic Tagging: an Overview

In this section, we discuss how probabilistic tagging can be used as a sepa-

ration layer as illustrated in Section 6.1.

We first examine the command “insert (make: toyota, model: prius,

price: 20000, mileage: 10000)”. The user, who issues the above com-

mand, may not know whether columns make, model, price and mileage

exist in the database. These terms can be considered as tags for the sepa-

ration layer to interpret the semantics of the values. Relational databases

use column names to describe the semantics of the values in each column.

A database expert will not use “a” as a column name, but something in-

terpretable like “account”. In Table 6.1, the semantics of a value in the

wide-table are consistent with the name of the column it is in. From this

perspective, column names serve as tags in relational model. By the homo-

geneity property of relational model, the relationship between data values

and data columns is definite, and each value is associated to one and only

one column name.

For our probabilistic tagging, we allow the flexibility of associating one

value to multiple tags, as tags are meaningful on the semantics level, rather

than structural level. Therefore, users may tag toyota as make, manufacturer,

or even {make,manufacturer}. By doing this, if tuples in Example 6.1 are

tagged as {make,manufacturer}, no matter whether Carol retrieves data
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through make or manufacturer, she will get all 100 records. We leave it to

Section 6.2.1 to discuss how to build such associations.

Another advantage of using multiple tags is to solve ambiguity. In Exam-

ple 6.2, contact is a more general concept than email or phone. Both types

can appear in a column called contact in a relational model, which makes

emails and phone numbers indistinguishable on their semantics. However,

if we associate {email,contact} to emails, and {phone,contact} to phone

numbers, their semantics are easy to tell apart.

Table 6.2 gives a logic view on tagging tuples in Table 6.1, where values

from the same column in Table 6.1 are tagged differently, and some values

are associated by multiple tags which are semantically close.

However, nothing comes free. Once we relax such an association to mul-

tiple tags, we have to consider what is the appropriate set of tags that best

describes the semantics of a value. By saying appropriate, it means tags are

closely related to their values and no other irrelevant tags are expected to

be associated. For example, value toyota can be associated with both tags

make and manufacturer, but not with model.

Even if we can associate values with an appropriate sets of tags, one may

ask if the tags being used are equally likely to describe the semantics of a data

value, or if there is an order among the tags. This is what we encountered in

Example 6.3, BMW is associated to manufacturer better than brand whereas

Sony Ericsson is associated to brand better than manufacturer. To deal

with this kind of associativity, a measure is proposed to indicate how close a

tag is from a given data value. This measure should be higher when a tag is

closer to the given value. Thus, the direct interpretation of this measure is

the likelihood of a tag being used to tag a given value.

Definition 6.1 (Probabilistic Tagging). Let G be the set of tags, for a value
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v and a tag g ∈ G, probabilistic tagging refers to the act of associating a

probability ζv,g for v and g, such that the value v is tagged by the tag g with

probability ζv,g.

The probability ζv,g is called associated probability.

For every tag in Table 6.2, there is a probability associated to each tag,

representing the likelihood of this tag being used to tag the value. This is

presented in Table 6.3. Each value is identified with tuple-ID (TID) and

location-ID (LID) to indicate which tuple it comes from and its location

in the tuple. The type indicates the type of the value, if it is string (S) or

numerical (N). The last column is a set of tag-probability pairs. For example,

John in the tuple with TID 026 is tagged by firstname with associated

probability 1.0, and name with associated probability 0.7. We do not have

the constraint that the associated probability sums up to be 1, as there is

no mutual exclusion among the tags, and a value is absolutely possible to

be tagged by more than one tag. There are three tuples containing value

John in Table 6.3, it is because tuples come from different data sources with

possibly different tags, and associated probabilities with these tags may also

be different.

So far we have described a big picture about probabilistic tagging. The

challenges, introduced in Section 6.1, have been transferred to the major

challenge of associating values and tags with probabilities. We now list a few

possible ways to establish such an association.

6.2.1 Association between Tags and Values

Since our model is tag-centric, the first issue that needs to be addressed is

how tags can be associated correctly with the values in each tuple. Based on

our analysis, there are at least four ways to achieve this:
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Value TID LID Type Probabilistic Tagging

BMW 026 1 S 〈make, 1.0〉, 〈brand, 0.4〉
3 026 2 S 〈model, 1.0〉, 〈name, 0.3〉

31900 026 3 N 〈price, 1.0〉
Smith 026 5 S 〈lastname, 1.0〉
John 026 6 S 〈firstname, 1.0〉, 〈name, 0.7〉
Ford 289 1 S 〈make, 1.0〉, 〈manufacturer, 0.8〉
F150 289 2 S 〈model, 1.0〉, 〈name, 0.4〉
15900 289 3 N 〈price, 1.0〉
John 289 6 S 〈name, 1.0〉, 〈firstname, 0.9〉

Toyota 354 1 S 〈make, 1.0〉,〈manufacturer, 0.9〉
Camry 354 2 S 〈model, 1.0〉
Yamada 354 5 S 〈lastname, 1.0〉
Taro 354 6 S 〈firstname, 1.0〉
Honda 571 1 S 〈manufacturer, 1.0〉, 〈brand, 0.5〉
Civic 571 2 S 〈model, 1.0〉, 〈name, 0.3〉
16000 571 3 N 〈price, 1.0〉
Brown 571 5 S 〈lastname, 1.0〉, 〈name, 0.6〉
John 571 6 S 〈firstname, 1.0〉, 〈name, 0.8〉
Ford 702 1 S 〈make, 1.0〉, 〈brand, 0.4〉
Focus 702 2 S 〈model, 1.0〉, 〈name, 0.2〉
Tom 702 4 S 〈firstname, 1.0〉

Davidson 702 5 S 〈lastname, 1.0〉
Volvo 886 1 S 〈make, 1.0〉
XC90 886 2 S 〈name, 1.0〉

Table 6.3: An illustration of probabilistic tagging
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a. Attribute Names

Since tuples in a wide-table are typically inserted by users with a schema

in mind, each of these values in the tuple will thus be associated with an

attribute name. Thus, a trivial way to associate at least one tag with each

of the values is to assign the attribute name as a tag.

b. User Specified

Alternatively, a user might want to simply specify a tag for a group of values.

For example, he/she might issue a command tag(BMW,manufacturer,0.9)

which will tag all values BMW with tag manufacturer. Obviously, there exists

many alternative approaches for users to specify associations between tags

and values. Furthermore, checks should be in place to ensure that users do

not add in spurious tags which make no meaning. However, this approach

requires a lot of work to make sure all values are tagged properly.

c. Tag Inference from Private Tables

In the case where a user already has her private tables and hopes to append

more tuples from a wide-table into her private tables, it is possible to adopt

machine learning techniques like Markov random field [SC04] in order to

match columns in the wide-table against the columns in the private table.

If we regard columns in her private table as tags, a Markov model will then

be trained for each tag in the private table and each value will be matched

probabilistically against these tags.

d. Tag Inference without Private Tables

When no private table is available, we propose to infer alternative tags for

values. For instance, if BMW is tagged by manufacturer, a tag-value pair
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(BMW,make) can be inferred. The problem of tag inference without private

tables are defined as follows.

Definition 6.2 (Tag Inference). Given (i) a value v, (ii) a set of tags Gv used

for tagging v, and (iii) the associated probabilities ζv,g0 ,∀g0 ∈ Gv; determine

ζv,g, the associated probability of v being tagged by g, ∀g ∈ G, where G is the

global set of tags.

However, it is not trivial to do such tag inference as there are two major

difficulties to find tags which are closely related:

• Data values are heterogeneous. If we were to compare whether two tags

are similar by the two sets of values each of them is associated with, the

similarity between the two tags depends on the similarity of the two

sets of values. However, the two sets of values may be similar with no

or little overlaps, which leads to underestimation of the tag similarity.

Thus describing the tags by their associated data values already poses

a problem.

• More importantly, even if there exists such a description, tag inference

is not only simply decided by how close the tags are, but also deter-

mined by the “scope” of the tags. The “scope” of a more specific tag

is relatively small, thus the distance may look larger under such a sce-

nario. Therefore, the “scope” of the tags must be also taken care of

when doing inferences among tags.

In Section 6.3, we will look at how tag inference can be done with some

of the techniques we developed in Chapter 4 and 5.



Chapter 6: Capturing the Semantics 122
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Figure 6.1: Representing the semantics of the tags by the syntactic types

6.3 Semantic Inference

Let us first understand how human beings judge whether two tags being

similar or not. As when human beings look at the values associated with one

tag, they will not memorize the values. Instead, they glance at the values,

and get an idea of “how the values look like”, i.e., the syntactic types which

we have discussed in Chapter 4 and 5. For example, tag price and tag cost

are semantically similar, but there may not be any overlap between the two

sets of values associated with price and cost respectively. Thus they are

far apart as the majority of the values in the two sets are different. When a

human being reads these values, he/she tells that they are similar since the

syntactic type of the values are similar. Therefore, the similarities between

tags have to be elevated from the “value” level to the “type” level.

Therefore, our central idea of describing semantics is to

Represent the Semantics of the Tags in the space of Syntactic

Types.

However, unlike a data value, which can be directly mapped to a proba-

bilistic distribution over the syntactic types through its representation in a
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feature space Y , e.g., the space of q-grams; the representations of tags over

the syntactic types are not so straightforward as there are no representations

in the corresponding feature space Y for the tags. Therefore, the only way

to obtain the representations for the tags in the space of syntactic types is

through the representations of values they are associated with.

As shown in Figure 6.1, each value is represented by a probability distri-

bution over the syntactic types. Each tag is associated with a set of values,

thus the syntactic type representations for the tags can be inferred from the

representations of the values. Note the feature space Y is not present in this

figure. The details are as follows.

6.3.1 The representation of the Semantics

In Chapter 4, the syntactic types for each value is identified by a clustering

process. Given value x ∈ X , represented as a probabilistic distribution in

feature space Y , i.e., p(y|x) with the constraint that
∑

y p(y|x) = 1, the

heterogeneity algorithm, i.e., Algorithm 1 in Section 4.3.3, computes a set of

syntactic types T where each x is represented by a probabilistic distribution

p(t|x) in the space of T .

As introduced in Section 6.2, since each value is from a different source

or inserted by a different user, it is associated with only one or a small set of

tags, which are often regarded as column names. We wish to set up associ-

ations between values and tags from a different source, which are originally

unknown. For instance, toyota is tagged by make with associated proba-

bility 1.0, given tag manufacturer and model from another data source, a

high associated probability ζtoyota,manufacturer but a low associated probability

ζtoyota,model are expected because make is intuitively closer to manufacturer

than to model.
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Given a tag g ∈ G, the representation of g in T is computed by the values

which are initially associated with g as follows.

For all t ∈ T ,

p(t|g) =
p(t, g)

p(g)

=

∑
x∈X p(t, x, g)∑
x∈X p(x, g)

=

∑
x∈X p(t|x)p(x, g)∑

x∈X p(x, g)

=

∑
x∈X p(t|x)ζx,g∑

x∈X ζx,g
(6.1)

Note that before doing tag inference, ζx,g is proportional to the number

of times observing value x with tag g, i.e., p(x, g), thus p(x, g) is replaced by

ζx,g in Equation 6.1. As {p(t|x) : t ∈ T } is a probability distribution,∑
t∈T

p(t|g) =

∑
x∈X

∑
t∈T p(t|x)ζx,g∑
x∈X ζx,g

= 1

This implies Equation 6.1 yields a probability distribution, which is the prob-

ability distribution of tag g in the space of syntactic types T . There are two

factors that determine the representation of tag g. The first factor is the set

of type distributions of values originally associated with g, i.e. p(t|x), and the

other factor is how these values are distributed with g, i.e., ζx,g. Generally

speaking, two tags g1 and g2 are close if their associated values are similar in

their syntactic types, and the distribution of the values are similar.

We can also think {p(t|g) : t ∈ T } as the weighted mean of {p(t|x) : t ∈ T }
for those originally associated values. So {p(t|g) : t ∈ T } represents the

overall syntactic types of those values.
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6.3.2 The Scope of the Semantics

In order to make inferences from one tag to another, the distances between

tags need to be quantified. With the representation of tags as a probabilistic

distribution over syntactic types T , the distance between tags can be deter-

mined by the distance between the two probabilistic distributions. However,

such point-to-point distance function ignores the fact that the type distri-

bution of the tag is determined by other type distributions, and does not

capture the “scope” of the values associated with each tag in the space of

syntactic types.

We therefore need to take the syntactic types of the associated values into

consideration. Let Tg be the random variable taking values in the syntactic

type space T with the probability distribution {p(t|g) : t ∈ T }, i.e., p(t) =

p(Tg = t ∈ T ) = p(t|g). Now we consider the mutual information I(X;Tg).

I(X;Tg) =
∑
x∈X

p(x)DKL[p(t|x)‖p(t)]

=
∑
x∈X

p(x)DKL[p(t|x)‖p(t|g)] (6.2)

Hence, I(X;Tg) is now the weighted KL divergence from all x ∈ X to g

in the space of T .

For two tags g1 and g2, let the two sets of values associated to g1 and g2

are Xg1 and Xg2 respectively. If g1 and g2 are similar in their semantics, the

overall distance from either Xg1 or Xg2 to either g1 or g2 should be similar,

we therefore consider this quantity

I(Xg1 ;Tg2)

I(Xg1 ;Tg1)
+
I(Xg2 ;Tg1)

I(Xg2 ;Tg2)

We give the following lemma before we explain the quantity above.
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Lemma 6.3 (Bregman Information Equality). Let X be a random variable

that takes values in X = {xi}ni=1 ⊆ Rd following the probability measure

π = {π(xi)}ni=1, given a Bregman divergence φ and another point y,

Eπ[dφ(X , y)] = Eπ[dφ(X , µ)] + dφ(µ, y)

where µ = Eπ[X ].

Proof.

Eπ[dφ(X , y)] =
n∑
i=1

π(xi)dφ(xi, y)

=
n∑
i=1

π(xi){φ(xi)− φ(y)− 〈xi − y,∇φ(y)〉}

=
n∑
i=1

π(xi){φ(xi)− φ(µ)− 〈xi − µ,∇φ(µ)〉

+〈xi − µ,∇φ(µ)〉+ φ(µ)− φ(y)− 〈xi − µ+ µ− y,∇φ(y)〉}

As
n∑
i=1

π(xi)(xi − µ) = 0

We then have both
n∑
i=1

π(xi)〈xi − µ,∇φ(µ)〉 =
n∑
i=1

π(xi)〈xi − µ,∇φ(y)〉 = 0

Hence,

Eπ[dφ(x, y)]

=
n∑
i=1

π(xi){φ(xi)− φ(µ)− 〈xi − µ,∇φ(µ)〉

+〈xi − µ,∇φ(µ)〉+ φ(µ)− φ(y)− 〈xi − µ+ µ− y,∇φ(y)〉}

=
n∑
i=1

π(xi){φ(xi)− φ(µ)− 〈xi − µ,∇φ(µ)〉}

+
n∑
i=1

π(xi){φ(µ)− φ(y)− 〈µ− y,∇φ(y)〉}

= Eπ[dφ(x, µ)] + dφ(µ, y)
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By specifying X = Xg1 , π(xi) =
ζxi,g1P
x ζx,g1

and xi being the probabilistic

distribution p(t|xi) in T , then µ =
∑n

i=1 π(xi)p(t|xi) = p(t|g1).

By [BMDG05], let φ(p) =
∑
pj log pj be a strictly convex function on

probability distributions, and thus dφ(x, y) = DKL[p(t|x)‖p(t|y)]. Taking

y = p(t|g2), Lemma 6.3 shows

I(Xg1 ;Tg2) =
n∑
i=1

π(xi)DKL[p(t|xi)‖p(t|g2)]

= Eπ[DKL[p(t|x)‖p(t|g2)]]

= Eπ[DKL[p(t|x)‖p(t|g1)]] +DKL[p(t|g1)‖p(t|g2)]

=
n∑
i=1

π(xi)DKL[p(t|xi)‖p(t|g1)] +DKL[p(t|g1)‖p(t|g2)]

= I(Xg1 ;Tg1) +DKL[p(t|g1)‖p(t|g2)] (6.3)

Similarly, we have

I(Xg2 ;Tg1) = I(Xg2 ;Tg2) +DKL[p(t|g2)‖p(t|g1)]

Therefore,

I(Xg1 ;Tg2)

I(Xg1 ;Tg1)
+
I(Xg2 ;Tg1)

I(Xg2 ;Tg2)

=
I(Xg1 ;Tg1) +DKL[p(t|g1)‖p(t|g2)]

I(Xg1 ;Tg1)
+
I(Xg2 ;Tg2) +DKL[p(t|g2)‖p(t|g1)]

I(Xg2 ;Tg2)

= 2 +
DKL[p(t|g1)‖p(t|g2)]

I(Xg1 ;Tg1)
+
DKL[p(t|g2)‖p(t|g1)]

I(Xg2 ;Tg2)

We now define the distance function between tag g1 and g2 as

d(g1, g2) =
DKL[p(t|g1)‖p(t|g2)]

I(Xg1 ;Tg1)
+
DKL[p(t|g2)‖p(t|g1)]

I(Xg2 ;Tg2)
(6.4)

The definition implies the following two corollaries directly.
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I(Xg1 ; Tg1) I(Xg3 ; Tg3)
I(Xg2 ; Tg2) I(Xg4 ; Tg4)

p(t|g1) p(t|g3) = p(t|g4)p(t|g2)

Figure 6.2: An illustration of the tag distance function

Corollary 6.4.

d(g1, g2) ≥ 0

d(g1, g2) = 0 ⇐⇒ p(t|g1) = p(t|g2)

Corollary 6.5.

d(g1, g2) = d(g2, g1)

Equation 6.4 captures both the direct distance between the syntactic

type representations of g1 and g2, i.e., p(t|g1) and p(t|g2), as well as the scope

of g1 and g2, i.e., I(Xg1 ;Tg1) and I(Xg2 ;Tg2). Thus the direct distance is

“normalized” by the scope of the two tags.

We now give a few examples as shown in Figure 6.2. The closures are

the contour with equal KL divergence to their centers. This distance is

the mutual information between Xg and Tg as defined in Lemma 6.3, so

I(Xg1 ;Tg1), I(Xg2 ;Tg2) and I(Xg3 ;Tg3) are all about the same. Since p(t|g3) is

closer to p(t|g2) than p(t|g1), we have d(g1, g2) > d(g2, g3). Second, when the

KL divergences are the same, the distance increases as mutual information

decreases, as it makes distance relatively larger. In Figure 6.2, p(t|g3) and
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p(t|g4) have the same distance to p(t|g2). However, d(g2, g3) < d(g2, g4) as

I(Xg3 ;Tg3) > I(Xg4 ;Tg4).

Note that with the help of Lemma 6.3, the computation of this distance

function only involves the mutual information about each tag and pairwise

KL divergences between tags, instead of computing the mutual information

between each value set X and each tag p(t|g).

6.3.3 Tag Inference

With the tag distance defined above, we can now perform our tag inference

by taking the power of the negative distance, i.e. e−α·d(g1,g2). α is a parameter

which controls the power of inference. When α is set to be 0, every value is

associated with every tag; when α is set to be infinity, there is no inference

among tags.

Suppose value x is associated to tag g1, g2, . . ., gm with probability

ζx,g1 , ζx,g2 , . . . , ζx,gm respectively, given a new tag g, the probability of x being

tagged by g is thus
m

max
i=1

ζx,gi
· e−α·d(g,gi) (6.5)

In practice, only tags with probability above a certain threshold is worth

considering. Therefore, when d(g, gi) is large for all gi, the probability ζx,g

will be very small, the association between x and g will thus not be recorded.

We now summarize the algorithm to compute tag inferences as follows.

The details about mapping values into a feature space Y will be discussed

next.
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Algorithm 3 Computing Tag Inference

1: Map all values into a feature space Y

2: Compute soft clustering p(t|x) using iIB for all x

3: for all tag g ∈ G do

4: Compute p(t|g) according to Equation 6.1

5: Compute I(Xg;Tg) according to Equation 6.2

6: end for

7: for all pair (g1, g2) ∈ G × G do

8: Compute tag distance d(g1, g2) according to Equation 6.4

9: end for

10: for all value x ∈ X do

11: for all tag g ∈ G do

12: if x was not originally tagged by g then

13: Inference g to x by Equation 6.5

14: end if

15: end for

16: end for
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6.4 Methodology

In this section, we will propose the idea of using the “signatures” of values

for clustering. Values are considered as either string values, or numerical

values, and two different kinds of signatures are developed for these two

types respectively.

6.4.1 Sigram: Signatures for String Values

Observing that many tags are associated with categorical data values, e.g.,

values associated with tag make include ford, toyota, audi, etc. Using q-

gram with small q to represent such values results in many q-grams having

the same frequency. For example, when q = 2, 2-grams oy and ot only appear

in toyota among all categorical values associated with tag make. These two

2-grams are highly correlated since the two always appear together when the

value is toyota. Therefore, the dimensionality of the feature space can be

reduced if such correlated dimensions are combined together, i.e., instead of

having all the 2-grams to, oy,yo,ot and ta from toyota, we combine them

in one single dimension, which is toyota.

This problem has been discussed by papers including Lee et al.[LNS07]

and Li et al.[LWY07], where [LNS07] introduced a wild-card to the alphabets

and [LWY07] proposed VGRAM, which is a set of variable length q-grams of

high quality. In this thesis, we would like to capture those significant q-grams

which are long and frequent, which are called sigram.

Definition 6.6 (Immediate Sub-string). We define string A as an immediate

sub-string of string B if

(i) A is a sub-string of B; and
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(ii) |A| = |B| − 1.

From this definition, it is natural to derive the next related definition.

Definition 6.7 (Immediate Super-string). B is an immediate super-string

of A if A is an immediate sub-string of B.

Considering the case where a q-gram A is as frequent as its immediate

super-string B, we can say B is more significant than A as all strings that

contain A also contain B. Therefore, a q-gram is significant if it is maximal,

i.e., if it does not have any immediate super-string which is as frequent as

itself. We thus define sigram as

Definition 6.8 (Sigram). A q-gram is called a sigram with respect to a set

of string values if

(i) it is frequent; and

(ii) No immediate super-string is as frequent as itself

A significant q-gram behaves much like a maximal frequent itemset [HK00].

If we consider each character as an “item”, a string is then a sequential “item-

set”, the sigram is thus an analog to maximal frequent itemset.

Figure 6.3 shows a lattice from a column containing three strings: pink,

ping and sung. Each arrow represents an immediate sub-string relationship

from a string to one of its immediate sub-strings. The frequency of each string

is written on the right of the string. Although q-gram “in” appears twice out

of three times, it is not considered as a sigram as one of its immediate super-

string, which is “pin” appears the same number of times as itself. Therefore,

this q-gram is not a sigram according to our second criterion. “pin” itself is

a sigram as there is no immediate super-string that is as frequent.
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(pink,1) (ping,1) (sung,1)

(ink,1) (pin,2) (ing,1) (ung,1)

(nk,1) (in,2) (pi,2) (ng,2) (un,1)

(sun,1)

(su,1)

(k,1) (i,2) (p,2) (n,3) (g,2) (u,1) (s,1)

Figure 6.3: Illustration of Immediate sub-string

Note that the frequency of any immediate super-string of a q-gram is

always upper bounded by the frequency of the q-gram itself. A q-gram will be

filtered by the second criterion only when it has only one immediate super-

string. But this seldom happens, and most q-grams can pass the second

criterion, which makes the set of sigrams merely a set of frequent q-grams

by the first criterion. In order to select significant ones out of the frequent

q-grams, we need to relax the second criterion by parameter η. We redefine

the second criterion as “No immediate super-string with frequency greater

than η of the frequency of itself”.

Definition 6.9 (Sigram with Parameters ε and η). Given a pair of parame-

ters ε and η, a q-gram A is a sigram if

(i) FreqA > ε

(ii) 6 ∃B s.t. FreqB > η · FreqA and B is an immediate super-string of A

Take Figure 6.3 for example, if we set ε = η = 0.5, the q-grams that still

remain after the first criterion are {pin, in, pi, ng, i, p, n, g} as they appear

at least twice out of 3 times. By the second criterion, the only q-grams left

are {pin, ng}, which is the set of sigrams.
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Apriori Property In the definition above, we call string A frequent if

FreqA > ε. This definition implies if A is frequent, then both its immediate

sub-strings are frequent. The contrapositive of this statement leads to the

Anti-Monotone property [HK00], which says if a set fails a test, all of its

supersets will fail as well. In our content, if a string is not frequent, all of its

immediate super-strings are not frequent as well. As a result, we can use an

Apriori algorithm to reduce the search space for sigrams.

In our problem setting, instead of having one string completely “belong”

to a set, e.g., a column, strings are associated to tags with probabilities. The

frequency of a string is then the accumulated associated probabilities. For

the pair of parameters ε and η, the algorithm to select all sigrams is presented

in Algorithm 4. Each q-gram Q is associated with a pair of integers: i) Q.wi:

the accumulated associated probabilities of itself, and ii) Q.ws: the maximum

of the accumulated associated probabilities of its immediate super-string.

6.4.2 Signatures for Numerical Values

The second type of tag, i.e., numerical tag, is associated with numerical

values that cannot be treated as strings to make sigrams as their “signature”.

As numerical values are often continuous, which makes it difficult to map

into a set of dimensions, thus, we take histograms as the “signature” of a

numeric tag. Given a parameter m, we can represent a range of values by

2m dimensions, as presented in Algorithm 5

Algorithm 5 builds a set of dimensionsNDg from a set of values associated

with numerical tag g. Each dimension is of width w on the numerical domain,

spreading from the median for at most m stripes towards both sides. Tag g

is now represented by a probability histogram over NDg. Given two tags g1

and g2 whose values are distributed similarly, the histograms obtained from
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Algorithm 4 Selection of Sigrams from string values associated with tag g

Input: A set of string values x ∈ X associated to tag g with ζx,g

A pair of parameters ε and η

Output: A set of sigram SQg as a set of dimensions

1: ζg ←
∑

x∈X ζx,g

2: k ← 1

3: while k = 1 or Ak−1 6= ∅ do

4: Ak ← ∅
5: for all string value x ∈ X do

6: for all k-gram Q appears in x do

7: Ak ← Ak ∪ {Q}
8: Q.wi += ζx,g;

9: end for

10: end for

11: for all Q ∈ Ak do

12: for all Q′, an immediate sub-string of Q, where k > 2 do

13: Q′.ws = max{Q′.ws, Q.wi}
14: end for

15: Remove Q from Ak if k > 1 and Q.wi ≤ ε · ζt
16: end for

17: for all Q ∈ Ak−1 where k > 2 do

18: Remove Q from Ak−1 if Q.ws > η ·Q.wi
19: end for

20: k ++;

21: end while

22: Return SQg =
⋃
k Ak
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Algorithm 5 Construction of numerical dimensions from numerical values

associated with tag g

Input: A set of numerical values x ∈ X associated to tag g with ζx,g

A granularity parameter m

Output: A set of numerical dimensions NDg

1: ζg ←
∑

x∈X ζx,g

2: Get median xm = arg maxx0

∑
x<x0

ζx,g ≤ 1
2
ζg, lower quartile xl =

arg maxx0

∑
x<x0

ζx,g ≤ 1
4
ζg, upper quartile xu = arg maxx0

∑
x<x0

ζx,g =

3
4
ζg, minimum value xmin and maximum value xmax from X

3: Let w ← xu−xl

m

4: Let NDg ← ∅: the set of numerical dimensions constructed by g

5: Let nl ← min(m, ceil(xm−xmin

w
))

6: for all i ∈ {1, 2, . . . , nl} do

7: Construct numerical dimension on interval [xm− i ·w, xm− (i− 1) ·w)

(the most left dimension has no lower bound)

8: insert this dimension into NDg

9: end for

10: Let nr ← min(m, ceil(xmax−xm

w
))

11: for all i ∈ {1, 2, . . . , nr} do

12: Construct numerical dimension on interval [xm + (i− 1) ·w, xm + i ·w)

(the most right dimension has no upper bound)

13: insert this dimension into NDg

14: end for

15: Return NDg
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the numerical dimensions NDg1 and NDg2 will be similar too.

There may be overlapping dimensions between numerical dimensions con-

structed by different tags. So when numerical dimensions are put together,

it is a partition on the numerical domain, thus this results in certain degree

of redundancy.

Together with the set of sigrams that are obtained from string tags, we

now have a set of features/dimensions Y . Note that space Y in Chapter 4

and 5 are the set of q-grams since only string values are dealt with. For a

value x ∈ X , p(Y |x) represents the probabilistic distribution of x over Y ,

obtained as follows.

For a string value x and a sigram y, p(y|x) ∝ k · w(y) if the sigram y

appears in value v for k times; for numerical value x and a numerical dimen-

sion y, p(y|x) ∝ w(y) if y.min ≤ x < y.max, where w(y) is the weighting

function on dimension y. p(Y |x) is then normalized so that
∑

y∈Y p(y|x) = 1.

The clustering part of the algorithm is similar to what we described in

Chapter 4. We now proceed to the experimental study to validate the mea-

sure of tag distance we proposed.

6.5 Experiments

6.5.1 The Effectiveness of the Tag Distance

We first validate our distance function by finding out which tags are near

to each other. 40 tables in the manyeyes car database, introduced in Sec-

tion 4.5.1, and one table from GoogleBase are selected. The column names

are taken as tags, where tags starting with g are attributes from GoogleBase.

Values are sampled at the rate of 10%, the upper bound for the number of

clusters, K, is set at 200. The result is shown in Table 6.4. Most pairs of tags
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identified by very small distances are semantically similar, which is suggested

by the names of the tags. We have also examined values from the column,

and the human judgments on whether two tags are similar are indicated

in the last column in Table 6.4. Note that our method is a pure syntactic

type based method, it does not include some simple external heuristic, e.g.,

by looking at the tag names. Thus there are tag pairs with similar values

on their syntactic types, but with different semantics. This is the case for

g price and mileage since they are both of numerical type and ranging from

couples of thousands to several tens of thousands. But the majority of the

tag pairs identified are consistent in their semantics. Our tag inference is

thus effective in general.

6.5.2 The Robustness of the Tag Distance

We further validate our approach by some semi-real data with controlled dis-

tributions to show our measure between tag pairs is robust. As GoogleBase

provides options on attribute names for users to upload data, the entire

database is in fact quite well organized, and is unlikely that there are two

attributes carrying the similar semantics. There are 15 attributes and about

2 million data values. We pre-processed GoogleBase dataset as follows.

For each of the attribute, we created a number of different tags with

the same prefix. For example, we created another 9 tags make a, make b,

. . . make i from the original attribute name make. These tags are used to

simulate different tags from heterogeneous data sources, but with the same

semantics. As we noticed that the number of databases decreases as the size

of database increases, these 10 tags are divided into four groups with different

weighting schemes.

Given a positive parameter p, the first group contains 4 tags, make,
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body type

color

condition

doors

drivetrain

engine

fuel type

hull material

make

mileage

model

price

transmission

vehicle type

year

Figure 6.4: Tag distance bitmap: the closer two tags are, the darker the pixel

is

make a, make b and make c, which are assigned with weight 1p, the second

group contains 3 tags, make d, make e and make f, which are assigned with

weight 2p, the third group has only two tags, make g and make h, having

weight 3p, the last group, with the sole attribute make i, is assigned with

weight 4p.

With different weights assigned to each tag, we can calculate a probability

distribution with probabilities proportional to their weights. The next is to

assign every value to a tag according to this probability distribution. The

assignment will give associated probability 1, but associated probabilities

with other tags are to be inferred. For example, if p = 0, the tags are

uniformly randomly assigned, if p = 1, the probability for each tag in the first

group is 5%, and becomes 10%, 15% and 20% for each tag in the second, third

and last group respectively. In the experiment, we consider each tag as a tag,
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Figure 6.5: Tag distance steady increases regardless of the parameter p

and then obtain the tag inference after clustering the values. The clustering

ran 3 times with a different initialization on a 2% sample (∼40 thousand

data values), while tags generated about 800 dimensions. We expect tags

with the same original attribute name to be high.

Figure 6.4 visualizes the pairwise distance between tags. Each row and

column represents a tag, the distance between the row tag and the column

tag at a given pixel is inversely related to the darkness of the pixel. Note

that the tags are arranged in the same order in both the row and column

orientation, and tags with the same original attribute name are grouped to-

gether. Therefore, the small squares on the diagonal are dark as the distances

between tags with the same original attribute name are small. The outlier is

the fourth last attribute price and the sixth last attribute mileage. Their

off diagonal intersections still give a moderate greyscale, meaning that these

tags, although not having the same original attribute name, are closer to one
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another.

Figure 6.5 shows how the maximum of the smallest-k all pair distances

change as varying parameter p. Firstly, tag distance is very small when k

is less than 1000. As shown in Figure 6.4, these small distances come from

tags with the same original attribute name. Secondly, the increment of the

tag distance is stable regardless of the parameter p, i.e. regardless of how

the distributions are. Therefore, our distance measure is robust.

6.5.3 Performance

As there are about 2 million data values in the GoogleBase dataset, we only

sampled 10% to compute the clusters of types. This clustering of these 200

thousand values took about 1 hour. With these clusters, we then compute

the cluster distribution for each of the 2 million values, which took about

half an hour. The computation of tag distance is then fast once the cluster

distributions are computed.

Although it spent more than an hour to compute the pair-wise tag dis-

tances for 150 tags, the re-computation of tag distances is not carried often.

Only when there is a major change in the type distribution for one tag, the

tag distances involving this particular tag ought to be updated, which incurs

partial computation of the cluster distributions.

6.6 Summary

In this chapter, we actually made use of column heterogeneity, i.e., the type

distribution for each tag, to infer the semantics of the tags. Hence the tag

distances and tag similarities are computed based on the type distribution

of the tags. The tag distance between two tags considered both the type
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distributions and their scopes. We have also proposed signatures for string

values, i.e., sigrams, as well as signatures for numerical values, to improve

the clustering efficiency. The tag distance is validated on both semi-synthetic

dataset and real dataset, and we concluded that the proposed tag distance

is sound and robust.
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Tag 1 Tag 2 Distance Similar?

drive wheels drive 0.000
√

hwy mpg unadj cmb mpg 0.010
√

highway mpg hwy mpg 0.036
√

retail price dealer cost 0.038
√

g color color 0.040
√

power hp 0.044
√

g make manufacturer 0.071
√

highway mpg unadj cmb mpg 0.077
√

bore stroke 0.127
√

highway mpg epa hwy mpg 0.165
√

city mpg mpg 0.233
√

highway mpg mpg 0.264
√

epa hwy mpg hwy mpg 0.272
√

epa hwy mpg unadj cmb mpg 0.304
√

cyl cylinders 0.306
√

city mpg epa city mpg 0.309
√

make manufacturer 0.388
√

hwy mpg mpg 0.424
√

epa hwy mpg mpg 0.442
√

mpg unadj cmb mpg 0.468
√

g price mileage 0.516 ×
cyl air pollution score 0.635 ×
city mpg highway mpg 0.732

√

epa city mpg mpg 0.741
√

myear year 0.758
√

g price dealer cost 0.801
√

g year myear 0.989
√

Table 6.4: Tag pairs with distance less than 1
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Conclusion

In this thesis, we have studied the problem of column heterogeneity from

three aspects. The column heterogeneity measure is first addressed in Chap-

ter 4, the schema matching validator is then proposed in Chapter 5 and the

probabilistic tagging is finally discussed in Chapter 6.

• In Chapter 4, we built a foundation for the whole thesis, i.e., identifi-

cation of the syntactic types from one single column, and the identified

syntactic types give the measure of the column heterogeneity.

• This is followed by Chapter 5, where syntactic types identified from

multiple columns are put together to tell how well these columns can

be integrated. Additional techniques are developed for partial matches

as well.

• In Chapter 6, the syntactic types are further extended to semantics by

considering semantics as distributions in the space of syntactic types,

so as to infer probabilistic association between values in one column to

those similar columns.

144
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These chapters together give an overall framework from intra-column het-

erogeneity to inter-column heterogeneity, and also extend from the syntactic

perspective to the semantic perspective.

We claim that columns are important to databases, no matter in the

conventional RDBMS, or in any kind of emerging data model. Instead of

enforcing every column in a database to be homogeneous, with the series of

techniques we developed in this thesis, heterogeneous columns in databases

can be well managed.

With our management techniques on heterogeneous columns discussed in

this thesis, we hope our methodologies can be utilized for future database

technologies.
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