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Summary 

This thesis presents a phenomenological study of the mechanics of soft matter 

systems, particularly polymer networks. Due to the length- and time-scale 

dependence of the mechanical properties of these networks, it is necessary to utilize 

multiple characterization techniques. Using a combination of bulk mechanical 

rheology (MR), microscopy, particle tracking microrheology (PTM), image 

correlation spectroscopy (ICS), as well as numerical simulation, we investigate the 

interplay between the mechanics of polymer networks at different length and time 

scales. 

In the first part of the thesis, we focus on studying the mechanics of collagen 

networks, a type of biopolymer network that significantly determines the mechanics 

of biological tissues. Collagen forms highly heterogeneous networks and exhibits 

strain-dependent mechanical behavior. We systematically dissect the roles of collagen 

concentration, fiber entanglement, and network connectivity in governing the 

mechanics at different length scales and strain levels. Based on the results obtained 

from MR, PTM, and computer simulations, we propose a deformation mechanism 

that can explain the full spectrum of collagen network mechanical response. Despite 

the valuable insights gained through the combination of techniques, this work 

underscores the importance of accounting for system heterogeneity and some of the 

limitations of existing mechanical characterization techniques. 

In the second part of the thesis, we develop a novel microrheological technique 

based on ICS that we call ICS-µR. ICS is an emerging biophysical tool that allows 

 x



quantitative measurements of the dynamics of imaged fluorescent molecules. We 

present a mathematical framework for extracting the microrheological information 

from the correlation data and further extend the capability of ICS to perform dynamic 

measurement in a probe-independent manner. We validate the method on both 

Newtonian and complex fluids (homogeneous polymer networks) with various 

viscoelastic properties. The potential of simultaneously obtaining spatiotemporal 

measurements and microrheological information from a single set of image data 

makes ICS-µR a prospective tool in many applications, biological or otherwise. 
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Chapter 1: Introduction 

Chapter 1: Introduction 

1.1 Soft matter 

Soft matter, as its name suggests, is a class of materials that can be easily 

deformed, as a result of their unusual structural, mechanical, and chemical behaviors. 

The seemingly loose definition allows soft matter to encompass a wide range of 

systems of varying components, including colloidal dispersions, membranes, films, 

emulsions, surfactant assemblies, gels, liquid crystals, as well as synthetic and 

biological polymers. Integrating these materials together and naming and studying 

them under the single field of soft matter, however, is not just a matter of simplifying 

the nomenclature. Rather, it has been realized only in the past 10–20 years that many 

phenomena in these systems, which had previously been discovered and understood 

independently in each subfield, have the same underlying physical mechanisms [1]. 

This integration, together with the ever broader impact of understanding the 

properties of these systems in the society, has propelled the advancement of soft 

matter research in the recent years, especially with the blossoming of nanotechnology 

and biophysics of biological materials. 

There are a number of common features among soft matter systems that 

distinguish them as a class of materials [2]. Chief among these are: 

 The importance of the relation between structure and property at mesoscopic 

length scales. A soft matter system often self-organizes into characteristic 

physical structures much larger than its constituents at the atomic or molecular 
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levels yet much smaller than the macroscopic scale of the material. The properties 

and interactions of these mesoscopic structures, in addition to the properties and 

interactions of the microscopic constituents, lead to many interesting behaviors at 

the larger length scales that are not easily predictable. Even more complexity 

arises when the spontaneous self-assembly takes place hierarchically, with 

multiple levels of supramolecular structures that interact with each other. This 

propensity of soft matter to self assemble into complex structure makes it form a 

major component of biological systems and technological applications. 

 The importance of thermal energy. Typical structures in soft matter are small 

enough to undergo significant Brownian motion and fluctuation and for thermal 

energy to produce stochastic distortions in the structures. Such small energy scale 

needed to deform the structures is one of the origins of the macroscopic 

compliance characteristic of soft matter systems. As we shall discuss further, 

proper utilization of this information can in fact be useful in revealing the 

behavior of these materials in different length scales. 

It is obvious that soft matter is characterized by complexity, both in structure and 

dynamics, which makes it difficult to derive quantitative theories for these materials. 

However, the apparent similarities in the behavior of soft matter systems call for more 

universal relationships [3]. This is the reason that scaling laws, which in essence 

evaluate how one variable depends on or vary with other quantities, have been central 

in studying soft matter systems. The concept of scaling was first introduced in the 

field of polymer physics by Pierre-Gilles de Gennes [4], and has since pervaded into 
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various other fields in soft matter research and beyond. It is no wonder that de Gennes 

is now considered one of the founding fathers of soft matter [5]. He succinctly 

summarize the two outstanding features of soft matter in his Nobel Lecture: its 

complexity and flexibility [6]. 

Due to the various systems and applications that the term ‘soft matter’ covers, the 

study of soft matter has become a highly interdisciplinary subject, taking in aspects of 

physics, chemistry, materials science, and in specific cases also of biochemistry as 

well as chemical and mechanical engineering [3]. As a result, there are many 

directions from which one can approach soft matter systems. This thesis presents our 

contribution to the link between structure and mechanical behavior of soft matter 

systems at different length and time scales, with a particular application to polymer 

networks, using a combination of both established and newly developed mechanical 

characterization techniques. 

1.2 Scale-dependent mechanics of soft matter 

Traditional mechanics classify matters in two forms, solid and liquid. An ideal 

(Hookean) solid is characterized by perfectly elastic behavior: it deforms in 

proportion to the applied force and regains its original state when the force is removed. 

An ideal (Newtonian) liquid, on the other hand, is characterized by perfectly viscous 

behavior: it flows with a rate proportional to the applied force, where the constant of 

proportionality is the liquid viscosity. For shear deformation, these can be 

mathematically represented respectively as 
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 Gτ γ=    (Hookean solid) (1.1) 

and 

 τ νγ=    (Newtonian liquid), (1.2) 

where τ  is the shear stress, γ  is the shear strain, d dtγ γ≡  is the strain rate,  is 

the shear modulus, and 

G

ν  is the viscosity. Both shear modulus and viscosity are 

measures of the resistance of the material from being deformed, which are intrinsic 

properties of the material and are independent of system size. Eqs. (1.1) and (1.2) 

should ideally describe the full range of material response. 

However, real materials, particularly soft matter, invariably behave in a way that 

combines the two idealized linear responses, leading to the term viscoelasticity. One 

hallmark of a viscoelastic material is that it responds to an applied stress in a 

time-dependent manner. At a long time scale, it may flow like a viscous fluid, but at a 

short time scale, it may behave like a typical solid, for example. As a consequence, 

proper mechanical characterization of viscoelastic materials often requires analyses 

over multiple time scales that are not necessary for conventional solids or liquids. In 

addition, in many soft matter systems, this time-dependent viscoelastic behavior is 

also dependent on material composition and microstructure as well as temperature, as 

we have mentioned earlier. This has two implications. First, the relatively large 

mesoscopic length scales relevant in the soft matter microstructure and the relatively 

small energy scale required to deform the material imply large structural relaxation 

times. Therefore, phenomena far from thermal equilibrium play a very important role 

[7]. Second, the possibility of having hierarchical structures in the soft matter requires 
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careful examination of the mechanical behavior at different length scales to fully 

understand the material response. As an example, typical biological materials involve 

descriptions from length scales relevant to tissues ( 3~ 10−  m), cells (  m), 

biopolymer fibers (  m), macromolecules (

5~ 10−

7~ 10− 8~ 10−  m), to atomic level ( 10~ 10−  

m). In effect, the elastic and viscous ‘constants’,  and G η , are no longer constants, 

but functions of time scale, length scale, and extent of deformation. All of this 

scale-dependent behavior of soft matter systems calls for multiple characterization 

approaches. 

1.3 Characterization techniques of soft matter 

In this section, we briefly survey the various characterization techniques for 

studying the structure and properties of soft matter. There are a large number of 

available techniques and many have been discussed and reviewed extensively 

elsewhere. Here, we only discuss typical applications of each technique, focusing on 

the type of measurements and the range of length and time scales that can be probed 

using the techniques. Some of these techniques will be used and discussed in more 

detail in the following chapters of this thesis. 

1.3.1 Microscopy 

When the relevant structural length scale of the material is on the order of 

micrometers, optical microscopy can be used to visualize the structures [8,9]. 

Birefringent structures, such as those formed by liquid crystals, can be identified 

using polarized light microscopy [10]. Large colloidal particles can be directly 
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observed, for example using difference interference contrast (DIC) microscopy [11]. 

Many biophysical studies or those involving bio-inspired materials entail fluorescent 

labeling of the objects of interest, for which fluorescent microscopy is particularly 

useful [12]. The development of confocal microscopy, which allows thin, 

micrometer-level “optical slicing” through the material thickness, has also been 

instrumental in three-dimensional (3D) examinations of the structures, both in 

fluorescent or reflection mode [13]. 

Soft matter with structures of nanometer or sub-nanometer dimensions can be 

imaged using electron microscopy [14]. Electron microscopy can be broadly 

categorized into scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM), with the main difference being SEM images the exterior of the 

object, while TEM involves sectioning of the bulk sample into nanometer-thick slices. 

Although electron microscopy has been successfully used to examine the 

microstructure of various soft matter systems, including biological materials, it is 

important to bear in mind that the sample has to be imaged in dry condition and often 

has to be stained or coated with heavy atoms to obtain sufficient electron density 

contrast in the imaged sample. These sample preparation steps can sometimes result 

in misleading structural artifacts. In addition, in contrast to optical microscopy, only 

static measurement can be done, as the sample has to be fixed. 

Nanoscale surface structures can also be characterized using scanning probe 

microscopy (SPM) techniques [15], with atomic force microscopy (AFM) being one of 

the most commonly used [16]. AFM has been successfully used, either in the contact 
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or tapping (non-contact) modes, to provide topological survey of material surfaces in 

high resolution. AFM can also be used in conjunction with nanoindentation 

techniques to measure the mechanical properties and hardness of the materials [17]. 

However, the basic principle of AFM makes it problematic when the material under 

examination is fairly soft. 

1.3.2 Rheology 

Rheology is the study of the deformation and flow of matter [18]. In a typical 

rheology experiment, a rheometer is used to apply a shear deformation to the sample 

and the viscoelastic response is measured. There are a number of types of 

measurements that can be performed to obtain the desired information on 

viscoelasticity [19]. In stress relaxation measurements, a strain is applied and held 

constant, while the decay of the resulting stress is monitored as a function of time. On 

the other hand, in creep measurements, a stress is applied and the increase in the 

resulting strain is monitored. The dependence of the material response on the strain 

magnitude and rate, which is often nonlinear in many soft matter systems, can 

likewise be directly measured. To more directly probe the time scale-dependent (or, 

equivalently, frequency-dependent) mechanical behavior of the material, dynamic 

mechanical testing can also be performed by applying oscillatory strain and 

monitoring the resulting stress waveform. The “elastic” and “viscous” contributions 

can then be analyzed separately by looking at the in-phase and out-of-phase response, 

respectively. The time evolution of the viscoelasticity, for example during phase 

transition or gelation events, can be directly observed by monitoring the response 
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upon the application of small oscillatory strain over time. To interpret the rheological 

data obtained from these various protocols, a number of constitutive relations, such as 

the Maxwell model (for viscoelastic liquid) and Voigt model (for viscoelastic solid), 

have also been developed [20]. 

Shear deformation of the probed sample can be achieved using rheometers of 

various geometries. For example, the sample can be sheared between two horizontal 

parallel plates, where the strain varies with distance from the center of the plates, or 

between a cone and a plate, where the strain is constant throughout the sample. 

Liquid samples can also be measured using Couette geometry, where the sample is 

sheared between two vertical concentric cylinders, one of which is rotated while the 

other is fixed. Due to the size of the rheometer geometry, the sample volume is 

typically on the order of milliliters, and the probed length scale is in the micrometer or 

millimeter range. 

There has been a recent upsurge in the demand for rheological measurements at 

smaller length scales, especially in the length scales relevant to biological cells, which 

are around a micrometer and smaller. To this end, microrheology has emerged as a 

branch of rheology that probes the rheology of materials at the length scales of the 

probe particles, typically micrometers [21]. In microrheology, the mechanical 

perturbation is applied to the sample through probe particles in the material either 

using external forces or by just relying on Brownian thermal noises native to the 

system. The probe particles could be physically introduced or indigenous. 
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1.3.3 Scattering and spectroscopy techniques 

In scattering techniques, the sample is illuminated by beams and the intensity of 

the scattered light is used to analyze the sample properties [22]. Visible light is used in 

static (SLS) and dynamic light scattering (DLS) and the scattered light is analyzed as 

a function of scattering angle in SLS or correlated in time in DLS to estimate particle 

size or diffusion properties for particles with sizes comparable to light wavelength 

(~380–750 nm) [23]. Materials with smaller features require beams with shorter 

wavelengths, such as in X-ray and neutron scattering [24]. X-ray is scattered by 

electrons and the scattering angle varies with the structural spacing in the sample, 

leading to further categorization into wide angle X-ray scattering (WAXS) [25] and 

small angle X-ray scattering (SAXS) [26]. X-ray scattering has been particularly 

useful in providing information on the structure of nanometer-level crystalline 

polymers. The principle for neutron scattering is similar, but neutrons are scattered by 

atomic nuclei instead, which leads to the major use of small angle neutron scattering 

(SANS) in the field of polymer and soft matter physics [27]. 

At even smaller length scales, nuclear magnetic resonance (NMR) is useful in 

probing both the static order and the dynamic within materials, by carefully analyzing 

the motion of the magnetically excited nuclei [28]. NMR has been useful in providing 

information, for example, of the orientational ordering and dynamics of liquid 

crystals and hydrocarbon chains in micelles. Infrared (IR) spectroscopy and Raman 

spectroscopy can also be used to infer microstructural information at such small 

length scales, such as chain branching and orientation of polymer [29].  
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1.3.4 Computer simulations 

The need for multiscale characterization of soft matter, together with the rapidly 

increasing power of computers, makes computer simulations a valuable tool in 

understanding soft matter. Modeling of soft matter systems can be done at multiple 

levels, from atomistic, molecular modeling in Molecular and Brownian Dynamics 

(MD and BD respectively) systems [30], all the way to bulk material modeling with 

constitutive relations in finite element (FE) analysis [31]. The propensity of soft 

matter systems to form hierarchical, mesoscopic structures also allows efficient 

coarse-grained modeling. One particular advantage of computer simulation is that 

the input parameters can be generated much more precisely and reliably compared to 

experiments, which in turn allows generic characterization and prediction of material 

behavior that are difficult to gain, if accessible at all, from experiments alone.  

 

In summary, each experimental and computational characterization technique 

has its own strengths and weaknesses, as well as ranges of applicability. To study 

complex materials like soft matter, therefore, employing just one technique is often 

insufficient to completely understand the underlying principles of material behaviors. 

For example, interpretation of mechanical rheology data is sometimes difficult 

without concurrent in situ characterization of the material’s microstructure. These 

difficulties have prompted a variety of schemes for combining the available 

techniques, for example in rheo-optical measurements, where the sample is deformed 

while the microstructural changes are monitored real-time using imaging or scattering 
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techniques [32,33]. In this thesis, we employ similar multi-pronged approach to study 

the mechanical behavior of soft matter. The organization of this thesis is summarized 

in the next section. 

1.4 Scope and Structure of the Thesis 

In the first part of the thesis, we investigate the mechanical behavior of networks 

of collagen, the most abundant protein in mammals. Collagen fibrils form complex 

hierarchical structures with a great variety of properties, and collagen networks play 

an important role in determining the stiffness and force transmission in biological 

tissues. In Chapter 2, we study the microstructure and bulk mechanical properties of 

collagen networks using microscopy and mechanical rheology. We show that pure 

collagen networks do not exhibit the expected behavior of densely entangled fiber 

networks, but are instead better described by the cross-linked semiflexible polymer 

network model. We propose a deformation mechanism involving fiber rearrangement 

and dynamic bond binding that can explain the observed strain softening and strain 

stiffening of the network. In Chapter 3, we develop a discrete, 3D network model of 

realistic semiflexible fibers to represent typical biopolymer networks and numerically 

study the microscopic mechanical response. We find that two structural properties, 

namely, fiber entanglement and network connectivity, govern the full nonlinear 

response at different length scales and different strain levels. The model underscores 

the importance of taking into account fiber morphology and network heterogeneity. In 

Chapter 4, we employ particle tracking microrheology to experimentally investigate 
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the microscale mechanical properties of collagen networks. We find that not only is 

the network mechanics length-scale dependent, but there is also a large variation in 

the stiffness due to network heterogeneity. We discuss several experimental 

limitations of the technique that warrant further investigations. 

In the second part of the thesis, we develop a new microrheological technique 

based on image correlation spectroscopy (ICS). In Chapter 5, we propose and 

demonstrate the use of ICS as a novel tool for microrheological measurement of soft 

matter systems. We test the method on both Newtonian and complex fluids with 

different viscoelastic properties and compare the results with those obtained using 

mechanical rheology. In addition, we develop a special method for extracting the 

mean-squared displacement of the probe particles from the correlation data that can 

also be useful in other microrheological techniques. In Chapter 6, we present a 

mathematical formalism for ICS that allows dynamic measurement in a 

probe-independent manner. We test the method using both simulated and 

experimental confocal images. The possibility of simultaneously obtaining 

microstructural information, spatiotemporal biophysical information, and 

microrheological information from a single set of image data makes ICS a 

prospective tool for studying soft matter. 
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Chapter 2: Macromechanics of Collagen 
Networks 

2.1 Introduction 

2.1.1 Collagen 

Collagen is the most abundant protein in mammals and the main constituent of 

human connective tissues [34]. It is estimated that more than 30% of total protein in 

human body is represented by collagen [35]. Collagen is a key structural and 

mechanical component in load-bearing tissues such as bones, tendons, ligaments, 

skin, and even muscle. Collagen is also believed to play many physiological functions 

other than mechanical due to its specific interactions with molecules and cells. Not 

surprisingly, mutations in collagen have been associated with various connective- 

tissue and bone disorders [36].  

Being a key building material of human body, collagen possesses incredible 

versatility in determining the mechanical integrity of various human tissues. This 

versatility arises from its complex hierarchical structure, where adaptation is possible 

at every level, enabling a great variety of properties and functions [37]. Collagen 

consists of tropocollagen molecules with length ~ 280 nm and diameter ~ 1.5 nm, 

which form staggered arrays typically called fibrils with diameter of tens to hundreds 

nm, which in turn is the basic building block of collagen-rich tissues [38]. These 

fibrils assemble in different organizations and combine with different molecules and 

minerals into composite materials with a variety of complex structures and 
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mechanical properties. 

In vivo, collagen forms fiber networks with location-dependent microstructural 

features that provide complex 3D environments for cells. 1  Naturally, collagen 

networks provide excellent platforms as tissue and extracellular matrix equivalents 

for studies of cell behavior and applications in bioengineering. Indeed, collagen gels 

have increasingly been used as a biocompatible scaffold for artificial tissue growth 

[39,40], as well as cell motility [41] and even tumor invasion studies [42,43]. The 

mechanical properties of the extracellular matrix profoundly affect various cell 

functions, including differentiation and migration [44,45], while, conversely, cells 

can actively remodel their surrounding microenvironment through, for example, 

matrix deposition and degradation [46,47]. Given the vital role of collagen in tissue 

microstructure and elasticity, it is imperative that the mechanics of collagen networks 

be well understood. 

2.1.2 Bulk characterization of collagen networks 

Collagen, together with other biological fibrillar proteins such as cytoskeletal 

proteins, fibrin, and nucleic acids, belongs to a class of materials known as 

biopolymer [48]. One hallmark of biopolymer networks is their strain-dependent 

viscoelasticity. In particular, biological tissues, cells, as well as reconstituted 

biopolymer networks, including collagen networks, exhibit nonlinear network 

stiffening—the networks becomes harder to deform at large strains—that results in 

                                                 
1 Fiber is sometimes defined as a collection of fibrils with certain directional correlation. However, in 

networks, it is often difficult to distinguish fibrils from fibers. In this thesis, we use the terms fiber 
and fibril loosely and interchangeably. 
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enhancement of network integrity at large strains [49,50]. It has been realized that this 

apparent universality of biopolymer network response has its roots in the fact that 

biopolymers also belong to the class of semiflexible polymers, so called because the 

structural length scales of the networks, such as the mesh size or the fiber contour 

length, are comparable to the length scale of the polymer semiflexibility, often 

quantified through the persistence length  [51]. Although the properties of 

individual semiflexible polymers [52-56] as well as the dynamics and mechanics of 

these polymers in solution [56-61] have been elucidated extensively both 

experimentally and theoretically, those of semiflexible polymer networks are not well 

understood. The origin of the strain stiffening phenomenon in these networks, 

including collagen, is therefore still unclear. 

pl

Under appropriate conditions, collagen is known to self-assemble in vitro to form 

percolated networks [62]. The self-assembly process is highly sensitive to 

polymerization conditions such as temperature, pH, and ionic strength, and results in 

heterogeneous networks with local variations of fiber topology and microarchitecture 

[63,64]. Moreover, the nature of this entropy-driven self-assembly and the underlying 

interfiber interactions are not well understood and are still being actively studied (see, 

e.g., [65] and the references therein). Consequently, collagen networks have complex 

mechanical properties and the interpretation of experimental data for collagen 

networks is not straightforward. To tackle this problem, researchers have started to 

examine the relation between the microstructure of collagen networks and the 

corresponding mechanical properties by exploiting various non-invasive methods 
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that allow visualization of collagen fibers during gelation as well as tensile testing 

[65-68]. 

In this chapter, we attempt a phenomenological investigation of the mechanics of 

collagen networks by systematically probing the viscoelasticity of collagen networks 

as a function of applied strain and collagen concentration. We use simple, continuous 

shear rheometry to measure the rheological properties of collagen networks 

reconstituted in vitro and show that, even without any addition of external 

cross-linkers, the mechanical behavior of collagen networks can be described well by 

a model based on cross-linked semiflexible networks. At higher levels of strain, 

however, only partial agreement with the theoretical predictions is found. In particular, 

the interplay of stress- and strain-triggered network softening and stiffening as well as 

rubber-like cyclic softening behavior are observed. We propose a model for the 

deformation mechanism based on the dynamics of cross-link bonds that can explain 

the behavior. 

2.2 Materials and Methods 

2.2.1 Collagen hydrogel preparation 

Type I collagen extracted via acid-solubilization of rat-tail tendon, with a 

concentration of 9.03 mg/ml in 0.02 N acetic acid, was obtained from BD Biosciences 

(Bedford, MA). Depending on the desired final concentration (  = 1.5–7.5 mg/ml), 

appropriate amounts of the collagen stock solution were mixed on ice with 10% (v/v 

of the final solution) 10× phosphate-buffered saline (PBS), 1 N NaOH 

c

 16



Chapter 2: Macromechanics of Collagen Networks 

(predetermined to adjust the final solution pH to 7.4), and 1× Dulbecco’s Modified 

Eagle’s Medium (DMEM) (predetermined to achieve the desired total volume). All 

solutions were prepared and kept on ice prior to collagen gelation. 

2.2.2 Confocal reflection microscopy 

To visualize the microstructure of the formed collagen networks, confocal 

reflection microscopy (CRM) imaging was performed. CRM is widely used in 

polymer research and the manufacturing industry, and more recently also in cell 

biology, owing to the simplicity of obtaining images of unlabeled sample and the 

possibility of simultaneous cell imaging [43,46,69-71]. In CRM, a point laser is used 

to scan a sample and differences in contrast largely result from a different in refractive 

index between the medium and the scattering collagen fibrils. In 3D collagen 

networks, a penetration depth of 100–200 µm can be reached, although the 

signal-to-noise ratio and resolution decrease with depth. 

Collagen networks were formed by loading 200 µl of prepared collagen solutions 

in the well of glass-bottom dishes (MatTek Corp., Ashland, MA) and incubating at 

37°C for at least an hour to allow gelation. To mimic the condition in cell assays, the 

formed gels were hydrated by adding 2 ml phenol red-free DMEM 

(GIBCO/Invitrogen, Carlsbad, CA) containing 10% FBS and 1% 

penicillin/streptomycin. CRM images were recorded with an inverted confocal laser 

scanning microscope (Nikon TE2000) equipped with a 60×, NA = 1.49 oil objective. 

The samples were illuminated with continuous diode laser (Olympus) at 514 nm and 

the back-scattered light was collected. All images were collected at 37°C. 
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2.2.3 Mechanical rheology 

Rheological measurements were conducted on a temperature-controlled AR-G2 

rheometer (TA Instruments, New Castle, DE) in continuous shear mode. 

Parallel-plate geometry with a plate diameter of 40 mm was used in conjunction with 

a solvent trap to minimize evaporation. In situ polymerization of collagen network 

was done by applying 630 µl of the prepared collagen solution at desired 

concentration on the rheometer Peltier stage (pre-cooled at 5°C) and raising the 

temperature to 37°C. Preliminary oscillatory time-sweep tests confirm that the 

gelation plateau is reached within the first hour, and all further measurements were 

accordingly done after allowing 90 minutes of gelation. Different measurement 

protocols were used to probe the mechanical properties of collagen networks and will 

be discussed in detail separately. 

2.3 Results and Discussion 

2.3.1 Collagen network microstructure 

The microstructure of biopolymer networks, including collagen, is expected to 

heavily affect the mechanical properties of the networks. For this reason, various 

imaging-based methods have been used to both qualitatively and quantitatively assess 

the microstructure of collagen networks. The most common methods include 

confocal fluorescence microscopy (CFM), multiphoton microscopy such as second 

harmonic generation (SHG) imaging, confocal reflectance microscopy (CRM), and 

electron microscopy. Typical CRM images of collagen networks of different 
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concentrations (  = 1.5–7.5 mg/ml) are shown in Figure 2.1. It can be observed that, 

within this range of concentration, the collagen fiber density, topology, and spatial 

structure generally vary with concentration. 

c

 

 

Figure 2.1: Confocal reflection microscopy images of collagen networks. The 
differences of microstructure of networks with different collagen concentration can 
be observed for  = 1.5 mg/ml (A),  = 3.5 mg/ml (B),  = 5.5 mg/ml (C), and  
= 7.5 mg/ml (D). The scale bars represent 10 µm. 

c c c c

More quantitative analyses on images of the network microstructure obtained 

using the abovementioned imaging techniques have been conducted, such as 

extraction of fiber density and topology [65,72-74], orientation [68,75], mesh or pore 

size [73,76], and even for direct image-based prediction of the network mechanical 
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properties [77,78] and strain transmission [66], with varying degree of success. 

However, there are several drawbacks of such image-based microstructural analysis 

of networks. First, imaging techniques can produce artifacts that need to be treated 

very carefully. High-quality visualization of labeled collagen fibers can be obtained 

using CFM, but the labeling procedure itself can modify the self-assembly of the 

network and, as a result, provide misleading information on the native state of 

network structure. CRM is very useful to provide structural information for unlabeled 

collagen networks, but has inferior signal-to-noise ratio compared to CFM to be used 

for quantitative structural analysis. In-plane and axial diffraction artifacts have been 

found to cause overestimation of fiber diameter and fiber density, respectively [79,80]. 

In addition, it has been found recently that fiber brightness becomes a function of 

fiber orientation in CRM, leaving fibers angled at more than ~ 50° from the imaging 

plane entirely undetected [75]. In general, optical microscopy also has spatial 

resolution limits that preclude visualization of features smaller than ~ 100–200 nm. 

Electron microscopy allows imaging with nanometer resolution, but the necessary 

sample preparation, such as sample dehydration, often directly alter the structural 

features [81]. Without careful examination, therefore, image-based analyses can 

result in misleading microstructural information.  

Secondly, we find that image-based analyses are highly sensitive to user-defined 

post-processing parameters. For instance, estimation of network mesh size requires 

image thresholding to minimize the imaging noise [42,76]. However, slight changes 

in the threshold value (which are usually set manually or semi-manually based on the 
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intensity of non-fibrous areas) can result in significant variation in the mesh size 

value. This problem is even more serious when the fibers are not easily 

distinguishable, as is the case for the higher range of  [e.g., Figure 2.1, (C) and (D)]. 

Misleading information can also be obtained for low , where only large fibers are 

visible and there is a perceived lack of interconnection between fibers. 

c

c

In view of the problems associated with network structure estimation from 

images, we decided instead to study the mechanics of collagen networks directly 

using a mechanical rheometer, while independently examining the role of network 

structure at different length scales computationally, which will be discussed in 

Chapter 3. 

2.3.2 Rheology of collagen networks 

We polymerize type I collagen gels in situ between the parallel plates of a 

rheometer, where the neutralized precursor solutions form isotropic networks upon 

heating to 37°C. The typical mesh size, fiber length and diameter of collagen 

networks formed under these conditions have been estimated from confocal images 

and electron micrographs to be  ~ 1–30 µm, ml L  ~ 6–8 µm and  ~ 30–130 nm 

respectively, albeit with considerable variation and heterogeneity within each sample 

[65,72,74]. The rheometer gap ( h  = 500 µm) was chosen such that  is much larger 

than any characteristic length scales of the samples to avoid any size effects [82]. The 

mechanics of the formed networks is measured by applying oscillatory strain 

d

h

( ) ( )0 sint tγ γ ω= , with variable frequency ω  and amplitude 0γ , as schematically 

illustrated in Figure 2.2. For a Hookean solid, this leads to a stress in phase with the 
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strain, while for a Newtonian liquid, the stress depends on the rate of strain d dtγ , 

resulting in a phase shift of 2π  in the response. Generally, for viscoelastic materials, 

the resulting stress is described by ( ) ( )0 sint tτ τ ω δ= +  with a phase shift δ , as 

illustrated in Figure 2.3. The material can then be characterized by the elastic 

modulus ( )0 0' cG osτ γ= δ  and the loss modulus ( )0 0" sG inτ γ= δ , measures of 

the stored and dissipated energy in the network, respectively. For brevity, hereafter we 

refer to γ  (rather than 0γ ) as the oscillatory strain amplitude, while ( )tγ  represent 

the instantaneous shear strain. 

 

 

Figure 2.2: Schematic of oscillatory rheology measurement. The top plate is rotated 
sinusoidally based on ( )tγ , while the temperature-controlled bottom plate is fixed. 

 

 
Figure 2.3: Typical stress-strain oscillatory response of viscoelastic material. The 
stress ( )tτ  (dashed line) and strain ( )tγ  (solid line) signals are phase shifted by an 
angle δ . 
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Characterization of  and  as a function of frequency 'G "G ω  at small strain 

amplitude (γ  = 1%) shows that over the measured frequency range (ω  = 0.1–100 

rad/s),  is ≈ 6-fold larger than , with  values of 10–100 Pa, as shown by 

the solid symbols in Figure 2.4. This result signifies that collagen networks are soft, 

predominantly elastic gels, consistent with previous reports [65,83]. Moreover, both 

 and  exhibit very weak frequency dependence, scaling as 

'G "G 'G

'G "G 0.08' ~G ω . Thus, 

in the time scales relevant to cellular dynamics (i.e., on the order of seconds), 

therefore, collagen scaffolds are elastic with little time-scale dependence. The 

collagen concentration  modulates the stiffness of the networks without affecting 

their frequency dependence. Not surprisingly, higher  results in stiffer networks. 

For simplicity, we use the moduli at 

c

c

ω  = 1 rad/s as the typical moduli values (i.e., 

reference values) for the remainder of this chapter.  

Physiologically, tissues and networks are exposed to large strains as a result of 

large-scale body movements and small-scale cell motility. Therefore, it is equally 

important to examine the mechanical behavior at large strains. To this end, we vary 

the shear strain amplitude γ  in the rheological measurements. Figure 2.5 shows that 

the collagen networks exhibit highly strain-dependent mechanical response over 

almost four orders of magnitude of γ . The network stress τ  increases roughly 

linearly with γ  at small strain, in what is typically termed the “linear viscoelastic” 

regime. As γ  is gradually increased, there is a critical strain cγ  beyond which the 

slope of the τ  vs. γ  curve increases noticably, thus indicating a nonlinear response. 

At very large strains, τ  starts to dramatically drop, indicating network rupture. This 
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nonlinear behavior is prevalent in, and consistent with the behavior of, a number of 

tissues and biopolymer networks. 

 

 

Figure 2.4: Frequency dependence of the shear moduli of collagen networks. The 
storage modulus ( )'G ω  (filled symbols) and the loss modulus ( )"G ω  (open 
symbols) are shown as a function of frequency ω  for different collagen 
concentrations  = 1.5 mg/ml (circles),  = 3.5 mg/ml (upright triangles),  = 5.5 
mg/ml (squares), and  = 7.5 mg/ml (inverted triangles). The frequency sweep 
measurements were performed in the frequency range of 

c c c
c

ω  = 0.1–100 rad/s at 1% 
strain. Both  and  have weak frequency dependence. A solid line of 'G "G 0.08ω  is 
displayed as a guide to the eye. 
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Figure 2.5: The mechanics of collagen networks in response to oscillatory shear 
deformations. The shear stress τ  in (A) and the storage modulus  in (B) are 
shown as a function of the strain amplitude 

'G
γ  for different collagen concentrations 

 = 1.5–7.5 mg/ml over almost four orders of magnitude of c γ . Except for  = 7.5 
mg/ml network,  exhibits an increase with 

c
'G γ , indicating strain stiffening, before 

a drop at very large γ , indicating network rupture. All measurements are done at 
fixed frequency ω  = 1 rad/s and temperature of 37°C. The data points are obtained 
with logarithmically increasing γ . 

We plot the measured strain-dependent elastic modulus ( )'G γ  in Figure 2.5(B). 

The corresponding viscous modulus ( )"G γ  is always smaller than ( )'G γ  for γ  < 

5 and is not shown. There are two interesting features that can be observed. First, at 

small γ  < 25%,  decreases with 'G γ , indicating apparent network softening. To 

show an example of this effect more clearly, the data points for  = 3.5 mg/ml in 

Figure 2.5 are replotted in log-linear scale in Figure 2.6. Second, the network 

strain-stiffening beyond 

c

cγ , as indicated by the increase of ( )'G γ  with γ , becomes 

less pronounced as  increases and does not occur at all for the higher range of  

tested (  = 7.5 mg/ml). The physical mechanism behind such a nonlinear mechanical 

c c

c
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behavior of collagen networks is still poorly understood. In the next two sections, we 

discuss in detail how the rheological properties of collagen networks can reveal the 

mechanics of network deformation. 

 

 

Figure 2.6: Stress τ  and shear moduli  and  of collagen network under 
oscillatory shear with varying strain amplitude 1% < 

'G "G
γ  < 800%. The network is 

polymerized at 3.5 mg/ml concentration and pH 7.4. The measurement is done at ω  
of 1 rad/s, 37°C, and logarithmically increasing γ . 

2.3.3 Amplitude-dependent oscillatory shear measurement 

Although the shear stiffening behavior is anticipated, the softening of 

biopolymer networks at small strains is unexpected and has been reported, to our 

knowledge, only in desmin and microtubule networks [84,85], without substantive 

explanation. To visualize the actual network response during the oscillatory testing, 

we generate the plots of instantaneous stresses ( )tτ  against strains ( )tγ , often 

called Lissajous plot, for different strain amplitudes γ . For purely elastic materials 

(Hookean solid), the response is sinusoidal and in phase ( 0δ = ) and the Lissajous 

plot collapses to a line with a slope of , while for purely viscous materials 'G
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(Newtonian liquid), the response is sinusoidal and out of phase ( 2δ π= ) and the 

Lissajous plot is a circle. Viscoelastic materials like biopolymer networks exhibit 

both elastic and viscous properties, and the Lissajous plot is expected to be a perfect 

ellipse, with  as the slope of the semimajor axis. As shown in Figure 2.7, however, 

this ellipse assumption (and the underlying assumption of sinusoidal response) is only 

valid at small 

'G

γ  (γ  < 5%), while oscillations with larger γ  result in increasingly 

distorted response. Specifically, the slope of ( )tτ  vs. ( )tγ  becomes larger at larger 

strains, implying network stiffening, even in the softening regime as initially 

remarked in Figure 2.6. This apparent contradiction is a result of the above 

assumption that the response waveform is strictly sinusoidal. 

 

 

Figure 2.7: Lissajous plots generated from the stress-strain waveforms at different γ . 
The inset is a zoom in for ( )tγ  < 4%, showing the ellipses as expected in the linear 
viscoelastic regime. For γ  > 5%, the Lissajous plot becomes distorted, indicating 
nonlinear behavior. The dotted line is extrapolated from the semimajor axis of the 
innermost ellipse. 

Different methods have been developed to deal with the nonsinusoidal nature of 

the stress waveform at large oscillation amplitude. One experimental option is to 
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apply a steady prestress to the material, rather than applying a large-amplitude 

oscillation, and to measure the mechanical properties by monitoring the linear 

response upon the application of small, additional oscillation [86]. The measured 

modulus is called differential modulus, K , which is conceptually similar to taking 

the local slope of the stress. However, although this method can circumvent the 

problem with nonsinusoidal response at large deformation, it does not take into 

account the viscous relaxation and flow of the material upon application of prestress. 

Alternatively, the nonsinusoidal waveform can be analyzed in terms of Fourier 

transform rheology and decomposed into different harmonic contributions [87]. The 

sinusoidal approximation in typical rheology measurement can thus be viewed as 

only taking the first harmonic response, while the nonlinear distortions due to 

network stiffening arise from the higher harmonic contributions. The drawback of 

this method is that the higher harmonic coefficients do not necessarily admit clear 

physical interpretation of the mechanics of the probed material. 

To address the issues associated with these methods, additional parameters that 

allow more direct interpretation of the nonlinear phenomena have been introduced 

[88]. Amongst these parameters, two moduli are particularly relevant in quantifying 

the elasticity of the material: the minimum-strain modulus ( ) ( ) 0
'M t

G d d
γ

τ γ
=

=  and 

the large-strain modulus ( ) ( )
'L t

G
γ γ

τ γ
=±

= . Specifically, 'MG  is the tangent 

modulus at ( ) 0tγ = , where the strain rate γ  is at a local maximum, 0d dtγ = , and 

changes in τ  are therefore related only to elasticity, while  is the secant 

modulus at the maximum strain 

'LG

( )tγ γ= , where 0γ =  and the residual stress in the 
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sample results only from the elasticity of the material. These definitions can be easily 

visualized and compared to the standard first harmonic elastic modulus  using the 

Lissajous plot, as shown in Figure 2.8, and can be conveniently related to the higher 

harmonic coefficients [88]. At small strains, the Lissajous plot is elliptical, so both 

1'G

'MG  and  converge to the linear elastic modulus, 'LG 1' ' 'M LG G G G '= = = . At 

larger strains, a difference between 'MG  and  signifies a nonlinear elastic 

response. The deviation from the linear viscoelastic response can thus be quantified 

using an index of nonlinearity, 

'LG

( )' 'L MS G G G≡ − 'L , where 0S =  indicates linear 

elastic response, while  and 0S > 0S <  correspond to intracycle strain stiffening 

and softening phenomena, respectively. The upper limit of  is unity and is achieved 

as . 

S

' 'L MG G

 

 

Figure 2.8: Graphical description of the elasticity measures. The left panel shows how 
'MG  and  are obtained, while the right panel shows that the standard 

first-harmonic approximation assumes an ellipse response with the slope of the 
semimajor axis as . 

'LG

1'G

The variations of the elastic moduli 'MG , , and  in collagen networks 

are plotted as functions of 

'LG 1'G

γ  in Figure 2.9. All three moduli converge as expected in 

the linear regime and initially decrease with γ , indicating intercycle strain-softening 

 29



Chapter 2: Macromechanics of Collagen Networks 

as observed above. The first-harmonic elastic modulus  falls between the two 

other measures for all 

1'G

γ , suggesting that it acts as a first-order, average measure of 

elasticity. But while the small-strain elasticity 'MG  continues to decrease at large γ , 

 and the large-strain elasticity  start to increase around 1'G 'LG γ  ~ 15% and γ  ~ 

25%, respectively, indicating strain-stiffening before network rupture. The 

divergence of these measures marks the onset of nonlinearity around γ  ~ 5%, much 

earlier than the strains at which stiffening in both  and  start to occur. This is 

confirmed when we plot  as a function of 

1'G 'LG

S γ  in Figure 2.9, which shows that  is 

initially close to zero, but that it gradually increases with 

S

γ , implying the increasing 

degree of intracycle strain-stiffening of the network. It is interesting to note that  

never takes on negative values, within experimental error, meaning that no intracycle 

network softening is observed, although  reports initial (intercycle) softening 

before stiffening. 

S

1'G

 

 

Figure 2.9: Elastic moduli of collagen network as a function of strain amplitude 0γ . 
 falls between 1'G 'MG  and , suggesting that it is an average elasticity measure. 

The nonlinearity index  increases with 
'LG

S 0γ  (intracycle strain stiffening), even 
when the elastic moduli decreases with 0γ  (intercycle network softening). 
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The framework used here provides a more complete and richer picture of the 

viscoelasticity of collagen networks that is inaccessible from the first-harmonic 

moduli alone. For example, while network softening at small strains followed by 

stiffening at larger strains is observed from standard interpretation of oscillatory 

rheology, a more detailed analysis on the stress-strain response in each deformation 

cycle reveals an early strain-stiffening of the network, even in the apparent (intercycle) 

softening region. Such analysis will augment the interpretation of rheological 

measurements on various materials, including biopolymer networks of cytoskeletal 

protein constituents and extracellular matrices. In the next section, we discuss how 

the rheological properties of collagen networks can be explained in relation to 

established theories on semiflexible polymer networks. 

2.3.4 Strain-dependent mechanics of collagen networks 

The semiflexible nature of a collagen fiber is reflected in the observation that its 

persistence length  is comparable to the fiber length pl L  and network structural 

parameters such as . Geometrical estimation of  based on imaged collagen 

fibers results in a  range of 6–20 µm [72,89]. Collagen gels have been argued to 

simply consist of uncross-linked, tightly entangled networks of semiflexible polymer 

chains [77]. The mechanics of such networks has been modeled by Morse [59,90], 

and the linear elastic modulus is predicted to follow 

ml pl

pl

7 5 1 5' ~ pG c l− . The bending 

stiffness of the fiber, and therefore , is expected to increase with the fourth power 

of fiber diameter  [91], as has been verified experimentally for collagen [92]. In 

addition, we and others have previously established that, for collagen gels formed at 

pl

d
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37°C,  does not vary with  [73,93]. Consequently, the Morse model predicts a 

scaling relation between  and  with an exponent of 7/5. However, we find that, 

in the linear viscoelastic regime, the collagen network stiffness  varies as 

 over the range c  = 1.5–7.5 mg/ml, as shown in Figure 2.10(A). Similar 

scaling exponents have also been reported in the literature over smaller ranges of  

[73,78]. The disagreement with the Morse model suggests that collagen networks 

cannot be described simply as entangled semiflexible networks. 

d c

'G c

'G

1.9' ~G c

c

The Morse model does not accommodate cross-links between fibers, but the 

mechanics of cross-linked semiflexible chain networks has been modeled by 

MacKintosh et al. [94]. By assuming affine network deformation, dense 

entanglements or cross-links, and , this model predicts another scaling 

relation , where  is the average distance between entanglements. The 

two microstructural parameters  and  depend on polymer concentration, and 

scale as 

ml pl

2 2 3' ~ p m eG l l l− −
el

ml el

1 2~ml c−   and 1 5 2 5~e pl l c−
p for  [52,94]. We thus obtain ml l 11 5' ~G c . 

The scaling exponent found for collagen networks is quite close to this predicted 

value. The agreement of the experimental results with the MacKintosh model but not 

with the Morse model suggests that collagen gels can be better described as 

cross-linked networks, even in the absence of externally introduced cross-linkers. 
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Figure 2.10: Scaling of the nonlinearity parameters of collagen networks with 
collagen concentration . The linear viscoelastic storage modulus  (A), critical 
stress 

c 'G
cτ  (B), and rupture strain rγ  (C) all exhibit scaling relations with  (dashed 

lines) for a range of  = 1.5–7.5 mg/ml. In contrast, there is no observed correlation 
between the critical strain 

c
c

cγ  and , as shown in the inset of (B). The modulus  
data is obtained at 

c 'G
γ  = 10%. At other strain amplitudes γ  < 10%, the scaling 

 is unchanged. The critical stress and strain are assessed at the point where 1.9' ~G c
( )'G γ  starts to increase beyond the initial linear regime, while rγ  is evaluated 

where ( )'G γ  is maximum before network rupture. There is no data point for cτ , cγ , 
and rγ  with  = 7.5 mg/ml networks, since no strain stiffening is observed and it is 
difficult to determine precisely the strain at which network rupture starts. 

c

To examine the nature of these cross-links, we study the behavior of collagen 

networks beyond the linear regime. As the MacKintosh model also allows one to 

estimate the level of strain at which the network starts to exhibit nonlinearity, cγ , 

given by ~c el lpγ , we use the scaling arguments used therein to obtain the result 

that 2 5~c cγ − . The critical strain cγ  can be obtained experimentally from the 

stiffness-strain curves, such as those in Figure 2.5(B), from the values of γ  at the 
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start of strain-stiffening. However, we do not observe a good correlation between  

and 

c

cγ , as shown in the inset of Figure 2.10(B). On the other hand, one can also 

quantify the critical stress that marks the onset of nonlinear stiffening, cτ . It has been 

theoretically shown that, for cross-linked semiflexible polymer networks, what 

controls the cross-over into the nonlinear entropic mechanics is the Euler buckling 

force 2~c p cf l l−  [95]. For isotropic semiflexible networks, ~cl ξ  [96]. If the area 

occupied by each filament is 2ξ , then . This scaling relation can be seen from 

our results [Figure 2.10(B)].  

2~c cτ

The finding that the onset of nonlinear behavior is governed by network stress cτ , 

with the expected scaling behavior for cross-linked semiflexible networks, but not 

strain cγ , can be attributed to the nature of the cross-links in collagen networks. The 

scaling relation between cγ  and c  as predicted by the MacKintosh model is based 

on the assumptions of affine deformations and permanent cross-links. In 

uncross-linked collagen gels, however, any interaction between the fibers is likely to 

be relatively weak and transient. This is evident from the phase angle δ , 

characterizing the ratio between the two moduli ( tan " 'G Gδ = ), which we find to be 

~10° for the range of  tested here. The relatively large magnitude of c δ  reflects the 

existence of higher amounts of weak, non-covalent cross-links, which are likely to be 

in the form of hydrogen bonds as well as van der Waals interactions, in collagen 

networks compared to cross-linked hydrogels [97]. We hypothesize that during 

shear-straining at intermediate γ , the network rearrangement in the collagen gels 

involves, in addition to the expected fiber realignment, the breaking of bonds or 
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fiber-fiber junctions and reformation of these bonds elsewhere, thereby leading to 

nonaffine deformation. This transient bond ‘sliding’ allows an extended level of strain 

before nonlinearity in the network response is reached. The dependence of critical 

stress cτ  on concentration remains as expected from the theory, indicating that once 

the network is sufficiently strained, it largely behaves like the cross-linked 

semiflexible polymer model. 

To test this hypothesis, we quantify the network response beyond the critical 

region, specifically at the gel rupture point rγ . In the cross-linked semiflexible 

network model, the critical strain cγ  marks the level of deformation required for the 

gel to start to engage the cross-links. For relatively weak cross-links, as we propose 

for collagen gels, network rupture is likely to be initiated by the breakage of 

inter-fiber junctions. Therefore, the concentration dependence of 2 5~c cγ −  directly 

translates to rγ . Indeed, we find that the strain at which the network ruptures scales 

with collagen concentration as , as shown in Figure 2.10(C). This 

agreement with the predicted concentration dependence further reinforces our 

argument that, following non-affine network rearrangements at intermediate 

0.4~r cγ −

γ , the 

network deforms in a more affine manner according to the cross-linked semiflexible 

polymer model. Furthermore, the finding that the nonlinearity and network rupture 

are triggered by independent mechanisms, characterized by cτ  and rγ , respectively, 

provides an explanation for the observation that some biopolymer networks exhibit 

strain-stiffening, while some others do not. Even a variation in the polymer and 

cross-linker concentration in the same biopolymer network can influence whether the 
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network will strain stiffen, as shown in Figure 2.11. 

 

 

Figure 2.11: The influence of actin concentration Ac  and cross-link density on the 
strain-stiffening behavior of cross-linked actin networks. R  denotes the ratio 
between the cross-linker (scruin) concentration and Ac . The colors indicate the range 
of the small strain stiffness , as shown in the legend. The symbols differentiate 
networks that stiffen (+) from those that do not (○). Adapted with permission from 
[98]. 

0G

For collagen gels tested in this study, strain-stiffening is not always observed in 

the higher range of collagen concentrations tested; see the results for gels at  = 7.5 

mg/ml. From a microstructural perspective, it is conceivable for a network to achieve 

c

rγ  earlier than cτ , especially when the polymer concentration is very high or very 

low. To check whether the independent trigger mechanisms are responsible for this 

behavior, we extrapolate the scaling relation in Figure 2.10(B) for  = 7.5 mg/ml and 

estimate that 

c

cτ  ~ 45 Pa. Experimentally, the strain needed to reach this amount of 

stress is ~ 0.5, which is ~ 0.45cγ>  as extrapolated from Figure 2.10(C), confirming 

our speculation. 
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2.3.5 Mechanics of collagen network rearrangements 

To further investigate the dynamics of the weak cross-links in collagen networks, 

next we look at the mechanics using modified shear measurement protocols. In 

particular, we vary γ  cyclically, first within the linear viscoelastic regime, then up to 

network stiffening, according to the protocol illustrated in Figure 2.12(A). The 

network response exhibits cyclic softening, as shown in Figure 2.12(B), and is highly 

reminiscent of the classic Mullins effect [99] originally used to describe rubber-like 

materials. When the shear deformation does not exceed the critical transition to the 

network stiffening regime, the network can almost fully recover its mechanical 

behavior, as observed by comparing the paths in Steps 1 and 2 in Figure 2.12(B) and 

Figure 2.12(C). When the network is strained up to the point where stiffening already 

occurs, however, there are significant drops in both τ  and  in Step 4, as 

compared to those in Step 3. These drops suggest that the network has been 

irreversibly remodeled, possibly through rearrangement of fibers and alteration of 

cross-linking points, and the resulting network is more compliant to the larger applied 

level of strains. Interestingly, in both Steps 2 and 4, as 

'G

γ  is gradually decreased,  

increases in a fashion similar to how  decreases with increasing 

'G

'G γ  in Steps 1 and 

3. After the two cycles, the network exhibits the normal, expected behavior again 

when deformed to large strains, in Step 5. 
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Figure 2.12: Cyclic softening and reversibility of collagen networks. Collagen 
network with c  = 3.5 mg/ml is sheared following the protocol in (A). In the first 
cycle (Steps 1 and 2), γ  is gradually varied between 1% and 15%, within the linear 
viscoelastic regime of the network. In the second cycle (Steps 3 and 4), γ  is varied in 
the range of 1% and 60%, which includes network stiffening. In Step 5, γ  is 
increased until beyond network rupture. The rate of strain increase and decrease is 
fixed in logarithmic scale. The network stress and stiffness are shown in (B) and (C) 
respectively. The stress τ  is reminiscent of the classic Mullins effect for cyclic 
softening, and is shown in log scale in the inset of (B) to make the low strain response 
clearer. All measurements are done at fixed frequency ω  = 1 rad/s. 
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To capture the transient effect of the network rearrangement during shear 

deformation, we also modify the protocol in Figure 2.12(A) and include two steps 

where γ  is maintained at 7%, following the procedure in Figure 2.13(A). Indeed, the 

network response shows time dependence, as shown in Figure 2.13(B). Specifically, 

the evolution of  shows the same power law behavior ( )'G t ( )' ~G t tα  with 

0.025α ≈ , both when  decreases with time in Step 2 and when it increases 

with time in Step 5. Interestingly, in Step 5, 

( )'G t

( )'G t  seems to approach the end point of 

 in Step 2. This suggests dynamic processes taking place in the two steps that 

result in  approaching a steady state value at a particular 

( )'G t

'G γ . It is worth noting that, 

since the scaling exponent α  is very low, the time scales at which steady state is 

reached is likely to be minutes or hours, which is much larger than the time scales 

corresponding to the range of frequencies accessible in most rheological 

measurements, but is the time scales relevant for many biological processes, such as 

cell migration. 
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Figure 2.13: Strain-dependent network stiffness is a transient phenomenon. The 
cyclic shearing protocol in Figure 2.12 is extended for collagen network with  = 3.5 
mg/ml at 37°C, as described in (A). Specifically, two additional Steps (2 and 5) are 
added, where the oscillation amplitude 

c

γ  is then maintained at 7% for ~20 mins, 
while the stress relaxation is monitored. The resulting relaxation modulus  for 
Steps 2 and 5 is plotted in log-log scale against time in (B). 

( )'G t
( )'G t  evolves as  

in both the decrease in Step 2 and the increase in Step 5, as shown by the solid line. 
Equally interesting is the observation that the time-dependent 

0.025~ t

( )'G t  value at the end 
of Step 5 is close to that at the end of Step 2, suggesting a dynamic process with an 
‘equilibrium’ ( )'G γ  value. The overall variation of network stiffness is shown in (C) 
(increasing γ : filled symbols, decreasing γ : open symbols). The full strain sweep 
measurement is then done in Step 7 on the same sample, where the result is similar to 
our previous observation in Figure 2.12. 
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Taken together, the persistent trend of network softening at small strains and the 

cyclic softening reported in Figure 2.12 show partial network reversibility, while the 

transient effect shown in Figure 2.13 reveals the time dependence of the network 

rearrangement. Network rearrangement in the form of fiber realignment, bending, 

and buckling has been observed to accompany network deformation [67,68,100,101]. 

This microstructural rearrangement inherently produces nonaffine deformations that 

can lead to the breakdown of the MacKintosh model’s prediction as we saw earlier. It 

can also explain the partial reversibility of the network mechanics at small strains. 

However, it offers no explanations regarding both the agreement with the 

semiflexible network theory at large strains and the time dependence of the 

rearrangement. Our earlier argument that the existence of weak and dynamic 

cross-links can explain the former observation is in fact also applicable to explain the 

latter. This transient cross-link turnover causes plastic deformation that modifies local 

network architecture as the network deforms. The findings that the same scaling 

exponent is found in both Steps 2 and 5 and that there seems to be an equilibrium 

network state, as depicted in Figure 2.13, further reinforce the argument that global 

network rearrangements including cross-link turnover are responsible for the 

strain-dependent mechanical behavior observed in collagen networks. 
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2.4 Summary 

In conclusion, we propose that the mechanics of uncross-linked collagen 

networks can be described by modeling the gel as a weakly cross-linked semiflexible 

polymer network. This is reflected in the three regimes of the strain-dependent 

viscoelasticity of collagen networks. At low strains, the network slightly weakens 

with increasing strain as a result of network rearrangements, which include cross-link 

turnover. The overall elasticity of the network in this regime is still largely reversible. 

As the network becomes more stressed, nonlinear stiffening starts to kick in when the 

critical stress cτ  is reached. At this intermediate strain level, the network irreversibly 

stiffens with increasing strain. The network ruptures when the strain reaches the 

rupture strain rγ . The strain stiffening regime may not occur when rγ  is achieved 

earlier than cτ , which may explain why strain stiffening is sometimes not observed in 

biopolymer networks. These results highlight the importance of short-scale network 

architecture in determining the overall mechanics of collagen networks, which will be 

discussed in further detail in Chapter 3 and Chapter 4.  
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Chapter 3: Mechanics of Semiflexible 
Polymer Networks 

3.1 Introduction 

The mechanical versatility of biological tissues and cells play a central role in 

various physiological and biological functions at different scales, from cellular level 

to organ level. The materials providing intra- and extra-cellular mechanical support 

for the cells are defined by cross-linked networks of semiflexible fibers. Inside the 

cell, a cytoskeletal network of intracellular proteins consisting of actin filaments, 

microtubules, intermediate filaments, and other proteins stabilizes cell structure, 

transmit environmental cues, both mechanical and chemical, and modulates 

numerous cell functions, such as cell morphology, division, motility, and even 

apoptosis [102-104]. Outside the cell, a network of proteins, with collagen as the 

primary backbone, forms the extracellular matrix, which can mediate mechanical 

signals to and from the cell. As discussed in Chapter 2, one of the hallmarks of these 

networks is their ability to stiffen at increasing strain, as depicted in Figure 3.1, 

thereby enhancing tissue integrity and producing the characteristic nonlinear 

stress-strain curve observed in soft tissues [49]. The origin of this nonlinearity is not 

fully understood, partly due to the complexity and the interconnectedness of the 

relevant physical features, which are not always resolvable experimentally. For this 

reason, theoretical and computational studies have been invaluable in providing 

insights on the structure-property relation of semiflexible networks [105]. 
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Figure 3.1: Strain stiffening properties of various biopolymer networks. Data shown 
are the storage modulus  at 'G ω  = 10 rad/s, plotted as a function of shear strain γ , 
measured using oscillatory rheometry (cf. Chapter 2). Adapted with permission from 
[50], where the detailed measurement details can be found. 

Theoretical studies have attempted to trace the nonlinear bulk elasticity to the 

nonlinear force-extension relation of single filaments by assuming affine network 

deformation [50,94]. In this case, entropy determines the network elasticity at small 

strains, while enthalpy plays an increasingly bigger role at larger strains. However, it 

has been argued that network rearrangement and a transition from bending-dominated 

to stretch-dominated deformation can cause nonlinearity in the network response 

even without appealing to the nonlinear force-extension relation of single chains 

[101,106,107]. Further, numerical studies on two-dimensional (2D) [51,107-110] and 

three-dimensional (3D) [106] random networks show evidence of nonaffine behavior. 

In particular, the degree of network affinity has been shown to be a function of strain 

[106,107] as well as characteristic length scales of the network, such as the average 

distance between cross-links , fiber length cl L  and persistence length  [109]. pl
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A key aspect of network mechanics that has not received attention is the length 

scale of material homogeneity. At the macroscopic level, where the assumption of 

homogeneity may not be too great an oversimplification, the network elasticity has 

been theoretically explained and predicted [50,94] as well as experimentally 

validated [98,111], typically in terms of polymer concentration  and cross-linker 

concentration . However, biological materials are invariably heterogeneous at 

small scales (e.g., ~ µm, relevant to cells). Not surprisingly, therefore, it has been 

recently realized that specific network architectures, such as the number of filaments 

incident to a branch point [112,113] and the number of cross-links per filament [114], 

play an important role in governing elasticity, especially in 3D networks. Such 

quantitative analyses of network microstructure are hampered experimentally by a 

lack of understanding of how networks self-assemble and cross-link. This results in 

uncertainties on how macroscopic quantities, such as  and , translate to the 

actual network architecture at short length scales. Understanding network mechanics 

and architecture at such small scale is extremely important for cell studies, not only to 

give insights into the cytoskeletal mechanical behavior, but also because cells interact 

with the surrounding extracellular environment through small (micro- to nano-) scale 

interactions [115]. 

mc

clc

mc clc

In view of these, it is crucial to base the analysis on a realistic model of 

semiflexible network for which the microstructure can be quantitatively 

parameterized. Therefore, we develop a model of discrete 3D semiflexible networks 

with tunable fiber dimensions and show that the nonlinear mechanics can be 
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explained exclusively through structural features. Specifically, two parameters 

representing cross-link and fiber entanglement are shown to govern network stiffness 

at multiple strain levels and length scales relevant to the cell; thus nonlinearity is 

linked directly to structural features. In addition, our approach can accommodate the 

different deformation mechanisms and experimental findings available in the 

literature. 

3.2 Methods 

3.2.1 Network model 

To model the fibers in the network, we modified the standard “shish-kebab 

model” typically used to represent coarse-grained polymer and worm-like chains 

[116]. Each fiber was discretized as an array of beads of diameter , with 

neighboring beads situated at an equilibrium distance of , rather than , from 

each other. We find that this helps in simulating fiber-fiber interaction stably, 

especially at large strains. The total number of beads per fiber was therefore 

determined by the initial fiber contour length, 

d

/ 2d d

L , as 2L d 1− . The beads were 

connected by a harmonic stretching potential  

 
21

2 2s s
dU k r⎛ ⎞= −⎜ ⎟

⎝ ⎠
,  (3.1) 

where  is the distance between beads, and the fiber semiflexibility was 

implemented using a harmonic bending potential  

r

 ( )21
2b bU k θ π= − .  (3.2) 
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The respective stretching constant sk  and bending constant  can be directly 

related to physically measurable quantities such as the fiber’s Young’s modulus 

bk

E  

and persistence length  as pl

 f
s

EA
k

d
= , (3.3) 

where fA  is the fiber cross-sectional area and  

 ( )( )2

2 2 10.31
3 3 9 16 1 2 1

p
b

p

l
k

d l dπ

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟+ − −⎝ ⎠

. (3.4) 

Eq. (3.4) is a modified approximation for the discrete worm-like chain model [117] 

that we have empirically tested independently. The harmonic functional form of sU  

and  is deliberately chosen not only because of its simplicity, but also to make the 

results directly comparable to previous studies [106,107,109].  

bU

We also model two types of interactions between different fibers: entanglement 

and cross-link. The physical entanglement between non-penetrable fibers was 

modeled with a one-sided repulsive potential 

 ( )21
2 ,   
0                 ,   

i
i

k d r r dU
r d

⎧ − ≤= ⎨ >⎩
 (3.5) 

where  is the distance between non-neighboring beads. The interaction constant  

determines the fiber ‘softness’. Although the functional form of  can in principle 

be extracted from experimental data (e.g., from fiber indentation studies), we found 

that the choice of the function does not significantly affect the overall network 

response at physiological fiber volume fractions tested in this study. Here, we employ 

 simply to prevent fiber-fiber penetration. Cross-linking between different fibers 

was represented by a harmonic cross-link potential  

r ik

iU

iU
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 ( )2
0

1
2cl clU k r δ= − .  (3.6) 

Cross-link length 0δ  and compliance  can influence the nonlinear behavior of the 

network [86,98,118,119] and deserve a full exploration on their own. Here, we 

generically set  and 

clk

cl sk k≡ 0r d≡  to simulate permanent, freely rotating, 

chemically strong cross-links.  

We summarize the fiber model and interaction in Figure 3.2. The key parameters 

useful in repeating the simulations can be found in Table 1. The fiber model employed 

here mimics cylindrical topology while maintaining short-scale bending flexibility, 

without excessive computational burden. Moreover, the resulting network allows 

fairly smooth 3D steric entanglement, which cannot be simulated in 2D simulations. 

 

 

Figure 3.2: Summary of fiber model and interaction. 
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Table 1: List of independent variable parameters for simulating 
semiflexible polymer network model 

Parameter Value Typical experimental value 

L  5 µm Actin, collagen ~ 2–8 µm. 

d  0.25 µm Collagen ~ 0.03–0.5 µm. 

pl  5 µm Actin, collagen ~ 1–20 µm. 

W  6–8 µm Short length scale. MR  250 µm. >

0δ  d  Depends on cross-linker properties. 

wδ  d  Depends on experimental setup. 

clδ  0–1.5 d  Depends on polymer self-assembly. 

E  50 MPa Collagen ~ 50 MPa 

ik  sk  Depends on fiber interaction properties. 

clk  sk  Depends on cross-linker properties. 

 

3.2.2 Network generation and deformation 

The networks were generated by initially placing  straight fibers with random 

position and orientation in a periodic cubic unit cell of size W , with  

determined from the given polymer concentration  or volume fraction Φ . A 

snapshot of this initial state is shown in Figure 3.3(A). Fibers that traverse the top and 

bottom walls—walls parallel to the shear plane—were shifted down and up, 

respectively, to ensure that the walls are non-penetrable and make the networks 

simulate experimental conditions. Cross-links were assigned when two beads from 

N

W W× × N

mc
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different fibers were within a threshold distance clδ , as illustrated in Figure 3.3(B). 

To avoid double counting and keep the simulation stable, when there was more than 

one bead within clδ  from another bead, only the pair with the shortest distance was 

assigned as cross-links. This procedure has an advantage over previous numerical 

studies [106,107,109], as cross-link density can be varied independently of  by 

varying 

mc

clδ . Before any mechanical test were performed, these highly stressed 

networks were energy-minimized based on the total potential s b clU U U U Ui= + + + . 

While there may be some amount of mechanical prestress that remains even after this 

relaxation step, we expect the effect to be completely random and comparable to that 

in standard mechanical experiments [86]. The resulting network architecture, as 

shown in Figure 3.3(C), mimics in vitro self-assembled biopolymer gels [111] that 

have been used to explain cell mechanical properties [120]. 

To deform the networks realistically, we defined top and bottom wall beads as the 

beads located within wδ  from the top and bottom walls, respectively. During the 

network straining, the bottom wall beads were fixed and the top wall beads were 

moved according to the imposed shear strain γ . Only one bead per fiber was allowed 

to be assigned as wall bead. The force needed to keep the wall beads in place during 

the straining was then used to calculate the network stress τ . Figure 3.3(D) shows the 

network in Figure 3.3(C) under a strain of 0.5γ = , and a comparison reveals that a 

global network rearrangement has taken place through fiber reorientations and 

translocation, consistent with previous 2D as well as 3D studies [106,107]. 
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Figure 3.3: Illustration of semiflexible polymer network model. The network initially 
consists of straight rods with random positions and orientations (A). The beads 
making up the rods can be visualized. Cross-links are assigned when beads from 
different fibers are located within clδ  from each other (B). The network is then 
energy-minimized based on the total potential , resulting in relaxed network with 
local heterogeneities (C). The effective shapes of the cylindrical fibers are shown. 
During the shear deformation of the network, beads within 

U

wδ  from the bottom wall 
are fixed, while beads within wδ  from the top wall are moved according to the 
imposed shear strain γ . An example of strained network ( 0.5γ = ) is shown in (D). 
The arrow indicates the direction of shear strain application. The sample network 
shown here consists of fibers with aspect ratio 20L d = , and is cross-linked with 

0.7cl dδ = . 

3.3 Results and Discussion 

We study the nonlinear stiffening of the networks by incrementally imposing the 

strain γ  up to ~ 100%. Shear stress τ  is obtained from the force needed to deform 

the network by γ . Figure 3.4 shows the complete stress-strain response for typical 

networks with different volume fractions Φ  = 5.6%, 7.4%, and 9.3%. At small γ , 
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the network responds linearly, with stiffness comparable to values measured for 

biopolymer networks [1,12]. As γ  increases, the stiffness gradually increases, 

introducing nonlinearity in the response. In general, the overall response can be 

characterized by the small-strain stiffness [ ]0 0
G d d

γ
τ γ

→
= , the critical strain cγ  

corresponding to the onset of nonlinearity, and the instantaneous large-strain modulus 

[ ]
3 c

LG d d
γ γ

τ γ
=

= , as indicated in Figure 3.4. The choice of 3 cγ γ=  is arbitrary but 

guarantees that  is obtained well beyond the onset of stiffening. The response is 

highly sensitive to variations in the network physical properties, such as Φ  and 

cross-link density (even for fixed 

LG

Φ ). In the following, we demonstrate how these 

variations can be described in terms of characteristic network structure parameters. 

 

 

Figure 3.4: Typical overall response of cross-linked semiflexible polymer networks. 
Shear stress τ  is shown as a function of shear strain γ  for networks of different 
volume fractions (∆, ; □, 9.3%Φ = 7.4%Φ = ; ○, 5.6%Φ = ). Three distinct 
regimes can be observed: low network stiffness  at small strains, high network 
stiffness  at large strains, and the nonlinear transition between the two strain 
regimes, starting at the critical strain 

0G
LG

cγ . 

3.3.1 Network structural parameters 

The role of network structure on the elasticity has been extensively studied, both 

theoretically and experimentally, especially at small strains. As mentioned earlier in 
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Section 2.3, the small-strain stiffness  is typically reported to vary as , 

where 

0G 0 ~ x y
mG c R

cl mR c c= and the exponents  and  vary with biopolymer type as well as 

properties and strength of cross-linkers [94,101,111,119,121,122]. While  and 

x y

mc R  

are convenient to measure experimentally and reflect the overall properties of the 

network, these are macroscopic quantities with no direct link to the actual network 

architecture. Therefore, without proper accounting for the exact mechanism of 

biopolymer self-assembly and cross-linking, these quantities can in fact provide 

misleading information at small length scales. To describe the actual network 

structure at short scales more faithfully, we directly quantify the network structure in 

terms of two parameters: the number of entanglements per fiber, eR , and the number 

of cross-links per fiber, clR . The network connectivity parameter clR  can be 

experimentally estimated [114] and, here, can be adjusted arbitrarily through clδ  and 

. Figure 3.5 shows the relation between the actual Φ clR  obtained from network 

generation and the input values of clδ  and Φ , which is proportional to . The 

relatively large variation of 

mc

clR , as indicated by the error bars in Figure 3.5, 

underlines the effects and importance of accounting for local heterogeneity often 

encountered in biopolymer networks [18,19]. This realistic sample-to-sample 

variation makes it possible, for example, for a network of lower  to have larger 

degree of connectivity than one with higher . On average, however, the network 

structural parameter 

mc

mc

clR  can be finely tuned by the two physical input parameters, 

clδ  and Φ , as seen in the inset of Figure 3.5. 
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Figure 3.5: The relation of input clδ  and Φ  values to output clR  of the network [●, 
(cl clR δ )d  for fixed ; ▲, 5.6%Φ = ( )clR Φ  for fixed cl dδ = ]. The error bars are 

based on 200 different random network realizations. The mean of ( ),cl clR δΦ  is 
shown in the inset. 

 

3.3.2 Length-scale-dependent network mechanics at small strain 

We start the analysis of network mechanics by looking at the network behavior at 

small γ . We find that all ’s from networks generated with different  and 0G Φ clδ  

fall into a master relation , as shown in Figure 3.6(a) (although the 

correlation coefficient R2 is only 0.59). It is important to note that here we simply 

quantify the resulting network structure through

0.8
0 ~ clG R

clR  without distinguishing the cause, 

which can jointly arise from fiber and cross-link densities. This contrasts previous 

predictions based on scaling arguments that have not, however, accounted for the 

exact mechanism of biopolymer self-assembly and cross-linking [94,98,111]. 

Therefore, our finding not only confirms the predicted role of macro-scale network 

connectivity [94], but also hints at a more universal mechanism of network 

deformation based principally on structural properties, which calls for deeper 
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investigations on the nontrivial relation between the macroscopic inputs  and mc R  

and the actual network structure, as quantified through clR  here. 

 

 

Figure 3.6: Influence of network structure on the network response at small strain. 
Small-strain stiffness  is plotted in (a) against 0G clR  and in (b) against eR . The data 
are obtained from networks with fixed fiber dimensions but various  (▲, 

; ■, 
Φ

9.3%Φ = 7.4%Φ = ; ●, 5.6%Φ = ) and cross-link densities, 0.5 1.5cl dδ< < , 
resulting in networks with varying connectivity. The relation between the averaged 
macroscopic quantity clR  and the averaged microscopic quantity eR  is shown in (c). 
The dashed line is a guide for the eye. 

The short-scale interaction between network fibers is characterized by 

entanglements, whose effect is subtler and weaker than cross-links [94]. To study this 

local steric interaction more closely, we also quantify the number of entanglements 

per fiber, eR , for all the networks generated. Remarkably,  shows excellent 

correlation with 

0G

eR , scaling as , as shown in Figure 3.6(b) (R2 = 0.92). 

Physically, the strong correlation between  and 

1.5
0 ~ eG R

0G eR  implies that, for 0γ → , 
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entanglements play an important role in governing the stiffness at short length scales, 

inherently leading to nonaffine deformations, although it has been suggested that, at 

larger length scales, the macroscopic mechanics may be related simply to cross-link 

density, as discussed earlier. Using our approach, the relative dependence of structural 

heterogeneity on length scale can be examined by sampling a number of 

independently generated networks (cf. law of large numbers). Indeed, the averaged 

clR  and eR  show a strong correlation [see Figure 3.6(c)]. This correlation suggests 

that network mechanics is described by two different structural parameters on 

different length scales: clR  (cross-links) for systems of large sizes where structural 

heterogeneity is negligible and eR  (entanglements) for smaller systems where the 

local structural feature is vital to network deformation. As such, while macroscopic 

measurements provide overall, averaged properties, a more ‘local’, microscale 

measurement is needed for further insights into the network mechanics. 

3.3.3 Nonlinear strain-dependent network mechanics 

We now shift our focus to the network nonlinear behavior. The strain required to 

trigger stiffening, cγ , is known to indicate the transition in the underlying mechanics, 

e.g., bending- to stretch-dominated [51,68,94,123]. Our results on the role of network 

structure on cγ  show that 0.6~c clRγ − , as shown in Figure 3.7 (which is reminiscent of 

a relation found previously for F-actin [111], albeit in terms of cl mR c c= ). This 

scaling relation and network visualization confirm a mechanism where the 

deformation starts to engage cross-links and involve individual fiber stretching, thus 
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giving rise to nonlinearity in the response.2 In fact, this mechanism provides an 

explanation for previous observations reporting a general transition from a 

bending-dominated regime at small γ  to a more stretch-dominated regime at large 

γ  [106,107]. Meanwhile, further analysis reveals that, as γ  increases, the 

correlation between stiffness and eR  becomes increasingly poorer. Taken together, 

these suggest that the distinct deformation mechanisms at different strain levels are 

linked to the network structural parameters. At small γ , the response is governed by 

weak interactions (entanglements), which manifest in bending-dominated, nonaffine 

deformation, while at larger γ , the response is governed by strong interactions 

(cross-links), which manifest in an increasingly stretch-dominated, affine 

deformation. 

 

 

 

 

                                                 
2 We note that, conventionally, power laws are obtained over several orders of magnitude of the 

independent variable. However, this is not always feasible in biological systems, in view of the 
restricted ranges of the parameters involved. This is reflected in the limitations imposed by the size 
of the system we consider here. Nevertheless, the physical insights obtained from the analysis 
remain valid. 
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Figure 3.7: Influence of network structure on the network response at intermediate 
and large strains. Both the critical strain cγ  and the large-strain stiffness , shown 
in (a) and (b) respectively, exhibit scaling relations with 

LG
clR  at all volume fractions 

tested (▲, ; ■, ; ●, 9.3%Φ = 7.4%Φ = 5.6%Φ = ), demonstrating the importance 
of network structure parameters even beyond the linear elastic regime shown in 
Figure 3.6. 

To test the above conclusively, we examine whether clR  is important in 

determining the mechanics even at large strains cγ γ> . We find that this is indeed the 

case, with 0.75~L clG R , as shown in Figure 3.7. This dependence on clR  provides 

direct evidence that, for cγ γ> , the deformation is not just governed by the stretching 

of individual fibers, but is also determined by the response mediated through the 

cross-links. This finding therefore corroborates the argument that the nonlinear 

stiffening can be explained in terms of the continual network rearrangement, in 

addition to any nonlinear force-extension behavior of individual fibers [98,101,107]. 

In addition, in contrast to the response for small γ , where the cross-links dominate at 

large length scales as noted in Section 3.3.2, the response at large γ  is determined by 

cross-links at large as well as short length scales. This suggests that heterogeneity 

plays increasingly smaller roles at larger γ , which may be responsible for the 

increasing network affinity.  
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3.3.4 Network deformation mechanism 

As an independent measure of the network deformation mechanism, we also 

analyze the affinity of the network deformation. The affinity (or nonaffinity) of 

deformation is typically measured by looking at the difference in length, angle, or 

vector position between the observed deformation and that predicted for a purely 

affine deformation, as illustrated in Figure 3.8, and can be measured in a number of 

ways [124]. Here, we use the dimensionless nonaffinity parameter A , which is 

similarly used in a previous 3D network study [106], as defined by 

 
2

2

aff
cl cl

aff
cl

A
δ δ

δ

−
=

u u

u
, (3.7) 

to monitor the deviation in the cross-link displacement clδu  from the expected affine 

displacement  upon an increment of strain aff
clδu δγ . A vanishing A  value therefore 

implies completely affine deformation. Shown in Figure 3.9 is a typical evolution of 

A  with γ  for Φ  = 5.6%. Consistent with reported data [106,107], the deformation 

is nonaffine ( ), but with an increasing degree of affinity ( ) as 0A > 0A → γ  

increases, confirming our earlier remark. 
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Figure 3.8: Illustration of nonaffine deformation. The initial configurations of the 
fibers are shown in the top panel, with the red dots indication the location of 
cross-links. After shear deformation, the final configurations of the fibers (black lines) 
and cross-link locations differ from the expected configurations were the deformation 
affine (gray lines and dots). 

 

 

Figure 3.9: Quantification of network affinity and rearrangement at different strain 
levels. The dimensionless parameters for nonaffinity A , as defined in [106], and 
cumulative rearrangement  vary with V γ . A  measures the deviation of the actual 
position vector of the cross-links from the expected affine position upon strain 
increment δγ , while  monitors the absolute deviation from V ( )aff γu  of all beads 
in the network up to γ . The vertical dashed line indicates cγ . 

We also directly quantify the extent of network rearrangement by tracking the 

trajectories of all the fiber beads during the straining and defining a network 

rearrangement parameter  as V
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2

2

aff

V
d

−
=

u u
, (3.8) 

denoting the cumulative nonaffine rearrangement that has occurred. Figure 3.9 shows 

that the amount of rearrangement increases continually with γ , with a significant 

portion occurring even before the network stiffening, as signified by the steeper slope 

dV dγ  at cγ γ< . 

3.4 Conclusions 

In this chapter, we demonstrate that (i) structural properties, namely network 

connectivity and physical entanglements, lie at the heart of the nonlinear mechanics 

of 3D networks, (ii) the contributions from these two parameters define the dominant 

deformation mechanism, e.g., affine vs. non-affine, and (iii) the crossover between 

the two is governed both by length scale of observation and strain level. For cγ γ<  

the overall deformation is dominated by short-scale fiber mechanics, and the network 

stiffness is governed by steric interaction at short length scales and by cross-links at 

larger length scales. But once the network is sufficiently strained, reorganization 

causes the effects of local heterogeneity to diminish and be replaced by a more 

homogeneous response. Biological networks may thus take advantage of the 

heterogeneity at small γ  to accommodate various physiological functions with less 

hindrance, such as nutrient and molecule transport, while retaining the ability to 

accurately control large-strain responses through active cross-linkers for the benefit 

of network integrity [125].  
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The distinct deformation mechanisms at different length scales provided by the 

model employed here underscores the role of 3D steric interactions between fibers 

and may not be accessible through previous models. Our simple model also allows 

easy adaptation fashioned to diverse lines of exploration. For example, future work 

can be aimed to elucidate the individual roles of fiber properties (e.g., , d L , , and pl

E ) and cross-linker properties (e.g.,  and clk 0δ ), which will enable more 

quantitative comparison to other experimental and theoretical works 

[51,111,114,126]. These properties, or the distribution thereof [109,127,128], are 

likely to affect the structural network response by varying the length-scale difference 

between the heterogeneous and the homogeneous scales. 
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Chapter 4: Microrheology of Collagen 
Networks 

4.1 Introduction 

As established in Chapter 3, short-scale mechanics and material heterogeneity 

play a crucial role in the overall elasticity of semiflexible polymer networks, 

including collagen. A more detailed understanding of the network mechanics at short 

scale will therefore be valuable not only in interpreting physiological cell behavior, 

but also in igniting new design strategies for engineered (biocompatible) polymeric 

materials. Consequently, while macroscopic measurements, such as the rheological 

measurements we report in Chapter 2, provide overall, averaged properties of the 

material, a reliable microscale diagnostic technique is required and is important for 

probing network mechanics, especially in the contexts of cell mechanics and 

behavior.  

In view of these, in this chapter we report and discuss the experimental results of 

mechanical characterization of the same soft matter system as in the previous chapters 

(collagen networks) at the microscale level, as measured using a microrheological 

technique, namely, particle tracking microrheology. We start by providing brief 

background information on microrheology in general and the particle tracking 

microrheology technique in particular. Subsequently, we discuss the implications of 

the results obtained and the limitations as well as technical problems that remain to be 

tackled, which serve as motivations for the new microrheological technique that we 
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will present in Chapter 5 and Chapter 6.  

4.2 Microrheology 

Microrheology, a branch of rheology, has emerged as a class of mechanical 

characterization techniques that probe material response in the micrometer length 

scale with microliter sample volumes. The smaller length scales come about as a 

result of the ability to use smaller mechanical probes to deform the sample, usually in 

the form of microspheres. This is particularly advantageous when dealing with 

precious samples, like many biological samples. Typically, microrheology involves 

tracking the motion of embedded or endogenous particles as markers of sample 

response, from which the rheological information of the sample is inferred. Broadly, 

there are two classes of microrheological techniques: those involving active 

manipulation of probes by local application of stress (“active microrheology”) and 

those measuring passive probe motion due to thermal or Brownian fluctuations 

(“passive microrheology”).  

In active microrheology, there are two general aspects that require careful 

attention. The first concerns the method used to actively impose probe motion. This 

can be done either nonintrusively, e.g., using magnetic or optical tweezers, or by 

indenting the surface of the sample using atomic force microscopy [129-132]. The 

mechanical response of the sample can then be quantified from the actual probe 

displacement as monitored either visually through microscopy or indirectly through 

measurement of laser deflection. In contrast, in passive microrheology, there is no 



Chapter 4: Microrheology of Collagen Networks 

 65

external field and probe motion is due only to thermal fluctuation. As a result, these 

fluctuations reflect the exact linear viscoelastic response parameters and their 

complete frequency dependence. Simple, single observation of these fluctuations can 

therefore provide rich information about the frequency-dependent mechanical 

properties of the sample. In practice, this can be done either by directly detecting the 

thermal motion of individual probes [133-135] or by observing the intensity 

fluctuation resulting from the multiple scattering of light by an ensemble of probes 

[136-138]. Extensive and comprehensive discussions on the underlying principles, 

current states of various microrheological techniques and applications can be found in 

recent reviews [21,139,140]. Next, we will briefly touch on one particular passive 

microrheological technique that we will use to characterize collagen networks, 

namely, particle tracking microrheology (PTM). 

Passive microrheology techniques use the Brownian dynamics of embedded or 

endogenous particles, based purely on thermal energy, to measure the rheology and 

structure of a material. PTM techniques directly track the thermal movements of the 

probe particles to do so. The dynamics of particle motions are conveniently quantified 

in terms of the mean squared displacement (MSD) of individual probes: 

 ( ) ( ) ( )( )22

t
r r t r tτ τ∆ = + − , (4.1) 

where  is the particle position3, ( )r t τ  is the time lag, and 
t
i  indicates averaging 

over all time . For microspheres of radius  diffusing in a purely viscous medium, t a

                                                 
3 Strictly speaking, particle position should be represented by the vector  and the MSD should 

likewise be 
r

( )2 τ∆r . For simplicity, in this thesis, we assume that the vector position is 
understood. 
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the MSD varies linearly with τ  and is related to the diffusion coefficient  through 

the diffusion equation  

D

 ( )2 2r nDτ τ∆ = , (4.2) 

where  denotes dimensionality. The medium viscosity n ν  can be obtained using 

the Stokes-Einstein equation  

 
6

Bk TD
aπν

= . (4.3) 

In a viscoelastic medium, however, the particle MSD generally does not have simple 

linear relation with τ , due to the elastic contribution. A natural way to incorporate 

the elastic response in the above expressions is by generalizing the standard 

Stokes-Einstein equation [Eq. (4.3)] with the complex viscosity * ' i "ν ν ων= + . The 

complex shear modulus of the medium, ( ) ( ) ( )* ' "G G iGω ω= + ω , is then related to 

*ν  as ( ) ( )* *G iω ων ω= .  

The Generalized Stokes-Einstein Relation (GSER), relating the probe MSD to 

the shear modulus of the medium, has been derived to give 

 ( ) ( )
2

3
Bdk Tr

asG s
τ

π
∆ = , (4.4) 

where  is the Laplace transform of ( )G s ( )G ω  and  is the Laplace frequency 

[136]. An equivalent representation of the GSER in terms of the Fourier components 

can be readily obtained via analytic continuation 

s

s iω= . In practice, however, the 

discrete time-domain MSD has limited dynamic range, and numerical Laplace or 

Fourier transform can cause significant errors in the calculation of ( )*G ω , 

especially near the frequency extremes. An alternative method based on the local 

power law expansion of ( )2r τ∆  has been developed to approximate the 
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time-domain MSD and the transforms [141]. The local logarithmic slope of 

( )2r τ∆  is calculated as 

 ( )
( )2

1

ln
ln

d r
d

τ ω

τ
α ω

τ
=

∆
=  (4.5) 

and describes the local power law exponent of the MSD at 1τ ω= . By expanding 

( )2r τ∆  locally around the frequency of interest ω  and retaining the leading terms, 

the GSER can be rewritten as 

 ( )
( ) ( )23 1 1

Bnk TG
a r

ω
π ω α

=
∆ Γ + ω⎡ ⎤⎣ ⎦

, (4.6) 

where  denotes gamma function and Γ

 
( ) ( ) ( )( )
( ) ( ) ( )( )

' cos 2

" sin

G G

G G

ω ω πα ω

ω ω πα ω

=

= 2
. (4.7) 

The approximation given by Eq. (4.6) gives minimal deviation from the exact result, 

with the error estimated to be less than 15% [141]. A second-order approximation has 

also been suggested in the literature that can improve the results when ( )2r τ∆  is 

sharply curved and, as a result, ( )α ω  changes rapidly [142-144]. For systems 

investigated in this thesis, however, the second-order contribution was found to be 

negligible (data not shown) and, therefore, Eqs. (4.6) and (4.7) are sufficient to obtain 

microrheological information from the probe dynamics. 

Figure 4.1 summarizes and schematically illustrates the steps involved in typical 

PTM data analysis. 
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Figure 4.1: Workflow of particle tracking microrheology measurement. 

4.3 Materials and Methods 

4.3.1 Collagen hydrogel preparation with embedded beads 

Collagen solutions were prepared as described in Section 2.2.1. 

Carboxylate-modified polystyrene fluorescent microspheres (580/605) with 0.5 or 1 

µm diameter (Invitrogen, Carlsbad, CA) were used as the fluorescent markers. These 

beads have fairly robust fluorescence and do not bleach appreciably over the course 

of typical microrheological measurements (minutes). The bead stock solution was 

added to the collagen solutions on ice to obtain a final bead concentration of 0.02% by 

weight. To form the gels, 200 µl of these bead-collagen solutions were deposited in 

the well of glass-bottom dishes (MatTek Corp., Ashland, MA) and incubated at 37˚C 

for at least 60 minutes to allow gelation. Following typical cell culture assays with 

collagen scaffolds, the formed gels were hydrated by adding ~2 ml phenol red-free 

DMEM (GIBCO/Invitrogen, Carlsbad, CA) containing 10% FBS and 1% 
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penicillin/streptomycin. 

4.3.2 Imaging 

Two imaging methods were used to track the probe motion. First, confocal time 

series images of fluorescent beads in collagen gels (focus on one optical slice, no 

z-stacking) were collected with confocal fluorescence microscopy on Nikon TE2000 

inverted microscope using 60× magnification oil-imersion objective (NA = 1.49) at a 

pixel size of ~0.25 µm/pixel and a frequency of ~2 frames per second (fps). Excitation 

was provided with continuous diode laser (Olympus) tuned to 561 nm at 5 mW. 

Fluorescence emission was passed through a 605 ± 38 nm filter to limit stray light. 

Second, epi-fluorescence videos of beads in collagen gels were collected using 

high-speed Fastcam SA3 camera (Photron) with the same 60× oil-imersion objective 

at a magnification of ~0.25 µm/CCD pixel and a capture rate of 60-10,000 fps. No 

fundamental difference in the resulting probe motion was found between the two 

imaging methods, confirming the stability of our imaging setup and particle tracking 

algorithm. All measurements were conducted in a temperature-controlled microscope 

chamber at 37˚C. Intensity, gains, and offsets were adjusted to maximize the 

signal-to-noise ratio and prevent intensity saturation that can compromise the 

accuracy of particle localization.  

4.3.3 Probe tracking 

After image acquisition, offline image processing to track the probes and the 

subsequent microrheological analysis were done in MATLAB (The MathWorks, Inc., 
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Natick, MA). 

The particle tracking algorithm used was based upon routines developed 

previously in IDL [145,146], with improvements implemented to reduce the adverse 

effects of fluorescence saturation, particle aggregation, and existence of debris, as 

well as to increase centroid calculation accuracy. Briefly, the algorithm starts by 

smoothing the spatial intensity in each frame using a band-pass filter and identifying 

rough, pixel-level positions of features of appropriate parameters based on the peaks 

of intensity in each frame. To refine the feature localization to subpixel accuracy, a 

mask of size 5 pixels or more was applied and the locations of each feature’s centroid 

were calculated. For fluorescent images, the point spread function is approximated to 

be a Gaussian. As such, we alternatively employed a more accurate bead localization 

using two-dimensional Gaussian least squares fitting for the tracking [147]. A 

semi-automated subroutine was also written to eliminate undesired features, such as 

aggregated beads and debris. With this algorithm, a particle localization accuracy of 

at least ~ 0.1 pixel can be routinely achieved, and an independent calibration is 

reported in Section 4.4.1. Particle positions in each frame were then correlated with 

positions in later frames to produce trajectories of particle motion. In practice, for this 

step to be properly performed, the typical distance a particle moves between frames 

must be significantly smaller than the typical interparticle spacing. This requirement 

sets the practical upper limits for probe density and interframe time interval for a 

sample. Sample drift in the form of synchronized movement of the tracked probes 

was numerically removed by subtracting any non-random trajectory component. 
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4.3.4 Extraction of microrheological information 

The MSD’s of the probe particles were calculated from the trajectories using Eq. 

(4.1). The extraction of microrheological information from the probe MSD was done 

using the power-law approximation of the GSER as expressed in Eqs. (4.5), (4.6), and 

(4.7). Initially, the local-power-law exponent ( )α ω  was numerically estimated from 

( )2r τ∆ . Briefly, for each data point in ( )2r τ∆ , a second-order polynomial was 

fitted on the neighboring data points using a sliding Gaussian window and used to 

calculate the local zeroth- and first-order logarithmic derivative, corresponding to the 

smoothed ( )2r τ∆  and extracted ( )α ω  data, respectively. The same algorithm 

can be easily employed to obtain the second-order derivative should a second-order 

GSER prove necessary [143]. Finally, the shear moduli were obtained from the 

( )2r τ∆  and ( )α ω  data using Eqs. (4.6) and (4.7). In contrast to the 

approximation described earlier [141], no algebraic approximation were used to 

represent the gamma function. 

4.4 Results and Discussion 

4.4.1 Discrepancy with mechanical rheology results 

The upper limit of  and  that can be measured using PTM is set by the 

accuracy of particle localization during the tracking, which is dependent on the 

quality and stability of the imaging setup as well as the tracking algorithm itself. A 

simple way to estimate the upper limit is by performing PTM on immobilized 

particles, where the MSD directly reflects the smallest particle displacements that can 

'G "G
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be reliably recorded. From such independent experiments, we find that, for our PTM 

setup, the highest MSD resolution is ~ 5×10-5 µm2/s, corresponding to an upper limit 

for stiffness measurement of ~73 Pa. PTM measurements on materials with larger 

stiffness, therefore, may not yield reliable results. 

In view of the expected stiffness of collagen networks, such as the measurements 

obtained using mechanical rheology [e.g., Figure 2.10(A)], we performed PTM on 

collagen gels with a range of concentration of 1.5–3.5 mg/ml. For each sample, 

microrheological data were obtained from 2–3 sets of image sequence taken at 

different locations in the sample. From the tracked probe trajectories, the 

ensemble-averaged MSD was used to calculate the shear moduli ( )'G ω  and 

( )"G ω . Within the range of frequency measured and collagen concentration tested, 

( )"G ω  is roughly one order of magnitude smaller than ( )'G ω  (data not shown). 

This is indicative of the dominant elastic nature of collagen networks and is consistent 

with mechanical rheology (MR) results presented earlier in Section 2.3.2 . The elastic 

modulus  is shown and contrasted with the corresponding MR results in Figure 

4.2.  

'G
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Figure 4.2: Comparison between rheological (circles) and microrheological (squares) 
measurements of collagen networks for a concentration range of 1.5–3.5 mg/ml. Error 
bars represent the standard deviations. 

There are two prominent discrepancies between PTM and MR results. First, the 

 of collagen networks with  = 1.5–3.5 mg/ml measured using PTM varies 

around 0.1–1 Pa, much smaller than the  measured using MR (10–100 Pa). 

Second, in PTM,  hardly varies with concentration, in direct contrast to MR 

results, where our earlier fit in Section 2.3.4 reports . Several possible 

reasons could be put forward to explain these discrepancies. First, the network 

formation during the gelation process is different in the two methods. In PTM the 

network is formed by depositing an aliquot of the precursor solution in a dish and 

incubating at 37°C, while in MR the network is formed in situ between the parallel 

plates of the rheometer. Consequently, the dimension, topology, hydration, and 

fractions of free and anchored surfaces of the network are different, all of which can 

give rise to differences in the network microstructural properties. Given the 

importance the actual network architecture and structure hold in determining the 

resulting network mechanics, as we have shown in Chapter 3, variation in the gelation 

process may be responsible for the observed discrepancies between PTM and MR. 

'G c
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Even differences in the measurement protocols and specifications of the rheometer 

can influence the measurement readings [82]. To verify that this is indeed the source 

of the discrepancies, it is necessary to be able to perform both measurements on the 

same samples. We were not able to test this, however, as the gels were extremely 

fragile and were easily damaged when transported between the two platforms of 

measurements. 

4.4.2 Matrix heterogeneity 

Another possible cause for the discrepancy with MR results is heterogeneity of 

the networks. As we have shown in Chapter 3, semiflexible polymer networks can 

behave differently at different length scales. The length scales probed using PTM is 

comparable to the probe size (~ µm). Therefore, in contrast to MR, where the 

measurable length scales are much larger (~ mm), PTM can capture mechanical 

heterogeneity within the network. To probe the heterogeneity of collagen networks, 

we next look at the MSD data of the individually tracked particles. Figure 4.3 shows 

the distribution of probe MSD at different locations within a single sample of 1.5 

mg/ml collagen network. All individual MSD’s have very weak time-dependence, 

which corresponds well with the weak frequency-dependence of '  both in PTM 

and MR. Strikingly, however, the magnitude of MSD varies from 6×10-5 µm2/s (close 

to the MSD resolution obtained from images of immobile particles) up to 2×10-2 

µm2/s. This observation implies that while some probe particles are virtually 

immobile within the network, some others can move with much less resistance from 

the surrounding matrix. 

G
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Figure 4.3: Typical distribution of probe MSD in a single sample of 1.5 mg/ml 
collagen network. The gray curves are the MSD of individual probes, calculated from 
the trajectories of the tracked probes. The solid line denotes the ensemble averaged 
MSD. 

The local  around each probe can in principle be calculated from the MSD of 

the individual trajectories using Eqs. (4.6) and (4.7). As shown in Figure 4.4, the local 

 varies over almost three orders of magnitude from 0.03 to 30 Pa in the frequency 

range of 1–103 rad/s. Such a large variation reflects the degree of mechanical 

heterogeneity of collagen networks, even within the same sample. Similar extent of 

variation has also been reported in collagen network as measured using active 

laser-trap microrheometry technique [148]. This finding bears important implications 

for the interpretation of cell mechanobiology studies. So far, cell behavior as a 

function of bulk substrate stiffness in 3D matrices has always been studied with the 

assumption of homogeneous environment, such as through mechanical rheology 

measurements, and conclusions have been drawn based on the ‘average’ behavior of 

the cell populations. However, as we have shown here, the stiffness of the local 

'G
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environment in the immediate vicinity of the cells, which is likely what is actually 

sensed by the cells, rather than the bulk stiffness, varies significantly. It is therefore 

essential that cell behavior in response to substrate stiffness be interpreted in the 

context of the local environment, which can be measured using microrheological 

techniques. 

 

 

Figure 4.4: Typical distribution of the storage modulus ( )'G ω , as a function of 
frequency ω , for 1.5 mg/ml collagen network. The data points (circles) are obtained 
from individual probe trajectories at different probe locations in the same sample. The 
solid line denotes the  at 'G ω  = 103 rad/s calculated from the ensemble averaged 
MSD of the probes. 

Although the origin of the observed heterogeneity is unclear, our computational 

studies in Chapter 3 suggest that it is likely linked to the local network connectivity 

and fiber entanglements, which are not straightforward to monitor experimentally. On 

the other hand, the effect of the local network architecture on the probe motion can be 

analyzed by observing the trajectories of the individual probes. We plot some 

representative trajectories in Figure 4.5 with the same scale for easy comparison. It 
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can be seen that the amount of particle motion during the tracking vary from one 

particle to the next, as indicated by the variation of the size of the displacement 

trajectories. Furthermore, some trajectories seem to have preferential axes of motion 

as well as directional displacements. These qualitative observations strongly suggest 

heterogeneity and anisotropy of network mechanical properties at short length scales, 

arising from the physical restrictions imposed by the local, surrounding fibrous 

environment.  

Multiple particle tracking microrheological methods, such as two-point 

microrheology [142], have been suggested to provide better comparison with bulk 

rheology for heterogeneous materials, including biopolymer networks [111]. 

However, in this method, the analysis is done on the relative motion of multiple 

probes, thus effectively increasing the length scales of the measurement and 

sacrificing the capability of obtaining local properties. In addition, in practice, 

significantly more probe statistics is needed and the analysis is more noise-prone 

compared to single particle tracking microrheology. 
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Figure 4.5: Typical trajectories of probe particles in a single collagen network sample. 
The trajectories are obtained by tracking the motion of multiple probes in a total 
duration of 2 seconds, starting from origin. The abscissa and ordinate are the x and y 
displacements in µm, respectively, in two-dimensional particle tracking. The parallel 
dashed lines are guides for the eye. 

4.5 Discussion 

Despite the importance of elucidating the origin and effect of material 

heterogeneity at short length scales, especially in the context of cell-matrix 

interactions, there remain outstanding questions that need to be solved. While 

microrheological techniques and structural imaging of the network can provide 

valuable qualitative information, as we have shown in this chapter, more quantitative 

analyses are hampered by experimental difficulties with associated with PTM, both 
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technical and practical. These difficulties include: 

1. It is not straightforward to determine whether the measured stiffness arises from 

the stiffness of the individual fibers or of the network. The network mesh size is of 

comparable size to the size of the probes. As a result, it is equally probable for a 

bead to be attached only to a single fiber as it is to be firmly enclosed in a cage of 

fibers, bearing in mind the heterogeneity of fiber distribution and connectivity in 

the network. 

2. The typically used probes in PTM are inert and do not bind specifically to the 

surrounding fibers. This makes it possible for the beads to slip through the 

network or undergo effectively unrestricted, although confined, Brownian motion 

inside the naturally formed ‘cages’ in the network. On one hand, one can utilize 

these events, for example, to obtain a size estimate of the microstructural pores in 

the network [111,149]. On the other hand, however, these invalidate the 

calculation of the material moduli [150]. In addition, the assumption used in 

GSER that the probes be in continuum with the surrounding medium can be 

violated. 

3. On the more practical side, the beads used for tracking often aggregate in the 

formed collagen networks. This not only causes problems in the image 

post-processing step, but also degrades the calculation statistics and the spatial 

resolution of the local microrheological properties, due to the increased spacing 

between analyzable probes. 

To tackle these problems, one can either probe deeper into the more technical 
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aspects of PTM or develop new techniques that can solve or circumvent some of the 

problems associated with PTM. For the former, we propose future studies that can 

help further improve the applicability of PTM in soft matter systems, including 

biological networks, in Section 7.2. For the latter, we propose a new microrheological 

technique based on image correlation spectroscopy and demonstrate its use in several 

soft matter systems in Chapter 5 and Chapter 6. 
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Chapter 5: Image Correlation Spectroscopy 
for Microrheology 

5.1 Introduction 

5.1.1 Problems with current microrheological techniques 

As we have discussed in Section 4.5, current microrheological techniques, such 

as particle tracking microrheology, still have some limitations that need further 

investigations. On closer inspection, many of the problems associated with PTM have 

to do with the probe introduction and probe-material interaction. Therefore, one 

should be able to circumvent many of these problems if indigenous particles are used 

as microrheological probes. In fact, doing so works well with the approach used in 

various experiments, biological or otherwise, where imaging of labeled or unlabeled 

native particles is routinely done to gain other types of information. To this end, we 

present in this chapter how microrheological information can be obtained through 

image correlation spectroscopy, a very versatile technique whose applications have so 

far been limited to the biophysical field. 

5.1.2 Image correlation spectroscopy 

Image correlation spectroscopy (ICS) is a family of techniques that has evolved 

to be powerful tools to obtain spatiotemporal biophysical information from images. In 

ICS, the fluctuation of imaged fluorescent entities across space and time are 

systemically analyzed and used to infer the desired quantities. ICS has been 

successfully used, under different names [151-155], to measure spatial and dynamic 
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processes taking place in biological settings, including receptor distribution on cell 

membrane, diffusion coefficient of molecules on membrane, and protein flow and 

interaction in living cells. The key principle and simplicity of ICS allows it, however, 

to be easily extended to areas beyond biophysical sciences, such as studies of 

diffusion phenomena in colloids and microemulsions, polymer or surfactant films and 

membranes, etc. Specific technical advances in ICS and their corresponding 

terminologies and applications in the biological context have been reviewed 

extensively in [156], but the full potential of the techniques is yet to be realized. 

Figure 5.1 summarizes some of the practical uses of ICS that have been developed in 

the last few years. 

ICS was originally introduced as an extension of another technique, fluorescence 

correlation spectroscopy (FCS). FCS, like ICS, is also a versatile technique that 

allows quantification of the dynamics of fluorescent molecules based on the 

fluctuation of fluorescent intensity within the observation volume [157], as 

schematically illustrated in Figure 5.2. Many of the mathematical developments in 

ICS, including the functional forms required to analyze correlation functions, have 

been derived from the FCS formulations. As an imaging analog of FCS, ICS uses 

fluorescence microscopy imaging to sample spatial intensity fluctuations as well as 

temporal fluctuations. This inherent parallel sampling not only results in better 

averaging in ICS for slow transport dynamics compared to FCS [152], but also allows 

high-throughput quantification of spatial information such as number densities or 

cluster aggregation states [151,158]. 
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Figure 5.1: An overview of the various ICS techniques that have recently been 
developed for various purposes. The raw data in ICS is image time series that are 
typically acquired using fluorescence microscopy (A). Spatial ICS analysis on an 
image can provide information on the number density and aggregation state of the 
imaged particles (B). The images can also be analyzed temporally using k-space ICS 
(C) or temporal ICS (D) to measure the dynamics (e.g., diffusion and flow) of 
particles and quantify the immobile fraction of the population. Simultaneous spatial 
and temporal analyses are done in spatiotemporal ICS (E) to precisely measure the 
direction and magnitude of concerted flow in the sample, in addition to the diffusive 
motion. Raster ICS (F) utilizes the different fast and slow components of the laser 
raster scan inherent in confocal laser scanning microscopy to measure fast transport 
dynamics in time scales shorter than typical image capture rate. Adapted with 
permission from [156]. 
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Figure 5.2: Schematic illustration of the working principle of FCS and ICS. In FCS 
(A), the motion of the fluorescent probes are detected for a small (picoliter) detection 
volume. In ICS (B), the same detection is done in parallel over the entire image. 

There are a number of assumptions and approximations in ICS, however, which 

have so far limited the potential of ICS for use in various interesting applications. One 

assumptions in performing temporal measurements of ICS is that the material 

property of interest is stationary in the measured time frame (i.e., it does not have 

time-scale dependence). For example, the measured diffusion coefficient is taken to 

be essentially an ‘effective’ diffusion coefficient, based on the assumption that a 

single power-law dependence describes the image correlation function measured. In 

many systems, however, the behaviors of materials of interest are characterized by 

phenomena with multiple temporal and/or spatial scales. In particular, complex 

materials and viscoelastic networks such as polymers and biological materials exhibit 

both elastic and viscous behaviors over wide frequency and spatial ranges, as 
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well-known in the field of rheology of complex fluids and soft matter. In this chapter, 

we explore the possibility of obtaining microrheological measurements (cf. Section 

4.2) using ICS. The objective is to fully utilize and extend the imaging-based 

approach used to obtain spatiotemporal information in ICS to concurrently obtain 

valuable microrheological information in ICS-Microrheology (ICS-µR). How 

ICS-µR relates to and extends the original capabilities of ICS is illustrated in Figure 

5.3. 

 

 

Figure 5.3: A schematic overview of ICS and its extension to microrheology, ICS-µR. 
A sequence of images (a) is correlated spatially (b) and temporally (c) in ICS. 
Functional spatial and temporal fitting to these correlation data allow one to quantify 
various spatiotemporal phenomena characteristic of the system studied, as listed in 
the box below (c). The present work (d) shows how such image data can be further 
interrogated to gain microrheological information in ICS-µR. 

In the following sections, we first briefly describe the experimental procedures 

and data collection for ICS-µR. Then, we discuss our approach to extract 

mean-squared displacements (MSD) of the probe particles from the image correlation 

data using a new model we introduce here for the power-law exponent of the MSD. 
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We show that this technique works very well for a wide range of soft matter, from 

colloids of hard or soft particles to polymer solutions and networks. Following this, 

we demonstrate the ability of ICS-µR to provide rheological information by 

measurements of simple (Newtonian) as well as complex fluids. 

5.2 Materials and Methods 

In the series of experiments reported here, we have used aqueous solutions of 

glycerol at different concentrations as reference Newtonian fluids, as the viscosities 

of glycerol solutions in water are well-known and have been reported previously 

[159]. As model viscoelastic fluids, we choose aqueous solutions of poly(ethylene 

oxide) (PEO) of molecular weight WM  = 106 g/mol. To achieve different 

viscoelastic properties, measurements were done at different PEO concentrations 

above the overlap concentration  [defined below; see Eq. (5.1)]. Commercial 

fluorescent microspheres were used as probe particles, and the MSD of the particles 

were extracted from the analysis of the ICS data using a special procedure that will be 

described later in Sections 5.2.5 and 5.3.1. The rheological properties were then 

calculated from these MSD data using the generalized Stokes–Einstein equation 

[141]. The microrheological measurement results are compared with the results 

obtained from conventional rheological experiments. 

*c

5.2.1 Sample preparation 

PEO-water solutions were prepared by dissolving PEO with a molecular weight 

of WM  = 106 g/mol (Sigma Aldrich) in water to final concentrations  of 1, 2, and c
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3% by weight. The overlap concentration of PEO solution can be estimated using 

[160] 

 34
3

* W

g A

Mc
R Nπ

= , (5.1) 

where AN  is Avogadro’s constant and the radius of gyration is estimated from [161] 

  nm. (5.2) 0.580.0215g WR M=

We have chosen  such that  ~ 0.15% to guarantee a clear viscoelastic 

response. To ensure complete dissolution, PEO solutions were kept in an incubator at 

37°C for at least 10 days with regular gentle shaking. Carboxylate-modified 

polystyrene fluorescent microspheres (580/605) with 0.5 µm diameter (Invitrogen, 

Carlsbad, CA) were used as the fluorescent markers. The bead stock solution was 

added to the glycerol or polymer solutions to obtain a final bead concentration of 

0.02% by weight. The mesh size of the PEO solutions can be estimated from [161] 

c *c c

 ( )0.75*m gl R c c= . (5.3) 

For 1, 2, and 3% PEO solutions used in this study, the mesh sizes are estimated to be 

6.3, 8.6, and 14.5 nm, respectively. These are significantly smaller than the size of our 

probe particles, so that that ICS-µR measures the rheological response and properties 

of the polymer network (rather than those of the solvent). 

5.2.2 Mechanical rheometry 

For comparison, the viscoelastic moduli of the PEO solutions were also 

measured using an AR-G2 rheometer (TA Instruments, New Castle, DE) using 

dynamic shear mode, parallel-plate geometry, and a humidity chamber to minimize 
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evaporation. The rheometer plate diameter was 60 mm, and the gap between the 

plates was 0.25 mm. Strain sweep tests were conducted to determine the linear 

viscoelastic regime of the solutions. Subsequently, all frequency sweep tests were 

done under 5–10% strain, sufficiently low to ensure linear response. The 

measurements were repeated several times to check their reproducibility. All 

measurements were done at 25°C. 

5.2.3 Imaging 

Epifluorescence video images of the probe particles were collected at 25°C using 

a Nikon TE2000 inverted microscope with 60× oil-immersion objective (NA = 1.49) 

at a capture rate of 1,000–10,000 frames per second with a high-speed Fastcam SA3 

camera (Photron). Image sequences of less than one-minute long were obtained with 

256×256 or 512×512 pixels. Data for each sample was obtained from 3–5 such image 

sequences. Fluorescence emission was passed through a 605 ± 38 nm filter to limit 

stray light. Image size and capture rate were not found to have significant effect on the 

ICS results, and photobleaching was not observed in the duration of imaging used in 

this work. 

5.2.4 Data collection and analysis: ICS 

In this section, we briefly outline the steps involved in the standard ICS 

measurements and analysis, which supply the data for ICS-µR described in the next 

subsection. More detailed information with a schematic of the data treatment is 

available in Appendix A. 
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The raw data obtained in ICS is a sequence of images which represent the image 

intensity ( ), ,i x y t  in space (i.e.,  and ) and time . The normalized intensity 

correlation function is calculated as a function of the spatial lag, 

x y t

ξ  and η , as well as 

lag time, τ , by 

 ( ) ( ) ( )
, ,

, , , , , ,
x y t

r i x y t i x y tξ η τ δ δ ξ η τ= + + + , (5.4) 

where 
, ,x y t

i  indicates averaging over all , , and , and x y t

 ( ) ( ) ( )( ) ( )
,

, , , ,
x y x y

i x y t i x y t i t i tδ = −
,

. (5.5) 

The normalization in Eq. (5.5) by the average intensity ( )
,x y

i t  over the entire 

image at any given instant follows common practice and is done to avoid changes in 

the intensity variation  for spurious reasons unrelated to motions of the 

probe. In addition, the normalization allows direct comparison between samples and 

extraction of parameters from the correlation amplitude. To minimize computation 

time, 

( , ,i x y tδ )

)( , ,r ξ η τ  is calculated using the Fourier method [162]. As typical in ICS 

analysis [152,162], for each time lag τ , the spatial correlation function is taken to be 

a Gaussian of the form: 

 ( ) ( ) ( )2 2
0 0

,2
0

, exp sr g
d

ξ ξ η η
ξ η ∞

⎛ ⎞− + −
= × − +⎜

⎜
⎝ ⎠

g⎟
⎟

, (5.6) 

where , g 0ξ , 0η , , and 0d ,sg ∞  have the following physical significance. Of these, 

( )g g τ=  is the time-correlation function of the image fluctuation (arising from the 

Brownian motion of the probe particles) needed for extracting microrheological 

information. The quantities 0ξ  and 0η  account for any “collective flow” in the 

image sequence which may arise, for example, due to an inclined microscope stage. 

(The “collective flow” represents any (real or apparent) collective motion of the probe 
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particles that may exist in addition to the Brownian motion we seek in the images.) 

The dc component ,sg ∞  is included to account for non-zero correlation value at large 

correlation distances, and  represents the width of the Gaussian. 0d

5.2.5 Extraction of microrheological information: ICS-µR 

The key information needed from the standard ICS measurements described 

above is the MSD of the probe particles in the sample, ( )2r τ∆ , which is related to 

( )g τ  by 

 ( )
( ) ( )

1 12 2

0 2 2

2 2
1 1

3 3xy z

r r
g g

d d
τ τ

τ

− −
⎛ ⎞ ⎛ ⎞∆ ∆
⎜ ⎟ ⎜= + +
⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

2

⎟
⎟

, (5.7) 

where  is the magnitude of 0g ( )g τ  at zero time lag. The lateral cross-correlation 

radius  is essentially the lateral xyd 2e−  radius of the imaging focus determined from 

Eq. (5.6) by ( )0 0xyd d
τ

τ
=

= , which we found to be 0.33 ± 0.03 µm. The axial 

cross-correlation radius  (the axial zd 2e−  radius of the imaging focus) was 

experimentally estimated to be 1.85 ± 0.02 µm from reference measurements using 

fluids with known viscosities (e.g., water), for which the probe diffusion coefficients 

are known. 

The MSD data can now be converted to viscoelastic moduli using the generalized 

Stokes-Einstein equation (see Section 4.2). In particular, Eqs. (4.5), (4.6), and (4.7) 

are used to gives the frequency-dependent storage modulus, ( )'G ω , and loss 

modulus, ( )"G ω . However, as noted earlier, we use an alternative method to extract 

the viscoelastic moduli from ( )g τ  obtained from ICS measurements, in order to 

minimize the propagation of experimental and data processing errors and to increase 



Chapter 5: Image Correlation Spectroscopy for Microrheology 

 91

the accuracy of the extracted moduli. That is, we do not sequentially obtain the MSD 

from the time-correlation function using Eq. (5.7) and then determine the logarithmic 

derivative from Eq. (4.5) for subsequent substitution in Eqs. (4.6) and (4.7) for the 

moduli. The method we use is described in Section 5.3.1. 

5.3 Results 

In what follows, we examine and demonstrate the utility of ICS-µR for extracting 

rheological information using two different classes of fluids representing two limiting 

cases, namely, a series of Newtonian fluids with significantly different viscosities and 

polymer solutions with distinct viscoelastic behaviors. The Newtonian fluids are used 

to confirm unambiguously that the two-dimensional Gaussian function used [i.e., Eq. 

(5.6)] is sufficient to represent spatial image correlation in our imaging experiments 

as well as to check the accuracy of the measured viscosities. The polymer solutions 

are used to test how ICS-µR can be used to identify viscoelastic material behavior. 

We begin the discussions with the preliminary step we use to obtain MSD data 

for the probe particles from the temporal image correlation function ( )g τ  obtained 

from ICS. In principle, ( )2r τ∆  can be obtained directly from ( )g τ  using Eq. 

(5.7). However, in order to minimize the propagation of experimental error and to 

obtain reliable microrheological result over as large a τ  range as possible, we use a 

data analysis procedure which allows one to obtain ( )2r τ∆  and ( )α τ  

simultaneously. Note that robust values of both ( )2r τ∆  and ( )α τ   are required 

for calculating the viscoelastic moduli (Eqs. (4.6) and (4.7)). The procedure we use is 
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capable of representing the power-law behavior as well as the transition regime 

between the low-ω  and high-ω  regimes of a large variety of soft materials, as will 

be demonstrated below. 

5.3.1 Extraction of MSD from image correlation data 

While the use of Eq. (5.6) in ICS helps take care of the noise and drift in the 

image sequence, it inevitably leads to some ‘noise’ in ( )g τ  due to the intrinsic 

inaccuracies in data reduction. Direct MSD calculation from this noisy ( )g τ  data 

using Eq. (5.7) would therefore result in MSD data of at least equal level of noise. 

Obtaining ( )α τ  from the resulting MSD adds to the potential propagation of errors. 

Moreover, prior to the present work, ( )α τ  has been usually estimated algebraically 

from ( )2r τ∆  in the literature, for example using the Gaussian sliding-window 

approach [143]. This estimation is error-prone and sometimes yields unphysical 

behaviour both in ( )α τ  and the resulting viscoelastic moduli, especially at the ends 

of the frequency range, thus forcing data truncations [163]. 

One of the reasons for using the local logarithmic derivative of ( )2r τ∆  for 

calculating the viscoelastic moduli from diffusive displacements of probe particles is 

that a wide range of material behaviors over observable frequency range can be 

described by power laws. In particular, the viscoelastic behavior of many materials 

including polymer solutions, colloids, and even biological cells follows power laws at 

the high and low frequency ranges with smooth transition in between [143,164,165], 

as schematically illustrated in Figure 5.4. Although the underlying phenomena or 

reasons behind such a “universal” power-law behavior are not completely understood 



Chapter 5: Image Correlation Spectroscopy for Microrheology 

 93

[139], the possibility of making use of such behaviors is indeed attractive. In this 

section, we describe a novel MSD extraction method, which eliminates the necessity 

for calculating ( )2r τ∆  and ( )α τ  independently over the entire frequency range 

and carrying over and compounding the data analysis errors in so doing; in particular, 

the method reduces the data analysis to finding a robust function for ( )α τ  (and 

hence implicitly for ( )2r τ∆ ) directly from ( )g τ , i.e., from Eq. (5.7). 

 

 

Figure 5.4: Illustration of the evolution of MSD with time. 

Considering the prevalence of power laws to describe material behavior, we 

represent α  using a function of the form 

 ( ) ( ) ( ) ( )( )1 1
0 02 2 erf ln trα τ α α α α χ τ τ∞ ∞ ⎡ ⎤= + + − × ⎣ ⎦ , (5.8) 

where  is the error function and the coefficients are related to the asymptotic 

limits and the transition between the asymptotic limits, as described below. Eq. (5.8) 

admits two asymptotic power-law behaviors for 

erf

( )2r τ∆  with arbitrary exponents 

(dictated by the experimental data), 0α  at the 0τ →  limit and α∞  at the τ → ∞  

limit, and allows a smooth transition between the asymptotes. This function is used to 
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reconstruct ( )2r τ∆  and ( )g τ  from Eq. (5.7), and the time-correlation function 

thus obtained can be fit to the experimentally obtained data from ICS to determine the 

coefficients. The parameters trτ  and χ  represent where and how fast, respectively, 

the transition between the two asymptotes occurs. Once the parameters in Eq. (5.8) 

are obtained from the experimental data, the resulting  ( )α τ  and ( )2r τ∆  can be 

used to calculate shear moduli from Eqs. (4.6) and (4.7) directly. 

The main advantage of the approach described above is that in the end one has 

both ( )2r τ∆  and ( )α τ  that (a) represent the raw ( )g τ  data more accurately 

than sequential data reduction would allow and (b) are physically realistic. The 

improvement in the quality of the results gained from employing this procedure is 

further illustrated in Appendix A, where we compare the results obtained from our 

method with those obtained from the sequential analysis used in the literature. The 

functional form described in Eq. (5.8) is very robust and can be used for a wide 

variety of soft materials. In the case of 0α α∞= , for example, the material will follow 

a single power law. In addition, physical limitations can be imposed on these 

parameters through appropriate constraints, such as { }00 ,α α∞ 1≤ ≤  for 

non-superdiffusive events. Importantly, the coefficients in Eq. (5.8) allow one to 

directly quantify the power laws and the transitions between power laws even at the 

terminal regimes, a clear advantage over other algorithms [166]. Finally, we note that 

the error function  can only have one inflection point, and, therefore, Eq. (5.8) 

describes a transition between two asymptotic limits. However, a combination of 

error functions can be used to represent 

erf

( )α τ  that has two or more inflection points, 
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as we show in the illustrative cases below. 

In order to check how well this procedure can reproduce different types of 

power-law transition behavior, we have examined a number of representative 

experimental data reported in the literature for a wide range of soft materials. These 

data cover quasi-hard-sphere dispersions [165], deformable emulsions [138], 

polymer solutions [143], associative networks [167], as well as cell nuclei [164], and 

correspond to different types of transitions between low frequency and high 

frequency asymptotic regimes. Some of these are reproduced in Figure 5.5. Such an 

examination shows that Eq. (5.8) is quite versatile and can represent the behavior of a 

variety of soft materials ranging from hard-sphere fluids and fluids of soft deformable 

“particles” to solutions of polymer coils and networks. Essentially, any functional 

form that fits the data will provide equally good results. We chose the  function 

model due to its simplicity and its ability to accommodate the asymptotic power-law 

limits. Despite the possibility that the mechanics of some materials may not be fully 

described by this simple semiempirical model, we found that this model is sufficient 

for our purposes in this study as well as many reported in the literature (as illustrated 

in Figure 5.5). 

erf
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Figure 5.5: Illustration of the capability of our approach to reconstruct ( )2r τ∆  of 
reported experimental data. The Gaussian error model [Eq. (5.8)] is able to capture 
the behavior of the experimental MSD data of silica particles in associative network 
reported by Sprakel et al. [167], polystyrene beads in PEO solutions reported by 
Dasgupta et al. [143], and concentrated emulsion reported by Mason et al. [138]. The 
inset provides one sample comparison between our method, i.e., the viscoelastic 
moduli calculated from the best fit ( )2r τ∆  (shown as lines), and the data reported 
by Mason et al. (symbols) based on numerical Laplace transformation. Note that our 
approach is able to provide reliable viscoelastic information over a larger range in the 
high frequency limit, where noise may otherwise force data truncation. 

5.3.2 ICS-µR for Newtonian fluids 

In performing image correlation, one effectively performs spatial convolution of 

the configurations of the probe particles as well as a convolution of the spatial 

distribution of fluorescent molecules in the probes.4 We take this spatial correlation 

function to be described by a two-dimensional Gaussian function [Eq. (5.6)]. Such 

Gaussian approximation function may not always be appropriate, for example when 

                                                 
4 This will be discussed in greater detail in Section 6.2. By carefully analyzing the spatial correlation 

function, one can employ ICS in a probe-independent manner, as demonstrated in Chapter 6. 
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the probe particle is significantly larger than the imaging PSF. It is necessary, 

therefore, to ensure that the above Gaussian approximation works in the experiments. 

To test this, we did ICS-µR measurements with aqueous solutions of glycerol, for 

which the viscosities are known. 

The raw temporal correlation data and the corresponding extracted ( )g τ , based 

on Eq. (5.8), of glycerol solutions at different concentrations are shown in Figure 

5.6(a), while the extracted ( )2r τ∆  are shown in Figure 5.6(b). The glycerol 

concentrations were chosen such that they cover a large range of viscosities 

(~1–1,000 cp). As expected for Newtonian fluids, the extracted ( )2r τ∆ ’s follow 

single power-law functions with a slope of unity in all cases. To further check the 

accuracy of ( )2r τ∆ , we calculated the diffusion coefficients of the probe particles 

from these extracted ( )2r τ∆  (or, equivalently, the viscosities of the solutions) and 

found the resulting values to be very close to the expected values (within 5%) over 

several orders of magnitudes of sample viscosities, as shown in the inset of Figure 

5.6(b). This excellent agreement between the measured results and the actual values 

suggests that the Gaussian PSF in Eq. (5.6) is a sufficiently accurate representation of 

the spatial correlation of our bead images. Consequently, effects of particle size or 

distribution of fluorescent molecules within the probe particles, if any, are already 

accounted for by Eq. (5.6) and has no impact on the extraction of ( )2r τ∆  in our 

experiments. 
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Figure 5.6: ICS-µR results for glycerol aqueous solutions with various concentrations. 
The raw correlation data (open symbols, panel (a)) are used to extract ( )2r τ∆  
(lines, panel (b)) based on data analysis using Eq. (10).  The correlation data have 
been normalized against the intercept values at zero time-lag for easy evaluation. The 
inset shows comparison between theoretical diffusion coefficient  (obtained from 
Stokes-Einstein equation 

thD
6th BD k T aπν= , using viscosity values ν  measured 

previously [159]) and measured diffusion coefficient  (obtained by fitting 
extracted MSD data to 

ICSD
( )2 6 ICSr Dτ τ∆ = ). Experimental errors are about the sizes 

of the symbols or smaller. The solid line represents slope of unity. 

5.3.3 ICS-µR for viscoelastic networks 

As a demonstration of an application of our ICS-µR method, we made image 

correlation measurements of probe particles in aqueous solutions of PEO. From the 

temporal correlation data of PEO solutions with different PEO concentration , we 

extracted 

c

( )2r τ∆ , shown in Figure 5.7. The MSD data show the expected 

monotonic decrease with increasing , indicating an increase in the complex shear 

modulus of the samples. For the range of  tested, at small 

c

c τ , ( )2r τ∆  has a 
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logarithmic slope α  of less than unity, indicating a partial elastic response, and α  

gradually approaches unity at larger τ , indicating a transition to viscous behaviour, 

as illustrated in the inset of Figure 5.7. The use of Eq. (5.8) enables us to clearly 

observe the transition of α  in the power laws, including the incomplete transitions to 

asymptotic power laws at the high-frequency end, which may not be as readily 

detected otherwise. Further analysis on the parameter χ  in Eq. (5.8) reveals that χ , 

a measure of the rate of transition of the power laws, increases with  as 0.38 ± 0.17 

for 1% PEO, 0.53 ± 0.11 for 2% PEO, and 0.66 ± 0.07 for 3% PEO. Although the 

elastic-to-viscous transition for PEO has been described previously [143,168], this 

increase of 

c

χ  with c  has not been studied, and its origin is yet unclear. 

 

 
Figure 5.7: MSD of 0.5 µm beads in PEO aqueous solutions with various 
concentrations obtained from ICS correlation functions. The black line indicates the 
linear time dependence with a slope of unity expected for pure diffusion. The inset 
shows the change of ( )α τ  over the full time range. 

From these ( )2r τ∆  and ( )α τ  data, ( )'G ω  and ( )"G ω  were calculated 

using Eqs. (4.6) and (4.7). Figure 5.8 shows a comparison between the moduli 
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obtained from ICS-µR and mechanical rheology (MR) measurements for our PEO 

solutions. We observe a good agreement between the two methods. In particular, we 

successfully capture the frequency dependence of the moduli, such as the power laws 

and crossover frequencies, over the measurable time-scale and viscosity range. At 

low ω , ( )"G ω  dominates and rises with a slope of nearly unity. This diffusive 

behavior reflects the relaxation of polymer chains due to reptation. For larger ω , the 

cross-over between the two moduli is observed for 2% and 3% PEO and is correctly 

predicted by ICS-µR. As expected, the cross-over frequency, as indicated by arrows 

in Figure 5.8, increases with decreasing . Taken together, these results confirm that 

our semiempirical representation [Eq. (5.8)] for 

c

( )α τ  works well for the materials 

tested in this work. 
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Figure 5.8: Comparison between frequency-dependent linear viscoelastic moduli for 
PEO aqueous solutions of various concentrations as measured with ICS-µR and 
mechanical rheometer (MR). ICS-µR results were obtained from ( )2r τ∆  of 0.5 
µm beads in the solutions. The error bars signify the extent of experimental error in 
the mechanical rheology measurement. For clarity, only representative error bars in 
high and low frequency regions are shown here. 

5.4 Discussion 

With ICS-µR and our special data analysis procedure, we were able to detect 

( )2r τ∆  from around 10−5 µm2 to values above 10 µm2 (cf. Figure 5.7). This 

corresponds to measurable moduli in the range of 10−4–102 Pa. Like any 

imaging-based technique, the temporal resolution of ICS-µR is limited by capability 

of the camera used and the signal strength. These typically limit the measureable 

frequency range to about 10−2–104 rad/s. In terms of probe particle, probes with sizes 

less than PSF size can be used, although in practice one might also have to consider 
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signal intensity and sample mesh size when very small particles are used. We further 

discuss the effect of probe size and shape and how to reliably obtain ICS 

measurements for arbitrary probes in Chapter 6. The ( )2r τ∆  range for ICS-µR, as 

shown in Figure 5.7, can be potentially larger than that for standard single-particle 

tracking microrheology (PTM) [169]. One of the advantages of PTM is its ability to 

extract information from each individual particle, thus allowing analyses of single 

particle trajectories as well as correlated motions, which may reveal further 

information on heterogeneous materials [142] (although, as we also note in Section 

7.2.3, any single-particle analysis must be treated with caution, especially in relation 

to how well the chosen particle couples with the medium or network whose 

viscoelastic properties are of interest [170,171]). While ICS-µR represents an 

effectively averaged measurement from the imaged field of view, fine-grained image 

segmentation with low probe concentrations can allow one to perform single-particle 

analysis as well. Alternatively, ICS-µR also holds the potential of performing 

location-dependent microrheological measurements for heterogeneous materials, 

through collection of image data at different locations in the sample. These 

approaches hold the potential of providing a spatial rheological map over the imaged 

sample. Moreover, PTM requires the tracers to be individually distinguishable in the 

images, and the probe concentration must be sufficiently low such that probe 

displacement is significantly smaller than average bead-to-bead distances. These are 

not necessary conditions in ICS-µR. In addition, owing to its better spatial and 

temporal averaging, ICS-µR is less noise-sensitive than PTM, thus greatly reducing 
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the post-processing of data and computational costs. 

Non-imaging-based methods do not have limitations on spatial resolution 

associated with images. Laser particle tracking techniques achieve better spatial 

resolution (MSD of ~10−6 µm2 can be achieved), but are not suitable for studying 

long-time dynamics [172,173]. Light scattering techniques like diffusing wave 

spectrometry (DWS) have the advantage of larger frequency range, capable of 

reaching ~105 rad/s [138]. However, very high probe concentrations are needed to 

achieve multiple scattering and the maximum measurable ( )2r τ∆  is 

comparatively low [143]. A major upside of imaging-based methods is that no 

specialized equipment other than a microscope is generally needed. This is clearly 

favorable, especially for studying biological materials, where microscopy is 

extensively used. Moreover, in many cases, it is desirable to study material properties 

in conjunction with its microstructure (cf. Section 2.3.1), which usually requires 

imaging modalities [174]. The minute amount of sample required for measurement 

(20–30 µl in this study) also makes ICS-µR suitable for measuring materials that are 

difficult to obtain in large quantities. 

In summary, we have introduced ICS-µR for microrheological measurements of 

complex fluids as an extension of the standard ICS. The measured ( )2r τ∆  and 

viscoelastic moduli for glycerol and PEO aqueous solutions are in excellent 

agreement with results obtained from mechanical rheology and other reported 

measurements. In extracting ( )2r τ∆  for ICS-µR, we utilize a semiempirical 

representation based on the error function to represent the local power-law exponent 
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( )α τ . This approach proves to be versatile and is able to model particle dynamics 

measured in ICS-µR as well as in other techniques previously reported in the 

literature. The usefulness of the above-mentioned representation for ( )α τ  is evident 

when a simple quantification of transient power law and its rate of change are 

required. The type of analysis proposed here may provide new insights on the 

power-law behavior of materials. We emphasize, however, that the choice of using the 

representation we use here and other possible choices are not necessarily critical or 

essential for the basic concept behind ICS-µR. We use our proposed data analysis 

approach here simply to take advantage of what has been known previously 

concerning power-law-based mechanical relaxation of materials and to minimize the 

propagation of the experimental noise in the data. As an imaging-based technique, 

ICS-µR has the potential for probing not only time-scale-dependent and 

length-scale-dependent behavior, but also time evolution and location-dependent 

mechanical properties of viscoelastic materials [153]. This and ICS-µR’s large 

measurable frequency and MSD ranges as well as its original capability to quantify 

spatial [151] and temporal [153] phenomena make ICS-µR a powerful 

characterization tool to gain better understanding of soft matter, such as complex 

fluids and biomaterials. 
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Chapter 6: Probe-independent Image 
Correlation Spectroscopy 

6.1 Introduction 

Conventional FCS and ICS theory assumes point emitters with sizes much 

smaller than the beam focus. There are many potential applications of FCS and ICS, 

however, where the size of the probe is comparable to or bigger than the individual 

observation volumes, thereby making the point source approximation inadequate or 

even erroneous. Such applications range from studies of interactions between protein 

and bacteria or viruses, large cellular vesicles, large membrane domains, 

macromolecules and colloidal particle characterizations, microemulsions, to material 

characterization through microrheology [175-178]. We show in this chapter that the 

geometry, size, and fluorophore distribution of the probe particles affect the shape of 

the spatial as well as temporal correlation functions in ICS. Although analytical 

derivations on several simple particle configurations have been described for FCS 

[179,180], a similar analysis has not been done for ICS. 

In this chapter, we present a method that can circumvent problems associated 

with the effects of geometry, size, and fluorophore distribution of the probe particles 

in ICS. Rather than dealing with different particle sizes and fluorophore distributions 

separately, we make use of the spatial information inherently obtained in ICS to help 

understand how to analyze the temporal information. The theory is validated using 

computer simulations of ICS on fluorescent bodies of various sizes and fluorophore 
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configurations as well as ICS experiments using fluorescence-labeled microspheres 

of various diameters. 

6.2 Theory 

Every fluorescence image is a spatial convolution of the microscope point spread 

function (PSF) with the point-source emission from the fluorophores lying within the 

field of view. The PSF describes the response of the imaging system to a point source, 

and this PSF convolution is what causes the signal from a point-emitter to be spread 

over a number of pixels. The PSF is determined by the quality of the imaging system, 

such as coherence, laser focus and pinhole size for confocal setup. However, often, 

the fluorophores exist as clusters or are bound to substrate domains, e.g., in 

fluorescent microspheres, which move synchronously and act like a rigid body. As 

such, without loss of generality, the final fluorescence image can be mathematically 

represented as 

 ( ) ( ) ( ) ( )( ), PSF ,i t P t Cσ= ∗ ∗x x x x

)

, (6.1) 

where  is the fluorescence intensity at location  and time , ( ,i tx x t ( ),P tx  is the 

density distribution of the fluorescent bodies (clusters or domains) in the sample 

under study,  is the spatial distribution of the fluorophores within the 

fluorescent bodies, and *  denotes convolution operation. Note that, generally, the 

PSF does not change with time and 

( )C x

( )C x  is also independent of time for rigid 

fluorescent bodies. The proportionality coefficient σ  is a function of fluorescence 

quantum yield, detection efficiency, laser excitation intensity, and any geometrical or 
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)

optical filtering losses, which are typically taken to be constant in space and time. 

In general, the complete spatiotemporal image correlation function is calculated 

as ( ) ( ) (, , ,g i t i tτ τ∆ = + ∆ +x x x xi , where ∆x  and τ  are the spatial and 

temporal lags, respectively. Given enough probe statistics, the spatial correlation of 

fluorescence images obtained at different times  involves spatial correlation of the 

individual components making up the images: 

t

 ( ) ( ) ( ) ( ), ,g τ ζ φ τ ϕ∆ ∝ ∆ ∗ ∆ ∗ ∆x x x x

)

, (6.2) 

where , ( )ζ ∆x ( ,φ τ∆x , and ( )ϕ ∆x  are the spatiotemporal correlations of 

, ( )PSF x ( ),P tx , and ( )C x , respectively [181]. ( )PSF x  is conventionally 

assumed to be a Gaussian, and thus ( )ζ ∆x  is also a Gaussian. The distribution 

( ),P tx  of the fluorescent bodies (i.e., the probes) within the sample is determined by 

the dynamic coupling between the bodies and the surrounding medium. Considering 

the local fluctuation to be governed by Fick’s second law of diffusion, one obtains the 

diffusion propagator [182] 

 ( )
21, exp

44 DD
φ τ

τπ τ
⎡ ⎤∆

∆ = −⎢ ⎥
⎣ ⎦

xx , (6.3) 

where  is the diffusion coefficient of the fluorescent bodies in the sample. The 

calculation of , however, requires knowledge of the spatial configuration of 

the fluorophores in the fluorescent bodies, 

D

(ϕ ∆x)

( )C x , which is rarely known 

experimentally. 

6.2.1 Conventional ICS for point emitters 

For a simple case where the fluorescent bodies are much smaller than the pixel 
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size and the PSF size,  can be considered as a point source represented by the 

Dirac delta function 

( )C x

( )δ x . In this case, the analytical form of the spatiotemporal 

correlation of the image sequence can be easily obtained from Eq. (6.2). In 

two-dimensional diffusion ( { },x y≡x ), for example, it has been shown to be given by 

[183] 

 ( ) ( )
2 2

2

1, , 0,0,0 exp
1 1D D

g g
d

ξ ηξ η τ
τ τ τ τ

1⎡ ⎤⎛ ⎞ ⎛ ⎞+
= −⎢ ⎥⎜ ⎟ ⎜+ +⎝ ⎠ ⎝ ⎠

⎟
⎣ ⎦

, (6.4) 

where ξ  and η  are the spatial lags in  and , respectively,  is the so-called 

e−2 radius of the imaging focus, and 

x y d

Dτ  is the characteristic diffusion time, which is 

related to  through D

 2 4D d Dτ = . (6.5)  

The zero-lag correlation  has been shown to be the inverse of the average 

number of fluorescent particles in the field of view [184]. In addition, in the limit of 

vanishing 

(0,0,0g )

ξ  and η , the temporal correlation function becomes 

 ( ) ( )0
1 D

g
g τ

τ τ
=

+
 (6.6) 

and thus the diffusion coefficient of the fluorescent particles can be calculated from 

the ( )g τ  data. 

6.2.2 Probe-independent ICS 

When the fluorescent bodies are of comparable size to, or larger than, the pixel 

size or the PSF,  can no longer be characterized as a point source. In this case, 

the form of 

( )C x

( )ϕ ∆x , the spatial correlation function of ( )C x , will influence the 

eventual spatiotemporal correlation of the image sequence, ( ),g τ∆x . If  is ( )C x
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unknown, which is invariably the case in many experiments, it is difficult to estimate 

the functional form of the overall spatiotemporal correlation ( ),g τ∆x  from Eq. (6.2) 

as we did for point sources in Eq. (6.4). Assuming an inaccurate form, such as Eq. 

(6.4), may therefore lead to erroneous determination of the diffusion coefficient (or, 

equivalently, for the mean-squared displacement of the fluorescent probe particles, 

needed for ICS-µR; cf. Chapter 5), as we shall show in Section 6.4. It is, however, 

possible to obtain temporal information with little knowledge of the spatial 

configuration , as we now show. ( )C x

Amongst the components making up the fluorescent images, only ( ),P tx  

depends on time. As a result, the temporal dependence of ( ),g τ∆x  is solely 

governed by ( ),φ τ∆x . Regrouping the terms in Eq. (6.2) based on the temporal 

dependence therefore yields 

 ( ) ( ) ( ), ,0g g ,τ φ τ∆ = ∆ ∗ ∆x x x . (6.7) 

The zero-temporal-lag spatial correlation ( ) ( ) (,0g ζ ϕ )∆ ∝ ∆ ∗ ∆x x x  is 

time-independent, and its functional form depends on ( )PSF x  as well as ( )C x , 

whereas ( , )φ τ∆x  is probe-independent and depends only on the diffusivity (i.e., 

dynamics) of the fluorescent bodies. The correlation data obtained from ICS clearly 

contains ( ),g τ∆x  and hence ( ) ( )
0

,0 lim ,g g
τ

τ
→

∆ = ∆x x

)

 as well. Equation (6.7) 

therefore implies that ( ,φ τ∆x , and thus the diffusion properties of the fluorescent 

bodies, can be calculated directly from the spatiotemporal correlation function of the 

image sequence ( ),g τ∆x  without any knowledge about the individual components 

of ( ),0g ∆x , namely, ( )PSF x  and ( )C x . This means that, unlike in the 
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conventional ICS analysis [e.g., Eq. (6.4)], no assumptions concerning the geometry 

of the fluorescent bodies, the spatial distribution of the fluorophores as well as the 

imaging PSF need to be made for the “generalized” ICS analysis based on Eq. (6.7). 

Since ( ),0g ∆x  serves as the ‘template’ spatial correlation based on which the 

spatial correlations at any other τ  can be analyzed, we will hereafter refer to 

( ),0g ∆x  simply as ‘template’. The method of finding the diffusion properties of the 

probe particles using this template will henceforth be referred to as ‘template 

analysis’, in contrast to the conventional method of using Eq. (6.4), which will be 

referred to as ‘standard analysis’. While template analysis can be done to evaluate 

ICS data in any dimensional environment, in the next section, we will in particular 

describe how we apply the template analysis in practice for two-dimensional 

environment, where { },x y≡x  and { },ξ η∆ ≡x , and demonstrate the use of such an 

analysis. 

6.3 Materials and Methods 

6.3.1 Computer simulations 

As noted earlier, simulation data are used to test the proposed method of analysis 

prior to further experimental tests. To this end, computer simulations of 

laser-scanning microscopy of fluorescent bodies in a two-dimensional system were 

done to test the effect of particle size and fluorophore distribution on ICS analysis. We 

employed the procedure described below to generate image sequences of diffusing 

fluorescent bodies of different sizes and shapes. 
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1. Assignment of ( ),P tx : First, we randomly assigned the initial coordinates (i.e., 

the x and y positions) of the centers of mass of the fluorescent bodies within the 

field of view. For each subsequent time steps, the new coordinates were calculated 

from the previous step using standard Brownian dynamics by adding random 

displacements to the positions of the particles, which was drawn from a normal 

distribution with a mean of zero and a standard deviation of 2 inD τ∆ , where 

 is a predetermined diffusion coefficient of the particles and inD τ∆  is the time 

steps for the Brownian motion. 

2. Generation of density map of the fluorescent bodies: The field of view was 

divided into a set number of pixels in x and y, and the coordinates of the centers of 

mass were used to generate a density map of the distribution of the fluorescent 

bodies. This was done for each time step, so that the result of this step was a 

sequence of such density maps as a function of time. 

3. Assignment of : Three possible distributions of fluorophores on the 

fluorescent bodies were considered: point sources, disks, and rigid rods. For point 

sources, 

( )C x

( )C x  is a delta function, so this step was not needed. Disks were 

simulated as a set of uniformly distributed point sources within a circle of radius 

 centered at the assigned centers of mass. Rigid rods were simulated as an array 

of regularly spaced point sources located in a straight line of length . The initial 

orientations of these rods were randomly assigned and were not changed 

throughout the simulation (i.e., only translational diffusion was considered). The 

output of this step was a sequence of the density map of the fluorophores in the 

a

l
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field of view. In this work, all the fluorophores were assumed to have the same 

emission intensity; therefore, the sequence of fluorophore density map is 

essentially also the sequence of intensity map. 

4. PSF convolution: To simulate the effect of excitation of fluorophores with a laser 

beam in fluorescence imaging, these intensity maps were numerically convolved 

with a two-dimensional Gaussian of beam width . The resulting sequence of 

frames becomes the input image time-series for subsequent ICS analysis. 

d

In practice, the intensities in each frame were normalized such that each pixel 

contained only integer values ranging from 0 to 65535, simulating 16-bit images. All 

simulations were performed with an image size of 256×256 pixels, a pixel size of 0.1 

µm/pixel, a beam radius of 2–4 pixels, a temporal sampling of 2–4 frames per Dτ , 

and a total simulation time of at least 500 Dτ . These values correspond to typical 

laser scanning imaging conditions and diffusion times for proteins in biological 

settings [153]. Changes in the magnitudes of these parameters may be warranted for 

other applications and can be easily accommodated within the framework described 

above. All simulations and data analysis were done in MATLAB (The MathWorks, 

Inc., Natick, MA). 

6.3.2 Sample preparation and imaging 

Experimental confirmation for our method was done using carboxylate-modified 

polystyrene fluorescent microspheres (580/605 nm) with diameters of 0.5, 1, and 2 

µm (Invitrogen) as the fluorescent probe particles. A stock solution of probe particles 

was added to an aqueous solution of glycerol to a final bead concentration of 0.2% by 
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weight. Glycerol solutions were prepared by mixing appropriate volumes of glycerol 

(Sigma Aldrich) and water to a final concentration of 90.5% by weight. 

Confocal laser scanning microscopy was performed at 27.5 ± 1.0°C on a Nikon 

TE2000 inverted microscope. Excitation was provided with continuous diode laser 

(Olympus) tuned to 561 nm at 5 mW. All fluorescence image time series were 

collected by a 100× oil-immersion objective (NA = 1.40) at 5× optical zoom with 

256×256 pixels (corresponding to a pixel size of 0.0995 µm/pixel) through a 30 µm 

pinhole using a 605 ± 37.5 emission filter. Gains and offset were adjusted to prevent 

intensity saturation. Each image sequence was collected with time delays of 590–610 

ms for at least 500 frames. 

6.3.3 ICS analysis 

As we have pointed out in Section 5.2.4, a two-dimensional image at any time  

is represented in terms of the intensity distribution function 

t

( ), ,i x y t . The 

normalized intensity correlation function was calculated in a similar way as in Section 

5.2.4 using Eqs. (5.4) and (5.5). As noted earlier, we used two methods to obtain the 

diffusion coefficients of the fluorescent bodies, namely, the traditionally used 

“standard” analysis and the proposed “template” analysis: these have been discussed 

in Section 6.2.2. 

“Standard” Analysis: Here, the function ( )g τ , which is required in Eq. (6.6), was 

obtained by fitting the raw correlation function ( ), ,r ξ η τ  with a two-dimensional 

Gaussian function for each τ  using Eq. (5.6). The spatial matching of experimental 

(or simulated) data to Eq. (5.6) was done only for the central correlation region 
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( , 5ξ η < ω ) and with zero weight for ( )0,0r  to minimize any contribution of white 

noise at zero spatial lag. The data for ( )g τ  thus obtained is used to obtain Dτ  using 

a modified functional form [from Eq. (6.6)] given by [162,184] 

 ( ) 0
,1 t

D

gg τ
τ τ

g ∞= +
+

, (6.8) 

where a temporal offset ,tg ∞  was included to account for non-zero temporal 

correlation at long times. The diffusion coefficient  then follows from D

2
0 4D d Dτ = , where  is the experimentally found Gaussian width. 0d

“Template” Analysis: In the template analysis we propose in this chapter, for each 

0τ > , ( , ,r )ξ η τ  was taken to be a convolution of the “template”  with a 

normalized two-dimensional Gaussian, i.e., 

( , ,0r ξ η )

 ( ) ( )
2 2

2

1, , , ,0 exp
f f

r r
d d

ξ ηξ η τ ξ η
π

⎛ ⎞+
= ∗ −⎜⎜

⎝ ⎠
⎟⎟

)

. (6.9) 

Note that, in the template analysis, the offset is already absorbed in ( , ,r ξ η τ  and is 

no longer necessary in Eq. (6.9). This one-parameter fitting procedure represented by 

Eq. (6.9) was done by finding the Gaussian width fd  that offers the best fit for 

( , ,r )ξ η τ  when the template ( ), ,0r ξ η  is convoluted with the Gaussian.  The 

diffusion coefficient  of the fluorescent bodies is related to D ( )fd τ  by 

 2 4fd Dτ=  (6.10) 

for two-dimensional free diffusion. 

In addition to the two methods above, we also analyzed the correlation function 

in two other ways: 

1. Point-like Template” Analysis: Rather than using the experimental template 
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)( , ,0r ξ η  in Eq. (6.9), a theoretical template assuming point-like particles was 

used. We call this “point-like template” analysis. By comparing the results from 

template and point-like template analyses, the influence of the spatial correlations 

in the image on the temporal correlation can be examined. 

2. “No-offset Standard” Analysis: As we will show below, while using the offset in 

standard analysis [i.e., Eqs. (5.6) and (6.8)] is important in experiments, it can 

produce calculation artifacts when the size of the probes is not taken into account. 

Therefore, a standard analysis [i.e., Eqs. (5.6) and (6.8)] without the use of the 

offset fitting parameters, called “no-offset standard” analysis, was also done to 

elucidate this effect. 

6.4 Results 

To verify the applicability of our template analysis for ICS, we compare the 

performances of standard and template analyses in evaluating ICS data from images 

of fluorescent bodies with various fluorophore configurations, both generated by 

computer and obtained from experimental confocal imaging. 

6.4.1 Probe-independent ICS on simulated images 

We tested three shapes for the fluorescent body. First, we considered point 

sources randomly positioned diffusing in the field of view. The use of point source 

simulates experiments where the fluorescent particles are very small compared to the 

laser focus. Second, we generated disk-shaped fluorescent bodies of radius , with 

the fluorophores uniformly distributed within the disks. Although experiments rarely 

a
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encounter such perfectly distributed fluorophores in the fluorescent bodies (even in 

particles of micrometer or sub-micrometer dimensions), the use of disks with 

uniformly distributed fluorophores can demonstrate the usefulness of template 

analysis as compared to standard analysis when  becomes large, as we show below. 

Lastly, we took the extreme case of rigid rods, where the fluorophores are positioned 

in a straight line of length  in the fluorescent bodies. Note that the orientations of the 

line in each fluorescent body are randomly assigned, which means that each 

fluorescent body is virtually different and has distinct fluorescent signal pattern from 

each other. These configurations are illustrated in Figure 6.1. The images of these 

different configurations were convoluted with a two-dimensional Gaussian of  = 2 

pixels to simulate PSF convolution in confocal imaging. The temporal variations in 

the positions of these fluorescent bodies were generated using the Brownian motion 

of the bodies with the same input diffusion coefficient of  = 0.1 µm2/s for all 

geometries and sizes. 

a

l

d

inD
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Figure 6.1: Illustration of images generated by computer simulations for ICS with 
probes of different shapes and uniform fluorophore distribution within the probes. (A) 
The fluorescent bodies are point-like with zero size. The original fluorophore spatial 
distribution was convoluted with a Gaussian PSF of  = 2 pixels. (B and C) The 
fluorescent bodies are disks with diameters of  (B) and  (C). (D and E) The 
fluorescent bodies are randomly oriented fluorescent rigid rods, represented by 
uniformly distributed fluorophores on a line a long the length of the rods. The lengths 
of the rods are  (D) and 

d
2d 4d

5l = d d10l =  (E). For each sequential frame, the positions 
of the fluorescent bodies in these images are perturbed according to an input diffusion 
coefficient . inD

The spatiotemporal correlation function ( ), ,r ξ η τ  was calculated from these 

image sequences using Eq. (5.4), and we analyzed this raw correlation function using 

both standard and template analyses. The first step in standard analysis is obtaining 

the temporal correlation function ( )g τ  from ( ), ,r ξ η τ  by fitting to 

two-dimensional Gaussian as in Eq. (5.6). The resulting ( )g τ  data from images of 

disks and rigid rods for several values of a d  and l d  are shown in Figure 6.2. It 

can be clearly seen that the form of ( )g τ  changes with different values of a d  and 

l d . In particular, as a d  and l d  increase, ( )g τ  deviates more and more 
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significantly from the theoretical curve (solid line), which assumes point sources and 

is mathematically represented by Eq. (6.6). The results demonstrate that if the size of 

the probe particles are not properly accounted for one can mistakenly infer a slower 

decay in the correlation function for larger values of a d  and l d , leading to an 

incorrect measurement of the diffusion of larger particles. 

It is worth noting that it takes much larger values of l d  than a d  for ( )g τ  to 

deviate as strongly from the theoretical curve. This is because the rods, with their 

slender form and random orientations, more closely resemble point sources in the 

spatial correlation calculations, and, as a result, the spatial correlation functions decay 

almost as rapidly with spatial lag as for point sources, as shown in Figure 6.3. For 

purely point sources, ( )g τ  follows the theoretical curve as expected. Figure 6.3 

provides a closer inspection in the spatial correlation data from the various 

fluorophore configurations. At small spatial lag, spatial correlation from images of 

rigid rods decays in a similar manner as that from images of point sources despite the 

relatively large l d  value. This observation underlines the spatial-temporal 

interrelation in ICS analysis, which we have mathematically described in Section 

6.2.2. 
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Figure 6.2: The correlation functions ( )g τ  of images of different fluorescent bodies. 
The ( )g τ  data were obtained by fitting the spatial correlation function ( ), ,r ξ η τ  
for each 0τ >  to two-dimensional Gaussian using Eq. (5.6). The functions have 
been normalized with respect to the intercept at 0τ = . These ( )g τ  functions were 
obtained for images of disks (A) of 0a d =  (filled circles), 1a d =  (inverted 
triangles), 2a d =  (filled squares), and 3a d =  (triangles), as well as images of 
rigid rods (B) of 2.5l d =  (filled circles), 5l d =  (triangles), and 20l d =  (filled 
squares). Zero value for a d  implies point-like fluorescent bodies. The solid lines 
indicate the expected decay of the correlation function assuming point sources [Eq. 
(6.6)]. The figure illustrates the deviation of the correlation function from the 
expected decay as the fluorescent bodies increase in size. 
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Figure 6.3: Typical normalized one-dimensional spatial correlation function 
 from simulated images of different geometries and sizes. The case of 

 (solid line) corresponds to images of point sources, which has been convoluted 
with a Gaussian PSF of  = 2 pixels and 

(0, ,0r η )
0a =

d η  is in the unit of pixel lag. 

In contrast, in the template analysis, we use Eq. (6.9) to obtain the Gaussian 

width ( )fd τ  from the raw ( ), ,r ξ η τ  for 0τ >  using the “template”, , 

obtained from the data at zero time lag. Theoretically, 

( ), ,0r ξ η

( )fd τ  should evolve as 4Dτ  

for two-dimensional free diffusion [Eq. (6.10)]. Template analyses of the ( ), ,r ξ η τ  

data from images of various fluorescent body geometries and sizes confirm this 

supposition, as shown in Figure 6.4. Regardless of fluorophore configuration within 

the fluorescent bodies and the size of the bodies, the extracted ( )fd τ  closely follows 

the predicted behavior. 
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Figure 6.4: Template analysis of images of different fluorescent bodies. The data for 
( )fd τ  were obtained by fitting the spatial correlation function ( , ,r )ξ η τ  for each 
0τ >  with template of  using Eq. (6.9). The results were plotted for 

images of disks (A) of 
( , ,0r ξ η )

0a d =  (filled circles), 2a d =  (triangles), and 4a d =  
(filled squares), as well as images of rigid rods (B) of 2.5l d =  (filled circles), 

5l d =  (triangles), and 20l d =  (filled squares). Zero value for a d  implies 
point-like fluorescent bodies. The solid lines indicate a slope of  expected for 
pure 2D diffusion. Unlike the correlation function 

4D
( )g τ  used in the standard 

analysis, all of the ( )fd τ  values fall on the theoretically expected line regardless of 
fluorophores configurations. 

We now compare how well the standard analysis and the template analysis can 

predict diffusivity of particles of different geometries and sizes. In Figure 6.5, we plot 

the result of both types of analyses against the known (“input”) diffusivity . It can 

be observed that the results based on the template analysis are in excellent agreement 

with the input value of  for all configurations tested, while standard analysis 

results deviate strongly from the input value for large values of 

inD

inD

a d  and l d . This 

result supports the robustness of the proposed template analysis. Interestingly, for 
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large values of a d  and l d , the standard analysis seems to overestimate particle 

diffusivity. This is in contrast to our previous remark that the ( )g τ  data for these 

cases seem to decay more slowly, which should have led to lower diffusion 

coefficients. It is useful to consider why this apparent contradiction occurs. Standard 

analysis uses Eq. (6.8), which includes the temporal offset ,tg ∞ , to obtain Dτ , which 

is required to calculate  using Eq. (6.5). The presence of D ,tg ∞  in Eq. (6.8) is useful 

in many cases to eliminate the effect of background signal, and, in the present study, it 

is helpful in obtaining good result for disk-shaped particles even up to 4a d = . 

However, it also allows extended variability in Dτ  during the fitting process, and this 

variability causes the overestimation as well as the large standard deviation for the 

diffusion coefficient for large probes. Indeed, when the offset is taken to be zero, as in 

the no-offset standard analysis in Figure 6.5, the diffusion coefficient is in fact 

consistently underestimated, as one would expect because of the slower decay of the 

temporal correlation function (see Figure 6.2). It is interesting to note that the 

no-offset standard analysis performs better for larger particles than the standard 

analysis, in the case of simulated data. This is consistent with the fact that the offset is 

not needed for the simulated data because of the absence of background and other 

extraneous noises. The effect of probe size, which manifests in both the spatial and 

temporal correlation functions (Figure 6.2 and Figure 6.3), on the diffusivity 

measurement is also evident in Figure 6.5. When point-like template is assumed, the 

diffusion coefficient is increasingly overestimated with the size of the probes. Overall, 

the template analysis proposed in this paper provides one the most reliable 
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interpretations of ICS measurements for various probe sizes and shapes. 

 

 

Figure 6.5: Comparison between standard analysis and template analysis analyses for 
ICS. The diffusion coefficient  for template analysis was obtained from the slope 
of the 

D
fd  vs. τ  graph. In the standard analysis,  was obtained by fitting the D

( )g τ  data to Eq. (6.6) and using the relation 2
0 4 DD d τ=  [Eq. (6.5)]. Point-like 

template analysis uses theoretical point-like spatial correlation function in place of 
the experimental template, and no-offset standard analysis takes the offset to be zero. 
The horizontal dashed lines indicate the input diffusion coefficient  = 0.1 µm2/s. 
ICS analyses of images for both disks of various sizes  (A) and rigid rods of various 
lengths  (B) using template analysis provide better results than all the other 
analyses. This effect is especially intensified for large values of 

inD
a

l
a d  and l d . The 

inset highlights the consistent underestimation in  obtained using no-offset 
standard analysis (open circles) as compared to  obtained using template analysis 
(filled circles). The error bars indicate standard deviations. 

D
D
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6.4.2 Probe-independent ICS on confocal images 

To compare our approach with actual ICS experiments, we performed standard 

confocal imaging on diffusing microspheres in aqueous solutions of glycerol. 

Aqueous glycerol solutions are simple Newtonian fluids, and the viscosity of the 

glycerol solutions as a function of concentration and temperature is well-known [159]. 

These solutions therefore serve as a convenient medium to test how different types of 

ICS analyses can be used to predict the diffusive properties of microspheres of 

various sizes. In the present work, we used three different sizes of fluorescent 

microspheres (diameters 2  of 0.5 µm, 1 µm, and 2 µm). These probe sizes are 

significantly larger than the confocal focus size of our imaging system, which we 

independently measured to be  = 0.255 ± 0.002 µm. Figure 6.6(A–C) show 

examples of confocal images of these microspheres taken for ICS analysis. Similar to 

what we found in our simulations (Figure 6.3), the form and size of the spatial 

correlation function obtained from these confocal images depend on the size of the 

probes used. In Figure 6.6(D–F), we show the templates we obtained from the three 

image sequences, and these templates are used in the subsequent template analysis. 

a

d
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Figure 6.6: Images of fluorescent microspheres of different sizes suspended in 
glycerol solutions and the corresponding templates used in ICS analysis. The 
diameters of the microspheres are 0.5 µm (A), 1 µm (B), and 2 µm (C), corresponding 
to a d  values of approximately 0.98, 1.96, and 3.92, respectively. The templates 
(D-F) are obtained from the ( ), ,0r ξ η  data, averaged over all τ . Not unexpectedly, 
the width of the templates increases with the size of the fluorescent microspheres. 
These templates are then used to analyze the raw ( ), ,r ξ η τ  data to obtain the 
diffusion coefficients. 

We performed both standard and template analyses for the image sequences of 

these three microspheres and calculated the resulting diffusion coefficients. For easy 

assessment, we plot Da  in Figure 6.7, which should be constant for a medium of 

fixed viscosity [cf. Eq. (4.3)]. While both analyses successfully predict the theoretical 

diffusion coefficient for 0.5 µm and 1 µm microspheres, the result based on the 

standard analysis significantly differs from the expected value for the 2 µm 

microspheres ( 4a d ∼ ). It should be noted that the standard analysis here was done 

assuming two-dimensional diffusion [Eq. (5.6)], which does not completely represent 

the full three-dimensional diffusion of the microspheres in the medium, as has been 

previously hinted [152]. The functional form of ( )g τ  for three-dimensional 

diffusion has been formulated previously [185]. Even when this functional form is 
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used, however, the standard analysis still does not result in an accurate determination 

of the resulting diffusivity (data not shown). We also performed point-like template 

analysis as well as no offset standard analysis for the experimental data, as shown in 

Figure 6.7, and these two analyses also do not give as good estimates for  as 

template analysis does. The experimental data presented here and the results based on 

the template analysis confirm the usefulness of template analysis, especially for large 

fluorescent bodies, to investigate dynamic processes using ICS. 

D

 

 

Figure 6.7: Comparison between template and standard analyses for ICS 
measurements of the fluorescent images of microspheres with different diameters. 
For easy assessment, the result is plotted as Da , which in theory should be constant 
for the same medium viscosity ν . The horizontal dashed line indicates the expected 
value for Da  calculated using the Stokes-Einstein relation 6BDa k T πν=  [Eq. 
(4.3)]. Template analysis proves to provide results closer to the expected value 
compared to standard analysis, especially at the largest tested a d  value. The error 
bars indicate the standard deviations. 
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6.5 Discussion 

As we have shown in Figure 6.5 and Figure 6.7, beyond a certain threshold value 

for the probe size, the point-source assumption for the probe particles fails to describe 

the decay of the correlation function in ICS sufficiently accurately. In cases tested in 

this study, for two-dimensional disks and three-dimensional microspheres, the 

threshold value of a d  is around 3 to 4. If one is not aware of the above effect of the 

size of the probe particles, incorrect conclusions about particle diffusivity could be 

drawn from the data, both empirically and numerically, as we have shown. In this 

respect, template analysis has proven to be able to solve the problem. In principle, one 

can attempt to derive the analytical decay function for any probe geometry, and the 

experimental correlation data can be fit to the derived function to obtain diffusive 

properties. This, however, assumes that the fluorophore distribution within each 

fluorescent body is uniform and known beforehand, a condition that is rather hard to 

satisfy experimentally. In addition, each particle geometry and fluorophore 

distribution requires a separate analytical ( )g τ . Therefore, it is not easy to obtain a 

robust, generic functional form for ( )g τ . In contrast, the proposed template analysis 

circumvents this problem by taking any arbitrary spatial correlation of the 

convolution of geometry of the probes and the fluorophore distribution within the 

probe as the template against which the full spatiotemporal correlation data can be 

analyzed to obtain the dynamic properties. 

Despite the robustness of template analysis, as demonstrated above, there are still 

a few aspects that we have not addressed. First, we have only derived and validated 
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the use of template analysis for two-dimensional diffusion. From a biological point of 

view, two-dimensional systems do cover many important biochemical processes 

occurring, for example, in the cell membrane. The analysis we present here can 

nevertheless be extended to enable template analysis for three-dimensional systems. 

Such a development may gain many potential applications due to the capability of 

confocal microscopy to perform time-lapsed three-dimensional imaging. In one part 

of our simulations, we took a rather extreme case of randomly oriented fluorescent 

bodies, where the fluorophores are situated in a rigid rod configuration. This case is 

useful for simulating a situation where fluorophores form domains that are distinct 

from each other. In some experiments, however, these domains are distinct not only 

from each other in their orientation, but also in their size and spatial distribution of the 

fluorophores, thus effectively representing multiple populations. One way to address 

this question is by noting that in the template analysis [Eq. (6.9)], ( )fd τ  is obtained 

independently for each τ  evaluated. Thus, in principle,  in Eq. (6.10) can be 

analyzed at different time-scales, allowing diffusional analysis of multiple species. In 

addition, we only allowed translational diffusion of these fluorescent bodies. While 

probe rotation will not affect the template, it will influence the manner in which the 

template decays, which is not well understood yet. Considering its many potential 

applications, it may be beneficial to understand how rotational diffusion affects ICS 

results, especially in the presence of multiple populations described above [186]. 

D

In summary, we have developed an alternative method for analysis of ICS data 

that circumvents the need to assume point-like probes or uniform distribution of 
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fluorophores on the probes. We have demonstrated the robustness of this 

probe-independent method by comparing it to the conventional method for simulated 

as well as experimental image sequences of fluorescent bodies of various geometries 

and sizes. We found that probe size begins to influence the extracted information 

when it is about 3 to 4 times the confocal focus size. In particular, as the probe size 

becomes larger, the spatial correlation function becomes broader and, 

correspondingly, the decay of the temporal correlation function becomes slower. For 

such large particles, the extracted diffusion coefficient can become too small to 

measure if the size of the large particle is not taken into account, such as in the 

standard analysis. This spatio-temporal interrelation in the correlation function has 

not previously been attended to, and we have shown that simply assuming point 

sources yields inaccurate diffusivity measurements. Template analysis should 

therefore help in obtaining dynamic properties from ICS data whenever the presence 

of large domains of fluorophores is suspected. Indeed, since template analysis works 

just as well in the case of point sources, as we have verified, its use in most ICS 

experiments can only be beneficial. 
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Chapter 7: Conclusions and Outlook 

7.1 Summary 

The classical interdisciplinary boundary between physics, mathematics, 

chemistry, cell biology, mechanical engineering, chemical engineering, and 

bioengineering has somewhat blurred when studies of soft matter are concerned. And 

it is for good reasons. This thesis has shown the importance of looking at this 

fascinating class of material from multiple perspectives and at multiple length scales 

and time scales. The unifying theme of the present work is that a combination of 

different mechanical characterization methods, from experimental rheology, 

microrheology, and spectroscopy to computational and theoretical modeling, can 

yield powerful insights into the working mechanisms of soft materials. Specifically, 

in the first half of this thesis, we studied in detail the mechanical behavior of collagen 

networks as a popular choice of soft biopolymer matrix in different strain levels as 

well as length and time scales. Knowing the limitations of current characterization 

techniques, in the second half of this thesis we went on to develop a new, image-based 

microrheological technique that can tackle some of these limitations. 

In the work on the macroscopic rheology of collagen networks presented in 

Chapter 2, we have shown how proper interpretations of rheological measurements 

can be used to explain the mechanical behavior of the networks. We started by 

carefully analyzing the network response to strain amplitude-dependent oscillatory 

shear deformation and found rich mechanical behavior, including early 
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strain-stiffening at small strains, which has been hitherto masked by overall intercycle 

strain-softening behavior. Analysis of the relation between the nonlinear behavior and 

the polymer concentration revealed the presence of weak cross-link–like interactions 

within the network, even without additional, external cross-linkers. Consequently, we 

found that the mechanical behavior of pure collagen networks can be well described 

by the cross-linked semiflexible polymer network model, rather than another model 

based only on physical fiber entanglements. By using different measurement 

protocols, we also examine the reversibility and the temporal properties of these 

cross-links. Similar lines of analysis can thus be used to better understand the origin 

of the mechanical behavior of other soft matter systems. 

While rheological studies can yield many important insights, we wanted to 

investigate the role of structure on the resulting network mechanics more closely, 

which lead us to the computational study presented in Chapter 3. We realized that the 

phenomenological universality of many biopolymer networks would allow us to 

generalize the simulations to the semiflexible polymer class of materials, thus making 

the work relevant to various fields. Through this bottom-up approach, we identify two 

structural parameters, quantifying network connectivity and entanglement, which are 

responsible for the resulting network mechanics at multiple length scales of 

observation and strain levels. Importantly, these two network structural parameters 

were found to be associated with the predominant network deformation mechanisms 

that have been proposed in earlier studies. Furthermore, these associations between 

network structure and length-scale as well as strain-dependent mechanics can explain 
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previous experimental and computational observations regarding the affinity of 

network deformation and the effect of mechanical heterogeneity within the networks. 

The simple and adaptable model used also allows further explorations on the role of 

other structural parameters. 

To characterize the microscale mechanical properties of collagen networks 

experimentally, we performed particle tracking microrheology (PTM) and presented 

the results in Chapter 4. We introduced the concept of microrheology and discussed 

the principle of PTM technique. The PTM results on collagen showed dramatic 

discrepancies with bulk mechanical rheology results. First, the magnitude of the 

elastic modulus is much smaller than that found in mechanical rheology. Second, 

there is considerable variation of the elastic modulus (over three orders of magnitude) 

even within each sample. These observations suggest the presence of local variation 

of network stiffness, and that a macro-level measurement only provides overall 

properties without providing information on the small scales, which are likely to be 

relevant in the contexts of living cells. We also discussed the technical difficulties and 

current limitations of the technique that lead us to the second half of the thesis. 

We dedicate the second half of the thesis to the development and description of a 

new microrheological technique based on image correlation spectroscopy (ICS). In 

Chapter 5, we introduced the concept of ICS and its applications in biophysical fields 

to date. We presented the theoretical framework for extracting the time-dependent 

diffusivity of the probes and the desired microrheological information. The method 

was then tested using both ideal (Newtonian) fluids of different viscosities and 
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complex fluids (soft matter) of different viscoelastic behaviors. We obtain excellent 

agreement between the method, ICS-µR. In addition, we also presented a method to 

extract both the probe mean-squared displacement (MSD) and its logarithmic 

derivative, which are required for the subsequent microrheological calculations, from 

correlation data. The method was validated on several, representative reported data 

on various soft matter systems. This robust method, which is based on the assumption 

of smoothly varying local power law of the MSD, can thus be used to improve the 

quality of the data even for other microrheological techniques. The accessible length- 

and time-scales in ICS-µR are comparable to, if not better than, current 

microrheological techniques. However, ICS-µR holds the potential of performing 

microrheological measurements using indigenous probes with much larger ranges of 

size and density, thus making it more amenable to many applications. 

We realized that in many of the potential applications of ICS, the probe size and 

shape vary (and are often unknown), especially when indigenous particles are used as 

the microrheological markers. Without properly accounting for the probe size and 

shape, erroneous conclusions could be drawn from the correlation data. In Chapter 6, 

we present a mathematical formulation that can circumvent this problem. In a nutshell, 

the temporal decay of the entire spatial correlation function, as opposed to just the 

peak of it as conventionally done in standard ICS measurements, is analyzed to obtain 

the probe MSD. This spatial correlation function contains useful information on the 

spatial distribution of both the fluorescent bodies as well as the fluorophores within 

each body. We validated the method both on simulated images and experimental 
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confocal images of fluorescent particles of different sizes and shapes. 

7.2 Future Directions 

In this section, we describe potential new directions and avenues of research for 

the works in this thesis. These encompass both further exploitation of the methods 

(e.g., imaging, mechanical rheology, microrheology, computer simulations) and the 

class of materials [soft matter system, e.g., (bio)polymer networks] we have 

considered. 

7.2.1 Characterization of evolving soft matter 

In our study on polymer networks, we learned how the microstructure of the 

networks heavily determines the resulting mechanical properties. In all systems 

considered in this thesis, however, the materials of interest are under equilibrium 

condition: they are stationary in time. It would be equally interesting to study the 

structural and mechanical properties of soft matter far from equilibrium. This 

situation is in fact very often encountered.  

 The self-assembly and gelation processes of polymer networks involves temporal 

change of structure (and hence mechanical properties) towards equilibrium state.  

 Biopolymer networks are remarkably “active”. As an example, cells constantly 

remodel their cytoskeletal organization through modulation of active 

cross-linkers and molecular motors [125,187]. 

 Suspension of small particles or bacteria can be an active system, wherein the 

particles constitute an active fluid microstructure driven out of equilibrium 
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through active internal forces. 

 Soft glassy materials such as nanotube gels can rejuvenate itself under 

deformation, leading to the classification of “self-healing” materials [188]. In fact, 

we have shown in Chapter 2 that even collagen networks show indications of 

temporal restructuring towards equilibrium when sheared. 

While the implications of these processes are obviously far-reaching, the detailed 

structural mechanism is still not well understood. A combination of characterization 

techniques probing different length and time scales, such as that described in this 

thesis, would likely be necessary to gain better understanding. 

7.2.2 The role of other structural variables on the mechanics of semiflexible 

polymer networks 

In our computational study of the nonlinear mechanics of 3D cross-linked 

semiflexible polymer networks, we have used a highly simplified simulated network 

model to isolate the role of network structure. Although this simple model proved to 

provide many valuable insights on the structural origin of the nonlinear behavior in 

3D, further investigations on the other structural variables will help more quantitative 

comparison to previous experimental and theoretical works. In particular, future 

studies are expected to encompass: 

 Fiber morphology. Previous works have mostly focused on the effect of polymer 

and cross-linker concentration on the bulk mechanics. However, individual fiber 

length L , diameter , and bundling mechanisms (which alter ) can also 

modify local fiber interaction and network connectivity, which have profound 

d pl
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influence on the network mechanics, as we show in Chapter 3. 

 The relative importance of nonlinear force-extension relation of individual fibers 

and network rearrangement. This aspect of the network mechanics has been long 

debated, but is still inconclusive. On the ground of our findings in Chapter 3, we 

speculate that the relative importance is a function of network structural 

properties and length scale of observation. This hypothesis can be tested, for 

example, by varying the functional form of sU  as the network structural features 

through eR  and clR . 

 The cross-linker properties. In vivo, it is known that different cross-linkers have 

different cross-linking properties and machineries. Some cross-linkers are long 

while some others have zero effective distance; some are stiff while some others 

are flexible; some prefer to bundle fibers while some others prefer to form random 

meshwork junctions. The effect of these variations on the overall network 

mechanics can be simulated by varying the effective functional form of  and 

the cross-linker properties  and 

clU

clk 0δ . 

 To further imitate experimental networks, a distribution of the fiber dimension 

can also be introduced in the networks. This distribution can add a new dimension 

to network heterogeneity and modes of strain transmission. 

7.2.3 Probe-material interaction 

The quality and interpretation of PTM results depend heavily on the interaction 

between the material being examined and the probe used to perform the 

measurements. Physical interaction can alter the local environment, for example 
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through development of depletion zones around the probes [189,190]. The probe 

mobility, in turn, has been shown to depend sensitively on the local material 

environment [191]. Chemical interactions also play central role in determining the 

coupling between the probe and the elastic network. For instance, when adsorption of 

the probes to the surrounding network is prevented, the probes are found to diffuse 

freely and do not report the elastic properties of the network [170,192,193]. This 

effect can further lead to problems with probe slippage, both in translation and 

rotation, which may or may not reflect material deformation [194,195]. While these 

problems have been hypothesized and recognized, systematic studies to find the 

‘ideal’ conditions and extents of probe-material interactions (e.g., the presence, type, 

and amount of additional chemical or physical cross-linking between the probe and 

the material) or whether the interactions can in fact be utilized to provide useful 

information are lacking. 

Another aspect of microrheology that warrants further exploration is the 

possibility of conducting more specific and targeted measurements of the local 

material viscoelasticity. At its current state, PTM measurement acts only as a blind 

reporter of the surrounding environment. This statement can be better illustrated in 

the following two sample cases:  

 Currently, PTM has no way of distinguishing the source of the measured stiffness: 

whether it is contributed by the viscoelasticity of the network or the individual 

fibers immediately surrounding the probes. To examine this effect, a study can be 

done where the elastic contribution is varied (through variation of fiber and/or 
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cross-linker density) and the resulting probe mobility and microrheological 

measurements are analyzed correspondingly. 

 The probe mobility is also affected by the presence of objects located further away 

from the immediate surrounding of the probes. These objects, whose stiffness 

may still be sensed far away and may affect local strain transmission through the 

material, can take the form of other probes, living cells (when studying the 

microrheology of extracellular matrices), cellular organelles (when studying 

intracellular microrheology), and even walls (the experimental boundary to which 

the network is anchored). This brings up the importance of understanding the 

depth of sensing of the probes and the extent of material homogeneity, which are 

very relevant in cell studies, where the length scales of relevance are likely to 

coincide with the length scales of probe sensing. One way to examine this effect is 

by studying the effect of the presence of movable objects (e.g., microspheres, 

microneedles, wall, etc) on the probe motion as a function of distance.  

The research directions suggested above would not only improve our 

understanding of probe-material interaction but also provide new interpretations of 

local microrheology in, for example, studies on cell behavior as a function of different 

substrate rigidity, both in 2D and 3D [45,196]. Furthermore, these studies can also 

help answer an outstanding question in cell biology of how and how deep cells can 

feel their outside and inside environments [197,198]. 

7.2.4 Probeless microrheology 

As we have mentioned in Section 5.1.1, many of the problems faced by the 
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current microrheological techniques arise from the use of external probes that have to 

be introduced as the mechanical markers in the materials of interest. One way to 

circumvent these probe-associated problems is by using indigenous particles, instead 

of external probes, as the markers. Indeed, researchers have recently explored the idea 

of using naturally occurring, visible markers such as lipid granules to study the 

cytoplasmic diffusion properties and microrheological properties of living cells 

[172,199]. As we have proposed in Chapter 5, ICS also has the potential of 

performing such probeless microrheological measurements. ICS has been used to 

quantify the spatial and temporal intracellular proteins localization and dynamics just 

based on the fluorescent image time series of these proteins [153,200,201], and, 

through our ICS-µR approach described in Chapter 5, desired microrheological 

information can be readily obtained. 

There are, however, some technical issues that need to be addressed before 

probeless microrheology can be realized reliably. We have started addressing the 

problem of dealing with probes of unknown size and shapes by proposing a new 

method of ICS analysis based on the spatial correlation function in Chapter 6. 

Although this method can in principle take care of any type of translational diffusion 

of arbitrarily shaped objects (or populations of objects) in 3D, we have not considered 

rotational diffusion, which can take place concurrently. Modified theoretical models 

describing the evolution of the spatiotemporal correlation function ( , ,r ξ η τ  would 

need to be derived, incorporating rotational motion of the fluorescent bodies. The 

accuracy of the extracted MSD data would need to be improved too, since it is likely 
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that larger fluorescent bodies would move more slowly, leading to small MSD. 

As the field emerges in the future, we foresee that these questions and problems 

will be tackled to cater for the various applications made possible by these techniques. 
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Appendix A: Steps in ICS-µR 

 

Here, we present the details of the practical aspects and implementations in the 

ICS-µR analysis.5 To help the reader with the various quantities involved in the 

analysis, Figure A 1 illustrates the calculation stages that will be subsequently 

discussed. 

 

 

Figure A 1: A schematic overview of data analysis steps involved in ICS-µR. The 
steps A through F are explained in the text below. Steps A, B, and G are routinely 
followed in standard ICS measurements, whereas Steps D and F are routinely used in 
standard microrheology measurements. In the present work, we introduce Step C, 
which allows microrheological analysis from ICS data, as well as Step E, which 
improves the quality of the microrheological results extracted from the data. 

 

 

 

                                                 
5 All symbols and their meanings in this Appendix are the same as those used in the main body of the 

thesis, and explanations of the notations are, therefore, not repeated unless necessary. 
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Step A 

The raw data obtained in ICS is a sequence of images which represent the image 

intensity ( ), ,i x y t  in space (i.e.,  and ) and time . The normalized intensity 

correlation function is calculated as a function of the spatial lag, 

x y t

ξ  and η , as well as 

lag time, τ , using Eqs. (5.4) and (5.5). To minimize computation time, ( ), ,r ξ η τ  is 

calculated using the Fourier method [162]. 

 

Step B 

For each time lag τ , the spatial correlation function is taken to be a 2D Gaussian [Eq. 

(5.6)], as described in Section 5.2.4. This spatial fitting is typically done in the least 

square manner and only for the central correlation area (small ξ  and η ) with zero 

weighting for the central point (i.e., 0ξ η= = ), where there is white noise 

contribution. We found that the optimum fit is obtained by including data points 

where ξ  and η  are smaller than 5–6 times the Gaussian width . The output of 

this step is 

0d

( )g τ . 

 

Step C 

For 3D Gaussian intensity profile of the excitation volume, the functional form of the 

temporal correlation function for a system with 3D diffusion is [185] 

 ( )
1 1

2

0 2
, ,

1 1 z

D xy xy D z

dg g
d

ττ
τ τ

− −
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2
τ , (A.1) 

where the translational diffusion relaxation times, Dτ , in the lateral and axial 

directions are related to the diffusion coefficient , , respectively, by D
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2
, 4D xy xy Dτ ω=  and 2

, 4D z z Dτ ω= . Equation (A.1) can thus be rewritten as 

 ( )
1 1 2

0 2 2

4 41 1
xy z

D Dg g
d d

τ ττ
− −⎛ ⎞ ⎛

= + +⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠

⎞
⎟ . (A.2) 

If one assumes that the local effective  can be related to the MSD of the probe 

particles, 

D

( )2r τ∆ , by ( )2 6r Dτ τ∆ = , then Eq. (A.2) becomes 

 ( )
( ) ( )

1 12 2

0 2 2

2 2
1 1

3 3xy z

r r
g g

d d
τ τ

τ

− −
⎛ ⎞ ⎛∆ ∆
⎜ ⎟ ⎜= + +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

2
⎞
⎟
⎟
⎠

. (A.3) 

Therefore, by solving (A.3), one can obtain the MSD data from the temporal 

correlation function. 

 

Step D 

The logarithmic derivative of ( )2r τ∆  with respect to time is calculated as in Eq. 

(4.5). Numerical derivation in this process typically uses Gaussian sliding window 

approach [143], which inherently involve smoothing of the ( )2r τ∆  data to reduce 

high-frequency noise in the data. This step is not needed for the method we propose 

(which requires only Steps E, which improves the quality of the extracted results). 

 

Step E 

One can, in principle, directly calculate ( )'G ω  and ( )"G ω  from the ( )2r τ∆  

and ( )α τ  data obtained in Steps C and D. However, the use of such an approach 

could lead to propagation of experimental and data processing errors arising from 

Step B and the Eqs. (A.3) and (4.5). In Step E here, we propose an alternative method 

that minimizes these errors. 
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Since ( )g τ , ( )2r τ∆ , and ( )α τ  are dependent on each other [as mathematically 

described in Eqs. (A.3) and (4.5)], we use an approach that eliminates the need for Eq. 

(4.5) and determines ( )α τ  directly from ( )g τ  by choosing a robust functional 

form for ( )α τ , writing ( )2r τ∆  in terms of ( )α τ , and substituting in Eq. (A.3). 

We choose Eq. (5.8) to do this and determine the parameters in Eq. (5.8) by a 

statistical analysis of the raw ( )g τ  data (from Step B). The functional form in Eq. 

(5.8) has the advantage of being able to describe asymptotic power laws and the 

transitions, which are prevalent in many viscoelastic materials, as stated in Section 

5.3.1. 

 

Step F 

The ( )2r τ∆  and ( )α τ  data obtained from Step E can then be used to calculate the 

frequency-dependent storage modulus, ( )'G ω , and loss modulus, ( )"G ω , using 

Eqs. (4.6) and (4.7). 

 

Step G 

In addition to the microrheological information obtained in the previous steps, a 

number of ‘standard’ ICS measurements can also be obtained from the spatiotemporal 

correlation function ( , ,r )ξ η τ . The methods to obtain this information can be found 

in the ICS literature, which has been extensively reviewed by Kolin and Wiseman 

[156]. 
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Illustrations 

To illustrate the usefulness of Step E, we show one typical extracted result based 

on this procedure and compare it to the result obtained from a combination of Steps C 

and D, for the raw ( )g τ  data (Fig. S2), the ( )2r τ∆  data (Fig. S3), as well as the 

( )'G ω  and ( )"G ω  data (Fig. S4). 

Finally, we compare the ICS-µR results for complex, viscoelastic materials (PEO 

solutions of different concentrations) with results obtained using mechanical 

rheology in Fig. S5. Note that as the material becomes increasingly liquid-like at low 

frequency, both the magnitude and quality of the  data decrease rapidly. For that 

reason and because of the logarithmic scale used in the y-axis, the error bar grows in 

size and the deviation between the results from the two methods may mistakenly 

seem to grow. 

'G

 

 
Figure A 2: Comparison between the raw, unsmoothed ( )g τ  data obtained from 
Step B and the extracted ( )g τ  data obtained from Step E. The bottom panel shows 
the difference between the two data sets. 
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Figure A 3: Comparison between the ( )2r τ∆  data obtained from Step C and the 
extracted ( )2r τ∆  data obtained from Step E. Note the data truncation in the raw 
data at small τ  due to amplified carry-over noise from the raw ( )g τ  data in Step B. 

 

 

Figure A 4: Comparison between the ‘raw’ ( )'G ω  and ( )"G ω  data obtained from 
Steps C, D, and F and the extracted ( )'G ω  and ( )"G ω  data obtained from Steps E 
and F. The noise in the raw ( )g τ  data (Figure A 2) is doubly amplified through 
calculation of ( )2r τ∆  in Step C (Figure A 3) and ( )α τ  in Step D, forcing severe 
data truncations in the ‘raw’ ( )'G ω  and ( )"G ω  data. 
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Figure A 5: Comparison between frequency-dependent linear viscoelastic moduli for 
PEO aqueous solutions of various concentrations as measured with ICS-µR and 
mechanical rheometer (MR). ICS-µR results were obtained from ( )2r τ∆  of 0.5 
µm beads in the solutions. The error bars signify the extent of experimental error in 
the mechanical rheology measurement. 
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