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Summary 

 

Many examples of real-world autonomous agent applications can be found 

nowadays, from exploring space to cleaning floors. AI planning is a technique that is 

often used by autonomous agents, i.e., planning is a problem-solving task to produce a 

plan, which can then be performed by an autonomous agent. For example, when given 

a goal of “package should be in city1”, a planning system utilizes possible actions, 

like “move truck from between two cities”, “load/unload package to/from truck”, etc., 

to generate a plan that is composed of a set of these actions to achieve the goal. This 

thesis focuses on dealing with planning systems that have loose plan structures 

designed to solve large-scale real-world problems. Loose plan structure involves 

actions in the plan that have no explicitly represented relations, like indicating that 

one action is added for achieving another. A lack of such causal information might 

result in an inefficient planning process.  

The goal of this thesis is to speed up planning systems that have loose plan 

structures using local search approaches to create plans. To address the potential 

inefficiencies, we propose a novel technique that uses explanation structures to retain 

some causal information acquired during planning. To improve the planning 

performance by utilizing explanation structures, we generate Multiple-In-Single-Out 

(MISO) causal networks, and develop algorithms to update and exploit these 

structures, in order to dynamically generate macro-actions and operate on them.  

To evaluate the proposed approach, we implemented a prototype based on a 

planning system named Crackpot. Our approach is promising to improve the planning 

performance by the usage of macro-actions.    
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Chapter 1   Introduction 

Using AI techniques to solve real-world problems is pervasive in our real life. 

Planning is a particularly important AI technique for problem-solving, i.e., it is to 

come up with a set of actions that will achieve a given goal; this set of actions is 

known as plan [1]. For example, “gotoKitchen”, “takeApple” and “eatApple”, and so 

on, are the set of actions that can be added into the plan, achieving the goal that the 

player should not be hungry (as shown in Figure 1).  

To find a plan, search methods are necessary, and are closely related to the 

planning performance (it can be on planning speed or plan quality). Local search 

methods are not new techniques used in planning to quickly find a plan, such as their 

usages in LPG [2] and Excalibur [3]. Planning using local search methods iteratively 

repairs the current plan to get a better successor plan until all inconsistencies are 

solved or its stopping criteria are satisfied. The plans are evaluated by an objective 

function.  

Some local-search-based planning systems (they are also called “planners”) 

that have loose plan structures are designed to solve large-scale and complex real-

world problems [4] (systematic search might be not applicable for those problems). 

Loose plan structure involves actions in the plan that have no explicitly represented 

relations, like indicating that one action is added for achieving another. However, a 

lack of such causal information might result in an inefficient planning process. 

Although lots of local-search-based heuristics are developed to improve the planning 

performance, like heuristic using randomization to jump out of local minima, there is 

still a lot of room for improvement. Let’s look at a concrete planning example as 

shown in Figure 1 for a better understanding of this problem. 
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eatAppleopenDoor

eatBread

not hungry

takeApple
moveFromOutsideKit

chenToInsideKitchen

gotoStore buyBread

Goal
hungry

Initial state

...

time t0

 
Figure 1: An Apple Domain Example 

In the example, the goal given to the planner is that a player should not be 

hungry (initially he is hungry). To achieve the goal, the planner generates a plan that 

is composed of a set of actions: “openDoor”, “moveFromOutsideKitchenToInside-

Kitchen”, “takeApple” and “eatApple, i.e., the set of actions that are shadowed in red 

color in Figure 1. Temporal constraints can be enforced on these actions such that 

they can be executed in a given order. However, the agents that execute the plan don’t 

know why these actions are added into the plan, since a set of actions need not be 

causally connected.  

If the problem domain is complete, static and very simple, the planning 

process can be very easy. However, lots of real-world domains don’t have those 

features. They might be dynamic or open - that is, the domain information can be 

modified during the planning process. One of the scenarios is that, in a multi-agent 

domain, after the planner generates the above plan for an agent, the other agents might 

change the environment before the plan is completely executed. For example, another 

player might suddenly lock the door of the kitchen and destroy the key. Then the 

previous plan for the first player becomes infeasible, because the action “openDoor” 

is infeasible without the key. The state of “Having key” is a precondition of 

“openDoor”, and it is currently inconsistent. These infeasible or useless actions will 

reduce the plan quality. Thus, the planner needs to repair the current plan in order to 

successfully achieve the given goal again.  
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There are two ways that can be used to repair plans: removing actions that 

have inconsistencies and adding new actions to resolve existing actions’ 

inconsistencies. Due to the loose plan structure in the above example, a problem 

hinders the repairing process; the planner doesn’t know which action is added for 

what purpose. Thus, the planner uses a greedy and potentially inefficient way that 

iteratively removes the action that has the most significant inefficiency from the 

current plan, or adds a new action to resolve the inconsistency. Four iterations are 

needed for removing the four actions from the previous plan and three more iterations 

are needed for adding three new actions: “gotoStore”, “buyBread” and “eatBread” 

into the current plan. Lots of computation time is needed in every iteration to make a 

greedy choice to repair the current plan.  

The above inefficient behavior and the time costs might be acceptable in some 

applications that have soft requirements. However, taking mobile electrical devices as 

an example, they might not be able to have processor as fast as desktop computers. 

Thus, there is a need to improve the planning performance of these planners. 

eatAppleopenDoor

eatBread

not hungry

takeApple
moveFromOutsideKit

chenToInsideKitchen

moveToCoffeeTable takeBread

Goal
hungry

Initial state

...

time t0
 

Figure 2: An Apple Domain Example with Explanations 

Let’s have a look at what the planner can do if the causal information in the 

plan is straightforward (refer to the explicit representation of the causal relations 

between actions in Figure 2). When the action “openDoor” in the current plan become 

infeasible, the planner can conclude that the sequence of actions: “moveFromOutside-

KitchenToInsideKitchen”, “takeApple” and “eatApple” are all required to achieve the 

given goal, by forwards exploiting the explicit causal information. Thus, once 
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“openDoor” is infeasible, these three actions will also become infeasible. Therefore it 

is reasonable for the planner to consider removing all of them in one iteration. The 

time cost of exploiting such straightforward causal information promises to be less 

than the time cost of searching for successor plans and analyzing them in the four 

iterations (in each of which one action is removed). Thus, the planning process can be 

made potentially more efficient by utilizing causal information, and the usage allows 

AI algorithms to be used in real-time on low power processor.  

1.1    Goals of the Thesis 

The goal of this thesis is to speed up planners that have loose plan structures 

using local search approaches to create plans.  

As mentioned above, the planners can quickly have a further view for 

searching for better and more reasonable successor plans, by using the straightforward 

causal information. Thus, to address the potential inefficiencies of using loose plan 

structures, we propose a novel technique using “explanation structures” to retain some 

causal information that is acquired during planning, generate a type of causal 

networks that is named Multiple-In-Single-Out (MISO) in this thesis and develop two 

associated algorithms. The first algorithm updates the MISO causal network 

whenever the plan is changed while the second algorithm exploits the MISO causal 

network to yield more reasonable and more significant change that can better improve 

the plan. Detailed contents of this research will be introduced in Chapter 3 and some 

implementation related issues will be introduced in Chapter 4. In the next section, we 

will clarify the methodology of doing this research.  

1.2    Methodology 

This thesis consists of 5 chapters.  
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In Chapter 1, we first described our motivations of doing research in the field 

of AI planning, and using causal explanation to improve planning performance. Next, 

we declared the goal of this research, and proposed a novel approach to achieve the 

goal. Finally, the methodology of doing research is introduced in this section. The 

proposed approach for improving the planning performance can be divided into four 

parts:  

1) Designing causal explanation structure;  

2) Developing an algorithm updating a type of causal networks named MISO;  

3) Developing an algorithm for exploiting MISO causal network;  

4) Implementation of the above three parts in Crackpot and evaluation.  

To achieve the above four points, the knowledge of AI planning, algorithms, 

search paradigms, explanation concepts are essential. In addition, the other lessons 

that are in the field of AI, algorithm and statistics knowledge are also contributive to 

the thesis. Learning statistics knowledge is for the purpose of using probability 

knowledge in the above two algorithms and for presenting the evaluation results.  

The background, related work and some analysis of plan structures are 

presented in Chapter 2. For the purpose of enhancing the loose plan structures, 

features of the loose plan structures are analyzed and generalized. Next, to get 

inspiration from other robust plan structures, different kinds of planning paradigms 

are reviewed and four of them that have commonly used plan structures are analyzed 

in this research. However, in order to analyze planning paradigms one should have a 

background of AI planning and search paradigm. Thus, this background needs to be 

acquired as a foundation of the analysis mentioned above.   

After getting the essential background, the detailed research and the 

corresponding implementation are carried out in Chapter 3 and Chapter 4, 
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respectively. Enhancing the loose plan structures by using causal information also 

increases the planners’ time and memory costs. Therefore, we have to find a trade-off 

between the extra costs and the cost reduction due to the causal information. To find 

the balance point, we first did a case study and characterized some cases in terms of 

when to explain causal information. Next, in terms of the way of keeping the causal 

information, four types of causal networks are analyzed. The current research is 

focused on one type of causal networks named Multiple-In-Single-Out (MISO), 

because MISO appears to be relatively more reasonable and less costly than the other 

types. Since the plan structures will be updated after the plan changes, an updating 

MISO algorithm is essential. However, enhancing the loose plan structures is not our 

ultimate purpose. Instead, the aim is to speed-up planning by utilizing the enhanced 

plan structures. Thus, an exploiting algorithm is necessary.  

The planning system named Crackpot is chosen as the base system to test the 

performance of this proposed approach. However, at the beginning of my candidature, 

Crackpot was not a completed system. Thus, both constructing Crackpot and 

implementing our approach on Crackpot were important. Since the current research is 

focused on the causal information that is related to symbolic attributes, my work of 

implementing Crackpot is related to symbolic attributes (refer to Chapter 4). Besides, 

evaluating the approach by using two types of domain problems is also one of the 

experimental settings. Thus, a background of domain representation and various 

planning domains should also be a part of the literature review. The contents in 

Chapter 4 includes an overview of crackpot architecture, its planning process with the 

two algorithms highlighted, designed models of explanation structures in Crackpot, 

etc.  
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Finally, a conclusion is drawn and possible future work of the research is 

listed in Chapter 5.  
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Chapter 2   Background and Literature Analysis 

To obtain an understanding of the problem of local-search-based planning, it is 

necessary to have a general background of both planning and local search. This 

background will be introduced in Section 2.1. Furthermore, as mentioned in the 

previous chapter, our research is focused on the local-search-based planners that have 

loose plan structures. When repairing plans, those planners might make trivial or 

wrong decisions on choosing plan successors with a lack of straightforward 

connections between actions. These decisions will slow down the planning. As 

analyzed in Section 1.2, enhancing the loose plan structures promises to reduce the 

time costs. However, this reduction is not simply proportional to the amount of this 

information that is used to enhance the plan structures. The issues on what 

information is useful and how to represent the information is beneficial are also 

important. To address these two issues, we will give some analyses on four planning 

paradigms that have commonly used robust plan structures, after introducing the 

above general background. These analyses are focused on the plan structures (refer to 

textbook [1,5] for more details if interested). Next, because we use a concept 

“explanation” to store some causal information in this research, we will also give an 

introduction on some other explanation concepts used in other areas and their 

respective usages in Section 2.2. Our explanation usage is to reasonably group some 

of the actions together dynamically during the planning. The usage is similar to the 

concept of macro-action in the field of AI planning. For this sake, we also make some 

analysis on macro-action in the last part of this chapter.  
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2.1    AI Planning Introduction 

Planning is a vast field and a key area in AI. There are many practical 

planning applications in industry. A few examples are design and manufacturing 

planning, military operations planning, games, space exploration, web service 

composition and workflow construction on a computational grid. Planning techniques 

are introduced in progressively more ambitious systems over a long period, such as 

local search techniques [5].  

Unfortunately, we do not yet have a clear understanding of which techniques 

work best on which kinds of problems[1]. To do good research, it is worthwhile to 

take a look at how AI planning researchers conduct their research on AI planning as 

well as the achievements and performance of their approaches.  

In AI planning, typically there are two main ways to improve the planning 

performance: proper plan representations with respect to different kinds of planning 

applications, and search algorithms which can take advantage of the representation of 

the planning problems. We deal with local-search-based issues in this research. 

Nonetheless, both planning and search algorithms are huge topics. This thesis present 

will not cover all planning systems and searching techniques. Instead, we first give 

readers a sense about what kinds of domain problems we are interested to solve and 

what features those problems have. After that, with respect to those features, we 

explain why local-search-based planners that have loose plan structure are dominant 

in solving above problems. However, potentially inefficient and unintelligent search is 

one of disadvantages of using loose plan structure. To have a good understanding of 

how other planners benefit from using robust plan structures and what might be 

helpful for our research, we analyze some commonly used planning paradigms in 

terms of their plan structures. On the other hand, search techniques play an important 
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role in planning, and they are inseparable from plan structures. Thus, we briefly 

analyze two search paradigms in advance of analyzing planning paradigms.   

2.1.1   Properties of Real-World Environments 

With respect to some properties of the planning problem environment, 

planning that deals with fully observable, deterministic, finite, static, and discrete 

problems with restricted goals and implicit time is classified as classical planning [1]. 

Furthermore, classical planning is also offline planning regardless of the current 

dynamics, if any, during the planning process.  

In contrast, most of real-world environments are so complex that they have 

properties like: partially observable, non-deterministic, sequential, continuous, 

dynamic, and multi-agent (an agent is the one that can perceive the environment 

through sensors and act upon the environment through actuators [1], like a robot). For 

practical purposes, online planning sometimes is needed for real-world planning 

problems. “Online” indicates that plan making and execution are interleaved, in order 

to handle changes in state of an environment, which is typical for real-world scenarios.   

Thus, the properties of real-world environment are completely different from 

that of the classical planning problem. The comparisons are listed as follows: 

 Partially observable. It means the entire state of the environment is not 

fully visible to an external sensor. For example, in a multi-agent 

environment, an agent cannot see what actions other agents perform that 

might change the whole environment. While in classical planning, the 

complete state of the environment is known at each point in time. 

 Non-deterministic. If the outcome by executing an action on a state is 

always the same, the environment is deterministic, otherwise the 
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environment is non-deterministic. In a complex and competitive 

environment, it is usually not practical to keep track of all aspects all the 

time. When the environment is partially observable it could appear to be 

non-deterministic. For example, taxi driving is non-deterministic because 

the traffic situation can be unpredictable. In contrast, in a deterministic 

environment of two rooms that can be cleaned by a robot, if the robot is 

currently in a room, it can enact “Clean” and the room will always be 

clean after that. 

 Sequential. It means the current decision could affect all future decisions, 

like taxi driving environment. Otherwise, the environment is episodic, like 

the above cleaning robot environment. Many classical problems are 

episodic.   

 Dynamic or semidynamic. If an environment changes over time when the 

agent is deliberating (or we can say “planning”), then it is dynamic, 

otherwise, it is static. Taxi driving can be dynamic or semidynamic (that is 

assuming the environment doesn’t change, but the taxi driver will get 

penalty if the car doesn’t move).  

 Continuous. In the real world, actions always have explicit durations, or 

goals are to be achieved before a time slot according to a temporal 

constraint, thus explicit time is necessary. While in classical planning 

implicit time is used. 

 Multi-agent. For example, in taxi driving problem, there are multiple 

drivers in the whole environment, who can affect each other. 

 Extended goals. In the real world, not only the final goal but also the states 

traversed are concerned. The form is to set some constraints on the 
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trajectories of planning. For example, in Logistics-type problems, a truck 

is required to accommodate at most one package at one time.  

 Infinite. Resources, like food, in a real world can be consumed or produced 

and this will cause the environment to have infinite states. For example, a 

state can be “the i
th

 bread exists” or “the i
th 

bread doesn’t exist”. Breads 

keep being consumed and produced. Thus, the quantity of the breads will 

be infinite and result in the fact that these bread-related states are infinite. 

The diversity of the real world problems which have combinational properties 

with some or all of above properties causes the difficulty of planning. Our 

explanation-based approach works for planners that have a subset of the features 

listed above, except the Non-deterministic feature. A great deal of research targeted at 

solving real-world problems has been done on planning, including research on search 

techniques for good planning performance, like finding  solution plans faster. We will 

analyze search paradigms in planning in the next subsection.  

2.1.2   Search Paradigms in Planning 

To quickly find a solution, two search paradigms are commonly used in AI 

planning: refinement search and local search, as highlighted in Figure 3.  

 

Figure 3: Search Paradigms (taken from [3]) 
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2.1.2.1   Refinement Search 

Refinement search is also called split-and-prune search [6]. Subbarao 

Kambhampati pointed out that “Almost all classical planners that search in the space 

of plans use refinement search to navigate the space of ground operator sequences and 

find a solution for the given planning problem” in his technical report in 1993[7]. 

“Ground operator” is called “action” in some other planners.  

A refinement based planner starts with a partial plan and repeatedly adds 

details to the partial plans until all constraints (plan candidate set are implicitly 

represented as a generalized constraint set) are satisfied. Each time, by adding more 

details, the search space can be split into two parts as shown in Figure 3. One part of 

the plan space is to be pruned, in which each of the plan candidates is inconsistent 

with some constraints. The split-and-prune process is to be repeatedly done on the 

remaining plan space until a solution candidate (also can be called a solution plan) can 

be extracted from the remaining plan space in a bounded time. Note that in the 

refinement process, backtracking is sometimes necessary.  

Traditionally, refinement techniques apply a complete search. As compared to 

exhaustively systematic search, refinement search ensures much greater planning 

efficiency by repeatedly eliminating large part of plan search space that is provably 

irrelevant. Total-order, partial-order and hierarchical planning are typical instances 

of refinement-search-based planning (refer to[5] for more details of these three 

planners). In these planners, their plan structures contain some information that 

ensures the backtracking. We will later give more detailed analysis on these planning 

paradigms.  

Nonetheless, it is usually not feasible to consider the whole search space for a 

variety of real-world problems. With regard to such “Infinite” property of the problem 
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environment, techniques which stop the search at some point become necessary, such 

as local search techniques. Local search is to be analyzed in the next subsection.  

2.1.2.2   Local Search 

A Local search method starts from a candidate solution and iteratively moves 

to another solution in its neighborhood in the space of candidate solution, until an 

optimal solution is found or a time bound is elapsed. The solutions that the current 

candidate solution can move to are called neighbors of the current candidate solution. 

For a local-search-based planner, any partial plan can be a candidate solution, and the 

operation of updating the current plan with another plan is called repairing.  

Typically, every partial plan has more than one neighbor. Thus, quality 

evaluation on plans which are in the neighborhood of the current plan is necessary in 

order to find an optimal plan. Plan quality evaluation can be done by an objective 

function.  

Local search algorithms have been used to improve planning efficiency in a 

somewhat indirect way [8]. For example, in every iteration local search methods 

typically estimate only some (not all) of plans in the neighborhoods in a bound time 

and heuristically move to one/some of evaluated plans. Thus, a local search algorithm 

is typically incomplete.  

On the other hand, unlike systematic search algorithms, which need to keep a 

large amount of explored plans together with searching histories because of 

backtracking if necessary, a typical local search algorithm stores only the current plan 

and doesn’t retain the trajectories of searching history. Thus it has low memory 

requirements. The needed memory is O(1) level to the plan space.  
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Local search methods have found application in many domains. A well-known 

Walksat procedure is for solving SAT problems [2][8][9]. Inspired by Walksat, LPG 

uses stochastic local search procedure Walkplan[2] for solving planning graphs. 

GSAT was introduced by Selman, Levesque & Mitchell (1992), which solves hard 

satisfiability problems using local search where the repairs consist of changing the 

truth value of a randomly chosen variable. The cost function in GSAT is the number 

of clauses satisfied by current truth assignment [8]. Excalibur (Nareyek, 1998)[3] uses 

local search to facilitate an uncomplicated and quick handling the environment’s 

dynamics with interleaved sensing, planning and execution.   

2.1.2.3   Discussion 

Some comparison between systematic search (like refinement search) and 

local search on several aspects are listed as follows: 

 Speed and complexity. Compared to systematic search, which takes 

prohibitively long and uses large amount of resources, local search reveals 

its advantages in complexity of both planning speed and memory 

requirement. The use of local search has become very popular for tackling 

complex real-world optimization problems; complete search methods are 

still not powerful enough for solving these kinds of problems, because the 

search space of real-world domains is combinatorial in nature. For 

example, systematic search methods are computationally costly in 

problems that use large number of actions or objects, constraints by time 

and resources, and so on [1]. Furthermore, supported by various local-

search-based heuristics well developed in the past twenty years, local 

search algorithms can often find reasonable solutions in large or infinite 

(continuous) space. 
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 Optimal plan. If a problem has a solution, there is no guarantee that the 

optimal solution will always be found by using local search, because the 

search is incomplete. However, it is guaranteed by systematic search 

algorithms, like refinement search.  

 Proving unsatisfiability. In cases where no solution is found, local search  

is unable to prove the unsatisfiability, while refinement search algorithms 

will return a failure in this case after exploring the whole search space.  

 Anytime planning. Anytime planning is another advantage of local-search-

based planners. It means that the planner can output a plan at anytime even 

though the plan quality might be not optimal. In the real world, an anytime 

solution is sometimes needed. Refinement search terminates either with a 

ground plan or a failure, and a plan is found when one branch is exploited 

completely.  

In a word, for large combinatorial problems [10] including complex structures, 

dynamic changes and anytime computations [4,11], local search methods have been 

effectively used. Thus, we take local-search-based planning as our research object.  

In recent years, several meta-heuristics have been proposed to extend local 

search in various ways [12].  

A tricky issue in the context of real-world problems is that some space usually 

contains many local minima which cause difficulty for local search algorithms to get a 

global optimal plan. To escape from local minima, various researches on heuristics 

have been undertaken and good results have been achieved by incorporation of 

randomness, multiple simultaneous searches, and other improvements. In recent years, 

to address the problem of jumping out of local minima, there has been a great deal of 

research and experimentation to find a good balance between greediness and 
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randomness [1]. For example, after evaluating some neighbors in a bound time, if 

some better neighbors can be found, then a local search algorithm can heuristically 

move to one of them. Otherwise it randomly moves to one of neighbors with a 

probability.  

Some advanced algorithms, such as Variable-depth search, simulated 

annealing and tabu search, were used to minimize the probability of being stuck in a 

low-quality optimum (local minimum) [12]. Variable-depth search is based on 

applying a sequence of steps as opposed to only one step at each of iteration. When a 

worse neighbor is chosen, simulated annealing selects it with some probability which 

is decreased over time analogous to physical temperature annealing. Simulated 

annealing guarantees that it converges asymptotically to the optimal solution, but it 

requires exponential time. 

Another issue is that local search might repeatedly explore one/some of 

explored plans because of the fact that local search doesn’t retain the search history, 

and it searches locally. Ideas like using tabu-list to retain the last k visited plans are 

used to address the issue. Empirical studies showed that tabu search can help improve 

the planning performance (the size the neighborhood can be decreased and searching 

can be speed up). It can also consider a solution of higher cost if it lies in an 

unexplored part of the space.  

Inspired by tabu search mentioned above, appropriately retaining some useful 

information during search can accelerate search. In this thesis, we propose a novel 

approach that uses explanations structures to retain some other useful plan 

information and use them to accelerate planning. The detailed case study and research 

will be introduced in Chapter 3.   
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2.1.3   Analyzing Plan Structures  

As of now, we have a basic understanding of features of real-world planning 

problems and two search paradigms commonly used in AI planning. In this subsection, 

we will first analyze general features of loose plan structures. To get an inspiration of 

how to enhance loose plan structures from others, we will analyze four planning 

paradigms that have commonly used plan structures. 

2.1.3.1   Features of Loose Plan Structure 

Excalibur is a planning system that uses loose plan structure for solving real-

world planning problems. Figure 4 illustrates a plan example in Excalibur.  

 

Figure 4: A Plan Example in Excalibur (taken from [3]) 

Excalibur uses explicit time representation, i.e., actions have start times and 

durations. Actions are projected by the timeline but they are not explicitly connected. 

As can be seen from the example, the action “Open Door” makes another action “Pass 

Door” possible to occur. However the causal relation between those two actions is not 

explicitly represented; it can only be acquired in a non-straightforward way that 

analyzes the state projection of the door. Searching for causally relevant actions in 

this kind of plan structure is inefficient.  
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Plan structures that have the following basic features are defined as loose plan 

structures in this thesis:  

1) All Actions in the plan are temporally ordered; 

2) There is no explicit connection between actions in plan structure. 

Supposing A is a set of actions, an explicit connection p is a tuple <ai, aj> 

where ai, and aj ∈ A. A data structures that can be directly translated to a p, 

is also regarded as an “Explicit connection” between actions. For example, 

causal links in POP [5] and a hierarchical relationship between a high-

level action and a low-level action in HTN planner [1] are some forms of 

explicit connection; 

3) An action has preconditions and effects.  

4) There should be a specific representation of preconditions and effects that 

can be used to easily analyze a causal relation between a precondition and 

an effect. For example, a variable “Whether John owns an apple” has only 

two possible states: “John has an apple” or “John doesn’t have an apple”. 

Thus, the variable can be formally represented as a Boolean attribute 

variable “John.hasApple” that has “true” or “false” value referring to 

above two states respectively. Besides, the order between preconditions 

and effects is also important for analyzing the causal relation because it is 

impossible that a precondition has causal relation between effects that 

occur after it. Suppose the time representation is used to address the 

ordering problem, a state can be represented as “John.hasApple == true @ 

t1”. Using this representation, the causal relation between an effect and a 

precondition can be analyzed in terms of the following three requirements: 

they have the same value on the same variable and they belong to different 
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actions; secondly, suppose the effect and the precondition are states at time 

t1 and t2 respectively, then “t1< t2” should be satisfied; finally, there is no 

action that occurs during time t1 and t2 and changes the value of the effect. 

Planners that have robust plan structures where actions are explicitly 

connected can be converted to the above general loose plan structures, but not vice 

versa. If during the converting no p is dropped, then the planner can also be regarded 

as having loose plan structure. For example, Excalibur system has feature 1), 2) and 

4), but it uses concepts of “condition” and “contribution” instead of “precondition” 

and “effect”. Similar to a precondition, a condition is related to states of an attribute 

variable. But a contribution is a state transformation behavior to an attribute variable. 

An effect is a result of a contribution in Excalibur system. Thus, Excalibur can be 

regarded as this type of planning system. 

2.1.3.2   Total Ordered Planning  

Early planning systems constructed plans in a total order [3]. The total-ordered 

planning paradigm originated from the earliest planning system, STRIPS [13], is 

roughly synonymous with the notion of “classical planning” as described in 

subsection 2.1.1.  

move (Truck1, 

City2, City1) 

load (Box1, 

Truck1)

move(Truck1,

City1, City2) 

unload (Box1, 

Truck1)

 an action

temporal relation

Initial State: Truck1 in City2; Truck 2 in City 3; 

                     Box1 in City1; Box2 in City3

Goal:            Box1 in City2, Box2 not in City3

move(Truck2, 

City3, City4) 

load (Box2, 

Truck2)

 

Figure 5: A Total Ordered Plan Example 

A total ordered planning paradigm searches in a state space. State transition 

can be achieved by actions. A plan in a total ordered planning system is defined as a 

sequence of actions corresponding to a path from initial state to goal state. Figure 5 
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shows an example of a plan in total ordered planning. All actions in the plan are 

ordered by temporal constraints.  

Note that all states along the path are explicit. Although early state-space 

search algorithms work in low efficiency due to a lack of good techniques to guide the 

search, the state-of-the-art state-space planners have been able to significantly benefit 

from this “explicit” feature by making very efficient use of domain-specific heuristics 

and control knowledge (refer to Bonet and Geffner’s Heuristic Search Planner (HSP) 

[14] and its later derivatives for more details if interested). This makes state-space 

planning capable of scaling up to very large problems and quickly generating plans 

which are optimal or near optimal in length [5]. Besides, strong domain-independent 

heuristics can also be derived automatically by defining a relaxed problem which is 

easier to solve (if interested more details can refer to [1], section 10.3). Furthermore, 

other techniques, such as Goal-Oriented Action Planning architecture (GOAP [15]), 

enable total ordered planning to handle a restricted open world (online planning) 

problem by adding some extensions to classical STRIPS. With those extensions, 

GOAP can handle partial observability, non-determinism and extended goals. 

However, these are not intrinsic advantages of total ordered plan structure, i.e., they 

are ensured by extra domain-specific information, or by relaxing problems, or by 

adding extensions to domain representations.  

Moreover, there are still some restrictions of classical planning that haven’t 

been addressed yet, such as implicit time (actions which have no duration), sequence 

plan, and finite state space. Furthermore, total ordered planning is still not capable of 

handling multi-agent problem environments, because multiple objects will cause the 

state space to increase exponentially and make planning very slow. For example, 

“Truck1” in Figure 5 is an object that has the capability of moving between two cities 
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and load/unload boxes. In the example, the state space increases exponentially with 

the increasing amount of trucks.  

Another disadvantage of total ordered planning is that its representation makes 

it impossible to produce an optimal plan for the case that some sub-problems are 

independent and sub-plans are allowed to run in parallel. For example, the two sub-

problems in Figure 5 are independent. They can be solved by a sequence of actions 

that are operating on one of two trucks. The total ordered planner needs two 

subsequences of actions (each of them is to move one specific package) to run in 

sequence.  The optimal plan in this example is that these two sub-plans run in parallel 

(Figure 6).  

move (Truck1, 

City2, City1) 

load (Box1, 

Truck1)

move(Truck1,

City1, City2) 

unload (Box1, 

Truck1)

move(Truck2, 

City3, City4) 

load (Box2, 

Truck2)

 an action

temporal relation

Initial State: Truck1 in City2; Truck 2 in City 3; 

                     Box1 in City1; Box2 in City3

Goal:            Box1 in City2, Box2 not in City3

 

Figure 6: An Optimal Plan Example Runs in Parallel 

Furthermore, re-planning is costly in the dynamic domain. For example, in 

Figure 5, if the sub-problem that “Box2 not in City3” is changed or removed from the 

domain, the planner cannot get information that “load(Box2, Truck2)” and 

“move(Truck2, City3, City4)”, highlighted with red border line in Figure 5, are the 

subsequence of actions required to solve the sub-problem from its plan structure. The 

planner needs to do lots of backtracking with respect to the change in domain.  

Therefore, temporal constraints between actions in total-ordered plan structure 

are not helpful for domain problems that have real-world environment features.  
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2.1.3.3   Partial Ordered Planning 

Partial ordered planning (POP) searches through plan space. In POP paradigm, 

a plan is composed of exactly four ingredients: a set of actions, ordering constraints, 

causal links and variable binding constraints [5]. Actions in a plan can be partially or 

totally ordered. Thus, as compared to planning in state-space, POP has more general 

and looser plan structures. Some famous POP planners are UCPOP [16] and RePOP 

[17]. 

 an action

ordering constraint

Initial State: Feet are barefooted

Goal:            Put on shoes and socks

LeftSock LeftShoe LeftSockOn 

 RightSockOn RightShoeRightSock

p  causal link and protection “p”

Start
 LeftShoeOn 

 RightShoeOn 
Finish

Left

Sock

Left

Shoe

Right

Shoe

Right

Sock
Start FinishA total-order plan

A partial-order plan 

 

Figure 7: A POP Plan for Put on Shoes and Socks Problem (Figure is evolved from [1]) 

Figure 7 illustrates a POP plan example for “put on shoes and socks” problem 

[1]. The total ordered plan in the example is one of six total-order plans which can be 

generated by linearizing the partial-order plan. The linearization cannot violate 

ordering constraints and causal links in the partial-order plan. POP starts with an 

empty plan consisting of the initial state and goals and uses refinement search to find 

a plan solution. One key point of POP is the usage of causal links in the plan. 

A causal link is added when establishing an open condition (that is, an 

unsatisfied goal/precondition) by adding an action into the plan. It links between two 

actions, stating that one precondition of the latter action is achieved by the former 

action. For example, “leftSockOn” is not only precondition of action “LeftShoe” but 

also effect of action “LeftSock”.  The precondition mentioned above is a protection 
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that cannot be negated when adding a new action between the two linked actions. 

Thus, a causal link has more meaning than an ordering/temporal constraint. It not only 

has an implicit order between two actions but also keeps the rationale of the order 

[5,18]. A partial-order plan may have ordering constraints without causal links, but 

not vice versa. If action A and B are linked by an ordering constraint, it indicates that 

A should be executed before B, but not “immediately before” B. Causal structures 

contain vital information that is obscured by classical STRIPS representation [19] in 

state-space planning paradigms. 

Compared to state space planners, plan-space planners such as POP have the 

following advantages:  

 They contain fewer constraints on partial plan. 

 They keep all the advantages of refinement search, like high efficiency and 

great reduction of the overall size of search space. (But the refinement cost 

increases concurrently, which makes re-planning very slow.)  

 Plan structures are more general. Different types of plan-merging 

techniques can be easily defined and handled because of partial plan 

structures. This feature ensures POP can handle multi-agent planning. 

 More expressive and flexible. Because of causal links, the rationale for 

plan’s components is explicit and easy to understand.  

 They can handle some extensions to classical planning, such as time, 

resources using temporal and resource constraints.  

On the other hand, some excellent domain-specific heuristics improve 

planning efficiency in state space, but they reveal low efficiency in plan space, 

because plan-space planners such as POP represent implicit states. Furthermore, the 

search space is more complex in the plan space than in states [5]. Thus, as of now 
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POP planners are not competitive enough in classical planning with respect to 

computational efficiency, and there is no related work of adding real-time extensions 

to POP.  

2.1.3.4   HTN Planning 

Hierarchical decomposition is one of the most pervasive ways for dealing with 

complexity. A planning method based on hierarchical task networks (HTNs) is called 

HTN planning, in which the plan is refined iteratively by applying action 

decompositions. The process of HTN planning can be viewed as iteratively replacing 

abstract actions by less abstract actions or concrete actions [1]. Thus, HTN planning is 

based on refinement search on plan space. The main difference between HTN 

planning and POP is the primary refinement techniques they use: POP planners use 

establishment refinement, while HTN planners use task reduction refinement. 

 composite action

task decomposition

Initial State: Feet are barefooted

Goal:            Put on shoes and socks

A HTN plan 

PutOnSocksAndShoes

PutOnSocks PutOnShoes

LeftSock RightSock LeftShoe RightShoe

 primitive action

 

Figure 8: A HTN Plan for Shoes and Socks Problem  

Figure 8 shows a HTN plan example for solving shoes and socks problem. 

There are two kinds of action representations in HTN planning: composite actions and 

primitive actions.  

A composite action is an abstract action which cannot be directly executed by 

an agent. It needs to be decomposed into simpler and lower-level actions or primitive 

actions. For example, “PutOnSocks” is a composite action that operates on both feet 
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and it is not simple enough for executing. Thus, this action needs to be decomposed 

into two simpler and lower-level actions ”LeftSock” and “RightSock”. On the other 

hand, a primitive action is a ground action which can be directly executed by an agent.  

For example,”LeftSock” is such a primitive action in the above example.  

In a HTN planner, an initial plan which contains only problems and goals is 

viewed as a very high-level composite action. Moreover, a solution plan contains only 

primitive actions.  

The advantage of HTN planning can be regarded into the following categories:  

 Flexibility. The knowledge representation makes it more flexible to model 

planning domains and problems.  

 Expressiveness. Hierarchical structure is easy for humans to understand. 

 Efficiency. The efficiency can be greatly ensured by first searching for 

abstract solutions by exponentially pruning the search space.  

 Facilitating online planning. It is possible for HTN planning to expand 

only some portions of a planning which needs to be executed immediately-

that is, the interleaving between planning and execution is possible [18].  

These advantages are guaranteed by HTN planner’s partial plan structure, 

sophisticated knowledge representation (not just in the action sequences specified in 

each refinement but also in the preconditions for the refinements) and good reasoning 

capabilities [5]. One can refer to Kambhampati’s comparative analysis report on POP 

and HTN planning [20] for a detailed comparison of the two algorithms. Due to these 

advantages, HTN planner can solve a variety of classical and nonclassical planning 

problems with magnitude more quickly compared with classical or neoclassical 

planners.   
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On the other hand, to implement the HTN approaches, a set of planning 

operators together with a set of decomposition methods are necessary for the domain 

modeler, greatly increasing its workload. Furthermore, HTN planning has difficulty in 

accommodating extended goals that require infinite sequences of actions, making 

HTN planning unsuitable for solving real-time domains with large state spaces.  

Another disadvantage of pure HTN structure is that action interleaving 

between different branches is not represented. A low-level action might achieve the 

precondition of another action that is in a different branch, but the causal information 

between these kinds of actions is not represented in the plan structure. For example, 

“LeftSock” achieve the precondition “LeftSockOn” of the action “LeftShoe” and 

there is not data structure used to explicitly store the relationship. According to the 

hierarchical relations, all low-level actions are to be removed with respect to removal 

of one of high-level actions along its branch, even if some of low-level actions are 

still useful in the plan. It will increase planning costs. Thus, removing a set of actions 

connected hierarchically is less reasonable compared to removing those connected by 

causal links in POP.   

In summary, HTN planner has the advantage of ensuring planning efficiency 

by using abstract actions to greatly prune search space. In contrast, it requires a lot of 

domain modeling works before planning starts, and the HTN relationship is less 

useful than causal relation which is explicitly represented in POP.   

Another key to HTN planning is the construction of a plan library containing 

known methods for implementing complex, high-level actions [1]. The methods 

which are either knowledge-based or learnt from good problem-solving experience 

can be stored in the library and retrieved to be used as a high-level action. Similar 

techniques are also used in case-based Planning (CBP) [21]. Since using learning 
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techniques on causal explanation will be one of the future lines of work in this 

research, analyzing these library construction methods might be helpful.  

A well-known HTN planner is SHOP2, which is derived from SHOP [22,23].  

SHOP2 performed well in International Planning Competition (IPC)-2002. It is 

domain-independent and can be configured to work in many different planning 

domains, including real world temporal or dynamic planning domains.  

2.1.3.5   Graphplan Planner 

A planning graph is a special data structure that works with propositional 

planning problems that contain no variables [1]. It is a directed graph organized into 

levels [1]. Each level i is composed of a state level Si and action level Ai. Si contains 

all literals that could hold after the i
th

 step, while Ai contains all actions whose 

preconditions could be satisfied by some of literals in Si. S0 presents the initial state. 

Si+1 is a union of all literals in Si and literals which can be achieved by effects of all 

actions in Ai. Figure 9 shows an example of the planning graph for the “have cake and 

eat cake” problem (We won’t discuss about “mutex links” in this thesis, because 

relations that they represent are at the same levels and we are interested in relations 

that are between different levels).  

 

Figure 9: A GraphPlan Example (taken from [1]) 

Planning graph has following properties: 
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 Literals increase monotonically with levels. 

 Actions increase monotonically. Preconditions of actions satisfied by a 

level are also satisfied by the next level according to the first property. 

Because actions and literals are finite in the classical problem, there must be a 

level that is the same as its previous level. When this level is reached, the incremental 

planning graph construction can be terminated. Similarly, planning graphs are of 

polynomial size and can be computed in polynomial time. A plan output by a 

Graphplan planner is a sequence of sets of actions in a planning graph, following 

which goal can be found in one of the levels in the graph. As described in [5], 

Graphplan algorithm is sound, complete and always terminates. 

As can been seen from the structure, the planning graph contains a rich source 

of information about the problem. First, the planning problem is solvable if and only 

if the goals can be found by reachability analysis in one of levels. Next, the count of 

levels from the initial state to the level containing all goals can be used as a cost value 

for evaluating heuristics. Because there can be multiple actions in each level, this way 

of evaluation is reasonable for estimating actual costs. Planning graph has been 

proven to be an effective tool for generating accurate heuristics and solving hard 

planning problems [1]. Those heuristics can be applied to almost all search techniques, 

like local search. LPG [2], the winner of 2002 IPC, is a fast planner that searches 

planning graphs using local search techniques (so-called Walksat procedure). It is 

important to note that, LPG can produce good quality plans by handling action costs. 

Although there are limitations due to the problem representation, LPG showed that 

local search works well in planning graph. 

Planning graph is less general than a POP plan but more general than a total 

ordered plan. Actions in planning graph are also causally connected. For example 
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“Eat(Cake)” in level A0 and Bake(Cake) in level A1 are connected via state “not 

Have(Cake)” in S1 in Figure 9. This relationship is represented in every continuous 

two action levels, that is, greatly increasing redundancy in the plan structure. This is 

one disadvantage of planning graph structure.  

Despite its advantages, the classical representation used in planning graph 

makes it unable to scale well in problem size (it has trouble in domains with many 

objects, which means large amount of actions need to be created), and cannot solve 

practical real-world problems.  

2.1.3.6   Summary 

The planning paradigms described above all have their advantages and 

limitations; it is so easy to say research on one of them is worthwhile and others are 

not. Recently, researchers in planning showed great interest in using combinatorial 

planning techniques to solve more complex larger problems. RePOP[17] planner (a 

partial ordered planner) and FF [24] (a state-of-the-art fully automatic planner in state 

space) are two good examples. They scale up better than Graphplan by using accurate 

heuristics derived from a planning graph. Thus, besides representational issues, 

research on combinatorial issues and developing useful heuristics is a promising way 

to derive good planning techniques to move the field of planning forward. Our 

research is headed this way.  

2.2    Explanation Concepts 

Explanation plays a key role in understanding, controlling and finally 

improving our environment. From Heider’s seminal study on interpersonal relations, 

explanation of actions allows people “to give meaning to action, to influence the 

actions of others as well as themselves, and to predict future actions” [25]. Leake, D. 
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later on pointed out that explanation has similar effect on events by explaining their 

material causes [26].  

2.2.1   Explanations Concepts in Other Areas 

Explanation is widely researched in many fields, such as psychology, 

philosophy, and AI. Psychologists and philosophies have long studied and well 

developed explanation theories in natural science. More recently, explanation theories 

have been developed in Artificial Intelligence to facilitate learning and generalization. 

One example is applying explanation in case-based study of expert systems [27] to 

guide learning and searching. Another technique is having explanations help planning 

achieve good performance by explaining encountered failures or anomalies [28] 

[29][30]. The performance can be on speed, quality of a solution, etc. Besides these, 

some explanations are able to provide failure information to normal users [31]. 

The concept and methods of developing and using explanation in the 

following of the thesis are different from that in the studies above. Although planning 

is a field involved in AI, previous studies of explanations in other fields of AI are 

mainly focused on learning and generalization. On the other hand, its application in 

planning or CSP are to predict the failure in the future, thereby helping developers by 

pruning impossible searching branches, or to give important causal information of 

failures to users who are interested in what caused the failures [32][33].  

2.2.2   Explanation Usages 

As described in the above subsection, explanation can be seen as a tool or data 

structure for storing useful information and providing them to developers and users.  

Planning domains are problematic if they have many dead ends in the search 

space and there is insufficient information for backtracking and dead ends detecting, 
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which are very common for complex and large real-world domain problems, since it 

is very hard for the domain modeler to systematically model all the information. This 

holds true for many real-world problems which are classified as contingency 

problems, where dead ends are very likely to be created dynamically in an unforeseen 

state, by unpredictable external events even they doesn’t not exist initially. Local-

search-based planning will probably be inefficiency for solving this kind of domain 

problems.   

As analyzed in [19], the causal structure of domain contains vital information 

for heuristic search. The explanation hereinafter is to explain causal information in 

plan structure, like causal relation between actions. The information contained in 

explanation structures can be used to do more intelligent search in planning which can 

yield to better planning performance (either on planning speed or plan quality). We 

will provide more detailed research on our explanation-based techniques in Chapter 3.  

At the first step of our research, we propose the usage of causal explanation 

structures. The idea of its usage in planning is inspired by POP, in which causal 

relation between some plans are modeled, and represented by causal links. Typically, 

causal explanations are used to explain the causality between actions or events. They 

can be in physical or mental aspects, but the utility of explanation to be discussed in 

this research is for a different purpose. Their usage in this research is focused on 

explaining causal relation between actions, regardless of what type of reasons.  

In other words, we proposed an approach that is totally different from previous 

theories or applications, and the purpose is to speed up local-search-based planning by 

using causal explanations.  
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2.3    Macro-Actions Analysis 

One reason of developing explanation structure for planning system is that by 

using explanations, causal relation between actions can be acquired automatically 

during planning, after which a planner can then make same or similar changes to a set 

of actions synchronously the same way as making changes to a normal action. In a 

way, some actions in a plan are put together. There are lots of planners using other 

combining techniques, such as macro-actions.  

A macro-action [34][35] is a group of actions selected for application at one 

time like a single action. Learning and using macro-actions is promising in achieving 

significant improvement in planning. MacroFF [36] using forward chaining heuristic 

based on a relaxed Graphplan algorithm and Macro–AltAlt [35] which evolved from 

AltAlt [37], are two recent planners that performed well using macro-actions.  

Macro-actions are well suited for use in classical planning systems. Most 

planning systems using macro-actions have two subsystems: macro learning system 

and planning system. Macro learning system are focused on and specialized to 

exploiting particular properties of the planners and the domain through off-line 

learning. Macro-actions generated by the learning system can be added into the 

original domain to get an augmented domain, and some of them can improve planning 

either in either speed, or length of plan.  

Explanation-based techniques to be introduced in the following chapters uses 

combination concepts, because by using explanation structure a more significant 

change can be made to the plan in a single iteration, has same result as making a set of 

single changes in several iterations. It is similar to macro-actions, but the combination 
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is made and used temporally, and it is not to be learned and evaluated through or after 

the whole planning process.  
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Chapter 3   Using Causal Explanations in Planning 

Having established the necessary background in Chapter 2, we can move on to 

detailed contents of the explanation-based approach in planning. The research is 

carried out based on the general loose plan structure that is analyzed in Subsection 

2.1.3. The content in this chapter is organized as follows: First, we present a case 

example on Logistics domain in Section 3.1 for giving a better understanding of what 

information deserves an explanation, use the example to uncover some potential 

problems in the planning, and then characterize the problems into some cases. Next, 

inspired by POP, causal links are used to explicitly represent the causal relations 

between actions in this research. After adding causal links to the plan, actions are 

connected like a network. Thus, the network is called causal network. In Section 3.2, 

four types of causal networks are defined and are differentiated according to some 

restrictions of keeping these causal relations. After giving a comparison between them, 

we show that the usage of Multiple-In-Single-Out (MISO) causal network is more 

reasonable and less costly. Finally, we expand our research based on MISO causal 

networks. The detailed contents include the explanation data structures and the 

algorithms for updating and exploiting MISO causal networks. After that, we 

integrate these two algorithms into the general local-search-based planning process 

and highlight them in the revised planning process.  

3.1   Case Study on Logistics Domain 

In this section, we do not aim to discuss complex logistics domain, but to do 

our case study based on a simple logistics-type domain (illustrated in Figure 10).  
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The purpose of a logistics-type domain problem can be to obtain and move 

supplies and equipments in a timely fashion to some locations where they are needed, 

at a reasonable cost. Thus, logistics-type domain problems are very practical and it is 

encouraging if they can be efficiently solved. Several issues that are very common in 

logistics-type domains are listed as follows: 

 Storage capacity. For the case that a facility has limited storage space.  

 Transportation efficiency. For saving facility resources.  

 Safety stocks. It is insurance as unexpected the high demands can be met 

despite unexpected events (trucks breaking down).  

 

Figure 10: A Logistics Domain Example 

Logistics domain planning problems are often modeled in the way like 

delivering some packages to some locations by utilizing various forms of 

transportation, such as driving truck or flying airplane [38,39]. The constraints on the 
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problem may include storage capacity, transition reachability by different types of 

vehicles, etc. In this research, the notation “object.attribute == value” is used to 

represent a state of the object’s attribute “object.attribute”. The state can be a 

precondition or an effect of an action, or a goal.  

3.1.1   Case Example on Logistics Domain 

In the example, “package1.location == Depot1” and “package1.location == 

Depot4” are the initial state and the goal state of “package1.location”, respectively. 

Trucks can travel between depots in a same city, but cannot travel across different 

cities. Airplanes are able to be located only in airports, and fly across different cities; 

but they cannot fly without holding a package. Available actions in the domain are in 

the following: “load/unload a package to/from a truck” (e.g. load(package1, truck1), 

this action representation is used in this research)), “move a truck from one depot to 

another” (e.g. moveTruck1(Depot1, Airport1)), “fly a airplane from one airport to 

another” (e.g. flyAirplain1(Airport1, Airport2)). Furthermore, the airports are specific 

depots.  

To reach the above goal, the planner might construct a plan with the following 

steps: First, add the following five actions in sequence: load(package1, truck1), 

move(truck1, Depot1, Airport1), unload(package1, truck1), load(package1, Airport1) 

and fly(airplane1, Airport1, Airport3). At next step, the planner finds that the action 

fly(airplane1, Airport1, Airport3) is infeasible, because there is no direct transition 

between City1 and City3. Thus, “flyAirplane1” is removed from the current plan, and 

the action load(package1, Airport1) is then removed because it reduces plan quality. 

At this point, package1 is in Airport1, and all trucks are empty. To repair the plan, the 

planner might add two new actions: “load(package1, truck1”, and “move(truck1, 

Airport1,  Airport3)”. However, the new plan would definitely fail again since the 
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constraints state that a truck cannot travel across different cities. Moreover, the 

planner might repeatedly add/remove same actions into/from the current plan in the 

rest of the iterations.  

3.1.2   Characterizing Causes of Inefficiencies 

The above planning process is naive and is inefficient. The inefficiency might 

be because of the following reasons:  

 When a action (e.g. fly(airplane1, Airport1, Airport3)) is to be removed 

from the plan, some actions (e.g. load(package1, Airport1)) which exist 

only to satisfy this action can also be removed. This is an obvious choice 

by human beings, because they know the causal relation between actions, 

and can use this causal relation to make an intelligent plan repair. However, 

a local-search-based planner that has the loose plan structures needs to 

take a lot of time for analyzing and searching due to a lack of 

straightforward causal structures.  

 In the case that reverse actions (e.g. move(truck1, Depot1, Airport1) and 

move(truck1, Airport1, Depot1)) exist, it is possible that the planning 

might go into a loop that is composed of a set of states (any attribute value 

is a state of the attribute.), and repeatedly explore some visited states in the 

loop. In the above example, the states in the loop are “truck1.location == 

Depot1” and “truck1.location == Airport1”. The looping can greatly slow 

down the planning. Although the low efficiency problems that are caused 

by the looping might be able to be avoided by using tabu-lists to store 

recently explored states, it is still intractable if there are too many states in 

a loop and the tabu-list is too short.   
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 Actions that have same type but operate on different objects are different 

and the experiences on different actions cannot be simply shared. For 

example, there was a loop that is composed of three actions that move 

truck1 between three different locations and this loop was solved by some 

method. Another similar loop might occur, the only difference is that the 

actions in this loop operate on truck4 (truck4 has the same initial state as 

truck1). Even though the new loop is similar to the solved loop, the 

planner cannot avoid it by using the experience of the actions in the solved 

loop. A potential way to address this problem is to abstract general 

information from the experience of some actions of a type and share this 

information for all actions of this type.  

In a word, a planner that has a loose plan structure suffers from a lack of 

useful information, and a great overhead might be caused by useless, repeating or 

unintelligent planning operations. According to the above case study, we conclude 

that some information, like the causal relations between actions, bad/good planning 

experiences, can be used to guide more efficient search. However, the way of 

retaining and using different kinds of information should be different. The planning 

efficiency will also depend on heuristics or algorithms that are based on the enhanced 

plan structures by using those kinds of information. In the current stage, the 

explanation usage in this research is focused on addressing the first inefficiency.  

3.1.3   Analyzing Causal Information 

Let’s give a more detailed analysis on causal information in order to acquire 

the proper information. Causal information herein means causal relations. 

Supposing S is a set of states, c and e are two states that belong to S, a causal 
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relation between a cause c and an effect e is a pair denoted by <c, e>, meaning that c 

caused e. Causes and effects are typically related to changes or events.  

In planning, operations that can change a plan can also have causal relations. 

These operations are called plan changes hereinafter. The basic plan changes can be 

adding/removing an action/object into/from the plan, etc. Taking Figure 10 as an 

example, c and e can be plan changes that adds the action “load(package1, truck1)” 

and that adds the action “move(truck1, Depot1, Airport1)”, respectively. This pair <c, 

e> is due to a causal relation <ca, ce> between the above two actions. However, the 

lifetime of those plan changes is only one iteration, i.e., they are used to update a plan 

but not stored in the plan. Note that, a plan change can also be composed of several 

basic plan changes, which might cause the amount of plan changes to increase 

exponentially relative to that the amount of actions. If utilizing causal relation 

between plan changes, the planners might then need to store a significant amount of 

extra information, i.e., the plan changes and their relationships, and therefore may 

require more time for evaluating successor plans. Thus, it is not promising to use 

causal information between plan changes.  

Instead, using causal information between actions is far less costly because 

actions themselves are a part of the plan. Furthermore, the causal relations between 

actions are easier to detect and can be acquired during planning, i.e., they are not 

necessary to be modeled in domain definitions. Thus, it is promising to explicitly 

represent causal relations between actions rather than between plan changes. 

Symbolic Attribute Value Transitions 

airplane1.location Airport1  Airport 2 

Airport 2  Airport3 

Table 1: Transition Table of a Symbolic Attribute 
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On the other hand, although the purposes of adding actions to a plan are the 

same (i.e., to improve plan by resolving inconsistencies), the reasons of adding them 

might be different. A detailed analysis for these cases will be given below, and the 

analysis is based on symbolic attributes. Similar to the approach of the encoding in 

CSP [40], symbolic attributes can be regarded as variables range over symbolic 

domains. For example, the value of “airplane1.location” as shown in Figure 10 can be 

any of “Airport1”, “Airport2” and “Airport3”. The value transitions of the symbolic 

attribute “airplane1.location” are shown in Table 1. These transitions can be regarded 

as a set of constraints over the attribute. The attribute’s next state is dependent on its 

current state, like the next value is possible to be “Airport3”, only if the current state 

is “airplane1.location == Airport2”. Now, let’s move on for more details of general 

causal information in planning.  

In planning, an action can contain multiple preconditions/effects. An action 

cannot be executed until all of its preconditions are satisfied. The planner might add a 

new action into the plan due to the following reasons: 

 Direct causal relations between actions. The new action has an effect that 

fully achieves a goal or a precondition of an existing action in the plan. For 

example, if the action “fly(airplane1, Airport1, Airport2)” is in the current 

plan, and one of its preconditions “airplane1.state != empty” is not 

satisfied, i.e., it is an inconsistency. Another action “loads(package1,  

airplane1)” can achieve this precondition. In this case, there is a direct 

causal relation between these two actions. 

 Indirect causal relations between actions. The new action has an effect 

that can somehow reduce a distance to the state of an unsatisfied 

precondition/goal. For example, if the goal is “airplane1.location == 
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Airport3”, and currently “airplane1.location == Airport1”, then the action 

“fly(airplane1, Airport1, Airport2)” can be added into the plan because it 

is on the half way to achieve the goal (referring to Table 1). The causal 

relation in this case is indirect.   

Grouping a set of actions that have indirect causal relations is reasonable.  

In summary, the way of using causal information between actions is very 

promising, and two types of causal relation can be classified. Techniques on retaining 

and using this information will be discussed in the following sections. Now let’s move 

on to the next section to discuss to the way of using the smallest possible data 

structure to represent as much causal information as possible. 

3.2   Classification of Causal Networks  

To better describe our work, we would first introduce a concept named causal 

network. A causal network herein is an action network N that can be denoted by a 

tuple <A, C>, where A and C are a finite set of actions and directed causal links, 

respectively. Each action ai ∈ A is a node in N, while each causal link ci ∈  C, is a 

directed link between two nodes, and all of them have the same direction if time 

representation is used. Being inspired by the representation of causal relation between 

plans in POP [41][42][16], using causal links to explicitly represent the causal 

relations in planning is expressive and intuitive. A causal link represents a causal 

relation between two actions. Furthermore, the direction of causal links means that 

one action achieves a precondition of another action.  

The motivation of using causal explanations is that the actions which are 

closely dependent on each other can be grouped as a macro action and operating on 

this kind of macro-actions like on a normal action is reasonable.  
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In this thesis, the size of N is measured by the addition of the sizes of A and C. 

Since an action might have multiple preconditions or multiple effects, the network 

size will be very large if all causal relations are kept. For example, action “unload 

(Package, Truck, City)” has two preconditions: “Package.location == inTruck” and 

“Truck.location == City”, that can be achieved by two different actions. Similarly, an 

action that has multiple effects can achieve multiple preconditions that are in different 

actions. To have a better understanding of causal networks and how to keep causal 

information is beneficial, we characterize causal networks into four types and give a 

brief comparison. They are named Multiple-In-Multiple-Out (MIMO), Multiple-In-

Single-Out (MISO), Single-In-Multiple-Out (SIMO) and Single-In-Single-Out (SISO) 

networks, respectively, and are differentiated according to some restrictions of 

keeping causal information. Figure 11 and Figure 12 illustrate the four types of causal 

networks. The “MI” property in MISO and MIMO causal networks herein indicates 

that an action in the casual networks is allowed to have multiple causal link inputs. 

Similarly, the “O” means an action’s casual link output, and the “S” property restricts 

the amount of causal link inputs/outputs. Taking action a2 and a6 MISO as an 

example, a2 is called “linking action” and a6 is called “linked to action” in causal 

networks. 

An action in MIMO causal networks is allowed to be connected with multiple 

linking actions and linked to actions in terms of “MI” and “MO” properties, 

respectively. Its advantage is that the planner can keep all of the causal information, 

while its disadvantage is that maintaining robust causal structures is costly. A MIMO 

causal network that has n actions needs O(n!) memory to keep all of the causal 

relations in the worst case (Actions are ordered in sequence and each action has causal 

relations with all of actions that are ordered after it). Moreover, it is not easy and is 



 

Page | 44  
 

costly to find out which subset of actions deserves to be grouped together as a 

temporal macro-action in a strongly connected MIMO causal network. 

a1

a2

a3

a4a5

a6

a7a8

goal1

time

a1

a2

a3a4a5

a6

a7a8

goal1

time

MIMO

MISO

 

Figure 11: Illustrations of MIMO and MISO Causal Networks 

In MISO, the “SO” property restricts that each action has at most one causal 

link output, indicating that there is only one major purpose for the planner to add this 

action into the plan. The “SO” property is reasonable even if the action might have 

multiple effects. For example, the action “John buys an apple” achieves the following 

two states: “John owns an apple” which is a precondition of the action “John eats 

apple”, and “John’s money is used up”, which is a precondition of another action 

“John earns money”. However, only the first state is the purpose for John buys an 

apple. Therefore, only using one causal link to explicitly represent this purpose is 

reasonable. In terms of the “SO” property, a MISO causal network that contains n 

actions needs only O(n) extra memory to keep the allowed causal links, since the set 

of causal links go out of all actions in MISO is also the set of causal links in MISO.  
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Similarly, the memory usage for keeping causal links is O(n) in SIMO and 

SISO causal networks that contain n actions in terms of the “SI” property. 

Nevertheless, the “SI” property is not as reasonable as “SO” property, because all the 

preconditions of an action are prerequisites for the action’s occurrence. 
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Figure 12: Illustrations of SIMO and SISO Causal Networks 

In summary, to get a balance between the extra time and memory costs and the 

time costs reduction due to the causal information, constructing MISO causal network 

is promising and reasonable. The current research is focused on the MISO structure. 

The details on the MISO causal networks and two algorithms for updating and 

exploiting them will be expanded in the following sections. To give an overall picture 

of when the algorithms will be used, we will first introduce a general local-search-

based planning process in the next section, and then highlight the use of the above two 

algorithms in the planning process. Evaluations of the other three types of plan 

structure are our future work to give a performance comparison with MISO.  
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3.3   Integrating Explanation-based Algorithms to the Overall Planning 

Process 

Figure 13 illustrates the general process of the planning that uses local search 

to iteratively repair the plan. Referring to the local search paradigm illustrated in 

Figure 3, the whole circle can be regarded as a plan space, and every point is a plan. 

There is an objective function for evaluating plan quality in plan space. The initial 

plan only contains the initial states and goals. In every iteration loop, the planner first 

uses local search to search for successor plans that are located in the neighborhood of 

the current plan, using the objective function to evaluate them. Successor plan herein 

means a plan that can be achieved by making some changes, like adding/removing an 

action to/from plan, to the current plan. If there are better successor plans in terms of 

value of objective function, then the current plan is replaced by the successor plan. If 

not, the current plan is a local optimal plan, and some local search based heuristics 

can be used to jump out of the local optima (refer to Subsubsection 2.1.2.3   

Discussion).  

The step “Evaluate successor plans” in Figure 13 might be inefficient, due to a 

lack of explicitly represented causal information for searching better successor plans. 

To address this potential inefficiency, we developed two algorithms and integrate 

them into the above general planning process (highlighted in Figure 14). The 

“Evaluate successor plans” step includes two sub-steps: searching for successor plans 

and evaluating them. Exploiting algorithms are used in the “searching” sub-step, by 

using causal information between actions to facilitate local search. Updating 

algorithms are used for maintaining the MISO causal structures. The details of 

updating and exploiting algorithms will be introduced in the following two sections, 

respectively.  
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Figure 13: General Local-Search-based Planning Process 

 
Figure 14: Local-Search-based Planning Process Using Causal Explanation Algorithms 

3.4   Constructing MISO Causal Networks 

Algorithms and data structures are inherently related, that is, algorithms can be 

measured by their efficiency in processing the data. Thus, designing a good plan 

structure is very important for improving the planning performance. We will first 



 

Page | 48  
 

introduce causal explanation data structure, and then introduce the updating causal 

explanation algorithms for constructing the MISO causal networks.  

3.4.1   Explanation Data Structures 

Causal explanation data structures can be divided into two parts. The 

explanation elements and their functionalities are listed in Table 2. Causal links are 

stored outside actions and used to connect two actions. While in every action, there is 

a specific data structure that contains a counter and a set of pointers. More details are 

in below.  

(1)  Causal Link  

To retain as much information as possible, let’s have a look at general action 

structures in planning system.   

Explanation Element Functionality 

Outside 

actions 
causal links 

A causal link connects an effect and a precondition that 

are in two different actions.  

Inside an 

action 

EoutCounter 
Count the number of preconditions inside other actions 

that are satisfied by the action. 

A set of 

pointers 

 to causal 

links 

One or two of pointers point to causal links that go out 

of the action; At most one is direct/indirect; 

The other pointers are stored in a container. They point 

to causal links that go into the action. 

Table 2: Element of Causal Explanation and Their Functionalities 

From the perspective of the action’s level (taking an action as a whole), a 

causal relation is represented by a causal link between two actions. It indicates the 

existence of the causal relation. More detailed causal information, like why they are 

causally related, is not indicated at this level. For example, suppose an action 

“move(truck1, Depot1, Airport1)” in logistics-type domain has one causal action 

predecessor: “move(truck1, Depot2, Depot1)” (suppose truck1 is initially located in 

Depot2), and the actual reason of adding the latter action is to achieve a precondition 
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“truck1.location == Depot1” of the first action. If a causal link is just added between 

these two actions at the action’s level, planners cannot get above detailed reason. 

These kinds of reason might be very useful for exploiting and updating plan structures.  

To address this problem, we choose to make a causal link connect between 

two components, i.e., an effect and a precondition, that belong to two different actions, 

respectively. Compared to using causal link at the action’s level, our way of 

connection doesn’t increase memory expense, but represents more information, like 

why two actions are connected for example. Figure 15 illustrates two types of causal 

relations. A causal link that represents a direct causal relation between two actions 

(refer to 3.1.3) are called a direct causal link. It is illustrated by a solid line between 

two actions in Figure 15 (a). On the other hand, an indirect causal link is defined as a 

causal link that represents an indirect causal relation between two actions. It is 

illustrated by a dashed line in Figure 15 (b). An indirect causal link <ai, aj> can be 

updated by a direct causal link <ak, aj> when ak is inserted between ai and aj for 

satisfying a precondition in aj. Since the direct causal relations are more 

straightforward than indirect causal relations, planners should have higher priority to 

exploit direct causal links than to exploit indirect ones when it has multiple causal 

links to exploit during planning.   

By using indirect causal links, the “SO” property holds only regarding one 

type of causal links in MISO rather than regarding both types, regardless of the other 

type, that is, an action is allowed to have at most one causal link of any type 

(direct/indirect) going out of it. However, it can link to a direct causal link and an 

indirect causal link at the same time. On the other hand, although there can be 

multiple causal links going into an action, for a precondition that is related to a 
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symbolic attribute, there are only two possibilities: it is fully satisfied by an effect or 

not. Thus, a precondition can link to at most one causal link.  
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Figure 15: Illustrations of Causal Links 

 (2)  EoutCounter  

For the purpose of reducing complexity of causal network, in MISO, an action 

links to at most one action even if its effects might satisfy more than one precondition. 

The “EoutCounter” inside an action is a mechanism that is used to somehow 

compensate for the loss of large amount of causal information, and can be used by 

exploiting algorithms to judge whether it is worth further exploiting other causal links. 

Take note that the counter only counts the number of direct causal relations going out 

of the action.  

For example, if action “John goes to school” achieves state “John.location == 

school”, its main purpose is satisfying a precondition of “John takes exam”. 

Meanwhile, the state is also a precondition of action “John has lunch at school”, “John 

does experiment” “John talks to his supervisor”. “EoutCounter” inside the action 

“John goes to school” is assigned by value “4” according to the number of 

preconditions it is satisfying. If John suddenly gets notification that the exam is 

rescheduled to another day, then it is not reasonable to reschedule “John goes to 

school” to the same day as the exam, because this action is the prerequisite for the 

other three action. Thus, it is better to stop exploiting other causal links when the 
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algorithm exploited an action that has a large value of EoutCounter. The way of 

utilizing EoutCounter will be introduced in the next section.  

(3)  Pointers inside an Action  

Exploiting algorithms should be able to exploit interleaving actions and causal 

links. It is easy to access the two actions when given a causal link, but not vice versa, 

because a causal link doesn’t belong to any action.  

There are two ways to solve the problem when exploiting algorithms 

encounter an action. One of methods is searching the library of causal links to find out 

which causal links are linking to the action, and heuristically select one of causal links 

to exploit. The other one is allowing actions to have access to its connected causal 

links. The first one increase time expenses for searching all causal links. It needs O(n
2
) 

time to exploit a MISO causal network that has n actions.  The second method takes 

more memory relative compare to the first method to ensure action’s access capability 

to its connected causal links. The extra memory is O(n), because only two of the 

actions need to access one causal link. We choose to use the second method. Some 

pointers are used to address the problem.  

3.4.2   Updating MISO Causal Network 

In this section, we will introduce when and how to iteratively update MISO 

causal networks according to the explanation data structure described in the previous 

subsection.  

The plan structure needs to be updated when some changes happen. Changes 

occur when an action is added/removed into/from the plan, or an action is moved to 

other time intervals in planners that use action projection representation, and so on.  
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3.4.2.1   Updating when Adding an Action 

Now let’s have a look at how MISO causal actions networks are constructed.  

As mentioned in subsection 3.4.1 causal links are directed. That is, a causal 

link connected to an action can either go into / link to the action or go out of / be 

linked by the action. Thus, to decide whether to add causal links between the new 

action and an existing action in the plan, we have to consider the following 

generalized cases: 

I) Looking forward, currently there is no causal link connected to an 

unsatisfied precondition, and the new action is added to directly 

reduce/remove the inconsistency of the precondition; 

II) Looking forward, currently there is no causal link connected to an 

unsatisfied precondition, and the new action is added to indirectly 

reduce/remove the inconsistency of the precondition; 

III) Looking forward, currently there is an indirect causal link connected to an 

unsatisfied precondition, and the new action is to directly/indirectly 

reduce/remove the inconsistency of the precondition; 

IV) Looking backward, some precondition of the new action is satisfied by an 

existing action, and there is no causal link going out of the existing action; 

V) Looking backward, some precondition of the new action is achieved by an 

existing action, and there is a direct causal link going out of the existing 

action; 

VI) Looking backward, some precondition of the new action is achieved by an 

existing action, and there is only an indirect causal link going out of the 

existing action; 
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Before going through the above cases, let’s introduce some notations to give a 

clear and simple description. In the examples, ai means the i
th

 action; efi means the i
th

 

effect; ci means the i
th

 precondition; and ai.efj means the j
th

 effect is in the i
th

 action. 

The “new_” and “existing_” are temporally used in examples only to indicate whether 

an action is in the plan before current planning iteration, like new_ai means ai is a new 

action to be inserted into the plan, while existing_ai means ai is an action already 

existing in the plan. The subscripts used in these notations are arbitrary and only used 

to discriminate different actions or action components. On the other hand, symbol “” 

and “” are used to represent direct and indirect causal relations in formulas, 

respectively. 

If an action contains only one precondition/effect, then it is easy to add a 

causal link connected to/connected by the action. However, take note that one 

precondition can be satisfied by a sequence or set of actions. For example, one effect 

might also satisfy multiple preconditions/goals, which can be in different actions 

(denoted by “a1.ef1  a2.c1”, and “a1.ef1  a3.c2”). Similarly, effects ef1 and ef2 

belong to action a1 and a2 respectively, and precondition c1 might be satisfied by the 

combined effect of ef1 and ef2 (“a1.ef1 + a2.ef2  a3.c1”).  

On the other hand, there can be several options if an action has several 

preconditions to be satisfied, or when adding an action which has multiple effects 

being able to satisfy multiple preconditions in other one or multiple actions. More 

than two actions are actually causally related between each other, so the situation is 

more complex. For example, an action “move(truck1, Depot1, Depot2)” has two 

unsatisfied preconditions “truck1.location == Depot1” and “package1.location == 

truck1”, and both of them are inconsistent.  
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Backward analyzing an existing action (a1) 

that needs to be executed before the new 

action (a2) && has potential causal relation 

with a2, i.e. a1.effect1 => a2.precondition1

Go to case IV) 

or case V) 

or case VI)

Phase 

end

(2) Backward Updating Phase

(1) Forward Updating Phase

Y

Go to case I) 

or case II) 

or case III)

Phase

end

Start updating MISO after a new 

action is added into plans

The new 

action a1 is ordered before the 

existing precondition it wants 

to achieve?

Updating Algorithm Terminates
 

Figure 16: Overall Process of Updating MISO Algorithm after Adding a New Action  

Go to Case I)

a1 is added for 

the reason of “a1 -> 

a2.precondition1”?

N

Y

“a1 -> a2.precondition1” is 

more significant than “effect* 

->a2.precondition1” ?

Go to Case II)

Y

“effect* =>/-> 

a2.precondition1” 

doesn’t exist (effect* is not in 

the new action a1)
Y

a1 is added for the reason of 

“a1 => a2.precondition1”? Y

N

Start forward 

updating MISO

Case III)

Case I)

N

Case II)
a1 is added for the reason of 

“a1 -> a2.precondition1”

Y

a1 potentially fully satisfies n other 

preconditions? such as “a1 => 

precondition*”? (precondition* != 

a2.precondition1)

Increase EoutCounter by n in a1

Add an direct causal link for representing 

“a1.effect1 => a2.precondition1”; increase 

EoutCounter by 1 in the new action, i.e. a1

Y

a1 potentially fully satisfies n 

other precondition? such as 

“a1 => precondition*”? n>0

With probability pc to add an direct causal 

link for representing one of them, such as 

“a1.effect2 => a3.precondition1” && 

increase EoutCounter by n in a1

Add an indirect causal link for 

representing “a1.effect1 -> 

a2.precondition1”

End forward 

updating MISO

N

N

The causal link is 

consistent?

Y

N
remove the 

causal link

N

 

Figure 17: Process of Forward Updating MISO  

Now, let’s analyze each case in detail. Figure 16 illustrates the overall process 

of updating MISO algorithms after adding a new action into plan. The proposed 

algorithms are composed of two updating phases: forward updating and backward 
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updating. They are described in (1) and (2) as follows respectively. Furthermore, both 

of phases are classified into several cases.  

(1)   Forward Considering Causal Information  

Case I) ~ case III) listed above need to look forward, in order to add a causal 

link that goes out of the new action: new_a1. The forward updating processes are 

illustrated in Figure 17. Take note that the updating algorithms need not consider 

whether the other preconditions of existing_a2 are connected to some causal links or 

not, since an action can have multiple preconditions that are inconsistent and all of 

them should be satisfied.  

I) Case of Explaining an Direct Causal Relation to an Unexplained 

Precondition  

The case I) is simple. Figure 18 shows a concrete example of forward updating 

causal structures in this case.  

The case can be generalized as follows: If new_a1.ef1 is suggested by a planner 

to fully satisfy existing_a2.c1 and existing_a2.c1 is not connected to any causal link, 

then the causal information of “new_a1.ef1  existing_a2.c1” is retained inside the 

new action, after the new action is added into plan, a direct causal link representing 

the causal information is created and connected from new_a1.ef1 to existing_a2.c1 and 

“EoutCounter” in new_a1 is accordingly increased by 1.  

The next step is to propagate explanations. For example, new_a1 might fully 

achieve n other unsatisfied preconditions in the plan, such as new_a1.ef2 (or 

new_a1.ef1) also fully satisfies existing_a3.c2, i.e., there are no other actions that 

changes the state of new_a1.ef2 occurs between new_a1 and the preconditions. In 

terms of “SO” property of MISO causal network, the planner won’t add direct causal 
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links to represent the potential causal relations. Instead, it increases “EoutCounter” by 

n to record their existence. The updating algorithm is based on the agreement on the 

assumption that the first account for adding an action (i.e., “new_a1.ef1  

existing_a2.c1”) is the most important reason of the addition, even if the new action 

potentially resolves other inconsistencies, because the inconsistency that is suggested 

to resolve by the planner is regarded as the most significant one, thus the reason of 

resolving it deserves higher priority to be stored and the reason is also the first 

consideration of the addition.  

(1) select an inconsistency to fix (2) add a new action to resolve it;

Use a direct causal link to explain the causal relation

(3) propogate explanations;

Analyze another potential causal relations

(4) propogate explanations;

Increase “Eout_counter” by 1 in the new action.  

Figure 18: An Example of Updating Causal Explanation Structures When Adding a 

New Action that Directly Resolves an Inconsistency that is Totally not Resolved 

II) Case of Explaining an Indirect Causal Relation to an Unexplained 

Precondition 

Figure 19 shows a concrete example of forward updating causal structure in 

four steps in case II). The updating algorithm is as follows. It is more complicated 

than case I). 
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Firstly, the updating algorithms add an indirect causal link connected from 

new_a1.ef1 to existing_a2.c1 (denoted by “new_a1.ef1  existing_a2.c1”).  

(1) select an inconsistency to fix (2) add a new action to slightly resolve it;

Use a indirect causal link to explain the causal relation

(3) propogate explanations;

Analyze other potential causal relations: explain current existing direct 

causal relation? or wait for “new2” action that might be added in the future 

(4) propogate explanations;

With probability “pc” to explain the current existing causal 

information and Increase “Eout_counter” by 1 in the new action.
 

Figure 19: An Example of Updating Causal Explanation Structures When Adding a 

New Action that Partially Resolves an Inconsistency that is Totally not Resolved 

Next, there is a key point needs to be considered when propagating 

explanations. Besides the initial reason of adding new_a1, new_a1 might also fully 

resolve n other inconsistencies (n>0), such as the potential causal relation denoted by 

“new_a1.ef2  existing_a3.c2”), then it means new_a1.ef2 is significant to 

existing_a3.c2. Whether to add a direct causal link between new_a1 and existing_a3 or 

not, needs to be considered, because an action new_a4 that satisfies “existing_a1.ef1  

new_a4.c3” and “new_a4.ef3 / existing_a2.c1” might be added into plan in the 

future, that is, new_a1 and new_a4 are in the sequence to achieve existing_a2.c1. Thus, 

the updating algorithms encounter a choice point once again. The latter scenario is 

initially expected, thus the causal relation between a1 and a4 is stronger and more 

reasonable than that between a1 and a3. However the scenario also might not occur. 
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Since MISO allows at most one direct causal link going out of a1, only one of causal 

relations respectively in the above two scenarios can be explicitly represented. 

Thus, we proposed a strategy that uses a probability pc to randomly represent 

a direct causal link in first case, that is, with probability of 1-pc to wait for the 

occurrence of the second scenario. The probability pc might affect the performance of 

the planning, because it can affect the decision of explaining which causal relation. 

Thus, the usage of pc is an important technique, which might be problem dependent. 

It is a strategy for heuristically updating causal network when the planner encounters 

a new action that is added for the sake of an indirect causal relation. The evaluation of 

the affect of pc on can be our future work.   

III) Case of Explaining a Causal Relation to an Explained Precondition 

Case III) takes charge of the scenarios that the precondition that is to be 

achieved by the new action is already connected to an indirect causal link before 

adding the new action, or the previously connected direct causal link become 

inconsistent due to addition of the other actions.  

In the second sub-case, the inconsistent causal link needs to be removed from 

the plan, and the precondition is then not connected with any causal links. Thus, the 

algorithm will jump to either case I) or II). 

In the first sub-case, the existing indirect causal link might need updating. As 

illustrated in Figure 17, the forward updating algorithms will go into the other three 

sub-branches according to different scenarios. If the new action new_a1 is added to 

fully achieve the precondition, then the process is the same to that of case I). 

Otherwise, the reason of the addition of new_a1 is an indirect causal relation to the 

precondition. If the new causal relation is more significant than the existing one, then 
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the algorithms do the same process as that of case II), otherwise, it is unreasonable to 

explain a weaker casual relation, the forward updating phase will thus terminate.   

Take note that, up to this point, the precondition might be connected to two 

casual links, at least one of which is an indirect causal link. Each precondition is only 

allowed to be connected to one of them, that is, the first indirect causal link needs 

either to be removed or to be updated by replacing this precondition with another one). 

This part of updating will be done in the backward updating phase because backward 

propagations will occur in this sub-case. More details are in (2). Case VI) in the 

following and Figure 22 illustrates a concrete example of the updating process.  

In summary, the value of “EoutCounter” in the newly added action needs to be 

calculated after analyzing the all related actions in plans.   

(2)   Backward Considering Causal Information  

Case IV) ~ VI) listed above need to search backward, in order to find causal 

relations going into the new action: new_a1. It is the explanation’s backward 

propagation in nature, because adding an action just because that some of its 

preconditions can be satisfied by the current plan, but without a good contribution to 

the plan is unreasonable.  

Figure 20 shows the process of backward updating MISO, while Figure 21 and 

Figure 22 illustrate three concrete examples of the cases IV) ~ VI) respectively. The 

process will go into one of the three branches at somewhere (i.e., cases IV) ~ VI)), 

and then goes back to a common sub-process at the end. The sub-process is to forward 

check whether all the preconditions that are to be achieved by new_a1 is currently 

connected to a redundant indirect causal link, since a precondition on a symbolic 

attribute only allowed to be connected with at most one causal link in MISO. If yes, 
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then remove/update it. Take note that the backward updating process should be done 

for all preconditions in new_a1.  

Y

“a2 => * ” exists (the 

precondition * is not in 

the new action a1) ?

Start backward 

updating MISO

Case VI)

Case V)

For each i, find all existing actions, such as a2 that have a potential direct 

causal relation with the new action a1 (“a2 => a1.precondition_i”)

         “a2 -> * ” exists(the 

precondition * is not in 

the new action a1) ?

Case IV)
No causal link 

getting out of a2

Increase a2.EoutCounter by 1

a1 a2 are connected to the 

same precondition, i.e. “a2-> 

v ” && “a1 ->/=> v ” ?
Remove first added 

one “a2 -> v”

Y

“a1 =>/-> v ” && v is also 

connected to another indirect 

causal link “effect* -> v” (effect* is 

not in a1)?

Y

End backward 

updating MISO

Replace “effect* -> v” by “effect* =>/-> a1”(if 

the causal link is direct, increse 

EoutCounter by 1 accordingly

“effect* =>/-> a1” exists?Y
N

Remove “effect* -> v

Forward check 

whether the 

preconditions 

connected to 

the new action 

a1 is connected 

to another 

indirect causal 

link after above 

sub-process is 

done for all 

conditions in 

the new action

Add a direct causal link for representing the 

potential causal relation “a2 => 

a1.precondition_i”; increase a2.EoutCounter by 1

“* => a1.precondition_i ” 

exists already?
Y

Y

NThe new 

precondition

 is already 

connected 

with an direct 

causal link

N

N

N

 

Figure 20: Process of Backward Updating MISO  

Take note that the backward updating is for all the preconditions in the new 

action.  Besides, the “Single-In” property should hold for every precondition. Thus, 

although there might be more than one existing actions that have potential direct 
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causal relations to a precondition in the new action, only one of them can be explicitly 

explained.   

IV) Analyzing Existing Actions without any Causal Link Getting Out 

Case IV) is trivial. Let’s assume that the found causal relation is 

“existing_a2.ef1  new_a1.c1”, and there is no causal link going out of a2. Planners 

can just add a direct causal link connected from existing_a2.ef1 to new_a1.c1. Next, 

“EoutCounter” in existing_a2 should be accordingly increased by 1.  

existing_a2, that is, there is a direct/indirect causal link between new_a1 and 

existing_a3.c2 (denoted by “new_a2 / existing_a3.c2”). In this case, there is direct 

or indirect causal relation between existing_a2 and new_a1.  

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

IV) Analyzing Existing Actions 

without any Causal Link Getting Out

V) Analyzing Existing Actions with a 

Causal Link Getting Out
 

Figure 21: Two Backward Updating Examples of Adding a New Action 

V) Analyzing Existing Actions Having a Direct Causal Link Getting Out 
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In case V), since there is already a direct causal link going out of existing_a2, 

as per “SO” property of MISO causal network, i.e., only one causal relation is allowed 

to go out of one action, no new causal link is added in this scenario but “EoutCounter” 

in existing_a2 should be increased by 1.  

VI) Analyzing Existing Actions Having only an Indirect Causal Link Getting Out

(1) 

(2) 

(3) 

(4) 

 

Figure 22: Another Backward Updating Example of Adding a New Action 

VI) Analyzing Existing Actions Having only an Indirect Causal Link Getting 

Out 

If there is only one indirect causal link going out of the existing_a2, then 

existing_a2 is in an action sequence to resolve an inconsistency. Let’s assume the 
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inconsistency is because of existing_a3.c2, then the indirect causal link can be denoted 

by “existing_a2.ef2  existing_a3.c2”. If new_a1 is added in the action sequence after 

If the causal relation is direct, i.e., existing_a2  new_a1, then it can be found during 

the sub-process that is common for case VI) and case IV) (refer to Figure 20). After a 

direct causal link is added for representing it, the indirect causal relation 

“existing_a2.ef2  existing_a3.c2” will become redundant. Thus, the indirect causal 

link representing it needs to be removed.   

If the causal relation is indirect, i.e., existing_a2  new_a1, then it can only be 

found during the sub-process that is common for all of the three cases (refer to Figure 

20). The indirect causal link needs to be either removed or replaced by another 

direct/indirect causal link.  

 (3)   Other Special Cases 

Another case to be considered is “a1.ef1 + a2.ef2  a3.c1”. All of them are 

related to the same attribute. The case is very likely to occur on a numerical attribute. 

Thus, the research on this part can be our future work. 

In summary of the above six cases, causal explanation in the “from” end of 

causal links need to be updated when plan structures change. The update process 

includes updating value of “EoutCounter” and analyzing whether to add a causal link 

between an existing action and the newly added action.  

3.4.2.2   Updating when Removing Actions 

Figure 23 illustrates a scenario of updating MISO after removing a set of 

actions. All causal links connected to the selected set of actions also need to be 

removed and “EoutCounter” in their related actions that are still kept in the plan needs 

to be updated by reanalyzing the number of direct causal relations.  
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One should note that whenever an action is removed from the plan, the causal 

explanation in its connected action that is in the set of selected actions also needs 

updating. The updating in the set of selected actions is unnecessary. Thus, to further 

improve planning speed, the set of selected actions are grouped into a macro-action, 

and only actions that are not contained in the macro-actions needs updating.   

(1)The selected set of actions are to be removed

(2) Update related Eout_counters after removing the 

selected actions and their connected causal links

Update MISO after Removing a set of Actions

 

Figure 23: Illustration of Updating MISO after Removing a set of Actions 

3.4.2.3   Updating when Moving Actions 

Cases of moving one or a set of actions can be regarded as a combination of 

removing them from the original covered interval and adding them to the new interval. 

Similarly, the set of actions that need to be moved, are grouped into a macro-action 

for reducing time cost for explaining causal relations inside the macro-action. 

(4)   Summary 

The MISO causal networks are partially connected and can be generated from 

the enhanced plan structure. In MISO, there can be multiple causal links going into an 



 

Page | 65  
 

action, but at most one direct/indirect causal link going out of the action. Besides, all 

preconditions in MISO are connected with at most one causal link. Up to now, all 

cases that can be explained have been analyzed. The proof of correctness is 

introduced in the next subsection.  

3.4.3   Proving Correctness of the Updating MISO Algorithms 

The correctness of algorithms is very essential. In this subsection, we will 

prove that all properties of MISO causal network hold after using the above updating 

algorithms in any cases, by way of mathematical induction. As mentioned in 

Subsection 3.4.2, adding/removing/moving an action are the basic planning operations 

that can change the plan structure. Furthermore, a moving operation is a combination 

of an adding operation and a removing operation. Thus, we can narrow down the 

proof to updating algorithms after adding or removing an action. Referring to 

Subsubsection 3.4.4.2, the removing operations don’t add any new causal links to the 

plan, i.e., the number of causal links that are connected with an action or a 

precondition will never increase by a removing. Thus, the removing operations will 

never violate the MISO properties under any circumstances, since all the properties of 

MISO (refer to Subsubsection 3.4.1 – (1)) are constrained by two upper bounds of the 

number of causal links related to actions and preconditions. In summary, only the 

updating MISO algorithm after adding a new action into plan needs to be proved.   

The first step is to prove that all properties of MISO hold after the first run of 

updating algorithms. Since a causal link is added between two actions or between an 

action and a goal, the initial plan only contains initial states and goals and no action is 

included, and thus, no causal link is included. The only planning operation on the 

initial plan is adding a new action before the goal that is to be satisfied. Thus, only the 

operations in the forward updating MISO phase might be executed. Since there is no 
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causal link in the initial plan, the algorithm will follow case I) or II). In case I), only a 

direct causal link will be added, thus, both the “Single-Out” property of the new 

action and the “Single-In” property of the goal hold after running the updating 

algorithm. In case II), there will be only one indirect causal link added into the plan, 

and might be a direct causal link added between the new action and another goal. 

Thus, the properties also hold. In summary, the properties hold after the first run of 

updating algorithms. 

Assuming that all the properties hold after the k
th

 run of updating algorithms,  

we should prove that they still hold after the k+1
th

 run.  

Let’s first consider the “Single-In” constraint for the existing preconditions. 

Only the three cases that are in forward updating phase have the operation of adding 

new causal links and connecting it between the new action and an existing 

precondition. If there is no causal links connected with the precondition that is to be 

satisfied, then the algorithm will follow the branches for case I) or II). One new 

direct/indirect casual link will be connected with the precondition. Thus, the property 

holds for the precondition. However, in case II), the algorithm might also add a new 

direct causal link between the new action and another precondition that might already 

has an indirect causal link “In”. Thus, the indirect causal link is redundant and the 

property doesn’t hold for this precondition after forward updating phase. Furthermore, 

the backward updating phase also doesn’t change the state. However, there is a 

“consistency check” phase after backward updating (refer to the last common sub-

process in Figure 20) that removes the redundant indirect causal link, the property 

then holds again for the precondition. Moreover, case III) doesn’t contain any adding 

causal links operations before the updating algorithm goes into either case I) or case 

II). Since the property for all existing precondition holds after running the updating 
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algorithm both in case I) and case II), it also holds after running the updating 

algorithm that goes into branch for case III). In summary, the property holds for all 

existing preconditions in the plan after running the algorithm.  

Next, let’s consider the “Single-In” constraint for all the preconditions in the 

new action. Only the backward updating phase will affect these preconditions. 

Furthermore, the first choice point in Figure 20 ensures that the “Single-In” property 

always holds for every precondition in the new action after the backward updating 

phase.  

In summary, the “Single-In” property of all preconditions still holds in the 

new MISO after the k+1
th

 run of the updating algorithms. The next property needs to 

be checked is the “Single-Out” property of all the actions in the new MISO.  

The “Single-Out” property of the new action needs to be checked only in the 

forward updating phase, while the property of the existing actions needs to be checked 

only in the backward updating phase. In forward updating phase, all branches contain 

at most one operation for adding a new direct causal link and at most one operation 

for adding a new indirect causal link that are out of the new action. Thus, the property 

of the new action holds after the k+1
th

 run of the algorithm. On the other hand, only in 

case IV) and VI), the updating algorithm has one operation of adding a direct casual 

link out of an existing action under the condition that there isn’t any direct causal link 

goes out of the existing action, i.e., there is at most one indirect causal link out of the 

existing action since all properties hold before adding the new action. Thus, the 

“Single-Out” property of all existing actions also holds after the k+1
th

 run of the 

algorithm.  
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In summary, by the mathematical induction, we have proved that the updating 

MISO algorithm is correct. The way of utilizing explanations to facilitate searching 

will be introduced in the next subsection. 

3.5   Exploiting Causal Explanations 

Adding or detecting the explanation is not an end in itself, and the real reason 

for the planners to use explanations is to improve their performances.  

When searching for the successor plans, if the planner finds that changing an 

existing action can somehow repair the plan, and the existing action is connected by 

some causal links, then planners can exploit causal links to go further, and analyze the 

next successor plan. The planner faces three problems when exploiting causal 

explanations: 1) whether to exploit all causal links connected to the selected action; 2) 

which causal link to follow; 3) when to stop going deeper.  

The first problem is easy to answer. For a complex problem or if the problem 

size is large, it is not promising to exploit all causal links. Exploiting only parts of the 

search space to reduce time expense is also a reason for planners to use local search. 

The second problem is due to the fact that every action can have multiple 

causal links coming in, and one direct causal link and one indirect causal link going 

out. Based on the consideration in the first problem, we can choose some of the 

branches to go deeper. Some heuristics are developed to address the problem. The 

heuristics are to be introduced later. 

Furthermore, if causal networks are strongly connected, it is unwise to go too 

deep, thus the searching has to stop at some point. To address this problem, we can 

define some stopping criteria, and will be introduced in the second subsection.  
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3.5.1   Exploiting Heuristics based on Causal Explanation 

Three heuristics are developed to solve the second problem described above.  

 (1)  Forward Exploiting Heuristic 

Figure 24 illustrates forward exploiting heuristic in MISO causal network. It 

exploits MISO in the same direction as direction of causal links.  

a1

a2

a3a4a5

a6

a7a8

goal1

Action that under analysis

Exploiting direction

  

Figure 24: An Example of Forward Exploiting Causal Explanation Heuristic 

Suppose action “a4” (in red border) is under analysis, one of its preconditions 

is unsatisfied and removing the precondition from current plan can improve the plan 

quality. Action “a3” and “goal1” is sequentially followed by “a4” along causal links. 

Then we can make such an understanding that removing “a4” (in order to remove its 

unsatisfied precondition) will make a currently satisfied precondition in “a3” become 

inconsistent, that is, “a3” and “goal1” will become infeasible subsequently. This 

subsequent result will reduce the plan quality. Thus, it is reasonable to remove the set 

of actions that are followed by “a4” and subsequently connected by causal links. 

Similar exploiting and operation can be done on the set of actions, if moving “a4” to 

another time points can improve plan quality. In summary, it is promising and 

reasonable to do forward exploiting.  

For forward exploiting, there are three cases that might be encountered when 

an action is exploited, in terms of number of causal links going out of the action. The 
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first case is when an action that has no causal link coming out is exploited, like “a6” 

in Figure 24. The exploiting algorithm stops when this case is encountered. The 

second case occurs when an action that has only one causal link going out, like “a4” 

and “a3” in Figure 24. This case is trivial, since there is only one branch that can be 

further exploited. The final one is like action “a5” in Figure 24. Our choice is to 

exploit the direct causal link according to an assumption that direct causal relations 

are stronger than indirect ones, because indirect ones might be broken and substituted 

by a set of direct causal links associated with a set of actions (refer to updating 

algorithm in the previous section).  

 (2)  Backward Exploiting Heuristics 

Backward exploiting heuristics exploit MISO in the opposite direction of 

causal links. Figure 25 illustrates the heuristic.  

a1

a2

a3a4a5

a6

a7a8

goal1

Action that under analysis

Exploiting direction

  

Figure 25: An Example of Backward Exploiting Causal Explanation Heuristic 

Suppose action “a3” is currently under analysis. Action “a1” and “a4” are both 

connected to “a3”. If “a3” has a precondition unsatisfied, then removing the 

precondition can improve the plan quality, and it can be achieved by removing “a3”. 

As can be seen in Figure 25, “a1” and “a4” exists to ensure occurrence of “a3”. If “a3” 

is removed, then it is meaningless for them to exist in the plan. Thus, it is reasonable 
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to remove the set of meaningless actions that would occur before “a3”. Similarly in 

case “a3” is supposed to moving to another time point.  

A key problem in this case is that there can be multiple causal links going into 

an action, like “a3”, to decide which causal link to exploit is a problem for the 

planners when such an action is currently exploited. Planners can exploit all of 

branches or heuristically select one of branches to exploit. By comparison, far more 

actions and causal links will be exploited by using the first method than using the 

second one, in terms of MISO’s tree structure. Thus, the second method is preferred 

in this research.  

Two selecting branch heuristics are used in backward exploiting. One of them 

is to randomly exploit one of causal links coming in the action. Another one is based 

on an assumption that the worst inconsistency is to be repaired first,  the first action 

links to action “a3”, let’s say “a4”, has the most significant effect on “a3” than effects 

of other actions. Thus, exploiting the first branch is more reasonable. To use this 

selecting heuristics, pointers inside an action can be stored according to order of 

causal links linking to the action. Note that, in any case, direct causal links has higher 

priority for exploiting than indirect ones.  

 (3)  Hybrid Exploiting Heuristic 

As described in the previous two cases, both forward searching and backward 

searching are reasonable. When exploiting forwards and encounter an end, then the 

planner can also turn back and search another branch coming into the end, as shown 

in the illustration of hybrid exploiting in Figure 26, “a5” is such an “end”.  

On the other hand, hybrid exploiting heuristic can be implemented in two 

ways. First go forward and then go backward, or vice versa. 
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a1

a2

a3a4a5

a6

a7a8

goal1

Action that under analysis

Exploiting direction

 

Figure 26: An Example of Hybrid Exploiting Causal Explanation Heuristic 

3.5.2   Stopping Criteria  

It is easy to imagine that causal networks can be very huge and complex, 

because lots of real-world domains are complex. Intuitively, if the number of actions 

connected by causal links is large, it is unwise to suggest the same change to the 

whole set of actions in the same tree, when one action in the tree is suggested to be 

removed or moved to another time point. Thus, setting proper stopping criteria is 

essential for improving planning performance.  

We propose some ideas about when to stop and they are listed as follows: 

1)   # of traced actions < nA_ub  

2)   # of traced action levels < nAL_ub  

3)   EoutCounter >= e_lb  

4)   Time limitation. In real-time applications, timely responsiveness is a 

key satisfaction/optimization criterion. 

The criteria 1) and 2) respectively set upper bounds for the number of actions 

and levels that heuristics can exploit. The upper bounds can be initially set. Moreover, 

it can be a fixed value or can be dynamically adjusted during planning. In the current 

stage, we only consider the first case. The dynamically adjusting case requires the 

usage of online learning techniques and would be our future work. Note that, the 



 

Page | 73  
 

bounds might be domain dependent. Criteria 1) and 2) have different effects on 

exploiting algorithms only in hybrid exploiting case. Stopping criterion 3) is another 

strategy that making use of “EoutCounter” in explanation structures. The counter 

shows that the action is satisfying more than one precondition, and this indicates that 

it is not reasonable to make a synchronous change to this action as the change to the 

first exploited action. The last criterion is to set time limitation to exploiting 

algorithms.  

In summary, all of above stopping criteria can be used by exploiting 

algorithms, and exploiting algorithms stop when any of criteria is satisfied.  

3.6   Summary 

Up to now, the systematic introduction of the proposed approach is finished. 

The implementation and evaluation related issues will be introduced in Chapter 4.  
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Chapter 4   Prototype Implementation 

Our experimental setup is implemented on a planning system named Crackpot.  

Crackpot is a local-search-based planning system evolved out of the Excalibur system 

[43]. It can be applied in many applications, such as storytelling, game development, 

etc. We will introduce its implementation in detail in this chapter. Firstly, we give an 

overview of Crackpot and show its workflow. After that, we introduce some 

structures and concepts closely related to explanations, such as action structure.  

4.1   Crackpot Overview 

In this section, the high level structures of Crackpot will be introduced. 

4.1.1   Crackpot Architecture 

Crackpot architecture is modeled as shown in Figure 27. Six components are 

designed to manage different kinds of tasks. Table 3 lists their functionalities.  

 

Figure 27: Architecture of Crackpot 

Plan and Cost in Crackpot keep essential data structures. Plan contains actions, 

causal structures, objects associated with their components attributes and actuators, 

and so on. For example, “package1.location” is an attribute of the object “package1” 

in time, such as “package1.location == Depot1” in duration [2, 7). The usage of a 

  Crackpot architecture 

Planner 

CostManager 

PlanManager 

Domain 

Plan 

Cost 
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truck is an actuator. If a condition is “package1.location == Depot2” during [3, 5), 

then the condition is inconsistent, a cost will be added to the unsatisfied condition. 

Anything that can compute costs is called CostCenter in Crackpot, like the attribute 

“package1.location” in the above example. Actuators can also compute costs if their 

usages are overlapped. The functionality of CostCenters is computing costs and then 

reporting them to CostManager. Because cost computation in different CostCenters 

might be different, CostManager generates costs that come from different CostCenters 

in a normalized way and make use of them to guide planning improvement. Similarly, 

plan structure is managed by PlanManager.  

Component Functionality 

Planner  

Given a description of the initial state of the world and the desired 

goals, and domain description, planner takes charge of the overall 

planning flow to iteratively repair the plan. 

Domain  
Domain contains a description of the environment, like a set of 

possible actions, a set of constraints, objects, and so on.  

Plan 

It contains all plan related information, such as projected actions, 

attribute values, actuator usages, and causal structure.  

Plan quality can be evaluated in terms of costs. 

PlanManager  
It makes changes to the plan and maintains plan structure after 

realizing change. 

Cost 
contain cost instances and cost related structures, and they can be 

used to guide the repairing process 

CostManager  manages cost related things 

Table 3: Components of Crackpot and Their Functionalities 

Domain contains a description of the environment. Planner controls overall 

planning process. It controls CostManager and PlanManager to make use of domain 

information to iteratively repair plan. The initial plan only contains the initial state 

and the goals given. When some plan components, such as actions, objects, are added 

into the plan or are deleted from the plan or get updated, the plan structure needs to be 

updated and a new plan will be generated. The changes above are called planChange 

in Crackpot.  



 

Page | 76  
 

There are 3 kinds of essential planChanges closely related to explanation and 

its related methods. They are named AddActionChange, MoveActionChange and 

DeleteActionChange respectively, and their names are intuitive.   

4.1.2   Overall Planning Workflow using Causal Explanation 

The detailed repairing process of Crackpot is shown in Figure 28. In every 

iteration, the planner delegates the CostManager to select one of the costs to repair. 

Next the corresponding CostCenter, where the selected cost comes from, would be 

asked to suggest a set of changes to the plan (plans that can be generated by making 

the changes the current plan are called successor plans of the current plan).  The 

successor plans might be better than the current plan according to a cost function. 

After receiving those plan changes, the costManager selects one or multiple of them, 

and delegates the PlanManager to update the plan using the selected plan changes. At 

this step, projection of some plan components in the current plan will be updated. The 

projection updating will result in inconsistencies of some related costs, thus the 

CostManager will be delegated to update the corresponding costs. If the new plan 

quality is not good enough and the planning time is not used up, then the planner will 

start another iteration to repair the newly generated plan. 

The exploiting algorithm is used by CostCenters for suggesting better plan 

changes, while the updating algorithm is used by the PlanManager after 

corresponding CostCenters realize their related components changes. They are 

highlighted in red color in Figure 28. Take note, Crackpot has a heuristic framework 

that it is easy to be configured to enable using an exploiting heuristic or not. Those 

exploiting heuristics are integrated into this framework and are enabled when using 

causal explanations. This makes the usage of hybrid heuristics that can also include 

non-explanation-based heuristics. This hybrid scheme is currently used in Crackpot.  
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Figure 28: Overall Flow of Planning in Crackpot 

4.2   Introduction of Action Compositions 

Costs introduced by different costCenters have different weights to represent 

their significances comparing to costs from other costCenters. For example, for the 

planner, the cost due to a resource’s overlapping might be more significant than 

another cost due to the difference between a numerical attribute’s current value and its 
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desired value. To differentiate different kinds of costs, the structure of an action in 

Crackpot is designed as shown in Figure 29.  

 

Figure 29: Action Structure 

Action is composed of five main components. In every action there is a set of 

conditions contributions and ACRs (Action Component Relations). Each condition or 

contribution is related to an attribute, while an ACR is about the relationship of 

multiple attributes.  

4.2.1   Condition 

Take attribute “package1.location” as an example, a condition related to the 

attribute can be “package1.location == Depot1” or “package1.location != Depot1” 

during time [2, 7).  If the condition is unsatisfied in the duration, there will be costs 

accordingly. Crackpot currently has the above two type of conditions. They are only 

related to one specific condition and called classical conditions in this research. 

4.2.2   Action Component Relation 

Take action “load(package1, truck1)” as an example. If “package1.location” 

and “truck1.location” are represented as not ground attribute variables, then the 

action’s condition can be modeled as “package1.loation == truck1.location @ t” or 

“package1.location” is contained by “truck1.location”. This kind of conditions 

 class Action components

ActionTask

Condition Contribution

Object

ActionInstance

ActionComponentRelation(ACR)
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describes relationships (or constraints) between different attribute variables. Those 

attribute might belong to different objects (like “package1” and “truck1”). To 

differentiate them with classical conditions, this kind of condition is called 

ActionComponentRelation (ACR) in Crackpot. Similar to classical condition, when 

ACR is not satisfied, there will be cost. 

4.2.3   Contribution 

A contribution is a state transformation related to an attribute, like 

“truck1.location == Depot1 @ t1  truck1.location == Depot2 @ t2”. If the value of 

the attribute at t1 equals to the preceding value in the transformation (contribution), 

then the contribution will be applied. The value of the attribute will be updated 

subsequently at t2 by realization of state transformation. A contribution inside an 

action is used to satisfy a/an condition/ACR in another action. For example, 

“truck1.location == Depot2 @ t2” is a condition of action “unload(package1, truck1, 

Depot2) @ t2”, which can be satisfied by an action having the contribution in the 

above example, like “move(truck1, Depot1, Depot2) @ t1”.  

4.2.4   Other Components in Action 

Object is the component to operate an action or to be operated in an action. 

For example, the objects related to action “eat(apple)” are a person (player) and an 

apple.  

ActionTask is to be added to an actuator. For example, “person.hands” is an 

actuator, and action task in “eatApple” is one of action tasks needs to be done by 

“person.hands”. If “person.hands” is currently in use, there will be overlapping cost 

because the “person.hands” can be used by only one action task at one time. 
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We won’t introduce these 2 parts in detail, because they are not directly 

related to explanation related work.  

4.2.5   Summary 

An action might have only one or multiple conditions/contributions. For 

example, the action “open(door)” has following conditions: “the door is locked”, “the 

player is outside the door”, and “the key of the door is in hand of the player”, and the 

following contributions: “make the door from locked to unlocked”, and “make the 

door from closed to open”. In the example, the lock state and the open state are two 

values of attribute “door.state”, and “player.location” and “key.location” are the 

attributes of the player and the key, respectively.  

In summary, some of general knowledge about local-search-based planning is 

introduced based on Crackpot planning system. So up to this point, we can have an 

overall picture of local-search-based planning process.  

4.3   Explanation Structure related to Actions 

Figure 30 illustrates the relationships between action, causal explanation and 

causal link. Causal links are stored in plan and used to connect two of actions, while 

the causal explanation structure is stored in every action and serves for causal network 

exploiting algorithm and updating algorithm. Figure 31 is a screenshot of the GUI of 

Crackpot with updating and exploiting MISO algorithms integrated.  

4.4   Evaluations 

Some tests were run on a computer with the following configuration:  

 Hardware: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.4GHz; 4GB RAM;  

 Software: Windows Vista
TM

 Business (SP2); 
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Figure 30: UML Model of Causal Link, Causal Explanation and Action 

 

 

Figure 31: A Screenshot of the Enhanced Plan Structure in Crackpot with Updating and 

Exploiting MISO Algorithms Integrated 

On the other hand, the testing was run on a simple BlockWorld domain that 

the planner can do the following four types of actions: picking up a block from the 

table, putting it on the table, stacking one block onto another one and unstacking one 

block that is on another block. Initially, there are four blocks named A, B, C and D on 
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the table. The planner is required to reach the state that B is on A, C is on B and D is 

on C. Furthermore, there is also an optimazition requirement that the planner should 

get an optimal plan that has lowest costs. The cost is computed according to the total 

number of actions and whether the goal state is reached. The planner was set to run 

180 seconds every time. Based on the above experimental environment, three 

planning cases were tested: 1) without causal explanation; 2) using explanation and 

exploiting maximum 2 actions if our exploiting heuristics are used in one iteration; 3) 

using explanation and exploiting maximum 3 actions if exploiting heuristics are used 

in one iteration. Take note that, in case 2) and 3), the planner used hybrid heuristics, 

including forward and backward exploiting heuristics that are introduced in 

subsection 3.5.1 (refer to subsection 4.1.2 for how they are integrated into the 

planning), and non-explanation-based heuristics.  

 

Figure 32: MISO Performance on BlockWorld Domain 
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In this research, total costs in every iteration are used for evaluation. Figure 32 

and Figure 33 illustrates performance comparison of the three cases.  

To do a statistical evaluation, the planner did 30 runs for each case. The two 

explanation-based exploiting heuristics were used 674 and 710 times in average in 

case 2 and 3, respectively; while the other heuristics were used around 23600 times in 

total. In every iteration, we recorded the total cost of the current plan and how long 

the current iteration took. In order to have a better comparison, costs are sorted in 

ascending order. Next, we sum up the total time duration when the planner has the 

same costs for every run, and get average time duration for every cost value. As can 

be seen from Figure 32, in cases that use explanations, we can easily compare that 

how long it totally took when the plan had costs less than a cost value. For example, if 

we want to know how long the planning was taken when the cost of the plan was less 

than 5. The case 1) took only 20 seconds while the other cases took longer. It means 

the planning took longer time making lower quality plans in case 1).  Thus, we can 

conclude from Figure 32 that by using explanations, the planning can get better 

performance. Furthermore, the third case has better performance than the second one. 

It means that the maximum number of actions being exploited by using causal 

explanations also affects the planning performance. However, this research is 

concentrated on performance comparison between planning with and without using 

causal explanations. More detailed research on how the maximum exploiting numbers 

affect the planning performance is our future work.  
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Figure 33: Bar Graph of MISO Performance on BlockWorld Domain 

Figure 33 shows a different view of the experimental results that is the same as 

in Figure 32. The number of iterations that has the same cost values is counted for a 

set of cost values. All the three cases can be easily compared for each cost value. As 

can be seen from Figure 33, most of iterations got total cost value between 3 and 5. 

Furthermore, the smaller the cost value is, the more iterations were encountered in 

cases that using explanations. This means the planning fluctuated in sub plan spaces 

that have higher plans when using explanations.  

Finally, evaluations on other kinds of domains are our future work.  
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Chapter 5   Conclusion and Future Work 

The key idea of the thesis is to keep some causal information in a 

straightforward way, such that the planners can easily utilize this information to 

facilitate the search in order to improve their planning performances. In this thesis, we 

proposed a novel technique using causal explanation structures to retain some causal 

information acquired during planning. To improve the planning performance by 

utilizing this causal information, we designed an explanation structure for composing 

Multiple-In-Single-Out (MISO) causal networks, and developed some updating and 

exploiting MISO algorithms. The updating algorithms update the MISO causal 

networks whenever the plan is changed, and they were proved to be correct in this 

research. The exploiting algorithms exploit the MISO causal network to dynamically 

group some of the actions into a macro-action, and the planners can then operate on 

this macro-action like on a normal action. Our approach is promising to speed up 

planners that have loose plan structures using local search approaches to create plans, 

due to the potential benefits from the usage of macro-actions.  

5.1   Future Work 

Although we have successfully fulfilled our initial objective, there are still 

some limitations which can be improved or extended. In the thesis we have developed 

two algorithms for updating and exploiting MISO causal networks by using causal 

information between actions, and the current research is based on symbolic attribute. 

Besides, the prototype implementations were based on Crackpot. There are several 

directions we can focus on in the future:  

 In terms of empirical evaluation, our approach is to be evaluated on more 

planning systems.   
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 Extend explanation theory to rules. Some planning systems have the 

capability of handling rules, like Crackpot. Similar to actions, rules have 

conditions and contributions as well. There will be causal relations 

between rules or between rules and actions.  

 Numerical attributes are more complicated than other attributes, such as 

symbolic attributes and Boolean attributes. Contributions on numerical 

attributes can be a range of numerical value. Besides, multiple 

contributions might collectively achieve a condition on numerical 

attribute. Thus, causal information related to numerical attributes is more 

complex than that related to other attributes. It is common that a real-

world planning domain contains numerical attributes related actions and 

rules. Crackpot also can handle numerical things.    

 Furthermore, currently every causal explanation inside an action will be 

removed if the action is removed from the plan. However, some of them 

might be reused for similar actions. Thus, the planning performance might 

be further improved if learning techniques can be used to generate those 

useful causal explanations.  
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5.2   Schedule of Master Study 

 

Figure 34: Schedule of M.Eng Study 
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