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Summary

This thesis focuses on designing efficient algorithms for solving large scale struc-

tured matrix optimization problems, which have many applications in a wide range

of fields, such as signal processing, system identification, image compression, molec-

ular conformation, sensor network localization and so on. We introduce a partial

proximal point algorithm, in which only some of the variables appear in the quadratic

proximal term, for solving nuclear norm regularized matrix least squares problems

with linear equality and inequality constraints. We establish the global and local

convergence of our proposed algorithm based on the results for the general par-

tial proximal point algorithm. The inner subproblems, reformulated as a system of

semismooth equations, are solved by an inexact smoothing Newton method, which

is proved to be quadratically convergent under the constraint nondegeneracy con-

dition, together with the strong semismoothness property of the soft thresholding

operator.

As a special case where the nuclear norm regularized matrix least squares prob-

lem has equality constraints only, we introduce a semismooth Newton-CG method

to solve the unconstrained inner subproblem in each iteration. We show that the

positive definiteness of the generalized Hessian of the objective function in the in-

ner subproblem is equivalent to the constraint nondegeneracy of the corresponding

xi
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primal problem, which is a key property for applying the semismooth Newton-CG

method to solve the inner subproblems efficiently. The global and local superlinear

(quadratic) convergence of the semismooth Newton-CG method is also established.

To solve large scale convex quadratic semidefinite programming (QSDP) prob-

lems, we extend the accelerated proximal gradient (APG) method to the inexact

setting where the subproblem in each iteration is progressively solved with suffi-

cient accuracy. We show that the inexact APG method enjoys the same superior

convergent rate of O(1/k2) as the exact version.

Extensive numerical experiments on a variety of large scale nuclear norm reg-

ularized matrix least squares problems show that our proposed partial proximal

point algorithm is very efficient and robust. We can successfully find a low rank

approximation of the target matrix while maintaining the desired linear structure

of the original system. Numerical experiments on some large scale convex QSDP

problems demonstrate the high efficiency and robustness of the proposed inexact

APG algorithm. In particular, our inexact APG algorithm can efficiently solve the

H-weighted nearest correlation matrix problem, where the given weight matrix H

is highly ill-conditioned.



Chapter 1
Introduction

In this thesis, we focus on designing algorithms for solving large scale structured

matrix optimization problems. In particular, we are interested in nuclear norm reg-

ularized matrix least squares problems and linearly constrained convex semidefinite

programming problems. Let <p×q be the space of all p× q matrices equipped with

the standard trace inner product and its induced Frobenius norm ‖ · ‖. The general

structured matrix optimization problem we consider in this thesis can be stated as

follows:

min
{
f(X) + g(X) : X ∈ <p×q

}
, (1.1)

where f : <p×q → < and g : <p×q → < ∪ {+∞} are proper, lower semi-continuous

convex functions (possibly nonsmooth). In many applications, such as statistical

regression and machine learning, f is a loss function which measures the difference

between the observed data and the value provided by the model. The quadratic

loss function, e.g., the linear least squares loss function, is a common choice. The

function g, which is generally nonsmooth, favors certain desired properties of the

computed solution, and it can be chosen by the user based on the available prior

information about the target matrix. In practice, the data matrixX, which describes

the original system, has some or all of the following properties:

1. The computed solution X should be positive semidefinite;

1



2 Chapter 1. Introduction

2. In order to reduce the complexity of the whole system, X should be of low

rank;

3. Some entries of X are in the confidence interval which indicates the reliability

of the statistical estimation;

4. All entries of X should be nonnegative because they correspond to physically

nonnegative quantities such as density or image intensity;

5. X belongs to some special classes of matrices, e.g., Hankel matrices arising

from linear system realization, (doubly) stochastic matrices which describe

the transition probability of a Markov chain, and so on.

1.1 Nuclear norm regularized matrix least squares

problems

In the first part of this thesis, we consider the following nuclear norm regularized

matrix least squares problem with linear equality and inequality constraints:

min
X∈<p×q

1

2
‖A(X)− b‖2 + 〈C,X〉+ ρ‖X‖∗

s.t. B(X) ∈ d+Q,
(1.2)

where ‖X‖∗ denotes the nuclear norm of X defined as the sum of all its singular

values, A : <p×q → <m and B : <p×q → <s are linear maps, C ∈ <p×q, b ∈ <m, d ∈

<s, ρ is a given positive parameter, and Q = {0}s1 × <s2+ is a polyhedral convex

cone with s = s1 + s2. In this case, the convex functions f and g in (1.1) are of the

following forms:

f(X) =
1

2
‖A(X)− b‖2 + 〈C,X〉 and g(X) = ρ‖X‖∗ + δ(X | D1),

where D1 = {X ∈ <p×q | B(X) ∈ d +Q} is the feasible set of (1.2) and δ(· | D1) is

the indicator function on the set D1. In many applications, such as signal processing

[68, 111, 112, 129], molecular structure modeling for protein folding [86, 87, 122] and
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computation of the greatest common divisor (GCD) of unvariate polynomials [27, 62]

from computer algebra, we need to find a low rank approximation of a given target

matrix while preserving certain structures. The nuclear norm function has been

widely used as a regularizer which favors a low rank solution of (1.2). In [25], Chu,

Funderlic and Plemmons addressed some theoretical and numerical issues concerning

structured low rank approximation problems. In many data analysis problems, the

collected empirical data, possibly contaminated by noise, usually do not have the

specified structure or the desired low rank. So it is important to find the nearest low

rank approximation of the given matrix while maintaining the underlying structure

of the original system. In practice, the data to be analyzed is very often nonnegative

such as those corresponding to concentrations or intensity values, and it would be

preferable to take into account such structural constraints.

1.1.1 Existing models and related algorithms

In this subsection, we give a brief review of existing models involving the nuclear

norm function and related variants. Recently there are intensive studies on the

following affine rank minimization problem:

min
{

rank(X) : A(X) = b, X ∈ <p×q
}
. (1.3)

The problem (1.3) has many applications in diverse fields, see, e.g., [1, 2, 19, 37,

44, 82, 102]. (Note that there are some special rank approximation problems that

have known solutions. For example, the low rank approximation of a given matrix

in Frobenius norm can be derived via singular value decomposition by the classic

Eckart-Young Theorem [35].) However, this affine rank minimization problem is

generally an NP-hard nonconvex optimization problem. A tractable heuristic intro-

duced in [36, 37] is to minimize the nuclear norm over the same constraints as in

(1.3):

min
{
‖X‖∗ : A(X) = b, X ∈ <p×q

}
. (1.4)
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The nuclear norm function is the greatest convex function majorized by the rank

function over the unit ball of matrices with operator norm at most one. In [19, 21,

51, 63, 101, 102], the authors established remarkable results which state that under

suitable incoherence assumptions, a p × q matrix of rank r can be recovered with

high probability from uniformly random sampled entries of size slightly larger than

O((p+ q)r) by solving (1.4). A frequently used alternative to (1.4) for accommo-

dating problems with noisy data is to consider solving the following matrix least

squares problem with nuclear norm regularization (see [77, 121]):

min
{1

2
‖A(X)− b‖2 + ρ‖X‖∗ : X ∈ <p×q

}
, (1.5)

where ρ is a given positive parameter. It is known that (1.4) or (1.5) can be equiv-

alently reformulated as a semidefinite programming (SDP) problem (see [36, 102]),

which has one (p + q) × (p + q) semidefinite constraint and m linear equality con-

straints. One can use standard interior-point method based semidefinite program-

ming solvers such as SeDuMi [114] and SDPT3 [119] to solve this SDP problem.

However, these solvers are not suitable for problems with large p + q or m since in

each iteration of these solvers, a large and dense Schur complement equation must

be solved for computing the search direction even when the data is sparse.

To overcome the difficulties faced by interior-point methods, several algorithms

have been proposed to solve (1.4) or (1.5) directly. In [102], Recht, Fazel and

Parrilo considered the projected subgradient method to solve (1.4). However, the

convergence of the projected subgradient method considered in [102] is still unknown

since problem (1.4) is a nonsmooth problem, and the convergence is observed to be

very slow for large scale matrix completion problems. Recht, Fazel and Parrilo [102]

also considered the method of using the low-rank factorization technique introduced

by Burer and Monteiro [15, 16] to solve (1.4). The advantage of this method is

that it requires less computer memory for solving large scale problems. However,

the potential difficulty of this method is that the low rank factorization formulation

is nonconvex and the rank of the optimal matrix is generally unknown. In [17],

Cai, Candès and Shen proposed a singular value thresholding (SVT) algorithm for
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solving the following Tikhonov regularized version of (1.4):

min
{
τ‖X‖∗ +

1

2
‖X‖2 : A(X) = b, X ∈ <p×q

}
, (1.6)

where τ is a given positive parameter. The SVT algorithm is a gradient method

applied to the dual problem of (1.6). Ma, Goldfarb and Chen [77] proposed a fixed

point algorithm with continuation (FPC) for solving (1.5) and a Bregman iterative

algorithm for solving (1.4). Their numerical results on randomly generated matrix

completion problems demonstrated that the FPC algorithm is much more efficient

than the semidefinite programming solver SDPT3. In [121], Toh and Yun proposed

an accelerated proximal gradient algorithm (APG), which terminates in O(1/
√
ε)

iterations for achieving ε-optimality (in terms of the function value), to solve the

unconstrained matrix least squares problem (1.5). Their numerical results show

that the APG algorithm is highly efficient and robust in solving large-scale random

matrix completion problems. In [71], Liu, Sun and Toh considered the following

nuclear norm minimization problem with linear and second order cone constraints:

min
{
‖X‖∗ : A(X) ∈ b+K, X ∈ <p×q

}
, (1.7)

where K = {0}m1 ×Km2 , and Km2 stands for the m2-dimensional second order cone

(or ice-cream cone, or Lorentz cone) defined by

Km2 := {x = (x0;x) ∈ < × <m2−1 : ‖x‖ ≤ x0}.

They developed three inexact proximal point algorithms (PPA) in the primal, dual

and primal-dual forms with comprehensive convergence analysis built upon the clas-

sic results of the general PPA established by Rockafellar [108, 107]. Their numerical

results demonstrated the efficiency and robustness of these three forms of PPA in

solving randomly generated matrix completion problems and real matrix completion

problems. Moreover, they showed that the SVT algorithm [17] is just one outer it-

eration of the exact primal PPA, and the Bregman iterative method [77] is a special

case of the exact dual PPA.
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However, all the above mentioned models and related algorithms cannot address

the following goal: given the observed data matrix (possibly contaminated by noise),

we want to find the nearest low rank approximation of the target matrix while

maintaining the prescribed structure of the original system. In particular, the APG

method considered in [121] cannot be applied directly to solve (1.2).

1.1.2 Motivating examples

A strong motivation for proposing the model (1.2) arises from finding the nearest

low rank approximation of transition matrices. For a given data matrix P̃ which

describes the full distribution of a random walk through the entire data set, the

problem of finding the low rank approximation of P̃ can be stated as follows:

min
X∈<n×n

{1

2
‖X − P̃‖2 + ρ‖X‖∗ : Xe = e, X ≥ 0

}
, (1.8)

where e ∈ <n is the vector of all ones and X ≥ 0 denotes the condition that all

entries of X are nonnegative. In [70], Lin proposed the Latent Markov Analysis

(LMA) approach for finding the reduced rank approximations of transition matri-

ces. The LMA is applied to clustering such that the inferred cluster relationships

can be described probabilistically by the reduced-rank transition matrix. In [24],

Chennubhotla exploited the spectral properties of the Markov transition matrix to

obtain low rank approximation of the original transition matrix in order to develop

a fast eigen-solver for spectral clustering. Another application of finding the low

rank approximation of the transition matrix comes from computing the personalized

PageRank [6] which describes the backlink-based page quality around user-selected

pages. In many applications, since only partial information of the original transition

matrix is available, it is also important to estimate the missing entries of P̃ . For

example, transition probabilities between different credit ratings play a crucial role

in the credit portfolio management. If our primary interest is in a specific group, the

number of observations of available rating transitions is very small. Due to lack of

rating data, it is important to estimate the rating transition matrix in the presence
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of missing data [5, 59].

Another strong motivation for considering the model (1.2) comes from finding

low rank approximations of doubly stochastic matrices with a prescribed entry. A

matrix M ∈ <n×n is called doubly stochastic if it is nonnegative and all its row and

column sums are equal to one. Then the problem for matching the first moment of

M with sparsity pattern E can be stated as follows:

min
X∈<n×n

{1

2
‖XE − M̃E‖2 + ρ‖X‖∗ : Xe = e, XT e = e, X11 = M11, X ≥ 0

}
, (1.9)

where M̃E dentoes the partially observed data (possibly with noise). This problem

arose from numerical simulation of large circuit networks. In order to reduce the

complexity of the simulation of the whole system, the Padé approximation with

Krylov subspace method, such as the Lanczos algorithm, is a useful tool for gen-

erating a lower order approximation to the linear system matrix which describes

the large linear network [3]. The tridiagonal matrix M produced by the Lanczos

algorithm generally is not doubly stochastic. If the original system matrix is doubly

stochastic, then we need to find a low rank approximation of M such that it is

doubly stochastic and matches the first moment of M .

1.2 Convex semidefinite programming problems

In the second part of this thesis, we consider the following linearly constrained

convex semidefinite programming problem:

min
X∈Sn

f(X)

s.t. A(X) = b, (1.10)

X � 0,

where f is a smooth convex function on Sn, A : Sn → Rm is a linear map, b ∈ Rm,

and Sn is the space of n× n symmetric matrices equipped with the standard trace

inner product. The notation X � 0 means that X is positive semidefinite. In this
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case, the function g in (1.1) takes the form: g(X) = δ(X | D2), where D2 = {X ∈

Sn | A(X) = b, X � 0} is the feasible set of (1.10). Let A∗ be the adjoint of A.

The dual problem associated with (1.10) is given by

max f(X)− 〈∇f(X), X〉+ 〈b, p〉

s.t. ∇f(X)−A∗p− Z = 0, (1.11)

p ∈ <m, Z � 0, X � 0.

The problem (1.10) contains the following important special case of convex quadratic

semidefinite programming (QSDP):

min
{1

2
〈X, Q(X)〉+ 〈C, X〉 : A(X) = b,X � 0

}
, (1.12)

where Q : Sn → Sn is a given self-adjoint positive semidefinite linear operator and

C ∈ Sn. The Lagrangian dual problem of (1.12) is given by

max
{
− 1

2
〈X, Q(X)〉+ 〈b, p〉 : A∗(p)−Q(X) + Z = C,Z � 0

}
. (1.13)

A typical example of QSDP is the nearest correlation matrix problem [55], where

given a symmetric matrix U ∈ Sn and a linear map L : Sn → Rn×n, we want to

solve

min
{1

2
‖L(X − U)‖2 : Diag(X) = e, X � 0

}
, (1.14)

where e ∈ <n is the vector of all ones. If we let Q = L∗L and C = −L∗L(U) in

(1.14), then we get the QSDP problem (1.12). A well studied special case of (1.14)

is the W -weighted nearest correlation matrix problem, where L = W 1/2 ~ W 1/2

for a given W ∈ Sn++ and Q = W ~ W . Note that for U ∈ <n×r, V ∈ <n×s,

U ~ V : <r×s → Sn is the symmetrized Kronecker product linear map defined by

U ~ V (M) = (UMV T + VMTUT )/2.

There are several methods available for solving (1.14), which include the alter-

nating projection method [55], the quasi-Newton method [78], the inexact semis-

mooth Newton-CG method [97] and the inexact interior-point method [120]. All

these methods, excluding the inexact interior-point method, rely critically on the
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fact that the projection of a given matrix X ∈ Sn onto Sn+ has an analytical formula

with respect to the norm ‖W 1/2(·)W 1/2‖. However, all above mentioned techniques

cannot be extended to efficiently solve the H-weighted case [55] of (1.14), where

L(X) = H ◦X for some H ∈ Sn with nonnegative entries and Q(X) = (H ◦H)◦X,

with “◦” denoting the Hardamard product of two matrices defined by (A ◦ B)ij =

AijBij. In [50], a H-weighted kernel matrix completion problem of the form

min
{
‖H ◦ (X − U)‖ | A(X) = b, X � 0

}
(1.15)

is considered, where U ∈ Sn is a given kernel matrix with missing entries. The

aforementioned methods are not well suited for theH-weighted case of (1.14) because

there is no explicitly computable formula for the following problem

min
{1

2
‖H ◦ (X − U)‖2 : X � 0

}
, (1.16)

where U ∈ Sn is a given matrix. To tackle the H-weighted case of (1.14), Toh

[118] proposed an inexact interior-point method for a general convex QSDP includ-

ing the H-weighted nearest correlation matrix problem. Recently, Qi and Sun [98]

introduced an augmented Lagrangian dual method for solving the H-weighted ver-

sion of (1.14), where the inner subproblem was solved by a semismooth Newton-CG

(SSNCG) method. In her PhD thesis, Zhao [137] designed a semismooth Newton-

CG augmented Lagrangian method and analyzed its convergence for solving convex

quadratic programming over symmetric cones. The augmented Lagrangian dual

method avoids solving (1.16) directly and it can be much faster than the inexact

interior-point method [118]. However, if the weight matrix H is very sparse or

ill-conditioned, the conjugate gradient (CG) method would have great difficulty in

solving the linear system of equations in the semismooth Newton method, and the

augmented Lagrangian method would not be efficient or even fail. Another draw-

back of the augmented Lagrangian dual method in [98] is that the computed solution

X usually is not positive semidefinite. A post processing step is generally needed to

make the computed solution positive semidefinite.
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Another example of QSDP comes from the civil engineering problem of esti-

mating a positive semidefinite stiffness matrix for a stable elastic structure from r

measurements of its displacements {u1, . . . , ur} ⊂ <n in response to a set of static

loads {f1, . . . , fr} ⊂ <n [130]. In this application, one is interested in the QSDP

problem:

min
{
‖f − L(X)‖2 : X � 0

}
, (1.17)

where L : Sn → <n×r is defined by L(X) = XU , and f = [f1, . . . , fr], U =

[u1, . . . , ur]. In this case, the corresponding map Q = L∗L is given by Q(X) =

(XB +BX)/2 with B = UUT .

The main purpose of the second part of this thesis is to design an efficient

algorithm to solve the problem (1.10). The algorithm we propose here is based

on the APG method of Beck and Teboulle [4] (the method is called FISTA in [4]),

where in the kth iteration with iterate Xk, a subproblem of the following form must

be solved:

min
{
〈∇f(Xk), X −Xk〉+

1

2
〈X −Xk, Hk(X −Xk)〉 : A(X) = b, X � 0

}
, (1.18)

where Hk : Sn → Sn is a given self-adjoint positive definite linear operator. In

FISTA [4], Hk is restricted to LI, where I : Sn → Sn denotes the identity map

and L is a Lipschitz constant of ∇f . More significantly, for FISTA in [4], the

subproblem (1.18) must be solved exactly to generate the next iterate Xk+1. In

this thesis, we design an inexact APG method which overcomes the two limitations

just mentioned. Specifically, in our inexact algorithm, the subproblem (1.18) is

only solved approximately and Hk is not restricted to be a scalar multiple of I. In

addition, we are able to show that if the subproblem (1.18) is progressively solved

with sufficient accuracy, then the number of iterations needed to achieve ε-optimality

(in terms of the function value) is also proportional to 1/
√
ε, just as in the exact

version of the APG method.

Another strong motivation for designing an inexact APG algorithm comes from
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the recent paper [22], which considered the following regularized inverse problem:

min
x∈<p

{1

2
‖Φx− y‖2 + λ‖x‖B

}
, (1.19)

where Φ : Rp → Rn is a given linear map and ‖x‖B is the atomic norm induced

by a given compact set of atoms B in Rp. It appears that the APG algorithm is

highly suitable for solving (1.19). Note that in each iteration of the APG algorithm,

a subproblem of the form

min
z∈<p

{
µ‖z‖B +

1

2
‖z − x‖2

}
≡ min

y∈<p

{1

2
‖y − x‖2 | ‖y‖∗B ≤ µ

}
must be solved, where ‖ · ‖∗B is the dual norm of ‖ · ‖B. However, for most choices

of B, the subproblem does not admit an analytical solution and has to be solved

numerically. As a result, the subproblem is never solved exactly. In fact, it may

be computationally very expensive to solve the subproblem to high accuracy. Our

inexact APG algorithm thus has the attractive computational advantage that the

subproblems need only be solved with progressively better accuracy while still main-

taining the global iteration complexity.

Finally we should mention that the fast gradient method of Nesterov [90] has

also been extended in [30] to the problem

min{f(x) | x ∈ Q}, (1.20)

where the function f is convex (not necessarily smooth) on the closed convex set Q,

and is equipped with the so-called first-order (δ, L)-oracle where for any y ∈ Q, we

can compute a pair (fδ,L(y), gδ,L(y)) such that

0 ≤ f(x)− fδ,L(y)− 〈gδ,L(y), x− y〉 ≤ L

2
‖x− y‖2 + δ ∀ x ∈ Q.

In the inexact-oracle fast gradient method in [30], the subproblem of the form

min
{
〈gδ,L(y), x− y〉+

L

2
‖x− y‖2 | x ∈ Q

}
in each iteration must be solved exactly. Thus the kind of the inexactness considered

in [30] is very different from what we consider in this thesis.
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1.3 Contributions of the thesis

In the first part of this thesis, we study a partial proximal point algorithm (PPA) for

solving (1.2), in which only some of the variables appear in the quadratic proximal

term. Based on the results of the general partial PPA studied by Ha [52], we analyze

the global and local convergence of our proposed partial PPA for solving (1.2). In

[52], Ha presented a modification of the general PPA studied by Rockafellar [108], in

which only some variables appear in the proposed iterative procedure. The partial

PPA was further analyzed by Bertsekas and Tseng [11], in which the close rela-

tion between the partial PPA and some parallel algorithms in convex programming

was revealed. In [60], Ibaraki and Fukushima proposed two variants of the partial

proximal method of multipliers for solving convex programming problems with lin-

ear constraints only, in which the objective function is separable. The convergence

analysis of their proposed two variants of algorithms is built upon the results of the

partial PPA by Ha [52]. We note that the proposed partial PPA requires solving an

inner subproblem with linear inequality constraints at each iteration. To handle the

inequality constraints, Gao and Sun [42] recently designed a quadratically conver-

gent inexact smoothing Newton method, which was used to solve the least squares

semidefinite programming with equality and inequality constraints. Their numerical

results demonstrated the high efficiency of the inexact smoothing Newton method.

This strongly motivated us to use the inexact smoothing Newton method to solve

inner subproblems for achieving fast convergence. For the inner subproblem, due

to the presence of inequality constraints, we reformulate the problem as a system

of semismooth equations. By defining a smoothing function for the soft threshold-

ing operator, we then introduce an inexact smoothing Newton method to solve the

semismooth system, where at each iteration the BiCGStab iterative solver is used

to approximately solve the generated linear system. Based on the classic results of

nonsmooth analysis by Clarke [26], we study the properties of the epigraph of the

nuclear norm function, and develop a constraint nondegeneracy condition, which
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provides a theoretical foundation for the analysis of the quadratic convergence of

the inexact smoothing Newton method.

When the nuclear norm regularized matrix least squares problem (1.2) has equal-

ity constraints only, we introduce a semismooth Newton-CG method, which is prefer-

able to the inexact smoothing Newton method for solving unconstrained inner sub-

problems. We are able to show that the positive definiteness of the generalized

Hessian of the objective function of inner subproblems is equivalent to the con-

straint nondegeneracy of the corresponding primal problems, which is an important

property for successfully applying the semismooth Newton-CG method to solve inner

subproblems. The quadratic convergence of the semismooth Newton-CG method is

established under the constraint nondegeneracy condition, together with the strong

semismoothness property of the soft thresholding operator.

In the second part of this thesis, we focus on designing an efficient algorithm for

solving the linearly constrained convex semidefinite programming problem (1.10). In

recent years there are intensive studies on the theories, algorithms and applications

of large scale structured matrix optimization problems. The accelerated proximal

gradient (APG) method, first proposed by Nesterov [90], later refined by Beck and

Teboulle [4], and studied in a unifying manner by Tseng [123], has proven to be

highly efficient in solving some classes of large scale structured convex optimization

problems. The method has superior convergent rate of O(1/k2) over the classical

projected gradient method [47, 67]. Our proposed algorithm is based on the APG

method introduced by Beck and Teboulle [4] (named FISTA in [4]), where the sub-

problem of the form in (1.18) must be solved in each iteration. A limitation of the

FISTA method in [4] is that the positive definite linear operator Hk is restricted to

LI, where I : Sn → Sn denotes the identity map and L is a Lipschitz constant of

∇f . Note that the number of iterations needed by FISTA to achieve ε-optimality (in

terms of the function value) is proportional to
√
L/ε. In many applications, the Lip-

schitz constant L of∇f is very large, which will cause the FISTA method to converge

very slowly for obtaining a good approximate solution. A more significant limitation
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of the FISTA method in [4] is that the subproblem (1.18) must be solved exactly to

generate the next iterate. However, the subproblem (1.18) generally does not admit

an analytical solution, and it could be computationally expensive to solve the sub-

problem to high accuracy. In this thesis, we design an inexact APG method which

is able to overcome the two limitations just mentioned. Specifically, our inexact

APG algorithm has the attractive computational advantages that the subproblem

(1.18) needs only be solved approximately and Hk is not restricted to be a scalar

multiple of I. In the kth iteration, we are able to choose the positive definite linear

operator of the form Hk = Wk~Wk, where Wk ∈ Sn++. Then the subproblem (1.18)

can be solved very efficiently by the semismooth Newton-CG method introduced by

Qi and Sun in [97] with warm start using the iterate from the previous iteration,

and our inexact APG algorithm can be much more efficient than the state-of-the-art

algorithm (the augmented Lagrangian method in [98]) for solving some large scale

convex QSDP problems arising from the H-weighted case of the nearest correlation

matrix problem (1.14). For the augmented Lagrangian method in [98], when the

map Q associated with the weight matrix H is highly ill-conditioned, then the CG

method has great difficulty in solving the ill-conditioned linear system of equations

obtained by the semismooth Newton method. In addition, we are able to show that

if the subproblem (1.18) is progressively solved with sufficient accuracy, then our

inexact APG method enjoys the same superior convergent rate of O(1/k2) as the

exact version.

It seems that the APG algorithm is very suited for solving the nuclear norm

regularized matrix least squares problem (1.2). In the kth iteration of the APG

method with iterate Xk, a subproblem of the following form must be solved:

min
X∈<p×q

{
〈∇f(Xk), X −Xk〉+

L

2
‖X −Xk‖2 + ρ‖X‖∗ : B(X) ∈ d+Q

}
, (1.21)

where f(X) =
1

2
‖A(X) − b‖2 + 〈C, X〉 and L is the Lipschitz constant of ∇f .

One significant limitation of the APG algorithm is that the subproblem (1.21) must

be solved exactly to generate the next iterate Xk+1. The convergence of the APG
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algorithm with inexact solution of the subproblem (1.21) is still unknown, and we

leave it as an interesting topic for future research.

1.4 Organization of the thesis

The thesis is organized as follows: in Chapter 2, we present some preliminaries that

are critical for subsequent discussions. We show that the soft thresholding operator

is strongly semismooth everywhere, and define a smoothing function of the soft

thresholding operator. In Chapter 3, we introduce a partial proximal point algorithm

for solving nuclear norm regularized matrix least squares problems with equality

and inequality constraints. The inner subproblems, reformulated as a system of

semismooth equations, are solved by a quadratically convergent inexact smoothing

Newton method. In Chapter 4, we introduce a quadratically convergent semismooth

Newton-CG method to solve unconstrained inner subproblems. In Chapter 5, we

design an inexact APG algorithm for solving convex QSDP problems, and show that

it enjoys the same superior worst-case iteration complexity as the exact counterpart.

In Chapter 6, numerical experiments conducted on a variety of large scale nuclear

norm minimization and convex QSDP problems show that our proposed algorithms

are very efficient and robust. We give the final conclusion of the thesis and discuss

a few future research directions in Chapter 7.





Chapter 2
Preliminaries

In this chapter, we give a brief introduction on some basic concepts such as semis-

mooth functions, the B-subdifferential and Clarke’s generalized Jacobian of Lips-

chitz functions. These concepts and properties will be critical for our subsequent

discussions.

2.1 Notations

Let <p×q be the space of all p× q matrices equipped with the standard trace inner

product 〈X, Y 〉 = Tr(XTY ) and its induced Frobenius norm ‖ · ‖. Without loss of

generality, we assume p ≤ q throughout this thesis. For a given X ∈ <p×q, its nuclear

norm ‖X‖∗ is defined as the sum of all its singular values and its operator norm

‖X‖2 is defined as the largest singular value of X. We use the notation X ≥ 0 to

denote that X is a nonnegative matrix, i.e., all entries of X are nonnegative. We let

Sn be the space of all n×n symmetric matrices, Sn+ be the cone of symmetric positive

semidefinite matrices and Sn++ be the set of symmetric positive definite matrices. We

use the notation X � 0 to denote that X is a symmetric positive semidefinite matrix.

For U ∈ <n×r, V ∈ <n×s, U~V : <r×s → Sn is the symmetrized Kronecker product

linear map defined by U ~ V (M) = (UMV T + VMTUT )/2. Let α ⊆ {1, . . . , p}

and β ⊆ {1, . . . , q} be index sets, and X be an p × q matrix. The cardinality of α

17
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is denoted by |α|. We use the notation Xαβ to denote the |α| × |β| submatrix of

X formed by selecting the corresponding rows and columns of X indexed by α and

β, respectively. For any X ∈ <p×q, Diag(X) denotes the vector that is the main

diagonal of X. For any x ∈ <p, Diag(x) denotes the diagonal matrix whose ith

diagonal element is given by xi.

Definition 2.1. We say F : <m −→ <l is directionally differentiable at x ∈ <m if

F ′(x;h) := lim
t→0+

F (x+ th)− F (x)

t
exists

for all h ∈ <m and F is directionally differentiable if F is directionally differentiable

at every x ∈ <m.

Let F : <m −→ <l be a locally Lipschitz function. By Redemacher’s theorem

[109, Section 9.J], F is Fréchet differentiable almost everywhere. Let DF denote the

set of points in <m where F is differentiable. The Bouligand subdifferential of F at

x ∈ <m is defined by

∂BF (x) := {V : V = lim
k→∞

F ′(xk), xk −→ x, xk ∈ DF},

where F ′(x) denotes the Jacobian of F at x ∈ DF . Then the Clarke’s [26] generalized

Jacobian of F at x ∈ <m is defined as the convex hull of ∂BF (x), i.e.,

∂F (x) = conv{∂BF (x)}.

From [100, Lemma 2.2 ], we know that if F is directionally differentiable in a neigh-

borhood of x ∈ <m, then for any h ∈ <m, there exists V ∈ ∂F (x) such that

F ′(x;h) = Vh. The following concept of semismoothness was first introduced by

Mifflin [83] for functionals and was extended by Qi and Sun [100] to vector-valued

functions.

Definition 2.2. We say that F is semismooth at x if

1. F is directionally differentiable at x; and
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2. for any h ∈ <m and V ∈ ∂F (x+ h) with h→ 0,

F (x+ h)− F (x)− V h = o(‖h‖).

Furthermore, F is said to be strongly semismooth at x if F is semismooth at x and

for any h ∈ <m and V ∈ ∂F (x+ h) with h→ 0,

F (x+ h)− F (x)− V h = O(‖h‖2).

2.2 Metric projectors

Let K be a closed convex set in a finite dimensional real Hilbert space X equipped

with a scalar inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let ΠK : X → X

denote the metric projector over K, i.e., for any y ∈ X , ΠK(y) is the unique optimal

solution to the following convex optimization problem:

min
1

2
〈x− y, x− y〉

s.t. x ∈ K.
(2.1)

It is well known [134] that the metric projector ΠK(·) is Lipschitz continuous with

modulus 1 and ‖ΠK(·)‖2 is continuously differentiable. Hence, ΠK(·) is almost

everywhere Fréchet differentiable in X and for every y ∈ X , ∂ΠK(y) is well defined.

The following lemma [81, Proposition 1] provides the general properties of ∂ΠK(·).

Lemma 2.1. Let K ⊆ X be a closed convex set. Then, for any y ∈ X and V ∈

∂ΠK(y), it holds that

(i) V is self-adjoint.

(ii) 〈h, Vh〉 ≥ 0 ∀h ∈ X .

(iii) 〈Vh, h− Vh〉 ≥ 0 ∀h ∈ X .
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For X ∈ Sn, let X+ = ΠSn(X) be the metric projection of X onto Sn+ un-

der the standard trace inner product. Assume that X has the following spectral

decomposition

X = QΛQT , (2.2)

where Λ is the diagonal matrix with diagonal entries consisting of the eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λk > 0 ≥ λk+1 ≥ · · · ≥ λn of X and Q is a corresponding

orthogonal matrix of eigenvectors. Then

X+ = QΛ+Q
T ,

where Λ+ is a diagonal matrix whose diagonal entries are the nonnegative parts of

the respective diagonal entries of Λ. Furthermore, Sun and Sun [115] show that

ΠSn+
(·) is strongly semismooth everywhere in Sn. Define the operator U : Sn −→ Sn

by

U(X)[M ] = Q(Ω ◦ (QTMQ))QT , M ∈ Sn,

where “ ◦ ” denotes the Hadamard product of two matrices and

Ω =

Ek Ω

Ω
T

0

 , Ωij =
λi

λi − λj
, i ∈ {1, . . . , k}, j ∈ {k + 1, . . . , n},

where Ek is the square matrix of ones with dimension k (the number of positive

eigenvalues), and the matrix Ω has all its entries lying in the interval [0, 1]. By

Pang, Sun and Sun [94, Lemma 11], U is an element of the set ∂ΠSn+(X).

2.3 The soft thresholding operator

In this section, we shall show that the soft thresholding operator [17, 71] is strongly

semismooth everywhere. Let Y ∈ <p×q admit the following singular value decom-

position (SVD):

Y = U [Σ 0]V T , (2.3)
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where U ∈ <p×p and V ∈ <q×q are orthogonal matrices, Σ = Diag(σ1, · · · , σp), and

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 are singular values of Y being arranged in non-increasing

order. For each threshold ρ > 0, the soft thresholding operator Dρ is defined as

follows:

Dρ(Y ) = U [Σρ 0]V T , (2.4)

where Σρ = Diag((σ1 − ρ)+, . . . , (σp − ρ)+).

Lemma 2.2. Let G : Sn → Sn be defined by

G(X) = (X − ρI)+ − (−X − ρI)+ , X ∈ Sn .

Then G is strongly semismooth everywhere on Sn.

Proof. This follows directly from the strong semismoothness of (·)+ : Sn → Sn

[115].

Decompose V ∈ <q×q into the form V = [V1 V2] , where V1 ∈ Rq×p and V2 ∈

<q×(q−p). Let the orthogonal matrix Q ∈ <(p+q)×(p+q) be defined by

Q : =
1√
2

U U 0

V1 −V1

√
2V2

 , (2.5)

and Ξ : <p×q → Sp+q be defined by

Ξ(Y ) : =

 0 Y

Y T 0

 , Y ∈ <p×q . (2.6)

Then, by [49, Section 8.6], we know that the symmetric matrix Ξ(Y ) has the fol-

lowing spectral decomposition:

Ξ(Y ) = Q


Σ 0 0

0 −Σ 0

0 0 0

QT , (2.7)
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i.e., the eigenvalues of Ξ(Y ) are ±σi, i = 1, . . . , p, and 0 of multiplicity q− p. Define

gρ : < → < by

gρ(t) := (t− ρ)+ − (−t− ρ)+ =


t− ρ if t > ρ

0 if − ρ ≤ t ≤ ρ

t+ ρ if t < −ρ

, t ∈ < . (2.8)

For any W = PDiag(λ1, · · · , λ(p+q))P
T ∈ Sp+q, define Gρ : Sp+q → Sp+q by

Gρ(W ) := PDiag(gρ(λ1), · · · , gρ(λ(p+q)))P
T = (W − ρI)+ − (−W − ρI)+ .

Then, from Lemma 2.2, we have that Gρ(·) is strongly semismooth everywhere in

Sp+q. By direct calculations, we have

Ψ(Y ) := Gρ(Ξ(Y )) = Q


Σρ 0 0

0 −Σρ 0

0 0 0

QT =

 0 Dρ(Y )

Dρ(Y )T 0

 . (2.9)

Theorem 2.3. The function Dρ(·) is strongly semismooth everywhere in <p×q.

Proof. Let Y ∈ <p×q admit the SVD as in (2.3). We have known that Gρ(·) is

strongly semismooth in Sp+q. This, together with (2.9), proves that Dρ(·) is strongly

semismooth at Y . Since Y is arbitrarily chosen, we have that Dρ(·) is strongly

semismooth everywhere in <p×q.

Note that (2.9) provides an easy way to calculate the derivative, if exists, of Dρ

at Y . We define the following three index sets:

α := {1, . . . , p}, γ := {p+ 1, . . . , 2p}, β := {2p+ 1, . . . , p+ q}. (2.10)

For any λ = (λ1, . . . , λ(p+q))
T ∈ Rp+q and λi 6= ±ρ, i = 1, . . . , p + q, we denote by

Ω the (p + q) × (p + q) first divided difference symmetric matrix of gρ(·) at λ [12]

whose (i, j)th entry is:

Ωij =


gρ(λi)− gρ(λj)

λi − λj
if λi 6= λj,

g′ρ(λi) if λi = λj.
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Proposition 2.4. Let Y ∈ <p×q admit the SVD as in (2.3). If σi 6= ρ, i = 1, . . . , p,

then, for any H ∈ Rp×q, it holds that:

D′ρ(Y )H =
1

2
U
[ (

Ωαα ◦ (H1 +HT
1 ) + Ωαγ ◦ (H1 −HT

1 )
)
V T

1 + 2 (Ωαβ ◦H2)V T
2

]
,

(2.11)

where H1 = UTHV1 and H2 = UTHV2.

Proof. Since σi 6= ρ, i = 1, . . . , p, from (2.7) and (2.9) we obtain the first divided

difference matrix for gρ(·):

Ω =


Ωαα Ωαγ Ωαβ

ΩT
αγ Ωγγ Ωγβ

ΩT
αβ ΩT

γβ Ωββ

 , (2.12)

where

(Ωαα)ij = Ωij =


(σi − ρ)+ − (σj − ρ)+

σi − σj
if σi 6= σj

g′ρ(σi) if σi = σj

, for i, j = 1, . . . , p,

(Ωαγ)ij = Ωi(j+p) =


(σi − ρ)+ + (σj − ρ)+

σi + σj
if σi 6= 0 or σj 6= 0

0 if σi = σj = 0

, for i, j = 1, . . . , p,

(Ωαβ)ij = Ωi(j+2p) =


(σi − ρ)+

σi
if σi 6= 0

0 if σi = 0
, for i = 1, . . . , p, j = 1, . . . , q − p,

Ωγγ = Ωαα, Ωγβ = Ωαβ, and Ωββ = 0.

Note that Ωαα = ΩT
αα and Ωαγ = ΩT

αγ. Then based on the famous result of Löwner

[73], , we have from (2.9) that for any H ∈ <p×q

Ψ′(Y )H = G′ρ(Ξ(Y ))Ξ(H) = Q
[
Ω ◦ (QTΞ(H)Q)

]
QT .
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Note that

QTΞ(H)Q =
1

2


UT V T

1

UT −V T
1

0
√

2V T
2


 0 H

HT 0

U U 0

V1 −V1

√
2V2



=
1

2


H1 +HT

1 HT
1 −H1

√
2H2

H1 −HT
1 −(H1 +HT

1 )
√

2H2

√
2HT

2

√
2HT

2 0

 , (2.13)

where H1 = UTHV1 and H2 = UTHV2. By simple algebraic calculations, we have

that

Ψ′(Y )H = Q
[
Ω ◦ (QTΞ(H)Q)

]
QT =

 0 M12

MT
12 0

 , (2.14)

where

M12 =
1

2
U
[ (

Ωαα ◦ (H1 +HT
1 ) + Ωαγ ◦ (H1 −HT

1 )
)
V T

1 + 2 (Ωαβ ◦H2)V T
2

]
.

Since

Ψ′(Y )H =

 0 D′ρ(Y )H

(D′ρ(Y )H)T 0

 ,
we have from (2.14) that

D′ρ(Y )H =
1

2
U
( [

Ωαα ◦ (H1 +HT
1 ) + Ωαγ ◦ (H1 −HT

1 )
]
V T

1 + 2(Ωαβ ◦H2)V T
2

)
.

Next, we give a characterization of the generalized Jacobian of Dρ(·), which was

presented in [131, Lemma 2.3.6 and Proposition 2.3.7]. For any λ = (λ1, . . . , λ(p+q))
T ∈

<p+q, let λi = σi for i ∈ α, λi = −σi−p for i ∈ γ, and λi = 0 for i ∈ β. For each

threshold ρ > 0, we decompose the index set α into the following three subindex

sets:

α1 := {i |σi > ρ, i ∈ α}, α2 := {i |σi = ρ, i ∈ α}, α3 := {i |σi < ρ, i ∈ α}. (2.15)



2.3 The soft thresholding operator 25

Let Γ denote the following (p+ q)× (p+ q) symmetric matrix

Γ =


Γαα Γαγ Γαβ

ΓTαγ Γγγ Γγβ

ΓTαβ ΓTγβ Γββ

 , (2.16)

whose (i, j)th entry is given by

Γij =



gρ(λi)− gρ(λj)
λi − λj

if λi 6= λj,

1 if λi = λj and |λi| > ρ,

∈ ∂gρ(λi) = [0, 1] if λi = λj and |λi| = ρ,

0 if λi = λj and |λi| < ρ.

(2.17)

Theorem 2.5. Let Y ∈ <p×q admit the SVD as in (2.3). Then, for any V ∈

∂BΨ(Y ), one has

V(H) = Q(Γ ◦ (QTΞ(H)Q))QT ∀H ∈ <p×q. (2.18)

Moreover, for any W ∈ ∂BDρ(Y ) and any H ∈ <p×q, we have

W(H) =
1

2
U
[ (

Γαα ◦ (H1 +HT
1 ) + Γαγ ◦ (H1 −HT

1 )
)
V T

1 + 2 (Γαβ ◦H2)V T
2

]
,

(2.19)

where H1 = UTHV1, H2 = UTHV2, and

Γαα =


Eα1α1 Eα1α2 τα1α3

Eα2α1 να2α2 0

τTα1α3
0 0

 ,
νij = νji ∈ [0, 1] for i, j ∈ α2,

τij =
σi − ρ
σi − σj

, for i ∈ α1, j ∈ α3,

Γαγ =


ωα1α1 ωα1α2 ωα1α3

ωTα1α2
0 0

ωTα1α3
0 0

 , ωij :=
(σi − ρ)+ + (σj − ρ)+

σi + σj
, for i ∈ α1, j ∈ α,

Γαβ =

µα1β̄

0

 , β̄ = β − 2p = {1, . . . , q − p}, µij =
σi − ρ
σi

, for i ∈ α1, j ∈ β̄.
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Define the operator W0 : <p×q → <p×q by

W0(H) =
1

2
U
[ (

Γ0
αα ◦ (H1 +HT

1 ) + Γαγ ◦ (H1 −HT
1 )
)
V T

1 + 2 (Γαβ ◦H2)V T
2

]
,

(2.20)

where

Γ0
αα =


Eα1α1 Eα1α2 τα1α3

Eα2α1 0 0

τTα1α3
0 0

 ,

we can easily have that W0 is an element in ∂BDρ(Y ).

In the following, we show that all elements of the generalized Jacobian ∂Dρ(·)

are self-adjoint and positive semidefinite. First we prove the following useful lemma.

Lemma 2.6. Let Y ∈ <p×q admit the SVD as in (2.3). Then the unique minimizer

of the following problem

min
{
‖X − Y ‖2 : X ∈ Bρ := {Z ∈ <p×q : ‖Z‖2 ≤ ρ}

}
(2.21)

is X∗ = ΠBρ(Y ) = U [min(Σ, ρ) 0]V T , where min(Σ, ρ) = Diag(min(σ1, ρ), . . . ,min(σp, ρ)).

Proof. Obviously problem (2.21) has an unique optimal solution which is equal to

ΠBρ(Y ). For any Z ∈ Bρ with the SVD as in (2.3), we have that σi(Z) ≤ ρ, i =

1, . . . , p. Since ‖ · ‖ is unitarily invariant, by [12, Exercise IV.3.5], we have that

‖Y − Z‖2 ≥
∑
i∈α1

(σi(Y )− σi(Z))2 +
∑

i∈α2∪α3

(σi(Y )− σi(Z))2 ≥
∑
i∈α1

(σi(Y )− ρ)2.

Since

‖Y −X∗‖2 =
∑
i∈α1

(σi(Y )− ρ)2,

we have that

‖Y − Z‖2 ≥ ‖Y −X∗‖2 for any Z ∈ Bρ.

Thus X∗ = U [min(Σ, ρ) 0]V T is the unique optimal solution.

Note that the above lemma has also been proved in [96] with a different proof.

From the above lemma, we have that Dρ(Y ) = Y − ΠBρ(Y ) , which implies that



2.3 The soft thresholding operator 27

ΠBρ(·) is also strongly semismooth everywhere in <p×q. Then we have the following

proposition.

Proposition 2.7. For any Y ∈ <p×q and V ∈ ∂Dρ(Y ), it holds that

(a) V is self-adjoint.

(b) 〈H,VH〉 ≥ 0 ∀H ∈ <p×q.

(c) 〈VH,H − VH〉 ≥ 0 ∀H ∈ <p×q.

Proof. (a) Since Dρ(Y ) = Y − ΠBρ(Y ), for any V ∈ ∂Dρ(Y ), there exists W ∈

∂ΠBρ(Y ) such that for any H ∈ <p×q,

VH = H −WH.

By (i) of Lemma 2.1, we have that W is self-adjoint, which implies that V is self-

adjoint.

(b) It is a simple conclusion of (c).

(c) Since for any H ∈ <p×q

〈VH,H − VH〉 = 〈H −WH,WH〉 ≥ 0,

where the above inequality follows from (iii) of Lemma 2.1, the third inequality

holds.

Next, we shall show that even though the soft thresholding operator Dρ(·) is not

differentiable everywhere, ‖Dρ(·)‖2 is continuously differentiable. First we summa-

rize some well-known properties of Moreau-Yosida [88, 132] regularization. Assume

that Y is a finite-dimensional real Hilbert space. Let f : Y → (−∞,+∞] be a proper

lower semicontinuous convex function. For a given σ > 0, the Moreau-Yosida regu-

larization of f is defined by

Fσ(y) = min
{
f(x) +

1

2σ
‖x− y‖2 : x ∈ Y

}
. (2.22)
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It is well known that Fσ is a continuously differentiable convex function on Y and

for any y ∈ Y

∇Fσ(y) =
1

σ
(y − x(y)),

where x(y) denotes the unique optimal solution of (2.22). It is well known that

x(·) is globally Lipschitz continuous with modulus 1 and ∇Fσ is globally Lipschitz

continuous with modulus 1/σ.

Proposition 2.8. Let Θ(Y ) =
1

2
‖Dρ(Y )‖2, where Y ∈ <p×q. Then Θ(Y ) is contin-

uously differentiable and

∇Θ(Y ) = Dρ(Y ). (2.23)

Proof. It is already known that the following minimization problem

F (Y ) = min
{
ρ‖X‖∗ +

1

2
‖X − Y ‖2 : X ∈ <p×q

}
,

has an unique optimal solution X = Dρ(Y ) (see, [17, 77]). From the properties of

Moreau-Yosida regularization, we know that Dρ(·) is globally Lipschitz continuous

with modulus 1 and F (Y ) is continuously differentiable with

∇F (Y ) = Y −Dρ(Y ). (2.24)

Since Dρ(Y ) is the unique optimal solution, we have that

F (Y ) = ρ‖Dρ(Y )‖∗ +
1

2
‖Dρ(Y )− Y ‖2 =

1

2
‖Y ‖2 − 1

2
‖Dρ(Y )‖2. (2.25)

This, together with (2.24), implies that Θ(Y ) is continuously differentiable with

∇Θ(Y ) = Dρ(Y ).

2.4 The smoothing counterpart

Next, we shall discuss the smoothing counterpart of the soft thresholding operator

Dρ(·). Let φH(ε, t) : < × < → < be defined by the following Huber smoothing
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function for (t)+ = max{t, 0}

φH(ε, t) =


t if t ≥ |ε|

2
,

1

2|ε|
(t+

|ε|
2

)2 if − |ε|
2
< t <

|ε|
2
,

0 if t ≤ −|ε|
2
,

(ε, t) ∈ < × <. (2.26)

Then the smoothing function for gρ(·) in (2.8) is defined as follows:

φρ(ε, t) = φH(ε, t− ρ)− φH(ε,−t− ρ), (ε, t) ∈ < × <. (2.27)

From the above definition, we know that φρ(ε, ·) is an odd function about t ∈ <.

Let Y ∈ <p×q admit the SVD as in (2.3). For any ε ∈ <, the smoothing function

for Gρ(Ξ(Y )) in (2.9) is defined as follows:

Ψρ(ε, Y ) := Gρ(ε,Ξ(Y )) = Q


Σφρ 0 0

0 −Σφρ 0

0 0 0

QT , (2.28)

where Σφρ = Diag(φρ(ε, σ1), . . . , φρ(ε, σp)). By direct calculations, we have

Gρ(ε,Ξ(Y )) =

 0 Φρ(ε, Y )

(Φρ(ε, Y ))T 0

 ,
where

Φρ(ε, Y ) = U
[
Diag(φρ(ε, σ1), . . . , φρ(ε, σp)) 0

]
V T , (2.29)

which is a smoothing function for the soft thresholding operator Dρ(Y ). Note

that when ε = 0,Gρ(0,Ξ(Y )) = Gρ(Ξ(Y )) and Φρ(0, Y ) = Dρ(Y ). For any λ =

(λ1, . . . , λ(p+q))
T ∈ <p+q, let λi = σi for i ∈ α, λi = −σi−p for i ∈ γ, and λi = 0

for i ∈ β. When ε 6= 0 or σi 6= ρ, i = 1, . . . , p, we use Λ(ε, λ) ∈ Sp+q to denote the

following first divided difference symmetric matrix for φρ(ε, ·) at λ

Λ(ε, λ) =


Λαα Λαγ Λαβ

ΛT
αγ Λγγ Λγβ

ΛT
αβ ΛT

γβ Λββ

 , (2.30)
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where

(Λαα)ij =


φρ(ε, σi)− φρ(ε, σj)

σi − σj
if σi 6= σj

(φρ)
′
σi

(ε, σi) if σi = σj

, for i, j = 1, . . . , p,

(Λαγ)ij =


φρ(ε, σi) + φρ(ε, σj)

σi + σj
if σi 6= 0 or σj 6= 0

(φρ)
′
σi

(ε, σi) if σi = σj = 0

, for i, j = 1, . . . , p,

(Λαβ)ij =


φρ(ε, σi)

σi
if σi 6= 0

(φρ)
′
σi

(ε, σi) if σi = 0
, for i = 1, . . . , p, j = 1, . . . , q − p,

(Λββ)ij = (φρ)
′
t(ε, 0), for i, j = 1, . . . , q − p.

Since φρ(ε, ·) is an odd function, we can easily obtain the following results:

Λαα = Λγγ, Λαγ = (Λαγ)
T , Λγβ = Λαβ,

and (Λ(ε, λ))ij ∈ [0, 1] for all i, j = 1, . . . , p+ q. Then based on the famous result of

Löwner [73], we know that for any H ∈ <p×q,

(Ψρ)
′
Y (ε, Y )H = (Gρ)′Ξ(Y )(ε,Ξ(Y ))Ξ(H) = Q

[
Λ(ε, λ) ◦ (QTΞ(H)Q)

]
QT , (2.31)

where “ ◦ ” denotes the Hadamard product and QTΞ(H)Q takes the form as in

(2.13). By simple algebraic calculations, we have that

(Ψρ)
′
Y (ε, Y )H = Q(Λ(ε, λ) ◦ (QTΞ(H)Q))QT =

 0 A12

AT12 0

 ,
where

A12 = U
(

Λαα ◦
H1 +HT

1

2
+ Λαγ ◦

H1 −HT
1

2

)
V T

1 + U(Λαβ ◦H2)V T
2 ,

H1 = UTHV1 and H2 = UTHV2. When ε 6= 0 or σi 6= ρ, i = 1, . . . , p, the partial

derivative of Ψρ(·, ·) with respect to ε can be computed by

(Ψρ)
′
ε(ε, Y ) = Q


D(ε,Σ) 0 0

0 −D(ε,Σ) 0

0 0 0

QT =

 0 UD(ε,Σ)V T
1

V1D(ε,Σ)UT 0

 ,
(2.32)
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where

D(ε,Σ) = Diag((φρ)
′
ε(ε, σ1), . . . , (φρ)

′
ε(ε, σp)). (2.33)

Since

(Ψρ)
′(ε, Y )(τ,H) =

 0 (Φρ)
′(ε, Y )(τ,H)

((Φρ)
′(ε, Y )(τ,H))T 0

 ,
for any (τ,H) ∈ < × <p×q, we have

(Φρ)
′(ε, Y )(τ,H) = U

(
Λαα ◦

H1 +HT
1

2
+ Λαγ ◦

H1 −HT
1

2
+ τD(ε,Σ)

)
V T

1

+ U(Λαβ ◦H2)V T
2 .

(2.34)

Thus, Φρ(·, ·) is continuously differentiable around (ε, Y ) ∈ < × <p×q if ε 6= 0

or σi 6= ρ, i = 1, . . . , p. Furthermore, Φρ(·, ·) is globally Lipschitz continuous and

strongly semismooth at any (0, Y ) ∈ < × <p×q [76].

Define (Φρ)|α2| : < × <|α2|×|α2| → <|α2|×|α2| by replacing the dimension p and q

in the definition of Φρ : < × <p×q → <p×q with |α2|, respectively, where the index

set α2 is defined as in (2.15). As in the case for Φρ(·, ·), the mapping (Φρ)|α2|(·, ·)

is also Lipschitz continuous. Then the Clarke’s generalized Jacobian ∂Φρ(0, Y ) of

Φρ at (0, Y ) and ∂(Φρ)|α2|(0, Z) of (Φρ)|α2| at (0, Z) ∈ < × <|α2|×|α2| are both well

defined.

Next, we will give a characterization of the generalized Jacobian ∂Φρ(0, Y ) of

Φρ at (0, Y ) ∈ < × <p×q. Let DΦρ be the set of points in < × <p×q at which Φρ is

differentiable. Suppose that N is any set of of Lebesgue measure zero in <×<p×q.

Then

∂Φρ(0, Y ) = conv
{

lim
(εk,Y k)→(0,Y )

(Φρ)
′(εk, Y k) : (εk, Y k) ∈ DΦρ , (εk, Y k) /∈ N

}
.

(2.35)

Note that ∂Φρ(0, Y ) does not depend on the choice of the null set N [126, Theorem

4].

Proposition 2.9. Let Y ∈ <p×q admit the SVD as in (2.3). Then, for any V ∈
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∂Φρ(0, Y ), there exists V|α2| ∈ ∂(Φρ)|α2|(0, ρI|α2|) such that

V(τ,H) = U


(H̃1)α1α1 (H̃1)α1α2 Ωα1α3 ◦ (H̃1)α1α3

(H̃1)Tα1α2
V|α2|(τ, (H̃1)α2α2) 0

ΩT
α1α3
◦ (H̃1)Tα1α3

0 0

V T
1

+ U
[
(Γαγ ◦

H1 −HT
1

2
)V T

1 + (Γαβ ◦H2)V T
2

]
(2.36)

for all (τ,H) ∈ < × <p×q, where Ωα1α3 ,Γαγ and Γαβ are defined as follows, respec-

tively,

(Ωα1α3)ij :=
σi − ρ
σi − σj

, for i ∈ α1, j ∈ α3, (2.37)

Γαγ :=


ωα1α1 ωα1α2 ωα1α3

ωTα1α2
0 0

ωTα1α3
0 0

 , ωij :=
(σi − ρ)+ + (σj − ρ)+

σi + σj
, for i ∈ α1, j ∈ α,

(2.38)

Γαβ :=

µα1β̄

0

 , β̄ := β − 2p = {1, . . . , q − p}, µij :=
σi − ρ
σi

, for i ∈ α1, j ∈ β̄,

(2.39)

I|α2| is an identity matrix of size |α2|, H1 = UTHV1, H2 = UTHV2, and H̃1 =

1
2
(H1 +HT

1 ).

Proof. Let N := {0} × <p×q which has Lebesgue measure zero in <× <p×q and

∂NΦρ(0, Y ) :=
{

lim
k→∞

(Φρ)
′(εk, Y k) : (εk, Y k)→ (0, Y ), εk 6= 0

}
. (2.40)

Then, from (2.35), we have

∂Φρ(0, Y ) = conv(∂NΦρ(0, Y )).

First, we give a characterization of all elements in the set ∂NΦρ(0, Y ). For any

V ∈ ∂NΦρ(0, Y ), there exists a sequence {(εk, Y k)} → (0, Y ) with εk 6= 0 such that

Φρ is differential at (εk, Y k) and for any (τ,H) ∈ < × <p×q,

V(τ,H) = lim
k→∞

(Φρ)
′(εk, Y k)(τ,H).
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Since εk 6= 0, we have that Ψρ defined by (2.28) is differential at (εk, Y k) and

lim
k→∞

(Ψρ)
′(εk, Y k)(τ,H) =

 0 lim
k→∞

(Φρ)
′(εk, Y k)(τ,H)

( lim
k→∞

(Φρ)
′(εk, Y k)(τ,H))T 0


=

 0 V(τ,H)

(V(τ,H))T 0

 .
Let Y k = Uk[Σk 0](V k)T be the SVD of Y k, where Uk ∈ <p×p and V k ∈ <q×q

are orthogonal matrices, Σk = Diag(σk1 , · · · , σkp), and σk1 ≥ σk2 ≥ · · · ≥ σkp ≥ 0 are

singular values of Y k being arranged in non-increasing order. Writing each Σk in

the same format as Σ:

Σk =


Σk
α1

0 0

0 Σk
α2

0

0 0 Σk
α3

 ,
we have Σ = lim

k→∞
Σk, which implies that Σk

α1
−ρI|α1| and Σk

α3
−ρI|α3| are nonsingular

matrices for all k sufficiently large and lim
k→∞

Σk
α2

= Σα2 = ρI|α2|. For each k, let

λk = (λk1, . . . , λ
k
(p+q))

T ∈ <p+q, where λki = σki for i ∈ α, λki = −σki−p for i ∈ γ, and

λki = 0 for i ∈ β. Let Λk ≡ Λk(εk, λk) be defined by (2.30) and Dk ≡ D(εk,Σk) be

defined by (2.33), respectively. Then, for any (τ,H) ∈ < × <p×q, we obtain from

(2.31) and (2.32) that

(Ψρ)
′(εk, Y k)(τ,H) = Qk

Λk ◦
(

(Qk)TΞ(H)Qk
)

+ τ


Dk 0 0

0 −Dk 0

0 0 0


 (Qk)T ,

(2.41)

where Qk has the form as in (2.5). By taking subsequences if necessary, we may

assume that {Uk} and {V k} are both convergent sequences with limits U = lim
k→∞

Uk

and V = lim
k→∞

V k (clearly Y = U [Σ 0]V T ). Since both {Λk} and {Dk} are uniformly

bounded, by taking subsequences further if necessary, we may assume that both {Λk}

and {Dk} converge. Let M = lim
k→∞

Λk ◦ ((Qk)TΞ(H)Qk) = lim
k→∞

Λk ◦ (QTΞ(H)Q).
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Taking limits on both sizes of (2.41), we obtain that

QT

[
0 V(τ,H)

(V(τ,H))T 0

]
Q =


Mαα Mαγ Mαβ

MT
αγ Mγγ Mγβ

MT
αβ MT

γβ Mββ

+ τ


lim
k→∞

Dk 0 0

0 − lim
k→∞

Dk 0

0 0 0

 .

(2.42)

By simple calculations, we have lim
k→∞

Λk
αγ = Γαγ, lim

k→∞
Λk
αβ = Γαβ and lim

k→∞
Λk
ββ = 0,

where Γαγ and Γαβ are of the forms as in (2.38) and (2.39), respectively. Then we

obtain that

Mαα =


(H̃1)α1α1 (H̃1)α1α2 Ωα1α3 ◦ (H̃1)α1α3

(H̃1)Tα1α2
lim
k→∞

(Λk
αα)α2α2 ◦ (H̃1)α2α2 0

ΩT
α1α3
◦ (H̃1)Tα1α3

0 0

 ,

Mαγ = Γαγ◦
1

2
(HT

1 −H1), Mαβ = Γαβ◦(
1√
2
H2), Mγγ = −Mαα, Mγβ = Mαβ, Mββ = 0,

and

lim
k→∞

Dk =


0 0 0

0 lim
k→∞

Dk
α2α2

0

0 0 0

 ,
where Ωα1α3 is of the form as in (2.37), H1 = UTHV1, H2 = UTHV2, H̃1 = 1

2
(H1 +

HT
1 ), and

Dk
α2α2

= Diag
(
(φρ)

′
ε(εk, σ

k
|α1|+1), . . . , (φρ)

′
ε(εk, σ

k
|α1|+|α2|)

)
.

By applying (2.34) to (Φρ)|α2| at (εk,Σk
α2

), for any (τ,∆H) ∈ <×<|α2|×|α2|, we have

(Φρ)
′
|α2|(ε

k,Σk
α2

)(τ,∆H) = (Λk
αα)α2α2◦

∆H + (∆H)T

2
+(Λk

αγ)α2α2◦
∆H − (∆H)T

2
+τDk

α2α2
.

Since both {Λk} and {Dk} converge, we obtain that lim
k→∞

(Φρ)
′
|α2|(ε

k,Σk
α2

)(τ,∆H)

exists for any (τ,∆H) ∈ <×<|α2|×|α2|, which implies that lim
k→∞

(Φρ)
′
|α2|(ε

k,Σk
α2

) exists.

By the definition of ∂N (Φρ)|α2|(0, ρI|α2|), which is analogous to the one defined in

(2.40), we have that there exists V|α2| ∈ ∂N (Φρ)|α2|(0, ρI|α2|) such that

V|α2|(τ,∆H) = lim
k→∞

(Φρ)
′
|α2|(ε

k,Σk
α2

)(τ,∆H) ∀ (τ,∆H) ∈ < × <|α2|×|α2|.
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In particular, let ∆H = (H̃1)α2α2 which is symmetric, we have

V|α2|(τ, (H̃1)α2α2) = lim
k→∞

(Φρ)
′
|α2|(ε

k,Σk
α2

)(τ, (H̃1)α2α2) = lim
k→∞

(Λk
αα)α2α2◦(H̃1)α2α2+τD

k
α2α2

.

Then we have

Mαα + τ lim
k→∞

Dk =


(H̃1)α1α1 (H̃1)α1α2 Ωα1α3 ◦ (H̃1)α1α3

(H̃1)Tα1α2
V|α2|(τ, (H̃1)α2α2) 0

ΩT
α1α3
◦ (H̃1)Tα1α3

0 0

 .
(2.43)

By simple algebraic calculations, we obtain from (2.42) that

V(τ,H) = U


(H̃1)α1α1 (H̃1)α1α2 Ωα1α3 ◦ (H̃1)α1α3

(H̃1)Tα1α2
V|α2|(τ, (H̃1)α2α2) 0

ΩT
α1α3
◦ (H̃1)Tα1α3

0 0

V T
1

+ U
[
(Γαγ ◦

H1 −HT
1

2
)V T

1 + (Γαβ ◦H2)V T
2

]
.

Since ∂Φρ(0, Y ) = conv(∂NΦρ(0, Y )) and ∂(Φρ)|α2|(0, ρI|α2|) = conv(∂N (Φρ)|α2|(0, ρI|α2|)),

from the above equality, we conclude that (2.36) holds.

Next, we present a useful inequality for elements in ∂Φρ(0, Y ), which is analogous

to Proposition 2.7 (c) for the soft thresholding operator Dρ(·).

Proposition 2.10. For any V ∈ ∂Φρ(0, Y ), it holds that

〈H − V(0, H),V(0, H)〉 ≥ 0 ∀H ∈ <p×q. (2.44)

Proof. First, we show that for any V ∈ ∂NΦρ(0, Y ) defined by (2.40), inequal-

ity (2.44) holds. For any V ∈ ∂NΦρ(0, Y ), there exists a sequence {(εk, Y k)} →

(0, Y ), εk 6= 0 such that Φρ is differential at (εk, Y k) and for any H ∈ <p×q,

V(0, H) = lim
k→∞

(Φρ)
′(εk, Y k)(0, H). Since εk 6= 0, we have that Ψρ defined by (2.28)
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is differentiable at (εk, Y k),

〈H, (Φρ)
′(εk, Y k)(0, H)〉 =

1

2
〈Ξ(H), Ξ((Φρ)

′(εk, Y k)(0, H))〉

=
1

2
〈Ξ(H), (Ψρ)

′(εk, Y k)(0, H)〉 =
1

2
〈Ξ(H), Qk

(
Λk ◦ ((Qk)TΞ(H)Qk)

)
(Qk)T 〉

=
1

2
〈H̃k,Λ

k ◦ H̃k〉 =
1

2

p+q∑
i=1

p+q∑
j=1

Λk
ij (H̃k)

2
ij,

where H̃k = (Qk)TΞ(H)Qk and the linear map Ξ(·) is defined by (2.6), and

〈(Φρ)
′(εk, Y k)(0, H), (Φρ)

′(εk, Y k)(0, H)〉

=
1

2
〈(Ψρ)

′(εk, Y k)(0, H), (Ψρ)
′(εk, Y k)(0, H)〉

=
1

2
〈Qk

(
Λk ◦ ((Qk)TΞ(H)Qk)

)
(Qk)T , Qk

(
Λk ◦ ((Qk)TΞ(H)Qk)

)
(Qk)T 〉

=
1

2
〈Λk ◦ H̃k,Λ

k ◦ H̃k〉 =
1

2

p+q∑
i=1

p+q∑
j=1

(Λk
ij)

2 (H̃k)
2
ij.

Since Λk
ij ∈ [0, 1] for all i, j = 1, . . . , p+ q, we have

〈H − (Φρ)
′(εk, Y k)(0, H), (Φρ)

′(εk, Y k)(0, H)〉 =
1

2

p+q∑
i=1

p+q∑
j=1

(Λk
ij − (Λk

ij)
2)(H̃k)

2
ij ≥ 0.

Hence

〈H − V(0, H),V(0, H)〉 ≥ 0 ∀H ∈ <p×q.

Let V ∈ ∂Φρ(0, Y ). Then, by Carathéodory’s theorem, there exists a positive κ

and V i ∈ ∂NΦρ(0, Y ), i = 1, . . . , κ such that V =
κ∑
i=1

tiV i, where ti ≥ 0, i = 1, . . . , κ

and
κ∑
i=1

ti = 1. Define θ(Y ) := 〈Y, Y 〉, Y ∈ <p×q. By convexity, we have that for any

H ∈ <p×q

θ(V(0, H)) = θ(
κ∑
i=1

tiV i(0, H)) ≤
κ∑
i=1

tiθ(V i(0, H)) =
κ∑
i=1

ti〈V i(0, H),V i(0, H)〉,

which implies

〈V(0, H),V(0, H)〉 ≤
κ∑
i=1

ti〈H,V i(0, H)〉 = 〈H,
κ∑
i=1

tiV i(0, H)〉 = 〈H,V(0, H)〉.

Hence, (2.44) holds.



Chapter 3
Nuclear norm regularized matrix least

squares problems

In this chapter, we introduce a partial proximal point algorithm, in which only some

of the variables appear in the quadratic proximal term, for solving nuclear norm reg-

ularized matrix least squares problems with equality and inequality constraints. Due

to the presence of inequality constraints, the inner subproblem is reformulated as

a system of semismooth equations which are then solved by an inexact smoothing

Newton method. We prove that the inexact smoothing Newton method is quadrat-

ically convergent under a constraint nondegeneracy condition, together with the

strong semi-smoothness property of the soft thresholding operator.

3.1 The general proximal point algorithm

Let Z be a finite dimensional real Hilbert space with inner product 〈·, ·〉 and its

induced norm ‖ · ‖. Let T : Z → Z be a set-valued map. We define its domain,

37
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image and graph, respectively, as follows:

Dom (T ) := {z ∈ Z | T (z) 6= ∅},

Im (T ) :=
⋃
z∈Z

T (z),

and

Graph (T ) := {(z, w) ∈ Z × Z | w ∈ T (z)}.

The multifunction T : Z → Z is said to be a monotone operator if

〈z − z′, w − w′〉 ≥ 0 whenever w ∈ T (z), w′ ∈ T (z′). (3.1)

It is said to be strongly monotone with modulus α > 0 if

〈z − z′, w − w′〉 ≥ α‖z − z′‖2 whenever w ∈ T (z), w′ ∈ T (z′). (3.2)

The multifunction T is said to be maximal monotone if it is monotone and its graph

Graph (T ) is not properly contained in the graph of any other monotone operator.

For any maximal monotone operator T : Z → Z, we define the mapping T −1 by

T −1(w) =
{
z ∈ Z |w ∈ T (z)

}
. (3.3)

It is obvious that T −1 is also maximal monotone. We shall say that T −1 is Lipschitz

continuous at the origin (with modulus a ≥ 0) [108] if there is a unique solution z̄

to 0 ∈ T (z) and for some τ > 0 we have

‖z − z̄‖ ≤ a‖w‖ whenever z ∈ T −1(w) and ‖w‖ ≤ τ. (3.4)

Many problems can be formulated as finding an element z such that 0 ∈ T (z), where

T : Z → Z is a maximal monotone operator. An important example is the following

convex programming problem

min
z∈Z

f(z), (3.5)

where f : Z → (−∞,+∞] is a proper lower semicontinuous convex function. Let

T = ∂f be the subgradient of f . It is well known that ∂f is maximal monotone.
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Moreover, a point z̄ ∈ Z solves the minimization problem (3.5) if and only if 0 ∈

∂f(z̄). To solve inclusion problems with maximal monotone operators, Rockafellar

[108, 107] proposed the general inexact proximal point algorithm (PPA). Given a

sequence of parameters σk such that

0 < σk ↑ σ∞ ≤ +∞, (3.6)

and an initial point z0 ∈ Z, the general PPA generates a sequence {zk} in Z by the

following scheme:

zk+1 ≈ P σk(z
k) := (I + σkT )−1(zk). (3.7)

This algorithm is based upon the fact that the proximal mapping P σk is single-valued

and nonexpansive [84]. Rockafellar [108] shows that under certain mild assumptions

the sequence {zk} converges to a particular solution z∗ for the problem 0 ∈ T (z).

When applied to the minimization problem (3.5), the above approximate rule re-

duces to

zk+1 ≈ arg min
z∈Z

{
f(z) +

1

2σk
‖z − zk‖2

}
. (3.8)

The attractive feature of this approach is that the objective function in (3.8) is

strongly convex, which suggests that we may apply an indirect method for solving

(3.8) based on the duality theory for convex programming.

Let Z = X × Y , where X and Y are two finite dimensional real Hilbert spaces

each equipped with a scalar product 〈·, ·〉 and its induced norm ‖ · ‖. Suppose now

that z ∈ Z is partitioned into two components z = (x, y), where x ∈ X and y ∈ Y .

Then the approximate rule of the general PPA for solving (3.5) is given by

(xk+1, yk+1) ≈ arg min
(x,y)∈X×Y

{
f(x, y) +

1

2σk
‖(x, y)− (xk, yk)‖2

}
. (3.9)

However, in many applications we may only want to add a quadratic proximal term

for only one variable, say y. Then (xk+1, yk+1) is generated by approximately solving

the following minimization problem

min
(x,y)∈X×Y

{
f(x, y) +

1

2σk
‖y − yk‖2

}
. (3.10)
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Note that the objective function in (3.10) may not be strongly convex in (x, y). But

in the case that f is already strongly convex in x for all y ∈ Y , then the problem

(3.10) could be easier to solver than (3.9). In [52], Ha proposed a partial PPA to

solve the inclusion problem in two variables

0 ∈ T (x, y), (3.11)

in which only one of the variables is involved in the quadratic proximal term. Below

we give a brief review of the idea of the partial PPA proposed by Ha [52].

Let Π : X × Y → X × Y be the orthogonal projection of X × Y onto {0} × Y ,

i.e.,

Π(x, y) = (0, y), ∀ (x, y) ∈ X × Y .

Let T : X × Y → X × Y be a maximal monotone operator. To solve the inclusion

problem 0 ∈ T (x, y), from a given initial point (x0, y0) ∈ X × Y , the exact partial

PPA generates a sequence {(xk, yk)} by the following scheme:

(xk+1, yk+1) ∈ (Π + σkT )−1(0, yk), (3.12)

where the sequence {σk} satisfies (3.6). Let Pσk := (Π + σkT )−1Π. Then (3.12) can

be written as

(xk+1, yk+1) ∈ Pσk(xk, yk). (3.13)

Note that if Π is replaced by the identity map I, then Pσk would be the standard

proximal map P σk of T in (3.7). In general, the mapping Pσk is neither single-

valued nor nonexpansive. However, by [52, Proposition 2], we know that the second

component of Pσk(x
k, yk) is uniquely determined and nonexpansive. For practical

purpose, the following general approximation criteria were introduced in [52]:

‖(xk+1, yk+1)− (uk+1, vk+1)‖ ≤ εk, εk > 0,
∞∑
k=0

εk <∞, (3.14a)

‖(xk+1, yk+1)− (uk+1, vk+1)‖ ≤ δk‖(xk+1, yk+1)− (xk, yk)‖, (3.14b)

‖yk+1 − vk+1‖ ≤ δk‖yk+1 − yk‖, δk > 0,
∞∑
k=0

δk <∞, (3.14c)
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where

(uk+1, vk+1) ∈ Pσk(xk, yk).

In [52], Ha showed that under a mild assumption, namely, 0 ∈ int Im (T ), the

sequence {(xk, yk)} generated by the partial PPA under criterion (3.14a) is bounded

and any of its cluster point is a solution to (3.11). Moreover, the sequence {yk}

converges weakly to ȳ, which is the second component of a solution to (3.11). If,

in addition, (3.14b) and (3.14c) are also satisfied and T −1 is Lipschitz continuous

at the origin, then the sequence {(xk, yk)} converges locally at least at a linear rate

whose ratio tends to zero as σk → +∞. For more discussion of the convergence

analysis of the partial PPA, see [52, Theorem 1 & 2].

3.2 A partial proximal point algorithm

In this section, we consider the following nuclear norm regularized matrix least

squares problem with linear equality and inequality constraints:

min
X∈<p×q

1

2
‖A(X)− b‖2 + ρ‖X‖∗ + 〈C,X〉

s.t. B(X) ∈ d+Q.
(3.15)

where A : <p×q → <m and B : <p×q → <s are linear maps, C ∈ <p×q, b ∈ <m, d ∈

<s, ρ is a given positive parameter, and Q = {0}s1 × <s2+ is a polyhedral convex

cone. Here, s = s1 + s2. It is easy to see that (3.15) can be rewritten as follows:

min
u∈<m,X∈<p×q

fρ(u,X) :=
1

2
‖u‖2 + ρ‖X‖∗ + 〈C,X〉

s.t. A(X) + u = b,

B(X) ∈ d+Q.

(3.16)

Note that the objective function fρ(u,X) is strongly convex in u for all X ∈ <p×q.

For anyX ∈ <p×q such that B(X) ∈ d+Q, let u = b−A(X), then (u,X) ∈ <m×<p×q

is a feasible solution of (3.16). Note that the map (A, I) in (3.16) is surjective, where

I is an identity mapping from <m to <m. For the convergence analysis, we assume
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the following Slater condition to hold throughout this chapter: {Bi}
s1
i=1 are linearly independent and ∃ X0 ∈ <p×q

such that Bi(X0) = di, i = 1, . . . , s1 and Bi(X0) > di, i = s1 + 1, . . . , s.
(3.17)

Let l(u,X; ζ, ξ) : <m×<p×q×<m×<s → < be the ordinary Lagrangian function

for (3.16) in the extended form:

l(u,X; ζ, ξ) :=

 fρ(u,X) + 〈ζ, b−A(X)− u〉+ 〈ξ, d− B(X)〉 if ξ ∈ Q∗,

−∞ if ξ /∈ Q∗,
(3.18)

where Q∗ = <s1 × <s2+ is the dual cone of Q. The essential objective function in

(3.16) is

f(u,X) := sup
ζ∈<m, ξ∈<s

l(u,X; ζ, ξ) =

 fρ(u,X) if (u,X) ∈ FP ,

+∞ if (u,X) /∈ FP ,
(3.19)

where FP = {(u,X) ∈ <m×<p×q | A(X) + u = b,B(X) ∈ d+Q} is the feasible set

of (3.16). The dual problem of (3.16) is given by:

max gρ(ζ, ξ) := −1

2
‖ζ‖2 + 〈b, ζ〉+ 〈d, ξ〉

s.t. A∗(ζ) + B∗(ξ) + Z = C

‖Z‖2 ≤ ρ,

ζ ∈ <m, ξ ∈ Q∗, Z ∈ <p×q.

(3.20)

As in Rockafellar [107], we define the following two maximal monotone operators

Tf (u,X) = {(v, Y ) ∈ <m ×<p×q : (v, Y ) ∈ ∂f(u,X)},

Tl(u,X; ζ, ξ) = {(v, Y, y, z) ∈ <m ×<p×q ×<m ×<s : (v, Y,−y,−z) ∈ ∂l(u,X; ζ, ξ)},

where u ∈ <m, X ∈ <p×q, ζ ∈ <m, and ξ ∈ <s. Note that since f(u,X) is strongly

convex in u with modulus 1 for all X ∈ <p×q, Tf is strongly monotone with modulus

1 with respect to the variable u [108, Proposition 6], i.e.,

〈(u,X)− (u′, X ′), (v, Y )− (v′, Y ′)〉 ≥ ‖u− u′‖2, (3.21)
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for all (v, Y ) ∈ Tf (u,X) and (v′, Y ′) ∈ Tf (u′, X ′). From the definition of Tf , we

know that for any (v, Y ) ∈ <m ×<p×q,

T −1
f (v, Y ) = arg min

u∈<m,X∈<p×q

{
f(u,X)− 〈v, u〉 − 〈Y,X〉

}
.

Similarly, we have that for any (v, Y, y, z) ∈ <m ×<p×q ×<m ×<s,

T −1
l (v, Y, y, z) = arg min

u∈<m
X∈<p×q

max
ζ∈<m
ξ∈<s

{
l(u,X; ζ, ξ)− 〈v, u〉 − 〈Y,X〉+ 〈y, ζ〉+ 〈z, ξ〉

}
.

Since f(u,X) is strongly convex in u with modulus 1 for all X ∈ <p×q, we apply the

partial PPA proposed by Ha [52] to the maximal monotone operator Tf , in which

only the variable X appears in the quadratic proximal term. Given a starting point

(u0, X0) ∈ <m × <p×q, the inexact partial PPA generates a sequence {(uk, Xk)} by

approximately solving the following problem

min
u∈<m,X∈<p×q

{
f(u,X) +

1

2σk
‖X −Xk‖

}
. (3.22)

We can easily have that any minimizer (u,X) of problem (3.22) satisfies

(0, 0) ∈ ∂f(u,X) + (0,
1

σk
(X −Xk)).

It follows that

(0, Xk) ∈ (0, X) + σkTf (u,X). (3.23)

Let Π : <m × <p×q → <m × <p×q be the orthogonal projector of <m × <p×q onto

{0} × <p×q, i.e.,

Π(u,X) = (0, X), ∀ (u,X) ∈ <m ×<p×q.

Then (3.23) can be written as

Π(uk, Xk) ∈ (Π + σkTf )(u,X),

which can also be equivalently written as

(u,X) ∈ (Π + σkTf )−1Π(uk, Xk).
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Then we have that the set of minimizers of problem (3.22) can be expressed as

(Π + σkTf )−1Π(uk, Xk).

Next, for any parameter σ > 0, we show some properties of the mapping Qσ =

(Π + σTf )−1 in Proposition 3.1 and some properties of Pσ = QσΠ = (Π + σTf )−1Π

in Proposition 3.2. The proofs essentially follow the ideas in [60, Proposition 2 &

3].

Proposition 3.1. For any given parameter σ > 0, let Qσ = (Π + σTf )−1 . Suppose

that Dom (Tf ) 6= ∅. Then we have the following properties:

(i) The mapping Qσ is single-valued in <m ×<p×q.

(ii) For any (u,X), (u′, X ′) ∈ <m ×<p×q,

‖Qσ(u,X)−Qσ(u′, X ′)‖ ≤ 1

β
‖(u,X)− (u′, X ′)‖, (3.24)

where β = min{1, σ}.

Proof. (i) By [32, Theorem 2.7], it is enough to show that the map Π + σTf is

maximal monotone and coercive. First we show that Π+σTf is maximal monotone.

Since Tf is maximal monotone, σTf is also maximal monotone for any σ > 0. Since

Dom (Tf ) ∩ int Dom (Π) = Dom (Tf ) ∩ (<m ×<p×q) 6= ∅,

we have from [105, Theorem 1] that Π + σTf is maximal monotone.

Next we show that Π+σTf is strongly monotone. For any (v, Y ) ∈ Tf (u,X) and

(v′, Y ′) ∈ Tf (u′, X ′), we have

(0, X) + σ(v, Y ) ∈ (Π + σTf )(u,X),

(0, X ′) + σ(v′, Y ′) ∈ (Π + σTf )(u′, X ′).
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Then, we have

〈(u,X)− (u′, X ′), [(0, X) + σ(v, Y )]− [(0, X ′) + σ(v′, Y ′)]〉

= 〈X −X ′, X −X ′〉+ σ〈(u,X)− (u′, X ′), (v, Y )− (v′, Y ′)〉

≥ ‖X −X ′‖2 + σ‖u− u′‖2

≥ β‖(u,X)− (u′, X ′)‖2,

where the first inequality follows from (3.21) and β = min{1, σ}. This implies that

Π + σTf is strongly monotone. Since the strong monotonicity of Π + σTf implies

the coerciveness of Π + σTf , we have that the mapping Qσ is single-valued.

(ii) For any (u,X) ∈ <m × <p×q, let (u+, X+) = Qσ(u,X). Then from the

definition of Qσ we have

(u,X) ∈ (Π + σTf )(u+, X+).

Then there exist some element (v, Y ) ∈ Tf (u+, X+) such that

(u,X) = (0, X+) + σ(v, Y ). (3.25)

Similarly, for any (u′, X ′) ∈ <m ×<p×q, we have

(u′, X ′) = (0, X ′+) + σ(v′, Y ′), (3.26)

where (u′+, X
′
+) = Qσ(u′, X ′) and (v′, Y ′) ∈ Tf (u′+, X ′+). Since Tf is strong monotone

with respect to the first component with modulus one, we have from (3.21) that

〈(u+, X+)− (u′+, X
′
+), (v, Y )− (v′, Y ′)〉 ≥ ‖u+ − u′+‖2. (3.27)

It follows from (3.25), (3.26) and (3.27) that

〈(u,X)− (u′, X ′), (u+, X+)− (u′+, X
′
+)〉

= 〈[(0, X+) + σ(v, Y )]− [(0, X ′+) + σ(v′, Y ′)], (u+, X+)− (u′+, X
′
+)〉

= ‖X+ −X ′+‖2 + σ〈(v, Y )− (v′, Y ′), (u+, X+)− (u′+, X
′
+)〉

≥ ‖X+ −X ′+‖2 + σ‖u+ − u′+‖2 ≥ β‖(u+, X+)− (u′+, X
′
+)‖2,
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where β = min{1, σ}. Then we have

‖(u,X)− (u′, X ′)‖ ≥ β‖(u+, X+)− (u′+, X
′
+)‖ = β‖Qσ(u,X)−Qσ(u′, X ′)‖,

which completes our proof.

From the properties of the mapping Qσ in Proposition 3.1, we can easily obtain

the following properties of Pσ.

Proposition 3.2. For any given parameter σ > 0, let Pσ = QσΠ = (Π +σkTf )−1Π.

Suppose that Dom (Tf ) 6= ∅. Then we have the following properties:

(i) The mapping Pσ is single-valued in <m ×<p×q.

(ii) For any (u,X), (u′, X ′) ∈ <m ×<p×q,

‖Pσ(u,X)− Pσ(u′, X ′)‖ ≤ 1

β
‖X −X ′‖, (3.28)

where β = min{1, σ}.

Proof. (i) It is obvious from Proposition 3.1 that the mapping Pσ is single-valued.

(ii) From (3.24), we have

‖Pσ(u,X)− Pσ(u′, X ′)‖ = ‖QσΠ(u,X)−QσΠ(u′, X ′)‖

≤ 1

β
‖Π(u,X)− Π(u′, X ′)‖ =

1

β
‖X −X ′‖,

which completes the proof.

Since the operator Pσk is single-valued, the approximate rule of the partial PPA

for solving problem (3.16) can be expressed as

(uk+1, Xk+1) ≈ Pσk(u
k, Xk) := (Π + σkTf )−1Π(uk, Xk), (3.29)

where Pσk(u
k, Xk) is defined by

Pσk(u
k, Xk) = arg min

u∈<m,X∈<p×q

{
f(u,X) +

1

2σk
‖X −Xk‖2

}
, (3.30)
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and {σk} is a sequence satisfying (3.6).

Now we calculate the partial quadratic regularization of f in (3.30), which plays

a key role in the study of the partial PPA for solving problem (3.16). For a given

parameter σ > 0, the partial quadratic regularization of f in (3.19) associated with

σ is given by

Fσ(X) = min
u∈<m,Y ∈<p×q

{
f(u, Y ) +

1

2σ
‖Y −X‖2

}
. (3.31)

From (3.19), we have

Fσ(X) = min
u∈<m
Y ∈<p×q

sup
ζ∈<m
ξ∈<s

{
l(u, Y ; ζ, ξ) +

1

2σ
‖Y −X‖2

}
= sup

ζ∈<m
ξ∈<s

min
u∈<m
Y ∈<p×q

{
l(u, Y ; ζ, ξ) +

1

2σ
‖Y −X‖2

}
(3.32)

= sup
ζ∈<m
ξ∈Q∗

min
u∈<m
Y ∈<p×q

{
fρ(u, Y ) + 〈ζ, b−A(Y )− u〉+ 〈ξ, d− B(Y )〉+

1

2σ
‖Y −X‖2

}
,

where the interchange of minu,Y and supζ,ξ follows from the growth properties in

(u, Y ) [104, Theorem 37.3] and the third equality follows from (3.18). Then, we

have

Fσ(X) = sup
ζ∈<m, ξ∈Q∗

Θρ
σ(ζ, ξ;X),

where

Θρ
σ(ζ, ξ;X) := min

u∈<m
Y ∈<p×q

{
fρ(u, Y ) + 〈ζ, b−A(Y )− u〉+ 〈ξ, d− B(Y )〉+

1

2σ
‖Y −X‖2

}
= min

Y ∈<p×q

{
ρ‖Y ‖∗ + 〈C −A∗ζ − B∗ξ, Y 〉+

1

2σ
‖Y −X‖2

}
+ min

u∈<m

{1

2
‖u‖2 − 〈ζ, u〉

}
+ 〈b, ζ〉+ 〈d, ξ〉

=− 1

2
‖ζ‖2 + 〈b, ζ〉+ 〈d, ξ〉+ min

Y ∈<p×q

{
ρ‖Y ‖∗ +

1

2σ
‖Y −W (ζ, ξ;X)‖

}
+

1

2σ
‖X‖2 − 1

2σ
‖W (ζ, ξ;X)‖2

=− 1

2
‖ζ‖2 + 〈b, ζ〉+ 〈d, ξ〉+

1

2σ
‖X‖2 − 1

2σ
‖Dρσ(W (ζ, ξ;X))‖2, (3.33)

where W (ζ, ξ;X) = X − σ(C − A∗ζ − B∗ξ) and the last equality follows from

(2.25). By the saddle point theorem [104, Theorem 28.3] and (3.32), we know that
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(ζ(X), Dρσ(W (ζ(X), ξ(X);X))) is the unique solution to (3.31) for any (ζ(X), ξ(X))

such that

(ζ(X), ξ(X)) ∈ arg sup
ζ∈<m, ξ∈Q∗

Θρ
σ(ζ, ξ;X).

Then we have Fσ(X) = Θρ
σ(ζ(X), ξ(X);X).

Now we formally present the partial PPA for solving problem (3.16).

Algorithm 1: PPA. Given a positive parameter ρ and a tolerance ε > 0. Input

(u0, X0) ∈ <m ×<p×q and σ0 > 0. Set k := 0. Iterate:

Step 1. Compute an approximate maximizer

<m ×Q∗ 3 (ζk+1, ξk+1) ≈ arg sup
ζ∈<m, ξ∈<s

θρσk(ζ, ξ), (3.34)

where

θρσk(ζ, ξ) := Θρ
σk

(ζ, ξ;Xk)− δ(ξ | Q∗), (3.35)

Θρ
σk

(ζ, ξ;Xk) is defined as in (3.33) and δ(· | Q∗) is the indicator function over

Q∗.

Step 2. Compute W k+1 := W (ζk+1, ξk+1;Xk). Set

uk+1 = ζk+1, Xk+1 = Dρσk(W
k+1), and Zk+1 =

1

σk
(Dρσk(W

k+1)−W k+1).

Step 3. If ‖(Xk −Xk+1)/σk‖ ≤ ε; stop; else; update σk; end.

Suppose that (ζ̄(Xk), ξ̄(Xk)) is an optimal solution of the inner subproblem

(3.34) for each Xk and σk > 0. Let Pσk be defined as in (3.30). Since Pσk is single-

valued, we have Pσk(u
k, Xk) =

{
(ζ̄(Xk), Dρσk(W (ζ̄(Xk), ξ̄(Xk);Xk)))

}
. In order to
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terminate (3.34) in the above PPA , we introduce the following stopping criteria:

sup θρσk(ζ, ξ)− θ
ρ
σk

(ζk+1, ξk+1) ≤ ε2
k

4σk
, (3.36a)

‖ζk+1 − ζ̄(Xk)‖2 ≤ 1

2
ε2
k, εk > 0,

∞∑
k=0

εk <∞, (3.36b)

sup θρσk(ζ, ξ)− θ
ρ
σk

(ζk+1, ξk+1) ≤ δ2
k

2σk
‖Xk+1 −Xk‖2, (3.36c)

‖ζk+1 − ζ̄(Xk)‖2 ≤ δ2
k‖ζk+1 − ζk‖2, δk > 0,

∞∑
k=0

δk <∞, (3.36d)

dist(0, ∂θρσk(ζ
k+1, ξk+1)) ≤ δ

′

k

σk
‖Xk+1 −Xk‖, 0 ≤ δ

′

k → 0. (3.36e)

Note that Fσk(X
k) = sup θρσk(ζ, ξ) and θρσk(ζ

k+1, ξk+1) = Θρ
σk

(ζk+1, ξk+1;Xk). The

following result reveals the relation between the estimation (3.36) and (3.14), which

enables us to apply the convergence results of the partial PPA in [52, Theorem 1 &

2] to our partial PPA. The proof essentially follows the idea in [107, Proposition 6].

Proposition 3.3. Suppose that (ζ̄(Xk), ξ̄(Xk)) is an optimal solution of the inner

subproblem (3.34). Let (ūk+1, X
k+1

) = (ζ̄(Xk), Dρσk(W (ζ̄(Xk), ξ̄(Xk);Xk))) and

Xk+1 = Dρσk(W (ζk+1, ξk+1;Xk)). Then one has

1

2σk
‖Xk+1 −Xk+1‖2 ≤ sup θρσk(ζ, ξ)− θ

ρ
σk

(ζk+1, ξk+1). (3.37)

Proof. Since Θρ
σ(ζ, ξ;X) is convex in X and

∇XΘρ
σk

(ζk+1, ξk+1;Xk) =
1

σk
(Xk −Xk+1),

the following inequality holds for any Y ∈ <p×q:

Θρ
σk

(ζk+1, ξk+1;Xk) + 〈σ−1
k (Xk −Xk+1), Y −Xk〉

≤ Θρ
σk

(ζk+1, ξk+1;Y ) ≤ sup
ζ∈<m,ξ∈Q∗

Θρ
σk

(ζ, ξ;Y ) = Fσk(Y )

= min
u∈<m
X∈<p×q

{f(u,X) +
1

2σk
‖X − Y ‖2} ≤ f(ūk+1, X

k+1
) +

1

2σk
‖Xk+1 − Y ‖2. (3.38)

We also know that

sup θρσk(ζ, ξ) = Fσk(X
k) = min

u∈<m,X∈<p×q
{f(u,X) +

1

2σk
‖X −Xk‖2}

= f(ūk+1, X
k+1

)) +
1

2σk
‖Xk+1 −Xk‖2, (3.39)
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which together with (3.38) and the fact that θρσk(ζ
k+1, ξk+1) = Θρ

σk
(ζk+1, ξk+1;Xk),

implies that

sup θρσk(ζ, ξ)− θ
ρ
σk

(ζk+1, ξk+1)

≥ 1

2σk

[
‖Xk+1 −Xk‖2 − ‖Xk+1 − Y ‖2 − 2〈Xk+1 −Xk, Y −Xk〉

]
=

1

2σk

[
2〈Xk+1 −Xk+1, Y −Xk〉 − ‖Y −Xk‖2

]
=

1

2σk

[
− ‖(Xk+1

+Xk −Xk+1)− Y ‖2 + ‖Xk+1 −Xk+1‖2
]
. (3.40)

Since this inequality holds for all Y ∈ <p×q, by taking the maximum of (3.40) in Y ,

we have

sup θρσk(ζ, ξ)− θ
ρ
σk

(ζk+1, ξk+1) ≥ 1

2σk
‖Xk+1 −Xk+1‖2,

which proves our assertion.

3.3 Convergence analysis of the partial PPA

In this section, we show the global convergence and local convergence of the par-

tial PPA for solving (3.16), mainly based upon the convergence results of Ha [52,

Theorem 1 & 2].

Proposition 3.4. Consider the function f(u,X) defined in (3.19). Suppose that for

some λ > 0, the following parameterized problem perturbed by (v, Y ) ∈ <m ×<p×q

min
u∈<m,X∈<p×q

{
f(u,X)− 〈u, v〉 − 〈X, Y 〉

}
(3.41)

has an optimal solution whenever max{‖v‖, ‖Y ‖} ≤ λ. Then we have

0 ∈ int Im (Tf ). (3.42)

Proof. Since for each (v, Y ) ∈ <m×<p×q such that max{‖v‖, ‖Y ‖} ≤ λ the param-

eterized problem (3.41) has an optimal solution (ū, X), we have that

0 ∈ ∂f(ū, X)− (v, Y ),
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which implies that (v, Y ) ∈ ∂f(ū, X) ⊆ Im (Tf ). Therefore, we have 0 ∈ int Im (Tf ).

Remark 3.5. In many applications, we have that the linear term 〈C, X〉 is absent

in the objective function fρ(u,X) = 1
2
‖u‖2 + ρ‖X‖∗ + 〈C, X〉, i.e., C = 0 (see

examples in Section 6.1). Since

ρ‖X‖∗ − 〈X, Y 〉 ≥ ρ‖X‖∗ − ‖Y ‖2‖X‖∗ = (ρ− ‖Y ‖2)‖X‖∗,

we have that the function fρ(u,X) perturbed by (v, Y ) ∈ <m ×<p×q with ‖Y ‖2 < ρ

fρ(u,X)− 〈u, v〉 − 〈X, Y 〉 =
1

2
‖u‖2 + ρ‖X‖∗ − 〈u, v〉 − 〈X, Y 〉

is coercive. Therefore, if C = 0 and λ > 0 is small enough, the parameterized

problem (3.41) has an optimal solution for any (v, Y ) ∈ <m × <p×q such that

max{‖v‖, ‖Y ‖} ≤ λ, which implies that 0 ∈ int Im (Tf ).

Theorem 3.6. (Global convergence) Suppose that the hypotheses in Proposition

3.4 are satisfied. Let the partial PPA be executed with the stopping criterion (3.36a)

and (3.36b). Then the generated sequence {(uk, Xk)} is bounded and converges to

(ū, X), where (ū, X) is some optimal solution to problem (3.16), and {(ζk, ξk)} is

asymptotically minimizing for problem (3.20) with

‖C −A∗(ζk+1)− B∗(ξk+1)− Zk+1‖ =
1

σk
‖Xk+1 −Xk‖ → 0, (3.43)

asym sup(D)− gρ(ζk, ξk) ≤
1

2σk

[ 1

2
ε2
k + ‖Xk‖2 − ‖Xk+1‖2

]
, (3.44)

where asym sup(D) is the asymptotic supreme of the dual problem (3.20). If prob-

lem (3.16) satisfies the Slater condition (3.17), then the sequence {(ζk, ξk)} is also

bounded, and all of its accumulation points are optimal solutions to the problem

(3.20).

Proof. Under the given assumption, we have from Proposition 3.4 that 0 ∈ int Im (Tf ).

Moreover, we know from Proposition 3.3 that (3.36a) and (3.36b) implies the gen-

eral stopping criterion (3.14a) for Tf . It follows from [52, Theorem 1] that the
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sequence {(uk, Xk)} is bounded and any of its weak cluster point is an optimal so-

lution to (3.16) and Xk → X. Since fρ(u,X) is strongly convex with respect to u,

the u-component of the optimal solution is uniquely determined, which implies that

{uk} → ū. Thus the whole sequence {(uk, Xk)} converges to an optimal solution

(ū, X) of (3.16). The rest proof follows the similar discussion as in [108, Theorem

4]. Since

C −A∗(ζk+1)− B∗(ξk+1)− Zk+1 =
1

σk
(Xk+1 −Xk), and Xk+1 −Xk → 0,

relation (3.43) holds. Observing that

θρσk(ζ
k+1, ξk+1) = −1

2
‖ζk+1‖2 + 〈b, ζk+1〉+ 〈d, ξk+1〉+

1

2σk
(‖Xk‖2 − ‖Xk+1‖2),

we have

θρσk(ζ
k+1, ξk+1)− gρ(ζk+1, ξk+1) =

1

2σk
(‖Xk‖2 − ‖Xk+1‖2). (3.45)

From (3.39) in the proof of Proposition 3.3 we can also have that

sup θρσk(ζ, ξ) ≥ f(Pσk(u
k, Xk)) ≥ min f(u,X). (3.46)

Combining (3.45) and (3.46), we have

min f(u,X)− gρ(ζk+1, ξk+1) (3.47)

≤ sup θρσk(ζ, ξ)− θ
ρ
σk

(ζk+1, ξk+1) +
1

2σk
(‖Xk‖2 − ‖Xk+1‖2) (3.48)

≤ ε2
k

4σk
+

1

2σk
(‖Xk‖2 − ‖Xk+1‖2) =

1

2σk
(
1

2
ε2
k + ‖Xk‖2 − ‖Xk+1‖2). (3.49)

For every (ζ, ξ) ∈ <m ×Q∗, we have

l(ū, X; ζ, ξ) ≤ sup
ζ∈<m,ξ∈<s

l(ū, X; ζ, ξ) = f(ū, X) = min f(u,X).

Since

gρ(ζ, ξ) = inf
u∈<m,Xp×q

l(u,X; ζ, ξ) ≤ l(ū, X; ζ, ξ) ≤ min f(u,X),

we have asym sup(D) ≤ min f(u,X). Therefore we have from (3.47) that the rela-

tion (3.44) holds. If (3.16) satisfies the Slater condition (3.17), it follows from [106,
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Theorem 17 & 18] that all the level sets {(ζ, ξ) ∈ <m × <s | gρ(ζ, ξ) ≥ β, β ∈ <}

are bounded. Then the last part of the conclusion can be obtained from (3.43) and

(3.44).

Theorem 3.7. (Local convergence) Suppose that the hypotheses in Proposition

3.4 are satisfied. Let the partial PPA be executed with the stopping criterion (3.36a),

(3.36b), (3.36c) and (3.36d). If T −1
f is Lipschitz continuous at the origin with

modulus af , then {(uk, Xk)} converges to (ū, X), where (ū, X) is the unique optimal

solution to problem (3.16), and

‖Xk+1 −X‖ ≤ ηk‖Xk −X‖, for all k sufficiently large, (3.50)

where

ηk = [af (a
2
f + σ2

k)
−1/2 + δk](1− δk)−1 → η∞ = af (a

2
f + σ2

∞)−1/2 < 1.

Moreover, the conclusions of Theorem 3.6 about {(ζk, ξk)} are valid.

If in addition to (3.36c), (3.36d) and the condition on T −1
f , one has (3.36e) and

T −1
l is Lipschitz continuous at the origin with modulus al (≥ af ), then (ζk, ξk) →

(ζ̄ , ξ̄), where (ζ̄ , ξ̄) is the unique optimal solution to problem (3.20), and one has

‖(ζk+1, ξk+1)− (ζ̄ , ξ̄)‖ ≤ η′k‖Xk+1 −Xk‖, for all k sufficiently large, (3.51)

where η′k = al(1 + δ′k)/σk → η′∞ = al/σ∞.

Proof. Since it follows from Proposition 3.3 that (3.36c) and (3.36d) implies the

general stopping criterion (3.14b) and (3.14c), we can easily obtain the first part

of the theorem from Theorem 3.6 and the general results in [52, Theorem 2]. The

second part of theorem can be similarly obtained by following the discussion in [107,

Theorem 5]. We omit it here.

Remark 3.8. At the moment, we do not study the characterization of the Lipschitz

continuity of T −1
f at the origin. But it is certainly an interesting problem to study.
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3.4 An inexact smoothing Newton method for in-

ner subproblems

In this section, we will introduce an inexact smoothing Newton method for solving

the inner subproblem (3.34).

3.4.1 Inner subproblems

For the convenience of subsequent discussion, we let

Â =

(
A
B

)
, b̂ = (b; d) ∈ <m+s, K = <m×Q∗ ⊆ <m×<s, and y = (ζ; ξ) ∈ K. (3.52)

In our proposed partial PPA, for some fixed X ∈ <p×q and σ > 0, we need to solve

the following form of inner subproblem

min
y∈K

{
ϕ(y) :=

1

2
〈y, Ty〉+

1

2σ
‖Dρσ(W (y;X))‖2 − 〈b̂, y〉 − 1

2σ
‖X‖2

}
, (3.53)

where T = [Im, 0; 0, 0] ∈ <(m+s)×(m+s),W (y;X) = X − σ(C − Â∗y) and Â∗ =

(A∗, B∗) is the adjoint of Â. Note that −ϕ(·) is the objective function of the inner

subproblem (3.34). The objective function ϕ(·) in (3.53) is continuously differen-

tiable with

∇ϕ(y) = Ty + ÂDρσ(W (y;X))− b̂, y ∈ <m+s.

Since ϕ(·) is a convex function, ȳ = (ζ̄; ξ̄) ∈ K solves problem (3.53) if and only

if it satisfies the following variational inequality

〈y − ȳ,∇ϕ(ȳ)〉 ≥ 0 ∀y ∈ K. (3.54)

Define F : <m+s → <m+s by

F (y) := y − ΠK(y −∇ϕ(y)), y ∈ <m+s. (3.55)

Then one can easily obtain that ȳ ∈ K solves (3.54) if and only if F (ȳ) = 0 [34].

Thus, solving the inner problem (3.53) is equivalent to solving the following equation

F (y) = 0, y ∈ <m+s. (3.56)
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Since both ΠK(·) and Dρσ(·) are globally Lipschitz continuous, F is globally Lipschitz

continuous. For the purpose of introducing an inexact smoothing Newton method,

we need to define a smoothing function for F (·).

The smoothing function for the soft threshold operator Dρσ(·) has been defined

by (2.29) in which the threshold value is ρσ. Next, we need to define the smoothing

function for ΠK(·). For simplicity, we shall use the smoothing function φH defined

by (2.26). Let ψ : <× <m+s → <m+s be defined by

ψi(ε, z) =

 zi if 1 ≤ i ≤ m+ s1

φH(ε, zi) if m+ s1 + 1 ≤ i ≤ m+ s
, (ε, z) ∈ < × <m+s. (3.57)

The function ψ is obviously continuously differentiable around any (ε, z) ∈ <×<m+s

as long as ε 6= 0 and is strongly semismooth everywhere.

Now, we are ready to define a smoothing function for F (·). Let

Υ(ε, y) := y − ψ(ε, y − (Ty + ÂΦρσ(ε,W (y;X))− b̂)), (ε, y) ∈ <×<m+s. (3.58)

From the definitions of Υ, ψ, and Φρσ, we have that F (y) = Υ(0, y) for any y ∈ <m+s.

Proposition 3.9. Let Υ : < × <m+s → <m+s be defined by (3.58). Let y ∈ <m+s.

Then Υ has the following properties:

(i) Υ is globally Lipschitz continuous on <× <m+s.

(ii) Υ is continuously differentiable around (ε, y) when ε 6= 0. For any fixed ε ∈ <,

Υ(ε, ·) is a P0-function, i.e., for any (y, z) ∈ <m+s ×<m+s with y 6= z,

max
yi 6=zi

(yi − zi)(Υi(ε, y)−Υi(ε, z)) ≥ 0, (3.59)

and thus for any fixed ε 6= 0, Υ′y(ε, y) is a P0-matrix (i.e., all its principal

minors are nonnegative).

(iii) Υ is strongly semismooth at (0, y). In particular, for any ε ↓ 0 and <m+s 3

h→ 0 we have

Υ(ε, y + h)−Υ(0, y)−Υ′(ε, y + h)(ε, h) = O(‖(ε, h)‖2).
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(iv) For any h ∈ <m+s,

∂Υ(0, y)(0, h) ⊆ h−∂ψ(0, y−∇ϕ(y))(0, h−(Th+σÂ∂Φρσ(0,W (y;X))(0, Â∗h))).

Proof. (i) Since both ψ and Φρσ are globally Lipschitz continuous, Υ is also globally

Lipschitz continuous.

(ii) By the definition of ψ and Φρσ, we know that Υ is continuously differentiable

around (ε, y) ∈ < × <m+s when ε 6= 0. From part (i), we know Υ is continuous on

<× <m+s, it is enough to show that for any 0 6= ε ∈ <, Υ(ε, ·) is a P0-function.

For any fixed ε 6= 0. Define gε : <m+s → <m+s by

gε(y) = Ty + ÂΦρσ(ε,W (y;X))− b̂, y ∈ <m+s.

Then gε is continuously differentiable on <m+s. For any h ∈ <m+s, we have

〈h, (gε)′(y)h〉 = 〈h, Th〉+ σ〈h, Â(Φρσ)′W (ε,W )Â∗h〉

= 〈h, Th〉+ σ〈Â∗h, (Φρσ)′W (ε,W )Â∗h〉 ≥ 0,

which implies that gε is a P0-function on <m+s. Let (y, z) ∈ <m+s × <m+s with

y 6= z. Then there exists i ∈ {1, . . . ,m+ s} with yi 6= zi such that

(yi − zi)((gε)i(y)− (gε)i(z)) ≥ 0.

By noting that for any h ∈ <m+s, (φH)′hj(ε, hj) ∈ [0, 1], j = 1, . . . ,m+ s, we have

(yi − zi)(Υi(ε, y)−Υi(ε, z)) ≥ 0.

This shows that (3.59) holds. Hence, Υ′y(ε, y) is P0-matrix for any fixed ε 6= 0.

(iii) Since the composite of strongly semismooth functions is still strongly semis-

mooth [38], Υ is strongly semismooth at (0, y).

(iv) Let N = {0} × <m+s which has Lebesgue measure zero in <× <m+s and

∂NΥ(0, y) :=
{

lim
k→∞

Υ′(εk, yk) : (εk, yk)→ (0, y), εk 6= 0
}
.
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Then we have ∂Υ(0, y) = conv(∂NΥ(0, y)). Then it is enough to show that the

inclusion is true where the term at the left-hand side is ∂NΥ(0, y)(0, h). Since both

ψ and Φρσ are directionally differentiable, for any (ε, y′) ∈ < × <m+s with ε 6= 0,

Υ′(ε, y′)(0, h) = h− ψ′
(

(ε, z′); (0, h− (Th+ σÂΦ′ρσ((ε,W ); (0, Â∗h))))
)
,

where z′ = y′ − (Ty′ + ÂΦρσ(ε,W )− b̂), from which we can further have

Υ′(ε, y′)(0, h) ∈ h− ∂ψ(ε, z′)(0, h− (Th+ σÂ∂Φρσ(ε,W )(0, Â∗h))).

By taking (ε, y′)→ (0, y) in the above inclusion, the required result follows.

3.4.2 An inexact smoothing Newton method

In this subsection we introduce an inexact smoothing Newton method, which was

developed by Gao and Sun in [42], for solving the nonsmooth equation of the form

(3.56). Let κ ∈ (0,∞) be a constant. Define G : <× <m+s → <m+s by

G(ε, y) := Υ(ε, y) + κ|ε|y, (ε, y) ∈ < × <m+s, (3.60)

where Υ : < × <m+s → <m+s is defined by (3.58). For any (ε, y) ∈ < × <m+s with

ε 6= 0, we have that G′y(ε, y) is a P -matrix (i.e., all its principal minors are positive),

thus nonsingular, while by part (ii) of Proposition 3.9, Υ′y(ε, y) is only a P0-matrix

which may be singular. Define E : <× <m+s → <×<m+s by

E(ε, y) :=

 ε

G(ε, y)

 =

 ε

Υ(ε, y) + κ|ε|y

 , (ε, y) ∈ < × <m+s.

For any (ε, y) ∈ <m+s with ε 6= 0, E ′(ε, y) is a P -matrix, thus nonsingular. Then

solving the nonsmooth equation F (y) = 0 is equivalent to solving the following

smoothing-nonsmooth equation

E(ε, y) = 0.

Define the merit function ϕ̂ : <× <m+s → <+ by

ϕ̂(ε, y) := ‖E(ε, y)‖2, (ε, y) ∈ < × <m+s.
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Then the inexact smoothing Newton method can be described as follows.

Algorithm 2: An inexact smoothing Newton method.

Step 0. Choose r ∈ (0, 1). Let ε̂ ∈ (0,∞) and η ∈ (0, 1) be such that δ :=
√

2 max{rε̂, η} < 1. Choose constants ` ∈ (0, 1), σ ∈ (0, 1/2), τ ∈ (0, 1), and

τ̂ ∈ [1,∞). Let ε0 := ε̂ and y0 ∈ <m+s be an arbitrary starting point. Set

k := 0.

Step 1. If E(εk, yk) = 0, then stop. Otherwise, compute

ςk := rmin{1, ϕ̂(εk, yk)} and ηk := min{τ, τ̂‖E(εk, yk)‖}.

Step 2. Solve the following equation

E(εk, yk) + E ′(εk, yk)

 ∆εk

∆yk

 =

 ςkε̂

0

 (3.61)

approximately such that

‖Rk‖ ≤ min
{
ηk‖G(εk, yk) +G′ε(ε

k, yk)∆εk‖, η‖E(εk, yk)‖
}
, (3.62)

where ∆εk := −εk + ςkε̂ and Rk := G(εk, yk) +G′(εk, yk)

[
∆εk

∆yk

]
.

Step 3. Let mk be the smallest nonnegative integer m satisfying

ϕ̂(εk + `m∆εk, yk + `m∆yk) ≤
[
1− 2σ(1− δ)`m

]
ϕ̂(εk, yk).

Set (εk+1, yk+1) = (εk + `mk∆εk, yk + `mk∆yk).

Step 4. Replace k by k + 1 and go to Step 1.

Let

N := {(ε, y) ∈ < × <m+s | ε ≥ ς(ε, y)ε̂}.

From [42, Theorem 4.1 & Theorem 3.6], we have the following convergence result for

the inexact smoothing Newton method. For more detailed discussion about inexact
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smoothing Newton method, see [42].

Theorem 3.10. Algorithm 2 is well defined and generates an sequence {(εk, yk)} ∈

N with the properties that any accumulation point (ε̄, ȳ) of {(εk, yk)} is a solution

of E(ε, y) = 0 and lim
k→∞

ϕ̂(εk, yk) = 0. Additionally, if the Slater condition (3.17)

holds, then {(εk, yk)} is bounded.

Theorem 3.11. Let (ε̄, ȳ) be an accumulation point of the infinite sequence {(εk, yk)}

generated by Algorithm 2. Suppose that E is strongly semismooth at (ε̄, ȳ) and that

all V ∈ ∂E(ε̄, ȳ) are nonsingular. Then the whole sequence {(εk, yk)} converges to

(ε̄, ȳ) quadratically, i.e.,

‖(εk+1 − ε̄, yk+1 − ȳ)‖ = O(‖(εk − ε̄, yk − ȳ)‖2).

3.4.3 Constraint nondegeneracy and quadratic convergence

Suppose that the Slater condition (3.17) holds. Let (ε̄, ȳ) be an accumulation point

of the sequence {(εk, yk)} generated by Algorithm 2. Then, we know that ε̄ = 0

and F (ȳ) = 0, which means that ȳ = (ζ̄; ξ̄) ∈ K is an optimal solution to the inner

subproblem (3.53). Let X := Dρσ(W (ȳ;X)). Then (ζ̄ , X) ∈ <m×<p×q is the unique

optimal solution to problem (3.31).

In order to prove the quadratic convergence of Algorithm 2, we need the con-

cept of constraint nondegeneracy which was initiated by Robinson [103] and later

extensively studied by Bonnans and Shapiro [14]. For a given closed set K ⊆ X , we

denote TK(x) to be the tangent cone of K at x ∈ K as in convex analysis [104]. The

largest linear space contained in TK(x) is denoted by lin(TK(x)), which is equal to

(−TK(x))∩TK(x). Define g : <p×q → < by g(X) = ‖X‖∗. Let Kp,q be the epigraph

of g, i.e.,

Kp,q := epi(g) = {(X, t) ∈ <p×q ×< | g(X) ≤ t},

which is a close convex cone. Let B̂ := (B, 0). Then the problem (3.15) can be
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rewritten in the following form:

min
{1

2
‖A(X)− b‖2 + ρ t+ 〈C,X〉 : B̂(X, t) ∈ d+Q, (X, t) ∈ Kp,q

}
. (3.63)

It is easy to see that X is an optimal solution to problem (3.15) if and only if (X, t̄)

is an optimal solution to (3.63) with t̄ = ‖X‖∗. Let I be the identity mapping from

<p×q ×< to <p×q ×<. Then the constraint nondegeneracy condition is said to hold

at (X, t̄) if B̂
I

 (<p×q ×<) +

 lin(TQ(B̂(X, t̄)− d))

lin(TKp,q(X, t̄))

 =

 <s

<p×q ×<

 . (3.64)

Note that lin(TQ(B̂(X, t̄)− d)) = lin(TQ(B(X)− d)). Let E(X) denote the index set

of active constraints at X:

E(X) := {i | 〈Bi, X〉 = di, i = s1 + 1, . . . , s},

and l := |E(X)|. Without loss of generality, we assume that

E(X) := {s1 + 1, . . . , s1 + l}.

Define B̃ : <p×q → <s1+l by

B̃(X) :=
[
〈B1, X〉, . . . , 〈Bs1+l, X〉

]T
, X ∈ <p×q.

Let B = (B̃, 0). Since lin(TQ(B(X)− d)) can be computed directly as follows

lin(TQ(B(X)− d)) = {h ∈ <s | hi = 0, i ∈ {1, . . . , s1} ∪ E(X)},

we have that (3.64) can be reduced to B
I

 (<p×q ×<) +

 {0}s1+l

lin(TKp,q(X, t̄))

 =

 <s1+l

<p×q ×<

 ,

which is equivalent to

B
(

lin(TKp,q(X, t̄))
)

= <s1+l. (3.65)
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Next, we shall characterize the linear space lin(TKp,q(X, g(X))). Let W (ȳ;X)

admit the SVD as in (2.3). For the given threshold value ρσ, decompose the index

set α = {1, . . . , p} into the following three subsets:

α1 := {i |σi > ρσ, i ∈ α}, α2 := {i |σi = ρσ, i ∈ α}, α3 := {i |σi < ρσ, i ∈ α},

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 are singular values of W (ȳ;X) being arranged

in non-increasing order. Then U = [Uα1 Uα2 Uα3 ], V = [Vα1 Vα2 Vα3 V2], and

X = Dρσ(W (ȳ;X)) is of rank |α1|. For any H ∈ <p×q, by the results of Watson

[127, Theorem 1], we can obtain that

g′(X;H) =


‖H‖∗ if |α1| = 0,

〈UV T
1 , H〉 if |α1| = p,

〈Uα1V
T
α1
, H〉+ ‖[Uα2 Uα3 ]

TH[Vα2 Vα3 V2]‖∗ if 0 < |α1| < p.

From [26, Proposition 2.3.6 & Theorem 2.4.9], we have

TKp,q(X, g(X)) = epi(g′(X; ·)),

from which we can easily have that

TKp,q(X, g(X)) = {(H, t) ∈ <p×q×< | 〈Uα1V
T
α1
, H〉+‖[Uα2 Uα3 ]

TH[Vα2 Vα3 V2]‖∗ ≤ t}.

Then its linearity space is as follows

lin(TKp,q(X, g(X))) = {(H, t) ∈ <p×q×< | [Uα2 Uα3 ]
TH[Vα2 Vα3 V2] = 0, t = 〈Uα1V

T
α1
, H〉},

Let

T (X) := {H ∈ <p×q | [Uα2 Uα3 ]
TH[Vα2 Vα3 V2] = 0}, (3.66)

which is a subspace of <p×q. The orthogonal complement of T (X) is given by

T (X)⊥ = {H ∈ <p×q | UT
α1
H = 0, HVα1 = 0}. (3.67)

Since B = (B̃, 0), we have that (3.65) can be further reduced to

B̃(T (X)) = <s1+l. (3.68)
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Lemma 3.12. Let W (ȳ;X) = X − σ(C − Â∗ȳ) admit the SVD as in (2.3). Then

the constraint nondegeneracy condition (3.68) holds at X = Dρσ(W (ȳ;X)) if and

only if for any h ∈ <s1+l,

UT
α1

(B̃∗h) = 0 and (B̃∗h)Vα1 = 0 ⇐⇒ h = 0. (3.69)

Proof. “=⇒” If h = 0, obviously we have that UT
α1

(B̃∗h) = 0 and (B̃∗h)Vα1 = 0.

For any h ∈ <s1+l, if UT
α1

(B̃∗h) = 0 and (B̃∗h)Vα1 = 0, since the constraint

nondegenerate condition (3.68) holds at X = Dρσ(W (ȳ;X)), there exist Z ∈ T (X)

such that h = B̃(Z). Let ᾱ1 = α2 ∪ α3. Then we have

〈h, h〉 = 〈h, B̃(Z)〉 = 〈B̃∗h, Z〉 = 〈UT (B̃∗h)V, UTZV 〉

=
〈[ 0 0 0

0 UT
ᾱ1

(B̃∗h)Vᾱ1 UT
ᾱ1

(B̃∗h)V2

]
,

[ UT
α1
ZVα1 UT

α1
ZVᾱ1 UT

α1
ZV2

UT
ᾱ1
ZVα1 0 0

]〉
= 0,

which means h = 0.

“⇐=” If the constraint nondegeneracy condition (3.68) does not hold at X,

then we have [
B̃(T (X))

]⊥
6= {0}.

Let 0 6= h ∈
[
B̃(T (X))

]⊥
. Then we have

0 = 〈h, B̃(Z)〉 = 〈B̃∗h, Z〉 ∀ Z ∈ T (X),

which means B̃∗h ∈ T (X)⊥. Thus, from (3.67), we have that

UT
α1

(B̃∗h) = 0 and (B̃∗h)Vα1 = 0,

from which we must have h = 0. This contradiction shows that the constraint

nondegeneracy condition (3.68) holds at X.

Lemma 3.13. Let Ã = (A; B̃) and Ã∗ = (A∗, B̃∗) be the adjoint of Ã. Let Φρσ :

< × <p×q → <p×q be defined by (2.29). Assume that the constraint nondegeneracy

condition (3.68) holds at X. Then for any V ∈ ∂Φρσ(0,W (ȳ;X)), we have

〈h, T̃h+ σÃV(0, Ã∗h)〉 > 0 ∀ 0 6= h ∈ <m+s1+l, (3.70)
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where T̃ = [Im, 0; 0, 0] is a matrix of size m+ s1 + l.

Proof. For any 0 6= h = (h1;h2) ∈ <m+s1+l, where h1 ∈ <m and h2 ∈ <s1+l, we have

〈h, T̃h+ σÃV(0, Ã∗h)〉 = ‖h1‖2 + σ〈h, ÃV(0, Ã∗h)〉 = ‖h1‖2 + σ〈Ã∗h,V(0, Ã∗h)〉.

If h1 6= 0, since 〈Ã∗h,V(0, Ã∗h)〉 ≥ 0, we have

〈h, T̃h+ σÃV(0, Ã∗h)〉 > 0.

In the following proof, we assume h1 = 0. For any 0 6= h = (h1;h2) ∈ <m+s1+l, we

have Ã∗h = B̃∗h2 and 〈h, T̃h + σÃV(0, Ã∗h)〉 = σ〈h2, B̃V(0, B̃∗h2)〉 ≥ 0. Suppose

that there exists 0 6= h2 ∈ <s1+l such that

〈h2, B̃V(0, B̃∗h2)〉 = 0.

Let H = B̃∗h2, H1 = UTHV1, H2 = UTHV2, and H̃1 = 1
2
(H1 +HT

1 ). Then we have

0 = 〈H,V(0, H)〉 =
1

2

〈 0 H

HT 0

 ,
 0 V(0, H)

(V(0, H))T 0

〉

=
1

2

〈
QTΞ(H)Q, QT

 0 V(0, H)

(V(0, H))T 0

Q〉,
where Q ∈ Sp+q is of the form as in (2.5). From (2.42), (2.43) and Proposition 2.9,

we know that there exists V|α2| ∈ ∂(Φρ)|α2|(0, ρI|α2|) such that

QT

 0 V(0, H)

(V(0, H))T 0

Q =


Mαα Mαγ Mαβ

MT
αγ Mγγ Mγβ

MT
αβ MT

γβ Mββ

 ,
where

Mαα =


(H̃1)α1α1 (H̃1)α1α2 Ωα1α3 ◦ (H̃1)α1α3

(H̃1)Tα1α2
V|α2|(0, (H̃1)α2α2) 0

ΩT
α1α3
◦ (H̃1)Tα1α3

0 0

 ,

Mαγ = Γαγ◦(
HT

1 −H1

2
), Mαβ = Γαβ◦(

1√
2
H2), Mγγ = −Mαα, Mγβ = Mαβ, Mββ = 0,
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Ωα1α3 ,Γαγ, and Γαβ are of the forms as in (2.37), (2.38) and (2.39), respectively.

Since QTΞ(H)Q is of the form in (2.13), we have that

〈H,V(0, H)〉 = 〈H̃1,Mαα〉+
1

4
〈HT

1 −H1,Γαγ ◦ (HT
1 −H1)〉+ 〈H2,Γαβ ◦H2〉.

Since 〈(H̃1)α2α2 ,V|α2|(0, (H̃1)α2α2)〉 ≥ 0, we obtain from 〈H,V(0, H)〉 = 0 that

(H̃1)α1α = 0, (H̃1)αα1 = 0, (HT
1 −H1)α1α = 0, (HT

1 −H1)αα1 = 0, and (H2)α1β̄ = 0,

where β̄ = {1, . . . , q−p}. Since H1 = 1
2
(H1 +HT

1 )− 1
2
(HT

1 −H1) = H̃1− 1
2
(HT

1 −H1),

we have that (H1)α1α = 0 and (H1)αα1 = 0. Since H1 = [Uα1 Uα2 Uα3 ]
TH[Vα1 Vα2 Vα3 ]

and H2 = [Uα1 Uα2 Uα3 ]
THV2, we obtain that

UT
α1
HV1 = 0, UT

α1
HV2 = 0, and UTHVα1 = 0.

Since both U and V = [V1 V2] are orthogonal matrices, we have

UT
α1
H = 0 and HVα1 = 0,

which means

UT
α1

(B̃∗h2) = 0 and (B̃∗h2)Vα1 = 0.

Since the constraint nondegeneracy condition (3.68) holds at X, we have from

Lemma 3.12 that h2 = 0, which contradicts the assumption that h2 6= 0. This

contradiction shows that for any V ∈ ∂Φρσ(0,W (ȳ;X)), (3.70) holds.

Proposition 3.14. Let Υ : <×<m+s → <m+s be defined by (3.58). Assume that the

constraint nondegeneracy condition (3.68) holds at X. Then for any W ∈ ∂Υ(0, ȳ),

we have

max
i
hi(W(0, h))i > 0 ∀ 0 6= h ∈ <m+s. (3.71)

Proof. Let W ∈ ∂Υ(0, ȳ). Suppose that there exists 0 6= h ∈ <m+s such that (3.71)

does not hold, i.e.,

max
i
hi(W(0, h))i ≤ 0. (3.72)
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Then from part (iv) of Proposition 3.9, we know that there exist D ∈ ∂ψ(0, z̄) and

V ∈ ∂Φρσ(0,W (ȳ;X)) such that

W(0, h) = h−D(0, h−(Th+σÂV(0, Â∗h))) = h−D(0, h)+D(0, Th+σÂV(0, Â∗h)),

where z̄ = ȳ− (T ȳ+ ÂΦρσ(0,W (ȳ;X))− b̂). By simple calculations, we obtain that

there exists a nonnegative vector d ∈ <m+s satisfying

di =


1 if 1 ≤ i ≤ m+ s1,

∈ [0, 1] if m+ s1 + 1 ≤ i ≤ m+ s1 + l,

0 if m+ s1 + l + 1 ≤ i ≤ m+ s,

such that for any y ∈ <m+s,

(D(0, y))i = diyi, i = 1, . . . ,m+ s.

Then we have

hi(W(0, h))i = hi

[
hi − dihi + di

(
Th+ σÂV(0, Â∗h)

)
i

]
, i = 1, . . . ,m+ s.

This, together with (3.72), implies that
hi(Th+ σÂV(0, Â∗h))i ≤ 0 if 1 ≤ i ≤ m+ s1,

hi(Th+ σÂV(0, Â∗h))i ≤ 0 or hi = 0 if m+ s1 + 1 ≤ i ≤ m+ s1 + l,

hi = 0 if m+ s1 + l + 1 ≤ i ≤ m+ s.

Then we obtain that

〈h, Th+ σÂV(0, Â∗h)〉 = 〈h̃, T̃ h̃+ σÃV(0, Ã∗h̃)〉 ≤ 0,

where 0 6= h̃ ∈ <m+s1+l is defined by h̃i = hi, i = 1, . . . ,m + s1 + l. However,

the above inequality contradicts (3.70) in Lemma 3.13. Hence, we have that (3.71)

holds.

Theorem 3.15. Let (ε̄, ȳ) be an accumulation point of the infinite sequence {(εk, yk)}

generated by Algorithm 2. Assume that the constraint nondegeneracy condition

(3.68) holds at X. Then the whole sequence {(εk, yk)} converges to (ε̄, ȳ) quadrati-

cally, i.e.,

‖(εk+1 − ε̄, yk+1 − ȳ)‖ = O(‖(εk − ε̄, yk − ȳ)‖2).
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Proof. To prove the quadratic convergence of {(εk, yk)}, by Theorem 3.11, it is

enough to show that E is strongly semismooth at (ε̄, ȳ) and all V ∈ ∂E(ε̄, ȳ) are

nonsingular. The strong semismoothness of E at (ε̄, ȳ) follows from part (iii) of

Proposition 3.9 and the fact that the modulus function | · | is strongly semismooth

everywhere on <.

Next, we show the nonsingularity of all elements in ∂E(ε̄, ȳ). For any V ∈

∂E(ε̄, ȳ), from Proposition 3.14 and the definition of E, we have that for any 0 6= h ∈

<m+s+1, maxi hi(Vd)i > 0, which implies that V is a P -matrix, and thus nonsingular

[28, Theorem 3.3.4]. Hence we complete the proof of quadratic convergence of

{(εk, yk)}.

3.5 Efficient implementation of the partial PPA

In this section, we introduce some techniques to improve the efficiency of our partial

proximal point algorithm.

In our numerical implementation, we use the well-known alternating direction

method of multipliers proposed by Gabay and Mercier [40], and Glowinski and

Marrocco [45] to generate a good starting point for our partial PPA. To use the

alternating direction method of multipliers, we introduce two auxiliary variables Y

and v, and consider the following equivalent form of problem (3.15):

min
X∈<p×q ,Y ∈<p×q ,v∈Q

{1

2
‖A(X)−b‖2+ρ‖Y ‖∗+〈C,X〉 : Y = X,B(X)−v = d

}
. (3.73)

The augmented Lagrangian function for the problem (3.73) that corresponds to the

linear equality constraints is defined as follows:

Lβ(X, Y, v;Z, λ) =
1

2
‖A(X)− b‖2 + ρ‖Y ‖∗ + 〈C,X〉+ 〈Z,X − Y 〉

+ 〈λ, d− B(X) + v〉+
β

2
‖X − Y ‖2 +

β

2
‖d− B(X) + v‖,

where Z ∈ <p×q and λ ∈ <s are the corresponding Lagrangian multipliers of the

linear equality constraints and β > 0 is the penalty parameter for the violation of the
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linear equality constraints. Then, from a given starting point (X0, Y 0, v0, Z0, λ0),

the alternating direction method of multipliers generates new iterates according to

the following procedure

Xk+1 := arg min
X∈<p×q

Lβ(X, Y k, vk;Zk, λk), (3.74a)

Y k+1 := arg min
Y ∈<p×q

Lβ(Xk+1, Y, vk;Zk, λk), (3.74b)

vk+1 := arg min
v∈Q

Lβ(Xk+1, Y k+1, v;Zk, λk), (3.74c)

Zk+1 := Zk + γβ(Xk+1 − Y k+1), λk+1 := λk + γβ(d− B(Xk+1) + vk+1), (3.74d)

where γ ∈ (0, (1 +
√

5)/2) is a given constant. Note that there is no theoretic

convergence guarantee for the above procedure. This is only a heuristic approach for

generating a good starting point for our partial proximal point algorithm. During our

numerical implementation, we observe that the performance of the above procedure

is very sensitive to the choice of the value of the penalty parameter β.

When applying Algorithm 2 to solve the inner subproblem (3.53), the most ex-

pensive step is in solving the linear system (3.61). In our numerical implementation,

we first obtain ∆εk = −εk + ςkε̂, and then apply the BiCGStab iterative solver of

Van der Vost [124] to the following linear system

G′y(ε
k, yk)∆yk = −G(εk, yk)−G′ε(εk, yk)∆εk (3.75)

to obtain a ∆yk satisfying condition (3.62). For the sake of convenience, we suppress

the superscript k in our subsequent analysis. By noting that G(ε, y) and Υ(ε, y) are

defined by (3.60) and (3.58), respectively, we have that

G′y(ε, y)∆y = Υ′y(ε, y)∆y + κε∆y

= (1 + κε)∆y + ψ′z(ε, z)
(
T∆y + σÂ(Φρσ)′W (ε,W )Â∗∆y −∆y

)
, (3.76)

where z := y − (Ty + ÂΦρσ(ε,W ) − b̂) and W := X − σ(C − Â∗y). Let W admit

the SVD as in (2.3). Then, by (2.34), we have

(Φρσ)′W (ε,W )(Â∗∆y) = U
(

Λαα ◦
H1 +HT

1

2
+Λαγ ◦

H1 −HT
1

2

)
V T

1 +U(Λαβ ◦H2)V T
2 ,

(3.77)
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where Λαα,Λαγ and Λαβ are given by (2.30), H1 = UT (Â∗∆y)V1, andH2 = UT (Â∗∆y)V2.

Note that the threshold value has been changed to ρσ. When implementing the

BiCGStab iterative method, one needs to repeatedly compute the matrix-vector

multiplication G′y(ε, y)∆y. From (3.77), it seems that a full SVD of W should be

computed so that the matrix-vector multiplication G′y(ε, y)∆y can be evaluated. For

a nonsymmetric matrix problem, in which p is moderate but q is large, computing

the full SVD would incur huge memory space since the matrix V ∈ <q×q is large

and dense.

To over this difficulty, we first compute the economic form of the SVD of W ,

which is given by

W = UΣV T
1 .

Then we construct V2 via the QR factorization of V1 with

V1 = QR,

where Q ∈ <q×q is orthogonal and R ∈ <q×p is upper triangular. Decompose

Q ∈ <q×q into the form Q = [Q1 Q2] , where Q1 ∈ Rq×p and Q2 ∈ <q×(q−p). From

[49, Theorem 5.2.1], we know

range(Q2) = range(V1)⊥ = range(V2),

where range(Q2) is the range space of Q2. Since Q2 has orthonormal columns which

are orthogonal to those of V1, Q2 can be used in place of V2. In our numerical

implementation, Householder transformations are utilized to compute the QR fac-

torization. Note that instead of storing the full Householder matrices, we only need

to store the Householder vectors so as to compute the matrix-vector product involv-

ing V2.

To achieve fast convergence for the BiCGStab method, we introduce an easy-to-

compute diagonal preconditioner for the linear system (3.75). Since both ψ′z(ε, z)

and T are diagonal matrices, we know from (3.76) that it is enough to find a good

diagonal approximation of Â(Φρσ)′W (ε,W )Â∗. Let

M := ÂSÂ
T
,
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where Â and S denote the matrix representation of the linear map Â and (Φρσ)′W (ε,W )

with respect to the standard bases in <p×q and <m+s, respectively. Let the standard

basis in <p×q be {Eij ∈ <p×q : 1 ≤ i ≤ p, 1 ≤ j ≤ q}, where for each Eij, its (i, j)-th

entry is one and all the others are zero. Then the diagonal element of S with respect

to the standard basis Eij is given by

S(i,j),(i,j) = ((U ◦ U)Λ̃(V ◦ V )T )ij +
1

2
〈H ij

1 ◦ (H ij
1 )T ,Λαα − Λαγ〉,

where Λ̃ := [1
2
(Λαα+Λαγ),Λαβ] and H ij

1 = UTEijV1. Based on the above expression,

the total cost of computing all the diagonal elements of S is equal to 2p(p+q)q+3p3q

flops, which is too expensive if p2 � p+ q. Fortunately, the first term

d(ij) = ((U ◦ U)Λ̃(V ◦ V )T )ij

is usually a very good approximation of S(i,j),(i,j), and the cost of computing all the

elements d(ij), for 1 ≤ i ≤ p, 1 ≤ j ≤ q, is 2p(p + q)q flops since only the matrix

product (U ◦ U)Λ̃(V ◦ V )T is involved. Thus we propose the following diagonal

preconditioner for the coefficient matrix G′y(ε, y):

MG := (1 + κε)I + ψ′z(ε, z)
(
T + σdiag(Âdiag(d)Â

T
)− I

)
.

Finally, we should mention that the computational cost of either full or eco-

nomic SVD can sometimes dominate the cost of the whole computation. In our

implementation, we use the LAPACK routine dgesdd.f, which is based on the

divide-and-conquer strategy, to compute either full or economic SVD of a matrix.





Chapter 4
A semismooth Newton-CG method for

unconstrained inner subproblems

In this chapter, we consider the following nuclear norm regularized matrix least

squares problem with linear equality constraints only:

min
X∈<p×q

1

2
‖A(X)− b‖2 + ρ‖X‖∗ + 〈C,X〉

s.t. B(X) = d.
(4.1)

where A : <p×q → <m and B : <p×q → <s are linear maps, C ∈ <p×q, b ∈ <m, d ∈

<s, ρ is a given positive parameter. It is easy to see that (4.1) can be rewritten as

follows:

min
u∈<m,X∈<p×q

fρ(u,X) :=
1

2
‖u‖2 + ρ‖X‖∗ + 〈C,X〉

s.t. A(X) + u = b,

B(X) = d.

(4.2)

We apply the partial PPA introduced in Section 3 for solving (4.2). Since there is

no inequality constraint in (4.2), the inner subproblems (3.34) in Algorithm 1 are

unconstrained. Since the soft thresholding operator Dρσk(·) is strongly semismooth,

we introduce a semismooth Newton-CG method, which is preferable to the inexact

smoothing Newton method introduced in Section 3.4 for solving unconstrained inner

71
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subproblems (3.34). Throughout this chapter, the following Slater condition for (4.2)

is assumed to hold:  B : <p×q → <s is onto,

∃X0 ∈ <p×q such that B(X0) = d.
(4.3)

4.1 A semismooth Newton-CG method

For the convenience of subsequent discussions, we let

Â =

(
A
B

)
, b̂ = (b; d) ∈ <m+s, and ŷ = (ζ; ξ) ∈ <m+s. (4.4)

In our proposed partial PPA, for some fixed X ∈ <p×q and σ > 0, we need to solve

the following form of inner subproblem

min
ŷ∈<m+s

{
ϕ(ŷ) :=

1

2
〈ŷ, T ŷ〉+

1

2σ
‖Dρσ(W (ŷ;X))‖2 − 〈̂b, ŷ〉 − 1

2σ
‖X‖2

}
, (4.5)

where T = [Im, 0; 0, 0] ∈ <(m+s)×(m+s),W (ŷ;X) = X − σ(C − Â∗ŷ) and Â∗ =

(A∗, B∗) is the adjoint of Â. Note that −ϕ(·) is the objective function of the inner

subproblem (3.34). The optimality condition for (4.5) is given by

∇ϕ(ŷ) =

Im
0

 ŷ + ÂDρσ(W (ŷ;X))− b̂ = 0. (4.6)

Since the soft thresholding operator Dρσ(·) is Lipschitz continuous with modulus 1,

the mapping ∇ϕ(ŷ) is Lipschitz continuous on <m+s. Then for any ŷ ∈ <m+s, the

generalized Hessian of ϕ(ŷ) is well defined and it is defined as

∂2ϕ(ŷ) := ∂(∇ϕ)(ŷ), (4.7)

where ∂(∇ϕ)(ŷ) is the Clarke’s generalized Jacobian of ∇ϕ at ŷ [26]. However, it is

hard to express ∂2ϕ(ŷ) exactly, we define the following alternative for ∂2ϕ(ŷ)

∂̂2ϕ(ŷ) :=

Im
0

+ σÂ ∂Dρσ(W (ŷ;X))Â∗. (4.8)
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From [26, p.75], we have for h ∈ <m+s,

∂2ϕ(ŷ)h ⊆ ∂̂2ϕ(ŷ)h, (4.9)

which implies that if all elements in ∂̂2ϕ(ŷ) are positive definite, so are those in

∂2ϕ(ŷ).

Since the soft thresholding operator Dρσ(·) is strongly semismooth, we consider

solving (4.6) by a semismooth Newton-CG method for which the direction r at an

iterate ŷ is computed from the following linear system:

V r = −∇ϕ(ŷ), (4.10)

where

V =

Im + σAWA∗ σAWB∗

σBWA∗ σBWB∗

 =

Im
0

+ σÂWÂ∗. (4.11)

Here W is an element in ∂Dρσ(W (ŷ;X)). Note that if B = ∅, then V is always

positive definite due to fact that all elements in ∂Dρσ(·) are positive semidefinite.

To implement the above semismooth Newton-CG method, we need to compute an

element W in ∂Dρσ(W (ŷ;X)). Define the operator W0
ŷ : <p×q → <p×q as in (2.20),

we can easily have that

V0
ŷ =

Im
0

+ σÂW0
ŷ Â∗ ∈ ∂̂2ϕ(ŷ). (4.12)

Suppose that the Slater condition (4.3) holds and ỹ = (ζ̃; ξ̃) ∈ <m+s is the

optimal solution to problem (4.5). Let W (ỹ;X) = X − σ(C − Â∗ỹ) and X =

Dρσ(W (ỹ;X)). Let W (ỹ;X) admit the SVD as in (2.3). For the given thresh-

old value ρσ, we decompose the index set α = {1, . . . , p} into the following three

subindex sets:

α1 := {i |σi > ρσ, i ∈ α}, α2 := {i |σi = ρσ, i ∈ α}, α3 := {i |σi < ρσ, i ∈ α}.

As discussed in Section 3.4.3, the constraint nondegeneracy condition is said to hold

at X if

B(T (X)) = <s, (4.13)
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where the subspace T (X) of <p×q is defined as in (3.66)

T (X) :=
{
H ∈ <p×q | [Uα2 Uα3 ]

TH[Vα2 Vα3 V2] = 0
}
, (4.14)

and its orthogonal complement is given by

T ⊥(X) =
{
H ∈ <p×q | UT

α1
H = 0, HVα1 = 0

}
. (4.15)

Lemma 4.1. Let W (ỹ;X) admit the SVD as in (2.3). For anyW ∈ ∂Dρσ(W (ỹ;X))

and H ∈ <p×q such that WH = 0, it holds that

H ∈ T ⊥(X), (4.16)

where T ⊥(X) is given by (4.15).

Proof. Let W ∈ ∂Dρσ(W (ỹ;X)) and H ∈ <p×q be such that WH = 0. Then we

have

0 = 〈H, WH〉 =
1

2
〈

 0 H

HT 0

 ,
 0 WH

(WH)T 0

〉
=

1

2
〈Ξ(H), Q(Γ ◦ (QTΞ(H)Q))QT 〉

=
1

2
〈QTΞ(H)Q, Γ ◦ (QTΞ(H)Q)〉 =

1

2
〈H̃, Γ ◦ H̃〉,

where Γ ∈ Sp+q defined as in (2.16) and H̃ = QTΞ(H)Q. From (2.13) and (2.19),

we know

〈H̃, Γ ◦ H̃〉 ≥ 1

4

∑
i∈α

(∑
j∈α

Γij(H1 +HT
1 )2

ij +
∑
j∈γ

Γij(H
T
1 −H1)2

ij +
∑
j∈β

Γij(
√

2H2)2
ij

)
,

where H1 = UTHV1 and H2 = UTHV2, which implies that∑
i∈α

∑
j∈α

Γij(H1+HT
1 )2

ij = 0,
∑
i∈α

∑
j∈γ

Γij(H
T
1 −H1)2

ij = 0,
∑
i∈α

∑
j∈β

Γij(
√

2H2)2
ij = 0.

Then from (2.19) and the definition of the matrix Γ, we have

(H1+HT
1 )α1α = 0, (H1+HT

1 )αα1 = 0, (HT
1 −H1)α1α = 0, (HT

1 −H1)αα1 = 0, (H2)α1β̄ = 0.
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Since H1 = 1
2
(H1 + HT

1 ) − 1
2
(HT

1 − H1), we have (H1)α1α = 0, (H1)αα1 = 0. Since

H1 = [Uα1 Uα2 Uα3 ]
TH[Vα1 Vα2 Vα3 ], H2 = [Uα1 Uα2 Uα3 ]

THV2, we obtain

UT
α1
HV1 = 0, UT

α1
HV2 = 0, and UTHVα1 = 0,

Since U and V = [V1 V2] are orthogonal matrices, we have

UT
α1
H = 0, HVα1 = 0,

which means that H ∈ T ⊥(X).

Proposition 4.2. Suppose that the Slater condition (4.3) is satisfied. Let ỹ =

(ζ̃; ξ̃) ∈ <m+s be the optimal solution to problem (4.5), W (ỹ;X) = X − σ(C − Â∗ỹ)

admit the SVD as in (2.3) and X = Dρσ(W (ỹ;X)). Then the following conditions

are equivalent:

(a) The constraint nondegeneracy condition (4.13) holds at X.

(b) Every Vỹ ∈ ∂̂2ϕ(ỹ) is symmetric and positive definite.

(c) V0
ỹ ∈ ∂̂2ϕ(ỹ) is symmetric and positive definite.

Proof. “(a) ⇒ (b)”. Let Vỹ be an arbitrary element in ∂̂2ϕ(ỹ). Then there exists

an element Wỹ ∈ ∂Dρσ(W (ỹ;X)) such that

Vỹ =

Im + σAWỹA∗ σAWỹB∗

σBWỹA∗ σBWỹB∗

 =

Im
0

+ σÂWỹÂ∗. (4.17)

SinceWỹ is self-adjoint and positive semidefinite, we have that Vỹ is self-adjoint and

positive semidefinite.

Next we show that Vỹ is positive definite. From the structure (4.17) of Vỹ, we

know that Vỹ is positive definite if only if BWỹB∗ is positive definite. Hence, it

it enough to show the positive definiteness of BWỹB∗. Let h ∈ Rs be such that

BWỹB∗h = 0. Then, by (iii) of Proposition 2.7, we have

0 = 〈h, BWỹ B∗h〉 = 〈B∗h, Wỹ B∗h〉 ≥ 〈Wỹ B∗h, Wỹ B∗h〉,
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which implies that Wỹ (B∗h) = 0. From Lemma 4.1, we have B∗h = T (X)⊥. Since

the constraint nondegeneracy condition holds at X, there exists a Y ∈ T (X) such

that BY = h. Then, we have

〈h, h〉 = 〈h, BY 〉 = 〈B∗h, Y 〉 = 0.

Thus h = 0, which implies that BWỹB∗ is positive definite. Hence, Vỹ is positive

definite.

“(b) ⇒ (c)”. This is obviously true since V0
ỹ ∈ ∂̂2ϕ(ỹ).

“(c) ⇒ (a)”. Suppose that the constraint nondegeneracy condition (4.13) does

not hold at X. Then, we have [
BT (X)

]⊥
6= {0}.

Let 0 6= h ∈
[
BT (X)

]⊥
. Then, we have

0 = 〈h, BY 〉 = 〈H, Y 〉 ∀ Y ∈ T (X),

where H = B∗h, which implies that H ∈ T (X)⊥. From (4.15), we have

UT
α1
H = 0 and HVα1 = 0.

Then it follows that

UT
α1
HV = UT

α1
H[V1 V2] = 0 and UTHVα1 = 0. (4.18)

Since H1 = UTHV1 and H2 = UTHV2, we have from (4.18) that

(H1)α1α = 0, (H1)αα1 = 0, and (H2)α1β̄ = 0,

where β̄ = β − 2p = {1, . . . , q − p}, from which we further have that

(H1 +HT
1 )α1α = 0, (H1 +HT

1 )αα1 = 0, (HT
1 −H1)α1α = 0, and (HT

1 −H1)αα1 = 0.

Then we have

Γ0
αα ◦ (H1 +HT

1 ) = 0, Γαγ ◦ (H1 −HT
1 ) = 0, and Γαβ ◦H2 = 0.
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From the definition of W0
ỹ in (2.20), it follows that W0

ỹ (H) = 0. Then we have

〈h, BW0
ỹB∗h〉 = 〈H, W0

ỹ (H)〉 = 0. (4.19)

Since V0
ỹ is positive definite, it follows from (4.17) that BW0

ỹB∗ is also positive

definite. Then (4.19) implies that h = 0, which contradicts the assumption that

h 6= 0. Hence, we have that (a) holds.

4.2 Convergence analysis

In this section, we state the semismooth Newton-CG algorithm (SSNCG) for solving

(4.5) as follows.

SSNCG algorithm:

Given ŷ0 ∈ <m+s, c ∈ (0, 1/2), η ∈ (0, 1), τ ∈ (0, 1], τ1, τ2 ∈ (0, 1), and δ ∈ (0, 1).

For k = 0, 1, 2, . . ., obtain ŷk+1 according to the following iteration:

Step 1. Compute

ηk := min{η, ‖∇ϕ(ŷk)‖1+τ}.

Apply the CG method to find an approximation solution rk to

(Vk + εkI) r = −∇ϕ(ŷk), (4.20)

where Vk ∈ ∂̂2ϕ(ŷk) is defined in (4.12) and εk = τ1 min{τ2, ‖∇ϕ(ŷk)‖}, so

that rk satisfies the following condition:

‖(Vk + εkI)rk +∇ϕ(ŷk)‖ ≤ ηk. (4.21)

Step 2. Set αk = δmk , where mk is the first nonnegative integer m for which

ϕ(ŷk + δmrk) ≤ ϕ(ŷk) + cδm〈rk, ∇ϕ(ŷk)〉.

Step 3. Set ŷk+1 = ŷk + αkr
k.
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In the SSNCG algorithm, since Vk is always positive semidefinite, the matrix Vk+εkI

is positive definite as long as ∇ϕ(ŷk) 6= 0. To analyze the global convergence of the

SSNCG algorithm, we assume that ∇ϕ(ŷk) 6= 0 for any k ≥ 0. From [138, Lemma

3.1], we know that the generated search direction rk is always a descent direction.

The global convergence and the rate of convergence of the SSNCG algorithm can

be derived similarly as studied in [138]. For details of the proof of the convergence

analysis, see [138, Theorem 3.4 and Theorem 3.5].

Theorem 4.3. Suppose that the Slater condition (4.3) holds. Then the SSNCG

algorithm is well defined and any accumulation point ỹ of {ŷk} generated by SSNCG

algorithm is an optimal solution to the inner subproblem (4.5).

Theorem 4.4. Suppose that the Slater condition (4.3) holds. Let ỹ be an accumu-

lation point of the infinite sequence {ŷk} generated by SSNCG algorithm for solving

the inner subproblem (4.5). Suppose that at each step k ≥ 0, when the CG algorithm

terminates, the tolerance ηk is achieved as in (4.21), i.e.,

‖(Vk + εkI)rk +∇ϕ(ŷk)‖ ≤ ηk. (4.22)

Assume that the constraint nondegeneracy condition (4.13) holds at X. Then the

whole sequence {ŷk} convergence to ỹ and

‖ŷk+1 − ỹ‖ = O(‖ŷk − ỹ‖1+τ ). (4.23)

4.3 Symmetric matrix problems

In this section, we will show that the partial PPA developed for solving (3.16) can

be easily adapted for the symmetric matrix problems in which the matrix variable is

symmetric and positive semidefinite. We consider the following regularized semidef-

inite matrix least squares problem:

min
X∈Sn

1

2
‖A(X)− b‖2 + ρ〈I, X〉

s.t. B(X) = d,

X � 0,

(4.24)
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where A : Sn → <m and B : Sn → <s are linear maps, b ∈ <m, d ∈ <s, I is an

identity matrix of size n and ρ is a given positive parameter. It is easy to see that

(4.24) can be rewritten as follows:

min
u∈<m,X∈Sn

1

2
‖u‖2 + 〈Cρ, X〉

s.t. A(X) + u = b,

B(X) = d,

X � 0, u ∈ <m,

(4.25)

where Cρ = ρI. The dual problem of (4.25) is given by:

max
ζ∈<m,ξ∈<s,Z∈Sn

−1

2
‖ζ‖2 + 〈b, ζ〉+ 〈d, ξ〉

s.t. A∗(ζ) + B∗(ξ) + Z = Cρ,

Z � 0, ζ ∈ <m, ξ ∈ <s.

(4.26)

For some fixed X ∈ Sn and σ > 0, the partial quadratic regularization of problem

(4.25) is given by:

Fσ(X) = min
u∈<m,Y ∈Sn

1

2
‖u‖2 + 〈Cρ, Y 〉+

1

2σ
‖Y −X‖2

A(Y ) + u = b, (4.27)

B(Y ) = d, (4.28)

Y � 0, u ∈ <m.

The Lagrangian dual problem of (4.27) is

max
ζ∈<m,ξ∈<s

ψρσ(ζ, ξ;X) := inf
u∈<m,Y�0

Lρσ(u, Y ; ζ, ξ,X) , (4.29)

where

Lρσ(u, Y ; ζ, ξ,X) =
1

2
‖u‖2 + 〈Cρ, Y 〉+

1

2σ
‖Y −X‖2 + 〈ζ, b−A(Y )− u〉

+ 〈ξ, d− B(Y )〉

=
1

2
‖u‖2 − 〈ζ, u〉+ 〈b, ζ〉+ 〈d, ξ〉+

1

2σ
‖Y −W (ζ, ξ;X)‖2

+
1

2σ
(‖X‖2 − ‖W (ζ, ξ;X)‖2),
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where W (ζ, ξ;X) = X − σ(Cρ −A∗ζ − B∗ξ). Then we have

ψρσ(ζ, ξ;X) := inf
u∈<m,Y�0

Lρσ(u, Y ; ζ, ξ,X)

= −1

2
‖ζ‖2 + 〈b, ζ〉+ 〈d, ξ〉+

1

2σ
‖X‖2 − 1

2σ
‖ΠSn+

(W (ζ, ξ;X))‖2. (4.30)

The optimality condition for (4.29) is given by

∇ζψ
ρ
σ(ζ, ξ) = b− ζ −AΠSn+

(W (ζ, ξ;X)) = 0,

∇ξψ
ρ
σ(ζ, ξ) = d− BΠSn+

(W (ζ, ξ;X)) = 0.
(4.31)

Since ΠSn+
(·) is strongly semismooth [115], (4.31) can be efficiently solved by the

semismooth Newton-CG method developed in [138]. The convergence analysis of

the semismooth Newton-CG method for solving (4.29) can be similarly derived as

in [138].

Remark 4.5. Let σ > 0 be a given parameter. Consider the following function for

(4.26):

L̃(ζ, ξ, Z;X) = −1

2
‖ζ‖2 + 〈b, ζ〉+ 〈d, ξ〉+ 〈X, Cρ −A∗ζ − B∗ξ − Z〉

−σ
2
‖Cρ −A∗ζ − B∗ξ − Z‖2

= −1

2
‖ζ‖2 + 〈b, ζ〉+ 〈d, ξ〉+

1

2σ
‖X‖2

− 1

2σ
‖σZ +X − σ(Cρ −A∗ζ − B∗ξ)‖2,

the augmented Lagrangian function for the dual problem (4.26) is defined as follows:

Lρσ(ζ, ξ;X) := max
Z�0

L̃(ζ, ξ, Z;X)

= −1

2
‖ζ‖2 + 〈b, ζ〉+ 〈d, ξ〉+

1

2σ
‖X‖2 − 1

2σ
‖ΠSn+

(W (ζ, ξ;X))‖2.

Thus, the partial PPA for solving problem (4.25) is exactly the augmented La-

grangian method applied to the dual problem (4.26).



Chapter 5
An inexact APG method for linearly

constrained convex SDP

In this chapter, we consider the following linearly constrained convex semidefinite

programming problem:

(P ) min
x∈Sn

f(x)

s.t. A(x) = b,

x � 0,

where f is a smooth convex function on Sn+, A : Sn → Rm is a linear map, b ∈ Rm,

and x � 0 means that x ∈ Sn+. Let A∗ be the adjoint of A. The dual problem

associated with (P ) is given by

(D) max f(x)− 〈∇f(x), x〉+ 〈b, p〉

s.t. ∇f(x)−A∗p− z = 0,

p ∈ Rm, z � 0, x � 0.

We assume that the linear map A is surjective, and that strong duality holds for (P )

and (D). Let x∗ be an optimal solution of (P ) and (p∗, z∗) be an optimal solution

of (D). Then, as a consequence of strong duality, they must satisfy the following

81
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KKT conditions:

A(x) = b, ∇f(x)−A∗p− z = 0, 〈x, z〉 = 0, x � 0, z � 0.

The main purpose of this chapter is to design an efficient algorithm to solve the

problem (P ). The algorithm we propose here is based on the accelerated proximal

gradient (APG) method of Beck and Teboulle [4] (the method is called FISTA in

[4]), where in the kth iteration with iterate x̄k, a subproblem of the following form

must be solved:

min
{
〈∇f(x̄k), x− x̄k〉+

1

2
〈x− x̄k, Hk(x− x̄k)〉 : A(x) = b, x � 0

}
, (5.1)

where Hk : Sn → Sn is a given self-adjoint positive definite linear operator. In

FISTA [4], Hk is restricted to LI, where I denotes the identity map and L is a

Lipschitz constant for ∇f . More significantly, for FISTA in [4], the subproblem

(5.1) must be solved exactly to generate the next iterate xk+1. In this chapter, we

design an inexact APG method which overcomes the above mentioned two limita-

tions. Specifically, in our inexact algorithm, the subproblem (5.1) is only solved

approximately and Hk is not restricted to be a scalar multiple of I. In addition, we

are able to show that if the subproblem (5.1) is progressively solved with sufficient

accuracy, then the number of iterations needed to achieve ε-optimality (in terms of

the function value) is also proportional to 1/
√
ε, just as in the exact algorithm.

5.1 An inexact accelerated proximal gradient method

For more generality, we consider the following minimization problem

min{F (x) := f(x) + g(x) : x ∈ X} (5.2)

where X is a finite dimensional real Hilbert space with inner product 〈·, ·〉 and

its induced norm ‖ · ‖. The functions f : X → <, g : X → R ∪ {+∞} are

proper, lower semi-continuous convex functions (possibly nonsmooth). We assume
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that dom(g) := {x ∈ X : g(x) <∞} is closed, f is continuously differentiable on X

and its gradient ∇f is Lipschitz continuous with modulus L on X , i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀ x, y ∈ X .

We also assume that the problem (5.2) is solvable with an optimal solution x∗ ∈

dom(g). The inexact APG algorithm we propose for solving (5.2) is described as

follows.

Algorithm 3. Given a tolerance ε > 0. Input y1 = x0 ∈ dom(g), t1 = 1. Set k = 1.

Iterate the following steps.

Step 1. Find an approximate minimizer

xk ≈ arg min
y∈X

{
f(yk)+〈∇f(yk), y−yk〉+

1

2
〈y−yk, Hk(y−yk)〉+g(y)

}
, (5.3)

where Hk is a self-adjoint positive definite linear operator that is chosen by

the user.

Step 2. Compute tk+1 =
1 +

√
1 + 4t2k
2

.

Step 3. Compute yk+1 = xk +
(tk − 1

tk+1

)
(xk − xk−1).

Notice that Algorithm 3 is an inexact version of the algorithm FISTA in [4], where xk

need not be the exact minimizer of the subproblem (5.3). In addition, the quadratic

term is not restricted to the form Lk
2
‖y − yk‖2 where Lk is a positive scalar.

Given any positive definite linear operator Hj : X → X , and yj ∈ X , we define

qj(·) : X → R by

qj(x) = f(yj) + 〈∇f(yj), x− yj〉+
1

2
〈x− yj, Hj(x− yj)〉. (5.4)

Note that if we choose Hj = LI, then we have f(x) ≤ qj(x) for all x ∈ dom(g).

Let {ξk}, {εk} be given convergent sequences of nonnegative numbers such that

∞∑
k=1

ξk <∞ and
∞∑
k=1

εk <∞.



84 Chapter 5. An inexact APG method for linearly constrained convex SDP

Suppose for each j, we have an approximate minimizer:

xj ≈ arg min{qj(x) + g(x) : x ∈ X} (5.5)

that satisfies the conditions

F (xj) ≤ qj(xj) + g(xj) +
ξj
2t2j

(5.6)

∇f(yj) +Hj(xj − yj) + γj = δj with ‖H−1/2
j δj‖ ≤ εj/(

√
2tj) (5.7)

where γj ∈ ∂g(xj;
ξj
2t2j

) (the set of
ξj
2t2j

-subgradients of g at xj). Note that for xj to

be an approximate minimizer, we must have xj ∈ dom(g). We should mention that

the condition (5.6) is usually easy to satisfy. For example, if Hj is chosen such that

f(x) ≤ qj(x) for all x ∈ dom(g), then (5.6) is automatically satisfied.

To establish the iteration complexity result analogous to the one in [4] for Algo-

rithm 3, we need to establish a series lemmas whose proofs are extensions of those

in [4] to account for the inexactness in xk. We should note that although the ideas

in the proofs are similar, but as the reader will notice later, the technical details

become much more involved due to the error terms induced by the inexact solutions

of the subproblems.

Lemma 5.1. Given yj ∈ X and a positive definite linear operator Hj on X such

that the conditions (5.6) and (5.7) hold. Then for any x ∈ X , we have

F (x)− F (xj) ≥
1

2
〈xj − yj, Hj(xj − yj)〉+ 〈yj − x, Hj(xj − yj)〉

+ 〈δj, x− xj〉 −
ξj
t2j
. (5.8)

Proof. By condition (5.6), we have

F (x)− F (xj) ≥ F (x)− qj(xj)− g(xj)− ξj/(2t2j)

= g(x)− g(xj) + f(x)− f(yj)− 〈∇f(yj), xj − yj〉

− 1

2
〈xj − yj, Hj(xj − yj)〉 −

ξj
2t2j

.
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By the convexity of f and the definition of γj, we have

f(x) ≥ f(yj) + 〈∇f(yj), x− yj〉, g(x) ≥ g(xj) + 〈γj, x− xj〉 − ξj/(2t2j).

Hence

F (x)− F (xj)

≥ 〈γj, x− xj〉+ 〈∇f(yj), x− yj〉 − 〈∇f(yj), xj − yj〉 −
1

2
〈xj − yj, Hj(xj − yj)〉 − ξj/t2j

= 〈γj +∇f(yj), x− xj〉 −
1

2
〈xj − yj, Hj(xj − yj)〉 − ξj/t2j

= 〈δj −Hj(xj − yj), x− xj〉 −
1

2
〈xj − yj, Hj(xj − yj)〉 − ξj/t2j .

From here, the required inequality (5.8) follows readily.

For later purpose, we define the following quantities:

vk = F (xk)− F (x∗) ≥ 0, uk = tkxk − (tk − 1)xk−1 − x∗, (5.9)

ak = t2kvk ≥ 0, bk = 1
2
〈uk, Hk(uk)〉 ≥ 0, ek = tk〈δk, uk〉 (5.10)

τ = 1
2
〈x0 − x∗, H1(x0 − x∗)〉, ε̄k =

∑k
j=1 εj, ξ̄k =

∑k
j=1(ξj + ε2j). (5.11)

Note that for the choice where εj = 1/jα = ξj for all j ≥ 1, where α > 1 is fixed, we

have

ε̄k ≤
1

α− 1
, ξ̄k ≤

3

2

1

α− 1
∀ k ≥ 1.

Lemma 5.2. Suppose that Hk−1 � Hk � 0 for all k. Then

ak−1 + bk−1 ≥ ak + bk − ek − ξk. (5.12)

Proof. By applying the inequality (5.8) to x = xk−1 ∈ dom(g) with j = k, we get

vk−1 − vk = F (xk−1)− F (xk) (5.13)

≥ 1

2
〈xk − yk, Hk(xk − yk)〉+ 〈yk − xk−1, Hk(xk − yk)〉+ 〈δk, xk−1 − xk〉 − ξk/t2k.

Similarly, by applying the inequality (5.8) to x = x∗ ∈ dom(g) with j = k, we get

− vk = F (x∗)− F (xk)

≥ 1

2
〈xk − yk, Hk(xk − yk)〉+ 〈yk − x∗, Hk(xk − yk)〉

+ 〈δk, x∗ − xk〉 − ξk/t2k. (5.14)
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By multiplying (5.13) throughout by tk − 1 (note that tk ≥ 1 for all k ≥ 1) and add

that to (5.14), we get

(tk − 1)vk−1 − tkvk

≥ tk
2
〈xk − yk, Hk(xk − yk)〉+ 〈tkyk − (tk − 1)xk−1 − x∗, Hk(xk − yk)〉

− 〈δk, tkxk − (tk − 1)xk−1 − x∗〉 − ξk/tk. (5.15)

Now, by multiplying (5.15) throughout by tk and using the fact that t2k−1 = tk(tk−1),

we have

ak−1 − ak = t2k−1vk−1 − t2kvk

≥ t2k
2
〈xk − yk, Hk(xk − yk)〉+ tk〈tkyk − (tk − 1)xk−1 − x∗, Hk(xk − yk)〉

− 〈δk, t2kxk − t2k−1xk−1 − tkx∗〉 − ξk.

Let a = tkyk, b = tkxk, and c = (tk − 1)xk−1 + x∗. By using the fact that 〈b −

a, Hk(b− a)〉+ 2〈a− c, Hk(b− a)〉 = 〈b− c, Hk(b− c)〉 − 〈a− c, Hk(a− c)〉, we

get

ak−1 − ak ≥
1

2
〈b− c, Hk(b− c)〉 − 1

2
〈a− c, Hk(a− c)〉

− 〈δk, t2kxk − t2k−1xk−1 − tkx∗〉 − ξk. (5.16)

Now a − c = tkyk − c = tkxk−1 + (tk−1 − 1)(xk−1 − xk−2) − c = uk−1, b − c = uk,

and t2kxk − t2k−1xk−1 − tkx∗ = tkuk. Thus (5.16) implies that

ak−1 − ak ≥
1

2
〈uk, Hk(uk)〉 −

1

2
〈uk−1, Hk(uk−1)〉 − 〈δk, tkuk〉 − ξk

≥ bk − bk−1 − 〈δk, tkuk〉 − ξk. (5.17)

Note that in deriving (5.17), we have used the fact that Hk−1 � Hk.

Lemma 5.3. Suppose that Hk−1 � Hk � 0 for all k. Then

ak ≤ (
√
τ + ε̄k)

2 + 2ξ̄k. (5.18)
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Proof. Note that we have |ek| ≤ ‖H−1/2
k δk‖‖H1/2

k uk‖tk ≤ εk ‖H1/2
k uk‖/

√
2 = εk

√
bk.

First, we show that a1 + b1 ≤ τ + ε1
√
b1 + ξ1. Note that a1 = F (x1) − F (x∗)

and b1 = 1
2
〈x1 − x∗, H1(x1 − x∗)〉. By applying the inequality (5.8) to x = x∗ with

j = 1, and noting that y1 = x0, we have that

−a1 ≥
1

2
〈x1 − y1, H1(x1 − y1)〉+ 〈y1 − x∗, H1(x1 − y1)〉+ 〈δ1, x∗ − x1〉 − ξ1

=
1

2
〈x1 − x∗, H1(x1 − x∗)〉 −

1

2
〈y1 − x∗, H1(y1 − x∗)〉+ 〈δ1, x∗ − x1〉 − ξ1

= b1 −
1

2
〈x0 − x∗, H1(x0 − x∗)〉+ 〈δ1, x∗ − x1〉 − ξ1.

Hence, by using the fact that ‖H−1/2
1 δ1‖ ≤ ε1/

√
2, we get

a1 + b1 ≤
1

2
〈x0 − x∗, H1(x0 − x∗)〉 − 〈δ1, x∗ − x1〉+ ξ1 ≤ τ + ε1

√
b1 + ξ1.(5.19)

Let

sk = ε1
√
b1 + · · ·+ εk

√
bk + ξ1 + · · ·+ ξk.

By Lemma 5.2, we have

τ ≥ a1 + b1 − ε1
√
b1 − ξ1 ≥ a2 + b2 − ε1

√
b1 − ε2

√
b2 − ξ1 − ξ2

≥ · · · ≥ ak + bk − sk. (5.20)

Thus we have ak + bk ≤ τ + sk, and hence

sk = sk−1 + εk
√
bk + ξk ≤ sk−1 + εk

√
τ + sk + ξk. (5.21)

Note that since τ ≥ b1 − ε1
√
b1 − ξ1, we have

√
b1 ≤ 1

2
(ε1 +

√
ε21 + 4(τ + ξ1)) ≤

ε1 +
√
τ + ξ1. Hence s1 = ε1

√
b1 +ξ1 ≤ ε1(ε1 +

√
τ + ξ1)+ξ1 ≤ ε21 +ξ1 +ε1(

√
τ+
√
ξ1).

The inequality (5.21) implies that

(τ + sk)− εk
√
τ + sk − (τ + sk−1 + ξk) ≤ 0.

Hence we must have

√
τ + sk ≤

1

2

(
εk +

√
ε2k + 4(τ + sk−1 + ξk)

)
.
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Consequently

sk ≤ sk−1 +
1

2
ε2k + ξk +

1

2
εk

√
ε2k + 4(τ + sk−1 + ξk)

≤ sk−1 + ε2k + ξk + εk

(√
τ +

√
sk−1 + ξk

)
.

This implies that

sk ≤ s1 +
k∑
j=2

ε2j +
k∑
j=2

ξj +
√
τ

k∑
j=2

εj +
k∑
j=2

εj
√
sj−1 + ξj

≤ ξ̄k +
√
τ ε̄k +

k∑
j=1

εj
√
sj

≤ ξ̄k +
√
τ ε̄k +

√
sk ε̄k. (5.22)

In the last inequality, we used the fact that sj−1 + ξj ≤ sj and 0 ≤ s1 ≤ · · · ≤ sk.

The inequality (5.22) implies that

√
sk ≤

1

2

(
ε̄k + (ε̄2k + 4ξ̄k + 4ε̄k

√
τ)1/2

)
.

From here, we get sk ≤ ε̄2k + 2ξ̄k + 2ε̄k
√
τ , and the required result follows from the

fact that ak ≤ τ + sk in (5.20).

Now we are ready to state the iteration complexity result for the inexact APG

algorithm described in Algorithm 3.

Theorem 5.4. Suppose the conditions (5.6) and (5.7) hold, and Hk−1 � Hk � 0

for all k. Then

0 ≤ F (xk)− F (x∗) ≤
4

(k + 1)2

(
(
√
τ + ε̄k)

2 + 2ξ̄k

)
. (5.23)

Proof. By Lemma 5.3 and the fact that tk ≥ (k + 1)/2, we have

F (xk)− F (x∗) = ak/t
2
k ≤

4

(k + 1)2
((
√
τ + ε̄k)

2 + 2ξ̄k).

From the assumption on the sequences {ξk} and {εk}, we know that both {ε̄k} and

{ξ̄k} are bounded. Then the required convergent complexity result follows.

Observe that in Theorem 5.4, we will recover the complexity result established

in [4] if εj = 0 = ξj for all j.
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5.1.1 Specialization to the case where g = δ(· |Ω)

For the problem (P ), it can be expressed in the form (5.2) with g(x) = δ(x |Ω),

where δ(· |Ω) denotes the indicator function on the set

Ω = {x ∈ Sn : A(x) = b, x � 0}. (5.24)

The sub-problem (5.3), for a fixed yk, then becomes the following constrained min-

imization problem:

min
{
〈∇f(yk), x− yk〉+

1

2
〈x− yk, Hk(x− yk)〉 : A(x) = b, x � 0

}
. (5.25)

Suppose we have an approximate solution (xk, pk, zk) to the KKT optimality

conditions for (5.25). More specifically,

∇f(yk) +Hk(xk − yk)−A∗pk − zk =: δk ≈ 0

A(xk)− b = 0 (5.26)

〈xk, zk〉 =: εk ≈ 0, xk, zk � 0.

To apply the complexity result established in Theorem 5.4, we need δk and εk to be

sufficiently small so that the conditions (5.6) and (5.7) are satisfied. Observe that

we need xk to be contained in Ω in (5.26). Note that the first equation in (5.26)

is the feasibility condition for the dual problem of (5.25), and it corresponds to the

condition in (5.7) with γk = −A∗pk − zk. Indeed, as we shall show next, γk is an

εk-subgradient of g at xk ∈ Ω if zk � 0. Now, given any v ∈ Ω, we need to show

that g(v) ≥ g(xk) + 〈γk, v − xk〉 − εk. We have g(v) = 0, g(xk) = 0 since v, xk ∈ Ω,

and

〈γk, v − xk〉 = 〈A∗pk + zk, xk − v〉 = 〈pk, A(xk)−A(v)〉+ 〈zk, xk〉 − 〈zk, v〉

= 〈zk, xk〉 − 〈zk, v〉 ≤ 〈zk, xk〉 = εk. (5.27)

Note that in deriving (5.27), we used the fact that 〈zk, v〉 ≥ 0 since v � 0 and zk � 0.

Thus the condition (5.7) is satisfied if ‖H−1/2
k δk‖ ≤ εk/(

√
2tk) and εk ≤ ξk/(2t

2
k).
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As we have already noted in the last paragraph, the approximate solution xk

obtained by solving the sub-problem (5.25) should be feasible, i.e. xk ∈ Ω. In

practice we can maintain the positive semidefiniteness of xk by performing projection

onto Sn+. But the residual vector rk := A(xk)−b is usually not exactly equal to 0. In

the following paragraph, we will propose a strategy to find a feasible solution x̃k ∈ Ω

given an approximate solution xk of (5.26) for which rk is not necessarily 0, but

(xk, pk, zk) satisfies that conditions that xk � 0, zk � 0, and ‖H−1/2
k δk‖ ≤ 1

2
εk/(
√

2tk)

and εk ≤
1

2
ξk/(2t

2
k).

Suppose that there exists x̄ � 0 such that A(x̄) = b. Since A is surjective, AA∗

is nonsingular. Let ωk = −A∗(AA∗)−1(rk). We note that ‖ωk‖2 ≤ ‖rk‖/σmin(A),

and A(xk + ωk) = b, where ‖ · ‖2 denotes the spectral norm. However, xk + ωk may

not be positive semidefinite. Thus we consider the following iterate:

x̃k = λ(xk + ωk) + (1− λ)x̄ = λxk + (λωk + (1− λ)x̄),

where λ ∈ [0, 1]. It is clear that Ax̃k = b. By choosing λ = 1 − ‖ωk‖2/(‖ωk‖2 +

λmin(x̄)), we can guarantee that x̃k is positive semidefinite. For x̃k, we have

0 ≤ 〈x̃k, zk〉 ≤ λεk + λ
√
n‖ωk‖2‖zk‖+

‖ωk‖2

‖ωk‖2 + λmin(x̄)

√
nλmax(x̄)‖zk‖

≤ εk +
√
n‖ωk‖2‖zk‖+

√
n
‖ωk‖2

λmin(x̄)
λmax(x̄)‖zk‖

≤ 2εk, if ‖ωk‖2 ≤
εk√
n‖zk‖

(
1 +

λmax(x̄)

λmin(x̄)

)−1

.

Moreover

∇f(yk) +Hk(x̃k − yk)− (A∗pk + zk) = δk +Hk(x̃k − xk) =: δ̃k

Thus γk = −A∗pk − zk is an 2εk-subgradient of g at x̃k ∈ Ω. Now ‖H−1/2
k δ̃k‖ ≤

‖H−1/2
k δk‖+ ‖H1/2

k (x̃k − xk)‖, and

‖H1/2
k (x̃k − xk)‖2 = 〈x̃k − xk, Hk(x̃k − xk)〉 ≤ n‖ωk‖2

2λmax(H1)
(

1 +
‖x̄− xk‖2

λmin(x̄)

)2

.

Thus we have

‖H−1/2
k δ̃k‖ ≤ εk/(

√
2tk) if ‖wk‖2 ≤

εk

2
√

2n tk
(λmax(H1))−1/2

(
1 +
‖x̄− xk‖2

λmin(x̄)

)−1

.
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To conclude (x̃k, pk, zk) would satisfy the condition (5.7) if

‖ωk‖2 ≤ min
{ ξk

4t2k
√
n‖zk‖

(
1 +

λmax(x̄)

λmin(x̄)

)−1

,
εk

2
√

2nλmax(H1) tk

(
1 +
‖x̄− xk‖2

λmin(x̄)

)−1}
.

(5.28)

We should note that even though we have succeeded in constructing a feasible x̃k

in Ω. The accuracy requirement in (5.28) could be too stringent for computational

efficiency. For example, when σmin(A) is large, or ‖zk‖ is large, or x̄ has a large

condition number, or λmax(H1) is large, we would expect that xk must be computed

to rather high accuracy so that (5.28) can be satisfied.

5.2 Analysis of an inexact APG method for (P )

To apply Algorithm 3 to solve the problem (P ), the requirement that xk must be

primal feasible, i.e., xk ∈ Ω, can be restrictive as it limits our flexibility of choosing

a non-primal feasible algorithm for solving (5.25). Even though the modification

outlined in last paragraph of section 5.1.1 is able to produce a primal feasible x̃k,

the main drawback is that the residual norm ‖ωk‖must satisfy the stringent accuracy

condition in (5.28). To overcome the drawbacks just mentioned, here we propose

an inexact APG algorithm for solving (P ) for which the iterate xk need not be

strictly contained in Ω. As the reader will observe later, the analysis of the iteration

complexity of the proposed inexact APG becomes even more challenging than the

analysis done in the previous section.

We let (x∗, p∗, z∗) be an optimal solution of (P ) and (D). In the section, we let

qk(x) = f(yk) + 〈∇f(yk), x− yk〉+
1

2
〈x− yk, Hk(x− yk)〉, x ∈ X . (5.29)

Note that X = Sn. The inexact APG algorithm we propose for solving (P ) is given

as follows.
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Algorithm 4. Given a tolerance ε > 0. Input y1 = x0 ∈ X , t1 = 1. Set k = 1.

Iterate the following steps.

Step 1. Find an approximate minimizer

xk ≈ arg min
x∈X

{
qk(x) : x ∈ Ω

}
, (5.30)

where Hk is a self-adjoint positive definite operator that is chosen by the user,

and xk is allowed to be contained in a suitable enlargement Ωk of Ω.

Step 2. Compute tk+1 =
1 +

√
1 + 4t2k
2

.

Step 3. Compute yk+1 = xk +
(tk − 1

tk+1

)
(xk − xk−1).

Note that when Ωk = Ω, the dual problem of (5.30) is given by

max
{
qk(x)− 〈∇qk(x), x〉+ 〈b, p〉 | ∇qk(x)−A∗p− z = 0, z � 0, x � 0

}
. (5.31)

Let {ξk}, {εk}, {µk} be given convergent sequences of nonnegative numbers such

that
∞∑
k=1

ξk <∞,
∞∑
k=1

εk <∞, and
∞∑
k=1

µk <∞,

and ∆ is a given positive number. We assume that the approximate minimizer xk in

(5.30) has the property that xk and its corresponding dual variables (pk, zk) satisfy

the following conditions:

f(xk) ≤ qk(xk) + ξk/(2t
2
k)

|〈∇qk(xk), xk〉 − 〈b, pk〉| ≤ ∆

∇qk(xk)−A∗pk − zk = δk, with ‖H−1/2
k δk‖ ≤ εk/(

√
2tk) (5.32)

‖rk‖ ≤ µk/t
2
k

〈xk, zk〉 ≤ ξk/(2t
2
k)

xk � 0, zk � 0,
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where rk := A(xk) − b. We assume that µk/t
2
k ≥ µk+1/t

2
k+1 and εk/tk ≥ εk+1/tk+1

for all k. Observe that the last five conditions in (5.32) stipulate that (xk, pk, zk) is

an approximate optimal solution of (5.30) and (5.31).

Just as in the previous section, we need to establish a series of lemmas to analyse

the iteration complexity of Algorithm 4. However, we should mention that the lack of

feasibility in xk (i.e., xk may not be contained in Ω) introduces nontrivial technical

difficulties in the proof of the complexity result for Algorithm 4. For example,

F (xk) ≥ F (x∗) no longer hold as in the feasible case when xk ∈ Ω.

Lemma 5.5. Given yj ∈ X and a positive definite linear operator Hj on X such

that the conditions in (5.32) hold. Then for any x ∈ Sn+, we have

f(x)− f(xj) ≥
1

2
〈xj − yj, Hj(xj − yj)〉+ 〈yj − x, Hj(xj − yj)〉

+〈δj +A∗pj, x− xj〉 − ξj/t2j . (5.33)

Proof. Since f(xj) ≤ qj(xj) + ξj/(2t
2
j), we have

f(x)− f(xj) ≥ f(x)− qj(xj)− ξj/(2t2j)

= f(x)− f(yj)− 〈∇f(yj), xj − yj〉 −
1

2
〈xj − yj, Hj(xj − yj)〉 − ξj/(2t2j)

≥ 〈∇f(yj), x− xj〉 −
1

2
〈xj − yj, Hj(xj − yj)〉 − ξj/(2t2j).

Note that in the last inequality, we have used the fact that f(x)−f(yj) ≥ 〈∇f(yj), x−

yj〉 for all x ∈ X . Now, by using (5.32), we get

f(x)− f(xj) ≥ 〈∇f(yj), x− xj〉 −
1

2
〈xj − yj, Hj(xj − yj)〉 − ξj/(2t2j)

= 〈δj +A∗pj −Hj(xj − yj), x− xj〉+ 〈zj, x− xj〉 −
1

2
〈xj − yj, Hj(xj − yj)〉 −

ξj
2t2j

≥ 〈δj +A∗pj −Hj(xj − yj), x− xj〉 −
1

2
〈xj − yj, Hj(xj − yj)〉 −

ξj
t2j
.

From here, the required inequality (5.33) follows readily. Note that in deriving the

last inequality, we have used the fact that 〈zj, xj〉 ≤ ξj/(2t
2
j) and 〈zj, x〉 ≥ 0.
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For later purpose, we define the following quantities for k ≥ 1:

vk = f(xk)− f(x∗), uk = tkxk − (tk − 1)xk−1 − x∗,

ak = t2kvk, bk = 1
2
〈uk, Hk(uk)〉 ≥ 0, ek = tk〈δk, uk〉, (5.34)

ηk = 〈pk, t2krk − t2k−1rk−1〉, with η1 = 〈p1, r1〉,

χk = ‖pk−1 − pk‖µk−1, with χ1 = 0,

ε̄k =
∑k

j=1 εj, ξ̄k =
∑k

j=1(ξj + ε2j), χ̄k =
∑k

j=1 χj,

τ = 1
2
〈x0 − x∗, H1(x0 − x∗)〉.

Note that unlike the analysis in the previous section, ak may be negative.

Lemma 5.6. Suppose that Hk−1 � Hk � 0 for all k. Then

ak−1 + bk−1 ≥ ak + bk − ek − ξk − ηk. (5.35)

Proof. By applying the inequality (5.33) to x = xk−1 � 0 with j = k, we get

vk−1 − vk = f(xk−1)− f(xk) (5.36)

≥1

2
〈xk − yk, Hk(xk − yk)〉+ 〈yk − xk−1, Hk(xk − yk)〉+ 〈δk +A∗pk, xk−1 − xk〉 −

ξk
t2k
.

Similarly, by applying the inequality (5.33) to x = x∗ � 0 with j = k, we get

− vk = f(x∗)− f(xk) (5.37)

≥ 1

2
〈xk − yk, Hk(xk − yk)〉+ 〈yk − x∗, Hk(xk − yk)〉+ 〈δk +A∗pk, x∗ − xk〉 −

ξk
t2k
.

By multiplying (5.36) throughout by tk − 1 (note that tk ≥ 1 for all k ≥ 1) and add

that to (5.37), we get

(tk − 1)vk−1 − tkvk

≥ tk
2
〈xk − yk, Hk(xk − yk)〉+ 〈tkyk − (tk − 1)xk−1 − x∗, Hk(xk − yk)〉

− 〈δk +A∗pk, tkxk − (tk − 1)xk−1 − x∗〉 − ξk/tk. (5.38)
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Now, by multiplying (5.15) throughout by tk and using the fact that t2k−1 = tk(tk−1),

we get

ak−1 − ak = t2k−1vk−1 − t2kvk

≥ t2k
2
〈xk − yk, Hk(xk − yk)〉+ tk〈tkyk − (tk − 1)xk−1 − x∗, Hk(xk − yk)〉

− 〈δk +A∗pk, t2kxk − t2k−1xk−1 − tkx∗〉 − ξk.

Let a = tkyk, b = tkxk, and c = (tk − 1)xk−1 + x∗. By using the fact that 〈b −

a, Hk(b− a)〉+ 2〈a− c, Hk(b− a)〉 = 〈b− c, Hk(b− c)〉 − 〈a− c, Hk(a− c)〉, we

get

ak−1 − ak ≥
1

2
〈b− c, Hk(b− c)〉 − 1

2
〈a− c, Hk(a− c)〉

− 〈δk +A∗pk, t2kxk − t2k−1xk−1 − tkx∗〉 − ξk. (5.39)

Now a − c = tkyk − c = tkxk−1 + (tk−1 − 1)(xk−1 − xk−2) − c = uk−1, b − c = uk,

and t2kxk − t2k−1xk−1 − tkx∗ = tkuk. Thus (5.39) implies that

ak−1 − ak ≥
1

2
〈uk, Hk(uk)〉 −

1

2
〈uk−1, Hk(uk−1)〉 − 〈δk +A∗pk, tkuk〉 − ξk

≥ bk − bk−1 − 〈δk, tkuk〉 − 〈pk, A(tkuk)〉 − ξk. (5.40)

Note that in deriving (5.40), we have used the fact that Hk−1 � Hk. Now

〈pk, A(tkuk)〉 = 〈pk, t2k(Axk − b)− t2k−1(Axk−1 − b)〉 = 〈pk, t2krk − t2k−1rk−1〉.

From here, the required result is proved.

Lemma 5.7. Suppose that Hk−1 � Hk � 0 and the conditions in (5.32) are satisfied

for all k. Then

ak + bk ≤ (
√
τ + ε̄k)

2 + ‖pk‖µk + 2(ξ̄k + χ̄k + ωk) (5.41)

where ωk =
∑k

j=1 εj
√
Aj, and

Aj = ‖pj‖µj + a−j , with a−j = max{0,−aj}.
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Proof. Note that we have |ek| ≤ ‖H−1/2
k δk‖‖H1/2

k uk‖tk ≤ εk ‖H1/2
k uk‖/

√
2 = εk

√
bk.

First, we show that a1 + b1 ≤ τ + |〈p1, r1〉| + ε1
√
b1 + ξ1. Note that a1 =

f(x1)− f(x∗) and b1 = 1
2
〈x1 − x∗, H1(x1 − x∗)〉. By applying the inequality (5.33)

to x = x∗ with j = 1, and noting that y1 = x0, we have that

−a1 ≥
1

2
〈x1 − y1, H1(x1 − y1)〉+ 〈y1 − x∗, H1(x1 − y1)〉+ 〈δ1 +A∗p1, x∗ − x1〉 − ξ1

=
1

2
〈x1 − x∗, H1(x1 − x∗)〉 −

1

2
〈y1 − x∗, H1(y1 − x∗)〉+ 〈δ1 +A∗p1, x∗ − x1〉 − ξ1

= b1 −
1

2
〈x0 − x∗, H1(x0 − x∗)〉+ 〈δ1 +A∗p1, x∗ − x1〉 − ξ1.

Hence, by using the fact that ‖H−1/2
1 δ1‖ ≤ ε1/

√
2, we get

a1 + b1 ≤
1

2
〈x0 − x∗, H1(x0 − x∗)〉 − 〈δ1 +A∗p1, x∗ − x1〉+ ξ1

≤ τ + ε1
√
b1 + 〈p1, r1〉+ ξ1 ≤ τ + |〈p1, r1〉|+ ε1

√
b1 + ξ1.

Let s1 = ε1
√
b1 + ξ1 and for k ≥ 2,

sk =
k∑
j=1

εj
√
bj +

k∑
j=1

ξj +
k∑
j=1

χj.

By Lemma 5.6, we have

τ ≥ a1 + b1 − ε1
√
b1 − ξ1 − η1

≥ a2 + b2 − ε2
√
b2 − ε1

√
b1 − ξ1 − ξ2 − η1 − η2

≥ · · ·

≥ ak + bk −
k∑
j=1

εj
√
bj −

k+1∑
j=1

ξj −
k∑
j=1

ηj

≥ ak + bk −
k∑
j=1

εj
√
bj −

k∑
j=1

ξj − |〈pk, t2krk〉| −
k∑
j=1

χj.

Note that in the last inequality, we used the fact that

k∑
j=1

ηj = 〈pk, t2krk〉+
k−1∑
j=1

〈pj − pj+1, t
2
jrj〉 ≤ |〈pk, t2krk〉|+

k∑
j=1

χj.

Thus we have ak + bk ≤ τ + |〈pk, t2krk〉|+ sk, and this implies that

bk ≤ τk + sk where τk := τ + |〈pk, t2krk〉| − ak ≤ τ + Ak. (5.42)



5.2 Analysis of an inexact APG method for (P ) 97

Hence

sk = sk−1 + εk
√
bk + ξk + χk ≤ sk−1 + εk

√
τk + sk + ξk + χk. (5.43)

Note that since τ1 ≥ b1 − ε1
√
b1 − ξ1, we have

√
b1 ≤ 1

2
(ε1 +

√
ε21 + 4(τ1 + ξ1)) ≤

ε1+
√
τ1 + ξ1. Hence s1 = ε1

√
b1+ξ1 ≤ ε1(ε1+

√
τ1 + ξ1)+ξ1 ≤ ε21+ξ1+ε1(

√
τ1+
√
ξ1).

The inequality (5.43) implies that

(τk + sk)− εk
√
τk + sk −

(
τk + sk−1 + ξk + χk

)
≤ 0.

Hence we must have

√
τk + sk ≤

1

2

(
εk +

√
ε2k + 4(τk + sk−1 + ξk + χk)

)
.

Consequently, by using the fact that
√
a+ b ≤

√
a+
√
b for any a, b ≥ 0, we have

sk ≤ sk−1 +
1

2
ε2k + ξk + χk +

1

2
εk

√
ε2k + 4(τk + sk−1 + ξk + χk)

≤ sk−1 +
1

2
ε2k + ξk + χk +

1

2
εk

√
ε2k + 4(τ + Ak + sk−1 + ξk + χk)

≤ sk−1 + ε2k + ξk + χk + εk

(√
τ + Ak +

√
sk−1 + ξk + χk

)
. (5.44)

This implies that

sk ≤ s1 +
k∑
j=2

(ε2j + ξj + χj) +
k∑
j=2

εj
√
τ + Aj +

k∑
j=2

εj
√
sj−1 + ξj + χj

≤ ξ̄k + χ̄k +
k∑
j=1

εj
√
τ + Aj +

k∑
j=1

εj
√
sj

≤ ξ̄k + χ̄k + ωk + ε̄k
√
τ + ε̄k

√
sk. (5.45)

In the last inequality, we used the fact that sj−1+ξj+χj ≤ sj, and 0 ≤ s1 ≤ · · · ≤ sk.

The inequality (5.45) implies that

√
sk ≤

1

2

(
ε̄k +

√
ε̄2k + 4θk

)
, (5.46)

where θk = ξ̄k + χ̄k + ωk + ε̄k
√
τ . From here, we get

sk ≤ ε̄2k + 2θk. (5.47)



98 Chapter 5. An inexact APG method for linearly constrained convex SDP

The required result follows from (5.47) and the fact that ak + bk ≤ τ + sk +

|〈pk, t2krk〉| ≤ τ + sk + ‖pk‖µk.

Let

Ωk := {x ∈ Sn : ‖A(x)− b‖ ≤ µk/t
2
k, x � 0} (5.48)

and

xk∗ := argmin{f(x) : x ∈ Ωk}. (5.49)

Since x∗, xk ∈ Ωk, we have f(x∗) ≥ f(xk∗) and f(xk) ≥ f(xk∗). Hence vk = f(xk) −

f(x∗) ≤ f(xk)−f(xk∗). Also, since µk/t
2
k ≥ µk+1/t

2
k+1, we have f(xk+1

∗ ) ≥ f(xk∗) and

Ωk+1 ⊆ Ωk.

Lemma 5.8. For all k ≥ 1, we have

0 ≤ f(x∗)− f(xk∗) ≤ ‖p∗‖µk/t2k. (5.50)

Proof. By the convexity of f , we have

f(x∗)− f(xk∗) ≤ 〈∇f(x∗), x∗ − xk∗〉 = 〈A∗p∗ + z∗, x∗ − xk∗〉

= 〈p∗, A(x∗)−A(xk∗)〉+ 〈z∗, x∗〉 − 〈z∗, xk∗〉

≤ ‖p∗‖‖b−A(xk∗)‖ ≤ ‖p∗‖µk/t2k.

Note that in deriving the second last inequality, we have used the fact that 〈z∗, x∗〉 =

0, 〈z∗, xk∗〉 ≥ 0, and A(x∗) = b.

Theorem 5.9. Suppose Mk = max1≤j≤k{
√

(‖p∗‖+ ‖pj‖)µj}. Then we have

− 4‖p∗‖µk
(k + 1)2

≤ f(xk)− f(x∗) ≤
4

(k + 1)2

(
(
√
τ + ε̄k)

2 + ‖pk‖µk + 2ε̄kMk + 2(ξ̄k + χ̄k)
)
.

(5.51)
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Proof. The inequality on the left-hand side of (5.51) follows from Lemma 5.8 and

the fact that tk ≥ (k+ 1)/2 and f(xk∗)− f(x∗) ≤ f(xk)− f(x∗). Next, we prove the

inequality on the right-hand side of (5.51). By Lemma 5.7 and noting that bk ≥ 0,

we have

t2k(f(xk)− f(x∗)) = ak ≤ (
√
τ + ε̄k)

2 + ‖pk‖µk + 2(ξ̄k + χ̄k) + 2ωk.

Now −aj = t2j(f(x∗) − f(xj)) ≤ t2j(f(x∗) − f(xj∗)) ≤ ‖p∗‖µj. Hence a−j ≤ ‖p∗‖µj,

and

ωk ≤
k∑
j=1

εj

√
‖pj‖µj + ‖p∗‖µj ≤ Mk ε̄k. (5.52)

From here, the required result follows.

From the assumption on the sequences {εk}, {ξk}, and {µk}, we know that the

sequences {ε̄k} and {ξ̄k} are bounded. In order to show that the sequence of function

values f(xk) converges to the optimal function value f(x∗) with the convergent rate

O(1/k2), it is enough to show that the sequence {‖pk‖} is bounded under certain

conditions, from which we can also have the boundedness of {Mk} and {χ̄k}. Then

the desired convergent rate of O(1/k2) for our inexact APG method follows.

5.2.1 Boundedness of {pk}

In this subsection, we consider sufficient conditions to ensure the boundedness of

the sequence {pk}.

Lemma 5.10. Suppose that there exists (x̄, p̄, z̄) such that

A(x̄) = b, x̄ � 0, ∇f(x̄) = A∗p̄+ z̄, z̄ � 0. (5.53)

If the sequence {f(xk)} is bounded from above, then the sequence {xk} is bounded.
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Proof. By using the convexity of f , we have

f(x̄)− f(xk) ≤ 〈∇f(x̄), x̄− xk〉 = 〈A∗p̄+ z̄, x̄− xk〉

= 〈p̄, A(x̄)−A(xk)〉+ 〈z̄, x̄〉 − 〈z̄, xk〉

≤ ‖p̄‖‖b−A(xk)‖+ 〈z̄, x̄〉 − 〈z̄, xk〉

≤ ‖p̄‖µk/t2k + 〈z̄, x̄〉 − 〈z̄, xk〉 ≤ ‖p̄‖µ1 + 〈z̄, x̄〉 − 〈z̄, xk〉.

Thus

λmin(z̄)Tr(xk) ≤ 〈z̄, xk〉 ≤ ‖p̄‖µ1 + 〈z̄, x̄〉 − f(x̄) + f(xk). (5.54)

From here, the required result is proved.

Remark 5.11. The condition that {f(xk)} is bounded from above appears to be

fairly weak. But unfortunately we are not able to prove that this condition holds

true. In many cases of interest, such as the nearest correlation matrix problem

(1.14), the condition that {f(xk)} is bounded above or that {xk} is bounded can be

ensured since Ω1 is bounded.

Lemma 5.12. Suppose that {xk} is bounded and there exists x̂ such that

A(x̂) = b, x̂ � 0.

Then the sequence {zk} is bounded. In addition, the sequence {pk} is also bounded.

Proof. From (5.32), we have

λmin(x̂)Tr(zk) ≤ 〈x̂, zk〉 = 〈x̂, ∇qk(xk)−A∗pk − δk〉

= −〈b, pk〉+ 〈x̂, ∇qk(xk)〉 − 〈x̂, δk〉

≤ ∆ + 〈x̂− xk, ∇qk(xk)〉 − 〈x̂, δk〉

= ∆ + 〈x̂− xk, ∇f(yk) +Hk(xk − yk)〉 − 〈x̂, δk〉

≤ ∆ + ‖x̂− xk‖‖∇f(yk) +Hk(xk − yk)‖+ ‖H1/2
k x̂‖εk/(

√
2tk)

≤ ∆ + ‖x̂− xk‖‖∇f(yk) +Hk(xk − yk)‖+ ‖H1/2
1 x̂‖ε1/

√
2 (5.55)
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Since {xk} is bounded, it is clear that {yk} is also bounded. By the continuity of

∇f and that fact that 0 � Hk � H1, the sequence {‖∇f(yk) +Hk(xk− yk)‖} is also

bounded. From (5.55), we can now conclude that {zk} is bounded.

Next, we show that {pk} is bounded. Let A† = (AA∗)−1A. Note that the

matrix AA∗ is nonsingular since A is assumed to be surjective. From (5.32), we

have pk = A†(∇qk(xk)− zk − δk), and hence

‖pk‖ ≤ ‖A†‖‖∇qk(xk)− zk − δk‖ ≤ ‖A†‖
(
‖∇f(yk) +Hk(xk − yk)‖+ ‖zk‖+ ‖δk‖

)
.

SinceHk � H1 � λmax(H1)I, we have ‖δk‖ ≤
√
λmax(H1)‖H−1/2

k δk‖ ≤
√
λmax(H1)

ε1√
2

.

By using the fact that the sequences {‖∇f(yk)+Hk(xk−yk)‖} and {zk} are bounded,

the boundedness of {pk} follows.

5.2.2 A semismooth Newton-CG method

In Section 5.2, an inexact APG method (Algorithm 4) was presented for solving (P )

with the desired convergent rate of O(1/k2). However, an important issue on how

to efficiently solve the inner subproblem (5.30) has not been addressed.

In this section, we propose the use of a semismooth Newton-CG (SSNCG)

method to solve (5.30) with warm-start using the iterate from the previous iter-

ation. Note that the self-adjoint positive definite linear operator Hk can be chosen

by the user. Suppose that at each iteration we are able to choose a linear operator

of the form:

Hk := wk ~ wk, where wk ∈ Sn++,

such that f(x) ≤ qk(x) for all x ∈ Ω. (Note that we can always choose wk =
√
LI

if there is no other better choice.) Then the objective function qk(·) in (5.30) can

equivalently be written as

qk(x) =
1

2
‖w1/2

k (x− uk)w1/2
k ‖

2 + f(yk)−
1

2
‖w−1/2

k ∇f(yk)w
−1/2
k ‖2,

where uk = yk − w−1
k ∇f(yk)w

−1
k . By dropping the last two constant terms in the
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above equation, we can equivalently write (5.30) as the following well-studied W -

weighted semidefinite least squares problem

min
{1

2
‖w1/2

k (x− uk)w1/2
k ‖

2 : A(x) = b, x � 0
}
. (5.56)

Let x̄ = w
1/2
k xw

1/2
k , ūk = w

1/2
k ukw

1/2
k , and define the linear map Ā : Sn → <m by

Ā(x̄) = A(w
−1/2
k x̄ w

−1/2
k ).

Then (5.56) can equivalently be written as

min
{1

2
‖x̄− ūk‖2 : Ā(x̄) = b, x̄ � 0

}
, (5.57)

whose Lagrangian dual problem is given by

max
{
θ(p) := bTp− 1

2
‖ΠSn+(ūk + Ā∗p)‖2 | p ∈ <m

}
(5.58)

where ΠSn+(u) denotes the metric projection of u ∈ Sn onto Sn+. The problem (5.58)

is an unconstrained continuously differentiable convex optimization problem, and it

can be efficiently solved by the SSNCG method developed in [97]. Note that once

an approximate solution pk is computed from (5.58), an approximate solution for

(5.56) can be computed by xk = ΠSn+(ūk + Ā∗pk) and its complementary dual slack

variable is zk = ūk + Ā∗pk − xk.

Note that the problem (5.58) is an unconstrained continuously differentiable

convex optimization problem which can also be solved by a gradient ascent method.

In our numerical implementation, we use a gradient method to solve (5.58) during

the initial phase of Algorithm 4 when high accuracy solutions are not required. When

the gradient method encounters difficulty in solving the subproblem to the required

accuracy or becomes inefficient, we switch to the SSNCG method to solve (5.58).

We should note that approximate solution computed for the current subproblem

can be used to warm start the SSNCG and gradient methods for solving the next

subproblem. In fact, the strategy of solving a semidefinite least squares subproblem

(5.30) in each iteration of our inexact APG algorithm is practically viable precisely
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because we are able to warm start the SSNCG or gradient methods when solving

the subproblems. In our numerical experience, the SSNCG method would typically

take less than 5 Newton steps to solve each subproblem with warm start.

To successfully apply the SSNCG method to solve (5.30), we must find a suitable

symmetrized Kronecker product approximation of Q. Note that for the H-weighted

nearest correlation matrix problem (1.14) where Q is a diagonal operator defined

by Q(x) = (H ◦H) ◦ x, a positive definite symmetrized Kronecker product approx-

imation for Q can be derived as follows. Consider a rank-one approximation ddT of

H ◦H, then Diag(d) ~ Diag(d) is a symmetrized Kronecker product approximation

of Q. For the vector d ∈ Rn, one can simply take

dj = max
{
ε, max

1≤i≤n
{Hij}

}
, j = 1, . . . , n. (5.59)

where ε > 0 is a small positive number.

For the convex QSDP problem (1.12) where the linear operator Q is defined by

Q(x) = B ~ I(x) = (Bx+ xB)/2, (5.60)

where B ∈ Sn+, we propose the following strategy for constructing a suitable sym-

metrized Kronecker product approximation of Q = B ~ I. Suppose we have the

eigenvalue decomposition B = PΛP T , where Λ = diag(λ) and λ = (λ1, . . . , λn)T is

the vector of eigenvalues of B. Then

〈x,B ~ I(x)〉 =
1

2
〈x̂,Λx̂+ x̂Λ〉 =

1

2

n∑
i=1

n∑
j=1

x̂2
ij(λi + λj) =

n∑
i=1

n∑
j=1

x̂2
ijMij,

where x̂ = P TxP and M = 1
2
(λeT + eλT ) with e ∈ Rn being the vector of all ones.

For the choice of wk, one may simply choose wk =
√

max(M)I, where max(M) is

the largest element of M . However, if the matrix B is ill-conditioned, this choice

of wk may not work very well in practice since max(M)I ~ I may not be a good

approximation of Q = B ~ I. To find a better approximation of Q, we propose to

consider the following nonconvex minimization problem:

min
{ n∑

i=1

n∑
j=1

hihj | hihj −Mij ≥ 0 ∀ i, j = 1, . . . , n, h ∈ Rn
+

}
. (5.61)
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Thus if ĥ is a feasible solution to the above problem, then we have

〈x, B ~ I(x)〉 =
n∑
i=1

n∑
j=1

x̂2
ijMij ≤

n∑
i=1

n∑
j=1

x̂2
ijĥiĥj = 〈x,wkxwk〉 ∀ x ∈ Sn

with wk = PDiag(ĥ)P T . Note that the above strategy can also be used to get

a suitable symmetrized Kronecker product approximation of the form Diag(d) ~

Diag(d) when Q is a diagonal operator.

To find a good feasible solution for (5.61), we consider the following strategy.

Suppose we are given an initial vector u ∈ Rn
+ such that uuT −M ≥ 0. For example,

we may take u =
√

max(M)e. Our purpose is to find a correction vector ξ ∈ Rn
+

such that h := u − ξ satisfies the constraint in (5.61) while the objective value is

reduced. Note that we have

hihj −Mij = uiuj −Mij − (uiξj + ujξi) + ξiξj ≥ uiuj −Mij − (uiξj + ujξi).

Thus the constraints in (5.61) are satisfied if ξ ≤ u and

uiξj + ujξi ≤ uiuj −Mij ∀ i, j = 1, . . . , n.

Since
∑n

i=1

∑n
j=1 hihj = (eT ξ)2 − 2(eTu)(eT ξ) + (eTu)2, and noting that 0 ≤ eT ξ ≤

eTu, the objective value in (5.61) is minimized if eT ξ is maximized. Thus we propose

to consider the following LP:

max
{
eT ξ | uiξj + ujξi ≤ uiuj −Mij ∀ i, j = 1, . . . , n, 0 ≤ ξ ≤ u

}
. (5.62)

Observe that the correction vector ξ depends on the given vector u. Thus if nec-

essary, after a new u is obtained, one may repeat the process by solving the LP

associated with the new u.



Chapter 6
Numerical Results

In this chapter, we conduct a variety of large scale numerical experiments to evaluate

the performance of our proposed algorithms. In section 6.1, we present numerical

results of the partial PPA for solving nuclear norm regularized matrix least squares

problems. In section 6.2, we present numerical results of the inexact APG method

for solving large scale linear constrainted convex QSDP problems, including the

H-weighted nearest correlation problem.

6.1 Numerical Results for nuclear norm minimiza-

tion problems

In this section, we report some numerical results to demonstrate the efficiency of

our partial proximal point algorithm.

In order to measure the infeasibilities of the primal problem (3.16), we define

two linear operators Be : <p×q → <s1 and Be : <p×q → <s2 , respectively, as follows: (Be(X))i := 〈Bi, X〉, for i = 1, . . . , s1,

(Be(X))i := 〈Bi, X〉, for i = s1 + 1, . . . , s.

Let d = (ds1 ; ds2) where ds1 ∈ <s1 and ds2 ∈ <s2 . We measure the infeasibilities and

105
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optimality for the primal problem (3.16) and the dual problem (3.20) as follows:

RP =
‖(b− ζ −A(X); ds1 − Be(X); max(0, ds2 − Be(X)))‖

1 + ‖b̂‖
,

RD =
‖C − Â∗y − Z‖

1 + ‖Â∗‖
, relgap =

fρ(ζ,X)− gρ(ζ, ξ)
1 + |fρ(ζ,X)|+ |gρ(ζ, ξ)|

,

where y = (ζ; ξ), Z = (Dρσ(W ) −W )/σ with W = X − σ(C − Â∗y), and fρ(ζ,X)

and gρ(ζ, ξ) are the objective functions of the primal problem (3.16) and the dual

problem (3.20), respectively. The infeasibility of the condition ‖Z‖2 ≤ ρ is not

checked since it is satisfied up to machine precision throughout the algorithm. In

our numerical experiments, we stop the partial PPA when

max{RP , RD} ≤ Tol, (6.1)

where Tol is a pre-specified accuracy tolerance. We choose the initial iterate X0 =

0, y0 = 0, and σ0 = 1. Unless otherwise specified, we set Tol = 10−6 as the

default. For examples from 1 to 4, where the inner subproblem (3.34) is solved by

the inexact smoothing Newton method, besides (6.1), we impose another stopping

criterion |relgap| ≤ 10−5 for stoping the partial PPA. The parameter ρ in (3.16) is

set to be ρ = 10−3‖A∗b‖2 if the data is not contaminated by noise; otherwise, the

parameter ρ is set to be ρ = 5 × 10−3‖A∗b‖2. For examples from 5 to 8, where

the inner subproblem (3.34) is solved by the semismooth Newton-CG method, we

use the default stopping criterion (6.1) and the parameter ρ in (3.16) is set to be

ρ = 10−3‖A∗b‖2 for all cases.

Example 1

We consider the nearest matrix approximation problem which was discussed by

Golub, Hoffman and Stewart in [48], where the classic Eckart-Young[35]-Mirsky[85]

theorem was extended to obtain the nearest lower-rank approximation while certain

specified columns of the matrix are fixed. The Eckart-Young-Mirsky theorem has

the drawback that the approximation generally differs from the original matrix in all
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its entries. This is not suitable for application where some columns of the original

matrix may be fixed. For example, in statistics the regression matrix for the multiple

regression model with a constant term has a column of all ones, and this column

should not be perturbed. For each triplet (p, q, r), where r is the predetermined

rank, we generate a random matrix M ∈ <p×q of rank r by setting M = M1M
T
2

where both M1 ∈ <p×r and M2 ∈ <q×r have i.i.d. standard uniform entries in (0, 1).

As observed entries in practice are rarely exact, we corrupt the entries of M by

Gaussian noises to simulate the situation where the observed data may be noisy as

follows. First we generate a random matrix N ∈ <p×q with i.i.d Gaussian entries.

Then we assume that the observed data is given by M̃ = M+τN‖M‖/‖N‖, where τ

is the noise factor. In our numerical experiments, we choose the parameter τ = 0.1.

We assume that the first column of M should be fixed. Then the minimization

problem can be stated as follows:

min
X∈<p×q

{1

2
‖X − M̃‖2 + ρ‖X‖∗ : Xe1 = Me1, X ≥ 0

}
, (6.2)

where e1 is the first column of the q-by-q identity matrix. Here we impose an

extra constraint X ≥ 0 since the original matrix M is nonnegative. Note that the

approximation derived in [48] generally is not nonnegative.

For each p, q, r and τ , we repeat the above procedure 5 times. In Table 6.1,

we report the total number of constraints (m+ s) in (3.16), the average number of

outer iterations, the average total number of inner iterations, the average number of

BiCGStab steps taken to solve (3.75), the average infeasibilities in (3.16) and (3.20),

respectively, the average relative gap between (3.16) and (3.20), the average relative

mean square error MSE := ‖X −M‖/‖M‖ (where M is the original matrix), the

mean value of the rank (#sv) of X, and the average CPU time taken (in the format

hours:minutes:seconds). We may observe from the table that the partial PPA is very

efficient for solving (6.2). For the nonsquare matrix problem, where p is moderate

but q is large, e.g., p = 100 and q = 20000, we only need to compute the economic

form of the SVD. Thus we use the technique introduced in section 3.5 to compute
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V2 via the QR factorization of V1. It takes about three and a half minutes to solve

the last instance for achieving the tolerance 10−6 while the MSE is reasonably small.

p× q r m+ s it.|itsub|bicg Rp | RD | relgap MSE #sv time

500× 500 10 500500 5.0 | 13.0 | 4.0 5.57e-7 | 7.29e-7 | 3.61e-7 3.33e-2 169 (10) 38

500× 500 50 500500 3.0 | 8.0 | 3.3 1.46e-7 | 4.58e-7 | 1.30e-7 4.01e-2 177 (NA) 26

500× 500 100 500500 3.0 | 7.8 | 3.4 3.63e-7 | 6.68e-7 | 1.88e-7 3.72e-2 177 (NA) 26

1000× 1000 10 2001000 7.0 | 16.4 | 4.6 1.03e-7 | 5.33e-7 | -3.15e-6 2.09e-2 121 (10) 3:14

1000× 1000 50 2001000 9.0 | 16.2 | 3.0 6.13e-9 | 1.90e-8 | -3.75e-6 3.31e-2 138 (NA) 2:27

1000× 1000 100 2001000 9.0 | 15.8 | 2.7 9.45e-9 | 1.92e-8 | -3.82e-6 3.10e-2 143 (NA) 2:20

1500× 1500 10 4501500 9.0 | 19.0 | 4.4 3.47e-8 | 4.01e-8 | 9.14e-6 1.85e-2 22 (10) 9:18

1500× 1500 50 4501500 9.0 | 16.2 | 3.2 1.06e-8 | 2.48e-8 | -3.71e-6 3.26e-2 54 (50) 6:54

1500× 1500 100 4501500 8.0 | 15.2 | 3.2 1.14e-8 | 1.52e-8 | -4.50e-6 3.19e-2 67 (NA) 6:41

100× 5000 10 1000100 10.0 | 12.8 | 1.5 2.67e-8 | 4.10e-8 | 3.85e-6 5.72e-2 100 (10) 46

100× 10000 10 2000100 10.0 | 12.4 | 1.4 2.00e-8 | 4.09e-8 | 4.05e-6 5.70e-2 100 (10) 1:40

100× 20000 10 4000100 10.4 | 13.0 | 1.4 1.89e-8 | 4.13e-8 | 3.90e-6 5.70e-2 100 (10) 3:32

Table 6.1: Numerical results of the partial PPA on (6.2).

In the numerical implementation, we observe that when the generated matrix

M is of small rank, e.g., r = 10, the singular values of the computed solution X

are separated into two clusters with the first cluster having much larger mean value

than that of the second cluster (see, e.g., Figure 6.1). We may view the number

of singular values in the first cluster as a good estimate of the rank of the optimal

solution, while the smaller positive singular values in the second cluster may be

attributed to the presence of noise in the given data. When the matrix M is of

high rank, e.g., r = 50, the singular values of X are usually not separated into two

clusters (see, e.g., Figure 6.1), excluding the largest singular value of X. In Table

6.1, when the singular values of X are separated into two clusters, we also report

the number of singular values in the first cluster in parenthesis next to #sv. In the

table, “NA” means that the singular values of X are not separated into two clusters.
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Figure 6.1: Distribution of singular values of X and M .

Example 2

Recently Lin [70] proposed the Latent Markov Analysis (LMA) approach for find-

ing the reduced rank approximations of transition matrices. The LMA is applied

to clustering based on pairwise similarities such that the inferred cluster relation-

ships can be described probabilistically by the reduced-rank transition matrix. In

[6], Benczúr, Csalogány and Sarlós considered the problem of finding the low rank

approximation of the transition matrix for computing the personalized PageRank,

which describes the backlink-based page quality around user-selected pages.

In this example, we evaluate the performance of our partial PPA for finding

the nearest transition matrix of lower rank. Consider the set of n web pages as a

directed graph whose nodes are the web pages and whose edges are all the links

between pages. Let deg(i) be the outdegreee of the page i, i.e., the number of

pages which can be reached by a direct link from page i. Note that all the self-

referential links in the web graph are excluded. Let P ∈ <n×n be the matrix which
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describes the transition probability between the page i and j, where Pij = 1/deg(i)

if deg(i) > 0 and there is a link form page i to page j. For some page i having no

outlink (dangling pages), we assume Pij = 1/n for j = 1, . . . , n, i.e., the user will

make a random choice with uniform distribution 1/n. Since the matrix P for the

web graph generally is reducible, P may have several eigenvalues on the unit circle,

which could cause convergence problems to the power method for computing the

PageRank [65]. The standard way of ensuring irreducibility is that we replace P by

the matrix

Pc = cM + (1− c)evT ,

where c ∈ (0, 1), e ∈ <n is a vector of all ones, and v ∈ <n is a probability

vector such that v ≥ 0 and eTv = 1. We generate a random matrix N ∈ <n×n

with i.i.d Gaussian entries. Then we assume that the observed data is given by

P̃c = Pc + τN‖Pc‖/‖N‖, where τ is the noise factor. In our numerical experiments,

we choose the parameter τ = 0.1, c = 0.85 which is a typical value used by Google,

and vi = 1/n, for i = 1, . . . , n. Then the minimization problem that we finally solve

can be stated as follows:

min
X∈<n×n

{1

2
‖X − P̃c‖2 + ρ‖X‖∗ : Xe = e, X ≥ 0

}
. (6.3)

We use the data Harvard500.mat generated by Cleve Moler’s MATLAB program

surfer.m to evaluate the performance of our algorithm. The data and program are

available at http://www.mathworks.com/moler/ncmfilelist.html. We also use

the M file surfer.m to generate three adjacency graphs of a portion of web pages

starting at the root page “http://www.nus.edu.sg”. We also apply our algorithm

to the data sets ∗ collected by Panayiotis Tsaparas on querying the Google search

engine about four topics: “automobile industries”, “computational complexity”,

“computational geometry”, and “randomized algorithms”. Table 6.2 reports the

average numerical results of PPA for solving (6.3) over 5 runs, where r denotes the

∗Datasets are available at: http://www.cs.toronto.edu/∼tsap/experiments/datasets

/index.html and http://www.cs.toronto.edu/∼tsap/experiments/download/download.html
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rank of Pc for each data set. We can observe from the table that the partial PPA is

very efficient for solving (6.3) when applied to the real web graph data sets.

Problem n r m+ s it.|itsub|bicg Rp | RD | relgap MSE #sv time

Harvard500 500 218 500500 6.0 | 14.6 | 7.8 7.58e-8 | 4.92e-9 | -7.48e-6 5.87e-2 366 1:01

NUS500 500 225 500500 6.2 | 12.4 | 5.9 4.51e-8 | 1.60e-9 | -5.22e-6 5.70e-2 382 47

NUS1000 1000 466 2001000 5.4 | 14.2 | 7.7 3.35e-7 | 4.67e-9 | -6.46e-6 5.62e-2 658 5:19

NUS1500 1500 807 4501500 5.0 | 15.0 | 8.8 3.34e-7 | 5.68e-9 | -7.00e-6 6.35e-2 957 17:21

RandomAlg 742 216 1101870 7.0 | 16.0 | 7.7 3.37e-7 | 3.19e-9 | -7.02e-6 4.48e-2 631 2:48

Complexity 884 255 1563796 7.0 | 16.2 | 7.7 6.75e-8 | 1.75e-9 | -4.65e-6 4.77e-2 712 4:22

Automobile 1196 206 2862028 6.0 | 16.4 | 8.7 2.02e-7 | 5.91e-9 | -8.80e-6 4.05e-2 844 10:14

Geometry 1226 416 3007378 7.0 | 17.2 | 8.0 7.22e-8 | 1.99e-9 | -4.18e-6 4.67e-2 1018 11:01

Table 6.2: Numerical results of the partial PPA on (6.3).

Example 3

We consider the problem of finding a low rank doubly stochastic matrix with a pre-

scribed entry. A matrix M ∈ <n×n is called doubly stochastic if it is nonnegative

and all its row and column sums are equal to one. This problem arose from nu-

merical simulation of large circuit networks. In order to reduce the complexity of

the simulation of the whole system, the Padé approximation with Krylov subspace

method, such as the Lanczos algorithm, is a useful tool for generating a lower order

approximation to the linear system matrix which describes the large linear network

[3]. The tridiagonal matrix M ∈ <n×n produced by the Lanczos algorithm is gener-

ally not doubly stochastic. If the original system matrix is doubly stochastic, then

we need to find a low rank approximation of M , which is doubly stochastic and

matches the maximal moments. In our numerical experiments, we will not restrict

the matrix M to be tridiagonal.

For each pair (n, r), we generate a positive matrix M ∈ <n×n with rank r by
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the same method as in Example 1. Then we use the Sinkhorn-Knopp algorithm

[113] to find two diagonal matrices D1 ∈ <n×n and D2 ∈ <n×n, where all the

diagonal entries of D1 and D2 are positive, such that M = D1MD2 is a doubly

stochastic matrix of rank r. We sample a subset E of m entries of M uniformly at

random, and generate a random matrix NE ∈ <p×q with sparsity pattern E and i.i.d

standard Gaussian random entries. Then we assume that the observed data is given

by M̃E = ME + τNE‖ME‖/‖NE‖, where τ is the noise factor. Then the problem for

matching the first moment of M can be stated as follows:

min
X∈<n×n

{1

2
‖XE − M̃E‖2 + ρ‖X‖∗ : Xe = e, XT e = e, X11 = M11, X ≥ 0

}
. (6.4)

In our numerical experiments, we set τ = 0, 0.1, and the number of sampled

entries to be m = 10dr, where dr = r(2n− r) is the value of the degrees of freedom

in an n× n matrix of rank r. In Table 6.3, we report the average numerical results

for solving (6.4) on randomly generated matrices over 5 runs, where m is the average

number of sampled entries, and m+ s is the average number of total constraints in

(3.16). For problems with noise, if the singular values of X are separated into two

clusters, we report the number of singular values in the first cluster in parenthesis

next to #sv, and we use “NA” to denote that the singular values of X are not

separated into two clusters. We can observe from the table that the partial PPA

can solve (6.4) very efficiently for all the instances with or without Gaussian noise.

n/τ r m m+ s it.|itsub|bicg Rp | RD | relgap MSE #sv time

500/0.0 10 99148 350148 7.0 | 15.4 | 3.3 5.71e-7 | 6.88e-8 | -4.30e-6 3.53e-3 10 26

50 250000 501000 6.0 | 8.2 | 1.5 2.03e-7 | 8.45e-8 | -3.45e-6 7.07e-3 50 09

100 250000 501000 5.0 | 7.0 | 1.4 1.02e-7 | 1.50e-7 | -3.62e-6 1.01e-2 100 08

1000/0.0 10 199034 1201034 9.0 | 20.0 | 4.0 6.80e-7 | 5.66e-8 | -8.17e-6 4.07e-3 10 2:56

50 974915 1976915 6.0 | 12.0 | 2.7 2.88e-7 | 4.68e-8 | -3.69e-6 7.11e-3 50 1:24

1001000000 2002000 5.0 | 7.0 | 1.4 3.63e-8 | 7.41e-8 | -3.52e-6 1.01e-2 100 39

1500/0.0 10 299194 2552194 10.0 | 23.0 | 4.0 5.81e-7 | 3.94e-8 | -8.79e-6 4.41e-3 10 9:29

501474481 3727481 7.0 | 13.8 | 2.6 1.41e-7 | 4.40e-8 | -4.70e-6 7.54e-3 50 4:12

1002250000 4503000 5.0 | 7.0 | 1.4 1.34e-8 | 4.92e-8 | -3.50e-6 1.01e-2 100 2:02
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n/τ r m m+ s it.|itsub|bicg Rp | RD | relgap MSE #sv time

500/0.1 10 99148 350148 7.0 | 16.0 | 3.2 1.97e-7 | 1.93e-7 | -6.27e-6 5.42e-2 174 (10) 26

50 250000 501000 5.0 | 9.2 | 2.0 1.65e-7 | 2.31e-7 | -8.58e-6 3.97e-2177 (NA) 12

100 250000 501000 5.0 | 9.0 | 2.1 1.11e-7 | 1.83e-7 | -5.37e-6 3.65e-2177 (NA) 12

1000/0.1 10 199034 1201034 8.0 | 18.8 | 3.6 1.45e-7 | 9.18e-8 | -9.31e-6 5.50e-2 234 (10) 2:41

50 974915 1976915 5.0 | 10.0 | 2.7 7.25e-7 | 7.91e-8 | -3.93e-6 3.30e-2145 (NA) 1:13

1001000000 2002000 3.0 | 6.6 | 2.1 4.43e-7 | 3.32e-7 | -7.58e-6 3.07e-2143 (NA) 45

1500/0.1 10 299194 2552194 9.0 | 22.2 | 3.9 1.69e-7 | 3.84e-8 | -5.68e-6 5.49e-2 275 (10) 8:56

501474481 3727481 5.0 | 11.0 | 2.7 4.76e-7 | 1.11e-7 | -6.87e-6 3.41e-2194 (NA) 3:36

1002250000 4503000 2.0 | 5.2 | 3.1 2.11e-7 | 2.71e-7 | -3.26e-6 3.19e-2 68 (NA) 1:55

Table 6.3: Numerical results of the partial PPA on (6.4). In the table, m = 10dr
and dr = r(2n− r).

We may also consider a generalized version of problem (6.4), where we want

to find a low rank doubly stochastic matrix with k prescribed entries of M . The

problem could be stated as follows:

min
1

2
‖XE − M̃E‖2 + ρ‖X‖∗

s.t. Xe = e, XT e = e,

eTitXejt = eTitMejt , 1 ≤ t ≤ k,

X ≥ 0, X ∈ <n×n,

(6.5)

where (i1, j1), . . . , (ik, jk) are distinct pairs and ei is the i-th column of the n-by-

n identity matrix. In our numerical experiments, we set k = d10−3n2e, which is

the number of prescribed entries selected uniformly at random. Table 6.4 presents

the average numerical results for solving (6.5) on randomly generated matrices over

5 runs. For problems with noise, if the singular values of X are separated into

two clusters, we also report the number of singular values in the first cluster in

parenthesis next to #sv, and we use “NA” to denote that the singular values of X

are not separated into two clusters.
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n/τ r m m+ s it.|itsub|bicg Rp | RD | relgap MSE #sv time

500/0.0 10 99148 350148 7.0 | 18.2 | 6.4 5.62e-7 | 6.89e-8 | -4.27e-6 3.47e-3 10 39

50 250000 501000 6.0 | 10.8 | 3.0 3.71e-7 | 8.39e-8 | -3.39e-6 7.05e-3 50 15

100 250000 501000 5.0 | 11.0 | 2.9 4.78e-7 | 1.49e-7 | -3.64e-6 1.00e-2 100 14

1000/0.0 10 199034 1201034 9.0 | 21.0 | 5.3 6.56e-7 | 5.78e-8 | -8.35e-6 3.94e-3 10 3:32

50 974915 1976915 6.0 | 12.4 | 4.3 3.06e-7 | 4.65e-8 | -3.64e-6 7.06e-3 50 1:47

1001000000 2002000 5.0 | 12.0 | 3.4 3.76e-7 | 7.31e-8 | -3.47e-6 1.00e-2 100 1:27

1500/0.0 10 299194 2552194 10.0 | 25.8 | 6.3 6.68e-7 | 3.94e-8 | -8.85e-6 4.20e-3 11 12:54

501474481 3727481 6.8 | 16.4 | 4.9 3.53e-7 | 5.39e-8 | -5.64e-6 7.50e-3 50 6:36

1002250000 4503000 5.0 | 12.0 | 4.3 3.39e-7 | 4.82e-8 | -3.42e-6 1.00e-2 100 4:41

500/0.1 10 99148 350148 7.0 | 16.0 | 3.6 2.10e-7 | 1.92e-7 | -6.26e-6 5.41e-2 174 (10) 28

50 250000 501000 5.0 | 11.0 | 2.9 5.43e-7 | 2.29e-7 | -8.51e-6 3.97e-2177 (NA) 17

100 250000 501000 5.0 | 11.0 | 3.0 4.18e-7 | 1.81e-7 | -5.35e-6 3.65e-2177 (NA) 17

1000/0.1 10 199034 1201034 8.0 | 19.0 | 4.1 1.61e-7 | 9.14e-8 | -9.28e-6 5.47e-2 234 (10) 2:58

50 974915 1976915 5.0 | 13.2 | 4.6 6.18e-7 | 7.67e-8 | -3.90e-6 3.29e-2151 (NA) 2:06

1001000000 2002000 3.0 | 11.2 | 5.5 1.17e-7 | 3.18e-7 | -7.13e-6 3.06e-2151 (NA) 1:57

1500/0.1 10 299194 2552194 9.0 | 22.0 | 4.5 1.35e-7 | 3.81e-8 | -5.64e-6 5.45e-2 276 (10) 9:43

501474481 3727481 5.0 | 13.0 | 4.6 6.26e-7 | 1.13e-7 | -6.75e-6 3.39e-2203 (NA) 5:23

1002250000 4503000 2.0 | 10.2 | 8.1 2.07e-7 | 3.50e-7 | -6.19e-6 3.11e-2119 (NA) 5:55

Table 6.4: Numerical results of the partial PPA on (6.5). In the table, m = 10dr
and dr = r(2n− r).

Example 4

We consider the problem of finding a low rank nonnegative approximation which

preserves the left and right principal eigenvectors of a square positive matrix. This

problem was suggested by Ho and Dooren in [56]. Let M ∈ <n×n be a positive

matrix, i.e., all entries of M are positive. By the well-known Perron [95]-Frobenius

[39] theorem, M has a positive eigenvalue λ which is simple and has the largest
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magnitude among all the eigenvalues of M . Moreover, there exist two positive

eigenvectors v ∈ <n and w ∈ <n such that Mv = λv and MTw = λw. As suggested

by Bonacich [13], the principal eigenvector could be used to measure the network

centrality, where the i-th component of the eigenvector gives the centrality of the

i-th node in the network. For example, the well-known Google’s PageRank [65] is a

variant of the eigenvector centrality for ranking web pages.

For each pair (n, r), we generate a positive matrix M ∈ <n×n of rank r by the

same method as in Example 1. Suppose that we sample a subset E of m entries of

M that are possibly corrupted by Gaussian noise as in Example 3. Given the largest

positive eigenvalue λ and the left and right principal eigenvectors v and w of M ,

we want to find a low rank approximation of M while preserving the left and right

principal eigenvectors of M . Then the problem can be stated as follows:

min
X∈<n×n

{1

2
‖XE − M̃E‖2 + ρ‖X‖∗ : Xv = λv,XTw = λw,X ≥ 0

}
. (6.6)

In our numerical experiments, we set the noise factor τ = 0, 0.1. Table 6.5 reports

the average numerical results of the partial PPA for solving (6.6) over 5 runs. For

problems with noise, if the singular values of X are separated into two clusters, we

report the number of singular values in the first cluster in parenthesis next to #sv,

and we use “NA” to denote that the singular values of X are not separated into two

clusters.

n/τ r m m+ s it.|itsub|bicg Rp | RD | relgap MSE #sv time

500/0.0 10 99157 350157 6.0 | 14.8 | 2.5 1.27e-7 | 1.45e-7 | -7.75e-6 3.54e-3 10 24

50 250000 501000 3.0 | 7.0 | 2.0 3.95e-7 | 5.25e-7 | 3.36e-6 6.97e-3 50 09

100 250000 501000 3.0 | 7.0 | 2.0 2.41e-7 | 5.46e-7 | -1.68e-6 1.01e-2 100 11

1000/0.0 10 199029 1201029 7.0 | 17.2 | 2.6 2.15e-7 | 7.20e-8 | 5.32e-6 2.93e-3 10 2:12

50 974912 1976912 2.4 | 7.2 | 2.3 7.32e-8 | 6.53e-7 | -6.72e-6 7.39e-3 50 56

1001000000 2002000 2.0 | 7.0 | 2.1 2.13e-7 | 8.02e-7 | -9.34e-7 1.03e-2 100 52

1500/0.0 10 299187 2552187 8.0 | 22.4 | 2.7 5.26e-7 | 3.90e-8 | 4.89e-6 2.86e-3 10 8:23

501474471 3727471 3.0 | 9.0 | 2.2 6.12e-7 | 8.03e-8 | -5.41e-6 7.54e-3 50 3:51

1002250000 4503000 2.0 | 7.0 | 2.1 1.38e-7 | 4.92e-7 | 2.85e-7 1.02e-2 100 2:41
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n/τ r m m+ s it.|itsub|bicg Rp | RD | relgap MSE #sv time

500/0.1 10 99157 350157 2.0 | 5.8 | 2.2 1.85e-7 | 4.88e-7 | -4.58e-6 5.38e-2 170 (10) 16

50 250000 501000 1.6 | 5.6 | 2.1 4.68e-7 | 8.07e-9 | -4.63e-7 3.94e-2177 (NA) 18

100 250000 501000 1.8 | 6.2 | 2.1 3.35e-7 | 9.18e-9 | -2.35e-7 3.64e-2176 (NA) 17

1000/0.1 10 199029 1201029 2.0 | 5.2 | 1.9 6.13e-7 | 2.54e-7 | -2.08e-6 5.28e-2 230 (10) 1:20

50 974912 1976912 2.0 | 6.8 | 2.4 9.95e-8 | 1.61e-8 | -5.18e-8 3.27e-2145 (NA) 1:18

1001000000 2002000 2.0 | 6.0 | 2.2 9.21e-7 | 1.73e-7 | -2.64e-6 3.04e-2142 (NA) 1:13

1500/0.1 10 299187 2552187 2.0 | 5.0 | 1.8 4.56e-7 | 1.83e-7 | 2.16e-6 5.22e-2 278 (10) 3:53

501474471 3727471 2.0 | 5.6 | 2.4 3.95e-7 | 2.93e-8 | 1.75e-7 3.35e-2192 (NA) 3:36

1002250000 4503000 2.0 | 7.4 | 2.2 6.33e-8 | 4.31e-8 | -5.30e-7 3.14e-2 67 (NA) 3:40

Table 6.5: Numerical results of the partial PPA on (6.6). In the table, m = 10dr
and dr = r(2n− r).

Example 5

We consider the random matrix completion problem discussed in [19]. For each

triplet (p, q, r), we first generate a random matrix M ∈ <p×q by setting M = M1M
T
2

where M1 ∈ <p×r, M2 ∈ <q×r each has i.i.d. Gaussian entries. Then we sample a

subset E of m entries uniformly at random. As observed entries in practice are rarely

exact, we corrupt the entries of ME by Gaussian noises to simulate the situation

where the observed data may be noisy as follows. First we generate a random

matrix NE ∈ <p×q that has sparsity pattern E and i.i.d Gaussian entries. Then we

assume that the observed data is given by M̃E = ME + τNE‖ME‖F/‖NE‖F , where τ

is the noise factor. The minimization problem which we finally solve is the following:

min
{1

2
‖XE − M̃E‖2

F + ρ‖X‖∗ : X ∈ <p×q
}
. (6.7)

In our numerical experiments, we set the noise level τ = 0, 0.1 and the number of

entries to sample m = 10dr, where dr = r(p + q − r) is the value of degrees of

freedom in an p× q matrix of rank r.
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For each triplet (p, q, r),m and τ , we repeat the above procedure 5 times. Ta-

ble 6.6 presents the average numerical results of the partial PPA for solving the

randomly generated matrix completion problem (6.7) over 5 runs. In the table, we

report the number of sampled entries m, the average number of outer iterations, the

average total number of inner iterations, the average number of CG steps taken to

solve (4.20), the average infeasibilities in (3.16) and (3.20), respectively, the aver-

age relative gap between (3.16) and (3.20), the average relative mean square error

MSE := ‖X −M‖/‖M‖ (where M is the original matrix), the mean value of the

rank (#sv) of X, and the average CPU time taken. Here we report the numerical

rank of X defined as follows:

#sv(X) := max{k : σk(X) ≥ max{10−8, τ}σ1(X)}. (6.8)

We can observe that from Table 6.6 that the partial PPA is able to recover the

original data rather accurately. In the numerical experiments in which the sampled

entries are corrupted by 10% Gaussian noise, the errors (MSE) are all smaller than

the noise factor (τ = 0.1) in the given data. The errors are smaller than the

theoretical result established in [18].

Example 6

We consider the positive semidefinite random matrix completion problem. For each

pair (n, r), we generate a positive semidefinite matrix M ∈ Sn of rank r by setting

M = M1M
T
1 where M1 ∈ <n×r is a random matrix with i.i.d Gaussian entries. Then

we sample a subset E of m entries uniformly at random from the upper triangular

part of M . The observed data is set to be M̃E = ME + τNE‖ME‖F/‖NE‖F , where

NE ∈ Sn is generated in a similar fashion as in Example 5 and τ is the noise factor.

Then the minimization problem that we finally solve is given by

min
{1

2
‖XE − M̃E‖2

F + ρ〈I, X〉 : X � 0
}
. (6.9)

In our numerical experiments, we set the noise level τ = 0, 0.1, and the number of

entries to sample m = 10dr, where dr = nr − r(r − 1)/2 is the value of degrees of
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p/q/τ r m it.|itsub|cg Rp | RD | relgap MSE #sv time

500/500/0.0 10 99189 11.4 | 16.6 | 7.0 5.36e-8 | 6.14e-7 | -9.85e-5 1.36e-3 10 19

50 250000 10.0 | 10.0 | 4.0 2.71e-15 | 2.81e-7 | -2.77e-5 1.43e-3 50 12

100 250000 9.4 | 9.4 | 4.0 3.06e-15 | 2.20e-7 | -1.36e-5 1.65e-3 100 13

1000/1000/0.0 10 199104 13.8 | 26.6 | 8.0 1.54e-7 | 6.18e-7 | -3.86e-5 1.36e-3 10 2:54

50 974891 9.6 | 9.8 | 4.4 1.62e-8 | 2.93e-7 | -2.67e-5 1.32e-3 50 1:14

100 1000000 10.0 | 10.0 | 4.0 3.05e-15 | 4.34e-7 | -3.07e-5 1.45e-3 100 1:15

1500/1500/0.0 10 299272 13.0 | 29.4 | 10.4 4.88e-7 | 1.96e-7 | -1.54e-5 1.36e-3 10 11:45

50 1474562 11.0 | 14.0 | 6.9 1.86e-8 | 2.86e-7 | -2.08e-5 1.35e-3 50 5:47

100 2250000 10.0 | 10.0 | 4.0 3.56e-15 | 2.93e-7 | -2.14e-5 1.37e-3 100 4:15

500/500/0.1 10 99189 22.0 | 43.0 | 7.1 1.97e-7 | 7.60e-7 | -4.47e-5 8.33e-2 10 50

50 250000 11.0 | 11.0 | 4.0 3.12e-15 | 2.68e-7 | -1.04e-5 9.68e-2 50 15

100 250000 13.2 | 13.2 | 4.0 3.28e-15 | 6.04e-7 | -2.13e-5 9.77e-2 100 21

1000/1000/0.1 10 199104 22.0 | 44.4 | 8.2 5.90e-7 | 7.55e-7 | -9.35e-5 7.78e-2 10 5:21

50 974891 21.2 | 22.2 | 5.8 2.99e-7 | 6.67e-7 | -1.69e-6 9.51e-2 50 3:08

100 1000000 14.0 | 14.0 | 4.0 3.46e-15 | 5.89e-7 | -1.91e-5 9.67e-2 100 2:14

1500/1500/0.1 10 299272 23.6 | 49.0 | 8.6 6.64e-7 | 5.44e-7 | -9.45e-5 7.54e-2 10 18:42

50 1474562 22.0 | 39.8 | 8.2 5.47e-7 | 7.03e-7 | -2.63e-6 8.91e-2 50 17:39

100 2250000 11.0 | 11.0 | 4.0 3.98e-15 | 2.41e-7 | -8.33e-6 9.60e-2 100 4:49

500/1000/0.0 10 149363 13.2 | 20.2 | 7.2 2.49e-8 | 6.24e-7 | -6.25e-5 1.39e-3 10 50

500/1000/0.1 10 149363 23.0 | 44.0 | 7.1 7.04e-7 | 6.40e-7 | -5.27e-5 7.97e-2 10 1:58

1000/2000/0.0 20 596592 12.0 | 18.0 | 7.9 5.22e-8 | 7.25e-7 | -9.31e-5 1.35e-3 20 5:15

1000/2000/0.1 20 596592 23.0 | 43.6 | 7.7 6.13e-7 | 8.06e-7 | -4.51e-5 7.94e-2 20 13:52

500/5000/0.0 25 1368353 9.0 | 17.0 | 9.8 4.22e-8 | 2.56e-7 | -3.26e-5 1.34e-3 25 9:12

500/5000/0.1 25 1368353 17.2 | 23.2 | 5.7 6.79e-7 | 7.68e-7 | -3.70e-5 7.99e-2 25 11:24

Table 6.6: Numerical results of the partial PPA for solving the randomly generated
matrix completion problem (6.7). In the table, m = 10dr and dr = r(p+ q − r).
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freedom in an n× n matrix of rank r. For each pair (n, r),m and τ , we repeat the

above procedure 5 times.

n/τ r m it.|itsub|cg Rp | RD | relgap MSE #sv time

500/0.0 10 49637 12.4 | 17.4 | 6.1 3.34e-8 | 7.40e-7 | -1.02e-4 1.45e-3 10 17

50 125250 9.0 | 9.0 | 3.2 2.47e-8 | 5.03e-7 | -3.93e-5 1.55e-3 50 9

100 125250 9.0 | 9.0 | 3.3 4.65e-8 | 3.16e-7 | -6.18e-6 1.72e-3 100 9

1000/0.0 10 99359 14.2 | 23.4 | 7.0 2.14e-7 | 5.04e-7 | -6.00e-5 1.41e-3 10 1:20

50 487724 10.0 | 10.0 | 3.5 3.46e-8 | 3.87e-7 | -3.18e-5 1.43e-3 50 49

100 500500 9.0 | 9.0 | 3.2 1.24e-8 | 8.05e-7 | -4.42e-5 1.57e-3 100 45

1500/0.0 10 149545 14.8 | 25.6 | 8.9 3.88e-7 | 4.07e-7 | -9.77e-5 1.41e-3 10 4:52

50 737608 11.0 | 14.0 | 5.9 9.58e-9 | 7.20e-7 | -4.56e-5 1.45e-3 50 2:40

100 1125750 10.0 | 10.0 | 3.0 1.12e-9 | 2.33e-7 | -1.40e-5 1.48e-3 100 2:00

500/0.1 10 49637 25.4 | 45.0 | 9.5 2.49e-7 | 6.35e-7 | -1.12e-5 1.17e-1 10 43

50 125250 9.0 | 11.0 | 5.2 9.46e-8 | 4.50e-7 | -6.71e-6 6.84e-2 50 12

100 125250 9.0 | 11.6 | 6.0 5.24e-8 | 1.64e-7 | -1.26e-6 8.04e-2 100 13

1000/0.1 10 99359 25.4 | 48.2 | 10.6 7.65e-7 | 7.87e-7 | -4.78e-5 1.01e-1 10 3:22

50 487724 25.8 | 27.2 | 6.4 3.49e-7 | 6.89e-7 | -8.02e-7 7.20e-2 50 2:26

100 500500 9.2 | 10.4 | 5.7 7.75e-8 | 5.57e-7 | -4.79e-6 6.83e-2 100 1:04

1500/0.1 10 149545 25.0 | 47.8 | 11.4 8.39e-7 | 8.88e-7 | -1.05e-4 9.17e-2 10 9:51

50 737608 25.6 | 32.8 | 9.8 4.91e-7 | 6.29e-7 | -1.03e-6 1.17e-1 50 9:14

100 1125750 10.0 | 11.0 | 5.2 3.62e-8 | 3.29e-7 | -2.41e-6 6.33e-2 100 2:48

Table 6.7: Numerical results of the partial PPA on positive semidefinite random
matrix completion problems. In the table, m = 10dr and dr = nr − r(r − 1)/2.

Table 6.7 presents the average numerical results of the partial PPA for solving (6.9)

over 5 runs, where #sv is the numerical rank of X defined in (6.8). We can observe

that from Table 6.7 that the partial PPA performed very well on randomly generated

positive semidefinite matrix completion problems and it is able to recover the original

data rather accurately.
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Example 7

We consider matrix completion problems based on some real data sets including

the Jester joke data set [46] and the MovieLens data set. The Jester joke data set

contains 4.1 million ratings for 100 jokes from 73421 users and is available on the

website http://www.ieor.berkeley.edu/~goldberg/jester-data/. The whole

data is stored in three excel files with the following characteristics.

1. jester-1: 24983 users who have rated 36 or more jokes;

2. jester-2: 23500 users who have rated 36 or more jokes;

3. jester-3: 24938 users who have rated between 15 and 35 jokes.

For each data set, we let M be the original incomplete data matrix such that the

i-th row of M corresponds to the ratings given by the i-th user on the jokes. For

convenience, let Γ be the set of indices for which Mij is given. We tested the jester

joke data sets in the same way as in [121]. For each user, we randomly choose 10

ratings. Thus we select a subset Ω randomly from Γ. Since some of the entries in

M are missing, we cannot compute the relative error of the estimated matrix X as

we did for the randomly generated matrices. Instead, we computed the Normalized

Mean Absolute Error (NMAE) as in [46]. The Mean Absolute Error (MAE) is

defined as

MAE =
1

|Γ\Ω|
∑

(i,j)∈Γ\Ω

|Mij −Xij|, (6.10)

where Mij and Xij are the original and computed ratings of joke j given by user i

respectively. The normalized MAE is defined as

NMAE =
MAE

rmax − rmin

, (6.11)

where rmin and rmax are lower and upper bounds for the ratings, For the jester joke

data sets, all ratings are scaled to the range [−10, 10], so we have rmin = −10, rmax =

10.

http://www.ieor.berkeley.edu/~goldberg/jester-data/
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The MovieLens data set is from the GroupLens Research Group. This data set

consists of 100,000 ratings on 1682 movies given by 943 users and is available on the

website http://www.grouplens.org. Each user has rated at least 20 movies with

scores from the range 1 to 5, and 5 is the highest score. In this data set we have

rmin = 1, rmax = 5. For the MovieLens data sets, the matrices M is very sparse. In

our experiments, we randomly select about 50% of the ratings given by each user,

i.e., |Ω|/|Γ| = 50%.

In this example, we set Tol = 10−5. We repeat the above precedure 5 times

for each data set. Table 6.8 reports the average number of outer iterations, the

average total number of inner iterations, the average number of CG steps taken to

solve (4.20), the average infeasibilities in (3.16) and (3.20), respectively, the average

relative gap between (3.16) and (3.20), the average NMAE value, the mean value of

the numerical rank (#sv) of X defined by #sv := max{k : σk(X) ≥ 10−8σ1(X)},

and the average CPU time taken. We can observe from the table that the partial

PPA performed very well on real matrix completion problems based on the jester

joke and MovieLens data sets.

problem p/q N |Ω|/N it.|itsub|cg Rp | RD | relgap NMAE#sv time

jester-1 24983/1001.81e+6 1.60e-1 18.0 | 24.0 | 5.9 3.69e-6 | 9.26e-6 | -5.57e-4 1.89e-1 99 9:56

jester-2 23500/1001.71e+6 1.60e-1 18.0 | 24.2 | 6.2 4.05e-6 | 9.44e-6 | -5.63e-4 1.90e-1 98 9:43

jester-3 24938/1006.17e+5 6.78e-1 21.4 | 37.6 | 20.0 1.99e-6 | 7.03e-6 | -1.69e-4 1.94e-1 71 40:14

jester-4 73421/1004.14e+6 2.16e-1 18.0 | 23.6 | 5.6 4.24e-6 | 6.10e-6 | -3.45e-4 1.89e-1 100 27:08

movie 943/16821.00e+5 9.91e-1 23.0 |57.0 | 22.2 3.26e-6 | 5.50e-6 | -6.14e-4 2.05e-1 140 20:26

Table 6.8: Numerical results on the real matrix completion problems.

Example 8

In the Euclidean metric embedding problem, we are given an incomplete, possibly

noisy, dissimilarity matrix B ∈ Sn with Diag(B) = 0 and sparsity pattern specified

http://www.grouplens.org
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by the set of indices E . The goal is to find an Euclidean distance matrix [1] that

is nearest to B. If the measure of nearness is in the Frobenius norm, then the

mathematical formulation of the problem is as follows:

min
{1

2

∑
(i,j)∈E

Wij(Dij −Bij)
2 +

ρ

2n
〈E, D〉 : D is an Euclidean distance matrix

}
,

(6.12)

where Wij > 0, (i, j) ∈ E , are given weights, E ∈ Sn is a matrix of all ones and ρ is a

positive regularization parameter. Here we added the term ρ
2n
〈E, D〉 to encourage a

sparse solution. Recall that a standard characterization [1] of an Euclidean distance

matrix D is that D = Diag(X)eT + eDiag(X)T − 2X for some X � 0 with Xe = 0,

where e ∈ <n is a vector of all ones. Thus the problem (6.12) can be rewritten as:

min
{1

2

∑
(i,j)∈E

Wij(〈Aij, X〉 −Bij)
2 + ρ〈I, X〉 : 〈E, X〉 = 0, X � 0

}
, (6.13)

where Aij = eije
T
ij with eij = ei − ej. Note that under the condition X � 0, the

constraint Xe = 0 is equivalent to 〈E, X〉 = 0. It is interesting to note that desiring

sparsity in the Euclidean distance matrix D leads to the regularization term ρ〈I, X〉,

which is a proxy for desiring a low-rank X.

The Euclidean metric problem arises in many applications. For the regularized

kernel estimation (RKE) problem in statistics [74], we are given a set of n objects

and dissimilarity measures dij for certain object pairs (i, j) ∈ E . The goal is to

estimate a positive semidefinite kernel matrix X ∈ Sn+ such that the fitted squared

distances between objects induced by X satisfy

Xii +Xjj − 2Xij = 〈Aij, X〉 ≈ d2
ij ∀ (i, j) ∈ E ,

where Aij = (ei− ej)(ei− ej)T . Formally, one version of the RKE problem proposed

in [74] is to solve the SDP problem (6.13).

In our numerical experiments, the data dij are normalized to be in the interval

[0, 1], and E = {(i, j) : 1 ≤ i < j, 1 ≤ j ≤ 630}. We set Wij = 1 for all (i, j) ∈ E

and Tol = 10−6. In [74], due to the computational difficulties encountered by the
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Figure 6.2: A 3D representation of the sequence space for 630 proteins.

interior-point method used to solve (6.13), a subset of 280 globin proteins were

selected from the entire set of 630 proteins. And for each of the selected proteins,

55 dissimilarities were randomly selected out of the total of 280. Here we are able

to consider the entire set of 630 proteins and the dissimilarities among all the pairs

of proteins.

As mentioned in [74], the RKE methodology can provide an efficient way to

represent each protein sequence by a feature vector in a chosen coordinate system

using the pairwise dissimilarity between protein sequences, and the projection of

the computed solution X on to a 3D space, which corresponds to the largest three

eigenvalues, is quite informative. Figure 6.2 displays a 3D representation of the

sequence space for 630 proteins from the globin family. There are at leat 4 classes

visually identifiable in the data set of 630 proteins, which is consistent with the

observations in [74]. The numerical results for solving (6.13) are reported in Table

6.9, where #sv is the number of positive eigenvalues of X. For the obtained solution

X, we have 〈X, E〉 = 1.09× 10−14 and 〈X, I〉 = 1.85× 102.
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Figure 6.3: A 3D representation of the protein structure space for 1874 proteins.

problem n m ρ it.|itsub|cg Rp | RD | relgap #sv time

RKE630 630 198136 5.07e-1 6 | 36| 24.6 1.07e-7 | 2.42e-8 | -1.81e-6 388 1:59

PDB25 1898 1646031 1.84e+0 18 | 55 | 55.8 4.89e-7 | 4.78e-6 | -1.46e-5 1388 1:19:11

Table 6.9: Numerical results on the RKE problem arising from protein clustering.

We also conducted numerical experiments on a much larger protein data set to

evaluate the performance of our algorithm. We used the PDB SELECT 25 data set,

a representative subset of the Protein Data Bank database [8], which contains 1898

protein chains. In our numerical implementation, we set Tol = 5 × 10−6. Figure

6.3 displays a 3D representation of the structure space for 1898 proteins, which is

consistent with the protein structure space studied in [58]. The numerical results

for the PDB SELECT 25 data set are reported in Table 6.9. For the obtained solution

X, we have 〈X, E〉 = 3.43× 10−14 and 〈X, I〉 = 8.76× 102.
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6.2 Numerical Results for linearly constrained QSDP

problems

In this section, we report the numerical performance of the inexact APG algorithm

(Algorithm 4) for large scale linearly constrained QSDP problems.

We measure the infeasibilities for the primal and dual problems (1.12) and (1.13)

as follows:

RP =
‖b−A(X)‖

1 + ‖b‖
, RD =

‖Q(X) + C −A∗p− Z‖
1 + ‖C‖

, (6.14)

where X, p, Z are computed from (5.58). In our numerical experiments, we stop the

inexact APG algorithm when

max{RP , RD} ≤ Tol, (6.15)

where Tol is a pre-specified accuracy tolerance. Unless otherwise specified, we set

Tol = 10−6 as the default tolerance. When solving the subproblem (5.58) at itera-

tion k of our inexact APG method, we stop the SSNCG or gradient method when

‖∇θ(pk)‖/(1 + ‖b‖) < min{1/t3.1k , 0.2‖∇f(Xk−1)−A∗pk−1 − Zk−1‖/(1 + ‖C‖)}.

Example 9

In this example, we consider the following H-weighted nearest correlation matrix

problem

min
{1

2
‖H ◦ (X −G)‖2 | Diag(X) = e,X � 0

}
. (6.16)

We compare the performance of our inexact APG (IAPG) method and the aug-

mented Lagrangian dual method (AL) studied by Qi and Sun in [98], whose Matlab

codes are available at http://www.math.nus.edu.sg/∼matsundf. We consider the

gene correlation matrices Ĝ from [69]. For testing purpose we perturb Ĝ to

G := (1− α)Ĝ+ αE,

where α ∈ (0, 1) and E is a randomly generated symmetric matrix with entries

in [−1, 1]. We also set Gii = 1, i = 1, . . . , n. The weight matrix H is a sparse
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random symmetric matrix with about 50% nonzero entries. The Matlab code for

generating H and E is as follows:

H = sprand(n,n,0.5); H = triu(H) + triu(H,1)’; H = (H + H’)/2;

E = 2*rand(n,n)-1; E = triu(E) + triu(E,1)’; E = (E + E’)/2.

In order to generate a good initial point, we use the SSNCG method in [97] to solve

the following unweighted nearest correlation matrix problem

min
{1

2
‖X −G‖2 | Diag(X) = e,X � 0

}
. (6.17)

Due to the difference in stopping criteria for different algorithms, we set different

accuracy tolerances for the IAPG and augmented Lagrangian methods. For the

IAPG method, we set Tol = 10−6. For the augmented Lagrangian method, its

stopping criteria depends on a tolerance parameter Tol1 which controls the three

conditions in the KKT system (5.26). We set Tol1 = 10−4.

Table 6.10 presents the numerical results obtained by the IAPG method and the

augmented Lagrangian dual method (AL) for various instances of Example 1. We

use the primal infeasibility, primal objective value and computing time to compare

the performance of the two algorithms. For each instance in the table, we report

the matrix dimension (n), the noise level (α), the number of outer iterations (iter),

the total number of Newton systems solved (newt) the primal infeasibility (RP ),

the dual infeasibility (RD), the primal objective value (pobj) in (6.16), as well as

the computation time (in the format hours:minutes:seconds) and the rank of the

computed solution (sv). We may observe from the table that the IAPG method

can solve (6.16) very efficiently. For each instance, the IAPG method can achieve

nearly the same primal objective value as the augmented Lagrangian method, and

the former can achieve much better primal infeasibility while taking less than 50%

of the time needed by the augmented Lagrangian method.
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Algo. problem n α iter/newt RP RD pobj time sv

IAPG Lymph 587 0.1 169/177 3.09e-11 1.75e-6 5.04289799e+0 2:35 179

0.05 300/327 1.31e-10 2.04e-6 2.53103607e-1 4:16 207

AL Lymph 587 0.1 12 4.13e-7 9.96e-7 5.04289558e+0 5:39 179

0.05 12 2.96e-7 1.07e-6 2.53101698e-1 30:58 207

IAPG ER 692 0.1 137/142 2.27e-10 2.43e-6 1.26095534e+1 3:10 189

0.05 187/207 3.93e-11 9.54e-7 1.14555927e+0 3:40 220

AL ER 692 0.1 12 3.73e-7 4.63e-7 1.26095561e+1 9:28 189

0.05 12 3.21e-7 1.02e-6 1.14555886e+0 14:14 220

IAPG Arabidopsis 834 0.1 115/123 3.28e-10 1.78e-6 3.46252363e+1 3:53 191

0.05 131/148 2.41e-10 9.75e-7 5.50148194e+0 4:09 220

AL Arabidopsis 834 0.1 13 2.28e-7 7.54e-7 3.46252429e+1 12:35 191

0.05 12 2.96e-8 1.01e-6 5.50148169e+0 22:49 220

IAPG Leukemia 1255 0.1 104/111 5.35e-10 7.97e-7 1.08939600e+2 9:24 254

0.05 96/104 4.81e-10 9.31e-7 2.20789464e+1 8:35 276

AL Leukemia 1255 0.1 12 3.06e-7 2.74e-7 1.08939601e+2 22:04 254

0.05 11 2.90e-7 8.57e-7 2.20789454e+1 28:37 276

IAPG hereditarybc 1869 0.1 67/87 2.96e-10 8.68e-7 4.57244497e+2 17:56 233

0.05 64/85 9.58e-10 7.04e-7 1.13171325e+2 17:32 236

AL hereditarybc 1869 0.1 13 2.31e-7 3.55e-7 4.57244525e+2 38:35 233

0.05 11 2.51e-7 6.29e-7 1.13171335e+2 36:31 236

Table 6.10: Comparison of the inexact APG (IAPG) and augmented Lagrangian
dual (AL) algorithms on (6.16) using sample correlation matrix from gene data sets.
The weight matrix H is a sparse random matrix with about 50% nonzero entries.
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Example 10

We consider the same problem as in Example 9, but the weight matrixH is generated

from a weight matrix H0 used by a hedge fund company. The matrix H0 is a 93×93

symmetric matrix with all positive entries. It has about 24% of the entries equal

to 10−5 and the rest are distributed in the interval [2, 1.28 × 103]. It has 28 eigen-

values in the interval [−520,−0.04], 11 eigenvalues in the interval [−5 × 10−13, 2 ×

10−13], and the rest of 54 eigenvalues in the interval [10−4, 2 × 104]. The Matlab

code for generating the matrix H is given by tmp = kron(ones(25,25),H0); H =

tmp([1:n],[1:n]); H = (H + H’)/2.

We use the same implementation techniques as in Example 9. The stopping

tolerance for the IAPG method is set to Tol = 10−6 while the tolerance for the

augmented Lagrangian method is set to a less demanding value with Tol1 = 10−2.

Table 6.11 presents the numerical results obtained by the IAPG and augmented

Lagrangian dual (AL) methods. In the table, “ ∗ ” means that the augmented

Lagrangian method cannot achieve the required tolerance of 10−2 in 24 hours. As

we can see from Table 6.11, the IAPG method is much more efficient than the

augmented Lagrangian method, and it can achieve much better primal infeasibility.

For the last gene correlation matrix of size 1869, the IAPG method can find a good

approximate solution within half an hour. For the augmented Lagrangian method,

because the map Q associated with the weight matrix H is highly ill-conditioned,

the CG method has great difficulty in solving the ill-conditioned linear system of

equations obtained by the semismooth Newton method.

Example 11

In this example, we report the performance of the inexact APG on the linearly

constrained QSDP problem (1.12). The linear operator Q is given by

Q(X) =
1

2
(BX +XB)
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Algo. problem n α iter/newt RP RD pobj time sv

IAPG Lymph 587 0.1 72/159 1.76e-8 9.90e-7 8.92431024e+6 1:50 238

0.05 60/148 3.81e-8 9.75e-7 1.69947194e+6 1:41 278

AL Lymph 587 0.1 14 2.64e-5 1.06e-5 8.92425480e+6 56:07 260

0.05 12 1.69e-4 4.41e-5 1.69925778e+6 29:15 286

IAPG ER 692 0.1 62/156 2.48e-9 9.72e-7 1.51144194e+7 2:33 254

0.05 56/145 3.58e-9 9.55e-7 3.01128282e+6 2:22 295

AL ER 692 0.1 16 1.22e-5 5.80e-6 1.51144456e+7 2:05:38 288

0.05 12 3.11e-5 6.29e-6 3.01123631e+6 53:15 309

IAPG Arabidopsis 834 0.1 61/159 6.75e-9 9.98e-7 2.69548461e+7 4:01 254

0.05 54/145 1.06e-8 9.82e-7 5.87047119e+6 3:41 286

AL Arabidopsis 834 0.1 19 3.04e-6 3.94e-6 2.69548769e+7 4:49:00 308

0.05 13 1.69e-5 6.76e-6 5.87044318e+6 1:28:59 328

IAPG Leukemia 1255 0.1 65/158 8.43e-9 9.86e-7 7.17192454e+7 11:32 321

0.05 55/143 1.19e-7 9.80e-7 1.70092540e+7 10:18 340

AL Leukemia 1255 0.1 ∗ ∗ ∗ ∗ ∗ ∗

0.05 13 3.19e-5 5.15e-6 1.70091646e+7 5:55:21 432

IAPG hereditarybc 1869 0.1 48/156 2.08e-8 9.16e-7 2.05907938e+8 29:07 294

0.05 49/136 6.39e-8 9.61e-7 5.13121563e+7 26:16 297

AL hereditarybc 1869 0.1 ∗ ∗ ∗ ∗ ∗ ∗

0.05 ∗ ∗ ∗ ∗ ∗ ∗

Table 6.11: Same as Table 6.10, but with a “bad” weight matrix H.
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n m cond(B)iter/newt RP RD pobj dobj time

500 500 9.21e+0 9/9 3.24e-10 9.70e-7 -4.09219187e+4 -4.09219188e+4 13

1000 1000 9.43e+0 9/9 3.68e-10 9.28e-7 -8.41240999e+4 -8.41241006e+4 1:13

2000 2000 9.28e+0 9/9 3.16e-10 8.53e-7 -1.65502323e+5 -1.65502325e+5 8:49

2500 2500 9.34e+0 9/9 3.32e-10 8.57e-7 -2.07906307e+5 -2.07906309e+5 16:15

3000 3000 9.34e+0 9/9 2.98e-10 8.13e-7 -2.49907743e+5 -2.49907745e+5 29:02

Table 6.12: Numerical results of the inexact APG algorithm on (1.12), where the
positive definite matrix B for the linear operator Q is well-conditioned.

for a given B � 0, and the linear map A is given by A(X) = Diag(X). We generate

a positive definite matrix X and set b = A(X). Similarly we can generate a random

vector p ∈ <m and a positive definite matrix Z and set C = A∗(p)+Z−Q(X). The

Matlab code for generating the matrix B is given by randvec = 1+ 9*rand(n,1);

tmp = randn(n,ceil(n/4)); B = diag(randvec)+(tmp*tmp’)/n; B = (B+B’)/2.

Note that the matrix B generated is rather well conditioned.

As discussed in section 5.2, we are able to find a good symmetrized Kronecker

product approximation W ~W of Q. By noting that

1

2
〈X,W ~W (X)〉+ 〈C,X〉 =

1

2
‖W 1/2(X − U)W 1/2‖2 − 1

2
‖W−1/2CW−1/2‖2,

where U = −W−1CW−1, and dropping the constant term, we propose to solve the

following problem to generate a good initial point for the inexact APG method:

min
{1

2
‖W 1/2(X − U)W 1/2‖2 | A(X) = b, X � 0

}
,

which can be efficiently solved by the the SSNCG method in [97].

The performance results of our IAPG method on convex QSDP problems are

given in Table 6.12, where “pobj” and “dobj” are the primal and dual objective

values for QSDP, respectively. We may see from the table that the IAPG method

can solve all the five instances of QSDP problems very efficiently with very good

primal infeasibility.
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n m cond(B)iter/newt RP RD pobj dobj time

500 10000 2.67e+5 51/102 3.02e-8 9.79e-7 -9.19583895e+3 -9.19584894e+3 1:29

1000 50000 1.07e+6 62/115 2.43e-8 9.71e-7 -1.74777588e+4 -1.74776690e+4 11:46

2000 100000 4.32e+6 76/94 5.24e-9 5.28e-7 -3.78101950e+4 -3.78101705e+4 1:14:04

2500 100000 6.76e+6 80/96 4.62e-9 5.64e-7 -4.79637904e+4 -4.79637879e+4 2:11:01

Table 6.13: Same as Table 6.12, but the matrix B for the linear operator Q is
ill-conditioned and the linear map A is randomly generated as in [79].

Example 12

We consider the same problem as Example 11 but the linear map A is generated by

using the first generator in [79] with order p = 3. The positive definite matrix B is

generated by using Matlab’s built-in function: B = gallery(’lehmer’,n). The

condition number cond(B) of the generated Lehmer matrix B is within the range

[n, 4n2]. For this example, the simple choice of W =
√
λmax(B)I in the symmetrized

Kronecker product W~W for approximatingQ does not work well. In our numerical

implementation, we employ the strategy described in section 3.2 to find a suitable

W .

Table 6.13 presents the numerical results of our IAPG method on convex QSDP

problems where the matrix B is very ill-conditioned. As observed from the table,

the condition numbers of B are large. We may see from the table that the IAPG

method can solve the problem very efficiently with very accurate approximate opti-

mal solution.





Chapter 7
Conclusions

In this thesis, we designed algorithms for solving large scale nuclear norm mini-

mization and convex quadratic semidefinite programming (QSDP) problems. We

introduced a partial proximal point algorithm for solving nuclear norm regularized

matrix least squares problems with linear equality and inequality constraints. Based

on the results of the general partial proximal point algorithm, we analyzed the global

and local convergence of our proposed algorithm. The inner subproblems, due to

the presence of inequality constraints, were reformulated as a system of semismooth

equations, which are solved by an inexact smoothing Newton method. The quadratic

convergence of the inexact smoothing Newton method was proved under the con-

straint nondegeneracy condition, together with the strong semismoothness property

of the soft thresholding operator. When the nuclear norm regularized matrix least

squares problem has equality constraints only, we proposed a semismooth Newton-

CG method to solve the unconstrained inner subproblem in each iteration. The

quadratic convergence of the semismooth Newton-CG method was also established.

In order to efficiently solve large scale convex QSDP problems, we extended the

APG algorithm to the inexact setting where the subproblem in each iteration was

only solved approximately. We showed that the inexact APG enjoys the same su-

perior worst-case iteration complexity as the exact version. Numerical experiments

conducted on a variety of large scale nuclear norm minimization and convex QSDP

133
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problems demonstrated that our proposed algorithms are very efficient and robust.

There are still many interesting problems that will lead to further development

of algorithms for solving large scale structured matrix optimization problems. The

current theorectical guarantees of using the nuclear norm ‖·‖∗ as a surrogate for the

rank function for matrix completion problems require that the entries of the matrix

are uniformly sampled [19, 20, 102]. However, if the entries of the matrix are non-

uniformly sampled, the nuclear norm regularizer may perform very poorly for matrix

completion problems [110]. A weighted nuclear norm function, i.e., ‖W1(·)W2‖∗,

where W1 ∈ <p×q and W2 ∈ <p×q are given weight matrices, was suggested in [110] to

deal with matrix completion problems with non-uniformly sampled entries. It will be

worthwhile to develop an efficient and robust algorithm for solving weighted nuclear

norm regularized matrix least squares problems. In many applications [29, 93, 128],

based on the available prior information about the target matrix, we may use the

operator norm or the Ky Fan k-norm which is defined as the sum of k largest singular

values as a regularizer for obtaining certain desired structures.

Based on the high efficiency and robustness of the inexact APG algorithm for

large scale convex QSDP problems, it will be very attractive to design an inexact

APG algorithm for solving (weighted) nuclear norm regularized matrix least squares

problems with equality and inequality constraints and second order cone constraints.
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Université catholique de Louvain, 2011.

[31] C. Ding, D. Sun, and K. Toh, An introduction to a class of matrix cone

programming, Technical Report, Department of Mathematics, National Uni-

versity of Singapore, 2010.

[32] V. Dolezal, Monotone operators and applications in Control and Network

Theory, vol. 2, Elsevier Scientific Pub. Co.,(Amsterdam and New York and

New York), 1979.

[33] D. Donoho, Compressed sensing, Information Theory, IEEE Transactions

on, 52 (2006), pp. 1289–1306.

[34] B. Eaves, On the basic theorem of complementarity, Mathematical Program-

ming, 1 (1971), pp. 68–75.

[35] C. Eckart and G. Young, The approximation of one matrix by another of

lower rank, Psychometrika, 1 (1936), pp. 211–218.

[36] M. Fazel, Matrix rank minimization with applications, PhD thesis, Stanford

University, 2002.

http://www.cmap.polytechnique.fr/~aspremon/subsampsdp.html
http://www.cmap.polytechnique.fr/~aspremon/subsampsdp.html


Bibliography 139

[37] M. Fazel, H. Hindi, and S. Boyd, A rank minimization heuristic with

application to minimum order system approximation, in American Control

Conference, 2001. Proceedings of the 2001, vol. 6, 2001, pp. 4734–4739.

[38] A. Fischer, Solution of monotone complementarity problems with locally lip-

schitzian functions, Mathematical Programming, 76 (1997), pp. 513–532.
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[87] J. J. Moré and Z. Wu, Distance geometry optimization for protein struc-

tures, Journal of Global Optimization, 15 (1999), pp. 219–234.
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