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ABSTRACT 

Many real life problems, especially in health care and biomedicine, are characterized by 

imbalanced data. In general, people tend to be more interested in rare events or 

phenomena. For example, in prognostic predictions, the physicians can take necessary 

precautions to reduce the risks of the small group of patients who cannot recover in time. 

Traditional machine learning algorithms often fail to predict the minorities that are of 

interest. The objective of imbalanced data learning is to correctly identify the rarities 

without sacrificing prediction of the majorities.  

In this thesis, we review the existing approaches to deal with the imbalanced data 

problem, including data level approaches and algorithm level approaches. Most data 

sampling approaches are ad-hoc and the exact mechanisms of how they improve 

prediction performance are not clear. For example, random sampling generates duplicate 

samples to “fool” the classifier to bias its decision in favor of minorities. Oversampling 

often leads to data overfitting, and under sampling tends to remove useful information 

from the original data set. The Synthetic Minority over-Sampling Technique creates 

synthetic data from the nearest neighbor, but it only makes use of local information and 

often leads to data over-generalization. On the other hand, most of the algorithmic level 

approaches have been shown to be equivalent to data sampling approaches. Some other 

approaches make additional assumptions. For example, a popular approach is cost 
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sensitive learning which assigns different cost values to different types of 

misclassifications; but the cost values are usually unknown, and it is hard to discover the 

right cost value.  

We propose a model driven sampling (MDS) approach that can generate new 

samples based on the global understanding of the entire data set and domain experts‟ 

knowledge. This is a first attempt to make use of probabilistic graphical methods to 

represent the training space and generate synthetic data. Our empirical studies show that 

in a large class of problems, MDS generally outperforms previous approaches or 

performs comparably to the best previous approach in the worst case scenario. It 

performs especially well for extremely imbalanced data without complex connected 

structures. MDS also works well when domain knowledge is available, as the model 

created with domain knowledge is better “educated” than that constructed purely from 

training data and thus, the synthetic data generated are more meaningful. We have also 

extended MDS to context sensitive MDS and progressive MDS. Context sensitive MDS 

reduces the problem size by creating more accurate sub models for each individual 

context. Therefore, the data sampled from context sensitive MDS are more relevant to 

each context. Instead of assuming the optimal distribution is balanced, progressive MDS 

iterates over all possible data distributions and selects the best performing data 

distribution as the optimal distribution. Therefore, progressive MDS improves over MDS 

by always obtaining the optimal data distribution, as shown by our empirical studies. 
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CHAPTER 1: INTRODUCTION 

1. INTRODUCTION  

1.1 BACKGROUND 

In healthcare, a lot of data have been collected by various institutions and hospitals. 

These data are valuable resources for outcomes analysis to help doctors to make 

decisions on disease diagnosis, resource planning, and risk analysis. The definition of 

outcomes here includes functional outcomes, return to work, quality of life, patient 

satisfaction, and cost effectiveness. Successful outcomes analysis can help physicians 

make better decisions about patients‟ treatments, help in their recovery and cut treatment 

cost [10, 124].  

In health care outcomes analysis, the critical patients normally constitute a very 

small portion of the whole patient population [137], which leads to the class imbalance 

problem. For example, this problem was reported in the diagnoses of rare medical 

conditions such as thyroid diseases [101], asthma control [159], outcomes analysis for 

severe  head injury and mild head injury [158], etc. Besides health care, the class 

imbalance problem is also widely reported in a lot of other areas with significant 

environmental, vital or commercial importance [69].  For example, the problem was 

reported in the detection of oil spills in satellite radar images [83], the detection of 
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fraudulent telephone calls [46], in-flight helicopter gearbox fault monitoring [67], 

software defect prediction [162], information retrieval and filtering [86], etc. 

Empirical experience shows that traditional data mining algorithms fail to 

recognize critical patients who are normally the minorities, even though they may have 

very good prediction accuracy for the majority class. Thus imbalanced data learning – to 

build a model from the imbalanced data and correctly recognize both majority and 

minority examples is a very crucial task [87, 159]. Existing approaches mainly include 

data level approaches [22, 23, 35, 81] and algorithmic level approaches [27, 42, 67, 74, 

76, 82, 127]. In this thesis, we mainly focus on data sampling approaches, because 

empirical studies show that data sampling is more efficient and effective than algorithmic 

approaches [44, 149]. We have studied the state of the art data sampling approaches – 

random sampling approach, Synthetic Minority over-Sampling Technique (SMOTE) 

[23], and progressive sampling [50, 104]. These approaches mainly either duplicate the 

existing data samples, or create synthetic samples with the nearest neighboring sample. In 

contrast to the existing approaches, we propose a Model Driven Sampling (MDS) 

approach to make use of the whole training space and domain knowledge to create 

synthetic data. To our best knowledge, MDS is the first approach using probabilistic 

graphical models to model the training space and domain knowledge to generate 

synthetic data samples.  

In this thesis, we compare MDS with existing data sampling approaches on 

various training data, using different machine learning techniques and evaluation 
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measures. In particular, Bayesian networks are used to create models in MDS and also 

used as the data classifier for the evaluation; g-Mean [81] is used as the evaluation 

metric.  MDS is empirically shown to outperform other data sampling approaches in 

general. It is particularly useful for highly skewed data, and sparse data with domain 

knowledge. Context sensitive MDS can usually reduce the problem size, and generate 

more accurate data adapted to each context. Progressive sampling can be combined with 

MDS to determine the optimal data distribution, instead of using the balanced data 

distribution that may not be optimal.   

1.2 IMBALANCED DATA LEARNING PROBLEM 

1.2.1 IMBALANCED DATA DEFINITION 

The word “imbalanced” is an antonym for the word “balanced”; Imbalanced dataset 

refers to the dataset with unbalanced class distribution. Figure 1-1 shows a balanced data 

distribution – the Singapore population sex distribution with sex as of July 2006 [4]. The 

number of males and the number of females are roughly equal for each age group. Figure 

1-2 illustrates an example of an unbalanced dataset where mild head injury patients 

greatly outnumber severe head injury patients in a head injury dataset [111].  
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Figure 1-1 a balanced dataset example 

 

 

Figure 1-2 an imbalanced dataset example 

Class distribution plays an important role in learning. In real life datasets, 

particularly in medical datasets, class distribution is often uneven, or even highly skewed. 

For example, in the dataset shown in Figure 1-2, there are only 30 positive (severe) cases 
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among a total of 1806 head injury patients. There are many more negative examples than 

positive examples in this dataset, which is therefore imbalanced.  

In this work, we focus on imbalanced data learning in the context of biomedical 

or healthcare outcomes analysis. It is defined as learning from an imbalanced dataset and 

building a decision model which can correctly recognize the outcomes especially for the 

minority classes. We assume that the training data are limited, and rare cases and rare 

classes (discussed in session 4.5.2) exist in the data space.       

1.2.2 TYPES OF IMBALANCE 

Most of the research on rarity relates to rare classes or more generally, class imbalance. 

This type of rarity is mainly associated with classification problems. The head injury data 

set in Figure 1-2 is an example of class imbalance. This type of imbalance is also referred 

to as “between class” imbalance.   

Another type of rarity concerns rare cases. A rare case is normally a sub concept 

defined within a class that occurs infrequently. For example, in Figure 1-3, the population 

is a balanced dataset with two classes male and female. However, within each class, age 

group “0-14” and age group “65-” are rare cases. Unfortunately, it is very hard to detect 

rare cases in real life, though clustering method may help to identify them. Rare cases, 

like rare classes, can be considered as a form of data imbalance and it is normally 

referred to as “within class” imbalance [72]. 
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Figure 1-3 an example of within class imbalance 

1.2.3 THE PROBLEM OF DATA IMBALANCE 

The traditional machine learners assume that the class distribution for the testing data is 

the same as the training data, and they aim to maximize the overall prediction accuracy 

on the testing data.  These learners usually work well on the balanced data, but often 

perform poorly on the imbalanced data, misclassifying the minority class, which is 

normally unacceptable in reality. For example, as shown in the head injury data in Figure 

1-2, a trivial classifier can easily achieve 99% accuracy, but it misses all the severe head 

injury cases. The consequence is very costly – clinicians would miss the best chance to 

treat those patients who will turn out to be severe.  

 In order to properly address the imbalanced data problem, the following issues 

must be considered: a better evaluation metric which is not sensitive to data distribution 
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should be used; traditional learners should be modified to reduce the bias on minority 

predictions; or the training space can be re-sampled to form a proper balanced data set, so 

that existing learners can be applied.  We will review all these methods in detail in 

Chapter 4.   

1.2.4 IMBALANCE RATIO   

A central concept in imbalanced data learning is the imbalance ratio. We define 

imbalance ratio as the percentage of minority samples among the total sample space. For 

example in a sample space of 100 examples where 30 are minorities, the imbalance ratio 

will be 30/100=30% or 0.3.   

1.2.5 EXISTING APPROACHES 

Existing imbalanced data learning techniques can be generally categorized into two types 

– algorithm level approaches and data level approaches. Algorithm level approaches 

either alter the existing machine learning approaches or create new algorithms for 

addressing the imbalanced data problems. Data level approaches alter the training data 

distributions by various data sampling techniques. Algorithm level approaches include 

learning rare class only [67, 82, 100, 127], cost sensitive learning [28, 33, 37, 84, 97, 107, 

133, 149], boosting algorithm [27, 45, 76] [75], two phase rule induction [74],  kernel 

modification methods [54, 65, 154, 155], etc. Data level approaches include random 

oversampling and under-sampling [24, 35, 44, 117], informed under-sampling [93], 

synthetic sampling with data generation [23], adaptive synthetic sampling [58, 61], 

sampling with data cleaning techniques [12], cluster based sampling method [73], 
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progressive sampling [104, 147], generative sampling [91] etc. We will review all these 

methods in Chapter 4.    

1.2.6 LIMITATIONS OF EXISTING WORK 

The existing approaches have major limitations. In cost sensitive learning, classification 

cost is not always possible to identify, and varies from case to case. One class learning 

normally has a poor performance in the overall accuracy, because it only learns the rare 

class. Two phase-rule induction performs better only for complex concepts [74]. 

Boosting was shown that it cannot guarantee improvements in the classification 

performance [75], instead, its performance is tied to the choice of base learning 

algorithm, and it will perform poorly if the base learner performs badly. Kernel-based 

methods are often biased towards majority class if there is not enough data representing 

the minority concept or if the training space is non linear separable [7, 125, 153]. 

Sampling, especially smart sampling was shown to be an effective way in addressing 

imbalanced data learning problems. However, random sampling either duplicates existing 

information or may remove useful information. Even smart sampling methods [23] only 

make use of local information to make new samples, but this can be noise instead of 

possible useful information. Generative sampling samples data in consideration of the 

statistical distribution of the training data, but it lacks a concrete backbone model as the 

clear mechanism for data generation. Progressive sampling, on the other hand, 

concentrates more on the system efficiency rather than performance effectiveness.    
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1.3 MOTIVATIONS AND OBJECTIVES 

Traditional data mining algorithms tend to predict the minorities inaccurately. Optimized 

algorithms try to add biases to the minorities, so as to improve the overall performance. 

The performance gained by simply adding biases to the algorithms is often very limited.  

A lot of efforts have been spent on data level approaches instead. Random sampling is a 

simple and effective method in addressing imbalanced data problems. However, random 

sampling does not add any new knowledge to the data repository, except changing the 

data size [50, 66, 104]. Essentially, random sampling changes the imbalance ratio of the 

dataset which makes the classifier biased to the minority. Smart sampling on the other 

hand can create new knowledge by generating synthetic data, e.g., synthetic minority 

over sampling technique (SMOTE) [23] can generate synthetic data samples using its 

nearest neighbors. However most of the existing smart sampling methods generate data 

using local information, i.e., information from a small subspace of the whole training 

space. Generative sampling [91], on the other hand, makes use of the total data set to 

generate samples, but it only uses the statistical data distribution. The training space 

contains much more useful information besides its statistical distribution. If we can 

extract such useful information from the whole training space and put it into a model, 

then intuitively the data generated from such a model should be much more meaningful 

than those data generated using local information or statistical distribution only. When 

domain expert knowledge is available, the model can even better approximate the true 

training space with input from the domain experts.  
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The ultimate objective is to develop a model driven sampling approach, such that 

it can effectively and efficiently build machine learning models from the whole training 

space. Meanwhile, this model should also be easily interpreted and updated by domain 

experts. We will use this enriched model for synthetic data creation.    

1.4 CONTRIBUTIONS 

The idea of Model Driven Sampling (MDS) approach is to build a probabilistic graphical 

model to approximate the relationships among the various attributes both qualitatively 

and quantitatively. The model allows input from domain experts. In this way, the 

approximate model is built as close as possible to the true model. Thus the data generated 

from this model has better quality than the data generated using partial information.  

We also extend MDS to progressive MDS and context sensitive MDS. 

Progressive MDS iteratively tries various data distributions aiming to find a better data 

distribution for each individual imbalanced data set instead of assuming that balanced 

distribution is optimal. Context sensitive MDS builds various models adapted to different 

contexts. Models built in this way are more accurate under a certain context, the 

generated data contains less noise caused by unrelated contexts, and unnecessary 

computational costs can be avoided.  

We have compared our approach with the current best approaches on various 

simulated data and real data sets with different size, complexity, and imbalance ratio. We 
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have shown that our approach generally performs better and in the worst case scenario is 

comparable to the best performing approach.    

1.5 OVERVIEW 

In this thesis, we first conduct two real life case studies on head injury patients in Chapter 

2 to demonstrate the consequences caused by the imbalanced data, which are the main 

hurdles for the outcomes analysis model to be built. In chapter 3, we explore the nature of 

the imbalanced data problem, and the reason that it fails the traditional data learners.  We 

then review the existing approaches to address the data imbalanced problem in Chapter 4, 

including the algorithmic level approaches and the data level approaches.  In chapter 5, 

we introduce the Model Driven Sampling (MDS) approach, and the basics of Bayesian 

networks. In Chapter 6, we describe our experimental set ups, the datasets, and also the 

related experimental results. We present a real life case study on asthma control problems 

using MDS in chapter 7. Progressive MDS and context sensitive MDS are introduced in 

chapter 8 and chapter 9 respectively. We then conclude our work with a plan for future 

work in chapter 10.     
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CHAPTER 2: REAL LIFE IMBALANCED DATA 

PROBLEMS  

2. REAL LIFE IMBALANCED DATA PROBLEMS 

In this chapter, we describe two imbalanced data problems in a real life outcomes 

analysis project - severe head injury management and mild head injury management. In 

both problems, we have identified that imbalanced class distribution is the main hurdle 

for outcome predictions. We describe the two problems in detail, the data sets used, the 

experiment set ups, the traditional learners used, and we also report the results in different 

scenarios. We will show that imbalanced data cause a big problem for traditional learners, 

especially in predicting the minority concept.     

2.1 SEVERE HEAD INJURY PROBLEM 

Severe head injury management is a very costly and labor-intensive process. We have 

examined the effectiveness of different outcomes analysis methods on head injury 

management in a uniform manner. We find that no individual model can always 

outperform the rest. We have shown that class distribution plays a very important role in 

prediction accuracy and this problem is indeed a multi-class imbalanced problem. Some 

of the following results were reported in an earlier paper [111].  
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2.1.1 INTRODUCTION 

Severe head injury is one of the major causes of death and disability worldwide. The 

process to manage head injury patients is very costly and labor-intensive. In order to 

optimize head injury management process and resource utilization in hospitals, many 

efforts have been done in head injury outcomes analysis [30, 34, 59, 109]. For example, 

Choi et al. [30]  achieved an overall prediction rate of 77.7% using a prediction tree for 

outcome after severe head injury. Nissen et al. [109] used Bayesian Network to get an 

84.3% accuracy to predict live (good recovery) and mild disability, 83.6% accuracy to 

predict death or vegetative survival, and an overall accuracy of 75.8% on a group of 324 

patients. Dora et al. [34] designed a decision support system to improve severe head 

injury treatment procedures. However, we found that inconsistencies in the literature 

make the comparisons among different results difficult. In particular, one of the most 

important inconsistencies is that the definitions of class labels for performance evaluation 

in different papers are inconsistent. Usually, the outcome of a severe head injury patient 

can be defined as one of the five Glasgow Outcome Scores (GOS 1-5): death, vegetative 

state, severe disability, moderate disability or good recovery. In head injury outcomes 

analysis, these five categories can be combined in different ways to build a classification 

model, e.g., a) death (GOS 1) and live (GOS 2-5) [128], b) death or vegetative state 

(GOS 1-2), severe disability (GOS 3), and moderate disability or good recovery (GOS 4-

5) [109], c) (GOS 1-3) and (GOS 4-5) [9]. Different combinations of GOS scores will 

affect prediction accuracy significantly, and make results from different work 

incomparable.  
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Table 2-1 Description of head injury dataset with list of prognostic factors 

In our experiment, we found that Minimum-Description-Length-based 

discretization method performs more stably in improving prediction accuracy. We 

compared evaluation results from both training data and cross validation. We have 

applied different methods to a data set collected from a local hospital and tried different 

ways to combine GOS scores as class labels. The results confirmed that different 

combinations of GOS scores affect prediction results significantly. It suggests that a 

consistent model has to be able to deal with various GOS combinations, and any fair 

model comparison should be performed using the same way of GOS combination. 

 Cases Min Max Mean 

1. AGE 706 10 97 45.64 

2. Gender 706 1 2 1.22 

3. Ethnic Group 706 1 4 1.56 

4. Mechanism of injury 706 0 6 2.15 

5. Types of motor vehicle accident 706 0 7 1.58 

6. Alcohol use  706 0 3 .15 

7. Presence of traumatic SAH 706 0 2 1.50 

8. Presence of cervical injury  706 1 2 1.92 

9. Presence of multiple injuries 706 1 2 1.76 

10. Pre-resuscitation GCS 703 3 15 9.00 

11. Pre-resuscitation papillary light response 703 0 2 1.67 

12. Presence of coagulopathy  689 0 2 1.61 

13. Presence of hypoxia 706 1 2 1.89 

14. Presence of hypotension 706 1 2 1.88 

15. Post-resuscitation GCS 698 3 15 7.79 

16. Post-resuscitation papillary light response 691 0 2 1.59 

Outcome Glasgow Outcome Scale 706 1 5 3.07 
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2.1.2  DATA SUMMARY 

Our data set contains 706 severe head injury (with Glasgow Outcome Score of 5 or less) 

patient records, collected in a Singapore hospital from January 1999 to March 2005. Data 

collected include demographic information, details of injury, presence of coagulopathy, 

hypoxia (defined as SPO2 <90), hypotension (defined as systolic blood pressure < 

90mmhg), pre and post resuscitation Glasgow Coma Score (GCS) and pupillary light 

response. A single independent scorer (either in outpatient clinic or via telephone contact) 

determined the outcomes of these patients using the Glasgow Outcome Scale (GOS) at 6 

months post injury. In the database, there are more than one hundred attributes in each 

patient record. Based on domain knowledge and feature selection, sixteen variables 

measured at admission time were chosen for the experiments. The descriptions of the 

variables are summarized in Table 2-1. The distribution of GOS scores in our data set is 

shown in Figure 2-1, from which we know that the data is not equally distributed on 

different GOS scores: most of the patients are either well recovered or dead. In the data 

set, there are some missing values. For numeric variables, we filled missing values with 

the means of the known values, and for categorical variables, the missing values are filled 

in with the modes of the known values. 
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Figure 2-1 Data distribution with GOS score 

2.1.3 EVALUATION MEASURES AND DATA DISTRIBUTIONS 

We defined prediction accuracy as the total number of correctly predicted samples 

divided by the number of the total samples. We applied a total of 6 machine learning 

algorithms (AODE [143], Bayesian Network, Logistic Regression, Support Vector 

Machine, and Neural Network) to our data set, and we defined the class labels in 5 

different ways: 

1) 5 class labels. One for each GOS score: [death], [vegetative state], [severe disability], 
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4) 2 class labels: [good recovery] and the rest; the relevant frequency is 0.364 for good 

recovery state.  

5) 2 class labels: [good recovery, moderate disability], and the rest; the relevant 

frequency is 0.486 for good recovery and moderate disability. 

We conducted 30 experiments in all using six methods on five data sets. In each 

experiment, we applied 10-fold cross validation. In other words, we performed training 

and testing for ten rounds. At each round, we randomly split the data into 10 pieces. We 

then trained our model using 9 pieces of them, and tested it on the 1 remaining piece to 

get the accuracy. Finally we obtained the overall accuracy by taking the average from 10 

rounds of testing results. We also tested our models on the training data in each 

experiment. All the experiment results are summarized in section 2.1.5. The experiments 

set up and result analysis  are also summarized in our technical report [158].  

2.1.4 ABOUT THE TRADITIONAL LEARNERS 

2.1.4.1 Bayesian Network  

Bayesian Networks model dependencies among a group of variables using directed 

acyclic graphs. A Bayesian network can be used to infer the states of the unknown 

variables with prior probabilities and known evidence, and it has an advantage of 

handling missing data. Besides giving promising performance, a Bayesian Network can 

also reveal the underlying relationships among the variables or prognostic factors in our 

case. We used Bayesnet and another Bayesian method AODE [143] from Weka [151]. 

AODE achieves highly accurate classification by averaging over all of a small space of 
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alternative naïve-Bayes-like models that have weaker (and hence less detrimental) 

independence assumptions than naïve Bayes. The resulting algorithm is computationally 

efficient while delivering highly accurate classification on many learning tasks. 

2.1.4.2 Decision Trees 

Decision trees [123] represent a supervised approach to classification. A decision tree is a 

simple structure where non-terminal nodes represent tests on one or more attributes and 

terminal nodes reflect decision outcome.  It can be used to explain why a question is 

being asked. Decision tree is a map of the reasoning process. Decision trees are excellent 

tools for helping us choose between several courses of action. They provide a highly 

effective structure within which we can lay out options and investigate the possible 

outcomes of choosing those options. They also help us to form a balanced picture of the 

risks and rewards associated with each possible course of action.  The decision tree used 

in this report is J48 developed by J. Ross Quinlan, the very popular C4.5. 

2.1.4.3  Logistic Regression 

Logistic regression (LR) is part of a category of statistical models called generalized 

linear models. Logistic regression allows one to predict discrete outcomes, such as group 

membership, from a set of variables that may be continuous, discrete, dichotomous, or a 

mix of any of these. In LR, univariate analyses are first performed to consider the 

significant risk factors.  Then either a backward or forward stepwise method is chosen. In 

the forward method, one factor is added at a time to increase the prediction performance; 

in the backward method, one factor is removed at a time to increase (or keep) the 
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prediction performance.  After each addition or removal, a beta coefficient or relative 

weight for that factor is defined.  Odds ratios and risk ratios can then be calculated, which 

are very helpful for decision making.  The LR we used is originally from the paper of le 

Cessie and van Houwelingen [85].  

2.1.4.4 Support Vector Machine 

Support vector machines (SVMs) [19] are statistical-learning-based methods for 

classification and regression. When used for classification, the SVM algorithm creates a 

hyperplane in a feature space with higher dimension that separates the data into two 

classes with the maximum-margin. Given training examples labeled either "yes" or "no", 

a maximum-margin hyperplane is identified which splits the "yes" from the "no" training 

examples, such that the distance between the hyperplane and the closest examples (the 

margin) is maximized.  The SVM we used implements John Platt's sequential minimal 

optimization algorithm [118] for training a support vector classifier. 

2.1.4.5 Neural Networks  

Neural Network or Artificial Neural Network is an information processing technique 

inspired by the way biological brain system works. A neural network contains a number 

of interconnected processing nodes (or neurons) working in parallel to solve a particular 

problem.  

  Neural networks are powerful in deriving meanings from complex or imprecise 

data, which can be used to understand or recognize things that are too complex to be 

noticed by other methodologies. A neural network simulates human brains by learning 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/Maximum-margin_hyperplane
http://en.wikipedia.org/wiki/Margin
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expertise from examples, and stored knowledge in interneuron connection strengths 

known as synaptic weights. In our experiment, we applied multilayer perceptron (MLP) 

which is the most commonly used neural network architecture. MLP is a supervised 

network which requires a labeled training data for learning. Back propagation is used to 

adjust the weights a small amount at a time in a way that reduces the error. The ultimate 

goal of the training process is to reach an optimal solution based on our performance 

measurement. 

2.1.5 EXPERIMENT ANALYSIS 

From our experiments, we have examined the strengths and limitations of different 

outcomes analysis methods for head injury management in a systematic manner. From 

the experiments we have found that all the methods can achieve comparable prediction 

accuracy on the testing data (around 76% ~ 82%) under different assignments of the two 

GOS classes, though the best performance is not always achieved by a single algorithm. 

However, the best prediction accuracy on five GOS data set is only 62% as shown in 

Table 2-2.   
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Table 2-2  Results for 5 class labels 

Methods Training Testing 

AODE 67.71 % 61.05% 

Bayesnet 61.75 % 60.05% 

Decision Tree 69.97 % 62.18% 

LR 65.86  % 61.47% 

SVM 64.73 % 62.46% 

Neural Network  89.23 % 52.83% 

 

 
 

Figure 2-2 Data distribution with different class labels 
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Table 2-3  Results for 2 class labels  

(death vs all others) 

Methods Training Testing 

AODE 82.29 % 80.31 % 

Bayesnet 79.46 % 79.32 % 

Decision Tree 85.12 % 82.15 % 

LR 84.70 % 81.16 % 

SVM 83.42 % 81.86 % 

Neural Network  96.17 % 77.76 % 

Table 2-4  Results for 2 class labels  

(death-vegetative vs others) 

Methods Training Testing 

AODE 82.72 % 81.30 % 

Bayesnet 79.46 % 79.32 % 

Decision Tree 87.54 % 80.59 % 

LR 84.42 % 81.58 % 

SVM 84.13 % 79.46 % 

Neural Network  95.75 % 76.35 % 

Table 2-5  Results for 2 class labels 

(good recovery & mild-disable vs others) 

Methods Training Testing 

AODE 82.44 % 79.60 % 

Bayesnet 80.03 % 79.04 % 

Decision Tree 82.86 % 79.75  % 

LR 81.87 % 79.89 % 

SVM 83.29 % 77.90 % 

Neural Network  96.32 % 76.63 % 
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Table 2-6  Results for 2 class labels  

(good recovery vs others) 

Methods Training Testing 

AODE 82.01 % 78.61% 

Bayesnet 79.60 % 78.75 % 

Decision Tree 83.00 % 80.59 % 

LR 81.73  % 79.04 % 

SVM 83.29 % 80.31 % 

Neural Network  96.46 % 77.76  % 

 

 After examining the class distributions with different label assignment as shown 

in Figure 2-2, we realized that performance drop might not be caused by different class 

labels. Instead, it is probably caused by class imbalances in five class problem, which is a 

multi-class imbalanced problem.  As shown in Figure 2-2, the imbalance ratio for the two 

class data is 0.36 (0.5 is the maximum value), while the worst relative imbalance ratio 

between any two classes in the five class problem is only 0.14.    

The assumption of the traditional learners is that the training data and testing data 

are balanced. The assumption of total accuracy gives equal weight to each class in the 

data. However, neither assumption is valid anymore in imbalanced data. In an 

imbalanced data set, both training data and testing data have skewed data distributions; 

minority concept is often more important, and thus needs more attention.  We will 

explain the reason that prediction accuracy is not a proper evaluation measure for 

imbalanced data mining in chapter 3.2. We will discuss proper evaluation measures in 

chapter 4.4.   
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In this dissertation, we mainly focus on binary imbalanced data learning 

problems, and most of the techniques should be able to be directly applied to multi-class 

imbalanced problems.  In particular, all data sampling techniques discussed in this 

dissertation can be applied to multi-class imbalanced problems with minor changes [23]. 

2.2 MINOR HEAD INJURY PROBLEM – A BINARY CLASS 

IMBALANCED PROBLEM 

In the previous section, we have discussed a multi-class imbalanced data problem. When 

the data is modified to a binary class problem, the imbalance level is reduced. Thus the 

performance is improved too. When the class imbalance is not obvious, traditional data 

mining algorithms can be used to build an outcomes analysis model with reasonable 

performance. In this section, we describe a highly imbalanced problem in mild head 

injury management [112]. In this problem, we will show that traditional learners cannot 

give an acceptable performance, especially in identifying the minority concept; and thus 

we need research on imbalanced data learning techniques.     

2.2.1 BACKGROUND 

Clinically, we define minor head injury or mild head injury as a head injury with 

Glasgow Comma Scale (GCS, the scores on the scale range from 3, indicating no motor 

or verbal response and no opening of the eyes, to 15, indicating normal motor and verbal 

responses and normal eye opening.) value on presentation ranging from 13 to 16 [112, 

129, 130]. Minor head injury may cause the brain to have trouble working normally for a 
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short time. Minor head injuries are usually not a serious problem. They are most often 

caused by a blow to the head. A minor head injury may happen because of a fall, a motor 

vehicle crash, or a sports injury. Sometimes being forcefully shaken may cause a minor 

head injury. Every minor head injury is different. Right after the injury, the patient may 

seem dazed. Other symptoms may show up right away. Some symptoms may not happen 

for days or weeks after the injury. Symptoms of a minor head injury may last from a few 

hours to a few weeks. After the injury, one or more of these symptoms may show up: 

•  Mild to moderate headache. 

•  Dizziness or loss of balance. 

•  Nausea (feeling sick) or vomiting (throwing up). 

•  Change in mood (such as feeling restless or irritable). 

•  Trouble thinking, remembering things, or concentrating (giving full attention to 

one thing for a period of time). 

•  Ringing in the ears. 

•  Drowsiness or decreased amount of energy. 

•  Change in normal sleeping pattern (the patient may sleep more than usual or have 

trouble sleeping). 

Normally patients with minor head injury can be well recovered without 

hospitalization. However, there is also a small group of patients who may have been hurt 

in other ways when they got their head injury. In this group of patients, minor head injury 

may mask more serious problems, such as bleeding or a blood clot in the brain, which 

potentially can develop to severe head injury and lead to death. To correctly detect this 
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group of patients and prevent mistakenly discharging them is a crucial job for physicians. 

The use of computed tomography (CT) can effectively detect this group of high risk 

patients. However, CT scan is very costly, and the majority of patients are in the negative 

group (normally more than 95%). Therefore, there is a much controversy about the use of 

CT for patients with minor head injury. Instead of high accuracy, the goal for mild head 

injury management in the outcomes analysis framework is to achieve higher sensitivity. 

Normally physicians require a sensitivity of 100% to ensure that all potential severe head 

injury patients are correctly detected [112]. We then try to improve the specificity to 

minimize the use of CT in patients with minor head injuries. 

2.2.2 DATA SUMMARY 

We carried out this cohort study on a dataset containing 1806 patients’ records. There are 

71 attributes in the dataset all together, of which 43 are selected as the prognostic factors 

according to the Chi-Square test. The binary factor “talk & deteriorate” is our targeted 

outcome variable, it means whether the patient can talk (“negative cases”) or deteriorate 

(“positive cases”).  The value “yes” corresponding to positive cases which has takes only 

1.6 percent, and value ”no” corresponding to negative cases which takes 98.4 percent. 

The data distribution is as shown in Figure 2-3. 
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Figure 2-3 Minor head injury outcome distribution 

2.2.3 OUTCOME PREDICTION ANALYSIS 

We applied five approaches in this experiment: Bayesian methods, Decision Tree, 

Support Vector Machine, Neural Networks, and Logistic Regression. 10-fold cross 

validation is used to report the experimental results. Among all the approaches, Bayesian 

methods have the most promising and stable performance in predicting the positive class, 

e.g., both Naive Bayes and BayesNet can correctly recognize 24 positive examples out of 

29 with a sensitivity of 82.76%; AODE can correctly predict 22 positive examples out of 

29 with a sensitivity of 75.86%. Their overall performances are also very good compared 

to the rest. Three other “state of the art” classification algorithms (Decision Tree, SVM, 

Neural Networks) and the traditional classification method Logistic Regression give very  
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 good overall performances, but they are very poor in predicting positive examples. 

(Detailed Running results are shown in Table 2-7) 

Table 2-7 Outcome prediction results comparison for mild head injury 

 Accuracy  Correctly identified 

positive instances 

(out of 29) 

Area under ROC 

curve 

Bayes -- AODE 98.5042 % 22 0.9768 

Bayes -- Naive Bayes 97.1191 % 24 0.9773 

Bayes -- BayesNet 97.0637 % 24 0.9751 

Decision Tree -- J48 98.8366 % 14 0.691 

Support Vector 

Machine -- SMO 

98.0055 % 9 0.6507 

Neural Networks --  

MultilayerPerceptron 

98.3934 % 14 0.9607 

Logistic Regression 97.1191 % 13 0.7783 

2.2.4 ROC CURVE ANALYSIS 

2.2.4.1 ROC curve analysis for data with 43 attributes 

The ROC curve [47, 48]  for the above five mentioned methodologies on the dataset with 

43 attributes are shown in Figure 2-4. And the area under the curve is shown in Table 2-9. 

Normally, physicians are not willing to accept the risk of missing a positive case. In a 

survey of emergency physicians, more than half insisted that a clinical decision system 

for minor head injury must have a sensitivity of 100 percent [56]. Thus the use of CT 

scan for minor head injury patients is common, but such screening is expensive. 

According to one estimate, even a 10 percent reduction in the number of CT scans in 

patients with minor head injury would save more than $20 million per year. In the ROC 
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curve, by setting sensitivity to one, we can get the four highest specificities from Naive 

Bayes, AODE, Neural Networks, and BayesNet. (As shown in Table 2-8) 

 

Figure 2-4 ROC curve analysis for mild head injury dataset with 43 attributes 

Table 2-8 Sensitivity and specificity analysis for 43 attributes 

 Sensitivity Specificity 

Decision Tree J48  1 0 

BayesNet  1 0.694 

AODE 1 0.772 

Naïve Bayes 1 0.800 

Logistics Regression 1 0 

Support Vector Machine 1 0 

Neural Networks 1 0.743 
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Table 2-9 Area Under the Curve for 43 attributes 

Test Result 

Variable(s) Area 

Std. 

Error(a) 

Asymptotic 

Sig.(b) 

Asymptotic 95% 

Confidence Interval 

Lower 

Bound 

Upper 

Bound 

DecisionTree .526 .065 .627 .398 .653 

BayesNet .942 .027 .000 .889 .995 

AODE .937 .031 .000 .875 .998 

NaiveBayes .935 .029 .000 .878 .992 

Logistic .834 .044 .000 .748 .921 

SVM .598 .060 .064 .481 .715 

  a  Under the nonparametric assumption               b  Null hypothesis: true area = 0.5 

2.2.4.2 ROC curve analysis for data with 38 attributes 

According to doctors’ suggestion, five treatment variables (neuroop, comp, tdisch, ctabr, 

ariance) should be excluded for CT scan prediction. Therefore we obtained the following 

ROC curve by using the remaining 38 variables (Figure 2-5 and Table 2-11). Compared 

with the rule based system from [129, 130] which derived a 50% specificity, even our 

best performance of specificity 42.2% achieved by Bayesian network classifier looks 

weaker. Although we worked on different datasets, which makes exact comparison 

unreasonable, the results are still far away from the acceptable specificity 70% without 

losing the sensitivity recommended by doctors. This shows that existing algorithms 

cannot address the imbalanced learning problems well.  In order to further improve the 

specificity without affecting the sensitivity, we must look for the approximate imbalanced 

data learning techniques. 
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Table 2-10 Sensitivity and specificity analysis for 38 attributes data 

 

 

 

 

 

Figure 2-5 ROC curve analysis for mild head injury dataset with 38 attributes  

 Sensitivity Specificity 

Decision Tree J48  1 0 

BayesNet  1 0.422 

AODE 1 0.262 

Naïve Bayes 1 0.326 

Logistics Regression 1 0 

Support Vector Machine 1 0 

Neural Networks 1 0.197 
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Table 2-11 Area Under the Curve for 38 attributes 

  

Test Result 

Variable(s) Area 

Std. 

Error(a) 

Asymptotic 

Sig.(b) 

Asymptotic 95% 

Confidence Interval 

Lower 

Bound 

Upper 

Bound 

DecisionTree .484 .053 .764 .381 .587 

BayesNet .844 .032 .000 .781 .907 

AODE .812 .037 .000 .739 .885 

NaiveBayes .810 .036 .000 .739 .881 

Logistic .807 .044 .000 .721 .892 

SMO .500 .054 .996 .394 .606 

MLP .804 .045 .000 .717 .892 

a  Under the nonparametric assumption 

b  Null hypothesis: true area = 0.5 

 

2.2.4.3 Experiment analysis 

From the above results, we note that some of the state of the art classification algorithms 

can achieve reasonably good overall accuracy. However, we also realize that they 

perform badly in predicting the positive cases in case of imbalanced data which is very 

crucial to the patients and clinicians. By analyzing the ROC curves, we can get a better 

idea on the performance evaluations. The Bayesian method seems to be minimally 

affected by the imbalanced data training, and it shows stable performance over different 

datasets. This experiment has shown the importance of imbalanced learning in critical 

care, and the right way for performance evaluation. It suggests that choosing appropriate 

evaluation metrics for imbalanced data learning is crucial.  It also shows that accuracy is 

not a proper evaluation measure for imbalanced data problem, and it is necessary to 

choose a proper evaluation method for imbalanced data learning.  
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2.3 SUMMARY  

From the above two problems, we have observed that traditional machine learning 

techniques are not suitable for imbalanced data learning problems. New methodologies 

need to be proposed for imbalanced data learning. We have discovered that accuracy is 

not a proper evaluation measure for imbalanced data learning. ROC curve is a good 

evaluation measure, because it can give a tradeoff between the predictions on majorities 

and minorities without bias. However, ROC curve is not suitable for large cohort studies 

and comparisons, as it is infeasible to compare over all the threshold points on a ROC 

curve; instead, researchers usually choose one  typical point such as g-Mean [81] from 

the ROC curve as the evaluation measure. 

 In the following chapters, we will survey existing techniques that are targeting to 

address imbalanced data problem and analyze their limitations, compare different 

evaluation measures for imbalanced data learning, and propose a novel approach – Model 

Driven Sampling to address the imbalanced data problem.   
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CHAPTER 3: NATURE OF THE IMBALANCED DATA 

PROBLEM 

3. NATURE OF THE IMBALANCED DATA PROBLEM 

Besides the problems mentioned in the previous chapter, most other existing electronic 

patient records are characterized by imbalanced learning data, where at least one class is 

under represented relative to others. The imbalanced data problem also exists in many 

other critical domains, like intrusion detection [38, 39], satellite oil spill detection [83], 

disease diagnosis [7] etc. The problem of imbalanced data is often associated with 

asymmetric costs of misclassifying elements of different classes. In addition, the 

distribution of the test data may differ from that of the learning samples and the true 

misclassification costs may be unknown at learning time. There are many other reasons 

causing imbalanced data to be a problem. Therefore, in order to study the imbalanced 

data problem, we need to understand the nature of imbalance. There are different types of 

imbalance existing in the imbalanced problem. Meanwhile, the imbalanced data problem 

is also affected by various other factors, including the data complexity, the training data 

size, and the imbalance levels.  

In this chapter, we will look at the nature of the imbalanced data problem –

absolute rarity, relative rarity, noisy data and data fragmentation. In particular, we will 
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make use of simulated data to study how the imbalanced data problem behaves when we 

change the three factors – data complexity, training data size, and the imbalance level.  

3.1 NATURE OF DATA IMBALANCE 

Although by definition, any unequally distributed data can be considered as an 

imbalanced data, in this research area only significant imbalances can be considered as an 

imbalanced data problem. There is no specific quantification about the significance, and 

the level of significance may vary over data sets or domains. Not surprisingly, we often 

meet extreme imbalances in the order of 100:1, 1,000:1, or even 10,000:1 and so on [60, 

83, 116]. The imbalance caused by unequal data distributions between two different 

classes is referred to as “between class imbalance”. Besides binary imbalanced class 

problems, there are also multi class imbalanced problems [6, 29, 163, 164]. In this thesis, 

we are focusing on binary imbalanced data problems. The techniques discussed in this 

thesis can be easily applied to multi-class imbalance problems with minor changes [23].    

In contrast to between class imbalance, there also exists within-class imbalance 

which is caused by the sub concepts (disjuncts) found inside the minority concept [64]. 

Within class imbalance is closely related to small disjuncts [70, 73]. Another type of data 

imbalance is relative imbalance related to absolute rarity. For example in the mild head 

injury data set, we have 1776 majority patients and 29 minority patients. The poor 

performance on minority class might be caused by lacking of enough information on 

minority concept, in addition of the imbalanced distribution.  
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3.1.1 ABSOLUTE RARITY 

The main problem with the imbalanced data is the lack of data. When the minority data is 

rare, such that in theory no data learners can approximate the true minority concept, we 

say this type of data imbalanced problem is caused by absolute lack of data or absolute 

rarity. In this type of problems, it is impossible to find the minority concept in the rare 

data because the data does not contain sufficient information. As demonstrated in Figure 

3-1, the solid rectangle surrounding A is the original region for the rare cases. The dashed 

rectangle is the estimated region for the rare cases; obviously the one on the right side is a 

more appropriate estimate of the region because there are more learning examples; while 

the left side estimation is almost out of the region because the learning samples are too 

few.  So rare cases may be due to lack of data, and the impact of these rare cases has been 

studied. Weiss et al. [144] studied the effect of rare cases on a set of synthetically 

generated datasets and showed that rare cases have higher misclassification rate than 

common class; this is referred to as the problem with rare classes.  

 

Figure 3-1 the impact of absolute rarity 

It is also shown that absolute rarity can cause small disjuncts [144]. Empirical 

studies showed that small disjuncts can bring more errors than large disjucnts in general 
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[8, 138, 139, 144, 146], which is the direct result of lack of data. Thus to understand why 

absolute rarity is a problem, we need to understand why the small disjuncts have so many 

problems. Instead of representing something meaningful, some small disjuncts may be 

due to noises. Most of the algorithms used statistical significance test to prevent data over 

fitting. Disjuncts that cover few samples will normally be rejected; therefore some of the 

significant small disjuncts may be filtered out at the same time. For example in [64], in a 

binary balanced data set, a disjunct is 99% significant if and only if it covers at least 7 

training examples. These techniques work well for large disjuncts. However they are not 

reliable for small disjuncts, because the significance cannot be reliably estimated and 

meaningful small disjuncts might be eliminated instead. Empirical results show that the 

strategy of eliminating all small disjuncts will increase the overall error rate [64].           

3.1.2 RELATIVE RARITY   

Comparing to absolute rarity, relative rarity means that one type of object is relatively 

rare to the other objects. The problem with relative rarity is similar to absolute rarity in 

that the rare objects are hard to detect. For example in Figure 2-3, even if we have ten 

times of the minority cases – 270 cases, it is still relatively rare to 1779 majority cases. 

Rare objects are difficult to detect using greedy search heuristics. Because rare objects 

may depend on conjunction of many conditions and thus examining any individual 

condition may not provide much information. For example, we want to mine the 

association rule “food processor and cooking pan”. Both of these two items are rarely 

bought in super markets, so even though people buy one of them will normally buy 
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another one at the same time. This association may not be found because they are rare. In 

order to find this association, the threshold value will be reduced to be very low which 

will then cause enormous number of ways of false associations which was referred to as 

the rare item problem in [92].  Random co-occurrences of events will make the mining of 

the true associations between rare items difficult, which is one problem of relative rarity.  

3.1.3 NOISY DATA 

Noisy data has always been a problem in machine learning. However, it has a greater 

impact on rare data. Consider the case in Figure 3-2, “+” means positive examples, and  

“-”means negative examples. A is the large disjunct in positive class, and B is the small 

disjunct in positive class. Dashed rectangles represent the predicted model for A and B.   

The left side shows the case without noisy data, and both disjunct A and disjunct B are 

correctly identified.  The right side shows the case with noisy data. In this case, the 

learner cannot distinguish between rare cases and noise and thus misclassify disjunct B. 

Even if the learner was modified to generalize less to locate minority class B, the noisy 

data will then be misclassified to be class B to lead data over fitting problem. Unless 

class B is very important, one should not adjust the bias of the learner to include them. In 

this case, the learner cannot distinguish the true rare cases and noise [144]. 
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Figure 3-2 the effect of noisy data on rare cases 

3.1.4 DATA FRAGMENTATION    

Data fragmentation is mainly caused by the “divide and conquer” approach employed in 

many data learning algorithms. The problem is decomposed into smaller and smaller 

pieces, and thus the instance space is being partitioned into smaller and smaller pieces. 

Decision tree is one of the examples which may lead to data fragmentation [51]. Data 

fragmentation is a problem because regularities can be only found within each individual 

partition which will contain less data. This is particularly a problem for rare data. Thus all 

iterative divide and conquer approaches have difficulties in mining rarity class. 

Therefore, machine learning algorithms that do not employ the divide and conquer 

approaches are preferred in imbalanced data learning. 

3.1.5 INDUCTIVE BIAS    

Many machine learning systems make use of a general bias to avoid data overfitting [64]. 

Most methods that address imbalanced data (small disjuncts or rare cases) try to change 

the bias of the machine learners. However, most of data learners are biased to the 

majority class in the priors. For example, in the decision tree method, if there are no 
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examples covered in a certain branch, it will try to estimate that branch using the majority 

examples. Therefore the results are biased against the rare class.  

3.2 IMPROPER EVALUATION METRICS 

Evaluation metrics are used to guide and evaluate machine learning algorithms. Most 

machine learning algorithms are targeting to optimize their evaluation metrics. 

Classification accuracy computes the fraction of examples that have been correctly 

classified. An algorithm using classification accuracy as the evaluation metric will try to 

maximize the classification accuracy. The flaw with classification accuracy for 

imbalanced data is – rare class has less impact on accuracy than common classes. For 

example in the mammography data set – a collection of mammography images for a 

group of distinct patients [57, 152], there are 10923 healthy patients and 260 cancerous 

patients. Suppose we have a classifier achieving 100% accuracy on the majority class but 

only 10% of prediction accuracy on the minority class. This would suggest that 234 

cancerous patients are classified as healthy patients, but the overall accuracy is as high as 

98%. In the medical domain, the consequence of this diagnosis is very costly even though 

it achieves very good overall performance accuracy. An empirical study by Weiss and 

Provost  [148] concludes that accuracy leads to a poor performance for minority class 

samples, it shows that the error rate for minority class is 2-3 times of the majority class. 

The minority class has much lower precision and recall than the majority class. Many 

people observe that for extremely unbalanced dataset, the recall for minority class is often 

0, there are no classification rules generated for minority class.      
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   There are also problems for the evaluation metrics guiding search algorithms in 

machine learning. Consider the example in which we build a decision tree, we conduct a 

goodness test to determine the overall purity values for creating new branches. The 

metric (e.g. information gain) prefers a test that results in a balanced tree where purity is 

increased for most of the examples to a test that yields high purity for a relatively small 

subset of the data but low purity for the rest. The problem with this is that a single high 

purity branch may identify a useful rare case.  

Association rule mining uses the support and confidence metrics to guide search for 

association rules [113]. Support measures the number of records that contain the 

association, while confidence measures the percentage of times that the association is 

found. In general, association rule systems only find rules that have minimum support 

minsup. This allows much of the search space to be pruned. For efficiency reasons, 

minsup cannot be set low enough to identify rare associations. 

3.3 IMBALANCE FACTORS 

From the previous section, we know that imbalanced data distribution is not the only 

factor causing data mining difficulties. For example, in mild head injury data, if we 

increase the minority patients to 290, we get an imbalanced data with a lower imbalance 

level. However, the predictions on minority might not get improved much by changing 

the level of imbalance. As shown in [12, 148], the data complexity and training data size 

also play important roles in imbalanced data learning. 
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3.3.1 IMBALANCE LEVEL 

Imbalance level measures how imbalanced the data is. We define five imbalance levels i 

= 1, 2, … 5, at each level i, the corresponding imbalance ratio (as defined in section 

1.2.4) IB = 1/(1+32/(2^i)). When i = 1, we have most imbalanced data with IB = 1/17; 

when i = 5, we have a balanced data set with IB =1/2. The smaller the value of i is, the 

more imbalanced the data is.  

3.3.2 DATA COMPLEXITY 

Data complexity is a broad term comprising issues like data overlapping, lack of 

representative data, small disjuncts, number of disjuncts, data noise, missing values, etc. 

For illustration, we make use of the number of disjuncts or the number of intervals to 

simulate the complexity of the data sets. The more intervals in the data, the more 

complex the data is [69]. We use c = 1, 2 … 5 to represent 5 data complexity levels. At 

complexity level c, there are 2
c 
regular intervals.  As shown in the example in Figure 3-3, 

the data are generated along the line in the [0, 1] range. There are two classes - class 1 is 

the majority and class 0 is the minority. The [0, 1] range is divided into a number of 

intervals according to the complexity of the data. At complexity of level 2, there are 2
2
 = 

4 regular intervals. Different class values are assigned for adjacent intervals. [0, 0.25) and 

[0.5, 0.75) are class 1 intervals; [0.25, 0.5) and [0.75, 1] are class 0 intervals. The data is 

generated randomly from each interval, and the size of the data is determined by the 

training size and the imbalance level.  
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3.3.3 TRAINING DATA SIZE 

What makes the imbalanced data a problem is the combination of imbalanced data and 

small training data size [20, 126].  We often encounter real life data sets with high 

dimensionality and small samples size. Small sample space problem has been studied in 

pattern recognition extensively in [126]. Dimension reduction methods also are widely 

available, e.g. principle component analysis (PCA) and its extensions [157]. However, 

these two problems combined with data imbalance bring us a new challenge. Often, 

induction rules formed from the small data set are too specific particularly for minority 

class, which leads to data overfitting. Learning from such a data set is a big challenge, 

which requires us to have much more sophisticated techniques to address this problem.  

We use s = 1, 2, … 5 to represent  five data size levels, at level s, the total training data 

size is round((5000/32)*2
s
).   

3.4   SIMULATED DATA 

In order to study the relationships among different data complexities, training sizes, and 

imbalance levels, we generated a group of data sets varying by complexities, training 

sizes, and imbalance levels, which is quite similar to the simulated data generated in [68, 

69, 83].  
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Figure 3-3 A Backbone Model of Complexity 2 

Altogether, we generated 125 data sets with various complexities, sizes, and 

imbalance levels. We considered five different complexity levels (c=1 .. 5), five training 

sizes (s=1 .. 5), and five imbalance levels (i= 1 .. 5). At training size level s, the training 

space size will be round((5000/32)*2
s
). Without considering the imbalance factor, each 

interval will contain round(((5000/32)*2
s
)/2

c
) data samples. For example, at s=1, c=2, 

each of the interval has 78 examples. The imbalance level determines the number of 

samples inside the minority intervals but not affecting the data size in the majority 

intervals. At imbalance level i, each of the class 0 interval will be represented by 

round((((5000/32)*2
s
)/2

c
)/(32/2

i
)) number of examples. For example, when c=2, s=1, and 

i=3, intervals [0, 0.25) and [0.5, 0.75) have 78 data samples each; intervals [0.25, 0.5) and 

[0.75, 1] are represented by 20 examples.  

The number of testing examples in each interval is fixed at 50. So the testing 

space with complexity c =1 has 50 positive samples and 50 negative samples. The testing 

space with complexity c=2 has 100 positive sample and 100 negative samples.    

0 0.5 0.75 0.25 

Complexity (c) = 2,     = class 1,    = class 0 

1 
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3.5 RESULTS AND ANALYSIS 

The data complexity is increased with value c from 1 to 5, and the training data size is 

increased with value s from 1 to 5. However, the imbalance level is decreased with the 

value i from 1 to 5, which means, the data is the most imbalanced at i=1, and is balanced 

when value i=5. All together, we have 125 training data sets and 125 corresponding 

testing data sets generated.   

We report the results from the Bayesian network classifier as shown in Figure 

3-4
1
 to Figure 3-8

2
. The evaluation measure is g-Mean [81] which is shown in section 

4.4.3 as an effective and efficient method for imbalanced data learning. As shown in 

Figure 3-4, when the data complexity is low, both training data size and imbalance ratio 

do not hinder the classifier‟s performance and the classifier performs well on all cases. 

From Figure 3-4 to Figure 3-8, when the data is complex, the data imbalance factor plays 

an important factor when the training data is insufficient. The more imbalanced the data 

is, the poorer is the performance. However, when there is sufficient training data, as when 

s=5 for most of the cases, the effect of data imbalance can be neglected. The more 

complex the data is, the larger training data we need in order to minimize the effect of 

data imbalance. For example, when complexity = 2, we need at least s = 3 to minimize 

the data imbalance effect; when complexity = 3, we need at least s = 4 in order to 

                                                 
1
 ,

 2 
The legend in these figures are: s is indicating the training data size from 1 to 5, i is 

the imbalance level from 1 to 5, c is indicating the data complexity from 1 to 5, and the 

y axis is the g-Mean value from 0 to 1. 
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minimize the data imbalance effect.  Interestingly, we find that when the data is highly 

complex at complexity level = 5, and when the data size is small with s = 1, the classifier 

fails to predict the minorities regardless the imbalance level as shown in Figure 3-8. This 

is because that there are not enough representative data samples in the highly complex 

data to support the minority concept. 

3.6 DISCUSSION  

In this chapter, we have discussed the nature behind the imbalanced data problem. We 

have looked at different types of imbalances, absolute rarity, relative imbalance, and 

other factors affecting the imbalanced data problem including data fragmentation, noise 

and inductive bias. We have also discussed three important factors – data complexity, 

training data size, and imbalance level. We have shown how they hindered the 

imbalanced data problem by experimenting on a set of simulated data.  Particularly, we 

have shown that data complexity is another very important factor affecting the 

imbalanced data problem besides the imbalance level.  

 We have described the problems brought by the evaluation metrics in 

imbalanced data learning. In particular, accuracy cannot be used as the performance 

measure in imbalanced data problems.  Therefore, we need to be careful when choosing 

evaluation metrics in imbalanced data learning problems.  
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Figure 3-4 Performance of simulated data with complexity level c = 1 

 

Figure 3-5 Performance of simulated data with complexity level c = 2 
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Figure 3-6 Performance of simulated data with complexity level c = 3 

 

Figure 3-7 Performance of simulated data with complexity level c = 4 

0

0.2

0.4

0.6

0.8

1

1.2

s=1 s=2 s=3 s=4 s=5

i=1

i=2

i=3

i=4

i=5

0

0.2

0.4

0.6

0.8

1

1.2

s=1 s=2 s=3 s=4 s=5

i=1

i=2

i=3

i=4

i=5



 

 49 

 

Figure 3-8 Performance of simulated data with complexity level c = 5 
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CHAPTER 4: LITERATURE REVIEW 

4. LITERATURE REVIEW 

Generally speaking, there are two major approaches to imbalanced data learning – 

algorithmic level approaches [27, 42, 67, 74, 76, 82, 127] and data level approaches [22, 

23, 35, 81]. Algorithmic level approaches alter the machine learning algorithms to 

improve the prediction performance in imbalanced data learning. Data level approaches 

change the training data distributions to achieve performance improvement; they usually 

refer to the data sampling techniques.  

4.1 ALGORITHMIC LEVEL APPROACHES 

Algorithmic level approaches [119] [80] include one class learning, cost sensitive 

learning, adjusting the decision threshold,  boosting algorithm, two phase rule induction, 

and kernel based methods etc.  

4.1.1 ONE CLASS LEARNING 

If we try to learn classification rules for all classes, the rare classes may be largely 

ignored. One solution to this problem is to only learn classification rules that predict the 

rare class. Hippo [67] is one of the systems that utilizes recognition based systems to 

perform one class learning. Hippo makes use of neural networks and learns only from 
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positive (rare) examples, rather than to differentiate between positive and negative 

examples. Hippo employs a two-phase method. In the first phase, a concept is learned 

from positive examples, and in the second phase, the system learns how to identify 

positive and negative examples of that concept.   

Besides training from one class only, it is also meaningful to train systems with 

examples belonging to other classes. Brute [64], Shrink [82] and Ripper [100] are three 

such machine learning systems. The Brute system is used for detecting flaws in the 

Boeing manufacturing process. Brute focuses only on the rules that predict failures. The 

advantage of Brute system is that by measuring the performance only for the positive 

predicting rules; Brute is not influenced by the majority negative examples that are not 

covered by the positive predicting rules. Shrink uses a similar approach to detect rare oil 

spills from satellite radar images. Shrink labels regions containing both positive and 

negative examples with positive class. The task then is to search for the best positive 

regions which have the highest ratio of positive to negative examples. Ripper is a rule 

induction system that generates rules for each class from the rarest class to the most 

common class. Therefore, it is quite straightforward to only learn rules for the minority 

class.  

Only a subset of classification rules of the above systems can be used to choose m 

of total learned n rules, m <= n. By varying the value m, we then can generate a 

precision/recall curve, and then a desired solution can be selected based on the 

requirements of the problem. 
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Raskutti et al. [125] showed that one class learning is particularly useful for 

extremely imbalanced data with high dimensional feature space and comparing to feature 

selection methods, it is less expensive.     

4.1.2 COST-SENSITIVE LEARNING 

In medicine (or other critical fields), it is often that the minority classes are of primary 

interest. However, most existing classification algorithms assume that the input features 

and outcomes have no costs, and the goal is to minimize the total misclassification errors. 

For example, in medical diagnosis, different outcomes have different costs. The cost of a 

false medical diagnosis is an unnecessary treatment, but the cost for a false negative 

diagnosis may cause the death of the patient. So a cost sensitive learning algorithm 

should prefer to make less costly errors, e.g., false negative diagnosis is preferred in this 

case. Another example is about Intensive Care Units (ICU) equipments, which are 

supposed to give an alarm if the patient is in a critical condition. A false alarm is a waste 

of man power, but a missed alarm may cost a patient‟s life. So cost sensitive learning 

algorithms are important in such situations [37] .  

Assigning greater cost to false negatives than to false positives will improve 

learning performance with respect to the positive class. For example, if the 

misclassification cost ratio is 3:1, then the region which has 10 negative examples and 4 

positive examples will be labeled as positive. Most cost sensitive learning approaches 

incorporate costs into machine learning by defining fixed and unequal costs to different 

classes [33].  However, the problem with these approaches is that the cost information is 
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normally hard to determine. This is mainly because the costs often depend on multiple 

factors that are not easily comparable [25]. For example, the cost of a false positive of the 

diagnosis leading patients to death or patients‟ well being is usually hard to be estimated.  

Other approaches change the cost indirectly. Cost sensitivity is obtained by 

changing the ratio of positive and negative samples in the training space, or by adjusting 

the decision threshold in the assignment of class labels [37].  

4.1.3 BOOSTING ALGORITHM 

Boosting algorithms are iterative algorithms that place different weights on the training 

distribution at each iteration. After each iteration, boosting increases the weights 

associated with incorrectly classified examples and decreases the weights associated with 

correctly classified examples. This forces the system to focus on the rare items. Thus it is 

reasonable to believe that boosting may improve rare class prediction because overall it 

will increase the weights assigned to rare classes.  

A cost sensitive version of AdaBoost – Adacost [45], has been empirically shown 

to produce higher classification rate than AdaBoost [114]. There is even a special 

AdaBoost algorithm addressing rarity – RareBoost [76]. Rare-Boost scales false positive 

examples in proportion to how well they are distinguished from true positive examples 

and scales false negative examples in proportion to how well they are distinguished from 

true negative examples. Another algorithm that uses boosting to address the problems 

with rare class is SMOTEBoost [27]. SMOTEBoost addresses the problem of data over 

fitting, because boosting weight rare examples more heavily by duplicating rare 
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examples. SMOTEBoost alters the distribution by adding new synthetic examples using 

the SMOTE algorithm. Empirical results indicate that SMOTEBoost achieve higher F-

value than Adacost. Joshi et al. [75] showed that the performance improvement from 

boosting is strongly related to the base learning algorithm. Boosting will perform poorly 

if the base learner always achieves poor precision or recall; however, if it can effectively 

trade-off precision and recall, then boosting can significantly improve the performance of 

the base learner.  

4.1.4 TWO PHASE RULE INDUCTION  

In order to achieve balanced prediction accuracy and not to bias to any class, induction 

techniques that deal with rare classes must try to maximize both precision and recall. 

Most induction techniques try to optimize both of them which are shown to be too 

difficult to accomplish for complex problems. Joshi et al. [74] used two-phase rule 

induction to focus on each measure separately. The first phase focuses on recall, and then 

in the second phase, precision is optimized which is accomplished by learning to identify 

false positives within the rules from phase 1. If we use the needle in the hay analogy, this 

approach identifies regions likely containing needles in the first phase, and then learns to 

discard the strands of hay within these regions in the second phase. The presence of the 

second phase permits the first phase to be sensitive to the problem of small disjuncts 

while the second phase allows the false positives to be grouped together, addressing the 

problem of data fragmentation. Experimental results indicate that it performs 

competitively well to other learners, especially when many rare cases are introduced.  
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4.1.5 KERNEL BASED METHODS  

Kernel based methods are widely used in many applications with success. They are also 

being applied in imbalanced data learning. The principles of kernel based methods are 

statistical learning and Vapnik-Chervonenkis (VC) dimensions [141]. Support vector 

machines (SVMs) is a typical kernel based learning method that can provide robust 

classification results for imbalanced data [69]. Since SVMs try to minimize total error, 

they are biased towards the majority class. In a binary class, the support vectors for  the 

minority “concept” might be far away  from the ideal separation line, and thus contribute 

less to the final hypothesis [7, 125, 153]. The same thing happens in nonlinear separable 

spaces. In this case, a kernel function is used to map the non-separable spaces into high 

dimensional separable spaces. However, doing this can often cause the optimal 

hyperplane to be biased towards the majority class. 

One type of kernel based method integrates kernel methods with sampling 

methods. Some of the examples include SMOTE with Different Costs methods [7] and 

the ensembles of sampled SVMs [78, 142]. The Granular Support Vector Machines – 

Repetitive Undersampling algorithm ( GSVM – RU) was proposed by Tang et al. [136] 

to integrate SVM learning with undersampling methods. These methods develop an 

ensemble system by modifying the data distributions without modifying the underlying 

SVM classifier.          

 Another type of kernel based methods is kernel modification methods which 

focus on the SVM mechanism itself. One example is the algorithm proposed by Hong et 
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al. [65] which is based on orthogonal forward selection (OFS) and the regularized 

orthogonal weighted least squares (ROWLSs) estimator. The algorithm contains two 

components in dealing with imbalanced data. The first component integrates the leave-

one-out cross validation (LOO) and the area under the curve (AUC) evaluation metric to 

develop an LOO-AUC objective function as a selection mechanism of the most optimal 

kernel model. The second component makes use of cost sensitivity to assign greater 

weight to the minority class.  

 Other kernel based methods mainly focus on adjusting the class boundaries. Some 

of the methods include,  for example, the boundary movement (BM) approach proposed 

in [153], the kernel-boundary alignment (KBA) approach in [155], an integrated 

approach – the total margin-based adaptive fuzzy SVM kernel method (TAF-SVM) 

proposed in [95] and [94], the support cluster machines (SCMS) [161] for large scale 

imbalanced data learning, and the kernel neural gas (KNG) [121] algorithm for 

imbalanced clustering etc.       

4.1.6 ACTIVE LEARNING  

Active learning is mainly used in unsupervised learning problems. Recent approaches 

have integrated active learning with SVM approaches [40, 41, 120] or data sampling 

techniques [5, 165] in imbalanced data learning. 

 Ertekin et al. [40, 41] proposed an efficient SVM-based active learning method. It 

first trains an SVM on the given training data, and then generates the most informative 
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training data to retrain the SVM with all unseen training data using LASVM [11] to 

facilitate the active learning procedure.  

 Zhu [165] combined active learning with the random sampling method (both 

under sampling and over sampling) for the word sense disambiguation  (WSD) 

imbalanced learning problem, in which entropy is used as a metric to measure the 

uncertainty of the training instances.     

4.2 DATA LEVEL APPROACHES  

Data level approaches include many forms of re-sampling techniques generally 

categorized into basic data sampling approaches and advanced data sampling approaches 

or data segmentation. Basic data sampling techniques include random oversampling with 

replacement, random undersampling, directed oversampling, directed undersampling; 

Advanced sampling generates synthetic data either using local data (local sampling) or 

global data (global sampling).  

4.2.1 DATA SEGMENTATION 

Data segmentation is to carefully partition the original data into different parts, to reduce 

extreme imbalance in sub data sets. For example, some rare targets constitute 1% in the 

original data set. By segmenting the data, the rare events occupy 30% in one data set A, 

and 0.1% in another data set B. We can then mine the rare cases easily from data set A, 

though it becomes more difficult for data set B. It is acceptable, because most of the rare 

cases are in data set A.  Considering the example in Figure 2-1, where severe head injury 
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patients are a minority in all head injury patients. In real life, most of the severe head 

injury patients are elderly. So if we divide the data set into two parts – elderly and non-

elderly, we can expect that severe head injury patients will take up a much larger 

percentage in the elderly group. Thus the problem is simplified. Segmentation can be 

viewed as an example of how knowledge can be used to address rarity.    

4.2.2 BASIC DATA SAMPLING 

The most common technique used in dealing with imbalanced data is sampling. The idea 

of sampling is to artificially adjust the data distribution to reduce the imbalance of the 

data set.  

Random under sampling and random over sampling are two basic sampling 

methods. Under sampling eliminates majority class examples while over sampling 

replicates minority class examples. Both of them can reduce the class imbalance and 

therefore improve the prediction accuracy for imbalanced data. However, there are also 

drawbacks in the sampling methods. Under sampling can possibly remove useful 

information from the majority data set. On the other hand, over sampling produces more 

training data, and thus make the system inefficient. Since over sampling normally 

replicates exact copies of the minority training cases, it is very easy to lead to data over 

fitting [26, 35]. Over sampling does not produce new training data, so some of the 

research shows that it is not as effective as under sampling [35].  
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4.2.3 ADVANCED SAMPLING 

Unlike basic data sampling, advanced sampling uses intelligence to make smarter 

decisions; such sampling methods can combine over sampling and under sampling or 

they can generate new synthetic data samples.  

4.2.3.1 Local sampling 

Local sampling refers to data sampling based on the data sample itself or based on 

a limited local region near the data sample in the training space. As shown in Figure 4-1, 

Local sampling algorithms make use of a limited amount of information to generate data 

samples, thus they are very efficient. The drawback is that local sampling may lead to 

local maxima or even generate false positive samples because of insufficient and limited 

knowledge that can be learned from the local neighborhood. For instance, in Figure 4-1, 

the decision of local sampling for instance A will be based on instance A itself or A‟s 

nearest neighbor like instance B. Instance A may get duplicated in over sampling, or 

instance A may be removed in under sampling, or synthetic samples may be generated 

along the line between A and B in Synthetic Minority Over-sampling Technique 

(SMOTE) [23].  

Most of the existing sampling approaches belong to the local sampling group, 

including one sided selection [81],  Synthetic Minority Over-sampling Technique 

(SMOTE) [23], sampling according to a designed distribution  [22, 148], and a mixture of 

experts method which combines different sampling approaches [43]. 
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Figure 4-1 Local sampling with instance A 

4.2.3.1.1 One sided selection  

One sided selection [81] is an under sampling strategy which only removes majority 

examples that are duplicates of existing examples, or border regions that may be noises.  

4.2.3.1.2 SMOTE sampling  

SMOTE [23] does not duplicate existing examples, instead it creates new examples. It 

creates new samples by random sampling from the segments which join the k nearest 

neighbors from the minority class example. This may cause over generalization problem 

instead of specialization by simply replicating existing examples.  

SMOTE operates in “feature space” rather than “data space”. The minority class is over-

sampled by taking each minority class sample and introducing synthetic examples along 

the line segments joining any/all of the k nearest neighbors. Depending on the amount of 

over-sampling required, neighbors from the k nearest neighbors are randomly chosen. For 

instance, if the amount of over-sampling needed is 200%, only two neighbors from the 

five nearest neighbors are chosen and one sample is generated in the direction of each. 

Synthetic samples are generated in the following way: Take the difference between the 
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B 
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feature vector (sample) under consideration and its nearest neighbor. Multiply this 

difference by a random number between 0 and 1, and add it to the feature vector under 

consideration. This causes the selection of a random point along the line segment 

between two specific features (as shown in Figure 4-2). This approach effectively forces 

the decision region of the minority class to become more general.  

Recent developments on SMOTE approach include SMOTEBoost [27] as 

mentioned in section 4.1.3 and Borderline-SMOTE [58] in which only the minority 

examples near the borderline are over sampled. However, SMOTE‟s procedure is 

inherently “dangerous” since it blindly generalizes the minority area without regard to the 

majority class. For example as shown in Figure 4-3, if there is a majority example lying 

between the two nearest neighbors, the synthetic minority sample generated might 

coincide with the majority sample and cause noises.  

This strategy is particularly problematic in the case of highly skewed class 

distributions, since in such cases the minority class is very sparse with respect to the 

majority class, thus resulting in a greater chance of class mixture as shown in Figure 4-4. 
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Figure 4-2 Synthetic samples generated by SMOTE 

          

 

Figure 4-3 Over generalization caused by SMOTE 
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Figure 4-4 Data over-generalization caused by SMOTE 

4.2.3.1.3 Class distribution based methods  

Another approach is to identify a good class distribution first, and then generate dataset 

with that distribution. Chan et al [22] identified a good class distribution by testing on a 

set of preliminary experiments, and then generate a group of training sets with the desired 

distributions. Each training set includes all the minority examples and a subset of the 

majority examples, each majority example is guaranteed to appear in one of the training 

sets. The learning algorithm is applied for each of the training sets, and then a composite 

learner is formed from the resulted classifiers. This approach can be used for any learning 

algorithms. This ensemble approach is empirically shown to be effective for dealing with 

rare classes. Yan et al [156] showed that a resulting SVM ensemble outperforms both 

under sampling and over sampling. A similar approach is proposed by Weiss & Provost 



 

 64 

[148]. It employs a progressive-sampling algorithm to build larger and larger training sets, 

where the ratio of positive examples to negative examples added is based on the best 

performance distribution in previous iteration. Experimental results show that it generally 

converges to a nearly optimal value for learning. This approach is based on the 

assumption that not all examples are immediately available for learning, rather there is 

cost associated with procuring each example. This is contrasting with other sampling 

algorithms which assume that there are already a collection of training examples without 

cost.   

4.2.3.1.4 A mixture of experts method 

A mixture of experts [43] method has been used to combine the results of many 

classifiers, each induced after over sampling or under sampling the data with different 

rates. This approach is based on an assumption that – we are not clear which sampling 

strategy is better, and we do not know which sampling rate should be applied to our 

sampling method or dataset. Generally, the mixture-of-experts method performs well, and 

does especially well in rare examples.   

4.2.3.1.5 Summary   

Local sampling algorithms make use of a limited amount of information to generate data 

samples, thus they are very efficient. The drawback is that local sampling may lead to 

local maxima or even generate false positive samples because of insufficient and limited 

knowledge that can be learned from the local neighborhood.   
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4.2.3.2 Global sampling   

Global sampling refers to data sampling based on the whole training space. Comparing to 

local sampling, global sampling for instance A is based on all instances in the training 

space, instead of only A‟s neighbors. This scenario is shown in Figure 4-5.  Global 

sampling is a relatively new in imbalanced data learning. One of the most representative 

work is generative oversampling proposed by Liu et al. [91].  

Generative oversampling creates completely new, artificial data points via a 

chosen probability distribution. Generative oversampling can be used in any domain 

where exists a probability distribution of the data set.  It works as following: Firstly, a 

probability distribution is chosen to model the minority class; then, based on the training 

data, parameters for the probability distribution are learned; finally, artificial data points 

are generated from the learned probability distribution until the desired data balance is 

achieved. 

4.2.3.3 Progressive sampling 

Progressive sampling was first proposed and thoroughly described by Foster et al. [50]. 

Its original objective was to maximize the system performance with minimal training 

data. Progressive sampling was later used in [104, 147] for imbalanced data learning. 

Since it can be used in both local sampling and global sampling, we categorize it into a 

third type of sampling approach.  
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Figure 4-5 Global sampling with all data samples 

The idea behind progressive sampling is simple. It starts with a small sample and 

uses progressively larger ones until the model built from the data cannot improve the 

overall accuracy any more. The central component is the sampling schedule S = [n0, n1, 

n2… nk] where each ni is an integer that specifies the size of a sample to be provided to an 

induction algorithm. For i<j, ni < nj.. If the data set contains N instances in total, ni ≤ N 

for all i. The commonly used schedule is geometric sampling schedule Sg = a
i
 ∙ n0 = [n0, 

a∙n0, a
2
∙n0…, a

k 
∙n0]. For example, when a=2, n0=100, Sg= [100, 200, 400, 800 …]. 

Geometric sampling is an asymptotic optimal schedule [50].  

Weiss [147] proposed a budget sensitive progressive sampling strategy for 

imbalanced data learning. Budget sensitive sampling assumes that the cost associated 

with forming the training set may be limited by budget B and the cost of executing the 

algorithm is negligible compared to the cost of procuring examples. It begins with a small 

amount of training data and progressively adds training examples using a geometric 

sampling schedule. The important step is to find the distribution that gives the best 

A 
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Training Space 
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performance, and Weiss analyzed the effect of class distribution to the algorithm 

performance. The amount of minority or majority data added is determined by the current 

distribution that performs the best. All examples from the current iteration will be used in 

the next iteration. Budget sensitive progressive sampling may not always give the best 

performance, but it can generally give a near optimal performance. 

Willie [104] proposed a progressive sampling with over sampling (PSOS) 

approach. PSOS always maintains a balanced class distribution throughout the sampling 

schedule. In PSOS, training examples are sampled separately from minority and majority 

examples, and random replication will start when minority exhausts. Willie shows that 

PSOS outperforms progressive sampling.  

One important assumption in progressive sampling is that the available training 

data is potentially large. However, this assumption is not true in this thesis. We are 

addressing the imbalanced data problems which are not only imbalanced but also with 

limited training data. Many problems are suffering from the lack of training data 

particularly the lack of minority data in reality.    

4.3 OTHER APPROACHES 

Besides algorithmic level approaches and data level approaches, there are also other 

approaches that are not well categorized into either of the approaches. We discuss them 

here to end the review of the existing approaches.  
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4.3.1.1 Place rare cases into separate classes  

Rare cases in the imbalanced data set make machine learning difficult because there is 

often very little in common among them and it is hard to assign the same class label to 

various rare cases. Japkowicz [71] proposed an approach that viewed rare cases as 

separate classes. Firstly, each class is separated into subclasses using clustering method; 

and then the training examples are re-labeled based on the clusters from the first step; 

lastly, the model is re-learned from the revised training data. The performance of this 

approach is promising, but further research is needed.  

4.3.1.2 Using domain knowledge 

Correct domain knowledge is always helpful in improving the machine learning 

performance, and this is especially true for the rare data. Domain knowledge can provide 

better understanding of the training data, for instance, domain knowledge can provide a 

more meaningful feature set or a valid model structure in Bayesian network.  

Machine learning is an interactive process, and the domain experts‟ opinion is 

very important.  This is especially true for the mining of rare data, because domain 

knowledge can help in the searching process. This is supported by the quote “only in rare 

cases will users wish to see patterns with miniscule support. In those cases it is more 

likely that users will start the mining on the small filtered sample (which may be the 

result of a previous drill-down operation).”  [79].      
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4.3.1.3 Additional methods 

Non-greedy search techniques such as genetic algorithms can be used for imbalanced 

data learning. Weiss [145] makes use of genetic algorithm to predict very rare events 

while Carvalho et. al [21] uses genetic algorithm to discover “small disjuncts rules”.  

 The Mahalanobis-Taguchi System (MTS) has also been used for imbalanced data 

learning [131]. Since learning in MTS is performed by developing a continuous 

measurement scale using single class example instead of the whole training space, it is 

less influenced by the data imbalance and provides robust classification performance.  It 

was shown in [131] that MTS outperforms the rest of the approaches such as decision 

trees and SVM etc.  

 Another approach is to combine the imbalanced data and small disjunct problem 

[20]. Rank metrics are used as the evaluation metrics for model selection instead of 

accuracy. Rank metrics emphasize in distinguishing classes instead of the data internal 

structure such as feature space conjunctions. Therefore, it can help the learning from 

imbalanced data and small disjuncts with high dimensions. The other approach proposed 

in [20] is based on multi task learning methodology. A shared representation of the data 

is used to train the extra task model related to the main task. Therefore, learning of the 

minority data is amplified by adding extra information to the data.  

 Besides the above existing approaches on binary class imbalanced data problem, 

there are also approaches on multi-class imbalanced data problem. For example,  Sun et 

al. [132] proposed a cost sensitive boosting algorithm AdaC2.M1 to tackle the 
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imbalanced data problem with multiple classes. Chen et al. [29] proposed a min-max 

modular network to decompose the multiclass imbalanced problem into multiple binary 

class subproblems. Other approaches include the rescaling approach for multiclass cost 

sensitive neural networks [163, 164], the ensemble knowledge for imbalance sample sets 

(eKISS) method [135] and others.       

4.4 PERFORMANCE EVALUATION MEASURES 

As it is already shown in the literature and chapter 2, accuracy and a lot of other 

evaluation metrics are not suitable for imbalanced data learning. Therefore, proper 

evaluation metrics need to be selected for imbalanced data learning. We review the major 

evaluation metrics and list the characteristics for each of them. 

We use the following definitions and abbreviations to ease the descriptions in this 

section. As shown in Table 4-1, True Positive (TP) is the number of true samples that are 

correctly classified to be positive; false positive (FP) is the number of false samples that 

are incorrectly classified to be positive; false negative (FN) is the number of true 

examples that are incorrectly classified as negative samples; true negative (TN) is the 

number of samples that correctly classified to be negative. Sensitivity = TP/(TP+FN), it 

measures the ability of a classifier that can identify true samples correctly, and in 

information retrieval, this value is named as “recall”; Specificity=TN/(TN+FP), it 

measures the ability of a classifier that can correctly identify true negative samples. 
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Table 4-1 Performance Evaluation Metrics   

 

Condition (e.g., disease) 

As determined by Gold standard 
 

True False 

Test 

outcome 

Positive True positive False positive → Positive predictive value 

Negative False negative True negative → Negative predictive value 

 

↓ 

Sensitivity 

↓ 

Specificity 
Accuracy 

4.4.1 ACCURACY 

Accuracy is commonly used in machine learning research. It is defined as the percentage 

of samples that are correctly predicted among the total samples in the training space as 

shown in Equation 4-1. However, accuracy is not suitable to be used as the performance 

evaluation measure for imbalanced data learning. Considering the example with 98 false 

samples and 2 true samples, a default classifier that classifies everything as negative can 

achieve a high accuracy of 98 percent. But this accuracy is seriously biased to the 

majority class, it totally misses the positive samples. So in imbalanced data learning, 

accuracy is not a proper evaluation metric [27, 57, 97, 149].     

 Accuracy = (TP+TN)/(TP+TN+FP+FN) 

Equation 4-1 

4.4.2 F-MEASURE  

Other evaluation metrics which are frequently used in machine learning community and 

suitable for imbalanced data learning are precision, recall [110], and F-measure [140] as 

defined in Equation 4-2. Precision is a measure of exactness, which is equal to the 

http://en.wikipedia.org/wiki/Sensitivity_(tests)
http://en.wikipedia.org/wiki/Specificity_(tests)
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percentage of correctly labeled positive examples among those examples being labeled as 

positive. Recall measures the completeness, which is equal to the percentage of correctly 

labeled positive examples among actually positive examples. When used properly, 

precision and recall combined (For instance, F-measure) can be used to evaluate 

imbalanced data learners. However, F-measure remains sensitive to data distributions.       

Precision = TP/(TP+FP); Recall = TP/(TP+FN) 

 F-Measure = 2×Precision×Recall /(Precision+Recall) 

Equation 4-2 

4.4.3 G-MEAN 

The G-Mean metric evaluates the degree of inductive bias using the square root of true 

positive rate and true negative rate. Kubat et al [81] uses the geometric mean of the 

accuracies measured separately on each class as shown in Equation 4-3.  a
+
 is true 

positive rate which is equal to TP/(TP+FN) (sensitivity); a
-
 is true negative rate which is 

defined as TN/(TN+FP) (specificity). 

The basic idea behind this measure is to maximize the accuracy on both classes. 

In this study the geometric mean will be used as a check to see how balanced the 

combination scheme is. For example, if we consider an imbalanced data set that has 240 

positive examples and 6000 negative examples and stubbornly classify each example as 

negative, we could see, as in many imbalanced domains, a very high accuracy (acc = 



 

 73 

96%). Using the geometric mean, however, would quickly show that this line of thinking 

is flawed. It would be calculated as g=sqrt(0 × 1) = 0. 

a
+ 

= TP/(TP+FN); a
-
= TN/(TN+FP) 

Equation 4-3 g-Mean 

4.4.4 ROC CURVES  

G-Mean is an effective evaluation metric for imbalanced data learning for a certain 

threshold that evaluates the best performance. On the other hand, ROC curves (Receiving 

Operator Characteristic) [47, 48] provide a visual representation of the tradeoff between 

true positives and false positives.  They are plots of true positive rate or the percentage of 

correctly classified positive examples a
+ 

or sensitivity with respect to false positive rate or 

the percentage of incorrectly classified negative examples 1-a
-
 or 1-specificity. ROC 

curves can give the comparisons among different classifiers over a set of continuous 

threshold points. 

As shown in Figure 4-6, the point (0, 0) along a curve would represent a classifier 

that by default classifies all examples as being negative, whereas a point (0, 100) 

represents a classifier that correctly classifies all examples. 

Many learning algorithms allow induced classifiers to move along the curve by 

varying their learning parameters. For example, decision tree learning algorithms provide 

  aag
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options allowing induced classifiers to move along the curve by way of pruning 

parameters. Stiell et al. [134] proposed that classifiers' performances can be compared by 

calculating the area under the curves generated by the algorithms on identical data sets. In 

Figure 4-6, the learner associated with Series 1 would be considered superior to the 

algorithm that generated Series 2. 

 

Figure 4-6 an example of ROC curves 

4.5 DISCUSSION AND ANALYSIS 

4.5.1 MAPPING OF IMBALANCED PROBLEMS TO SOLUTIONS 

In Table 4-2, we have summarized the solutions to respective imbalanced data learning 

problems. For each problem, there are multiple solutions available; we then provide the 

most direct solutions.  

There is no specific order for the methods listed in each cell, they are somewhat 

arbitrary. In particular, for problems with absolute rarity, there are also problems with 

relative rarity. Sampling is the only method that directly addresses absolute rarity by 
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duplicating rare examples, synthetically generating new rare examples, or procuring new 

rare examples. For the relative rarity, sampling is instead used to rebalance the data 

distribution to reduce the between-class and within-class imbalances. 

We have described many methods so far for dealing with imbalanced data. One 

important question is which method has the most promising result in dealing with 

imbalanced data learning. There is no empirical study on comparing all the above 

methods yet. Most research compared their methods to the base learning that has no 

special modification for handling imbalanced dataset. Sampling techniques are used in 

most of research algorithms, but yet the conclusions induced are not consistent. We can 

discuss their drawbacks, advantages or even some misconceptions in some of these 

methods. 

Table 4-2 Mapping of imbalanced problems to solutions 

Imbalanced data problem Methods to address the problem 

Improper evaluation metrics  More appropriate evaluation metrics 

Absolute rarity  Over-sampling 

The others are chosen from the cell below 

Relative rarity 1. Segmenting the data 

2. Boosting  

3. Cost sensitive learning  

4. Two phase rule induction 

5. More appropriate evaluation metrics.  

Data fragmentation 1. Non-greedy search techniques  

2. Learn only the rare cases  

Noise Advanced Sampling 
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4.5.2 RARE CASES VS RARE CLASSES 

Both rare cases (within class imbalance) and rare classes (between class imbalance) are 

problematic for machine learning. This section begins by describing the connection 

between rare cases and rare classes and then shows that both forms of rarity cause similar 

problems for data mining. An empirical study [148] showed that within 18 dataset with 

class distribution 2:1, only in two cases does the majority class have a smaller average 

disjunct size than the minority class. So in general, rare classes tend to have a higher 

proportion of rare cases than common cases and between class and within class 

imbalances are linked. We expect that when between-class imbalance is reduced, then 

within-class imbalance will also be reduced. 

Both rare classes and rare cases are similar phenomena, and affect data mining in 

a similar way. Thus they share the same set of solutions. Among the problems listed in 

section 3.1 and summarized in Table 4-2, all apply equally to rare classes and rare 

cases.  For example, data fragmentation can be a problem for rare classes, because the 

examples belonging to rare classes can become separated, or examples belong to rare 

cases can be separated. Thus both rare class and rare cases are the same fundamental 

problems. This is not surprising, since a rare case can be viewed as a rare class, as shown 

by a method proposed by [71] which places rare cases into separate classes. 

Next we show the methods for addressing rarity. Many methods (e.g. changing 

evaluation metrics, non-greedy search techniques, sampling, two phase rule induction etc) 
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can also be equally applied to both rare cases and rare classes. Data segmentation can 

also be equally applied to rare cases and rare classes, though sometimes it is harder to 

segment rare cases. Cost sensitive learning is mostly used in rare classes, because 

misclassification costs are normally assigned based on the characteristics of examples 

that are not easily identified for rare cases.  

The discussion shows that both rare classes and rare cases suffer from the similar 

problems, and share most of the solutions. Although some of algorithms are mostly used 

in rare classes, they could be applied to rare cases if the rare cases can be easily identified. 

However, we are mainly focusing on rare class problems in this dissertation. 

4.6 LIMITATIONS OF THE EXISTING WORK 

Many of the methods for addressing rarity are still in the research stage or are not widely 

implemented (for example, two-phase rule induction) or they are widely available but the 

advantage for addressing rarity is not proven yet (e.g. boosting algorithms). Some of the 

algorithms are domain specific (e.g. data segmentation) and thus cannot be universally 

applied. In this section, we will specially discuss the limitations on sampling and cost 

sensitive learning which are the two most commonly used techniques for learning with 

imbalanced data.  

4.6.1 SAMPLING AND OTHER METHODS 

Breiman [16] showed that sampling is equivalent to other methods in dealing with 

imbalanced data. For example, one can make false negative twice as costly as false 
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positive by using cost sensitive learning or by increasing the positive training example 

size to a factor of two.  But in practice, this is not true. One reason is that imbalanced data 

learning algorithms are usually task and method specific as shown by many empirical 

studies. Another reason is that it is impossible to have the complete freedom to vary all 

kinds of quantities. For example, suppose we have a training set with total 1000 cases and 

a class distribution of 10:1, so there are only 100 positive examples. If we use cost 

sensitive learning method, we can impose a cost for false negative which is 10 times of 

false positive. In theory, this is equivalent to using a balanced data set. However, it is 

generally impossible to generate a perfectly balanced dataset using sampling method. In 

practice sampling can discard majority class examples (under sampling) or duplicate 

minority examples (over sampling), or use some combination of both. As discussed in 

section 4.2.1, such sampling methods bring problems. They may discard useful 

information or lead to data over fitting.      

Another issue is that the effect of sampling on rare class is not fully understood. 

Sampling normally will cause bias in favor of rare class prediction. The intent in 

sampling is to create more data for rare class, not to bias machine learning algorithm 

towards them. The bias is normally caused by duplicated data generated by over sampling 

methods. A good sampling technique should be able to generate useful new information 

and approximate the true data distribution.     
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4.6.2 SAMPLING AND CLASS DISTRIBUTION  

 Based on the previous discussion, one should use all available data to avoid information 

loss. If the cost information is known, then cost-sensitive learning algorithm should be 

used. But normally cost information is not known, one option is to use cost sensitive 

learning and vary the cost values to improve the performance on rare class at the expense 

of majority class. The performance of this model is then really dependent on how 

important the minority class is.  

If the training data size is limited because of tractability issues or the training data 

is costly, then sampling must be used. Ideally, the relative sampling rate between classes 

should be chosen so that the generated distribution provides the best results. 

Unfortunately, as shown in [148], there is no general answer to which class 

distribution will perform the best, and the answer is surely domain and method dependent. 

A better approach is to determine the class distribution once the method and the domain 

are given.  

4.7 SUMMARY 

In this chapter, we have reviewed the imbalanced data learning techniques and evaluation 

measures. We have discussed two types of imbalanced data learning techniques – 

algorithmic level approaches and data level approaches. In algorithmic level approaches, 

we have discussed one class learning, cost sensitive learning, two phase rule induction, 

boosting algorithm, kernel based methods and active learning. In data level approaches, 
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we focus on data sampling techniques. We discussed random sampling, local sampling 

(SMOTE sampling), global sampling and progressive sampling methods. We also 

analyzed the advantages and limitations of existing well known approaches.  

We will propose a new approach – Model Driven Sampling approach (MDS) in 

the next chapter. We are going to evaluate the typical approaches - random sampling, 

synthetic minority over sampling technique (SMOTE) and our approach - model driven 

sampling (MDS) on artificial data and real life data sets, and demonstrate the advantages 

and the limitations of various techniques in the following chapters. We prefer to use g-

Mean as the evaluation metric in this thesis, because g-Mean is efficient and effective for 

conducting large cohort comparisons. G-Mean is a special threshold point on ROC curve 

which maximizes both true positive rate and true negative rate. Though other meaningful 

threshold points can be chosen or Area Under the Curve can be used as possible 

evaluation metrics.  

We will not include SMOTE extensions such as SMOTEBoost [27] and 

Borderline-SMOTE [58] for comparison, because they do not show obvious advantages 

over the SMOTE algorithm in general, instead they have only been proven to work in 

special scenarios or datasets, and they are not proven to outperform SMOTE approach.         
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CHAPTER 5: A MODEL DRIVEN SAMPLING 

APPROACH 

5. A MODEL DRIVEN SAMPLING APPROACH 

In many biomedical data sets, minority data is sparse, and local sampling for minorities 

often can lead to local maxima or incur data noise. There are two ways that can address 

this problem – one way is to use global sampling to prevent local maxima, and the other 

way is to use domain knowledge to guide data sampling. Model driven sampling (MDS) 

is an approach that combines the above two ways by learning from the whole data set and 

the domain knowledge to form a concrete model to generate new data samples for 

imbalanced data sampling.  

5.1 MOTIVATION 

Consider the example in Figure 5-1, the data samples are in the two dimensional space. 

From the data samples in the left part of Figure a, existing sampling approaches will often 

lead to a smooth curve model as shown in the right part of Figure a. However if we have 

the knowledge of the gradient at each data sample as shown in bottom left, we may 

derive the correct model as shown in the right part of Figure b, which is quite different 

from the model derived by local data sampling. It is obvious that the gradient knowledge 
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cannot be derived from the three local data samples. However, this knowledge can be 

obtained by learning from the global data samples, or this information can be obtained 

from domain knowledge.  Model driven sampling is a new data sampling approach that 

can generate data from a model built from global data and domain knowledge.      

 

Figure 5-1 Domain knowledge in building a model 

In model driven sampling, we can use any probability distribution to model the 

training data. We choose to use Bayesian network – a probabilistic graphical network, to 

model the training data set. Bayesian network is an effective methodology in machine 

leaning, and more importantly it can easily combine expert knowledge into the learned 

model. Bayesian network uses probabilistic graphical network to model the training data 

and domain knowledge, therefore, the data sampled have a stronger knowledge base and 

are more meaningful than data sampled from other sampling approaches.    
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5.2 ABOUT BAYESIAN NETWORK 

A Bayesian Network (BN) is a directed acyclic graph, with its nodes representing 

uncertain variables, and edges representing conditional probabilistic dependencies 

between its two connected variables. (Details about Bayesian networks including 

structure learning, parameter learning, context sensitiveness, and sampling methods are 

summarized in Appendix C.) 

5.2.1 BASICS ABOUT BAYESIAN NETWORK 

BN was introduced to Artificial Intelligence more than 20 years ago [96, 115]. It is based 

on probability theories, with a strong ability in modeling uncertainties in real world 

problems. From 1990s, scientist began to apply the BN formalism to medical domains, 

and gradually BN researchers formed a separate community in medical computing, 

generating quite a number of new ways and new ideas in addressing complex medical 

problems. Bayesian Network is a factored representation of a probability distribution, 

representing the probabilistic relationships among a set of random variables as shown in 

Equation 5-1. The joint probability density function can be written as a product of the 

individual density functions, conditional on their parent variables,  where pa(v) is the set 

of parents of v (i.e. those vertices pointing directly to v via a single edge). 

As shown in the commonly cited Asia network example in Figure 5-2, a Bayesian 

network consists of the following elements:  

http://en.wikipedia.org/wiki/Probability_density_function
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(i) A network structure, consisting of nodes and links which represent mostly 

causal relationships among the nodes. This forms the qualitative layer of Bayesian 

network. 

(ii) The conditional probability table at each node which captures the probabilities 

of the outcome values conditional on different configurations of the node‟s parent 

variables. This forms the quantitative layer of Bayesian network.   

 

Figure 5-2 The visit-to-Asia Bayesian Network 

                  

   

 

Equation 5-1 Factorization equation 

 A critical feature of Bayesian Network is that all the uncertainties in the network 

structure can be represented by conditional probabilities. In any real world problems, 

there are a lot of uncertain factors. In medical decision making, for example, there are 

different sources of uncertainty that need to be understood and quantified. This may 
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include various sampling in experimentation, imperfect expert knowledge, and different 

results across different studies. Statistically, all these uncertainties can be modeled by 

probabilities.  

 The Bayesian network can involve relationships and influences among nodes 

which can allow researchers to manually specify dependences and independences of 

variables into the network structure. Bayesian network itself is based on probability 

theory, and thus it can easily combine domain knowledge and machine learning together.    

5.2.2 ADVANTAGES OF BAYESIAN NETWORK 

There are many advantages for using Bayesian networks. As a Bayesian network models 

the probability distributions for a certain problem domain, it can be used to predict the 

probability distribution for the outcome given a set of evidences.  An extension of 

Bayesian networks – Influence Diagrams use decision theory for risk analysis to choose 

the solution that can maximize the expected utility. It can be shown that in a very natural 

sense, this is the optimal procedure for making decisions. Some other very important 

properties are summarized in the following paragraphs.  

Consistency Bayesian network is consistent in processing uncertainties. Probability 

theories provide a consistent calculus in uncertainty inferencing. Given the same input, a 

Bayesian network can produce exactly the same answer with different mechanisms in 

theory.  

Smoothness Bayesian network is robust. The performance will not be affected much by 

small alterations. Therefore, maintaining and updating of Bayesian network models can 
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be done smoothly. This property is particularly important for complex systems that 

require a lot of time to re-model.  

Expert knowledge One very important property of Bayesian network is that it can code 

expert knowledge as its prior distribution.   This property practically allows Bayesian 

network to combine expert knowledge with statistical data.  Domain experts thus can 

easily give their contributions by estimating the prior distribution of the Bayesian 

network, or by changing the structure of the Bayesian network.  

Clear Interpretation Bayesian networks have clear interpretations of its structures and 

parameters. This is different comparing to other techniques, e.g. neural network models 

acting like a “black box”. Bayesian network can be constructed purely using expert 

knowledge without learning from data. On the other hand, if we have a Bayesian network 

learned from data, it can be understood by domain experts.   

5.3 MODEL DRIVEN SAMPLING 

The model we build is a Bayesian network model containing a Bayesian network 

structure Bs and the conditional probability distributions Bp. Bs models the training data 

qualitatively, and Bp models the data quantitatively.   

5.3.1 WORK FLOW OF MODEL DRIVEN SAMPLING 

The core part in the MDS approach is to build an accurate model. There are three ways to 

build a model - 1) building model from data, 2) building model from domain knowledge, 
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3) building model from both data and domain knowledge. The workflow of model driven 

sampling classification is described in Figure 5-3.  

 

 

 

 

 

 

 

 

Figure 5-3 Work flow in model driven sampling classification 

1) We first build a Bayesian network model M from the training data set or from the 

domain knowledge or both using multiple methods;  

2) Model M generates new data samples; 

3) The generated data is combined with the original data to form a new training data 

set to train classifiers.  
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5.3.2 ALGORITHM OF MODEL DRIVEN SAMPLING 

The assumptions in MDS are – the training database is D, the data size is N, the minority 

data size is N‟, and the domain knowledge is K; the optimal data distribution is the 

perfectly balanced data distribution with imbalance ratio i=0.5; the evidence in data 

generation step is the minority class. The objective is to build a model M from training 

data D for better data sampling.   The algorithm of model driven sampling approach is as 

following: 

Model Driven Sampling Algorithm: 

Given:  the training data D, the data size N, the number of minority data N’, the domain 

knowledge K 

1) Calculate the imbalance ratios i = N’/ N;  

2) So the number of minority instances to be sampled is (0.5-i)N in order 

to achieve a balanced training data set;   

M-Step:  Model building step  M = (Bs, Bp) 

3) Learning Bayesian network structures from D; the best performing 

structure Bs is selected to ensure the correctness of the model;     

4) Learning Bp for Bs from D, using Simple Estimator algorithm;  

5) Update (Bs, Bp), if there is domain knowledge available 
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S-step: Data sampling step 

6) Setting the minority value as the class evidence, and the number of 

instances to be generated is (0.5-i)N. The data D’ containing (0.5-i)N 

instances is sampled from the model M(Bs, Bp) using Pearl MCMC 

[115]method; 

C-step: Data combination step     

7) Combining data D and D’ to form a balanced training data BD;  

B-step: Build classifier 

8) Building a classifier from data BD to do data classification on the 

testing data.  

In the first step, we calculate the imbalance ratio of the training data i=N‟/N, and 

thus the number of minority instances to be generated is (0.5-i)N in order to produce a 

balanced training data set.  

In the M-step, we build different models using various structure learning 

algorithms such as K2 [32], Hill Climbing and CI algorithms with two scoring metrics - 

BDeu (Bayesian Dirichlet equivalent uniform) [17] and Bayes from Weka [2]. The 

reason we use different algorithms is that certain algorithm may perform better than 

others in certain cases. By using different algorithms, the best performing model (Bs, Bp) 

is selected as the final model M for data generation. The conditional probability tables of 
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the Bayesian network are learned using simple estimator by estimating directly from data 

once the structure is known. The simple estimator produces direct estimates of the 

conditional probabilities that is shown in the following equation: 

                 
          

        
  Equation 5-2 

We use Nijk (1 ≤ i ≤ n, 1 ≤ j ≤ qi, 1 ≤ k ≤ ri) to denote the number of records in D for 

which pa(xi) takes its jth value and for which xi takes its kth value (ri is the cardinality of 

xi, and qi is the cardinality of nodes in pa(xi)).          
  
   .        is the alpha 

parameter with non negative value, and we get the maximum likelihood estimates [102] 

when alpha =0. The domain knowledge in M step can help construct the model in two 

ways: 1) alter the structure Bs by arc operations, including deleting arcs, adding arcs, and 

changing arc directions 2) Estimating the prior distribution for Bp.  

In the S-step, we make use of Pearl MCMC [115] method to generate instances. 

The model is built from M-step (Bs, Bp). We assume that the observed evidence in Bs is 

the minority class. We name the generated data as D‟. The original training set D and the 

generated data D‟ are combined to form the new balanced training set BD. Traditional 

classifiers e.g. decision tree, Bayesian network, or support vector machine etc. can then 

be built on data BD.     
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5.3.3 BUILDING MODEL 

5.3.3.1 Building model from domain knowledge 

Domain knowledge is commonly used in medical decision support systems. Domain 

knowledge could come from scientific laws, expert opinions, accumulated personal 

experiences, common sense knowledge, etc. Domain knowledge is usually verified by 

life experiments and applications. Thus domain knowledge is assumed to be true in 

model building.  

There are many works incorporating domain knowledge in machine learning 

models [108, 160]. When the data is sparse, or when we do not have any data available, 

data sampling methods are generally not effective. When a large amount of data is 

missing, or when multiple hidden nodes exist, learning parameters in Bayesian networks 

from data becomes extremely difficult [89]. However in MDS, we still can create models 

from domain knowledge.  A model contains both qualitative representation and 

quantitative representation. The qualitative representation is the structure of Bayesian 

Network. The structure can be represented as topological constraints [62] which can be 

derived from domain knowledge. Quantitative representation of the model refers to the 

parameters of a Bayesian Network, which can also be estimated from domain knowledge 

[88] as shown in Appendix C.3.   

5.3.3.2 Building model from data 

We can also build model from training data set only. In this case, we need to learn the 

structure and the parameters for the model. There are two types of methods for learning 
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structures – score based methods and constraint based methods. Score based methods 

include Greedy Search, K2, MCMC, Hill Climbing etc, and constraint based methods 

include CI, ICS, etc. Without loss of generality, we chose to use K2, Hill Climbing 

method and CI algorithms for structure learning. K2 is using hill climbing adding arcs 

with a fixed ordering of variables. We used random order in our experiments. Hill 

climbing [18] adds and deletes arcs with no fixed ordering of variables.  CI algorithm is 

to test whether variables x and y are conditionally independent given a set of variables Z 

for all combinations of x and y.       

Given the BN structure is known, there are two categories of parameter learning 

problems – learning from complete data and learning from incomplete data which are 

described Appendix C.2. In this dissertation, we assume that our data are complete. We 

use simple estimator for parameter learning as introduced in section 5.3.2.    

5.3.3.3 Building model from both domain knowledge and data 

Building model from both domain knowledge and training data set is an added advantage 

of Bayesian Network. We can learn the initial structure and parameter set from the 

domain knowledge, and then we can update them using the training data. The special 

characteristics of Bayesian Network enable us to update the structure and parameter 

easily. The structure can be updated by arc operations including adding, deleting and 

reversing. The parameters can be verified and updated from experts‟ experiences. 
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5.3.4 DATA SAMPLING  

The data sampling method we used is Pearl MCMC method [115] from the package of 

Bayesian network in Java (BNJ) [3]. MCMC method is also known as the Gibbs sampler 

as described in Appendix C.6.4. MCMC method can simulate realizations from 

complicated stochastic models in high dimensions by making use of the model‟s 

conditional distributions, which usually generates a much simpler and more manageable 

form as shown in the following data sampling step.  

Data Sampling Step 

Suppose we want to obtain samples of             from the model (Bs, Bp) - a joint 

distribution            where     .  

Step 1: We denote the ith sample by         
        

     and we begin with some initial 

value      for each variable; 

Step 2: For ith sample where        , sample each variable   
   

 from the conditional 

distribution     
      

          
        

          
      .  

The input for data sampling will be the model we built from the previous step (Bs, 

Bp) and the evidence file. In the evidence file, we specify that the observed evidence is 

the class variable associated with minority value, regardless of values for the rest of the 

variables in the network Bs. We then sample each variable from the distribution of that 

variable conditioned on all other variables, making use of the most recent values and 
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updating the variable with its new value once it has been updated. The output is (0.5-i)N 

number of  generated minority instances D‟ with the same features as those from the 

training space D. The generated data set D‟ is combined with D to form the new balanced 

training data set BD. 

5.3.5 BUILDING CLASSIFIER 

With the balanced training data BD, building a classifier from it is trivial. Most of the 

existing machine learning algorithms can be used for building a classifier on the balanced 

training data. We have experimented on different classification techniques including 

Support Vector Machines (SVM), C4.5 decision tree, and Bayesian networks. For 

consistency purpose and stable performance, we mainly use Bayesian network classifier 

in our experiments.     

5.4 POSSIBLE EXTENSIONS  

5.4.1 PROGRESSIVE MDS 

In progressive MDS, the assumption of the best data distribution is not the balanced data 

distribution. Instead, the optimal data distribution is selected by progressively running 

MDS on different data distributions. The best performing data distribution will be 

selected as the optimal data distribution. Progressive MDS extends MDS in that a better 

performing data distribution is chosen instead of balanced data distribution. The details 

about progressive MDS will be discussed in Chapter 8.       
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5.4.2 CONTEXT SENSITIVE MDS 

Context sensitive MDS is an extension of Model Driven Sampling in that the model is 

built with respect to a certain context. The technology we used is context sensitive 

Bayesian network as described in Appendix C.4. Context sensitive MDS can better model 

the small disjuncts by building sub-models for each of them. The sub-models will be 

more accurate for each small disjunct, and thus the data generated is more meaningful. 

The details of context sensitive MDS will be discussed in Chapter 9. 

5.5 SUMMARY 

In this chapter, we have proposed a new technology – Model Driven Sampling (MDS).  

We make use of Bayesian networks to construct our model. Because of the properties of 

Bayesian networks, we can construct models from data or from domain knowledge or 

both; we can also construct context sensitive models by using context sensitive Bayesian 

networks. The advantage of MDS is that it can make use of the whole training space to 

generate data samples, and it can also make use of domain knowledge to generate data 

samples. Thus MDS uses a much stronger knowledge base than other data sampling 

approaches. 

 The main limitation of MDS is that generally it is not efficient to be used for very 

high dimensional data space. This is because Bayesian network learning is exponential 

with respect to the data dimensions. So for high dimensional data space, we need to do 

feature selection before applying MDS. Normally, feature selection can reduce noise, and 
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focus on the selected important features. Therefore the model built with selected sub-

feature set is more accurate [157].   
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CHAPTER 6:  EXPERIMENT DESIGN AND SETUP 

6. EXPERIMENT DESIGN AND SETUP 

We have run and compared different machine learning algorithms including but not 

limited to C4.5 decision tree [122, 123], Support Vector Machine (SVM) [118], and 

Bayesian Network [31, 32, 143] (as described in section 2.1.4) on four data sets with 

three different sampling techniques including Random Sampling (RS), Synthetic 

Minority Over-sampling Technique (SMOTE) [23] and Model Driven Sampling (MDS). 

As it was shown in section 2.1.5 and 2.2.4.3, Bayesian network classifier was more stable 

in imbalanced data learning. Therefore, for consistency and length limitation, we report 

the running results from Bayesian network classifier only in this chapter.  Each 

experiment was conducted by using 10 fold stratified cross validation, which made use of 

90% of the data as the training data and the other 10% of the data as testing data.     

6.1 SYSTEM ARCHITECTURE  

The architecture of our system is shown in Figure 6-1. The training data set was first split 

into ten folds. Each time, we combined nine folds of the data as training data, and then 

tested on the remaining one fold. This procedure was repeated ten times, and we then 

derived the average performance value.  Then each part underwent MDS sampling, and 

formed new balanced and enriched training data which was used to train the predictive 
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model. Part of the following descriptions and some preliminary results were reported in 

[159]. 

The system used for the experiments has an Intel 2.33GHz CPU, and 3.25 GB of 

memory.  The software tools used for our experiments include Weka [2], Netica [1]  and 

BNJ [3]. 

 

 

 

 

 

Figure 6-1 Experiment design for comparing different approaches 

In all the experiments, we assumed that the optimal data distribution is a balanced 

distribution. Therefore, the sampled training data set is always balanced. In particular, in 

random over sampling, the parameter of bias to uniform is set to 1; in SMOTE sampling, 

the number of nearest neighbors to be generated is set to 5; in MDS, the evidence for data 

generation is set as positive for the class variable.  
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6.2 DATA SETS 

The datasets used include simulated and real datasets. Without loss of generality, we 

simulate a circle for two dimensional data, and a sphere for three dimensional data.    

6.2.1 SIMULATED DATA SETS 

In the simulated data, we generated two dimensional data (simulating a circle), three 

dimensional data (simulating a sphere), and multi-dimensional data from the ALARM 

network [13]. The dimensions of the data set reflect data complexities. We have shown 

that MDS performs well on data sets with different dimensionality.  

6.2.1.1 Two dimensional data 

 

 

 

 

 

Figure 6-2 Two dimensional data set 

We randomly generate the two dimensional data inside a circle. As shown in Figure 6-2, 

the four point stars represent majority data, and black spots represent minority data. The 

inner circle is the circle A centered at (0, 0) with radius 1, and the outer circle is the circle 
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B centered at (0, 0) with radius 2. Minority data locate around the inner circle A. 

Majority data spread inside circle A or between circle A and circle B.  In this data set, we 

have generated 720 samples with imbalance ratio of 0.028. We assume that the domain 

knowledge is the approximate observations from the first quarter of the inner circle. The 

model built on this domain knowledge will randomly sample approximate data from the 

dashed curve (as marked in Figure 6-2) with a small error value of ε. 

6.2.1.2 Three dimensional data 

The three dimensional data is randomly sampled from the half sphere which is centered at 

(0, 0, 0) and with a radius of 1. There are 202 positive data samples generated 

approximately around the half sphere with an error value  less than 0.07, and 811 

negative data samples generated which are either outside the half  sphere or inside the 

half sphere. There are 67 noisy data, including 56 false positive data samples and 11 false 

negative samples. The domain knowledge we assumed is the approximate observations 

from the first quarter of half sphere (x>0, y>0, z>0). The classification problem is defined 

to correctly identify the distributions for the minority data (samples on sphere) and 

majority data (samples off sphere), and the minority distribution is more critical than 

majority distribution.   
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Figure 6-3 Three dimensional data - half sphere 

6.2.1.3 Multi – dimensional data  

We make use of ALARM network as shown in Figure 6-5 to generate the multi-

dimensional data set. The ALARM network was first introduced by Beinlich, et al. [13]. 

It has 37 random variables and 46 arcs. The class variable is “FIO2” marked by a dashed 

rectangle in the network. We use ALARM network to generate 10,000 samples using 

Netica [1]. The training data contains 9718 majority samples with normal FIO2, 93 

minority samples with low FIO2 and 189 (2%) missing samples (as shown in Figure 6-4). 

The domain knowledge we assumed is the 1000 approximately observed minority 

samples from the ALARM network. The classification problem is defined to correctly 

identify FIO2 value for each patient.  
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Figure 6-4 Multi dimensional data set 

 

Figure 6-5 A Logical Alarm Reduction Mechanism [ALARM] 

 

0

2000

4000

6000

8000

10000

12000

Minority Majoirty Missing

Data Samples

Data Samples

Catecholamine

Heart Rate

Left Ventricular
Failure

Left Ventricular
End-diastolic volume

Hypovolemia

Central Venous
Pressure

HRBP HREKG HRSat

Error Low
Ouput

Total Peripheral
Resistance

Anaphylaxis

Blood Pressure

Pulmonary Capillary
Wedge Pressure

StrokeVolume

Cardiac Output

PVSat

Anest./Anelgesia
Insufficient

History

Shunt

SaO2

Pulmonary Artery
Pressure

PulmEmbolus

Error Cauter

VentAlv

Intubation

VentLung

KinkedTube Disconnection

VentTube

Breathing PressureArtCO2 ExpCO2 MinVol

MinVolSet

VentMach

FiO2

ALARM



 

 103 

6.2.2 REAL LIFE DATA SETS  

The real life data sets selected for the analysis span a wide spectrum in terms of 

complexity or dimension, imbalance ratio, and size; they are meant to illuminate the 

strengths and limitations of the algorithms studied under different conditions in medical 

domains. The data sets are Asia, Mammography, Indian Diabetes, Head Injury data, and 

Mild Head Injury data. The Asia data set is commonly used in machine learning 

communities as examples illustrating Bayesian Network learning.  The head injury data 

and mild head injury data were described in Chapter 2. The other two data sets are from 

the UCI Machine Learning repository [14] which were used for imbalanced data learning 

[23, 57, 152]. The characteristics of the data sets are: binary data, unevenly distributed 

with different imbalance ratios (IB) as shown in Figure 6-6 and Table 6-1. IB ratio is 

equivalent to the percentage of minority examples in the training data; the lower of the 

value the more imbalanced the data is.  

Table 6-1 - Class distributions (in numbers) 

 Majority Minority IB ratio Features 

Asia 530 42  0.073 7 

Indian Diabetes 500 268 0.349 8 

Mammography 10923 260 0.023 6 

Mild Head Injury 1776 29 0.016 45 

Head Injury 307 184 0.375 17 
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Figure 6-6 - Data class distributions (in relative ratios) 

The Asia data set is about people who visited Asia and whether they had 

developed dyspnea or not. In our experiment, the Asia data set includes 42 positive cases, 

and 530 negative cases.    

The Pima Indian Diabetes [14]  data set includes 2 classes and 768 samples. The 

data is used to identify the positive diabetes cases in a population near Phoenix, Arizona. 

There are only 268 positive class samples. 

The Mammography data set has a high skewed ratio: 10923 negative examples 

versa 260 positive examples. The trained classifier needs to be highly sensitive to detect 

the positive cases. 

Head injury data set has a less imbalanced level of IB 0.375, while mild head 

injury data set has a high imbalance level of IB 0.016. We discussed how helping the 
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traditional machine learning methods in solving them in Chapter 2. In this chapter we are 

using imbalanced data learning techniques.  

6.3 EXPERIMENTAL RESULTS 

6.3.1 RUNNING RESULTS ON SIMULATED DATA 

In model driven sampling, the model can either be built from the training data using 

machine learning method or from domain knowledge. The domain knowledge in the 

simulated data is the partial observation of the model. For example in the circle data, the 

domain knowledge we assumed is one quarter of the circle as shown in Figure 6-2, and in 

the sphere data, the domain knowledge is the one quarter of the sphere as shown in 

Figure 6-3.  We compared both MDS based on data (MDS-Data) and MDS based on 

domain knowledge (MDS-Knowledge) in the simulated data.   

6.3.1.1 Circle data 

In circle data set, MDS has the same G-Mean value as random sampling. MDS with 

domain knowledge performs much better than the rest and it has a relatively balanced TP 

value of 0.901 and TN value of 0.75.  (Original data refer to the data set without any 

sampling, and RS stands for “random sampling”)  
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Table 6-2 Running Results on Circle Data (P-value < 0.01) 

 Original  

Data 

RS SMOTE MDS-

Data 

MDS –  

Knowledge 

TP
3
 0.45 1 0.45 1 0.901 

TN
4
 1 0.574 1 0.574 0.75 

G-Mean 0.671 0.758 0.671 0.758 0.822 

6.3.1.2 Half-Sphere data 

In half-sphere data, both MDS with machine learning and MDS with domain knowledge 

perform better than other sampling approaches. MDS with domain knowledge performs 

better than MDS with machine learning.  

Table 6-3 Running Results on Half-Sphere Data (P-value <0.05) 

 Original 

Data 

RS SMOTE MDS-

Data 

MDS-

Knowledge 

TP 0.296 0.493 0.493 0.557 0.75 

TN 0.999 0.864 0.864 0.809 0.66 

G-Mean 0.544 0.652 0.652 0.671 0.703 

6.3.1.3 ALARM data   

In the ALARM data set, the domain knowledge assumed is the partial observation of the 

model which is a sub set of instances approximately generated from the true model using 

MCMC method. MDS achieves the best performance on the minority data and in overall. 

MDS based on domain knowledge performs much better than the other approaches too, 

ranked as the second best as shown in Table 6-4. Interestingly, we realized that MDS-

                                                 
3
 TP is true positive rate for predicting minority samples. 

4
 TN is true negative rate for predicting majority samples. 
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Knowledge performed worse than MDS based on data. This is because that the domain 

knowledge in ALARM data is encoded by approximately (MCMC) generating partial 

observations from the ALARM network. ALARM network itself is a large Bayesian 

network, therefore it needs a super large sample set in order to generate the simulation 

model that is close to the underlying true distribution. The partial observations used are a 

small subset of the simulated samples, which can be biased and are not necessarily better 

than the data generated from our MDS model. Therefore, MDS can sometimes perform 

better than MDS with domain knowledge. 

Table 6-4 Running Results on ALARM Data (P-value < 0.05) 

 Original Data RS SMOTE MDS-Data MDS- 

Knowledge 

TP 0.366 0.366 0.376 0.777 0.591 

TN 0.841 0.86 0.964 0.86 0.856 

G-Mean 0.554 0.561 0.602 0.817 0.711 

6.3.2 RUNNING RESULTS ON REAL LIFE DATA SETS 

6.3.2.1 Asia data    

The Asia data set has the lowest number of minority examples and the second lowest 

imbalance ratio 0.073.  As shown in Table 6-5, the original data set without any sampling 

has a high prediction rate on its majority samples (98.7%),   but a low prediction accuracy 

on its minority samples (7.1%), thus the overall performance is the lowest at 26.5%. 

Random sampling and SMOTE both significantly improve the predictions on minority 
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samples and achieve a much better overall performance. MDS achieves the best 

performance 88% overall and 90.5% on minority data set.    

Table 6-5 Asia data running results 

 Original Data RS SMOTE MDS 

TP 0.071 0.881 0.69 0.905 

TN 0.987 0.863 0.925 0.856 

G-Mean 0.265 0.872 0.799 0.88 

6.3.2.2 Indian Diabetes data  

The Indian Diabetes data is a relatively balanced data set with the highest imbalance ratio 

at 34.9%.  Therefore, without any sampling, the original data set can achieve a satisfying 

performance on minority data and a good overall performance. The three sampling 

approaches equally improve the performance especially on the minority. The overall 

performance however is not much improved by MDS. (As shown in Table 6-6)   

Table 6-6 - Indian Diabetes data running results 

 Original Data RS SMOTE MDS 

TP 0.669 0.783 0.787 0.752 

TN 0.836 0.741 0.745 0.783 

G-Mean 0.748 0.762 0.766 0.767 

6.3.2.3 Mammography data  

Although the Mammography data set has the lowest imbalance ratio 0.023, it is still 

relatively simple as it has only 6 features which result in a low data complexity. In Table 

6-7, the original data set can achieve 85% overall performance. The other approaches can 

equally improve the minority prediction by 15%. SMOTE has the best overall 
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performance 89%, and MDS has a comparable performance of 88.5%. However, MDS 

has the highest performance on minority data, with TP value equal to 0.901.    

Table 6-7 - Mammography data running results 

 Original Data RS SMOTE MDS 

TP 0.735 0.888 0.873 0.901 

TN 0.981 0.857 0.908 0.869 

G-Mean 0.849 0.872 0.89 0.885 

6.3.2.4 Head Injury data 

The Head Injury data is a relatively less imbalanced data set. The overall performance of 

its original data is reasonably good. All three data sampling techniques can improve the 

overall performance, particularly on the minority data. Among all the approaches, MDS 

performs the best.  

Table 6-8 Running results for Head Injury data 

 Original Data RS SMOTE MDS 

TP 0.674 0.713 0.717 0.728 

TN 0.847 0.823 0.821 0.824 

G-Mean 0.755 0.766 0.767 0.774 

6.3.2.5 Mild Head Injury data 

The Mild Head Injury data has the highest imbalance level – the lowest imbalance ratio 

0.016 among all the five data sets. The performance on the original data is very poor. 

Both random sampling and SMOTE can improve the system performance. However, 

MDS is the best performing approaches. MDS also improves the minority prediction 

accuracy greatly and it has the highest true positive rate of 0.621.     
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Table 6-9 Running results for Mild Head Injury data 

 Original Data RS SMOTE MDS 

TP 0.207 0.552 0.414 0.621 

TN 0.994 0.844 0.853 0.831 

G-Mean 0.453 0.683 0.594 0.718 

6.4 SUMMARY 

There are three important factors affecting an imbalanced data set: 1) the imbalance ratio, 

2) the absolute size of the minority data, and 3) the dimension of the data set. The three 

factors are common in most medical data sets, and they vary among the five 

representative data sets chosen in this work. We have examined relatively easy problems 

which are less imbalanced, low dimensional, with sufficient minority samples (e.g., 

Indian Diabetes and Mammography datasets), to hard problems which are highly 

imbalanced, high dimensional (e.g., Head Injury problem), or with scarce minority 

samples (e.g., Asia).    

The three different data sampling approaches discussed represent a wide range of 

data sampling efforts in tackling the imbalanced problems. They can be categorized by 

their learning scopes. Random sampling duplicates the data without creating new 

information; the SMOTE algorithm creates new synthetic data based on local information 

– the nearest neighbors; the MDS approach generates data based on global information – 

the knowledge model built from the full training space. As illustrated in Figure 6-7, 

random sampling produces data from a single data point; SMOTE generates data over 
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two data points; MDS generates data from a model built from all labeled data or domain 

knowledge.  

As shown in Figure 6-8, MDS or MDS based on domain knowledge performs 

better than the other approaches. Typically, in the circle data, MDS is equivalent to 

random sampling, and MDS based on domain knowledge performs the best; in the sphere 

data set, MDS based on domain knowledge performs the best, and MDS performs the 

second best; in the ALARM data set, MDS performs the best, and MDS based on domain 

knowledge performs the second best. 

As shown in Figure 6-9, all three different sampling approaches can improve 

classification performance on imbalanced data sets, especially on minority data. 

Comparing these three sampling approaches, random sampling is easy to implement and 

efficient; SMOTE will perform well especially when the minority data is dense; MDS 

will perform well when we have a reasonable accurate model to generate minority data, 

and this model could be from our medical domain knowledge or learning from existing 

data or both. Thus MDS can potentially address imbalanced problems with scarce or 

sparse minority data. As shown in section 6.3.1, MDS with domain knowledge is usually 

the best performing approaches with statistically significant improvement. However, as 

the lack of domain knowledge, we did not report results for MDS with domain 

knowledge in real life data sets. In future work, we will incorporate domain knowledge 

into our model for real life data sets. This capability is a major difference from and is a 

potential advantage over the other generative sampling approaches [91].       
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                  Random Sampling:       

  

                  SMOTE:        

  

                  MDS:  

 

Figure 6-7 Learning scopes for 3 sampling approaches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-8 Overall comparisons among simulated data 

 

 

Figure 6-9 Overall performance (G-Mean) comparison 
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CHAPTER 7: MDS IN ASTHMA CONTROL 

7. MDS IN ASTHMA CONTROL 

In this chapter, we report on a case study in a real life project – the asthma control 

problem. Asthma is a chronic disease, and asthma control is about controlling the disease 

by giving necessary and adequate continuous treatment. It is costly and critical if the 

disease is not under control. In the asthma project, we try to predict whether the patient‟s 

asthma is under control or not before the next visit, so that necessary precautions can be 

taken ahead to reduce the risk of control failure.  However, control failures occur only 

occasionally in all asthma patients. We will make use of random sampling, SMOTE 

sampling and MDS on asthma control predictions.        

7.1 BACKGROUND 

Asthma is still an important cause of ill health in today‟s population. It consumes a lot of 

heath service resources [150], because that many patients who have poorly controlled 

asthma require unscheduled visits to hospitals for urgent nebulizations, emergency 

department visits or admissions to hospital. Therefore, to reduce the usage of acute health 

services for asthma is very important in health care.  

Asthma management is about how to control the disease. One important topic is 

to correctly predict whether the patient is going to be under control or not in the near 



 

 114 

future.  ACT [55] is used for measuring the severity of the disease using five self 

evaluation questions. It is designed for patients at home conveniently evaluating whether 

his asthma is under control or whether he needs to see a doctor. ACT is particularly 

useful for evaluating patients‟ current situation, i.e. whether asthma is under control or 

not at the time of taking ACT test. However, it is also very useful for clinicians or 

patients to know the potential risk of getting out of control in the near future. Correctly 

knowing the future can help clinicians or patients to be better prepared and carefully plan 

the treatment to avoid a costly situation and to prevent suffering. In this project, we have 

completed an initial study on how to correctly predict asthma control failure in the future 

based on the information provided at each clinic visit.  The outcome measures for control 

failure are unscheduled physician visits for urgent nebulization or hospitalization [55, 

103] that appear in any of the subsequent clinic visit. If they do not have any subsequent 

visit in our patients‟ records, then we assume that the patient is under control.   

7.2 DATA SETS 

7.2.1 DATA DESCRIPTION  

The data sets we used are collected by a local hospital in Singapore under proper 

approval and usage guidelines from April 2001 to July 2006. There are two data sets – 

asthma first visit data and asthma subsequent visit data.   



 

 115 

Table 7-1 Data sets collected from our asthma program 

 

Collection 

Duration  

Data 

Size 

Minority 

 Data 

Majority 

Data 

Imbalance 

Ratio Attributes 

First 

Visit  

 

20/04/2001~ 

02/06/2006 942 213 729 0.226 138 

Subsequent 

Visit  

 

18/05/2001~ 

13/07/2006 5294 1247 4047 0.236 115 

 

These two data sets share the common characteristic that they are both 

imbalanced. The imbalance ratio for asthma first visit data is 0.226 and the imbalance 

ratio for asthma subsequent visit data is 0.236.  

The asthma first visit is a patient based outcomes analysis problem. The data set 

records the information when asthma patients visit the respiration centre for the first time. 

It has 138 attributes recording the patients‟ general information, asthma history, treatment 

history, etc. There are 213 positive samples out of a total of 891 samples. The main 

problem is to determine whether a patient will encounter any control failure in the future 

based on the information provided on his first visit. 

 The asthma subsequent visit is a visit based outcomes analysis problem. The data 

contains the patients‟ information at each visit. The problem is to predict asthma control 

given a patient‟s current visit information. The assumption in this problem is that the 

future control failure is independent of a patient‟s past visits given his current visit 

information.  
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7.2.2 DATA PREPROCESSING  

7.2.2.1 Feature selection 

Feature selection is necessary for data sets with high dimensions to reduce problem 

complexity and also to remove noisy parameters. It is particularly useful for the asthma 

data because there are more than 100 parameters in each of the data sets, and a lot of 

parameters such as patient‟s ID number, visit date etc will not help in predicting control. 

Instead they add noise to the built model and affect the efficiency and effectiveness. We 

used Bayesian Networks to build predicting models by selecting 40 features (chi-squared 

value > 4.5)  out of 138 (Table 7-2) and selecting 20 features (chi-squared value > 9.7) 

out of 138 (Table 7-3). Generally the 20-feature model performs better than the 40-

feature model, except for SMOTE, whose performance drops slightly. The 20-feature 

model is also much less complex than the 40-feature model and therefore is more 

efficient. In this experiment, we made use of Chi-square feature selection i.e., evaluating 

the worth of the attributes by computing the value of the chi-squared statistics with 

respect to the class.  The selected features for asthma first visit are shown in Appendix A. 

The features for asthma subsequent visit are shown in Appendix B. 

Table 7-2 Asthma first visit running results- 40 features out of 138 

 Original Data RS SMOTE MDS 

TP 0.419 0.576 0.448 0.59 

TN 0.852 0.732 0.805 0.732 

G-Mean 0.598 0.649 0.6 0.657 
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Table 7-3 Asthma first visit running results - 20 features out of 138 

 Original Data RS SMOTE MDS 

TP 0.423 0.606 0.39 0.643 

TN 0.877 0.708 0.85 0.719 

G-Mean 0.609 0.655 0.576 0.68 

 

However, it is not necessary that the fewer features perform the better. Fewer 

features contain less information, though they reduce the system complexity. The optimal 

feature set contains the maximum information while effectively reducing the system 

complexity. To determine the optimal number of features, we make use of progressive 

feature selection methods to empirically decide the best set of features.    

7.2.2.2 Discretization 

Data discretization is necessary for dealing with continuous variables. Continuous 

variables are in contrast with nominal variables. A continuous variable can take any 

possible value with its range. For example, the variable age can take any integer value 

from 0 to 100. Data discretization is to convert the continuous variables into nominal 

variables. The data discretization algorithm that we used is minimum description length 

(MDL) algorithm [49].  Data dicretization helps improve the system efficiency and 

accuracy.  

7.3 RUNNING RESULTS  

We have experimented with various sampling approaches including MDS using different 

feature sets. Each of the features selected are verified by domain experts to ensure that 
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they are meaningful. 10-fold cross validation is used for reporting the experimental 

results. 

7.3.1 ASTHMA FIRST VISIT DATA  

In asthma first visit data, we used the patients‟ first visit information to predict whether 

the patient is under control in the future. The outcome variable is “control”. A patient is 

under control if there is no urgent nebulization or hospitalization.   

 The running results for asthma first visit data are shown as in Table 7-2 (40-

feature model) and Table 7-3 (20-feature model). The performance for MDS ranks as the 

best among all approaches. MDS also has the best minority prediction rate among all 

approaches. We also notice that MDS with 20 features perform better than MDS with 40 

features. It could be the reason that the network built from high dimensional data set is 

too complex and the data generated might contain more errors.  

We further reduce the features to a 7-feature set, without any drug changing 

features.  The results are shown as in Table 7-4.  In this set of features, all approaches 

improve their performances except that original data‟s drops.  Among all feature 

combinations, MDS performs the best among all approaches. MDS also achieves the best 

True Positive rate of 0.723.  

  



 

 119 

Table 7-4 Asthma first visit data running results with 7 features 

 Original 

Data 

RS SMOTE MDS 

TP 0.305 0.657 0.573 0.723 

TN 0.894 0.69 0.724 0.649 

G-Mean 0.522 0.673 0.644 0.685 

 We also tried other feature combinations, and we found 7-feature set (including 

Patient‟s Record No, Asthma Duration, MC, Nebulisation Count, UNebulisation Freq 

Oral Steriods Count, DrugSubvention) is the optimal feature set for asthma first visit 

data. Interestingly, we notice that Patient‟s Record No is also an important factor. This is 

because Patient‟s Record No records the chronicle order of the patients visiting the clinic.  

Treatment and healthcare improves over time and thus over the Patients‟ Record No.  

7.3.2 ASTHMA SUBSEQUENT VISIT DATA  

In the asthma subsequent visit, we make use of the patients‟ current visit information 

(including but not limited to their first visit), to predict the whether the patient is going to 

be under control in the future. The outcome variable is same as in the asthma first visit 

data.   

We compared 40 features (chi-squared value > 5.5), 21 features (chi-squared 

value > 16) and 6 features (chi-squared value > 55) using Bayesian Network classifiers 

with different sampling approaches. The running results for asthma subsequent data with 

40 features are shown in Table 7-5. The performance for asthma subsequent data with 21 

features is shown in Table 7-6. The performance on 6-feature set is shown in  
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Table 7-7. We can tell that all approaches‟ performances improve on 21-feature set over 

40-feature set, and the performances are further improved on 7-feature set.  

Table 7-5 Asthma Sub Visit Results (40-feature set) 

 Original 

Data 

RS SMOTE MDS 

TP 0.213 0.42 0.287 0.483 

TN 0.907 0.783 0.866 0.753 

G-Mean 0.44 0.574 0.498 0.603 

Table 7-6 Asthma Sub Visit Results (21-feature set) 

 

 

Table 7-7 Asthma Sub Visit Results (6-feature set) 

 Original 

Data 

RS SMOTE MDS 

TP 0.49 0.559 0.548 0.565 

TN 0.974 0.933 0.941 0.929 

G-Mean 0.691 0.722 0.718 0.725 

In all the different feature sets, we discovered that MDS performs better than 

other approaches or at least equivalent to random sampling in Table 7-6. We also tried 

other different feature combinations, but the best overall performance is achieved by 

MDS on 6-feature set. The six features are “MV Followup Wks”, “MV UNebulisation”, 

“MV Events”, “MV Nights with wheeze/cough/SOB”, “MV Days with 

 Original 

Data 

RS SMOTE MDS 

TP 0.473 0.582 0.508 0.578 

TN 0.951 0.842 0.894 0.842 

G-Mean 0.671 0.7 0.674 0.698 
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wheeze/cough/SOB”, and “MV Activity stopped”.  Six feature set is also clinically 

efficient, and physicians can key in minimum parameters to get the best accurate 

predictions.   

7.4 SUMMARY 

One important characteristic for a clinically useful diagnosis system is to minimize the 

features utilized.  So the physicians can make use of the minimal set of information to 

determine the possible outcomes efficiently and effectively. From the above experiments, 

that the optimal number of features for asthma first visit data is 7 and the optimal number 

of features for asthma sub visit data is 6.  In both cases, MDS performs the best among all 

the considered approaches. MDS can make use of the minimal information, and produce 

better results.  

 This case study also shows that feature selection is important particularly for 

imbalanced data learning. High dimensional data often generates complex network 

structures, and can easily cause more noise in the data generated. Feature selection can 

select the minimum optimal feature set and thus ensure that the model built by MDS is 

clean, containing less noise.  
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CHAPTER 8: PROGRESSIVE MODEL DRIVEN 

SAMPLING 

8. PROGRESSIVE MODEL DRIVEN SAMPLING 

Data sampling can often improve the overall performance of the system by balancing the 

data distribution in the training space. However, it is not true that balanced data 

distribution always gives the best performance. The optimal data distribution can be 

imbalanced in certain domains. Progressive model driven sampling is to generate data 

progressively such that an approximately optimal data distribution can be discovered 

instead of blindly using balanced data distribution as the optimal data distribution. Since 

the model we build is based on the existing training data or expert knowledge, it is 

usually not a perfect model. The data generated from the model contain noise, and the 

usage of the generated data shall be limited to a certain degree. Progressive model driven 

sampling can discover the minimum amount of generated data to be used. It improves the 

system accuracy.   

8.1 CLASS DISTRIBUTION MATTER 

Class distribution plays an important role in imbalanced data learning. Different class 

distributions usually give very different performances. We study the relationships 

between class distribution and system performance in order to find an optimal class 



 

 123 

distribution, such that minimum amount of generated data can give the best possible 

performance. 

Figure 8-1 System accuracy versa the number of generated samples 

We discovered from our empirical studies that the system performance curve with 

respect to the generate data size is similar to the curve shape in Figure 8-1. The horizontal 

axis represents the number of synthetic samples generated, and the vertical axis 

represents the system accuracy. A learning curve usually has a steep slope in the first 

portion followed by a gentle slope, and then a plateau. The plateau occurs when the 

system performance cannot be increased any more adding more data. The data 

distribution at n-min is the optimal data distribution. The assumption for the learning 

curve in Figure 8-1 is that the generated data is perfect data without noise. However, it is 
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not always true in reality, as the synthetic data generated by either SMOTE or MDS 

contains noise. Therefore, there is often a descending slope after the plateau in reality.   

8.2 DATA SETS AND CLASS DISTRIBUTIONS 

In this section we use classification results to learn the relationships between class 

distribution and classifiers‟ performance. The classifier used is the Bayesian Network 

classifier. 10-fold cross validation is used for reporting the experimental results.       

8.2.1 DATA SETS 

The data sets we experimented on include Circle Data, Sphere Data, Asthma First Visit 

Data (7 features), and Asthma Subsequent Visit Data (5 features) as shown in Table 8-1. 

These data are built in a way that we purposely decrease the original minority data size, 

so that we can better study the effect of progressive sampling.     

Table 8-1 Data summaries for progressive sampling 

 Features Majority Minority  Distribution 

Circle Data 2 631 17 0.026 

Sphere Data 3 730 182 0.20 

Asthma First Visit 7 660 187 0.22 

Asthma Sub Visit 5 4438 326 0.068 

8.2.2 DATA DISTRIBUTIONS 

The data distributions ranged from the original distribution to the balanced data 

distribution.  At each step, we generated new minority data and added them into the 
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training space producing a new data distribution with imbalance ratio increased by a 

small percentage (2-5%), until the balanced distribution was reached.  If the system 

performance improves obviously, we use a bigger incremental step (5% for example), 

otherwise if the performance drops or improves little, we use a smaller incremental step 

(2% for example).   

Table 8-2 Progressive sampling distributions for Circle data 

Majority data Minority data Generated Data Distribution 

631 17 0 0.026234568 

631 17 53 0.1 

631 17 109 0.166446499 

631 17 141 0.2 

631 17 172 0.230487805 

631 17 204 0.259389671 

631 17 235 0.285390713 

631 17 253.4286 0.3 

631 17 322.7692 0.35 

631 17 450 0.425318761 

631 17 614 0.5 

  Table 8-3 Progressive data distributions for Sphere 

Majority data Minority data Generated Data Distribution 

730 182 0 0.199561404 

730 182 61.33333 0.25 

730 182 130.8571 0.3 

730 182 169.4815 0.325 

730 182 211.0769 0.35 

730 182 304.6667 0.4 

730 182 415.2727 0.45 

730 182 548 0.5 
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We then test the system on each data distribution, and choose the distribution that 

gives the best performance result. The different data distributions generated for each data 

set is shown in Table 8-4 to Table 8-5. 

Table 8-4 Progressive data distributions for asthma first visit 

Majority data Minority data Generated Data Distributions 

660 187 0 0.220779221 

660 187 33 0.25 

660 187 95.85714 0.3 

660 187 168.3846 0.35 

660 187 253 0.4 

660 187 353 0.45 

660 187 473 0.5 

Table 8-5 Progressive data distributions for asthma sub visit 

Majority data Minority data Generated Data Distributions 

4438 326 0 0.068429891 

4438 326 167.1111 0.1 

4438 326 457.1765 0.15 

4438 326 783.5 0.2 

4438 326 1153.333 0.25 

4438 326 1576 0.3 

4438 326 2063.692 0.35 

4438 326 2632.667 0.4 

4438 326 3305.091 0.45 

4438 326 4112 0.5 
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8.3 EXPERIMENT DESIGN IN PROGRESSIVE SAMPLING 

The data were generated progressively as shown in previous section. The workflow for 

our experiment is shown in Figure 8-2.  For each data distribution generated, we used 

three different sampling methods (random sampling, SMOTE and MDS) to sample the 

required amount of data, Bayesian network classifier‟s performance was recorded. The 

best performing data distribution for each sampling approach was then chosen. The 

performance of progressive MDS can be compared with the other sampling approaches. 

 

  

  

 

 

Figure 8-2 System flow for progress sampling 
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If DIS = 0.5, then return BP; 

Otherwise, sample data to the new distribution DIS 

Get the classifier performance BP’ from the new distribution DIS  

If BP’ > BP, then update BP with BP’ 

Otherwise, backtrack the data distribution with a small percentage   

Go to Loop.  

In the progressive sampling algorithm, we start with the original data distribution, 

and progressively generate and more balanced data distributions. For each data 

distribution, we apply three different sampling algorithms to get the sampled distribution. 

The performance on the new sampled data is compared with the current best 

performance. If the performance improved, the current best performance will be updated; 

otherwise, we miss the best performing distribution which locates between the current 

distribution and the previous distribution, so we need to back track the data distribution. 

Once we reach the balanced distribution, we can return the best performance as the 

optimal performance and the best performing data distribution as the optimal distribution.    

8.4 EXPERIMENTAL RESULTS 

The approaches tested in progressive sampling are Random Sampling (RS), Synthetic 

Minority Over-sampling Technique (SMOTE), and Model Driven Sampling (MDS). The 



 

 129 

g-Mean value for various approaches in progressive sampling on circle data is 

summarized in Table 8-6 and Figure 8-3.  

8.4.1   EXPERIMENTAL RESULTS FOR CIRCLE DATA 

The experimental results for MDS on Circle data set reach the best performance at the 

data distribution of 28.5% with g-Mean value equal to 0.776.  The best performance for 

SMOTE approach is 0.767 at the imbalance ratio of 25.9%; the best performance for 

random sampling approach is 0.771 at the imbalance ratio of 25.9%.   

Table 8-6 g-Mean value for progressive sampling running results in Circle 20 data 

Imbalance Ratio MDS SMOTE Random Sampling 

2.60% 0.671 0.671 0.671 

10.00% 0.671 0.671 0.671 

16.60% 0.7 0.671 0.65 

20.00% 0.664 0.678 0.644 

23% 0.689 0.734 0.739 

25.90% 0.73 0.767 0.771 

28.50% 0.776 0.726 0.761 

30% 0.739 0.738 0.743 

35% 0.705 0.758 0.758 

42.50% 0.758 0.758 0.758 

50% 0.758 0.758 0.758 

8.4.2   EXPERIMENTAL RESULTS FOR SPHERE DATA 

The g-Mean value results for progressive sampling in Sphere data are summarized in 

Table 8-7 and Figure 8-4.  The experimental results for MDS on Sphere data reach the 

best performance at the data distribution of 32.5% with g-Mean value equal to 0.671.  

The best performance for SMOTE approach is 0.652 from the imbalance ratio of 0.3 
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onward. The best performance for Random Sampling approach is 0.652 from the 

imbalance ratio of 0.25 onward.  

 

 

Figure 8-3 Progressive sampling results for various approaches in Circle data 

Table 8-7 g-Mean value for progressive sampling in Sphere data 

Imbalance Ratio MDS SMOTE Random Sampling 

0.2 0.544 0.544 0.544 

0.25 0.646 0.648 0.652 

0.3 0.66 0.652 0.652 

0.325 0.671 0.652 0.652 

0.35 0.652 0.652 0.652 

0.4 0.653 0.652 0.652 

0.45 0.649 0.652 0.652 

0.5 0.652 0.652 0.652 
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Figure 8-4 Experimental results for progressive sampling in sphere 

8.4.3   EXPERIMENTAL RESULTS FOR ASTHMA FIRST VISIT DATA 

The g-Mean values for asthma first visit data are summarized in Table 8-8 and Figure 

8-5. The experimental results for MDS on asthma first visit data reach the best 

performance at the data distribution of 50% with g-Mean value of 0.685. The best 

performance for SMOTE approach is 0.649 at the imbalance ratio of 0.4; the best 

performance for Random Sampling approach is 0.691 at the imbalance ratio of 0.45.  

Table 8-8 g-Mean value for progressive sampling in asthma first visit data 

Imbalance Ratio MDS SMOTE Random Sampling 

0.22 0.522 0.522 0.522 

0.25 0.561 0.561 0.632 

0.3 0.605 0.597 0.633 

0.35 0.641 0.631 0.676 

0.4 0.651 0.649 0.683 

0.45 0.677 0.639 0.691 

0.5 0.685 0.642 0.673 
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8.4.4   EXPERIMENTAL RESULTS FOR ASTHMA SUB VISIT DATA 

The g-Mean values for progressive sampling in asthma subsequent visit data (with 6 

feature-set) are summarized in Table 8-9 and Figure 8-6. The experimental results on 

asthma sub visit data using MDS reach the best performance at the imbalance ratio of 

0.45 with g-Mean value of 0.736. The best performance for SMOTE approach is 0.726 at 

the imbalance ratio of 0.25; the best performance for Random Sampling approach is 

0.722 at the imbalance ratio of 0.5. It is interesting to note that only random sampling‟ 

performance is always increasing with new data generated, which means random 

sampling reaches the optimal performance at balanced data distribution. However, MDS 

and SMOTE reach their optimal performance before balanced data distribution.    

Table 8-9 g-Mean value on progressive data sampling in asthma sub visit data 

Imbalance Ratio MDS SMOTE Random Sampling 

0.068 0.691 0.691 0.691 

0.1 0.686 0.702 0.701 

0.15 0.688 0.712 0.701 

0.2 0.7 0.722 0.703 

0.25 0.694 0.726 0.704 

0.3 0.698 0.725 0.708 

0.35 0.727 0.717 0.712 

0.4 0.719 0.68 0.715 

0.45 0.736 0.676 0.719 

0.5 0.729 0.63 0.722 
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Figure 8-5 Experimental results in progressive sampling for asthma first visit data 

Table 8-10 Optimal data distributions for various approaches 

 MDS SMOTE Random Sampling 

Circle 20 0.285 0.259 0.259 

SphereN 0.325 0.3 0.25 

Asthma First Visit Data 0.5 0.4 0.45 

Asthma Sub Visit Data 0.45 0.25 0.5 
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Figure 8-6 Experimental results for progressive sampling in asthma sub visit 

8.5 SUMMARY  

From the above experimental results, the optimal data distributions for various data sets 

and approaches are summarized in Table 8-10. We can see that most of the time, the 

optimal performance is not achieved at the balanced data distribution. Progressive 

sampling can help to identify the optimal or near optimal data distribution, and produce 

better results. In asthma first visit data and asthma sub visit data, the best data distribution 

is 0.5. This is because these two data sets are highly imbalanced and complicated, and 

more simulated data are usually preferred. In this scenario that balanced data distribution 

is optimal.    
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CHAPTER 9: CONTEXT SENSTIVE MODEL DRIVEN 

SAMPLING 

9. CONTEXT SENSITIVE MODEL DRIVEN SAMPLING 

The context we used in this thesis is defined or given by a domain expert. It usually refers 

to a certain scenario or environment which can be used to partition the original model to 

reduce the problem complexity and to fine tune the model. Context sensitive MDS is an 

example of domain knowledge based MDS. Context sensitive MDS is to build sub 

models based on the contexts in a complicated problem and generate data from the sub 

models. The reason is that it is hard to correctly describe a complicated problem using a 

single model; instead, building sub models for individual contexts can effectively and 

efficiently model the problem.    

9.1 CONTEXT SENSITIVE MODEL 

In hospitals, for leucocythemia patients, if they receive marrow transplants operation, 

they have a chance of 50% to survive with good care, and 50% chance to die with life 

extension without good care. But if they do not receive marrow transplants operation, 

they will die for sure in a short time. 
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Considering the above made up example, the context is “marrow transplants operation” 

for predicting patients‟ recovery. If we know the status of the context - marrow 

transplants operation, then the sub models can be built for each case instead of building a 

full model without considering the context. The advantage is that, the sub models are less 

complicated and more accurate then the model built without context. This is because that, 

often, the context information itself can give fully accurate prediction about the 

outcomes. For example, if we know the patient did not receive marrow transplants 

operation, we are then one hundred percent sure that this patient will die.    

We build context sensitive models using Bayesian networks. Context sensitive 

Bayesian Networks can be represented in multiple methods, such as Bayesian multinets, 

similarity networks [53], tree structure [15] and context sensitive network [77] etc. 

Detailed technical information about context sensitive Bayesian network methods are 

summarized in Appendix C.4.   

9.2 CONTEXT IN IMBALANCED DATA 

In contrast to simplifying representation structures in Bayesian Network, a good context 

in imbalanced data set shall be able to reduce the imbalance ratio or data complexity and 

therefore produce a better performance.  Specifically, there are two criteria for choosing a 

good context – either by reducing data imbalance level or by reducing problem 

complexity. In order to reduce the data imbalance level, the context shall be able to 

physically split the training data into two smaller data sets, such that the imbalance level 
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is substantially reduced in one data, while the other data set contains negligible minority 

cases; In order to reduce the problem complexity, the context shall be able to logically 

divide the data into two data sets, such that data complexity is reduced in both data sets.       

    For example in the sphere data shown in Figure 9-1 and Table 9-1, the total 

sample space has an imbalance ratio of 4%. There exists a context C which splits the data 

into two – data A under context C and data B under non context C. The imbalance ratio is 

38.1% for data A, and is 0.3% for data B. The context C can help us model data A and B 

separately. Since the sample space for data A is much less imbalanced (38.1%) 

comparing to the original data (4%), it should be much easier to predict the minorities. 

Even though we may lose predictions on the minorities inside data B, we can still get a 

very good overall accuracy, as the minorities in data B is small.  

 The above example showed a context that can physically divide the training space 

into small portions and therefore make the sub models more adapted to each scenario. As 

shown in the following sessions, the context can logically divide the training space and 

reduce the concept complexity without reducing the data size.  

9.3 DATA SETS 

The data sets we used include sphere data, asthma first visit data and asthma sub visit 

data. In sphere data, we illustrate the context that can divide the training space to build 

sub models adapted to different local scenarios. In asthma first visit data, the context can 

separate the training space into two sub spaces, where sub models are used to generate 
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synthetic data to build a combined MDS model. In asthma sub visit data, the context we 

used does not reduce the training space; instead it can reduce the concept complexity to 

improve the performance.  

9.3.1 SIMULATED DATA 

As shown in Figure 9-1, the minority data spreads around the sphere and the majority 

data either spreads inside or outside the sphere. The imbalance ratio of the total space is 

4%. In the context of upper sphere, the imbalance ratio is 0.381, and in the context of 

lower sphere, the imbalance ratio is 0.003.  

 

 

 

 

Figure 9-1 Simulated Context Specific Data 

Table 9-1 Data samples of the sphere 

 Minority Majority 

Total sample space 40 1000 

Context - upper half sphere 37 60 

Context - lower half sphere 3 940 

IB ratio=0.381 

 

IB ratio=0.003 
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The data in the lower half sphere contain very few minority samples, but with 

most majority samples.  The data in the upper half sphere contain most of the minority 

samples, but with fewer majority samples.  

9.3.2 ASTHMA FIRST VISIT DATA 

The context we used in asthma first visit data is whether the patient takes theophyline or 

not. As shown in Table 9-2 and Figure 9-2, the imbalance ratio for the sub data under the 

context of “theophyline” is slightly decreased. Although the imbalance ratio for data 

under context “without theophyline” increased, the data set is too small to build a 

meaningful model.   

Table 9-2 Asthma first visit data distribution w/o context 

 Positive Negative Imbalance Ratio 

No Context 213 729 0.226 

Theophyline = yes  190 696 0.214 

Theophyline = no 23 33 0.41 
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Figure 9-2 Asthma first visit data distribution with context 

9.3.3 ASTHMA SUB VISIT DATA   

The context in this case study is the outcome measure – urgent nebulization or 

hospitalization.  These contexts share the same training space. They partition the training 

space logically instead of partitioning the sampling space physically. By separating these 

two outcome measures, the training space becomes more precise for each individual 

outcome measure as shown in Table 9-3 and Figure 9-3.  

Table 9-3 Asthma sub visit data distribution w/o context 

 Positive Negative Imbalance Ratio 

No Context 1247 4047 0.236 

Context = Hospitalization  973 4321 0.184 

Context = Unebulization 1241 4053 0.234 
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Figure 9-3 Asthma subsequent visit data distribution with context 

 

9.4 EXPERIMENT DESIGN 

 

 

 

 

Figure 9-4 Work flow for context sensitive sampling 

The workflow for context sensitive sampling is shown in Figure 9-4. First we need to 

select a context, which can separate the data as much as possible, and decrease the 

imbalance level of at least one generated data as much as possible. Training space can 
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then be divided according to the context to build sub models. The sub models can be 

combined to run on the testing space under different contexts. The algorithm for context 

sensitive MDS is as following:  

Context Sensitive MDS algorithm 

Context C is selected;  

Training data is divided into two parts – TD under C, and TD’ under C’ 

(negation of C) 

IF both TD and TD’ are significantly large enough 

THEN MDS Models built separately for TD and TD’ 

AND run the testing data for context C and C’ 

 OHTERWISE sub models built for TD and TD’ to form one combined MDS 

model 

AND run the testing data  

As shown in the algorithm, sub MDS models can only be built when there are 

enough training data in sub training data TD and TD‟ divided according to the context. If 

any of the training data are not significant enough to build a model, then one combined 

MDS is built instead, making use of the sub models to generate data. The data are 
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generated by the sub models proportionally to the amount of minority data inside TD and 

TD‟.     

9.5 EXPERIMENTAL RESULTS  

9.5.1 SPHERE DATA  

Without considering the context, the total sample space has a highly skewed distribution 

with imbalance ratio of 4%. The g-Mean value for our Bayesian net classifier without 

sampling is 0.543; and the g-Mean value for model driven sampling is improved to 0.624.   

Table 9-4 Results without context 

No sampling Model Driven Sampling  

a=sphere b=others a=sphere  b=others Actual Class 

12 28 16 24 A=sphere 

18 982 28 972 B=others 

TP=0.3 
TN=0.982 
g-mean=0.543 

TP=0.4 
TN=0.972 
g-mean=0.624 

Results 

As shown in Table 9-1, if we consider the context of upper sphere and under 

sphere, the data distribution for upper sphere will be relatively balanced; However, the 

data distribution for under sphere is extremely skewed, because most of the minority data 

is in upper sphere.  

The upper sphere is relatively balanced, thus it has good performance with g-

Mean value equal to 0.84. Model driven sampling slightly improves the accuracy of 

minority predictions, but drops in majority predictions. So overall, model driven 
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sampling cannot improve the performance when the data set is relatively balanced as 

shown in Table 9-5. The under sphere is extremely imbalanced, and the minority values 

are unpredictable with or without sampling as shown in Table 9-6. This is because the 

minority has too few values to be meaningful, and they are considered as noise in the 

classifier.  

Table 9-5 Running results for upper sphere 

No sampling  Model Driven Sampling  

a=sphere b=others a=sphere b=others Actual Class 

28 9 31 6 A=sphere 

4 56 21 39 B=others 

TP=0.757 
TN=0.933 
g-mean=0.84 

TP=0.838 
TN=0.65 
g-mean=0.738 

Results 

Table 9-6 Running results for under sphere 

No sampling Model Driven Sampling  

a=sphere b=others a=sphere  b=others Actual Class 

0 3 0 3 A=sphere 

0 940 0 940 B=others 

TP=0 
TN=1 
g-mean=0 

TP=0 
TN=1 
g-mean=0 

Results 

Table 9-7 Running Results for total sphere with context 

No sampling Model Driven Sampling  

a=sphere b=others a=sphere  b=others Actual Class 

28 12 31 9 A=sphere 

4 996 21 979 B=others 

TP=0.7 
TN=0.996 
g-mean=0.834 

TP=0.775 
TN=0.979 
g-mean=0.871 

Results 
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As shown in Table 9-7, the overall performance for the whole data set using 

context sensitive learning is 0.834 which is highly improved comparing to the result of 

0.543 without context. Context MDS can improve the performance from 0.624 to 0.871. 

9.5.2 ASTHMA FIRST VISIT DATA RESULTS 

Since the sub data shown in Table 9-3 and Figure 9-3 either get more imbalanced or are 

not significant enough to build an accurate model. We build two sub models from the two 

data sets, and generated synthetic samples to build a combined MDS model. The 

synthetic data are generated proportionally to the size of minorities in the sub training 

data. A MDS model is built on top of the synthetic data. Since the sub models are 

customized to their local context, the synthetic data created should be more relevant to 

the context. The result shown in Table 9-8 is slightly improved over the data generated 

without context with the highest performance of 0.685 as shown in Chapter 7.   

Table 9-8 Confusion matrix for context sensitive MDS in asthma first visit data 

Actual = control  Predicted  = failure   

156 57 Actual = control TP= 0.653 

251 478 Predicted = failure TN= 0.628 

  G-Mean= 0.693 

9.5.3 ASTHMA SUB VISIT DATA RESULTS   

The data distributions for asthma subsequent visit with respect to context of different 

types of emergency department visit is shown as in Table 9-3. Although the sub data 

imbalance level is not increased and the sub data size is not reduced, the concept 

complexity does drop. Instead of using a combined outcome measure, now each sub data 
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has its own precise outcome measure. To combine the results from the sub data sets, we 

check the predictions for each sample from both sub models. By definition of the asthma 

control failure as shown in section 7.1, if either prediction is true, then the sample is 

predicted to be true in the total space, otherwise the sample is false.  As shown in Table 

9-9, context sensitive MDS does increase the performance to 0.76 comparing with the 

performance of 0.725 without context (the highest MDS score for asthma sub visit data as 

shown in Chapter 7). 

Table 9-9 Asthma subsequent visit data‟s performance with context 

Context= 

Hospitalization 

Context= 

Unebulization 

Combined results  

a= 

positive 

b= 

negative 

a= 

positive 

b= 

negative 

a= 

positive 

b= 

negative 

Actual Class 

651 322 711 530 863 384 A=positive 

194 4127 308 3745 664 3383 B=negative 

TP=0.669 
TN=0.955 
g-mean=0.799 

TP=0.573 
TN=0.924 
g-mean=0.728 

TP=0.692 
TN=0.836 
g-mean=0.76 

Results 

9.6 DISCUSSIONS 

In this chapter, we have described three different types of context sensitive MDS 

methods. They are empirically shown to improve the overall performance by isolating the 

minority data into a much smaller data space, or by producing a smaller and more precise 

model to generate synthetic data, or by reducing the concept complexity.    

It is essential to select a good context. The important characteristic of a good 

context is that it can partition the sampling space, to produce smaller sub training spaces, 
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with more concrete concepts in each sub training space. For the three data sets we have 

examined, the contexts for sphere data and asthma sub visit data are relatively good, they 

can improve the system performance substantially. However, for asthma first visit data, 

the context is not well chosen, and one of the separated spaces is not significant 

comparing to the overall training space, therefore the improvement is negligible.   
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CHAPTER 10: CONCLUSIONS  

10. CONCLUSIONS 

10.1 REVIEW OF EXISTING WORK 

In this thesis, we have reviewed existing approaches in imbalanced data learning, both on 

algorithm level approaches and data level approaches. We focused on the more promising 

data sampling approaches. The popular approaches include random sampling, SMOTE 

sampling, and progressive sampling. Random sampling creates duplicated data to bias to 

the minority. SMOTE sampling creates synthetic data using the nearest neighbor to bias 

to the minority. Progressive sampling finds the near optimal distributions using any 

sampling method. Random sampling and SMOTE sampling focus on how to sample data, 

while progressive sampling is a method telling how much to sample. Progressive 

sampling generally can be applied to other data sampling methods.  

Existing approaches make use of only the data sample itself or its nearest 

neighbor, while in reality, with consideration of other data samples, we can generate 

more meaningful data. In real life experiments, we usually have domain experts‟ input in 

addition to the training data space. However, as far as we have seen, none of the existing 

approaches ever make use of the domain expert knowledge, such as experts‟ input, 

context information etc. to help data generation.    
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10.2  COUNTRIBUTIONS 

In this thesis, we have proposed a model driven sampling approach (MDS). MDS creates 

synthetic data from the model built from the whole training space and domain 

knowledge. MDS has been empirically shown to be performing better than other 

approaches in most cases. Even in the worst case scenario, it performed comparably to 

the existing best approach.  

10.2.1   THE GLOBAL SAMPLING METHOD 

MDS is a global sampling approach. Existing approaches mostly either make replications 

or make use of its nearest neighbors – the local knowledge to generate data. Data sampled 

from local sampling methods are often not accurate. However, it is not trivial to sample 

data directly from the whole training space. In this thesis, we use probabilistic graph to 

model the whole training space and then generate synthetic data from the model 

thereafter. The data sampled from the global model can better simulate the true reality. 

We have experimentally shown that MDS generally performed better than other sampling 

approaches including random sampling and SMOTE sampling methods, on both the 

simulated data sets and the real life data sets.    

10.2.2 MDS WITH DOMAIN KNOWLEDGE  

Existing sampling approaches mainly make use of only the training data to generate 

synthetic data. MDS, however, can also use domain experts‟ knowledge to generate 

synthetic data. Bayesian network allows probabilistic uncertainties to be represented in a 
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graphical structure. The model built is explicit to experts allowing domain knowledge to 

be more readily combined into the model.  For example, experts can make necessary 

changes to the structure and conditional probability table according to their experience, 

which is particularly useful when the training space is limited or noisy. By integrating 

domain knowledge into the model, the data generated becomes more accurate. It is 

extremely useful for sparse data with high imbalance ratios, or for cases without enough 

training data – absolute rarity. Domain knowledge can make up for the lack of data and 

can usually help build a more accurate model. 

Domain experts can also provide the “context” information to the model. Context 

sensitive Bayesian network allows MDS to create models separately under different 

contexts. The sub models created are normally more concrete and more adapted to its 

context. A good context sensitive model can reduce the system complexity; meanwhile it 

can improve the system efficiency and accuracy by adapting to its local environment.   

In this dissertation, domain knowledge based MDS has been empirically shown to 

outperform other sampling approaches in various situations. However, from our 

experimental results, domain knowledge based MDS may not necessarily outperform the 

MDS method, due to possible deficiencies in the domain knowledge. Therefore, correctly 

selecting good domain knowledge is very important in the model creation step.  
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10.2.3   MDS COMBINED WITH PROGRESSIVE SAMPLING  

Progressive sampling is an effective way in determining the optimal data distributions for 

data sampling. MDS can be combined with the progressive sampling method. The 

synthetic data generated from the model can be incrementally added to the training space 

until an optimal data distribution is discovered.  Progressive MDS can guarantee an 

optimal data distribution found for MDS, instead of using the balanced data distribution 

which may not be optimal. As shown in our experiments, most of the data reached their 

optimal performance with imbalance ratio less than 50% (balanced data distribution).  

10.2.4   CONTEXT SENSITIVE MDS 

One type of very useful domain expert knowledge or knowledge from literature is the 

context in a training space. Context sensitive MDS can make use of context sensitive 

Bayesian network to build models. We have shown that three different types of contexts 

can be applied and they did improve the system performance over the cases without 

contexts.  Context sensitive MDS can simplify the problem by building smaller but more 

accurate models under various contexts. Therefore, the synthetic data created is more 

specific under a certain context and thus is more accurate and meaningful. It has been 

shown in asthma sub visit data that context sensitive MDS can decompose the training 

space logically, instead of reducing the training data size, to reduce the sub models‟ 

complexity.        
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10.3  LIMITATIONS 

MDS assumes that the balanced data distribution is the optimal data distribution for our 

targeted imbalanced data set, which is often inaccurate in real cases. We have shown in 

our experiments on progressive MDS that, the optimal data distributions for most data 

sets we experimented on are not balanced.  

MDS also assumes that the model built from the training space or domain 

knowledge is reasonably accurate. However, noisy training space or noisy experts‟ 

knowledge often result in noisy models, and therefore the synthetic data created might 

also contain a lot of noise. This might in turn degrade the system performance.    

10.4  FUTURE WORK 

Future work includes testing our work and adapting it to real life clinical usage; further 

research is needed in context sensitive model driven sampling and a comprehensive 

context sensitive system should be able to minimize the workload and produce better 

synthetic data. Model correctness checking in MDS and MDS with domain experts‟ 

interactions are also potential research areas especially in clinical domains.   

10.4.1  FUTURE WORK IN ASTHMA PROJECT 

Rather than using traditional statistical analysis, we have used machine learning method 

combining domain knowledge and training data to create a knowledge model which 

could allow physicians to view and modify it explicitly. The synthetic data created 
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improved the predictions for minorities and the overall performance. In future, we aim to 

integrate our work into a platform for the practical usage in asthma treatment.  A more 

detailed study using ROC curves as the evaluation metrics is necessary, to help identify 

the tradeoff between the positive prediction rate and the negative prediction rate.  

10.4.2   FUTURE WORK IN MDS 

Although we have used a mixed expert approach for model selections in MDS, the model 

correctness is not checked. In future work, we can design a model checking and 

verification mechanism in MDS, to make sure that the synthetic data generated are 

reasonably clean and correct.   

Context sensitive Bayesian network is a relatively new research area, so is the 

context sensitive MDS. In future work, we can make use of the adaptive context sensitive 

Bayesian network (e.g. context sensitive network - CSN in [77]) to build adaptive context 

sensitive model driven sampling system. Further exploration of context sensitive model 

driven sampling should make sampling more efficient and effective. The synthetic data 

created should be more adapted to their local environments.   

Knowledge based model driven sampling will be further studied, especially in 

clinical domains. Knowledge acquisition, knowledge representation, and domain experts‟ 

interaction in model driven sampling also need further research work.  

Another research direction in MDS is to systematically combine context sensitive 

MDS with progressive sampling. Making use of  the latest progressive sampling 



 

 154 

approaches [147] could enable us to develop a progressive, context sensitive and adaptive 

MDS system that can better manage the imbalanced data problems.   
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APPENDIX A: ASTHMA FIRST VISIT ATTRIBTUES 

Chi-Square Value Serial number Attribute 

107.7204275 109 Nebulisation Count 

58.31685305 124 Oral Steriods Count 

39.67437921 137 DrugSubvention 

24.41403192 1 Patient's Record No 

23.8157766 101 MC 

23.19437045 112 UNebulisation Freq 

20.5933934 100 Asthma Duration 

16.90825091 79 Change PDrugs LAB2 

15.26578832 39 Trigger Factor Haze 

13.91803023 62 Activity stopped 

13.08053925 80 Change PDrugs Others 

12.4672092 8 In Attendance Doctor 

12.42476301 52 InhalerTurbuhaler 

12.07582708 70 GINA 

11.59475463 76 Change PDrugs Long Acting Theophyline 

11.21030447 104 Intubations 

10.95772934 60 Days with wheeze/cough/SOB 

10.83167101 84 Change PDrugs ICS+LABA Dosage 

10.70129567 46 Compliance Medication 

9.778479921 108 Hospitalisation Count 

9.237047006 77 Change PDrugs Oral Steroids 

9.023499665 7 In Attendance Nurse 

8.621066197 44 Trigger Factor Stress 

8.565699306 118 UNebulisation Loc6 Hospital 

8.514731932 113 UNebulisation Loc1 Home 

7.80473233 129 Smoking Years 

7.613835636 16 Current PDrugs SAB2 

7.571389379 54 InhalerAccuhaler 

7.321208867 9 Refer Source 

7.257758541 18 Current PDrugs Others 

7.156944846 47 Inhaler Techniques Skills 

6.933595589 59 Absent from School 

6.745369375 117 UNebulisation Loc5 GP 

6.675081521 102 Fatal Asthma 
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6.41598551 92 Change PDrugs ICS+LABA Dosage Freq 

5.831843595 107 Hospitalisation 

5.153821328 37 Trigger Factor House dust 

5.119909533 41 Trigger Factor Change Weather 

4.977570285 119 UNebulisation Loc7 SAF 

4.558494836 131 Quit Smoking Years 

4.460246116 86 Change PDrugs Oral Steroids Dosage 

4.312186356 15 Current PDrugs Oral Steroids 

4.29671566 4 Patient's Race 

4.201291251 38 Trigger Factor Animal dandens 

4.049825363 63 Spirometry 

3.911923349 11 Current PDrugs Budesonide 

3.812551403 61 Nights with wheeze/cough/SOB 

3.725273357 94 Change PDrugs Oral Steroids Dosage Freq 

3.609613787 106 Intubations date 

3.203153075 132 Remarks 

2.988782459 98 Reinforcement by Asthma Nurse 

2.74443775 13 Current PDrugs ICS+LABA 

2.69501443 97 Written Action 

2.358558676 121 Oral Steroid Use 

2.357469532 111 UNebulisation 

2.250441328 128 Cigarettes 

2.244121461 14 Current PDrugs  Long Acting Theophyline 

2.015195733 50 InhalerMDI 

1.828543773 82 Change PDrugs Budesonide Dosage 

1.764324153 72 Change PDrugs BDP 

1.681304796 75 Change PDrugs ICS+LABA 

1.651949062 115 UNebulisation Loc3 MOPD 

1.605494276 51 InhalerMDISkills 

1.588585301 73 Change PDrugs Budesonide 

1.478529795 20 Current PDrugs BDP Dosage 

1.468701003 99 Next Visit 

1.468701003 133 Patient Discharge 

1.465246483 10 Current PDrugs BDP 

1.38665092 55 InhalerAccuhalerSkills 

1.376995488 17 Current PDrugs LAB2 

1.282882364 114 UNebulisation Loc2 EMD 

1.255279905 116 UNebulisation Loc4 Polyclinic 

1.186615958 45 Trigger Factor Others 

0.970255631 21 current PDrugs Budesonide Dosage 
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0.932169215 71 Change in Treatment 

0.91504215 48 Today's PEFR 

0.892796719 23 Current PDrugs ICS+LABA Dosage 

0.859182307 74 Change PDrugs Fluticasone 

0.777314069 3 Patient's Sex 

0.71585618 19 Current PDrugs Others Define 

0.590858913 127 Smoking 

0.577066923 130 Quit Smoking 

0.564997255 53 InhalerTurbuhalerSkills 

0.498920964 78 Change PDrugs SAB2 

0.493367966 85 
Change PDrugs Long Acting Theophyline 
Dosage 

0.471429603 12 Current PDrugs Fluticasone 

0.464708952 136 Default 

0.448926757 110 Nebulisation Date 

0.437660255 103 Fatal Asthma Specify 

0.393656292 126 Sinusities 

0.385928934 25 Current PDrugs Oral Steroids Dosage 

0.375894493 87 Change PDrugs LAB2 Dosage 

0.354808136 58 InhalerOthersSpecify 

0.336429655 29 current PDrugs Budesonide Dosage Freq 

0.298278389 28 Current PDrugs BDP Dosage Freq 

0.289745031 49 Device 

0.238122963 95 Change PDrugs LAB2 Dosage Freq 

0.235148392 43 Trigger Factor Exercise 

0.225077009 105 Intubations Count 

0.169984291 40 Trigger Factor Household Smoking 

0.155377383 42 Trigger Factor Food 

0.135891343 88 Change PDrugs Others Dosage 

0.082514262 56 InhalerOthers 

0.080887704 96 Change PDrugs Others Dosage Freq 

0.05691553 24 
Current PDrugs Long Acting Theophyline 
Dosage 

0.053574973 31 Current PDrugs ICS+LABA Dosage Freq 

0.045562091 57 InhalerOthersSkills 

0.041694735 36 Trigger Factor Respiratory Infections 

0.036525854 33 Current PDrugs Oral Steroids Dosage Freq 

0.0341245 5 Patient's Race Others Define 

0.033972836 123 LT Oral Steroids Dose 

0.023832984 32 Current PDrugs Long Acting Theophyline 
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Dosage Freq 

0.018199733 93 
Change PDrugs Long Acting Theophyline 
Dosage Freq 

0.018199733 22 Current PDrugs Fluticasone Dosage 

0.017648226 26 Current PDrugs LAB2 Dosage 

0.01678635 90 Change PDrugs Budesonide Dosage Freq 

0.004853262 34 Current PDrugs LAB2 Dosage Freq 

0.001632054 120 UNebulisation Loc8 Others 

8.67E-04 30 Current Pdrugs Fluticasone Dosage Freq 

7.87E-04 122 LT Oral Steroids 

0 135 Patient Discharge Loc 

0 6 Email 

0 2 Hospital Database 

0 83 Change PDrugs Fluticasone Dosage 

0 69 FVC Predicted 

0 81 Change PDrugs BDP Dosage 

0 125 LT Oral Steroids DosePRN 

0 134 Patient Discharge Date 

0 89 Change PDrugs BDP Dosage Freq 

0 91 Change PDrugs Fluticasone Dosage Freq 

0 64 FEV1 Pre 

0 27 Current PDrugs Others Dosage 

0 35 Current PDrugs Others Dosage Freq 

0 67 FVC Post 

0 68 FEV1 Predicted 

0 65 FVC Pre 

0 66 FEV1 Post 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 159 

APPENDIX B: ASTHMA SUBSEQUENT VISIT 

ATTRIBUTES 

Chi-square Value Serial Number Attribute  

66.839159 111 MV Followup Wks 

63.418969 48 MV UNebulisation 

61.116986 58 MV Events 

59.437961 70 MV Nights with wheeze/cough/SOB 

58.913096 69 MV Days with wheeze/cought/SOB 

57.808841 71 MV Activity stopped 

54.304761 68 MV Absent from School 

35.975015 82 MV Change PDrugs Budesonide 

32.08058 93 MV Change PDrugs ICS+LABA Dosage 

31.128854 19 MV Current PDrugs ICS+LABA Dosage 

28.881451 88 MV Change PDrugs LAB2 

26.517257 1 Patient's Record No 

23.287515 72 MV GINA 

22.289848 61 MV Event Loc2 EMD 

21.421383 110 MV Next Visit 

20.540627 112 MV Patient Discharge 

20.065187 51 MV UNebulisation Loc2 EMD 

18.990223 84 MV Change PDrugs ICS+LABA 

18.965559 14 MV Current PDrugs LAB2 

18.943687 53 MV UNebulisation Loc4 Polyclinic 

16.38451 6 MV Doc Attend 

15.807197 64 MV Event Loc5 GP 

15.791881 54 MV UNebulisation Loc5 GP 

15.503807 86 MV Change PDrugs Oral Steroids 

14.614197 63 MV Event Loc4  Polyclinic 

14.224848 3 MV Visit Number 

13.439703 89 MV Change PDrugs Others 

10.258882 57 MV UNebulisation Loc8 Others 

9.906678 55 MV UNebulisation Loc6 Hospital 

9.03152 85 MV Change PDrugs Long Acting Theophyline 

7.892892 8 MV Current PDrugs Budesonide 

7.413237 11 MV Current PDrugs Long Acting Theophyline 



 

 160 

7.022468 108 MV Reinforcement by Asthma Nurse 

6.986097 50 MV UNebulisation Loc1 Home 

6.306862 56 MV UNebulisation Loc7 SAF 

6.036752 107 MV Written Action 

6.015504 60 MV Event Loc1 Home 

5.900364 65 MV Event Loc6 Hospital 

5.602406 38 MV InhalerAccuhaler 

5.58369 10 MV Current PDrugs ICS+LABA 

5.202452 15 MV Current PDrugs Others 

4.668484 44 MV Hospitalisation 

3.491643 66 MV Event Loc7 SAF 

3.458807 13 MV Current PDrugs SAB2 

3.354906 32 MV Compliance Medication 

3.131694 25 MV Current PDrugs Budesonide Dosage Freq 

2.622827 17 MV Current PDrugs Budesonide Dosage 

2.607965 36 MV InhalerTurbuhaler 

2.480872 102 MV Change PDrugs ICS+LABA Dosage Freq 

2.377684 12 MV Current PDrugs Oral Steroids 

2.051057 91 MV Change PDrugs Budesonide Dosage 

1.996892 34 MV InhalerMDI 

1.484064 33 MV  Inhaler Techniques Skills 

1.407848 46 MV Nebulisation Count 

1.352479 5 MV Nurse Attend 

1.285623 87 MV Change PDrugs SAB2 

1.031819 100 MV Change PDrugs Budesonide Dosage Freq 

0.893954 59 MV Events Freq 

0.738605 95 MV Change PDrugs Oral Steroids Dosage 

0.686344 80 MV Change in Treatment 

0.627169 49 MV UNebulisation Freq 

0.588005 37 MV InhalerTurbuhalerSkills 

0.569995 109 MV Physical Signs 

0.450508 7 MV Current PDrugs BDP 

0.373848 18 MV Current PDrugs Fluticasone Dosage 

0.358638 52 MV UNebulisation Loc3 MOPD 

0.33091 27 MV Current PDrugs ICS+LABA Dosage Freq 

0.282603 67 MV Event Loc8 Others 

0.271822 83 MV Change PDrugs Fluticasone 

0.215102 62 MV Event Loc3 MOPD 

0.177185 101 MV Change PDrugs Fluticasone Dosage Freq 

0.176091 81 MV Change PDrugs BDP 
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0.16104 42 MV InhalerOthersSpecify 

0.158453 39 MV InhalerAccuhalerSkills 

0.115186 28 
MV Current PDrugs Long Acting Theophyline 
Dosage Freq 

0.113611 4 MV VisitDefault 

0.095503 20 
MV Current PDrugs Long Acting Theophyline 
Dosage 

0.094022 92 MV Change PDrugs Fluticasone Dosage 

0.087734 104 MV Change PDrugs Oral Steroids Dosage Freq 

0.086523 26 MV Current PDrugs Fluticasone Dosage Freq 

0.082263 105 MV Change PDrugs LAB2 Dosage Freq 

0.062627 97 MV Change PDrugs LAB2 Dosage 

0.03898 103 
MV Change PDrugs Long Acting Theophyline 
Dosage Freq 

0.037918 94 
MV Change PDrugs Long Acting Theophyline 
Dosage 

0.024218 47 MV Nebulisation Date 

0.019744 22 MV Current PDrugs LAB2 Dosage 

0.018761 106 MV Change PDrugs Others Dosage Freq 

0.012412 98 MV Change PDrugs Others Dosage 

0.009939 73 MV Spirometry 

0.008972 30 MV Current PDrugs LAB2 Dosage Freq 

0.008073 41 MV InhalerOthersSkills 

0.005747 40 MV InhalerOthers 

0.00503 21 MV Current PDrugs Oral Steroids Dosage 

0.004325 16 MV Current PDrugs BDP Dosage 

0.00391 23 MV Current PDrugs Others Dosage 

0.003699 113 MV Patient Discharge Loc 

0.002999 45 MV Hospitalisation Count 

0.002011 9 MV Current PDrugs Fluticasone 

0.001362 29 MV Current PDrugs Oral Steroids Dosage Freq 

0.001322 35 MV InhalerMDISkills 

0.000757 90 MV Change PDrugs BDP Dosage 

0.000673 24 MV Current PDrugs BDP Dosage Freq 

0.000605 31 MV Current PDrugs Others Dosage Freq 

0 2 Hospital Database 

0 114 MV DiagnosisDeath 

0 77 MV FVC Post 

0 76 MV FEV1 Post 

0 79 MV FVC Predicted 
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0 78 MV FEV1 Predicted 

0 99 MV Change PDrugs BDP Dosage Freq 

0 43 MV Today's PEFR 

0 75 MV FVC Pre 

0 96 MV Change PDrugs SAB2 Dosage 

0 74 MV FEV1 Pre 
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APPENDIX C: RELATED WORK - BAYESIAN NETWORK 

In this appendix, we mainly discuss about the technology basis used in this dissertation, 

which is typically the Bayesian network [96, 115]. We discussed the Bayesian network 

learning including structure learning and parameter learning for building a Bayesian 

network model. We also introduced context sensitive Bayesian networks and discussed 

different sampling techniques in Bayesian network which can be used for data 

generation.  

C.1. STRUCTURE LEARNING 

Bayesian Network structure can be constructed from domain knowledge manually. There 

are generally two ways to automate the process of constructing a BN from knowledge 

base – one is score based method, and another is constraint based method.  

In a score based approach, we can define our own model selection criteria. 

Learning a network structure can be considered as an optimization problem where a 

quality measure of a network structure given the knowledge base must be maximized 

according to our criteria. Some searching methods in a score based approach are Greedy 

Search, K2 [32], MCMC [115], etc.  

Different from score based approach, constraint based approach mainly uncovers 

BN causal structure by conditional independence tests. The assumption is that there exists 

a network structure that exactly represents independencies in a system. It follows that if 

there is no edge between two variables, then a conditional independence can be identified 
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from knowledgebase. Once all edges are located, the directions of an edge can be 

adjusted so that the conditional independencies can be properly represented. Constraint 

based methods are based on the following assumptions: 1) Causal sufficiency: There are 

no hidden variables in the domain which are parents of observed variables; 2) Causal 

Markov: given present, future is independent of past. Popular available methods are PC 

algorithm, IC algorithm, etc.  

C.2. PARAMETER LEARNING 

Given BN structure is known, there are two categories of parameter learning problems – 

learning from complete data and learning from incomplete data.  

 Learning parameters from complete data and known structure is straightforward 

given that all parameters in the domain are independent. The close form solution can 

update each parameter values independently, e.g. Maximum Likelihood Estimation 

(MLE) [102]. Learning parameters from incomplete data is under the Missing-At-

Random (MAR) assumption where missing values or patterns are dependent on the 

observed variable values. Obviously, when data is missing, parameters are not 

independent any more. There is no closed form solution in this case. Approximate 

methods including Expectation maximization (EM), Mont Carlo methods etc are used 

instead.  
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C.3. CONSTRUCTING FROM DOMAIN KNOWLEDGE 

Domain knowledge is always useful in improving the machine learning models. It is 

especially useful for constructing Bayesian networks. Both the structures and conditional 

probability tables can be inferred directly from the domain knowledge [62, 90, 108].  

To construct a Bayesian network from domain knowledge, there are three 

assumptions: 

i. All variables are known in advance – the variables in the Bayesian network are 

determined; 

ii. Domain knowledge can readily assert the causal relationships (typically 

correspond to the assertions of conditional dependencies ) between variables  – 

the edges in the Bayesian network can be determined by domain knowledge;  

iii. The values of conditional probabilities can be estimated from domain knowledge. 

Constructing Bayesian networks completely from domain knowledge is generally 

achieved in three main steps [36]:  

i. Determine the number of variables and the meaning of these variables in the 

domain of interest;  

ii. Determine whether there exist direct causal influence relationships between the 

variables in the domain; and 
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iii. Determine the conditional probability distributions given the structure of the 

Bayesian network from the first two steps.  

Quite a few Bayesian networks have been constructed in this way, e.g. QMR-DT 

[99]. Various methods have been proposed to construct Bayesian networks with causal 

domain knowledge [36, 63]. 

C.4. CONTEXT SENSITIVE BAYESIAN NETWORK 

C.4.1. CONTEXT DEFINITION IN BAYESIAN NETWORK 

Bayesian networks have a lot of good properties in machine learning. However, there are 

certain properties that we cannot capture in Bayesian Network, for example, context 

specific independencies (CSI), i.e. given an assignment of a context variable, the 

networks structure can be much simplified. Context sensitive Bayesian network include 

Bayesian multinets [105], similarity networks [53], tree structure [15] and context 

sensitive network by Joshi, et al [77] etc. 

Qualitatively, Bayesian Networks describe variable independencies – a variable is 

independent of its non-descendants given its parents. Quantitatively, Bayesian Networks 

represent probabilistic distributions that quantify inter-variable correlations. We specify a 

distribution by associating each note X a conditional probabilistic table (CPT) which 

represents conditional distribution of X given its parents. Let‟s consider the following 

example which demonstrates the deficiencies of Bayesian Network representation.  



 

 167 

 In hospitals, for leucocythemia patients, if they receive marrow 

transplants operation, they have a chance of 50% to survive with good care, and 50% 

chance to die with life extension without good care. But if they do not receive marrow 

transplants operation, they will die for sure in a short time.  

As shown in Figure C-1, node X and Y are binary variables. Variable X represents 

marrow transplants operation (value „t‟ for receiving operation and „f‟ for rejecting 

operation), variable Y represents care after operation to avoid virus infection (value „t‟ 

for good caring, „f‟ for bad caring), and variable Z represents patient‟s status (value‟z1‟ 

for “survival”, „z2‟ for “death with life extension”, „z3‟ for “death‟).  

A CPT is usually in a tabular form, as shown in the figure.  Since X, Y are binary 

variables, we need to specify four distributions for variable Z, which is exponential to the 

number of its parents. But if we examine the table carefully, we find that P(z|x, Y) = z3 

when X=f regardless values of variable Y.  So clearly, we need only three distributions 

rather than four, and the saving becomes essential when the network grows large [15].   
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Figure C-1 Context Specificity in Bayesian Network 

C.4.2. BAYESIAN MULTINET 

Let P (C, U1, … Un) be a probability distribution, C be a context variable with values A1, 

… Ak. If each graph Di (1<=i<=k) corresponding to distribution P(U1,… Un| Ai) is a 

Bayesian Network, we say the set of all Di (1<=i<=k) is a Bayesian multinet of P.    

 

Figure C-2 A Bayesian multinet representation for leucocythemia example 

The Bayesian Network representation in Figure C-1 hides the fact that 

leucocythemia patient‟s status is independent with the care received if he did not receive 

any operation. We can represent this example more explicitly by using two networks as 

shown in Figure C-2, whereby the first network represents a patient never receives 

Z Z 

Y Y 
X X 

Rejecting operation Accepting operation 

X Y    P(z) 
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marrow transplants operation, and the second represents a patients has received the 

operation. Figure C-2 is obviously a much better representation than Figure C-1. It makes 

use of the context of whether a patient receiving marrow transplants operation and shows 

the dependence between care and patient‟s status only in the context of a patient 

receiving the operation. Also in Figure C-2, we only need three distributions rather than 

four. The saving can be substantially large when the network grows large, due to the fact 

that distributions grow exponentially with the number of variables growing, while the 

overhead of multi-network representations only grows linearly. 

C.4.3. SIMILARITY NETWORKS 

Bayesian multinet requires every variable to be in the local network, which adds 

inefficiencies as well as confusions in knowledge acquisition if some of the variables are 

not related to the hypothesis. On the other hand, we cannot simply eliminate those non-

related variables from local networks, because doing so could dangerously lose valuable 

information. For example if we change values of variable X in the leucocythemia 

example as:  

 x1: reject operation because of no proper marrow match 

 x2: reject operation because of lack of money 

 x3: accept operation 
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Figure C-3 A similarity network representation 

Then multinet representation of the example will become like in Figure C-3, (F is 

a binary variable with value either “this patient needs funding support from charity”, or 

“this patient needs donation of proper matched marrow). So if we haphazardly remove 

unrelated nodes, this piece of information will be lost in the network. Similarity network 

[63] can help to resolve this problem.  

A similarity network is very similar to a multinet, except that the nodes in each 

local network are only those that can “help to discriminate” the hypothesis under a certain 

context. “Context values” in all local networks are formed a connected cover of the value 

set of the context variable. The similarity network representation of the amended 

leucocythemia example is shown in Figure C-4.  

    

Operations rejected Operation accepted 

Z Z 

Y Y X 
X 

F 



 

 171 

 

Figure C-4 Similarity Network Representation of leucocythemia 

A cover for a context variable C with value set C-set= {C1, … Ck} means: the 

distributed union of context values that appeared in all local networks is  C-set. A cover 

is connected if and only if all local networks can be connected by their common nodes 

with the context value. As shown in Figure C-4, {x1, x3}, and {x2, x3} is a cover set of 

context value set. It is connected because it consists of the links x1->x3->x2 to form a 

connected graph, and the two local networks are by chance the same in our example.  

The advantages of similarity networks are: It tightens the local network 

representation much further comparing to multinet representation yet keeping all relevant 

information in the system, which is more efficient; By reducing irrelevant variables in 

local networks, confusing in knowledge acquisition from experts can be reduced; It 

prevents model builder to lose relevant information by forcing local networks a 

connected cover for context.  For example, if the local networks of the similarity network 

is according to the cover set{x1, x2}, {x3}, then the information why patients reject 

x1: operation rejected 

because of lack of money 

x3: operation accepted 
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x2: Operation rejected 

because of no marrow 
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operations would be lost. This property of similarity network was called exhaustiveness 

by Heckerman. Disadvantages of similarity network, connected cover set is not trivial, 

and it is rather tricky to select a good one. 

C.4.4. TREE STRUCTURE REPRESENTATION 

 

Figure C-5 Tree structure representation 

Friedman et. al. [52] constructed a tree representation for CPT at variable Z in the 

simplest leucocythemia example as shown in Figure C-5.  (Left arc represents true, and 

right arc represents false). In context ~x, clearly Y is rendered independent of Z. A path 

in the tree is the set of arcs from the roof node to a leaf node, the label of a path is the 

values of the variables occurring on that path, and a path is consistent with  a context c if 

only if the label of a path is consistent with the assignment in context c. For example, in 

Figure C-5, path x->y->z1 is consistent with context {x, y}.  An edge is said to be 

redundant if the starting node is not lying on any path consistent with context c. For 

example, Y-> Z is redundant in the context of {~x}.  

Z 

Y X 

Network 

X 

z3 Y 

z2 z1 

Tree for Z 
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The advantage of tree representation is its naturalness and clearness, we can even 

directly read contexts information from paths of the tree; each path of a tree represents a 

distribution, and the distributions could be very compact after a proper pruning. 

However, the building of a tree can easily go exponential with large number of nodes, or 

each node with a large value set. 

C.4.5. NATURAL LANGUAGE REPRESENTATION 

Liem Ngo et. al. [106] defined a language for representing context-sensitive knowledge 

declarative semantics. The language can be abstracted as follows:  

Type:  

P|P*     => Denoting probability distribution 

Ai| Bj|…  => Denoting atoms 

X |Cap_ini  => Denoting domain variable (Cap_ini = names start with 

capital letter) 

p | q   => Denoting Predicates 

 

Values:  

Predicate = Context Predicate | Probabilistic Predicate 

Context Predicate = True | False (deterministic)  

Context Atom = c-atom (atom formed from context predicate) 

Context literal (c-literal) = c-atom | ~c-atom 

Context Base = { C0 <- L1, L2, …Ln} type of {c-atom <- c-literal, …  c-literal} 

Probabilistic Atom = p-atom (atom formed from probabilistic predicate)  

… 

KB = <PD, PB, CB, CR> 
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A knowledge base consists of four basic units, namely there are: predicate 

declarations (PD), probabilistic base (PB), Context Base (CB), and Combining Rules 

(CR). Consider the example in Figure 2, the language representation will be like:  

PD = { Z(Some result: Result, V), VAL(Z)={survival, death with life extension, 

death}; 

            Y(Some care: Care, V), Val(Y)={good, bad} 

        } 

PB = { P(Y(y, good)) = .5 

 P(Y(y, bad)) = .5 

 P(Z(z, survival) =1  <- Y(y, good), accept_operation(X) 

            P(Z(z, death) =1  <- reject_operation(X)  

 P(Z(z, death with life extension) =1  <- Y(y,bad), accept_operation(X) 

} 

 

CB = { accept_operation(X) <- ~reject_operation(X) 

 reject_operation(X) <- ~accept_operation(X)} 

C.5. INFERENCING  

In previous sessions we introduced compact representations of probability distributions - 

Bayesian Networks. A network describes a unique probability distribution P, and there 

are a lot of queries that we could answer about P.  

We use inference as a name for the process of computing answers to such queries. 

There are many types of queries that we might ask, most of which involve evidences. An 

evidence e is an assignment of values to a set E variables in the domain. Without loss of 
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generality, we can represent E by a subset E = [ Xk+1, …, Xn ]. The simplest query is to 

compute the likelihood of evidence:  

 

 

Most of the time, we are interested in the conditional probability of a variable 

given the evidence: 

 

Which is the posteriori belief in X given evidence e. This query is useful in many 

cases: 

 Prediction: what is the probability of an outcome given the starting condition; 

                  Target is a descendent of the evidence. 

 Diagnosis: what is the probability of disease/fault given symptoms; 

Target is an ancestor of the evidence 

 Data Sampling: Generate data samples that are realizations of P(x) given the 

evidence. Target is all the nodes in the probabilistic distribution P(x) except of 

the evidence. 

C.6. DATA SAMPLING METHODS  

The objective of sampling is to generate samples from a learned probabilistic distribution 

P(x). Here, the sample generated from a distribution P(x) is a single realization of x 

whose probability distribution is P(x), instead of a collection of realizations x as in 

statistics.  It is assumed that P(x) can be evaluated such that P(x)=P
*
(x)/Z. But P(x) is too 
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complicated for us to sample from it directly. We assume that we have a simpler density 

Q(x) which we can evaluate to within a multiplicative constant where Q(x) = Q
*
(x)/ZQ, 

and from which we can generate samples. The expectation of a P(x) is given by Equation 

C-1.   

                      

Equation C-1 Expectation of function P(x) 

We used Figure C-6 to Figure C-8 similar to McKay et. al. [98] to introduce 

different sampling techniques in the following sections.  

C.6.1. IMPORTANCE SAMPLING 

In importance sampling [98], we generate R samples from Q(x). If these points were 

samples from P(x) then we could estimate   by  

Equation C-1. But when we generate samples from Q, values of x where Q(x) is greater 

than P(x) will be over-represented in this estimator and where Q(x) is less than P(x) will 

be under-represented. Thus an “importance” factor    
     

     
 is introduced to adjust 

each point, and    
           

    
.  

A practical difficulty with importance sampling is that it is hard to estimate how 

reliable the estimator    is. The variance of    is hard to estimate, because the empirical 

variances of      and         are not necessarily a good guide to the true variances of 

the numerator and denominator in    
           

    
. 
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Figure C-6 Importance Sampling 

C.6.2. REJECTION SAMPLING 

In rejection sampling, we assume that we know the value of constant c such that for all x, 

cQ
*
(x) > P

*
(x). A schematic picture of the two functions is shown in Figure C-7 (a). We 

generate two random numbers. The first, x, is generated from the proposal density Q(x). 

We then evaluate CQ
*
(x) and generate a uniformly distributed random variable u from 

the interval [0, cQ
*
(x)]. These two random numbers can be viewed as selecting a point in 

the two dimensional planes as shown in Figure C-7 (b).  

We now evaluate P
*
 (x) and accept or reject the sample x by comparing the value 

of u with the value of P
*
 (x). If u > P

*
 (x) then x is rejected; otherwise it is accepted.  
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Rejection sampling will work best if Q is a good approximation to P. If Q is very 

different from P then c will necessarily have to be large and the frequency of rejection 

will be large.  

 

Figure C-7 Rejection Sampling 

C.6.3. THE METROPOLIS METHOD 

Importance sampling and rejection sampling only work well if the proposal density Q(x) 

is similar to P(x). In large and complex problems it is difficult to create a single density 

Q(x) that has this property.  

  



 

 179 

 

 

Figure C-8 Metropolis method, Q(x'; x) is here shown as a shape that changes with x 

The metropolis method instead makes use of a proposal density Q which depends 

on the current state x
(t)

. The density Q(x’;x
(t)

) might in the simplest case be a simple 

distribution such as a Gaussian centered on the current x
(t)

. The proposal density Q(x‟; x) 

can be any fixed density. It is not necessary for Q(x’;x
(t)

) to look at all similar to P(x). 

Figure C-8 shows the density Q(x’;x
(t)

) for two different states x
(1) 

and x
(2). 

A tentative 

new state x’ is generated from the proposal density Q(x’;x
(t)

). To decide whether to accept 

the new state, we compute the quantity  

  
      

        

          

          
 

If a ≥ 1 then the new state is accepted.  

Otherwise, the new state is accepted with probability a. 
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If the step is accepted, we set x
(t+1)

 = x’; otherwise then set x
(t+1) 

= x
(t)

. The 

difference of metropolis sampling to rejection sampling is that rejection causes the 

current state to be written onto the lists instead of discarded. The metropolis method is an 

example of a Markov chain Monte Carlo method (MCMC). MCMC methods involve a 

Markov process in which a sequence of states is generated, each sample x
(t) 

 having a 

probability distribution that depends on the previous state x
(t-1)

.  

C.6.4. GIBBS SAMPLING 

 Gibbs sampling, also known as heat bath method, is a method for sampling from 

distributions over at least two dimensions. It can be viewed as a Metropolis method in 

which the proposal density Q is defined in terms of the conditional distributions of the 

joint distribution P(x). It is assumed that whilst P(x) is too complex to draw samples from 

directly, its conditional distributions P(xi|xj, j≠i) are tractable to work with.  

We illustrate Gibbs sampling using two variables x1, x2 . On each iteration, we 

start from the current state x
t
, and x1 is sampled from the conditional density P(x1|x2), 

with x2 fixed to x2
t
. A sample x2 is then made from the conditional density P(x2|x1), using 

the new value of x1. This brings us to the new state x
(t+1)

, and completes the iteration.  
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