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SUMMARY 

 

This thesis concerns the study of coupled flow systems which compose of a 

porous medium layer and a homogenous fluid layer. The study consists of three parts: 

channel partially filled with a porous medium, fluid-porous domains coupled by 

interfacial stress jump, microchannel reactors with porous walls. The low Reynolds 

number flow is studied in present work.  

The flow through a channel partially filled with fibrous porous medium was 

analyzed to investigate the interfacial boundary conditions. The fibrous medium was 

modeled as a periodic array of circular cylinders, in a hexagonal arrangement, using 

the boundary element method. The area and volume average methods were applied to 

relate the pore scale to the representative elementary volume scale. The permeability 

of the modeled fibrous medium was calculated from the Darcy‘s law with the 

volume-averaged Darcy velocity. The slip coefficient, interfacial velocity, effective 

viscosity and shear jump coefficients at the interface were obtained with the averaged 

velocities at various permeability or Darcy numbers.  

Next, a numerical method was developed for flows involving an interface 

between a homogenous fluid and a porous medium. The numerical method is based 

on the lattice Boltzmann method for incompressible flow. A generalized model, 

which includes Brinkman term, Forcheimmer term and nonlinear convective term, 

was used to govern the flow in the porous medium region. At the interface, a shear 

stress jump that includes the inertial effect was imposed for the lattice Boltzmann 

equation, together with a continuity of normal stress. The present method was 
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implemented on three cases each of which has a porous medium partially occupying 

the flow region: channel flow, plug flow and lid-driven cavity flow. The present 

results agree well with the analytical and/or the finite-volume solutions. 

Finally, a two-dimensional flow model was developed to simulate mass transfer 

in a microchannel reactor with a porous wall. A two-domain approach, based on the 

lattice Boltzmann method, was implemented. For the fluid part, the governing 

equation used was the Navier–Stokes equation; for the porous medium region, the 

generalized Darcy–Brinkman–Forchheimer extended model was used. For the 

porous-fluid interface, a stress jump condition was enforced with a continuity of 

normal stress, and the mass interfacial conditions were continuities of mass and mass 

flux. The simplified analytical solutions are deduced for zeroth order, Michaelis-

Menten and first order type reaction, respectively. Based on the simplified analytical 

solutions, generalized results with good correlation of numerical data were found 

based on combined parameter of effective channel distance. The effects of Damkohler 

number, Peclet number, release ratio and Mechaelis-Menten constant were studied. 

Effectiveness factor, reactor efficiency and utilization efficiency were defined. The 

generalized results could find applications for the design of cell bioreactors and 

enzyme reactors with porous walls. 
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NOMENCLATURE 

 

 

a Release ratio (release rate over absorb rate) 

A  Cross-section area  

c Lattice velocity Δx/Δt; substrate concentration 

botc  Concentration at bottom 

cin Concentration at inlet 

intc  Concentration at interface 

outc  Average concentration at outlet 

cs Speed of sound 

C Non-dimensional concentration 

botC  Non-dimensional concentration at bottom 

CF Forchheimer coefficient 

Cin Non-dimensional concentration at inlet 

intC  Non-dimensional concentration at interface 

qC  Contour of qth  particle 

d  Diameter of the circular cylinder 

Dam  Damkohler number 

faDam  Damkohler number for absorption cell in fluid region 

frDam  Damkohler number for release cell in fluid region 

paDam  Damkohler number for absorption cell in porous region 

prDam  Damkohler number for release cell in porous region 

Da  Darcy number, 2/K H  
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D Diffusivity in plain fluid region 

Deff Effective diffusivity 

ei Particle velocity vector along direction i 

fi Particle distribution function 

D

if  Disturbance component of the hydrodynamic traction 

fi
eq

 Equilibrium particle distribution function 

g Gravity constant 

G Body force 

h  Height of porous region 

H  Height of fluid region 

1H  Height of homogeneous fluid region 

2H  Height of fluid-saturated porous medium region 

k  Carman-Kozeny constant 

km Half-saturation parameter, Michaelis-Menten constant 

Km Non-dimensional Michaelis-Menten constant 

K  Permeability  

1 2,l l  Representative element volume cell dimensions 

el  Ratio of the cylinder radius to the cell radius 

nl  Ratio of half the center spacing divided by the cylinder radius 

L Length 

n  Unit vector normal to the interface 

p Intrinsic average pressure 

p  Local average pressure p p   

Pr Prandtl number  

Pe Peclet number 



 X 

fPe  Peclet number for fluid region 

pPe  Peclet number for porous region 

Q  Flow rate 

Ra Rayleigh number 

Re Reynolds number 

Sc Schmidt number 

T Temperature 

,u v  Velocity at x-coordinate and y-coordinate 

0u  Lid driven top lid velocity 

au  Mean velocity 

Du  Darcy velocity 

_f avu  Average flow velocities in fluid region 

intu  Interface velocity  

nu  Velocity component normal to the interface 

_p avu  Average flow velocities in porous region 

tu  Velocity component parallel or tangential to the interface 

,U V  Dimensionless velocity, / Du u  

intv  Interface velocity vector 

fv  Volume fraction of the fibrous medium 

mV  Maximum substrate uptake or release rate per cell 

maV  Maximum substrate uptake rate for absorption  

mrV  Maximum substrate release rate for release  

x , y  Cartesian coordinates 

'y  
Distance at y-coordinate to calculate volume averaged interface 

velocity 
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X ,Y  Dimensionless Cartesian coordinates, /x H and /y H  

 

Greek Symbols 

  Slip coefficient 

C  Stress jump coefficient in Chandesris & Jamet‘s model 

1, ,O    Stress jump coefficient in Ochoa-Tapia & Whitaker‘s model 

  Cell density 

a  Cell density of absorption cell 

r  Cell density of release cell 

  Porosity 

  Reactor efficiency 

u  Utilization efficiency (or conversion rate) 

  Reaction rate parameter 

 , f  Fluid dynamic viscosity  

eff  Brinkman effective viscosity 

  Fluid kinematic viscosity 

e  Effective (Brinkman) kinematic viscosity 

  Local effectiveness factor 

  Mass density of the fluid 

ωi Weight coefficients for the equilibrium distribution function 

 

Superscripts 

D  Disturbance component 

eq Local equilibrium 

  Far-field incident component 
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 Average value along cross section / outlet / inlet etc. 

 

Subscripts 

a Substrate absorption  

bot Bottom position 

D, Da  Darcy 

eff Effective property 

f Fluid side property 

fluid Fluid side property 

i Component in direction ei 

in Inlet position 

int Interface position 

n Direction normal to the interface 

out Outlet position 

p Porous side property 

porous Porous side property 

r Substrate release  

t Direction parallel or tangential to the interface 

0y   Position in y-coordinate at 0y   

0 Initial state 

  Upper side of interface 

  Below side of interface 

_ av  Average value 
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Abbreviations 

2-D Two-dimensional 

3-D Three-dimensional 

BEM Boundary element method 

D2Q5 Two-dimensional five speed 

D2Q9 Two-dimensional nine speed 

EDF Equilibrium distribution function 

FDM Finite difference method 

FEM Finite element method 

FVM Finite volume method 

GLBM Generalized Lattice Boltzmann method 

LBE Lattice Boltzmann equation 

LBM Lattice Boltzmann method 

LTE Local thermal equilibrium 
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Chapter 1 Introduction 

 

1.1 Background 

The study of flow systems, which consists of porous media and homogenous 

fluids, is relevant to a wide range of industrial and environmental applications. 

Examples of practical applications are drug delivery with porous microspheres, fuel 

cells, drying process, electronic cooling and ceramic processing, and bioreactors with 

porous scaffolds. The porous matrix in the bioreactor provides opportunities for the 

cells to grow into three-dimensional spaces, and thus maintain their normal functional 

activities. Another interesting application is enzyme reactors which have porous 

silicon etched along the walls in the microchannels. Glucose oxidase was 

immobilized on the porous structure and the enzyme activity was monitored 

following a colorimetric assay.  

To analyze flow in a domain partially filled with a porous medium, it is needed 

to couple the flow equations of the fluid and porous regions by using the interfacial 

boundary conditions. The interfacial conditions will also influence the heat and mass 

transfer across the interface. To investigate the interfacial boundary conditions, 

simple models of flow through a channel partially filled with a porous medium have 

been considered. These studies can be classified into three types according to scales: 

the pore scale, the representative elementary volume (REV) scale, and the domain 

scale. 
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In the pore scale, the fluid in the pores of the medium have been directly studied. 

In this scale, the detailed flow characteristics in the pores can be obtained, and these 

characteristics can be used to predict the values of the parameters and flow properties 

for the domain scale and REV scale. In the pore scale, the pore structures are always 

irregular and difficult to be averaged over a representative elementary volume (REV). 

Numerical simulation of porous media with heterogeneous or non-homogeneous 

elements will need finer mesh which will definitely greatly increase the computation 

cost. For some large scale application scenarios, pore scale study is almost impossible 

based on present hardware and simulation technologies. Hence the application of pore 

scale studies in complex engineering problems present challenging problems.  

The representative elementary volume (REV) is a statistical representation of 

typical material properties. It is defined as a smallest volume over which a 

measurement of characteristics can be made that will yield a value representative of 

the flow region. Below REV, the parameter is not defined and the material cannot be 

treated as a continuum. The REV scale is much larger than the pore scale but much 

smaller than the domain scale. The main advantages of the REV scale are its high 

computational efficiency and easy of application compared with the pore scale. Many 

studies have been done in the REV scale in the past several decades for porous 

material with homogeneous elements. Several important volume averaged parameters 

of porous media, such as permeability, effective viscosity, velocity and pressure, can 

only be predicted from REV scale experiment or numerical analysis. 

In the domain scale, the whole porous media flow domain was considered as 

homogeneous in every grid point inside the porous media. One set of governing 
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equations was implemented in each selected domain. The literature review for domain 

scale study will be presented in Section 1.2.2.  

The judgment of whether a material is homogeneous or heterogeneous depends on 

how large the scale is. In the present work, the material will be homogeneous if its 

properties can be represented by volume averaged values over a selected REV.  

  

1.2 Literature Review 

1.2.1 Porous flow modeling in pore and REV scale 

For the porous medium, an important parameter is permeability. Theoretical and 

numerical predictions of permeability have been made based on approximations over 

the REV scale volume average. Kozeny et al. (1927) approximated the porous 

medium by tortuous capillaries to develop an expression for the permeability. In the 

Carman-Kozeny model (Carman 1937), a hydraulic diameter is defined from the 

specific surface area and porosity of the packed bed of particles. By applying the 

Poiseuille equation, the permeability is obtained in terms of the particle diameter, 

porosity, and a Carman-Kozeny constant. The Carman-Kozeny model has been 

commonly used for granular porous media. 

For fibrous media, due to its anisotropy, it is more appropriate to model them by 

arrays of cylinders. The solid volume fraction of the fibrous medium is a fraction of 

the volume of cylinders over the total volume, between 0-1. On the contrary, the 

porosity is a fraction of the volume of void spaces over the total volume. The 

permeability is obtained from the drag resistance across the cylinders. Two extreme 
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cases were considered to obtain a closed form solution for the whole range of porosity: 

closed packed and widely spaced cylinders. 

The lubrication theory by Keller (1964) is used for low porosities when the 

cylinders are closely packed. The pressure drop over the small gap between cylinders 

can be calculated analytically to give the permeability of the array (Happel 1959): 

 

1

2
2

2

2 3 2

1
arctan

1 11 1
3 1

12 21

n

n n

n n

n n

l

l lK
l l

d l l



  
  

     
 

 
  

                         (1.1) 

where d  is the cylinder diameter, K  is the permeability of the porous medium and 
nl  

is the ratio of half the center spacing divided by the cylinder radius and can be 

expressed by the volume fraction as: 

2 4
n fl v


                                                       (1.2) 

where fv  is the volume fraction of the fibrous medium.  

The unit cell model is used for high porosities when the cylinders are widely 

spaced. It assumes that the cylinders are spaced far away so that the region can be 

divided into independent cells. Thus the arrangement of the fibers has no effects on 

the solution. Typically a circular cell is adopted with the cylinder located in the centre, 

whose radius depends on the porosity. From the drag on the cylinder the permeability 

can be obtained (Happel 1959):  

 
2 4

2

2

3
ln

16 4 4

e e
e e

l lK
l l

d

 
     

 
                                        (1.3) 
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where 
el  is the ratio of the cylinder radius to the cell radius and is related to volume 

fraction of the porous medium by: 

2 1
e

f

l
v

                                                      (1.4) 

where fv  is the volume fraction of the fibrous medium.  

Different mathematical treatments have been used in the cell model based on 

Stokes flow. For example, there are the free-surface models of Happel (1959) with 

zero drag force and Kuwabara (1959) with vorticity free boundary condition. There 

are also methods using Fourier series to calculate the drag force of the cylinder in the 

cell model, for example those of Hasimoto (1959), and Sangani and Acrivos (1982a 

1982b). The method of singularities was used by Lord Rayleigh (1892) and 

Drummond and Tahir (1984). Wang (1996, 1999 and 2001) used the eigenfunction 

expansion method. 

In addition to methods for the extreme cases, there is a hybrid model of Bruschke 

and Advani (1993) which attempts to predict the permeability over the full porosity 

range. The approach combines functions from both the lubrication and cell models. 

Weighting functions, which depend on the porosity, are used to make the solution 

tends asymptotically to the extreme cases of lubrication or cell models. The 

asymptotic model gives a smooth transition from lubrication to cell model, which 

covers the middle range of porosity. The asymptotic model is given in terms of the 

porosity (Bruschke and Advani 1993): 

 
 

 
2

2

11 1 3
ln 1

16 1 1 4 4

K

d




 

   
           

                (1.5) 
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where   is the porosity.  

 

1.2.2 Porous flow modeling in domain scale 

The velocity in a porous medium is related to the pressure gradient by the 

Darcy‘s law (Vafai, 2000): 

             
K p

u
x


 


                                                                (1.6) 

where p is the interstitial pressure, u is the mean filter velocity,   is the dynamic 

viscosity of the fluid, K is the permeability of porous media. 

Darcy‘s law is valid only when the flow is of the seepage type and the fluid is 

homogeneous. The Darcy‘s law can be considered valid in situations where the flow 

is of creeping type (Greenkorn, 1981) or when the porous medium is densely packed 

with small enough permeability (Rudrauah and Balachandra, 1983), so that the pore 

Reynolds number based on the local volume averaged speed is less than unity. 

However, Darcy‘s law neglects the boundary and inertial effects of the fluid flow due 

to the small porosity associated with the medium. When the velocity gradient is high, 

viscous effects cannot be taken into account in this law, especially in the presence of 

a solid wall, due to its low order accuracy. When the fluid Reynolds number is large 

enough, it will over predict the actual fluid motion and the other effects (for example, 

inertial, viscous and convective effects) cannot be neglected (Vafai and Tien, 1981; 

Hsu and Cheng, 1990). 

Non-Darcian effects have been incorporated to account for the other effects in 

porous flow. Forchheimer (1901) suggested a modification to the previous models to 
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account for inertia effect. This was due to the rather high speed of the flow in some 

porous media, which was neglected in Darcy‘s law. Lapwood (1948) and Yin (1965) 

added the unsteady term in the Darcy‘s law to account for temporal acceleration. 

Brinkman (1947a, 1947b) introduced a viscous term by examining the flow past a 

spherical particle to account for the viscous shear stresses that acted on the fluid 

element. An effective fluid viscosity inside the porous domain was used in his 

formulation. 

When all the unsteady, inertia and viscous effects are taken into consideration, 

Vafai and Tien (1981), Hsu and Cheng (1990) derived the generalized Darcy-

Brinkman-Forchheimer extended model, given as: 

  0u                                                                                    (1.7)                                                                                                          

  2

Brinkman TermPressure Term Darcy TermUnsteady Term Forchheimer TermConvective Term

FC uu uu
p u u u

t K K

 
  


 

 
 


        


 (1.8) 

where Equation (1.7) is the mass continuity equation; Equation (1.8) is the 

momentum conservation equation;   is porosity; K is the permeability; u  the local 

average velocity vector (Darcy velocity); t is time;   is the fluid density;   is the 

fluid dynamic viscosity; p  is the intrinsic average pressure; and 
FC  is  Forchheimer 

coefficient. The local average and intrinsic average can be related by the Dupuit-

Forchheimer relationship, for example, p p  .   

Equation (1.7) and (1.8) were derived using local averaging technique. In this 

approach, a macroscopic variable is defined as an appropriate mean over a 

sufficiently large representative elementary volume (REV) (Figure 1.1). This 

operation yields the value of that variable at the centroid of REV (Vafai and Tien, 
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1981, Larson and Higdon 1987, Sahraoui and Kaviany 1992, Whitaker 1999 and Bai 

et al. 2009a). It is assumed that the result is independent of the size of the REV. The 

length scale of the REV is much larger than the pore scale, but smaller than the length 

scale of the macroscopic domain scale. 

It should be noted that the above Equations (1.7 and 1.8) are the most general 

equations governing the flow of a viscous fluid in porous media. They can recover the 

standard Navier-Stokes equations when the porosity approaches unity and Darcy 

number goes to infinity. This characteristic facilitates its use for flow problems with 

porous/fluid coupled domains, based on a one domain approach, as reviewed later in 

Section 1.2.4. 

 

1.2.3 Heat and mass transfer modeling 

There are two kinds of models for heat transfer in porous media. One is the local 

thermal equilibrium (LTE) model, which is widely accepted and used in various 

analytical and numerical studies on transport phenomena in porous media. It is 

assumed that both the fluid and solid phases are at the same temperature (Vafai and 

Tien, 1981; Hsu and Cheng, 1990; Nithiarasu et al., 1997 and 2002), due to the high 

conductivity value of the solid parts in porous media. Under the assumption of LTE, 

many investigators have used one unique set of equation to obtain temperature 

distributions in a porous medium because an analysis based on the one-equation 

model is simple and straightforward. The other model is local thermal non-

equilibrium (LTNE) model, where two sets of energy equations are used to treat the 

solid phase and the fluid phase separately (Khashan et al., 2006; Haddad et al., 2007). 
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This model is employed when temperature difference between the two phases is 

considered as a crucial design parameter. 

 

1.2.4 Porous and fluid coupled systems 

From the modeling point of view, three different approaches can be used to 

represent transport phenomena in coupled fluid and porous domains: domain scale, 

REV scale and pore scale. Domain scale studies can be classified as: one-domain and 

two-domain approaches. The detailed comparison of one-domain and two-domain 

approaches has been given out by Goyeau et al. (2003) and here their main 

differences are discussed. Table 1.1 lists classifications for modeling of coupled fluid 

and porous medium system.  

 

1.2.4.1 Domain scale modeling 

In the one-domain approach, the porous region is considered as a pseudo-fluid 

and the whole regions including fluid and porous domains are treated as a continuum. 

One set of general governing equations is applied for the whole domain (Mercier et al. 

2002, Jue 2004, Silva and Lemos 2003, Costa et al. 2004, Goyeau et al. 2003). The 

transition from the fluid to the porous medium, such as the abrupt change of 

permeability and porosity values across the interface, is achieved through a 

continuous spatial variation of properties. In this case, the explicit formulation of 

boundary condition is avoided at the interface and the transitions of the properties 

between the fluid and porous medium are achieved by certain artifacts (Goyeau et al. 
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2003), as the matching conditions are automatically implicitly satisfied. Thus this 

approach has been extensively used in previous numerical computations dealing with 

natural convection (Bennacer et al., 2003; Gobin et al., 2005), forced convection 

problems (Zhang and Zhao, 2000; Abu-Hijleh, 1997 and 2000) in coupled fluid and 

porous domains. 

However, in the one-domain approach attention should be paid to the abrupt 

jump of permeability and porosity along the interface which may result in numerical 

instabilities (Basu and Khalili, 1999). It may be overcome by unphysical numerical 

techniques (Basu and Khalili, 1999). Thus, its physical representation of momentum 

conservation at the interfacial region depends on the relevance of the discretization 

scheme (Goyeau et al., 2003). Although the one-domain approach is relatively easy to 

implement, the flow behavior at the interface depends on how the code is structured 

(Nield 1997, Yu et al. 2007) and hence it is not a good choice to solve coupled flow 

and porous domains.  

In the two-domain approach, two sets of conservation governing equations are 

applied to describe the flow in the two domains separately and additional boundary 

conditions are applied at the interface to couple the two sets of equations. Interfacial 

boundary conditions for flow and heat transfer at the porous-fluid interface have been 

proposed previously and summarized in Tables 1.2 and 1.3.   
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Slip and non-slip interface conditions 

 

The earliest study on the interfacial conditions is that by Beavers and Joseph 

(1967). In their approach, the flows in a homogeneous fluid and a porous medium are 

governed by the Navier-Stokes and Darcy equations respectively. The governing 

equations are of different orders in the different regions. Thus a semi-empirical slip 

boundary condition was proposed at the interface to couple the equations, where the 

slip coefficient depends on the local microstructure geometry of the interface. The 

interface condition contained a jump in both stress and velocity. To make the 

governing equations of the same order, Neale and Nader (1974) introduced the 

Brinkman term in the Darcy equation for the porous medium. The continuity of both 

stress and velocity was proposed at the interface. An analytical solution of this model 

was deduced by Vafai and Kim (1990). Another interfacial boundary condition 

involving continuous stress was proposed by Kim and Choi (1996) who used the 

effective viscosity in the porous medium.  

Alternatively, Brinkman correction to Darcy‘s law (Brinkman, 1947a, 1947b) can 

be used to meet the second order requirement in the porous region. Therefore, 

continuity of both velocity and shear stress can be satisfied at the interface. However, 

stress jump conditions can also be written in order to account for the heterogeneity of 

the interfacial region (Ochoa-Tapia and Whitaker, 1995a). In the two-domain 

approach, the involved adjustable parameters (slip coefficient, stress jump coefficient) 

are difficult to predict and need further practical experiments to validate their values 

(Ochoa-Tapia and Whitaker, 1995b).  
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Stress-jump interface conditions 

 

The non-continuity of both velocity gradient and shear stress has been developed 

by Ochoa-Tapia and Whitaker (1995a, 1995b). The development was based on the 

non-local form of the volume averaged Stokes‘ equation. The length-scale constraint 

was that the radius of the averaging volume is much smaller than the height of the 

fluid channel. Under these assumptions, the volume-averaged equations in the 

homogeneous fluid regions are equivalent to the point equations; and the analysis of 

jump condition is greatly simplified because a single volume-averaged transport 

equation is used in both fluid and porous regions. The jump condition links the Darcy 

law, with Brinkman‘s correction, to the Stokes equation. The analysis produced a 

jump in the stress but not in the velocity. The normal component of jump condition 

simply reduced to continuity of pressure. The function for the jump coefficient 

indicates dependence on permeability and porosity and was complex to solve. The 

coefficient was expected to be of order one, and may be either positive or negative. It 

was noted that the parameter depends on /K   where   is the thickness of the 

boundary region. 

Subsequently, Ochoa-Tapia and Whitaker (1998b) developed another stress 

jump condition which includes the inertial effects. Though inertial effects may be 

negligible in homogeneous regions of channel flow, it is not negligible in the 

boundary between the porous and fluid regions. Outside the boundary regions, the 

non-local form of the volume-averaged momentum equation reduces to the 

Forchheimer equation with Brinkman correction and the Navier Stokes equation. Two 
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coefficients appear in this jump condition: one is associated with an excess viscous 

stress and the other is related to an excess inertial stress.  

The stress jump parameter (associated with an excess viscous stress) was derived 

by Goyeau et al. (2003) as an explicit function of the effective properties of a 

transition layer between the fluid and porous regions. The parameter is also related to 

the variations of the velocity in the transition layer, which is an unknown in the 

problem. Recently, Chandesris and Jamet (2006) presented a model in which the 

shear jump is built on fluid stress rather than effective stress. An explicit function for 

the stress jump coefficient was obtained which only depends on the characteristics of 

the porous medium (porosity and permeability) in the transition zone. 

 

Heat and mass transfer interfacial conditions 

 

For heat transfer interface conditions, usually continuities of temperature and 

heat flux are required (Neale and Nader, 1974; Vafai and Thiyagaraja, 1987; Ochoa-

Tapia and Whitaker, 1997; Jang and Chen, 1992; Kim and Choi, 1996; Kuznetsov, 

1999). However, other types of interfacial conditions are also possible. Ochoa-Tapia 

and Whitaker (1998a) proposed a jump condition for heat flux to account for its 

production or consumption at the interface. Another hybrid interfacial condition, 

continuity of heat flux but non-continuity in temperature, was proposed by Sahraoui 

and Kaviany (1994). 

For mass transfer interface conditions, Valencia-Lopez et al. (2003) developed a 

mass jump condition that representing the excess surface accumulation, convection, 
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diffusion adsorption and a nonequilibrium source, in addition to a term representing 

the exchange with the surrounding region. Recently, the closure problem has been 

derived by Valdes-Parada et al (2006 and 2007b) to predict the jump coefficient as a 

function of the microstructure of the porous layer.  

 

Numerical techniques for coupled fluid and porous domains 

 

Numerical solutions for the coupled viscous and porous flows have been 

attempted by many researchers with the two-domain approach (Gartling et al., 1996; 

Costa et al., 2004; Betchen et al., 2006). Costa et al. (2004) proposed a control-

volume finite element method to simulate the problems of coupled viscous and 

porous flows. A continuity of both velocity and stress at the interface was assumed 

and no special or additional procedure was needed to impose the interfacial boundary 

conditions. Betchen et al. (2006) developed a finite volume model, also based on 

continuity of both velocity and stress, but special attention was given to the pressure-

velocity coupling at the interface. 

The implementation of the numerical methodology on the stress jump condition 

based on Ochoa-Tapia and Whitaker (1995a, 1995b) can be found in the work of 

Silva and de Lemos (2003). They used the finite volume method with an orthogonal 

Cartesian coordinate system which is not easy to apply for complex geometries. The 

jump in shear stress was considered and there was no special treatment on velocity 

derivatives. Alazmi and Vafai (2001) proposed different types of interfacial 
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conditions between a porous medium and a homogenous fluid, and found that 

interfacial conditions have pronounced effects on the velocity field.  

Recently, Yu et al. (2007) developed a numerical method based on finite volume 

method with a collocated variable arrangement to treat the stress jump condition 

given by Ochoa-Tapia and Whitaker (1998), which includes the inertial effects. Yu et 

al. (2007) used body-fitted and multi-block grids to treat the fluid and porous regions. 

Their method is effective for the coupled problems in homogeneous fluid and porous 

medium regions with complex geometries.  

The main drawback of the stress jump condition is that its parameters are 

unknown. This closure problem has been investigated by many researchers recently 

(Goyeau et al., 2003; Chandesris and Jamet, 2006; Valdes-Parada et al., 2007; 

Chandesris and Jamet, 2007) and derivations have been proposed to evaluate the first 

stress-jump parameter which is viscous related.  

 

1.2.4.2 Pore and REV scale modeling 

In the pore and REV scale approach, there were a few studies giving solutions 

which describe the interfacial flow for fibrous porous media. Most studies were 

modeled by flow in a channel partially filled with an array of cylinders. Usually the 

volume averaged slip velocity and the volume averaged effective viscosity were 

investigated. There were very few attempts on analysis of stress jump coefficients.  

Larson and Higdon (1987) analyzed the shear flow near the surface of a porous 

medium, as modeled by cylindrical array, using boundary integral method. The 

volume averaged slip velocity and dimensionless effective viscosity were presented 
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as function of solid-volume fraction. The slip coefficient was found to be sensitive to 

the definition of the interface which they defined to be at the centre of the outermost 

cylinder. 

Sahraoui & Kaviany (1992) also modeled the porous medium by cylindrical 

arrays and used finite difference method to study the interfacial boundary conditions.  

The flow characteristics were volume averaged over selected REV. The volume 

averaged slip coefficient was presented in terms of Reynolds number and the 

distribution of the local effective viscosity was given. Their results of volume 

averaged slip coefficient agree well with the experiments of Beavers and Joseph 

(1967). 

James and Davis (2001) used a singularity method to solve the flow field for 

cylindrical arrays of large porosity (greater than 0.9). Their calculations showed that 

the external flow penetrated the porous medium very little. The volume averaged slip 

velocity was found to be about 0.4 of that predicted from the Brinkman model (based 

on effective viscosity). 

 

1.2.5 Lattice Boltzmann method approach 

1.2.5.1 Lattice Boltzmann modeling development for flow in porous media 

Besides the above macroscopic methods, another mesoscopic method to simulate 

the porous fluid flow is to use the lattice Boltzmann method (LBM). The standard 

Lattice Boltzmann Equation (LBE) was revised by adding an additional term to 

account for the influence of the porous medium (Spaid and Phelan 1997 & 1998, 
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Dardis and McCloskey 1998, Freed 1998, Martys 2001 and Kang et al. 2002). In this 

method, the detailed medium structure and direction is usually ignored, including the 

statistical properties of the medium into the model. Thus, it is not suitable to obtain 

detailed pore scale flow information. But the LBM with REV scale could be used for 

porous medium system of large size. Some examples of the models with REV scales 

are discussed below. 

Dardis and McCloskey (1998) proposed a Lattice Boltzmann scheme for the 

simulation of flow in porous media by introducing a term describing the no-slip 

boundary condition. By this approach, the loss of momentum resulting from the solid 

obstacles is incorporated into the evolution equation. A number ordered parameter of 

each lattice node related to the density of solid scatters is used to represent the effect 

of porous medium solid structure on the hydrodynamics. Their method removes the 

need to obtain spatial averaging and temporal averaging, and avoid the microscopic 

length scales of the porous media. 

Spaid and Phelan (1997) proposed a SP model of LBM which is based on the 

Brinkman equation for single component flow in heterogeneous porous media. The 

scheme uses a hybrid method in which the Stokes equation is applied to the free 

domains and the Brinkman equation is used to model the flow through the porous 

structures. The particle equilibrium distribution function was modified to recover the 

Brinkman equation. Through this way, the magnitude of momentum at specified 

lattice nodes is reduced and the momentum direction is kept. 

Freed (1998) proposed a similar approach by using an additional force term to 

simulate flows through a resistance field. An extension term was implemented to 
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modify the standard lattice BGK model (LBGK), which results in a local resistance 

force appropriate for simulating the porous medium region. Results of the simulation 

for uniform flow confirmed that the LBGK algorithm yields the satisfied and precise 

macroscopic behaviors. Also, it was observed that the fluid compressibility simulated 

by LBM influences its ability to simulate incompressible porous flows. 

Later the SP model was combined with a multi-component Lattice Boltzmann 

algorithm to extend for multi-component system (Spaid and Phelan 1998). The 

method was developed by introducing a momentum sink to simulate the multi-

component fluid flow of a fiber system. It was confirmed that the model is useful to 

simulate the multi-component fluid flow system. By using the LBM, the complex 

interface between two immiscible fluids can be easily dealt with without special 

treatment of the interface by tracking algorithm. 

Shan and Chen (1993) combined the Stokes/Brinkman LBM with the algorithm 

to model the multi-component infiltration of the fiber microstructure. The developed 

LBM is suitable to simulate flows containing multiple phases and multi-components 

immiscible fluids of different masses in constant temperature. One of the main 

improvements of this model is to include a dynamical temperature. The component 

equilibrium state can have a non-ideal gas state equation at a given temperature 

showing phase transitions of thermodynamics. 

The SP model was improved to generalize the LBM by introducing an effective 

viscosity into the Brinkman equation to improve the accuracy and stability (Martys 

2001). The approach can describe the general case when fluid viscosity is not the 

same as the effective viscosity. By implementing the dissipative forcing term into a 
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linear body force term, the validity of the Brinkman equation is extended to a larger 

range of forcing and effective viscosity. This model eliminates the second order 

errors in velocity and improves stability over the SP model. It also improves the 

accuracy of other applications of the model, such as fluid mixtures. 

The discussed Brinkman model and improved models have been shown to be an 

easily implemented and computationally efficient method to simulate fluid flows in 

porous media. However, these models are based on some relatively simple semi-

empirical models such as Darcy or Brinkman models. Therefore they have some 

intrinsic limitations. Vafai and Kim (1995) pointed out that if there is no convective 

term, the driving force of the flow field does not exist. Since Brinkman model does 

not contain the nonlinear inertial term, it is only suitable for low-speed flows. 

Recently, a generalized lattice Boltzmann method called GLBM (Guo and Zhao 

2002) was developed for isothermal incompressible flows. It is used to overcome the 

limitations of the Darcy or Brinkman model for flows in porous media. GLBM could 

automatically deal with the interfaces between different media without applying any 

additional boundary conditions. This enables the GLBM suitable to model flows in a 

medium with a variable porosity. The GLBM is based on the general Navier–Stokes 

model and considered the linear and nonlinear matrix drag components as well as the 

inertial and viscous forces. The inertial force term of GLBM is based on a recently 

developed method (Guo et al. 2002), and the newly defined equilibrium distribution 

function is modified to simulate the porosity of the medium. Because the GLBM is 

very close to the standard LBM, the GLBM solvers for the generalized Navier-Stokes 

equations are similar to the standard LBM solvers for the Navier-Stokes equations. 
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Furthermore, the force term in GLBM was used to simulate the interaction 

between the fluid and the media. It was equivalent to implementing an effective 

boundary condition between the fluid and the solid (Guo and Zhao 2002). The 

relationship between GLBM with pore scale and GLBM with REV scale could be 

built through the drag force term derived directly from the boundary rules. The results 

also showed that the nonlinear drag force due to the porous media is important and 

could not be neglected for high-speed flows. The numerical results agreed well with 

the analytical or the finite difference solutions. 

 

1.2.5.2 Lattice Boltzmann modeling development for heat and mass transfer in 

porous media 

For heat transport problem, the internal energy evolution equation was first 

given by He et al. (1998) using the two dimensional nine speed (D2Q9) lattice 

Boltzmann method (LBM). Later, Guo and Zhao (2005) revised the model of He et al. 

(1998) and presented one simpler temperature distribution function (TDF) and 

equilibrium temperature distribution function (ETDF). They also successfully 

extended their new model to porous medium flow and heat transfer. There are also 

many other studies in heat transfer using LBM (Peng et al. 2003, Zhang 2008, Chen 

et al. 2009 etc.).  

For mass transfer problem, the distribution function is similar to that of heat 

transfer problem because the governing equations are the convection and diffusion 

equation, which are similar for heat or mass transfers.  For example, Chen et al. (2007) 

simulated corrosion behavior and oxygen transport in the natural convection lead-
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alloy flow. There is no novelty in their temperature and mass distribution functions; 

their models are similar to that of Guo and Zhao (2005). Chen (2007) also used the 

same model of Guo and Zhao (2005) to simulate oxygen transfer in an enhanced 

forced convection system. 

As for the heat source or mass source problems, Zhang (2008) presented a lattice 

Boltzmann model for Pennes bioheat equation, which includes a temperature-

dependent heat source term. Yamamoto et al. (2005) presented a LBM formula for 

temperature and mass concentration, which contains the source term due to chemical 

reaction. 

 

1.2.5.3 Lattice Boltzmann modeling development for coupled system 

Martys (2001) used the lattice Boltzmann method (LBM) to model the flow 

through and over a partial porous medium in a channel. The study assumed 

continuation of both velocity and shear stress at the interface, by defining an effective 

viscosity term. The Stokes and Brinkman equations were used for fluid and porous 

flow respectively. Through a Chapmann-Enskog procedure, these governing 

equations can be transformed into lattice Boltzmann equations (LBE). A body force 

term caused by the porous medium was incorporated into the LBE as a linear first 

order or second order Hermite polynomials.  

Later, Guo and Zhao (2002) extend the study by using the generalized Navier-

Stokes equation and Darcy-Brinkmann-Forchheimer equation for the fluid and porous 

medium respectively. They also assumed continuation of both velocity and shear 

stress at the interface using the effective viscosity. In their study, the porosity was 
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included into the equilibrium distribution function, and a body force term was added 

to the LBE to account for the linear and nonlinear drag forces caused by the porous 

medium.  

In the existing LBM models for coupled flow with fluid and porous media, the 

assumed boundary condition is based on the continuation of shear stress at the 

interface through the use of the effective viscosity. However, as described earlier, 

there are other suitable boundary conditions, for example the stress jump conditions, 

which was derived under consideration of the Brinkman term and inertial term; and 

may be of importance to practical applications in mechanical, chemical and biological 

engineering. It would be of interest to examine how the stress jump conditions can be 

incorporated into the LBM model.  

At the domain scale, the LBM approach has the following advantages over the 

traditional CFD methods: easy implementation, natural for parallel computing and 

easy to treat complex boundary (Martys 2001, Guo et al. 2004). Besides the 

application of the LBM at the domain scale, the LBM is also capable of resolving 

porous media flow at the REV scale and pore scale. However, the LBM 

implementations of heterogeneous porous media at the pore scale demand very large 

lattice sizes, and both the operations and storage of the full lattices are needed; thus 

substantial computational and memory requirements are needed. To overcome waste 

of computational memory, Hou et al. (1995) presented a two-stage implementation 

which used a sparse lattice representation to store only the fluid cells. But their 

methods still have the following drawbacks (Guo et al. 2002): load imbalance, lack of 

nearest subdomain communication and complex communication pattern. Later, Wang 
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et al. (2000) contributed a cell-based domain-decomposition method for parallel 

lattice Boltzmann simulation of flow in porous media. Their method recovers the 

interfaces rather than the load balance and there was no need for iteration. The 

limitation of their method is assumption that all cells are either fluid or solid. 

However for the real porous media, the solid structure is very complex and either the 

fluid cells or solid cells may be of irregular shape.  

 

1.2.6 Mass transfer in reactors with porous media 

Numerical simulation can be a very useful tool for design of tissue engineering 

bioreactors with controlled mass transfer parameters. Martin et al. (2004) pointed out 

that computational fluid dynamics (CFD) could be used to optimize flow conditions 

rather than using a trial-and-error approach. Several researchers had implemented 

CFD methods to study fluid dynamics and mass transfer parameters in scaffolds and 

bioreactors. Based on the dimension scale of porous scaffolds, these studies can be 

classified into three different types: at a pore or/and REV scale for the analysis of 

fluid dynamics inside the idealized or realistic 3D micro pore structure of the 

scaffolds (Boschetti et al. 2006, Galbusera et al. 2007, Cioffi et al. 2006, Raimondi et 

al. 2002, 2004, Porter et al. 2005 and Cantini et al. 2009) and at a domain scale for 

the analysis of the homogeneous porous scaffolds using domain scale (Williams et al. 

2002, Sengers et al. 2005, Dhanasekharan et al. 2005, Dvir et al. 2006, Ma et al. 2007, 

Zeng et al. 2006, 2007, 2008, Yu et al. 2009, Chen et al. 2010).  

For bioreactors with porous media, experimental research has been conducted 

previously. Dusting et al. (2006) experimentally investigated, using particle image 
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velocimetry technique, the flow field and shear stress outside a scaffold in a spinner-

flask bioreactor. It was found that vortex breakdown may still occur and relatively 

large stresses occur along the edge of scaffold protruding into the boundary of the 

vortex breakdown region. A perfusion bioreactor was designed (Ma et al., 1999; Zhao 

and Ma, 2005) with fibrous matrix walls in the channels, for tissue engineering of 

trophoblast and mesenchymal stem cells. 

Mathematical modeling and numerical simulations have also been carried out 

and used to explain experimental results or cast light on research directions for mass 

transfer in reactors with porous media. Porter et al. (2005) applied the lattice-

Boltzmann method to simulate the flow of culture media through scaffolds in a 

bioreactor. Micro-computed tomography imaging was used to define the micro-

architecture of the scaffold for the simulations. The local shear stress was estimated 

from velocity derivatives at various media flow rates. Boschetti et al. (2006) 

developed a computational fluid dynamic model of the flow through a three 

dimensional scaffold of homogeneous geometry. The scaffold was idealized as 

composing of many subunits which were obtained by subtracting a solid sphere from 

a concentric solid cube.  

In both of the above two approaches, a large number of elements were needed to 

describe the microstructure of the scaffolds. Herein the pore / REV scale study of 

mass transfer in porous media is limited by high end requirements of computing 

resources.  
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1.2.6.1 Bioreactors with porous media 

Vafai and Tien (1982) used the volume averaging technique for macroscopic 

conservation equations to study sucrose concentration in the porous matrix. Chung et 

al. (2007) investigated the perfusion bioreactor with culture media flow perpendicular 

to the cellular construct. Finite element method was implemented to solve the Navier-

Stokes equations for the fluid domain and Brinkman‘s equation for the porous 

scaffold domain. The porosity and permeability varied with cell growth time. 

Numerical results showed that cells penetrated to a great extend into the scaffold with 

a more uniform distribution. Zhao et al. (2007) investigated a perfusion bioreactor 

with parallel flow to the porous scaffold. Lattice-Boltzmann method was used to 

solve the coupled flow system with the Stokes‘ equations in fluid region and the 

Brinkman‘s equation in the porous scaffold region.  

However, in the above studies, the details for the bioreactor design, for example, 

concentration distribution for cell growth, reaction effectiveness, reactor efficiency, 

critical channel length and critical inlet concentration, were not systematically and 

parametrically investigated.  

Recently, numerical modeling of a micro-channel flat-plate bioreactor with cells 

distributed along the bottom wall was carried out. The results were correlated by use 

of combined parameters for applications in bioreactors with single-culture cells (Zeng 

et al., 2006), co-culture cells (Zeng et al., 2007) and micro-patterning cells (Zeng et 

al., 2008). The critical channel length and critical inlet concentration were 

investigated, which was essential for bioreactor design to avoid oxygen hypoxia. The 

results were presented systematically and parametrically.  
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However the studies of Zeng et al. (2006, 2007 and 2008) were limited to two 

dimensional cell growth since the cells were attached to the bottom wall. There is 

limited previous study on co-culture type bioreactor with a porous scaffold. The 

porous scaffold provides a structure for attachment of the cells which allows them to 

grow in a three dimensional way like that in their natural environment. Porous 

scaffolds improve cell growth and function. 

 

1.2.6.2 Enzyme reactors with porous media 

For enzyme reactors with a porous wall, several experimental studies have been 

conducted. Drott et al. (1997 and 1999) fabricated a microstructured enzyme reactor 

with flow-through cells comprising 32 channels in silicon by anisotropic wet etching. 

Their method increased the enzyme matrix surface by using high-aspect-ratio silicon 

and hence the enzyme activity was greatly improved by a factor of 100. A 3-D 

modeling of enzyme reactor was done by Stefan et al. (2003). The reactor consists of 

a container filled with 20 spherical enzyme carriers. Each of these carriers is covered 

by an active surface layer where the reaction happens. The effect of substrate 

transport velocity on the catalytic process was investigated. In addition, the reaction 

effectiveness with varying of inlet concentration and Reynolds number was also 

studied. Melander et al. (2005) immobilized endoglucanases in micro-immobilized 

enzyme reactors made of porous silicon. The characteristics of the micro-immobilized 

enzyme reactors were investigated by studying the product formation with variation 

of the concentration flow rate, temperature and pH of the substrate solution. Later, 

Melander et al. (2006) continued to experimentally study hydrolysis in microreactors 
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with porous parallel channels made by silicon wafer. Besides the effects of 

concentration flow rate, temperature, PH and concentration, the conversion efficiency 

was also measured and the long term stability of the reactor was tested.  

 

1.3 Objectives and Scope of Study 

1.3.1 Motivations 

The interfacial conditions (stress jump coefficients, effective viscosity and slip 

coefficient) are difficult to predict and need further experiments to validate their 

predicted values (Ochoa-Tapia and Whitaker, 1995b). Several researchers (Larson 

and Higdon 1987, Sahraoui & Kaviany 1992, James and Davis 2001) have tried to 

study the interfacial conditions using the REV scale and pore scale numerical 

experiments, but their studies were only limited to slip velocity and effective 

viscosity. No previous work has ever been attempted to investigate and validate stress 

jump conditions in REV scale.  

For numerical simulations of heat and mass transfer in porous/fluid coupled 

domains, the stress jump interfacial conditions (Ochoa-Tapia and Whitaker, 1998b) 

have not been incorporated with heat or mass transfer. The generalized Darcy-

Brinkman-Forchheimer extended model has not been implemented and there is no 

sufficient work to investigate mass transfer in a reactor partially filled with porous 

media. There is also no systematic or parametrical study on a microchannel reactor 

with a porous wall that examines the influence of flow and geometric parameters on 

mass transfer behavior.  
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The implementation of stress jump interfacial condition has not been attempted 

for lattice Boltzmann method, which is a novel numerical method and has several 

advantages over traditional CFD methods as described in many previous studies 

(Martys 2001, Guo et al. 2004). 

 

1.3.2 Objectives 

One of the main objectives was to consider the boundary conditions at the 

interface between fluid layer and porous medium. Such boundary conditions included 

the slip coefficient, interfacial velocity, effective viscosity and stress jump 

coefficients. Another objective was to extend the lattice Boltzmann method (LBM) to 

coupled-flow problems with fluid layer and porous medium layer by using the stress 

jump interfacial boundary conditions. It involved the treatments of the velocity, 

temperature/concentration and distribution functions at the interface. The modeling 

included the viscous and inertial effects as studied by using the Navier-Stokes 

equation for fluid region and Darcy-Brinkman-Forchheimer equation for porous 

region. Another major objective was to investigate the flow and mass transfer in a 

microchannel reactor partially filled with a porous wall. The investigation included 

correlation of numerical results using combined non-dimensional parameters for a 

systematic and parametrical analysis. 
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1.3.3 Scope 

The major challenges of pore scale and REV scale studies are time-consuming 

mesh generation and high computational effort in complex geometries for three-

dimensional problems. For REV scale numerical experiments, porous media can be 

modeled as arrays of granular particles or cylinders. In the current study the array of 

cylinders was used because it can be simplified as a two dimensional (2D) case. This 

simplification saves much computational time and resources. There are traditionally 

four methods for solving the flow through an array of cylinders: Finite Difference 

method (FDM), Finite Volume method (FVM), Finite Element method (FEM) and 

Boundary Element method (BEM). FDM, FVM and FEM all need to mesh the whole 

flow domain including the pores between the cylinders and the boundaries of the 

cylinders. Thus when the diameters of the cylinders are changed, much time is needed 

to regenerate the meshes for the whole flow domain. This mesh regenerating problem 

can be overcome by the BEM since it only needs to mesh the boundaries of the 

cylinders for the whole domain. Thus, when the diameters of the cylinders are 

changed, BEM can easily regenerate the meshes. Also, since the BEM is almost like 

an analytical method, the results for flow through an array of cylinders are very 

accurate. Due to the above advantages, the BEM was used in this work to solve the 

flow through an array of cylinders. 

The lattice Boltzmann method (LBM) was implemented for domain scale study 

of coupled flow systems including plain fluid and porous medium. The porous 

medium was considered to be rigid, homogeneous and isotropic; and saturated with 

the same single-phase fluid as that in the homogenous fluid region. For heat transfer, 
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local thermal equilibrium (LTE) model was assumed. For the shear stress jump 

parameters, to demonstrate the implementation of current numerical method and to 

test their effects, their values ranged from -0.7 to +0.7 in the present study. For 

normal stress, temperature, heat flux, mass and mass flux, the continuity conditions 

were imposed. 

The study of mass transfer in the microchannel reactor with a porous wall was 

carried out in the range relevant to practical applications. The fluid Damkholar 

numbers is one order smaller than the porous Damkholar numbers; thus the mass 

transfer was not limited by convection except for long reactor length. The Darcy 

number was small so that in the porous medium, the diffusion is relatively dominant. 

The reaction was based on the Michaelis Menten model. 

 

1.4 Organization of the Thesis 

In Chapter 2, the BEM and the LBM are developed to simulate the coupled flow 

and mass transfer problems based on pore/REV scale and domain scale respectively. 

A novel treatment of interfacial conditions using LBM is presented. The validation is 

presented for the LBM model.  

In Chapter 3, the simplified analytical solutions for microchannel reactors with a 

porous wall are deduced. Several dimensionless combined parameters are defined to 

correlate the numerical data. The definition of the effectiveness factor, reactor 

efficiency and utilization efficiency are given. 
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In Chapter 4, the pore scale/REV scale investigation of the interfacial flow 

behaviors and interfacial conditions is presented. The various interfacial condition 

models are evaluated.  

In Chapter 5, the LBM is extended to the coupled-flow systems with stress jump 

interfacial conditions. A novel treatment of the interfacial boundary conditions is used 

which is developed and validated in Chapter 2.  

In Chapter 6, the mass transfer in microchannel reactors with porous wall is 

investigated by the lattice Boltzmann method. The results are correlated with the use 

of several combined dimensionless parameters; the effectiveness factor, reactor 

efficiency and utilization efficiency are investigated; and the critical channel length 

and critical inlet concentration are also calculated.  

In Chapter 7, a summary of the main conclusions that can be drawn from this 

work and the recommendations for future research work are presented.  
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Table 1.1 Classifications for modeling of coupled fluid and porous medium system 

 

Scale Type Sub classification Reference 

Domain 

scale 

One domain 

approaches 

 

Bennacer et al., 2003 

Gobin et al., 2005 

Zhang and Zhao, 2000 

Abu-Hijleh, 1997 and 2000 

Two domain 

approaches 

Slip on model 

Continuous stress model 

Stress jump model 

Beavers and Joseph, 1967  

Taylor 1971 

Neale and Nader 1974,  

Vafai and Thiyagaraja 1987 

Vafai and Kim, 1990 

Kim and Choi, 1996 

Ochoa-Tapia and Whitaker, 

1995a and II, 1998 

Goyeau et al. 2003 

Chandesris and Jamet 2006 

Pore scale 

and REV 

scale 

  

Larson and Higdon 1987 

Sahraoui and Kaviany, 1994. 

James and Davis 2001 

Bai et al. 2009a 
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Table 1.2 Interface boundary conditions between porous medium and homogenous 

fluid domains  

 

Model Velocity Velocity Gradient Reference 

1   int

fluid

D

u
u u

y K


 


 Beavers and Joseph, 1967  

Taylor 1971 

2 porous fluid
u u  

porous fluid

u u

y y

 


 
 

Neale and Nader, 1974 

3 porous fluid
u u  

porous fluid

eff

u u

y y
 

 


 
 

Neale and Nader 1974,  

Vafai and Thiyagaraja 1987 

Kim and Choi, 1996; 

Vafai and Kim, 1990 

4 porous fluid
u u  

intporous fluid

1 u u
u

y y K





 
 

 
 

Ochoa-Tapia and Whitaker, 

1995a and II 

Goyeau et al. 2003 

5 porous fluid
u u  porous fluid

21

int
int

1

                

u u

y y

u u
K







 


 

 

 
Ochoa-Tapia and 

Whitaker, 1998 

6 porous fluid
u u  

intporous fluid

Cu u
u

y y K

 
 

 
 

Chandesris and Jamet 2006 

 



Chapter 1 Introduction 

 34 

 

Table 1.3 Heat transfer boundary conditions at interface between porous and fluid 

domains. 

 

Model Temperature Temperature Gradient References 

1 fluidporous
T T  

fluidporous

eff f

T T
k k

y y

 


 
 

Neale and Nader, 1974; 

Vafai and Thiyagaraja, 

1987;  

Ochoa-Tapia and 

Whitaker, 1997; 

Jang and Chen, 1992; 

Kim and Choi, 1996; 

Kuznetsov, 1999. 

2 fluidporous
T T  

fluidporous

eff f

T T
k k

y y


 
 

 
 

Ochoa-Tapia and 

Whitaker, 1998 I. 

3 fluid porous

fluid

( )TdT
T T

dy




 

 
fluidporous

eff f

T T
k k

y y

 


 
 

Sahraoui and Kaviany, 

1994. 
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Figure 1.1 A representative elementary volume (REV) for saturated porous media 
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Chapter 2 Numerical Methods* 

 

2.1 Numerical Methods for Pore and REV Scales 

2.1.1 Boundary element method for Stokes equation 

For steady incompressible slow viscous flow in fibrous media, the flow may be 

governed by the Stokes equation: 

                  
2 0u p                                          (2.1) 

where   is the fluid dynamic viscosity, u is the velocity and p is the pressure. 

The boundary element method (BEM) is used to solve the Stokes equation for the 

flow through the fibrous porous media modeled as an array of cylinders. The BEM 

has several advantages which are discussed in Section 1.3.3. The cylinders are 

discretized into boundary elements of circular arcs.  

The boundary integral equations of two-dimensional Stokes flow for velocity are 

given by Pozrikidis (1992 and 2002): 

         0 0 0

1

1
,

4

p

q

N

D

j j ji i
C

q

u x u x G x x f x dl x






    

                  0 0

1

1
, ,

4

p

q

N

i ijk k
C

q

u x x T x x n x dl x






                (2.2) 

where the subscript qC  is the contour of qth  particle, pN is the number of particles,  

n  is the unit normal vector pointing into the fluid, D

if  is the disturbance component  
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of the hydrodynamic traction and jiG  is the unidirectional periodic Green‘s function 

for flow in a channel bounded by two parallel planes. Polar coordinate integral 

method is used to avoid the integral singularity. The open source BEM code of 

Pozrikidis (1992 and 2002) was tested and used to solve two-dimensional Stokes flow 

through fibrous array in present work.  

 

2.1.2 Volume averaged method 

 

For the channel flow partially filled with porous medium modeled as an array of 

circular cylinders, the two-dimensional array is spatially periodic in x-direction. For 

such kind of theoretical modeling, the definition of the averaging volume has been 

discussed in previous studies (Larson and Higdon 1987, Sahraoui and Kaviany 1992, 

Alazmi and Vafai 2001). To relate the pore scale variations to the REV scale behavior, 

area and volume averages must be taken.  

For periodic array of cylinders, the length scale constraint has been discussed by 

Whitaker (1999) and Kaviany (1991). The volume average methods are valid when 

the following length-scale constraint is satisfied:  

2

1 2l l L                                                 (2.3) 

where L is the channel characteristic length and 
1l , 

2l  are the cell dimensions as 

defined in Figure 4.1 of Chapter 4, where the point (x, y) is at the cell center, 
1l  is the 

cell dimension in x direction and 
2l  is the cell dimension in y direction.  
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      A justification of the present representative elementary volume is necessary to 

establish whether the length constraint is satisfied. In the present study there were 16 

rows of cylinders in the y direction and 1 2 3l l . Thus 

2

1 2 1 15 3 0.051 1l l H    and length constraint is satisfied in present study.  

To enforce the length constraint more rigorously, a larger number of rows of 

cylinders are needed, which would require more computation resources. For 

comparison, James and Davies (2001) used 5–20 rows of cylinders in their study.  

Taking the velocity for example, the area average is defined as (Sahraoui and 

Kaviany 1992):  

   
0

1
,

l

A
u y u x y dx

l
                                             (2.4) 

where l  is the cell dimension, the bracket 
A

represents area average. The 

interfacial velocity is defined as the area average velocity at the selected interface 

position
iy : 

 
, iA i A

u u y                                                (2.5) 

In present study, the interface is defined at the position of 0y  , which is tangent to 

outermost edge of first row of cylinders. The volume average velocity is defined as 

(Sahraoui and Kaviany 1992):  

   
1 2

1 2

/ 2 / 2

/ 2 / 2
1 2

1
,

x l y l

V x l y l
u y u x y dydx

l l

 

 


                             (2.6) 

where the bracket 
V

 represents volume average, which is independent of x as the 

array is periodic in the x direction. 
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To calculate the velocity gradients near the interface, the averaging volume must 

be carefully chosen so that the velocity variations near the interface can be reflected 

accurately. Furthermore, the averaging volume should guarantee that the volume 

averaged interfacial velocity and Darcy velocities are in agreement with those of the 

area averaged values.  

Sahraoui and Kaviany (1992) proposed that for any point y located between 0 

and
2 / 2l , the averaging volume is taken as

12yl  (see Figure 4.1c, note y is 

negative), and the volume averaged velocity is defined as: 

   
1

1

0 2

2 2
1

1
,

2

x l

V y x l
u y u x y dxdy

yl



 


                                     (2.7) 

The permeability in the porous region is then calculated using Darcy‘s law: 

       D

dP
u

dx K


                                                   (2.8) 

where /dP dx  is the pressure gradient,   is the fluid dynamic viscosity and 

 D V
u u y    is the Darcy velocity which is a volume averaged velocity over a 

local REV positioned deep into the porous medium. Noted that in the following parts, 

all the velocity u  represents area or volume averaged velocities.  

 

2.2 Governing Equations and Boundary Conditions 

For steady incompressible viscous flow, the governing equations for a 

homogenous fluid region can be expressed as: 

0u                                                          (2.9) 
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  21
uu p u


                                                   (2.10) 

The governing equations for porous medium flow based on Darcy-Brinkman-

Forchheimer extended model are expressed in the vector form (Vafai and Tien 1981, 

Hsu and Cheng 1990, Guo and Zhao 2002, Yu et al. 2007, Bai et al. 2009b): 

0u                                                      (2.11) 

  2

Brinkman Term
Darcy Term Forchheimer TermConvective Term Pressure Term

1 F

e

C uuu
p u u u

K K


 

 

 
         

 
           (2.12) 

where u  is the local average velocity vector (Darcy velocity);   is the mass density 

of the fluid; p  is the intrinsic-average pressure;   is the fluid kinematic viscosity; 

e is the effective (Brinkman) kinematic viscosity;   is the porosity; K is the 

permeability; and 
FC  is  the geometric function which is expressed as (Guo and Zhao 

2002, Yu et al. 2007, Bai et al. 2009b): 

                          
31.75 150FC                                          (2.13) 

The nonlinear Forchheimer term and linear Darcy term are drag forces caused by the 

presence of the porous medium. The Brinkman term accounts for the force due to the 

solid boundary. The local average p  and the intrinsic average pressure p  can be 

linked by the Dupuit-Forchheimer relationship p p  .  

The governing equations for heat transfer and mass transfer: 

2 2

s2 2
( ) Q

,  

s s s s
s

G G G G
u v D

x y x y

s T c

   
   

   



                              (2.14) 
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where 
sQ  is the source term due to heat source/sink or chemical reaction; T is 

temperature; c  is mass concentration and 
sD is the thermal diffusivity or mass 

diffusivity. Note that the governing equations for heat and mass transfer are similar. 

The heat source or reaction rate will determine the source term expressions.  

At the interface between the homogeneous fluid layer and porous medium layer, 

additional boundary conditions must be applied to couple the flows in the two regions. 

The previous pore/REV scale studies had shown that there is a stress jump at the 

interface (Bai et al. 2009a, also see Chapter 4). In the present study, the stress jump 

condition (Ochoa-Tapia and Whitaker 1998, Bai et al. 2009a and 2009b) is applied: 

2

1

porous fluid interface

1 t t t
t

u u u
u

n n K



 

 
  

 
                            (2.15) 

where in the porous medium region, 
tu  is the Darcy velocity component parallel to 

the interface aligned with the direction t  and normal to the direction n ; while in the 

homogenous fluid region 
tu  is the fluid velocity component parallel to the interface; 

  and 
1  are the stress jump parameters. 

Ochoa-Tapia & Whitaker (Ochoa-Tapia and Whitaker 1998) derived analytical 

expressions for parameters   and 
1   which indicate their dependence on 

permeability and porosity. They concluded that these two parameters are both of 

order one. Ochoa-Tapia & Whitaker (1995b) experimentally determined that   

varies from -1.0 to +0.7  for different materials with permeability varying from 15 × 

10
-6

 to 127 × 10
-6

 in
2
 and average pore size from 0.016 to 0.045 in. No experimental 

data is available for
1 . In the present study, both   and 

1  vary in the range from 
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-1.0 to +0.7 . Bai et al. (2009a) investigated the interfacial boundary condition based 

on pore/REV scale studies and confirmed the presence of the stress jump (see Chapter 

4). Their study found that the stress jump coefficients are order one, which agrees 

with Ochoa-Tapia and Whitaker 1995a and 1995b.  

In addition to Equation (2.6), the continuity of velocity and normal stress 

prevailing at the interface is given by: 

intfluid porous
u u u                                                (2.16) 

porous fluid

0n nu u

n n






 
 

 
                                        (2.17) 

where in the porous medium region, 
nu  is the Darcy velocity component normal to 

the interface; and in the homogenous fluid region, 
nu  is the fluid velocity component 

normal to the interface; the subscript ‗ int ‘ represents the interface.  

For the heat and mass transfer interfacial condition, continuities of the heat & 

mass and heat & mass flux are implemented as: 

,intfluid porouss s sG G G                                              (2.18) 

,

porous fluid

0s s
s eff

G G
D D

n n

 
 

 
                                    (2.19) 

where ,  s T c ; T is the temperature and c  is the mass concentration; the subscript 

‗ int ‘ represents the interface; n  represents the direction normal to the interface. By 

combining with the appropriate boundary conditions of the composite region, 

Equations (2.9) - (2.19) can be used to simulate the coupled flow, heat and mass 

transfer in a system composed of a porous medium and a homogenous fluid. 
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2.3 LBM for Domain Scale 

2.3.1 Homogenous fluid domain 

In the lattice Boltzmann method (LBM) the fluid flow field is modeled by a 

single-particle distribution function (DF)
if . The quantity of  , ,if x t e represents the 

probability of finding a particle in the vicinity of x at time t , that is moving with 

velocity
ie . For the two-dimensional case, the lattice Boltzmann BGK equation is 

expressed as (Martys 2001, Guo and Zhao 2002, Hou et al. 1995, Shi et al. 2006): 

( , ) ( , )
( , ) ( , )

eq

i i
i i t t i

f x t f x t
f x e t f x t 




                       (2.20) 

where 
t is the time increment,  is the non-dimensional relaxation time and eq

if is the 

corresponding equilibrium state, which is the  distribution that the system will evolve 

in the absence of forcing gradients. The equilibrium distribution function (EDF) is 

defined by (Guo and Zhao 2002): 

 
2

2 4

: ( )
1

2

eq i i s
i i

s s

uu e e ce u
f w

c c

  

   
 

                       (2.21) 

where 
iw  is the weight coefficient and 

sc is the sound speed. 

Here / 3sc c , /x tc    and 
x is the lattice spacing. In present study, c is set to be 

1.  
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For the D2Q9 (Guo and Zhao 2002, Hou et al. 1995, Guo et al. 2002) model (Fig. 

2.1), the discrete velocities ( , )x y ie e are defined as 

ie






 





                                                                                                                    (2.22) 

 

The weight coefficients are given as 

iw






 





                                                                                   (2.23) 

 

The macroscopic mass density  and velocity u are calculated from the distribution 

functions: 

8

0

i

i

f


 ,      
8

0

i i

i

u f e


                                (2.24) 

The pressure and the kinematic viscosity are defined as 

2

sp c ,      2 1
( )

2
s tc                                 (2.25) 

Using the Chapman-Enskog expansion (Guo et al. 2004), the momentum Equation 

(2.4) can be recovered by performing a Taylor series expansion of the particle 

distribution function (2.11).  

 

 0,0                                                          0i   

    cos 1 / 2 ,sin 1 / 2i i                                      1,2,3,4i   

    2 cos 5 / 2 / 4 ,sin 5 / 2 / 4i i                 5,6,7,8i   

 

4

9
             0i   

1

9
                     1,2,3,4i    

1

36
                   5,6,7,8i   
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2.3.2 Porous medium domain 

To solve the porous medium flow governed by the Darcy-Brinkman-Forchheimer 

extended model (Equation 2.12), Guo and Zhao (2002) introduced the porosity into 

the equilibrium distribution function, and added a force term
iF  to the standard lattice 

Boltzmann equation to account for the linear and nonlinear drag forces caused by the 

porous medium. Their model is expressed as: 

( , ) ( , )
( , ) ( , )

eq

i i
i i t t i t i

f x t f x t
f x e t f x t F  




                    (2.26) 

2

2 4

: ( )
1

2

eq i i s
i i

s s

uu e e ce u
f w

c c




  
   

 
                          (2.27) 

in which the total force term 
iF  is defined by 

2

2 4

: ( )1
1 1

2

i i s
i i

s s

uF e e ce F
F w

c c


 

   
     

   
                    (2.28) 

where F  is the total body force due to the presence of a porous medium and other 

external force fields. This total body force is expressed as 

FCv
F u u u g

K K


                                   (2.29) 

where g  is the body force due to external force; and the fluid velocity is defined as 

8

0 2

t
i i

i

u e f F


 


                                     (2.30) 

The nonlinear Equation (2.30) was solved by Guo and Zhao (2002) and expressed as: 

2

0 0 1

v
u

c c c v


 
                                               (2.31) 
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where v  is an auxiliary velocity defined as:  

 
8

0 2

t
i i

i

v e f g


 


                                  (2.32) 

The two parameters 
0c  and 

1c  in Equation (2.31) can be calculated by  

 0 1

1
1             

2 2 2

t t FC
c c

K K

 
 

 
   

 
                               (2.33) 

Through the Chapman-Enskog expansion (Guo et al. 2004) the momentum Equation 

(2.12) can be deduced from the distribution function (2.26). 

 

2.3.3 Heat and mass transfer equations 

In the lattice Boltzmann method (LBM) the temperature and mass concentration 

fields are modeled by a single-particle distribution function (DF)
ig . The quantity of 

 , ,ig x t e represents the probability of finding a particle in the vicinity of x at time t  

that is moving with velocity
ie . For the two-dimensional case, the lattice Boltzmann 

equation is expressed as (Guo and Zhao 2005): 

( , ) ( , )
( , ) ( , )

'

eq

i i
i i t t i

g x t g x t
g x e t g x t 




                           (2.34) 

where 
t is the time increment, ' is the non-dimensional relaxation time and eq

ig is 

the corresponding equilibrium state, which is the  distribution that the system will 

evolve in the absence of thermal or mass concentration gradients.  
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The equilibrium distribution function (EDF) is defined by (Guo and Zhao 2005): 

 2
1

,

eq

i i s

s

e u
g wG

c

s T c

 
  

 



                                     (2.35) 

where T is the temperature and c is mass concentration; 
sc is sound speed.  

For the model of heat source or mass concentration reaction term, one source 

term is added to the lattice Boltzmann equation as (Yamamoto et al. 2005): 

( , ) ( , )
( , ) ( , )

'

,

eq

i i
i i t t i i s

g x t g x t
g x e t g x t w Q

s T c

 



     



                  (2.36) 

where 
sQ is the source term due to heat source/sink or chemical/bio-reaction; T is the 

temperature and c is mass concentration.  

 

2.3.4 Interface boundary conditions 

The interfacial boundary condition must be chosen appropriately to couple the 

two lattice Boltzmann equations as given by Equations (2.20) and (2.26). As 

discussed in Chapter 4 and Chapter 5, Bai et al. (2009a) had shown the presence of 

stress jump at the interface based on pore/REV scale numerical experiment. 

Subsequently they successfully implemented the stress jump conditions in LBM 

modeling (Bai et al. 2009b). In the present study, the stress jump condition is also 

used. For traditional discretization methods, such as finite difference and finite 

volume method, the momentum flux is calculated by discretizing of the velocity field 

using finite difference. Thus implementation of appropriate velocity boundary 

conditions automatically guarantees correct momentum flux near the boundary.  
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However, in LBM, only the equations for 
if  are solved and the velocity boundary 

conditions are not enough to guarantee the strain field (Chen et al. 1996). Thus 

additional boundary conditions for 
if  must be correctly implemented to ensure 

correct momentum flux near the boundary (Bai et al. 2009b).  

Fig. 2.1 shows a basic lattice for D2Q9 lattice Boltzmann model with lattice layer 

(E-O-A) just at the interface, lattice layer (D-C-B) at one lattice inside of the fluid, 

and lattice layer (F-G-H) at one lattice inside the porous medium. The interface is 

selected just at the lattice layer (E-O-A) so that the interfacial boundary conditions 

can be applied directly on the interfacial lattice points and there is no need to carry 

out the interpolation. Consider the stress jump condition as a case, the normal 

velocity-gradients at the interface can be calculated by using the backward second 

order difference approximation for porous side and forward second order difference 

approximation for fluid side: 

int int 1 int 2 int int 1 int 2

porous porous

3 4 3 4
              

2 2

u u u v v vu v

y y y y

       
 

   
       (2.37) 

int int 1 int 2 int int 1 int 2

fluid fluid

3 4 3 4
              

2 2

u u u v v vu v

y y y y

         
 

   
      (2.38) 

where 
intu is the interfacial velocity in x-coordinate; 

intv is the interfacial velocity in y-

coordinate; the subscript ‗ int ‘ represents the lattice points at the interface, ‗ int-1 ‘ and 

‗ int-2 ‘ represent the lattice points which are one lattice and two lattices below the 

interface, respectively; ‗ int+1 ‘ and ‗ int+2 ‘ represent the lattice points which are one 

lattice and two lattices above the interface, respectively; and y is the lattice spacing.  
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Combine Equations (2.15), (2.17), (2.37) and (2.38) as given in Bai et al. (2009b): 

2int int 1 int 2 int int 1 int 2
int 1 int

porous fluid

3 4 3 41 1

2 2

u u u u u u
u u

y y K




 
       

  
 

     (2.39) 

int int 1 int 2 int int 1 int 2

porous fluid

3 4 3 41
0

2 2

v v v v v v

y y
       

 
 

                  (2.40) 

The interfacial velocity 
intu and 

intv can be calculated from Equations (2.39) and (2.40), 

respectively.  

After the interfacial velocity 
intu and 

intv  are calculated from the above interfacial 

stress condition, the equilibrium distribution functions at the interface lattice points 

can be evaluated. For the one-domain approach, both the porous flow region and the 

fluid flow region are treated as one domain and thus there is no need to treat the 

interfacial boundary condition specially. The particle distribution functions can be 

evaluated according to the LBM Equation (2.26). However, for stress jump condition 

using two-domain approach, the porous side LBE and the fluid side LBE are different; 

thus a special treatment of the interfacial boundary condition is needed to link the two 

LBEs. Moreover, the stress jump has to be enforced over the interface. The LBM 

Equation (2.26) cannot satisfy the stress jump interfacial condition and the interface is 

treated as a special boundary. In the present study, the interfacial particle distribution 

along the directions 2, 5 and 6 move from the interface boundary to the fluid region, 

so they are calculated with the fluid LBM equations. Along the directions 4, 7 and 8 

the interfacial distribution moves from the interface to the porous medium region, and 

are calculated with porous medium LBM equations. For directions 0, 1 and 3 along 

the interface, the interfacial distribution functions are calculated based on 
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interpolation of fluid and porous medium lattice Boltzmann models. The interfacial 

distribution functions can be expressed as (Bai et al. 2009b): 

i, int i, int fluid

eq eqf f           , int , int fluidi if f            for i=2, 5, 6        (2.41) 

i, int i, int porous
 eq eqf f          , int , int porousi if f           for i=4, 7, 8        (2.42) 

   i, int i, int i, int , int , int , intfluid porousfluid porous

1 1
 +        +

2 2

                                                                                             for 0,  1,  3

eq eq eq

i i if f f f f f

i

 



     (2.43) 

where the subscript ‗ ,inti ‘ represents the interfacial distribution at the direction ‗ i ‘; 

i, int fluid

eqf and i, int porous

eqf can be calculated from Equations (2.21) and (2.27) respectively, 

and , int , intfluid porous
 and i if f  can be calculated from Equations (2.20) and (2.26) 

respectively.  

For the two ends of the interface nodes, different treatments need to be imposed. 

Taking the left end as an example, the distribution functions along the directions of 1, 

5 and 8 stream from the outside, which is unknown. For channel flow with periodic 

boundary condition in inlet and outlet, the periodic boundary condition is applied to 

calculate
1 5 8,  and f f f  at the interface

1 1 5 5 8 8        in out in out in outf f f f f f   ; where the 

subscript ‗ in ‘ and ‗ out ‘ represent inlet and outlet respectively. In the case of cavity 

flow, the no-slip boundary conditions are used for
1 5 8,  and f f f  at the left end of 

interface. Similar boundary conditions can be applied for the right end of the interface.  

Note that when jump coefficients 
10 and 0   , the interfacial boundary 

conditions are changed to continuity of stress. The implementation continuities of 



Chapter 2 Numerical Methods 

 51 

temperature/mass concentration and heat/mass flux are similar but easier compared 

with stress jump condition.  

 

2.3.5 Solution algorithm 

The calculation procedure for the LBM is summarized below. 

1. The computation of the flow field is started by assuming initial values for all 

the parameters.  

2. The equilibrium distribution functions for the flow field, including those at the 

interface, are calculated. Then the collision step is carried out for all nodes, except the 

interfacial nodes where the velocity boundary conditions are enforced (in step 4) for 

the equilibrium distribution functions. After the collision step, the streaming step is 

executed for all nodes. 

3. The macroscopic parameters, such as densities and velocities are calculated 

from the updated distribution functions.   

4. The jump conditions are implemented by using Equations (2.39) and (2.40) to 

calculate the updated interfacial velocities. The velocities and distribution function 

boundary conditions are enforced, including the updated interfacial velocities.  

5. Convergence is checked by using the following condition:  

   

 

100

910

n n

ij ij

ij

n

ij

ij

u u

u












                      (2.44) 

where 
   , ,
n

ij i ju u x y n t  . Equation (2.44) represents the sum of the nondimentional 

error over total grid nodes. If the Equation (2.44) is satisfied, the calculation is 
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stopped and the results are computed as output; if not, steps 2 to 5 are repeated till the 

Equation (2.44) is satisfied.  

 

2.3.6 Code validation 

In this section, the LBM numerical algorithms described in this Chapter are 

applied to simulate some well-studied cases: 1) Natural convection in a square cavity; 

2) Channel flow partially filled with porous; 3) Mass transfer in a 2D flat-plate 

microchannel bioreactor with monolayer cells adheres to base plate. The numerical 

results are compared with published benchmark results to validate the accuracy of the 

present numerical method.  

 

2.3.6.1 Natural convection in a square cavity 

The natural convection in a square cavity can be simulated by solving the 

following non-dimensional 2-D Navier-Stokes equations: 

0
U V

X Y

 
 

 
                                          (2.45) 

 2Pr
U U U p

U V U
t X Y X

   
     

   
                      (2.46) 

 2Pr Pr
V V V p

U V V Ra T
t X Y Y

   
      

   
              (2.47) 

2T T T
U V T

t X Y

  
   

  
                                 (2.48) 

where Pr and Ra are the Prandtl and Rayleigh numbers. The geometry and boundary 

conditions of the problem are given in Figure 2.2.  
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 The physical boundary conditions are: velocity components ,U V and 

temperature T are given at each boundary, which are:  

at 0,0 1X Y                     

0, 0, 0U V T                         (2.49) 

at 1,0 1X Y    

        0, 0, 1U V T                         (2.50) 

at 0,0 1Y X    

0, 0, 0
T

U V
Y


  


                       (2.51) 

at 1,0 1Y X    

0, 0, 0
T

U V
Y


  


                                  (2.52) 

where ,U V are non-dimensional velocities. Figure 2.3a, 2.3b and 2.3c show the 

temperature contour and velocity contour of the natural convection. The detailed 

comparisons of the present results with the benchmark solutions (de Vahl Davis, 1983) 

are shown in Table 2.1 and Table 2.2. The comparisons show that the present 

numerical results are in good agreement with the benchmark solutions (de Vahl Davis, 

1983). It indicates that the present code is valid for the heat and mass transfer 

problems.  

 

2.3.6.2 Channel flow partially filled with porous medium 

Figure 2.4 is the schematic of flow in a channel partially filled with saturated 

porous medium. The analytical solution of this model had been solved by Yu et al. 
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(2007) and Bai et al. (2009b). The comparisons of the present numerical solution and 

the analytical solution are presented in Figure 2.5. The comparisons show that the 

present numerical result is in good agreement with the analytical solution.  

 

2.3.6.3 Single cell culture bioreactor 

In order to validate the present numerical model, a test was performed on the 

oxygen transfer in a 2D flat-plate microchannel bioreactor with uniform, constant 

flow and constant reaction rate at the base. The culture medium flows through the 

channel and the flow is assumed to be slug flow. A monolayer of hepatocytes attaches 

to the bottom of the channel and consumes oxygen from the culture medium at the 

maximum uptake rate. The configuration and the boundary conditions are shown in 

Figure 2.6. This model has been solved analytically by Carslaw and Jaeger (1959) 

and Tilles et al. (2001) as: 

2 2

2 2
1

1 2 ( 1) 1
1 cos( )exp( )

3

n

bot

n

x Dam Dam x
C Dam n n

H Pe n H Pe
 








         (2.53) 

where
botC is non-dimensional bottom concentration at base plate, Dam is Damkohler 

number, Pe is Peclet number, H is channel height and x is distance along x-coordinate.  

The oxygen concentration distribution on the bottom computed with the present 

numerical model is compared with the analytical solution (Carslaw and Jaeger, 1959; 

Tilles et al., 2001) at different conditions of Pe = 55.5, Dam = 0.083 and Pe = 17.6, 

Dam = 0.167. The comparison between the numerical results and the analytical 

solution is shown in Figure 2.7. The excellent agreement indicates that the present 

numerical model is satisfactory for mass transfer problem. 
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2.4 Conclusions  

A LBM numerical method has been developed to investigate the fluid, heat and 

mass transfer in homogeneous fluid region, in porous medium region and in coupled 

flow regions with fluid and porous regions. For the porous medium flow, the 

governing equations based on a generalized model including the Darcy extended 

Brinkman and Forchheimer terms as well as the non-linear advection term (Hsu and 

Cheng, 1990; Gartling et al., 1996; Nithiarasu et al., 2002), which can recover the 

Navier-Stokes equations when the porosity approaches unity. The lattice BGK model 

based on the above Darcy extended Brinkman and Forchheimer terms as well as the 

non-linear advection term is used to solve the porous medium flow. The stress jump 

interfacial boundary conditions are implemented to LBE to solve the coupled plain 

fluid and porous medium system (Bai et al. 2009b). A variety of numerical 

experiments are performed to test the validation of the present code. The comparisons 

with the benchmark solutions are in good agreement and show that the present code 

can be used to calculate the two-dimensional, incompressible, steady, laminar fluid, 

heat and mass transfer problems for both fluid flow and porous medium flow.  
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Table 2.1Numerical results of natural convection in a square cavity for 3Ra=10  

 

 Benchmark  LBM  FV 

Mesh size 81 81  81 81  81 81  

maxU  3.649 3.653 3.649 

y 0.187 0.187 0.187 

maxV  3.697 3.701 3.690 

x 0.822 0.820 0.821 

aveNu  1.117 1.118 1.109 

maxNu   1.508  

y  0.087  

 

 

 

 

Table 2.2 Numerical results of natural convection in a square cavity for 4Ra=10  

 

 Benchmark  LBM  FV 

Mesh size 81 81  81 81  81 81  

maxU  16.178 16.195 16.189 

y 0.177 0.173 0.178 

maxV  19.617 19.639 19.606 

x 0.881 0.880 0.880 

aveNu  2.238 2.248 2.310 

maxNu   3.543  

y  0.140  
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Figure 2.1 Basic lattice for the D2Q9 lattice Boltzmann model 
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Figure 2.2 Schematic of natural convection in a square cavity 
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Figure 2.3 Natural convection in a square cavity with 410Ra  : (a) temperature 

contour; (b) velocity U contour; (c) velocity V contour; 

(c) Velocity V  
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Figure 2.4 Schematic of flow in a channel partially filled with saturated porous 

medium 
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Figure 2.5 Validation of numerical method by comparison of velocity profiles 

between numerical and analytical results with 0  , 
1 0  , 0.7  , 

210Da  . 

 



Chapter 2 Numerical Methods 

 64 

 

 
 

Figure 2.6 Scheme of the microchannel bioreactor (not to scale) 
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Figure 2.7 Axial distribution of substrate concentration at base plane (y=0) in 2D 

microchannel bioreactor 
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Chapter 3 Simplified Analysis 

 

In this chapter, the flow and mass transfer in a microchannel with a porous wall 

are analytically studied with a view to correlate the numerical results of Chapter 6. 

The reaction kinetics is based on zeroth-order type, Michaelis-Menten type and first-

order type. The mathematical models are simplified to deduce the analytical solutions. 

Several non-dimensional parameters, such as combined interface concentration 

parameter, effective channel length/distance, reaction effectiveness factor, reactor 

efficiency and utilization efficiency are defined for the purpose of presenting 

generalized results (as presented in Chapter 6) which can find applications in the 

design analysis of such micro-channel reactors with a porous wall.  

 

3.1 Problem Statement 

3.1.1 Modeling of microchannel reactor with a porous wall 

The reactor modeled in this chapter was a channel with dimensions typically 

of length 300 mm, 150 m  in depth and width 2.5cm as shown in Figure 3.1. In 

practice due to its larger value, the width effect is small as shown by Zeng et al. 

(2006). Thus the numerical model considered here is simplified into a two-

dimensional one like that of Zhao et al. (2005). The porous wall has a depth of 

150 m . A list of parameter values compiled from previous literature, giving their 

practical ranges, is given in Table 3.1.  
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The culture medium flows through the channel along the x direction, and there 

is a porous medium scaffold in the bottom region (see Figure 3.1) where the two cell 

types are uniformly distributed. The absorption cells and release cells adherent to the 

porous medium scaffold consume and secrete the species, respectively, forming the 

reactions in the porous scaffold. The incoming flow is steady, laminar and 

incompressible with substrate concentration 
inc  . The inlet velocity is specified as that 

of a fully-developed flow. 

The governing equations for the plain flow and porous flow are the same as 

described in Equations (2.9) to (2.10) and Equations (2.11) to (2.12). For the mass 

transfer equation in the porous part, the consumption reaction is assumed to follow 

the Michaelis-Menten model (Michael and Fikret, 1992; Chow et al., 2001a and 

2001b): 

2 2

2 2
( ) a ma

eff

m

V cc c c c
u v D

x y x y c k

   
   

    
                                          (3.1) 

where c is volume-averaged concentration, 
a  is the volume density of the absorb 

cells or enzymes, 
maV  is the maximal substrate uptake rate (SUR), 

mk  is Michaelis-

Menten constant or substrate concentration at which the SUR is half-maximal, effD  is 

the effective mass diffusivity in porous medium. The Michaelis-Menten model under 

certain conditions may be simplified to the zero order and first order reactions as 

given later. 
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    As for the secretion reaction, the release rate is set as constant (Zeng et al. 2007). 

By including the secretion reaction in the previous equation, the mass transfer 

equation for the porous region is:  

2 2

2 2
( ) a ma

eff r mr

m

V cc c c c
u v D V

x y x y c k




   
    

    
                              (3.2) 

where 
r  is the volume density of the release cell or enzyme, 

mrV  is the maximal 

substrate release rate (SRR) for release cell. 
a  is the absorb cell or enzyme volume 

density, 
maV  is the maximal substrate uptake rate (SUR) for absorb cell. The above 

equation can be rearranged to obtain,  

2 2

2 2
( )eff a ma

m

c c c c c
u v D V a

x y x y c k


    
     

     
                     (3.3) 

where a  is the ratio of release rate over absorb rate and is defined as:  

mr r

ma a

V
a

V




                                                         (3.4) 

    The porous medium consists of a matrix structure with either cells or enzymes 

attached on it. The volume fraction occupied by the matrix and cells/ enzymes are 
s  

and 
c  respectively. The porosity of the porous medium can be defined as: 

1 s c                                                         (3.5) 

Generally, for the matrix without cells, the porosity may vary from 0.6 to 0.95 

(Cooper et al., 2005) and the permeability of the porous medium is in the range of 

1210  to 910 m
2
 (Wang and Tarbell, 2000). The results in Chapter 5 show that 

porosity makes relatively little effect on flow and heat transfer, compared with 

permeability; thus for simplicity the porosity   is set to be  =0.8 in the simulations. 
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As for the permeability, it determines the velocity (under a driving pressure), which is 

characterized by the Peclet numbers of the fluid and porous flows. 

    The mass transfer equation in fluid part is: 

2 2

2 2
( )

c c c c
u v D

x y x y

   
  

   
                                                         (3.6) 

where D  is the mass diffusivity in plain fluid region.  

 

3.1.2 Boundary conditions 

For the concentration boundary conditions, zero mass flux condition was 

imposed on the upper and bottom solid-walls. Uniform concentration of 
inc was set at 

the inlet. As for the outlet, 2 2 0c x   was imposed so that the concentration flux is 

stable. At the interface between the homogeneous fluid region and porous media 

scaffold, continuities of mass and mass flux (Equations 2.18 and 2.19) were imposed.  

For the velocity boundary conditions, the non-slip condition was imposed on the 

solid upper and bottom walls. As this is a steady laminar channel flow, to save 

computation cost, a fully-developed axial velocity was imposed for the channel inlet 

and outlet. At the interface between the homogeneous fluid region and porous media 

scaffold, the stress-jump interfacial conditions (Equation 2.15) together with 

continuities of velocity and normal stress  (Equations 2.16 and 2.17) were imposed. 
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3.2 Analysis 

3.2.1 Non-dimensional parameters 

The non-dimensional substrate concentration and x, y coordinate are defined 

as: 

       
in

c
C

c
                                                                       (3.7) 

       
x

X
L

                                                                        (3.8) 

      
y

Y
H

            for plain fluid region                         (3.9) 

       
y

Y
h

              for porous medium region              (3.10) 

where 
inc is inlet concentration,  L  is channel length, h  is the porous medium 

height and H  is the plain fluid height.  

The porous and fluid Peclet numbers represent the ratio of convection to 

diffusion in porous and fluid domains, respectively. They are defined as: 

_p av

p

eff

u h
Pe

D
                                                           (3.11) 

_f av

f

u H
Pe

D
                                                         (3.12) 

where _p avu  and _f avu  are the average flow velocities in porous and fluid regions 

respectively.  
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The fluid and porous Damkohler numbers for absorption and release are 

defined as: 

_

ma a
fa

f av in

V h
Dam

u c


                                                     (3.13) 

 
_

mr r
fr

f av in

V h
Dam

u c


                                                     (3.14) 

2

ma a
pa

eff in

V h
Dam

D c


                                                     (3.15) 

2

mr r
pr

eff in

V h
Dam

D c


                                                     (3.16) 

faDam  and frDam characterize the ratio of the time scales of substrate absorb and 

release reactions, respectively, to substrate convection in the fluid domain. paDam  and 

prDam characterize the ratio of the time scales of substrate absorb and release 

reactions, respectively, to substrate diffusion in the porous medium.  

The non-dimensional Michaelis-Menten constant, which is the non-

dimensional concentration at which specific uptake rate is half maximal, is defined as:  

           m
m

in

k
K

c
                                                                    (3.17) 

 

3.2.2 Simple analysis for porous region 

3.2.2.1 Zeroth order reaction type  

Due to the relatively higher flow resistance provided by the porous medium, 

the axial velocity there is much smaller than that in the fluid part. Since the reactor 
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length is relatively larger than the porous medium depth, the mass transfer by 

diffusion is dominant in the Y-direction, that is >>  
c c

y x

 

 
. When 

mk =0, the reaction 

rate in the whole porous scaffold is constant at the maximal value. It becomes the 

zeroth-order reaction type and Equation (3.3) can be simplified to: 

2

2

(1 )a ma r mr a ma

eff eff

V V V ac

y D D

   
 


                                        (3.18) 

By normalizing the concentration and y-coordinate by 
inc and h respectively, the 

 above equation is expressed in non-dimensional form as: 

          
22

2

(1 )
= (1 )a ma

pa

eff in

V hC
Dam a

Y D c

 
 


                                    (3.19) 

The boundary conditions at the interface and bottom wall are:  

Y=1, C=
intC                                                                    (3.20) 

 Y=0, 0
C

Y





                                                                  (3.21) 

Using the boundary conditions, the solution of Equation (3.19) is:   

                   C = 2

int

1 1
(1 ) (1 )

2 2
pa paDam a Y C Dam a                                        (3.22) 

At the bottom wall where Y=0,  

                   int

1
(1 )

2
bot paC C Dam a                                                     (3.23) 

    int 1

(1 ) 2

bot

pa

C C

Dam a





                                                            (3.24) 

Equation (3.24) presents a simple relationship between the concentration difference 

and porous Damkohler number. It shows that, under one dimensional assumption, the 
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concentration difference normalized by the porous Damkohler number is a constant. 

This simplified analysis indicates the significance of a concentration difference 

parameter express as: 

    

 

 

int

int

(1 ) 1

eff bot

bot

pa ma a

D c c

C C h

Dam a h aV







 

 
                                      (3.25)  

The parameter   also gives an indication of the ratio of the concentration flux into 

the porous medium and the reaction rate.  

 

3.2.2.2 Michaelis-Menten reaction type 

For Michaelis-Menten reaction type, the substrate uptake rate (SUR) is a 

function of local concentration. When the concentration is zero, SUR is also zero. 

When the local concentration equals to Michaelis-Menten constant, SUR equals to its 

half maximal value. The SUR approaches a maximum value when the concentration 

is very large (zeroth order reaction). Using one dimensional assumptions similar to 

that for zeroth order reaction type, the mass transfer Equation (3.3) can be simplified 

as: 

2

2

a ma r mr a ma

eff m eff eff m

V V Vc c c
a

y D c k D D c k

    
    

   
                              (3.26) 

As before, non-dimensionalize the equation by using 
inc and h. Assuming that the 

non-dimensional concentration in porous region varies from its value 1 at inlet to a 

critical value 
mK  at outlet, the average concentration in porous region is assumed to 

be approximated as 
1

2

mK
C


 .  
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Equation (3.26) can be expressed in a linear form as: 

22

2

1
=

1 3

a ma m
pa

eff in m m

V h KC C
a Dam a

Y D c C K K

    
     

     
                      (3.27) 

With similar boundary conditions (3.20) and (3.21) as in the zeroth order model, the 

above equation can be solved as: 

   
2

int

1 11 1

2 1 3 2 1 3

m m
pa pa

m m

K K
C Dam a Y Dam a C

K K

    
       

    
               (3.28) 

When Y=0,  

                  int

11

2 1 3

m
bot pa

m

K
C C Dam a

K

 
   

 
                                          (3.29) 

Rearrange to obtain:  

                  int

11

2 1 3

m
bot pa

m

K
C C Dam a

K

 
   

 
                                          (3.30) 

                  int 1

21

1 3

bot

m
pa

m

C C

K
Dam a

K




 
 

 

                                                   (3.31) 

Equation (3.31) presents a simple relationship between the concentration difference 

and porous Damkohler number. It indicates the significance of a concentration 

difference parameter expressed as: 

int

int

( )

1 1

1 3 1 3

eff bot

bot

m m
pa ma a

m m

D c c

C C h

K K
Dam a V h a

K K







 

    
    

    

                             (3.32) 

This expression is similar in form to that for the zeroth order model except that it 

includes additional terms of the Michaelis-Menten constant 
mK . 
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3.2.2.3 First order reaction type 

Similar one dimensional assumption, as in the previous two sections, is used 

for the first-order reaction type. It is for small concentration, or large 
mk , and hence 

small reaction. The mass transfer Equation (3.3) can be simplified as: 

2

2

a ma

eff m

Vc
c

y D k





                                                   (3.33) 

As before, non-dimensionalize the equation by using 
inc and h: 

          
22

2
=

paa ma

eff in m m

DamV hC
C C

Y D c K K





                                     (3.34) 

With boundary conditions similar to the previous two sections for the interface 

and bottom wall, as given by Equations (3.20) and (3.21), the above linear 

equation can be solved as: 

int

pa pa

m m

pa pa

m m

Dam Dam
Y Y

K K

Dam Dam

K K

C
C e e

e e





 
  
 
 

                                (3.35) 

At Y=0,  

                  int2

pa pa

m m

bot Dam Dam

K K

C
C

e e






                                           (3.36) 

where 
1

1
2 2

p p

m m

Dam Dam

K K
p

m

Dame e

K




   by using series expansion for the exponential 

terms and neglecting higher order terms (small /p mDam K ).  
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Hence the above Equation (3.36 ) is expressed as: 

 int

int

0.5
( ) /

1 0.5

pbot

pm

m

DamC C

DamC K

K






                             (3.37)  

Equation (3.37) gives a simple relationship between the concentration difference and 

porous Damkohler number. For first-order reaction, the concentration along the 

interface 
intC  is close to 1.0. Thus, as in the previous two sections, the above equation 

indicates the significance of a concentration difference parameter : 

int

int

( )eff bot

bot

pa ma a

mm

D c c

C C h
Dam V h

KK







                                       (3.38) 

    

3.2.3 Simple analysis for fluid region 

3.2.3.1 Zeroth order reaction type  

A simple analysis is carried out to combine the non-dimensional parameters for 

the purpose of correlating the numerical data. It is assumed that the flow is uniform 

and the diffusion is in y-direction. The mass transfer equation in fluid part (Equation 

3.6) is simplified to: 

2

2

1

f

C L C

X H Pe Y

 


 
                                                            (3.39) 
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The flux at the interface may be approximated by a first order discretisation 

using concentration difference. Then, using Equation (3.24) the flux may be 

expressed as: 

 int

int

( ) 1 1
1

2 2

bot
pa pa

C C HC H
Dam a Dam

Y h h



   


                    (3.40) 

where  is a reaction rate parameter: 

 1
H

a
h

                                                (3.41) 

Using separation of variables techniques, with the above boundary condition and 

zero flux at the top wall, the mass transfer equation can be solved to give the 

concentration distribution along the interface: 

int

2 2

2 2
1

1 1 1
1

2 6

1 ( 1) 1
cos( ) exp( )

pa pa

f

n

pa

n f

x
C Dam Dam

H Pe

x
Dam n n

n H Pe

 

  






   


 

                              (3.42) 

The above equation may be re-arranged to give:  

2 2int

2 2
1

1 1 1 1 1 ( 1) 1
cos( )exp( )

2 6

n

npa f f

C x x
n n

Dam H Pe n H Pe
 

 





 
              (3.43) 

Note that for this simplified analyses, the diffusivity effD  in the porous region was 

assumed to be the same as the diffusivity D in the fluid region. The above equation 

shows that the interface concentration parameter int 1

pa

C

Dam 


 is a function of the 

parameters 
1

f

x

H Pe
 only.  
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      The above simplified analysis indicates the two combined parameters which may 

be useful for correlating the interface concentration at various fPe , paDam  and 
mK : 

 

Effective distance parameter: 

       
1

f

x

H Pe
                                                                          (3.44) 

Interface concentration reaction parameter: 

       int 1
k

pa

C

Dam





                                                                       (3.45) 

 

3.2.3.2 Michaelis-Menten reaction type  

Similar to the zeroth order model, the flux at the interface may be approximated 

by a first order discretisation using concentration difference. Then, using Equation 

(3.31), the flux may be expressed as: 

 

int

int

( ) 11 1

2 1 3 2

bot m
pa pa

m

C C H KC H
Dam a Dam

Y h h K


  
    

  
             (3.46) 

where  is reaction rate parameter: 

1

1 3

m

m

KH
a

h K


 
  

 
                                             (3.47) 
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Using similar techniques as that for the zeroth-order reaction, the mass transfer 

equation can be solved to give the concentration distribution along the interface: 

int

2 2

2 2
1

1 1 1
1

2 6

1 ( 1) 1
cos( ) exp( )

pa pa

f

n

pa

n f

x
C Dam Dam

H Pe

x
Dam n n

n H Pe

 

  






   


 

                              (3.48) 

The equation may be re-arranged to give:  

2 2int

2 2
1

1 1 1 1 1 ( 1) 1
cos( )exp( )

2 6

n

npa f f

C x x
n n

Dam H Pe n H Pe
 

 





 
              (3.49) 

The above equation shows that the interface concentration parameter is a function of 

the parameters 
1

f

x

H Pe
 only. The above simplified analysis proposes two combined 

parameters which may be useful for correlating the interface concentration at 

various fPe , paDam  and 
mK : 

Effective distance parameter: 

       
1

f

x

H Pe
                                                                          (3.50) 

Interface concentration reaction parameter: 

       int 1
k

pa

C

Dam





                                                                       (3.51) 
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3.2.3.3 First order reaction type  

Similar to the previous two models, the flux at the interface may be 

approximated by a first order discretisation using concentration difference. Then, 

using Equation (3.37), the flux may be expressed as: 

int

int

( ) 1 1
/

2 2

bot
pa m pa

C C HC H
Dam K Dam

Y h h



  


             (3.52) 

where  is reaction rate parameter: 

1

m

H

h K
                                                (3.53) 

Using similar techniques as that for the previous two models, the mass transfer 

equation can be solved to give the concentration distribution along the interface: 

int

2 2

2 2
1

1 1 1
1

2 6

1 ( 1) 1
cos( ) exp( )

pa pa

f

n

pa

n f

x
C Dam Dam

H Pe

x
Dam n n

n H Pe

 

  






   


 

                              (3.54) 

The Equation may be re-arranged to obtain:  

2 2int

2 2
1

1 1 1 1 1 ( 1) 1
cos( )exp( )

2 6

n

npa f f

C x x
n n

Dam H Pe n H Pe
 

 





 
              (3.55) 

Equation (3.55) shows that the interface concentration parameter is a function of the 

parameters 
1

f

x

H Pe
 only. The above simplified analysis proposes two combined 

parameters which may be useful for correlating the interface concentration at 

various fPe , paDam  and 
mK : 
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Effective distance parameter: 

       
1

f

x

H Pe
                                                                          (3.56) 

Interface concentration reaction parameter: 

       int 1
k

pa

C

Dam





                                                                       (3.57) 

 

3.2.4 Definition of effectiveness and efficiency  

The effectiveness factor was expressed by E. Gomez et al. (2006) as the ratio of 

observed reaction rate to reaction rate without mass transfer resistance. Based on this 

idea, Al-Muftah and Abu-Reesh (2005) defined the effectiveness factor as the ratio of 

actual reaction rate to that which would be obtained if the enzyme or cells were at the 

interface (that is without the porous medium diffusion resistance).  

Based on the above definition, and assuming that the flux equals the reaction, 

the local effectiveness factor can be expressed as:  

int int

2

int int

int in int

int

int

int

       

ma a

m eff m

m

pa

eff

ma a

dC dC

dY dY

C V h C
a a

C K D c C K

c
h a

c k

Dam

dc
D

dy

V






 
   

    
    


 

 
 

                     (3.58) 

where intc is the local interface concentration. The critical reaction parameter may be 

introduced from the above equation:  
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int

int

c

m

c
R a

c k
 


                                                                   (3.59) 

The critical reaction parameter presents the relationship between the consumption rate 

and release rate. When 
cR >0, the concentration flux at the interface is positive into 

the porous scaffold. When 
cR <0, the release rate is higher than consumption rate and 

thus the concentration flux becomes negative. When 
cR <0, the concentration in the 

porous scaffold keeps on increasing, and such a study is not useful for application 

purposes. The present study only considers the cases of 
cR >0.  

The reactor efficiency is the ratio of actual reaction rate over the maximum 

reaction rate based on concentration at the inlet. For present study, considering the 

Darcy velocity is at least one order smaller than plain fluid velocity, the convective 

mass transfer in porous wall may be negligible compared with convective mass 

transfer in plain fluid region. Thus the reactor efficiency may be expressed based on 

inlet and outlet flux difference in the plain fluid region:    
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                    (3.60) 

where 
outc  is the average outlet concentration in plain fluid region and inc  is inlet 

concentration. 



Chapter 3 Simplified Analysis 

 83 

    To evaluate the wastage of substrate in reactors, the utilization efficiency (or 

conversion rate) is defined as the ratio of actual utilized mass rate over the inlet mass 

rate: 

 _

_

in

in

1

      

f av

u out

f av

outH
C

H

u c c

u c
   


                         (3.61) 

 Combining the above two equations, the utilization efficiency may be expressed as:  

1
  

1

      

u fa

m

L
Dam a

K H
 

 
  

 
                          (3.62) 

3.3 Conclusions 

It should be noted that the above analyses in Section 3.2 are meant only for the 

purpose of developing the combined dimensionless parameters and defining the 

effectiveness or efficiencies of the reactor. It is based on simplified reaction models 

and assumes no convection but only diffusion in the Y-direction in the porous 

medium. It is necessary to evaluate from the numerical results whether the use of the 

combined parameters is able to give good collapse of data. It is interesting to find that 

the simplified analytical solution of concentration parameters along the interface is 

function of effective channel distance only. It will be discussed later in Chapter 6 

whether the use of the combined parameters is able to give good collapse of 

numerical data. 
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Table 3.1 List of parameter values for model predictions. 

 

Type of Applications Parameters  References 

Perfusion Bioreactor 

(oxygen) 

 Assumed Values  

L 100 mm Chou et al., 2001, Zhao et 

al., 2005 and 2007; Pathi 

et al., 2005. 
H 6 mm 

h 0.6 mm 

inC  2.2 x 710 /mol ml  

mk  1.1x 810 /mol ml  

effD  1.59x 9 210 /m s  

D 3.29x 9 210 /m s  

mV  1.25 x 1710 / /mol cell s  

  55.40x10  ~ 73.60x10 /cells ml  Zhao et al., 2005; Pathi et 

al., 2005. 

 Computed Values  

mK  5.0 x 210   

fPe  15 ~225 

pPe  5.60 x 710 ~8.40 x 610  

pDam  6.94 x 310 ~0.463 

fDam  1.66 x 410 ~0.111  

Micro-Enzyme 

Reactor (glucose) 

 Assumed Values  

L 11 mm Drott et al., 1997 and 

1999. H 32.5 m  

h  15 m  

inc  0.5, 1.2, 5 3mol m  

mk  3~10 3mol m  

effD  5.4x 10 210 /m s  Ye et al., 2006. 

D 5.4x 10 210 /m s  

mV  h  3.05x 5 210 / /mol m s  Drott et al., 1997 and 

1999. 

 Computed Values  

mK  0.6~20  

fPe  3.24x 310  

pPe  3.53 x 910  Lysenko et al., 2004. 

pDam   1.60  

fDam   6.1x 410  
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Figure 3.1 Schematic of the bioreactor model (not to scale) 
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*Parts of this chapter have been published in Bai et al., International Journal for  

Numerical Methods in Fluids 60, 809-825, 2009 
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Chapter 4 Flow Through a Channel Partially Filled with a 

Fibrous Medium* 

 

In this chapter, incompressible steady slow viscous flow through a channel 

partially filled with fibrous porous media will be studied. The fibrous porous media 

are modeled as periodic array of circular cylinders, where the aspect ratio of cylinder 

is 1. The porosity is adjusted by changing the cylinder diameter. The permeability of 

the fibrous medium could be readily changed by variation of the cylinder diameter or 

its spacing. One of the main objectives was to investigate the boundary conditions at 

the interface between fluid layer and fibrous porous medium. The slip coefficient, 

interfacial velocity, effective viscosity, and stress jump coefficients are determined 

and analyzed. 

 

4.1 Problem Statement 

The physical configuration and the coordinate systems are shown in Figure 4.1. 

The interface is at 0y  , and the top and bottom walls are at y H  . The porous 

medium is simulated as hexagonal arrays of circular cylinders, which is bounded at 

the top by free fluid and at the bottom by solid wall. In the present study, the flow is 

transverse or perpendicular to the axis of cylinders. The periodic boundary condition 

is applied at the inlet and outlet of the channel. The channel flow is driven by a 

constant pressure gradient. The porosity was changed by changing the cylinder 



Chapter 4 Flow Through a Channel Partially Filled with a Fibrous Medium 

 87 

diameter. The interface position was chosen to be the plane which is tangent to the 

outer edges of cylinders in the first row (Beavers and Joseph 1967, Sahraoui and M. 

Kaviany 1992, James and Davis 2001). 

 

4.2 Results and Discussion  

4.2.1 Non-dimensional parameters 

The velocity, distance and permeability are non-dimensionalized as (Sadiq et at. 

1995):  

D

u
U

u
                                                     (4.1) 

y
Y

H
                                                      (4.2) 

2

K
Da

H
                                                    (4.3) 

where H  is the channel semi-width of flow region as shown in Figure 4.1. Da  is 

Darcy number. The velocity gradients on either sides of the interface were obtained 

from the slope of the volume averaged velocity near the interface in the fluid and 

porous media. The selected calculation domain and the volume averaged velocity 

profile are shown in Figure 4.3. 
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4.2.2 Permeability of fibrous porous medium 

There have been analytical studies of unbounded flow through infinite and semi-

infinite lattices of infinitely long cylinders (Larson and Higdon 1987, Kaviany 1991, 

Sahraoui and M. Kaviany 1992 and Barrere et al. 1992). A numerical study on 

bounded flow has been given by James and Davies (2001). The present numerical 

results of permeability are compared with the previous studies.  

 Figure 4.2a and 4.2b shows the non-dimensional permeability
2

K

d
. It increases 

exponentially with increasing porosity, tending to infinitely large value when the 

porosity is close to unity. With the fixed cylinder center positions, a large porosity is 

associated with small cylinder diameter d and large permeability K, so that 
2

K

d
 

becomes large.  

The cell, lubrication and asymptotic models are shown in Figure 4.2a for 

comparison with the present result. It is seen that the present results tend towards the 

cell model at high porosity and towards the lubrication model at low porosity. The 

present result is consistent with the assumptions of both models. The present results 

show good agreement with the asymptotic model. 

The results are compared with Carman-Kozeny model in Figure 4.2b, which has 

a Carman-Kozeny constant k . It is seen that with k from 0.2 to 17.9, the Carman-

Kozeny model bounds the present numerical results. The present results may be 

approximately fitted by the Carman-Kozeny model with a constant k =1.5. However, 

note that the Carman-Kozeny constant varies with porosity, though not so obvious in 

the present results.  
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Figure 4.2c shows the permeability K A  as a function of solid volume fraction 

1c    for hexagonal array of circular cylinders, where A is the area of the unit cell 

as defined by Larson and Higdon (1987). The comparison shows that the present 

results are in good agreement with those of Larson and Higdon (1987). The 

agreement is better at high solid fraction. Note that Larson and Higdon‘s (1987) 

model is for infinite array, but the present array is bounded by free fluid at the top and 

solid wall at the bottom. 

 

4.2.3 Velocity profiles in cross section and grid convergence check 

Figure 4.3a and 4.3b show the velocity profiles at two permeabilities. In Figure 

4.3a, different element numbers are used to check the convergence. It is seen that 64 

elements per cylinder are sufficient. Also presented in Figure 4.3b is an enlarged 

figure of the domain used for calculations of the velocity gradient near the interface.  

The velocities are non-dimensionalized by the average Darcy velocity 
Du . Thus 

the non-dimensional velocity in the porous medium is near to unity. At larger 

permeability, the Darcy velocity is larger, though not depicted by the non-

dimensional plot. The maximum velocity in the fluid layer is much larger than those 

in the porous medium, well above an order of magnitude larger (see Figure 4.3a and 

4.3b). In the domain scale results of Alazmi and Vafai (2001) their maximum 

velocities are 130–1300 times of the Darcy velocity. However their Darcy numbers 

are smaller, which varies from 3 410 10   compared with the present Darcy number 

ranges from 3 37.3 10 10.1 10    . In the present velocity profiles (see Figure 4.3a 
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and 4.3b), the maximum velocity is greater at smaller permeability, which is 

consistent with the velocity results of Alazmi and Vafai (2001). It can be explained 

that, with constant pressure gradient, there is much more flow at the fluid side 

compared with that at the porous medium; the porous flow is lower at smaller 

permeability.  

 

4.2.4 Interfacial boundary conditions  

4.2.4.1 Slip boundary condition 

The slip boundary condition has been used in the homogeneous modeling of 

interface between fluid and porous media. The interfacial shear is related to the 

interface velocity 0yu   at the interface by a slip-coefficient : 

 0

0

y D

y

du
u u

dy K









                                (4.4) 

Using the slip boundary condition, together with the no-slip boundary condition at the 

impermeable wall, the velocity distribution in the fluid side may be found. The 

uniform Darcy velocity in the fibrous medium is obtained from Darcy law. The 

interfacial velocity and slip coefficient may be related by analysis:  

              
0 1 1 2

2

y

D

u Da

u Da Da





 



                                  (4.5) 

Figure 4.4 shows the slip-coefficient   (calculated using Equation 4.4) at various 

Darcy number. The slip-coefficient varies between 0.4 and 8.4 and the average value 

is 5 over the present range of Da. 
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In Beavers and Joseph (1967) experiments, the slip-coefficient varies from 0.1 to 

4, as permeability increases. It is difficult to make detailed comparison as Beavers 

and Joseph (1967) specified pore size and not Darcy number. It is interesting that 

their experimental slip-coefficients and the present results are of the same order even 

though the structures of the porous media were very different. A numerical study on 

array of cylinders has been carried out by Sahraoui and Kaviany (1992), and the slip-

coefficient increases from 1.3 to 4.2 as porosity increases from 0.4 to 0.8. As 

compared with their numerical results, the present results are of the same order. 

The interfacial velocity at the top of the fibrous medium is presented in Figure 

4.5. Also presented is the prediction of interfacial velocity using Equation (4.5), based 

on Darcy law with the slip boundary condition, the slip coefficient (from Figure 4.4) 

was used. It is seen that, at large Darcy number 0.05, the interfacial velocity is around 

two times less when compared with the present results. The differences increase to 

around five times at low Darcy number 410 . In the analytical work of Vafai and 

Thiyagaraja (1987), for Darcy number from 410  to 0.063, their interfacial velocity 

results agreed with the hypothesis proposed by Beavers and Joseph (1967) that the 

fluid side velocity gradient at the interface is proportional to the slip velocity. The 

Beavers-Joseph model only showed flow effect on slip coefficients. But actual slip 

coefficients will depend on both local geometry and outer flow conditions, as found 

in studies of Larson and Higdon (1987), Sahraoui and M. Kaviany (1992) and Wang 

C.Y. (2009). Present numerical simulation includes effects of both local geometry and 

outer flow conditions. Hence some discrepancies are found in Figure 4.5 when fitting 

the present numerical data to Beavers-Joseph model. In study of flow through strips 
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array, Wang C.Y. (2009) analytically deduced slip coefficients and found slip 

coefficients increase with both the fin distance and the clear fluid width. He 

concluded that Beavers-Joseph model is not valid. This supports the finding in 

present study.  

 

4.2.4.2 No shear jump boundary condition 

In the no shear jump boundary condition, a shear term is added to the Darcy law 

to account for velocity gradient at the interface. The velocity there is assumed 

continuous and so is the shear stress through the use of an effective viscosity eff .  

Assumed effective viscosity eff is uniform in the porous medium, where: 

eff

du du

dy dy
 

 

                                       (4.6) 

The velocity gradients at the fluid and porous sides are shown in Figure 4.6; the 

gradients are non-continuous at the interface as expected. When Darcy number varies 

from 64 10  to 33 10 , the velocity gradient on the fluid side decreases very 

slightly, but that on the porous side increases slightly. When Darcy number is larger 

than 33 10 , both the fluid side and the porous side velocity gradients decrease 

significantly. From the ratio of velocity gradients at the fluid and porous media sides 

of the interface, the effective viscosity was found and presented in Figure 4.7 as a 

function of Darcy number. The dimensionless effective viscosity /eff f   varies from 

around 3.1 to 5 for the present range of Darcy number.  
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In the experiments of Gilver and Altobelli (1994), /eff f   was found to be 

between 5 and 9 at low Reynolds number for large porosity   = 0.972. The present 

result is of the same order compared with the experiment results. However note that 

the experimental result is for flow normal to a porous plug, which is different from 

the present parallel flow past the interface. 

Sahraoui and Kaviany (1992) have carried out numerical study on flow near the 

interface of a square array of cylinders and /eff f   was estimated to vary from 0.7 to 

2 when porosity increases from about 0.5 to 0.8. In the numerical study of shear flow 

past a hexagonal cylindrical array by Larson and Higdon (1987) /eff f   varies from 

0.9 to 3 when porosity increases from 0.1 to 1.0. As compared with the previous 

numerical studies, the present dimensionless effective viscosity is of the same order.   

 

4.2.4.3 Shear stress jump boundary condition 

Like the above no-shear jump boundary condition, the porous medium is 

modeled by the Darcy-Brinkman equation. The velocity at the interface is continuous. 

However, there is a shear stress jump at the interface given by: 

0O y

du du
u

dy dy K

 
 




 

                                 (4.7) 

where 
O is the shear jump coefficient. The above stress jump boundary condition 

was derived by Ochoa-Tapia and Whitaker (1995) based on the non-local form of the 

volume averaged momentum equation. Note that this stress jump equation has an 

effective viscosity term 



 for the porous medium. 
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The above equation is applied to the present numerical data of porosity, velocity 

gradients, permeability and interfacial velocity to determine the shear jump 

coefficient. The shear jump coefficient
O  is presented in Figure 4.8a as a function of 

Darcy number. The shear jump coefficient is seen to vary from around 0 to -4.8 for 

the present range of Darcy number. 

In the study of Ochoa-Tapia and Whitaker (1995), 
O  was estimated to range 

from 1.5 to -1.0. This range of 
O  was obtained by adjusting it so that their fractional 

excess flow-rate due to porous medium showed a good fit with the experimental data 

of Beavers and Joseph (1967). The present results of 
O  are of the same order as 

Ochoa-Tapia and Whitaker (1995). However it is difficult to make further comparison 

as their porosity was arbitrarily specified as 0.4. The porous media of Beavers and 

Joseph (1967) are made of foam metal (lattice type) and aloxite (granular type) whose 

pore sizes ranged from 0.013 to 0.045 in. Though the present porous medium 

structure is very different from that of Beavers and Joseph (1967), it is interesting the 

shear jump coefficients are of the same order.  

Another model of shear stress jump at the interface is that of Chandesris and 

Jamet (2006), given by:  

0C y

du du
u

dy dy K


   

 

                                    (4.8) 

where 
C is the shear jump coefficient. Note that this stress jump equation has fluid 

viscosity term   for the porous medium unlike Equation (4.7). The above equation 

was applied to the present numerical data of porosity, velocity gradients, permeability 

and interfacial velocity to determine the shear jump coefficient
C . 
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The shear jump coefficient is presented in Fig 4.8b. The jump coefficient varies 

from around -0.5 to -4.8 for the present range of Darcy number. In the study of 

Chandesris and Jamet‘s (2006), 
C  was found to be between 4.28 to -0.637 in order 

to obtain good fit with Beavers and Joseph (1967) experimental data of the fractional 

increase in flow rate. The present coefficient shows similar trend as that of 

Chandesris and Jamet‘s (2006) in which the coefficient decreases with porosity 

increasing. However, the present 
C  is always of negative value, which is plausible if 

the velocity gradient of the porous side is always smaller than that of the fluid side.  

 

4.3 Conclusions  

A numerical study, using the boundary element method, was carried out on the 

flow through a channel partially filled with fibrous porous-medium, which was 

modeled as a periodic, hexagonal array of cylinders.  The flow is transverse to the 

cylinders and the interfacial boundary conditions were analyzed. The slip-coefficient 

varies from around 0.4 to 8.4 for the present range of permeability. Using the slip 

coefficients, the slip boundary model gives an interfacial velocity which is less than 

the present results by around 2 to 5 times. The effective viscosity varies from around 

3.1 to 5 for the present permeability. The stress jump coefficient is of order one, 

which is consistent with previous literature. However, it is interesting that the present 

jump coefficients are negative in value. Note that Beavers-Joseph model has inherent 

defect of not having local geometry effects on slip coefficients. Hence it is difficult to 

compare present numerical results with those results deduced or matched from 
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Beavers-Joseph model. The present results may give some indication of the range of 

values of the coefficients which are needed as empirical inputs to the various models 

of interfacial boundary conditions. The interfacial conditions obtained from the 

present pore scale modeling and REV scale averaging may be of interest to domain 

scale modeling of flow and heat transfer condition at the interface between fluid and 

porous media. 
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Figure 4.1 (a) Channel partially filled with fibrous porous-medium; (b) a unit cell 

showing the representative elementary volume; and (c) an averaging volume near the 

interface

Interface y=0 
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Figure 4.2 Permeability of fibrous porous-media modeled by cylinder arrays: (a) 

comparison with cell, lubrication and asymptotic models; (b) comparison with 

Carman-Konzeny model; and (c) comparison with the Larson and Higdon study, c is 

solid volume fraction. 
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Figure 4.3 Non-dimensional averaged velocity profile: (a) convergence study with 

different element numbers; at
-22.93 10K    or -37.3 10Da   ; (b) an enlarged 

velocity profile near interface; at -24.3 10K    or -310.1 10Da   . 
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Figure 4.4 Slip-coefficient versus Darcy number 
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Figure 4.5 Dimensionless interface-velocity versus Darcy number 

Numerical results 

From Equation (4.5) 
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Figure 4.6 Velocity gradients at interface versus Darcy number 
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Figure 4.7 Dimensionless effective-viscosity versus Darcy number 
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Figure 4.8 Shear jump coefficient versus Darcy number; (a) 
O  in Ochoa-Tapia & 

Whitaker‘s model; (b) 
C  in Chandesris & Jamet‘s model 

 



 

*Parts of this chapter have been published in Bai et al., International Journal for  

Numerical Methods in Fluids 60, 691-708, 2009 
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Chapter 5 Flow in Fluid-Porous Domains Coupled by 

Interfacial Stress Jump* 

 

 

The purpose of this chapter is to extend the LBM to coupled problems of a fluid 

layer and porous medium layer, by using the stress jump interfacial boundary 

conditions. The treatments of both the velocity and distribution functions at the 

interface are described. To study the viscous and inertial effects, the lattice 

Boltzmann models (Guo and Zhao 2002) for Navier-Stokes equation and Darcy-

Brinkmann Forchheimer equation, with incompressibility assumption, are used in this 

chapter. 

  

5.1 Problem Statement 

A numerical method is to be developed for flows involving an interface between 

a homogenous fluid and a porous medium. The numerical method is based on the 

lattice Boltzmann method (LBM) for incompressible flow. A generalized model, 

which includes Brinkman term, Forcheimmer term and non-linear convective term, is 

used to govern the flow in the porous medium region. At the interface, a shear stress 

jump that includes the inertial effect is imposed for the lattice Boltzmann equation, 

together with a continuity of normal stress.  
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The present method is implemented on three classic applications each of which 

has a porous medium partially occupying the flow region: channel flow (Figure 5.1), 

plug flow (Figure 5.4) and lid-driven cavity flow (Figure 5.7).  

 

Channel flow partially filled with porous medium 

 

The physical domain of channel flow is shown schematically in Figure 5.1. It 

consists of a planar channel whose upper region of height 
1H  is filled with 

homogenous fluid and lower region of height 
2H  is filled with a fluid-saturated 

porous medium region. A case of height ratio
2 1/ 1H H   is considered. The flow is 

assumed laminar and the driving force is a constant pressure gradient. 

 

Channel flow with a porous medium plug 

 

The physical domain of the flow through a channel with a porous plug is shown 

schematically in Figure 5.4, which is the same as that by Gartling et al. (1996), 

Betchen et al. (2006) and Yu et al. (2007). In this problem the dominating flow is 

perpendicular to the interface. The Poiseuille flow velocity profile is set in the inlet 

based on the mean velocity. 
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Square cavity partially filled with porous medium 

 

Figure 5.7 is the schematic diagram of flow in a lid driven square cavity, which is 

three-quarter filled with porous medium. The fluid kinematic viscosity  is set to 

be 32 10 . 

 

5.2 Results and Discussion  

5.2.1 Grid independence study 

To guarantee grid-independent solution, a sufficiently fine mesh should be used. 

The grid independence study was implemented for channel flow partially filled with 

porous medium. Figure 5.2 shows the present results are in good agreement with the 

analytical results and also a mesh of 121 grids in the y direction is sufficient for 

numerical simulation. For all of the channel flow cases in this chapter, the driving 

force G is set to be 410 , and fluid kinematic viscosity is set to be 32 10 . 

 

5.2.2 Channel flow with partially filled porous medium 

There are several different ways to implement the driving force. In present study, 

the driving force 
fdp

G
dx

   is included in the lattice Boltzmann model by adding a 

first order Hermite polynomials to the distribution functions (Martys 2001, Shi et al. 

2006): 
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2
( , ) ( , ) i ix

i t i

s

Ge
f x t f x t

c


   for homogeneous fluid flow      (5.1) 

2
( , ) ( , ) i ix

i t i

s

Ge
f x t f x t

c


    for porous medium flow            (5.2) 

where ( , )i tf x t represents the distribution function after including the driving force. 

The main dimensionless parameters are: 
2

1

u
U

GH


 , Darcy number

2

1

K
Da

H
  and 

1

y
Y

H
 .  

Fig. 5.3a, 5.3b and 5.3c show the velocity profiles at different Da, porosity and 

stress jump coefficient, respectively. The comparison shows that the present 

numerical results are in good agreement with the analytical solutions (Yu et al. 2007) 

at various Da, porosities and stress jump coefficients. It is found that Da has much 

effect on the velocity profiles. The velocity increases significantly with increasing Da 

and proportionately more so for the porous side. The stress jump coefficient   has 

slight effect on the velocity profiles. The effect of the stress jump coefficient 
1  is 

negligible. This is attributed to the small Reynolds number and Darcy number. Thus 

the inertial effect is negligible, especially since the flow is parallel. The porosity has 

very little effect on the velocity profiles. 
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5.2.3 Channel flow with a porous plug 

Different from the first problem, the main dimensionless parameters are: 
a

u
U

u
 , 

x
X

H
 , Reynolds number au H

Re



 and Darcy number

2

K
Da

H
 , where 

au is the 

mean velocity. The numerical results for the case of 210Da  and 310  are shown in 

Figure 5.5, where the centerline U  velocity along x direction are presented. The other 

parameters for the flows illustrated in Figure 5.5 are Re = 1, 0.7  , 0   and 

1 0  . The lengths are set to be 
1 3 3x x H     and 

2 2x H  . In the present study, 

121 grids in the y direction are used and the preliminary numerical tests confirmed 

that the solutions are grid-independent. 

Figure 5.5 shows that the velocity drops rapidly in the porous plug, especially for 

the case with the low Darcy number. The flow field is predominantly axial over most 

of the homogenous fluid and porous medium regions, but it is two-dimensional in the 

region near the interface between the homogenous fluid and the porous medium. The 

present results are in good agreement with those of Gartling et al. (1996), Betchen et 

al. (2006) and Yu et al. (2007). 

The centerline velocity distributions at the different stress jump coefficients   

and 
1  are shown in Figure 5.6. It is seen that the two coefficients have negligible 

effects as the dominant flow direction is perpendicular to the interface. The present 

results agree well with those of previous studies (Gartling et al. 1996, Betchen et al. 

2006 and Yu et al. 2007).  
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5.2.4 Cavity flow with partially filled porous medium 

The governing dimensionless parameters are: Reynolds number based on lid 

velocity
0u , 

0Re /u H   and is given as a constant, Darcy number 2Da K H , 

0U u u , 
0V v u , X x H and Y y H , where H is the square cavity height. 

The lid velocity
0u can be calculated from the definition of Reynolds number. The 

mesh size of 121x121 is used, based on the previous grid independence studies. The 

stress jump conditions are implemented for x-component velocity U  as given in 

Equation (2.15) of Chapter 2. And the stress continuity conditions are used for y-

component velocityV  as given in Equation (2.17) of Chapter 2.  

Figure 5.8a and 5.8b show the velocity profiles at different Da. It can be seen 

that there is more flow passing through the porous medium region with larger Darcy 

number. The interfacial velocity V  increases with increasing Da. It shows that Darcy 

number has much effect on velocity profiles. The comparison shows that the present 

results are in good agreement with the finite volume results.  

The velocity profiles at different porosity are shown in Figure 5.9a and 5.9b. It 

shows that porosity has very slight effects on velocity profiles. Figure 5.10a and 

5.10b shows the velocity profiles at different stress jump coefficients. It can be seen 

that jump coefficient   has slight effect on the x-component velocityU . However, it 

has negligible effect on the y-component velocity V . The effect of the jump 

coefficient 
1  is negligible for both  and U V . This may due to the reason that for 

small Reynolds number and Darcy number used in present study, the inertial effects 

are negligible.  
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5.3 Conclusions 

In this chapter the lattice Boltzmann method was extended to flow systems with 

regions of homogeneous fluid and porous medium coupled by the stress jump 

interfacial boundary condition of Ochoa-Tapia and Whitaker (1995a, 1995b, 1998). A 

treatment of the velocity and distribution functions at the interface was described. The 

interfacial velocity was calculated with the difference approximation of the velocity 

gradient derivatives in the stress jump condition. Then the updated interfacial velocity 

was used to update the distribution functions at the interface.  

This interfacial treatment was applied to simulate coupled flow problems such as 

channel flow, porous plug and cavity flow. These cases cover a variety of situations 

where the major flow is parallel, perpendicular and oblique to the interface. The stress 

jump parameter  has more effect when the velocity is parallel to the interface. The 

results are in consistent with the analytical and/or finite volume results. 
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Figure 5.1 Schematic of flow in a channel partially filled with saturated porous 

medium 
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Figure 5.2 Effects of grid size on velocity profile 
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Figure 5.3 The U velocity profile under different flow conditions: (a) Darcy number 

effect; (b) stress jump coefficients  and
1 effect; (c) porosity effect. 
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Figure 5.4 Schematic of flow in a channel with a porous plug 
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Figure 5.5 The velocity distributions along the centerline at: (a) 210Da   and 

(b) 310Da  ; other parameters are Re 1 , 0.7  , 0  ,
1 0  ,

1 3 3x x H    and 

2 2x H  . 
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Figure 5.6 The velocity distribution along the centerline at different stress jump 

coefficients with 210Da  , Re 1 , 0.7  , 
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Figure 5.7 Schematic of flow in a square cavity partially filled with porous medium 
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Figure 5.8 Velocity profiles at different Darcy number; symbols represent LBM 

solutions and solid lines represent finite-volume solutions: (a) centerline 

velocityU along y direction and (b) interfacial velocityV along x direction; other 

parameters are Re 1 , 0.7  , 0  and
1 0  . 
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Figure 5.9 Velocity profiles at different porosity; symbols represent LBM solutions 

and solid lines represent finite-volume solutions:  (a) centerline velocityU along y 

direction and (b) interfacial velocityV along x direction; other parameters 

are Re 1 , 210Da  , 0  and
1 0  . 
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Figure 5.10 Velocity profiles at different stress jump coefficients; symbols represent 

LBM solutions and solid lines represent finite-volume solutions:  (a) centerline 

velocityU along y direction and (b) interfacial velocityV along x direction; other 

parameters are Re 1 , 0.7  and 210Da  . 
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Chapter 6 Mass Transfer in a Microchannel Reactor With 

a Porous Wall 

 

In this chapter, the flow and mass transfer in a microchannel reactor with a 

porous wall are studied with a view to applications in enzyme reactors and cell 

bioreactors. The Navier-Stokes equation in the fluid domain and the Darcy-

Brinkman-Forcheimmer extended model in the porous medium domain are coupled 

and numerically solved. For porous-fluid interface, the Ochoa-Tapia and Whitaker‘s 

stress jump interfacial condition (1998b) is used to investigate its effects on flow and 

mass transfer. The reaction kinetics is based on first-order, zeroth-order, and 

Michaelis-Menten types. The numerical results are correlated by non-dimensional 

parameters for the purpose of presenting generalized results which can find 

applications in the design analysis of such micro-channel reactors with a porous wall.  

 

6.1 Problem Statement  

The reactor modeled in this chapter was a channel with dimensions typically of 

length 300 mm, 150 m  in depth of fluid region and width 2.5cm as shown 

previously in Figure 3.1. In practice due to its larger value, the width effect is small as 

shown by Zeng et al. (2006). Thus the numerical model considered here is simplified 

into a two-dimensional one like Zhao et al. (2005).  
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The culture medium flows through the channel along the x direction, and there is 

a porous medium scaffold of typical depth 150 m  in the below region (see Figure 

3.1) where two cell types are uniformly distributed. The absorption cells and release 

cells adherent to the porous medium scaffold consume and secrete the species, 

respectively, forming the reactions in the porous scaffold. The incoming flow is 

steady, laminar and incompressible with substrate concentration 
inc  . The inlet 

velocity is specified as that of a fully-developed flow. 

The governing equations for flow and mass transfer in plain fluid and porous 

medium are presented in Section 3.1. As for the boundary conditions and 

normalization parameters, please refer to the Section 3.1 and 3.2.  

 

6.2 Results and Discussion 

6.2.1 Uncorrelated results for flow and concentration 

Grid independence study 

 

In chapter 5, a grid independency study had been implemented for channel flow 

partially filled with a porous medium. Thus in this chapter, a grid independency study 

was investigated for mass transfer only. Considering the computational cost and 

accuracy, a total number of 201x81 meshes for the channel, were found to be 

adequate as showed in Figure 6.1. 
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Concentration and velocity fields 

 

As defined previously in Equation (3.59), the critical reaction parameter presents 

the relationship between the consumption rate and release rate. For present study, 

only the reaction type of 
cR > 0 is studied. The reason is because when 

cR < 0, release 

rate is larger than consumption rate, which means mass concentration in bioreactor 

porous region keeps on increasing and such cases are not meaningful to study.  

Figure 6.2a, b and c show the typical concentration contour field for the fluid 

and porous regions with different reaction rate. There is relatively higher substrate 

concentration in the fluid region than in the porous scaffold. The substrate in the fluid 

is transported to the interface by convection and diffusion; there the concentration is 

higher than that in the bottom due to the substrate consumption in the porous medium 

(for
cR >0, consumption rate is larger than release rate). It is clear that along the 

downstream direction, the concentrations at the interface and bottom are decreasing 

due to the consumption. When the ratio of release over consumption rates a  increases 

from 0 to 0.4, the concentration is also increasing. This is because for higher ratio a , 

more substrate will be released which makes the concentration higher as shown 

clearly in Figure 6.2a, b and c. 

To study the stress jump coefficients effect, zero release rates are used with 

different combination of  and 
1  varying from -0.7 to +0.7, respectively. Figures 

6.3a, b and c show a typical interface concentration distribution, concentration profile 

normal to the interface, and velocity profile respectively. In these concentration and 

velocity plots, the effects of interfacial boundary conditions are explored by the 
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variation of stress jump coefficients. The velocity is normalized by the Darcy velocity 

in the porous scaffold. The Darcy velocity is mainly determined by permeability, 

which was kept constant for the present cases with different stress jump coefficients.  

Figure 6.3c shows that the first stress jump coefficient  has some effects 

especially on the interfacial velocity and the maximum velocity, but little effect on 

velocity deeper into the porous scaffold. However, the second stress jump coefficient 

1  has very slight effect and can almost be neglected. This is because in the 

interfacial boundary conditions, the term involving 
1  is associated with velocity 

square which is low in present study. But the term involving  , associated with 

inverse of the Darcy number, can become large if Da is low. However, the effects of 

  and 
1  on the velocity profile are not large. 

The effects of   and 
1  on concentrations (Figures 6.3a and b) are even smaller 

than that on the velocity. Thus, to facilitate study of other parameters‘ effects in the 

following computations, the continuities of both stress and velocity are implemented 

to couple the plain fluid and porous flow governing equations. However if the Darcy 

number was large, which makes the porous flow large, then the effects of   and 
1  

may not be negligible.  

 

Effect of porous Damkohler number and fluid Damkohler number 

 

To study the effects of the reaction rate over mass transfer ( faDam  for fluid 

region convection and paDam for porous region diffusion), the substrate concentration 
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in interface, bottom and their difference were investigated with reaction rate for 

Michaelis-Menten type.  

It is seen that the interface and bottom concentration (Figure 6.4a and b) are 

larger when fluid Damkohler number faDam  or porous Damkohler number paDam  

are lower, which is expected as these are associated with smaller consumptions. For 

the effect on concentration difference (Figure 6.4c) it is larger when paDam  is larger 

or when faDam  is smaller. A larger paDam  is associated with larger consumption and 

hence larger flux (as reflected by larger concentration difference). The significance of 

parameter paDam  in reaction and diffusion has been highlighted by Griffith and 

Swartz (2006) for porous tissue constructs. As for the smaller faDam , it is associated 

with larger convection (in fluid) relative to consumption and hence larger flux into 

porous medium. 

The present results, for both small to large reaction rates, show that the mass 

transfer is influenced by two consumption parameters: faDam  and paDam . These two 

parameters characterize the reaction rate over convection and diffusion. In a previous 

study, Zhao et al. (2007) suggested two parameters: Peclet number fPe  and Thiele 

modulus (related to
2

m

in

V H

Dc


). The Thiele modulus was also suggested by Griffith and 

Swartz (2006), but unlike Zhao et al (2007), the axial length of the porous tissue was 

used. The present parameter paDam uses the depth of the porous medium, which is 

used in a previous study (Chen et al. 2010).  
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6.2.2 Correlation of results by combined parameters 

Figure 6.5a and 6.5b present concentration reaction parameter as a function of 

effective distance parameter, at different fluid Damkohler number faDam and Peclet 

number fPe , respectively. It shows that concentration reaction parameter is a function 

of effective distance
f

x

H Pe
 as explained in Section 3.2.3. Hence the parameters 

faDam and fPe need not be duplicated if the results, normalized by paDam , are 

presented as a function of effective distance
f

x

H Pe
. Note that in a previous study by 

Chen et al. (2010) different definitions of parameters for concentration and distance 

were used, so that their interface concentration results show a dependence on the fluid 

Damkohler number faDam .  

Figure 6.6a and 6.6b present concentration reaction parameter and concentration 

difference parameter as a function of effective distance parameter at different 

Michaelis-Menten constant
mK , respectively. It shows that the results at different 

mK  

have collapsed because 
mK has been incorporated in the definition of concentration 

reaction parameter (see Equations 3.57 and 3.47) and concentration difference 

parameter (see Equation 3.32). The parameter 
mK needs not be duplicated if the 

results are normalized by the reaction parameter . 
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6.2.2.1 Interface concentration reaction parameter 

Reactions close to Michaelis-Menten type 

 

The interface concentration at different release, consumption, convection and 

distance is plotted as a correlated plot in Figure 6.7a with the use of effective distance 

parameter 
f

x

H Pe
and normalized by paDam  . The correlation is for Michaelis-

Menten reaction type (
mK  is not zero).  

The results show that the concentration reaction parameter decreases with 

increasing effective distance parameter. The numerical results agree with the general 

trend of the analytical solution (Equation 3.49) except the gradient is steeper. The 

variations of paDam and a  do not significantly change the non-dimensional results, 

except for one case at large paDam of 0.5 and zero release ratio a . The normalization 

of the interface concentration by paDam  and plotted against effective distance 

f

x

H Pe
is effective in collapsing the numerical data. 

 

Reactions close to first order type 

 

The interface concentration at different release, consumption, convection and 

distance is plotted as a correlated plot in Figure 6.7b with the use of effective distance 
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parameter 
f

x

H Pe
and normalized by paDam  . The correlation is for first order 

reaction type ( pa mDam /K  is very small). 

The results show that the concentration reaction parameter decreases with 

increasing effective distance parameter. The numerical results agree with the general 

trend of the analytical solution (Equation 3.55) except the gradient is steeper. The 

variations of /pa mDam K do not significantly change the non-dimensional results, even 

at the largest /pa mDam K of 0.25. The normalization of the interface concentration by 

paDam  and plotted against effective distance 
f

x

H Pe
is successful in collapsing the 

numerical data. 

 

6.2.2.2 Concentration difference parameter 

Reactions close to Michaelis-Menten type 

 

The concentration difference at different release, consumption, convection and 

distance is plotted as a correlated plot in Figure 6.8a. The concentration difference 

parameter int bot

pa

C C

Dam 



  is plotted as a function of the effective distance 

parameter
f

x

H Pe
. It is seen that Figure 6.8a has correlated the numerical data 

satisfactorily except for the case at large paDam of 0.5 and zero release ratio a  . The 

spread of data is less at smaller effective distance less than 2. The effects of 
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paDam and a have been incorporated in the concentration difference parameter. It is 

noted that away from the inlet, the concentration difference parameter is around 0.5 

which agrees with the analytical solution (Equation 3.31 and 3.32). 

 

Reactions close to first order type 

 

The concentration difference at different release, consumption, convection and 

distance is plotted as a correlated plot in Figure 6.8b. The concentration difference 

parameter int

/ m

bot

pa K

C C

Dam



  is plotted as a function of the effective distance 

parameter
f

x

H Pe
.  It is seen that Figure 6.8b has correlated the numerical data 

satisfactorily even though the /pa mDam K  changes by a factor of 5 times and the 

large / 0.25pa mDam K   may not be truly of the first order type. The spread of data 

arises because the effects of /pa mDam K have not been completely absorbed in the 

concentration difference parameter. It is noted that away from the inlet, the 

concentration difference parameter is around 0.4 which close to the analytical value 

of 0.5 (Equation 3.37). 

 

6.2.2.3 Effectiveness factor  

To quantify the mass transfer resistance of the porous medium, an effectiveness 

factor is defined. It is the ratio of actual reaction rate to that which would be obtained 

if the enzyme or cells are at the interface (that is without the porous medium 
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resistance). In present study, the actual reaction rate is expressed based on 

concentration flux normal to the interface.  

 

Reactions close to Michaelis-Menten type 

 

Figure 6.9a presents effectiveness factor as a function of effective distance when 

the reaction is close to Michaelis-Menten type. It shows that away from the inlet, the 

effectiveness factor vary from around 0.9 to 0.6. The effectiveness is lower at 

large paDam  and small release ratio a . With large paDam  (relatively large 

consumption), the concentration in the porous medium is much lower than that at the 

interface. Thus the actual reaction in the porous medium compared to that at the 

interface is smaller; and hence the porous medium is less effective for mass transfer 

across the interface. The effectiveness factor is a local parameter and far away from 

the inlet, it becomes lower due to the lower concentration in the porous medium. 

 

Reactions close to first order type 

 

Figure 6.9b presents effectiveness factor as a function of effective distance when 

the reaction is close to first order type. It shows that away from the inlet, the 

effectiveness factor is around 0.85 and is slightly higher at smaller /pa mDam K  . The 

effectiveness of the porous medium is good because the consumption is relatively 

small with the assumption of small /pa mDam K  for first order reaction. The 

concentration in the porous medium is relatively close to that at the interface. 
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Although the effectiveness factor is a local parameter, it is relatively constant along 

the effective length. 

 

6.2.2.4 Reactor efficiency  

The reactor efficiency is the ratio of actual reaction-rate over the maximum 

reaction rate (based on the inlet concentration). The actual reaction rate is averaged 

over the reactor length. The reactor efficiency incorporates the effects of the porous 

medium and reactor length on the transfer of substrates into the porous medium for 

reaction by the cells or enzymes.  

 

Reactions close to Michaelis-Menten type 

 

Figure 6.10a presents reactor efficiency as a function of effective channel length 

at different paDam and a  when the reaction is close to Michaelis-Menten type. The 

reactor efficiency varies from around 0.85 to 0.6. The efficiency is lower at 

larger paDam and smaller a due to the smaller concentration in the porous medium. At 

longer reactor length the efficiency is smaller. This is because of the decreasing 

interface concentration with length, which gives a lower concentration in the porous 

medium and hence the average reaction is low. 
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Reactions close to first order type 

 

Figure 6.10b presents reactor efficiency as a function of effective channel length 

at different /pa mDam K when the reaction is close to first order type. The reactor 

efficiency away from the inlet is around 0.7. The reactor efficiency is good because 

the consumption is relatively small with the assumption of small /pa mDam K  for first 

order reaction. As expected the efficiency is larger for smaller /pa mDam K . The 

concentration in the porous medium is relatively close to that at the interface. The 

efficiency is averaged over the length, and does not vary much for effective length 

larger than 0.5. 

 

6.2.2.5 Utilization efficiency  

The utilization efficiency (or conversion rate) is the ratio of actual utilized mass 

rate over the inlet mass rate. The utilized mass rate is the difference in mass rates at 

reactor inlet and outlet. The utilization efficiency incorporates the effects of the 

porous medium, reactor length and fluid convection on the transfer of substrates into 

the porous medium for reaction by the cells or enzymes.  

 

Reactions close to Michaelis-Menten type 

 

Figure 6.11a presents utilization efficiency as a function of effective channel 

length at different paDam and a  when the reaction is close to Michaelis-Menten type. 
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The utilization efficiency varies from around 0 to 0.8. The utilization efficiency is 

very low at small
L

 
H Pe f

, that is either small /  or large Pe fL H . This is because the 

convection time scale is relatively short compare to the diffusion time. Hence the 

substrates further away from the interface are not utilized. At larger paDam the 

consumption is larger and hence gives better utilization. At smaller release ratio 

a there is a requirement for more flux and hence larger utilization.  The utilization 

efficiency highlights the importance of effective length to achieve good utilization. 

 

Reactions close to first order type 

 

Figure 6.11b presents utilization (or conversion) efficiency as a function of 

effective channel length at different /pa mDam K when the reaction is close to first 

order type. The utilization efficiency varies from around 0 to 0.15. The utilization 

efficiency is generally low due to the small consumption rate. At small
L

 
H Pe f

, that 

is either small /  or large Pe fL H , the utilization efficiency is very low because the 

convection time scale is relatively short compare to the diffusion time. Hence the 

substrates further away from the interface are not utilized. At larger /pa mDam K the 

consumption is larger and hence gives better utilization.  

 

 



Chapter 6 Mass Transport in a Microchannel Reactor With a Porous Wall 

  145 

6.2.3 Applications in design of bioreactors 

The present generalized results can be used for design of microchannel 

bioreactors. Several bioreactor design criteria, such as critical channel length, critical 

inlet concentration, effectiveness factor, reactor efficiency and utilization efficiency 

can be checked and optimized.   

To illustrate the application of present generalized results, the following 

perfusion bioreactor systems (Chow et al. 2001, Zhao et al. 2005, 2007 and Pathi et al. 

2005) for growth of mesenchymal stem cells (MSC) and hematopoietic cells will be 

considered. These bioreactor systems consisted of a microchannel with a porous wall, 

like the present model. Both the geometry and mass transfer properties are listed 

previously in Table 3.1. One important parameter is the cell density and in this 

section it is taken to be the MSC density at day 20, given as 63.99x10 /cells ml  (Zhao 

et al., 2005). 

 

Critical channel length  

 

The critical channel length is an important parameter which can be used to avoid 

species insufficiency for cell growth in bioreactor. From the consideration of effective 

length 
1

f

L

H Pe
, a long microchannel bioreactor would not suffer from species 

inadequacy if proper H or fPe are selected, that is either large enough H or fPe .  

As listed previously in Table 3.1, the reactor parameters are typically: 

20.2fPe  , 0.05mK  , paDam  =0.0513 and 0.468paDam   . A simple iteration 
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procedure will be needed to find the critical channel length. Assume the bottom 

concentration at the outlet to be equal the critical concentration, 0.05bot mC K  , so 

as to avoid hypoxia. With a trial value of initial channel length L = 100mm, the 

effective channel length is calculated as
1

0.825
f

L

H Pe
   . Using Figure 6.8a, the 

concentration difference parameter int 0.5bot

pa

C C

Dam



 


; hence the interface 

concentration at outlet 
int 0.284C  . Then the interface concentration parameter at 

outlet is calculated: int 1
1.53k

pa

C

Dam





   . Using Figure 6.7a, with 1.53k   , the 

critical effective channel length is determined as 
1

1.4
f

L

H Pe
   . Hence the critical 

channel length 170L mm , which can be used for the next iteration. The critical value 

of channel length can be approximately determined within two iterations and found to 

be about 172 mm. In the bioreactors of Chow et al. (2001), Zhao et al. (2005, 2007) 

and Pathi et al. (2005), the channel length is 100mm which is within the present 

calculation of critical channel length.  

 

Critical inlet concentration 

 

Consider the example bioreactor system with 100 L mm , 6 H mm and 

81.1 10 /mk mol ml  . The effective channel length is calculated as 

1
0.825

f

L

H Pe
   . From Figure 6.7a, the interface concentration parameter is 
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determined as int 1
1.1k

pa

C

Dam





   , and hence 

int 0.485C  . From Figure 6.8a, and 

also using the effective length
1

0.825
f

L

H Pe
   , the concentration difference 

parameter is determined as int 0.5bot

pa

C C

Dam



 


. Hence, with the calculated 

int 0.485C  , the bottom concentration is calculated as 0.251bot
bot

in

c
C

c
  . If the 

outlet is assumed to be at the critical concentration 81.1 10 /bot mc k mol ml   , the 

critical inlet concentration can be  calculated as 
8

in_ 4.38 10 /criticalc mol ml  . In the 

bioreactor systems of Chow et al. (2001), Zhao et al. (2005, 2007) and Pathi et al. 

(2005),  the inlet concentration is 72.2 10 /inc mol ml   which is satisfactory as it is 

larger than the present calculation of critical inlet concentration. 

 

6.3 Conclusions 

The velocity and concentration fields have been calculated in a microchannel 

reactor with a porous wall. To characterize the mass transfer in the porous medium 

the porous Damkohler number paDam  is defined as the ratio of consumption to 

diffusion of the substrates in the porous medium. The convective and diffusion time 

scales in the fluid region is characterized by an effective distance 
1

f

x

H Pe
. The 

simplified analytical solutions indicate that the concentration should be normalized by 

the Damkohler number paDam , Michaelis-Menten constant 
mK and release ratio a . 
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The normalized numerical data, of the interface concentration and concentration 

difference, show satisfactory correlation when presented as a function of the effective 

distance 
1

f

x

H Pe
. 

To quantify the local mass transfer resistance along the length of the porous 

medium, an effectiveness factor is defined. For reaction close to Michaelis-Menten 

type, the effectiveness factor varies from around 0.9 to 0.6. For reaction close to first 

order type, the effectiveness factor is around 0.85, because the mass flux into the 

porous medium is relatively small with the assumption of small /pa mDam K . 

The reactor efficiency is the ratio of actual reaction-rate over the maximum 

reaction rate (based on the inlet concentration). The actual reaction rate is averaged 

over the reactor length and incorporates the effects of the porous medium and reactor 

length. For reaction close to Michaelis-Menten type, the reactor efficiency varies 

from around 0.85 to 0.6. For reaction close to first order type, the reactor efficiency is 

around 0.7.  

The utilization efficiency (or conversion rate) is the ratio of actual utilized mass 

rate over the inlet mass rate. The utilization efficiency incorporates the effects of the 

porous medium, reactor length and fluid convection on the transfer of substrates into 

the porous medium for reaction by the cells or enzymes. When the reaction is close to 

Michaelis-Menten type, the utilization efficiency varies from around 0 to 0.8. When 

the reaction is close to first order type, the utilization efficiency varies from around 0 

to 0.15. For both Michaelis Menten and first order type reactions, the utilization 

efficiencies are very low at small
L

 
H Pe f

, that is either small /  or large Pe fL H . 
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This is because the convection time scale is relatively short compare to the diffusion 

time.  
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Figure 6.1 Grid independence study for concentration at the bottom with different 

grid size when 0.8  , 0.0a  , 0.26mK  , paDam =2.0, faDam =0.05, 0   

and
1 0  . 
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Figure 6.2 Contour of concentration field with effect of different release rate when 

0.8  , 0.26mK  , paDam =2.0, faDam =0.05, 0   and
1 0  : (a) 0.0a  ; (b) 

0.2a  ; (c) 0.4a  . 
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Figure 6.3 Effects of different stress jump coefficients when 0.8  , 

0.0a  , 0.26mK  , paDam =2.0 and faDam =0.05: (a) Concentration at interface; (b) 

Concentration profiles normal to interface at x/H=10.0; (c) Velocity profiles. 
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Figure 6.4 Concentration at different Dampa and Damfa for 0.8  , 0.26mK  , a  = 

0.0, 0   and
1 0  : (a) at interface; (b) at bottom; (c) Concentration difference. 
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Figure 6.5 Concentration reaction parameter as function of effective distance 

parameter when 0.8  , 0.0a  , paDam =0.5, 
mK =0.26, 0   and

1 0  :  (a) at 

different faDam ; (b) at different fPe  
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Figure 6.6  Concentration results on different 
mK  when 0.8  , 0   and

1 0   for: 

(a) concentration reaction parameter; (b) concentration difference parameter 

f

x

H Pe
 

 

Km  =  0.068  

Km  =  0.128      a = 0 paDam = 0.3 

Km  =  0.260 

 



Chapter 6 Mass Transport in a Microchannel Reactor With a Porous Wall 

  162 

 

0 0.5 1 1.5 2 2.5 3
-4

-3

-2

-1

0

(a)

 
 

 

 

 

 

 
 

f

x

H Pe
 

k 

a =0.0             

a =0.4 

a =0.0          

a =0.4 

Analytical solution for M-M Type 

Dampa=0.1  

 

 

Dampa=0.5    



Chapter 6 Mass Transport in a Microchannel Reactor With a Porous Wall 

  163 

 

0 0.2 0.4 0.6 0.8 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
(b)

 
 

 

 

 

Figure 6.7 Concentration reaction parameter as function of effective distance 

parameter when 0.8  , 0   and
1 0  :  (a) Michaelis-Menten reaction at different 

a  and paDam with Km=0.128; (b) First order reaction at different /pa mDam K .  
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Figure 6.8 Concentration difference parameter as function of effective distance 

parameter when 0.8  , 0   and
1 0  :  (a) Michaelis-Menten reaction at different 

a  and paDam with Km=0.128; (b) First order reaction at different /pa mDam K .  
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Figure 6.9 Effectiveness factor as function of effective distance parameter 

when 0.8  , 0   and
1 0  : (a) Michaelis-Menten reaction at different a  

and paDam  with Km=0.128; (b) First order reaction at different /pa mDam K . 
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Figure 6.10 Reactor efficiency as function of effective distance parameter 

when 0.8  , 0   and
1 0  : (a) Michaelis-Menten reaction at different a  

and paDam  with Km=0.128; (b) First order reaction at different /pa mDam K . 
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Figure 6.11 Utilization efficiency as function of effective distance parameter 

when 0.8  , 0   and
1 0  : (a) Michaelis-Menten reaction at different a  

and paDam  with Km=0.128; (b) First order reaction at different /pa mDam K . 
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Chapter 7 Conclusions 

 

7.1 Conclusions 

A numerical study, using the BEM, was carried out on the flow through a 

channel partially filled with fibrous porous medium, which was modeled as a periodic, 

hexagonal array of cylinders. The low Reynolds number flow is studied in present 

work. The flow was transverse to the cylinders and the interfacial boundary 

conditions were analyzed. The slip coefficient was determined to vary from around 

0.4 to 8.4 for the present range of permeability. Using the determined slip coefficients 

in the previous slip boundary model, the interfacial velocity was found to be less than 

the present BEM results by around 2–5 times. The effective viscosity varies from 

around 3.1 to 5 for the present permeability. The stress jump coefficient is of order 

one, which is consistent with previous literature. However, it is interesting that the 

present jump coefficients are negative in value. Note that Beavers-Joseph model has 

inherent defect of not having local geometry effects on slip coefficients. Hence it is 

difficult to compare present numerical results with those results deduced or matched 

from Beavers-Joseph model. The present results may give some indication of the 

range of values of the coefficients that are needed as empirical inputs to the various 

models of interfacial boundary conditions. The interfacial conditions noted from the 

present pore scale and REV scale modeling may be of interest to domain scale 

modeling of flow and heat transfer condition at the interface between fluid and porous 
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media.  

A domain scale modeling based on the lattice Boltzmann equations was 

developed for flow systems with regions of homogenous fluid and porous medium. 

The two domains were coupled by the stress jump interfacial boundary condition of 

Ochoa-Tapia and Whitaker (1995a, 1995b, 1998). A treatment of the velocity and 

distribution functions at the interface was described. The interfacial velocity was 

calculated with the difference approximation of the velocity gradient derivatives in 

the stress jump condition. Then the updated interfacial velocity was used to update 

the distribution functions at the interface. This interfacial treatment was applied to 

simulate coupled flow problems such as channel flow, porous plug and cavity flow. 

These cases cover a variety of situations where the major flow is parallel, 

perpendicular and oblique to the interface. The stress jump parameter has more effect 

when the velocity is parallel to the interface. The results are in consistent with the 

analytical and/or finite-volume results. 

The developed numerical method was then implemented to study a microchannel 

reactor with a porous wall. To characterize the mass transfer in the porous medium 

the porous Damkohler number paDam  is defined as the ratio of consumption to 

diffusion of the substrates in the porous medium. The convective and diffusion time 

scales in the fluid region is characterized by an effective distance 
1

f

x

H Pe
. The 

simplified analytical solutions indicate that the concentration should be normalized by 

the Damkohler number paDam , Michaelis-Menten constant 
mK and release ratio a . 

The normalized numerical data, of the interface concentration and concentration 
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difference, show satisfactory correlation when presented as a function of the effective 

distance 
1

f

x

H Pe
. To quantify the local mass transfer resistance along the length of 

the porous medium, an effectiveness factor is defined. The effectiveness factor varies 

from around 0.9 to 0.6 for reaction close to Michaelis-Menten type, and around 0.85, 

for reaction close to first order type. The reactor efficiency (averaged over length) is 

the ratio of actual reaction-rate over the maximum reaction rate (based on the inlet 

concentration). The reactor efficiency varies from around 0.85 to 0.6 for reaction 

close to Michaelis-Menten type, and around 0.7 for reaction close to first order type. 

The utilization efficiency (or conversion rate) is the ratio of actual utilized mass rate 

over the inlet mass rate. The utilization efficiency incorporates the effects of the 

porous medium, reactor length and fluid convection. The utilization efficiency varies 

from around 0 to 0.8 for reaction close to Michaelis-Menten type, and around 0 to 

0.15 for reaction close to first order type. The results show that for both types of 

reactions, the utilization efficiencies are very low at small effective length
L

 
H Pe f

 .  

 

7.2 Recommendations 

       In the present study, because the boundary element method was employed to 

solve fibrous porous medium, the pore scale investigations were restricted to slow 

viscous flows. In the future work, the pore scale investigations could be extended to 

high Reynolds number flow system, which has wide applications in engineering, such 

as cooling fins, condenser, etc. This may be achieved by the lattice Boltzmann 
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method. A more complex three dimensional irregular but periodic pore structures 

could also be investigated using irregular granular pores and structures. A three 

dimensional combustion simulation in porous media using LBM had been presented 

by Yamamoto et al. (2005). The numerical results could be implemented to heat 

transfer applications, such as heat exchangers with fins. Several experiments can be 

designed to further study the interfacial conditions. These experiments could 

contribute on showing the physical characteristics of interfacial conditions. Fibrous 

porous medium modelled by titanic wires matrix with very small diameter (as thin as 

hair, practical and low cost), having specially designed structure to position titanic 

wires with capability for fine tuning of distance between wires. The porosity and 

permeability are changed by adjusting distance between wires. The low Reynolds 

number channel flow will be studied, and the constant inlet pressure maintained. The 

small and constant diameter titanic wires minimize effect of local geometry on 

interfacial conditions. The observed velocity will be nearly volume averaged. The 

titanic wire is highly corrosion resistant with little fouling and good for repeatable 

and reliable flow data collect.   
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