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SUMMARY 

A liner container shipping company is constantly searching for models and 

solution procedures for building decision support systems, which help it to create cost-

effective plans for operating and upgrading its liner ship fleet and seizing market share in 

an intensely competitive container shipping market. The plans for operating and 

upgrading its liner ship fleet aim to make the capacity of the fleet effectively match the 

current and future demand for container shipment. The container shipment demand is 

affected by some unpredictable and uncontrollable factors, which indicates that such 

plans have to be made on the basis of uncertain demand. However, methodologies used 

by previous researchers are inappropriate here because they make the assumption that 

container shipment demand is deterministic. Hence, new methodologies are required. 

This thesis seeks to meet this requirement by proposing new mathematical models and 

solution algorithms for liner ship fleet planning (LSFP) problems with container shipment 

demand uncertainty.  

LSFP problems with uncertain container shipment demand can be classified 

according to the length of the planning horizon into short-term and long-term LSFP 

problems. This thesis first studies short-term LSFP problems and then proceeds to 

investigate long-term problems with container shipment demand uncertainty. 

The short-term LSFP problem with uncertain container shipment demand is, first 

of all, formulated as a chance-constrained programming (CCP) model. In this model, a 

confidence parameter is set to represent the probability that the liner container shipping 
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company cannot satisfy the shippers’ demand. However, the CCP model does not allow 

container transshipment, which is widely used in liner shipping. Therefore, a two-stage 

stochastic integer programming (2SSIP) model, with the objective of maximizing 

expected profit, is proposed for the short-term LSFP problem with container 

transshipment and uncertain container shipment demand. A solution algorithm integrating 

the sample average approximation method and the dual decomposition and Lagrangian 

relaxation method is proposed for solving the 2SSIP model. The model only considers the 

expected value; variance (or risk), which is also an issue of high concern to the decision-

maker, is not taken into account. Therefore, next, a robust optimization model (ROM), in 

which both expected value and variance are considered simultaneously for the short-term 

LSFP problem, is proposed. By adjusting the penalty parameters of the ROM, decision-

makers can determine the optimal liner ship fleet plan, which includes decisions about 

fleet design and deployment, and which maximizes total profit under different container 

shipment demand scenarios while at the same time controlling the variance. 

The last part of this thesis studies the long-term/multi-period LSFP problem with 

container transshipment and uncertain demand. The container shipment demand in one 

period is assumed to be dependent on that in the previous period. A set of scenarios in 

each single period is used to reflect the uncertainty of container shipment demand, and 

then the evolution and dependency of this demand across multiple periods is modeled as 

a scenario tree. The procedure for multi-period LSFP is interpreted as a decision tree and 

formulated as a multi-period stochastic programming model comprising a sequence of 

interrelated two-stage stochastic programming models developed for each single period. 
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Finally, a numerical example is carried out to assess the applicability and performance of 

the proposed model and solution algorithm. 
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CHAPTER 1     INTRODUCTION 

1.1 Preamble 

Seaborne trade refers to goods that are transported by ships, and is the main artery 

of international trade, in a sense, standing at the apex of world economic activity. The 

increasing globalization and interdependence of various world economies are leading to a 

tremendous positive growth in the seaborne trade industry. According to the review of 

maritime transport produced by the United Nations Conference on Trade and 

Development (UNCTAD) secretariat, international seaborne trade increased from 2.566 

billion tons in 1970 to 8.210 billion tons in 2008, showing a 2.95 per cent annual average 

growth rate during the last four decades, but had fallen to 7.94 billion tons in 2009, due to 

the depression of the global economy. However, both the global economy and 

international seaborne trade are expected to recover and grow in 2010, with developing 

economies, and China in particular, charting the course (Chapter 1 of UNCTAD (2010)). 

The trend in the growth rate of international seaborne trade for selected years is depicted 

in Figure 1.1.  
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  Figure 1. 1 International seaborne trade growths for selected years 

 

In particular, containerized trade is the fastest growing sector in global seaborne 

transportation, as a result of a combination of various factors, including dedicated 

purpose-built container vessels, larger vessels capable of achieving increased economies 

of scale, improved handling facilities in ports, and also the increasing amount of raw 

materials being carried in containers (here a container refers to the twenty-foot equivalent 

unit [TEU]). 

Maritime transportation can be divided into three different modes of operation: 

industrial, tramp and liner shipping. In industrial shipping, the container owner or the 

shipper owns the ships and aims to ship all of his/her containers for as low a cost as 

possible. In tramp shipping, the carrier or tramp shipping company has to carry containers 

to specified ports in a specific time frame, according to their contracts with shippers. 

Additional containers (if any are available in the market) are selected depending on the 
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ship’s capacity, so as to bring in as much revenue as possible. In liner shipping, the 

carrier releases predetermined maritime routes and schedules to the shippers, and then 

operates according to this. In other words, liner shipping provides a fixed liner service, at 

regular intervals, between named ports, and offers transport to any goods. In liner 

shipping, time is very important, since the liner ships have to comply with the schedules 

even when they are operating at low utilization levels. Thus, one can think of industrial 

shipping as “owning a car”, tramp shipping as “a taxi service” and liner shipping as “a 

bus service” with definite schedules and a published itinerary. Liner shipping occupies a 

major posistion within global transportation. With the continuous advancement of ship-

building technologies and the increase in global container traffic, the dominance of liner 

shipping is expected to continue to strengthen (Chapter 4 of UNCTAD (2010)). This 

thesis focuses on the problems of liner ship fleet planning since liner shipping plays such 

a central part in the global trading network.  

 

 

1.2 Research Background 

Many researchers have studied the problem of liner ship fleet planning. Their 

research can be categorized into three groups. The first group focuses on an optimal ship 

fleet design, including determining the numbers and types of ships needed in a fleet over 

a particular planning horizon, given a set of liner ship routes and a required regular 

frequency of liner shipping service for each route. Given a fleet of heterogeneous ships 

and a set of liner ship routes, the second group focuses on an optimal fleet deployment, 

which covers the assignment of ships to each route according to the required regular 



Chapter 1                                                                                                                                 Introduction 

 4

frequency of service for that route, so as to satisfy the container shipping requirements. 

The third group focuses on a joint optimal ship fleet design and fleet deployment plan, 

that is, given a set of liner ship routes, decisions on the numbers and types of ships, and 

ship assignment to routes, are made in order to satisfy the container shipping 

requirements. The problems tackled by each of these three groups are referred to through 

this thesis as the liner ship fleet size and mix (LSFSM) problem, the liner ship fleet 

deployment (LSFD) problem and the liner ship fleet planning (LSFP) problem, 

respectively. 

Tackling these problems has become a key task for both the liner operators and 

researchers. In the past, liner operators relied mainly on their experience and common 

sense to choose the best plan from a limited set of alternatives. Sometimes, this task is not 

difficult when the number of alternatives is small; however, when large fleets are 

involved, the number of alternatives grows and it is not easy to pick the best among them. 

Empirically-based selection strategies are too cumbersome. Hence, the focus has 

switched to analysis-based strategies for all three of these problems. Some mathematical 

programming models and algorithms have been proposed. Most of the related research is 

surveyed in four review articles: Ronen (1983, 1993), Perakis (2002) and Christiansen et 

al. (2004).  

Container shipment demand between each port pair is one of the inputs into the 

liner ship fleet planning problem. The existing research uses forecasted, deterministic 

demand. However, decisions about fleet design and ship deployment are actually made 

prior to knowing the exact demand, which is affected by some unpredictable and 

uncontrollable factors. Container shipment demand can never be forecasted with 
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complete confidence. This implies that the problem of liner ship fleet planning should be 

investigated under uncertain container shipment demand. This could lead to a new and 

interesting research area. Hence, there is a need to study and propose stochastic 

programming models and solution algorithms for the liner ship fleet planning problem, 

incorporating uncertain container shipment demand. 

 

 

1.3 Research Scope 

This thesis is devoted to studying LSFP problems with container shipment 

demand uncertainty, as this type of problem joins the LSFSM and LSFD problems 

together. LSFP problems with container shipment demand uncertainty can be classified 

according to the length of the planning horizon: short-term or long-term. This thesis 

firstly studies short-term LSFP problems and then proceeds to investigate long-term 

LSFP problems with container shipment demand uncertainty. 

As the LSFP problem studied in this thesis is a new area of research, the existing 

linear or integer programming models proposed by previous researchers for deterministic 

LSFP problems are not applicable here. New programming models are needed to deal 

with the container shipment demand uncertainty. Stochastic programming has served as a 

useful tool in decision making problems under uncertain environments. Three different 

types of stochastic programming model are commonly used: the first is the expected 

value model (Dantzig, 1955); the second is the chance-constrained model (Charnes and 

Cooper, 1959); the third is the robust optimization model (Mulvey et al., 1995).  
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The expected value model aims to maximize the expected earnings or minimize 

the expected loss within the given constraints; the chance-constrained model aims to 

achieve the optimum within some probabilistic constraints; finally, the robust 

optimization model is able to tackle the decision-makers’ favored risk aversion or 

service-level function, and has yielded a series of solutions that are progressively less 

sensitive to realizations of the data in a scenario set. Since these three models are 

commonly used tools to deal with problems under uncertain environment, this thesis 

adopts each of these three models in modeling LSFP problems with container shipment 

demand uncertainty and proposes solution algorithms for solving these models effectively. 

 

 

1.4 Research Objectives 

The objective of this thesis is to propose models and solution algorithms for more 

realistic LSFP problems, by taking container shipment demand uncertainty into 

consideration. More specifically, the following research tasks have been conducted to 

achieve this objective:  

1. developed models and solution algorithms for LSFP problems with 

container shipment demand uncertainty, 

2. evaluated and analyzed the applicability of the proposed models and the 

performance of the solution algorithms, and 

3. proposed some control and management strategies or policies that may 

assist a liner container shipping company to determine the best liner ship 
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fleet plan, thereby operating the fleet at as low a cost as possible or 

earning as much profit as possible.  

 

 

1.5 Organization of Thesis 

The thesis is organized into seven chapters. Chapter 1 introduces the background 

of the study and provides a general introduction to LSFP problems. In addition, the 

objectives and scope of the research are highlighted. 

Chapter 2 concentrates on a literature review of previous, related studies. It is 

divided into three parts, which review previous research on ship fleet size and mix 

problems, ship fleet deployment problems and ship fleet planning problems with 

deterministic container shipment demand, respectively. Finally, based on the literature 

review, potential gaps and limitations in the existing literature, which have inspired this 

research, are highlighted.  

Chapter 3 deals with a short-term LSFP problem with container shipment demand 

uncertainty for a liner container shipping company. The demand uncertainty enables us to 

propose a chance constraint for each liner ship route, which guarantees that the liner 

container shipping company can satisfy the shippers’ demand, at least with a 

predetermined probability, on each liner ship route. Assuming that the container shipment 

demand between port pairs on each liner ship route follows a normal distribution, the 

proposed short-term LSFP problem is formulated as a chance-constrained programming 

(CCP) model. In this CCP model, a confidence parameter is set to represent the 
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probability that the liner container shipping company will not be able to satisfy the 

shippers’ demand.  

Chapter 4 studies the short-term LSFP problem with container shipment demand 

uncertainty from the expected value point of view. Besides the consideration of uncertain 

container shipment demand, the container transshipment issue is also taken into account 

in this chapeter since container transshipment operation is widely used in practice. The 

short-term LSFP problem with container transshipment and uncertain demand is 

formulated as a two-stage stochastic integer programming (2SSIP) model. To effectively 

solve the proposed model, firstly, the sample average approximation (SAA) method is 

used to approximate the expected recourse function, and then the dual decomposition and 

Lagrangian relaxation method is used to solve the model.  

The 2SSIP model proposed in Chapter 4 only considers the expected value but not 

the variance (i.e., the risk), which is also an issue of great concern to decision-makers. 

Therefore, in Chapter 5 we develop a robust optimization model in which both expected 

value and variance are considered simultaneously, for the short-term LSFP problem with 

container shipment demand uncertainty. The robustness and effectiveness of the 

developed model are demonstrated with numerical results. The trade-off between the 

solution robustness and the model robustness is also analyzed. 

Chapter 6 studies the long-term/multi-period LSFP problem with container 

transshipment and uncertain container shipment demand. The container shipment demand 

in a single period is assumed to be dependent on that in the previous period. Using a 

scenario tree approach to model the evolution of dependent uncertain demand over two 

successive single periods, and using a decision tree to model the procedure used in liner 
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ship fleet planning, the proposed problem is formulated as a multi-period stochastic 

programming model comprising a sequence of interrelated two-stage stochastic 

programming models, developed for each single period. We further show that the multi-

period stochastic programming model can be equivalently transformed into a shortest 

path problem defined on an acyclic network. 

Finally, Chapter 7 summarizes the main findings drawn from this research and 

highlights its contribution to the field. It also provides directions and recommendations 

for future research. 
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CHAPTER 2     LITERATURE REVIEW 

This chapter presents a critical review of the existing literatures related to the 

problem of ship fleet planning. Since liner shipping is one of three modes of maritime 

transportation, the literature review in this chapter is not restricted to liner shipping but 

also includes related research on industrial and tramp shipping. The chapter is divided 

into five parts: the first part describes previous studies on fleet size and mix problems, the 

second part is devoted to fleet deployment problems, the third part reviews the literature 

on ship fleet planning problems, the fourth part highlights the weaknesses in the existing 

literature and the need for this current research, and the final part summarizes the 

contents of this chapter. 

 

 

2.1 Fleet Size and Mix 

Fleet size and mix problems are defined as follows: given a set of routes, the 

planner must decide on the exact ship types to include in the fleet, their sizes and the 

number of ships of each size. The analytical models built for fleet size and mix problems 

can be divided into three classes: linear programming models, integer programming 

models and dynamic programming models. There are also some simulation models used 

as decision support systems, in practice. These four types of model are reviewed in the 

following sections. 
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2.1.1 Linear Programming Models 

Dantzig and Fulkerson (1954) were the pioneers in applying the linear 

programming approach to the fleet size problem. In this article, they aimed at minimizing 

the number of tankers required to meet a fixed schedule, and formulated this problem as a 

linear programming model solved using the simplex algorithm. 

Lane et al. (1987) presented a linear programming model for determining a cost-

efficient fleet which met the known demand for trade between Australia and the North 

American West Coast, which incorporates six ports. This problem was dealt with by 

separating it into three major phases: 

Phase Ⅰ: Voyage Option Enumeration 

Phase Ⅱ: Vessel Scheduling 

Phase Ⅲ: Set Partitioning 

Phase Ⅰ is a combinatorial problem which depends on the number of ports on the trade 

route. In this phase, all feasible itinerary options are enumerated. A feasible itinerary is 

defined as including at most one ballast or deadheading leg. Phase Ⅱ is the key 

component of the problem, which is to make cost-minimizing trade-off decisions for 

vessel scheduling at every origin port. A forward-looking heuristic method is used to 

decide which cargo will be transported by which route, and the algorithm proceeds to 

determine the cost-minimal (late-loading cost) schedules for port arrivals and departures. 

Phase Ⅲ uses the results from Phase Ⅱ to define the most efficient fleet composition, by 

means of a set partitioning algorithm used to select a subset of the route options which 

satisfy all shipping demands at the lowest possible cost.  
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2.2.2 Integer Programming Models 

Fagerholt (1999) proposed a three-phase approach for finding the optimal fleet 

and coherent routes for that fleet. They studied a homogeneous fleet. Each route had to 

have a weekly service frequency and multiple trips were allowed for each ship. In phase 

Ⅰ, all feasible single routes are generated for the largest ship available. A single route is 

defined to be a route that is feasible with respect to the vehicle routing problem (VRP) 

constraints, that is, originating and terminating at the depot and not visiting it in between. 

In phase Ⅱ, the single routes generated in phase Ⅰ are combined into multiple routes. 

Phase Ⅲ involves formulating the problem as a set partitioning problem, as below: 

  min TC OP
r r r

r R

C C x


  (2.1) 

subject to 

 1,ir r
r R

A x i N


    (2.2) 

  0,1 ,rx r R    (2.3) 

 ,
k

k
r

r S

x N k K


    (2.4) 

where R is defined as the set of all routes (both single and multiple) generated in phase Ⅰ 

and phase Ⅱ, indexed by r; N is defined as the set of nodes or ports to be serviced by the 

fleet of ships, indexed by i; TC
rC  is the fixed time-charter cost; OP

rC  is the operational cost 

of route r for the lowest-cost ship that has sufficient capacity to perform the given route; 

rx  is a binary variable which is equal to one if route r is chosen in the optimal solution 

and zero otherwise; kS  denotes the set of routes for ship type k and kN  denotes the 

maximum number of available ships of type k. The route generation algorithms of phase 
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Ⅰ and phase Ⅱ are written and compiled in Borland Pascal 7.0. The set partitioning 

model is implemented and solved using GAMS/CPLEX 5.0. 

Fagerholt and Lindstad (2000) studied a real problem of determining an efficient 

policy involving the optimal fleet and corresponding weekly schedules, for a supply 

vessel operation in the Norwegian Sea. The operation involves one onshore service depot 

located on the northwest coast of Norway and seven offshore installations located in the 

Norwegian Sea. Six scenarios are developed, in which the opening hours and number of 

weekly services of the installations are varied, and the best policy is obtained by 

evaluating the qualitative aspects of the solution for each scenario. The solution algorithm 

includes two steps for each given scenario. In the first step, a number of feasible 

candidate schedules are generated for each vessel in the pool. The duration of each 

schedule is also generated. This consists of the sailing times, the loading/discharging and 

waiting times at the offshore installations, and the turn-around time at the depot. In the 

second step, the vessels to be used and their weekly schedules are determined by solving 

an integer programming model. Finally, a scenario is recommended which incurs the least 

cost for operating the supply vessels. 

Sambracos et al. (2004) considered a problem of dispatching small containers via 

coastal freight liners. There is only one depot port (Piraeus), from which containers are 

dispatched to twelve other ports (islands). A homogeneous fleet is used and demand is 

fulfilled so as to incur minimum costs, including fuel consumption and port costs. This 

problem was solved along two dimensions. Firstly, strategic planning was analyzed by 

appropriately introducing an linear programming formulation for the determination of 

vessel traffic under known supply and demand constraints, where total fuel costs and port 
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dues are minimized. The planning problem is defined on a graph G through a set of ports, 

for a number, Wij, of containers transported from node i to node j. Supposing nij is the 

number of ships traveling from node i to node j, nmax is the maximum number of ships in 

each direction for a link, Lij is the length of link ij (in miles), cF is the cost of fuel 

consumption per mile, Pjc  is the fee for port i per ship, Q is the capacity of a ship, 

assumed constant for all ship types, Di is the demand at port i and Si is the supply at port i. 

Then, the problem is formulated as follows:  

 
,

min [ ]ij ij F ij Pj
i j

n L c n c  (2.5) 

 0ji ik i i
j k

W W S D      (2.6) 

  1ij ij ijn Q W n Q    (2.7) 

 max0 ijn n   (2.8) 

 , 0ij ijn W   (2.9) 

Subsequently, the operational dimension of the problem is analyzed by introducing a VRP 

formulation corresponding to the periodic needs for transportation using smaller 

containers, and a list-based threshold acceptance (LBTA) algorithm is employed to solve 

this. LBTA is a stochastic search method that belongs to the class of threshold 

acceptance-based methods. A typical threshold accepting method iteratively searches the 

solution space, guided by a deterministic control parameter, in the same units as the cost 

function, to reveal promising regions for better configurations. 
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2.1.3 Dynamic Programming Models 

Nicholson and Pullen (1971) studied a ship fleet management problem which 

concerned phasing out a fleet of general cargo ships over a ten-year period with the 

possibility of premature sales and temporary replacement by charter ships. The objective 

was to determine a sale and replacement policy which maximized the long-term assets of 

the company. The method was based on two stages. The first stage determines an order of 

priority for selling the ships, regardless of the rate at which charter ships are taken on. 

The second stage uses dynamic programming to determine an optimal level of chartering, 

given the order of priority for replacement. The first stage essentially reduces the 

dynamic programming calculation from an N-state variable problem to a one-state 

variable problem, which is computationally manageable using dynamic programming 

methods. The order of priority for replacement is calculated by assessing the net 

contribution to the objective function if each ship, considered individually, was sold in 

each year and replaced where appropriate by a charter ship. The net contribution of a ship 

to the final assets consists of the invested earnings of that ship up to the year when it was 

sold plus the invested net realization from selling it in that year, plus any earnings from a 

charter ship taken on in lieu of that ship for a limited period. The bigger the net 

contribution, the higher the ships order of priority. Let  tf j  be the maximum cash 

assets accumulated at the end of year t if j ships are held in year t and an optimal policy 

has been adopted. Let  ,tg i j  be the increase in cash assets in year t if i ships are held in 

year t-1 and j ships are held in year t.Then, the dynamic programming recurrence 

relations between  tf j  and  1tf i  can be set up as follows: 
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         1 1max 1 , ,t t t tf j f i r g i j j i D       (2.10) 

where Dt-1 is the total number of ships required in year t-1, and  ,tg i j consists of the 

earnings in year t from owned and chartered ships, plus the receipts from sales. The 

dynamic programming recurrence relations are evaluated for j = Mt to Dt and for t = 1, …, 

T in turn, setting  0 0f i  . For each evaluation of the recurrence relation, the best value 

of i, say  tq j  is recorded. If the largest value of fT+1(j) occurs for j = Tx  ships to be held 

in year T, and in general the number of ships to be held in year t is  1 1t t tx q x  , then 

the dynamic programming procedure combined with the order of priority will determine 

the ships to be held in each year, using the results 1 2, ,..., Tx x x . Ship numbers N, N-1, …, 

1 1x   are sold in year 1, numbers 1 1 2, 1, 1x x x   in year 2 and so on and t tD x  ships are 

chartered in year t. 

 

2.1.4 Simulation Models 

Stott and Douglas (1981) described a Marine Operations Planning and Scheduling 

System (MOPASS) used for planning and scheduling the ocean transportation of bulk 

commodities. This model is a collection of integrated models which provide comparisons 

of voyage costs for different vessels and trades, a financial evaluation and optimization of 

vessel-to-trade assignment, and the sequencing and scheduling of individual vessels on 

predefined routes. The main purpose of MOPASS is to evaluate the most profitable 

opportunities which may arise for a given, controlled fleet of vessels. MOPASS 

comprises four major subsystems: a linear programming optimization module embedded 

in one of the subsystems, user-oriented information files, and reports for both 
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management and operating personnel. These various components of MOPASS are 

accessed, shared, and integrated as needed through a user-oriented executive control 

program. The model does not deal with the question of overall fleet efficiency but rather 

with short-run dynamic operations associated with a given fleet and trade opportunities. 

Gallagher and Meyrick (1984) developed a cost-based simulation model, designed 

to analyze the economic characteristics of liner shipping services on a trade route. The 

model initially defines the components of the shipping system, that is, vessels, ports, 

trade requirements, and trade routes. Next, cargo assignments are made according to user 

preference rules and vessel availability. The cargo allocation is then adjusted to obtain 

feasibility, and finally, the costs of the system are estimated. Like the MOPASS approach, 

this simulation model is evaluative. Unlike MOPASS, it quantifies system performance 

with a view to improving the efficiency of the entire shipping system. However, the 

model does not use a formal optimization model, but rather focuses on evaluating 

changes to the existing system. 

 

 

2.2 Fleet Deployment 

Fleet deployment problems are described as follows: given a set of ships and a set 

of routes, the planner must assign the vessels to specific trade routes (i.e., this is a tactical 

problem). These problems also include the determination of the expected number of lay-

up days (if any) for each ship each year. The analytical approaches to fleet deployment 

problems can be classified into three types: the linear programming approach, the 

nonlinear programming approach and the integer programming model. Again, there are 
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some simulation models that are used for fleet deployment in practice. These four types 

of model are introduced in the following sections. 

 

2.2.1 Linear Programming Models 

Laderman et al. (1966) developed a linear programming model for ship allocation 

to satisfy customer commitments. Given a set of ports and vessels, this paper aimed at 

minimizing the total operating time or maximizing the total unused time such that the 

fleet carried out the customers’ shipment requirements: 

 max k
k

z  (2.11) 

subject to 
  

, ,

for all k k k k
ij ij ij ij k k

i j i j

T X t x z T k     (2.12) 

  for all , , such that 0k k
ij ij ij ij

k

V X A i j A   (2.13) 

  for all ,k k
ij ij

j j

X x i k   (2.14) 

  for all ,k k
ij ij

i i

X x j k   (2.15) 

  , 0 for all , ,k k
ij ijX x i j k  (2.16) 

 0 (for all )kz k  (2.17) 

where  ijA  is the amount to be shipped from origin i to destination j (tons), k
ijV  is the 

tonnage capacity of vessel k when going from origin i to destination j, k
ijT  is the total time 

required for vessel k to load at i, go from i to j and unload at j, k
ijt  is the time required for 

an empty vessel k to go from j to i, kT  is the time available for vessel k during the 
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shipping season, k
ijX   is the number of loaded trips to be made by vessel k from origin i to 

destination j, k
ijx  is the number of empty trips to be made by vessel k from destination j to 

origin i and kz  is the amount of “slack” or unused time for vessel k. In the paper, the 

decision variables k
ijX  and k

ijx  are relaxed into continuous variables. 

Bradley et al. (1977) presented a linear programming formulation for planning the 

mission and composition of the US merchant marine fleet. The objective was to 

determine the number of ships of different types, and the voyages which satisfied the 

annual shipping requirements (“mission”) on a defined set of possible routes, at a 

minimum present value cost. However, a number of simplifying assumptions had to be 

made in order to facilitate the formulation of this model as a linear programming problem. 

The restrictions of the linear framework thus limit its accuracy in modeling specific 

shipping services. 

 

2.2.2 Nonlinear Programming Models 

Benford (1981) developed a nonlinear programming model for selecting the most 

profitable fleet deployment strategy while satisfying customer demands, by means of a 

trial and error method. The objective of the procedure was to select the mix of available 

ships and sea speeds that would perform the required service at maximum profitability to 

the owner. The paper focused on two specific ports with a given quantity of commodities. 

It assumed that there were more than enough ships to meet the customers’ demands, and 

that there were no appreciable costs or benefits involved in taking excess ships out of 

service. It first estimated the economic characteristics of each ship when operated at a 

range of reduced speeds, which involved the annual transport capacity (tons), annual 



Chapter 2                                                                                                                        Literature Review 

 21

operational cost, unit transportation cost and corresponding speeds. Then, it searched for 

the minimum operating cost by means of trial and error.  

Perakis (1985) used Lagrangian multipliers to solve the same problem and 

obtained a better solution. Based on Benford (1981), the annual capacity of a ship was 

assumed to be a linear function and the associated operating cost per ton was a quadratic 

function with respect to speed. This gave the annual capacity of a ship of type i operating 

at speed ix  to be 

 i i ix   (2.18) 

and the operating cost per ton was given by 

 2
i i i i ix x    2

i i i i ix x     (2.19) 

Hence, annual operating costs for each ship can be denoted by: 

    3 2 2
i i i i i i i i i i i i i i ia x b x c x d x x x            (2.20) 

The objective function is: 

      3 2

1 1

min
N N

i i i i i i i
i i

n i a x b x c x n i d
 

     (2.21) 

subject to 

     0
1 1

N N

i i i
i i

n i x C n i 
 

    (2.22) 

The problem can be equivalently stated by using Lagrange multipliers, as follows: 

        3 2
0

1 1 1

min min
N N N

i i i i i i i i i
i i i

L n i a x b x c x n i d C n i  
  

        
 

    (2.23) 

Solution of (2.23) can be obtained by setting 

 0
i

L

x





 (2.24) 
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 0
L







 (2.25) 

The paper then supposed that there are N groups of n(i) identical ships, and that C0 (tons) 

is the required annual carrying capacity between two given ports. From Eq. (2.25), we 

have 

 
 2 3

, 1,...,
3

i i i i i
i

i

b a c b
x i N

a

  
   (2.26) 

Substituting (2.26) into (2.22), we get: 

 
      2

0
1 1

3
3

N N
i

i i i i i i
i ii

n i
b a c b C n i

a


 

 

       (2.27) 

Eq. (2.27) can be numerically solved by secant method. The optimal value of   obtained 

from (2.27) is then substituted into (2.23) to give us the optimal speeds 1,..., Nx x . 

Perakis and Papadakis (1987a, b) developed a new nonlinear programming model 

for the same problem as was considered in Benford (1981) and Perakis (1985). Perakis 

and Papadakis (1987a) classified the speeds of ships into two classes: ballast speeds and 

full-load speeds. The objective was to determine each vessel’s full-load and ballast speeds 

such that the total fleet operating cost was minimized and all contracted cargo was 

transported. Given a fleet of Z ships, each with a given full-load cargo-carrying capacity, 

and each having known operating cost characteristics as functions of vessel speed, for 

each individual vessel in the fleet, the total operating costs per ton and total tons carried 

per year over a specific trade route was expressed as two functions with respect to full-

load and ballast speeds, denoted by  ,i i iF X Y  and  ,i i iG X Y . Then, the total operating 

cost of a vessel per year was given by 
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      , , ,i i i i i i i i iC X Y F X Y G X Y  (2.28) 

The optimization problem was to minimize the annual total operating cost of the fleet on 

the specified route, as follows: 

  
1

min ,
Z

i i ii
C X Y

  (2.29) 

subject to the following constraints: 

 min max , 1,...,i i iX X X i Z    (2.30) 

 min max , 1,...,i i iY Y Y i Z    (2.31) 

  
1

,
Z

i i i avi
G X Y C


  (2.32) 

where Xi and Yi respectively denote the full-load and ballast speed of ship i, Ximax and 

Ximin denote the upper and lower bounds of Xi respectively (Yimax and Yimin are defined 

similarly), and Cav is the cargo available for transporting by the fleet. The authors 

employed the Nelder and Mead Simplex Search Technique and the External Penalty 

Technique to solve their model. However, the number of round trips obtained using the 

optimal solution is not an integer.  

Thus, in order to find the optimal solution with an integer number of round trips, a 

sequential optimization approach was used by Perakis and Papadakis (1987b). These 

were taken to be the integral part (or the integral part plus one) of the real numbers of 

round trips obtained. Also, in this paper, one or more costs were assumed to be random 

variables with known probability density functions. Those costs were the fuel price, the 

constant costs (which is the sum of the annual manning, administrative, maintenance, 

supplies, and equipment costs) for each ship, and the port and route charges for each ship. 

Analytical expressions for the basic probabilistic quantities, that is, the probability 
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density function, and the mean and variance of the total operating cost were presented in 

the paper. The objective was to minimize the expected value of the total operating cost: 

  
1

min
K

f prn k k km
k

C A C B C D E C F


         (2.33) 

where fC , prnC  and kmC  denote the expected values of the fuel price, the constant costs 

and the port and route charges for each ship.  

In the above articles (Benford, 1981; Perakis, 1985; Perakis and Papadakis, 1987a, 

b), these authors considered a fleet deployment problem with one origin and one 

destination, that is, two specific ports. Papadakis and Perakis (1989) extended this to 

consider a fleet deployment problem with multiple origins and destinations, studying the 

problem of minimizing the cost of operating a fleet of ships that has to carry a specific 

amount of cargo from a set of loading ports (origins) to a set of unloading ports 

(destinations) in a given time period. The paper formulated the operating cost as a 

nonlinear function with respect to the full-load and ballast speeds of the ships, in the 

same way as Perakis and Papadakis (1987a, b) did. The objective function is given by: 

  , , , , , , , ,
, ,

min i j k i j k i j k i j k k k
i j k k

V N U M L Z    (2.34) 

subject to 
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 , , , , , 1,..., ; 1,...,i j k i j k
i i

N M k K j J     (2.38) 

 , , , , , 1,..., ; 1,...,i j k i j k
j j

N M k K i I     (2.39) 

 min max
, ,k i j k kX X X   (2.40) 

 min max
, ,k i j k kY Y Y   (2.41) 

where , ,i j kM  , , ,i j kN , , ,i j kX , , ,i j kY and kZ are the decision variables, , ,i j kM denotes the 

number of ballast trips for vessel k from port j to port i, while , ,i j kN  denotes the number 

of full load trips, , ,i j kX  and , ,i j kY  respectively denote the full-load and ballast speeds, kZ  

denotes the idle time for vessel k, , ,i j kU  is the total operating cost of vessel k traveling 

from port i to port j in ballast conditions, while , ,i j kV  is the equivalent under full-load 

conditions, kL  is the daily lay-up cost, ,i jd  is the distance between port i and port j, , ,i j kt  

is the time required for vessel k to unballast and load at i plus any time required to travel 

from port i to port j, , ,i j kt  is similar to , ,i j kt  for unloading at port j plus a ballast trip from 

port j to port i, kT  is the time available for vessel k during the shipping season, kW  

denotes the cargo capacity of vessel k, jB  is the amount of cargo to be delivered to the 

destination port j and Qi denotes the available amount of cargo at source port i. The 

authors analyzed the properties of their model and found that , ,i j kY  could be expressed as 

a function with respect to , ,i j kX , and that , ,i j kX  is the solution to an equation. In other 

words, the decision variables , ,i j kX  and , ,i j kY  can be eliminated from their model. Finally, 

they applied a projected, augmented Lagrangian algorithm to find the optimal solution.  
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2.2.3 Integer Programming Models 

Cho and Perakis (1996) considered the liner fleet deployment problem combined 

with the routing problem. Given a set of ships, the paper aimed to assign each ship to 

some mix of routes among a finite set of candidate routes so as to minimize the total cost 

or maximize the total profit. Two programming models were formulated: a linear 

programming model and a mixed integer programming model. An augmented flow-route 

incidence matrix was introduced to facilitate the expression of the models. The linear 

programming model is given by: 

 
1

max
r

R

rk rk
r k K
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   (2.42) 

subject to 

  ,
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ij rk rk ij
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 , 1,...,
k

rk rk k
r R
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   (2.44) 

where rkx  is the decision variables (fractions, not integers), rk  denotes the expected 

profit from a round trip on route r by ship k, ,ij rka  is a component of the augmented flow-

route incidence matrix, ijm  is the minimum required number of trips from port i to port j, 

rkt  is the total travel time for ship k on route r per round trip, kt  is the maximum time 

ship k is available during the planning horizon, kR  is the set of routes r to which ship k 

can be assigned, and rK is a set of available ships that can be assigned to route r. The 

problem can also be represented in matrix form as follows: 

 max x  (2.45) 

subject to 
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 Ax m  (2.46) 

 Tx t  (2.47) 

Mourão et al. (2001) presented an application of an integer programming model 

that could be used to support the decision-making process for assigning ships with hub 

and spoke constraints, solving the model by means of the MS Excel solver function. In 

this paper, three levels of ports are identified: The main port is part of the medium-sized 

transport network that feeds mainline ocean trading and is the principle cargo origin and 

destination. The hub port represents the consolidation port which links the medium-sized 

network with the smaller transport network and embeds the terminal ports. Finally, the 

spoke port is the terminal port, where cargo is delivered to the end consumer. The ships 

are classified into two types: mainline and feeder ships. The mainline ships move 

between the main ports and the hub ports, while the feeder ships link the hubs to each set 

of spoke ports. Two scenarios are proposed: Scenario A consists of scheduling the main 

and the feeder ships as if a coordinated voyage situation is anticipated, and assumes that a 

fixed number of voyages are performed each year by each ship, whether main or feeder 

vessels. Scenario B is constructed exclusively to perform a sensitivity analysis of the 

solution obtained for Scenario A. Hence, Scenario B sets out to determine the optimum 

number of voyages each ship should undertake annually, in accordance with each roster. 

Two integer programming models are formulated for the two scenarios. Finally, MS 

Excel’s solver is employed to solve the two models. 
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2.2.4 Simulation Models 

Some of the simulation models described previously in Section 2.1.2 are also 

applied to the fleet deployment problem, such as MOPASS (Stott and Douglas, 1981), 

and the cost-based simulation model (Gallagher and Meyrick, 1984). Since they were 

described earlier, they are omitted from this section. The following paragraph describes a 

new simulator, developed for fleet deployment problems. 

Xie (1997) proposed a new simulator—the Fleet Planning System (FPS)―which 

is an optimization-based decision support system for a fleet of heterogeneous vessels, 

aimed at optimizing their deployment and development planning. FPS takes the 

characteristics of each type of vessel to be known parameters, such as their size, 

transportation capacity and the costs incurred on each liner trade route. The number of 

vessels of each type assigned to each route are the decision variables. The minimum cost 

of shipping the specified and required amount of cargo is the objective and linear 

programming techniques are the main method used to optimize the assignment strategy 

for each vessel and the development planning for the fleet. FPS is coded in the 

FORTUNE Language and consists of two main programming modules: RDATA and LP. 

RDATA is designed to read in the initially known data and turn these data into parameters 

in the linear programming model. LP firstly transforms the linear programming model 

into a standard linear programming model and then checks the validity of the coefficients 

of the model and the solvability of the problem. Finally, it optimizes the calculation by 

means of the simplex algorithm and prints out the results. 
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2.3 Fleet Planning 

Fleet size and mix problems are strategic-level problems while fleet deployment 

problems are tactical-level problems. Agarwal and Ergun (2008) pointed out that the 

decisions made at one planning level affected the decision-making at the other. The 

decisions at the strategic level set the general policies and guidelines for decisions to be 

made at the tactical level. In the reverse direction, information on the costs and revenues 

generated by the system, given the set parameters, provides much-needed feedback for 

decision-making at the higher level. Therefore, fleet size and mix problems and fleet 

deployment problems are combined by some researchers, who assume that the planner 

not only decides the fleet size and mix, but also the fleet deployment. These joint 

problems are referred to as fleet planning problems in this thesis for convenience. Three 

types of model have been proposed for fleet planning problems: linear programming, 

integer programming and dynamic programming. They are reviewed in the following 

sections. 

 

2.3.1 Linear Programming Models 

Everett et al. (1972) applied a linear programming approach in order to optimize a 

fleet of large tankers and bulkers, and proposed the following model to minimize the life-

cycle cost of the fleet: 
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1
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     (2.48) 

subject to 

 srk sr ks r
V x d   (2.49) 
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 345 0sr sr sr
t x n   (2.50) 

where sn  and srx are decision variables denoting the number of ships of type s and the 

number of voyages per annum assigned to ship s along route r, respectively, sI  is the 

capital cost for ship type s, srC  is the variable operating cost incurred by ship type s 

along route r while sa  is the annual fixed operating cost of ship type s,   is the annual 

discount rate and   is the annual inflation rate, T is the length of the planning horizon 

(years), srkV  is the maximum amount of commodity k which can be carried by ship type s 

along route r, kd  is the total annual tonnage of commodity k specified in the mission for 

the pertinent pair of ports, srt  is the time taken to make a round trip by ship type s along 

route r, and all ships are assumed to be available 345 days per year. The model was 

solved by means of the Control Data Corporation’s “Ophelie” linear programming system, 

available on the CDC 6600 model computer. In addition, the necessary inputs to the 

linear programming model were computed by means of CDC’s Matrix Generator 

Language (MGL) program that allowed for the automatic computation of the basic data 

required by the model. However, the solutions are fractions rather than integers.  

Perakis and Jaramillo (1991) proposed a linear programming model for an optimal 

fleet size, mix and deployment with detailed cost estimation for liner ships. First of all, 

they described the costs spent on making a round trip, involving port charges, canal fees, 

fuel costs, maintenance costs, insurance costs, administrative costs, crew costs, and other 

miscellaneous costs, and then formulated the cost per voyage as a function of the cruising 

speed of the container ships. The shipping cost per voyage can be expressed by the 

following equation: 
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   2 ˆ
kr kr kr kr kr kr krC s s s      (2.51) 

where kr , kr  and k̂r  are parameters. Eq. (2.51) is a convex function, which implies that 

the optimal cruising speeds of container ships can be obtained so as to minimize shipping 

costs. Finally, a linear programming model is developed as follows: 
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where krX  and kY  are decision variables, denote the number of annual voyages and lay-

up days of ship k on route r, respectively, ke  is the total daily lay-up cost for ship k, krt  is 

the voyage time of ship k on route r, rF  is the frequency of service on route r, kT  is the 

available shipping days for ship k per year, max
kN  is the number of ships of type k 

available, and K and R are the number of ships and routes considered in the paper. The 

implementation and results were shown in Jaramillo and Perakis (1991), obtained using 

LINDO solver.  

  

 



Chapter 2                                                                                                                        Literature Review 

 32

2.3.2 Integer Programming Models 

Cho and Perakis (1996) proposed a mixed integer programming model for a long-

term ship fleet planning problem. They assumed that a shipping company has to make 

capital investment decisions over the planning horizon. To meet the expected increasing 

future cargo demand, the shipping company may consider various options for expanding 

fleet capacity, such as building or purchasing new ships, or chartering in ships. The 

objective is to minimize the total cost incurred from operations while meeting the cargo 

demands over the planning horizon. The total cost included in the objective function is 

taken to be the sum of the operating cost, the lay-up (or idle) cost, and the (fixed) capital 

cost incurred over the planning horizon. Let K0 be the subset of ships that the shipping 

company considers adding to the existing fleet. The resulting objective function is as 

follows: 
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where rkx  is the set of decision variables (fractions, not integers), ky is another decision 

variable, denoting the lay-up time of ship k, and the variable zk is a binary variable 



Chapter 2                                                                                                                        Literature Review 

 33

denoting whether ship k will be added to the fleet (zk =  1) or not (zk = 0). ,ij rka  is a 

component of the augmented flow-route incidence matrix, crk is the expected operating 

cost of ship k on route r per round trip, fk denotes the fixed capital cost involved in adding 

ship k to the existing fleet, kh is the lay-up cost of a ship per unit of time, rkt  is the total 

travel time for ship k on route r per round trip, kt  is the maximum time ship k is available 

during the planning horizon, ijm  is the minimum required number of trips from port i to 

port j, kR  is the set of routes r to which ship k can be assigned, rK is a set of available 

ships that can be assigned to route r, 0K is the subset of ships which the company 

considers adding to the fleet. 

The number of ships allocated to each route in Perakis and Jaramillo (1991) was a 

real number, and not an integer. A rounding procedure was therefore required to make the 

number of ships allocated to each route into an integer. The rounding led to some 

variation in the targeted service frequencies and therefore to sub-optimal results. In order 

to eliminate any rounding errors in the linear programming formulation, Powell and 

Perakis (1997) reformulated this problem and proposed an integer programming model 

which they solved by means of OSL solver. The integer programming optimization 

model is given by: 
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where Nkr and Yk are the decision variables denoting the number of ships of type k 

operating on route r and the number of lay-up days per year for a ship of type k, 

respectively, krC  is the operating cost of a type k ship on route r, ke  is the total lay-up 

costs per day for a type k ship, Mr is the number of voyages required per year on route r, 

krt  is the yearly voyages made by a ship of type k on route r, and Tk is the duration of the 

shipping season for a ship of type k. The LINDO solver was employed to solve this linear 

programming model. 

Gelareh and Meng (2010) looked at model development for a LSFP problem. First, 

a mixed integer nonlinear programming model was presented. Then, the proposed 

nonlinear model was linearized by means of a linearization technique and a mixed integer 

programming model was obtained that can be solved efficiently using a standard mixed 

integer programming solver such as CPLEX. The mixed integer programming model 

determines the optimal route service frequency pattern and takes into account the time 

window constraints of shipping services. 

 

2.3.3 Dynamic Programming Models 

Xie et al. (2000) studied the fleet planning problem for a long-term planning 

horizon. Due to the strategy involved in fleet planning, a horizon of several years can 

naturally be deconstructed into a series of consecutive decisions, made at the beginning 

of each year. The problem is broken down into two optimal subproblems: one is to get the 
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annual optimal fleet deployment plan if fleet and transport demand is fixed, and the other 

is to get the optimal strategy for fleet development in consecutive years. Therefore, the 

first subproblem can be formulated as a linear integer programming model which seeks 

the optimal fleet deployment for a short-term planning horizon (one year) and the second 

subproblem can be formulated as a dynamic programming model, seeking the best liner 

fleet size and mix over a long-term planning horizon. In the dynamic programming model, 

one year is taken as one stage and the quantitative composition of a fleet in terms of ships 

of various types is taken to be the state of the fleet. The optimization of fleet deployment 

for the first subproblem can be written as follows: 
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where tX  is the decision vector, denoting the deployment scheme of ships in year t, and 

each element jhtiX  denotes the number of ships of type j distributed on route h in the ith 

state in year t, and   is a set of tX , which meets the following two groups of constraints: 
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where   is the complementary set of  , jtiC  is the number of ships of type j added to 

the fleet in the ith state at the beginning of year t, jtF  is the annual laid-up costs for a ship 

of type j in year t, jtiO  is the number of laid-up ships of type j in the ith state in year t, jhtR  

is the annual running costs of a ship of type j on route h in year t, , 1j tU   is the number of 
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ships of type j before the start of year t, jhtV  is the annual transportation capacity of a ship 

of type j on route h in year t, htW  is the annual transportation demand on route h in year t, 

and jtWT  is the number of ships of type j that are scrapped or out of commission in year t. 

The accumulated sum of the costs of running the fleet in the ith state from year t to year N, 

tiZP , that is, the recursive formulation, is given by: 

 
     

 1,
1

1

1 1 1

K
ti

ti t i jti jtt t N
j

Z
ZP ZP C S L N t
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where  L N t  denotes the physical residual value, at the end of the planning horizon, 

of the new ships that were added into the fleet in year t, jtS  is the market price for a ship 

of type j in year t,   is the discount rate and   is the weight coefficient. The optimal 

strategy can be obtained by solving the following optimization model: 

 01,...,
min ii M

ZP


 (2.71) 

where M represents the number of various combinations of ships that can be added to the 

fleet at the beginning of year 0. Finally, a heuristic algorithm is proposed to solve the 

problem. 

 

 

2.4 Research Limitations and Gaps 

It can be seen from the literature review that there are some limitations and gaps 

in the existing studies. This section highlights these and shows how they provoke the 

need for further investigation. The limitations of past studies fall under the following 

three types. 
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Firstly and most importantly, all of the previous work reviewed above assume an 

environment in which the container shipment demand between port pairs is known 

beforehand and is deterministic. The container shipment demand between port pairs can 

be forecasted using regressions and time series models. However, they can never be 

forecasted with complete confidence because they are affected by some unpredictable and 

uncontrollable factors. Therefore, it is more reasonable to regard the demand as uncertain.  

Secondly, the parameters of annual operating cost and transportation capacity of 

each ship on each route are assumed to be constants in Cho and Perakis (1996) and Xie et 

al. (2000). Such an assumption is unreasonable because it is inconsistent with reality. In 

fact, these parameters should be voyage-dependent. For example, a ship sailing twenty 

voyages on a route in one year will definitely incur greater annual operating costs and 

have a larger transportation capacity than a ship that sails only ten voyages on this route. 

Thirdly, the methodology proposed by Cho and Perakis (1996) for a multi-period 

ship fleet planning problem is unreasonable. In their methodology, once the decisions 

about fleet design and fleet deployment are made at the beginning of the planning horizon, 

these decisions are assumed to be fixed and static over the whole multi-period planning 

horizon. Such a period-independent model cannot characterize the realistic dynamic 

decision strategy: the fleet size, mix and ship-to-route allocation should be adjustable 

period-by-period, due to the fact that container shipment demand is period-dependent.  

Based on the limitations observed in previous studies, it is realistic and necessary 

to take uncertainty of container shipment demand into account in LSFP problems. By 

considering demand uncertainty, the LSFP problem could become a new and interesting 

research topic, providing a fresh angle on the classical LSFP problem which is studied 
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under a deterministic environment. The models proposed for classical LSFP problems in 

previous studies cannot be used directly here. Therefore, the first purpose of this thesis is 

to propose new models for LSFP problems with container shipment demand uncertainty 

and then to propose effective solution algorithms to solve the new models. 

In addition, this thesis revises the unreasonable assumptions described above, in 

order to consider a more realistic LSFP problem than has been studied previously in the 

literature. Moreover, it provides an applicable and feasible way for a liner container 

shipping company to carry out its liner ship fleet planning in practice. 

 

 

2.5 Summary 

This chapter has presented a critical literature review, focusing on three problems: 

fleet size and mix problems, fleet deployment problems and fleet planning problems. 

Through this review, several potential problems and gaps have been identified. Finally, 

the chapter has described the research purpose of this thesis. 
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CHAPTER 3 A CHANCE CONSTRAINED 

PROGRAMMING MODEL FOR SHORT-TERM LSFP 

3.1 Introduction 

This chapter deals with the short-term LSFP problem encountered by a liner 

container shipping company. The liner container shipping company (or liner operator) 

usually operates a fleet of heterogeneous ships on its service routes at regular schedule in 

order to pick up and deliver containers for shippers. In order to seize market share in an 

intensely competitive container shipping market, the liner container shipping company is 

constantly searching for models and solution procedures to build a decision support 

system that helps to create cost-effective plans to operate its liner ship fleet. In addition, 

the number of containers transported by a liner container shipping company between two 

ports often varies season (3 months) by season in practice. For example, container 

volume from Asia to Europe usually increases dramatically in the fourth quarter of a year 

due to Christmas Day. To cope with the varying port-to-port container shipment demand, 

a liner container shipping company has to alter its service routes and redeploy ships 

according to the estimated container shipment for next season. In other words, its 

strategic asset management department needs to make a suitable fleet plan for a short-

term (3-6 months) planning horizon, which involves considering how to effectively use 

the ships in its fleet in order to provide efficient shipping services and save on costs. The 

decisions include the determinations of fleet size (number of ships), mix (ship types) and 
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deployment (ship-to-route assignment). For the sake of presentation, this tactical-level 

decision is referred to as the short-term liner ship fleet planning (LSFP) problem. The aim 

is to optimize fleet design and deployment over a short-term planning horizon. The fleet 

design identifies the types and numbers of ships required, and the fleet deployment 

covers how the fleet is assigned and operated to transport containers. 

Container shipment demand of a port pair on a liner ship route operated by the 

liner container shipping company is an input of the short-term LSFP problem. The 

decisions of fleet size, mix and fleet deployment involved in this problem are made prior 

to knowing the exact market demand. Liner shipping is usually based on a fixed schedule 

which is generally published up to 6 months into the future. This means the liner ship 

fleet planning is made depending on the forecasted container shipment demand. The 

container shipment demand is usually estimated by some shipment demand forecasting 

methods. Compared with the actual port-to-port container shipment demand, the 

forecasted shipment demand is inevitably biased because it is usually affected by some 

unpredictable and uncontrollable factors, such as the shipping contract cancellation by 

shippers due to manufacturing interruption or transportation delay from plants to ports. 

Hence, container shipment demand is of high uncertainty in practice. This chapter thus 

focuses on model development for the short-term LSFP problem by taking into 

consideration uncertainty of container shipment demand.  

It should be pointed out that the existing studies on fleet size and mix problems 

(such as Dantzig and Fulkerson, 1954; Lane et al., 1987; Fagerholt, 1999; Fagerholt and 

Lindstad, 2000; Sambracos et al., 2004), fleet deployment problems (such as Laderman et 

al., 1966; Bradley et al., 1977; Benford, 1981; Perakis, 1985; Perakis and Papadakis, 
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1987a, b; Papadakis and Perakis, 1989; Mourão et al., 2001); fleet planning problems 

(such as Everett et al., 1972; Perakis and Jaramillo, 1991; Powell and Perakis, 1997; 

Gelareh and Meng, 2010) assume that container shipment demand between two ports are 

deterministic. As discussed previously, container shipment demand has high uncertainty 

in practice. This uncertainty can be formulated as the stochastic container shipment 

demand represented by a random variable. Having assumed the stochastic container 

shipment demand, the above-mentioned three categories of the decision problems should 

be re-formulated. The existing linear or integer models reviewed above for the 

deterministic LSFP problems are not applicable for the proposed problem. Therefore, a 

new stochastic programming model for uncertain container shipment demand is needed to 

formulate this problem. It should be pointed out that stochastic programming (see Shapiro 

et al., 2009) has served as a useful modeling tool in decision-making problems under 

uncertain environment, such as dynamic resource allocation (Cheung and Powell, 1996; 

Godfrey and Powell, 2001), optimal fleet assignment problems (Norkin et al., 1998a; 

Sherali and Zhu, 2008), empty container allocation problems (Crainic et al., 1993; 

Cheung and Chen, 1998), vehicle routing problems (Laporte et al., 1992; Laporte et al., 

2002) and supply chain design (Santoso et at., 2005; Schutz et al., 2009). 

In this chapter, the container shipment demand between any two ports on each 

liner ship route is assumed to follow a normal distribution; the probability (chance) that 

shipping capacity of a liner ship fleet planning scenario cannot meet the demand does 

exist. In other words, the liner container shipping company fails to make the service for 

its customers with this probability. To maintain a certain level of service, the company 

must control this probability (or chance) within a given level called confidence parameter. 
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The level of service is referred to as chance constraint hereafter. Therefore, a chance 

constrained programming model is proposed for the short-term LSFP problem with 

container shipment demand uncertainty. The objective of this chance constrained 

programming model is to minimize the total operating cost of its fleet subject to a certain 

level of service. 

The remainder of this chapter is organized as follows: Section 3.2 gives notation, 

assumptions and problem statement. Section 3.3 presents a chance constrained 

programming model for the short-term LSFP problem with container shipment demand 

uncertainty. Section 3.4 is a numerical example to assess the proposed model and analyze 

impact of the confidence parameters and container shipment demand on optimal solutions. 

Summary is presented in Section 3.5. 

 

 

3.2 Problem Description, Assumptions and Notations  

3.2.1 Code of Port Sequence 

Consider a liner container shipping company which provides liner shipping 

service on a predetermined liner ship route network for shippers within a short-term 

planning horizon (3-6 months). Let  1, , ,p P    and  1,..., ,...,r R  denote the 

set of ports and the set of liner ship routes in the liner ship route network, respectively. 

The indices p and r represent a particular port and liner ship route, respectively. 

Additionally, we define  1, , , rmi
r r r rp p p    as the set of ports called at the liner ship 

route r , characterized by r
r

 


  , where rm  is the number of ports in the itinerary. 
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Each liner ship route r  is defined as a sequence of ports called at by ships, which 

can be expressed by the port calling sequence (or itinerary):  

 1 2 1rm
r r r rp p p p     (3.1) 

Eq. (3.1) describes the unique characteristic of a liner ship route: a loop with a 

given port calling order. Note that the ports on a liner ship route may not all be distinct. 

For example, Figure 3.1 depicts a liner ship route between the port of Pusan and the port 

of Singapore. A ship deployed on this liner ship route first calls at Pusan (PS), followed 

by Shanghai (SH), Yantian (YT), Hong Kong (HK), Singapore (SG), Yantian (YT), and 

finally back to Pusan (PS). According to the route coding scheme shown in Eq.(3.1), this 

can be expressed by the port calling sequence: 

              1 2 3 4 5 6 1PS SH YT HK SG YT PSr r r r r r rp p p p p p p      (3.2) 

Figure 3.1 also shows that the port calling sequence for the forward direction from 

Pusan to Singapore is not identical to that for the backward direction from Singapore to 

Pusan.  

 

 

Figure 3. 1 A liner ship route 
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3.2.2 Container Shipment Flow 

To formulate the feature that the first port and last port on a liner ship route are the 

same, we introduce a generalized mod operator as follows:  

 
 mod ,      

 mod 
,                

r r
r

r r

i m i m
i m

m i m


  

 (3.3) 

For the sake of presentation, the distance between two consecutive ports i
rp  and 

 1 mod ri m
rp   on the liner ship route r  is referred to as leg i   ( 1, 2, , ri m  ), denoted by 

the pair of ordered ports  1 mod, ri mi
r rp p   . The liner ship route shown in Eq. (3.2) thus 

has six legs – 1: 1 2 < (PS), (SH)>r rp p , 2: 2 3(SH), (YT)r rp p  , 3: 3 4(YT),  (HK)>r rp p , 4: 

4 5(HK), (SG)r rp p  , 5: 5 6(SG), (YT)r rp p   and 6: 6 1(YT), (PS)r rp p  . 

The port calling sequence shown in Eq. (3.1) has a limited number of 

combinations of port pairs which may have container shipment demand on the liner 

shipping service route r , and these pairs of ports can be expressed by the set 

   , , 1, 2, , ;i j i j
r r r r r rp p i j m p p    (3.4) 

An incidence parameter  ,i j
r rp p

l  ( 1, 2, , rl m  ) is defined to indicate how the 

containers are transported from port i
rp  to port j

rp , namely the itinerary of transporting 

containers of port pairs ( i
rp , j

rp ). It equals 1 if leg l ( 1, 2, , rl m  ) is sailed by ships 

transporting containers from port i
rp  to port j

rp  and 0 otherwise ( r ). The incidence 

parameter thus reflects the relationship between the itinerary for transporting containers 

from port i
rp  to port j

rp  and the legs l ( 1, 2, , rl m  ) in the liner shipping service route. 

We use the above example to illustrate this. Containers being transported between the 
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port pair  2 1,r rp p , namely from Shanghai to Pusan, have to be loaded at port 

2
rp (Shanghai) and then carried by ships along legs 2, 3, 4, 5 and 6, before finally being 

unloaded at port 1
rp (Pusan). Therefore,  2 1,

1 0r rp p
   and    

2 1,
1 2,3, 4,5,6r rp p

l l   . 

When a ship sails along leg l of route r, it carries containers including those new 

containers loaded at port l
rp  and also those loaded at previous ports that have remained 

on the ship, which is referred to as container shipment flow on leg l. Continuing with the 

above example, when a ship sails on leg 6, it carries containers corresponding to eight 

port pairs:    2 1 3 1, , , ,r r r rp p p p          4 1 5 1 3 2 4 2 5 2, , , , , , , , , ,r r r r r r r r r rp p p p p p p p p p  and  5 4,r rp p , 

of which the containers being transported between the port pair  3 1,r rp p  and between the 

pair  3 2,r rp p  were newly loaded at port 3
rp , and the containers for the other six port pairs 

were loaded at previous ports. 

 

3.2.3 Liner Ship Fleet Planning 

Let  1,..., ,...,k K  be the set of ship types available to the liner container 

shipping company, where the index k denotes a particular type of ships. The container 

capacity in terms of twenty-foot-equivalent unit (TEU) of a particular ship type k is 

denoted by kV . The liner container shipping company has to determine the number of 

ships of type  k  in its ship fleet and deploy them on each liner ship route r  to 

pick up and deliver containers for shippers at a regular schedule on each route.  

In the short-term LSFP problem, the liner container shipping company not only 

uses its own ships to deliver containers, but also charters ships from other liner shipping 
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companies. Generally, there are three types of chartering ships: bareboat charter, voyage 

charter and time charter. Bareboat charter is the simplest way in which the charterer 

manages the ship and pays all costs except the capital repayment, tax and depreciation. In 

other words, the owner does not bear any cost except collecting the rent from the 

charterer. In order to simplify the problem, bareboat charter is the one only adopted in 

this thesis. The chartering rate of a ship of type k in the planning horizon is denoted by 

IN
kc  ($/ship). Besides paying the chartering rate to the ship owner, the ship charterer takes 

other charges of operating the chartered ship, such as routine maintenance cost and 

insurance and etc. Therefore, it is rational to assume that 

 OUT IN
k kc c  (3.5) 

where OUT
kc  denotes the rate of a ship of type k chartered out ($/ship). 

Let MAX
kN  and MAX

kNCI  denote the number of available ships of type k owned and 

chartered by the liner container shipping company, respectively. Given these candidate 

ships, the liner container shipping company chooses some ships to form a liner ship fleet, 

namely, a ship fleet design plan comprising mix and size of the ship fleet; and then 

assigns the ships in the fleet to those ship routes. The objective is to make an efficient 

joint ship fleet design and ship fleet deployment plan in order to maximize the expected 

value of the total profits subject to some constraints. It is noted that regular shipping 

service is required to be maintained on each ship route because liner shipping is 

characterized by providing regular shipping service in contrast to tramp and industrial 

shipping (Christiansen et al., 2004). In practice, most liner shipping companies generally 

provides a weekly shipping service on a ship route. 
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3.2.4 Container Shipment Demand Uncertainty  

In practice, the container shipment demand over the short-term planning horizon T 

(3-6 months) is estimated by using some demand forecast methods based on historical 

data. However, the estimated container shipment demand is biased and it thus causes 

uncertainty of the container shipment demand used for a short-term planning decision. 

Uncertainty of container shipment demand comes also from transactions between 

shippers and the liner container shipping company briefed as follows. A shipper firstly 

needs to book space from the shipping company according to ship schedule and itinerary 

launched by the company, to deliver its containers through a shipping agent by filling in a 

shipping application (S/A). If the S/A is accepted, the shipper will receive a shipping 

order (S/O) from the shipping company to load its containers on a ship operated by the 

shipping company. Then, the carrier (i.e. the liner container shipping company) will offer 

a mates receipt (M/R) to the shipper to show its containers are loaded on the ship. The 

shipper bears the M/R to exchange bill of lading (B/L) and posts it to the consignee. The 

shipping agent at the discharge port informs the consignee to retrieve the containers when 

they arrive. After the payment of all fees, the consignee uses B/L to exchange the 

delivery order (D/O) and takes delivery of goods. However, the shipper is allowed to 

cancel the transaction or contract signed with the shipping company in advance. The 

cancellation as an uncontrollable factor brings uncertainty of the estimated container 

shipment demand.  

The distribution-based approach is a typical method to characterize the parameter 

uncertainty issue. It is usually used to describe the issue with exact concept or essence but 

whether it happens depends on some random factors, such as in the trial of flipping coin, 
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the concept “face of coin” is exact but the occurrence is related to some unpredictably or 

uncontrollably uncertain factors. The container shipment demand uncertainty considered 

in this chapter has an exact concept but is related to some random factors. Therefore, the 

distribution-based approach is reasonable to be employed to formulate uncertainty of 

container shipment demand. Following the distribution-based uncertainty characterization 

approach, the container shipment demand is assumed normally distributed with given 

mean and standard deviation. The rationale of assuming the normal distribution is that the 

deviation of the forecasted demand and the real demand is often approximately normally 

distributed and especially the normal distribution has been established to be one of the 

suitable probability distribution to describe the demand uncertainty by Brown (1959). 

Without loss of generality, these normal random container shipment demands are 

assumed independent.  

 

3.2.5 Problem Statement 

As aforementioned, the container shipment demand between any two ports on 

each liner ship route is assumed following a normal distribution. This assumption may 

lead to another problem: since the demands are uncertain, one can hardly find any 

decision which would definitely exclude later constraint violation caused by unexpected 

random effects, in other words, once the decisions in LSFP problem are determined, the 

fleet of ships may be unable to fully meet the pickups and deliveries requirement for its 

customers, even though the expected demands along the route do not exceed the fleet 

capacity. Once such case happens, it implies losing money for this liner container 
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shipping company. Since it is hardly unavoidable, the liner container shipping company 

hopes that it happens at a low possibility as possible. 

In order to reduce the possibility of the occurrence that the liner container 

shipping company cannot satisfy the customers’ demand, such constraint violation can 

often be balanced afterwards by some compensating decisions which are considered as a 

penalization for constraint violation. However, the compensation cannot be modeled by 

cost in this chapter because the container shipment demand is not realized. In such 

circumstances, we would rather insist on decisions guaranteeing feasibility 'as much as 

possible'. This loose term refers once more to the fact that constraint violation can almost 

never be avoided because of unexpected extreme events. On the other hand, when 

knowing or approximating the distribution of the random parameter, it makes sense to 

call decisions feasible whenever they are feasible with high probability, i.e., only a low 

percentage of realizations of the random parameter leads to constraint violation under this 

fixed decision. Therefore, we formulate the constraint that the liner container shipping 

company should satisfy the customers’ demand as a probabilistic form in this chapter, 

which is called chance constraint. The probability of the constraint violation is called a 

confidence parameter in this chance constraint. It indicates that if the liner container 

shipping company makes a decision which satisfies the chance constraint, the event that 

the customers’ demand cannot be met will occur at most with this probability. For those 

unmet cargoes, we regarded they are lost. 

Therefore, the short-term LSFP problem with container shipment demand 

uncertainty aims to determine the best decision variables to minimize the total operating 
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cost while maintaining the chance constraints. It is formulated as a chance constrained 

programming model.  

 

 

3.3 Model Development  

Before the development of mathematical programming model for the short-term 

LSFP problem with container shipment demand uncertainty, we firstly introduce the 

decision variables shown as follows: 

OWN
krn  number of owned ships of type k ( k  ) assigned on route r ( r ) 

IN
krn  number of chartered in ships of type k ( k ) assigned on route r ( r ) 

krx  number of voyages of ships of type k ( k ) on route r ( r ) 

 

3.3.1 Chance Constraints 

Let  ,i j
r rp p  be the random variable representing the container shipment demand of 

a port pair  ,i j
r r rp p  , the container shipment flow on leg l  1,..., rl m  of route 

r , denoted by r
l , is given by:  

    

 

, ,

,

, 1, , ;
i j i j
r r r r

i j
r r r

p p p pr
l l r

p p

l m r  


    


  (3.6) 

Since the container shipment demand of any port pair,  ,i j
r rp p

    , ,i j
r r rp p r   , is 

assumed following an inter-independent normal distribution with a mean value denoted 
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by  ,i j
r rp p  and a variance denoted by  2,i j

r rp p , namely      2, , ,
,

i j i j i j
r r r r r rp p p p p p

N   
 
 

 ,  

according to the probability theory, r
l  also follows a normal distribution, then we have: 
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  (3.7) 

Let r  denote the confidence parameter on route r, therefore, the constraints that 

the transportation capacity of containerships operated on this route is not less than each 

container shipment flow on leg l with a least probability of 1 r can be formulated as the 

following chance constraints: 

 Ρr 1 , 1, , ;r
kr k l r r

k

x V l m r 


       
 
 


  (3.8) 

 

3.3.2 Chance Constrained Programming Model 

The proposed short-term LSFP problem with uncertain container shipment 

demand can be formulated as the chance constrained programming (CCP) model: 

[CCP]  IN INmin   kr kr kr k
r k

C c x n c
 

 
 

 (3.9) 

Subject to: 

 Ρr 1 , 1, , ;r
kr k l r r

k

x V l m r 


       
 
 


  (3.10) 

  OWN IN , ,kr kr kr
kr

T
x n n r k

t

 
      

 
   (3.11) 

 ,kr r
k

x N r


  


  (3.12) 
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 OWN MAX ,kr k
r

n N k


  


  (3.13) 

 IN MAX ,kr k
r

n NCI k


  


  (3.14) 

  OWN IN, , 0 , ,kr kr krn n x k r        (3.15) 

where krc  denotes the operating cost of ships of type k on route r per voyage ($/voyage). 

It includes the fuel cost, daily running cost, port charge and canal fee (if any). The 

chartering rate of a ship of type k in the planning horizon is denoted by IN
kc  ($/ship). krt  is 

the voyage time of a ship of type k on a route r (days), T is the length of the short-term 

planning horizon (3-6 months), rN  is the minimal number of voyages required on route r 

during the planning horizon in order to maintain a given liner shipping service frequency, 

kV  denotes the capacity of a ship of type k referring to the number of containers it can be 

loaded. 

Eq. (3.9) is the objective function of the CCP model. The first term in the bracket 

presents the shipping cost and the second term is the cost of chartering in containerships 

of type k in the short-term planning horizon. Constraints (3.10) are the chance constraints 

which show that the liner container shipping company can satisfy the customers’ demand 

at least with a probability of 1 r . Constraint (3.11) compute the maximal number of 

voyage that ships of type k can complete on route r, where a    denotes the maximum 

integer not greater than a. The constraints (3.12) guarantee the number of voyages 

required on ship route r in order to maintain the given liner shipping frequency. For 

example, if a weekly shipping service is required on ship route r during a planning 

horizon of six months, then 26rN  . Constraints (3.13) and (3.14) ensure the number 
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containerships of own and chartered in should not exceed its corresponding maximum 

available containerships, respectively. Constraint (3.15) requires that all variables are 

nonnegative integers. 

It is not difficult to find that constraints (3.10) can be respectively rewritten as 

follows: 

     

 

   

 

2
, , , ,1

, ,

1 , 1, , ;
i j i j i j i j
r r r r r r r r

i j i j
r r r r r r

p p p p p p p p

kr k r l l r
k p p p p

x V l m r    

  

         
  



                                                                                     (3.16) 

where  1 1 r
   is the inverse cumulative probability of 1 r . Eqs. (3.16) imply that 

constraints (3.10) have the equivalent linear function expressions. Objective function 

shown by Eq. (3.9) and the other constraints (3.11) to (3.14) are all linear functions with 

respect to the decision variables. Therefore, the CCP model is an integer linear 

programming model. As the CCP model is an integer liner programming model, it can be 

thus solved by any optimization solver such as CPLEX. CPLEX actually employs the 

branch-and-cut algorithm for solving an integer liner programming problem.  

The proposed CCP model involves two blocks of costs: shipping costs and 

chartering in cost. The shipping costs include fuel cost, daily running cost, port charge 

and canal fee. The rationale behind port charge is that port authorities levy various fees 

against ships and/or containers for the use of the facilities and services provided by them; 

and the main canal dues payable are for transiting the Suez and Panama canals. As for 

chartering in ships, it is commonly adopted by liner shipping companies in practice. For 

example, APM-Maersk, the largest maritime container shipping operator in the world, 

operates totally 524 ships, in which it owns 184 ships and charters 340 ships in 2007. 

Therefore, chartering in cost is also involved. 
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3.4 Numerical Example 

In this section, we use a numerical example to assess the CCP model and then 

take this numerical example as a benchmark pattern, we investigate impact of container 

shipment demand and the confidence parameter on the optimal decisions made in the 

proposed short-term LSFP problem. 

 

3.4.1 Example Design 

In the numerical example, we assume that a liner container shipping company 

intends to make a 6-month fleet plan. In order to make the example close to a realistic 

case, we design a liner ship route network consisting of 8 routes operated by a liner 

container shipping company, OOCL in Hong Kong (see Figure 3.2).  

 

 
 

Figure 3. 2 Liner shipping network for the numerical example	
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The liner shipping topology involves a total of 36 calling ports and 390 O-D pairs. 

The ports called on each liner ship route and their digital number codes are shown in 

Table 3.1. Table 3.2 gives distance of each leg in each liner ship route. The numbers, 

sizes, market prices, daily operating cost and design speed of each ship type are listed in 

Table 3.3. It is noted that the daily operating cost of each ship type is estimated by using 

the following regression equation (Shintani et al., 2007) since the exact data is 

unavailable: 

  daily operating cost 6.54 ship size TEU 1422.5    (3.17) 

 

Table 3. 1 Port calling sequence and number code for each route 

Routes Port calling sequence and number code  

CCX Los Angeles/Oakland/Pusan/Dalian/Xingang/Qingdao/Ningbo/Shanghai 

/Pusan/Los Angles (1-2-3-4-5-6-7-8-9-1) 

CPX Shanghai/Ningbo/Shekou/Singapore/Karachi/Mundra/Penang/PortKelang 

/Singapore/Hong Kong/Shanghai (1-2-3-4-5-6-7-8-9-10-1) 

GIS Singapore/Port Kelang/Nhava Sheva/Karachi/Jebel Ali/Bandar Abbas 

/Jebel Ali/ Mundra/Cochin/Singapore (1-2-3-4-5-6-7-8-9-1) 

IDX Colombo/Tuticorin/Cochin/Nhava Sheva/Mundra/Suez/Barcelona/NewYork 

/Norfolk/Charleston/Barcelona/Suez/Colombo (1-2-3-4-5-6-7-8-9-10-11-12-

1) 

NCE New York/Norfolk/Savannah/Panama/Pusan/Dalian/Xingang/Qingdao 

/Ningbo/Shanghai/Panama/New York (1-2-3-4-5-6-7-8-9-10-11-1) 

NZX Singapore/Port Kelang/Brisbane/Auckland/Napier/Lyttelton/Wellington/ 

Brisbane/Singapore (1-2-3-4-5-6-7-8-1) 

SCE New York/Norfolk/Savannah/Panama/Kaohsiung/Shekou/Hong Kong 

/Panama/New York (1-2-3-4-5-6-7-8-1) 

UKX Southampton/Hull/Grangemouth/Southampton (1-2-3-1) 
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Table 3. 2 Distances of each leg in each liner ship route 	

Routes Distance (nautical miles) 

CCX 298-4985-543-158-356-339-60-492-5230 

CPX 60-845-1460-2887-261-2510-172-210-1460-845 

GIS 210-3097-261-711- 151-151-962-953-1853 

IDX 140-161-158-186-2809-1673-3721-287-429-4124-1673-3394 

NCE 287-505-982-13 831-543-158-356-339-60-13 565-1359 

NZX 210-4050-1358-377-336-174-1448-3840 

SCE 287-505-982-12949-342-33-12 788-1359 

UKX 324-256-528 

 

Table 3. 3 Example data  

Item 
Ship types 

1  2 3  4  5  

Ship size (TEUs) 2808 3218 4500 5714 8063 

Daily cost (103 $) 19.8 22.5 30.9 38.8 54.2 

Design speed (knots) 21.0 22.0 24.2 24.6 25.2 

Chartering in rate 

(million $) 

2 2.6 3.5 4.7 6.0 

MAX
kN  2 2 9 2 12 

MAX
kNCI  5 5 3 5 5 

 

Although this example is hypothetical, it is close to a “realistic” case. This is 

because some data of the numerical example are extracted from a real liner shipping 

company-OOCL; for example, calling ports in a liner ship route, types of ships and their 

sizes and sailing speeds and so on. However, some data is still unavailable, including 

miscellaneous shipping costs and container shipment demand between two ports on a 
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liner ship route since they are business confidential. These data are thus determined in a 

reasonable manner. As for the data of container shipment demand, though OOCL 

provides the annual business report, the port-to-port container shipment demand on a 

liner ship route is not elaborated. These data are hypothetical in this example. Since the 

data of miscellaneous shipping costs and port-to-port container shipment demand are too 

many (more than one thousand), they are not listed for reasons of space. 

 

3.4.2 CCP Model Assessment 

Table 3.4 shows the confidence parameter predetermined set on each route. With 

liner shipping services at level 1   (  is given in Table 3.4), the optimal solution of 

fleet size, mix and deployment for this example is obtained by CPLEX Ver. 11 and 

shown in Table 3.5. It can be seen from Table 3.4 that the confidence parameters set on 

Route NCE and Route SCE are small, which indicates that high level of service has to be 

maintained on these two routes. Therefore, most ships are allocated to these two routes in 

order to maintain the high level of service.  

 

Table 3. 4 Confidence parameters on each liner ship route 

 Route 

 CCX CPX GIS IDX NCE NZX SCE UKX 

  0.10 0.15 0.05 0.15 0.05 0.10 0.05 0.15 
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Table 3. 5 Results to benchmark pattern 

Route 
Ship Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

S
hi

p 
al

lo
ca

ti
on

s 

1     1 2  1 

2   2      

3 2 2    1 6  

4   1 2   2  

5    4 8    

N
um

be
r 

of
 

vo
ya

ge
s 

1     8 17  26 

2   16      

3 26 26    10 21  

4   10 14   8  

5    22 24    

 

3.4.3 Sensitivity Analysis 

To study impact of container shipment demand, ten sets of container shipment 

demands are tested with the same confidence parameters in Table 3.4. These 10 sets of 

container shipment demands are generated by setting 60%, 70%,…,150% of the 

benchmark demand pattern. The trend of corresponding optimal objective function value 

with each of these 10 sets is shown in Figure 3.3. This figure indicates that with the 

increase of container shipment demand, more cost is taken to maintain the same level of 

service. The ratios of costs corresponding to other sets with the costs of benchmark 

demand pattern increase, from 70% to 130%, shown in Figure 3.4. We take three sets of 

different confidence parameters as shown in Table 3.6 to analyze their impacts on the 

optimal fleet planning solution. 
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Figure 3. 3 Objective function value for different container shipment demand sets 
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Figure 3. 4 Ratio of optimal objective function value for different sets with 

benchmark pattern 
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Table 3. 6 Three sets of confidence parameters 

Route 

  

CCX CPX GIS IDX NCE NZX SCE UKX 

Set 1 0.20 0.15 0.20 0.10 0.15 0.20 0.15 0.15 

Set 2 0.15 0.10 0.15 0.05 0.10 0.15 0.10 0.10 

Set 3 0.10 0.05 0.10 0.05 0.05 0.10 0.05 0.05 

 

Table 3. 7 Results with respect to confidence parameters in set 1  

Route 

Ship Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

S
hi

p 
al

lo
ca

ti
on

s 

1     1 2  1 

2   2      

3 2 2    1 6  

4   1 2   2  

5    4 8    

N
um

be
r 

of
 

vo
ya

ge
s 

1     8 17  26 

2   20      

3 26 26    10 21  

4   8 14   8  

5    22 25    

Cost (million $) 949.5924 

 

Since the level of service equals to 1  , it implies that a lower level of service 

corresponds to a larger value of  . Hence, Set 1 in Table 3.6 indicates a low level of 

service, Set 2 shows a medium level of service and Set 3 suggests a high level of service. 

The optimal solutions corresponding to these three sets of confidence parameters are 

listed in Tables 3.7 – 3.9, respectively. These three tables imply that the confidence 
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parameter has significant impact on the optimal fleet size and deployment. It can be also 

found that that more ships are needed and more cost are taken in order to maintain a 

higher level of service. 

 

Table 3. 8 Results with respect to confidence parameters in set 2  

Route 

Ship Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

 S
hi

p 
al

lo
ca

ti
on

s 

1      2  1 

2   2      

3 2 3   1 1 6  

4   1 2   2  

5    4 8    

N
um

be
r 

of
 

vo
ya

ge
s 

1      17  26 

2   20      

3 26 26   5 10 21  

4   7 14   8  

5    22 24    

Cost (million $) 1162.2142 
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Table 3. 9 Results with respect to confidence parameters in set 3  

Route 

Ship Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

S
hi

p 
al

lo
ca

ti
on

s 

1      2  1 

2   2      

3 3 3   1 1 6  

4   1 2   2  

5    4 8    

N
um

be
r 

of
 v

oy
ag

e 1      17  26 

2   24      

3 27 27   3 10 24  

4   3 14   6  

5    22 29    

Cost (million $) 1340.1157 

 

 

3.5 Summary 

This chapter takes the initiative to investigate the container shipment demand 

uncertainty issue arising from practice for the short-term liner fleet planning problems. 

Assuming that container shipment demand of a port pair on each liner ship route follows 

a normal distribution, the probability (chance) that shipping capacity of a liner ship fleet 

planning scenario cannot meet the demand does exist. In other words, the liner container 

shipping company failed to make the service for its customers with this probability. The 

level of service is proposed to represent the probability of satisfying the customers’ 

requirement, and it can be formulated as a chance constraint. To maintain a certain level 

of service, the company must control this probability (or chance) within a given level 
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called confidence parameter. We therefore develop a chance constrained programming 

model for the short-term LSFP problem with container shipment demand uncertainty. 

The proposed model can be solved by many optimization solvers such as CPLEX because 

it is an integer linear programming model. A numerical example has been carried out for 

the model assessment and impact analysis of the confidence parameters and cargo 

shipment demand. 

It is noted that in this Chapter, the container shipping company aims to maintain a 

certain level of service on each leg, namely Eq. (3.8). This equation makes us simplify 

the CCP model and obtain an analytical form, namely Eq. (3.16). If the container 

shipping company aims to maintain a certain leve lof service on each route, Eq.(3.8) 

should be rewritten as follows: 

  
1, ,

Ρr max 1 ,
r

r
kr k l r

l m
k

x V r 


      
 
 


  (3.18) 

In this case, it is difficult to obtain the analytical form of Eq. (3.18). To deal with 

this issue, we can use Mento Carlo simulation to approximate. The procedures are 

described as follows: 

Step 1: Generate a sample for each O-D port pair, namely  ,i j
r rp p . 

Step 2: Calculate the realization of r
l   1,..., ;rl m r    according to Eq.(3.6). 

Step 3: Find the maximal value of the realizations of all r
l  1,..., ;rl m r   , namely 

to find  
1, ,
max

r

r
l

l m


 
 for each r . 

Step 4: Repeat the three steps addressed above for a number of times, say 1000 times. 

Step 5: Sort the 1000 values of  
1, ,
max

r

r
l

l m


 
 by acesending order for each r . 
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Step 6: Note the value of  
1, ,
max

r

r
l

l m


 
 corresponding to an order of  1000 1 r   for each 

r , denoted by max
r . 

Therefore, we can rewrite Eq. (3.18) as the following closed form: 

 max ,r
kr k

k

x V r


  


  (3.19) 
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CHAPTER 4 A TWO-STAGE STOCHASTIC INTEGER 

PROGRAMMING MODEL FOR SHORT-TERM LSFP 

4.1 Introduction 

Chapter 3 deals with the uncertain container shipment demand by assuming that 

the container shipment demand of each port pair is a random variable following a normal 

distribution with a given mean value and variance. Further, a confidence parameter on a 

liner ship route is set to represent the probability that a liner container shipping company 

fails to meet the container shipment demand on this liner ship route. Thus the short-term 

LSFP problem with uncertain container shipment demand is then formulated as a CCP 

model. However, transshipment of containers, which is an intrinsic characteristic of liner 

shipping services and widely used in liner shipping, is not taken into account in Chapter 3. 

Transshipping containers at a hub port is a typical liner shipping operations 

nowadays because it enables to deploy large ships calling at hub ports to benefit the 

economies of scale in ship size (Cullinane and Khanna, 1999). As reported by 

Vernimmen et al. (2007), about one third of the laden container throughput in the world is 

made up of transshipped containers. Mourão et al. (2001) made the first attempt on the 

liner ship fleet deployment problem with container transshipment and deterministic 

container shipment demand. They investigated a hypothetical hub-and-spoke (H&S) 

network with one pair of ports and two ship routes - one feeder route and one main route. 

All containers had to be transshipped at the hub port in the feeder route. This model is too 
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simple to reflect the realistic ship fleet deployment, however. Therefore, this chapter 

studies the short-term LSFP problem with container transshipment and uncertain 

container shipment demand.  

Container transshipment operations mean that there can be multiple container 

routes between an origin and a destination, and some of these container routes involve 

more than one ship route. The short-term LSFP problem should therefore choose the best 

container routes and assign the right number of containers to each of these container 

routes. In fact though, the short-term LSFP problem taking into account container 

transshipment and demand uncertainty is a new research issue with practical importance; 

most of the existing relevant literature (Ronen, 1983 and 1993; Perakis, 2002 and 

Christiansen et al.2004) assumes deterministic container shipment demand. This chapter 

thus focuses on model formulation and algorithm development for this new research issue. 

In this chapter, we investigate the short-term LSFP problem with container 

transshipment and uncertain container shipment demand.  To characterize the uncertainty, 

we first assume that the number of containers transported from an origin port to a 

destination port is a random variable. With these random container shipment demands, 

the proposed LSFP problem can be formulated as a two-stage stochastic integer 

programming model with the objective of maximizing the expected value of the total 

profit. To solve this, a solution algorithm integrating the sample average approximation 

method and a dual decomposition and Lagrangian relaxation approach will be developed.   

The remainder of this chapter is organized as follows: Section 4.2 firstly 

introduces a novel concept of container route to formulate the issue of container 

transshipment and then develops a two-stage stochastic integer programming (2SSIP) 
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model for the short-term LSFP problem with container transshipment and uncertain 

container shipment demand. Section 4.3 presents the solution algorithm which integrates 

the sample average approximation method and dual decomposition and Lagrangian 

relaxation approach. Section 4.4 uses a numerical example to evaluate the model and 

solution algorithm proposed in this study and analyzes the numerical example to verify 

the necessity and rationality of our 2SSIP model. Finally, Section 4.5 summarizes the 

work of this chapter. 

 

 

4.2 Model Development 

Before the development of a two-stage stochastic programming model which aims 

to maximize the expected profit for the short-term LSFP problem with container 

transshipment and uncertain container shipment demand, we firstly introduce the concept 

of container route to deal with the container transshipment issue. 

 

4.2.1 Container Routes with Container Transshipment Operations 

Let   ,o d o d = ,    be the set of origin-to-destination (O-D) port pairs 

with container shipment demand, and od  be the number of containers in terms of TEUs 

(acronyms of twenty-foot equivalent unit) to be transported between an O-D port pair 

 ,o d   in the short-term planning horizon (6 months). As aforementioned in Chapter 

3, the liner container shipping company provides regular shipping service on a 

predetermined liner ship route network, in other words, the route of ships is fixed 
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(illustrated in Figure 3.1). However, the route of containers may be different from the 

route of ships because there are usually many candidate routes for transporting containers 

from their origin to destination due to transshipment. Given the set of ship routes  , the 

liner container shipping company can predetermine a set of candidate container routes to 

deliver containers between an O-D port pair  ,o d  , denoted by od . A container 

route od odh   is either a part of one particular ship route or a combination of several 

ship routes to deliver containers from original port o  to destination port d  . 

Container transshipment operations are involved in any container route made up of 

several ship routes. For example, there are two possible container routes from Jakarta (JK) 

to Shanghai (SH) in Figure 4.1: 

        Ship Route 1 Ship Route 3JK SH 1 2 2 3
1 1 1 3 3JK SG SG SHh p p p p     (4.1) 

    Ship Route 2JK SH 1 2
2 2 2JK SHh p p    (4.2) 

The first container route JK.SH
1h , made up of two ship routes, involves container 

transshipment operations: containers are loaded at the first port call of ship route 1 

(Jakarta) and delivered to the second port of call of ship route 3 (Singapore). At 

Singapore port, these containers are discharged and reloaded (transshipped) to a ship 

deployed on ship route 3, and transported to the destination port, Shanghai. However, the 

second container route JK.SH
2h  provides direct delivery service via ship route 2 without 

container transshipment.  
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Figure 4. 1 Three liner ship route 

 

A container route contains all the information on how containers will be 

transported, such as origin, destination, ports called along the route and transshipment 

port(s). The introduction of the concept of container route facilitates the model 

formulation as the complex container delivery process is simplified and represented by a 

finite number of container routes. Some container routes for the liner shipping network in 

Figure 4.1 are provided in Table 4.1. An O-D port pair may have several container routes, 

and the volume of containers to be transported between this O-D port pair could be 

spitted among these container routes. Let   be set of all these predetermined container 

routes for all the O-D port pairs, namely,  

 
 ,

od

o d 

 


   (4.3) 
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Table 4. 1  Container route plans for different O-Ds 

O-D Container route plans 

JK-SH JK.SH
1h :        1 2 2 3

1 1 3 3JK SG SG SHp p p p   

 JK.SH
2h :    1 2

2 2JK SHp p  

SH-PK SH.PK
1h :      3 4 1

3 3 3SH SG PKp p p   

SH-SG SH.SG
1h :    2 3

2 2SH SGp p  

 SH.SG
2h :    3 4

3 3SH SGp p  

 

4.2.2 Two-Stage Stochastic Integer Programming Model 

Before the development of an optimization model which aims to maximize the 

expected value of profit for the short-term LSFP problem with container transshipment 

and uncertain demand, the following decision variables are introduced as follows: 

OWN
krn  number of owned ships of type k ( k ) assigned on route r ( r ) 

IN
krn  number of chartered in ships of type k ( k ) assigned on route r ( r ) 

OUT
kn  number of chartered out ships of type k ( k  ) 

krx  number of voyages of ships of type k ( k  ) on route r ( r ) 

odhz   number of containers between O-D port pair  ,o d   carried by ships 

deployed on the container route od odh  .  

 

The revenue earned by the liner container shipping company comes from two 

resources: one is the rent of chartering out ships to other liner operators; and the other is 

freight rate of shipping containers for shippers. Let OUT
kc  denote the rate received for 
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chartering out a ship of type k in the planning horizon ($/ship), then the revenue gained 

from chartering ships out is given by: 

 OUT OUT
k k

k

c n




 (4.4) 

As for the revenue of shipping containers, it is uncertain due to the uncertainty of 

container shipment demand. Let ξ  be a random vector defined over a probability space 

 , ,F   where   is the set of elementary outcomes  , F is the event space and   is 

the probability measure. The container shipment demand of an O-D port pair  ,o d   

denoted by od  is a random variable. Given ωod , which is a realization of the random 

parameter od , then 
odhz  is obviously a function with respect to ωod . Let odf  denote the 

freight rate of delivering a container with an O-D port pair  ,o d   ($/TEU), the 

revenue of shipping containers for all O-D port pairs along all liner ship routes is given 

by:   

  
 ,

ω
od

od od

od h od

o d h

f z
 
 

 

 (4.5) 

The total costs incurred by the liner container shipping company consist of three 

components: container handling cost, ship operating cost and ship chartering in cost. The 

container handling cost incurred on a container route includes the loading cost at the 

origin port, container discharging cost at the destination port and transshipment costs at 

any transshipment ports. Different container routes between an O-D port pair may result 

in different container handling cost. For example, the first container route shown in Eq. 

(4.1) and the second container route shown in Eq. (4.2) both involve the container loading 

cost at JK and container discharging cost at SH, but the first container route is associated 
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with an additional transshipment cost at SG. Let 
odhc ($/TEU) denote the container 

handling cost per TEU incurred on the container route od odh   and the total container 

handling cost can be calculate as: 

  
 ,

od od

od od

h h od

o d h

c z 
 
 

 

 (4.6) 

Let krc  denote the operating cost of ships of type k on ship route r per voyage, 

including fuel consumption costs, administration costs, fixed daily operating costs, port 

charges and canal fees (if any). The total ship operating cost plus the rent paid for 

chartering in ships is given by: 

 IN IN
kr kr k kr

r k r k

c x c n
   

 
   

 (4.7) 

It should be noted that the decision regarding OWN
krn , IN

krn , OUT
kn  and krx  are made 

prior to a realization of the random container shipment demand   ξ ,od o d  , which 

is denoted by ωod . In reality, the number of containers between an O-D port pair 

 ,o d   assigned to a particular container route, denoted by 
odhz , can be determined 

only after the realization of container shipment demand. In other words, OWN
krn , IN

krn , OUT
kn  

and krx  are made before 
odhz . We can thus break down the decisions into two stages. In a 

two-stage stochastic optimization model, the set of decisions are divided into two groups: 

the first-stage decision variables are those that have to be decided before the actual 

realization of the uncertain parameters and often referred to as here-and-now decisions. 

Subsequently, when the random events have presented themselves, further design or 

operational policy improvements can be made by selecting the values of the second-stage 

decision variables, which are often referred to as wait-and-see decisions. Therefore, in 
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our LSFP problem, the set of decisions is broken down into two groups. OWN
krn , IN

krn , OUT
kn  

and krx  are first-stage decision variables because they are determined before knowing the 

actual container shipment demand of each O-D port pairs; once they are determined, the 

number of containers picked up and delivered by ships are then further determined, 

namely 
odhz  are second-stage decision variables. Since the objective of the two-stage 

stochastic integer programming (2SSIP) model is to choose the first-stage variables in a 

way that the sum of the profit of the first stage and the expected profit of the second stage 

is maximized, the optimization model of the short-term LSFP is given by: 

        OUT OUT IN IN
ξ

ˆmax , ωk k kr kr k k
k r k

Z c n c x c n Q
  

    v v ξ    
  

       (4.8) 

subject to: 

 OWN MAX ,kr k
r

n N k


  


  (4.9) 

 IN MAX ,kr k
r

n NCI k


  


  (4.10) 

 OUT MAX OWN ,k k kr
r

n N n k


   


  (4.11) 

  OWN IN , ,kr kr kr
kr

T
x n n r k

t

 
      

 
   (4.12) 

 ,kr r
k

x N r


  


  (4.13) 

  OWN IN OUT, , , 0 , ,kr kr k krn n n x r k       (4.14) 

where vector  OWN IN OUT
kr kr k krn n n xv       contains all of the first-stage decision 

variables for succinctness, krt  is the voyage time of a ship of type k on a particular ship 

route r (in days), rN  is the minimal number of voyages required on route r during the 
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planning horizon in order to maintain a given liner shipping service frequency. 

  ˆ , ωQξ v ξ     is the expected recourse function in which   ˆ , ωQξ v ξ  is the optimal 

objective function value for the following second-stage optimization problem with a 

given vector v  and a given realization  ξ  of the random container shipment demand 

vector   : ,od o d ξ  : 

       
 

ξ
,

ˆ , ω max ω
od od

od od

od h h od

o d h

Q f c z
 

  v ξ
 

 (4.15) 

subject to 

  
 ,

ω , 1, , ,
od od

od od

h h od
kr k ir r

k o d h

x V z i m r
  

      
  

  (4.16) 

  
   

   
, ,

ω ξ ω , ,
od

o d o d

h od od od

h

z o d


  


  (4.17) 

  0, , ,
odh od odz o d h       (4.18) 

where kV  is size of a particular ship k (TEUs) and 
odh

ir  is a binary variable, which equals 

1 if a container route od odh   contains leg i of ship route r, or 0 otherwise. 

Eq. (4.8) is the objective function of the two-stage stochastic integer programming 

model, which is equivalent to maximizing the expected value of the total profit. 

Constraints (4.9) and constraints (4.10) ensure the number of owned and chartered in 

ships should not exceed the maximum available ships. The number of chartering out 

ships is given by Eqs. (4.11). Constraints (4.12) compute the maximal number of voyage 

that ships of type k can complete on route r, where a    denotes the maximum integer not 

greater than a. rN  represents the minimal amount of voyages required on route r during 

the planning horizon in order to maintain a given level of frequency. For example, if a 
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weekly frequency is required on each route, then 26rN   for a 6-month planning horizon. 

Therefore, Constraints (4.13) guarantee the number of voyages required on route r in 

order to maintain a given level of liner shipping frequency. The constraints (4.14) require 

that the decision variables OWN
krn , IN

krn , OUT
kn  and krx   are nonnegative integers.  

The left-hand side of Constraints (4.16) represents the total transportation capacity 

of ships deployed on the liner ship route r . The right-hand side computes the total 

number of containers carried by ships sailing on leg i of route r , including the 

containers loaded at previously calling ports but still remained on ships and the containers 

loaded or transshipped at port i
rp . Therefore, Constraints (4.16) ensure that the container 

flow on each leg carried on the ships cannot exceed the ship capacity deployed on the 

ship route. Constraints (4.17) imply the containers carried on the ships cannot exceed the 

realization of the demand. Constraints (4.18) defines the range for decision variables of 

odhz . 

Substituting OUT
kn  in the objective function expressed by Eq. (4.8) with the right-

hand sides of Eqs. (4.11) yields the following two-stage stochastic integer programming 

(2SSP) model with fewer first-stage decision variables denoted by the vector 

 OWN IN
kr kr krn n xv     .  

[2SSIP] 

      OUT MAXmin , ωT
k k

k

Z Q c N


  v c v v ξ   


 (4.19) 

subject to constraints (4.9)-(4.10), (4.12)-(4.14). where vector  OUT IN
k k krc c cc      

groups the cost coefficients in the first-stage problem and   , ωQξ v ξ  is the optimal 
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objective function value for the following second-stage optimization problem with a 

given vector v  and a given realization  ξ  of the random container shipment demand 

vector   : ,od o d ξ  : 

       
 ,

, ω min ω
od od

od od

h od h od

o d h

Q c f z
 

  ξ v ξ
 

 (4.20) 

subject to constraints (4.16)-(4.18). 

 

 

4.3 Solution Algorithm 

As presented by Ahmed (2004), there are some potential sources of difficulty in 

solving a 2SSIP model. Firstly, for given first-stage decisions, an evaluation of the 2SSIP 

problem (4.19) involves a very huge number of programming problems (4.9)-(4.18), one 

for each scenario of the realization of the uncertain parameters in this problem. 

Additionally, the expected recourse function   , ωQξ v ξ     is only implicitly defined 

and depends on the current decisions and usually involves optimization problems 

embedded in expectation, making the problem very difficult to solve. If the uncertain 

parameters have a continuous distribution, the evaluation of   , ωQξ v ξ     involves 

integrating the value function of an integer program and is in general impossible; if the 

uncertain parameters have a discrete distribution, it involves solving a huge number of 

similar integer programs. Therefore, the conventional integer programming tools are 

quite cumbersome and computational intractable due to the inherent problem complexity 

and its large number of variables and constraints. 
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The implicit definition of expected recourse function   , ωQξ v ξ     is the 

essential factor making the proposed 2SSIP model difficult to solve, so an effective way 

is needed to handle it. Some methods can be used to deal with the expected recourse 

function, such as Stochastic Linearization Method (SLM) (Ermoliev, 1988); Successive 

Linear Approximation Procedure (SLAP) method (Frantzeskakis and Powell, 1990); 

network recourse decomposition (NRD) methods (Powell and Cheung, 1994); Successive 

Convex Approximation Method (SCAM, Cheung and Powell, 1996); Stochastic Hybrid 

Approximation Procedures (SHAPE, Cheung and Powell, 2000); and Sample Average 

Approximation (SAA) method (Kleywget et al., 2001). However, SLM, SLAP and 

SHAPE cannot obtain an integral solution; SLAP requires the expected recourse function 

is convex; SCAM and SHAPE use a convex, piecewise linear and separable function to 

replace the expected recourse function; and NRD is applicable in a problem with a tree 

structure. Therefore, those methods, SLM, SLAP, NRD, SCAM and SHAPE are 

improper to be employed as a solution approach for our problem. 

The proposed 2SSIP model (4.19) has three characteristics: (i) the expected value 

function   , ωQξ v ξ     does not have a closed form and its values cannot be calculated 

easily, (ii) the optimal objective function expressed by Eq. (4.20) of the second-stage 

optimization problem can be calculated easily for a given first-stage decision and a 

realization of the random container shipment demand, by means any efficient algorithm 

for solving the linear programming problems, (iii) the number of feasible first-stage 

decisions is very large so that the enumeration approaches are not feasible. These three 

characteristics enable us to employ the sample average approximation (SAA) method 

proposed by Kleywegt et al. (2001) for solving the 2SSIP model. 
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The main procedure involved in using the SAA method to solve the 2SSIP model 

is as follows: first, a sample 1, , Nξ ξ of N realizations of the random container shipment 

demand vector  ωξ  is generated and the expected value function   , ωQξ v ξ     is 

approximated by the sample average function   1

1
,

N

ll
N Q

 ξ v ξ ω .  The 2SSIP model 

expressed by Eqs. (4.19)-(4.20) can be thus approximated by the SAA problem: 

[SAA] 

      OUT MAX

1

1
min ,  

NT
l k kl

k

Z Q c N
N 



   ξv c v v ξ ω


 (4.21) 

subject to the constraints  (4.9)-(4.10) and (4.12)-(4.14), where   , ωlQξ v ξ  

 1, 2, ,l N   is the optimal objective function value for the following second-stage 

optimization problem with a given vector v and a given realization 

      ω : ,od od
l l o d  ξ  .   

       
 ,

, ω min ω
od od

od od

h od h od
l l l

o d h

Q c f z
 

  ξ v ξ
 

 (4.22) 

subject to 

  
 ,

ω , 1, , ,
od od

od od

h h od
kr k ir l l r

k o d h

x V z i m r
  

      
  

  (4.23) 

  
   

   
, ,

ω ξ ω , ,
od

o d o d

h od od od
l l l l

h

z o d


  


  (4.24) 

  0, , ,
odh od od

lz o d h       (4.25) 
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4.3.1 Dual Decomposition and Lagrangian Relaxation 

It can be seen that the SAA problem expressed by Eqs. (4.21)-(4.25) involves N 

linear programming problems shown by Eqs. (4.22)-(4.25). Each of these linear 

programming problems corresponds to one realization (or scenario) of the random 

container shipment demand and need to be solved to obtain the expected value associated 

with a given first-stage decisions. One possible way to solve the SAA problem is as 

follows. We first enumerate all feasible first-stage solutions, and then calculate the value 

of the objective function shown in Eq. (4.21) with respect to each feasible first-stage 

decision after solving the corresponding N linear programming problems. Finally, we 

choose a feasible first-stage decision with the minimum objective function value. This 

method might be workable for very small scale problems but not for real-life problems.   

The dual decomposition and Lagrangian relaxation approach, proposed by Carøe 

and Schultz (1999), can be used for solving the SAA problem effectively because it can 

decompose the SAA problem into N sub-problems based on those the container shipment 

demand realization. To make the decomposition, the first-stage decision variables are 

duplicated with respect to each container shipment demand realization, denoted by 

 , 1, 2, ,l l Nv  . The SAA problem can be rewritten as follows: 

  
 

OUT MAX

1 1
,

1 1
min

od od

od od

N NT h od h
N l l k kl l

o d kh

Z c f z c N
N N 

 

 
    

  
    c v

 

(4.26) 

subject to the constraints  (4.9)-(4.10) and (4.12)-(4.14), duplicated with respect to each 

container shipment demand realization, the constraints (4.23)-(4.25) for each container 

shipment demand realization, and the non-anticipativity constraints: 

 1 N v v  (4.27) 
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The above non-anticipativity constraints imply that the first-stage decision should not 

depend on the container shipment demand realizations that prevails in the second-stage 

optimization problem; and they can be alternatively expressed as 

 1, 1, 2, , 1l l l N  v v   (4.28) 

Eqs. (4.28) can be written below using the matrix notation: 

 
1

N

l l
l

H v 0  (4.29) 

where lH  is a suitable matrix with    1 3N KR   rows and 3KR columns for l = 1,…,N 

(3KR is the total number of first-stage decision variables, OWN
krn , IN

krn  and krx ), defined as 

follows: 

 
     
   

1 2 3

1

, , , , , , , , , , , , ,

, , , , , ,

T T T

T T

N N

    

   

H I 0 0 H I I 0 0 H 0 I I 0

H 0 I I H 0 0 I

   

 
 (4.30) 

where I and 0 are the square unity matrix and the zero matrix of size 3KR, respectively. 

Let λ  be a    1 3 -dimensionalN KR  vector of Lagrangian multiplier 

associated with the non-anticipativity constraints. The corresponding Lagrangian 

relaxation of the SAA problem can be formulated below: 

[LR]  

    
 

OUT MAX

1
,

1 1 1
min

od od

od od

N T h od h T
l l l l k kl

o d kh

LR c f z c N
N N N

 

 
     

  
   λ c v λ H v

 

  (4.31) 

subject to the constraints  (4.9)-(4.10) and (4.12)-(4.14), duplicated with respect to each 

container shipment demand realization, the constraints (4.23)-(4.25) for each container 

shipment demand realization and the non-anticipativity constraints. This LR model can 
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be further decomposed into N  separate mixed-integer linear programming problems 

corresponding to the N  container shipment demand realizations, namely: 

    
1

N

l
l

LR LR


λ λ  (4.32) 

where 

   
 

OUT MAX

,

1 1 1
min

od od

od od

T h od h T
l l l l k k

o d kh

LR c f z c N
N N N 

      λ c v λ H v
 

 (4.33) 

subject to the constraints  (4.9)-(4.10), (4.12)-(4.14) and (4.23)-(4.25) associated with the 

thl  container shipment demand realization.  

Each sub-problem shown in Eq. (4.33) can be solved using an efficient 

optimization solver such as CPLEX. It is straightforward to demonstrate that  LR λ , the 

optimal objective function value of the LR model with respect to a given Lagrangian 

multiplier λ , is a lower bound on the optimal function value of the SAA problem (4.21). 

The best or tightest lower bound can be found by solving the Lagrangian dual model: 

 [LD] 

  maxLD LR
λ

λ  (4.34) 

This Lagrangian dual model is a concave maximization problem with the non-

differentiable objective function  LR  . Eqs. (4.31)-(4.32) further show that *

1

N

l l
l
H s  is 

a subgradient of the convex and non-differentiable function  LR   where *
ls  is the 

optimal solution to the thl sub-problem  shown in Eq.(4.33), namely: 

  *

1

N

l l
l

LR 


H s  (4.35) 

With this subgradient, the LR model can be solved by the following subgradient method: 
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Step 0:  Take an initial Lagrangian multiplier vector  1λ and a predetermined step size 

sequence     1 2, ,   . Let the number of iterations 1h  . 

Step 1:  Calculate the subgradient  *

1

N
h

l l
l
H v  by solving the subproblem shown in Eq. 

(4.33) with respect to the Lagrangian multiplier vector  hλ . 

Step 2:  Update the Lagrangian multiplier vector according to the formula: 

      1 *

1

N
h h hh

l l
l





  λ λ H v  (4.36) 

Step 3:  If the following criterion is fulfilled, the algorithm is terminated. Otherwise, let 

1h h   and go to Step 1. 

       1h h hLR LR LR   λ λ λ  (4.37) 

where   is a given tolerance value. 

The global convergence of this subgradient method has already been proved, 

provided that the step size satisfying the square is summable but the step size conditions 

are not summable (see Shore, 1985): 

         2

1 1
0 1, 2, , ,   and h h h

h h
h   

 
           (4.38) 

This study adopts the typical step size sequence   1/ , 1, 2, ,h h h     that fulfills the 

above condition.   
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4.3.2 Sample Average Approximation 

The SAA method proposed by Kleywegt et al. (2001) is a Monte Carlo simulation-based 

approach to the 2SSIP model. The quality of the solution from the SAA method, 

depending on the number of samples and the sample size, can be assessed by statistical 

analysis techniques. The optimal solution of (4.21), ˆ Nv , and the optimal objective 

function value, ˆNv , can converge to an optimal solution of the original problem  (4.19)-

(4.20) as the sample size increases (Kleywegt et al., 2001). We can choose N considering 

the trade-off between the qualities of the solution obtained for the SAA problem and the 

computational effort needed to solve it in practice.  

Let 

m index for the number of sample 

M number of samples 

N size of each sample (i.e., the number of the realizations) 

ˆ m
Nv  optimal first-stage decisions of the m-th SAA problem with sample size N 

ˆm
Nv  optimal objective function value of the m-th SAA problem with sample size N 

ˆm
Nv   optimal objective function value of the m-th SAA problem with sample size N   

v  optimal objective function value of the original problem 

M
NL  lower bound to the optimal objective function value of the original problem 

M
NU   upper bound to the optimal objective function value of the original problem 

, ,M N N   gap between the lower bound and upper bound  
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The SAA method, incorporating with the dual decomposition and Lagrangian 

relaxation approach and the relevant statistical moment estimation, is presented as 

follows: 

Step 0: Generate M samples of the random container shipment demand, where each 

sample has size N , namely,   1 , , , , 1, 2, ,m m m
l N m Mξ ξ ξ   .  

Step 1: Solve the SAA problem corresponding to each container shipment demand 

sample  1 , , , ,m m m
l Nξ ξ ξ  , 1, 2, ,m M  , by using the above-mentioned dual 

decomposition and Lagrangian relaxation approach. Let 1ˆ ˆ, , M
N Nv v and 1ˆ ˆ, , M

N Nv v  

be the optimal first-stage solutions and objective function value of the SAA 

problem (4.21), respectively. 

Step 2: Calculate a point estimation of a lower bound on the optimal function value of the 

2SSIP model (4.19) using  

 
1

1
ˆ

M
M m
N N

m

L v
M 

   (4.39) 

Step 3: For each optimal solution ˆ m
Nv  obtained in Step 1 ( 1,2, ,m M  ), independently 

generating another container shipment demand sample  ˆ1 2
ˆ ˆ ˆ, , ,m m m

N
ξ ξ ξ  where the 

sample size here is N̂  ( N̂  is much larger than N ), and calculate  

      OUT MAX

1

1 ˆˆ ˆ ˆ ˆ ,
ˆ

Nm m T m m
N N N N l k kl

k

v Q c N
N



 


   ξv c v v ξ ω


 (4.40) 

             ˆˆ ˆm m
NN

v v  is an unbiased estimation of an upper bound for the optimal function 

value of the 2SSIP model because ˆ m
Nv  is one of its feasible solutions. The best 

upper bound on v is given by:  
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1, ,

ˆ ˆminM m m
N N Nm M

U v 


 v


 (4.41) 

Step 4: Calculate an estimate of the gap between M
NL and M

NU   as follows: 

 , ,
M M

M N N N NU L     (4.42) 

It has been proved by Norkin et al. (1998b) and Mak et al. (1999) that the 

expected value of ˆNv is less than or equal to the optimal value v of the original problem 

(4.19), namely  ˆNv v . However, it is impossible to get the exact value of  ˆNv , 

which indicates that  ˆNv  has to be approximated by its sample mean since the sample 

mean is an unbiased estimator of  ˆNv . In order to get the sample mean, M samples are 

generated (i.e. Step 0) and then the sample mean, denoted by M
NL , is calculated (i.e. Step 

1) using Eq. (4.39). Since the calculated sample average M
NL  in Eq. (4.39) is an unbiased 

estimator of  ˆNv , M
NL  is less than or equal to the optimal value v of the original 

problem. Thus, M
NL  is a lower bound for v . 
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4.4 Numerical Example 

In this section we implement the model for the data in a numerical example in 

order to validate the applicability of the proposed methodology. We firstly describe the 

characteristics of the numerical example and then do a sensitivity analysis of the SAA 

parameters, and finally explore the effect of variance value of uncertain container 

shipment demand on the objective function value of the stochastic programming solution 

and comment on the quality of the stochastic programming solutions in comparison to 

those obtained using a deterministic approach. 

 

4.4.1 Experiment Design 

We use an example to assess the 2SSIP model and the solution algorithm 

developed for solving the short-term LSFP problem with container transshipment and 

uncertain container shipment demand. We assume that a liner container shipping 

company intends to make a 6-month fleet plan. The liner shipping network depicted in 

Figure 3.2 is used here as a numerical example. This liner shipping network consists of 8 

routes involving a total of 36 calling ports, serves 390 O-D pairs and generates 443 

container routes. (see Figure 3.2). The ports called on each liner ship route and their 

digital number codes are shown in Table 3.1. The distance of each leg in each liner ship 

route is given in Table 3.2. The parameters of the numbers, sizes, chartering in rent, daily 

operating cost and design speed of each ship type are set the same value with that in the 

numerical of Chapter 3, listed in Table 3.3. The parameters of chartering out ships of 

each type are shown in Table 4.1. The daily operating cost of each ship type is computed 

by Eq. (3.17). 
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Table 4. 2 Parameters of chartering out rate 

Item 
Ship types 

1 2 3 4 5 

Chartering out rate 

(million $) 

1.82 

 

2.34 

 

3.21 

 

4.32 

 

5.12 

 

 

The random container shipment demand of each O-D pair d   is assumed to 

follow a normal distribution, that is  ,d d dN    with probability distribution function 

Fd (the demands are assumed to be independent) in this numerical example. The rationale 

of assuming normal distribution is that the deviation of the forecasted demand and the 

real demand is often approximately normally distributed and especially the normal 

distribution has been established to be suitable to describe the demand uncertainty by 

Brown (1959). The ratio d d   is assumed the same for all O-D pairs d   in order to 

simplify the data generation process. Since d  reflects the uncertainty level of container 

shipment demand, it can be set as different levels in order to investigate the effect of level 

of container shipment demand uncertainty on profit. The investigation is shown in 

Section 4.4.3. It is noted that the distribution tails are truncated in order to guarantee all 

generated values of demand are positive. In this way the values we generated are all from 

a range where the distribution has higher density and none values are from two-side tail 

regions. 

We set the stop tolerance 610   in the subgradient method, and the number of 

samples 20M   and ˆ 1000N   in the SAA method. The solution algorithm is 

programmed using the programming language Lua (v5.1) with a mixed integer linear 
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programming solver. All computations are carried out on a desktop personal computer 

with Intel (R) Core (TM) 2 CPU 1.86 GHz and 2.0 GB of RAM under Microsoft 

Windows 7. 

 

4.4.2 Sensitivity Analysis of the Sample Size N in the SAA Method 

Within the sample average approximation method, the sizes of the deterministic 

equivalents of the SAA problems corresponding to the different values of N are presented 

in Table 4.3. Table 4.4 gives the lower bound, upper bound, gap and 95% confidence 

interval of the gap, for each sample size  20,30, 40,50,60N  , obtained using the 

proposed solution method. According to Table 4.4, the confidence interval of the 

optimality gap becomes narrower as the sample size increases. We thus take the sample 

size 60N   in the subsequent analysis, in view of the acceptable confidence interval that 

results from this sample size.  

 

Table 4. 3 Size of the deterministic equivalent of the SAA problem	

N Constraints Variables 

1 510 510 

10 5,100 5,100 

20 10,200 10,200 

30 15,300 15,300 

40 20,400 20,400 

50 25,500 25,500 

60 30,600 30,600 
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Table 4. 4 Statistical lower bound, upper bound, estimated gap and confidence 

interval with M = 20 and N’ = 1000 

N Lower bound 

(×106) 

Upper bound 

(×106) 

Estimated gap 

(×106) 

95% Confidence interval 

(×106) 

 Average Average Average Min Max Interval

20 8875.531 8877.881 2.350 -1.291 5.991 7.282 

30 8876.902 8878.574 1.672 -1.763 5.108 6.871 

40 8875.375 8877.636 2.261 -0.680 5.202 5.882 

50 8875.220 8877.193 1.973 -0.899 4.845 5.744 

60 8874.668 8877.005 2.337 -0.010 4.685 4.695 

 

4.4.3 Results Discussions 

We now investigate the effect of container shipment demand uncertainty, by 

comparing the average profits obtained from the proposed 2SSIP model to those obtained 

from the expected value problem (EVP), that is the profits obtained where the uncertain 

container shipment demands are replaced by their mean values from the 2SSIP model. 

After solving the EVP, the optimal first-stage solutions, that is the fleet design and 

deployment decisions, are obtained. Given these optimal first-stage solutions obtained 

from the EVP, we compute the EEV (see Birge and Louveaux, 1997), that is the expected 

value of the EVP solution, by computing the expected value of the EVP first-stage 

solution across a large number of different scenarios of container shipment demand. 

In order to investigate the effect of container shipment demand uncertainty, three 

different levels (low, medium, and high) of standard deviations of the uncertain container 

shipment demands are considered. They are set as 5%, 10% and 15% of the expected 
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mean value respectively for each level. In Figure 4.2, the average profits obtained using 

the 2SSIP model, corresponding to these three levels, are compared with those obtained 

using the EVP. It is clearly observed that the estimated average profits in the 2SSIP 

model corresponding to all three levels of variance are smaller than those in the EVP. 

This is reasonable because, in the EVP, the container shipment demands are deterministic 

rather than random, their values given by the mean values used in the 2SSIP model; thus 

the EVP could be regarded as a problem with deterministic container shipment demand. 

Therefore, the EVP with deterministic container shipment demand would be expected to 

have a higher yield than the 2SSIP model with uncertain container shipment demand. 

This indicates that the precision of the estimate of container shipment demand is 

significant for a liner container shipping company. Moreover, it is found that the expected 

profits decrease with an increase in the variance of container shipment demands. This 

further verifies the significance of container shipment demand information for the liner 

container shipping company.  
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Figure 4. 2 Average profits of 2SSIP model and EVP with N = 60 
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After solving the EVP, the optimal first-stage solutions, that is the decisions about 

the numbers and types of ships in the fleet and the ship-to-route allocation, are obtained; 

then, the EEV can be computed by implementing the EVP first-stage solution for a large 

number of different scenarios of container shipment demand. The EEVs and the expected 

profits from the 2SSIP model associated with low, medium and high standard deviations 

of container shipment demand are depicted in Figure 4.3. It is clear that the estimated 

average profits of the 2SSIP model corresponding to the three levels of variance are all 

higher than the EEVs, which shows that the 2SSIP model would be expected to have a 

higher yield than the EVP and indicates that the 2SSIP model is superior to the EVP. 

Also, we find that the ratios between the objectives for 2SSIP and EEVs increase with 

increasing variance (as expected). However, we have to acknowledge that the average 

profit obtained from the 2SSIP model is weak because we can only set  proper but not 

precise values of the SAA parameters, M, N and N’. Additionally, although Shore (1985) 

proved that, theoretically,  hLR LDλ  in the dual decomposition method, it is quite 

difficult to reach the convergence point in practice. We can only set a tolerance τ  in 

order to find a relative better solution with an acceptable level of precision. 

The liner ship fleet plans suggested by the 2SSIP model and the EVP with a low 

variance of container shipment demand are shown in Tables 4.5 and Table 4.6, 

respectively. Both fleets contain a total of 34 ships. However, the two plans are different. 

Under the 2SSIP model, the liner container shipping company makes up its fleet using 

four types of ships, charters out three ships and charters in ten ships; under EVP, its fleet 

contains five types of ship, eight ships are chartered out and one ship is chartered in.  
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Figure 4. 3 Average profits of 2SSIP model and EEV for different variances 

 

Table 4. 5 Liner ship fleet plan produced by the 2SSIP model with low variance 

Route 

Ship Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

S
hi

p 
al

lo
ca

ti
on

s 

1   2   2 3  

2        1 

3 3 3 1   1 3  

4         

5    5 8  2  

N
um

be
r 

of
 

vo
ya

ge
s 

1   15   17 8  

2        26 

3 28 28 12   10 12  

4         

5    32 31  8  
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Table 4. 6 Liner ship fleet plan produced by the EVP  

Route 

Ship Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

S
hi

p 
al

lo
ca

ti
on

s 

1   2   2 3  

2       1 1 

3 3 3 1   1 2  

4    1     

5    4 8  2  

N
um

be
r 

of
 

vo
ya

ge
s 

1   15   16 11  

2       4 26 

3 27 27 11   10 7  

4    6     

5    28 31  8  

 

 

4.5 Summary 

This chapter continues to study a realistic planning problem with container 

transshipment and demand uncertainty faced by a liner container shipping company from 

view point of maximizing expected profit. The problem was formulated as a 2SSIP model. 

Actually, it is possible to adapt the mathematical formulation of the problem to any 

planning problem that consists of two stages of decision variables. The greatest difficulty 

in solving the 2SSIP model is determining how to deal with the expected recourse 

function, which is only implicitly defined and depends on the first-stage decisions and 

usually involves optimization problems embedded in expectation. To effectively solve the 

proposed model, firstly, the sample average approximation method is used to 

approximate the expected recourse function, and then the dual decomposition and 
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Lagrangian relaxation method is used to solve the model. The proposed model and 

solution methods are tested using a numerical example. The gaps between the lower and 

upper bounds are small, which indicates that the solution methods are effective. It is also 

found that the variability of the uncertain parameters has a significant effect on the 

solutions. As the variability increases, the profit obtained by a liner container shipping 

company decreases.  
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CHAPTER 5 A ROBUST OPTIMIZATION MODEL FOR 

SHORT-TERM LSFP 

5.1 Introduction 

Chapter 4 studies a liner ship fleet planning problem with container transshipment 

under uncertain container shipment demand and formulates it as an optimization model 

which aims to maximize the expected profit. However, this type of expected value model 

only aims to minimize or maximize the expected value of a key variable, such as cost or 

profit. As for the variance (namely the risk), which is another issue of great concern to 

decision-makers, is not taken into account. Therefore, this chapter develops a robust 

optimization model in which both expected value and variance are considered 

simultaneously. By adjusting penalty parameters of the robust optimization model, 

decision-makers can determine an optimal liner ship fleet planning, including decisions 

about fleet design and fleet deployment, in order to maximize total profit under different 

container shipment demand scenarios while at the same time control the variance. The 

simplicity of the implementation and operation of the model should enable the decision-

makers to manage liner ship fleet in terms of fleet design and deployment without having 

to learn complex operations and programming procedures. It is realized that this model 

should yield solutions that are less sensitive to the uncertain data of container shipment 

demand. The robustness and effectiveness of the developed model are demonstrated with 
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numerical results. The trade-off between solution robustness and model robustness is also 

analyzed. 

The remainder of this chapter is organized as follows. After this introductory 

section, Section 5.2 firstly introduces the general modeling framework of robust 

optimization, and then describes the concept of container shipment demand scenarios, 

finally proposes a robust optimization model for the short-term LSFP problem with 

container transshipment and uncertain container shipment demand. Section 5.3 

demonstrates the applicability of the proposed robust optimization model by applying it 

on a numerical example, and also analyzes the trade-off between solution robustness and 

model robustness. Finally, summary is given in Section 5.4.  

 

 

5.2 Model Development 

5.2.1 General Modeling Framework of Robust Optimization 

Before the development of robust optimization model for the proposed short-term 

liner ship fleet planning problem with container shipment demand uncertainty, we briefly 

introduce the framework of a robust optimization model. 

Robust optimization, developed by Mulvey et al. (1995), is able to tackle 

decision-makers’ level of risk aversion, and has yielded a series of solutions 

progressively less sensitive to realizations of data in a scenario set. It has been applied in 

some real-life problems, such as capacity expansion planning problems (Malcolm and 

Zenios, 1994; Laguna, 1998), logistics problems (Leung et al., 2002) and production 

planning problems (Leung et al., 2007a, 2007b). The optimal solution provided by a 
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robust optimization model is called solution robust if it remains “close” to optimal for all 

scenarios of the input data. The solution is called model robust if it remains “almost” 

feasible for all data scenarios. Robust optimization includes two distinct constraints: a 

structural constraint and a control constraint. Structural constraints are formulated 

following the concept of linear programming and its input data are free of any noise, 

while control constraints are taken as an auxiliary constraint influenced by noisy data. 

Moreover, robust optimization includes two sets of variables: design variables and 

control variables. Design variables cannot be adjusted once a specific realization of the 

data has been observed and their optimal values is not conditioned on the realization of 

the uncertain parameters; while control variables are subject to adjustment once uncertain 

parameters are observed and their optimal value depend both on the realization of 

uncertain parameters and on the optimal value of the design variables.  

Let 1nx be a vector of the design variables and 2ny  be a vector of control 

variables. Then a general linear programming model has the following structure: 

 min T Tc x d y  (5.1) 

subject to 

 ,Ax b  (5.2) 

 , Bx Cy e  (5.3) 

 , .x y 0  (5.4) 

Eq. (5.2) denotes the structural constraints whose coefficients are fixed and free of 

noise, while Eq. (5.3) denotes the control constraints whose coefficients are subject to 

noise. Constraints (5.4) ensure non-negative vectors.  
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To define the robust optimization problem, a set of scenarios  1, 2,3,..., S  is 

introduced and the index s represents a specific scenario. With each scenario s  we 

associate the set  , , ,s s s sd B C e  of realizations for the coefficients of the control 

constraints, and the probability of the scenario sp  which is characterized by 
1

1
S

ss
p


 . 

Moreover, we introduce a set  1, , Sy y  of control variables for each scenario s  

and a set  1, , Sε ε  of error vectors that measure the infeasibility allowed in the control 

constraints under scenario s. Then the general form of the robust optimization model has 

the following structure: 

    1 1min , ,..., ,...,S S x y y ε ε  (5.5) 

subject to 

 ,Ax b  (5.6) 

 ,s s s s s s    B x C y ε e   (5.7) 

 , ,s s  x y 0   (5.8) 

It is noted that since the robust optimization model considers multiple scenarios, 

the objective function in (5.1), T T  c x d y  becomes a random variable, taking the 

value T T
s s  c x d y , with probability ps. The first term of the objective function (5.5), 

   , is called aggregate function, used to measure optimality robustness, whereas the 

second term     is called feasibility penalty function and is used to penalize violations 

of the control constraints under some of the scenarios and to measure the model 

robustness. The goal programming weight   is used to derive a spectrum of answers that 

tradeoff solution for model robustness. Using the weight  , the tradeoff between 
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solution robustness measured from the aggregate function     and model robustness 

measured from the penalty function     can be modeled under the multi-criteria 

decision-making process. For instance, if 0  , the objective is to minimize the term 

    and the solution may be infeasible; while if   is assigned to be sufficiently large, 

the term     dominates the objective and results in a higher cost. An appropriate form 

of term the aggregate function     and the penalty function     is proposed by 

Mulvey et al. (1995): 

  
2

1, ,..., λS s s s s s s
s s s

p p p    
  

 
   

 
  x y y
  

 (5.9) 

    1,..., max 0,S s s
s

p


ε ε ε


 (5.10) 

The aggregation function     in Eq. (5.9) is the mean value plus a constant λ  

times the variance 
2

s s s s
s s

p p  
 

 
 

 
 
 

, in which the quadratic form is hard to tackle. 

Yu and Li (2000) proposed another replacement for the aggregation function    , which 

takes the following form: 

  1, ,..., λS s s s s s s
s s s

p p p    
  

    x y y
  

 (5.11) 

Yu and Li (2000) developed an efficient method to deal with the absolute deviations in 

(5.11), with a framework described as follows: 

 min λ 2s s s s s s s
s s s

p p p    
  

  
    

  
  
  

 (5.12) 

subject to  
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 0,s s s s
s

p s   


    


  (5.13) 

 0,s s     (5.14) 

It is verified that the solution from models (5.12) to (5.14) is identical to that from 

objective (5.11). Therefore, the general framework of a robust optimization model is 

formed as follows: 

 min λ 2s s s s s s s s s
s s s s

p p p p     
   

  
     

  
    ε
   

 (5.15) 

subject to 

 ,Ax b  (5.16) 

 ,s s s s s s    B x C y ε e   (5.17) 

 0,s s s s
s

p s   


    


  (5.18) 

 , , , ,s s s s   x y ε 0   (5.19) 

 

5.2.2 Scenarios of Uncertain Container Shipment Demand 

The uncertainty of container shipment demand is included in the model by 

specifying a set of discrete demand scenarios. In each scenario, we specify values for 

container shipment demand for each port pair over the planning horizon. Associated with 

each scenario is a weight; these weights are often thought of as the probabilities that each 

scenario will occur. In other words, the container shipment demand of a given O-D port 

pair over the planning horizon is assumed to be a discrete random variable 

  ξ ,od o d  , taking a limited number of possible values with known probabilities. 

Let  1, 2,3,...,s S   be the set of container shipment demand scenarios. The 
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realization of the random parameter od  in scenario s  is denoted by od
s  and the 

probability that scenario s happens is represented by sp  and is characterized by 

1
1

S

ss
p


 . 

To illustrate the concept of container shipment demand scenarios, consider a 

simple network shown in Figure 5.1. For simplicity, consider three O-D pairs: Pusan (PS) 

  Shanghai (SH), Shanghai (SH)   Yantian (YT), Yantian (YT)   Hong Kong (HK). 

A liner shipping operator has to acquire a fleet of ships before knowing the demand, and 

then provides liner shipping service to shippers in order to fulfill as much demand as 

possible (given their available fleet). To make this illustrate as clear as possible, suppose 

that there are only five discrete scenarios for the unknown demands, as shown in Table 

5.1, and the corresponding probability that these scenarios each occurs is shown in Table 

5.2. 

 

Figure 5. 1 A liner ship route 
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Table 5. 1 Demand scenarios for illustrative example 

O-D Container shipment demand 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

PS   SH 1000 2000 3000 4000 5000 

SH   YT 800 1000 1500 2000 2500 

YT   HK 1000 1500 2000 2500 3000 

 

Table 5. 2 Probability of scenarios for the illustrative example 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Probability 0.15 0.25 0.25 0.25 0.1 

 

5.2.3 Robust Optimization Model 

Before the development of robust optimization model for the short-term LSFP 

problem with container transshipment and uncertain container shipment demand, we 

firstly introduce the following decision variables used in the formulation of this chapter.   

OWN
krn  number of owned ships of type k ( k  ) assigned on route r ( r ) 

IN
krn  number of chartered in ships of type k ( k  ) assigned on route r ( r ) 

krx  number of voyages of ships of type k ( k  ) on route r ( r ) 

odh
sz  number of containers carried by ships deployed on the container route od odh   

between O-D port pair  ,o d   under container shipment demand scenario s 
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Based on the above introduction of robust optimization in Section 5.2.1, we can 

easily distinguish the design and control variables for the proposed LSFP problem studied 

in this chapter. OWN
krn ,  IN

krn  and krx  are design variables; 
odh

sz  are control variables.  

The revenue earned by the liner container shipping company comes from two 

sources: rent from chartering out ships to other liner operators and revenue from shipping 

containers for shippers.  Let OUT
kc  denoted the of chartering out a ship of type k over the 

planning horizon ($/ship), then the revenue from chartering out ships is given by: 

 OUT MAX OWN
k k kr

k r

c N n
 

 
 

 
 
 

 (5.20) 

Let odf  denote freight rate for transporting a container between an O-D port pair 

 ,o d   ($/TEU), given scenario s, and realization of container shipment demand, 

od
s , for an O-D port pair  ,o d  , the revenue from shipping containers along all 

possible routes is given by: 

  
 ,

od

od od

od h od
s s

o d h

f z 
 
 

 

 (5.21) 

The total costs consist of the container handling cost, the operating costs of the 

ships and the investment made by chartering in ships. The container handling cost 

incurred on a given container route includes the loading cost at the origin, the discharging 

cost at the destination and the transshipment costs (if any). Let 
odhc  denote the handling 

cost of a container being carried between O-D port pair  ,o d  incurred on container 

route od odh   ($/TEU), the handling costs for delivering all containers under the 

container shipment demand scenario s are given by: 



Chapter 5                                                   A Robust Optimization Model for Short-Term LSFP Problem 

 104

  
 ,

od od

od od

h h od
s s

o d h

c z 
 
 

 

 (5.22) 

Let krc  denote the operating cost of a ship of type k on route r per voyage 

($/voyage), and IN
kc  denote the rate of chartering in a ship of type k over the planning 

horizon ($/ship), then the operating costs of the ships plus the rent paid for chartering in 

ships is given by:  

 IN IN
kr kr k kr

r k k

c x c n
  

 
  

 (5.23) 

Therefore, the maximized profit obtained by the liner container shipping company 

under container shipment demand scenario s is given by: 

   
 

 OUT MAX OWN IN IN

,

max
od od

od od

od h h od
k k kr s s kr kr k kr

k r o d r kh

c N n f c z c x c n
    

 
      

 
    
    

 (5.24) 

OUT MAX
k k

k

c N




 can be removed from Eq. (5.24) since it is a constant value, therefore Eq. 

(5.24) can be rewritten as follows: 

      
 

OUT OWN IN IN

,

max
od od

od od

od h h od
k kr kr kr k kr s s

r k o d h

c n c x c n f c z 
   

       
   

 (5.25) 

Mathematically, Eq. (5.25) is equivalent to the equation below: 

      
 

OUT OWN IN IN

,

min
od od

od od

od h h od
k kr kr kr k kr s s

r k o d h

c n c x c n f c z 
   

      
   

 (5.26) 

Therefore, the notation s  in the robust optimization model described in Section 5.2.1 is 

given below: 

      
 

OUT OWN IN IN

,

od od

od od

od h h od
s k kr kr kr k kr s s

r k o d h

c n c x c n f c z 
   

       
   

 (5.27) 
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The aggregation function     for the proposed LSFP problem is thus expressed 

as follows: 

 
     

    

   
 

   
 

, ,
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(5.28) 

Therefore, the robust optimization model for the proposed LSFP problem is given 

by: 

[ROM] 
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subject to: 
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  OWN IN, , 0 , ,kr kr krn n x k r         (5.37) 

 0, 0, 1, , ; ,ir
s s ri m r s          (5.38) 

Eq. (5.29) is the objective function of the robust optimization model. The sets of 

constraints (5.30) and (5.31) ensure the numbers ship owned and chartered in do not 

exceed the number available. Constraints (5.32) compute the maximal number of voyage 

that ships of type k can complete on route r, where a    denotes the maximum integer not 

greater than a. Constraint (5.33) specifies the number of voyages required on route r in 

order to maintain a given level of liner shipping frequency. The constraints (5.30) to (5.33) 

are structural constraints, while Constraints (5.34) are control constraints in the robust 

optimization model. The first term of the left-hand side of Constraints (5.34) represents 

the transportation capacity of fleet on route r, and the second term represents the errors in 

the robust optimization model, the right-hand side of Constraints (5.34) represents the 

container flow of each leg i on route r. Constraints (5.34) are used to measure the 

feasibility of the solution of krx  and  odh od
s sz  . If the transportation capacity of ships on 

route r (the solution of krx ) is greater than the container assignment flow of each leg on 

this route r (the solution of 
odh

sz  given a demand scenario od
s ) which indicates the 
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solution of krx  and  odh od
s sz   is feasible, then the deviation 0ir

s  under minimization; 

otherwise  
 ,

od od

od od

ir h h od
s ir s s kr k

o d kh

z x V  
 

   
 

 which indicates under fulfillment of 

transportation capacity constraints. Thus, an infeasible solution is obtained. Constraints 

(5.35) are the application of Constraints (5.18) in the robust optimization model for the 

proposed LSFP problem. Constraints (5.36) imply the containers carried on the ships of 

each scenario cannot exceed the realization of the demand. Constraints (5.37) and 

Constraints (5.38) require that OWN
krn , IN

krn  and krx  are nonnegative integer decision 

variables and define the range of ir
s  and s  is nonnegative, respectively. It is noted that 

the proposed ROM is an integer linear programming model; therefore, it can be solved by 

any optimization solvers such as CPLEX. 

 

 

5.3 Numerical Example 

We use the same liner shipping network depicted in Figure 3.2 as the numerical 

example. Assume that a liner container shipping company intends to make a 6-month 

fleet plan. This liner shipping network consists of 8 routes involving a total of 36 calling 

ports, 390 O-D pairs and 443 container route plans (see Figure 3.2). The ports called on 

each liner ship route and their digital number codes are shown in Table 3.1. The distance 

of each leg in each liner ship route is given in Table 3.2. The parameters of the numbers, 

sizes, chartering in rent, daily operating cost and design speed of each ship type are set 

the same value with that in the numerical of Chapter 3, listed in Table 3.3. The 
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parameters of chartering out ships of each type are shown in Table 4.1. The daily 

operating cost of each ship type is computed by Eq. (3.17). 

 

5.3.1 Sensitivity Analysis of λ 

The variance in the objective function (5.15) measures the level of risk 

encountered by a decision-maker. Therefore, λ can be regarded as representing the risk 

attitude of the decision-maker. In the case when λ=0 , the decision-maker can be thought 

of as risk neutral because the variance is not involved in the decision. In the case when 

λ>0 , the decision-maker is risk averse. When the value of λ increases, this indicates that 

the decision-maker will pay more attention to the variance 2s s s s s
s s

p p   
 

  
   

  
 
 

 

when aiming to achieve their minimization objective, because the variance 

2s s s s s
s s

p p   
 

     
  

 
 

 will dominate the expected cost s s
s

p 




. Therefore, it is 

expected that the value of variance will decrease when the value of λ increases. This 

expectation has been mathematically proven, see Proposition 1 in Appendix A.  

In the numerical example, we vary the parameter λ from 0 to 2 with increments of 

0.1 and show the trend in the variance as λ changes in Figure 5.2. The parameter λ 

reflects the risk appetite level of the liner container shipping company; in other words, 

their desire or reluctance to confront risk. When λ>0 , and the company is risk averse, 

this implies that it will implement a safe strategy to manage and operate its fleet. When 

λ=0 , and the company is risk neutral, it will be relatively confident in confronting risk. 

However, the expected profit in the case of risk neutrality is not guaranteed to be higher 
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than that in the case of risk aversion. As can be seen from Figure 5.2, the expected profit 

in the case where λ=0  is less than that in the case where λ=0.5 .  

 

Figure 5. 2 Trend in variance and expected profit with lambda 

 

5.3.2 Sensitivity Analysis of   

In the general form of ROM (5.5), the feasibility penalty function of     is used 

to penalize violations of the control constraints that occur under certain scenarios and to 

measure model robustness. Therefore, for the ROM (5.29) proposed for the short-term 

LSFP problem in this study, ir
s  in (5.29) can be regarded as the underfulfillment of the 

transportation capacity and the weight   can be regarded as the unit penalty cost for 

underfulfillment ($/TEU). The role of weight   in the objective function (5.29) is to find 

a tradeoff between solution robustness (close to an optimal solution) and model 
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robustness (close to a feasible solution). In the case when 0  , ir
s  in the set of 

constraints (5.34) is equal to  
 ,

od od

do od

h h od
ir s s

o d h

z 
 
 

 

 due to minimization, which 

indicates that the underfulfillment (i.e., ir
s ) is at its highest. The suggested plan obtained 

in this case cannot be adopted. As the weight   increases, which means the penalty cost 

increases, the underfulfillment (i.e., ir
s ) is expected to decrease. This expectation has 

been mathematically proven in Proposition 2 of Appendix A.  

As the weight   increases, the expected total profit which represents the solution 

robustness, and the expected underfulfillment, which represents model robustness, both 

decrease.  The intuition behind these results is that, when the weight   increases, ir
s  in 

the objective function (5.29) of ROM generally decreases due to the minimization of the 

objective, which results in a decrease in expected underfulfillment; simultaneously, it also 

results in a decrease of 
odh

sz  to meet the constraints (5.34), which implies that the 

expected total profit decreases. The results show that, for larger values of  , the solution 

obtained approaches ‘almost’ feasible for any realization of scenario. The expected 

underfulfillment will eventually drop to zero with an increase in the value of  . The 

trade-off between feasibility and expected profits for this numerical example is plotted in 

Figure 5.3. 
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Figure 5. 3 Trade-off between expected profit and expected under-fulfillment 

 

5.3.3 Comparison between ROM and EVM 

Here, the parameters λ  and   are set to λ 1  and 5000  . The optimal liner 

ship fleet plan is shown in Table 5.3. The results generally show that bigger ships are 

mostly assigned to longer routes while smaller ships are mostly assigned to shorter routes; 

also, the results generally indicate that more of the ships are assigned to longer routes 

than to the shorter ones. For example, a total of seven ships are assigned to the longest 

route NCE, including three ships with a size of 8063 TEUs while only one ship, with a 

size of 2808 TEUs, is assigned to the shortest route, UKX. These results are reasonable. 

A possible explanation is that the container flow on each leg of a long route (such as 

route NCE) generally consists of more containers from different port pairs than would be 
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the case on a short route (such as route UKX). Therefore, bigger and more ships have to 

be assigned to the long route to meet the high level of container flow. Additionally, ships 

take more time to complete a round voyage on a long route than on a short route, which 

indicates that more ships are deployed on the long route in order to provide the same 

frequency level as on a short route.    

Table 5.4 shows the liner ship fleet plan obtained from the EVM. Comparing it to 

the plan shown in Table 5.3, it is found that the fleets suggested by the EVM and ROM 

both contain a total of 33 ships. However, the two plans are different. The liner container 

shipping company is expected to have a yield of 7373 million dollars if it employs the 

plan suggested by the EVM, but 8036 million dollars if it uses the ROM’s plan; 

meanwhile, the company will face a higher risk under the plan obtained from the EVM 

because the variance of the profit is higher than that of the ROM plan. The results show 

that the liner ship fleet plan suggested by the ROM is superior to that produced by the 

EVM. 

 



Chapter 5                                                   A Robust Optimization Model for Short-Term LSFP Problem 

 113

Table 5. 3 Liner ship fleet plan produced by the ROM 

Route 

Ship Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

S
hi

p 
al

lo
ca

ti
on

s 

1       3 1 

2   2    2  

3 2    3  2  

4   2 1 1    

5 1 3  5 3 2   

N
um

be
r 

of
 

vo
ya

ge
s 

1       12 29 

2   26    8  

3 28    12  8  

4   26 7 4    

5 13 39  35 12 26   

Expected profit 

(million $) 

8036.098 

Variance 

(million $) 

1.788 
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Table 5. 4 Liner ship fleet plan produced by the EVM	

Route 

Ship Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

S
hi

p 
al

lo
ca

ti
on

s 

1       3 1 

2   2    2  

3     2 4 2  

4    1 2  2  

5 2 4 1 4 3    

N
um

be
r 

of
 

vo
ya

ge
s 

1       12 29 

2   26    8  

3     8 52 4  

4    7 8  4  

5 26 52 13 28 12    

Expected profit 

(million $) 

7273.046 

Variance 

(million $) 

2.14 

 

 

5.4 Summary 

 In this chapter, a liner ship fleet planning problem with container shipment 

demand uncertainty is considered. Firstly, an expected value model (EVM) is developed 

aiming to maximize the expected profit. However, the variance, which means the risk, is 

not involved in EVM. Therefore, we continue to develop a robust optimization model 

which involves the expected profit and variance simultaneously. By analyzing penalty 

parameters for the tradeoff between optimality and infeasibility, the planners can obtain a 

feasible liner ship fleet plan which is less sensitive to the change in the noisy and 
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uncertain data of container shipment demand within an acceptable level of under-

fulfillment.The model may provide a credible and effective methodology for real world 

liner ship fleet planning problem in an uncertain environment. 
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CHAPTER 6 A MULTI-PERIOD STOCHASTIC 

PROGRAMMING MODEL FOR LONG-TERM LSFP 

6.1 Introduction 

This chapter studies a realistic long-term (multi-period) LSFP problem with 

container transshipment for a liner container shipping company. Traditional multi-period 

liner ship fleet planning begins with a forecasted container shipment demand of each 

single period based on forecasting techniques such as regression and time series models. 

However, the forecasted container shipment demand, which is a key input in multi-period 

LSFP problem, can never be forecasted with complete confidence. Moreover, the 

historical data fully show that the current container shipment demand has effect on the 

future demand, which indicates the container shipment demands of different periods are 

dependent. Therefore, it is realistic and necessary to take the uncertainty and dependency 

of container shipment demand into account in multi-period LSFP problem. Here, the 

container shipment demand between two successive single periods is assumed to be 

dependent. During a multi-period planning horizon, the container shipment demand in 

each single period is possibly different, which implies that the liner ship fleet plans vary 

with periods and depend on container shipment demand. Therefore, to cope with the 

period-dependent container shipment demand pattern, the liner container shipping 

company has to adjust its liner ship fleet plan of determining fleet size, mix and 

deployment period-by-period.  
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Under the consideration of container transshipment and the uncertainty and 

dependency of container shipment demand, the multi-period LSFP problem could be a 

new and interesting research topic, expanding the classical multi-period LSFP problem, 

which is studied under a deterministic environment and without container transshipment, 

into a fresh and worthwhile research area. This chapter thus focuses on model 

development and the design of solution method for the multi-period LSFP problem with 

container transshipment as well as uncertain and dependent container shipment demand.  

Multi-period/long-term ship fleet planning problems have been studied for several 

decades. However, the research on the topic all makes the assumption of deterministic 

demand. Nicholson and Pullen (1971) were the pioneers in the field, developing a 

dynamic programming model for a ship fleet management problem that aimed to find the 

best sale and replacement policy, with the objective of maximizing the multi-period 

company assets. They proposed a two-stage decision strategy: the first stage determines a 

priority order for selling a ship, based on its assessment of the net contribution to the 

objective function if it is sold in each year, regardless of the rate at which charter ships 

are taken on; the second stage uses the dynamic programming approach to find the 

optimal level of chartering for a given priority replacement order. Cho and Perakis (1996) 

developed an integer linear programming model for a multi-period liner ship fleet 

planning problem looking to determine the optimal fleet size, mix and ship-to-route 

allocation. In their model, as long as those decisions are made at the beginning of the 

planning horizon, they remain static over the whole horizon. Such a period-independent 

model cannot characterize a realistic dynamic decision strategy: the fleet size, mix and 

ship-to-route allocation should be adjustable period-by-period, since the container 
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shipment demand is period-dependent. In other words, it is more rational and practical to 

assume that the fleet size, mix and ship-to-route allocation are period-dependent 

(dynamic) decisions rather than static ones. Xie et al. (2000) thus reformulated the multi-

period liner shipping problem proposed by Cho and Perakis (1996) by applying a 

dynamic programming approach. They first divided the multi-period planning horizon 

into a number of single periods (each single period being one year). For each period, they 

used integer linear programming to determine the fleet size, mix and ship-to-route 

assignment incurring minimal cost. However, they assumed that the annual operating cost 

and transportation capacity of each ship on each route were constant. This assumption is 

unrealistic because the costs are voyage-dependent. For example, a ship sailing 20 

voyages on a given route over a given year would certainly incur greater annual operating 

costs and have a greater transportation capacity than a ship that sails ten voyages on the 

same route. Recently, Meng and Wang (2011b) proposed a realistic multi-period LSFP 

problem for a liner container shipping company and formulated this problem as a 

scenario-based dynamic programming model. However, as well as the deterministic 

container shipment demand assumption, these studies (i.e. Nicholson and Pullen, 1971; 

Cho and Perakis, 1996; Xie et al., 2000; Meng and Wang, 2011b) do not take container 

transshipment operations into account. 

Compared with the few relevant papers on the MPLSFP problem with uncertain 

container shipment demand, much research has been devoted to other problems under the 

assumption of uncertain multi-period demand, such as capacity expansion problems 

(Berman et al., 1994; Wagner and Berman, 1995; Laguna, 1998; Ahmed et al., 2003; 

Ahmed and Sahinidis, 2003; Singh et al., 2009), airline fleet composition and allocation 
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problem (Listes and Dekker, 2005), a multi-site production planning problem (Leung et 

al., 2007a and b), portfolio management problems (Celikyurt and Özekici, 2007; Gülpinar 

and Rustem, 2007; Osorio et al., 2008), and others. Their objectives are to minimize or 

maximize the expected value of a key variable, such as cost or profit, over a multi-period 

planning horizon, which is defined as the sum of the cost or profit in each single period. 

However, the methodologies applied or proposed in those studies did not involve the 

dependency of the uncertain multi-period demand. Shapiro and Philpott (2007) did in fact 

previously mention the dependency of uncertain demand in a multi-stage stochastic 

programming problem. Unfortunately, no application or study involving dependency has 

been reported so far. 

Therefore, the model formulation for the multi-period LSFP problem integrating 

uncertainty and dependency is a challenge and a goal of this chapter. The objective is to 

seek an optimal multi-period liner ship fleet plan (i.e. a joint ship fleet development and 

deployment plan for the multi-period planning horizon) that will be implemented before 

the container shipment demands are known, such that the expected profit reaped across 

the whole multi-period planning horizon, by a liner container shipping company 

implementing this plan, is maximized.  

To formulate uncertainty of container shipment demand during a particular period 

within the multi-period planning horizon, it is assumed to be a discrete random variable 

taking a limited number of possible values with a known occurrence probability. It has to 

be pointed out that the container shipment demand in a given period is dependent on 

demand in previous periods. Therefore, the probability is actually a conditional 

probability so as to reflect this dependency.  
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In order to capture a characteristic of the realistic dynamic planning strategy, the 

multi-period planning horizon is divided into a number of single periods and a stochastic 

programming model is developed for each one, with the aim of determining fleet 

deployment for that period. Using a scenario tree approach to model the evolution of 

dependent uncertain demand of two successive single periods, and using a decision tree 

to interpret the procedure of liner ship fleet planning, the proposed problem in this study 

is formulated as a multi-period stochastic programming model, comprising a sequence of 

interrelated stochastic programming models developed for each single period.We further 

show that the multi-period stochastic programming model can be equivalently 

transformed into a shortest path problem defined on an acyclic network. A path on the 

acyclic network corresponds to a multi-period liner ship fleet planning. Finally, a 

numerical example is carried out to assess applicability and performance of the proposed 

model and solution algorithm. 

This remainder of this chapter is organized as follows: Section 6.2 gives 

assumptions and problem statement and discusses the dependency of container shipment 

demand in details. Section 6.3 elaborates the procedure for determining a multi-period 

liner ship fleet plan as a decision tree and develops a multi-period stochastic 

programming model for it. Section 6.4 designs the solution algorithm used to solve the 

multi-period stochastic programming model. Section 6.5 provides a numerical example, 

to illustrate the model and solution method. Summary is presented in Section 6.6. 
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6.2 Problem Statement 

6.2.1 Uncertainty and Dependency of Container Shipment Demand 

Assume that the multi-period planning horizon consists of T single periods, 

denoted by  1,..., ,...,t T . The length of one single period can be determined 

according to the changes in container shipment demand forecasted within the multi-

period planning horizon; for example, one period could be one year. Let od
t  be the 

number of containers in terms of TEUs (acronyms of twenty-foot equivalent unit) to be 

transported between an O-D port pair  ,o d   in a particular single period t . The 

uncertainty of container shipment demand in the multi-period LSFP problem is included 

in the model by specifying a set of discrete demand scenarios. Let  1,..., ...,t ts S  be 

the set of container shipment demand scenarios for period t . In each scenario ts , 

values are specified for the container shipment demand between each port pair in period 

t  are specified. Associated with each scenario ts  is a weight; these weights are 

often thought of as the probabilities that each scenario will occur, and are denoted by t
sp  

and characterized by 
1

1tS t
ss

p


 . In other words, the container shipment demand 

between each port pair during a particular period, namely   ξ , ,od
t o d t   , is 

assumed to be a discrete random variable, which takes a limited number of possible 

values with known occurrence probabilities.   

Moreover, the historical data fully show that the current container shipment 

demand has an effect on the future demand, which indicates that the container shipment 

demand in one period is dependent on that in previous periods. Since the effect on 
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demand in some faraway future is quite weak, we simply assume that the container 

shipment demand is only dependent on that of the previous period. Therefore, the 

scenario ts  is dependent on the scenario 1ts  . Let t
s sp   be the conditional 

probability that scenario s occurs in period t given that scenario s  occurs in period t–1, 

then t
sp  is given by 1 1

1

tS t t
s s ss

p p 
  . 

Since scenario ts  occurs in period t with conditional probability t
s sp  , given 

that scenario 1ts   occurs in period t-1, all scenarios for the whole T-period planning 

horizon can be depicted as a scenario tree with T layers, where each layer corresponds to 

a single period. The following example is provided for clarity. 

An example 

Let us consider the liner shipping service route shown in Figure 6.1 in order to 

illustrate the scenarios of container shipment demand. For simplicity, consider two 

periods (say two years) and three O-D pairs: Pusan (PS)   Shanghai (SH), Shanghai 

(SH)   Yantian (YT), Yantian (YT)   Hong Kong (HK). Suppose that there are three 

discrete scenarios of demand in each year: L (low), M (medium) and H (high), as shown 

in Table 6.1, and these six scenarios for the two years are illustrated by a two-layer 

scenario tree, shown in Figure 6.2. The value on each branch in the two-layer scenario 

tree is the probability or conditional probability of each scenario’s occurrence. 

Accordingly, the probabilities of each of the three scenarios in year 2 are computed as 

follows: 

 

2 1 2 1 2 1 2

2 1 2 1 2 1 2

2 1 2 1 2 1 2

0.7 0.6 0.2 0.5 0.1 0.1 0.53

0.7 0.3 0.2 0.3 0.1 0.2 0.29

0.7 0.1 0.2 0.2 0.1 0.7 0.18

H H M LH H H M H L

M H M LM H M M M L

L H M LL H L M L L

p p p p p p p

p p p p p p p

p p p p p p p

            

            

            

 (6.1) 
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Figure 6. 1 A liner shipping service route	
 

Table 6. 1 Container shipment demand scenarios for illustrative example	

O-D pairs 

Year 1 Year 2 

Low  Medium High Low  Medium High 

PS   SH 1000 2000 3000 1500 2500 3500 

SH   YT 800 1000 1500 1200 2000 2500 

YT  HK 1000 1500 2000 1500 2000 2500 

 
 
 

 
 

Figure 6. 2 Probability of scenarios for the illustrative example 
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6.2.2 Fleet Size and Mix Strategies 

The liner container shipping company can use its own ships to pick up and deliver 

containers for shippers, and may also charter ships from other liner container shipping 

companies or purchase new ships to meet its container shipment demand. The company 

may also charter out some of its own ships, depending on their capacity in terms of TEUs. 

A fleet size and mix strategy associated with a particular period within the T-period 

planning horizon is defined as a plan comprising the number of ships to be chartered, the 

number of the company’s own ships to be chartered out, the number of its own ships to 

be used during the period and the number of new ships to be purchased. The order time 

for new ships is ignored since this is generally known in practice.  

At the beginning of the period t , experts from the strategic development 

department of the liner container shipping company would propose several possible fleet 

size and mix strategies for the period, based on their experiences, and/or the available 

budget of the company for the period. It is thus assumed that there are a number of 

suggested fleet size and mix scenarios at the beginning of each period t . There is an 

inherent and implicit relation between these strategies from one period to the next. For 

example, assuming that the liner container shipping company currently owns three ships 

named by A, B and C, the experts might propose two possible fleet size and mix 

strategies at the beginning of period t . Strategy 1 might be to use the existing three ships, 

while strategy 2 might be to purchase a new ship D to use as well. These two strategies 

would lead to two different states of the ship fleet at the beginning of the next period 1t  : 

in the first state, there are three ships in the fleet, while in the second state there are four. 

Each of these two states becomes a possible initial state of the fleet at the beginning of 
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period 1t  . At the beginning of period 1t  , the experts will propose a group of possible 

fleet size and mix strategies with respect to each of these two ship fleet states. This 

strategy decision process will be repeated until the end of the last period T , that is, the 

beginning of period 1T  . The entire decision process of fleet size and mix strategies 

thus actually forms a decision tree containing T layers. 

 

6.2.3 The Multi-Period Liner Ship Fleet Planning 

The multi-period LSFP problem with container transshipment and uncertain 

container shipment demand aims to maximize the total expected profit reaped over the 

whole T-period planning horizon by making an optimal joint fleet development and 

deployment plan. A joint fleet development and deployment plan consists of (1) a fleet 

size and mix strategy proposed by the experts at the beginning of each period (i.e., a fleet 

development plan), and (2) a fleet deployment plan, including the allocation of the ships 

in the fleet to liner ship routes, the number of voyages by each ship on each liner shipping 

route r  required to maintain a given liner shipping service frequency on the route, 

and the number of lay-up days allocated to each ship for maintenance. The objective of 

the deployment plan is expected profit maximization under various scenarios of container 

shipment demand, for each of the given fleet size and mix strategies. 

The rationale behind the adoption of this a period-by-period planning is that the 

liner container shipping company can flexibly adjust its ship fleet size and mix according 

to the varying container shipment demand in each period. Moreover, the ships are assets 

with finite lives, which implies that the ship fleet needs to be renewed as old ships are 

removed from the fleet when they reach a given age limit and new ships are added in 



 

127 
 

their place. The adoption of period-by-period planning thus also satisfies the physical 

requirement of the renewal of the fleet over time. We assume the liner container shipping 

company makes its planning decisions at the beginning of each single period and this 

process is repeated until all periods in the multi-period planning horizon have been 

covered. Therefore, the multi-period fleet plan consists of a number of single-period fleet 

plans. At the end of the planning horizon, without loss of generality, we assume that all 

ships owned by the liner container shipping company are disposed of for their salvage 

values. 

 

 

6.3 Model Development 

6.3.1 Decision Tree of Fleet Development Plan 

The procedure of determining a fleet development plan for a T-period planning 

horizon can be interpreted as a decision tree with T layers, where each layer represents a 

period and each node in layer t of the tree represents a fleet size and mix strategy 

proposed at the beginning of period t. Dummy node O is introduced as the root of the 

decision tree, to represent the current ship fleet state, that is, the decision tree grows from 

the root O. Each node in period t ( 1,2, , 1t T  ) can be regarded as a parent and will 

generate some offspring in period t+1, that is, the fleet size and mix strategies for the next 

period. Each parent and its offspring are connected by an arc. It is noted that different 

parents may produce the same offspring. Each node of the decision tree, except the root, 

has a parent (which may not be unique). A parent n at period t and its offspring from 

period t = 1,…,T-1 to the end of the whole T-period planning horizon form a sub-tree, 
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denoted by  t n . Each parent n, namely a non-terminal node in period t = 1,…,T-1, is 

the root of the sub-tree  t n . Thus 0  denotes the entire tree over the whole T-period 

planning horizon. The set of paths from root O to a node n in period t , is denoted by 

 t n , and each path  tl n , represents a development plan of fleet sizes and mixes 

for t periods. If n is a terminal node (i.e. a leaf), then path l corresponds to a development 

plan for all T periods. 

Figure 6.3 schematically illustrates the decision tree. In Figure 6.3, let  

 1,...,t tN  be the set of nodes in period t , where tN  is the number of nodes in 

this set, and let  1,...,m m
t tN  be the set of strategies proposed for period t+1 which 

are generated from a particular strategy m proposed for period t where m
tN  represents the 

number of strategies of the set m
t . If each offspring node has a unique parent, we then 

have: 

 1 , 1,..., 1
t

m
t t

m
t T


  


   (6.2) 

and 

 1
1

, 1,..., 1
tN

m
t t

m

N N t T


    (6.3) 
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Figure 6. 3 Decision tree for fleet development plan 

 

The following notation is introduced for the sake of presentation:  

KEEP
,t n :  set of company’s own ships to be used at the beginning of period t in strategy n 

SOLD
,t n :  set of company’s own ships to be sold at the beginning of period t in strategy n 

OUT
,t n :  set of own ships to be chartered out at the beginning of period t in strategy n 

IN
,t n :   set of ships to be chartered in at the beginning of period t in strategy n 

NEW
,t n :  set of new ships bought at the beginning of period t in strategy n 

,t n :  set of ships that are used to deliver containers as at the beginning of period t in 

strategy n 
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For a node (strategy) n in period t, the ships that can be used to deliver containers 

include the company’s own ships, which are kept in service, new ships purchased at the 

beginning of period t ( NEW
,t n   if no available new ships) and ships chartered in from 

other liner container shipping companies. The set of ships used in strategy n to deliver 

containers is given by: 

 KEEP NEW IN
, , , , ,t n t n t n t n t         (6.4) 

The relationship between a parent m in period t and its offspring n in period t+1 (t 

= 1,…,T-1) is given by: 

KEEP OUT NEW KEEP OUT SOLD
, , , 1, 1, 1, , 1,..., , 1,..., , 1,..., 1m

t m t m t m t n t n t n t tm N n N t T                (6.5) 

 

6.3.2 2SSP Models for Fleet Deployment Plans 

In Section 6.3.1, each node n in period t  represents a fleet size and mix 

strategy proposed by the liner container shipping company’s experts, based on their 

experience and the available budget (the budget is used for investment in the chartering in 

or purchase of new ships). However, the decisions of how to properly deploy the ships in 

the fleet, as given by the fleet size and mix strategy n in period t , in order to 

maximize the profit gained from shipping containers over period t, have not yet been 

determined. Four types of decision variables are now defined as follows:  

kr
nt :  binary variables equal to 1 if ship k is assigned to route r in strategy n of period t 

and 0 otherwise 

kr
ntx :   number of voyages sailed by ship k on route r in strategy n of period t 

k
nty :   number of lay-up days of ship k in strategy n of period t 
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odh
sntz : number of containers carried by ships deployed on the container route od odh   

between O-D port pair  ,o d   under container shipment demand scenario s in 

strategy n of  period t 

Given the set of ships under strategy n of period t, namely ,t n , the values of ξod
t  

for a port pair  ,o d   under scenario ts  in period t , denoted by od
st , and 

the freight rate of transporting a container from its origin port o to its destination port d in 

period t ($/TEU), denoted by od
tf , the revenue gained from shipping containers along all 

possible routes in period t under container shipment demand scenario s is given by: 

  
 ,

od

od od

od h od
t snt st

o d h

f z 
 
 

 

 (6.6) 

Other revenue gained in strategy n over period t includes earnings from chartering 

out the company’s ships and the salvage value gained from selling its ships. This is given 

by the following:  

 
OUT SOLD
, ,

OUT SOLD

t n t n

kt kt
k k

c c
 

 
 

 (6.7) 

where OUT
ktc  is the amount received for chartering out a particular ship k at the beginning 

of period t ($) and SOLD
ktc  is the amount received for selling out a ship k at the beginning of 

period t ($).  

The total costs incurred in strategy n of period t usually consist of the following 

components: container handling costs, the voyage costs of ships in the fleet to transport 

containers, the lay-up costs of ships for maintenance, the costs of chartering in ships from 

other liner container shipping companies and capital investment of purchasing new ships. 

The container handling cost incurred in a container route, includes container loading cost 
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at origin port, container discharging cost at destination port and container transshipment 

cost at transshipment ports (if any). Let 
odh

tc  ($/TEU) denote the container handling cost 

per TEU incurred in the container route od odh   over period t and then the total 

container handling cost can be calculate by 

  
 ,

od od

od od

h h od
t snt st

o d h

c z
 

 
 

 (6.8) 

The voyage costs of the ships in the fleet that are used to transport containers, plus 

lay-up costs of those ships undergoing maintenance, plus the costs of chartering in ships 

from other liner container shipping companies and the capital investment of purchasing 

new ships is given by: 

 
IN NEW

, , , ,

IN NEW

t n t n t n t n

kr k
krt nt kt nt kt kt

r k k k k

c x e y c c
    

      
    

 (6.9) 

where krtc  is the voyage cost of operating a specific ship k on route r in period t 

($/voyage), kte  is the daily lay-up cost for a specific ship k in period t ($/day), IN
ktc  is the 

cost of chartering in a specific ship k at the beginning of period t ($), NEW
ktc  is the price of 

the new ship k at the beginning of period t ($). 

As mentioned earlier, the fleet deployment plan of a specific fleet size and mix 

strategy n in period t is dependent on the container shipment demand of the previous 

period 1t  . Therefore, given a fleet size and mix strategy n in period t which is produced 

by a parent m of in period t-1, the optimal fleet deployment plan under this given strategy 

n is dependent on the container shipment demand scenario s  over the previous period 

1t  , which can be formulated as a 2SSP model with the objective of maximizing the 
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expected profit accross all container shipment demand scenarios s in period t, denoted by 

,
,
m s

t nEP  . 

It is noted that the decision about kr
nt , kr

ntx   and k
nty  are made prior to a realization  

of the random container shipment demand. In reality, the number of containers 

transported between an O-D port pair  ,o d   assigned to a particular container route 

can be determined only after the realization of the random container shipment demand. 

We can thus break down the set of all decision variables into two stages. The first-stage 

decision variables are kr
nt , kr

ntx   and k
nty , and the second-stage variables are 

odh
sntz . 

Therefore, the 2SSP model is as follows:   

[2SSP] 

 
  

OUT SOLD IN
, ,, , ,

NEW
,

, OUT SOLD IN
,

NEW

max

                     ,

t n t nt n t n t n

tt n

m s kr k
t n kt kt krt nt kt nt kt

r k kk k k

t ts
kt s s

sk

EP c c c x e y c

c p Q



    




    

 

     

  ξ v ξ ω

    



 (6.10) 

subject to 

 ,, ,kr kr kr kr
nt nt nt t nx M r k          (6.11) 

 ,kr r
k

x N r


  


  (6.12) 

 ,,t k
k nt t nt T y k      (6.13) 

 ,, ,kr kr k
nt t nt t nx t y t r k         (6.14) 

 ,1,kr
nt t n

r

k


  


  (6.15) 

  0 , ,kr
ntx k r         (6.16) 

 0,k
nty k    (6.17) 
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   ,0,1 , ,kr
nt t nk r        (6.18) 

where, for succinctness,  kr kr k
nt nt ntx yv      contains all first-stage decision 

variables, Mkr represents the maximum number of voyages ship k can complete on route r 

during period t, rN  is the number of voyages required on route r during period t in order 

to maintain a given level of service frequency, t  is the duration of period t (days), t
kT  

represents the shipping season for ship k in period t (days), referring to the number of 

days on which it is safe and appropriate for the ship to sail on the sea, krt  is the voyage 

time of ship k on route r (days/voyage), and   is the set of positive integers. 

  ,tsQξ v ξ ω  is a function used for the following second-stage optimization problem, 

which depends on the first-stage decision variables and the realization of container 

shipment demand,ω , under scenario s, its value is obtained by solving the following 

optimization problem: 

       
 ,

, max
od od

od od

ts od h h od
t t snt st

o d h

Q f c z
 

   ξ v ξ ω
 

 (6.19) 

subject to 

  
 , ,

, 1, , , ,
od od

od od
t n

kr h h od
nt k ir snt st r t

k o d h

x V z i m r s
  

           
  

   (6.20) 

 
   

     
, ,

ξ , , ,
od

o d o d

h od od od
snt st st t

h

z o d s 


    


   (6.21) 

  0, , , ,
odh od od

snt tz o d h s          (6.22) 

where kV  is the capacity of a particular ship k (TEUs), ρ
odh

ir  is a binary coefficient which 

equals 1 if a container route od odh   contains leg i of route r and otherwise equals 0.   
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Eq. (6.10) is the objective function of the 2SSP model. The set of constraints 

(6.11) applies the big-M method to ensure that if kr
tn  equals to 0 then kr

tnx  equals to 0; 

else if kr
tn equals to 1 then kr

tnx  would be a positive integer. The value of Mkr can be given 

by kr krM t t    , where a    denotes the maximum integer not greater than a. The set 

of constraints (6.12) gives the number of voyages required on route r in order to maintain 

a given level of liner shipping frequency. For example, if a weekly shipping service is 

required on each liner ship route during a planning horizon of six month, then 26rN  . 

The set of constraints (6.13) provide the minimum lay-up days of ship k on route r. Eq. 

(6.14) indicates that the total voyage time of ship k on route r sailing on sea and the lay-

up time should not exceed one single period. Eq. (6.15) ensures that each ship only serves 

on one route. Constraints (6.16)-(6.18) defines the range of decision variables, kr
ntx , k

nty , 

and kr
nt , respectively.  

Eq. (6.19) is the objective function of the second-stage optimization problem. The 

left-hand side of the constraints (6.20) is the total transportation capacity of ships 

deployed deployed on the liner ship route r . The right-hand side of the constraints 

(6.20) is the total number of containers carried by ships sailing on leg l of the liner ship 

route r , including the containers loaded at previously calling ports which have 

remained on the ships plus any containers loaded or transshipped at port i
rp . Therefore, 

the constraints (6.20) guarantee the total number of containers transported on each leg of 

a liner shipping service route does not exceed the ship capacity deployed on the route. 

The constraints (6.21) imply that the total number of containers assigned to all the ship 
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routes between an O-D port pair does not exceed the corresponding container shipment 

demand. Eq. (6.22) requires the decision variables 
odh

sntz  should be non-negative. 

After ,
,
m s

t nEP   is obtained by solving the 2SSP model above, we can then calculate 

the expected profit under strategy n in period t given strategy m was applied in period t-1, 

which is denoted by ,
m

t nEP   1,..., ; 1,..., tt T n N  , and given by: 

 
1

1 ,
, ,

t

m t m s
t n s t n

s

EP p EP







 


 (6.23) 

 

6.3.3 Multi-Period Stochastic Programming Model 

At the end of period T, the set of ships owned by the liner container shipping 

company under strategy n , denoted by 
,T n

 , includes ships that were kept, ships that 

were chartered out and ships that were bought at the beginning of period T : 

 KEEP OUT NEW

, , , ,
, 1,..., TT n T n T n T n
n N    
      (6.24) 

Without loss of generality, we assume that all ships owned by the liner container 

shipping company are disposed of at the end of period T for their salvage values, which is 

denoted by 
,T n

SV  . The objective of the MPLSFP problem is to find the best policy that 

maximizes the sum of the expected profits across the whole T-period planning horizon 

plus the salvage value. Here a policy refers to a path from the dummy root O to the leaf 

node  1,...,T Tn N    in the decision tree. Therefore, the best policy refers to the 

path from the dummy root O to a leaf node n  in the decision tree, with the maximal sum 

of expected profits plus salvage values. The length of a path is, as usual, the sum of the 

length of the arcs that it contains. 
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Let ,
,

n l
t n



  be 1 if a path  Tl n   from the dummy root O to the leaf node n  

passes node n of period t, and 0 otherwise ( n  = 1,…,NT). The best path, with the 

maximal sum of expected profits across all period plus salvage value, that is, the optimal 

plan for the MPLSFP problem, is given by: 

 
     0

,
, , ,

1,

max
1 1T

T

m n lT
t n t n T n

t T
l n tn m
n

SVEP
Z

r r 


 
 

 







 



 (6.25) 

where r is the discount rate of each period during the multi-period planning horizon.  

Remark  

The Eq. (6.25) can be rewritten as a dynamic recurse function. Let m
tTEP  denote 

the maximal present value of the profit from strategy m over the periods from period t (t 

≥ 1) to period T, the Bellman equations can be established as follows: 

 
 

1,
1max

1m
t

m
t nm n

t tt
n

EP
TEP TEP

r






    
  

 (6.26) 

At the end of period T, all the ships owned by the liner container shipping company are 

assumed to be disposed of in order to get the salvage value. Therefore, the boundary 

condition is given by: 

 
 

, ,
1

T nn
T TT

SV
TEP n

r
 



    (6.27) 

Therefore, the maximal present value of the profit from the beginning of period 1 to the 

end of period T, namely from the root O to a leaf node in the decision tree, denoted by 

O
TTEP , is given by: 

 1, 1maxO O n
T n

n
TEP EP TEP


 


 (6.28) 
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6.4 Solution Algorithm 

As shown in Figure 6.3, the expected profit on each arc contributes to the total 

profits along a given path from the dummy root O to a leaf node n . In order to find the 

path with the greatest total profits across all periods, the attribute of each arc, ,
m

t nEP , and 

the salvage value 
,T n

SV   have to be obtained. Once each ,
m

t nEP  is obtained, the path from 

the dummy root O to a leaf node n  with the maximal total profit can be found. Therefore, 

the key aspect of the solution method is to obtain ,
m

t nEP , that is to solve the 2SSP model. 

The following firstly proposes a solution method to deal with the 2SSP model in order to 

get ,
m

t nEP , and then describes an algorithm for finding the best path for the proposed 

MPLSFP problem in this chapter. 

 

6.4.1 Dual Decomposition and Lagrangian Relaxation Method for Solving 2SSP 

Models 

It is noted that each 2SSP model under strategy n for period t involves a number 

of scenarios of the uncertain container shipment demand. Even when the first-stage 

decisions are given and fixed, tS  (t = 1,…, T) optimization models (6.19) have to be 

solved in order to obtain the expected value associated with this given set of fixed first-

stage decisions.  

In order to effectively solve a 2SSP model under strategy n for period t (n = 

1,…,Nt; t = 1,…,T), the dual decomposition and Lagrangian relaxation method proposed 

by Carøe and Schultz (1999) is used because it can decompose the 2SSP model into tS  
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sub-problems based on the scenarios of container shipment demand. In order to do that, 

the first-stage variables are copied for each scenario. Such duplication might result in a 

new problem: the first-stage decision variables vs for each scenario s (s = 1,…,St) could 

be different. However, the first-stage decision variable vector vs (s = 1,…,St) in the 2SSP 

model should be independent of uncertain container shipment demand because they are 

made prior to knowing the exact market demand. Therefore, the non-anticipativity 

constraints  1 2 1, ,
tS t T   v v v  are added, to guarantee that the first-stage 

decisions in period t do not depend on the scenarios. The non-anticipativity constraints 

are implemented through the equation 
t

s s

s

H v 0


 (t = 1,…, T) where sH is a suitable 

matrix with    1 2 +t tn tnS K R K   rows and 2 +tn tnK R K  columns ( tnK  is the cardinality 

of set ,t n , namely the number of ships; 2 +tn tnK R K  is the number of first-stage decision 

variables kr
ntx , k

nty  and kr
nt ) for s = 1,…,St  defined as follows: 

 
     

   

1 2 3

1

, , , , , , , , , , , , ,

, , , , , ,t tS S

      

    

H I 0 0 H I I 0 0 H 0 I I 0

H 0 I I H 0 0 I

   

 

 (6.29) 

where I and 0 are the square unity matrix and zero matrix of size 2 +tn tnK R K , respectively. 

Let λ  be a    1 2 + -dimensionalt tn tnS K R K  vector of Lagrangian multiplier associated 

with the non-anticipativity constraints. The resulting Lagrangian relaxation is as follows: 

[LRt,n] 

 
  

OUT SOLD IN NEW
, , , ,

, ,

OUT SOLD IN NEW

, max
,

t n t n t n t n

t

t n t n

kt kt kt kt
k k k kt s s

t n s s krs ks ts s
s krt nt kt nt

r k k

c c c c

LR p
c x e y Q

   




  

   
 

  
    
 

   


   ξ

λ λ H v
v ξ ω

   



  

 (6.30) 
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subject to constraints (6.11)-(6.18), (6.20)-(6.22) for each scenario of container shipment 

demand. This Lagrangian relaxation model LRt,n can be further decomposed into tS  

separate mixed-integer linear programming problems according to the tS  container 

shipment demand scenarios, namely: 

    , ,

t

s
t n t n

s

LR LR


 λ λ


 (6.31) 

where 

  
  

OUT SOLD IN NEW
, , , ,

, ,

OUT SOLD IN NEW

, max
,

t n t n t n t n

t n t n

kt kt kt kt
k k k ks t s s

t n s s krs ks ts s
krt nt kt nt

r k k

c c c c

LR p
c x e y Q

   



  

   
 

  
    
 

   

   ξ

λ λ H v
v ξ ω

   

  

(6.32) 

 
subject to constraints (6.11)-(6.18), (6.20)-(6.22) associated with the sth  scenario of 

container shipment demand. 

Each subproblem shown in Eq. (6.32) can be solved efficiently using an 

optimization solver of linear integer programs such as CPLEX. It is straightforward to 

demonstrate that  ,t nLR λ , the objective function value of the LRt,n model with respect 

to a given Lagrangian multiplier λ , is an upper bound on the optimal value of Eq.(6.10). 

The best or tightest upper bound is found by solving the Lagrangian dual: 

[LDt,n] 

  , ,mint n t nLD LR
λ

λ  (6.33) 

which is solved by the subgradient method, a brazen adaptation of the gradient method in 

which gradients are replaced by subgradients. Carøe and Schultz (1999) shown that 

t

s s

s




H v


 is the subgradient of (6.30) where sv  is the optimal solution of the sth  
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subproblem (6.32). With this subgradient, the LRt,n model can be solved using the 

following subgradient method: 

Step 0:  Give an initial Lagrangian multiplier vector  1λ . Let the number of iterations 

1h  . 

Step 1:  Calculate the subgradient  

t

s hs

s




H v


 by solving the subproblem shown in Eq. 

(6.32) with respect to the Lagrangian multiplier vector  hλ . 

Step 2:  Update the Lagrangian multiplier vector according to the formula: 

  1

t

s hh h h s

s






  λ λ H v


 (6.34) 

where h  is a positive scalar step size and is given by 

 1/h h   (6.35) 

Step 3:  If the following criterion is fulfilled, the algorithm is terminated. Otherwise, let 

1h h   and go to Step 1. 

       1
, , ,

h h h
t n t n t nLR LR LR   λ λ λ  (6.36) 

 

6.4.2 Shortest Path Algorithm for the Multi-period LSFP Problem 

Once the attribute of each arc has been obtained using the solution method 

described in Section 6.4.1, the next step is to find the longest path from the dummy root 

O to a leaf node, with the maximal profit (summed across all arcs contained in this path) 

plus salvage value. Each leaf node, no, is connected to a dummy destination node, D 

(shown in Figure 6.4), by a dummy arc, and the value on each dummy arc is set equal to 

the salvage value of this leaf node, 
,T n

SV  .  
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Figure 6.4 An acyclic network representation 

 

Then, finding the longest path from the dummy root O to a leaf node is equivalent 

to finding the longest path from O to D in the acyclic network shown in Figure 6.4. Any 

shortest path algorithms applicable to an acyclic network can be applied to find the 

longest path, such as Dijkstra's algorithm (Denardo and Fox, 1978; Ahuja et al., 1996). It 

is noted that, in order to use shortest path algorithms, a negative sign is added to the 

attribute of each branch, that is we consider ,
m

t nEP . Then, the shortest path, found using 

shortest path algorithms, is actually the longest path that we are seeking. 
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6.5 Computational Results 

6.5.1 A Numerical Example Design 

In order to illustrate the applicability of the proposed approach to the MPLSFP 

problem with container transshipment and demand uncertainty, we provide a numerical 

example. The liner shipping topology and 36 calling ports depicted in Figure 3.2 are 

taken as a numerical example here. In the example, we assume that a liner container 

shipping company intends to make a 10-year liner ship fleet plan for providing a weekly 

liner shipping service. The relevant ship data are presented in Table 6.2.  

Table 6. 2 Ship fleet at the beginning of research horizon 

Item 
Ship types 

1  2 3  4  5  

Ship size (TEUs) 2808 3218 4500 5714 8063 

Design speed (knots) 21.0 22.0 24.2 24.6 25.2 

Daily operating cost (103 

$) 

19.8 22.5 30.9 38.8 54.2 

Daily lay-up cost 

(103 $) 

2.8 3.2 4.5 6 8 

Annual chartering out 

rate (million $) 

3.64 

 

4.68 

 

6.42 

 

8.64 

 

10.24 

 

Annual chartering in rate 

(million $) 

4 5.2 7.0 9.4 12.0 

Selling price (million $) 85 105 175 225 345 

Purchasing price 

(million $) 

135 155 215 275 385 
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6.5.2 Generation of Demand Scenarios and Fleet Size and Mix Strategies 

We assume there are three scenarios of container shipment demand: high, medium 

and low for each single period (i.e. one year) shown in Figure 6.5. Additionally, we 

assume three feasible strategies are proposed by the liner container shipping company’s 

experts at the beginning of each year (see Table 6.3). A strategy involves five options: 

keep, charter out, sell, charter in and buy ships. We use five capital letters: K, O, S, I and 

B to represent those five options, respectively. Additionally, the superscript and the 

subscript of the capital letters in a strategy represent the ship type and the number of 

ships of this type, respectively. For example, the strategy 1 2 3 3 4 5
2 2 9 1 2 12K K K I K K  in year 1 

indicates that a total of 28 ship are contained in the ship fleet, of which two ships of type 

1, two ships of type 2, nine ships of type 3, two ships of type 4 and twelve ships of type 5 

are kept in the ship fleet and one ship of type 3 is chartered in. 

 

 

Figure 6.5 Scenario tree for the numerical example 
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6.5.3 Profit Comparison 

The results of the numerical example are illustrated as an acyclic network 

representation. It is found that the longest path from O to D is 

1 3 3 1 1 2 2 2 2 3O D            with total profits of 95.2586 billion 

dollars. 

As mentioned, the most significant contribution of this study is to take the 

dependency of uncertain container shipment demand between periods into account in the 

multi-period LSFP problem. In order to evaluate whether it is worthwhile considering 

container shipment demand dependency and to investigate the effect of the dependency 

on profit, we then compute the total profit over the whole multi-period planning horizon 

for the same numerical example, with the assumption that the container shipment demand 

in each period is independent of that in other periods, and compare the results with those 

produced above. For the sake of presentation, in the remainder of this paper, the case with 

dependency of container shipment demand is called case Ⅰ (i.e. the problem studied in 

this paper) while the case with independent container shipment demand is called case Ⅱ. 

In case Ⅱ, ,
m

t nEP   1,..., ; 1,..., tt T n N   is given by: 

  
OUT SOLD IN NEW

, ,, , , ,

OUT SOLD IN NEW
, max

                  ,

t n t nt n t n t n t n

t

m kr k
t n kt kt krt nt kt nt kt kt

r k kk k k k

t ts
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s

EP c c c x e y c c
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 ξ v ξ ω

     



(6.37) 

subject to constraints (6.11) to (6.22). 
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Table 6. 3 Strategies proposed for each year 

Year Scenario 1 Scenario 2 Scenario 3 

1 1 2 3 4 5
2 2 9 2 12K K K K K  1 2 3 3 4 5

2 2 9 1 2 12K K K I K K  1 1 2 3 3 4 5
1 1 2 9 4 2 12K O K K I K K  

2 1 2 3 3 4 5
2 2 9 5 2 12K K K I K K  1 2 3 3 4 4 5

2 2 9 2 2 2 12K K K I K I K  1 2 3 3 4 4 5
2 2 9 3 2 2 12K K K I K I K  

3 1 1 2 3 3 4 4 5
1 1 2 9 4 2 2 12S K K K I K I K 1 2 3 3 4 5

2 2 9 5 2 12S K K B K K  1 1 2 3 4 4 5
1 1 2 9 2 6 12S K K K K I K  

4 1 2 3 3 4 4 5
1 2 9 4 2 5 12K K K I K I K  2 3 4 5

2 14 2 12K K K K  1 2 3 3 4 4 5
1 2 9 5 2 3 12K K K B K I K

5 1 2 3 3 4 4 5
1 2 9 5 2 3 12S K K B K I K  2 3 4 4 5

2 14 2 5 12K K K I K  1 2 3 4 4 5
1 2 14 2 5 12K K K K I K  

6 2 3 4 4 5
2 14 2 8 12K K K I K  2 2 3 4 4 5 5

1 1 14 2 4 12 2S K K K B K I 1 2 3 4 4 5
1 2 14 2 4 12S K K K B K  

7 2 3 4 4 5 5
2 14 2 4 12 3S K K B K I  2 3 4 5 5

1 14 6 12 5K K K K I  2 3 4 5 5
2 14 6 12 5K K K K I  

8 3 4 5 5
14 6 12 6K K K I  2 3 4 5 5

1 14 6 12 6S K K K B  2 2 3 4 5 5
1 1 14 6 12 6S K K K K B  

9 3 4 4 5 5
14 6 4 12 3K K I K B  3 4 5

14 6 18K K K  2 3 4 5
1 14 6 18S K K K  

10 3 4 5 5
14 6 15 5K K K I  3 4 4 5

14 6 3 18K K I K  3 4 4 5
14 6 4 18K K I K  

 

We found that the longest path from O to D for the numerical example was the 

same as the path in case Ⅰ, but the total profit was 95.0217 billion dollars. The results 

show that the total profits in case Ⅱ are lower than those in case Ⅰ, which indicates that 

the dependency of container shipment demand has a significant effect on profits and 

verifies that the importance of considering dependency between the container shipment 

demand in different periods. Actually, we have also theoretically proven that the profit in 

case Ⅱ will be less than or equal to that in case Ⅰ (see Appendix B). 

 

6.5.4 Comparison of Fleet Deployment Plans 

Section 6.5.3 evaluates whether it is worthwhile considering of container 

shipment demand dependency, by investigating the effect of this dependency on profit. 
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Similarly, this section investigates the effect of the dependency on the resulting fleet 

deployment plans. The 2SSP model (6.10) indicates that the fleet deployment plan under 

a given fleet strategy n in period t is dependent on the container shipment demand 

scenario s  of the previous period t-1. Since there are 1tS   container shipment demand 

scenarios in period t-1, it is possible that there are 1tS   different fleet deployment plans 

for a strategy n in year t (t = 2,…,T), where each fleet deployment plan corresponds to a 

container shipment demand scenario s  from the  previous period t-1 and is obtained by 

solving the 2SSP model (6.10). This shows that, in case Ⅰ , the fleet deployment 

decisions for period t take the container shipment demand from the previous period into 

account, and therefore, the fleet deployment plans are demand-dependent. In case Ⅱ, the 

container shipment demand between periods is assumed to be independent, that is the 

container shipment demand in period t-1 is not taken into consideration in the fleet 

deployment plan developed for period t, which indicates that the fleet deployment plans 

are demand-independent. The optimization model (6.37) shows that, in case Ⅱ, a strategy 

n in year t (t = 2,…,T) has only one fleet deployment plan, which is obtained by solving 

the optimization model. Obviously, the demand-dependent fleet deployment plans in case 

Ⅰ are more reasonable and flexible because the consideration of container shipment 

demand dependency in this case means that the liner container shipping company can 

adopt a proper fleet deployment plan based on the container shipment demand that came 

about in the previous period; in case Ⅱ, meanwhile, the same fleet deployment plan must 

be adopted regardless of the scenario of container shipment demand that materialized in 

the previous year.  
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In the numerical example, each fleet strategy has three fleet deployment plans 

corresponding to three scenarios of demand: high, medium and low. For example, for the 

strategy 1 2 3 3 4 5
2 2 9 5 2 12K K K I K K  of year 2 in case Ⅰ, three fleet deployment plans are shown in 

Table 6.4. The fleet deployment plan for the same strategy in case Ⅱ is shown in Table 

6.5. It is found that those fleet deployment plans are different; the reason for this is that 

the probabilities involved in the optimization models are different. 

Table 6. 4 Ship-to-route allocation of strategy 1 2 3 3 4 5
2 2 9 5 2 12K K K I K K  in case I for year 2 

Demand 

scenario 

 

Route

Ship 

Type 

CCX CPX GIS IDX NCE NZX SCE UKX

H
ig

h 

1       2  

2       2  

3 3 3   5 3   

4   1 1     

5   1 3 4  3 1 

M
ed

iu
m

 

1       2  

2       2  

3 3 3   5 3   

4     2    

5   2 4 2  3 1 

L
ow

 

1       2  

2   2      

3 3 3    4 4  

4     1  1  

5    4 6  1 1 

 

 



 

149 
 

Table 6. 5 Ship-to-route allocation of strategy 1 2 3 3 4 5
2 2 9 5 2 12K K K I K K  in case II for year 2 

Route 

Ship 

Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

1       2  

2       2  

3 3 3  2 2 3 1  

4     2    

5    3 4  2 1 

         

6.6 Summary 

This chapter considers a multi-period LSFP problem with container transshipment 

and uncertain container shipment demand. The uncertain container shipment demand in 

each period is assumed to be dependent on that of the previous period. A set of scenarios 

in each single period is used to reflect the uncertainty of container shipment demand, and 

then the evolution and dependency of container shipment demand across multiple periods 

is modeled as a scenario tree. A decision tree is used to interpret the procedure of fleet 

development over the multi-period planning horizon. Then, the proposed multi-period 

LSFP problem is formulated as a multi-period stochastic programming model comprising 

a sequence of interrelated 2SSP models. In order to solve this model, the dual 

decomposition and Lagrangian relaxation method is employed to solve the 2SSP models; 

and then the solution to the multi-period LSFP problem is found by using a shortest path 

algorithm. We illustrate the applicability and performance of our proposed model and 

solution method on a numerical example. We also investigated the effect of considering 

container shipment demand dependency. The results show that the profit obtained when 
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considering dependency is higher and the ship fleet plans are more flexible than when 

dependency is not considered.  

It is worth highlighing that the most significant contribution of this study is that it 

takes the first step towards a more realistic multi-period LSFP problem than has been 

studied in previous literature and provides an applicable and feasible method for handling 

such a problem in practice. It has to be pointed out that the feasible fleet size and mix 

strategies in each single period are assumed to be proposed by experts at the liner 

container shipping company, rather than being regarded as decision variables. The 

rationale behind such an assumption is that it effectively reduces the searching space 

from the viewpoint of operation research and makes the multi-period LSFP problem 

solvable in practice; otherwise, the multi-period LSFP problem would be highly 

intractable. However, the quality of the solution, i.e. the longest path provided by this 

study, is relatively better than the others, but possibly not a global optimum. We also need 

to reduce the runtime further because the convergent rate of the harmonic series, i.e. the 

step size sequence adopted in the solution algorithm, is inefficient. It might be worhwhile 

investigating whether a more sophisticated heuristic for finding feasible solutions would 

produce even better results.   

Currently, only the expected profit is studied in this paper, no attempt is mde to 

control the variance (that is the risk that results from the uncertain environment). This 

will be the subject of our future research work. 
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CHAPTER 7 CONCLUSIONS 

This chapter summarizes the research work presented in this thesis and highlights 

its outcomes and contributions. Additionally, future work of potential interest is proposed.  

 

7.1 Outcomes and Contributions 

This thesis addressed the need to investigate LSFP problems with container 

shipment demand uncertainty. A review of the current literature showed that there are 

many limitations and gaps in the LSFP problems studied so far. For example, there are no 

systematic methodologies proposed in the existing literature to deal with the uncertainty 

issue arising in LSFP problems. Besides this, the multi-period LSFP problem is not 

properly addressed in the existing studies. This thesis worked on eliminating these 

limitations and gaps, by proposing new methodologies. Also, solution algorithms were 

proposed in order to efficiently solve the new optimization models. Numerical examples 

were implemented to illustrate the efficiency and applicability of the proposed models 

and solution algorithms.  

Chapter 3 made an initial investigation of the short-term LSFP problem with 

container shipment demand uncertainty. To deal with the uncertainty, we assumed that the 

container shipment demand between each port pair on a liner ship route follows a normal 

distribution with a given mean and variance. This assumption may lead to a problem: 

since the demands are uncertain, once the decisions in the short-term LSFP problem have 
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been determined, the fleet of ships may be unable to meet the pickup and delivery 

requirements of its customers, even though the expected demand along the routes does 

not exceed the fleet capacity. Since this is not completely avoidable, the liner container 

shipping company simply hopes that it will have a very low possibility of occurring. In 

order to reduce the possibility that the liner container shipping company cannot satisfy 

the customers’ demand, we decided to insist that the decisions guarantee feasibility ‘as 

much as possible’. Therefore, we formulated the constraint that the liner container 

shipping company satisfies customer demand in a probabilistic form in this chapter, 

which is called a chance constraint. The level of service was proposed, to represent the 

probability of satisfying the customers’ requirements, and this was formulated as a chance 

constraint. The short-term LSFP problem with uncertain container shipment demand was 

then formulated as a CCP model. The model is actually an integer linear programming 

model, which can be solved efficiently using any optimization solver, for example 

CPLEX. A numerical example was carried out to assess the model and analyze the impact 

of the confidence parameters and cargo shipment demand. The results implied that the 

level of service has a significant impact on the optimal fleet size and deployment. It was 

also found that more ships are needed and more costs must be incurred in order to 

maintain a higher level of service. 

Chapter 4 studied the short-term LSFP problem with container transshipment and 

uncertain container shipment demand from another point of view: the goal of this chapter 

was to maximize the expected profit for the liner container shipping company. The 

container shipment demand for each port pair on a liner ship route was assumed to be a 

random variable. This problem was reformulated as a 2SSIP model. In a stochastic model, 
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some decisions have to be made before the uncertain terms are observed, and these are 

termed as first-stage decisions. Furthermore, after the uncertain terms become known, 

recourse actions can take place, which are called second-stage decisions. Since the 

decisions about fleet design and deployment are made before the realization of container 

shipment demand, they should be first-stage decision variables, while the number of 

containers shipped between a port pair on a liner ship route should be second-stage 

decision variables. The objective of this 2SSIP model was to choose the first-stage 

decision variables, such as the numbers, types and deployment of ships, in such a way 

that the sum of the first-stage profit and the expected value of the second-stage profit 

from shipping containers was maximized. To effectively solve the proposed model, firstly, 

the SAA method was used to approximate the expected recourse function, and then the 

dual decomposition and Lagrangian relaxation method was used to solve the model. 

Finally, the performance of the proposed model and solution algorithms was tested using 

a numerical example. The results indicate that the solution methods are effective. It was 

also found that the variability of the uncertain parameters has a significant effect on the 

solution. As the variability increases, the profit obtained by a liner container shipping 

company decreases. 

Chapter 5 extended the work of Chapter 4 by taking the expected value and 

variance into account simultaneously. In Chapter 4, the 2SSIP model only considers the 

expected value, but ignores the variance (namely the risk), which is also an issue of great 

concern to decision-makers. Therefore, Chapter 5 developed a robust optimization model 

in which both expected value and variance are considered simultaneously, for the short-

term LSFP problem with container shipment demand uncertainty. Robust optimization is 
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able to tackle the decision-makers’ favored risk aversion or service-level function. By 

adjusting the penalty parameters of the robust optimization model, it was shown how 

decision-makers could determine an optimal liner ship fleet plan, including fleet design 

and deployment, which maximizes total profit under different container shipment demand 

scenarios while at the same time controlling the variance. The robustness and 

effectiveness of the developed model was demonstrated using numerical results. These 

results generally show that larger ships are mostly assigned to longer routes while smaller 

ships are mostly assigned to shorter routes, and that more ships are assigned to the longer 

routes while fewer ships are assigned to the shorter routes.  

Chapter 6 studied the long-term/multi-period LSFP problem with container 

shipment demand uncertainty. This chapter proposed a more realistic problem for a liner 

container shipping company by taking the uncertainty and the dependency of container 

shipment demand into account. Using a scenario tree approach to model the evolution of 

dependent uncertain demand across two successive single periods, and using a decision 

tree to model the procedure of LSFP, the proposed problem was formulated as a multi-

period stochastic programming model, comprising a sequence of interrelated two-stage 

stochastic programming models developed for each single period. Each two-stage model 

was solved by the dual decomposition and Lagrangian relaxation method. Each path from 

the root to a leaf on the decision tree corresponds to a multi-period liner ship fleet plan. A 

numerical example was carried out to assess the applicability and performance of the 

proposed model and solution algorithm. We compared the profit in case I, in which 

dependency and uncertainty of container shipment demand were both included, to the 
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profit in case II, where only uncertainty was included. The results showed that the profit 

in case I was higher than in case II, indicating that case I was superior.  

In short, the contributions of the thesis are as follows: 

1. It proposes more realistic LSFP problems than have been studied 

previously in the literature. 

2. It provides a fresh and worthwhile research area for classical LSFP 

problems by taking the uncertainty and dependence of container shipment 

demand into account in such problems. 

3. It improves the existing mathematical programming models proposed for 

classical LSFP problems with deterministic container shipment demand. 

4. It proposes algorithms and systematic methodologies for formulating 

LSFP problems with uncertain container shipment demand. 

5. It provides an applicable and feasible way for a liner container shipping 

company to produce its liner ship fleet plans in practice.  

 

 

7.2 Recommendations for Future Work 

This thesis provides many potential future research topics. Firstly, in this thesis all 

containers are assumed to be of the same size, that is they are all standard twenty-foot 

equivalent units (TEUs). However, in practice there are multiple types of containers with 

different sizes and weights, such as eight-foot equivalent units (EEUs), forty-foot 

equivalent units (FEUs), refrigerated containers, high cube containers, flat rack containers, 

platform containers, and others. The combination of these multiple types of container 



Chapter 7                                                                                                                                 Conclusions 

156 
 

makes the operation of loading and unloading them much more complicated, and their 

inclusion in the LSFP problem would make it more realistic. This would be an interesting 

and worthwhile research area.  

Secondly, although the solution algorithm that integrates the sample average 

approximation approach with a dual decomposition technique, as proposed in Chapter 4, 

can produce high-quality results, its convergence speed in approaching the optimum is 

slow and thus the computational time required is unsatisfactory. How one could increase 

the convergence speed and reduce the computational time would be a further interesting 

and challenging issue to explore. Distributed computing would be a useful tool for 

efficiently reducing the computational time (MirHassani et al., 2000). 

Thirdly, Chapters 4, 5 and 6 assume that the liner ship route network is 

predetermined and fixed. Such an assumption is reasonable in Chapters 4 and 5 because 

the planning horizon of the LSFP problems studied in these chapters is short-term. During 

a short-term horizon, a liner container shipping company would be unlikely (and 

probably unable) to change its liner ship route network. For the long-term LSFP problem, 

however, as studied in Chapter 6, the liner ship route network may not be fixed, as the 

company may change it. This assumption was made here in order to simplify the problem. 

In future, however, we could extend this research work by integrating the dynamic 

routing problem with the long-term LSFP problem. 

Forthly, most liner trade is unbalanced because of the different economic needs in 

different regions. The number of inbound loaded containers can be quite different from 

the number of outbound loaded containers at any given port. Liner container shipping 

companies often need to reposition their empty containers or lease containers from 
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vendors to meet customer demand. It would be interesting and worthwhile to look into 

repositioning empty containers and to discuss where and when companies should lease 

containers from vendors so as to meet the demand at different ports. 

Finally, since ships are assets with finite lives, the liner container shipping 

company often has to consider when and which ships should be replaced. Therefore, 

building a control model to capture ship utilization and replacement decisions would 

make the problem more realistic. The control model should jointly involve investment 

timing and trading strategies. 
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APPENDIX A 

Proposition 1: The variance 2s s s s s
s s

Var p p   
 

  
    

  
 
 

 in the optimization model 

(5.15) decreases when the value of λ increases. 

Proof: Assume that 1 2λ λ , and that  1 1 1 1, , ,s s s s  x y ε   and  2 2 2 2, , ,s s s s  x y ε  are the 

optimal solutions for  , , ,s s s s  x y ε  in the optimization models (5.15) associated with 

1λ  and 2λ , respectively. The objective functions of the optimization models (5.15) with 1λ  

and 2λ , denoted by   1

1 1 1 1

λ λ
, , ,s s sZ 


x y ε  and   2

2 2 2 2

λ λ
, , ,s s sZ 


x y ε respectively, are as follows:  

   1

1 1 1 1 1 1 1 1 1 1

λ λ
, , , λ 2s s s s s s s s s s s s

s s s s

Z p p p p      
   

        
  

   x y ε ε
   

 (A-1) 

   2

2 2 2 2 2 2 2 2 2 2

λ λ
, , , λ 2s s s s s s s s s s s s

s s s s

Z p p p p      
   

  
      

  
   x y ε ε
   

(A-2) 

Also   2

1 1 1 1

λ λ
, , ,s s sZ 


x y ε  and   1

2 2 2 2

λ λ
, , ,s s sZ 


x y ε  are given by: 

   2

1 1 1 1 1 2 1 1 1 1

λ λ
, , , λ 2s s s s s s s s s s s s

s s s s

Z p p p p      
   

  
      

  
   x y ε ε
   

 (A-3) 

   1

2 2 2 2 2 1 2 2 2 2

λ λ
, , , λ 2s s s s s s s s s s s s

s s s s

Z p p p p      
   

        
  

   x y ε ε
   

(A-4) 

Then we have: 

    1 1

1 1 1 1 2 2 2 2

λ λ λ λ
, , , , , ,s s s s s sZ Z 

 
x y ε x y ε  (A-5) 

    2 2

2 2 2 2 1 1 1 1

λ λ λ λ
, , , , , ,s s s s s sZ Z 

 
x y ε x y ε  (A-6) 

Summing both sides of Eqs. (A-5) and (A-6), the following Eq. (A-7) can be obtain: 
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1 2

1 2

1 1 1 1 2 2 2 2

λ λ λ λ

2 2 2 2 1 1 1 1

λ λ λ λ

, , , , , ,

                               

, , , , , ,

s s s s s s

s s s s s s

Z Z

Z Z

 

 

 

 







x y ε x y ε

x y ε x y ε

 (A-7) 

Substituting Eqs. (A-1) to (A-4)  into Eq. (A-7), and then we get: 

  1 2 1 1 1 2 2 2λ λ 2 2 0s s s s s s s s s s
s s s s

p p p p        
    

                     
        

   
   

(A-8) 

From the assumption that  1 2λ λ , we can easily derive that 

 1 1 1 2 2 22 2s s s s s s s s s s
s s s s

p p p p        
    

                
      

   
   

 (A-9) 

Thus, 1 2λ=λ λ=λ
Var Var . □ 

Similarly, we can derive the following proposition: 

 

Proposition 2: The underfulfillment s s
s

p

 ε


in the optimization model (5.15) decreases 

when the value of the weight   increases. 

Proof: The proof is similar to that used for Proposition 1. Assume that 1 2  , and 

that  1 1 1 1, , ,s s s s  x y ε   and  2 2 2 2, , ,s s s s  x y ε  are the optimal solutions for 

 , , ,s s s s  x y ε   in the optimization models (5.15) associated with 1  and 2 , 

respectively. The objective functions of the two optimization models, denoted by 

  1

1 1 1 1, , ,s s sZ
 




x y ε  and   2

2 2 2 2, , ,s s sZ
 




x y ε , respectively, are as folllows: 

   1

1 1 1 1 1 1 1 1 1 1, , , λ 2s s s s s s s s s s s s
s s s s

Z p p p p
 

      
   

        
  

   x y ε ε
   

(A-10) 
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2 2 2 2 2 2 2 2 2 2, , , λ 2s s s s s s s s s s s s
s s s s

Z p p p p
 

      
   

        
  

   x y ε ε
   

(A-11) 

Also   2

1 1 1 1, , ,s s sZ
 




x y ε  and   1

2 2 2 2, , ,s s sZ
 




x y ε  are given by: 

   2

1 1 1 1 1 1 1 1 2 1, , , λ 2s s s s s s s s s s s s
s s s s

Z p p p p
 

      
   

        
  

   x y ε ε
   

(A-12) 

   1

2 2 2 2 2 2 2 2 1 2, , , λ 2s s s s s s s s s s s s
s s s s

Z p p p p
 

      
   

  
      

  
   x y ε ε
   

(A-13) 

Then we have: 

    1 1

1 1 1 1 2 2 2 2, , , , , ,s s s s s sZ Z
   

 
 

x y ε x y ε  (A-14) 

    2 2

2 2 2 2 1 1 1 1, , , , , ,s s s s s sZ Z
   

 
 

x y ε x y ε  (A-15) 

Summing both sides of Eqs. (A-14) and (A-15), Eq. (A-16) can be obtain: 

 

   

   

1 2

1 2

1 1 1 1 2 2 2 2

2 2 2 2 1 1 1 1

, , , , , ,

                                

, , , , , ,

s s s s s s

s s s s s s

Z Z

Z Z

   

   

 

 

 

 







x y ε x y ε

x y ε x y ε

 (A-16) 

Substituting Eqs. (A-10) to (A-13) into Eq. (A-16), and then we get: 

 1 1 2 2 2 1 1 2
s s s s s s s s

s s s s

p p p p   
   

     ε ε ε ε
   

 (A-17) 

which can be rewritten as follows: 

  1 2 1 2 0s s s s
s s

p p 
 

    
 
 ε ε
 

 (A-18) 

From the assumption that  1 2  , we can easily derive that  

 1 2
s s s s

s s

p p
 

 ε ε
 

 (A-19) 

which proves the proposition. □  
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APPENDIX B 

Proposition 1: The profit using Eq. (6.23). in case Ⅰ is larger or equal to that using Eq. 

Error! Reference source not found. in case Ⅱ. 

Proof: In case Ⅰ, ,
m

t nEP  is given by:  

    
1

1 ,
, ,

t

m t m s
t n s t n

s

EP p EP







 


    (B-1) 
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,
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c




 can be 

removed since they are fixed when the sets of OUT SOLD IN
, , ,, ,t n t n t n    and NEW

,t n  are given. Then 

Eq. (B-1) could be rewritten as follows after substituting Eq. (6.10) to replace ,
,
m s

t nEP  :  
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In case Ⅱ, ,
m

t nEP  is given by Eq. Error! Reference source not found.. Similarly, 

the terms OUT SOLD IN
, , ,, ,t n t n t n    and NEW

,t n  are removed and then ,
m

t nEP  is given by:  

     
,

, max ,
t t n

m t ts r kr k
t n s kt nt kt nt

s r k

EP p Q c x e y
  

    ξ v ξ ω
  

 (B-3) 

Therefore, ,
m

t nEP  in case Ⅰ   ,
m

t nEP  in case Ⅱ.
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