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Abstract

Due to the advances in medical imaging technology and wider adoption of elec-

tronic medical record systems in recent years, medical imaging has become a

major tool in clinical trials and a huge amount of medical images are proliferated

in hospitals and medical institutions every day. Current research works mainly

focus on modality/anatomy classification, or simple abnormality detection. How-

ever, the needs to efficiently retrieve the images by pathology classes are great.

The lack of large training data makes it difficult for pathology based image clas-

sification. To solve problems, we propose two approaches to use both the medical

images and associated radiology reports to automatically generate a large training

corpus and classify brain CT image into different pathological classes. In the first

approach, we extract the pathology terms from the text and annotate the images

associated with the text with the extracted pathology terms. The resulting annotat-

ed images are used as training data set. We use probabilistic models to derive the

correlations between the hematoma regions and the annotations. We also propose

a semantic similarity language model to use the intra-annotation correlation to

enhance the performance. In testing, we use both the trained probabilistic model
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and language model to automatically assign pathological annotations to the new

cases. In the second approach, we use deeper semantics from both images and text

and map the hematoma regions in the images and pathology terms from the text

explicitly by extracting and matching anatomical information from both resource.

We explore hematoma visual features in both 3D and 2D and classify the images

into different classes of pathological changes, so that the images can be searched

and retrieved by pathological annotation.
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Chapter 1

Introduction

1.1 Background

Due to the advances in medical imaging technology and wider adoption of elec-

tronic medical record systems in recent years, medical imaging has become a

major tool in clinical trials. As a result, a huge amount of medical images are pro-

liferated in hospitals and medical institutions every day. A medical examination

such as X-Ray, CT or MRI usually consists of one image or a series of images

and a radiology report. For example, a CT image series of a traumatic brain injury

(TBI) case is shown in Figure 1.1.

Medical findings in medical reports associated with the images mainly refer

to pathological changes, i.e. disorders, diseases, and other abnormalities. For

example, “hematoma” and “midline shift” are medical findings in the example

report shown in Figure 1.2. Apart from the findings, radiologists also note down
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Figure 1.1: The image series of a traumatic brain injury case

more specific details of the findings in the reports. They can be considered as

attributes or modifiers of the findings, which include anatomical location (body

part), amount or size, direction, probability (how likely the radiologist think the

observation is indeed abnormality of the brain), seriousness, and etc..

Unenhanced axial scans of the brain were obtained.
There is large extradural hematoma in the left frontal
lobe. This is compressing the underlying brain and
distorting the left lateral ventricle. ...

Figure 1.2: The radiology report associated with the CT image series
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For traumatic brain injury, CT is a vital tool for the assessment and remains the

investigation of choice even following the advent of MRI, due both to the ease of

monitoring of injured patients and the better demonstration of fresh bleeding and

bony injury [32]. A blow to the skull results in compression injury to the adjacent

brain (coup) and stretching on the opposite side (contrecoup). This may result in

contusion, shearing injuries and rupture of intra-axial or extra-axial vessels, lead-

ing to hemorrhage. There are several types of hemorrhages (“hematoma” is often

used interchangeably with “hemorrhage”): extradural hematoma (EDH), subdu-

ral hematoma (SDH), intracerebral hemorrhage (ICH), subarachnoid hemorrhage

(SAH), and intraventricular hematoma (IVH). In this thesis, we focus on the anal-

ysis of the CT images with the presence of various types of the hemorrhages;

therefore, we give a brief introduction to these types of hemorrhages according to

[32].

An EDH occurs when there is a rupture of a blood vessel, usually an artery,

which then bleeds into the space between the “dura mater”” and the skull. The

affected vessels are often torn by skull fractures. The expanding hematoma strips

the dura from the skull; this attachment is quite strong such that the hematoma

is confined, giving rise to its characteristic biconvex shape, with a well defined

margin.

An SDH arises between the dura and arachnoid, often from ruptured veins

crossing this potential space. The space enlarges as the brain atrophies and so

subdural hematomas are more common in the elderly. The blood is of high at-

tenuation, but may spread more widely in the subdural space, with a crescentic
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appearance and a more irregular inner margin.

An ICH occurs due to stretching and shearing injury, often due to impaction of

the brain against the skull on the side opposite to the injury. Thus they may be seen

Figure 1.3: A CT image with EDH

Figure 1.4: A CT image with SDH
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directly opposite the impact site, subcutaneous hematoma, fracture, or extradural

hematoma (contre coup injury). The inferior frontal lobes and anterior temporal

lobes are common sites after a blow to the back of the head. Multiple contusions

may be present throughout the cerebral hemispheres. They are often very small

and visible at the grey/white matter interface. They are due to a shearing injury

with rupture of small intracerebral vessels, and in a comatose patient with no other

obvious cause they imply a severe diffuse brain injury with a poor prognosis.

Figure 1.5: A CT image with ICH

SAH may occur alone or in association with other intracerebral or extracere-

bral hematomas. Increased attenuation is seen in the CSF spaces, over the cerebral

hemispheres (look closely at the Sylvian fissure), in the basal cisterns or in the

ventricular system. SAH may be complicated by hydrocephalus.

An IVH is a bleeding into the brain’s ventricular system, where the cere-

brospinal fluid is produced and circulates through towards the subarachnoid space.
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It can result from physical trauma or from hemorrhaging in stroke. The injury re-

quires a great deal of force to cause in adults. Thus the hemorrhage usually does

not occur without extensive associated damage, and so the outcome is rarely good.

Prognosis is also dismal when IVH results from intracerebral hemorrhage related

to high blood pressure and is even worse when hydrocephalus follows. It can re-

sult in dangerous increases in intracranial pressure and can cause potentially fatal

brain herniation

1.2 Current research problems

Most medical images are in the standard DICOM (Digital Imaging and Commu-

nications in Medicine) format, and the display and retrieval of CT scan images

are mostly via PACS (Picture Archives and Communication System) hardware

Figure 1.6: A CT image with SAH
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[57]. However with such standards and hardware, the medical images currently

can only be retrieved using patient names or identity card numbers. To retrieve an

image pertaining to a particular anomaly without the patient name is literally like

looking for a needle in a haystack. In the domain of CT brain images, very of-

ten doctors already overloaded with day-to-day medical consultation simply could

not remember patients names when they need to refer to cases of certain type of

brain trauma seen before and as such valuable information are lost in the sea of

raw image pixels.

In addition to medical images, free text medical reports are also produced

in large amount daily. These medical texts include the patient’s medical histo-

ry, medical encounters, orders, progress notes, test results, etc. Although these

textual data contain valuable information, most are just archived and not referred

to again. These are valuable data that are not used to full advantage. A similar

Figure 1.7: A CT image with IVH
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situation occurs in the field of radiology. As the reports are in free text format

and usually unprocessed, there exists a great barrier between the radiology reports

and the medical professionals (radiologists, physicians, and researchers), making

it difficult for them to retrieve and use the information and knowledge from the

reports.

Text-based image retrieval is friendly to users as only text query is required; it

can retrieve images fast as images are indexed by text. However, it can only index

and retrieve images with accompanying text. For medical images, those with-

out associated textual information cannot be indexed or retrieved. Content-based

medical image retrieval provides an alternative to text-based retrieval by indexing

images with visual features so that medical images without accompanying text

can still be indexed and retrieved. However, content-based image retrieval poses a

limitation on the query format–the query must be an image example. Moreover, it

suffers from the semantic gap problem as the visual features are mostly low level

and are not directly linked to the understanding of the medical images. Auto-

annotation based medical image retrieval seems to have the advantages of both

text-based and content-based image retrieval by automatically annotating images

with their semantic content and offering users the ease of search images based on

the textual annotations. Hence, automatic medical image annotation/classification

and annotation-based medical image retrieval have gained popularity in recent

years. Numerous tasks have been proposed in CLEF medical image annotation

tracks [119]. Most research works focused on automatically generating annota-

tions of acquisition modality (CT, X-ray, MR, etc.), body orientation, body region,
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and biological system. Some works also focus on the detection of abnormalities

in medical images.

However, while most research works focus on the analysis of the images, very

few works put effort into analysis of the radiology report associated with the med-

ical images and the correspondence between the descriptions in the report and the

region of interest in the images. For image classification/annotation, most works

classify the medical images according to their modality, anatomical body part, or

the presence of abnormality, whereas only a few works classify the images ac-

cording to their pathology classes. As it is often the case that a doctor wants to

retrieve all images pertaining to one pathology class, current work cannot satisfy

the doctor’s need. Indexing and retrieving medical images by their pathological

annotations can help to satisfy this need; however, a large labeled training data

set is needed for automatic medical image annotation/classification, as manual

labeling requires domain expertise and is thus expensive and slow.

In summary, current problems in this research area include:

• There are large amount of images, but mostly are difficult to retrieve.

• Current research works mainly focus on modality/anatomy classification, or

simple abnormality detection.

• The lack of large training data makes it difficult for pathology based image

classification
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1.3 Our solutions and contributions

In this thesis, we propose some solutions to the problems stated above. We process

and analyze the medical images and reports to extract deeper semantics and useful

information. We provide several modes to suit user’s needs to search and retrieval

medical images accurately, fast, and conveniently.

Firstly, we apply natural language processing methods and use domain knowl-

edge resource to the free text medical report to extract useful information such as

medical findings and the specific descriptors of pathological changes. We use the

extracted information to index the reports as well as the images the reports are

associated with. In this way, the users can search and retrieve medical images that

have accompanying reports by typing text queries into the system, and the system

will return medical images that fulfill the text queries. In addition to text-based

indexing and retrieval of medical images, another use of the information extract-

ed from the free text medical reports is to use medical findings and their specific

descriptors such as anatomical locations to help with image processing in region

of interest recognition, classification, and annotation.

Secondly, to cater the need of search and retrieval of visually similar medical

images, we provide a content-based mode for medical image retrieval. We process

the images, segment the region of interest and convert it into a binary visual feature

vector which is used to index the image. When a user submit an image query,

we process it in the same way as we process the images in the database. We

partitioned the brain image into bins and obtain a binary feature vector of the
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query image and compare it with the binary features vectors representing other

images in our database, then we return the images according to their similarity to

the query binary feature vector. For TBI cases, we are the first to use such method

to preserve both shape and location of the ROI in the feature representation. In

this way, the users are able to find visually similar images to their query images.

This function of our system comes handy for users who are not equipped with

much domain knowledge and could not form proper text queries. It can also serve

as a good teaching tool for junior doctors.

On top of text-based and content-based image retrieval, we also develop novel

frameworks that automatically classify the medical images into pathology change

categories and provide annotation-based image retrieval to cater user’s needs.

While most research works focus on the analysis of the images or text sepa-

rately, very few works put effort into the analysis of the medical text (e.g. ra-

diology reports) associated with the medical images and the correspondence be-

tween the descriptions in the text and the respective regions or findings in the

images. We propose two approaches to utilize both the medical images and text to

generate a training corpus for pathology based automatic medical image annota-

tion/classification. In the first approach, we extract the pathology terms from the

text and annotate the images associated with the text with the extracted pathology

terms. The resulting annotated images are used as training data set. We use prob-

abilistic models to derive the correlations between the regions of interest in the

images and the annotations since the annotations are mapped to the whole image,

not the specific regions. Then we use the trained models to automatically assign
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pathological annotations to the images without accompanying text so that these

images can be retrieved as well. In the second approach, we explore deeper se-

mantics from both images and text and map the ROIs in the images and pathology

terms from the text explicitly by extracting anatomical information from both re-

source. From the image series, we segment the regions of interest, i.e. the area

of pathological changes, and obtain their anatomical location information by reg-

istering the image series to a referenced brain atlas. We extract the anatomical

terms in addition to pathological terms from the textual report associated with the

images, match and label the ROIs and pathological class in images and text, and

thus create a region-based labeled data set for training. We explored the features

for hematomas in both 3D and 2D so that we could classify the images according

to the pathological changes.

In summary, our contributions to this research area include:

• We use both text and images to automatically generate a large training cor-

pus.

• We propose two novel frameworks to classify medical images according to

pathological changes.

• We develop text-based, content-based, and annotation-based image retrieval

methods for brain CT images.
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1.4 Organization of the thesis

We organize the thesis as follows. We review the research works related to our

research problems in Chapter 2. Chapter 3 describes our methods and experi-

mental result for free text radiology report processing. Chapter 4 describes our

methods and experimental results for medical image processing, binary feature

vector generation, and content based medical image retrieval. Then we describe

our methods for pathology based automatic medical image annotation, classifica-

tion, and annotation based medical image retrieval in Chapters 5 and 6. Chapter 5

discusses a probabilistic model approach for unsupervised medical image annota-

tion. Chapter 6 describes a supervised approach for region-based medical image

classification. Finally, we discuss possible future research directions and conclude

this thesis in Chapter 7.
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Chapter 2

Literature review

2.1 Information Extraction from Medical Text

In the medical domain, with the advances in medical technology and wider adop-

tion of electronic medical record systems, medical text data have proliferated at

rapid speed and in huge amount in hospitals and other health institutions daily.

However, the narrative form of these medical texts is difficult for searching, re-

trieval, or statistical analysis. Information extraction (IE) from these raw free text

data, as a sub topic of information retrieval [81, 122], is needed in order to use

these valuable textual data effectively and efficiently.

The goal of IE is to automatically extract structured information from un-

structured and/or semi-structured documents. [114] summarized research work-

s in IE in medical domain prior to 1995. [24] and [128] reviewed systems of

IE for biomedical text. [88] surveyed recent research works on IE from textual
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documents in the electronic health record with more focus on clinical data. The

main tasks of IE for medical documents include Natural Language Processing

(NLP), Named Entity Recognition (NER) and text mining. An IE system usually

is comprised up of a combination of the following components [54]: tokeniz-

er, document decomposer, part-of-speech (POS) tagger, morphological analyz-

er, shallow/deep parser, gazetteer, named entity recognizer. Some systems have

higher level components like discourse module, template extractor, and template

combiner. Main approaches to IE in medical domain include pattern matching,

shallow/full syntactic parsing, syntactic and semantic parsing approaches. Most

systems have a pre-processing step, which could include spelling checking, word

sense disambiguation (WSD), POS tagging, and parsing. We will review some

mostly cited systems in the following sections.

2.1.1 LSP-MLP

The Linguistic String Project-Medical Language Processor (LSP-MLP) [105] is

the earliest NLP system for medical information extraction. LSP-MLP is a large

scale project focusing on the extraction and summarization of signs, symptom-

s, drug information, and identification of possible medication side effects. The

program flow of the system consists six steps:

1. Syntactic parsing

2. Semantic selection

3. Transformation
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4. Regularization

5. Information formatting

6. Normalization

The parsing module structures the sentences of a medical document and rep-

resents the dependencies by means of parse trees. The parser can handle con-

junctions. The semantic selection module uses the co-occurrence patterns to im-

prove the parsing tree by resolving cases of structural ambiguity. Also, semantic

characterization of parts of the parse tree is done on this level. The transforma-

tion module fills in gaps due to conjunction ellipses, reduces all sentence types

to the affirmative type, completes relative sentences and regroups verbal splits.

The regularization module transforms the semantically augmented parse tree into

a canonical tree consisting of elementary sentences that correspond to the basic

sub-language sentence types. The inflected forms are replaced by their canonical

form and the semantic host and modifiers are identified. The formatting module

maps the words of the elementary sentences into the appropriate fields of a for-

mat tree and constructs a binary connective- format tree for each sentence with

the connectives as parent, and the phrases on which it operates as left and right

children. The normalization module recovers implicit knowledge when possible

and maps the format trees into the relational database structure.

The information extracted by the LSP-MLP system is stored in a relation-

al database and can be retrieved by SQL queries. Information retrieval task is

performed to evaluation the information extraction performance. The system
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achieves 98.6% in precision and 92.5% in recall on test data set. LSP-MLP has

inspired many research works in this area in later years.

2.1.2 MedLEE: Medical Language Extraction and Encoding

System

The Columbia University of New York (together with the Columbia Presbyterian

Medical Center) has developed an NLP system MedLEE (MEDical Language Ex-

traction and Encoding System) [39, 114]. MedLEE identifies clinical information

in narrative reports and transforms the textual information into a structured and

conceptual representation. The main goal is to represent the knowledge of chest

X-ray radiology reports, store it in a database and allow physicians to query the

knowledge base by means of controlled vocabulary. MedLEE is mainly seman-

tically driven and the semantic grammar consist of 350 DCG rules, specifying

well-defined semantic patterns, the interpretations and the target structures into

which they should be mapped. MedLEE system processes medical texts in three

phases (also as shown in Figure 2.1):

1. Parsing

2. Phrase regularization

3. Encoding

In parsing phrase, the system determines the structure of the text and generates

the preliminary structured output form for the clinical information. The parser us-
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es a (semantic) grammar and a lexicon. Then in phrase-regularization phase, the

system combines the structured outputs of noncontiguous expressions and stan-

dardizes them so that they correspond to the appropriate regular form, using a

mapping knowledge base (consisting of the structural output forms of multi-word

phrases that can be decomposed). Finally in the encoding phase, it maps the stan-

dard forms into unique concepts associated with the controlled vocabulary using

a synonym knowledge base that consists of standard forms and their correspond-

ing concepts in the controlled vocabulary, the Medical Entities Dictionary [23].

MED was developed at Columbia Presbyterian Medical Center (CPMC) was first

served as a knowledge base of medical concepts that consist of taxonomic rela-

tions in addition to other relevant semantic relations. At later stage, MedLEE also

experimented to use UMLS [61] as the knowledge base and had different evalu-

Figure 2.1: The three phases of MedLEE
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ation results as in [40, 41, 87]. MedLEE had been improved and more features

had been added over the ten year, and it remains one of the most cited and popular

methods to process text for radiology reports.

2.1.3 RADA: RADiology Analysis Tool

RADA, the Radiology analysis tool as described in [65] provides a method to

index findings and associated information described in free text thoracic radi-

ology reports. The system extracts mass lesion and lymph node findings, and

links specific information associated with the findings such as size and location.

Each glossary entry for RADA is represented by a concept, the smallest fragment

of knowledge defined by RADA. A concept encodes both semantic and syntac-

tic knowledge. RADA’s glossaries originate from two main sources, the Unified

Medical Language Sources (UMLS) [61] and a specialized thoracic glossary. The

specialized glossary augments the data found in the UMLS thus providing addi-

tional information necessary for the system.

Each concept in RADA system has three attributes as shown in Figure 2.2. The

semantic code defines the semantic class to which the concept belongs. Likewise,

the syntactic code defines which syntactic class to which the concept belongs.

The text string defines the word or phrase to which the concept corresponds. The

lexical analyzer uses the text string to match the concept with the text. To provide

a human readable form of the concept, the text string is maintained throughout the

rest of the system.

Lexical knowledge is encoded in knowledge hierarchies similar to type ab-
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straction hierarchies [22]. Type abstraction hierarchies are multilevel knowledge

structures that emphasize the abstract representation of information. The meaning

of a word or phrase is defined by a hierarchy of related concepts. A concept’s

semantic code encodes its position in the hierarchy. Different hierarchies exist for

different classes of concepts. For example, anatomy concepts form one hierarchy

and finding concepts form another. For each concept class they developed a hier-

archy of terms and meanings as shown in Figure 2.3. The entries of the glossary

are grouped by their meanings.

RADA uses entities to structure the details of extracted radiology findings and

anatomy. Entities structure knowledge through a well-defined set of attributes. For

example, an entity encoding a radiology finding will have attributes describing the

size, location and architecture of the finding. Findings found in a report are stored

in instances of the finding entity. RADA creates instances of the entities during

Figure 2.2: The concept representation in RADA
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finding analysis.

As shown in the figure 2.4, RADA consists of four parts: Lexical Analyzer,

Finding Analyzer, Joiner and Reference Resolver.

The Lexical Analyzer first decomposes sentences into words and phrases. It

matches words and groups of words to a specialized glossary of terms, and decom-

poses the sentence into glossary entries. The Finding Analyzer scans the sentence

for articles (the, a, an) and pronouns. When an article is found, a finding entity

is created and the sentence is parsed for phrases describing anatomy or findings.

Parsing experts process fragments and recognize phrases that can be combined. D-

ifferent parsing experts process the sentence, insuring that the sentence fragment

matches one of several known forms. The Joiner uses several semantic/syntactic

parsers to link concepts into the slots of the finding entity. Each parser is a context

Figure 2.3: The type abstraction hierarchy in RADA
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free grammar. Joiner iteratively parses the sentence, until no more changes are

made to the sentence or any extracted findings. Each grammar parses the sentence

in turn, adding concepts to any findings in the sentence and compressing the sen-

tence into a simpler representation. This joiner phase also removes unnecessary

information from the sentence and insures that negative findings are accurately

modeled. Concepts that represent a finding are combined into an entity. Within

the sentence, the entity replaces the concepts it supersedes. Removing the extra-

neous concepts simplifies the structure of the sentence.

Figure 2.4: The general architecture of RADA
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Figure 2.5: The general architecture of Taira et al’s statistical NLP system

2.1.4 Statistical Natural Language Processor for Medical Re-

ports

Taira et al [117, 116] developed statistical natural language processor for radiol-

ogy reports since most tasks in medical information extraction are classification

problems. They focus on the specific sub-problems of sentence parsing and se-

mantic interpretation [101]. The statistical NLP system consists five components

as shown in Figure 2.5: structural analyzer, lexical analyzer, parser, semantic in-

terpreter and frame constructor.
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The Structural Analyzer isolates sections of medical reports (e.g., “Procedure

Description”, “History”, “Findings”, “Impressions”) and individual sentences with-

in sections. It is implemented based on a conversion from a rule-based system to

one that uses a maximum entropy classifier. The Lexical Analyzer looks up se-

mantic and syntactic features of words in a medical lexicon [65], normalizes dates

and numerical expressions, and tokenizes punctuation. The Parser creates a de-

pendency diagram between words in an input sentence by adding arcs that indicate

a modifier relationship between pairs of words. An arc from word A to word B

indicates A modifies B. The mechanism of parsing is conceptualized as a dynam-

ics problem similar to how atoms aggregate to form complex molecules. Words

initially have no dependencies with other words. They each exist in a free state.

As the parsing step proceeds, each word attempts to configure itself into a more

favorable steady state of existence. The final state of the parse reflects the config-

uration of the words that minimizes the overall energy of the system. Words are

modeled as active entities characterized by their signal processing behavior. This

includes its emission spectrum, its absorption spectrum, and its response function

to resonance conditions. The Semantic Interpreter interprets the links of the pars-

er’s dependency diagram and outputs a set of logical relations that form a semantic

network for the sentence. The dependency graph that the parser produces has un-

labeled arcs between words to show modifier relations. The semantic interpreter

applies rules based on semantic features of the words and the direction of the arc

between them in the surface structure parse to translate these arcs into the logical

relations. Then it bundles logical relations together into output frames that list
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attributes of a finding, of a therapeutic or diagnostic procedure, or of an anatomic

structure. The Discourse Processor determines whether a finding from a sentence

is new or a referent to a finding from previous sentences.

2.1.5 Challenges

Compared to text in general domain, medical text is usually more difficult for NLP

and information extraction. The medical texts generated from clinical practices

are often ungrammatical and contain many shorthand writing such as abbrevia-

tions, acronyms, and telegraphic phrases, which need to be resolved prior to NLP.

Misspelling and and spelling variations are also common in free text medical re-

ports and need to be addressed. Ambiguous words, phrases, and sentence structure

pose another challenge for medical text processing as well. Medical texts contain

a lot of negative expressions and need to be processed so that correct information

can be extracted.

2.2 Content based medical image retrieval

As digital images are produced in ever larger amount in the medical field, the need

for content-based access to medical images is also on the rapid rise. Content-

based image retrieval (CBIR) has become a hot research topic in recent decade

and CBIR systems have been developed in different domains. [103, 104] gave

reviews on current techniques, promising directions, and open issues for CBIR.

[112] gave a very detailed review of CBIR systems before 2000. Medical images,
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Figure 2.6: The general architecture of a typical CBIR system

especially radiology images, are of the greatest need of such system. Compared to

the traditional clinical management systems which access medical images using

meta-data index, CBIR system allows medical professionals to access medical

image data in an easy and direct way. [97, 96, 10] gave vigorous reviews on the

development of CBIR systems in medical domain in recent years. A number of

frameworks have been proposed for retrieving medical images using CBIR. As

summarized by [97], most CBIR systems have architecture as shown in Figure

2.6. We will give an introduction to the two mostly cited CBIR systems–ASSERT

[110] and IRMA (designed for anatomy and modality classification) [70] in the

following section.
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Figure 2.7: The general architecture of ASSERT

2.2.1 ASSERT

ASSERT [110] is designed for content based retrieval of high resolution com-

puted tomography (HRCT) scans of the lung. Figure 2.7 illustrates the general

architecture of ASSERT system. In the preliminary step, a human expert (physi-

cian) delineates the pathology bearing regions (PBRs) and any relevant anatomical

landmarks. The system uses image processing algorithms to detect the boundaries

of the lung and extract the lung region. Then The systems extract features that

describes each individual PBR and store the features in a vector. To reduce the di-

mensionality and yet achieve a good PBR classification result, Sequential forward

selection (SFS) is applied to the attribute vector for feature selection.

The features of each PBR and the location information of the PBR are rep-

resented by a lobular feature set (LFS) in ASSERT as shown in figure 2.8. The

location of PBR is either in the lobular region or adjacent to the boundary of a

lobular region. LFS is a grouping of a specific region of the lung, usually a lobe
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Figure 2.8: The lobular feature set (LFS) of ASSERT

or a combination of adjacent lobes, and the PBRs found therein. ASSERT retrain

only the largest PBRs for image archiving and retrieval as the case that more than

one PBR is inside the lobular region at the same time or more than one PBR is

adjacent to the lobular region at the same time is rare.

Each LFS is represented by a single point in a 2N dimensional attribute space

and is classified to a LFS class using a Gaussian approximation. When a new

query image is submitted to the system, its LFS is translated into a hash index

that directly points to the appropriate bin of the attribute space. This bin contains

pointers to the relevant LFS classes whose distributions cover that bin. The class

pointers link to a set of images that are similar to the query image on the basis

of LFS similarity. Using a Euclidean metric, the database images thus retrieved

are then tested more directly for similarity to the query image and ranked on that

basis.
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2.2.2 IRMA

Keysers et al. [70] developed a content based image retrieval system in medical

applications (IRMA) for medical images of various modality, body orientation,

anatomic region, or biological system. As image features for general domain

images based on color, texture, or shape do not supply sufficient semantics for

medical applications, the IRMA concept is based on a separation of seven steps to

enable complex image content understanding as shown in Figure 2.9:

1. image categorization

2. image registration

3. feature extraction

4. feature selection

5. indexing

6. identification

7. retrieval

For image categorization, global features are used in the IRMA to distinguish-

es four major categories: image modality, body orientation, anatomic region, and

biological system. Then prototype images, which are defined for each category by

an expert based on prior medical knowledge or by statistical analysis, are used for

determination of parameters for rotation, scaling, and translation as well as con-

trast adjustment in the image registration step of IRMA. Then local features are
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Figure 2.9: The program flow for IRMA system
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extracted in the pixel level. Category-specific local features include segmentation

by active contours or active shapes, which enable the use of prior shape knowl-

edge from the categories. In next step, prior knowledge about the image category

as well as medical knowledge incorporated into the query is used to select a pre-

computed set of adequate feature images. Based on feature sets, the image is

segmented hierarchically into relevant regions as “blobs” to reduce the amount of

information the system has to process for image query. Thereafter, the blob repre-

sentation of the image is adjusted with respect to the parameters determined in the

registration step. The hierarchical blob tree has been registered with respect to a

certain category, where categories are represented by prototypes. Since the local

features reflect characteristic and discriminant properties of tissue, certain blob-

s correspond to well defined morphological structures in the image. Vice versa,

prior medical knowledge on the content and structure of category prototypes can

be used to build a prototype blob structure with characteristic properties for blob

identification and labels for semantic queries. In image retrieval step, IRMA per-

forms searches in the hierarchical blob structures and built from a list of possible

categories of the recall images, a query by example blob-structure on the optimal

scale to process the query, or the set of local features that best describe significant

properties for the query.

2.2.3 Challenges

Most CBIR systems in general domain used visual features like color, texture, and

shape. However, these primitive visual features do not give enough information
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to describe an image in the medical domain. There exists a semantic gap due to

this loss of information from an image to such representation by low level visual

features. The interpretation of medial images using higher level features are yet

to be investigated by most medical CBIR systems.

The lack of publicly available large medical image data set is another obstacle

in this research area. Due to many reasons such as non-disclosure agreement be-

tween the medical image provider and research institute, the amount of medical

images used for research is very limited though the absolute volume of medical

images is huge. Even if the research institutes have successfully acquired enough

images for research, they cannot make the data public for others to use and com-

pare the results with.

2.3 Automatic image annotation using unsupervised

methods

Unlike supervised learning which uses class labels in training to reinforce the

learning, unsupervised learning seeks to determine how the unlabeled data are or-

ganized. For most annotated image corpus, users only annotate the images but not

object by object, i.e. they do not label each object in the images with annotations.

Therefore, to recognize which part of the image is which object, we need to resort

to unsupervised learning approaches.

Compared to supervised learning in image annotation tasks, unsupervised learn-

ing based methods have their advantages: they make an assumption of a model
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which can express explicitly the complex relationships between textual words and

visual features by incorporating available a prior information. What is more, some

approaches, such as the co-occurrence model [95] and the translation model [38],

can even associate a word to each region in an image. This annotation-by-region

strategy is more informative than annotating an image as a whole.

However, most of the unsupervised learning based methods rely on an EM

algorithm for training. The EM algorithm is sensitive to the initial parameters and

with its complex objective function it can only produce a local optimum solution,

which in turn leads to inferior performance of the model to unseen data. For

the non-parametric models, such as CMRM [63], they need to store the whole

training data in the annotation system, which is not desirable for large database.

Also, non-parametric models assumes that a perfect set of data are available to

be used as the reference set, which is not usually the case. Wang Yong [125]

has given a detailed review on both parametric and non-parametric models. Our

literature survey for automatic image annotation for general domain images will

follow their categorization and summary of the existing models.

2.3.1 Parametric Models

In statistics, a parametric model is a collection of probability distributions such

that each member of this collection, Pθ, is described by a finite-dimensional pa-

rameter θ. In image annotation, parametric models are used to model the co-

occurrence between the image regions and textual words. The parameter estima-

tion process, i.e. the training of the parametric model, is usually done by EM
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algorithm [30]. The advantage of using a parametric model is that in the annota-

tion result, image regions are explicitly associated with the textual words, making

users to know which part of image is labeled with which word. However, EM

algorithm can only produce a local optimum and is sensitive to initial parameter

settings.

Mori et al. [95] are the first ones to use a parametric model to solve image

annotation problem. They proposed a co-occurrence model to represent the rela-

tionship between keywords and visual features. Each image is converted into a

bag of rectangular image regions obtained by a regular grid. The image regions

from the training data are clustered into a number of region clusters. For each

training image, they propagate its keywords to each image region in this image.

The conditional distribution of keywords of each region cluster can be estimated

from the empirical distribution on the training data. Given a new image, the con-

ditional keyword distribution of each individual image region are aggregated to

generate the conditional keywords distribution of the test image. The major draw-

back of the above co-occurrence model is that it assumes that if some keywords

are annotated to an image, they are propagated to each region in this image with

equal probabilities. This assumption is violated in many real situations because

many keywords are object names such as sky,sun and water. The appearance of

this kind of concept in an image is usually a small portion of an image instead of

the whole image.

Duygulu et al. [38] proposed a machine translation model for image annota-

tion, which is essentially an improvement of the co-occurrence model of Mori et
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al. [95]. They represent an image as a bag of image regions obtained by image

segmentation and performed vector quantization on each of these region features.

The vector quantized image regions are treated as visual words and the relation-

ship between these and the textual keywords can be thought as that between one

language, such as French, to another language, such as German. The training set

is analogous to a set of aligned bitexts, i.e. texts in two languages. Given a test

image, the annotation process is similar to translating the visual words to textu-

ral keywords using a lexicon learned from the aligned bitexts. They found that

a relatively simpler translation model used in the language translation, i.e. the

model of Brown et al. [8] produced better performances than other available lan-

guage translation models. Similar to the co-occurrence model [95], the learned

parameters of the translation model are also the conditional distribution probabil-

ity table, but the translation model does not propagate the keywords of an image

to each region with equal probability. Instead, the association probability of a tex-

tual keyword to a visual word is taken as a hidden variable and estimated by an

Expectation-Maximization (EM) algorithm [30].

Ghoshal et al. [45] proposed a hidden Markov model (HMM) approach, which

is similar to but simpler than the machine translation approach. A hidden Markov

model (HMM) is a statistical model in which the system being modeled is as-

sumed to be a Markov process with unobserved state. In Ghoshal et al.’s approach,

each textual keyword is represented by a hidden state, which can generate visual

features following a per state probability distribution. The training process aims to

find the best correspondence of image regions and textual keywords and estimate
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the parameters for each state. The annotation process of a new image is equiv-

alent to recovering the most likely hidden state of each image region. A major

difference between the HMM approach and the machine translation model is that

the HMM approach models the continuous distribution of visual features, whereas

the translation model represents the keyword distribution of each vector quantized

image region. However, the HMM model assumes a transition process between

different states (textual keywords) which is not necessarily supported by real data.

Instead of modeling the conditional distribution of textual keywords based on

visual features, Barnard and Forsyth [4] proposed methods to model the joint dis-

tribution of textural features and visual features. They define a document as a

combination of visual features and textual features. A hierarchical factor model

is proposed to model the joint distribution of textual features and visual features.

The model assumes that a document belongs to a cluster, which is denoted by the

leaf nodes in the tree hierarchy. Given the document and the cluster it belongs

to, the document is generated by the aspect nodes on the path from the root node

to the leaf node following the hierarchical structure. Each aspect on the path can

generate image regions and textual features following a per aspect probability dis-

tribution. Since different clusters have distinct traversing path, each has a separate

joint models of the aspects for each other. Moreover, since all the aspects are or-

ganized in a hierarchical structure, the aspects are very compact and it can model

the commonalities between clusters in different degrees between. However, this

model is optimized for image clustering instead of linking textual words to image

regions.
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Blei and Jordan [6] proposed the correspondence latent Dirichlet allocation

(Corr-LDA) model to find a conditional relationship between image features and

textual features. In their work, the dependence of the textual words on the image

regions are modeled explicitly.

Monay and Gatica-Perez [94] explored latent semantic analysis (LSA) [29]

and probabilistic latent semantic analysis (PLSA) [55] for automatic image an-

notation. In short, a document of image and texts can be represented as a bag

of words, which includes the visual words (vector quantized image regions) and

textual words. Then LSA and PLSA can be deployed to project a document into

a latent semantic space. Annotating images is achieved by keywords propagation

in this latent semantic space.

2.3.2 Non-Parametric Models

Non-parametric models differ from parametric models in that the model structure

is not specified a priori but is instead determined from data. They make no as-

sumptions about the probability distributions of the variables being assessed. The

advantage of using non-parametric models in automatic image annotation is that

they are easy to implement as they do not have a training process as parametric

methods do. However, also due to the lacking of learning process, they have to

store all the data instead of just the model parameters, which is not desirable for

large databases.

Joen et al. [63] proposed one of the best performing non-parametric models.

They formulated the problem of automatic image annotation as cross-lingual in-
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formation retrieval and have applied the cross-media relevance model (CMRM)

to image annotation. Although CMRM also tries to model the joint distribution of

visual features and textual words, it is a non-parametric model, like the k-NN [37]

approach for pattern classification. The essential idea is that of finding the train-

ing images which are similar to the test image and propagate their annotations to

the test image. CMRM does not assume any form of joint probability distribution

on the visual features and textual features so that it does not have a training stage

to estimate model parameters. For this reason, CMRM is much more efficient

in implementation than the above mentioned parametric models. A drawback of

the CMRM model is that it vector quantized the image regions into image blobs

and this can reduce discriminative capability of the whole model. So Lavrenko et

al. [76] have proposed an improved model, i.e. the continuous cross-media rele-

vance model (CRM). CRM preserves the continuous feature vector of each region

and this offers more discriminative power.

Jin et al. [64] proposed a coherent language model which is extended from

CMRM to model the correlation between two textual words. The model defines a

language model as a multinomial distribution of words. Instead of estimating the

conditional distribution of a single word, they estimate the conditional distribution

of the language model. The correlation between words can be explained by a

constraint on the multinomial distribution that the summation of the individual

words distribution is equal to one. Thus the prediction of one word has an effect

on the prediction of another word.

51



2.4 Automatic image classification using supervised

methods

Recently various supervised machine learning methods, i.e. discriminative train-

ing methods or classification methods, are used to automatically annotate images.

Image classification itself has a much longer history. Research in this field main-

ly focused on some special image domains until recent years. Due to the rapid

progress in the quality of imaging device and digital image databases (online and

off-line), huge amount of images of better quality are made available, and more

attention has been attracted to general domain image classification, rather than

special domain alone.

Image annotation by image classification has obvious advantages: we can

adopt existing well-studied statistical classifiers as long as we have a suitable rep-

resentation of images; it offers a sophisticated classifier for those specific concepts

with enough training data. However, there is disadvantage of the classification ap-

proaches. Since they view each textual word as an independent class label, they

ignore the correlation between these words, which is rather helpful because hu-

mans usually annotate an image with a set of words with coherent meaning.

Supervised learning approaches view image annotation as classification prob-

lem – each textual word in the annotation is considered as an independent class

label; the images or image regions are classified according extracted visual fea-

tures into these classes; the classification result is the annotation result. As sum-

marized by Wang Yong [125], existing image classification approaches to image
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annotation are mainly based on global features, local features, or multi-level clas-

sifications.

2.4.1 Global Feature Based Image Classification

Global scene-oriented classification methods which extract a global feature de-

scriptor from an image and then deploy a statistical classifier for image classifi-

cation. Examples of this kind of class label include “countryside”, “landscape”,

“outdoor” and so on. The task is usually classifying the image as a whole.

Chapelle et al. [16] use support vector machine (SVM) to classify images by

global features. They used an enhanced heavy-tailed RBF kernel for high dimen-

sional image features. Fung and Leo [42] decompose the semantics of a scene

image into two levels: (1) the primitive semantics at the patch level, and (2) the

scene semantics at the image level. The learning of primitive semantics is based on

a supervised clustering of the patch features. Their scene classification is achieved

by using the distribution of each primitive in an image.

Scene semantics are made more explicitly by Vailaya et al. [121] who pro-

posed a method for hierarchical classification of vocational images: at the highest

level, images are classified as “indoor” or “outdoor”; “outdoor” images are further

classified as “city” or “landscape”; finally, a subset of “landscape” images is clas-

sified into “sunset”, “forest”, and “mountain” classes. They model the probability

density of each scene class through vector quantization and classify images based

on the maximum a posterior criterion. Chang et al. [14] proposed a soft catego-

rization method of images based on the Bayes point machines (BPM) [53], which
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is another advanced kernel based classifier.

2.4.2 Regional Feature Based Image Classification

Instead of global visual features, some approaches use regional visual features to

categorize the whole image. Wang and Li [123] proposed an image categorization

method using the 2D multi-resolution hidden Markov model (2D-HMM). Images

are segmented into regions by employing a multi-resolution regular grid. 2D-

HMM can model the dependency between regions in the same resolution and the

regions across different resolutions.

Carneiro and Vasconcelos [12] proposed an image annotation framework based

on hierarchical mixture modeling of the probability density estimation of each

class. Each image is represented as a set of patch features. The distribution of

these patch features for each concept is modeled as a Gaussian mixture model

and all the concepts are modeled by a hierarchical Gaussian mixture model (Hier-

GMM). Their experimental results show that the Hier-GMM is efficient for large

database.

Maree et al. [82] proposed an image classification method by combining the

random sampling of subwindow images and an ensemble of extremely random-

ized tress. Since they have added various transformations in the process of ab-

stracting random sub windows, their approach is robust to both scale and rota-

tion, however they have not tested their approaches on a more complex image

dataset for image annotation. Some methods are based on sophisticated proba-

bilistic models.
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Li and Wang [77] represent each image as a probabilistic distribution of color

and texture features. Each image category is modeled as probabilistic distribution

of probabilistic distributions. Taking advantage of the fast optimization algorith-

m, their approach can achieve real time annotation performance on a large scale

dataset. However, it is not clear how well their method can perform on individual

object concepts.

These above mentioned image classification approaches have been proved to

be effective in classifying many scene categories, such as “sunset”, “landscape”

and “countryside”, but they have not shown any advantage in classifying object

names, such as “sky”, “tiger”, “horse” etc.

2.4.3 Regional Feature Based Object Classification

Local object-oriented classification methods classify images by object names. The

image content assigned to the labels is usually a part of the image. Examples of

these class labels include “sky”, “water”, “people” and so on.

For individual objects, the corresponding visual appearance in the image is

usually a segment of the image instead of the whole image. Sometimes, even

collectively, these object segments may only make up a small part of an image.

This makes a global visual feature not always an appropriate solution, especially

in the case of heavy background clutter or when a number of different objects

exist in the image. Therefore, treating an image as a bag of image regions and

annotating image by these regions is helpful for the object-based classification of

images.
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Yang et al. [126] formulated image annotation as a a multiple instance learning

(MIL) problem. In the MIL setting, the object to be classified is a bag of instances

instead of a single instance. The training data is a set of positive bags and negative

bags. A bag is labeled as positive if at least one of the instances in the bag is

labeled as positive. A bag is labeled as negative if none of the instances in the

bag is labeled as positive. The labels on the training data are only provided for

each bag, not for each instance. Given a new unlabeled bag, we need to classify

it as positive or negative. This kind of problem can not be solved by traditional

statistical classifiers where each training example or test sample is represented as

a single feature vector instead of a bag of feature vectors.

2.5 Automatic Medical Image Annotation and Clas-

sification

Numerous tasks of automatic medical image annotation have been proposed in the

tracks in[119]. The tasks are focused on classifying medical images to different

categories of acquisition modality (CT, X-ray, MR, etc.), body orientation, body

region, and biological system. Some research works aim to identify abnormal

medical images, i.e. classifying images into the categories of normal and abnor-

mal. According to Doi’s review on computer-aided diagnosis (CAD) in medical

imaging [31], large scale and systematic research and development of various

CAD schemes are of growing interest in recent three decades, especially for chest

and breast images. A typical medical image analysis system consists of four major
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parts as shown in Figure 2.10: image preprocessing, image segmentation, feature

extraction, classification. The image preprocess step usually includes noise re-

moval and image normalization. Then in segmentation step, various anatomical

entities are identified. Some research works use image registration after the seg-

mentation step. In feature extraction step, global or regional image features, as

well as features regarding to a certain region of interest, are extracted and select-

ed. Finally, various classification methods are applied to categorize the image or

image regions.

Figure 2.10: A typical medical image analysis system architecture

Sluimer et al. [111] gave a detailed review on computer analysis of lung CT

images, in which a large amount of research work is concentrated. Systems on au-

tomated detection, quantification, and classification of pulmonary disorders can be

grouped by clinical application areas of emphysema, lung cancer, signs of airway

diseases, and differential diagnosis of lung disease. [120, 99, 5] detect emphysema

and classify lung images into normal and emphysema categories. [89] classifies
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lung images into normal and chronic obstructive pulmonary disease. [51, 92]

classify the images into different levels of severity. For lung cancer detection, the

main focus has been in the detection of lung nodules. Research works measure

nodule size and characterize the nodule appearance to determine the probability

of the nodule being benign or malignant [52, 85, 86, 67, 68, 69, 83, 80, 3, 2]. D-

ifferent machine learning methods and algorithms are used to build the classifier,

including rule-based methods, linear classifier, LDA, template matching, cluster-

ing algorithms, Markov random field, neural network, and Bayesian classifier.

Cheng et al. [19, 21, 20] conducted detailed surveys on computer analysis of

breast images from mammography and ultrasound, which is another major catego-

ry of medical images that many research work focus on. As early detection remain

the best opportunity to reduce the mortality caused by breast cancer, the main task

for computer systems in this research area is to detect tumors and distinguish the

benign and malignant ones. Most CAD systems for breast cancer detection and

classification follow the general architecture shown in Figure 2.10. In image pre-

processing phase, the main tasks are image enhancement and speckle reduction.

Image segmentation partitions the image into non-overlapping regions and sepa-

rates the objects from the background. The regions of interest (ROIs) are labeled

for feature extraction. Then in next step, the key is to find a feature set of breast

cancer lesions that can accurately distinguish lesions and non-lesions, or benign

and malignant tumors. The features used for breast images can be categorized

into the groups of texture features [15, 58, 59, 60, 18, 102, 73, 74, 43], morpho-

logic features [106, 17, 34, 113, 66, 102, 56, 115, 35], descriptor features (such
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as shape, presence of calcification) [106, 118, 115], and model-based features

[44, 108]. The feature space could be very large and complex, feature selection

is usually included in this phase. Finally, based on the selected features, the can-

didate regions are classified using various classification methods such as template

matching [58, 59, 74], linear classifiers [106, 56, 93, 44, 108, 43], neural networks

[17, 59, 113, 66], decision tree [18, 73], Bayesian belief network [34, 36, 33, 35]

and support vector machines [15, 60, 102].

2.5.1 Brain CT image annotation and classification

As an earlier research work in the area of brain CT image annotation and classi-

fication, Cosic and Longaric [25] proposed a rule-based approach to the labeling

of computed tomography (CT) head images containing intracerebral brain hem-

orrhage (ICH). They partitioned the original image into a number of spatially

localized regions of same color intensity using fuzzy clustering algorithm. Then

they crafted a list of rules to label the image regions as background, brain, skull,

hematoma, and calcification. Because the rules are manually created, the sys-

tem they developed lacks flexibility when adapting to future needs. Experimental

results are also lacking from the paper.

Liao et al.’s work [79] is on pathology based brain CT image classification, and

we consider it most related to our work. They obtained 48 brain CT images and

classify them based on three hematoma types: epidural, subdural, and intracere-

bral. After they segmented the hematoma region from the image, they extracted

the shape features of the hematoma region and constructed a decision tree based
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on the features. The features included long axe (LA) and short axe (SH) of the

hematoma region, the depth of points LA1 and LA2, D(LA1), D(LA2), their sum

D(LA1)+D(LA2), the number of blocks in the larger and smaller halves on each

side of the long axis, the percentage of the smaller half. Figure 2.11 illustrates the

skull recognition and long/short axes labeling of hematoma regions. Then C4.5

algorithm is applied to generate the decision tree as shown in Figure2.12. As they

used all 48 images for training, they achieved 100% precision and recall for train-

ing data classification; however, the classification result of any testing image is

lacking.

Figure 2.11: Liao et al.’s measurement for hematoma axis

Zhang and Wang [127] used mainly global image features to detect abnor-

mal brain CT images without explicit hematoma segmentation. They extracted

intensity, shape, texture, and symmetry features of the image and classify the im-

ages into normal and abnormal categories. The color intensity features included

mean, variance, skewness, and kurtosis values of the whole image. They selected

the lateral ventricles as the region of interest (ROI), computed its distortion and
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Figure 2.12: The hematoma classification decision tree generated by Liao et al’s
method

treated it as a shape feature, because with the presence of cerebral hemorrhage,

the lateral ventricles will usually be misshaped to some extent. Energy (Angular

Second Moment), Contrast, Inverse Difference Moment, and Entropy are used as

texture feature for the brain image. They also extracted symmetry feature from

the image by comparing the pixels on each side of the brain midline. After feature

extraction, they used See5 which is based on C4.5 decision tree algorithm and

Radial Basis Function Neural Networks (RBFNN) for image classification. They

obtained 212 images in total. 103 of which are normal and the remaining 109 are

abnormal. They used 80% of the images for training, and the rest for testing. The

results are as follows in Figure 2.13 and 2.14.

Peng et al. [100] used regional features to classification stroke and tumor brain

CT images. They first preprocess the image and partitioned the brain content part

into four regions of the same size in either way illustrated in Figure 2.15. Then

they generated the gradient (edge) of the original partition and the X and Y gra-

dient images. Next they extracted the mean or standard deviation values of the

generated images, and the percentage of the area above certain threshold. They
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Figure 2.13: The classification result by Zhang and Wang’s method using See5

used SVM to classify the brain CT images into stroke cases and tumor cases. They

obtained 25 stroke and 25 tumor cases and each case consists 9 images. They com-

pared the results with a baseline classification implemented using Gabor features.

The classification results for training is significantly better than the classification

using Gabor features as shown in Figure 2.16; however, as they used all images

for training, the classification results for testing images are lacking.
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Figure 2.14: The classification result by Zhang and Wang’s method using RBFNN

Figure 2.15: Brain CT image partitioning
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Figure 2.16: The image classification results by Peng et al’s method
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Chapter 3

Text processing in radiology reports

With the advances in medical technology and wider adoption of electronic medical

record systems, large amounts of medical text data are produced in hospitals and

other health institutions daily. These medical texts include the patient’s medical

history, medical encounters, orders, progress notes, test results, etc. Although

these text data contain valuable information, most are just filed and not referred to

again. These are valuable data that are not used to full advantage.

A similar situation occurs in the field of radiology. As the reports are in free

text format and usually unprocessed, there exists a great barrier between the ra-

diology reports and the medical professionals (radiologists, physicians, and re-

searchers), making it difficult for them to retrieve and use useful information and

knowledge from the reports. As the information is not accessible, it cannot be

used for other related applications such as automatic image annotation. There-

fore, to provide the needed information to the medical professionals as well as to
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make use of the information, we need to process the unstructured text and extract

structured information from it. We have also described the following framework

in our paper in [50].

3.1 The medical text processing framework

The medical reports are usually written in natural language, and often contain

short hand writing and acronyms. The goal of medical text processing is to extract

the medical findings in the medical texts. The general architecture of our medical

text processing system follows the program flow of most such systems in this

research field, but we also emphasize on attribute extraction besides the main

medical finding extraction. The attributes or modifiers of the medical finding such

as “location”, “duration”, and “probability”, describe the properties of the medical

findings. They are valuable information that could be of important use of other

applications developed upon the text processing system. For example, we will use

the location information extracted in automatic image annotation training corpus

generation described in Chapter in this thesis.

We take the free text medical reports as input, use natural language processing

techniques and domain knowledge sources to extract medical findings and their

modifiers, and outputs them in a structured form so that the extracted information

can be easily accessed again. We use a semantic approach to achieve our text min-

ing task. The system consists of the following components: report chunker, term

mapper, parser, finding recognizer, and report constructor. The overall framework
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is illustrated in Figure 3.1.

Figure 3.1: Program flow of radiology report processing

3.2 Report normalization and term mapping

To protect patients’ privacy, all personal information of the patients have been

anonymized prior to text mining process. Excluding patient’s bio information and

examination details, a radiology report contains a description section (main body

of the report), and comment or impression section. We decompose the report into

different sections and keep only the main body part and impression part of the
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report for medical finding extraction, as these two parts contain detailed finding

descriptions.

Then we do spelling correction and spelling variation reduction. From the re-

ports used for training, we summarized a list of mapping of frequently misspelt

words and the correct forms of the words. For example, “hemorrhage” is of-

ten misspelt as “hemorhage”. During spelling checking, we replace the misspelt

words with the correct ones if they are in the list. For other unrecognized words

that are not present in the list of frequently misspelt words, which may be radi-

ologist’s short hand writing, we temporarily leave them in original form in the

report and note them down for future improvement. We have also created a list

of mapping of words frequently written in non-standard forms and their standard

forms. The words in non-standard forms (e.g. “haematoma”, “ischaemia”) are not

considered spelt wrongly because they are recognized in the community; howev-

er, as they are usually not included in the medical lexicons, we replace them to

standard forms in the reports so that the information contained in these words can

be extracted. We also add a negation filter to detect negative expressions, so that

we will only extract the terms referring to pathologies found in the images.

Then we map single-word and multiple-word terms to our medical lexicon and

normalizes the terms to standard forms. Medical Subject Headings (MeSH) is a

large controlled vocabulary developed by National Library of Medicine used for

medical texts indexing [1, 107, 84]. We found it useful for building our brain radi-

ology lexicon, especially the Anatomy (A) and Disease (C) sections. However, as

MeSH does not cover the entire set of vocabulary for brain CT radiology reports,
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it does not reach the degree of specificity required in the reports. Therefore, our

lexicon resorts to other sources as well, including other radiology and anatomy

thesaurus and actual brain CT radiology reports.

3.3 Parsing and relation extraction

Besides pathological and anatomical concepts, we also need to extract the relation

between them. In order to obtain the sematic relation, we first extract the syntactic

relation among them using a parser.

Our parser is developed based on the Stanford Parser [71] [72]. The parser

parses each sentence and outputs the typed dependency tree [28], which shows

the syntactic relations between the words and phrases in the sentence. Dependen-

cy grammars (DG) is preferred for medical text because most narrative medical

documents contains many ungrammatical sentences [11]. In DG, each word has

only one parent, i.e. a tree structure with the dependencies represents the sen-

tence. For example, the typed dependency graph of the example sentence “There

is large extradural haemorrhage in the left frontal lobe.” is shown in Figure 3.2.

The finding extractor selects the findings and their modifiers according to a set

of semantic rules. A medical finding in the brain CT report refers to the abnor-

mality of the patient’s medical condition. For example, “hematoma”, “fracture”,

“midline shift” are common findings in brain CT radiology reports. Each find-

ing may have several modifiers that describe the properties of the finding, such as

“location”, “duration”, “probability” etc. The finding extractor makes use of the
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Figure 3.2: The typed dependency tree of example sentence.

intermediate result from term mapper and parser to locate medical findings and

the modifiers, and uses a set of semantic rules to translate the syntactic relations

in the result from the parser to logical relations between findings and their modi-

fiers. The semantic rules were manually constructed and cover frequent patterns

how the findings appear in the sentences.

Negations are also detected by the finding recognizer. Findings associated

with negative expressions are outputted as negative findings. It is necessary to ex-

tract negative findings and include them in the structured report explicitly as both

negative and positive findings are significant to the medical personnel accessing

the report.

3.4 Constructing structured report

The report constructor then outputs the result from the finding extractor in XM-

L format. We chose XML to represent the findings and their modifiers, because
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XML documents are self-structured, self-defined, easy to understand and retrieve.

The hierarchical structure in XML naturally shows the relationship between find-

ings and their corresponding modifiers. Therefore, it satisfies the requirement to

represent the medical findings and provides potential convenience for our future

radiology report retrieval system. The output result of findings and modifiers of

the example sentence in Figure 3.2 is shown in Figure 3.3.

<finding>
<pathological change>extradural hematoma</pathological change>
<size>large</size>
<anatomical location>left frontal lobe</anatomical location>
</finding>

Figure 3.3: The structured result of the example sentence: “There is large extradu-
ral haemorrhage in the left frontal lobe.”

In the output, the tags <finding> and </finding> indicate that the content

between them is a medical finding extracted from the input radiology report. The

tag <pathological change>indicates the disease/abnormality the finding refers to,

and other tags indicate different types of attributes that modify the finding.

3.5 Experiment and results

For experiments, we used 467 traumatic brain injury CT radiology reports from

National Neuroscience Institute, Tan Tock Seng Hospital. 367 of which were set

for training, and 100 were set for evaluation of our system. The average length of

the reports is 12 sentences, or 157 words. 753 positive findings, 167 negative find-

ings, and 1520 modifiers were labeled in the testing reports. There are 25 different
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pathological changes of the medical findings in the testing reports, distribution of

which is shown in Table 3.1 (percentages may not sum to 1 due to rounding).

Table 3.1: Pathological change distribution in testing reports
Percentage

hematoma 33.7%
fracture 17.5%
midline shift 9.3%
effacement 7.3%
hydrocephalus 6.1%
contusion 5.8%
infarct 3.7%
fluid 2.9%
edema 2.2%
herniation 1.7%
swelling 1.5%
pnneumocephalus 1.4%
dilatation 1.2%
hemaantrum 1.0%
ischemia 0.8%
opacification 0.8%
dislocation 0.5%
scarring 0.5%
atrophy 0.3%
emphysema 0.3%
granuloma 0.3%
sinusitis 0.3%
inflammation 0.2%

The overall weighted average precision and recall for pathological change

extraction are 95.5% and 87.9% respectively. The detailed evaluation result is

shown in Table 3.2. Lower percentage of negative findings were correctly extract-

ed compared to positive findings due to the additional task to recognize patterns
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indicating negation in the sentence. Nevertheless, we listed negative findings as

a separate category opposed to positive findings, for radiologists and physicians

often want to find past reports with explicit presence or absence of certain disor-

der/disease. If negative findings are not explicitly labeled, the system may mix up

positive and negative findings, which does not satisfy the user’s needs. Therefore,

the explicit labeling of negative findings is a key step prior to build our report and

image retrieval system.

For those findings with correctly extracted pathological changes, we calculat-

ed the precision and recall for modifiers. The weighted averaged precision and

recall for modifiers are 88.2% and 82.8% respectively. The detailed evaluation

result for each type of modifier is shown in Table 3.3.

Table 3.2: Evaluation result for medical findings in brain CT radiology reports
Precision Recall

positive findings 96.0% 89.5%
negative findings 93.1% 81.0%

Table 3.3: Evaluation result for modifiers of the medical findings in brain CT
radiology reports

Precision Recall
duration 96.2% 93.8%
location 86.1% 81.2%
amount 81.6% 77.5%
size 85.0% 81.9%
direction 94.7% 90.0%
probability 91.7% 82.5%
seriousness 83.3% 75.0%
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3.6 Text-based query and retrieval

After the reports are structured in XML format, the reports and associated images

can now be retrieved conveniently using text queries. As shown in Figure 3.4, the

retrieval model consists of query analyzer and medical record retriever.

Figure 3.4: The components of report and image retrieval module

The query analyzer is essentially the same as the text processing module we

described previously and illustrated in Figure 3.1. Instead of taking a full radiol-

ogy report as input, the query analyzer takes the user’s text query as input, which

usually consists of a phrase or a few words. When a query from the user is entered

to the system, for example, “acute subdural hematoma, no skull vault fracture”,

the query analyzer extracts the medical finding from the query and structure it as

in Figure 3.5.

The retriever then searches the structured reports and images in the database
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<finding>
<pathological change>subdural hematoma</pathological change>
<duration>acute</duration>
</finding>

<negative finding>
<pathological change>fracture</pathological change>
<anatomical location>skull vault</anatomical location>
</negative finding>

Figure 3.5: An example query in structured format

and return the ones that match the structured query. There are two modes of

retrieval: exact match and partial match. Exact match returns results that are

mostly needed by the user, whereas partial match returns results similar to what

the user queries and facilitates the user to compare similar cases.

Under the exact match mode, only the reports containing exactly the same

pathological changes and modifiers as in the query are returned. Take the same

query for example, in the mode of exact match, reports with “acute subdural

hematoma with fracture in skull vault” (see Figure 3.6) are not returned, as the

“skull vault fracture” finding in the query is negative, whereas in the report it is

positive. The explicit labeling of positive and negative findings during medical

finding extraction is also for more accurate retrieval here. Reports with “chronic

subdural hematoma”(see Figure 3.7) or “longitudinal fracture through right tem-

poral bone”(see Figure 3.8) are also not returned in the retrieval results, as their

modifiers (duration, type, location) of the findings do not match with the query’s.

However, reports with more information than necessary can also be returned as

result as long as the medical findings and modifiers specified in the query is a sub-
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set of the reports’ full list of findings. For example, reports with “acute subdural

hematoma in left temporal lobe with size of 1.4cm × 1.2cm, no evidence of skull

vault fracture” (see Figure 3.9) are returned.

<finding>
<pathological change>subdural hematoma</pathological change>
<duration>acute</duration>
</finding>

<finding>
<pathological change>fracture</pathological change>
<anatomical location>skull vault</anatomical location>
</finding>

Figure 3.6: Brain CT radiology report in structured format: fragment example 1

<finding>
<pathological change>subdural hematoma</pathological change>
<duration>chronic</duration>
</finding>

Figure 3.7: Brain CT radiology report in structured format: fragment example 2

<finding>
<pathological change>fracture</pathological change>
<type>longitudinal</type>
<anatomical location>right temporal bone</anatomical location>
</finding>

Figure 3.8: Brain CT radiology report in structured format: fragment example 3

On the other hand, if the user chooses to use partial match, then reports with

findings and modifiers that match part of the query are returned as well as the

exactly matched ones. For example, the reports with “acute subdural hematoma

with fracture in skull vault”, “chronic subdural hematoma”, “longitudinal fracture
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<finding>
<pathological change>subdural hematoma</pathological change>
<duration>acute</duration>
<anatomical location>left temporal lobe</anatomical location>
<size>1.4cm * 1.2cm</size>
</finding>

<negative finding>
<pathological change>fracture</pathological change>
<anatomical location>skull vault</anatomical location>
</negative finding>

Figure 3.9: Brain CT radiology report in structured format: fragment example 4

through right temporal bone”, which are rejected in exact match mode are returned

under the partial match mode.

By indexing using structured text, medical images associated with the reports

can be retrieved too. For example, by entering text query “intracerebral hemor-

rhage” into our system, images in Figure 3.10 will be retrieved.

3.7 Discussion

The system performed well on medical finding types and modifier types that are

more frequent. For example, the extraction of “hematoma” and “midline shift”

have higher accuracy compared to “inflammation”. Abbreviations, misspellings

and short-hand writing affect the recall too, as they are more difficult to map to

medical lexicon. The presence of ambiguous sentence structure often confuses

the parser and may cause the parser to build the wrong dependency tree and thus

creating wrong association between medical findings and modifiers or negation
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indicators. For example, “No midline shift, hydrocephalus or effacement of basal

cisterns is seen.” It is difficult for the system to tell whether “no” is associated

with only “midline shift” or all three medical findings.

As we index the reports with detailed modifiers of each medical finding, users

are able to search reports or images with more specific request such as a certain

pathology instead of a more general query such as “CT head”) compared to the

system we surveyed. We also have implemented a web interface for the end users

to access and evaluate. The location modifier describing the anatomical location of

the medical findings we extract can be used to identify and label the corresponding

region of interest in the medical images associated with the text. We will discuss

the details of this aspect in Chapter 6 on automatical training data set generation.

The overall result is satisfactory to the radiologists in the hospital where the

reports were obtained. The accuracy and recall of text based medical image re-

trieval are good enough to cater the need of our collaborators from the hospitals to

search and retrieve images pertaining to certain pathology described in the report-

s. However, more medical professionals from other medical institutions are yet to

form a panel to evaluate the system independently. To improve the performance

of the system in the future, we can look into problems like abbreviation mapping,

term normalization (including misspellings), and co-reference resolution.
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Figure 3.10: Image retrieval results of text query: intracerebral hemorrhage
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Chapter 4

TBI CT image processing and visual

content based retrieval

In Chapter 3 we proposed a framework for text-based medical image indexing

and retrieval by extracting structured information from accompanying medical

texts. However, medical images without associated reports cannot be indexed

and retrieved by the text-based approach. In this chapter, we propose another

framework to index and retrieve medical images by their visual content1. We

first process the medical images using image processing methods and tools and

segment the regions of interest (ROIs). Then we convert the ROIs to binary visual

feature vectors and use these vectors to represent the images in database. For

traumatic brain images, we propose a novel representation of the brain CT ROIs –

we partition the brain image into circular bins which can naturally preserve both

1This part is done jointly with Dr. Li Shimiao [78].
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the ROI intensity and location information. When new image query is submitted

by the user, we process it in the same way to get its binary visual feature vector

and calculate the similarities of it to the vectors in the database. We return a

list of medical images ranked by the visual similarity to the query image. With

the use of circular bin binary representation of the brain hematoma, the image

processing is fast and can be built into real time online applications in contrast to

most content based image retrieval systems, in which the slow image processing

speed hinders the real time application development. The circular bins also fit

well with the brain image in shape and preserve the location information of the

segmented hematoma, which makes the image binary representation as well as

image retrieval more accurate.

The image processing and segmentation is also a first step to further image

semantic analysis which we will describe in more details in Chapters 5 and 6.

4.1 Intracranial region segmentation

Figure 4.1 shows an example brain CT image of traumatic brain injury. The aim

of intracranial region segmentation is to remove the skull and the regions outside

the skull, so that only regions inside the brain is left in the image. We first segment

the skull by thresholding. If the scanning device is also captured in the image, we

remove those regions by thresholding as well. We fill the “hole” of the skull and

construct a intracranial region map. We overlap it with the original image to get

the actual intracranial region. The image after this step is shown in Figure 4.2.
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Figure 4.1: The original image

Figure 4.2: Step 1: skull removal

Then we normalize the positioning and intensity. In different cases, the placing

of patient’s head in the CT machine may be different, results in different center

and symmetry axes in the images. We find the centroid and the rotation angle

and reposition the intracranial region so that it is in the center of the image with a

vertical midline. Due to different setting of CT imaging equipment, the intensity

level varies in different cases. To make the intensity standard constant through
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out all images, we set the peak of the intensity histogram to be 100 and adjust the

gray level accordingly. Figure 4.3 shows the result.

Figure 4.3: Step 2: position adjusting

However, the gray level of the brain content adjacent to the skull may still be

affected by the gray level of the skull. In most cases, they appear whiter than they

ought to be. This is called “cupping effect” in CT imaging. We use the method

described in [13] to remove the cupping artifacts. Figure 4.4 shows the image

after cupping effect removal.

As the intracranial regions have various sizes in different images, in order

for the low level features comparable, we resize the intracranial region so that it

spreads over the square bounding box as shown in Figure 4.5.

4.2 Low level visual feature extraction

Then we set a threshold to segment the possible hematoma regions in the image.

To preserve the visual feature as well as to represent the hematoma regions effi-
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Figure 4.4: Step 3: cupping artifacts removal

Figure 4.5: Step 4: resizing

ciently, we exploit the fact that intracranial regions are mostly in disk shape and

we binarize the segmented hematoma regions according to the circular bins as

shown in Figure 4.6 rather than bins of other shapes.

We partition the intracranial region into R × T equal-sized bins, where R is

the number of partitions along the radius and T is the number of angle partitions.

We represent the intracranial region segmentation result using a vector v of size
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Figure 4.6: Circular bins used for binary feature vector extraction

R × T : vi,j = 1 if average intensity in bini,j ≥ 0.5; and vi,j = 0 if average

intensity in bini,j < 0.5, where 1 ≤ i ≤ R and 1 ≤ j ≤ T . Figure 4.7 and 4.8

demonstrate the complete process of visual feature extraction for TBI CT images.
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Figure 4.7: Constructing binary feature vector from TBI CT image: example 1

4.3 Medical image retrieval based on low level visu-

al features

We process the TBI images in our database and represent each image using a

binary vector as described in the previous section. When we have an image query,

we process the query image in the same way as we process the images in the

database, then compute the similarity of the query image to each image in the

database and retrieve the images according to the similarity measure.

Given the query image Q and reference image I , we measure the similarity of

the two images by computing the Jaccard similarity coefficient of the u and v, the

two binary vectors that represent Q and I respectively:
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Figure 4.8: Constructing binary feature vector from TBI CT image: example 2

Sim(Q, I) = J(u, v). (4.1)

The Jaccard similarity coefficient is a useful measure of the overlap of u and

v:

J(u, v) =
|u ∩ v|
|u ∪ v|

. (4.2)

Each element (or bin value in this case) of u and v can either be 0 or 1. The

total numbers of different combinations of elements for both u and v are defined

as follows:

• s11 represents the total number of elements where u and v both have a value
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of 1.

• s01 represents the total number of elements where the element of u is 0 and

the element of v is 1.

• s10 represents the total number of elements where the element of u is 1 and

the element of v is 0.

• s00 represents the total number of elements where u and v both have a value

of 0.

Each element must fall into one of these four categories, so:

s11 + s01 + s10 + s00 = n. (4.3)

The Jaccard similarity coefficient then can be computed as

J(u, v) =
s11

s01 + s10 + s11
. (4.4)

For 3D volumetric cases such as CT image series, we measure the similar-

ity between each pair of corresponding images and use a weighted sum to rep-

resent the similarity value of the two cases. Given a query image series SQ =

{Q1, ..., QN} and a reference image series SI = {I1, ..., IN}, we propose a 3D

similarity measure as follows:

Sim(SQ, SI) =

∑N
i=1wiSim(Qi, Ii)∑N

i=1wi
(4.5)
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where wi is the weight given to the ith slice, and 0 ≤ wi ≤ 1. In TBI cases,

pathological features are contained mainly in the middle slices. For example, in a

21-slice scan series, slices from 7 to 16 contain the most features. Therefore, we

give these middle slices higher weights than the beginning and ending slices.

In clinical practice, The user of the medical image retrieval system may con-

sider pathology features in the symmetrical positions up to certain rotational an-

gles in the images as equally relevant. For example, an image with a SDH in

left frontal lobe may be considered very relevant to a query image with a SDH in

the right frontal lobe, though the similarity computed may be 0 as the two SDH

regions in respective images do not overlap. In this case, we need to perform a

flipping transformation on the query image and compare the flipped image with

the ones in the indexed database. The horizontal flipping transformation of a query

image Qi is defined as:

gflip(Qi) = ∀Pxy ∈ Qi, gflip−point(Pxy), (4.6)

where Pxy is a point in Qi with cartesian coordinates of x (along vertical axis) and

y (along horizontal axis). The point flipping function gflip−point is defined as:

gflip−point(Pxy) = P(H−x)(W−y), (4.7)

where H and W are the height and width of image Qi respectively.

For another instance, an image with a SDH in right temporal lobe may be

considered moderately relevant to a query image with a SDH in the right frontal
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lobe as right temporal lobe is below the right frontal lobe in a 2D head CT scan. In

this case, we may need to do a rotation transformation on the query image first so

that indexed images with hematomas in nearby anatomical regions are compared

to the query image properly. The rotation transformation of a query image Qi is

defined as:

grotate(Qi) = ∀Prt ∈ Qi, grotate−point(Prt), (4.8)

where Prt is a point in Qi with polar coordinates of r (radius) and t (angle). The

point rotation function grotate−point is defined as:

grotate−point(Prt) = Pr(t+a), (4.9)

where a is the rotation angle applied to image Qi.

We generalize the geometric transformation of query image Qi as g(.), and

propose the transformed 3D similarity measure for a series of images as in Equa-

tion 4.10. We leave it to the user to choose to enable or disable the flipping/rotation

search function.

Sim(SQ, SI) =

∑N
i=1wiSim(g(Qi), Ii)∑N

i=1wi
(4.10)

After computing the similarity between the query image series and all image

series in the database, we retrieve the ones whose similarity measure to SQ is

above a certain threshold. We also rank the retrieved images according the simi-

larity values–image series that are more similar to SQ will be put at the beginning
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of the retrieved list.

4.4 Experiment

4.4.1 Data set

We build our image database from 500 TBI study cases obtained from National

Neuroscience Institute, Tan Tock Seng Hospital. The major pathological class-

es in TBI include extradural hematoma (EDH), subdural hematoma (SDH), sub-

arachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and intraventric-

ular hemorrhage (IVH). We evaluate the system performance based on 30 test

queries by CT case example. The system responses a list of relevant cases ranked

according to the 3D similarity measure for each query and shows the summary

information of the retrieved relevant cases (with 3D similarity measure threshold

setting to 0.08).

4.4.2 Evaluation metric

For each of images series Si retrieved from the database for each query case SQ,

a relevance grade from 0-3 is given by a human expert:

• 0-not relevant.

• 1-slightly relevant.

• 2-moderately relevant.
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• 3-very relevant.

We use the Normalized Discounted Cumulative Gain (NDCG) [62] to measure

the effectiveness of our content based medical image retrieval system. Cumulative

Gain (CG) is the sum of the graded relevance values of all results in a search result

list. The CG at a particular rank position p is defined as:

CGp =

p∑
i=1

reli, (4.11)

where reli is the graded relevance of the result at position i. As it is assumed that

highly relevant documents are more useful when appearing earlier in a search en-

gine result list (have higher ranks) and highly relevant documents are more useful

than marginally relevant documents, which are in turn more useful than irrelevant

documents; Discounted Cumulative Gain (DCG) is used so that highly relevant

images appearing lower in a search result list are penalized as the graded rele-

vance value is reduced logarithmically proportional to the position of the result.

The discounted CG accumulated at a particular rank position p is defined as:

DCGp =

p∑
i=1

2reli − 1

log2(1 + i)
(4.12)

As search result lists vary in length depending on the query, a search engine’s

performance for retrieval results of different list lengths cannot be compared fairly

using only DCG, so the cumulative gain at each position for a chosen value of p

should be normalized across queries of different retrieval result list lengths. The

image cases of a result list are sorted by relevance to produce an ideal DCG at
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position p; and for a query, the normalized discounted cumulative gain, or NDCG,

is computed as:

NDCGp =
DCGp

IDCGp
(4.13)

The NDCG values for all queries can be averaged to obtain a measure of the

average performance of a search engine’s ranking algorithm. NDCG is 1 if the

retrieval results are perfectly ranked by relevance.

4.4.3 Result

NDCG evaluation result is shown in table 4.1. Figure 4.10 and 4.12 show two

image query and retrieval cases. The retrieved images are ranked by similarity to

the query image.

Table 4.1: NDCG evaluation result for content based medical image retrieval
Average NDCG for 30 test queries 0.83

Lowest NDCG among 30 test queries 0.66
Highest NDCG among 30 test queries 0.98

4.5 Discussion

The content-based medical image retrieval framework we proposed in this chapter

has the advantage of being able to retrieve images according to their visual appear-

ance without accompanying texts. This mode of image retrieval enables users to

input an image and query visually similar images. The method we propose is fast
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Figure 4.9: Query example 1

and can be built into real time online CBIR systems. This function could be partic-

ular useful as a teaching tool in junior medical staff training. The instructor could

input a medical image to retrieval all visually similar images, then the instructor

could compare the images and tell the students the subtle differences among them.

The CBIR is also useful when a medical professional acquires a new image and

wants to reference similar cases in the database before making the final judgment

of the type and severity of the disease revealed by the newly acquired image.

However, as only low level visual features are used, they give certain image

semantics but these semantics are not deep enough. It is well known that such an

approach suffers from the semantic gap problem [27]. Similar images retrieved by

low level features may be different in high level image semantics. For example,

two hematoma segments having similar circular bin binary representation may be

of different pathologies. Specifically in the case of traumatic brain injury, a CT

94



image contains EDH may have similar feature vector with a CT image contains

SDH if the hemorrhage regions are in the similar location, even though EDH and

SDH are two different pathology concepts and have different impacts on patients.

Due to this problem, the retrieved cases may be semantically different from the

query case. To solve this problem, we will propose an annotation-based medical

image retrieval framework in the following chapters that investigates deeper image

semantics.
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Figure 4.10: Image retrieval results of query example 1
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Figure 4.11: Query example 2
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Figure 4.12: Image retrieval results of query example 2
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Chapter 5

Automatic medical image annotation

framework using probabilistic

models

Numerous tasks have been proposed in CLEF medical image annotation track-

s [119] in recent years. The tasks focus on automatically generating annotations

of acquisition modality (CT, X-ray, MR, etc.), body orientation, body region, and

biological system. These works adopt various approaches to provide a solution to

the medical image retrieval problem.

The traditional approach – text-based image retrieval systems (TBIR) index

the images with associated keywords. It is an early approach with the advantage

of easy implementation and fast retrieval, but it requires a large amount of manual

work to label the images and suffers from human subjectivity. In Chapter 3 we
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developed a method to extract keywords from the radiology reports associated

with the medical images and can use these keywords to index and retrieve the

images. However, for the vast amount of images without such accompanying

textual reports, text-based image retrieval cannot be applied.

Content-based image retrieval (CBIR) methods such as the one we developed

in Chapter 4 provides a solution to overcome the disadvantage of TBIR by retriev-

ing medical images that has similar low level visual features to the query image’s.

CBIR provides a practical solution for medical image retrieval; however, it poses

a limitation on the query format – the query must be an image example. Moreover,

it suffers from the semantic gap problem.

Auto-annotation based image retrieval (ABIR) seems to have the advantages

of both TBIR and CBIR by having a preprocess of automatically annotating im-

ages with their semantic content and offering users the ease of using text to search

images. Images and their corresponding semantic labels are associated by ma-

chine learning methods. However, a large labeled training data set is needed in

the process.

For anatomical annotation, such training set is easy to obtain since the labels

can be extracted from DICOM header1 and global visual features can be used for

the task. However, for pathology annotation, it is not easy to obtain semantic la-

bels for the training data. Another common difficulty researchers often encounter

is the lack of large number of labeled data for training purpose, as manually pro-

1A DICOM file contains both a header storing meta information (e.g. patient’s data, modality
of scan, image dimensions, etc), and the image data.
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cessing and labeling medical images requires expertise and is thus expensive and

slow.

To overcome this limitation, in this chapter, we propose a novel framework for

automatic pathology annotation using both medical images and their associated

radiology reports. Under our new framework, training images can be automatical-

ly labeled by text mining from associated radiology reports. We use an existing

probabilistic model to learn the image-annotation relation as we have described in

our paper [47], and we propose a new semantic similarity language model to learn

the intra-annotation probability to improve the overall image annotation accuracy

as described in our paper [46].

5.1 The framework

Unlike image annotation in general domain, the medical images are usually not

explicitly labeled with keywords but only accompanied by a radiology report in

some cases. Therefore, we build our training corpus from those images with re-

ports and extract the pathology terms from the report as annotation keywords. As

shown in Figure 5.1, in training phase, we use probabilistic models to learn the

correlations between the regions of interest (ROIs) and the pathology terms ex-

tracted from reports associated with the images and generate a ROI-annotation

conditional or joint probability table. The ROIs are segmented from the images

using the same method as we described in Chapter 4. The free text reports are pro-

cessed and pathology terms are extracted using the method described in Chapter
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3. In testing phase, we segment the ROIs from unannotated images, then we use

the probability table generated from the training phase to find out corresponding

pathology annotations that maximizes the probability.

Figure 5.1: The framework of automatic medical image annotation using proba-
bilistic models

5.2 Probabilistic models

The problem of automatic image annotation can be defined as: given a training

corpus T consisting of some already annotated images, which annotations A will

be used to label a new image I? For most image annotation approaches using

probabilistic models, the goal is to find A that maximizes the conditional proba-

bility p(A|I):

A = argmax
A

p(A|I) (5.1)

whereA is a set of words {w1, . . . , wn} used for annotation and image I is usually
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represented by a set of features {f1, . . . , fk} or a set of blobs {b1, . . . , bm}.

p(A|I) can also be rewritten as:

p(A|I) = p(A, I)

p(I)
(5.2)

Since the prior probability of a given image I is usually considered as of uni-

form distribution, instead of estimating the conditional probability p(A|I) direct-

ly, some image annotation approaches use the joint probability p(A, I) to find the

best annotation set A:

A = argmax
A

p(A, I) (5.3)

In the following sections, we will use the above equations as basis for auto-

matic medical image annotation.

5.2.1 Statistical machine translation model

Statistical Machine Translation Model (SMT) [8] was first used in automatic im-

age annotation in general domain by Duygulu et. al. in [38]. Automatic medical

image annotation can also be viewed as a statistical machine translation prob-

lem due to many analogies between images and languages. Medical images and

the corresponding pathology annotations are two different media referring to the

same semantic content–the region of interest. We take medical images as the

source language and the pathology annotations as the target language, and use

SMT methods to “translate” the abnormal regions in medical images to pathology

103



annotations. For medical images taken in the radiographic examinations, we need

to preprocess the images to extract out the regions of interest (ROIs), before using

the ROIs as the translation input. We use radiology reports accompanying the s-

cans as annotation result to train the automatic annotation system. We extract the

pathology terms describing the ROIs from the reports and use these terms as target

language. Then we use IBM Model 1 [9] to train the ROI-pathology translation

table using the training corpus. IBM Models [9] are classic translation models for

SMT. Since we use this model for the translation of a set of image segments (the

ROIs) and a set of annotation words instead of sentences in natural languages, we

assume the ordering or the positions of the individual elements in the ROI set and

the annotation word set do not affect the probablity for them to be aligned. Thus,

we use IBM Model 1 for the training instead of the higher versions of the IBM

Models. In testing phase, we first process the testing images to segment out ROIs,

then use the trained ROI-pathology translation table to output the pathology terms

associated with each ROI.

In training, we collect all the ROIs (hematoma regions) segmented from all

scans in the training corpus, extract features of the ROIs, and cluster them in-

to groups. Unlike image regions in general domain which mainly use color and

texture as features, the intensity and texture for hematoma regions are very simi-

lar. After segmentation, shape and location features are particularly important to

distinguish the hematomas among themselves. We use the following features for

hematoma clustering:

• eccentricity–the ratio of the distance between the foci of the ellipse and its
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major axis length;

• solidity–the proportion of the pixels in the convex hull that are also in the

region;

• extent–the proportion of the pixels in the bounding box that are also in the

region;

• skull–whether the ROI is adjacent to skull or not.

After the features of the ROIs segmented from training images are extracted,

we use K-means clustering to partition the ROIs into different clusters according

to their features. Each cluster consists of visually similar ROIs and is considered

as a “word” in the “dictionary” of ROIs. Each ROI categorized in that cluster will

be treated as the same “word” that cluster represents. After the images and texts

are preprocessed and basic elements for translation are defined and extracted (ROI

clusters and pathology terms), we can start the training process. We use the trans-

lation model of IBM Model 1 [9] to get the word ROI-to-pathology alignments

for training data as shown in Figure 5.2, and thus build the ROI-to-pathology

translation table. The translation table contains conditional probability for each

pathology annotation word w given each ROI cluster r:

p(w|r) =
∑
a

p(a, w|r), (5.4)

by calculating the probability of possible alignments a between w and r:
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p(a, w|r) =
∏
j=1

p(wj|raj), (5.5)

where raj is the ROI corresponding to annotation word w through alignment a.

As we can see from the two equations, finding out the best alignment and the best

translation is a chicken-and-egg problem; therefore, EM algorithm is a natural

choice to solve it. We use the parameter estimation method in [9] to obtain the

best alignments as well as the translation table. The alignments between ROI

and pathology annotations are initially of equal weight as the translation table is

initialized uniformly. As we iteratively collect fractional counts from the training

data and update the translation probabilities and the alignments, we can get the

best alignments as the values in the translation table converge as illustrated in

Figure 5.2.

Figure 5.2: Alignments between ROIs and pathology annotations

1:initialize the translation table uniformly.

2:calculate p(a|w, r) using chain rule: p(a|w, r) = p(a, w|r)/p(w|r).
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3:use the updated values to collect counts and re-estimate the model.

4:check if the values converge–if not, go to Step 2 and Step 3 to repeat

the iteration.

For single medical image in testing phase, we use the trained conditional prob-

ability ROI-to-pathology translation table to find the pathology annotation word

with the highest translation probability for each individual 2D ROI segmented

from the testing image:

w = argmax
w

p(w|r) (5.6)

For 3D volumetric case (such as CT and MRI) which consists of a series of 2D

scan sequences, one 3D volumetric region of interest may be captured in several

consecutive 2D scans and form different 2D ROIs in the individual scans. For

example in Figure 5.2, the same clot of epidural hematoma (EDH) spreads over the

consecutive images and form one 2D ROI in each of the three images. However,

it is possible that due to different features of each 2D ROI, they may be clustered

into different clusters and may be annotated differently. To solve this conflict of

different annotations for the same 3D ROI, we use equation 5.7 to annotate the

3D volumetric ROI captured in n consecutive 2D scans. In Equation 5.7, the

probability of annotation word w given a 3D ROI is the sum of the the probability

of w given n individual 2D ROI ri that comprises the 3D ROI r.
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w = argmax
w

n∑
i=1

1

n
p(w|ri) (5.7)

5.2.2 Cross-media relevance model

We use the same text and image preprocessing methods as in the previous section

to extract the pathology terms from the radiology report and ROIs from the med-

ical images. We then use the cross-medial relevance model (CMRM) to learn the

relation between them. CMRM was first proposed by Jeon et. al. in [63] for auto-

matic image annotation in general domain. CMRM defines each training instance

J in the training corpus T as J = {b1 . . . bm;w1 . . . wn}, where b1 . . . bm repre-

sent the blobs corresponding to regions of the image and w1 . . . wm represent the

words in the image annotation. As CMRM uses a relevance language model [75],

the joint probability of observing the word wi and the blobs b1 . . . bm in the same

image is estimated as the expectation over the images J in the training set:

p(wi, b1, . . . , bm) =
∑
J∈T

p(J)p(wi, b1, . . . , bm|J) (5.8)

It is assumed that the events of observing wi and b1 . . . bm are mutually inde-

pendent and identically distributed for an image. Equation 5.8 can be rewritten as

follows:

p(wi, b1, . . . , bm) =
∑
J∈T

p(J)p(wi|J)
m∏
j=1

p(bj|J) (5.9)

The prior probabilities p(J) is set to be uniform over all images in T . S-
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moothed maximum-likelihood estimates is used for the probabilities in Equa-

tion 5.9:

p(wi|J) = (1− αJ)
|wi in J |
|J |

+ αJ
|wi in T |
|T |

(5.10)

p(bj|J) = (1− βJ)
|bj in J |
|J |

+ βJ
|bj in T |
|T |

(5.11)

where |wi in J | is the number of times the word wi occurs in the annotation of

image J and |wi in T | is the total number of times wi occurs in the annotations

of all images in the training set T . Similarly, |bj in J | is the number of times the

blob bj occurs in image J and |bj in T | is the total number of times bj occurs in all

images in the training set T . |J | is the total count of all words and blobs occurring

in image J , and |T | is the total size of the training set. The smoothing parameters

αJ and βJ determine the degree of interpolation between the maximum likelihood

estimates and the background probabilities for the words and the blobs. From Jeon

et. al. [63]’s experiment, the model gives best annotation result when αJ = 0.1

and βJ = 0.9.

5.3 Language model enhancement

5.3.1 A semantic similarity language model

Under probabilistic modeling, the best word set to annotate a given image can be

found by maximizing the conditional probability p(A|I) or the joint probability
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p(A, I) (recall Equation 5.1 and Equation 5.3 in Section 5.2). As many existing

probabilistic modeling approaches for automatic image annotation emphasize on

the image-word correlation and directly maximize the conditional or joint prob-

ability, the contextual information among the annotation words themselves are

usually ignored.

Inspired by the noisy channel model, we use an indirect approach to maximize

the desired probability, make use of the word contextual information by incorpo-

rating a language model as we have described in our paper in [46]. We view the

image annotation problem using the noisy channel model as in Figure 5.3.

Figure 5.3: Noisy channel model

The original signalA generated by the transmitter passes through a noisy chan-

nel and changes to a noisy signal I which will be received by the receiver. Using

the noisy channel model, we can interpret the image annotation problem as: a

person wants to express a few objects in words, but the output of the expression is

a picture because the tool he uses (maybe a camera); we have to use the image to

predict what were the original words the person was trying the say in his picture

using:

p(A|I) = p(I|A)P (A)
p(I)

(5.12)
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A = argmax
A

p(I|A)p(A) (5.13)

We then find the best set of annotation words by maximizing the combination

of two probabilities, p(I|A) and p(A). p(I|A) can be derived from the origi-

nal image annotation methods; and p(A) is the annotation set probability derived

from the language model. Inspired by the statistical machine translation model

(SMT) which maximizes the posterior probability and sets different weights to

the probability factors, we also add different weights to the two probabilities to

give different emphasis on the original annotation model and the language model

to achieve best overall annotation result:

A = argmax
A

p(I|A)λ1p(A)λ2 , (5.14)

which can also be expressed in log linear form:

A = argmax
A

(λ1 log p(I|A) + λ2 log p(A)) (5.15)

Language modeling is widely used in many natural language processing appli-

cations such as speech recognition, machine translation, part-of-speech tagging,

parsing and information retrieval. A statistical language model assigns a prob-

ability to a sequence of words. Using a language model in statistical machine

translation boosts the probability of translating sentence in source language into

well-formed sentence in target language. Similarly, we use a language model in

image annotation to boosts the probability of annotating semantically coherent
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words.

As the set of annotation words in automatic image annotation task is not a se-

quence as the annotation is not a sentence; therefore, the commonly used bi-gram

or tri-gram model is not suitable to model the the probability of a set of words p(A)

in image annotation task. Alternatively, we make use of the word co-occurrence

information in the annotations in the training corpus to model the probability of

the keyword given other keywords in the annotations and the probability of the

annotation. In this section, we choose semantic vector model to represent each

word and define the language model to be the average pairwise similarity of the

semantic vector of each word in the annotation set.

In the semantic vector model, the meaning of each word is represented in

terms of vectors of other context words. We first choose a set of words as con-

text words to be included in the semantic vector to represent the meaning of any

word. For a small image annotation corpus such as COREL 5K dataset [38],

the vocabulary size (the total number of distinct words used in the annotations)

is usually small as well (in a few hundred); we could use all the words in the

vocabulary as context words. A word w is represented by v, a semantic vector

< v1, v2, . . . , vi, . . . , vm >, where there are m context words in the vocabulary.

In [90, 91], the semantic vectors are based on components defined as the ratio of

the conditional probability of a context word given the target word to the overall

probability of the context word. We follow the definition in [90, 91] to calculate

each component vi in the semantic vector that represents w:
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Table 5.1: Example of annotation words represented by semantic vectors of con-
text words

city sky sun water clouds tree . . .
grass <0.53 2.86 0.70 2.16 0.84 4.24 . . .>
buildings <20.29 5.15 0.77 2.71 2.14 3.41 . . .>
bridge <5.77 2.77 2.55 8.21 1.01 2.41 . . .>
mountain <2.31 7.71 3.07 4.27 12.20 5.80 . . .>

vi =
p(contexti|w)
p(contexti)

(5.16)

And the the conditional probability is just the relative frequency of the count

of the co-occurrences of context word contexti and word w in all annotations over

the total number of occurrences of w in the annotations:

p(contexti|w) =
count(contexti, w)

count(w)
(5.17)

The semantic vector v represents the distributional properties of a word w in

terms of the strength of its co-occurrence with a set of context words. Dividing

by the overall probability of each context word prevents the vectors being domi-

nated by the most frequent context words, which will often also have the highest

conditional probabilities. Table 5.1 shows some examples of annotation words

represented by semantic vectors of context words. In this section, we use data

from general domain to illustrate the language model, as it is easier and more

intuitive for the readers to understand than medical images and terms.

Assume that words should be semantically similar with the set of contex-
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t words in the same annotation, the probability of a set of annotation words A =

{w1, . . . , wn} can be measured by the similarities of each annotation word to all

other words:

p(A) ∝ 1

n(n− 1)

∑
wi∈A

∑
wj∈A,j 6=i

sim(wi, wj) (5.18)

where each word wi from the annotation set A is represented by its corresponding

semantic vector. Similarity can be measured using cosine:

sim(w1, w2) =
w1 · w2

‖w1‖‖w2‖
(5.19)

Using the semantic vector representation stated in Equation 5.16, the dot prod-

uct in similarity measure is calculated as:

w1 · w2 =
m∑
i=1

vw1,ivw2,i =
m∑
i=1

p(ci|w1)

p(ci)

p(ci|w2)

p(ci)
(5.20)

Table 5.2 shows the pairwise semantic similarity between some example an-

notation words.

We found that Equation 5.13 is very similar to the fundamental equation sta-

tistical machine translation [8] as shown below (translating a foreign sentence f

to an English sentence e):

e = argmax
e

p(f |e)p(e) (5.21)

As the search space for the optimal solution is huge, beam search is usually
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Table 5.2: Examples of pairwise semantic similarity

people sun street sky forest tree . . .
people 1 0.0219 0.4131 0.1513 0.0174 0.2118 . . .
sun 0.0219 1 0.0120 0.2121 0.0001 0.0827 . . .
street 0.4131 0.0120 1 0.1833 0.0012 0.1624 . . .
sky 0.1513 0.2121 0.1833 1 0.0283 0.4211 . . .
forest 0.0174 0.0001 0.0012 0.0283 1 0.2140 . . .
tree 0.2118 0.0827 0.1624 0.4211 0.2140 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

used for decoding in statistical machine translation. Similarly, we also use k-best

beam search to find the k-best set of annotation words.

5.3.2 Improved statistical machine translation model

To apply our proposed language model to the translation model, we first rebuild

the translation model by reversing the translation direction - we treat words as

the source language and blobs as the target language. We construct the transla-

tion table–the word-to-blob translation table instead of the original blob-to-word

translation table. In the new table, each entry p(bj|wi) indicates the translation

probability from word wi to blob bj . The word-to-blob translation probability and

alignment probability can be calculated in the equations below respectively.

P (b|w) =
∑
a

p(a, w|b), (5.22)
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P (a, b|w) =
∑
j=1

t(bj|waj), (5.23)

where w is the word, b is the blob, and a is a possible alignment between w

and b. Finding out the best alignment and the best translation is a chicken-and-

egg problem; EM algorithm is a natural choice to solve this problem. Parameter

estimation method in [9] is used to obtain the the best alignments as well as the

translation table:

Step 1: initialize the blob-to-word translation probability uni-
formly.
Step 2: apply the model to the training data to calculate the
alignment probability p(a|w, b) using chain rule: p(a|w, b) =
P (a, b|w)/p(b|w).
Step 3: use the updated values to collect counts and re-estimate
the model.
Step 4: check if the values converge–if not, repeat Step 2 and Step
3.

Figure 5.4: EM algorithm to estimate word-to-blob translation and alignment
probabilities

After the reverse translation table is built, we find the set of annotation words

A for a new image I by Equation 5.1, where p(A|I) can be estimated as:

p(A|I) ∝ p(A)
∏
wi∈A

p(bi|wi) (5.24)

where wi is one annotation word in A, and bi is the blob translated from the word

wi. Applying the semantic similarity language model defined in Equation 5.15,

we find the set of annotation words by:
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A = argmax
A

(λ1 log
∏
wk∈A

p(bk|wk)

+ λ2 log
1

n(n− 1)

∑
wi∈A

∑
wj∈A,j 6=i

sim(wi, wj))

(5.25)

5.3.3 Improved cross-media relevance model

After generating joint probability from the original CMRM, in order to apply the

language model to improve the original model, we first find the conditional prob-

ability p(I|wi) (where I = {b1, . . . , bm} from the joint probability p(wi, I):

p(I|wi) =
p(wi, I)

p(wi)
=
p(wi, b1, . . . , bm)

p(wi)
(5.26)

We calculate the prior probability of a word p(wi) as the count ofwi in training

corpus T over the total count of all words used in annotation in T :

p(wi) =
|wi|∑

wk∈T |wk|
(5.27)

Then we find the set of annotation wordsA for a new image I by Equation 5.1,

where p(A|I) can be estimated as:

p(A|I) ∝ p(A)
∏
wi∈A

p(I|wi) (5.28)

Applying the semantic similarity language model defined in Equation 5.18,

we can find the set of annotation words by:

117



A = argmax
A

(λ1 log
∏
wk∈A

p(I|wk)

+ λ2 log
1

n(n− 1)

∑
wi∈A

∑
wj∈A,j 6=i

sim(wi, wj))

(5.29)

5.4 Experiments

5.4.1 Data set

Using TBI CT image data set

For experiment, we obtained 500 brain CT examination cases from National Neu-

roscience Institute (NNI), Singapore. Each examination consists of a series of CT

scans and a radiology report. We used 450 cases to build the translation table in

training and 50 cases for annotation testing. As the scans are too sparse (with

5mm or 7mm in-between scan distance), we did not reconstruct the images in 3D

but used 2D ROIs and clustered them according to their 2D features. For testing

images, we use Equation 5.7 to find the best annotation for each ROI.

Using general domain image data set

The COREL 5K image corpus [38] is a publicly available and widely used dataset

in evaluating image annotation methods. It contains 5000 images from 50 themes

with 100 images from each theme. Each image is segmented into 1 to 10 regions

using Normalized Cut [109]. 36 visual features including color, texture, and shape
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are extracted for each image region. All image regions are grouped into 500 vi-

sual blobs using K-Means clustering on the 36 features. Each image is annotated

with 1 to 5 words. A total number of 374 words are used to annotate the entire

dataset. The dataset is partitioned into training set with 4500 images and testing

set with 500 images. We use 4000 images in the training set to train the improved

models and use 500 images in the training set as a validation set to tune the weight

parameters λ1 and λ2. After the best parameter setting is determined, we use all

4500 training images to train the improved models again and test the models on

the 500 testing images. There are 263 distinct words for the testing set. In order to

provide a valid comparison with related work, we conducted the experiments on

the COREL 5K dataset using the same visual features and visual blob clustering.

5.4.2 Evaluation Metrics

As the main motivation for automatic image annotation is for annotation-based

image retrieval, it is natural to use the retrieval metrics to reflect the performance

of the image annotation system. In most research works on automatic image an-

notation, the precision and recall is measured through the process of retrieving

testing images with single keyword as shown below:

precision(w) =
tp(w)

tp(w) + fp(w)
(5.30)

recall(w) =
tp(w)

tp(w) + fn(w)
(5.31)
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where tp(w) is the number of correctly retrieved images, fp(w) is the number

of incorrectly retrieved images, and fn(w) is the number of relevant images not

retrieved. The precision(w) measures the correctness in annotating images with

word w and the recall(w) measures the completeness in annotating images with

word w.

In addition, the number of words with non-zero recall, i.e. the number of

single-word queries for which at least one relevant image can be retrieved using

the automatic annotation, is also an important metric, because it indicates the

range of words that contribute to the average precision and recall and a biased

model can achieve high precision and recall by performing well only on a small

number of words commonly used in annotation.

5.4.3 Results

Results of experiments on TBI CT image data set

One of the main motivations for automatic image annotation is for annotation-

based image retrieval; therefore, it is natural to use the retrieval result to reflect

the performance of the image annotation system. In most research works on auto-

matic image annotation, the accuracy and recall is measured through the process

of retrieving testing images with individual keyword. For our system performance

evaluation, we used the trained translation table to annotate the 50 testing images

and then used pathology annotations as keywords to retrieve the testing images.

The evaluation result is shown in Table 5.3. The average retrieval precision and
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recall for all pathology terms are 76.2% and 72.0% respectively. The retrieval re-

sults of pathologies that are more frequent in the training corpus such as “EDH”,

are better than those appear less frequent such as “IVH”. Figure 5.5 shows some

brain CT image annotation result. We reported our method the result in [47] as

well. The performance of the system measured by medical image retrieval preci-

sion and recall is encouraging to the doctors in NNI.

Table 5.3: Evaluation results (in %)
SDH EDH SAH ICH IVH

precision 74.1 91.7 72.0 68.4 75.0
recall 74.1 84.6 69.2 72.2 60.0

Figure 5.5: Annotation results of some brain CT images

Results of experiments on general domain image data set

For valid comparison with related work, we fixed the number of words to anno-

tate each image to be 5, as the experiment results for related work are available

for number of words fixed at 5. From the result of parameter tuning on valida-

tion set, we found that the best annotation result for improved statistical machine

121



Table 5.4: Evaluation results on single keyword retrieval

on all 263 testing words on 98 testing words
# words precision recall precision recall

SMT 49 4.0% 6.0% 9.9% 12.9%
SMT + SSLM 65 6.5% 8.6% 16.1% 18.5%
CMRM 66 9.0% 10.0% 22.0% 25.1%
CMRM + SSLM 90 10.5% 13.1% 25.7% 33.0%

translation model (SMT) [38] is achieved when λ1 = λ2. For improved Cross Me-

dia Relevance Model (CMRM) [63], the system performs best when λ1 = 4λ2.

We performed single-word queries to retrieve images using auto annotations for

all 263 words in the testing set. The number of words with non-zero recall (“#

words” for short) for statistical machine translation model is 49. With the seman-

tic similarity language model enhancement (SMT+SSLM), the number increases

to 65. For Cross Media Relevance Model, with the semantic similarity language

model enhancement (CMRM+SSLM), the number increases from 66 to 90. We

union the four query sets to get a new 98 query set. As the 263 testing words

are unevenly distributed, we also use the 98 query set from the union to show the

performance. The detailed results of the semantic similarity language model im-

proved image annotation models are shown in Table 5.4 in comparison with the

original models.
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Table 5.5: Automatic annotation examples (fixed length of 5 words) of statistical
machine translation model (SMT) and SMT with semantic similarity language
model (SMT+SSLM)

Images
SMT flowers people

mountain tree
water

water tree s-
now buildings
rocks

people build-
ings street cars
plants

forest mare
flowers tree
street

SMT +
SSLM

flowers needles
blooms cactus
grass

plain snow for-
est coyote wolf

buildings shop-
s street sign
writing

forest horse
mare foals
flowers

Table 5.6: Automatic annotation examples (fixed length of 5 words) of cross medi-
a relevance model (CMRM) and CMRM with semantic similarity language model
(CMRM+SSLM)

Images
CMRM water sky tree

people snows
water tree sky
people ocean

sky water tree
people plane

stone pillar tree
sculpture peo-
ple

CMRM
+
SSLM

snow fox pago-
da railroad lo-
comotive

ocean coral
pool fish reefs

plane sky jet
runway art

pillar shadows
road stone tem-
ple
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Figure 5.6: 90 non-zero recall words in CMRM+SSLM annotation result, ordered
by F-measure
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Chapter 6

Region-based medical image

classification using auto-generated

large training set

In Chapter 5 we proposed a novel framework to automatically annotate medical

images with pathology labels via the implicit learning of the image-annotation

relation as well as the intra-annotation relation. In the training data set, in case

of an image of several regions of interest (ROIs) with multiple pathology labels,

it is not clear which label points to which ROI, and the mapping/alignment of the

labels and ROIs have to be learned implicitly through probabilistic models.

In this chapter, we address this problem by proposing another new frame-

work that further extracts the image and text semantics and automatically links

the pathology labels and ROIs explicitly in the training data. In this way, we gen-
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erate a weakly labeled data set so that the training will be region specific. Then

we classify the medical images through the visual features of its ROIs so that they

can be annotated according to the pathological labels, to provide convenience for

users to search and retrieve cases. We have also described our method in the paper

[48].

6.1 Automatic generation of large training data set

In this section, we propose a framework to automatically map the information

extracted from both text and images, and auto-create a region-based labeled im-

age corpus for training. Figure 6.1 shows the architecture of our system. We

take a series of images as input and reconstruct it to 3D. For image series with

large distance between scans, we interpolate the intermediate images before 3D

reconstruction. Then we set a threshold automatically and segment the 3D re-

gion(s) of interest. We register the 3D image to the reference 3D brain CT model

we build and label the ROI(s) with the anatomy region(s) it overlaps with in the

3D brain atlas. For free text radiology report, we first extract the pathology and

anatomy expressions and map them to standard terms; then we extract the logical

relation between the anatomy terms and the pathology terms from their syntactic

relation in the sentence. Finally we compare the anatomy labels for ROI from im-

age processing result and the anatomy terms modifying the pathology term in text

processing result. If they match, we set the class of the ROI with the pathology

term its anatomy term modifies in the report.
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Figure 6.1: The framework of automatic ROI labeling

6.1.1 Anatomical location mapping of ROI

In order to link the report and the images, we need to map the ROIs segment-

ed from the images to respective anatomical locations in the brain, so that when

comparing with the associated radiology report, we know which ROI(s) the re-

port describes. We consider two methods to map the anatomical location of the

ROIs. We use the data provided in [124] as a brain model for an average brain

and mark the different anatomical parts [26]. Figure 6.2 shows some slices of the

brain anatomical atlas with different colors referring to different anatomical parts.
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Figure 6.2: Some sample slices from the brain anatomy map

3D mapping

The first method uses reconstructed 3D ROIs and 3D brain model. In some cas-

es, the images are too scarce for the ROIs to be directly reconstructed to 3D, we

need to interpolate the intermediate slices prior to 3D reconstruction. Two cate-

gories of interpolation techniques are popular for reconstructing 3D objects from

sparse sets: grey-level and shape-based interpolation. Grey-level interpolation

approaches include nearest-neighbor, splines, linear, or polynomial interpolation.

Shape-based interpolation approaches are often used on binary images and con-

sider shape features extracted from the object sets. As the purpose of 3D recon-

struction in this step is to register the actual brain to the ideal brain model, we use

the cubic method, a grey-level approach to interpolate the intermediate slices of

the actual brain image series and the brain model. After 3D reconstruction, we

then use the method in [98] to do 3D image registration. We segment and label

the ROI in each case with the anatomy region(s) it overlaps with in the referenced
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3D brain CT model.

(a) view 1 (b) view 2

Figure 6.3: Reconstruction result: 3D hematoma in 3D brain

For example, after image registration and ROI segmentation, the 3D hematoma

region shown in Figure 6.3 overlaps with the frontal lobe of the left side of the

brain, so its anatomical location will be labeled as “left frontal lobe”.

2D mapping

The second method uses the 2D brain maps. Since the number of slices of the

brain maps is fixed in the model and the slice number of the actual case may

be different from that, for each individual slice Sk in the series of image of CT

examination S = {S1, S2, . . . , Sk, . . . , Sn}, we need to identify its corresponding

brain map Bj in the series of brain maps B = {B1, B2, . . . , Bk, . . . , Bm}. As

the starting and ending positions of CT examination are standard and the distance

between two adjacent slices is constant, we first map the first and last images of

the series S1 and Sn to the first and last images of the brain map series B1 and Bm

respectively. Then sequence number j the corresponding brain map Bj of a given
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slice Sk from an actual image series can be computed by:

j = round(k · m
n
) (6.1)

Then similar to the first method, we use 2D image registration to find out the

anatomical location of the 2D ROIs in the images. The anatomical location label

of the 3D ROI is the union of all anatomical locations mapped to its 2D ROI

components.

Both methods give almost the same results but the second method is faster

using 2D image registration without the many interpolated intermediate slices;

therefore, we use the 2D method for our experiment. However, should any 3D

brain map be obtainable or the actual scans are dense enough, the 3D method

could be considered.

6.1.2 ROI class label matching

For each case, after the ROI in the images is mapped to the anatomical location(s),

we search the medical finding extracted from its report that also has the same

anatomical description. Then we label the ROI with the pathology concept in that

finding. For example, the hematoma region in Figure 6.4 is mapped to anatomical

locations “left frontal lobe”; we search the medical finding with this anatomy

concept, and if found in the structured term extraction result, we take its pathology

concept and label the hematoma with it. Figure 6.4 shows the process of the ROI

class label matching of the EDH example. After we automatically match and
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label the ROIs in all the images with the pathology concepts from all associated

radiology reports, we obtain a large size labeled data set for classifier training in

the next phase.

Figure 6.4: An example of ROI class label matching process

6.2 CT Image Classification

We classify the medical images according to the ROIs identified in the images. As

it is possible for an image series to have multiple ROIs, the image series can have

multiple classes. We provide two ways to classify the ROIs–3D ROI classification

and 2D ROI classification.
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6.2.1 ROI classification using 3D features

We need to extract the color, size, location, and shape features for hematoma

classification. As we are interested in the ROIs only, all other details of the brain

can be ignored for computation efficiency, we first segment the ROIs from the

2D image series and then use the shape based method described in [7], which

was originally used for 3D tooth reconstruction, to do the interpolation to better

precision than described in Section 6.1.1.

We use erosion and dilation, the mathematical morphologic transformation

operations, for binary ROI shape modeling and interpolation. The morphologic

operations transform two adjacent slices by combinations of dilations and ero-

sions. The transformation is iteratively performed in such a way that the resulting

ROIs from the adjacent slices become more similar to each other with respect to

both shape and dimension.

The dilation of binary image P by using a structuring element B is given by:

P ⊕B = ∪b∈BPb, (6.2)

where⊕ denotes dilation and Pb is a structuring element centered onto an element

of P . The erosion of P by using B is given by:

P 	B = ∩b∈BPb (6.3)

For two adjacent CT slices P and Q, we apply the following morphological

transformation on P so that the resulting image P ′ will grow from the shape of P
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towards the shape of Q:

P ′ = [(P 	B) ∪ ((P ∩Q)⊕B)] ∩ (P ∪Q). (6.4)

Equation 6.4 can be interpreted as: new image is to intersect the union of P

and Q with the union of eroded P and dilated P and Q intersection. On the other

hand, we apply a similar morphological transformation on Q so that the resulting

image Q′ will grow from the shape of Q towards the shape of P :

Q′ = [(Q	B) ∪ ((Q ∩ P )⊕B)] ∩ (Q ∪ P ). (6.5)

The morphological operations defined in Equation 6.4 and 6.5 are applied it-

eratively to the binary images resulted from previous morphological operations

until the two binary images from respective morphological operations converge to

be idempotent.

We use the method described above to interpolate the middle slice between

adjacent slices iteratively until the desired density of the slices is obtained. In this

way, the transition from one slice to another slice is smoother, thus it gives more

accurate shape and volume features for ROI classification. Figure 6.5 demon-

strates the 3D reconstruction examples of traumatic brain injury: (a) subdural

hematoma (SDH), (b) extradural hematoma (EDH), and (c) intracerebral hemor-

rhage (ICH). The EDH is reconstructed from the images shown in Figure 1.1.

For the 3D ROIs reconstructed, we fit a ellipsoid to the region so that the ax-
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(a) SDH (b) EDH (c) ICH

Figure 6.5: 3D hematoma reconstruction result

es of the ellipse have the same normalized second central moments1 as the 3D

ROI. We use the lengths of the ROI along the three axes of the ellipsoid as shape

descriptors. As demonstrated in Figure 6.5, different types of hematoma usually

have different shapes, we choose extent and solidity as shape features to distin-

guish the hematomas. Table 6.1 shows the details of each feature.

Table 6.1: Features for 3D hematoma regions
Name Description

Intensity The average intensity of the hematoma
Volume The volume of the hematoma
Location The anatomical location of the hematoma
3D Axes Lengths of the three axes of the fitting ellipsoid

3D Extent hematoma volume/bounding box volume
3D Solidity hematoma volume/convex hull volume

1In mathematics, a moment is a quantitative measure of the shape of a set of points. The
“second moment”, known as the variance, is widely used and measures the “width” of a set of
points in one dimension or in higher dimensions measures the shape of a cloud of points as it
could be fit by an ellipsoid.
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6.2.2 ROI classification using 2D features

Some image series are too sparse to get a good 3D reconstruction result, 3D fea-

tures for ROIs in these cases may not be good enough. Alternatively, we extract

2D features of the ROIs as shown in Table 6.2.

Table 6.2: Features for 2D hematoma regions
Name Description

Intensity The average intensity of the hematoma
Area The Area of the hematoma

Location The anatomical location of the hematoma
2D Axes Lengths of the two axes of the fitting ellipse

2D Extent hematoma area/bounding box area
2D Solidity hematoma area/convex hull area

Similar to our approach described in Chapter 5, for 3D volumetric case (such

as CT and MRI) which consists of a series of 2D scan sequences, one 3D volumet-

ric region of interest may be captured in several consecutive 2D scans and form

different 2D ROIs in the individual scans. For example in Figure 1.1, the same clot

of extradural hematoma (EDH) spreads over the consecutive images and form one

2D ROI in each of those images. However, it is possible that due to different fea-

tures of each 2D ROI, they may be classified into different categories respectively.

To solve this conflict of different classification for the same volumetric ROI, we

use the method described in [47] to annotate the 3D volumetric ROI captured in n

consecutive 2D scans. In Equation 6.6, the probability of pathology class c given

a 3D ROI is the sum of the the probability of c given n individual 2D ROI ri that

comprises the 3D ROI r.
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c = argmax
c

n∑
i=1

1

n
p(c|ri) (6.6)

6.3 Experiments

We obtained 429 CT image series of severe traumatic brain injury with associated

radiology reports from National Neuroscience Institute, Tan Tock Seng Hospi-

tal. The pathology terms of hematoma types extracted from the radiology reports

are: subdural hematoma (SDH), extradural hematoma (EDH), intracerebral hem-

orrhage (ICH), intraventricular hemorrhage (IVH), and subarachnoid hemorrhage

(SAH). These hematoma types extracted served as class labels. The anatomy

terms extracted from the text correspond to the anatomy part in the brain atlas.

They include ventricles and left/right sides of the four lobes: frontal lobe, parietal

lobe, temporal lobe, and occipital lobe. We partitioned the data set into a training

set of 400 image series and a testing set of 29 image series. The 38 ROIs in 29

testing image series are manually labeled with pathology classes. We assigned

pathology class labels to the 400 training cases and generated a training corpus.

During testing, 34 of the 38 ROIs are assigned with the correct class label by

the automatical process as described in Section 6.1.2, i.e. the overall precision

of the automatical class label assigning process during creating training instances

process is 89.5%. We built an SVM classifier using the auto-generated training

corpus. Then we use the classifier to test on the manually labeled 38 ROIs from

the 29 testing cases. Among the 38 testing ROIs, there are 13 SDH, 9 EDH, 8 ICH,
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3 IVH, and 5 SAH. The pathology based classification results using 3D features

and 2D features are shown in Table 6.3 and Table 6.4 respectively.

Apart from the class labeling error produced in automatic training corpus cre-

ation process, other factors that affect classification accuracy include the errors

produced at different phases: interpolation error, segmentation error, image reg-

istration/anatomy labeling error, and term extraction error. For ROIs of relatively

smaller size, they appear in very few scans or even just one scan in the image se-

ries, the interpolation, 3D reconstruction and feature extraction for such ROIs are

poorer. Segmentation error affected the SAH cases more than others, as SAH is

not seen as obvious as others in intensity. Image registration error, ROI anatomy

labeling error, and term extraction error are minimal and have the least effect on

the system performance. The classification result is also affected due to unbal-

anced data set. SDH is the most frequent class label, but only a few cases are

labeled with IVH. Therefore, the classification is biased towards SDH and results

in higher recall; whereas the classification result for IVH is poorer than most of

the other classes.

Table 6.3: Hematoma classification result using 3D features
SDH EDH ICH IVH SAH

precision 84.6 100.0 77.8 66.7 80.0
recall 84.6 88.9 87.5 66.7 80.0

Table 6.4: Hematoma classification result using 2D features
SDH EDH ICH IVH SAH

precision 90.9 88.9 77.8 66.7 66.7
recall 76.9 88.9 87.5 66.7 80.0
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As our work is the first in the area of image automatic classification, there is

no other research work for us to compare the results with. However, since the data

sets used in this chapter and in previous chapters are of the same type and from

the same source, though the specific images series used for training and testing are

different, we consider the experiment results comparable. Though the ROIs are

manually labeled in [49], the ROI classification result using the method described

in this chapter is better than the results from [49] because the automatic region

based class labeling process in this chapter provides a much larger data set for

training; whereas the data set in [49] is very small due to high cost in manual

medical image labeling. The result is also slightly better than the result from

Chapter 5, because the region specific labels along with the ROI features provide

more insights of the ROIs, and the ROI-annotation alignment error produced by

the method described in Chapter 5 is greater than the automatic ROI labeling error

using the method described in this chapter.

We use the automatically generated class labels to index the images. Figure 6.6

and 6.7 show some examples of annotation based image retrieval results. Figure

6.6 shows retrieval results to query: pathology class = EDH. Figure 6.7 shows

retrieval results to query: pathology class = SDH, anatomical label = left frontal

lobe.
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6.4 Discussion

We propose a novel framework to utilize deeper semantics of the medical im-

ages and text to automatically create a training corpus for region based medical

image classification. The accuracy of assigning correct class labels to respec-

tive regions of interest in the process of training data set creation is promising

to medical professionals. The ROI classification result is better than the results

from our approaches in previous chapters due to the novel automatic region based

class labeling process, as it provides more insights of the ROIs and create a larger

data set for training and testing. Our proposed pathology based automatic medi-

cal image classification can provide reference or “second opinion” to radiologist

and other medical professionals. We can use the classification result generated

by our system to index the medical images according to pathology changes, and

provide users convenience in searching and retrieving medical images. The novel

framework to label the images automatically can be used to create labeled data for

training, so that expensive and time-consuming manual labeling will no longer be

necessary. Due to automatic training image labeling process, noise is introduced

to the training data inevitably. In future work, we will further study this problem

and may find a way to effectively detect the noise and remove the noisy labels

from the training data, so that the training images will be less “weakly” labeled

and annotation performance can be further improved. Although we experimen-

t on hematomas in traumatic brain injury CT images; however, the framework

and methods we describe in this chapter can be further extended and applied to

139



medical images of other modality or anatomical focus with adaptations on image

processing.

140



Figure 6.6: Image retrieval results of query example 3: pathology class = EDH
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Figure 6.7: Image retrieval results of query example 4: pathology class = SDH,
anatomical label = left frontal lobe
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Chapter 7

Conclusion

In this thesis, we proposed novel frameworks to solve the problems and difficulties

in automatic medical image annotation, classification, and retrieval.

The first framework we proposed in Chapter 3 is for text-based medical im-

age retrieval by extracting structured information from unstructured medical text

to index and retrieve associated medical images. We used natural language pro-

cessing techniques and medical knowledge resource to extract useful information

from free text medical report and used the extracted information to index the re-

ports as well as the images the reports are associated with, so that the users can

search and retrieve medical images that have accompanying reports by typing text

queries into the system, and the system will return medical images that fulfill the

text queries. In addition to text-based indexing and retrieval of medical images,

the medical findings and their specific descriptors such as anatomical locations

extracted from the free text medical reports can also be used to help with image
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processing in region of interest recognition, classification, and annotation.

The second framework we proposed in Chapter 4 is for content-based medi-

cal image retrieval by processing medical images and indexing them with binary

low level visual feature vector. By comparing the binary feature vector of the

query image submitted by user and the binary feature vectors of the images in the

database, we are able to return a list of visually similar images ranked by simi-

larity to the input image. With this approach, users can retrieve medical images

without accompanying textual reports.

The third framework we proposed is for annotation-based medical image re-

trieval. In contrast to most research works that classify the medical images ac-

cording to their modality, anatomical body part, or the presence of abnormality,

we put more effort in analyzing the types of pathology changes present in the im-

ages. Indexing and retrieving medical images by their pathological annotations

can help to satisfy doctors’ need to search and retrieve medical images pertaining

to one pathology class for work, research, or teaching purposes. Different from

other approaches, we proposed the new idea of making use of both text and im-

age semantics for automatic image annotation. We extract information from the

radiology reports associated with the medical images and thus generating a auto-

matically labeled data set; therefore, the much expense and troubles of requiring

human experts to manually label the data can be saved.

We included two different approaches for the framework of annotation-based

medical image retrieval. In the first approach described in Chapter 5, the annota-

tion words from the textual reports are mapped to the whole image, thus we used
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probabilistic models to derive the correlations between the regions of interest in

the images and the annotations. In this second approach described in Chapter 6,

we mapped the annotations explicitly to regions of interest in the images using

anatomical information extracted from the reports and registered images. In both

approaches, after we built annotation/classification models in training phase, then

in testing phase, we first process the testing image and assign annotation words to

the images according to the trained models.

The frameworks we proposed in this thesis provided solutions to the problems

and difficulties we mentioned in Chapter 1. Our systems satisfied the needs of

searching and retrieving medical images accurately, conveniently, and efficiently.

The results from the experiments we conducted are satisfactory to doctors that

tested the systems. We processed the texts and images to obtain deeper informa-

tion that can be used for further applications in the medical domain. By building

the automatic medical image annotation/classification models, we are able to pre-

dict the pathology changes in newly acquired medical images and thus give ref-

erence or second opinions to doctors or radiologists. The systems and platforms

we developed can be used for training junior medical professionals. Some novel

methods we developed along with the frameworks can benefit the medical infor-

matics community as well as the computer science community in general. For

examples, the semantic similarity language model we developed in Chapter 5 and

the improved automatic image annotation methods can not only apply to medical

image annotation, but also to automatic image annotation in the general domain.

The 3D visualization result from Chapter 6 can also be used to help surgeons to
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visualize the brain before the actual surgeries.

For future work, we can further extend our work to other medical image

modalities like MRI and X-ray or medical images of other anatomical part such

as lung and abdomen. For automatic medical image annotation and classification,

the medical findings we focus on are hematomas in traumatic brain injury images.

However, other medical findings are also important. We can extend our work

to include fracture, midline shift, edema, hydrocephalus, and other pathological

changes found in traumatic brain injury cases.
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List of Abbreviations

Abbreviation Details
ABIR Annotation based image retrieval systems
ASSERT Automatic Search and Selection Engine with Retrieval Tools
CAD Computer-aided diagnosis
CBIR Content based image retrieval
CG Cumulative gain
CMRM Cross-media relevance model
CSF Cerebrospinal fluid
CT Computed tomography
DCG Discounted cumulative gain
DICOM Digital Imaging and Communications in Medicine
EDH Epidural hematoma or Extradural hematoma
EM Expectation-maximization
GMM Gaussian mixture model
HMM Hidden Markov model
ICH Intracerebral hemorrhage
IRMA Image retrieval in medical applications
IVH Intraventricular hemorrhage
k-NN K-nearest neighbor
LDA Latent Dirichlet allocation
LFS Lobular feature set
LSA Latent semantic analysis
LSP-MLP Linguistic String Project-Medical Language Processor

147



MedLEE MEDical Language Extraction and Encoding System
MeSH Medical Subject Headings
MIL Multiple instance learning
MRI Magnetic resonance imaging
NDCG Normalized discounted cumulative gain
NER Named entity recognition
NLP Natural language processing
PACS Picture Archiving and Communication System
PBR Pathology bearing region
PLSA Probabilistic latent semantic analysis
POS Part of speech
RADA Radiology Analysis Tool
RBF Radial basis function
RBFNN Radial basis function neural networks
ROI Region of interest
SAH Subarachnoid hemorrhage
SDH Subdural hematoma
SMT Statistical machine translation
SQL Structured Query Language
SSLM Semantic similarity language model
SVM Support vector machine
TBI Traumatic brain injury
TBIR Text based image retrieval systems
UMLS Unified Medical Language System
XML Extensible Markup Language
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