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 I 

ABSTRACT 

With the increasing process variations in advanced technologies, delay defects are 

gaining a larger impact on Field Programmable Gate Array (FPGA) timing yield. If the 

delay defect areas can be quickly and accurately located, FPGA timing yield can be 

improved by avoiding them. Conventional delay testing methods do not take into 

account the spatial information of variability-induced delay faults, thus cannot accurately 

locate the delay defects to a well restricted area. Based on the superb locality preserving 

feature of space-filling curves, we propose a method to locate delay faults and generate a 

delay variation map (DVM) with scalable resolutions in this thesis. The method uses 

Hilbert curves to guide the test configurations of FPGAs. It is able to work on FPGAs 

with regular or arbitrary dimensions. Compared with normal test approaches, our 

method achieved around 60% increase in delay faults locating resolution. 

  

Keywords:  

FPGA, Delay Fault, Delay Fault Characterization, Space-Filling Curves, Hilbert Curve, 

Timing Yield. 
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SUMMARY 

Advanced technologies have enabled the increasingly higher density of FPGAs. At the 

same time, they have also brought forth new challenges such as increased impacts of 

manufacturing defects and process variations. These variations cause greater 

uncertainties in circuit timing performance, making it difficult to ensure design quality 

[1]. The delay of a logic block or a wire segment in FPGAs can vary in a much larger 

range. Study has shown that variability may cause up to 22% performance penalty in 

FPGAs [2]. Apart from process variations and manufacturing defects, high 

performance clocking strategy is also a source of product failure as it makes delay 

defects more prominent. To guarantee yield, delay defects need to be properly 

characterized [3].  

 

Efficient testing methods are needed to quickly and accurately detect and locate the 

delay defect areas. Delay faults are tested by configuring an FPGA into test circuits 

whose input signals are rising and falling transitions. The results of delay fault testing 

are used to determine the timing performance of different part of FPGA resources.  

 

Numerous methodologies have been developed to facilitate the FPGA delay fault 

testing. In [4], the authors proposed a procedure to generate efficient FPGA test 

configurations. A method to test delay faults in the LUT network of FPGAs by linking 

them together as a test array was presented in [5]. Application-dependent delay testing 

was proposed in [6] and [7], which only targets at a subset of the resources. While 

most of the methods improve the test efficiency for delay faults, the cumulative effect 
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of delay faults induced by variability remains overlooked. Hence, for a circuit with 

spatially correlated variations, the affected logic blocks may not be identified correctly 

as the delay error on each logic block or wire may not be big enough to be detected. 

These defects will impair the circuit performance if a critical path of the circuit covers 

a large number of affected logic blocks and wires. Such delay defects may not be 

located correctly or with a good resolution by the previous approaches, as the spatial 

correlation of delay variations is not considered. 

 

Based on the superb locality preserving feature of space-filling curves, we propose a 

method which can quickly and accurately detect the region affected by delay faults in 

FPGAs. The method generates FPGA test paths based on Hilbert curves, one of the 

classical space-filling curves. Depending on the number of test points inserted to the 

curve, different levels of locating resolution can be achieved. Finally, a delay variation 

map (DVM) will be generated for the target FPGA. The DVM partitions the FPGA 

into regions with different delay variation levels. The size of the region is scalable 

depending on the target resolution. Compared with normal test paths, our method 

significantly improves the speed and accuracy at detecting areas affected by delay 

defects. 
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C H A P T E R . 1   

I N T R O D U C T I O N  

Advanced technologies have enabled the increasingly higher density of larger FPGAs. 

With reducing transistor sizes, designers are able to pack more functionality onto a 

single die while increasing the operating frequency. At the same time, decreased 

dimensions have also brought new challenges such as increased impacts of processes 

variations. These variations cause increasing uncertainties in design timing performance, 

making devices more prone to delay faults.  

 

We introduce the whole thesis once over lightly in the remainder of this chapter and 

concisely describe the application (Section 1.1) contexts, problem definition (Section 

1.2), and solution approaches (Section 1.3) of our research. Finally, we conclude this 

chapter with the main contribution statement in Section 1.4 and the further 

organization of this thesis in Section 1.5. 

 

1.1 FPGA Delay Fault Characterization 

Imperfections of the equipment or the inaccuracies in the fabrication process of VLSI 

chips create manufacturing defects such as physical flaws, contact open, metallization 

open and resistive open. Manufacturing defects may cause the devices to fail or worsen 

their performance. Before the IC chips are shipped to the customers, the manufactures 

are responsible to perform tests on the chips to ensure that the devices meet their 

specifications. 
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Figure 1.1 Examples of manufacturing defects. 

 

In addition, increased variations in very deep submicron semiconductor processes will 

result in device parameters with broader distributions. Figure 1.2 shows the power and 

frequency plot of a batch of Intel processors. The plot clearly shows the spread of 

power and frequency values. 

 

 

Figure 1.2 The power and frequency plot of a batch of Intel processors 

 

A Field Programmable Gate Array (FPGA) is a state-of-the-art semiconductor device 

with regularly-structured logic arrays interconnected by a routing network. With the 

shrinking resistor sizes and aggressive clocking strategy, FPGAs are much more prone 

to defects in manufacturing process. Device parameters are affected by process 
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variations, resulting in increased unpredictability in device performance. The delay of 

a logic block or wire segments in FPGAs can vary in a much larger range in a faulty 

case. Study has shown that variability may cause up to 22% performance penalty in 

FPGAs [2].  

 

Increased operating frequencies also have an impact on the timing yield of FPGA. 

Small delay defects that will not fail a device when operating at lower frequencies will 

cause timing violations under higher frequencies.  

 

To ensure that manufactured FPGA performs as it should be at its operating frequency, 

delay fault testing is applied to find and locate delay defects on the FPGA chip.  

 

 

Figure 1.3 Delay testing of FPGAs 

 

Delay fault testing of FPGA is commonly carried out by applying transitions to one 

end of a FPGA test path and observe the time taken for the transition to the other end. 

The measured delay value is then compared against the delay of fault-free test path to 
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determine the existence and severity of delay defects. The standard FPGA delay testing 

involves three steps: 

1. Configure FPGA with a testing design  

2. Apply rising/falling transistions 

3. Analyze test response 

 

In order to improve the device yield, an efficient delay fault testing method is needed 

to quickly and accurately detect and locate the delay defect area. The testing method 

needs to consider the effects of process variations-induced delay defects on device 

timing performance. 

 

1.2 Problem Definition 

Our work presented in this thesis is inspired from the concerns at the increasing impact 

of process variations in fabricated FPGA devices under deep sub-micron technologies. 

With the continuous scaling, it becomes harder to control manufactured parameters, 

this result in larger percentage of parameter variation against nominal values. 

Moreover, process variations tend to have location-related correlations that are called 

spatial correlations. Delay defects induced by such correlations are dependent to each 

other. 
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Figure 1.4 Delay fault variation map for an FPGA 

 

Most of existing approaches in delay fault testing uses path-based single-transition 

propagations to determine the delay of the FPGA device under test (DUT). They 

usually partition the set of FPGA resources under test into test paths or test arrays, and 

measure the delay for each of them accordingly. The paths are commonly selected in a 

straight-forward manner, only taking into account of maximum coverage and 

minimum testing time, but not the possible spatial correlations between delay defects 

on the chip. 

  

As the impact of process variations-induced small delay defects continues to increase, 

traditional delay testing approaches cannot accurately determine and locate resources 

on FPGA that are affected, as they only use the total accumulated propagation delay 

along the test paths to find delay faults, without considering the spatial relationships of 

the delay defects. Thus, the relatively “slower” areas on FPGAs caused by variations 

may not be accurate mapped by these methods.  

Delay fault 

variation map 

FPGA with 

delay faults 
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Thus, our problem is to develop a delay fault characterization algorithm that accurately 

locates the “slow” FPGA resources under delay defects, and is able to maximize 

accumulated small delay errors caused by process variations. 

 

1.3 Solution Approaches 

Based on the superb locality preserving feature of space-filling curves, we develop a 

method which can quickly and accurately detect the region affected by delay faults in 

FPGAs. The method generates FPGA test paths based on Hilbert curves, one of the 

classical space-filling curves. Depending on the number of test points inserted to the 

curve, different levels of locating resolution can be achieved. Finally, a delay variation 

map (DVM) will be generated for the target FPGA. The DVM partitions the FPGA into 

regions with different delay variation levels. The size of the region is scalable depending 

on the target resolution. Compared with normal curves, our method significantly 

improves the speed and accuracy at detecting areas affected by delay defects. 

1.4 Thesis Contributions 

Based on the superb locality preserving feature of space-filling curves, we develop a 

FPGA delay fault characterization method which can quickly and accurately detect the 

region affected by delay faults, as outlined in the problem definition above. Our main 

contributions are as follows: 

1. We presented a test path generation algorithm based on the geometric tool of 

space-filling curves. With the superb locality-preserving ability of space-filling 

curves, the generated test paths are able to capture the accumulated delay faults 

caused by spatially-correlated variations on FPGA chip. We use the improved 
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form of space-filling curves which is able to cover area with arbitrary rectangle 

dimensions, as opposed to classic curves which is To the best of our knowledge, 

this application of special geometric curves to the problem of FPGA testing is 

novel, as the curves are commonly used only for image processing or database 

indexing. 

2. Secondly, we developed a test framework based on the path generation method 

presented above. Our method partitions the FPGA-under-test into suitable test 

regions, each covered by a test path generated from space-filling curves. We 

then present the criterion to evaluate test results and how the slower regions are 

located. Depending on the number of test points inserted to the curve, different 

levels of locating resolution can be achieved. Compared with normal curves, 

our method demonstrates significantly better speed and accuracy at detecting 

areas affected by delay faults. 

3. In order to have a complete test framework, we then present another algorithm 

for a different family of FPGAs. Our original methodology is only able to test 

FPGA with rectangle dimensions as the classic space-filling curves are 

designed for a regular continuous space. However, state-of-the-art FPGA 

devices commonly have embedded on-chip hard IP cores. The shape of testable 

resources of these FPGAs is no longer a perfect rectangle, but a rectangle with 

obstacles (black boxes) in it. To tackle delay fault locating for such devices, we 

develop a drastically modified version of our original algorithm which 

incorporate the Hamilton curves as guidance for test path allocation. With the 

modified algorithm, our methodology can test for both regular and irregular 

shaped FPGAs. We then run experiments to show that the modified algorithm 

has similar run-time and accuracy as the original algorithm. 
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1.5 Thesis Organization 

The rest of this thesis is organized as follows.  

 

Chapter 2 introduces the models and existing detection methods for delay defects in 

FPGA, presents the theoretical background of the geometric tools we applied to the 

problem, and gives an overview of our main contributions. We also briefly introduce 

existing delay testing methods and explain what they are lacking when applied to state-

of-the-art FPGAs under VDSM technologies.  

 

Chapter 3 introduces the affine arithmetic timing model and analysis approach used in 

our framework. 

 

Chapter 4 describes our methodology applied to delay fault characterization of FPGA. 

Experimental results are given and compared with other possible test methods to show 

the superior delay fault locating ability of our algorithm.  

 

Finally, Chapter 5 concludes the thesis. Our contributions are summarized and 

possible future directions given.  
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C H A P T E R . 2   

B A C K G R O U N D  A N D  R E L A T E D  W O R K  

To better understand and appreciate our framework, we have listed the various 

background and related works in this chapter. 

 

In Section 2.1, we introduce the basic FPGA architecture we are considering, the 

various sources of delay faults in FPGAs, the delay fault models, and the existing 

approaches of FPGA delay testing. In Section 2.2, we present the general space-filling 

curves and show the good properties of this class of curves. In Section 2.3, we present 

the Hilbert type of space-filling curves, which is the right type of space-filling curve 

that we are going to use in our framework. In Section 2.4, we introduce the differences 

between our framework and existing approaches. 

 

2.1 Delay Faults in FPGAs 

From Chapter 1, we have established that delay fault testing is an essential step to ensure 

FPGA yield. Delay fault models are needed to properly represent the effect of delay 

fault. In this section, we introduce the basics of FPGA delay testing and define the 

models we use to evaluate delay faults. 

 

2.1.1 FPGA Architecture  

The Field Programmable Gate Array (FPGA) is a digital integrated circuit consisting of 

a two-dimensional array of configurable logic blocks (CLBs) and a programmable 

interconnect network, as shown in Fig 2.1. The logic array is surrounded by input/output 
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blocks (IOB) that are also programmable [8]. Each of the CLBs is formed by look-up 

tables, registers and multipliers. Fig 2.2 shows the structure of a FPGA CLB.  

 

Fig.2.1 General FPGA Architecture  

 

Fig.2.2 FPGA CLB Architecture  

 

FPGAs may be categorized according to process technologies, including antifuse, 

EPROM, Flash, and Static RAM (SRAM). The majority of commercial FPGAs are 

SRAM-based devices. They use SRAM configuration cells to store configuration bits for 

programmable logic, interconnect, and IO blocks. SRAM-based FPGAs have higher 

density compared with other types of FPGAs, but require an external non-volatile 
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memory to hold configuration information. Our discussions are focused on SRAM-based 

FPGAs.  

  

Modern FPGAs often incorporate embedded IP blocks with specific functions, making 

them more similar to system-on-chip (SoC) [9]. These IP blocks have different functions 

and complexity, ranging from simple arithmetic unit all the way up to embedded 

general-purpose microprocessor. Based on the way they are implemented, IP cores are 

categorized into hard cores and soft cores.  

  

Hard IP cores are predefined and prefabricated blocks with fixed functionality. They 

may be built within the main fabric of FPGA or as a separate strip to the side of main 

fabric, as illustrated in Fig 2.3. Xilinx’s Virtex-II Pro and Virtex-4 405 PowerPC core 

are examples of hard cores. 

 

                          

Fig 2.3 FPGA with embedded IP cores built inside/outside main fabric 

 

As opposed to hard cores, soft cores are implemented using the configurable resources 

on the FPGA chip. They are delivered either in the form of RTL netlist or as placed and 

routed mapping of CLBs. Soft cores have poorer performance compared to hard cores, 

but they have the advantage of flexibility and lower cost. 
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A FPGA needs to be configured with a logic design to perform its function. The design 

flow of LUT-based FPGA could be briefly summarized as follows: 

1. SYNTHESIS the design to gate-level netlist 

2. MAP the design to available LUTs on FPGA 

3. PACK the LUTs into CLBs 

4. PLACE and ROUTE the CLBs to obtain a fully routed physical netlist 

5. VERIFICATION of timing, power,etc. 

 

2.1.2 Sources of FPGA Delay Faults 

In integrated circuits, a defect refers to a physical imperfection or manufacturing flaw 

that causes a fault in the device. Fault is the logical effect of a defect that can lead to a 

failure [10]. Manufacturers need to test FPGAs for defects before they are shipped to 

ensure that they function correctly. 

  

A delay fault is an excessive delay in wire or transistor that causes the total propagation 

delay to go beyond the given upper-bound. FPGAs with delay defect functions correctly 

under slow clock, but fails when operated at normal or high speed. 

  

Defects in integrated circuits can be broadly categorized into two types, bridge and open 

defects. A bridge or short defect is caused by connection between circuit nodes that were 

intended to be disconnected. Bridge defects include ohmic bridge, gate oxide short, and 

transistor punch-through [11]. Ohmic bridge is caused by metal shorting two or more 

interconnects (Fig 2.4(a)). A gate oxide short is a break in the CMOS transistor oxide 

that connects the channel or the gate to the drain/source underneath (Fig 2.4(b)). 
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Transistor punch-through is a short from source to drain that occurs when the drain 

depletion region expands the whole channel length. 

 

Fig 2.4 Bridge defects in the circuit [11] 

Open circuit defects are unintentional breaks or electrical discontinuities in integrated 

circuits. Causes of open defects can be cracked metal, errors in etching, or faulty mask 

and fabrication; and they can occur in the transistor or in the interconnects (vias and 

contacts), as shown in Fig 2.5.  

 

 

   Fig 2.5 Open defects in the circuit [12] 
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An open defect is called a resistive open defect (Fig 2.6) if it is only partially open, 

meaning a conducting path still remains between the nodes, but with an extra defective 

load RDEF (Fig 2.7). A resistive open is equivalent to a complete open defect when RDEF 

= ∞. 

   Fig 2.6 Resistive open (a) between via metal and liner, (b) caused by missing vias [11] 

 

Resistive open defect is the source of delay fault in the circuit. Delay fault leads to delay 

defect if it is severe enough to cause a timing failure in the circuit, that is, the extra delay 

is larger than the slack (the difference between the required time and the arrival time) of 

a path (see Fig 2.7). As resistive open defects can occur either in wires or transistors, 

both the routing and logic networks of the FPGAs are affected by them. 

  

Fig 2.7. A path with delay fault.  
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2.1.3 Delay Fault Models 

In circuits, the time taken by signals to propagate from one memory element to the other, 

or between a memory element and the input or output of the circuit is called delay. If the 

signal doesn’t arrive at the destination due to a defect, the circuit cannot operate at the 

designed frequency. The effect of delay defects on signal delay in circuit is model by 

delay fault models.  

  

If a resistive open defect causes the signal delay to increase so much such that the total 

combinational delay exceeds the clock period, the circuit will fail when operating at 

normal frequency, and is said to have a delay fault. Defective circuits are identified by 

measuring delay values in all parts of the circuits.  

 

The most commonly-used delay fault models include transition delay fault model, gate 

delay fault model, line delay fault model, path delay fault model and segment delay fault 

model [13]. Transition, gate and line delay fault models represent defect located at a 

single gate. Path and segment delay fault models characterize delay defect that expand 

several gates. However, the number of paths that need to be tested increases 

exponentially with the number of gates, making exhaustive test impossible. Thus, only 

the path with the longest propagation delay is tested. This approach is usually applied to 

ASICs (Application Specific Integrated Circuits). In FPGAs, testing only the longest 

path is no longer sufficient, as a short line might fail in a configuration if it has delay 

defect and determines the clock period [14].  

 

The segment delay fault model [15] is a trade-off between path and gate delay fault 

models. It takes into consideration both slow-to-rise and slow-to-fall delay faults in 
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FPGA segments. A slow-to-rise delay fault is said to occur if a low-to-high transition fed 

to the beginning of a segment and does not reach the end of the segment after a given 

period of time. A slow-to-fall delay fault is be defined similarly. 

 

2.1.4 Impacts of Process Variations on Delay Faults 

Delay is the function of capacitance and resistance; as a result, it is subject to variations 

in circuit parameters. To characterize delay variations accurately, we need a model 

which takes into consideration the sources and scale of variability. 

 

Variations in semiconductor circuit manufacturing can cause the circuit parameters to 

deviate from their nominal values. Examples of variability include changes in 

environmental factors such as supply voltage and temperature. Physical imperfections 

can also introduce variability into the fabrication process.  

 

In the past, only the variations between lots, wafers and dice are considered. However, as 

the technology nodes move further in VDSM, within-die variations will have an 

increasingly significant impact on circuit characteristics. The within-die variations can 

be classified as systematic or stochastic variations [16]. Systematic variation sources 

consist of imperfections in fabrication process, such as mask errors, lithographic off-axis 

focusing faults, and reticle stepper misalignment errors. Stochastic variation sources 

include wafer unevenness, non-uniformity in resist thickness, and unsteadiness in 

lithography [17].  

 

Stochastic variations are not due to imperfections in the fabrication process, but to 

granularity of material characteristics at VDSM. Such variation sources cannot be 
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rectified by improvement in processes, they need to be compensated by new device 

technologies and design technique.  

 

In measurement and experiment of semiconductor circuits, it is important to know the 

magnitude of the estimated characteristics, in order to determine the required 

measurement sensitivity. In [18], it was demonstrated that delay is most affected by 

effective transistor gate length, Leff. The desired total (3σ) tolerance of Leff is ±10%, 

according to the SIA roadmap. However, as the technology moves beyond the 65nm 

node and to the 45nm node, the relative impact of within-die variations are expected to 

rise, which requires more control for inter-die variation tolerance.  

 

 

2.1.5 Existing FPGA Delay Fault Testing Methods 

We start by introducing the basics of IC and FPGA delay testing methods, followed by a 

brief summary of existing FPGA delay testing methods. 

 

Testing for Integrated Circuit 

 

The process of testing is to apply a known input stimulus to the unit-under-test (UUT), 

in a known state, and evaluate the output response with the expected response [13]. The 

main criteria for testing are the cost of the test development, the quality of the test set, 

and the cost for test application. 

 

Testing can be a functional test or a structural test. Functional testing is also called a 

“design verification test”, which is used to verify the UUT behaves as it is supposed to. 
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Structural testing is performed to verify the topology of the manufactured chip, that is to 

say, testing for physical defects caused by the manufacturing process. It can also test for 

delay fault by applying a delay fault model in place of logic model.  

 

Delay Fault Testing 

 

Delay fault testing has become an important part of VLSI testing process in today’s deep 

sub-micron designs, which is more susceptible to process variations, manufacturing 

defects, and noise. The purpose of delay testing is to discover timing defects and ensure 

that the design meets the performance specifications. The timing of the circuit has to be 

carefully evaluated to avoid such errors in the function of the circuit. However, testing of 

delay defects is significantly different from logic defects, as delay fault testing is two-

dimensional, with both timing and logic domains, compared to logic testing which is 

defined on logic domain only. The actual delay sizes of delay faults are also harder to 

predict. Due to the influence of variations, the size of delay will no longer be a fixed 

value, but a random variable instead. These two problems render the traditional testing 

method insufficient for today’s test scenario. 

 

The most well-known technique of delay testing is the oscillation test method. It is 

concerned with sensitizing a critical path and then test for delay faults. Critical paths are 

those paths that have the longest propagation delay from primary input to primary 

output. Therefore, the critical path is the most likely path for a delay fault to cause the 

circuit to malfunction. To sensitive a path all off-path logic values inputs must be set to 

non-controlling values [13] 
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As is mentioned before, path-selection greatly affects the effectiveness of the delay tests. 

It has been shown that with delay as random variables, the traditional method of critical 

path selection is not adequate and a new criterion is needed. In [19], a method of delay 

fault diagnosis based on statistical timing analysis is proposed, which models delay 

elements as random variables and calculate criticality of the paths by statistical 

evaluation. However, this method is designed for ASIC only and is not suitable for 

FPGAs. 

 

FPGA Testing 

 

FPGA testing is performed to ensure the integrity of the components and the 

interconnections, and that the manufactured board meets the customer requirements. The 

purpose of testing is to discover defects that may have been introduced during the 

fabrication process.  

 

FPGA testing can be broadly classified into manufacturing test and user test. The former, 

performed as part of the manufacturing process, test components and interconnections in 

the array for faults, such as stuck-ats, shorts and opens. It is also called application-

independent testing. Components may also be tested to determine their switching speeds. 

User tests are intended to detect FPGA faults that occur after a device is programmed for 

a specific application, thus it is also referred to as application-dependent testing. The 

faults of interest in this type of testing are only those that can affect the operation of the 

specific circuit. These consist of stuck-at faults, shorts, opens, and delay faults. Faults to 

be tested by user tests depend not only on the logic implemented by the circuit, but also 

on its placement and routing in the FPGA.  
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FPGA Delay Testing 

 

The objective of FPGA delay testing is to detect delay faults and ensure that the design 

meets the given performance specifications. Delay faults are triggered and observed by 

propagating signal transitions through the circuit [13]. This involves application of two 

test values. The whole process is usually called two-value testing and is the foundation 

for all kinds of delay testing methodologies. 

 

There are effective well-known methods for testing FPGA logic blocks [20][21]. 

Additionally, various techniques for testing FPGA routing resources have been proposed 

[22][23][24], addressing stuck-at, stuck open, and bridging faults. Testing for delay 

faults in FPGAs has been gaining more attention recently as it is suspected that 58 % of 

customer-returned semiconductor chips have open defects [24].  

 

We briefly introduce two of the above mentioned proposed methodologies. The added 

fan-out method tests resistive open defects by adding an extra load or fan-out to the test 

path. The delay of the path is increased by the load. When the accumulated delay of the 

test path surpasses that limit, a timing error occurs. Another methodology is the 

oscillator loop method, which configures the device under test into numerous test arrays. 

Then a test signal is fed into the input of each test array, and the difference in their 

propagation delays is measured at the output of the test arrays. The method uses an on-

chip oscillator to count the difference and detect a delay fault when the difference 

surpasses some predefined value.  
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2.2 Space-Filling Curves 

A space-filling curve is a continuous scan that traverses every point in a given region 

exactly once. Space-filling curves are advantageous to applications which need to 

consider the spatial coherence of neighbouring points. Hilbert curves belong to the 

space-filling curves. Of all the space-filling curves, Hilbert curves have a high level of 

adjacency, meaning adjacent intervals are mapped onto adjacent squares with an edge in 

common. The next section introduces the Hilbert curve which forms the structural basis 

of our algorithm. 

 

2.3 Hilbert-Type Space-Filling Curves 

2.3.1 Definition of Hilbert Curves 

In 1891 D. Hilbert discovered another space-filling curve. Whereas Peano’s curve was 

defined purely analytically, Hilbert’s approach was geometric.  

A classical Hilbert type space-filling curve is defined as follows: Let { 0 1}  I t t denote 

the unit interval and {( , ) 0 1,0 1}    Q x y x y the unit square, for each positive integer n, 

we partition the interval I into 4n  sub-intervals of length 4n  and the square Q into 4n  sub-

squares of side2n . A one-to-one correspondence is constructed between the sub-intervals 

of I and the sub-squares of Q which satisfies the conditions of adjacency and nesting. 

Adjacency Condition Adjacent subintervals correspond to adjacent subsquares (with an 

edge in common).  
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Nesting Condition If at the n-th partition, the subinterval Ink corresponds to a subsquare 

Qnk then at the (n+1)-st partition the 4 subintervals of Ink must correspond to the 4 

subsquares of Qnk .  

The original Hilbert curves can be generated by recursion [25]. The first steps to 

generate Hilbert curves are shown in Fig. 2.8.  

 

 

The original Hilbert curve suffers from the problem that it can only handle regions of 

size2  2n n . To make the Hilbert curve more versatile, the pseudo-Hilbert curve has been 

developed, which fills rectangle regions with arbitrary dimensions. The pseudo-Hilbert 

curve covering a (40, 34) area is shown in Fig. 2.9.  

Figure 2.8: The first 3 stages in generating Hilbert curves. 
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2.3.2 Methods of Hilbert Curve Generation 

The generation of a 2-D space filling curve of successive orders usually follows a 

recursive framework. The classic Hilbert Curve can be generated in this manner. It can 

be constructed from a basic unit shape as shown for n = 1 in Figure 2.10 The relative 

position and rotation of each unit shape is defined by its sequential position in the curve 

generation (see Figure 2.10). As the resolution of the curve increases, more unit shapes 

are required for its description, but the principle remains same as the original proposition 

of dividing each part into smaller parts.  

Generation techniques have been developed for pseudo-Hilbert curves [26][27][28]. 

While they use different methods to generate the address of each point, the basic 

procedure remains the same. At first, the rectangle is split into a set of sub-regions or 

sub-blocks based on its dimensions. The points within the same sub-region have the 

same upper address. After that, each sub-region is scanned to determine the lower 

address of its points. Lastly, the upper and lower parts of the addresses are combined to 

Figure 2.9: An example of pseudo-Hilbert curves. 
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obtain the complete address for each point in the matrix. Our algorithm is based on the 

look-up-table-based, non-recursive approach presented by [27], as it best preserves the 

adjacency characteristic of Hilbert curve. We modified the algorithm focusing on 

generating curves for FPGA circuits.  

 

 

 

2.4 Differences Between Our and Existing Approaches  

Numerous methodologies have been previously developed to facilitate the testing of 

FPGA delay faults. [4] proposed an procedure to generate efficient FPGA test 

configurations. [5] presented a method to test delay faults in the LUT network of FPGAs 

by linking them together as a test array. Application-dependent delay testing was 

presented in [6] and [7], which only targets at a subset of the resources. While most of 

the methods improve the test efficiency for delay faults, the cumulative effect of delay 

faults induced by variability is often overlooked. Hence, for a circuit with spatially 

correlated variations, the affected logic blocks may not be identified correctly as the 

delay error on each logic block or wire may not be big enough to be detected. These 

faults will impair the circuit performance if a critical path of the circuit covers a large 

Figure 2.10: Procedure of pseudo-Hilbert curve generation 

(a)                                           (b)                                           (c) 



 34  

number of affected logic blocks and wires. As a result, without considering the spatial 

information, such delay faults may not be located correctly or with a good resolution 

using the previous approaches. 

 

The main difference between Cheung’s work and ours is that they first uses a 2-D ring 

oscillator array while ours uses a 1-D curve mapped to a 2-D area. In Cheung’s work, 

the delay map is obtained by measuring the frequency of EACH ring oscillator (RO) and 

plotting it out. This approach is very fine-grained as a RO is the basic testing unit. The 

spatial correlation is characterized by examine the frequencies of all the ROs. 

 

In our work, the unit of the delay map is the “unit block” which is a resizable region 

covered by a segment of the space-filling curve. The spatial correlation of delay defect is 

handled by the inherent spatial adjacency of the curve.  Our “delay map” is more coarse-

grained compared to Prof. Cheung’s work and it provides a more general view of the 

delay distribution of the FPGA. Our work is time-efficient as it requires only one “pass” 

to generate all the results. 

 

2.5 Summary 

Our contribution is a FPGA delay fault characterization tool that detects areas under 

delay faults quickly and accurately. Hilbert-type space-filling curve has been applied to 

the problem of test path generation, taking advantage of its excellent locality preserving 

quality..  
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C H A P T E R . 3   

F P G A  D E L A Y  F A U L T  

C H A R A C T E R I Z A T I O N  F R A M E W O R K  

As shown in the previous chapter, delay faults are more and more in the FPGAs 

fabricated in the advanced technology nodes. It has big impacts on the yield and cost of 

FPGAs. There is a need to develop a delay fault characterization framework that will 

address this issue in a comprehensive approach. The framework enables the delay faults 

to be located quickly in a FPGA by producing a delay variation map with a scalable 

resolution. This delay fault map creates a brand new horizon for new delay variability-

aware EDA software to be supported and developed.  

 

In this Chapter, we first define the general delay fault characterization problem, then the 

framework components and design flow, followed by the applications of this framework 

in future variability-aware FPGA design software. 

 

3.1 Delay Fault Characterization Problem Definition 

An FPGA can be represented by a directed graph G = (V, E). The vertices V denoting 

the logic blocks and I/O blocks and the edges E are the interconnections. A path in 

FPGA is a sequence of vertices and edges from a primary input v0 to a primary output 

vn.  

 A delay fault is defined as an increase or a decrease in the propagation delay of a path, 

compared to its nominal delay value. A delay fault in an FPGA is subject to increasing 
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variability, resulting in a spread of delay values. A Gaussian-like distribution is 

commonly assumed for the delay variations in practice. As introduced in chapter 2, in 

FPGAs, the delay variations consist of both systematic variations and smaller random 

variations. Delay distributions tend to be spatially correlated, as logic blocks and wires 

that lie in close proximity of each other have more common components, resulting in a 

strong correlation [29]. 

Delay testing is performed to detect delay faults in a circuit. Delay faults are activated 

and observed by propagating signal transitions along the test paths. A two-pattern test 

<T1, T2> is commonly used for delay testing. Delay testing in the logic network is done 

by chaining all the LUTs into a test path and propagating test signals along the path. 

However, a long test path may not have decent detection ability for small delay faults, 

as it covers a large area of FPGA and it is difficult to determine the location of delay 

variations. 

To refine the testing resolution, a set of test points can be inserted into a test path. A 

test point serves both as a controllable point and an observable point. By adding an 

appropriate number of test points, a long test path can be partitioned into several 

testable segments or sub-paths, each covering a sub-region of the FPGA plane. Given 

that we partition the test path into N sub-paths, the FPGA under test is divided into N 

sub-regions. The number of partitions is user-defined with regard to the granularity of 

testing. A larger N corresponds to smaller FPGA test regions.  

An example of test region partitioning is given in Fig.3.1. In a test session, an 8x8 

FPGA is partitioned into 4 test regions by inserting 3 test points into the test paths. 
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Figure 3.1 Partitioning of the test path of a 8x8 FPGA  

 

After selecting the shape of the test path and the number of test partitions N, the FPGA 

is configured and tested accordingly. The delay values of each test regions are then 

recorded and analyzed. The differences of the delay values to the nominal values are 

computed and compared with each other, obtaining the most likely location of the 

delay fault. 

The problem we face is how to select test configurations that maximize the effect of 

spatially-correlated delay faults. To improve the detection capability, the test path should 

be partitioned in a specific way such that each sub-path corresponds to a continuous 

region affected by variations. 
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3.2 Delay Fault Characterization Framework 

To provide a fast and scalable way to generate delay fault variation map, we have 

developed a novel delay fault characterization framework. The refined flow diagram for 

this characterization framework is shown in Figure 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Refined Flow Diagram of Our Characterization Framework 

 

 

In the first step, a pseudo Hilbert curve will be generated. Unlike the original Hilbert 

curve, the limitation of square shape has been eliminated by the pseudo Hilbert curve, as 

most FPGAs are of rectangular shape. In addition, the pseudo Hilbert curve generation 

algorithm will take care if the FPGA contains embedded IP cores or not, to generate the 

corresponding curves. The detailed description of the pseudo Hilbert algorithm will be 

the subject of Chapter 4. 

 

In the second step, the pseudo Hilbert curve based test curve will be partitioned 

depending on resolution of the delay variation map that the users want to achieve. The 

higher resolution that the users want the DVM to have, the more partitioned test points 

will be inserted. The distance between each two continuous test points in the pseudo 

Hilbert curve is usually equal. The larger number of test points will not increase the 
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testing time, but it only increase the volume of testing data thus needs to have a larger 

storage space. 

 

In the third step, the design that contains the above partitioned test curve will be captured, 

synthesized, implemented and configured to the FPGA device for delay variation map 

generation. After the configuration, the FPGA device will run with such a special design 

that is created for the characterization purpose. As this design specially created for 

characterization will be overwritten later in the actual design implementation and 

deployment, it will never waste the FPGA resource to enable this characterization 

framework. In other words, the resource overhead for this framework is zero. This is 

possible because of the reconfigurable feature of FPGAs. 

 

In the fourth step, test inputs with transitions will be applied at the inputs of the test path 

created with the pseudo Hilbert curve. These inputs with transitions are the usual 

patterns that are used to test the delay along a path. By changing the frequency of the 

transition, different degree of delay measurement resolutions can be achieved. 

 

In the fifth step, which is concurrently executed with the fourth step, delay value for the 

test inputs will be measured at the FPGA outputs and the internal partitioned test points. 

The positions of the internal partitioned test points are previously determined in the 

second step. The measured delays in these points will be recorded and compared with 

the expected ideal delays.  

 

In the sixth step, the delay variation results will be collected from the previous step a 

delay variation map will be generated. This is a post-processing task and not so sensitive 

in terms of computation and memory requirements. Based on the different requirements 
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on the resolution of a delay variation map, different amounts of delay measurement data 

need to be processed. If a finer resolution of delay variation map should be generated, 

the measured delay data from more internal test points should be processed, so that the 

test path will be partitioned into more fine grained segments, and the delay variation in 

each test path segment will be generated. As a result, with such a higher resolution delay 

variation map, the user or FPGA design software will be able to have a better idea that 

where the most affected delay variation regions locate, thus either not to use these 

regions at all, or not use these regions for critical paths.  

 

Of the six steps in this characterization framework, the generation of a good pseudo 

Hilbert curve is the key step. As the pseudo Hilbert curve determines how good the 

locality of the test points can be preserved, the resolution that can be achieved by the 

characterization framework is determined by the quality of the pseudo Hilbert curves.  

 

We describe the refined flow diagram of pseudo Hilbert curve generation in Figure 3.3. 

The algorithm of the generation of pseudo Hilbert curves is separated into two 

independent braches at the very start. One branch is used to consider the pseudo Hilbert 

curve generation in the presence of embedded IP cores. The other branch is used to 

consider the pseudo Hilbert curve generation without the presence of embedded IP cores. 

We will discuss the first branch here with more details, while Chapter 5 will give more 

details for the case without the presence of embedded IP cores.  

 

In the case that embedded IP cores are presented in an FPGA, unoccupied area on an 

FPGA will be divided into blocks. These blocks will then be used to create a connection 

graph. The Hamiltonian path for the graph will be calculated. Following this, Hilbert 

curve for each block following the Hamilton path will be generated. The sub-paths of the 
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Hilbert curves for all blocks will be then connected to form a single and complete test 

curve.  
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Figure 3.3 Refined Flow Diagram of Pseudo Hilbert Curve Generation 
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3.3 Applications of the Framework 

With the delay fault variation map information obtained from our framework, a new 

paradigm of FPGA design software will be enabled for the delay variations of FPGAs to 

be managed. We present the applications of our framework in supporting this variability-

aware FPGA design software in this section. 

 

3.3.1 Traditional FPGA Placement and Routing Flow  

In the traditional FPGA design flow [30] (Fig 3.5 and Fig 3.6), the software place and 

route (PAR) mapped design to FPGA with the goal of keeping the longest propagation 

delay, or the delay of critical path, to the minimum. The PAR procedure is performed 

regardless of the possibility that the resource used could suffer from manufacturing 

defects. 

 

However, if the manufactured FPGA has regions affected by delay faults and the critical 

path happens to pass through these regions (as in Fig 3.4), the resulting design would 

have poor performance, even if it may operate correctly under a slower clock. Critical 

path refers to the path with the longest accumulated delay. 
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Figure 3.4 A critical path passes the regions with FPGA delay variations 
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Figure 3.5 Traditional FPGA design flow 

 

Figure 3.6 Traditional FPGA placement and routing 
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3.3.2 Variability-Aware FPGA Placement and Routing Flow 

In order to improve the timing yield of manufactured FPGAs, our proposed framework 

generates a delay fault variation map based on results from a one-pass timing test. Test 

paths are configured based on space-filling curves and test points inserted. The observed 

signals are used to generate the delay variation map. This map will indicate which areas 

on the FPGA have poor timing performance, and label them as "slow regions". This 

information is fed back to the PAR software, and the software re-PAR the design to 

avoid the "slow regions". The map also specifies the corresponding "fast regions" which 

can be taken advantage of by giving a higher preference over them. Fig 3.7 shows the 

original PAR result which is optimized in Fig 3.8 by avoiding the slow regions. The 

design flow is modified as in Fig 3.9.  

 

While this test flow performs manufacturing test that can significantly improve device 

performance, it requires a separate bit-stream generation for each individual chip. If the 

production quantity is large, the cost of the test flow may be too high. However, this test 

flow is ideal for FPGA cost reduction technologies, such as EasyPath FPGAs of Xilinx. 

These cost reduction methods usually take the user designs, test and select the devices 

relative to the specific resources used by user's design. Relatively smaller number of 

FPGAs is needed to be tested to determine the target placement. The trade-off between 

performance gain and test cost can be easily adjusted by taking different ratio of FPGA 

under test. 
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Figure 3.7 Delay fault variation map for an FPGA 
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3.4 Summary 

In this chapter, we have described the step-by-step procedure of our proposed delay fault 

location methodology. We have also examined its advantages for improving timing yield 

of FPGA and how to combine it into the current state-of-the-art FPGA design flow. 
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Figure 3.9 Revised FPGA design flow in our framework 
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C H A P T E R . 4   

F P G A  T I M I N G  M O D E L  A N D  D E L A Y  

F A U L T  C H A R A C T E R I Z A T I O N  

In this chapter, we present the detailed delay fault characterization algorithm that we 

have used to extract the delay variation map from FPGAs. We first present an interval 

arithmetic-based timing model. Then we examine the problem of delay fault 

characterization and introduce the metrics that we are going to evaluate the different 

characterization approaches. After that, we describe the original Hilbert curve and 

introduce its limitation to purely square shapes. Next, we give our algorithm to generate 

pseudo Hilbert curves to fit the case to FPGAs, which usually take regular shapes. 

Finally, we explain our experimental setup and give and analyze experimental results. 

 

4.1 FPGA Delay under Process Variations  

The main trend in FPGA development has been to increase operating frequency and the 

number of programmable resources while reducing transistor sizes. This facilitates larger 

and faster designs with smaller end-system size. However, FPGAs with small and tightly 

packed transistors are more vulnerable to defects in fabrication process. Small defects 

that don’t cause problems at lower frequencies, fail FPGA at higher frequencies.  

 

Traditionally, the definition of a critical path is based upon the nominal or worst-case 

timing analysis. In practice, timing analysis often relies on cell characterization where 

the earliest, latest, and average signal arrival times are estimated for each pin-to-pin pairs 

of the cell. With these discrete timing values, the delay of a path can be defined as the 
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accumulated delay on the path. The set of critical paths is then constructed by selecting 

either a fixed number of the longest paths, or all paths that fall into a pre-defined timing 

range. 

 

As technology scales down further into the deep submicron regions, the amount of 

variability in process parameters that have to be accounted for increases significantly. 

For example, more than 35% variations on the gate length are cited for 90nm processes 

and they are even larger for 65 nm processes. Process variations can be classified as 

inter-die variations, which affect the entire chip, and intra-die variations, which are the 

result of layout-specific variations. The variations are normally with a complex spatial or 

temporal correlation structure. They create significant timing uncertainty and yield 

degradation. This growing problem brings the need to build the next generation 

variability-aware electronic design automation (EDA) tools. 

 

The above observation is especially important for FPGA vendors because they are 

almost always the first to use the most advanced technologies. For example, Xilinx is the 

first in the whole semiconductor industry to fabricate their Virtex-2 FPGAs in 130nm, 

Virtex-4 in 90 nm and Virtex-5 in 65nm processes. As the process shrinks, variations in 

effective channel length, threshold voltage and gate oxide thickness become more 

prominent. This will greatly influence the timing performance of FPGAs.  

 

Delay variations resulted from manufacturing process, small defects, and/or signal noise 

can alter the discrete timing assumptions. The sizes of delay for devices can no longer be 

considered as discrete values, but as variables with different probabilistic distributions. 

Consequently, the sets of critical paths may be different from chip to chip. It is then 
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questionable that testing a set of critical paths selected based upon a traditional discrete 

timing model can still be effective in the DSM delay testing applications.  

 

The following example shows the problem of traditional nominal timing analysis. 

Suppose cell characterization gives the mean and standard deviation of the delay random 

variable for each pin-to-pin delay. For example, the pin-to-pin delay a  e is a random 

variable with mean 15 and standard deviation 1. By assuming 3σ bound, the minimal and 

maximal delays are 15 - 3 × 1 and 15 + 3 × 1, respectively. Hence, in a discrete timing 

model, the pin-to-pin delay can be denoted as {12,15,18}, which represents the earliest, 

the average, and the latest signal arrival delays. Then, with this discrete delay model, 

which of the four paths P1, P2, P3, and P4 is the most critical path? Under a worst-case 

scenario, path P4 is the most critical path because the worst case accumulated delay is 12 

+ 3 × 3 + 9 + 3 × 3 = 39. The most critical path will be different if 1σbound is used 

instead of the 3σbound. In this case, P3 will be most critical because 14 + 1 × 2 + 9 + 1 × 

2 = 27 represents the worst case. On the other hand, if the critical path is defined based 

upon the average delays, then PI will be the most critical one because the sum of the 

average delay values 15 + 10 = 25 is the largest. Fig 4.1 demonstrated this example. 

 

 

Fig 4.1 Impact of variations on critical path delay 
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The above example demonstrates the inadequacy of the discrete delay assumptions used 

to identify the most critical path. If pin-to-pin delays are characterized as random 

variables, then the delay of each path should be characterized as a joint probability 

density function (pdf) of all pin-to-pin random variables on the path. For example, the 

delay of path P1 in the example should be a random variable whose probability 

distribution is the joint pdf of the two pin-to-pin random variables from a  e (15/11) 

and e  g (10/11). Note that the calculation of the joint pdf depends on whether the two 

random variables are correlated or independent. 

 

As a result, if we manufacture 4 chips of the example circuit, the most critical path in 

these four chip instances can all be different. In other words, any one of the four paths 

can be the most critical path in a particular chip instance. From this perspective, the 

definition of a critical path is no longer deterministic. Instead, the most critical path 

should be defined as the path that has the highest probability of being critical when a 

large number of the chip instances are produced. To support this definition, a statistical 

timing evaluation tool is required. 

 

4.2 Interval Arithmetic-based Timing Evaluation  

Statistical static timing analysis methods have been a popular research area during recent 

years. Existing SSTA approaches either assume Gaussian or non-Gaussian distributions. 

Others may add in consideration for correlation effects. Most of these proposed 

approaches fall into one of the two categories. The first category is the path-based 

methodologies [31][32]. Path-based approach statistically estimates the timing 

performance on critical paths of the circuit. The second category is block-based 

methodologies [33][34][35], which seeks to perform incremental timing analysis on the 
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circuit. However, to handle correlations among parameters, most approaches assume 

Gaussian distribution, which is not entirely the case in digital circuits. Other distributions 

require extensive computation, either for regression [34] or numerical integration [35]. 

On the whole, SSTA methods are computationally expensive and not fast enough to 

provide the variability-aware timing estimation. 

 

We use interval analysis as the mathematic foundation to handle the path selection 

problem. Two models of interval analysis are initially suggested: interval arithmetic and 

affine arithmetic. Interval arithmetic (IA) [36] is a surprisingly long-lived branch of 

range analysis. It makes use of intervals to represent uncertainties in variables. However, 

it does not consider correlation and dependency between the variables. On the other 

hand, affine arithmetic (AA) [37][38], which is a novel refinement of interval analysis, 

can be applied to the problem of circuit timing analysis [39][40] and can preserve 

correlations among variables. With this motivation in mind, we employ affine arithmetic 

in proposing a new AA-based timing estimation technique for FPGAs. Correlation and 

dependencies among process parameters are accounted for. AA is chosen for its low 

complexity and is distribution-independent property, in contrast to existing SSTA 

methods. 

 

4.2.1 Basics of Interval Arithmetic and Affine Arithmetic 

 

Interval arithmetic was introduced by R.E. Moore in the 1960s [36]. It is a range-based 

model for numerical computation where each unknown quantity x being represented in 

the form x = [a, b], meaning that the “true” value of x lies in the range of a and b with 

a≤b. Arithmetic operations (add, subtract, multiply, etc) can be applied such that each 
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computed interval is guaranteed to contain the unknown value of the quantity it 

represents. The rules to perform IA are as follows: 

     
     
        
       cdbadcba

bdbcadacbdbcadacdcba

dbcadcba

cbdadcba

/1,/1,,/,

,,,max,,,,min,,

,,,

,,,









          (1) 

 

Though IA provides a simple and relatively efficient solution to computational 

problems, its inability to provide precise data is one of its major setbacks. As IA tends to 

be too conservative, the computed interval of a quantity may be much wider than the 

expected range. This is particularly accentuated in long computation chains, where the 

intervals computed at one stage are the inputs for the next stage. An example to illustrate 

is when we evaluate the expression x–x where x is in the range [2, 8]. Using IA, we get 

[2-8, 8-2] = [-6, 6] instead of [0, 0], which is the true range of the expression. Hence, IA 

is not able to model any form of correlation or dependency between the quantities. To 

rectify this problem, much research have been carried out [36] but at the expense of 

additional computations.  

 

Affine arithmetic was introduced by Comba and Stolfi in the early 1990s [37]. This 

model is an improvement of the IA model but with an increased complexity and cost in 

representing the interval value. However, this extra information gives AA a tighter 

interval bound and keeps track of the correlations between quantities which IA is unable 

to provide. In AA, the unknown quantity x is represented by an affine form which is a 

first-degree polynomial: 
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x0 is defined as the central value of the affine form x̂ . The coefficient xi are the partial 

derivatives defined using floating-point numbers. The i are the noise symbols whose 

values are unknown but assumed to lie in the range [-1, 1]. Each noise symbol i 

represent an independent share of the total uncertainty of the variable x while the 

corresponding coefficient xi gives the magnitude of its error. 

 

In AA, the arithmetic operations between the affine forms ensure that the dependencies 

between the quantities are preserved.  These operations are divided into two categories: 

affine operations and non-affine operations. Examples of affine operations are: 
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The non-affine operations include operations for which the representation of the result 

requires additional noise symbols on top of the same noise symbols of the operands. The 

result of a non-affine operation can be formulated as follows: 
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The key feature of the AA model is its ability to model correlation between two 

quantities through sharing of common noise symbols. The magnitude and sign of the 

dependency is determined from the coefficients assigned to the noise symbols. For 

example, given two affine forms: 
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From this data, we observed that x lies in [6, 14] and y lies in [12, 28]. As both x and y 

share the same noise symbols 1 and 4 with non-zero coefficients, they are not entirely 

independent of each other. Note that the signs of the coefficients are not meaningful in 

themselves as the sign of i is arbitrary. However, the relative sign of xi and i defines the 

direction of the correlation. Hence, using AA, the pair (x, y) is constrained to fall within 

the dark shaded region as seen in Fig. 1. However, if IA were to be used, this 

dependency would be lost. In fact, using IA, the pair (x, y) is only known to lie in the 

rectangle shown in light grey in Fig 4.2. 

 

 

Fig 4.2 Joint range of two partially dependent quantities in Affine Arithmetic 

 

4.2.2 Delay Model 

In the traditional deterministic FPGA timing estimation [43], a directed acyclic graph 

representing the circuit structure is utilized. Each node in the graph represents the input 
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pins and output pins of basic circuit elements. Edges are added between the inputs and 

outputs of the logic blocks and between pins which the circuit netlist specifies. Each 

edge is annotated with the delay required to pass through the circuit element. This delay 

is based on the Elmore delay model. The Elmore delay of a source-sink path is [43] 
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                      (6) 

where Td,i is the intrinsic delay of a buffer if element i is a buffer and 0 otherwise. Ri is 

the equivalent resistance of element i. C(subtreei) is the total downstream capacitance of 

the subtree rooted at element i. 

 

To obtain the delay of a path, the traversal begins at nodes with no incident edges and 

each is labeled with a signal arriving Tarrival, of 0. Each node which has incidents edges 

from the labeled nodes is marked with its arrival time as: 
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             (7) 

where node i is the node being labeled and delay (i, j) is the delay value marked on the 

edge joining node j to node i. This procedure continues until every node is labeled. 

 

4.2.3 Modeling of Process Variations in Delay Model 

 

In this section, we introduce what are the process variations that we consider in the 

FPGAs and show how the AA model is incorporated into a traditional deterministic 

FPGA timing estimator in the tool VPR [44][45] to model intra-chip variations with 

correlation. The model introduces noise symbols to account for both local and global 

variations. 
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We only focus on modeling structural variations and delay variations in our work. In 

structural variations, 4 components are considered: metal thickness (T), inter-layer 

dielectric (H), line-width (W) and gate length (L) (See Figure 4.3). These variations do 

result in adverse changes in the electrical properties which include the resistance (R) and 

capacitance (C). These electrical parameter variations bring about direct impacts to the 

performance of the circuit. Hence, an accurate model of interconnect geometry variation 

is essential for accurate circuit simulation. 

 

T
H

W
L

 

Figure 4.3  Geometry of wiring 

In delay variations, variations in the buffer intrinsic delays, sub-block delays and logic 

delays are taken into consideration. These variations are due to the device variations 

which are not modeled in VPR. Instead, each of these delays is of a deterministic value 

defined in the architecture file obtained using SPICE simulations in VPR. These delay 

variations affect the performance of the circuit a lot. 

 

As AA provides the abilities to model various variations using different noise symbols 

and at the same time maintain the correlation between these symbols, it is chosen as the 

ideal model. With the AA model, we are able to accurately track how variations get 

propagated during the placement and routing using the noise symbols. With the affine 
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interval obtained, measures to counteract these variations can be then developed to 

improve the quality of the circuit performance. 

 

To model the structural variations, variations in R and C are used. But initial results 

show that we are not able to handle correlation at this abstraction level. Instead, a low 

level implementation is applied to obtain the R and C using W, H, T and L. The 

formulas used to obtain R and C are indicated in (8) and (9) respectively. Using these 

equations, noise coefficients of different signs are generated and this creates correlations 

between the same noise symbols. 
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Although correlation is handled, several extra noise symbols are created while using 

these equations. This affects the complexity significantly. To reduce the complexity, we 

sum up the positive and negative coefficients of the extra noise symbols of R and C and 

assign them into two new noise symbols respectively as demonstrated in (10). All 

similar parameters will share these two noise symbols and any other extra noise symbols 

that are generated during the program flow (place and route). To model spatial 

correlation as well, we have adopted the idea in [46][47], that is, each parameter is 

reinitialized to contain a unique noise symbol based on its grid position in FPGA. An 

example is illustrated in Fig 4.4.  
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Note: e1 is the unique noise symbol for R and C, while the rest are generated due to 

equations (8) and (9) and are global to all. 
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Figure 4.4: The grid-based model to model correlations 

 

In statistical modeling, variables are often modeled as a random variable that is 

represented using a probability density function (pdf) or a cumulative distribution 

function (cdf). The MAX and ADD operators [48] are often used to join these variables. 

Canonical timing modes [49][50] is also proposed to address the correlations through 

shared parameter variations. Using this model, a block delay and its covariance with 

another block delay can be evaluated. 

 

4.2.4 Modeling of Process Variation using Affine Arithmetic 

Compared with the existing techniques of statistical modeling, our work does take the 

form of the canonical timing model. However, using the AA model, we are unable to 

represent a variable using either a pdf or cdf. as AA does not store the distribution of the 

variable. Although this is a drawback, AA allows quick extraction and good estimation 



 59  

of the bounds of the variation without the hassle to handle distribution of the variations. 

Still, when comparing it with the traditional corner-based approach, AA is better in 

terms of runtime and accuracy. To the best of our knowledge, most SSTA techniques 

have a complexity ranging from O(n) to O(n
2
) or have complexities which increase 

exponentially with number of gates. In AA, the complexity of its arithmetic operators is 

of O(m) where m is the max number of noise symbols in any of the operands. And this 

complexity does not increase exponentially with circuit size. In terms of runtime, our 

model is more efficient compared to SSTA of the same complexity. This can be proven 

in terms of the number of operations at a node. In existing SSTA, the SUM and MAX 

operations are utilized to obtain a variable’s distribution. This is computational intensive 

as the distribution of the variations is tracked. However, in the case of AA, distribution 

information is not required. Its operations involve only the adding up of the coefficients 

of the noise symbols and comparing the maximum of the central values. In another 

words, our proposed technique has a complexity of O(n) but with a faster computation of 

the bounds. Also its complexity is dependent on the nature of the circuit and independent 

of the circuit’s size. 

 

To prove the speed and accuracy of our method, we perform simulations to compare 

our estimation results with that of Monte Carlo simulations. Our simulations use the 

following setup. Each FPGA logic block comprises of 2 slices. Each slice has 2 4-inputs 

LUT and 2 flip-flops. Each logic block's pin is connected to all tracks in the adjacent 

channel(s) (Fc = W). Each wire segment is of length one and is connected to one wire 

segment of each of the adjacent channels through disjoint switch boxes (Fs = 3). All wire 

segments are connected by tri-state buffers. Each benchmark is routed with a maximum 

of 30 iterations to obtain the minimal number of tracks per channel width. When running 
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the experiment using W_VPR, the placement cost function is set to use bounding-box 

calculation, and the router uses the breadth-first search algorithm. 

 

Table 4.1: Parameter and its variation 

Parameter Variation 

(%) 

Length (L) 20 

Width (W) 5 

Height (H) 20 

Thickness (T) 5 

Sub-block delay 

(SD) 

5 

Logic delay (LD) 5 

Buffer delay (BD) 5 

 

 

The table above shows the percentage variations setting for each parameter. The same 

set of variations is applied to both the affine and Monte Carlo simulation. The values are 

arbitrary set but more emphasis is on the interconnect variations for their importance in 

the deep submicron era.  

 

To evaluate the accuracy of our model, we compare it against the MC analysis using 

both Uniform and Gaussian distribution. Also, we define a metric, looseness (12) to 

quantify the accuracy of our results. The looseness [51] indicates the ratio of the sizes of 

the MC interval and the affine interval. The sign means that affine interval is smaller 

(neg) or larger (pos).  
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Table 4.1: Comparison of bounds of critical path (ns) 

Circuits 
No. of 

nets 

AA model Gaussian (MC) Looseness 

(%) 
Mean diff 

(%) 

Uniform (MC) Looseness 

(%) 

Mean 

diff 

(%) 
Range Mean Range Mean Range Mean 

apex4 927 [23.5 , 25.9] 24.7 [23.9 , 25.6] 24.8 37.8 -0.2 [23.6 , 25.7] 24.7 11.7 0.2 

ex5p 912 [19.8 , 21.9] 20.8 [20.1 , 21.5] 20.8 49.4 0.3 [19.9 , 21.6] 20.7 19.2 0.3 

misex3 1019 [20.1 , 22.1] 21.1 [20.4 , 21.8] 21.1 40.1 -0.1 [20.1 , 22.0] 21.1 4.5 0.0 

alu4 1029 [23.3 , 25.7] 24.5 [23.3 , 25.5] 24.4 6.9 0.4 [23.4 , 25.6] 24.5 6.1 0.0 

s298 1287 [60.9 , 66.3] 63.6 [61.0 , 65.5] 63.2 19.3 0.5 [60.7 , 66.3] 63.5 -3.0 0.1 

dsip 1306 [16.1 , 17.5] 16.8 [16.0 , 17.5] 16.8 -7.3 0.1 [16.1 , 17.4] 16.7 9.4 0.3 

bigkey 1649 [21.4 , 23.1] 22.2 [21.3 , 23.0] 22.2 1.7 0.3 [21.2 , 23.2] 22.2 -14.4 0.2 

des 1794 [23.7 , 26.0] 24.8 [23.9 , 25.7] 24.8 32.5 0.3 [23.7 , 26.0] 24.8 2.5 0.0 

Average - - - - 22.6 0.2 - - 4.5 0.1 

 

With reference to  

Table 4.1, we observe that our AA model has an average looseness of 22.6% and 4.5% 

for the Uniform and Gaussian distribution using single stream respectively. The large 

value of looseness is partially due to that AA accounts for the worst case of the 

simulation. However, worst case scenario is seldom reached in real situations. Hence, 

the interval obtained in AA is slightly over-pessimistic. Though our AA model gives a 

large interval, its mean is well-matched to about 0.2% and 0.1% deviation from that 

obtained in the Uniform and Gaussian distribution respectively. This demonstrates its 

accuracy in timing estimation. 

 

 

4.3 Problem Formulation of FPGA Delay Characterization 

An FPGA can be represented by a directed graph G = (V, E). The vertices V denoting 

the logic blocks and I/O blocks and the edges E are the interconnections. A path in 

FPGA is a sequence of vertices and edges from a primary input v0 to a primary output 

vn.  
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 A delay fault is defined as an increase or a decrease in the propagation delay of a path, 

compared to its nominal delay value. A delay fault in an FPGA is subject to increasing 

variability, resulting in a spread of delay values. A Gaussian-like distribution is 

assumed for the delay variations in practice [47]. In FPGAs, the delay variations 

consist of both systematic variations and smaller random variations. Delay 

distributions tend to be spatially correlated, as logic blocks and wires that lie in close 

proximity of each other have more common components, resulting in a strong 

correlation. [29] 

Delay testing is performed to detect delay faults in a circuit. Delay faults are activated 

and observed by propagating signal transitions along the test paths. A two-pattern test 

<T1, T2> is commonly used for delay testing. Delay testing in the logic network is 

done by chaining all the LUTs into a test path and propagating test signals along the 

path. However, a long test path may not have decent detection ability for small delay 

faults, as it covers a large area of FPGA and it is difficult to determine the location of 

delay variations. 

To refine the testing resolution, a set of test points can be inserted into a test path. A 

test point serves both as a controllable point and an observable point. By adding an 

appropriate number of test points, a long test path can be partitioned into several 

testable segments or sub-paths, each covering a sub-region of the FPGA plane. Given 

that we partition the test path into N sub-paths, the FPGA under test is divided into N 

sub-regions. The number of partitions is user-defined with regard to the granularity of 

testing. A larger N corresponds to smaller FPGA test regions.  
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An example of test region partitioning is given in Fig. 4.5. In a test session, an 8x8 

FPGA is partitioned into 4 test regions by inserting 3 test points into the test paths. 

After selecting the shape of the test path and the number of test partitions N, the FPGA 

is configured and tested accordingly. The delay values of each test regions are then 

recorded and analyzed. The differences of the delay values to the nominal values are 

computed and compared with each other, obtaining the most likely location of the 

delay fault. 

 

Figure 4.5 Partitioning of the test path of an FPGA 

 

The problem we face is how to select test configurations that maximize the effect of 

spatially-correlated delay faults. To improve the detection capability, the test path should 

be partitioned in a specific way such that each sub-path corresponds to a continuous 

region affected by delay variations.  
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4.4 Locality Preserving Hilbert Curves  

In order to have a test configuration which maximizes the effect of spatially-correlated 

delay variation, we use Hilbert curve, a type of classical space-filling curves, as the basic 

geometric shape of our test paths. Fig 4.6 shows the test path generated using our Hilbert 

curve-based algorithm. Compared with Fig 4.5, test paths generated by this technique 

significantly improve the locality of each test regions. Also, it corresponds much better 

with the grid-based model for spatial correlation (Fig 4.4), which means it captures the 

spatially-correlated delay variations much better than normal curves. 

 

 

Figure 4.6 Partitioning of the test path of a 8x8 FPGA with a Hilbert curve 

 

4.5 Original Hilbert Curve Generation Algorithm 

The generation of a 2D space filling curve of successive orders usually follows a 

recursive framework which involves “rotating” and “sub-dividing” the basic curve unit. 

The classic Hilbert Curve can be generated in this manner. It can be constructed from a 

basic unit shape as shown for n = 1 in Figure 4.7. The relative position and rotation of 
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each unit shape is defined by its sequential position in the curve generation (see Figure 

4.7). As the resolution of the curve increases, more unit shapes are required for its 

description, but the principle remains same as the original proposition of dividing each 

part into smaller parts.  

 

The first steps to generate Hilbert curves are shown in Figure 4.3. Although this method 

is simple, elegant and suitable for computer automation, it suffers from the vital problem 

that it is only able to generate curves for 2
n
 × 2

n
 square regions. Most state-of-the-art 

FPGAs have flexible dimension. Accordingly, we apply pseudo Hilbert curve, which is a 

modified version of the original Hilbert curve to our methodology. 

4.6 Pseudo Hilbert Curve Generation Algorithm 

The method presented in this work focuses on generation of special delay testing 

arrays to detect timing errors in the FPGA logic architecture. Guided by Hilbert curves, 

our test algorithm covers all the delay faults located in the logic network, and locates 

the faults within a confined FPGA region. The size of region is determined by the 

resolution of the test. 

Figure 4.7: First 3 stages in generating Hilbert curves 
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The pseudo code of our test methodology is given in the figure below: 

 

Fig 4.8 Pseudo code for Overall Delay Fault Variation Calculation Algorithm  

 The resolution of the test is determined by N. It is a user-defined parameter which shows 

the granularity of the test requirements, i.e., the size of area in which the delay error is 

confined to. 

 The algorithm begins by validating the input parameters and generating a pseudo-Hilbert 

curve based on the dimensions of the logic matrix. The matrix is then partitioned into N 

test regions, each corresponding to a continuous sub-interval of the curve. The 

accumulated delay error in each test region is calculated by adding the delay error of 

each point within the same region, and the overall results are then analyzed to determine 

the location and severity of the delay faults.  

Algorithm 1 

Define: m, n = dimensions of FPGA logic matrix 

N = number of test partitions 

 

Determine_path_set(m, n, N); 

Return if_all_LUTs_are_covered; 

 

Generate_Hilbert (m, n); 

If (Pn = 1) 

; // Only one test region 

Else  

Partition_FPGA_plane(m, n, Pn);  

Return Subregion_set; 

 

Foreach (subregion) do { 

Calculate_cumulative_delay_error(); 

} while (! All_regions_are_processed();) 

  

Return Accumlated_delay_error; 
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The procedure and pseudo-code to generate Hilbert curves is shown in the following 

figure. First, we split the FPGA logic matrix into a set of sub-regions by selecting the 

appropriate splitting time. Assuming m n , the splitting time M is calculated 

by 2log ( / 2)M n , resulting in 4
M

 sub-regions. The sequence of the sub-regions when 

mapped to the curve is the same as that of an original Hilbert curve with n = M. Such a 

curve is generated to find the upper address for each region. 

Algorithm 2 
Generate_Hilbert (m, n); 

Define: m, n = dimensions of FPGA logic matrix 

 

//Stage 1: Generate Upper Address for subregions 

Else 

Partition_Rectangle(m, n); 

Return Subregion_dimensions; 

//Stage 2:Scan each subregion 

Foreach (subregion) do { 

Determine_inner_scanning_procedure(); 

If (horizontal) Scan_Horizontal(); 

Else  Scan_Vertical(); 

Generate_inner_address(); 

} while (! All_regions_are_processed();) 

 

Combine_addresses(); 

Return  

List_of_address; 

 

 

 

Fig 4.9 Pseudo code for Pseudo Hilbert Curve Generation 

In the next stage, each of the sub-regions is scanned to calculate the lower address of 

the points in it. Based on different orientations, we use two types of scanning 

procedure: scan_vertical and scan_horizontal. The scanning direction is determined by 

the dimension of the sub-region (even or odd), the entry point, and the exit point. After 

the appropriate scan procedure is selected, the lower parts of the address for all the 

points are generated and then combined with the upper part. Hence, we obtain the 

complete address for each point in the matrix. 
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 To demonstrate the algorithm, Fig. 6 shows how the Hilbert curve is generated for a 

(11, 9) region. As the splitting time is 2 for (m = 11, n = 9), the whole region is split 

into 16 sub-regions, as shown in (a) (the curve shows the direction of basic Hilbert 

curve for n = M = 2). In (b), the entry point and exit point for each sub-region is 

obtained, and hence the internal scanning directions. Finally, (c) shows the complete 

curve by combining the addresses obtained in (a) and (b). The algorithm has a 

complexity of (4
M

mn). Examples of generated curves are shown in Fig 4.11. 

 

 

   

(a) (b) (c) 

Figure 4.10 Procedure of Pseudo Hilbert Curve Generation 
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(a) 

(b) 

Fig 4.11 Examples of Generated Pseudo Hilbert Curves: 

               (a) 22 × 16,  (b) 96 × 88 
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4.7 Experimental Results and Analysis 

We will describe the experimental results that we have obtained to validate our delay 

fault characterization framework and provide a thorough analysis of the results.  

To compare our framework with other state-of-the-art work, we have implemented both 

our Hilbert curve based delay fault characterization algorithm and a snake curve based 

algorithm. The same batch of delay faults were generated and injected into the same 

FPGA model, and one delay fault map has been generated with our Hilbert approach, 

and the other delay fault map has been generated with the Snake approach. We want to 

show that the delay fault map generated with our Hilbert map not only has a much better 

resolution to locate the delay faults within a FPGA, but also it provides a scalable 

approach to trade-off the number of test points and the delay fault map resolution. 

Two metrics are defined to evaluate our method: the detected region Rdetected and the 

detection gain G. The former determines the region which is the most affected by the 

faults and the latter shows the likelihood for a delay fault to reside in a region. For our 

experiments, we select the region with the most increase in propagation delays to be the 

detected region. Let R be the N test regions and d be the accumulated delay error in a test 

region.  

The detected region is 

 

                              detected 1 2{ , max( , ,..., )} i i NR R d d d d                                                (1) 
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The detection gain is expressed as 
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It is the average difference in accumulated delay error between the detected region and 

other regions, in other words, it shows how the delay error is concentrated to the 

detected region and its neighbouring regions. 

To demonstrate the algorithm, Fig.4.12 shows how the Hilbert curve is generated for a 

(11, 9) region. As the splitting time is 2 for (m = 11, n = 9), the whole region is split into 

16 sub-regions, as shown in (a) (the curve shows the direction of basic Hilbert curve for 

n = M = 2). In (b), the entry point and exit point for each sub-region is obtained, and 

hence the internal scanning directions. Finally, (c) shows the complete curve by 

combining the addresses obtained in (a) and (b). The algorithm has a complexity of 

(4 )MO mn . 

 

For comparison, a snake (zigzag) curve is used as its structure is straightforward and it 

can handle arbitrary rectangle dimensions, as shown in Fig. 4.11. A snake curve simply 

traverses through all the point in a rectangle from one side to the other. FPGA 

dimensions are taken from the Xilinx devices datasheet. We use the same setting for 

both curves and compare the results obtained. 
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Table 4.3 shows the detection gains for various FPGA dimensions and error sizes. For 

ease of comparison, the gain value in the table is logG as the original value is very big. 

The error magnitudes are computed as different percentages of nominal propagation 

delay. We also computed the increase in detection gain of Hilbert curve with snake curve. 

From the result, we can see that the pseudo-Hilbert curves achieve substantial larger 

gains over common curves. This increase is stable over different FPGA sizes and error 

magnitudes. 

Table 4.3 Comparison of detection Gain (log G) between Pseudo Hilbert Curves and snake curves, and the 

increase in percentage 

Fault Size 1% 5% 8% 

                    Curve Type 

FPGA size 
Snake Hilbert Increase Snake Hilbert Increase Snake Hilbert Increase 

22*16 96.81 200.98 107.60% 43.51 90.36 107.68% 26.86 55.86 107.97% 

32*24 113.29 209.84 85.23% 36.86 68.90 86.91% 21.65 40.80 88.48% 

40*34 184.13 302.14 64.09% 54.48 89.13 63.60% 35.97 58.71 63.22% 

56*46 134.99 212.35 57.31% 49.61 78.40 58.03% 30.62 48.39 58.03% 

64*56 150.98 238.30 57.82% 54.04 85.57 58.38% 32.54 51.74 58.99% 

88*70 187.82 301.79 60.68% 48.55 78.04 60.74% 30.35 48.92 61.19% 

104*82 127.61 204.65 60.37% 41.88 66.97 59.95% 29.64 47.39 59.88% 

120*94 169.39 282.15 66.57% 47.29 79.17 67.41% 29.19 48.84 67.33% 

(a) Hilbert curve generated 

delay fault map 

(b) Snake curve generated delay 

fault map 

Fig 4.12 Comparison of delay fault map generated by different curves 
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Also, compared with normal curves, Pseudo-Hilbert curves can restrict delay defect 

affected resources into more practical geometric regions, as shown in Fig 4.12. The 

detection gain of FPGA test regions are indicated by the corresponding gradients. 

 

4.8 Summary 

   

In this chapter 4, we have presented an interval arithmetic-based timing model and 

explained our overall delay fault locating methodology. Algorithms for generating test 

curves are given in detail and experiments are performed. The results prove that our 

algorithm has considerably better delay fault locating ability, compared with test 

performed with normal test curves. 
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C H A P T E R . 5   

C O N C L U S I O N  

This thesis presents a framework to characterize FPGA delay faults with space-filling 

curve-based configuration paths. The algorithm maximizes the effect of spatially-

correlated delay variations and thus is able to quickly and accurately locate the delay 

faults with high resolution. Experimental results show that our method significantly 

outperforms paths generated from other curves. 

Contributions 

We present a test methodology for FPGA, targeted at detecting and locating FPGA delay 

faults. The novelty of our work lies in the application of space-filling curves as the 

underlying geometric basis for our test framework. Based on space-filling curves which 

have superb locality-preserving characteristics, we generate test arrays for FPGAs that 

divide the device into test regions. The test signals are then sent to the input of test arrays, 

and results measured to determine the severity of timing errors. By selecting different 

test parameters, the test method can achieve different locating resolutions. The test 

method is able to work on FPGAs with arbitrary dimensions. Experiments are run to 

show the validity of our algorithm. Compared with normal test curves, our space-filling 

curve-based test arrays achieve around 60% increase in delay fault locating accuracy. 
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Future Work 

For our future work on the FPGA delay locating framework, we would like to: 

 

 Extend our framework to examine FPGAs with embedded hard IP cores, such as 

microprocessor, signal processing blocks. We have obtained some initial results with 

such FPGA structure by combining Hamiltonian Curve with Pseudo Hilbert Curve. 

A Hamiltonian curve or path traverses all the points in a circuit graph once and 

exactly once. 

 

For FPGAs with hard IP cores, our method first divides the “free” area on FPGA 

into rectangular slices of different sizes. Then a graph is generated by taking each 

rectangular slice as a vertex. We then find the Hamiltonian path of this graph, and do 

a 2-phase test path generation for the whole FPGA. We have gained some results in 

proving the existence of such path; the future work is to combine it with the Hilbert 

curve-based path generation. 

 

 Integrate our path generator with timing analyzer algorithms to have a more 

complete EDA tool. Up until now, our method only targets delay fault characterizing 

for FPGAs. In order to make better utilization of the delay information obtained, we 

need to incorporate the test procedure with different stages of EDA flow. For 

example, after getting the different levels of timing errors of each FPGA test region, 

we can do a re-PAR to improve the timing performance of the design. 
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