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SUMMARY

This thesis deals with code generation for parallel applications on emerging plat-

forms, in particular FPGA and GPU-based platforms. These platforms expose a large

design space, throughout which performance is affected by significant architectural id-

iosyncrasies. In this context, generating efficient code is a global optimization problem.

The code generation methods described in this thesis apply to applications which expose

a flexible parallel structure that is not bound to the target platform. The application is

restructured in a way which can be intuitively visualized as Origami (the Japanese art

of paper folding).

The thesis makes three significant contributions:

• It provides code generation methods starting from a general stream processing

language (StreamIt) for both FPGA and GPU platforms.

• It describes how the code generation methods can be extended beyond streaming

applications to finer-grained parallel computation. On FPGAs, this is illustrated

by a method that generates configurable floating-point SIMD coprocessors for

vectorizable code. On GPUs, the method is extended to applications which expose

fine-grained parallel code accompanied by a significant amount of read sharing.

• It shows how these methods can be used on a platform which consists of multiple

GPU devices connected to a host CPU.

The methods can be applied to a broad range of applications. They go beyond

mapping and provide tightly integrated code generation tools that handle together high-

level mapping, code rewriting, optimizations and modular compilation. These methods

target FPGA and GPU platforms without requiring user-added annotations. The results

indicate the efficiency of the methods described.
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GPU implementation, for trajectories generated on a single GPU. 132

7.4 Optimized SM configuration for the presented models. . . . . . . 133



xii



xiii

LIST OF FIGURES

1.1 Improving code generation under resource constraints. The re-
source utilization is suggested by the area of the corresponding
boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis road map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 An example stream graph. . . . . . . . . . . . . . . . . . . . . . . 28

3.2 A stream graph with replicated filters that achieves maximum
throughput, subject to resource constraints. . . . . . . . . . . . . 29

3.3 Reducing the latency for the graph in Figure 3.2 under the same
resource constraints. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Schedule used to determine latency. Six data tokens arrive every
interval p. With two replicas, computation occurs in parallel. . . 37

3.5 Hardware structure of the replication mechanism. . . . . . . . . . 38

3.6 Design space exploration with a maximum resource constraint.
The latency constraint is relaxed, hence the throughput can in-
crease. The actual resource usage is influenced by both through-
put and latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 FFT design points with increasing latency. Sets of bars represent
replication factors for instances of filter CombineDFT belonging
to each design point. The dotted line separates the replication
that ensures a specific throughput (below) from that necessary to
decrease latency (above). . . . . . . . . . . . . . . . . . . . . . . 41

4.1 The code generation method. . . . . . . . . . . . . . . . . . . . . 50

4.2 Parallel memory access and orchestration of the stream graph. . 51

4.3 Memory layout transformation examples. . . . . . . . . . . . . . 54

4.4 Example of the orchestration for a single group iteration. Two C
threads are assigned to each of the W parallel executions of the
stream graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Liveness and lower bound analysis on working set size. . . . . . . 59

4.6 Working set allocation example. . . . . . . . . . . . . . . . . . . . 61

4.7 Characterizing the design space. . . . . . . . . . . . . . . . . . . 65

4.8 The trade-offs for F , the number of M threads. . . . . . . . . . . 66

4.9 The comparison between UGT and this method. . . . . . . . . . 68

4.10 The versatility of the code generation method. . . . . . . . . . . 70

5.1 Scalable code generation method. . . . . . . . . . . . . . . . . . . 75



xiv

5.2 Illustration of Multi-Level Graph Partitioning. The dashed lines
show the projection of a vertex from a coarser graph to a finer
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Execution and data transfer among partitions on a multi-GPU
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Execution snapshot showing the challenges of partition I/O han-
dling. The inputs for the next iteration have to swap with the
outputs of the previous iteration. . . . . . . . . . . . . . . . . . . 86

5.5 Mapping to a single partition and to multiple partitions (the num-
ber of partitions is listed under the graphs) on a single GPU.
The speedup is the execution time ratio between the two. Design
points marked with (*) were not supported by the single partition
implementation in Chapter 4 . . . . . . . . . . . . . . . . . . . . 88

5.6 Mapping to a single GPU. The speedup is reported relative to a
CPU implementation. . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Additional speedup resulted from the mapping to multiple GPUs
compared to a single GPU. . . . . . . . . . . . . . . . . . . . . . 91

6.1 The target architecture configuration. . . . . . . . . . . . . . . . 95

6.2 Executing a loop using x4 and x8 vector instructions. . . . . . . 99

6.3 The code and coprocessor generation method. . . . . . . . . . . . 102

6.4 The architecture of the SIMD coprocessor. . . . . . . . . . . . . . 105

6.5 Speedup of different design points compared to scalar FP execution.115

6.6 Resources used by execution units vs. instructions throughout the
design space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Distribution of resources among x4, x8 and x16 instructions for
‘qmr’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Computation flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Data movement during trajectory generation and counting steps. 126

7.3 Concurrent execution of trajectories inside an SM. . . . . . . . . 127

7.4 Distributed execution among multiple GPUs. . . . . . . . . . . . 129

7.5 Design space exploration on the S2050 GPU. . . . . . . . . . . . 131



1

CHAPTER 1

INTRODUCTION

This thesis describes high-level code generation methods which connect map-

ping, code rewriting, optimizations and modular compilation in an integrated

approach. In particular, it describes code generation methods for two promis-

ing parallel platforms that have emerged in mainstream computing: Field Pro-

grammable Gate Arrays (FPGAs) and Graphic Processing Units (GPUs).

Both FPGA and GPU platforms tightly integrate a large number of parallel

processing units. This results in lower communication overhead [2, 39], which

favors the execution of a broader spectrum of parallel applications [15, 71]. How-

ever, complex architectural constraints, inherent in these platforms, prevent the

mapping of the parallel computation expressed through the application code, in

a straight-forward manner, to the processing units.

This thesis shows that it is beneficial to combine the mapping step with the

subsequent compilation step in an integrated approach. The thesis describes

code generation methods for applications that expose a flexible program struc-

ture. The methods use either the coarse-grained parallel structure exposed by

the StreamIt language, or the fine-grained parallel structure derived from the

application code. In both cases, the experiments show the suitability of the

proposed methods.

1.1 Code generation

In general, code generation consists of a series of sequential transformation steps.

The first step is to map the application structure to the platform. Then, the

application undergoes an intermediate code rewriting step which commits the

mapping results and converts the application code to a program representa-

tion supported by the platform compiler. Eventually, the rewritten application
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undergoes the final compilation. During each step, additional optimizing trans-

formations are applied, based on the projected effect of these transformations.

Some of the high-level application structure is likely to be discarded during the

optimization process. Mapping and optimization decisions can not be unrolled

thereafter, even if it becomes obvious, after compilation, that the application

would benefit from them.

This problem becomes increasingly relevant, as the parallel platforms evolve,

because the level of application abstraction is rising steadily. In order to cover

a larger number of alternative platforms, the code representation tends to ab-

stract more platform details and eventually to become platform independent [64].

Therefore, good execution performance relies heavily on the decisions taken dur-

ing the mapping step, and how this step closes the gap between the abstract code

structure exposed by the programmer and the target platform architecture.

FPGAs and GPUs have emerged as lead competitors in the parallel appli-

cation domain. Both are characterized by shortened development cycles and

increased platform variability [7]. Therefore, mapping on these platforms can

not benefit from comprehensive performance projection models, similar to more

matured architectures [86, 87]. This impedes application portability and clutters

the accuracy of the mapping decisions.

As a workaround, current mapping tools often rely on a significant amount

of user-added annotations [48, 66, 67, 72, 102] that drive the solution selection

for each target platform. Using annotations reduces the inherent complexity of

the mapping step for these platforms. As the platform architecture may handle

hundreds of parallel threads with complex resource constraints, the annotations

complement the mapping algorithms and provide guidelines for global decisions

spanning the entire design space. However, the annotations are platform specific

and nontrivial to assert.

Also, because mapping precedes compilation, the mapping decisions can not

always capture the side effects of compilation on the performance and resource

utilization of the mapped application. For example, resource sharing during

compilation can decrease total resource usage, while it may introduce inter-task
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× 2
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Map
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Partial compilation
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Figure 1.1: Improving code generation under resource constraints. The resource
utilization is suggested by the area of the corresponding boxes.

dependencies, which lead to serial execution. Significant effort has been invested

in developing new programming models and compilation methods, which can

expose the platform structure and steer developers to write their code in a way

that improves mapping [26, 48, 79, 90]. Usually, the developer is encouraged

to write modular code that corresponds to parallel tasks which can be com-

piled independently. In addition, the programming models may structure data

placement, often separating the computation from communication. Using these

dedicated models eases the mapping to particular platforms and hides many of

the platform idiosyncrasies from the user.

Consequently, current mapping tools seldom modify the structure of the pro-

gram parallelism expressed by the user through the programming model. This is

based on the assumptions that: (1) the programmer has gone the extra step to



4 CHAPTER 1. Introduction

ensure that all the available parallel computation is exposed, and (2) exactly that

parallel structure was determined by the user to be beneficial. Unfortunately,

applications are often ported to different platforms, and a certain amount of

design restructuring and application tuning [67] is usually apparent after com-

pilation, once the resource usage becomes evident, either to match the platform

resources, or to match the actual degree of parallelism that maximizes the per-

formance of the compiled application on the target parallel platform. However,

after compilation, the application representation is usually flattened, and it is

beyond the ability of the current code generation methods to modify the parallel

structure of the application without user intervention.

While multiple design points can be manually or semi-automatically ex-

plored, large performance variability prevents proper pruning of the design space.

Therefore, the adequate set of mapping and optimization decisions taken during

the high-level stages of the compilation leads to a challenging problem, which

affects the outcome of the entire compilation process.

1.2 Problem Description

The mapping of applications to FPGAs and GPUs is dictated by the availability

of certain key resources. However, the resource usage is commonly available only

as a result of the compilation step. Attempts to model resource consumption have

only limited success due to the complexity of the platforms involved. In this con-

text, disjoint mapping and compilation may lead to sub-optimal performance of

the automatically generated code. Specific architectural and resource constraints

on these platforms exacerbate this problem. Hence, it is important to identify

methods to generate optimized code while considering these constraints.

Figure 1.1a illustrates an intuitive perspective of the problem described

above, as it appears in regular code generation methods. The resources uti-

lized by the code blocks, as well as the resources made available by the platform,

are indicated by the area of the corresponding boxes. The parallel application

is first mapped using a model of the target platform. Because the mapping is
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done as a separate step, at the beginning of code generation, further optimiza-

tion, code rewriting and compilation can lead to an entirely different outcome, in

terms of resource usage, than the one predicted by the mapping decisions. The

model may lack accuracy or may not capture the complete interactions between

parallel compute blocks (i.e. resources shared between FPGA blocks, or serial-

ization of parallel threads on GPU). After compilation, any inaccuracy of the

original mapping model leads to a mismatch in terms of resource usage, which

translates to infeasible or poor performance designs.

On FPGAs [1, 61], a common instance of this problem is related to the re-

source usage of each code block when implemented in reconfigurable hardware.

To achieve the greatest performance, it is desirable to use most of the recon-

figurable resources. However, mapping is usually overly conservative in terms

of resources, because the compilation outcome can not be easily predicted, and

exceeding the number of available resources leads to infeasible solutions.

On GPUs [3, 67], this problem is related to the size of fast on-chip memories.

Because these memories are small, the size of the working set of each thread

determines the feasibility of its placement in these memories. As this size is

determined only during compilation, mapping may conservatively confine it to

a large long-latency memory. The mapping then determines that an increased

number of threads is necessary to offset the memory access delay, but this often

leads to memory bandwidth saturation. Faster but small memories could be

used if the total memory requirement of all threads is known.

1.3 Thesis Overview

This thesis describes code generation methods leading to design points that

maximize performance subject to platform constraints. As previously explained,

it is often too late to restructure the application after the compilation step.

Hence, it is beneficial to preserve the flexibility exposed initially through the

program structure, especially the information that captures the parallel structure

of the computation. During code generation, the original computation blocks can

be compiled separately. The resource information from each block can be further
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utilized to adequately map the pre-compiled blocks of the application, in order

to match the constraints of the underlying architecture.

Throughout this thesis, the code generation steps are reorganized as shown

in Figure 1.1b. The flexibility in the application structure is preserved beyond

an initial partial compilation. Consequently, the application structure can be

modified during the iterative mapping and optimization steps. Finalizing the

mapping decisions and committing the application structure are deferred until

the final compilation. These additional restructuring opportunities can enhance

the accuracy of resource utilisation. Including the mapping step into an inte-

grated code generation method is a major departure from the traditional code

generation, where mapping precedes compilation.

Data flow computing or streaming programming models are suitable to ex-

press applications in a platform independent manner [12, 84]. These models

also expose a tremendous amount of parallel code structure. For both GPUs

and FPGAs, there are significant opportunities for performance improvement if

the code generation starts from a streaming programming model which exposes

a flexible application structure. StreamIt [84], a recent hierarchical streaming

language, has been selected as an input programming model, without loss of

generality. Among the major advantages of using this language, the most rel-

evant are its high level of abstraction, its finer granularity, expressiveness and

possibility to use complex structured communication primitives. Its hierarchical

structure naturally augments the flexibility in reorganizing the application.

Alternative stream programming models capture an increasing range of appli-

cations [73]. A relevant, recent example is the OpenCL programming model [48],

which was originally designed for CPU-GPU platforms, and which is now ex-

tended to target FPGAs. If this succeeds, it will provide an alternative stream-

ing model which supports the same target platforms as the methods described in

this thesis. However, OpenCL provides a weaker semantics for communication

between computation blocks, and this penalizes global transformations of the

application structure.

This thesis describes code generation methods that start from the StreamIt
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Figure 1.2: Thesis road map.

parallel application representation and target FPGA and GPU devices. The

GPU code generation method also supports multiple GPU devices connected to

a host CPU. Large amounts of coarse-grained parallelism is extracted from the

StreamIt programming language. This parallelism is exposed through parallel

and pipelined filters in the stream graph representation, and also extracted from

the execution model.

The methods described in this thesis are extended to finer-grained paral-

lelism usually exposed by specialized models and libraries. Fine-grained par-

allelism can be identified by the processor at run-time, or it may be exposed

by the compiler, through SIMD or VLIW instructions. Significant hardware

resources are required to identify parallel instructions in the former case, and

yet the amount of parallel operations identified at run-time is affected by how

the compiler schedules the code instructions. Usually a mix of platform and

compiler support is required to fully utilize this type of parallelism. Based on

this observation, this thesis employs an algebra library to expose fine-grained

parallelism in vectorizable code, and describes an FPGA-based code generation

method that generates custom floating-point SIMD coprocessors which utilise
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the exposed parallelism. Complementary, on GPU, the thesis shows how to

utilise the fine-grained parallelism exposed by a set of equations backed by a

shared working set, and describes a method that generates code to support the

parallel execution of these equations.

Although seemingly unrelated, FPGAs and GPUs share a number of similar

characteristics from the point of view of this thesis. The most noteworthy of

these is their ability to support broad parallelism with tightly coupled threads.

The granularity of these threads also covers a large spectrum of applications.

For both platforms, these advantages are throttled by tight resource constraints

which have to be accounted during code generation.

1.4 Contributions

This thesis proposes a novel approach to integrate mapping and platform-specific

compilation to maximize performance for FPGAs and GPUs. Figure 1.2 indi-

cates how the code generation strategy described in Figure 1.1b is projected to

the target platforms. It also indicates the parallel granularity of each contribu-

tion. The following is a list of contributions included in this thesis:

(A) a novel code generation method for FPGA platforms [38], which starts from

a StreamIt graph, and determines the amount of replication and folding for

the graph filters, such that it maximizes the throughput of the application

under global resource and latency constraints; this approach utilises coarse-

grained parallelism exposed by the StreamIt graph.

(B) the first code generation method for GPU platforms [36] which introduces

heterogeneous threads in order to cope with resource limitations. This

method takes into account the tight memory constraints of the platform

and determines how many parallel instances of the StreamIt graph can store

their working set in memory, and how to distribute the execution of these

instances, as well as their working set, in order to increase the throughput.

(C) a scalable extension of the above method, which targets a platform con-

taining multiple GPUs connected to a host CPU [43]; this extension relies
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on the single GPU method to determine a feasible set of partitions; this

method lifts most of the limitations that appear in the single GPU version.

(D) a novel co-design method which analyses the fine-grained parallelism avail-

able in vectorizable code, and generates a configurable SIMD floating-point

coprocessor that boosts application performance. The customization is the

first to allow coexisting vectors with different lengths. The proposed method

selects which vector instructions are supported, and how their operations

are folded onto a custom configuration of execution units [37].

(E) an improved code generation method that analyses both the coarse-grained

as well as the fine-grained parallelism exposed by a systems biology applica-

tion, maps parallel instances of this application, and distributes fine-grained

code blocks to a set of threads which share a common working set.

1.5 Outline

Chapter 2 provides a detailed background of existing code generation solutions

for the platforms of interest. This chapter also includes details regarding the

StreamIt language. Chapter 3 presents the first method that applies to StreamIt

code generation for FPGA platforms. The next chapter presents a method that

generates GPU code for StreamIt. This method can be extended to a multi-

GPU platform as described in Chapter 5, with emphasis on scalability. This

is followed in Chapter 6 by a FPGA contribution, complementary to that in

Chapter 3, for finer-grained parallelism, that generates SIMD coprocessors for

the FPGA platform. To justify the generality of the method introduced in

Chapter 4, Chapter 7 presents code generation for a model exposing finer-grained

parallelism. Chapter 8 concludes this thesis.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Chapter 1 indicated that the streaming programming model exposes a significant

amount of parallelism that can be used for efficient code generation. Indeed, pre-

vious research shows that streaming programming languages [9, 12, 27] have been

successfully utilized to describe applications for parallel platforms. This chap-

ter presents relevant work related to code generation for StreamIt applications.

Background regarding the StreamIt language and previous code generation at-

tempts are described in Section 2.1.

This thesis describes code generation methods for the FPGA and GPU plat-

forms. Therefore, this background chapter provides a description of the architec-

ture of each of these platforms. Exposing a reconfigurable structure, the FPGA

architecture has been actively used by the research community in application ac-

celeration, by implementing either custom processors or dedicated computation

blocks. FPGA circuits are prone to implement applications with a high degree of

parallelism, but are subject to tight capacity (resource utilisation) constraints.

Relevant work on automatically generated code for FPGAs is presented in Sec-

tion 2.2.

The GPU architecture follows a different paradigm. It can also handle appli-

cations with a high degree of parallelism, but it imposes tight constraints on the

resources shared by the parallel threads. Due to the complexity involved, mod-

eling and experimentation have been the norm in writing efficient applications.

Because actual GPU code performance is difficult to estimate, automatic gener-

ation of efficient code has raised increased interest in the research community,

as shown in Section 2.3.
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2.1 StreamIt: A Parallel Programming Environment

Stream processing is a data-centric execution model which represents an impor-

tant class of applications that spans telecommunications, multimedia and the

Internet. The compilation of the streaming programs has attracted significant

attention because of the parallelism they expose. Languages, tools, and even

custom hardware for streaming have been proposed, some of which are commer-

cially available.

The StreamIt language [84] is a hierarchical streaming programming language

and infrastructure built upon the experience of a large spectrum of previous

streaming languages such as Lustre [14], Esterel [9], Brook [12], Streams-C [27],

etc. StreamIt is built on top of the synchronous data flow model [52].

2.1.1 Language Background

StreamIt was designed to expose the parallel and pipelined nature of the stream-

ing applications. The high-level structure of a StreamIt program is a hierarchical

graph whose leaf nodes are filters which communicate through data channels. Fil-

ters can be combined to execute in pipelines. The flow of data can be distributed

using splitters and joiners that describe parallel execution paths in the applica-

tion. These constructs expose coarse-grained parallelism in the application.

Filters are written in C-like code with special constructs to access their input

and output channels. A filter consumes data from an input channel using pop

constructs and produces data on the output channel using push constructs. An

example filter declaration, with different input and output data rates, is filter

F1 in the example below.

This example includes a pipeline P1 which connects the output of filter

F1 to a subsequent splitter. This splitter and a joiner are encapsulated in a

splitjoin construct. The splitter is instructed to route alternative elements, us-

ing a roundrobin scheme, to the pipelines P2 and P3 which it encapsulates. The

results of the pipelines are combined, in the same order, to form the output of

the splitjoin construct. An alternative splitter policy exists, where all the paths

duplicate the same data.
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int->int filter F1(int N) {

work pop N push N/2 {

for (int i = 0; i < N/2; i++) {

int x = pop(); // read/dequeue from input FIFO

int y = pop();

push(x-y); // write/enqueue to output FIFO

}

}

}

int->float pipeline P1() {

add F1(2);

add splitjoin {

split roundrobin(1,1);

add P2();

add P3();

join roundrobin(1,1);

}

}

The StreamIt compiler flattens the hierarchical stream program to a set of

base operators (filters, splitters and joiners). It produces a schedule that consists

of a sequence of operators, and the number of times they are executed (fired).

Note that multiple firings may be necessary, because filters are allowed to have

non-matching input and output rates and hence the elements produced by one

filter’s firing may require multiple firings of the consumer filter. These multi-

ple firings describe data parallelism in the streaming application. In the above

example, as F1 produces a single element, the derived execution schedule must

include pairs of executions of F1, in order to produce one element for each of

the two subsequent pipelines P2 and P3.

The schedule may require an initialization part which is executed once when
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the program is launched. Apart from the initialization part, the resulting sched-

ule consists of a steady-state component that can be executed as many times as

required to process all the given input.

Dependencies between filters are made explicit by the communication chan-

nels. Each filter has its own control logic and an independent address space, and

it executes repeatedly as long as a sufficient number of tokens are available on

its input channels. However, the filters have the capability to peek data from

the input channel beyond what they are going to consume. This feature allows

structured data dependencies between consecutive filter firings. Peeking is useful

for sliding-window computations, and provides an opportunity to rewrite filters

that otherwise require internal state to preserve previous values.

A few features in StreamIt may introduce unstructured data dependencies

which would prevent parallel code generation. Their usage is not supported by

the code generation methods described in this thesis. These features include

feedback loops and portals, which create cycles in the stream graph. If these

constructs are eliminated, the stream graph can always be flattened to an acyclic

directed graph. The code generation methods also require filters with statically

defined rates in order to derive the schedules statically.

2.1.2 Related Work on StreamIt

Since its introduction [84], StreamIt has been ported to several distinct plat-

forms. The parallelism it exposes makes it a natural candidate for programming

parallel platforms. Each filter in StreamIt declares its data input and output

rates. This explicit information enables many optimizations that can yield ef-

ficient implementations of the stream computation onto platforms with a high

degree of parallelism.

The Raw platform back-end [31] introduces several load balancing optimiza-

tions. Fission is utilized to split a filter’s contents into a pipeline of finer-grained

filters. Such a pipeline may achieve better load distribution between parallel

threads. In the opposite direction, too fine-grained filters are fused together.

This optimization also assists with load balancing, as it removes some of the
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synchronization overhead, if several filters are to be grouped on the same pro-

cessing unit.

As a special type of fission, a filter can be replicated [31, 63] in order to expose

more parallel instances to the compiler. If the number of filters is smaller than

the number of processing cores, the compiler replicates the filters with the highest

computation requirements. While this strategy works well when generating code

for a platform with a finite number of compute engines, it is not clear how to

adapt it for platforms where the number of independent processing cores can

not be modelled independently from the application. This thesis relies on an

extended version of this optimization. Replication appears in different methods

throughout this thesis, and is backed up by special orchestration, which allows

structured usage of arbitrary replication factors. The reverse, where replication

has to be rolled back is called folding.

Later, StreamIt has been ported to multi-core processors [30]. This back-end

emphasizes on additional challenges of the code generation problem. Despite

exposing a significant amount of task and data parallelism, optimizations are

often hindered by communication costs. In this context, careful consideration

has been given to match the cache size of the underlying processors to prevent

performance degradation of operators executed on the same processor.

This back-end has described other trade-offs involved in the execution of the

derived stream schedule among multiple cores. It differentiates between soft-

ware pipelining, which pre-encodes a static schedule on each execution core and

hardware pipelining which relies on computation driven by dynamic data arrival.

Software pipelining is found to be suitable on the shared memory architectures

utilized. In contrast, Chapter 3 shows that hardware pipelining can significantly

reduce latency for the FPGA architecture, where communication is implemented

with dedicated channels.

With the emergence of new parallel platforms, a StreamIt back-end has been

proposed for the Cell platform [51]. The integer linear programming solution em-

ployed to map StreamIt to this platform targets maximum throughput based on

the modelled computation and communication overhead. It generates a software
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pipelined schedule which attempts to overlap communication with computation.

The architectures of all the platforms presented above share a common char-

acteristic. They utilize a fixed number of cores capable of executing threads

independently. However, both the FPGAs and GPUs diverge from this charac-

terisation and introduce global interrelations between the implemented threads.

An FPGA mapping can vary the number of parallel computation blocks based on

the size of the reconfigurable resources they utilise, while a GPU mapping has to

consider the complex relations between parallel threads that impact their perfor-

mance. Prior implementations of StreamIt to FPGAs and GPUs are discussed

in Section 2.2.1 and 2.3.1.

2.1.3 Benchmark Suite

The StreamIt compiler provides a suite of standard benchmarks [80]. These

benchmarks describe realistic stream graphs and have been utilized throughout

this thesis. To adjust the workload included in the benchmarks, the benchmarks

allow parameterization. Table 2.1 describes the benchmarks and how they were

parameterized.

2.2 FPGA Architecture

FPGA platforms expose a parallel architecture that consists of a large number of

reconfigurable gates that can be reprogrammed to accelerate application-specific

code. A broad class of applications, including multimedia, networking, graphics,

and security codes, provide ample opportunities to exploit FPGA-based accel-

eration.

FPGA performance is drawn from the flexibility of its reconfigurable gates,

called Look-Up Tables (LUTs)1. The LUTs are generic multiple input logic

functions with 5 or recently 6 inputs, and 1 or 2 outputs. The configuration of the

LUTs can be changed at run-time through FPGA reconfiguration. These gates

are connected to each other through a reconfigurable interconnect. Together,

the LUTs and the interconnect form a fully reconfigurable architecture which

can provide operating frequencies up to 400 MHz.

1Xilinx terminology is used throughout this thesis.
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Table 2.1: Benchmark characterization.
Benchmark Description

Bitonic(N) Sorting algorithm for N float elements applying the
bitonic algorithm

BitonicRec(N) Same as above, recursive method

DCT(N) Discrete cosine transform followed by the inverse trans-
form for a matrix of N ×N floats

iDCT(N) Inverse discrete cosine transform for a matrix of N×N
floats

DES DES encryption algorithm with N rounds, input 8
bytes, output as 16 hex digits

Serpent(N) Serpent encryption algorithm with N rounds, it in-
cludes a bit level linear transform

FFT(N) Fine grained FFT transform on N float elements

FFT’(N) Very fine grained FFT transform on N float elements
described in Appendix A

FilterBank(N) Instantiates N filter banks to process multirate signals

FMRadio(N) (N + 3)-band equalizer radio

MatrixMult2(N) Blocked matrix multiplication algorithm for 2N × 2N
matrices, split into blocks of 2× 2

MatrixMult2(N,M) Blocked matrix multiplication algorithm for (2N ×
2N)× (2M × 2N) matrices, split into blocks of 2× 2

MatrixMult3(N) Same as above for ((3N+3)×(3N+3))×(3N×(3N+3))
matrices, with blocks of 3× 3

The configuration of an FPGA is usually determined through hardware syn-

thesis. The circuit is described in a high-level hardware description language

(HDL) such as Verilog or VHDL [79] and further processed by vendor-specific

tools. It is first synthesized into a netlist, which matches the characteristics of

the LUTs and other reconfigurable resources in the target FPGA, and further

fitted to the actual circuit layout, which fixes the placement and routing of each

resource. Both steps take a large amount of time, in the range of hours, and

they are often seen as the most significant factor limiting the popularity of FPGA

technology.

Besides LUTs, the FPGA architecture now contains other reconfigurable

resources, such as memories, DSP blocks, clock generators and even hard-wired

processor cores, all of which can be included in user designs. Utilising these

pre-defined hard-wired resources increases the performance of the synthesized

application.

Various strategies are employed to reduce the design synthesis time. Among
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these strategies, manually added annotations are the most frequently utilised, as

they allow the circuit designer to fine tune the implementation. However, in the

context of automatic HDL generation, such an option is infeasible. Instead, HDL

generation tools often utilise libraries of pre-synthesized components which can

be combined in larger designs, and which rely exclusively on the capabilities of

the vendor synthesis tools in order to improve the performance of the resulting

design.

In this context, applying automatic replication or folding strategies, as de-

scribed in Chapters 3 and 6, exploits the possibility of duplicating or sharing not

only the HDL code, but also the synthesized version of the code. As the parallel

granularity of the FPGA resources is fully customizable, the applicability of the

folding strategy is possible for several levels of parallelism. Replicating synthe-

sized modules ensures balanced circuits capable of higher performance. The size

and performance of the application which can run on the FPGA are only limited

by the total available resources.

2.2.1 Related Work on FPGA code generation

There are several platforms that integrate FPGAs with hard-wired processor

cores [1, 29, 61, 81], and recent announcements [21] from leading vendors suggest

that FPGAs are likely to become widely available as programmable coprocessors.

Sequential parts of the applications can be assigned to run on the host processor,

while those parts with abundant parallelism can pass through code generation

methods that lead to FPGA implementations. These application parts can ex-

pose parallel computation, which is fine-grained (i.e. data parallel paths), or

coarse-grained (i.e. parallel tasks).

2.2.1.1 Fine-grained Parallel Computation on FPGAs

Fine-grained parallel computation is usually implemented as custom instructions

that extend a given processor core. Previous research has shown how custom

instructions can be added to an existing processor in a systematic approach.

A number of commercial products are available, such as those developed by

Tensilica [29] and Stretch [81].
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The typical approach, used to automatically generate custom instructions,

involves the analysis of the data flow graph obtained as a result of compilation,

followed by the enumeration and selection of sub-graphs as candidates for custom

instruction implementation [20, 100]. While the selected sub-graphs are identi-

fied during application compilation, resource usage is only estimated [10], and it

may be affected by optimizations during HDL synthesis. This phase dependency

prevents code generation tools from controlling accurately the reconfigurable re-

source count of the sub-graphs that would be synthesised. This is particularly

important if the size of the custom instructions is large.

Previous research has usually focused on integer custom instructions [29, 100],

which are lightweight and must be tightly integrated in the processor pipeline

to achieve high performance. However, the overhead of such an approach is

small only if the processor core resides in the FPGA reconfigurable resources, as

well. If this is the case, the performance of the entire processor is offset by the

implementation of the processor core in reconfigurable resources.

An alternative option becomes viable for floating point instructions. Because

floating-point operations are usually supported by a bulkier implementation,

their integration in the main processor pipeline can be less tightly coupled [97].

In this case, the processor core may be hard-wired, and only the floating-point

instructions are implemented in FPGA. However, the number of floating-point

pipelines that can be implemented in hardware is small, and resource sharing

can certainly improve the designs. Therefore, the code generation for custom

coprocessors, described in Chapter 6, combines custom instructions with resource

sharing into folding methods. These methods exploit the regular structure of

the vector instructions in order to generate automatically resource-constrained

implementations.

While sharing methods have been previously applied to custom instruc-

tions [10, 83], the regular structure exposed by vector integer instructions is not

suitable for sharing, due to the considerable cost of the multiplexers required

for sharing purposes, compared to the size of the fine-grained integer opera-

tions. Indeed, the custom integer vector instructions offered by Tensilica [29] do
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not share the operations, hence they exhibit only limited resemblance with the

method described in this thesis.

However, there are also a number of customized floating-point SIMD pro-

cessor architectures [29, 85, 92, 99]. They provide a rich set of reconfigurable

parameters. However, the final result is a monolithic processor instance with all

instructions tightly integrated into the base pipeline. As such, these processors

can not take advantage from fine-grained application-specific parallelism, and

they are suitable to be implemented either in silicon or entirely as soft-cores [58].

Lastly, some vendors already offered hard-wired SIMD floating point copro-

cessors for their embedded processors [57]. The iPhone, for example, includes

such a core [45]. This is additional evidence for the growing importance of

floating point computation in a design domain characterized by tight resource

and performance constraints. However, these coprocessors are silicon-based, and

hence do not possess the flexibility of the solution presented in Chapter 6.

2.2.1.2 Coarse-grained Parallel Computation on FPGAs

As discussed in the previous section, there is some overhead associated with the

attachment of fine-grained FPGA computation to a hard-wired processor core.

Coarser blocks, such as hardware loop accelerators [77, 104] have been proposed,

relieving the processor of the steady issue of instructions and operands. Using

this method, loop specific optimizations such as unrolling and pipelining can be

used to improve the efficiency and utilization of the hardware execution units.

Several tools [19, 34] are capable of deriving dedicated loop accelerators from the

application code by applying static transformations to extract the necessary data

parallelism. These methods, however, do not support irregular loop structures

or complex control flow. In addition, dedicated memory connections are required

to provide data for the loops. The method presented in Chapter 6, on the other

hand, relies on the core processor to resolve all dynamic control flow and the

data transfers, issuing scheduled vector instructions and operands in the proper

order to the hardware.

Exploiting data parallelism through replication can increase the throughput
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of the computation blocks [13, 18]. The replication applied to StreamIt opera-

tors in Chapters 3 addresses this issue in the context of the FPGA platforms. A

method is described that performs maximal replication of the operators bound

only by the size of the FPGA, then folds back those that do not improve through-

put.

This replication method does not address the synthesis of the actual com-

putation from stream operators to HDL. The emphasis is on the composition

of the synthesized operators into an overall space-time efficient design. Recent

work [41] specifically addressed the issue of hardware generation from StreamIt,

and this method is orthogonal to it. Similarly, many of the existing state of

the art C-to-hardware compiler technologies can be used to complement this

method. Hence the method described is complementary to most of the ongoing

research in the community that address sequential code high-level synthesis.

The replication strategy improves the accuracy in modelling the communica-

tion overhead. Because the replicas are identical, the data routing is simplified

and the associated overhead is more accurately accounted for. This improves the

global performance of the generated code. The modularity and composability of

this method distinguishes it from global optimization of loop nests [103].

2.3 The GPU Architecture

The GPU platforms have a massively parallel architecture that allows the con-

current execution of thousands of threads. The architecture consists of a number

of streaming multiprocessors (SM), which in turn contain a number of processing

cores. The number of processing cores in each of the streaming multiprocessors

continues to increase with each new generation of GPUs(up to 48 cores per SM

in the most recent nVidia GPU, compared to S2050’s 32 cores and S1070’s 16

cores).

The processing cores are running in lockstep, similar to SIMD execution.

Blocks of parallel software threads run on each of the available SM. Typically,

there are much more software threads than there are processing cores. In order

to schedule the many threads on SM, they are statically grouped into scheduling
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units called warps2. For the current generation of nVidia GPU, a warp consists

of 32 threads. Because threads in a warp execute in lockstep on the processing

cores, any intra-warp control flow discrepancies will lead to serialized execution.

However, threads that belong to different warps are independent of any divergent

control flow penalty.

A hardware scheduler typically selects one warp and issues the current in-

struction from all its threads onto the pipeline of the processing cores in 2 - 4

consecutive cycles [94]. Afterwards, this warp becomes unavailable for a number

of cycles until its instructions clear the pipeline. The scheduler switches to exe-

cute a different warp with zero overhead. As a result, though a large number of

parallel threads can be spawned, their executions are actually interleaved on the

processing cores. As opposed to CPU, where advanced compiler and run-time

support is necessary to extract the fine-grained parallel operations, the GPU

scheduler can simply issue, in parallel, independent instructions from inherently

parallel threads.

The GPU architecture benefits from an exposed memory hierarchy where

threads explicitly specify which memory they access. All threads can access

off-chip global memory. However, the latency of accessing this memory is high.

In addition, each SM in a GPU contains a small but very fast on-chip memory

that is shared among all the threads in the SM. This SM memory3 has close to

register latency.

The register file is distributed among all the threads of the GPU. Hence, in-

stantiating more threads leads to fewer registers allocated to each thread. This

may lead to spills, which are directed to a local memory. Unfortunately, lo-

cal memory is backed by private areas in the long-latency global memory, and

performance is again significantly affected.

The long stalls affecting a warp that accesses global and local memory can be

partially hidden if the scheduler can launch enough alternative warps. However,

the architecture is not able to sustain execution without stalls when all warps

2nVidia terminology is used throughout this thesis.
3The nVidia way of referring to this as shared memory is potentially confusing.
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access the memory simultaneously. This observation suggests that the GPU

scheduler would benefit from a mix of threads with different execution patterns

and from reduced memory access rate.

In this context, the methods described in Chapters 4, 5 and 7 show how the

parallelism extracted from the application can be utilized to provide a steady

number of stall-free warps to the scheduler, hence hiding most of the global

memory latency. It also shows how the finer-grained parallelism in the code can

be utilized to reduce the ratio of computation to memory access.

2.3.1 Related Work on GPU code generation

Computing on GPU platforms involves kernels that usually communicate to each

other through global memory. Therefore, the overall performance is limited by

the high latency of memory access. Hence, memory latency hiding is one of the

most significant concerns in GPU programming. Basic strategies that enhance

the memory access for a variety of GPU applications are detailed in [69].

Selecting the right number of parallel threads and the location of frequently

used data is not trivial [75]. One well-known approach that boosts performance

is to prefetch data from global memory to SM memory [98]. This is the approach

taken by other high-level language translations [8, 74, 93] to CUDA and OpenCL.

The method presented in Chapter 4 uses two classes of dedicated threads for:

(1) loading / storing data from global memory to SM memory and (2) computing

using data preloaded in SM memory. A recently proposed method [42] exploited

efficiently only the coarse-grained task parallelism exposed by StreamIt, while

the method presented in this thesis also takes advantage of finer-grained data

parallelism when generating code for the stream graph. Therefore, a single

instance of the stream graph spans several computing threads.

Because the amount of SM memory is limited, it is necessary to reduce the

working set footprint. When generating GPU code for StreamIt, two complemen-

tary methods are possible. One relies on caching transformations for StreamIt

that have included narrowing the memory requirement through modulation or

copy-shift [78]. The other is to use a scratchpad memory, as optimal algorithms
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have been proposed for its management [53]. The method in Chapter 4 is based

on the copy-shift method, adapted to the way the stream graph executions share

a common memory.

StreamIt applications have been previously executed on GPU platforms [42,

89]. The stream graph is usually mapped directly to kernels encapsulating oper-

ators that communicate via global memory. Mapping communication to global

memory penalizes performance and eventually saturates the memory bandwidth.

In order to reduce run-time overhead, communication between SM executing dif-

ferent kernels has to be deferred until a large amount of data is processed locally.

As a result, the latency of executing the stream graph is large, while the through-

put is limited by the memory bandwidth, despite the use of pipelining.

The methods described in this thesis generate code encapsulating stream

graph partitions. Instead of mapping each operator separately, they execute

multiple instances of larger stream graph partitions in parallel on each SM,

taking care to adjust the number of parallel instances to match the resource

constraints. The aim is to achieve a balance between the number of GPU threads,

the layout of the SM memory, and the memory bandwidth consumption, such

that performance is maximized.

A promising solution to deal with scalability issues is the utilization of multi-

GPU platforms. Such systems are well-suited to process large data set appli-

cations [82]. Performance modeling for GPU architectures was comprehensively

investigated by analytic and quantitative approaches [4, 101, 40] which high-

lighted the important balance between computation and memory access, as well

as the utilization of SM memory. It is possible to estimate statically the per-

formance of an application running on multiple GPUs based on characterizing

computation and different communication costs [76].

On the other hand, efficient run-time systems for multiple GPUs have been

proposed to explore speculative execution [22] and to investigate load balanc-

ing [17]. None of these works has attempted to generate code automatically, nor

to provide an execution model for streaming languages onto multiple GPUs.
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CHAPTER 3

STREAMIT CODE GENERATION FOR FPGAS

The first contribution described in this thesis tackles the optimized code genera-

tion of StreamIt applications to FPGA platforms. The architecture of these plat-

forms does not directly constrain the degree of parallelism that can be derived

from the application code. However, there are several other significant chal-

lenges to FPGA code generation for streaming applications. Since FPGA plat-

forms have finite reconfigurable resources, there are many non-trivial trade-offs

between the performance achieved and the number of reconfigurable resources

utilized.

In addition, the performance of such an application is not reflected only by

its throughput. Different design domains may trade throughput for the overall

latency of the computation. The latency, defined as the time lapsed between

the moment when an input appears at the input of the FPGA, until the mo-

ment when a corresponding output is produced, is an important constraint in

application domains such as real-time control [88], network and media appli-

cations [101] as well as in the financial domain, for high frequency algorithmic

trading [96].

This chapter describes a code generation method that takes StreamIt pro-

grams and generates HDL code suitable for FPGA implementation, with focus

on the improvement of the high-level mapping steps. The optimized code gen-

eration method includes an algorithm that assists with the refinement of the

stream graph applications. The design points processed are further refined for

the highest achievable throughput subject to user-specified latency constraints

and target FPGA resource bounds.

Starting with an application represented in StreamIt, ample parallelism is

available due to the stream-oriented programming model. This chapter addresses

the following question: is there a refinement of the flexible input stream graph
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that can maximize the processing throughput of the overall graph? Furthermore,

because FPGA reconfigurable resources are finite, and latency is typically an

important consideration in this application domain, the optimization goal is

extended to consider both resources and latency constraints. The throughput

improvement algorithm described is the first tackling the combined constraint.

The intuition behind the algorithm is the following. The filters that may

cause bottlenecks in the stream graph are identified and inspected. If the filters

do not maintain a history of their past execution, then their throughput can

be boosted by exploiting automatically the data parallel properties they expose.

This is achieved by judiciously replicating the bottleneck filters.

Replicating the filters has several advantages. The replicated filter instances

do not require to be synthesised again as they are all instances of the same filter,

and the synthesis results are reusable. This is in contrast to prior work on global

optimization of loop nests on FPGAs [103] which requires recompilation and

evaluation of the recompiled designs based on heuristics. Such an approach will

not scale for large designs.

The algorithm operates on a stream graph and relies on a previously synthe-

sized set of filters. It determines how to assemble the pre-synthesized filters in

order to achieve the best possible throughput. If a filter is replicated, additional

code is automatically generated for specific hardware circuitry required to route

the data flow to and from the replicated filters. This method makes the issue

of filter synthesis orthogonal to design assembly and generation. Hence, this

method is complementary to a lot of the ongoing research in the community

that addresses high-level synthesis of the filter code itself.

The algorithm can be briefly described as first aggressively replicating candi-

date filters, then folding back the graph to reduce the number of replicas if they

are not profitable given the constraints. The next section provides a motivating

example that shows some of the trade offs considered by the code generation

method. Subsequently, the details of the replication and folding algorithm are

discussed, together with the evaluation results.



3.1. Rationale 27

3.1 Rationale

A stream graph example is shown in Figure 3.1. In this figure, Fi are filters, and

the hardware footprint (R(i), reconfigurable resources utilized) of each filter is

correlated to the area of its corresponding rectangle, while the execution time

T (i) of a filter firing is correlated to the length of the rectangle. The figure repre-

sents the number of input tokens popped and pushed by each filter. The edges in

the graph describe channels routing the data flow between operators. The split-

ter and joiner are illustrated using arched double-headed arrows. Section 2.1.1

provides a complete description of the StreamIt language.

The data flow is split between F1 and F2 in a periodic and round-robin man-

ner, with 3 tokens dispatched to F1 and 6 to F2. This information is annotated

on the edges that fan-out from the splitter. Similarly, the joiner collects data

from the input streams in a round-robin manner. The weight annotations on

each edge describe how the data is aggregated from the streams: 3 tokens from

F1 and 3 from F2.

This example contains a pipeline stream container, connecting a splitjoin to

F3. The splitjoin is a stream container, with a splitter at the source, a joiner at

the sink, and filters F1 and F2 between them. The stream graph in the figure

can be described as follows in StreamIt:

int->int pipeline Example() {

add pipeline {

add splitjoin {

split roundrobin(3, 6);

add F1();

add F2(2); // instantiating parameterized filter

join roundrobin(3, 3);

}

add F3();

}

}
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Figure 3.1: An example stream graph.

Conceptually, operators fire autonomously and concurrently. Since there is

no data dependency between F1 and F2, they can fire in parallel. The firings

of filter F3 can be pipelined relative to the other filters. It is obvious from the

graph that F1 and F2 execute the same number of times in order for F3 to fire

(that is, both F1 and F2 fire 3 times to produce the requisite amount of data for

the joiner, which ultimately provides the data to filter F3).

The code generated ensures that each of the operators in the stream graph

executes only when there is a sufficient number of data tokens on its input

edge. However, the implemented execution model does not enforce a synchronous

schedule, but allows filters to execute ahead of time, if enough elements are

available at a filter input. Because the performance of the asynchronous approach

is not worse than the synchronous execution, analysing the latter is sufficient to

derive performance guarantees.

A StreamIt program exposes the flexible program structure and communi-

cation topology to the code generation tool, which can decide on the best im-

plementation choices based on the target hardware architecture. A näıve code

generation, instantiating the operator structure as it is described in the stream

graph does not produce an efficient implementation: a single instance of filters

F1 and F2 is not load-balanced. However, if a filter has no internal state – that

is, it does not maintain any history of its previous executions – it can be repli-

cated in order to achieve a more load-balanced implementation. Replicating a

filter creates several instances of the filter and adds a splitter to distribute data

between the filter and its replicas, and a joiner to collect the results. The replicas

effectively increase the firing rate capability of the filter, but also increase the

reconfigurable resource usage: each of the replicas incurs a resource overhead
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Figure 3.2: A stream graph with replicated filters that achieves maximum
throughput, subject to resource constraints.

that is equal to the original instance, and in addition, there is an added over-

head incurred by the splitter-joiner pair that routes the new data flow. Since the

target FPGA architecture has finite reconfigurable resources, careful judgement

is necessary to decide which filters should be replicated and to what extent. The

algorithm replicates and folds a given stream graph to determine where and to

what extent replication will be most profitable.

The primary contribution of this method compared to related work described

in Section 2.2.1 is the co-optimization of space and time (throughput and la-

tency). The stream graph in Figure 3.2 illustrates the replication of filters F2

and F3. The graph achieves the best throughput to reconfigurable resource us-

age ratio: filters fire continuously, making efficient use of the hardware. At

steady state, the throughput of the joiner aggregating the outputs of F1 and F2

is three times higher than the corresponding joiner in the original graph shown

in Figure 3.1. A hardware design and implementation of a stream graph that

uses replication increases throughput, but may also affect the latency of the

computation.

Higher throughput does not guarantee a minimum latency design. The la-

tency is determined by assuming that sets of data items are available when

needed at the stream input and then determining the maximum time required

to generate all the corresponding outputs. While a unique replica of F1 can

handle its three input data sets in consecutive runs, because its firing time is

short, the result of the second and third firing will still occupy two replicas of
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F3 when the results of F2 become available, creating backlog. The joiner will

pass onwards this burst of data to the replicas of F3, but they will not be able

to process all of it immediately, and at least one element will be delayed in the

channel at the input of F3, hence increasing the latency.

Figure 3.3 presents an alternate stream folding strategy that trades some

throughput in order to achieve a lower overall latency. Due to the additional

replication of F1, all the results processed on that data path are available earlier

and can be processed immediately, in parallel, by the slightly lower number of

copies of F3. In this design, when the results generated by F2 become ready, the

same copies of F3 are all free and can process them without delay. While the

latency has decreased, the sustained throughput of this design is also reduced

because of the reduced replication of F3 which now represents the bottleneck.

Peeking filters may be replicated as following: the input stream is duplicated

to the filter and its replicas, and then each replica discards locally the parts of

the stream that are not relevant to it. This approach may create some redundant

communication, depending on how much input data is not actually consumed by

each replica, but others have shown that it is possible to design efficient hardware

mechanisms to exploit the structured data reuse [33].

3.2 Code Generation Method

This method determines which filters to replicate (and by what factor), in order

to maximize the processing throughput, subject to reconfigurable resources and

latency constraints. The philosophy is to describe the desired design topology,

and generate code that stitches together the filters and streams as directed by

the algorithm.

The algorithm described assumes that individual filters are already synthe-

sized as part of the code generation method, and both reconfigurable resource

usage and profiling information (worst-case execution time estimates) are re-

trieved from the compilation and profiling of individual filters. If the filters take

less time to execute than the worst-case estimate, the correctness of the solution

is not affected.
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Figure 3.3: Reducing the latency for the graph in Figure 3.2 under the same
resource constraints.

The input to the algorithm is a stream graph derived from StreamIt code.

In StreamIt, it is the programmer’s responsibility to describe the streaming ap-

plication in such a way that exposes sufficient parallelism. The compiler is

commissioned with the task of refining the application graph into a form that is

amenable for synthesis. The stream folding strategy manages the complexity of

the design search space by exploiting the flexible nature of the stream graph.

Replicating filters with internal state is beyond the scope of this method

(although past work has shown it may be profitable to do so [51]), and they

impose a performance limit. If such a filter dominates the execution throughput,

then replication of other filters is not likely to be profitable. However, in many

cases, good code writing practises prevent filters with internal state from growing

too large, or they can be easily rewritten as peeking filters which are handled by

this algorithm.

The highest throughput design is derived using the steps shown in Algo-

rithm 3.1. First, each filter is analysed and a corresponding work factor is com-

puted by multiplying its firing execution time T (i) and its firing rate (line 2).

The firing rate S(i) is derived by the algorithm with support from the StreamIt

compiler as described below; it equals the number of firings of a filter so that

it is rate-matched to its producer and consumer. The computed workFactor

combines the two and indicates the proportional amount of replication required

by each filter. An initial count initRes on the resources utilized by a throughput

balanced design point is derived (line 4) utilizing the work factor to scale the

individual filter resource requirements R(i).
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Algorithm 3.1 Folding a design for throughput

Input StreamIt program graph G, global resource constraint RFPGA,
filter firing execution time T , filter resources R

Output Replication coefficients C
1: foreach Filter i in G do
2: workFactor(i) = T (i) · S(i)
3: end foreach
4: initRes =

∑
i∈G

R(i) · workFactor(i)

5: maxScale = max
i has state

( 1

workFactor(i)
)

6: scale = min (RFPGA/initRes,maxScale)
7: foreach Filter i in G do
8: C(i) = dworkFactor(i) · scalee
9: end foreach

10: while
∑
i∈G

R(i) · C(i) > RFPGA do

11: C = reduceThroughput(C,workFactor)
12: end while

The next lines determine the maximum replication factor that matches the

global resource constraint RFPGA. Line 5 determines which of the filters with

internal state, if any, constrains the replication to maxScale; it is the one with the

greatest work factor. The first term in the min equation on line 6 determines

how many of the FPGA resources are available for replication. The resulting

scale factor determines the replication counts for the initial design point(line 8).

Due to rounding, a design that instantiates the calculated replicas counts

may lead to a resource requirement slightly larger than the input resource con-

straint, although the design will be on the pareto-optimal frontier with respect

to throughput and resource requirement. This initial replicated design is refined

further, reducing its throughput while maintaining it on the pareto-optimal front

of the design space. Each iteration in lines 10-12 reduces the resource require-

ment of the design by eliminating one filter replica instance at a time, starting

with filter replica instances that only marginally improve throughput. This is

accomplished in the reduceThroughput procedure presented in Algorithm 3.2. Fi-

nally, a maximum throughput design that fits the available resources is obtained,

and the only step to be determined is if the latency constraint is satisfied.

Algorithm 3.2 selects a pareto-optimal design with the smallest reduction in

throughput. As the input design is on the pareto-optimal curve, any reduction
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Algorithm 3.2 Throughput reduction procedure reduceThroughput

Input Current design point C, work factors workFactor
Output New design point C ′

1: p = min
i∈G

workFactor(i)
C(i)−1

2: foreach Filter i in G do
3: C ′(i) = x|∀x′ < x, workFactor(i)

x′ > p, workFactor(i)
x < p

4: end foreach
5: return C ′

in the replication coefficient C(i) of a filter leads to a reduction in throughput,

and a corresponding increase in the minimum initiation interval (or period) p.

The smallest such increase is recorded in line 1. The newly derived execution

time threshold determines the possible changes in the other coefficients. These

coefficients are recalculated for all filters in line 3. This ensures that the new

design remains on the pareto-optimal curve.

Algorithm 3.3 generates design points sorted by throughput, starting with

the one achieving the highest throughput as constructed in the previous step.

Reducing the throughput iteratively (line 10) allows the exploration of other

design points that can utilize the additional freed resources to improve the la-

tency of the implementation. The latency can be improved by increasing the

replication of a subset of filters.

An approach based on simulated annealing is used to search through the

potential candidates while pruning away as much of the infeasible design space

as possible. This is achieved using a custom neighbor visit function that avoids

illegal configurations defined by the resource constraint, throughput lower bound

and the latency constraint (line 4).

A reduced latency design may be found if throughput is slightly reduced.

This scenario occurs, for example, if a joiner path delays the data more than

p, hence blocking for a while data propagated through the other paths. In

other words, the latency constraint ∆T may be satisfied only for initiation in-

tervals larger than that defined by the maximum sustainable throughput of the

design explored. Therefore, for offering latency guarantees, a design may be

constrained to a throughput below the maximum achievable and this is reflected

by the sustainablePeriod procedure. Recording the minimum initiation interval
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Algorithm 3.3 Latency constrained design folding

Input Best throughput configuration (C), latency constraint ∆T ,
resource constraint RFPGA

Output Latency constrained configuration (L)
1: p =∞
2: while max

i∈G
workFactor(i)

C(i) ≤ p do

3: if feasibleImprovement(C,∆T ) then
4: foreach Configuration C ′ in simAnnealing(C,RFPGA,∆T ) do
5: if sustainablePeriod(C ′,∆T ) < p then
6: L = C ′; p = sustainablePeriod(C ′,∆T )
7: end if
8: end foreach
9: end if

10: C = reduceThroughput(C)
11: end while
12: return L

for which a design under analysis matches the latency constraint tightens the

lower bound of throughput exploration for subsequent design points (line 5-7).

Only designs that can sustain initiation intervals below this maximum initiation

interval are tried (line 2) as only these designs can offer both better through-

put and additional replication possibilities (more spare resources are available

to selectively increase replication) than those previously explored.

As long as a candidate is found in one of the steps of the exploration, the

search converges easily, being limited to a few tightly constrained simulated

annealing steps. However, if no candidate is found, a larger number of pos-

sible designs points may be explored. The design space is pruned using the

feasibleImprovement procedure, by checking if a resource unconstrained design

having the same throughput as the design point analysed can offer the required

latency (line 3). This is accomplished by analyzing the latency of a design repli-

cating all filters except the bottleneck by as much as possible.

3.2.1 Calculating Throughput

The hierarchical nature of the stream graphs derived from StreamIt is used to

compute efficiently the overall throughput of a streaming program. The maxi-

mum input throughput tin and output throughput tout of a filter Fi is defined

as follows:
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tin(i) =
pop(i)

T (i)
, tout(i) =

push(i)

T (i)

where pop(i) and push(i) correspond to the number of data elements dequeued

from and enqueued to the input and output channels of the filter Fi, and T (i)

equals the number of cycles spanned by a single firing of Fi. Utilizing these

results, the throughput of stream containers can be computed hierarchically.

Pipeline and SplitJoin throughput The throughput of a pipeline is equal

to the lowest throughout of its filters. Furthermore, since individual filters may

push and pop at different rates, the rates observed at different points in the

pipeline will vary, although filters have to sustain correlated rates. The through-

put limitation imposed by a filter Fi on the output of a pipeline consisting of

the filters π = {F1, . . . , Fn} is

tπout(i) = tout(i) ·
∏

i<j≤n

push(j)

pop(j)

and therefore, the actual output throughput of the pipeline is

tπout = min
1≤i≤n

tπout(i)

.

For a splitjoin σ = {F1, . . . , Fn} where the joiner weights are (w1, . . . , wn),

the output throughput is

tσout = min
1≤n

tout(i) ·
∑

1≤j≤n
wj

wi


.
Overall throughput It is possible to apply these relations to the whole stream

graph in a composable manner,

tGout = min
i∈G

tGout(i) = min
i∈G

(
1

S(i) · T (i)

)
= min

i∈G

1

workFactor(i)

where S(i) is a constant that can be determined hierarchically as above, and

which is equivalent to the number of firings in the single appearance schedule [6]

generated by the StreamIt front-end. To prove this relation, assume a stream can
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sustain a throughput t′ > tGout. Propagating this downwards through the stream

hierarchy, for all stream containers Ĝ, tGout(Ĝ) ≥ t′. Continuing the stream

decomposition and applying this relation down to individual filters, results in

∀i, tGout(i) ≥ t′, which is a contradiction.

The replication of a filter has the effect of multiplying its throughput by its

replication factor. If C(i) is the replication factor, the modified formula becomes

tGout = min
i∈G

(
C(i)

workFactor(i)

)
and its inverse which characterizes the minimum initiation interval is

p = max
i∈G

(
workFactor(i)

C(i)

)
.

3.2.2 Calculating Latency

In general, the stream graphs run on FPGA circuits coupled to host processors.

Data transport between the host and the FPGA is achieved through a bulk

transfer mechanism (i.e., DMA). In this context, the number p of clock cycles

between such transfers is called the initiation interval. The minimum initiation

interval can be computed based on the reciprocal of the highest throughput

sustained by the stream graph. Results are expected to be ready after a time

interval ∆T , called the latency.

Data-token reordering and local congestion at a filter’s input due to non-

periodic data arrival are the major factors for latency variation. While replica-

tion improves throughput, it often increases the latency. An important problem

is to obtain exact latency bounds that can offer guarantees especially for real-

time stream performance.

Given the stream graph, this analysis determines a valid set of initiation

intervals for which the delays are evolving linearly. There is a finite set of such

intervals and they can be computed starting from the minimum sustainable

p [35]. The data arrival time at each filter input is a linear expression αp + β

which can be used to derive the time when a result is generated (also a linear

expression). During the analysis, an additional constraint may be generated
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Table 3.1: Example latency calculation.
Input replica 1 replica 2 Constraint replica 1 replica 2 Constraint

0 [0, T ) p ≥ 3T [0, T ) p ≥ 4T

0 [0, T ) [0, T )

0 [T, 2T ) [T, 2T )

p/2 [T, 2T ) p/2 < 2T [p/2, p/2 + T )

p/2 [2T, 3T ) (p < 4T ) [p/2, p/2 + T )

p/2 [2T, 3T ) [p/2 + T, p/2 + 2T )

Interval: [3T, 4T ) Interval: [4T,∞)

1
2

53
4 6 ΔT = 2T

3T ≤ p < 4T

123 456p

T

1
2 4

3 5
6 ΔT = p/2 + 2T

p ≥ 4T

123 456p

Figure 3.4: Schedule used to determine latency. Six data tokens arrive every
interval p. With two replicas, computation occurs in parallel.

on the upper bound of the input initiation interval where this expression is

valid. All filters are processed, until obtaining a linear expression of the overall

latency of the stream and a constrained initiation interval range where the linear

expression of the latency holds. Subsequently, the adjacent initiation interval

range is analysed, generating a new constraint on the interval that will lead

recursively to new intervals to be analysed.

Table 3.1 shows the computations necessary in case of a filter, replicated

two times, receiving two equally spaced groups of 3 input tokens each initiation

interval p. The corresponding schedule is presented in Figure 3.4.

The implementation hierarchically iterates over the stream structure, de-

riving output times based on the input times. In case of replicated filters, it

maintains a set of ready times for each replica as linear dependencies on p. The

input tokens are already in order and other ordering constraints are generated

to ensure that the current replica is ready to fire when its data arrive.

Joiners may add additional reordering constraints, increasing the number of

analysed intervals. The automatically generated joiner code can process one
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element every clock cycle. Every time the joiners switch to process data from

a different input branch, the ordering of the data elements has to be ensured

through a constraint. This is one of the main causes of latency increase, because

elements usually accumulate in the channel of the other path, hence the joiners

usually generates data bursts.

3.2.3 HDL Generation

The distribution and gathering of data to and from the replicas require hardware

resources akin to programmed multiplexers. The design which is automatically

generated to implement this distribution mechanism is illustrated in Figure 3.5.

The design allows a data token to be routed each clock cycle.

This replication logic is included in the resource estimation algorithm to

reflect the resources utilized by the automatically generated application code.

Because the multiplexers involved are synthesized later with platform-specific

HDL synthesis tools, the utilized resources can not be estimated directly based

on the requested replication factor and bus width. A library of such multiplexers,

with a wide range of replication factors, is generated to cover exhaustively the

replication space. Based on this library, a linear model is determined, which

estimates the number of utilized resources.

The distribution logic in Figure 3.5 also includes a state machine which main-

tains information regarding which replica is waiting for input data. Connections

In data Out data

Request

Write

Out data

Can’t write

Write

In data

Request

Req1

Wr1

…
Reqn

Block1
Rd1

…
Blockn

Wr
Full

Out data

Can’t write

Rd
Empty

Write

qn

Wrn RdnWrite

Figure 3.5: Hardware structure of the replication mechanism.
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are created to notify the replica when new data can be received. In a similar

manner, the result collection is handled by this mechanism, such that it can

stall subsequent filters in a pipeline that attempt to read when no data is avail-

able from the current replica. The data flow is thus multiplexed, and combines

handshaking signals similar to FIFOs empty / full signals.

In addition to the distribution logic generated for replicas, additional logic is

generated to implement the original splitjoin constructs from the stream graph.

These splitjoin constructs differ from the replication distribution logic as they

have channels at both ends. These channels, as well as the channels between

ordinary filters are implemented with hard-wired memory contained inside the

FPGA. The number of channels is not affected by the replication mechanism,

hence the total amount of memory required to implement all the channels is

accounted before replicating the design.

Because the streaming model is data-centric, the control flow between filters

is far less complex than the data flow. This fact enables the use of this modular

method and avoids the expensive alternative of resynthesizing all the replicated

copies in a SIMD-like fashion, followed by generating a unified control flow.

For filter synthesis, a filter is required to read all of its inputs in consecutive

clock cycles and write its output in consecutive cycles. This requirement can be

easily accommodated by existing C to HDL compilers. This also ensures that

data applied to a replica does not block the distribution mechanism unless all

the replicas are currently busy. Similarly, unless a filter finishes the computation

earlier than its execution time considered in the synchronous model, the joiner

is able to gather the generated results without stalls.

3.3 Results

The method was evaluated using some of the benchmarks described in Sec-

tion 2.1.3. These benchmarks cover filters with a wide range of resources and

latency requirements. The example benchmark used in Section 3.1 has been in-

cluded to explore the performance of the implementation beyond the limit of the

available benchmarks. The code generation algorithm was implemented in Java,
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Figure 3.6: Design space exploration with a maximum resource constraint. The
latency constraint is relaxed, hence the throughput can increase. The actual
resource usage is influenced by both throughput and latency.

as a back-end for the StreamIt compiler, using the Opt4J library [68] to perform

simulated annealing. To verify the latency reduction feature of the algorithm, a

set of latency constraints, feasible in real implementations, is specified.

Generating HDL code for individual filters was an orthogonal problem [41].

Consequently, a library of filter implementations was readily available during

code generation. Each filter was synthesized separately to determine its recon-

figurable resource usage for the target FPGA architecture, considering LUTs,

DSP blocks and Block RAM as part of the resource metric. In addition, the

number of clock cycles taken by the execution of each filter was measured. Also,

the FPGA implementation obtains its data through a HyperTransport interface
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Notes Latency Throughput Area Base Max area
Example similar to the one in the paper Req. latency 309 47 1470 830 1500 0.021277

adds a filter to compact arrivals Throughput 311 45 1390 1290 0.022222
U d 333 40 1380 950 0 025Used area 333 40 1380 950 0.025

356 35 1420 1410 0.028571
360 34 1050 950 0.029412
365 33 1410 1410 0 030303365 33 1410 1410 0.030303
373 31 1500 1290 0.032258
378 30 1410 1410 0.033333
383 29 1410 1290 0.034483
392 27 1290 1290 0.037037
454 26 1410 1410 0.038462

Notes Latency Throughput Area Base Max area
FFT2 FFT rewritten Req. latency 35000 #DIV/0!

Throughput 854 9 39928 0.111111
Used area 857 9 39805 0.111111

863 9 39296 0.111111
201s 877 7 39530 0.142857
134s 896 5 39864 0 2134s 896 5 39864 0.2
131s 961 5 39899 0.2
89s 1034 3 38570 0.333333

1199 3 37610 0.3333331199 3 37610 0.333333
#DIV/0!
#DIV/0!

Notes Latency Throughput Area Base Max area
MatrixMul similar to the one in the paper Req. latency 170 6 6056 52000 1500 0.166667

adds a filter to compact arrivals Throughput 175 5 8638 66000 0.2p g p
Used area 180 4 6598 52000 0.25

185 3 7618 66000 0.333333
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Notes Latency Throughput Area Base Max areaNotes Latency Throughput Area Base Max area
MatrixMul similar to the one in the paper Req. latency 10000

adds a filter to compact arrivals Throughput
Used area 5017 10 6044 4088Used area 5017 10 6044 4088

5018 5 7080 6152
5022 4 8720 8216 0.25
5069 4 8472 8216 0.25
5264 4 8456 8216 0.25
5295 4 8216 8216 0.25

Figure 3.7: FFT design points with increasing latency. Sets of bars represent
replication factors for instances of filter CombineDFT belonging to each design
point. The dotted line separates the replication that ensures a specific through-
put (below) from that necessary to decrease latency (above).

which can sustain transfer speeds of one word each clock cycle. This ensures

that the off-chip data transfer does not throttle the performance.

The algorithm builds design points with the maximum achievable throughput

under arbitrary latency constraints. The design-space exploration identifies lower

latency implementations by slightly degrading the throughput and utilising more

resources in certain areas of the design.

Figure 3.6 shows the results produced by the code generation algorithm for

three benchmarks. A fixed upper bound is applied to the total resource con-

straint, and the latency constraint ∆T is modified over a range of possible val-

ues. As the latency constraint is relaxed, less resources are utilised for additional

filter replication, and the throughput can increase monotonically taking advan-

tage of the remaining resources. In some cases, the maximum throughput can be

reached, such as in Figure 3.6b. As the latency constraint is relaxed, the number

of utilized resources may decrease. However, the throughput boost may require

additional replicas. These two factors affect in opposite directions the amount

of resources taken by a design, and it is not possible to correlate it trivially with

neither latency nor throughput.

A benchmark of interest was FFT’ (a fine grained implementation of FFT

described in Appendix A). This benchmark was modified so that each floating-

point operation is encapsulated in a filter. This exposes the bulky floating-point

arithmetic operations contained in this benchmark to the replication algorithm,

such that the most suitable number of floating-point units is generated. The
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Table 3.2: Design points generated for maximum throughput and under resource
and latency constraints.

Min. resources Best throughput

Benchmark LUTs ∆T p LUTs ∆T p Speedup

MatrixMult2(3,2) 1498 480 19 7618 185 3 6.3x

Serpent(1) 3028 1027 4 3878 773 2 2x

FFT’(64) 37610 1199 3 43370 764 2 1.5x

FMRadio(8) 37458 371 39 87564 371 13 3x

iDCT(8) 45752 349 3 137256 349 1 3x

BitonicSort(32) 43920 1042 3 131760 1042 1 3x

Example 350 309 135 15990 504 2 67x

Constrained design

Benchmark LUTs ∆T p Constraint Run time

MatrixMult2(3,2) 4558 175 (-6%) 7 ∆T ≤ 175 1.14s

Serpent(1) 3053 901 4 ∆T ≤ 910 0.73s
(-21%) (-12%) RFPGA ≤ 3500

FFT’(64) 39530 868 7 ∆T ≤ 880 34.7s
(-9%) (-27%) RFPGA ≤ 40000

FMRadio(8) 62511 371 20 RFPGA ≤ 65000 1.01s
(-29%)

iDCT(8) 91504 349 2 RFPGA ≤ 120000 0.73s
(-33%)

BitonicSort(32) 47400 1282 2 RFPGA ≤ 50000 18.3s
(-64%)

Example 1490 309 47 ∆T ≤ 309 0.43s
(-90%) (-38%) RFPGA ≤ 1500

total number of filters in this implementation is 118 filters (compared to 22 in

the original FFT). The results are shown in Figure 3.6b. The graph shows that

there is a significant opportunity for stream folding. A benchmark that has a

tighter range of latency variation is matrix multiply (Figure 3.6c). No solutions

would be possible if the latency was constrained any tighter than shown.

Figure 3.7 represents the replication factors of different design solutions of

the original FFT. Each group of bars shows the replication factors for unique

instances of the CombineDFT filter (which appears in multiple places throughout

FFT) for a particular design point. The dotted line for each group of bars

represents the replication factor that yields the maximum throughput for that

design point. Designs that are subject to lower latency constraints require greater

replication for several filters.

Table 3.2 shows several design points obtained using the described algorithm.
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For each benchmark, the design points of interest where those having (a) the

minimum resource usage, (b) the best throughput (resources limited only by the

device considered, a Xilinx XC4VFX140), and (c) a constrained design between

the two. The results are meant to demonstrate the versatility of the algorithm.

Most of the benchmarks are explored in a few seconds on a Core2 Duo

2.33GHz, as long as individual filter replicas monotonically contribute toward

lower latencies. In cases with tight latency constraints, joiners might introduce

notable adverse latency increases that degrade the convergence of the algorithm.

During the extensive testing the longest running times were on the order of

minutes.

3.4 Summary

This chapter described a solution to the problem of generating optimized FPGA

code for streaming applications represented as stream graphs. A filter replication

method increases processing throughput up to 6.3× for realistic StreamIt bench-

marks, compared to the base design. A secondary goal was constraining the

latency. This is achieved by throttling the maximum throughput and utilizing

the spare resources to replicate the filters where the most backlog is accumu-

lating. Hence, the algorithm yields solutions that satisfy resources and latency

constraints. This solution provides an automatic method to realize efficiently

stream applications with a flexible parallel structure on FPGA platforms.
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CHAPTER 4

STREAMIT CODE GENERATION FOR GPUS

The code generation method presented in Chapter 3 has shown how the coarse-

grained parallelism in the StreamIt application structure can be exploited to

improve the performance of an FPGA design. However, this is associated with

a throughput penalty, because the reconfigurable logic introduces run-time over-

head.

The following two chapters explore code generation methods for GPU plat-

forms, as they also expose massive parallelism. General purpose streaming ap-

plications are suitable for GPU processing as they expose significant coarse-

grained parallelism. StreamIt applications consist of operators that communicate

through channels, and the flexible computation structure exposed is a suitable

match for the integrated code generation method proposed.

GPU platforms have gained good traction in mainstream computing and, in

particular, high performance computing [65, 70]. The GPU consists of multi-

ple streaming multiprocessors (SM), which can handle the execution of a large

number of parallel threads. Groups of threads (warps) are selected by a hard-

ware scheduler and executed in lockstep on a set of processing cores. Thread

execution performance is influenced by whether the code can satisfy the warp’s

lockstep requirement and by how the data layout in memory is optimized.

This chapter describes a method that takes StreamIt applications and gener-

ates GPU optimized code, while the next one extends the method to multi-GPU

platforms. The method is exemplified for the nVidia GPU architecture. The

optimized code generation considers the GPU execution model and the memory

hierarchy. In particular, the method described shows that high GPU utilization

can be achieved using a smaller number of processing threads. This scheme goes

against the conventional wisdom of GPU programming, which is to use a large
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number of homogeneous threads. Instead, it uses a mix of compute and mem-

ory access threads, together with a carefully crafted schedule, that exploits the

flexible parallelism in the application, while maximizing the effectiveness of the

memory hierarchy.

Various programming frameworks and run-time environments have been pro-

posed, such as CUDA [67] and OpenCL [48]. In both environments, computation

is clustered in intensive data parallel kernels. Evolving from specialized graphic

processors to general purpose computing platforms, the GPU processors are built

around a special case of streaming execution model. Hence, some streaming pro-

gramming languages [12] have been used to describe GPU computation, and to

capture coarse interactions between these kernels.

The GPU programmers are generally encouraged to expose a larger number

of parallel threads inside each kernel, so that the hardware run-time scheduler

can utilize more ready threads to hide potential stalls [67]. However, there is a

cost to having too many threads – increasing the number of threads diminishes

the number of registers allocated to each thread, potentially causing spills to

off-chip global memory. Besides this trade-off, a second hidden penalty is often

overlooked. More threads reading their input, output and local data stored in

the off-chip global memory lead to more memory traffic, potentially exceeding

the available memory bandwidth. Jittery, application-specific memory access

patterns (such as intensive memory access at the beginning of a computation

block to read the input data) can further exacerbate these problems. Also, many

stream processing applications exhibit low computation-to-communication ratio

that may lead to stalls in a straight-forward GPU code generation approach.

One solution is to prefetch the data on-chip, in the SM memory, but this

memory is typically not well utilized due to its limited size (i.e. 16KB for each SM

in the nVidia Tesla 1.x-series and 48KB in the 2.0-series ‘Fermi’) and because the

large number of concurrent data-parallel threads requires to large memory foot-

prints. However, the described code generation method orchestrates StreamIt

programs that execute on GPU platforms avoiding the issues mentioned above,

and in particular maximizing the effectiveness of the SM memory. At the heart



4.1. Rationale 47

of the code generation method is a mapping scheme that is based on a static

GPU performance model derived from the GPU specifications. It relies on (1)

manipulating the flexible fine-grained structure exposed by StreamIt applica-

tions to match the architecture and (2) moving slow global memory accesses

from compute threads into another class of threads so that the former can run

unobstructed while the latter satisfy the memory access requirements.

The method generates code for two kinds of threads from a StreamIt pro-

gram: specialized memory access (M) threads and compute (C) threads. The

M threads transfer data sets from global memory to the fast SM memory. The

C threads compute instances of the stream graph to obtain results locally inside

each SM using the data sets loaded earlier by the M threads. The number of

C threads is constrained such that they work exclusively with the SM memory.

These are major departures from the norm of using a large number of homoge-

neous parallel threads in GPU programming. The results show that these counter

intuitive measures can yield significant speedups compared to more traditional

approaches of generating GPU code for applications. In particular, this method

is compared with a previous method that maps StreamIt using a coarse-grained

approach [89].

4.1 Rationale

The GPU platform is massively parallel, and the current trend indicates a fur-

ther increase in the number of threads supported in each SM. As described in

Section 2.3, the GPU hardware scheduler divides the thread pool of each SM into

warps which are executed in parallel lockstep. At each instruction issue interval,

the scheduler can select a different warp and dispatch it to the processing cores

even before the previous warp finishes processing. Thus, while there is a large

number of parallel threads, they are actually interleaved onto a limited number

of processing cores at the granularity of a warp.

Since StreamIt exposes a large amount of data level parallelism within ap-

plications, the method described in this chapter replicates the operator code

and distributes each instance onto multiple threads. This increases the number
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of instantiated warps while keeping constant the amount of off-chip communi-

cation. Replicating the code on multiple threads is supported by the implicit

synchronization of the threads in each warp.

Having additional warps is important when the hardware scheduler attempts

to select one, as a large number of them may not be ready to execute. Two factors

can prevent the execution of a warp: the first is due to unsatisfied dependencies

resulting from the latency of the processing cores (their pipeline depth is typically

22 cycles), and the other is due to the latency of the global memory access

(around 400 cycles). For example, to hide the latency of the processing cores,

nVidia suggests 6 ready warps on older devices of capability 1.x and 11 warps

on devices of capability 2.0 [67]. As the global memory access is an order of

magnitude slower, the number of warps required to completely hide this latency

will exceed the maximum number that can be instantiated if all the warps require

concurrent access to global memory.

Unfortunately, the replication method alone is not sufficient to increase enough

the computation ratio to balance the large number of memory accesses that ap-

pear in many StreamIt applications. Typically, StreamIt operator execution is

phased: (1) reading the data set from the input channel, (2) performing the com-

putation, and (3) writing it to the output channel. Therefore, if the operator’s

input and output channels are stored in global memory, operator instances will

spend most of their time stalled on memory access. It is therefore advantageous

to bring the data into the SM memory. This way operators can process the

prefetched data set at a much faster rate. But again, due to the lack of reuse

of data from the channels, simply prefetching it in each thread before compu-

tation merely rearranges the memory accesses, hence this method is unable to

change the ratio of computation to communication even if additional threads are

instantiated.

To adjust this ratio, this method generates two classes of specialized threads:

memory access (M) threads and compute (C) threads. TheM threads perform

prefetching while C threads execute on data fetched by the M threads into the

SM memory. Intuitively, because the C threads will always access SM memory,
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they will always be ready for execution, while the M threads will be scheduled

from time to time to initiate more parallel memory transfers. Due to the archi-

tectural constraint that only threads in the same SM can communicate through

the fast SM memory, the entire stream graph must reside in the same SM. It is

replicated on all the other SM to fully utilize the GPU.

4.2 Code Generation Method

This code generation method applies a sequence of code transformations in order

to:

• match the large number of parallel threads supported by the architecture,

• cluster the large latency memory transfer operations into dedicated threads,

• transform the data flow based on the parallelism exposed by StreamIt, and

• apply a novel channel manipulation scheme that replaces the one used by

StreamIt compiler for inter-filter communication.

The components of the code generation method are shown as grey boxes in

Figure 4.1. The method is implemented as a back-end to the StreamIt compiler.

It intercepts the single appearance schedule generated by StreamIt. From this

point on, this method takes over.

The memory requirements of each operator in the schedule are compiled in a

compact working set (detailed in Section 4.2.3), which can be allocated in the fast

SM memory. Once this working set size for a single stream schedule execution is

known, additional parameters can be determined, such as the number of stream

schedules that are to execute in parallel, the number of C threads supporting

the execution of each stream schedule, and the number of dedicated M threads

accessing global memory. These parameters are determined by analysing the

stream schedule structure and the specification of the target GPU. The number

of threads supporting the execution of each stream schedule modifies the schedule

structure.

The C code generated for operators is enhanced with special code for the

push, pop and peek primitives. This code performs the access to the working set
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Stream programTarget GPU 
specifications

StreamIt compiler

Schedule Operators

W kiWorking set 
layout

Inject code for 
POP / PUSH / PEEKMapping parameters POP / PUSH / PEEK

Schedule 
structure Operator code

Kernel codeKernel 
loader

Final GPU compilation

Figure 4.1: The code generation method.

in SM memory. The code for each operator is modified accordingly, and together

with the restructured schedule the following two components are generated: (1)

a GPU code kernel that implements the strategy described in Section 4.2.1, and

(2) a loader which will run on the CPU and which will coordinate the memory

allocation and configuration for the kernel.

The CPU host allocates input and output channels for the entire stream

graph in the off-chip global memory of the GPU. Current GPU run-time envi-

ronments are capable of concurrent code execution and host memory transfer,

and hence the assumption is that data transfer from the host CPU to the GPU

incurs no penalty. If the stream graph is partitioned and distributed over sev-

eral GPU kernels, these kernels have to communicate through the global memory.

This chapter focuses on executing the stream graph as a single partition, hence

complete instances of the entire steady state schedule of the stream graph are

executed in a single kernel. Chapter 5 shows how to handle multiple partitions

and the global memory communication between them.
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Figure 4.2: Parallel memory access and orchestration of the stream graph.

4.2.1 Mapping Stream Graph Executions

Figure 4.2a shows how the stream graph is executed on the GPU. Let i be the

current execution of the steady state schedule. A working set (WS) is allocated

in SM memory to hold the inputs, outputs, as well as the channels between

operators for one execution of the schedule. In addition, a second, smaller,

buffer, DB, is required in SM memory. It is an intermediary buffer that is large
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enough to hold all the stream graph inputs, or outputs, whichever is larger. The

double buffering prefetch scheme works as follows. Let INi and OUTi denote

the input and output of execution i, respectively. During execution i− 1, INi is

brought into the buffer DB (step ¬). Before the start of execution i, INi is copied

from DB into the input channel allocated in WS (step ). After the completion

of this copying, execution i may begin (step ®). OUTi would reside in WS at

the end of execution i. Concurrent with execution i in step ®, INi+1 is brought

into the buffer DB for the next execution. At the end of execution i, INi+1 is

copied from DB into WS replacing INi, after which, OUTi is copied from WS

into DB (step ¯). Execution i+ 1 then begins. Concurrent with execution i+ 1,

OUTi is written back to global memory (step °). This last step is interleaved

with the prefetching of INi+1 so that DB can be reused.

The above describes what happens in one instance of the steady state sched-

ule. A group of W instances of the steady state schedule is further unrolled and

is executed in parallel. Each of these executions stores its local data into a sepa-

rate working set allocated in the fast SM memory. These executions are mostly

independent except for peeking (which will be discussed later), and suitable for

a parallel orchestration as described in Figure 4.2b. Each steady state sched-

ule includes a sequence of operator firings that may be iterative. One complete

processing of a stream graph is called an execution of the steady state schedule.

Each schedule execution is distributed to one or more C threads. The processing

over the group of W parallel executions is iterated as many times as necessary to

process all the application’s inputs. Such a pass over the group of W executions

is called a group iteration. Each SM is assigned a different part of the input and

output stream in sequence. In particular, for SM1, this sequence number starts

from the beginning of the stream in global memory. All the SM will compute the

results for distinct portions of the input stream, and the access offsets in these

streams are known and computed by the loader before the kernel launches.

Furthermore, the double buffering mechanism described in Figure 4.2a can be

refined for a group of parallel executions. Loading and storing to global memory

are performed by a set of parallel M threads that combine the load and store
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operations corresponding to all executions. Let F be the number ofM threads.

The proper steps are taken to ensure that C threads andM threads are allocated

to distinct warps. Therefore, they execute in an interleaved manner as shown

in Figure 4.2c. In general, C threads will always be available for execution, as

their data dependencies are satisfied from registers or SM memory. M threads,

however, issue long latency global memory operations, and are scheduled only

sporadically. The intuition is that by adjusting the number of M threads (F ),

and C threads (W ), the latency of the global memory accesses can be completely

hidden.

The steady state schedule, E, is an ordered sequence of stream operator firings

that consumes a set of inputs, and eventually generates a set of results. The

amount of intermediate data obtained during these executions may require more

memory than the IN and OUT channel region. Many other channels are also

found in WS, for operators in the graph which communicate with one another.

Let the total memory requirement for WS be LW . The size of the secondary

buffer DB, on the other hand, is LD = max(size(IN), size(OUT)).

Each core in a CPU multi-core approach executes a single instance of the

schedule, and has a large amount of memory available. The StreamIt compiler

offers a feature that may fuse filters only to tune their channel size to the cache

size. Nevertheless, as the channels are not reused, there was no effort to optimize

the memory resource usage over the entire graph. The efficiency of this method

depends on the working set size, as this dictates how many parallel executions

of the graph can run, because the complete working set must be stored in SM

memory. The algorithm used to determine a compressed WS layout is described

in Section 4.2.3.

If the schedule fires an operator OPi Ri times, these firings are independent

and can be executed in parallel in a number of C threads. Therefore, each of

the W steady state executions of the schedule can be distributed among S C

threads of the GPU. This effectively multiplies the available parallelism, and

is essential in improving the GPU’s utilization. Otherwise, the number of C

threads utilized would be limited by the size of the SM memory. Accordingly,
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Figure 4.3: Memory layout transformation examples.

the WS of a steady state execution is split into equal sections associated to each

C thread. If an operator fires for less than S times, then it will be assigned

to some of the threads, while the remaining threads will be idle, without any

additional performance penalty. Operators firing more than S times will be

executed several times by each C thread. Such a distribution is valid ∀S such

that ∀i, gcd(Ri, S) = min(Ri, S).

SM memory is banked and, therefore, it supports parallel access, provided

the same bank is not accessed twice. Because warps execute in lockstep, all the

C threads in a warp are accessing the SM memory simultaneously. If the accesses

are to distinct banks, then the hardware will coalesce the accesses into a parallel

access [67]. For automatically generated code, the accesses to the SM memory

can be arranged to be coalesced as follows. The WS and DB are stored in a

contiguous region of SM memory. Since the number of banks is a power of 2

(typically 16), coalescing can be enforced if LW +LD is adjusted up to the next
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odd number. If the gap between consecutive regions is an odd number p, then

any offset in thread i and thread i + j, ∀i,∀j < 2b is separated by a distance

j ·p which is coprime with 2b, thereby ensuring that all banks are used. Utilizing

this result, the total number of parallel executions, W that can fit a memory of

size LSM is

W ≤ LSM/Λ

where Λ is the adjusted memory requirement for a single stream schedule exe-

cution, Λ = 2 · bLW +LD
2 c+ 1.

Figure 4.3a compares the execution of an operator OP, scheduled to fire

two times in a single thread with that of distributing it among two parallel

threads. A memory region [a, b] of length LW + LD will be divided into a set

of smaller regions, each of length LW +LD
S . The elements in WS and DB are

redistributed in sequence among the smaller regions, filling the WS of one thread

before continuing to the next. By doing so, if the stream operator OP fires f ·S

times in the schedule, its firings can be distributed among S threads, in parallel,

each thread handling f firings using data from its properly aligned section of the

WS. Most of the additional synchronization overhead for this scheme is avoided

by taking advantage of the lockstep nature of the threads in the same warp. The

channels in the original WS also need to be aligned to a multiple of S elements

to allow this transformation.

Complementary, Figure 4.3b shows the execution of a single firing of operator

OP, when two threads are implemented. By means of a conditional, the execution

in the second thread is simply disabled. The operator running in the first thread

can access elements from both WS regions, and the same coalescing properties

are maintained among the active threads in a warp.

4.2.2 Parallel Execution Orchestration

A complete example of how this method orchestrates parallel executions of the

steady state schedule, each onto multiple C threads (S = 2 in this example),

is shown in Figure 4.4. The stream graph in the shaded box on the left is

automatically translated to the execution scheme to its right. Whenever possible,
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operator firings are handled by parallel C threads. Each thread is allocated a WS

size of half the total WS size, precomputed for the entire steady state schedule.

The WS stores the intermediate results for future operator firings. For clarity,

those parts of the WS used as input by the current operator firing are shadowed.

The DB buffer is not included in this illustration.

th
re

ad
  2

·W

io
n 

W O
P 3

O
P 0

O
P 0

th
re

ad
  2

·W
-1

Ex
ec

ut
i

O
P 0

O
P 0

O
P 1

O
P 3 O

P 4

(O
P 2

)

(O
P 5

)

2

( (

Ex
ec

ut
io

n 
1

1
th

re
ad

 

O
P 3

O
P 0

O
P 0

th
re

ad
 1

O
P 0

O
P 0

O
P 1

O
P 3

O
P 4

(O
P 2

)

(O
P 5

)

SM
  m

em
or

y

(P
K

)

O
P 0

O
P 1

O
P 4

8 (p
ee

k 
7)

po
p 

4

pu
sh

 4

at
a 

ite
m

s

ta
 it

em
s

O
P 2

O
P 5

4x

2x

O O

O
P 3

po
p 

4

pu
sh

 8

po
p 

3

pu
sh

 1

(

jo
in

4 
/ 4

12
 d

a

8 
da

t

po
p 

2

pu
sh

 2sp
lit

4 
/ 4

O O

Execution sequence

Figure 4.4: Example of the orchestration for a single group iteration. Two C
threads are assigned to each of the W parallel executions of the stream graph.



4.2. Code Generation Method 57

In this example, the 12 input items consumed by the stream graph during

each execution of the steady state schedule are distributed among the SM work-

ing sets of the two C threads corresponding to each execution. Because OP0

pushes only one element but OP1 pops four elements, the schedule will consist

of four firings of OP0 for each firing of OP1. The firings of OP0 are distributed

among the two threads, two in each thread À. The outputs of OP0 are written

back to the WS of both threads using a similar layout.

OP1 needs four elements in a single firing, executed in the first thread, so it

requires access to both its own WS and the adjacent thread’s WS, both available

in the SM memory Á. To avoid the run-time overheads, the solution is to generate

precomputed tables that translate the 0-based consecutive indices of pop and

push operations into relative offsets to the beginning of the allocated WS. These

relative offsets specify access ranges beyond the limits of the WS of the current

thread, and thus support the fetching of data produced by adjacent threads that

cooperate for the same schedule execution.

The output of OP1 is the input of the splitter OP2. The splitter divides

the eight data items into two distinct regions of four items. As required by the

code generation method, each of these output regions needs to be distributed

between the WS of both threads. Therefore, the automatically generated splitter

operator distributes consecutive groups of two elements between the two WS.

The execution of OP3 and OP4 is serialized in the steady state schedule. Each

firing of OP3 utilizes the set composed of the first two elements from each WS,

and runs in one of the two GPU threads. OP3 does not utilize the second set of

elements generated by OP2.

Support for peeking: OP4 is a peeking operator. In this example, OP2 is required

to push seven elements to the input of OP4, before the latter can be fired Â.

However, only the first four elements produced will be consumed. Therefore, the

semantics of peeking requires preceding operators in the schedule to generate

more data, which will be only inspected, but not consumed. In the current ex-

ecution, OP2 generates only four elements for OP4. OP4 must obtain the other

three from another firing of OP2, either in the current or the previous group
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iteration. The peeking scheme shifts the reference of the peeking filter’s input

channel into the previous execution’s WS. Intuitively, the first accessed elements

in the sequence, which are those popped, were generated during a previous ex-

ecution of the steady state graph, while the most recent ones, generated by the

current steady state execution, are only peeked. The precomputed tables take

into account the popping/peeking requirements, and may contain negative rel-

ative offsets at the beginning of the sequence so that peeking filters can access

elements in of the previous execution’s WS.

All the necessary offset tables are precomputed on the host CPU and preloaded

in the constant memory. Such tables are required for each channel input /

output rate. For example, for a filter firing once and having a pop rate p

and a peek rate e, the input table T has e elements computed as follows:

∀i ∈ [0, e], Ti = (p−e+i)·S
p · size(Λ) + (p−e+i)·S mod p

S . The first term determines

the WS to access and adjusts the offset by the relative offset of that WS with

respect to the current WS. The second term specifies the relative position inside

the WS. Integer division returns the lower integer as the result, while the mod

returns only positive values. As the constant memory is cached and the practical

number of tables is small, this indirection has lower overhead than computing

the values at run-time.

To support this peeking scheme in all parallel executions, an additional ’PK’

section is reserved (Figure 4.4) at the beginning of the SM memory. It is required

to hold the content of the input channel data corresponding to the last execu-

tions of the previous group iteration. This is necessary to expose the additional

elements required by the first parallel C threads of the current group iteration.

Suppose the current group iteration is j. OP4 of execution k, k > 1 of group

iteration j will obtain the three additional elements from execution k−1 of group

iteration j, as they were written by OP2. The situation for the first execution is

special. OP4 of first execution of group iteration j will have to get the elements

from execution W of group iteration (j − 1) via the PK area. In this example,

these last three elements are copied as the last step of the schedule execution in

group iteration (j − 1), because OP4’s input channel is not reused Ã.
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Figure 4.5: Liveness and lower bound analysis on working set size.

To ensure access consistency to elements from adjacent executions, additional

synchronization was introduced among the C threads before firing each peeking

filter. This guarantees that the C threads belonging to different warps have com-

pleted execution of predecessor operators, and have produced all the necessary

input data. Because only C threads require synchronization and this does not

have to interfere with theM threads, the SM thread synchronization primitives

are not suitable. Instead, a simple workaround barrier is implemented, which

takes advantage of the lockstep execution within a warp. A thread representa-

tive is appointed for each C warp. This owns and increments a counter residing

in SM memory once it reaches a synchronization point. Afterwards, it repeat-

edly checks if its counter has a value smaller or equal to the other appointed

threads’ counters. If not, it waits. To avoid busy waiting, the hardware sched-

uler is forced to run other warps by accessing a global memory location marked

as volatile. Because all the threads in a C warp are in lockstep, synchronizing

a single thread from each warp reduces the workload required, while holding all

the warp’s threads synchronized.
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In addition, stream graphs containing peeking operators, need a special ini-

tialization (warmup) schedule before the steady state groups can begin. This

is necessary to initialize the regions accessed during peeking. Otherwise, for

example, OP4 of execution 1 of very first group iteration would never have the

additional three elements needed to be fired up. The number of initialization

iterations can be determined statically, and this method coordinates the GPU to

execute an additional number of group iterations of the steady state for which

it ignores the final outputs, but it updates all the intermediate values in the

WS, hence initializing them. The correct offset in the input stream is deter-

mined statically, such that the first group iteration after warmup utilizes all the

C threads.

4.2.3 Working Set Layout

The size of the WS stored in SM memory has a direct impact on the performance

of this method. The amount of SM memory is small, and a compact WS will

enable a larger number of parallel stream executions. The algorithm described

below provides a near-optimal WS layout. It first identifies a lower bound on

the WS size. Next, using a simple yet efficient heuristic, it performs working

set allocation, slightly increasing the WS size, if necessary, to accommodate this

layout.

Figure 4.5 revisits the stream graph example in Section 4.2.1, showing the

working set size required for each operator. Filters have a single input and out-

put channel each, while splitters and joiners transfer data from and to multiple

channels. An operator can be fired, if, and only if, its input/output channels

are in memory before and after its firing. Each channel is written and read only

once. Therefore, the identified channel layout should ensure that no channels

are overwritten before the data they contained is used.

Let Bk be the channel between the output of operator OPi and the input

of operator OPj . The liveness interval of Bk is defined as the interval bk =

[E(i), E(j)], where E(n) is the position of operator OPn in the execution schedule

E. Figure 4.5 shows the liveness interval of each channel in the stream graph.
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Figure 4.6: Working set allocation example.

For example, the liveness interval b4 begins before the firing of OP2 and ends

after the firing of OP4.

Based on the liveness intervals, the lower bound of the WS size can be com-

puted for the entire stream graph as follows. A linear scan of the execution of

the N operators in the steady state (as shown in Figure 4.5) determines the

minimum WS size as LB = max
k∈[E(0),E(N)]

(
∑

∀n,k∈bn
size(Bn)).

This lower bound is the minimum WS size that can store all the necessary

channels during the entire execution of the steady state of the stream graph.

The computation of this lower bound does not take into account the memory
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fragmentation caused by the fact that channels should be allocated in contiguous

memory ranges. Channel relocation is not allowed. Instead, the WS size may

slightly be increased to accommodate channels in a fragmented WS.

Given the lower bound on WS determined above, this is used as a starting

point in a heuristic approach that allocates channels for each operator. Figure

4.6 walks through the allocation algorithm for the above mentioned stream graph

and uses the lower bound of WS size identified as LB = size(B5∪B6∪B7) = 16).

Initially, the input B0 is allocated in the WS (a). After E(0), B1 is placed into

the SM memory (b). When processing E(1), according to the liveness analysis,

the space utilized by B0 can be reused for B2 (c). Next, splitter OP2 will have

its output allocated (d). After the analysis of E(3) and E(4) (e), the joiner OP5

has all its input allocated, and its output is allocated at E(5), completing the

steady state schedule analysis (f).

Algorithm 4.1 summarizes the working set allocation strategy. To allocate

channels for each ready operator in the execution schedule, the availability of

the locations ins WS is updated, deallocating all the channels for which live-

ness has ended (lines 3-5). The memory for the deallocated channels becomes

available, and is combined to form large contiguous blocks of available memory.

For each channel that becomes live at this step, an available memory slot is

searched (line 8, though not shown in detail) using a simple heuristic: starting

from the last successful allocation, try to find the nearest slot that will fit the

current allocation request. The intuition is that neighboring channels tend to

expire together or close to one another, thereby increasing the likelihood of large

chunks of contiguous free slots. If a suitable memory slot can not be found, the

current WS is extended to fit the current channel (line 12). Note that if there

is some available memory at the rear of the WS, its size is extended only with

the difference required to accommodate the new channel. Finally, the allocated

configuration and the final WS size LW are returned (line 17).

Several constraints apply to the algorithm described above. The working set

alignment must be equal to the split factor S, to enable the splitting mechanism

described in Section 4.2.1. Furthermore, peeking operators can not overlap their
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input channel ranges as the data is saved at the same offset in the PK section

of the SM memory. Therefore, if two peeking filters overlap in their input chan-

nel ranges, their PK buffers will also overlap, because the allocation in the PK

section for peeking operators never expires, and will result in data corruption.

Therefore, while analyzing the stream graph, the set of peeking operators and

their channel requirements are recorded to avoid allocating another peeking op-

erator in the same memory range. However, this issue does not occur between a

peeking operator and a non-peeking one as the latter does not have a persistent

presence in memory.

A special optimization is introduced for duplicate splitters. These splitters

are a special type of splitters that generate multiple identical output channels

from a single input channel. To prevent expensive data movement, the liveness of

its input channel is extended until the last use of the splitter’s original outputs.

4.3 Design Space Characterization for Different GPUs

This section provides a characterization of the design space of the code generation

method. The benchmarks utilized are those described in Section 2.1.3. The three

parameters that determine the execution time were defined in Section 4.2.1,

namely:

• W , the number of parallel stream schedule executions;

• S, the number of C threads per execution;

• F , the number of M threads that transfer data between global and SM

memory.

These parameters are varied in order to observe their impact on performance.

The number of C threads is increased until the maximum possible. The C threads

will generally be available for execution, and their workload is matched by a set

of M threads. Scheduling is done at the granularity of a warp, so if M and C

threads are in distinct warps, they will execute concurrently.

According to nVidia [67], hiding the latencies of the processing cores requires,

for example, 192 and 352 threads (6 / 11 warps) for integer operations on devices
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Algorithm 4.1 Working set allocation algorithm

Input steady state schedule E; number of operators N ; lower bound LB of the
working set size

Output allocation for each channel in the WS, feasible WS size LW ;
1: LW ← LB;
2: for i = 0 to N− 1 do
3: for each bj = [. . . , E(i− 1)] do
4: deallocate(bj);
5: end for
6: update availability(LW );
7: for each bj = [E(i), . . .] do
8: if (find next slot(bj)) then
9: allocate(bj);

10: update availability(LW );
11: else
12: extend(LW );
13: end if
14: record allocation(bj , allocation);
15: end for
16: end for
17: return allocation, LW ;

of capability 1.x and 2.x, respectively. This number assumes no global memory

stalls, and it will be referred to as NG. Execution time improvement is expected

as long as the number of C threads that run the stream graph schedule in parallel

is lower than NG. As W is limited by the total size of the SM memory, the split

factor S multiplies the number of C threads.

Figure 4.7a characterizes the speedup as a function of the number of parallel

stream executions for the FilterBank benchmark. The number of M threads

(F = 32) was chosen high enough to sustain the transfer demands for the given

design space. All the possible range of values for W and S is enumerated. The

speedup is measured for the same benchmark configuration for two nVidia GPUs

of capability 1.x, namely the G8800 and the Tesla S1070. The X- and Y-axis

show the number of stream executions W , in each SM, and speedup, respec-

tively. For each GPU type, different lines represent the speedup for different S

factors (number of C threads per steady state schedule execution). As expected,

if the number of C threads increases, the speedup of the application increases

accordingly. The speedup is defined as the ratio of execution time of the ap-

plication code generated for GPU, compared to the execution time of the CPU



4.3. Design Space Characterization for Different GPUs 65

6

8

10

12

Sp
ee

du
p

G8800/S=1/F=64
S1070/S=1/F=64

0

6

12

18

24

30

0 10 20 30 40

Sp
ee

du
p

Number of parallel stream executions (W)

G8800/S=1/F=32
G8800/S=2/F=32
G8800/S=4/F=32
S1070/S=1/F=32
S1070/S=2/F=32
S1070/S=4/F=32

a) Design space characterization for FilterBank(4) benchmark

2

4

6

32 48 64 80 96

Sp
ee

d

Number of parallel stream executions (W)

b) Speedup non-monotonicity for BitonicSort(8) benchmark

Figure 4.7: Characterizing the design space.

code (2.83 GHz Intel Xeon E5440) compilation. For the same number of itera-

tions W , increasing S leads to better performance. The result also shows that

the speedups on the S1070 are higher than those obtained on the G8800.

Does a higher number of C threads always guarantee higher speedup? Fig-

ure 4.7b shows an interesting scenario where a higher number of C threads may

hurt speedup. These anomalies can be explained by the correspondence of C

threads to warps. If the number of C threads is a multiple of 32, warp occu-

pancy will be at its highest, and only full warps are scheduled. On the other

hand, if additional C threads are scheduled, the last warp is under-utilized but it
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shares registers and a scheduling slot with the other warps. In Figure 4.7b, the

speedup falls exactly at the above-mentioned points (because S = 1, the actual

number of C threads is equal to the number of parallel stream executions). After

a point, if the number of C threads increases the warp occupancy, the speedup

gradually recovers.
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Figure 4.8: The trade-offs for F , the number of M threads.

As mentioned above, the number ofM threads plays an important role if the

C threads execute fast relative to the latency of global memory. Figure 4.8a shows

the performance penalty if not enough M threads are scheduled for both the

G8800 and S1070. Experimental data is presented for two different scenarios: one
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in which the data demand of the C threads (F = 32) is not satisfied, and another

in which it is (F = 128). After linearly increasing, the speedup corresponding

to the smaller number ofM threads reaches an upper bound, while the speedup

corresponding to the higher number of M threads increases steadily on both

GPU. If the number of C threads is high enough, the data transferred by a small

number of M threads is unable to keep up with the demand for data from the

global memory. If the number of M threads increases correspondingly with

demand, speedup increases nearly linear in terms of the number of C threads.

If the number ofM threads is too high, performance (speedup) also degrades.

Note that M threads compete for SM occupancy with C threads. All threads,

irrespective of their type, are allocated an equal number of registers, and a

higher SM occupancy leads to less registers available to each of the C threads.

Figure 4.8b shows that performance may degrade as less registers are allocated

to each warp. The experiments show that the number of M threads typically

required is 32 or 64. This result matches with the intuition that a small number

ofM threads is sufficient to match the demands of the W stream executions on

each SM.

Heuristic equations for parameter selection: Based on these insights, a set of

equations can be used to compute the correct number of C and M threads for

any streaming application.

The first architectural constraint introduced is to limit the number of C

threads to NG because this number of threads fully utilizes the GPU in the

absence of global memory stalls. M threads do not execute often, and it can be

assumed that they do not contribute to the total utilization. Thus, W ·S ≤ NG.

The next constraint considered is that presented in Section 4.2.1 and it is used

to derive the maximum number of parallel executions as a function of S:

W (S) = min(
NG

S
,
LSM

Λ
)

The execution time T (E, S) of a group iteration depends on how the steady

state schedule E is distributed over the S C threads. Only operators fired iter-

atively in the schedule of the stream graph can be distributed to decrease the
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Figure 4.9: The comparison between UGT and this method.

execution time. Therefore, the execution schedule ES
t of each thread t from

the set of S threads associated with a stream graph execution is analysed. The

estimated workload WL(p) for each operator OPp is derived by the StreamIt

compiler. Putting these together, it results:

T (E, S) = max
t<S

(
∑
p∈ES

t

WL(p))

To maximize the speedup, i.e. W (S)/T (E, S), the value of Sm is determined

such that ∀Si 6= Sm,W (Si)/T (E, Si) ≤ W (Sm)/T (E, Sm) which corresponds

to W ′ = W (Sm) executions. However, Figure 4.7b suggests that packing the

W ′ · Sm threads into warps must not leave the number of active threads in the

last warp to be less than (W ′ ·Sm)/16. If the last warp is underutilized, then W

is reduced to bW ′·Sm
32 c · 32, otherwise use W = W ′.

In addition, the ratio of parallel executions to M threads is analysed. This

has to match the ratio between the run time of the parallel stream executions

and their DB size LD.

W

F
= k · T (E, S)

LD

where k is a GPU-dependent constant derived experimentally. The value of F

is rounded to the next full warp value.
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4.4 Results

The heuristic presented above can select efficiently the number of C and M

threads. The following experimental results compare the speedups between:

• the previous state of the art implementation [89] and the results obtained

using the described method;

• different nVidia platforms.

The first comparison is between the results obtained utilizing the described

code generation method and the results presented by a recent method [89], men-

tioned in Section 2.3.1, and referred here by the acronym ‘UGT’. This method

partitions the stream graph between SM, and launches a large set of homoge-

neous parallel threads in each SM. Data transfers between SM are done via the

global memory.

This code generation method is implemented as a back-end for the StreamIt

2.1.1 compiler. As presented in Section 4.2, the code generated can be com-

piled and run on different GPU platforms using the parameters selected by the

heuristic equation. In order to match the experimental setup of UGT, a set of

experiments was run on the nVidia G8800 with an old driver of release number

177.73. As a baseline, the baseline platform used by UGT was used, namely, an

Intel Xeon E5440 running at 2.83 GHz, with the executable obtained through

the uniprocessor back-end of StreamIt, and compiled using the ‘-O3’ option of

GCC 4.1.2. Based on the description found in the UGT paper, the benchmark

parameters were adjusted for a similar configuration1.

Figure 4.9 shows that this code generation method outperforms UGT. The

speedup in the graph is the ratio of execution time on GPU to that on the

CPU. For all 8 benchmarks, this method executes faster than the UGT method,

by as much as 4.2×. On average, it is 2.8× better than UGT. The smallest

improvement is for FMRadio, but this is due to an opportunistic optimization

that was introduced in the UGT implementation. Because the WS of each

1The configuration used by UGT for matrix multiply could not be determined based on the
provided description. Instead, the one reported here was used.
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Figure 4.10: The versatility of the code generation method.

iteration in this stream graph is relatively small, the entire WS for a large number

of iterations was allocated in SM memory. This result actually confirms the

direction taken by this code generation strategy.

In order to demonstrate the versatility of this method on newer GPU devices,

the performance of the code generated for nVidia G8800 GPUs was compared

with that achieved by code generated for a Tesla S1070 platform (capability 1.3)

and for a Tesla S2050 platform (capability 2.0). The CUDA toolkit and driver

version 3.1 were utilized for these experiments. For S2050, the extended 48 KB

SM memory was enabled. This extended SM memory is mutually exclusive with

a larger cache. In this case, caching on demand would not have performed better

as data is prefetched. The results are shown in Figure 4.10 and Table 4.1.

The results in Figure 4.10 show that the code generation method takes ad-

vantage of the features available on the newer GPU platforms. On average, code

generation for the S1070 GPU leads to 1.44× speedup compared to G8800, while,

on the S2050, the performance is 2.62× better than the S1070. This significant

improvement is due to the additional processing cores and to the larger SM

memory. Combined, these allowed a larger total number W of parallel stream

executions.



4.5. Summary 71

Table 4.1: The versatility of the code generation method.
Benchmark Λ G8800, S1070 S2050

in configuration ¬ configuration  Method benefit
words W S F W S F Speedup SM

 / ¬ activity

Bitonic(8) 31 128 1 64 352 1 160 2.32× 98.8%
BitonicRec(8) 31 128 1 64 352 1 192 2.31× 99%

DCT(8) 193 20 4 32 62 4 96 2.95× 99.6%
DES(16) 95 40 2 32 128 2 32 2.78× 99.6%
FFT(32) 129 30 4 32 88 4 96 2.46× 99.5%

FilterBank(4) 49 46 4 32 88 4 32 1.95× 99.5%
FMRadio(8) 27 88 1 32 352 1 32 3.15× 99.2%

MatrixMult2(2) 209 19 4 32 56 4 96 2.84× 99.1%

Table 4.1 shows the benchmark configurations generated for these platforms,

as well as the additional speedup achieved by using a platform-specific configu-

ration on S2050 (speedup /¬). The suitability of this approach is also reflected

by the SM activity metric which can be derived through profiling. The SM ac-

tivity reflects the number of active cycles (cycles when the scheduler can identify

a warp which is ready to issue an instruction) as a fraction of the total number

of issue cycles. As the code generation method described above ensures that C

warps are never stalled by global memory access, a very small number of inactive

cycles is observed.

4.5 Summary

This chapter described a novel and efficient GPU code generation method that

exploits coarse-grained parallelism. This method involves pipelining the activity

of dedicated memory access threads that prefetch data from the off-chip memory

to the on-chip memory, and that of compute threads, which are disconnected

from the off-chip memory. This method supports all the described features of the

StreamIt language, except filters with internal state. Compared with previous

results of compiling StreamIt to GPU, this code generation method performs by

as much as 4.2× better, on the same experimental setup.

The performance characterization shows the non-trivial trade-off between

memory access and compute threads. A heuristic assists in automatically select-

ing the best code generation parameters. All the benchmarks were implemented

within a single partition. However, in some cases the working set grows too
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large, and this method requires the partitioning of the stream graph into multiple

sub-graphs for optimized execution, using the off-chip memory as intermediate

storage. An extension method that supports this idea is described in the next

chapter.
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CHAPTER 5

STREAMIT CODE GENERATION FOR

MULTIPLE GPUS

The method in Chapter 4 shows how StreamIt applications can target single GPU

platforms. The code generation method leads to a monolithic implementation

that has to match the memory requirement of the entire application with the

small amount of memory available on the GPU platform. Therefore, effective

solutions are feasible only if the memory requirement for the entire stream graph

is less than or equal to the capacity of the on-chip SM memory.

In order to deal with the increased memory requirement from large stream-

ing applications, the stream graphs of these applications can be divided into

partitions (sub-graphs) whose memory requirements match the SM memory

constraint. To improve scalability, the code generation method described in

this chapter targets a platform which consists of a multi-core CPU and multiple

GPUs attached to it. Altogether, this chapter describes a scalable extension that

accommodates the execution of streaming applications onto multi-GPU systems.

It takes advantage of the entire processing and memory hierarchy exposed by

the combined GPU and CPU platform.

Several key features are included to ensure the scalability required by com-

plex streaming applications. First, the partitioning algorithm is driven directly

by memory constraints. Subsequently, the partitions benefit from the efficient

architecture-driven code generation described in Chapter 4. The partitions are

balanced among the GPU devices and their boundaries take into account the

communication overhead. Finally, a highly effective pipeline orchestration is

employed for the execution of the partitions on the multi-GPU system.

The code generation method described in Chapter 4 exploits the parallelism

exposed by StreamIt and instantiates a mixed pool of compute and memory

access threads that maximizes the utilization of the SM memory available on each
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streaming multiprocessor. The resulting computation structure also maximizes

the utilization of the GPU. However, the previous method is limited to a single

partition. Hence, the application performance is severely limited if its working

set size grows large, and if not enough parallel threads can be instantiated in

the size-limited SM memory.

The method in this chapter can handle complex streaming applications with

overall memory requirements larger than the available SM memory. This is

achieved through an efficient graph partitioning algorithm that splits the applica-

tion into several smaller partitions which are valid under SM memory constraint

and hence achieve good performance individually.

Scalability is augmented by the ability to distribute the resulting partitions

among a set of GPU devices. In addition, one or more partitions can be mapped

to the same GPU, resulting in a combined spatial and temporal distribution.

Complementary, streaming operators that maintain internal state are mapped to

CPU cores. Also, the communication overhead between partitions is considered

during the mapping step. This is necessary because the high volume of data

streamed between partitions has to pass through one or more of the slower levels

of the memory hierarchy as determined by the locality of the partitions.

The extended method is implemented as a back-end of the StreamIt pro-

gramming language compiler. The comprehensive set of experiments show its

scalability and significant performance speedup compared with the solution pre-

sented in Chapter 4. The contributions of this chapter include:

• a scalable code generation method that handles complex StreamIt appli-

cations (Section 5.1)

• the division of the applications onto several optimized partitions valid un-

der SM memory constraints (Section 5.2).

• the optimized mapping of the partitions to multiple GPUs and the orches-

tration of their execution (Section 5.3).
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Figure 5.1: Scalable code generation method.

5.1 Code Generation Method

The scalable code generation method builds upon the infrastructure described

in Section 4.2. The input to the framework are the applications written in the

StreamIt language. The front-end of the StreamIt compiler [31] analyzes the

input program to generate a schedule of operators, as well as perform some

common optimizations. This schedule is utilized to determine the stream graph

dependencies for the graph partitioning component. Also, the push, pop and

peek primitives of each operator are enhanced with code that performs the cor-

rect accesses to the channels stored in SM memory. The enhanced code of the

operators is injected in during code generation.

The stream graph partitioning component prunes the design space by analysing

the validity and estimated performance of the possible partitions (details in Sec-

tion 5.2). The performance estimation considers the specification of the target

GPU. The result of this partitioning is a set of convex and disjoint sub-graphs

which are ready for mapping to the multiple GPUs. Operators that maintain

internal state are included in separate partitions that, as an exception, are exe-

cuted on the CPU cores. For each GPU partition, a compact memory layout that

can be realized in the fast SM memory is computed. Given the memory layout
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for each partition, the other parallel code mapping parameters are determined

by the heuristics in Section 4.3: (1) the number of stream schedules that are

executed in parallel in each SM, (2) the number of C threads that accelerate the

execution of each individual stream execution, and (3) the number of dedicated

M threads that prefetch data from the GPU global memory.

Finally, the resulting set of partitions is passed to a global mapping step

which assigns each partition to a specific GPU or CPU core. At this stage, com-

munication channels between partitions are instantiated (details in Section 5.3).

The generated code is orchestrated by an execution environment which con-

tains: (1) a multi-threaded controller which will run on the host CPU, and (2)

the inter-partition memory communication scheme for pipelined execution. The

controller consists of threads that coordinate the kernels loaded on each GPU,

as well as threads that execute the CPU partitions.

5.2 Partitioning of the Stream Graph

Given a stream graph, the objective of partitioning is to maximize the over-

all performance of the stream graph, while ensuring that the partitions satisfy

resource constraints, and yet effectively utilize the GPU.

A stream graph G(V,C) represents the data flow within the stream appli-

cation. The nodes V represent the operators and the edges C represent the

channels (dependencies) between the operators. A channel connects the output

of a producer operator to the input of a consumer operator. As advanced fea-

tures of StreamIt such as feedback looks and portals are not supported, G(V,C)

is always a directed acyclic graph.

A partition P must be a convex subgraph, as non-convex subgraphs cause

heavy communication to the adjacent subgraphs. Even worse, they may lead to

deadlocks. P is convex if there does not exist a path in G(V,C) from an operator

Vm ∈ P to another operator Vn ∈ P , which contains an operator Vp /∈ P .

The method employed to identify suitable partitions relies on the well-known

k-way graph partitioning, a well studied algorithm in the research commu-

nity [46]. In this algorithm, the nodes of a graph are partitioned into k roughly
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equal partitions so that the weight of the edges between nodes in different parti-

tions (edge-cut) is minimized. Intuitively, this results in load balanced partitions

that have minimum communication. However, the partitioning described in this

chapter differs from the standard algorithm in several aspects: (1) the number

of partitions k is not an input to the problem – the value of k will be deter-

mined during the run-time of the algorithm such that it maximizes the overall

performance, (2) there are convexity and memory constraints on each partition

– these constraints affect the performance of combined partitions, and (3) the

objective of the algorithm is to maximize the performance of the application.

The performance objective is estimated as
∑

i=1...k

T (Pi), where T is an estimation

of the execution time of Pi. Even if multiple GPUs are utilized, a balanced

distribution of the partitions to the multiple GPUs ensures that this objective

continues to reflect the overall stream graph execution performance.

Nevertheless, the multilevel graph partitioning (MLGP) algorithm used to

solve the k-way problem can be effectively employed to solve this problem. In

MLGP, the nodes in the original graph are grouped to create coarser nodes

(the coarsening phase). The original graph is iteratively coarsened down to k

partitions, over a number of levels, in order to create the initial partitioning

solution (the partitioning phase). Then, the initial solution is uncoarsened back

to the original graph by using the same number of levels as in the coarsening

phase. While uncoarsening, the partitioning solution is refined by the movement

of nodes to adjacent partitions so as to improve the overall performance.

A recently proposed multi-level algorithm [44] is adapted to this graph parti-

tioning problem. The strategy is to continue to decrease the number of partitions

of the stream graph as long as the overall performance of the entire stream graph

is still increasing. As no particular value k is provided as input to the graph

partitioning, this limit is removed from the MLGP algorithm. Alternatively, the

number of partitions of the solution is the number of nodes in the coarsest graph

obtained. The details of the coarsening and uncoarsening phases are described

below.
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Figure 5.2: Illustration of Multi-Level Graph Partitioning. The dashed lines
show the projection of a vertex from a coarser graph to a finer graph.

5.2.1 Coarsening Phase

A sequence of coarser graphs Gi = (Vi, Ci) are created from the original directed

stream graph G = (V,C), by clustering together pairs of nodes. A node u ∈ Vi+1

in a coarsened graph Gi+1 at level i + 1 is the result of merging two matching

nodes v, w ∈ Vi of the finer graph Gi at level i such that u is convex and can be

implemented on the GPU. Otherwise, if no convex combination can be identified,

node u is simply set to vertex v ∈ Vi of Gi. Note that each node u in a coarse

graph is a sub-graph of G0 when projected from the constituent nodes of u in the

finer graph. In G2 of Figure 5.2, the sub-graph corresponding to coarse vertices

{0,1} consists of vertices {0,3,5,6,7,9} of G0. After constructing coarser nodes,

the edges Ci+1 of the coarser graph are also derived. A directed edge between

two nodes in coarser graph Gi+1 is built if there exists a directed edge between

their constituent nodes in the finer graph Gi.

The proposed matching heuristics visits the nodes of Gi in random order.

An unmatched node v ∈ Vi is selected for matching to create a node u in the

coarser graph Gi+1. The adjacent unmatched nodes of v are iterated to find

a possible match w under the convexity constraint. Only the adjacent nodes

are considered because significant communication overhead among coarse nodes
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will occur if non-adjacent nodes are merged. Nodes v and w are matched if the

matching returns the best performance gain. The performance gain is defined

as: ∆T = T (w) + T (v)− T (u).

The estimation of T is based on the amount of SM memory required by the

sub-graph executions, because this determines the number of sub-graph execu-

tions that can run in parallel. The SM memory requirement is derived through

channel layout analysis. While Section 4.2.3 describes an algorithm which con-

siders the influence of fragmentation on the channel layout, the complexity of

the partitioning algorithm can be reduced by using an estimation which does

not consider the effect of fragmentation.

In case a feasible matching for v can not be found, u inherits only a single

node v. In Figure 5.2, nodes 1 and 4 of G1 are matched to form node 1 of G2

while node 2 of G1 is assigned to node 0 of G2. Note that filters that maintain

state are more suited for CPU execution (i.e. node 1 in G0), because they can

not be parallelized. Therefore, these operators will not be matched as they will

be included in special partitions to be mapped to CPU cores.

If the graph cannot be coarsened any further, i.e. Gi+1 = Gi, the coarsening

phase ends. Let Gm = (Vm, Cm) be the coarsest graph achieved. The initial

partitioning solution utilizes this configuration, and each node v ∈ Vm is selected

as a partition. The number of partitions, k, is just |Vm|. This value is not an

input as is the case in the standard k-way problem, but it is only determined

when the coarsest graph is reached. These initial partitions will be refined during

the uncoarsening phase to project back to G0. In Figure 5.2, the coarsening

phase goes through a sequence of coarse graphs {G0, G1, G2, G3} and the initial

coarsening leads to three partitions P0, P1 and P2.

5.2.2 Uncoarsening Phase

From the coarsest graph Gm, the initial partitions are projected back to the

original graph by traversing a sequence of finer graphs G′m−1, . . . , G
′
0, where

G′i is a refinement of Gi. During this uncoarsening process, it is necessary to

trace the partition to which the finer nodes belong. Let P (v) be the partition
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assignment for a node v. Each node of the coarsest graph Gm represents a

partition, so, utilizing this notation, P (vi) = Pi (vi ∈ Vm). Because nodes in a

level i+1 graph include one or two nodes from the level i graph, the partitioning

information can easily be propagated through all the levels.

Moving nodes from one partition to another may yield improvements. Be-

cause Gj is less coarse than Gj+1, there is more freedom to move the nodes in

Gj . The movement may reduce the communication or increase the combined

performance of the partitions after the move. There are local movement heuris-

tics [47, 24] which can yield good results for bi-partitioned graphs. However,

using these heuristics in a k-way problem leads to significant complexity, be-

cause a node from a partition can move to several other partitions. Instead, the

method described here relies on an efficient greedy refinement algorithm [46].

This algorithm tries to move the boundary nodes of a partition to the adja-

cent partitions. A boundary node of partition Pi in coarse graph Gj = (Vj , Cj)

is a node v ∈ Vj that has at least one adjacent node u ∈ Vj that belongs to a

different partitions (P (v) 6= P (u)). In Figure 5.2, nodes {2,4,6,9} in G′0 are the

boundary nodes of partition P2, while {8,10} are the internal nodes. A boundary

node v is randomly selected and moved from partition P (v) (the source parti-

tion) to the neighborhood partitions P (u) (the destination partition). For G′0 in

Figure 5.2, a neighborhood partition of node 7 is P2.

After moving node v from source partition P (v) to destination partition P (u),

if the source and destination partitions still satisfy the convexity and SM memory

constraints, the movement is deemed valid and would transform the two original

partitions P (v) and P (u) into the new partitions P (v)′ and P (u)′. Among the

valid movements of the boundary node v to the neighborhood partitions, the

movement which has the highest ∆T = T (P (v))+T (P (u))−T (P (v)′)−T (P (u)′)

is selected and node v is moved to the particular destination partition. The

source and destination partitions are updated respectively. The moved nodes

will not be considered again for analysis during the current coarsening level. The

movement algorithm for the current level stops if there are no more boundary

nodes to move. Once the movement algorithm for Gi finishes, the uncoarsening
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phase continues by projecting back to Gi−1. Finally, after G′0 is analysed, the

final assignment of the nodes to partitions is produced. In Figure 5.2, node 4

is moved from P1 to P2 when G′1 is analysed, and node 7 is moved when G′0 is

analysed. The result is the partitioned graph F , which captures the refinements

to the partitioning solution.

5.3 Execution on Multiple GPUs

After the original stream graph is partitioned, as described in the previous

section, these partitions are mapped onto the multiple GPU and CPU cores

such that the workload is balanced. This section describes how the mapping

is achieved. Then, it describes the execution model that ensures the efficient

utilization of the mapped partitions.

Each partition that belongs to the solution F obtained in the previous section

forms a single node in the coarsest graph Gm. An edge between any two level

i + 1 nodes exists if there is an edge connecting constituent nodes of those two

coarse nodes in Gi. The edge is assigned a weight which is the sum of the

communication overhead of the level i edges. The communication overhead is

the ratio between the data amount exchanged by two level i + 1 nodes, and

the memory transfer bandwidth between CPU and GPU. In order to map Gm

onto a system with x GPU devices, the partitions in Gm are distributed onto

the x processing elements with the objectives: (1) the load should be balanced,

and (2) the overhead of the communication edges should be minimized. The

k-way partitioning algorithm is a good match for this mapping problem because

it splits the nodes of a graph into x roughly equal partitions, such that the

communication between the different partitions is minimized.

An exception are the partitions that maintain internal state. They corre-

spond to individual filters due to the coarsening restrictions from Section 5.2.

These partitions are pre-mapped to CPU threads and are not included in this

second k-way partitioning pass. The remaining partitions are analysed, and

divided among the x GPU devices.
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5.3.1 Communication Channels

After mapping, each GPU has to multiplex the execution of the several partitions

assigned to it. A GPU kernel is generated for each partition and additional code

is inserted to assist with the pipelined execution of the partitions. The execution

schedule on each GPU is coordinated by a dedicated CPU thread. Additional

CPU threads are launched to support the CPU partitions.

The entire execution schedule utilises FIFO (First In First Out) channels for

data transfer. The FIFO length ensures that there will be no stall during the

execution. Each FIFO element contains data corresponding to a large number of

stream executions. This coarse data granularity takes advantage of the exposed

data parallelism, and hides the unnecessary overhead of handling data sepa-

rately for independent iterations within a partition. Overall, three levels of data

transfer are employed between: (1) the different partitions, (2) the asynchronous

launches of the partition kernel using GPU streams, and (3) the compute C and

memory access M threads inside each GPU partition.

Level 1 data transfer A number of x+ y CPU threads is spawn to manage

the parallel execution on the x GPU devices and the y additional threads sup-

porting CPU partitions. CPU synchronization primitives ensure uncorrupted

access to the channels between the partitions. The FIFO channels between two

CPU partitions or two partitions executed on the same GPU employ a standard

circular buffer where memory pointers are passed directly between the threads.

However, when data needs to be transferred between CPU and GPU parti-

tions, an additional buffering scheme that copies the channel data from CPU/GPU

memory to GPU/CPU memory is used. For example, in Figure 5.3, the data in

channel C3 between partition P3 (on GPU1) and partition P4 (on CPU) requires

this buffering scheme.

Finally, in order to transfer data between partitions on different GPU de-

vices, the data is always copied first to the CPU, where the FIFO channel is

implemented. Afterwards, data is copied from CPU memory to the other GPU

using the buffering scheme described above. In Figure 5.3, the output buffer of
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Figure 5.3: Execution and data transfer among partitions on a multi-GPU
system.

partition P1 (in GPU0) is copied to the channel C1 in CPU memory and data

from this channel is copied to the input buffer of partition P2 (in GPU1).

This communication scheme between partitions on different GPUs can be

easily adapted to the recent peer-to-peer memory access in CUDA 4.0 [67]. Note

that peer-to-peer memory access is specific to nVidia GPUs. Moreover, in or-

der to use peer-to-peer memory access for pipelined execution, synchronization

among different CPU threads is still required to ensure that memory accesses are

uncorrupted. More importantly, peer-to-peer memory copy between two GPUs

can not be initiated until all commands previously issued to either GPU have

completed, and has to complete before any asynchronous commands issued after

the copy to either GPU can start. This may downgrade the benefit of peer-to-

peer communication in comparison with communication through CPU, which

can benefit from the support of asynchronous GPU streams.

Level 2 data transfer The asynchronous streaming support for the GPU

devices is utilized to hide the CPU/GPU memory copy overhead. The coarse

data elements from the FIFO channels are divided into smaller fragments. A

stream of asynchronous memory copy and partition kernel launch requests is

generated to process the GPU copy and execution. As the operations on these
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fragments are independent, memory transfers and kernel executions of different

fragments can overlap. N fragments are created, as shown in Figure 5.3. Each

stream will correlate data transfer and execution for its corresponding fragment.

While Stream 1 is performing computation of fragment 1 in GPU0, Stream 2

can transfer fragment 2 from CPU to GPU0.

If several partitions are mapped to a single GPU, these partitions are time

multiplexed. In Figure 5.3, the execution of partition P3 and P2 is interleaved.

Level 3 data transfer Each GPU kernel executes multiple iterations over the

group of parallel executions of the stream graph partition it includes. Using a

mix of C and M threads, data can be prefetched and computed without stalls

inside each SM. This heterogeneous scheme can be executed efficiently on the

GPU architecture as long as C andM threads are allocated into different warps.

In such an implementation, C threads never access slow GPU memory and can

compute a larger number of stream graph executions using exclusively a small

working set WS stored in SM memory. Concurrently, M threads fetch the next

input data from GPU memory to a double buffer DB in SM memory and store

back the previous output data. A single synchronization point is required, when

prefetched data from DB is swapped in WS and the previously computed results

are swapped out from WS to DB.

The stream graph partitions supported by this implementation are connected

through multiple input and output channels. Their corresponding data should

be swapped between WS and DB. This is trivial only when a single input and

output channel is involved, a scheme described in Section 4.2.3. In this case,

the input channel corresponds to a contiguous range of memory locations, which

overlaps with the output channel in DB and may also overlap in WS. Simply

iterating through the data stored in DB in the correct direction ensures that no

data is corrupted, and it is possible to swap data in parallel using multiple GPU

threads. However, special care is required to support multiple channels.

The WS memory range corresponding to the channels of each graph operator

is determined by a static memory allocator, based on liveness analysis. This
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allocator ensures that the channels receive a contiguous memory range (as a

result gaps may occur between channels). The input and output channels of a

stream graph partition are also stored in WS, and the allocator may place them

arbitrarily. If multiple channels need to be swapped from WS to DB and no

additional constraints are in place, the actual location of the channels can lead

to long dependency chains which may prevent swapping pairs of elements.

A possible scenario is shown in Figure 5.4a. The shaded boxes are the current

channels in WS and DB. In this example the elements from input I0 can not be

swapped into their designated location in WS as long as the contents of the

output channel O1 has not been swapped out. However, this output channel can

not be moved as it will corrupt I1 which has not been processed yet. Also, I1 can

not be processed as it will corrupt O0, etc. Utilizing temporary memory storage

is not feasible because the SM memory is limited and any extension degrades

performance. Therefore, the proposed extension of the single channel swapping

scheme ensures that single element swaps can proceed without data corruption.

The static allocator is directed to layout the input channels without fragmen-

tation from the first location in WS. This is possible as there are no previous

data in WS. However, the range of the output channels may not be contiguous.

Nevertheless, the order in which they are allocated can be recorded. The same

order is replicated in the DB, where both input and output channels can be

allocated contiguously. Such a layout is illustrated in Figure 5.4b.

Using this layout guarantees corruption free swapping and this can be proved

through induction on the index in DB. The basis case is for the first location in

DB. The input stored at location 0 in DB can be moved to WS, and any output

value it overwrites in WS can be moved to DB at the same location, because the

outputs are compacted, in order, in DB. This can be implemented by storing the

output first in a temporary register, and saving it afterwards to DB. If no output

element exists in WS at location 0, there still obviously is no data corruption.

Assuming there is no data corruption until index p−1 in DB, when the input

element at index p in DB is moved to location p in WS it may overwrite an

unmoved output. In this case, the overwritten output element has to be moved
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to index q ≤ p in the contiguous sequence of outputs in DB. This inequality is

ensured by the contiguous allocation of input buffers in WS and DB, and the

possible fragmentation of the outputs in WS. Therefore, the movement of the

output to the index q in DB does not corrupt any input not yet transferred. This

concludes the induction case if the number of inputs is larger than the number

of outputs. Otherwise, the remaining outputs can be transferred to DB safely,

as there is no remaining input in DB.

The automatically generated code relies on the above channel allocation. A

set of intervals is determined, such that the swap indices for both input and

output increase linearly. For each such interval, swaps can be applied to pairs of

elements at consecutive locations.
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5.3.2 Mapping Parameters Selection

Code generation for each GPU partition requires a few parameters, such as the

number of C andM threads, and the number S of parallel C threads supporting

each stream graph partition execution. These parameters are computed using

the method described in Section 4.3. In summary, the number of concurrent exe-

cutions is determined based on the SM memory size and the memory requirement

of each stream graph partition execution. Then, S threads are allocated for each

partition execution, exploiting the data parallelism of the partition extracted

through the stream graph structure. Finally, the data transfer requirements

of the C threads are matched with a corresponding number of M threads to

minimize the stalls. The same parameters are replicated for all SM, as each

SM process parallel fragments of the input data. These parameters were esti-

mated once during the performance evaluation of each partition in Section 5.2.

However, during the final code generation step, the exact SM memory layout is

derived, and the resulting footprint may increase due to fragmentation.

The number of N concurrent GPU streams utilized for the level 2 data trans-

fer can influence how much of the CPU to GPU data transfer overhead is hid-

den. However, there is some penalty associated with each GPU partition kernel

launch, and this surfaces if too many concurrent streams are utilized. The cur-

rent implementation utilizes 4 parallel streams to provide a good coverage of the

memory transfer delays.

5.4 Results

In order to show the scalability and efficiency of this extended method, its per-

formance is compared with the benchmarks included in Section 4.4. These

benchmarks were processed automatically, and code was generated for multi-

ple partitions. The benchmarks were altered to create larger stream graphs by

utilising a parameter N (i.e. the graph of DES for N = 40 reached 1047 filters).

The stream graphs are mapped onto one to four GPU devices connected to the

same CPU host. The benchmarks were augmented with source and sink filters

that include code to verify the results of the computations. Because these filters
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Figure 5.5: Mapping to a single partition and to multiple partitions (the number
of partitions is listed under the graphs) on a single GPU. The speedup is the
execution time ratio between the two. Design points marked with (*) were not
supported by the single partition implementation in Chapter 4

maintain internal state, this also validated the support provided for such filters.

The extended method is built as a back-end for the StreamIt 2.1.1 compiler. The

baseline CPU timing was obtained on an Intel Xeon E5405 running at 2 GHz,

with the executable generated through the uniprocessor back-end of StreamIt,

and compiled using the ‘-O3’ option on GCC 4.1.2. The experiments target the

newer C2070 “Fermi” GPU platforms.

Comparison with the single partition mapping Figure 5.5 shows the

speedup achieved on a single GPU compared to the single partition approach
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described in the previous chapter. It also shows the number of partitions gen-

erated for each benchmark instance. Most benchmarks benefit from multiple

partitions when N increases. Using the proposed algorithm, multiple partitions

yielded better performance than a single partition, because each partition re-

quires a much smaller memory footprint. If only a single partition is used, the

large working set resulted in poorer performance. To capture the CPU to GPU

transfer overhead, the benchmarks maintain stateful source / sink filters. The

additional speedup can be as high as 6.53×. In addition, there are a few cases

where a single partition mapping could not return a solution (such as Matrix-

Mult3 for size 9). However, for some benchmarks, such as Bitonic, DES or FFT,

the working set size does not change significantly, and both single and multiple

partitions mappings had similar performance.

A comparison with a vendor-provided hand-tuned implementation of matrix

multiply is necessary to increase the relevance of these results. The blocked

MatrixMult (N = 8 → 16 × 16 matrices) was compared to a similar matrix

product handled by CUBLAS. The latter runs 1.6× faster than the automatically

generated code on the Tesla C2070.

Multiple partitions on a single GPU Figure 5.6 shows the speedup of the

proposed partitioning approach relative to the CPU baseline. While the speedup

may diminish for large values of N , this approach proves capable of sustaining

good throughput for most benchmarks. If the size of the benchmark is too

large to fit the SM memory, the benchmark is split into multiple partitions. In

some cases, the overhead of data communication among the partitions severely

impacted performance.

Multi-GPU mapping Results beyond the single GPU speedups shown above

can be obtained when applying the code generation method to large benchmarks

using the orchestration described in Section 5.3. The speedup obtained by run-

ning the benchmarks on 2 to 4 GPUs compared to a single GPU mapping is

shown in Figure 5.7. In general, when the size of the benchmark is not large

enough, multiple GPUs do not provide any benefit. In these cases, a single GPU



90 CHAPTER 5. StreamIt Code Generation for Multiple GPUs

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

S
p

ee
d

u
p

 

N 

DCT 

0 

5 

10 

15 

20 

25 

N 

Bitonic 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

N 

FFT 

0 

1 

2 

3 

4 

5 

6 

7 

8 

S
p

ee
d

u
p

 

N 

MatrixMult2 

0 

1 

2 

3 

4 

5 

6 

N 

MatrixMult3 

0 

5 

10 

15 

20 

25 

30 

35 

40 

N 

DES 

0 

50 

100 

150 

200 

250 

S
p

ee
d

u
p

 

N 

FMRadio 

0 

5 

10 

15 

20 

25 

30 

35 

40 

N 

BitonicRec 

Figure 5.6: Mapping to a single GPU. The speedup is reported relative to a
CPU implementation.

mapping is the best solution. This is mainly due to the communication overhead

of transferring the data between the GPU and the CPU that could not be com-

pletely masked by computation. The single GPU implementation corresponds

to the white bars in the figure.

However, the multi-GPU implementation proves profitable if N increases.

As shown in Figure 5.6, the speedup of the single GPU mapping diminishes for

large benchmarks. However, in this case, mapping to multiple GPUs starts to
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Figure 5.7: Additional speedup resulted from the mapping to multiple GPUs
compared to a single GPU.

show its advantages. The speedup reaches 2.97× compared to a single GPU

mapping. This is evidence that for applications that have large working sets,

this multi-GPU solution can effectively speed up their execution.

Mapping to multiple GPUs (Figure 5.7) shows some divergent performance

results for different values of N . The divergence can be explained because the

nature of the stream graph itself may lead to solutions that are easily balanced

on a specific number of GPUs, and adding additional GPUs may affect the

balancing. Moreover, if significant communication exists between fine-grained

filters, the performance will hardly increase if we put those filters across multiple

GPUs.

Moreover, Figure 5.7 offers an indirect insight that the communication over-

head can be effectively masked. The performance boost of a 2 GPU solution,

compared to that achieved on a single GPU, is affected by several factors (such

as how the workload is balanced between the 2 GPUs) in addition to the over-

head of the complex communication mechanism. However, some design points



92 CHAPTER 5. StreamIt Code Generation for Multiple GPUs

of DES and MatrixMult3 mapped to 2 GPUs reach 1.93x and 1.83x speedup

respectively, compared to a single GPU solution that does not have inter-GPU

communication.

5.5 Summary

The method proposed in this chapter is capable of automatically generating code

for large stream processing applications onto multi-GPU systems. It relies on

an efficient graph partitioning algorithm to split the complex application into

several partitions that can utilize the small SM memory effectively, and hence

achieve good performance. The results indicate that this method augments the

initial method described in Chapter 4. In addition, this method is able to scale

the performance to up to four GPUs. The method also supports stateful filters

by running them on the CPU cores. The code generation scheme proposed is

able to orchestrate the exchange of data withing the individual GPUs, between

the multiple GPUs, as well as the GPUs and the CPU cores. The results indicate

the scalability and improvement when several GPUs are targeted.

It is conceivable that certain embarrassingly parallel applications can be

mapped successfully to large scale multi-node, multi-GPU systems. However,

on a single node, it is unlikely that the number of GPUs per node will increase

significantly beyond the current four due to power, interconnect, and form-factor

issues. This work is the first to show that complex and often tightly coupled

streaming applications can be successfully partitioned and mapped automati-

cally onto multi-GPU systems.
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CHAPTER 6

FLOATING-POINT SIMD COPROCESSORS ON

FPGAS

The previous chapters showed how code generation methods can take advan-

tage of the extensive coarse-grained parallelism exposed by StreamIt. Never-

theless, significant opportunities for design improvement can be found in the

fine-grained data parallelism, which abounds in some application domains. This

is particularly important for low-power embedded devices, which seldom have

the hardware capability to use this fine-grained parallelism.

Embedding hard-wired processor cores in FPGAs offers a design path that

can meet both the performance and the energy demands. These processors can

be customized using FPGA resources, and this process reduces the design ef-

fort, and indirectly the time to market. Floating-point execution units were not

considered by existing customization tools, as they were deemed to consume too

many resources. However, floating-point execution units offer the right granu-

larity to justify sharing and parallelization opportunities in the recent and larger

FPGA circuits. Moreover, floating-point support is seldom included in the hard-

wired processor itself.

This chapter describes a method for accelerating floating-point computation

for embedded platforms via application-specific SIMD coprocessors implemented

in FPGAs. It consists of a co-design method that generates code and application-

specific coprocessors that implement vector instructions with a parameterizable

number of vector elements. The flexible parallelism captured by encapsulating

computation in vector instructions is matched to an adjustable pool of execution

units implemented in FPGA hardware.

Embedded applications vary widely in their code structure and profile. As

they are often subjected to serious power and resource constraints, specialized

hardware coprocessors are added conservatively. Designers of such applications
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often use an FPGA to supplement their silicon processor [29, 95]. The FPGAs

are particularly effective when there is a large amount of instruction-level paral-

lelism. Although floating point applications often come with a high amount of

parallelism, they were deemed to consume too many resources, and the desired

performance could only be obtained by hand-tuning the application, including

conversion to fixed point and then tackling the precision issue. Yet, floating

point computation is often the most straight-forward means of expressing an

algorithm, especially where fractions and accuracy are involved, and recent ad-

vances in FPGA architecture have made such implementations feasible. This

chapter describes a method that exploits automatically the parallelism available

in floating point code, using a co-design method that also generates the HDL

code for a SIMD coprocessor able to support the custom vector operations de-

rived.

A standard architecture consists of a hard-wired processor core coupled with

FPGA reconfigurable resources [1, 81]. The reconfigurable resources offer flexi-

bility, but one cannot possibly hope to match the speed and efficiency of a silicon

processor core. On the other hand, a silicon processor core with full vector ca-

pabilities like those found in desktop- and server-class processors would mean

committing silicon without consideration for the applications’ requirements. A

mixed approach requires a dedicated interconnect, and the combined perfor-

mance is affected by the partitioning strategy and the data transfer overhead.

Fine-grained partitioning proves beneficial only where a fast interconnect is avail-

able, for example, when both the processor core and the reconfigurable fabric

are placed on the same silicon die.

The alternative method described uses the FPGA to implement floating point

units when the need arises [25]. The method takes advantage of existing auto-

vectorization capabilities in compilers, and co-synthesizes code and customized

floating point SIMD coprocessors in reconfigurable hardware. It relies on an al-

gorithm that determines the maximum performance configurations for the SIMD

coprocessor architecture under the given resource constraints.
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Figure 6.1: The target architecture configuration.

Vector instructions are a natural candidate for FPGA coprocessors [16] be-

cause they yield an efficient encoding of short instructions that capture a large

number of operations and data transfers. Their regular structure also expresses

a significant amount of data parallelism. This parallelism allows flexibility and

customization of the number of elements in the vector. Custom vector lengths

can be used for the register set, operands and operators. This novel architec-

ture supports concurrent execution of vector instructions with different vector

lengths. In particular, it supports the concurrent execution of a mix of single

precision 4-, 8-, and 16-float long vector instructions1. The exact mix used is

determined by how the required processing throughput can be matched to the

available reconfigurable resources. The best matching is achieved by folding the

execution of larger vectors when resource is scarce.

In essence, the architecture exposes a set of virtual instruction set architec-

tures (determined by instruction level parallelism and other program character-

istics) that is implemented by a shared pool of floating point execution units

(determined by the reconfigurable resources available). The method inherits

from the advantages of both custom instructions and loop accelerators. It of-

fers an alternative at an abstraction level where it is easier to find acceleration,

as well as resource sharing opportunities. On top of that, this method offers

a tighter integration in the design compilation flow. The novel features of this

method can be summarized as follows:

1For brevity, in the rest of the chapter, these shall be called ‘x4’, ‘x8’, and ‘x16’, respectively.
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• It presents the design of a customizable SIMD floating point coprocessor

on a hybrid architecture that includes both a hard-wired processor core

and FPGA reconfigurable resources.

• It describes the implementation of a co-design method for this coproces-

sor, in which both the executable and the HDL code for the optimized

coprocessor configuration are automatically generated in an integrated ap-

proach.

• It describes a method for further improving resource usage and energy

efficiency by the independent folding of each kind of execution units in the

final design.

Experiments on actual hardware show increased performance and scalabil-

ity. This method provides an important extension to the capabilities of FPGAs

with hard-wired processors, which traditionally dealt with bit, integer, and low

intensity floating point code, to now being able to handle vectorizable floating

point computation.

6.1 Rationale

In silicon-based processors, the vector instruction set and the vector length of

the SIMD coprocessor are chosen to suit a broad spectrum of computation pat-

terns and instruction level parallelism exposed across all the application domains.

However, if the SIMD coprocessor is reconfigurable, then one may choose to im-

plement only a particular set of vector instructions that best benefit the applica-

tion at hand, and have the system reconfigured to something altogether different

when the demand changes. The envisioned system architecture is abstracted

in Figure 6.1. Scalar and vector floating-point (FP) instructions are executed

outside the hard-wired processor core, in the attached FPGA coprocessor. These

instructions are issued in program order on a dedicated interface. One of the key

insights behind this method is that, unlike general integer computation, many

floating point applications have the proper granularity to overcome the inherent

penalty of issuing instructions outside the processor cores.
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In this architecture, load and store instructions have to transfer data through

the processor core to the memory. Most instructions are autonomously executed

by the FPGA, with the exception of vector stores, which require data computed

in the coprocessor to be written back to memory. The latter entails blocking the

subsequent instruction issue until the data transfer is complete. Otherwise, for

most other types of instructions, new instructions can be issued in consecutive

clock cycles.

The following are some of the considerations that affect the selection of the

SIMD coprocessor configuration:

• The use of longer vectors will decrease the number of instructions issued to

the coprocessor, each instruction encoding coarser-grained computation.

• As the overall number of issued instructions decreases, the performance

bottleneck will shift from the instruction issue to the execution stage.

There is an opportunity here to reorganize the individual operations en-

capsulated by each instruction, and determine a compact hardware imple-

mentation according to the exposed data dependencies.

• Larger vectors require more data to be transferred before computation can

begin. This may cause delays, especially in systems where the memory

latency is large. In other words, the use of longer vectors may prevent the

effective overlapping of memory transfers with computation.

• The kind of data movement is often limited by what the instructions can

do. This can degrade the performance of certain operations, such as data

transpositions, or the epilogue of vector reductions.

The following example shows the impact of the selected vector length on the

execution time of a loop. Figure 6.2a shows a simple loop expressed in a C-like

language compiled for the Altivec instruction set. The vectorization process iden-

tifies computation patterns across multiple loop iterations and coalesces them

into vector operations. SIMD architectures available today mostly use a vector

length of four [23]. This pseudo-compiled code example uses vector registers vr
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that can store four single precision floating point numbers. The LV instructions

bring the operands from memory into the registers. VADD instructions perform

the parallel additions of the corresponding four vector elements, while the STV

instructions store data back to memory. Because the loop is vectorized, each

iteration corresponds to four scalar loop iterations.

Figure 6.2b contains the issue and execution schedule of this vectorized loop

as it would be handled by a target architecture with a vector length of four

(i.e., x4). It traces the issue and execution of instructions corresponding to

two consecutive vector iterations processing elements with base index i and i+

4 respectively. The compiler unrolled the loop twice and software pipelined

the LV and STV instructions, placing them in adjacent cycles. Loop unrolling

increases register pressure, but is beneficial as it can partially hide the latency

of the memory transfer operations and subsequently run the pipelines of the

execution units more efficient. Each instruction requires a distinct issue cycle

which corresponds to the data transfer between the core processor and the SIMD

coprocessor. Once issued, most instructions execute autonomously, spending one

or more clock cycles in the pipeline of an execution unit. The exception is the

vector store (STV) instruction which occupies the issue bus for several cycles until

it returns the vr to the processor core for subsequent stores to memory. In this

example, the critical path consists of the two dependent additions, VADD1 and

VADD2. LV instructions are software pipelined in the available issue cycles before

the start of the current iteration, while STV instructions are issued after the end

of the current iteration.

However, due to the sequential data exchange between the core processor and

the SIMD coprocessor, repeated issuing of vector operations to the coprocessor

is costly. This can be detrimental to the overall performance because it limits

the issue rate of compute instructions. Alternatively, the same vector loop can

be compiled for a vector length of eight (x8), as shown in Figure 6.2c. However,

in this architecture, the processor core remains unchanged, and thus all memory

transfers, which are routed through the core processor, are split into chunks of

four elements. Accordingly, LV instructions now require two issue cycles, while
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for (i = 0; i < N; i++) {
r[i] = a[i]+b[i]+c[i];

}

(LV1) vr1 ← (a[i]…a[i+3])
(LV2) vr2 ← (b[i]…b[i+3])
(LV3) vr3 ← (c[i]…c[i+3])
(VADD1) vr4 ← vr1 + vr2
(VADD2) vr4 ← vr4 + vr3
(STV) (r[i]…r[i+3]) ← vr4

a) A vectorized loop) p
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Figure 6.2: Executing a loop using x4 and x8 vector instructions.

STV instructions require four cycles to transfer the operands. In this configura-

tion, a single x8 loop iteration can handle the computation previously handled

by both x4 loop iterations. The schedule becomes shorter, because less VADD

instructions are issued.

Of interest is the comparison between the execution time of N iterations of

an unrolled vector loop to that of a single equivalent iteration of a vector loop

where vectors were lengthened N times. It is assumed that once the instructions

are issued, they will execute autonomously. Ideally, performance is maximized

if there is an execution schedule where, once instructions are issued, they can

execute without delay caused by operand dependencies. Let tM and tI be the

number of issue cycles used by memory transfer and non-memory transfer in-

structions in one iteration of the vectorized loop body respectively. In this model,

the unrolled version takes N ·(tM +tI) cycles to complete, while a single iteration

of the loop with longer vectors takes N · tM + tI cycles. Thus, the alternative

approach will improve performance by (N−1)tI
N(tM+tI) . For example, if tI = tM and

N = 4, this translates to 37.5% improvement. In practice, this speedup is gener-

ally higher for longer vectors, because the compiler generated schedule may not
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be able to hide completely the instruction dependencies. However, irregular data

movement patterns can make it harder to use longer vectors as additional data

movement instructions will be required to correctly marshal data into the vector

registers. In the final analysis, which vector length yields better performance

depends on the computation pattern and available instructions.

The parallel operations captured by a vector instruction may be associated

with a shared set of execution units, thereby trading off performance for lower

resource demands. By doing so, the overall execution time may increase if the af-

fected instructions are on the critical path. The profitability of each vector length

configuration is evaluated during compilation, and the best is selected based on a

static model. In the resulting platform, multiple versions of the same instruction

corresponding to different vector lengths may coexist. The architecture allows

these versions to share the same execution units. Due to the sizable resources

involved, the alternative of switching configurations via run-time FPGA recon-

figuration introduces significant overhead, potentially eliminating most of the

performance benefits of SIMDization.

6.2 Co-design Method

An established approach for getting good performance in compute-intensive ap-

plications is to take advantage of the inherent parallelism. There is an opportu-

nity to do so by using mathematical libraries such as ATLAS [91]. The granu-

larity and flexibility of the computation are key factors in achieving optimized

results over large portions of the application. Hence, the trend is to capture

computation at a higher level of abstraction such as vectors or matrices which

expose flexible parallelism. Libraries rely internally on parallelization techniques

such as compiler auto-vectorization to deliver the best performance. Support is

required in hardware to support the utilised vector instructions.

Eigen [32] is a C++ template library for linear algebra vectorization, achiev-

ing comparable performance to ATLAS and it was suitable for the method de-

scribed in this chapter, without loss of generality. It includes abstract data

structures for vectors and matrices, as well as their related algorithms. Eigen
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uses code inlining extensively to automatically rewrite and lower the code repre-

sentation, applying vectorization where possible. Its recursive template inlining

and instantiation removes unnecessary temporaries, thereby building loops with

large bodies. Multiple instances of the same function template are generated

and inlined in different code fragments, so they can benefit from local optimiza-

tions. The term kernel would be used to refer to an optimized section of the

instantiated code, which has dependencies that are satisfied using (virtual) vec-

tor registers. Each kernel may consist of one or more loop nests and the code in

between. What is important is that kernels are independent of each other and

can be implemented using different vector lengths.

The original Eigen compilation flow is presented in Figure 6.3a. For each

computation kernel, the C++ preprocessor uses Eigen library templates and

proceeds to recursive inlining, which lowers the computation down to built-

in functions matching directly assembler instructions. Internally, Eigen uses

a layered instantiation and its lowest level relies on a set of primitive function

templates that correspond to the actual vector instructions supported by the

target architecture. The resulting executable code contains all the properly

vectorized code inlined into the original functions.

The recursive template instantiation mechanism is shown in Figure 6.3b.

The C++ computation is expressed in terms of vectors v and matrices m. The

C++ code in this example sums each of the columns of m, adding the resulting

vector to v1 and v2. The template library breaks up this sequence of operations

hierarchically into a vector addition, which expects to add the result of v1 + v2

with the result of m.colwise().sum(). At this point, the addition is expressed in

terms of flexible packets which will later be transformed to fit the length of the

hardware vectors. The inlining process continues by transforming the addition of

packets from v1 and v2 to a VADD instruction, while the matrix column summation

is transformed to a loop that sums packets of elements from different rows. This

loop and the previous VADD are combined in a loop nest in the final assembly

code. It is only during the final transformations that the hardware vector length

information is utilized. The packet length is propagated as a constant throughout
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Figure 6.3: The code and coprocessor generation method.

the kernel. The compiler backend then optimises the resulting code. Recursive

template instantiation and inlining are merely techniques for code rewriting.

Therefore, despite the heavy use of template instantiation and inlining, the final

executable does not suffer from code explosion.
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Figure 6.3c shows how the library was modified to cease automatic instan-

tiation at the level of kernels, such that the compilation of each template can

be fine-tuned. Because kernels do not share code, each kernel can be compiled

independently. Each of the kernels is passed to the compiler for explicit instan-

tiation. The explicit instantiation steps are repeated to obtain all the different

vector length versions of all the kernels. The performance of each kernel version

is projected as a function of the parameters of the SIMD coprocessor configura-

tions (Section 6.4). The list of instructions used by all versions of all the kernels

is recorded. This information is used in a global selection step (Section 6.5)

that determines the versions of each kernel to be used in the final executable, as

well as the coprocessor configuration to be synthesized in order to execute the

selected kernels. This is done in an integrated approach and does not require

repeated hardware synthesis. The link-time optimization feature of GCC [55]

is used to derive all versions of the kernels as well as inline the selected kernel

versions for the final executable.

Eigen includes an ISA specific set of primitive template functions that cor-

responds to vector instructions and their GCC built-ins. Additional Eigen tem-

plates have been added for other vector lengths, and GCC was modified by

adding new built-ins and machine descriptions. It is important to note that

while choosing Eigen minimized the engineering effort, the same method can be

adapted to any vectorizer that is capable of handling multiple vector lengths

such as the GCC vectorizer.

6.3 Customizable SIMD Coprocessor Architecture

This section describes the details of the novel SIMD coprocessor architecture that

can support the vector instructions generated through this method. The imple-

mentation targets the Xilinx Virtex-5 class of FPGAs and its hard-wired PPC440

processor core. This drove the compatibility requirement with the IBM AltiVec

instruction set architecture [23]. However, with some amount of re-engineering,

it should be possible to port this method to other similar architectures of which

several alternatives are commercially available [1, 29].
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The instructions for longer vector lengths are semantically simple extensions

of the standard AltiVec instructions. Parallel vector operators are extended

by increasing the range of their vector indices. Several of the data movement

instructions that do not use operands with absolute element indexing can also be

extended in the same manner. For the instructions where an index is given as an

immediate operand (i.e. VSLDOI, a left shift instruction), or where such indices

are included in one of the vector registers (i.e. VPERM, a generic permutation

instruction that receives an index-based permutation pattern in a vector register)

the bit-width limitations in the index encoding require special attention. When

possible, previously unused bits in the operand field encode the larger index.

Otherwise, the granularity of the indexed data was increased beyond the default,

which is a byte. Supporting only vector FP operations, the granularity can

increase four-fold without affecting the instruction semantics.

The custom SIMD coprocessor is implemented in the FPGA reconfigurable

resources and is attached to the Auxiliary Processor Unit (APU) interface of

the hard-wired PowerPC processor. The overall architecture of the coprocessor

and its connections to the APU interface are presented in Figure 6.4. Scalar FP

instructions use a legacy IP library module provided by Xilinx [97], attached

in parallel to the same APU interface. The PowerPC core issues floating point

instructions to the coprocessor via the APU interface. The SIMD coprocessor

includes a collection of vector FP instruction control blocks, a unified vector reg-

ister file and a set of scalar FP pipelined execution units. An instruction control

block implements one or more related vector instructions. For example, a single

control block implements both the vector add and subtract instructions. The

execution units are shared by the vector instructions. Instructions and execution

units are connected together with minimal glue logic. Clear design boundaries

have been maintained between the execution units, instruction control blocks and

the SIMD coprocessor interface, which allows modular synthesis to be employed.

Assuming that there are M distinct types of execution units (i.e., adders,

multipliers, fused multiply-add units), a configuration E is defined as the tuple

(e1, . . . , eM ) where each ei is the number of execution units of type EUi to be
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Figure 6.4: The architecture of the SIMD coprocessor.

instantiated. The coprocessor implements the instructions using N instruction

control blocks I = {I1, . . . , IN}. Note that an instruction and its control block

have the same vector length denoted by ‖Ik‖, that is implicitly encoded. The

pair (E, I) fully characterizes the SIMD coprocessor.
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6.3.1 Instruction Handling

A single register file is used by all the vector instructions, irrespective of their

vector lengths. It is configured such that it can store the longest supported

vectors. Instructions handling shorter vectors will use only the lower bits of

each register. The register file is implemented using the Virtex-5’s block RAMs

(BRAMs). To handle the longest vectors, it has to be W = 32×max
Ik∈I

(‖Ik‖) bits

wide since each single precision floating point number occupies 32 bits. Altivec

instructions can have up to three input and one output operands. However, the

exact position of each in the instruction encoding varies. To avoid the overhead

of multiplexing the possible positions to the register file, the register file has been

implemented with four read ports and one write port. The amount of BRAM

available in the Virtex-5 is large enough to implement four identical copies of the

register file, each allowing one synchronous read and write. Read requests from

different instruction operands will be serviced concurrently by the different copies

of the register file. However, all the register file copies are written concurrently

on any update. This ensures that all copies of the register file contain identical

data, hence consistency is enforced.

A variant of scoreboarding is employed throughout the SIMD coprocessor.

It manages instruction issue and retirement, enabling out-of-order completion.

As soon as instructions appear on the APU interface, they are copied into an

instruction buffer. A confirmation is immediately returned to the PowerPC core.

The only exception is the vector store (STV) instruction, which needs to return

data from a vector register to the PowerPC core. This instruction sends out a

confirmation signal once it completes.

In the instruction buffer, a vector instruction will wait for its dispatch to the

corresponding vector instruction control block Ik. The instruction is dispatched

only when all its operands are available in the register file, and when the hardware

determines, based on the known execution time of Ik, that the write port of the

register file is available to commit the result during the clock cycle when the

execution completes. These conditions together ensure that, once dispatched,

instructions execute and commit their results without blocking. The moment
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when instructions commit their results to the register file is tracked using a set

of commit slots that correspond, in order, to reservations during future cycles to

the write port of the register file. These commit slots are maintained consistent

by shifting their contents to the previous slot at every clock cycle.

When an instruction is dispatched to a vector instruction control block, its

operands are read from the register file. The control block will latch them and

execute an internal schedule that accomplishes the desired functionality using

the available execution units. If there are enough execution units, all operations

can be launched in the same clock cycle (such as I2 in Figure 6.4). Otherwise,

a folding mechanism, described below, schedules the operations on the available

execution units over several clock cycles. Once the execution of the instruction

completes, the result is placed on the write bus, and the destination register is

marked as available in the operand availability table.

6.3.2 Folding of SIMD Operations

Folding is the mechanism used by the vector instruction control blocks to sched-

ule the execution of vector operations on a smaller set of execution units. The

implementation currently supports folding only if the vector lengths and the

number of execution units are powers of two. The folding mechanism sequences

the inputs for all operations to the execution units over several clock cycles.

Because the execution units are pipelined, the coprocessor can launch internally

a new set of operations each clock cycle, i.e., the initiation interval is one. In

particular, for a vector instruction I executed by a control block Ij , the number

of consecutive cycles required to place all the operations in the ek execution

pipelines of type Ek is: fold(I, Ek) = ‖Ij‖/ek if the control block Ij requires the

use of the execution units of type Ek. Otherwise, fold(I, Ek) = 0.

Folding requires hardware multiplexers to redirect data from several vec-

tor locations to the smaller number of execution units. These multiplexers are

embedded in the instruction control block and driven by state machines. The

instruction control block is aware of the number of execution units available in

hardware. During instruction execution, after data is fetched from the registers,
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a sequence of data insertions into the pipeline of the execution units is initiated.

Folding affects the rate at which the instruction control blocks can handle

incoming instructions. If the operators are not folded, the entire instruction

execution is fully pipelined, and a new instruction can be initiated every cycle.

Otherwise, the instruction control block flags the execution units as busy, and

this is an additional factor that may block the dispatch of the next instruction

from the instruction buffer. The total execution time of an instruction L(I)

is also affected by folding. This latency consists of a fixed number of clock

cycles spent in the instruction control block and in the execution pipeline, and

a variable number of clock cycles required to fold the instruction. The latter

depends on the vector length of the instruction and the number of execution

units available for its execution.

The custom coprocessor design is feasible if the total resources (i.e., LUTs)

occupied by all the instruction control blocks, execution units and other logic,

including the scalar FP unit, fit the resources of the FPGA. Because the reg-

ister file resides in BRAM, a significant number of additional LUTs was freed.

Post-synthesis resource information is obtained for individual modules of the de-

sign, and together with the additional LUTs used by the folding multiplexers,

it is used to derive the total resource requirement of a folded design. Besides

resource constraints, the scalability of the design is limited by the critical path

of multiplexing the results back to the register file’s write port via a single result

bus. Nonetheless, the place and route tools are successful with as many as 32

multiplexed write sources.

The execution units were designed from scratch, including the single-precision

floating point adder, multiplier and fused multiply-adder. Their post-synthesis

resource usage and performance are shown in Table 6.1. The multiply-add unit

fuses the two operations without the intermediary result normalization, and

hence is equivalent to its standard AltiVec counterpart. Note that this does not

preclude the use of other arithmetic unit designs.
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32-bit FP Resources Frequency
Stages

execution unit LUTs DSP48E (MHz)

add 621 0 188 5
multiply 132 2 188 3

multiply-add 1101 2 152 7

Table 6.1: Characteristics of execution units.

6.3.3 Memory Access

Some of the design decisions were driven by the idiosyncrasies of the Virtex-

5 development board [61]. Vector load (LV) and store (STV) instructions are

handled in a special way so as to account for the fact that the memory APU

bus width is a fixed 128 bits, regardless of the vector length. The processor

core handles all memory accesses including those made by the coprocessor. The

solution for dealing with this constraint is a special load-shift semantics for vector

load operations: consecutive loads targeting the same vector register will shift

the content of the register before incorporating the incoming data in the lower

bit positions. If the instructions require a vector length of 128 bits, a single

load is issued, and the corresponding data is placed in the lower 128 bits of the

longer vector register, while the rest of the vector register, containing shifted

data, becomes irrelevant. If instructions require longer vectors, multiple 128 bit

loads are issued. Each of these loads will shift the previously loaded data to more

significant positions. If loads are issued in the correct order, the long vector load

can be replaced by a sequence of regular loads.

Unfortunately, vector stores cannot be handled transparently. Stores may

be canceled and reissued by the PowerPC due to branch mispredictions or page

faults. Consequently, there is no easy way to check if a previous store has

succeeded or not that is compatible with the described coprocessor. The solution

was to implement an explicit bank selection instruction that specifies which part

of the longer vector needs to be stored via the 128 bit APU bus. The bank

index is initially reset, thereby making this mechanism transparent to the x4

instructions.
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6.4 Performance Projection Model

A key component of the method is the static evaluation of design points. This

section describes the model by which the performance of each kernel is projected.

Without such a model, it would be impossible to offer a method that selects the

best possible hardware configuration without trial synthesis of many candidate

configurations.

The SIMD coprocessor described in the previous section has two degrees of

flexibility. It can adjust the number of execution units of each type. It can

also choose whether or not to implement instructions of various vector lengths.

Recall that while a kernel can only be of one vector length, different kernels in

a single application are allowed to have different vector lengths. Estimating the

performance of each kernel on a configuration E enables the usage of this metric

to drive the instruction selection and implementation in Section 6.5.

The first step is to identify the sequence of vector instructions I = {I1, . . . , In}

for each loop body in the kernel k. For most practical situations, there is usually

only one loop body in the kernel. These instructions will be issued by the Pow-

erPC processor in program order to the SIMD coprocessor. The remaining scalar

instructions execute out-of-order but have no impact on the execution time. Fur-

thermore, the PowerPC processor is able to start prefetching the data for all the

vector loads as soon as they are encountered. The PowerPC core maintains a

look ahead window of δ instructions, prefetching additional instructions while

it attempts to issue an instruction to the SIMD coprocessor. Memory accesses

are modelled assuming that they will hit the cache and that a 128-bit load or

store transaction takes d cycles, based on the processor memory bandwidth. The

execution time L(Ip) of instruction Ip is computed. Any folding is accounted for

in L(Ip) as previously described.

Based on the above assumptions, an estimate of the number of clock cycles

T (E, k) required to execute one iteration of a loop in kernel k on a configuration

E is computed using Algorithm 6.1. For each instruction Ip, the following timings

are derived relative to the beginning of the iteration: (a) the time when the

instruction reaches the look-ahead window (αp), (b) the time when it is issued
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Algorithm 6.1 T (E, k) for a single loop in a kernel

Input A configuration E = (e1, . . . , eM ) and the sequence of vector instructions
I = {I1, . . . , In} that forms the loop body inside kernel k

1: Ξ = F1 = . . . Fn = −∞
2: β−δ = . . . = β−1 = −∞ // hold the issue times from the previous iteration
3: repeat
4: for Ip ∈ I do
5: αp = βp−δ + 1 // models PowerPC lookahead
6: t = max(0, βp−1 + 1, αp, max

m∈in(Ip)
γm)

7: βp = max
Ei used by Ip

(t, (Fi)); // models blocking

8: for functional unit type i used by Ip do
9: Fi = βp + fold(Ip, Ei)

10: end for
11: if Ip is memory transfer then
12: Ξ = max(Ξ, αp) + d
13: βp = max(βp,Ξ)
14: end if
15: γp = βp + L(Ip) // instruction ready time
16: end for
17: τ = γn // ready time of last instruction
18: for j < δ do
19: β−j = βn−1−j − τ
20: end for
21: for Ei do
22: Fi = Fi − τ
23: end for
24: Ξ = Ξ− τ
25: until τ does not increase

return τ

to the SIMD coprocessor (βp), and (c) the time when it finishes execution (γp).

Other elements tracked are the time when the memory bus becomes available

(Ξ), and the time when execution units of each type i are available (Fi). The

timing obtained at the end of an iteration is used to seed the computation of the

next iteration. This is repeated until reaching a fixed point, then the result is

returned. In the description, ‘in(Ip)’ are the predecessor instructions of Ip in the

data dependency graph, and ‘fold(Ip, E)’ was defined in the previous section.

Let V be a set of vector lengths. In the current context, V = {4, 8, 16}.

The different versions of the kernel kx are denoted by the set {kvix }, vi ∈ V .

The Eigen library is modified to obtain the relative iteration counts of the kernel

loops compiled for each of the vector lengths. If a kernel has more than one loop,

then Algorithm 6.1 can be applied to each loop inside the kernel. A combined
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per-iteration execution time for each kernel is derived by summing the per-

iteration execution times of each loop weighed by their relative counts. The

relative counts of different kernels are combined with actual profiling data from

a scalar execution of the application to project the normalized weight ωvix of each

vectorized kernel kvix . Profiling needs to be done only once for the non-vectorized

application and can be accomplished with a regular GCC compiler and gprof.

The performance estimate T (E, k) has to be recomputed for all kernels over

all the configurations, as the latency of the instructions is influenced by the

folding factor. Even though some of the estimations can be reused, the number

of design points and combination of kernels is large. In this experimental setup,

for example, there were 25 configurations, and 36 instruction candidates. The

exploration space can be pruned based on the timing relationships between the

configurations. Suppose there are two configurations, E1 = {e1
1, . . . , e

1
M} and

E2 = {e2
1, . . . , e

2
M}. For a configuration Ei, the minimum overall execution time

T (Ei) is reached if the version selected for each kernel kx has the lowest execution

time. In other words, T (Ei) =
∑
x

min
vi∈V

(ωvix × T (Ei, k
vi
x )). However, this lower

bound on execution time may not be achieved if some of the required instructions

are not implemented due to resource constraints.

6.5 Configuration Selection and Code Generation

The selection of the best coprocessor configuration (shown in Algorithm 6.2)

is based on statically projecting the performance achievable by the entire ap-

plication on the feasible coprocessor configurations. As its input, it takes the

independently vectorized kernel versions of the application. It also requires the

set of possible vector lengths, the relative weights of the kernel calls in the call

graph, and a resource constraint.

The output of the algorithm consists of a recommended configuration and the

subset of the extended AltiVec instruction set to instantiate in the custom co-

processor. In particular, for the latter, suppose there are N distinct instructions

control blocks in the set I, and that the set of possible vector lengths is V . The

output is a Boolean decision matrix Φ = {{φv11 , . . . , φ
v1
N }, . . . , {φ

v|V |
1 , . . . , φ

v|V |
N }}.
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φvij = 1 if the control block of instruction j for vector length vi is to be supported

in hardware. The resource usage of this instruction is denoted by avij .

The design space is explored according to a dominance relationship. Let

E1 = (e1
1, . . . , e

1
M ) and E2 = (e2

1, . . . , e
2
M ) be two configurations. E1 is dominated

by E2 (denoted as E1 ≺ E2) if ∃i, e1
i < e2

i and ∀j, j 6= i, e1
j ≤ e2

j . In other

words, configuration E1 has strictly less number of units of type i than E2, and

at most the same number of units as E2 for all other types. In a dominated

configuration, i.e. E1 here, one may implement even more vector instruction

control blocks using the difference in the resource of E2 and E1. Even so, E1 ≺

E2 ⇒ T (E1) ≥ T (E2) regardless of what instructions are added to E1. This

means that if the current configuration is E, and T (E) is larger than the best

found so far (X̂ in Algorithm 2), then none of the configurations dominated by

E can do better, and so can be discarded. A variant of this strategy has been

described in Chapter 3.2.

Algorithm 6.2 starts analysing the largest configurations that use less re-

sources than the given resource constraint, and are not dominated by any other

configuration (line 1), one at a time. For each configuration E being explored,

T (E) is computed by selecting the best version of each kernel without any re-

source constraints (line 5). If this unconstrained lower bound T (E) is no better

than what has been already found, it is discarded together with all the config-

urations dominated by E, and the next candidate is analysed. Otherwise, E

is a possible solution. A set of resource-based constraints (lines 9-11) is built,

and a SAT solver is invoked to generate feasible solutions with the help of an

evolutionary optimizer [68] with the goal of deriving a solution with the mini-

mum execution time. The binary decision variable svij indicates whether kernel

j vectorized with length vi is part of the solution. φvij indicates if instruction j

with vector length vi is to be part of the final coprocessor ISA. The constraint

in line 10 is to ensure that if a particular vectorized kernel is chosen, then all the

instructions used by that kernel are also chosen. The auxiliary function R(E) es-

timates the resources used by configuration E. If the SAT solver is able to arrive

at a solution X that is faster than the existing best solution (X̂) (line 12), then
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Algorithm 6.2 SIMD coprocessor configuration selection

Input A set of vector lengths (V ), all kernels vectorized by the various vector
lengths (K = {kvij }, vi ∈ V ), the relative weight of all kernels ({ωvij }, k

vi
j ∈

K), and a resource constraint (RFPGA)
Output A configuration (Π), and the subset of instructions to be implemented

(Φ)
1: SFU = {E|@E′, E ≺ E′ ∧R(E) ≤ RFPGA}
2: X̂ =∞; Π = Φ = ∅
3: while SFU 6= ∅ do
4: E = pop(SFU )
5: T (E) =

∑
j

min
vi∈V

(ωvj × T (E, kvij ))

6: if T (E) < X̂ then
7: Φ′ = {{φv11 , . . . , φ

v1
N }, . . . , {φ

v|V |
1 , . . . , φ

v|V |
N }}

8: SATslv minimize X =
∑

j,vi∈V
(T (E, kvij ) · ωvij · s

vi
j )

subject to
9:

∑
j,vi∈V

φvij · a
vi
j ≤ RFPGA −R(E)

10: ∀j∀vi ∈ V, svij ≤ φvix if instruction x of length vi is needed in the
implementation of kernel kvij

11: ∀j,
∑
vi∈V

svij = 1

12: end SATslv minimize
13: if X < X̂ then
14: Π = E; Φ = Φ′; X̂ = X
15: end if
16: if X > T (E) then
17: SFU = SFU ∪ {E′|E′ ≺ E ∧ @E′′s.t.E′′ ≺ E′ ∧ E′′ ≺ E}
18: end if
19: end if
20: end while

return Π and Φ

the newly found solution replaces it (line 13). Furthermore, if X is worse than

the unconstrained bound of T (E) (line 14), it would imply that there is room

for improvement. All configurations immediately dominated by E are added to

the list of configurations to be considered (line 15). The idea here is that in

one of these (say E′), it may be possible to obtain an improved execution time

by implementing additional instructions using the resource difference between E

and E′.

The algorithm is guaranteed to terminate because (a) there is a limit on

the number of iterations of the optimizer, and (b) only smaller configurations

are added for future consideration. In practice, for the benchmarks reported in

Section 6.6, it took no more than a minute on a Intel Core 2.
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The solution returned by the algorithm drives the code generation step, which

puts together a mix of Verilog and VHDL modules that is then pushed through

the Xilinx synthesis flow to obtain the bitstream of the SIMD coprocessor. The

solution is also used in the modified version of the GNU assembler which is

utilized in conjunction with the modified GCC-LTO compiler to generate the

executable.

6.6 Results

The resulting coprocessor configurations were implemented on a Xilinx ML510

system [61]. The Virtex-5 VFX130 FPGA on board includes a PowerPC 440

core, and 81,920 look-up tables (LUTs). All the experiments reported here are

based on the HDL generated automatically with this method, which is imple-

mented around the modified versions of Eigen and GCC. 18.5% of the LUTs

were used for a system wrapper, the scalar FP unit from the Xilinx library and

the SIMD coprocessor interface. A set of linear algebra benchmarks were se-

lected, such that they would be ideal candidates for vectorization in embedded

applications such as media processing [5], sensor array data processing, global

positioning systems and beamforming solutions [57]. Several vector and matrix

benchmarks are provided in Eigen. These benchmarks are compute intensive

functions and reach performance comparable to BLAS on mainstream architec-

tures. Furthermore, Eigen was used to vectorize benchmarks from the Iterative

Template Library [56], a library which provides iterative methods for solving

software scalar FP 9K (min) x4 without folding 54K (max)
simplemul 1 1.87 1.98 2.91
vecmat 0.32 1 1.78 1.88 2.28
linear 0.1 1 2.07 2.07 5.13
matmat 0.044 1 1.83 2.03 2.77
hessenberg 0.052 1 1.79 1.86 2.93
qmr 1 1.69 1.78 2.21

simplemul vecmat linear matmat hessenberg qmr
1 1 1 1 1 1

0.87 0.78 1.07 0.83 0.79 0.69
0.11 0.1 0 0.2 0.07 0.09
0.93 0.4 3.06 0.74 1.21 0.43
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Figure 6.5: Speedup of different design points compared to scalar FP execution.
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Figure 6.6: Resources used by execution units vs. instructions throughout the
design space.

linear systems. An extensive range of design points was explored for the SIMD

coprocessor, allocating up to 67% additional LUTs (leading to a total 85% uti-

lization of the FPGA resources). For all these points, coprocessor configurations

were automatically synthesized with the same frequency constraints. The core

processor runs at 400 MHz while the coprocessor runs at 133 MHz.

Figure 6.5 shows the speedup achieved by the co-synthesized design com-

pared to scalar FP execution using the Xilinx IP core. The performance of

three design points is presented for each benchmark: (1) a design that utilizes

a very low amount of resources, hence the execution units and instructions are

constrained to 10% of the total LUTs, (2) a x4 design where the number of

execution units matches the vector length (no folding, would correspond to a

näıve implementation), and (3) a design using the optimized mix of x4/x8/x16

instructions, constrained only by the maximum available resources. The minor

performance improvement observed between the former two designs, which use

x4 instructions, supports the observation that, for short vectors, the bottleneck
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is at instruction issue, and merely adding execution units has a limited impact

on performance. Instead, using longer vectors led to up to 5.13× improvement.

There is a non-trivial balance between the execution units configuration E,

and the instructions control blocks implemented I. The x16 instructions encap-

sulate larger multiplexers and use significantly more resources than the shorter

vector versions, but deliver better performance. However, there are numerous

cases where, due to resource constraints, the optimized solution involves using

a smaller set of possibly shorter vector instructions complemented by a higher

number of execution units. This validates the initial assumption that defer-

ring the flexibility extracted from the input application is a method to select

high performance solutions. Figure 6.6 presents the performance and resource

utilization for three benchmarks, for a set of design points where the resource

constraints are incrementally relaxed. This figure presents only the total amount

of resources used for each of the two configurable portions of the design (E, I).

While performance increases monotonically, the non-trivial distribution of re-

sources between the instructions and the execution units shows the necessity of

the search algorithm described. In addition, Figure 6.7 gives the composition of

the instructions implemented for ‘qmr’ at the given design points. It shows the

resource usage associated with instructions of different vector lengths. The x4

instructions use significantly less resources than x16.

Besides speedup, using vector instructions leads to significant energy savings.

The total energy of the fastest design is compared to that of a design using solely
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Benchmarks
simplemul vecmat linear matmat hessenberg qmr

Data size 256 128 1024 128 128 1024

Best time(s) 2.45 3.11 2.42 1.45 2.22 14.98

Best energy(J) 7.5 9.1 7.6 5.7 8.2 42.2
Scalar energy(J) 18.4 18.3 34.1 13.9 14.3 83.4

Energy gain 41% 50% 22% 41% 57% 51%

Table 6.2: Execution time and energy.

the scalar FP Xilinx IP core. The result reflects the total energy consumption of

the FPGA core, which includes the energy of the PowerPC hard-wired processor.

The current sensor provided on the ML510 board is used to measure its average

value during program execution using a multimeter. Table 6.2 reports the energy

consumption derived from the measurements using the best mix of instructions.

The energy consumption of the best mix can be as low as 22% of the original

scalar version.

6.7 Summary

This chapter described the issues involved in the acceleration of floating-point

computation on a reconfigurable platform attached to a hard-wired processor.

Obtaining good performance for compute intensive applications on such copro-

cessors depends on a number of issues including the amount of instruction level

parallelism available in the application, the structure of the loops, the processor

cores’ issue rate, memory bandwidth, and the reconfigurable resources available.

Due to the intricate balances involved, a ‘one size fits all’ approach to vector-

ization is not always suitable. In fact, a mix of vector lengths may be required.

Furthermore, this mix differs from application to application.

The described method represents the first fully automatic method that co-

optimizes and co-synthesizes an application and its custom floating point SIMD

coprocessor. The method determines the best vector length mix for each individ-

ual kernel in an integrated approach, requiring only hotspot profiling. The archi-

tecture described is able to take advantage of the flexible application parallelism

and to share floating-point execution units, so as to meet a given resource con-

straint. The experiments showed that this method yielded up to 5.13× speedup
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compared to the use of the standard Xilinx floating point IP cores and also

showed significant energy reductions. This automatic code generation method

provides efficient implementations of fine-grained applications on FPGA plat-

forms.



120 CHAPTER 6. Floating-Point SIMD Coprocessors on FPGAs



121

CHAPTER 7

FINE-GRAINED CODE GENERATION FOR GPUS

Chapters 4 and 5 have shown how the coarse-grained task and data parallelism

captured by StreamIt applications can lead to efficient code generation for GPU

platforms. The GPU architecture also handles efficiently fine-grained parallel

operations. However, the GPUs do not benefit from any hardware mechanism

that can identify inter-thread data parallelism at run-time, hence all the avail-

able parallel code has to be identified during code generation and distributed to

parallel threads.

The code generation method presented in this chapter is exemplified on an

application arising in computational systems biology. This application includes

a large system of differential equations that are solved repeatedly through nu-

merical approximation. As expected, the intermediate results are too large to be

stored in SM memory if each GPU thread contains one instance of the equation

system. Therefore, following a direct implementation strategy will incur a severe

performance penalty due to the significant number of global memory accesses.

This is avoided through an optimized code generation method. This method

manages the large amount of fine-grained parallelism exposed by the equations

and reorganizes the computation in a platform-aware manner.

Specifically, a heterogeneous pool of threads is instantiated to distribute the

computation corresponding to each instance of the system of equations over

several threads. This increases the utilization of the GPU, while fitting the

equation data in the SM memory. This method is an extension of the mix of

C and M threads presented in Chapter 4. It achieves significant performance

improvements on realistic equation systems and it scales well with problem size.

While the code generation method is illustrated on a particular application, the

implementation strategy is generic and is applicable to similar problems, in which

fine-grained parallelism is accompanied by a significant amount of read sharing.
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7.1 Rationale

This chapter describes how the code generation method applies to a model ap-

proximating a biochemical network. A network of biochemical reactions [49] can

be modeled as a system of ordinary differential equations (ODE). The equations

describe the biochemical reactions, while the variables represent the concentra-

tion levels of the molecular species. Typical networks will involve a large number

of species and reactions, and the corresponding systems of ODE will not admit

closed-form solutions. The initial states will often be available only as intervals

of values. Consequently, the ODE-based model is simulated numerically, and

Monte Carlo methods are used to ensure that sufficiently many point values are

sampled. As a result, basic tasks such as parameter estimation, model validation

and sensitivity analysis will require the repeated generation of a large number

of numerical simulations.

By sampling the prior distribution of initial states, a sufficiently large repre-

sentative set of the trajectories induced by the ODE dynamics can be com-

puted numerically on the GPU. The dependencies in the pathway structure

are exploited to encode compactly these trajectories as a time-variant dynamic

Bayesian network [62]. This dynamic Bayesian network (DBN) is viewed as an

approximation of the ODE dynamics, and analysis tasks are performed on this

simpler model using standard Bayesian inference techniques [50, 54].

The DBN approximation of the ODE model requires the one-time generation

of a large number of trajectories. Clearly, sampling initial states and generating

trajectories through numerical integration is a potential source of massive paral-

lelism. However, for each trajectory, equations share variables, hence the exposed

parallelism inside each trajectory is fine-grained. In addition, the threads gener-

ating the trajectories will have to record intermediate data. For large problems,

the total amount of variables and intermediate data required by all the trajecto-

ries, when each trajectory computation is associated with a single GPU thread,

may be too large to be stored in the registers or the SM memory. At the same

time, relying solely on the global memory for this purpose will incur a severe

performance penalty as it will lead to a vicious cycle in which more and more
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parallel threads will have to be launched to hide the memory latency, which in

turn will generate increased access to the global memory.

The solution is to create a heterogeneous pool of threads that uses the SM

memory and can support the fine-grained parallelism in the application. The

number of parallel trajectories is reduced to fit the SM memory. Then, the

computation for each parallel trajectory is distributed among several threads to

increase GPU occupancy. A fine-grained distribution encompassing single equa-

tions is feasible, due to the low SM synchronization cost. The corresponding

threads from parallel trajectories are grouped in the same warps so as to maxi-

mize the utilization of the processing cores. All the threads corresponding to a

trajectory share the same data. Of particular significance is that this solution

can be applied to any problem that exposes fine-grained parallelism.

7.2 Application Description

A recent DBN construction approach [54] is utilized. The value domains of the

variables and unknown parameters are discretized into finite sets of intervals.

The states of the system are observed only at a finite number of time points,

{0, 1, . . . , T}. Once the DBN approximation has been constructed by computing

trajectories from all the initial states, analysis can be performed using Bayesian

inference techniques [62].

Biological pathways are often described as a system of ODE with one equa-

tion of the form dx
dt = f(x,p) for each molecular species x ∈ x, with f describing

the kinetics of the reactions that produce and consume x, while p denoting the

parameters associated with these reactions. For large pathways, this system of

ODE will not admit a closed-form solution. The range of each variable xi (param-

eter pj) is partitioned into a set of intervals. The initial values of the variables,

as well as the parameters, are assumed to be distributions (usually uniform) over

certain intervals. The initial states are sampled sufficiently many times [54], and

a trajectory is obtained by numerical integration from each sampled initial state.

The resulting set of trajectories is then treated as an approximation of the dy-

namics of the ODE system. A uniform distribution is fixed over all the intervals.
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The time domain is discretized into a finite set of time points as {0, 1, . . . , T}.

For convenience, this discretization is assumed to be uniform. Consequently, a

time step ∆t > 0 is fixed, and the time points of interest are assumed to be the

set {0,∆t, 2 ·∆t, . . . ,D ·∆t} so that T = D ·∆t.

A Mersenne twister random number generator [60] is used to sample an ini-

tial state viewed as a vector of values; one value for each variable and unknown

parameter. Starting from the initial vector, the generation of a single trajectory

iteratively advances time by ∆t and computes, through numerical integration,

updated values for all the variables. To ensure numerical accuracy, the interval

[0,∆t] is uniformly subdivided into k intervals for a suitable choice of k. After

every k time steps (each of length ∆t
k ), the current values of the variables are

recorded. A fourth order Runge Kutta integration algorithm is used to com-

pute the next value of a variable for each time step. Thus, each trajectory is

numerically simulated for k ·D steps.

Finally, the current values of the variables at each of the time points {0,∆t, 2·

∆t, . . . ,D ·∆t} are used to count how many of the trajectories hit a particular

interval of values for each variable at that time point. These counts are then

used to derive the entries in a Conditional Probability Table (CPT) [54] from

which the DBN is derived.

7.3 Code Generation Method

This section describes the method developed to generate efficient code for the

application described above onto GPU platforms. The computationally intensive

task of generating a large number of trajectories can, in principle, utilize a single

thread for each trajectory, since the control flow of the underlying computa-

tions is similar among different trajectories. This matches the GPU’s affinity for

lockstep execution in warps. However, the memory requirements of the compu-

tations generating the trajectories pose a severe barrier to obtaining an efficient

memory layout. This is due to the fact that the dependencies between the vari-

ables in the system of ODE require the entire front of variables belonging to

each trajectory to be computed together. Specifically, each variable xi has an
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Figure 7.1: Computation flow.

associated equation in the ODE system. For each time interval, the value of xt+1
i

is determined by applying a Runge Kutta numerical integration step using the

current value of xti and the current values of other variables (and parameters)

appearing in the ODE for xtji (Figure 7.1).

By exploiting the fine-grained parallelism available in the ODE, a group of

threads can compute together each trajectory. Each thread in the group will

perform numerical integration on some of the variables. This entails sharing

of the variables and parameters within a group. Frequent synchronization is

required in fine-grained code sections involving only a single Runge Kutta time

step from as little as a single equation. Variables and parameters must be stored

in SM memory to allow consistent low-overhead multi-threaded access. More

important, the parallel collaborating threads will need to execute with divergent

control flow because each thread will handle a different subset of the model

equations.

The key to an efficient implementation, under these conditions, lies in clus-

tering threads with similar computation into the same warp so that they can be

executed under the lockstep constraint. Therefore, this method goes one step

beyond the concept of C threads introduced in Section 4.2, which defines a large

number of similar compute threads. Instead, a heterogeneous pool of compute

threads is instantiated here to enable the sharing of data between many concur-

rent threads. The similar threads computing the same equations from parallel
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trajectories will be clustered in the same warp.

The data movement during one computation step is illustrated in Figure 7.2.

The equations are distributed into several C threads (Cθ) that will collaborate

to generate a single trajectory. These threads read the current values of the

variables (x) and parameters (p) from memory (step ¬). The ∆x changes during

a time step are computed in parallel and are stored back to memory (step ).

The vector of variables x is then updated (step ®). This process is applied

iteratively for each time step (of duration ∆t
k ).

Further, to enable the counting steps which record the number of times the

threads hit the various intervals of values of the variables (and unknown param-

eters), the vector x is replicated as x̄ (step ¯). The counting process executes in

parallel, during the next ∆t iteration, using memory access threads (M), which

will store the results in a large table located in global memory (step °). This

ensures that the numerical integration can continue, while the counting process

accesses the long latency memory.

The vectors x, p, ∆x, and x̄ together form the working set of a trajectory

because they are accessed frequently. During the generation of a trajectory,

variables will be updated once every integration step. In between these updates,

the variables may be read by several equations. Because the computation of a

trajectory has been divided onto multiple threads and because the number of

concurrent trajectories has been restricted, the total memory footprint, consist-

ing of the working sets of all the trajectories being computed in a SM, can be

kept within the limit of the available SM memory. In addition, the working sets

are carefully placed in the SM memory so as to prevent bank conflicts. Their
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relative offsets are adjusted so that the hardware will coalesce the accesses to

the SM memory.

The number of trajectories resident in each SM is chosen such that it is con-

gruent with the warp size. The threads are organised so that threads executed

together in the same warp process the same subset of model equations from dif-

ferent trajectories. This will eliminate control flow divergence in each warp. In

other words, threads computing different equation groups are assigned to differ-

ent warps as shown in Figure 7.3. It is important to underline that this method

can be applied for fine-grained parallel computation in other applications.

The pursued global memory access strategy requires one additional type of

threads for global memory access. In this context, theM threads introduced in

Section 4.2 become one type of threads, besides the several types of C threads.

Threads C perform the numerical integration using the variables and parame-

ters stored in the SM memory, while global memory access threads M perform

the counting. In addition, M threads are coalesced into exclusive warps which

depend on, but not interfere with, the C threads’ executions.

The Mersenne twister algorithm also requires access to a large table stored

in global memory. As this is invoked only once for each trajectory, during the
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initialization step, the overhead of storing this table in global memory is mini-

mal. To ensure randomness across the threads, each Mersenne instance table is

initialized using a different seed.

The Runge Kutta numerical integration process is at the heart of the trajec-

tory computation. A fourth order Runge Kutta algorithm was sufficient, and

it requires each equation to be applied 4 times. The code generation method

employed converts each equation into a set of memory loads and stores and a

set of arithmetic operations.

The number of issue cycles for each arithmetic operation is statically known,

and this information can be utilised to balance the workload of the computing

threads. To achieve a good balance, a timing model was created to compute

the weight of each equation. This model assigns a weight to each operator that

appears in the code corresponding to each equation. Then, a distribution algo-

rithm places the equations such that the corresponding weight of the operators

appearing among the C threads is balanced. The granularity of this distribu-

tion is fine-grained, each equation including only a few arithmetic instructions.

Because the hardware interleaves the warps on to the processing cores, in order

to hide the operations latency, as long as all warps are balanced, they can issue

new operations into the pipeline and the processing units are fully utilized.

The parallel nature of the trajectories also exposes a coarse level of parallelism

which makes this problem suitable for multi-GPU code generation. While this

aspect is beyond the problem investigated in this thesis, exploiting it extends

the performance of this biopathway modelling implementation. Figure 7.4 shows

how this method generates code for an array of GPUs. The GPU platforms may

be connected to several hosts. Those connected to the same host communicate

through dedicated high-bandwidth PCI Express connectors, while the hosts are

connected to each other through standard Ethernet.

The computation is launched by a master host, and each GPU processes a

fraction of the trajectories. Different random number seeds are broadcast to

each of the GPU (step ¬), such that no two seeds overlap. Each GPU simulates

independently its portion of the trajectories and records the results in a table



7.4. Results 129

seed initializationDBN

Collect

dispatch dispatch

Master host platform

Slave host platform

seed initialization

recorded data

GPU1 GPU2

dispatch dispatch

GPUP-1 GPUP

Figure 7.4: Distributed execution among multiple GPUs.

in its own global memory. Once the computation has finished, these tables are

transferred over the network to the master host (step ) that combines them to

form the CPTs.

For large models, the memory required to store all the counting data might

exceed the size of the GPU’s global memory. To get around this, each GPU

device records only the memory offset of each recording point (M threads process

only the pointer to the location in the CPT). Later, at the master host, all the

data based on the offset information collected from the GPU devices is updated.

In essence, the results are encoded as sparse matrices and utilise the master host

to combine the results into a regular matrix.

7.4 Results

This code generation method has been tested on the S2050 GPU platforms. The

performance obtained on a cluster of 10 CPU is compared to that of 4 GPU

platforms (attached to two CPU hosts; 2 GPUs per host). The 10 CPU cluster

consists of Xeon E5430 @ 2.66 GHz with 40 GB of memory each. Each GPU is a

S2050 Tesla @ 1.15 GHz with 2 GB of memory. Each two of them are attached

to a Xeon E5405 @ 2GHz host with 16 GB of memory through PCI-E. nVidia

GPUs support both single precision and double precision floating point types.

However, the computational throughput for double precision is known to be less

than half of single precision, with significant overhead for divisions. For this

application, single precision computation suffices.
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Model Description |x| |p|
EGF-NGF PC12 cells proliferation model [11]. 20 pa-

rameters assumed unknown and discretized
into 5 intervals [54]

32 48

Segmentation
Clock

Signaling network for the formation of
somites in embryos [28]. 40 parameters as-
sumed unknown and discretized into 5 inter-
vals [54]

22 75

Thrombin-MLC Models how thrombin can induce MLC phos-
phrylation in endothelia cells through two
different signaling cascades [59]. 164 param-
eters assumed unknown and discretized in 5
intervals

105 197

Table 7.1: Biopathway models.

The three pathway models in Table 7.4 were used to evaluate the perfor-

mance gains of the GPU-based implementation. Although the parameter values

for these models are known, a subset of the parameters was set as ‘unknown’

to mimic realistic biopathways models, and the DBN approximation was con-

structed accordingly. This considerably increases the computational demands

placed on the approximation algorithm.

The performance of the generated code varies based on the:

• number of C threads generated in each SM;

• Cθ, the number of C threads collaborating to generate a trajectory;

• Mθ, the number ofM threads that are used to increment the global mem-

ory counts corresponding to a hit of an interval by a trajectory.

The maximum number of trajectories is constrained by the amount of SM

memory available. The working set size 3|x|+ |p| can be calculated irrespective

of Cθ, and its size is rounded up to the next odd number only to ensure memory

access coalescing (see Section 4.2.1) [67].

The number of threads Cθ determines the number of warps. If too few

warps are instantiated, the processing cores cannot be fully utilized. On the

other hand, if there are too many warps, there is additional overhead due to the

limited number of registers that can be assigned to each thread. In addition,

the equations may not be perfectly balanced among a large number of warps.
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Figure 7.5: Design space exploration on the S2050 GPU.

Therefore, the value of Cθ has a significant impact on performance. Its influence

is characterized in Figure 7.5. The performance of the three pathway models

varies as the number of C threads per trajectory is modified. As expected, over-

estimatingMθ does not have a significant impact on the overall performance since

the associated memory accesses are seldom scheduled in the execution pipeline.
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Model scale Cluster run-time(s)
Pathway model Trajectories Steps |x| CPU GPU Speedup

EGF-NGF 3× 106 104 32 4985 191.4 26×
Segm. clock 3× 106 5× 104 16 17881 543.6 32.9×

Thrombin-MLC 3× 104 2× 106 105 132926 2044 65×

Table 7.2: Comparative performance of a cluster of CPU to multiple GPUs.

Run-time (s)
Pathway model Trajectories Näıve Fine-grained Speedup

EGF-NGF 105 23.82 23.33 2.0%
Segmentation clock 105 90.49 66.06 36.9%

Thrombin-MLC 105 22,512.00 15,749.00 42.9%

Table 7.3: Performance of the fine-grained method, compared to a näıve GPU
implementation, for trajectories generated on a single GPU.

The number of trajectories was chosen so that the resulting DBN approxi-

mation was of sufficiently good quality. The performance of Thrombin-MLC on

the CPU cluster was so slow that a smaller number of trajectories was utilised.

The overall results are shown in Table 7.2.

The benefit of this code generation method, which uses the fine-grained par-

allel distribution of the computation of each trajectory, is highlighted by com-

paring it with an alternative implementation which näıvely exploits the parallel

nature of the trajectories, but does not attempt to minimize the working set by

sharing it over several threads. Th näıve version follows the conventional wis-

dom that a large number of threads are to be made available to the GPU, and

their scheduling is to be handled automatically by the hardware. To achieve the

required large number of threads, the working set for all trajectories had to be

placed in the global memory. The performance of the näıve version is compared

with the results of this method in Table 7.3.

The S2050 GPUs allows the execution of up to 2 interleaved warps without

stalls, as long as all the operations are issued in two cycles. However, some of the

operations can require more issue cycles (i.e. division). For these reasons, the

optimal choice of Cθ and Mθ is not straight forward and is obtained through pro-

filing. The configurations leading to the design points with the best performance

in the experiments are presented in Table 7.4.
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Pathway model Parallel trajectories Cθ Mθ

EGF-NGF 64 8 2
Segmentation clock 128 4 1

Thrombin-MLC 16 22 4

Table 7.4: Optimized SM configuration for the presented models.

7.5 Summary

This chapter suggests an automatic method to realize fine-grained parallel ap-

plications on GPU platforms. In particular, this chapter has described how the

instruction level parallelism available in a high dimensional system of differential

equations can be exploited on the GPU.

The main challenge was to reorganise the computation in order to utilize

the significant amount of fine-grained parallelism that exists between the model

equations, in addition to the coarse-grained parallelism which exists between

computed trajectories. A näıve GPU implementation, where parallel trajectories

are assigned to parallel threads, does not scale well for large biopathways models.

The chief contribution of this chapter is a novel code generation method, in

which load balancing of heterogeneous threads via a static timing model delivered

significant performance. This method works well for models of large biochemical

networks.

This novel GPU implementation is compared both against a conventional

GPU implementation as well as a CPU implementation. As indicated by the re-

sults, even cluster based implementations begin to consume unreasonable amounts

of resources as the models get larger and more complex. The code generation

method takes advantage of the fine-grained parallelism available in the model

equations and produces CUDA code that is optimized for the architecture at

hand. Using 4 GPUs, up to 65× speedup is achieved compared to a 10 CPU

core implementation, with a roughly 43% improvement over a conventional, näıve

GPU implementation.

While this chapter uses systems biology as the driving application, the key

contribution is the principle by which compute tasks should be distributed among

a set of heterogeneous GPU threads given the resource and execution constraints
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of the device. By segregating computation and global memory accesses, a lower

number of threads is sufficient to fill the GPU pipelines. This also leads to a

smaller local memory footprint. This method is effective for other fine-grained

parallel applications, such as many body simulations, that have significant read

sharing.
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CHAPTER 8

CONCLUSIONS

This thesis described how to generate efficient code through methods that in-

tegrate mapping, code rewriting, optimizations and compilation. Information

from the compilation step augments the mapping decisions, such that the code

structure can be reorganized to match the platform constraints. Therefore, a

mapping solution is not committed before the platform-specific performance of

its components is determined. These code generation methods ensured the fea-

sibility and efficiency of the generated solutions.

Efficient code can be generated for both FPGA and GPU platforms, de-

spite the complex interactions between their various resources. The methods

described cover a broad spectrum of parallelism exposed by the applications.

First, the methods showed how to use coarse-grained parallelism exposed by

StreamIt applications, and how to use reorganization opportunities exposed by

the application representation. On FPGAs (Chapter 3), replication and folding

of pre-synthesized filters was at the base of the code generation algorithm. On

GPUs (Chapters 4 and 5), multiple instances of several graph partitions can be

executed in parallel. In addition, parallelism between filter iterations allowed

splitting each partition’s working set among multiple GPU threads.

Second, the methods were applied to applications that expose fine-grained

parallelism. Chapter 6 showed how to select a feasible subset of vector instruc-

tions that match the available parallelism, and how to fold the floating-point

operations included in the instructions onto a smaller set of execution units,

using the regular structure of the vector operations. Chapter 7 showed that par-

allel computation, comprising of floating-point operations, could be split with

little overhead among a set of threads.

A distinguishing feature of the methods described is the wide range (in terms

of application size) of accepted input applications. The code generation methods
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take into account how the application was transformed by the platform-specific

compilation tools, and adjust accordingly the mapping and optimization deci-

sions (i.e. adjust the amount of folding on FPGAs, or the split factor of the

working set on the GPUs). Hence, the integrated code generation was suc-

cessful, irrespective of the input application size, up to platform specific limits.

Obviously, performance of larger applications could benefit to a smaller degree

from parallel optimizations because they increased resource usage.

Consequently, for implementations which could produce a feasible solution,

one was generated, considering the resource constraints. This is in contrast with

regular methods, which generate solutions based on annotations. The described

code generation methods did not involve user annotations as they extracted all

the necessary information from the application structure. The methods validated

the hypothesis that providing flexibility in the application structure, and post-

poning the mapping of this structure until it can be matched with the platform,

in an integrated code generation step, can improve accuracy, without resorting to

annotations. The code generation methods were built around existing platform

compilers and could utilise readily available resource estimations. The flexible

structure exposed by the application code was essential, as it described valu-

able information that the user was willing to provide, but which could not be

extracted automatically.

The GPU code generation methods provided optimized solutions with poly-

nomial complexity. On FPGAs, however, only throughput-optimized designs

could be obtained with equivalent complexity. The latency improvement com-

ponent of the FPGA methods finely tuned the initial solution through a meta-

heuristic step, which is heavily pruned and converged fast to a solution for most

practical cases. This is a small price to pay, given the FPGA synthesis time.

The code generation for the two platforms augmented complementary goals.

The FPGA platform favors the realisation of low-latency designs, at a penalty

for throughput, which is offset by the FPGA operating frequency. The ability to

reduce latency justified the introduction of latency constraints for the code gen-

eration from StreamIt, and it decreased the overhead introduced by the custom
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SIMD coprocessor.

The GPU platform favors the realisation of high-throughput designs, but

performs poorly in terms of latency. It requires coarse packets of data to be

accumulated before computation can start. The host CPU to GPU memory

transfer also adds to the total latency. All these costs could only be offset by a

large number of parallel stream executions, hence data had to be delayed and

accumulated in channels before being processed.

StreamIt benchmarks were accelerated up to 6.3× on FPGAs and 3.8× on a

GPU, compared to mapping methods that used directly the application struc-

ture. Fine-grained methods also yielded up to 5.1× speedup for floating-point

instructions on FPGAs and 1.4× improvement on GPUs, compared to regular

implementations.

8.1 Future Work

Each of the directions investigated described a complementary code generation

path. Besides incremental improvements, it is possible to generate code targeting

a heterogeneous platform which combines FPGAs and GPUs. This direction

is open to exploration, as applications that would benefit from the combined

performance of both platforms, as well as justify the communication overhead,

have yet to be identified.

8.1.1 FPGA

The replication / folding mechanism allows pre-synthesized blocks of computa-

tion to be easily attached / disconnected. The vector instructions in Chapter 6

have a feature that allows them to drive a run-time defined number of folded

execution units. This leads to slightly larger (generic) multiplexers inside the

vector instruction control block. However, this paves the path for the utiliza-

tion of partial reconfiguration techniques. The algorithm which determines the

number of floating-point execution units of each type can be replaced with an

FPGPA-based run-time counterpart that swaps in and out execution units based

on application needs. Only the execution units are reconfigured, while the rest of

the circuit is not modified. This would enable applications with time dependent
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workload to benefit from localized, or function specific, throughput improve-

ments, as the vector instructions can change their latency based on the modified

number of available execution units.

A different FPGA-specific improvement may address the FIFO channels be-

tween replicated filters. Enhanced communication channels between filters would

allow direct connection of filters running across different frequency domains.

Such an improvement would allow automatically generated filters to be com-

bined without penalty due to any mismatch in their running frequencies. The

introduction of several clock domains would not alter the space unrolling algo-

rithms presented.

8.1.2 GPU

The current GPU code generation methods address nVidia platforms. A dis-

crepancy observed while porting for AMD GPUs suggests that some changes

are required for optimized mapping on these GPUs. The C and M threads

were associated with different wave-fronts (the AMD equivalent of warps) on

an ATI HD5870 GPU board. However, while the speedups achieved were lin-

ear, the experiments showed that usingM threads incurred an unexpected 30%

of overhead. While AMD documentation does not fully disclose the wavefront

scheduling algorithm, it is mentioned that a pair of wave-fronts hides all the ALU

execution latency [3]. Therefore, one possible explanation is that if this pair of

wavefronts contains only C threads, the scheduler disadvantagesM threads, and

they are unable to load the data in time. The M threads became a liability

instead.

In addition, the performance of the code generation method in Chapter 4 is

tightly dependent of the working set layout. The number of stream iterations

that can be run in parallel depends on their individual working set size. There-

fore, performance may also be improved by the introduction of a working set

layout algorithm that performs better than the current heuristic.
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APPENDIX A

ADDITIONAL BENCHMARKS

A custom version of FFT, named FFT’ is described below. It suits code gener-

ation for FPGA platforms. This implementation revolves around the expensive

floating-point operations. Each floating-point operator is encapsulated in a dis-

tinct filter, and it is implemented using one of the pipelines described in Table 6.1.

Because the filter serializes the inputs, the initiation interval of the pipeline is

assumed to be 2 cycles. Using this implementation, the replication algorithm

in Chapter 3 can better tune the resources to obtain the fastest design. The

implementation receives as an input parameter the vector size N .

/////////////////

// Entry point //

/////////////////

float->float pipeline FFT’(N) {

add splitjoin {

split roundrobin(2*n);

for(int i=0; i<2; i++) {

add pipeline {

add FFTReorder(n);

for(int j=2; j<=n; j*=2)

add CombineDFT(j);

}

}

join roundrobin(2*n);

}

}

////////////////////////////////////////////////////////////////
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// Floating point operators encapsulated in StreamIt filters //

////////////////////////////////////////////////////////////////

float->float filter Multiply() {

work push 1 pop 2 {

float a = pop();

float b = pop();

float c = a*b;

push (c);

}

}

float->float filter Add() {

work push 1 pop 2 {

float a = pop();

float b = pop();

float c = a+b;

push (c);

}

}

float->float filter Subtract() {

work push 1 pop 2 {

float a = pop();

float b = pop();

float c = a-b;

push (c);

}

}

////////////////////////////////////////////////

// Tables for constant sin and cos functions //

////////////////////////////////////////////////

void->float filter GenerateWi(int n) {
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float[n] w;

init {

float wn_r = (float)cos(2 * 3.141592654 / n);

float wn_i = (float)sin(-2 * 3.141592654 / n);

float real = 1;

float imag = 0;

float next_real, next_imag;

for (int i=0; i<n; i+=2) {

w[i] = real;

w[i+1] = imag;

next_real = real * wn_r - imag * wn_i;

next_imag = real * wn_i + imag * wn_r;

real = next_real;

imag = next_imag;

}

}

work push 2*n pop 0 {

int i;

for (i = 0; i < n; i += 2) {

float weight_real = w[i];

float weight_imag = w[i+1];

push (weight_real);

push (weight_imag);

push (weight_imag);

push (weight_real);

}

}

}

//////////////////////////////////////////////////

// Cross combine the tables and the input data //
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//////////////////////////////////////////////////

float->float pipeline CrossComp(int n) {

add splitjoin {

split roundrobin(1,0);

add splitjoin {

split duplicate;

add Identity<float>;

add Identity<float>;

join roundrobin(1);

}

add GenerateWi(n);

join roundrobin(1);

}

add Multiply();

add splitjoin {

split roundrobin(1);

add Subtract();

add Add();

join roundrobin(1);

}

}

////////////////////

// One DFT round //

////////////////////

float->float pipeline CombineDFT(int n) {

add splitjoin {

split roundrobin(n);

add Identity<float>;

add CrossComp(n);
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join roundrobin(1);

}

add splitjoin {

split duplicate;

add Add();

add Subtract();

join roundrobin(n);

}

}

//////////////////////

// Data reordering //

//////////////////////

float->float filter FFTReorderSimple(int n) {

int totalData;

init {

totalData = 2*n;

}

work push 2*n pop 2*n {

int i;

for (i = 0; i < totalData; i+=4) {

push(peek(i));

push(peek(i+1));

}

for (i = 2; i < totalData; i+=4) {

push(peek(i));

push(peek(i+1));

}

for (i=0;i<n;i++) {

pop();

pop();
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}

}

}

float->float pipeline FFTReorder(int n) {

for(int i=1; i<(n/2); i*= 2)

add FFTReorderSimple(n/i);

}
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