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Summary 

 
Concrete is one of the most widely used construction materials, with annual global consumption 

exceeding one cubic meter per capita. Recently, there has been an increasing motivation in the 

study of sustainable concrete, as a result of awareness of environmental degradation, resource 

depletion and global warming.  

 

This research work examines two types of sustainable concrete, that is, glass sand concrete and 

“sandless concrete”, aimed at increasing concrete sustainability with respect to the use of fine 

aggregates. In glass sand concrete, the natural sand is replaced by recycled waste glass sand. 

Major properties were investigated for cement-based mortar and concrete containing glass sand. 

All the mortar and concrete properties were found to be not harmfully affected, even at 100 % 

sand replacement. Instead, finer glass particles could enhance the concrete properties, such as 

strength and impermeability, due to pozzolanic reaction. Emphasis is on alkali-silica reaction 

(ASR) in glass sand mortar and concrete. The influence of glass color, content and particle size 

on ASR was thoroughly examined. It was found that glass sand with a size between 1.18 and 

2.36 mm, regardless of color, would exhibit the highest ASR expansion. Different ASR 

mitigation methods, including cement replacement by supplementary cementitious materials 

(SCM), and addition of fiber reinforcement and lithium compounds, have also been examined. It 

is recommended that the combined use of fly ash or slag would significantly restrain ASR 

expansion.  
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In “sandless concrete”, the sand is totally eliminated and replaced by the other ingredients, that is, 

coarse aggregates, cement and water. Fly ash, up to 50% replacement, is used as cement 

alternative to avoid the high cement content in “sandless concrete”. Mix design is achieved by 

two different approaches: (a) based on mix design of no-fines concrete; and (b) based on coarse 

aggregate packing and excess paste theory. Diverse properties, in both plastic and hardened 

states, were studied. From the results, “sandless concrete” was found to show comparable 

characteristics as normal concrete, while its workability could be further improved. In addition, 

the durability of “sandless concrete” with fly ash is substantially improved because of the 

densified micro-structure. Also, the mix design for “sandless concrete” could be further 

optimized.  

 

Overall, this research work provides guidance for the practical application of glass sand concrete 

and “sandless concrete”, from the perspective of mix design, mechanical properties and 

durability. Both glass sand concrete and “sandless concrete” could be new options for 

construction industry, in view of sustainability issues.  

 

Keywords: Alkali-silica reaction, Concrete, Durability, Mortar, Mechanical properties, 

Microstructure, Recycling, Sand, Sustainability, Waste glass. 
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Chapter 1. Introduction 

Concrete is the most widely used building material in the world, as well as the largest user of 

natural resources with annual consumption of 12.6 billion tons [Mehta, 2002]. Fundamentally 

comprised of coarse and fine aggregates, cement and water, concrete in some cases also contains 

additional chemical or mineral admixtures for specific purposes. Most of the ingredients, 

produced from virgin resources, are non-renewable, or strictly speaking non-sustainable. 

Recently, there has been an increasing awareness of environmental protection, resource and 

energy conservation, and sustainable development globally. Many research works have been 

initiated and developed to make concrete more sustainable, mainly in reducing its negative 

impacts on environment and reserve natural raw materials. Higher degree of sustainability of 

concrete can be achieved by replacing its virgin ingredients, including cement and aggregates, by 

other materials, such as reclaimed materials from old structures, by-products from industrial 

process and recycled solid wastes. Apart from saving raw materials and protecting environment, 

additional benefits are usually accompanied with the production of sustainable concrete, such as 

reduced landfills and dumping volumes, decreased amount of energy and CO2 emission, as well 

as enhanced life cycle performance and lowered cost in maintenance during the whole life of 

structures.  

Quantities of studies have proved the successful substitution of cement in concrete by some 

pozzolanic by-product materials, like pulverized fly ash and ground granulated blast-furnace slag 

(GGBS) [Malhotra, 1999; Mehta, 2001]. Besides the reduction in cement content and cost, 

workability, long term mechanical properties and durability can also be improved for such 

concrete, resulting in higher sustainability. Also, recycled coarse aggregates and manufactured 
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coarse aggregates have been widely accepted in construction as alternative virgin coarse 

aggregates. However, the research and development of fine aggregate (sand) substitution is 

relatively slow.  

The definition of fine aggregate in ASTM C 125 is the aggregate passing the 9.5-mm sieve and 

almost entirely passing the 4.75-mm sieve and predominantly retained on the 75-µm sieve, either 

in a natural condition or after processing. Sand refers to fine aggregate resulting from natural 

disintegration and abrasion of rock or processing of completely friable sandstone, while 

manufactured sand means fine aggregate produced by crushing rock, gravel, iron blast furnace 

slag, or hydraulic concrete [ASTM C 125].  

Sand consumes around 20~27% of concrete by volume, thus playing an important role in fresh 

and hardened properties of concrete [Neville, 1995]. The reserve of natural sand is depleting and 

the conventional sand mining, quarrying and river and ocean dredging is being criticized for their 

negative influences on environment, such as drinking water degradation, land and coast 

corrosion, flood and species depletion. Therefore, the necessity to seek sound replacements of 

natural sand for concrete is compelling to satisfy the sustainable development in concrete. 

Present alternative fine aggregates includes manufactured sand, recycled concrete sand, by-

products sand, and recycled waste sand. However, no perfect substitution has been found. 

Nevertheless, each sand alternative would also bring in problems to compromise the 

performance of concrete, limiting the popular application. Under the circumstance of shortage of 

natural sand, further work should be carried out to study sustainable concrete with certain 

possible sand substitutions. Moreover, concrete containing no sand has never been studied for 

structural application. The significance of such concrete will become more prominent in 

sustainable development of concrete.  
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Section 1.1 briefly introduces the development of sustainable concrete, followed by a brief 

introduction of current sand alternatives in Section 1.2. Research objectives, scope and 

significance are presented in Section 1.3. The most relevant literature will be reviewed in 

Chapter 2, mainly on glass sand concrete properties, the role of sand in concrete and the 

application of concrete with no sand.   

1.1 Sustainable Concrete 

According to the definition by United Nations, sustainable development is development that 

meets the needs of the present without compromising the ability of future generation to meet 

their own needs [United Nations, 1987]. As the most widely used construction material after 

water around the world, concrete plays a leading role in the development of sustainability in 

construction industry. As recommended by BACSD [2005], sustainable concrete includes the 

following elements: 

 Concrete must be specified, designed, and proportioned for its intended application with 

mixtures developed for durability (where appropriate), resource conservation, and 

minimal environmental impact; 

 Production of concrete ingredients, production of concrete, and construction practices 

must be environmentally responsible; 

 Concrete, in all applications, must be sustainable and must be viewed as such by owners 

and the public at large, and 

 The concrete industry must remain competitive. 
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At present, the sustainable strategy varies in different countries, academics and enterprises. 

Many activities have been involved in improving the sustainability of concrete including  

 Reduction in the amount of polluting and greenhouse gases emitted during the creation of 

concrete, particular the manufacture of cement; 

 More efficient use of resources in concrete production, including re-used materials and 

by-products from other industrial processes; 

 Better re-use of waste and other secondary materials such as water, aggregate, fuel or 

other cementitious materials; 

 Lower reliance on quarrying materials or reduce sending construction and demolition 

waste to landfill by maximizing the use of recycled material where practical; 

 Development of low-energy, long-lasting yet flexible buildings and structures; 

 Environmental restoration after industrial activity has ceased.  

 

1.2 Alternative Materials for Natural Sand 

1.2.1 Manufactured Sand 

Manufactured sand, in contrast with the natural sand, comes from the mechanical crushing of 

virgin rock [Villalobos et al., 2005]. Manufactured sand has been widely used so far [Ahn and 

Fowler, 2001; CCAA T60, 2008; Wigum and Danielsen, 2009], due to the shortage of natural 

sand. However, instead of total replacement, manufactured sand must be blended with natural 

sand due to its angular particle shape, open-void surface texture, high water absorption and high 
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content of ultra fines (< 75μm). The characteristics of manufactured sand would harmfully affect 

the fresh, mechanical properties and durability of concrete.  

1.2.2 Recycled Concrete Sand 

Recycled concrete fine aggregates refer to small particles demolished from old concrete structure 

or pavement, which generally contain a considerable amount of old cement paste and mortar. 

This tends to increase the drying shrinkage and creep properties of new concrete, as well as 

leading to problems with concrete mix stability and strength [Alexander and Mindess, 2005]. 

Therefore, a RILEM report [Hansen, 1994] recommends that any materials smaller than 2 mm 

should be discarded. BS 8500-2 [2006] allows the use of clean recycled concrete sand in 

concrete provided that significant quantities of deleterious materials are not present and the use 

has been agreed.  

1.2.3 By-Product Sand 

By-products such as bottom fly ash and un-ground slag have been investigated as sand in 

concrete, instead of further finely grinding to replace cement. The direct use of as-received by-

products would reduce the cost and increase the used volume. However, it was found that the fly 

ash or slag particles would cause porous structure within concrete and subsequent reduced 

performances [Yuksel et al., 2006; Yuksel and Genc, 2007]. In some cases, silica fume may be 

used as sand replacement to improve the durability of concrete [Ghafoori and Diawara, 2007]. 

However, this kind of sand substitution is only limited in certain conditions and low replacement 

level, not suitable for high or total replacement of sand.  
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1.2.4 Recycled Solid Waste Sand  

Due to the increasing environmental degradation and waste volumes, some solid wastes have 

been studied as substitution for natural sand in concrete, such as glass, plastics, rubber tires, and 

so on [Naik, 2002; Meyer, 2009]. Benefits on both environmental and economical aspects could 

be obviously obtained from the utilization of solid waste in construction, making this kind of 

sand alternative promising. However, the waste materials would possess negative influences on 

the concrete properties, limiting their wide application. Glass sand might cause deleterious ASR 

expansion in concrete, plastics sand could lead to a very weak ITZ with cement paste, and rubber 

tires would result in large reduction in concrete mechanical properties because of its low elastic 

modulus.  

 

1.3 Research Objectives and Scope of Work 

As mentioned earlier, concrete sustainability has been rarely improved from the perspective of 

natural sand alternative. It is worthwhile to study the utilization of waste glass in concrete as 

sand, particularly at high percentage. The alkali reactivity of glass is still controversial based on 

the literature. No research has been carried out to investigate the viability of concrete without 

containing sand in structural application. Therefore, this study was conducted with the following 

objectives, scope and significance: 

1.3.1 Cementitious Composites Containing Waste Glass Sand 

The first part of this thesis will present an exploratory study of recycled glass sand in 

cementitious composites, including mortar and concrete, to study the influences of glass sand on 

properties of mortar and concrete. The study would provide the guidelines for the reuse of glass 
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sand in construction, instead of landfills, leading to green and sustainable concrete. The most 

common properties of mortar and concrete in both plastic and hardened states are examined. 

Besides ASR, other durability properties, including resistance to chloride ion penetration and 

sulfate attack, are also tested, which are essential for concrete performance at long term under 

severe environment. 

1.3.2 Alkali-Silica Reaction of Glass Sand 

The thesis next will discuss the ASR of mortar and concrete containing glass sand, as well as 

mitigating methods. The study into ASR can shed light on the practical utilization of waste glass, 

since it is deemed as the most detrimental mechanism for mortar and concrete. The effects of 

glass color, content and particle size on ASR are investigated according to accelerated mortar-bar 

test. Thereafter, various ASR suppressing approaches are examined, including mineral and 

chemical admixtures as well as fiber reinforcement.  

1.3.3 Viability of “Sandless Concrete” 

The thesis will finally present the study of viability of concrete without the use of sand, namely 

“sandless concrete”, in structural application. Two different mix design methods are proposed for 

“sandless concrete”. The fresh, mechanical and durability properties are investigated for 

“sandless concrete” from both design methods. The study thus provides valuable information for 

the development of sustainable concrete with respect to sand conservation. Nevertheless, only 

the major properties of “sandless concrete” are studied while some minor characteristics remain 

to be explored in future research.   
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1.4 Thesis Structure 

Chapter 1 briefly introduces the background of concrete, the efforts taken into sustainable 

concrete, and the current alternative materials for natural sand in concrete, as well as the 

disadvantages of incorporating such substitutions. Research objectives, scopes and significance 

are highlighted.  

Chapter 2 reviews the most relevant literature, including recycled waste glass in concrete and 

the resulted alkali-silica reaction, the significance and role of sand in concrete and the properties 

of no-fines concrete. Last, the limitations and gaps of previous studies are summarized.  

Chapter 3 presents the research into glass sand mortar and concrete, emphasizing on mechanical 

properties of glass concrete, alkali-silica reaction as well as its mitigation methods and other 

durability properties.  

Chapter 4 introduces the concept of “sandless concrete”, describes the mix design approaches, 

and presents the diverse properties to evaluate the viability of concrete with no sand in structural 

application.  

Chapter 5 summaries the work and draws conclusions based on the experimental tests, and 

finally offers recommendations for future research. 
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Chapter 2. Literature Review 

2.1 General 

This chapter reviews the pertinent literature on the previous studies of glass sand cementitious 

composites such as mortar and concrete, in fresh and hardened states, with emphasis on alkali-

silica reaction (ASR) and its mitigation methods. To better understand the possible influences of 

eliminating sand from concrete mixtures, the role of sand in concrete will be introduced. Finally, 

a special type of concrete, no-fines concrete (or pervious concrete) which is mainly used for non-

structural applications will be reviewed.  

 

2.2 Glass Concrete 

United Nations estimates the volume of yearly disposed solid waste to be 200 million tons, 7% 

of which is made up of glass the world over [Topcu and Canbaz, 2004]. Glass is a readily 

recyclable material, in that it can be returned to the glassmaking furnace with minimal 

reprocessing. However, in many cases quantities of recovered glass can arise which are not 

recyclable [Dhir et al., 2009]. Only a small fraction of bottles and container glass can be reused 

directly and there is an upper limit for the recycling of glass cullet from postconsumer waste, due 

to the technical limitations in how much colored glass cullet can be used [Christensen and 

Damaggard, 2010; Siddique, 2008]. Alternative uses for the waste glass need to be found. The 

initial attempt to incorporate waste glass in concrete as aggregates can be traced back to 1960s. 

Schmidt and Saia [1963], Johnston [1974] and Figg [1981] and studied the use of waste glass as 
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aggregates and its effect on mechanical properties and ASR. It was found that the concrete with 

glass aggregates cracked due to ASR. In the past ten years, the use of glass as fine aggregates has 

again come under investigation due to high disposal costs for waste glasses and environmental 

regulations [Shi and Zheng, 2007]. Meyer and Baxter [1997, 1998] conducted very extensive 

laboratory studies on the use of crushed glasses as fine aggregates, emphasizing on ASR and 

suppressing methods, shedding light on the practical application of recycled waste glass as sand 

in concrete.  

2.2.1 Crushed Glass Particles 

Crushed glass particles are usually angular in shape and may contain some elongated and flat 

particles due to the crushing process, with specific density of 2.53 and negligible water 

absorption. Internal micro-cracks may exist in the glass particles. The chemical compositions of 

glass are summarized in the book by McLellan and Shand [1984] and shown in Table 2.1.  

Among those different categories of glasses, soda-lime glasses are the most commonly used and 

the main interest of research as well.  

2.2.2 Fresh Properties  

2.2.2.1 Unit Weight 

Due to the relatively smaller specific gravity of glass, the fresh density of mortar and concrete 

would be reduced with natural sand replacement with glass. A number of test results showed this 

trend [Topcu and Canbaz, 2004; Taha and Nounu, 2008; Ismail and Hashmi, 2009], at various 

mix proportions of mortar and concrete, as summarized in Table 2.2. 
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2.2.2.2 Air Content 

Park et al. [2004] tested concrete containing waste glass sand of diverse colors and the test 

results showed that air content continuously increased with higher glass sand content, to as high 

as 41.4% at 70% replacement of natural sand by clear glass sand. They attributed this increase in 

air content to the irregular shape of glass particles, which resulted in a larger relative surface area 

that retained more air. Moreover, in their test program, there were more waste glass sands that 

were larger than 0.6 mm in particle size than natural sand.  

Topcu and Canbaz [2004], however, obtained the opposite result that more waste glass sand 

would unevenly decrease air content, by as much as 27%. The reason was thought to result from 

the irregular geometry of glass sand, as a result of which water and air voids occurred in 

particularly lower parts of glass particles. Furthermore, the smooth surface of glass sand also 

helped decrease porosity between glass sand and cement paste. 

2.2.2.3 Slump 

Park et al. [2004] studied concrete with waste glass sand and observed a consistent tendency for 

slump to decrease as the glass sand increased, regardless of the color of glass. At replacement 

ratio of 70%, concrete showed a decrease of about 38.5-44.3% in slump values. The sharper and 

more angular grain shapes, as well as more attached cement paste on glass sand, would result in 

less fluidity.  

Taha and Nounu [2008] reported the properties of concrete containing mixed color waste glass 

sand, at 50% and 100% replacement. The sharp edges and harsh texture of glass sand would lead 

to reduction in slump, from 120 mm for normal concrete to 95 and 80 mm for concrete with 50% 

and 100% glass sand, respectively. 
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Limbachiya [2009] carried out experiments on engineering properties of concrete containing up 

to 50% of mixed color glass sand. The slump showed a small reduction, 10 mm at 50% of glass 

sand content, regardless of concrete strength. Concrete mixes with greater than 20% glass sand 

were found to be somewhat harsher and less cohesive than the corresponding normal concrete, 

due to inherent smooth surface, sharp edge and harsh texture of waste glass sand. 

Inconsistent test result was observed by Terro [2006], who examined the properties of concrete 

made with glass as fine aggregates at elevated temperature, with natural sand replacement of 0, 

10, 25, 50 and 100%. The slump value was 85, 85, 95, 105 and 90 mm for concrete with the 

above glass sand content. In the test, the slump value seemed to increase with higher percentages 

of waste glass, attributed to the poorer cohesion between cement paste and glass aggregates 

which have smooth impermeable surfaces.  

2.2.2.4 Setting Time 

Terro [2006] conducted tests of concrete with glass as fine aggregates up to 100% replacement 

of natural aggregates. From the results, both initial and final setting times exhibited an increasing 

almost-linear relation with more glass sand content. This delay in setting time could be attributed 

to a number of reasons including the presence of impurities, such as sugar, introduced with waste 

glass, and the relative increase in water-cement (w/c) ratio due to the low absorption of glass 

aggregates. However, information on the impurities in glass was not reported in his research.  

2.2.2.5 Bleeding and Segregation 

Taha and Nounu [2008] replaced natural sand with waste glass sand at 0, 50% and 100% in 

concrete. This is the first study to thoroughly investigate the fresh properties of glass concrete. 

Based on visual inspection, concrete with glass sand of 50% replacement was homogenous but 
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less consistent; concrete with 100% of glass sand was harsh, with bleeding and segregation; 

while the reference concrete without glass sand showed consistency and homogeneity. Severe 

bleeding and segregation resulted from the inherent smooth surface and very low water 

absorption of waste glass, both leading to lack in adhesive bond between the components of the 

concrete mix.  

2.2.3 Mechanical Properties  

2.2.3.1 Compressive Strength 

Park et al. [2004] replaced natural sand with glass sand in concrete at 30, 50 and 70% content. 

The compressive strength of concrete at 28 days, displayed 99.4, 90.2 and 86.4% of the reference 

concrete without glass sand. This reduction may be due to the decrease in adhesive strength 

between the surface of the waste glass sand and the cement paste as well as the increase in 

fineness modulus of the glass sand and the decrease in compacting factor with increasing glass 

sand content.  

Taha and Nounu [2008] carried out tests on compressive strength of concrete with glass sand at 0, 

50% and 100% replacement. There was no clear trend that governed the variation in the 

compressive strength with the presence of waste glass. They concluded that there should be more 

than one parameter that could significantly affect the compressive strength of concrete, such as 

contamination and the organic content in waste glass, the inherent cracks in glass particles due to 

the crushing process, and bleeding and segregation.  

Kou and Poon [2009] investigated the use of waste glass sand in self-compacting concrete, at 

replacement content of 15%, 30% and 45%. The corresponding reduction in the 28-day strength 
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was 1.5%, 4.2% and 8.5%, respectively. It may be attributed to the decrease in bond strength 

between the cement paste and the glass sand, and the increase in fineness modulus of glass sand.    

Limbachiya [2009] used waste glass sand to substitute natural sand in concrete up to 50% 

replacement and reported the compressive strength. Less than 20% glass content had no effect on 

strength development, but thereafter gradual reduction in strength was apparent with increasing 

glass content. The possible factors, to explain the strength reduction in concrete with high glass 

sand proportion, included inherent physical characteristics, a weak bond between aggregate-

matrix interface, and inherent cracks in glass particles.  

Terro [2006] measured the compressive strength of concrete with glass sand at replacement 

proportions of 10, 25, 50 and 100%, at temperatures of 20, 60, 150, 300, 500 and 700 ˚C.  In 

general, concrete made with 10% aggregate replacement with waste glass sand possessed a 

slightly higher compressive strength than normal concrete at temperatures above 150 ºC.  

However, higher replacement percentage would reduce compressive strength, due to the poorer 

cohesion between glass sand and cement paste.  

Ismail and Hashmi [2009] examined the compressive strength development of concrete with 10, 

15 and 20% of glass as fine aggregates. According to the test results, all the waste glass concrete 

showed compressive strength values that were slightly higher than those of the plain concrete 

mixes, except for the 14-day results. The low compressive strength of the glass concrete at 14 

days could be attributed to the decrease in the adhesive strength between surface of the waste 

glass aggregates and the cement paste. Pozzolanic reactions appeared to offset this trend at later 

stage and helped to improve the compressive strength at 28 days.  
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2.2.3.2  Flexural Strength 

Park et al. [2004] tested the flexural strength of concrete, with sand replaced by glass sand in 30, 

50 and 70% content. The concrete of 28 days of age containing waste glass sand at 30, 50 and 70% 

replacement showed a slight decrease in the flexural strength, being 96.8, 88.7 and 81.9% of that 

of plain concrete. This reducing tendency was repeated in 13-week old concrete, due to the 

decrease in adhesive strength between the glass sand and cement pate. No obvious difference in 

the strength depending on color of the waste glass was noticed. The flexural strength was about 

1/7 ~ 1/6 of the compressive strength.  

Limbachiya [2009] reported the effect of glass sand, up to 50%, on flexural strength of concrete. 

Negligible difference in flexural strength was noticed in concrete mixes with up to 20% glass 

sand. Thereafter, reduction occurred with increase in glass sand content. In addition, the effect of 

glass sand on flexural strength variation tended to become less noticeable with increasing 

concrete strength.  

Topcu and Canbaz [2004] determined the influence of using glass as coarse aggregate in 

concrete on the flexural strength. Flexural strength was 4.5, 5.27, 3.97 and 3 MPa for concrete 

containing 0, 15, 30, 45 and 60% of waste glass, respectively. Flexural strength decreased 

inconsistently with higher proportion of glass content.    

Taha and Nounu [2008] studied the flexural strength of concrete with mixed color waste glass as 

sand replacement at 0, 50 and 100%. The flexural strength was slightly reduced with the 

presence of glass sand, due to the following hypothesis: (1) lack in compaction due to the 

inconsistency of concrete; (2) poor concrete quality because of severe bleeding and segregation; 

(3) inherent cracks in glass particles leading to more fragility; (4) contamination, foreign 
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materials and organic content which could degrade with time and create voids in concrete 

microstructure; and (5) inherent smooth and plane surface of large glass particles, weakening the 

bond between the cement paste and glass sand.  

From the above review, the flexural strength seems to be generally reduced by the addition of 

waste glass sand due to the weakened bond strength between glass particles and cement paste.  

2.2.3.3 Splitting Tensile Strength 

Park et al. [2004] investigated the possibilities of waste glasses as fine aggregates for concrete 

with the replacement of 30, 50 and 70%. The splitting tensile strength of glass concrete showed 

96.6, 90.8 and 85.0% of that of normal concrete, at 28 days.  The reason was due to the decrease 

in adhesive strength between glass sand surface and cement paste, as well as the increased 

fineness modulus of glass sand used and the decrease in the compacting factor due to the 

increase in the glass sand content.  

Topcu and Canbaz [2004] examined the change in splitting tensile strength of concrete with glass 

particles replacing natural coarse aggregates, at the content of 15, 30, 45 and 60%. The addition 

of waste glass aggregates in concrete reduced the splitting tensile strength by as much as 10, 14, 

9 and 37%, for corresponding glass content. The irregular geometry of crushed waste glass 

particles caused failure in homogenous placing of concrete, resulting in decreased mechanical 

properties. 

Taha and Nounu [2008] used waste glass sand to replace natural sand in concrete, at replacement 

ratio of 0, 50% and 100%, and presented the test results on splitting tensile strength. At 28 days, 

the splitting tensile strength decreased from 6.4 MPa to 5.9 and 5.1 MPa, for 50% and 100% 
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glass concrete respectively. Splitting tensile strength decreased with higher glass sand content, 

caused by the same reason as for the reduction in flexural strength.  

All the test results show that glass sand would decrease the splitting tensile strength of concrete, 

as a result of the weakened bond. It is interesting to note that no literature observed the beneficial 

influence of pozzolanic reaction on tensile strength, although it occurred in the development of 

compressive strength [Ismail and Hashmi, 2009].  

2.2.3.4 Elastic Modulus 

Topcu and Canbaz [2004] reported the results of dynamic modulus of elasticity of concrete with 

the use of waste glass as coarse aggregates, at replacement of 15, 30, 45 and 60%. The dynamic 

modulus of concrete varied between 56.0 and 22.6 GPa. With higher glass addition, the dynamic 

modulus was observed to decrease. When the amount of waste glass was 60%, the dynamic 

modulus decreased by as much as 39%.  

Limbachiya [2009] produced concrete with recycled waste glass sand up to 50% of natural sand 

and found the effect on elastic modulus to be negligible. Taha and Nounu [2008] also examined 

the influence of recycled glass sand on static modulus of concrete, with up to 100% replacement. 

However, the test results did not show a clear effect of glass sand on modulus. 

2.2.3.5 Drying Shrinkage 

Insufficient test on drying shrinkage of concrete containing waste glass has been published so far, 

except the following investigations.  

Shayan and Xu [2004] studied the use of waste glass as coarse and fine aggregates. In addition, 

as value-added utilization, waste glass was incorporated in concrete as partial cement 

replacement. The drying shrinkage of the concrete with 50% coarse glass aggregates and various 
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amounts of fine glass aggregates was well below 0.075% at 56 days, specified by the Australian 

Standard AS 3600 [2001]. However, no clear trend was reported by the researchers on the 

relation between drying shrinkage and amount of glass sand added. The concrete mixes with 

glass powder as pozzolan, up to 40% in cement, showed shrinkage values less than 0.075% at 56 

days. From the test results, addition of more glass powder would lead to higher drying shrinkage.  

Kou and Poon [2009] investigated the drying shrinkage of self-compacting concrete with the use 

of waste glass sand, at replacement content of 15, 30 and 45%. The drying shrinkage, up to 112 

days, decreased with increasing glass sand content, probably due to the lower water absorption 

characteristics of glass particles (0.36%). The drying shrinkage of all concrete mixes was well 

below the limit of 0.075% at 56 days, as specified by AS 3600 [2001].  

Limbachiya [2009] showed almost identical drying shrinkage values for concrete mixes with 

different glass sand content, varying from 0 to 50%. The concrete, with designed strength of 30 

and 40 MPa, showed drying shrinkage in the range of 775~785 ×10-6 and 805~815 ×10-6, 

respectively at 90 days.  

2.2.4 Alkali-Silica Reaction 

2.2.4.1 Mechanism of ASR  

Alkali-silica reaction (ASR) is a reaction between the hydroxyl ions in the pore water of a 

concrete and certain forms of silica, which occasionally occur in significant quantities in the 

aggregates [Hobbs, 1988]. Due to the amorphous silicate in the glass, ASR is potentially the 

most detrimental mechanism for glass sand in concrete. However, the mechanism of ASR is not 

well known, especially for glass sand, and has been inconsistently reported.  
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Helmuth and Stark [1992] observed that the ASR results in the production of two component 

gels – one component is a non-swelling calcium-alkali-silicate-hydrate [C-N(K)-S-H] and the 

other is a swelling alkali-silicate-hydrate [N(K)-S-H]. When the ASR occurs in concrete, some 

non-swelling C-N(K)-S-H is always formed. The reaction will be safe if this is the only reaction 

product, but unsafe if both gels form. The key factor appears to be the relative amounts of alkali 

and reactive silica.  

Mindess et al. [2003] and later Thomas et al. [2007a] explained that the overall process proceeds 

in a series of overlapping steps: 

a. In the presence of a pore solution consisting of H2O and Na+, K+, Ca2+, OH- and H3SiO4 
- 

ions (the latter a form of dissolved silica), the reactive silica undergoes depolymerization, 

dissolution and swelling (Fig. 2.1a). The swelling can cause damage to the concrete, but 

the most significant volume change results from cracking caused by subsequent 

expansion of reaction products. 

b. The alkali and calcium ions diffuse into the aggregates resulting in the formation of a 

non-swelling C-N(K)-S-H gel, which can therefore be considered as calcium silicate 

hydrate (CSH) containing some alkali (Fig. 2.1b). The calcium content depends on the 

alkali concentration, since the solubility of Ca(OH)2 is inversely proportional to the alkali 

concentration.  

c. The pore solution diffuses through the rather porous layer of C-N(K)-S-H gel to the silica. 

Depending on the relative concentration of alkali and the rate of diffusion, the results can 

be safe or unsafe. If CaO constitutes 53% or more of the C-N(K)-S-H on an anhydrous 

weight basis of the gel, only a non-swelling gel will form. For high-alkali concentrations, 
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however, the solubility of calcium hydroxide (CH) is depressed, resulting in the 

formation of some swelling C-N(K)-S-H gel that contains little or no calcium. The N(K)-

S-H gel by itself has a very low viscosity and could easily diffuse away from the 

aggregate. However, the presence of the C-N(K)-S-H results in the formation of a 

composite gel with greatly increased viscosity and decreased porosity. 

d. The C-N(K)-S-H gel attracts water due to osmosis, which results in an increase in volume, 

local tensile stresses in the concrete, and eventual cracking (Fig. 2.1c). Later, the cracks 

will be filled with reaction products, which gradually flow under pressure from the point 

of its initial formation.  

The result is that the following three conditions should be satisfied for a traditional ASR to occur 

in concrete: (1) moisture, (2) alkalis, and (3) alkali-reactive aggregates. Shi [2009] proposed a 

different mechanism for the ASR in concrete containing glass. In contrast to traditional ASR, the 

necessary conditions for glass concrete are only moisture and high pH (>12). C-N(K)-S-H will 

form regardless of the presence of Na+ ions in cement. Under such conditions, a significant 

amount of soda-lime glass can dissolve and form swelling gel. The following sections will 

review pertinent previous work on ASR according to various test parameters, e.g. glass content, 

color and size.   

2.2.4.2 ASR Test Method 

Currently, there are a number of test methods to assess the alkali reactivity of aggregates. The 

test conditions and criteria vary widely from one test to another. This study also provides a 

critical evaluation of different test methods, which can be mainly divided into two categories: 
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performance tests, giving information on limiting alkali contents to avoid damaging expansion; 

and indicator tests to differentiate between potentially reactive and innocuous aggregates. 

a.  Performance tests 

Concrete prism test (CPT) is to determine the potential ASR expansion of cement-aggregate 

combination for concrete, which is proposed for actual construction. There are several national 

test methods based on CPT (ASTM C 1293, BS 812-123, RILEM TC 106-3, as compared in 

Table 2.3), however most of them are similar to the extent that elevated temperature and 

augmented cement alkalis are used to accelerate the reaction [Thomas et al., 2006]. In ASTM C 

1293, concrete prism (75 × 75 × 300 mm) is stored over water at 38 ºC. In concrete mix, NaOH 

is added to the mixing water to increase the alkali content to 1.25% by mass of cement. After 52 

weeks of curing, expansion less than 0.05% indicates non-expansive cement and aggregate 

combination while expansion in the range of 0.05-0.10% or higher than 0.10% implies 

moderately expansive or expansive combination of cement and aggregate. The effect of ASR 

expansion on engineering properties of concrete is shown in Fig. 2. 2.  

It can provide the most reliable and meaningful results than other test methods. It can also be 

used to evaluate the effectiveness of mineral admixtures. The main disadvantages of CPT for 

evaluating the efficiency of mineral admixtures in controlling ASR expansion are the long test 

duration of 2 years.  

b. Rapid indicator tests 

Mortar Bar Test 

ASTM C 227 determines the susceptibility of cement-aggregate combinations to expansive 

reaction with alkalis. This method uses mortar bar (25 × 25 × 285 mm) with particular sand 
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grading stored under condition of 38 ºC and high humidity. In this method, cement with 

equivalent alkali content more than 0.60% should be used. Reactivity is harmful if expansion of 

mortar bar is larger than 0.05% at 3 months or larger than 0.10% at 6 months. The main 

drawbacks of this test method include alkali leaching, long test duration (3-12 months), poor 

correlation with filed performance, and non-feasibility for a numerous rock types such as slowly 

reacting rock. Because of many shortcomings, ASTM C 227 is not recommended for use as a 

method either for identifying the reactivity of an aggregate or for evaluating the level of 

prevention required to suppress ASR expansion [Ranc et al., 1994; Thomas et al, 2006].  

Accelerated Mortar-Bar Test 

Accelerated mortar-bar test (AMBT) is probably the most common test used worldwide at 

present for its rapidness [Alexander and Mindess, 2005; Thomas et al., 2006, 2007b]. It has been 

included in several national test methods such as ASTM C 1260 and BS DD 249,  In this test, 

mortar bar (25 × 25 × 285 mm) comprising susceptible aggregates, with specified grading from 

150 µm to 4.75 mm, is stored in 1 N NaOH solution at 80 ºC for 14 days. Aggregates are 

considered as potentially deleterious if the expansion is higher than 0.20% after 14 days 

immersion. Expansion below 0.10% is indicative of innocuous behaviors in most cases while 

expansions between 0.10% and 0.20% require additional expansion values until 28 days.   

AMBT is a rapid test useful to slowly reacting aggregates or those producing expansions late in 

the reaction. AMBT is generally reliable and reproducible [Alexander and Mindess, 2005]. 

However, the main disadvantage of AMBT is its overly severe curing condition since it identifies 

many aggregates as reactive despite good performance in the field and in concrete prism tests. As 

pointed by Thomas et al. [1997], concrete prism test should be used to confirm the results before 
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an aggregate is rejected if an aggregate fails in AMBT. ASTM C 227 and C 1260 are also 

compared with CPT in Table 2.3.  

ASTM approved a modification of the C 1260 AMBT, C 1567, which can be used to evaluate 

the level of mineral admixture required to control ASR expansion.  Expansion more than 0.10% 

at 14 days is indicative of potentially deleterious expansion for the combination of cement, 

mineral admixtures and aggregates. The principal ASR mitigation mechanism by mineral 

admixtures is reducing the quantity of alkali hydroxides in the pore solution. AMBT would 

however offset this primary function by providing sufficient external source of NaOH. Recently 

though, some studies have demonstrated that mineral admixtures may still be effective in 

lowering the pore solution alkalinity during a 14 or 28 day immersion period [Berra et al., 1994; 

Berube et al., 1995; Thomas and Innis, 1999; Thomas et al., 2007b]. This is the reason why 

mineral admixtures can still mitigate ASR expansion in AMBT despite the abundant availability 

of alkalis.  

2.2.4.3 Effect of Glass Color 

Jin et al. [2000] first reported the effect of glass color on ASR expansion of mortar containing 

glass particles. From the accelerated mortar-bar tests (AMBT) carried out according to ASTM C 

1260, clear glass was found to cause the most expansion at 14 days. Brown glass was 

considerably less reactive and green glass appeared not only to be non-reactive but also to reduce 

the expansion due to ASR. The effectiveness of green glass as an ASR suppressant was found to 

be strongly correlated with the amount of Cr2O3 in the glass. The authors used the double-layers 

hypothesis of Prezzi et al. [1997] to expansion the less expansive characteristics of gel 

containing Cr3+. As shown in Fig. 2.3 which illustrates a negatively charged particle suspended 

in a monovalent electrolytic solution, the charge on the particle selectively attracts the electrolyte 
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cations and repels its anions. For a symmetrical electrolyte, the resulting double-layer thickness 

is inversely proportional to the valence of the ions in the double layer. For a given concentration, 

monovalent ions (Na+ and K+) produce larger double-layer thickness and repulsion forces than 

bivalent ions (Ca2+), meaning that a sodium or potassium gel can generate a larger pressure than 

that generated by a calcium gel when the expansion is restrained.      

Park and Lee [2004] studied the ASR in mortar containing waste glass of green and brown color 

using AMBT. The ASR expansion of mortar with brown glass was 2.5 to 10.3 times that of 

reference mortar without glass, while that with green glass was 1.8 to 3.9 times.  

Topcu et al. [2008] produced mortar bars with three different colors of glass as fine aggregates in 

four quantities, that is, 25, 50, 75 and 100%. Based on AMBT, the glass color affected the 

amount of expansion, and clear color resulted in the greatest expansion. Brown glass contains 

Fe2O3 while green glass contains Cr2O3; and both Fe2O3 and Cr2O3 were probably the reason for 

reduced expansions, since all glass with different colors had nearly the same chemical 

compositions except these two components.  

Zhu et al. [2009] tested the ASR expansion of mortar with glass sand of different colors, in both 

short and long terms, according to ASTM C 1260 and C 227, respectively. In the study, different 

test methods for ASR expansion of concrete, including alkali content in concrete mixture or 

solution, were compared and discussed, as summarized in Table 2.3. Green, brown and clear 

glass sands showed less than 0.1% expansion up to 14 days, except the very reactive blue glass 

sand. This implied that the glasses except blue glass should be classified as non-reactive. 

However, large expansions were observed in all color glass at 133 days and the time to initiate 

and the rate of ASR reaction varied with glass color. Therefore, the results implied that the 
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metals used to impart color to glass may affect the ASR reactivity. ASTM C 227 test results 

showed the same trend that ASR reaction rate varied in the decreasing order of clear, brown and 

green glass particle.  

Dhir et al. [2009], however, found a contradictory trend of ASR expansion, with green glass 

producing the largest expansion while clear glass producing the least. In their study, the alkali 

content in cement was adjusted to meet the minimum requirement of 1.00±0.05%, according to 

BS 812-123. After 3 years, the magnitude of expansion increased in the order of clear, brown 

and green glass, with the prisms containing clear glass behaving very similar to the control 

specimens without glass. The writers concluded that chromium did not influence the ASR 

expansion. Instead, they attributed the effect of different glass color to the nature of the 

manufacture processes. That is, the chemical composition of colored glasses may not be directly 

related to the different ASR behavior. In addition, the researchers found that expansion of prisms 

containing mixed glass as fine aggregates was less than what might be expected if the 

contribution from each glass color was considered directly proportional to the quantities. 

2.2.4.4 Effect of Glass Content 

Jin et al. [2000] carried out a comprehensive examination of ASR in concrete to study the effect 

of glass content on ASR expansion of mortar, as per ASTM C 1260. Clear soda-lime glass was 

added as natural sand replacement, with replacement ratio increasing from 0% to 100% in steps 

of 10%. The 14-day expansions of the mortar bars increased consistently with increasing glass 

content, and no pessimum content was detected. Deleterious expansion, larger than 0.2%, would 

occur if more than 10% clear glass sand was used as sand. However, the test method was limited 

to an accelerated condition which therefore over-estimated ASR compared to field conditions.  
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Park and Lee [2004] also examined the effect of content on ASR expansion of mortar bars with 

green and brown glass sand according to ASTM C 1260. The natural sand was replaced by glass 

sand at 0, 10, 20, 30, 50, and 100%. The expansion rates noticeably increased with an increase in 

glass content, regardless of the glass color. No pessimum was generated as the expansion rate 

continued to increase along with an increase in the amount of mixing glass sand, due to the 

unlimited supply of alkali in the 1 N NaOH solution.  

Topcu et al. [2008] used three different colors of glass at four different quantities (25, 50, 75 and 

100%) as fine aggregates and investigated the effect of glass content on ASR expansion using 

AMBT. At 14 days, all the mortar mixes showed expansion higher than 0.2%. At 3, 9, 14 and 21 

days, the increment in glass sand content resulted in a reduction in the resistance against ASR, 

regardless of glass color.  

Taha and Nounu [2009] utilized mixed-color recycled glass as sand replacement in concrete and 

carried out ASR tests according to BS 812-123. It was found that the presence of glass sand in 

concrete resulted in high risk to extensive ASR cracks. No ASR cracks were observed in the 

control concrete mix without glass sand. The ASR expansion of concrete mix with 50% glass 

sand exceeded the allowable limit of 0.2% after 52 weeks and considered as a potential risk. The 

ASR expansion in concrete with 100% glass sand was very high and ASR cracks were clearly 

identified.  

Kou and Poon [2009] investigated the ASR expansion of self-compacting concrete, with mixed 

color glass as sand, again using AMBT. Although the test results showed that the ASR expansion 

increased with glass sand content, all the expansions were less than 0.1% within 14 days, up to 

45% replacement content. Limbachiya [2009] studied the ASR expansion of mortar bars with 
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mixed color glass sand at replacement level of 5, 10, 15, and 20%. The test results did not show a 

clear trend that could identify the effect of glass sand in the first 6 days. Thereafter, expansion 

appeared to increase progressively with an increase in glass sand content. However, the 

difference in expansion for mortars prepared with up to 15% glass sand was negligible. The final 

expansion, at 14 days, was found to be below 0.1%, indicative of innocuous behavior.  

Ismail and Hashmi [2009] tested ASR expansion of mortar made of 0, 10, 15 and 20% waste 

glass as fine aggregates, following ASTM C 1260. There was a clear reduction in the expansion 

of the specimen, that is, 66%, compared to the control mix. All specimens showed expansions 

less than 0.1% at 14 days, indicating that no potential deleterious expansion occurred for the 

waste glass. This is related to the reduction of available alkalis due to the consumption of lime by 

pozzolanic reaction of fine waste glass particles. However, the sand grading in this study was not 

strictly following ASTM C 1260 standard, which may result in substantial differences.  

The effect of glass sand content on ASR expansion, based on previous research, is summarized 

in Fig. 2.4. The alkali reactivity of glass sand is still controversial and further study is necessary.  

2.2.4.5 Effect of Glass Particle Size  

Jin et al. [2000] initially reported the effect of glass particle size on ASR expansion of mortar bar 

with 10% clear glass sand, according to ASTM C 1260. The sizes of glass sand ranged from 4.75 

mm to 150 μm. The test results showed that maximum ASR expansion occurred at 1.18 mm. 

Mortar bars containing glass sand 300 μm in size exhibited approximately the same ASR 

expansion as the reference bars without glass, while mortar bars with glass sand 150 μm or finer 

in size showed less expansion. In their paper, they proposed a well-matching model to explain 

the influence of glass particle size. According to this model, ASR gel formation builds up the 
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internal pressure, while the gel permeation tends to relieve it. ASR formation, a chemical process, 

increases with smaller glass particle size since it is considered as a surface reaction. At the same 

time, gel permeation means a physical process that reacted ASR gel release from the reaction site 

to cement paste matrix, which can relieve the tensile stress built by ASR formation. The net 

pressure thus reflects the difference between gel formation and permeation rate. There should be 

a certain particle size at which the two processes balance each other, since both processes depend 

on the aggregate surface area. As illustrated in Fig. 2.5, the process is reaction dominant for the 

left branch while the process is transport dominant for the right branch of the curve. In addition, 

this pessimum size will shift to right as the aggregate reactivity increases and to left as the matrix 

permeability increases.   

However, the pessimum effect was not observed by Zhu and Byars [2004], despite confirming 

that smaller glass particles results in less ASR expansion. In order to explain the pessimum effect, 

three different hypotheses have been proposed: (1) using a mathematical model simulating the 

kinetics of ASR at glass-paste interface associated with diffusion processes [Bazant and Steffens, 

2000]. In this model there exists a certain pessimum size for which the pressure is maximum; (2) 

using a fracture mechanics-based explanation [Bazant et al., 2000] which argues that in addition 

to the kinetics effects, reducing glass particle size results in a reduction of the stress intensity 

factor which causes expansions and cracking; and (3) considering that smaller glass aggregates 

result in a larger volume of ITZ throughout the mortar which provides a porous space into which 

ASR gel expands freely without causing cracks to the surrounding mortar [Suwito et al., 2002].  

According to Rajabipour et al. [2010] and Maraghechi et al. [2012], all these three models have 

not been evaluated by experiments beyond those performed by Jin et al. [2000], even they offer 

logical reasons for potential causes of the effect of glass particle size on ASR.  
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Zhu et al. [2009] tested the effect of clear glass particle size on ASR expansion, as per ASTM C 

1260. Mortar bars made with clear glass particles less than 1.18 mm exhibited similar or even 

less expansion than the control mix without glass, implying that small glass particles (< 1.18 mm) 

can be considered as an ASR mitigator, while ASR expansion rate increased with particle size 

larger than 1.18 mm. No pessimum effect was observed.  

Shayan and Xu [2004] assessed the reactivity of glass sand with four different size ranges, 

including powder (<10 μm), very fine sand (0.15 to 0.30 mm) and two coarser sand fractions (0.6 

to 1.18 and 2.36 to 4.75 mm) by carrying out AMBT.  Glass particles smaller than 0.30 mm 

would not cause deleterious expansions whereas those larger than 0.60 mm could cause 

significant deleterious expansion. When the particle size was sufficiently reduced, it could act as 

a pozzolanic material.  

Dhir et al. [2009] tried to explain the effect of glass aggregate size on ASR expansion by a 

simple mechanism which consisted of simultaneous leaching and dissolution of the glass surface, 

as illustrated in Fig. 2.6. The glass began to leach at its surface and the depth of the leached layer 

from the original surface increased with time. At the same time, the surface leach layer dissolved. 

Thus, the quantity of gel will progressively increase until all the glass is converted to gel (that is 

when dL = r, as shown in Fig. 2.6). At this point, there will be a decline in gel as only dissolution 

could proceed. Also, finer glass particles would reach the state where all glasses were converted 

to gel more rapidly, meaning that smaller particles would be solely undergoing pozzolanic 

reaction and thus contributing towards a reduction in gel at relatively early ages. However, this 

ASR mechanism was oversimplified, since (1) there was no single leached state but an increase 

in the extent of leaching outwards from the completely unreacted glass to the particle surface; (2) 
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dissolution of the gel would occur throughout the leached layer, and not solely at the surface; and 

(3) the model did not consider the actual expansion of the gel.    

Rajabipour et al. [2010] investigated the effect of brown color recycled glass particle size on 

ASR from expansions and observation using scanning electron microscope (SEM). As shown in 

Fig. 2.7, SEM images revealed that ASR did not occur at the glass-paste interface; rather, it 

occurred inside micro-cracks that existed inside glass particles which were generated during the 

crushing operations of glass bottles. Larger size glass particles showed larger and more active 

micro-cracks which rendered their high alkali-silica reactivity. At the interface with cement paste, 

glass showed evidence of pozzolanic reaction, leading to formation of non-expansive CSH. For 

particles smaller than 0.6 mm, the intra-particle ASR was minimal and only the pozzolanic 

reaction was observed to proceed. The findings could have implications on methods such as 

proper annealing and repeated lime solution saturation and drying to mitigate ASR induced by 

recycled glass aggregates. However, the mechanism of pozzolanic reaction at the interface 

remains unexplained. Based the SEM and energy dispersive X-ray spectroscopy (EDS) results, 

the researchers concluded that all the three proposed explanations [Bazant and Steffens, 2000; 

Bazant et al., 2000; and Suwito et al., 2002] would be intuitively incorrect, since glass ASR was 

not surface reactive.  

The effect of glass sand size on ASR expansion, from previous test results, is summarized in Fig. 

2.8. In general, the effects of glass color, size, and content on ASR is not totally understood 

based on the various test results. Furthermore, the ASR suppressing methods are not fully 

conducted. A comprehensive study of the above influential factors on ASR in glass sand mortar 

and concrete is still lacking.  
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2.2.4.6 ASR Mitigation Methods 

Different mitigation methods have been investigated to suppress the ASR expansion for concrete 

containing glass sand. According to the different ASR mitigation principles, the mainly used 

methods can be divided into three categories. 

a. Cementitious or pozzolanic admixtures 

Supplementary cementitious materials such s fly ash, slag, silica fume or metakaolin have been 

successfully used to prevent or control ASR expansion. As summarized by Xu et al., [1995], the 

mechanism of ASR control by cementitious materials can be as follows: (1) permeability of 

cement paste is decreased due to the pozzolanic reaction between cement hydrate products and 

mineral admixtures, which can consequently reduce the mobility of ions in paste; (2) strength of 

concrete is also increased by pozzolanic reaction, providing higher resistance to ASR expansive 

stress; (3) the alkalinity of the pore solution is reduced; (4) calcium hydroxide is depleted by 

mineral admixtures; and (5) the secondary CSH by pozzolanic reaction can entrap alkali ions. 

The use of various cementitious materials in ASR mitigation is reviewed as follows.  

Fly ash 

Topcu et al. [2008] investigated the effect of 10% and 20% fly ash as mineral admixtures on 

ASR expansion of mortar containing 25, 50, 75 and 100% glass sand of green, brown and clear 

color. It seemed replacing cement with 10% fly ash did not sufficiently reduce expansion while 

with 20% fly ash it did. Soluble alkaline concentration could be decreased in concrete by adding 

fly ash. The pozzolanic reaction between fly ash and Ca(OH)2 decreased the pH value of the pore 

solution. This reduced the reactivity between the silica of aggregate and the alkalis of cement. 

The pozzolanic reaction occurring due to fly ash decreased permeability of mortar, leading to 
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reduced water penetration. Therefore, the gel which occurred in ASR did not swell and 

expansions could be stopped.  

Ground granulated blast-furnace slag  

Taha and Nounu [2009] examined the effect of 60% GGBS as ASR suppressant in concrete with 

glass sand replacing 50 and 100% of cement content. The test was carried out according to BS 

812-123. GGBS was proven to be very effective in reducing and eliminating potential ASR risk. 

Concrete with 60% GGBS exhibited ASR expansion far below 0.2% after 78 weeks, even with 

100% glass sand.   

Silica fume  

Meyer and Baxter [1998] investigated the effectiveness of silica fume as ASR suppressants in 

mortar bars containing 100% highly reactive mixed-color glass sands as per ASTM C 1260. At 

content of 20%, silica fume was extremely effective in suppressing ASR, reducing the expansion 

below 0.1% at 14 days. 

Metakaolin  

Meyer and Baxter [1998] investigated the effectiveness of two kinds of metakaolin in restraining 

ASR in mortar with 100% highly reactive mixed-color glass sand. The expansions of the bars 

containing 20% of either type of metakaolin remained below 0.1% at 14 days.  

Taha and Nounu [2009] also examined the effect of 10% metakaolin as ASR suppressant in 

concrete with glass sand at 50 and 100% replacement content. The test was carried out according 

to BS 812-123. Metakaolin was proven to be very effective in reducing and eliminating the 

potential ASR risk. After 78 weeks of measurement, the ASR expansion for concrete with glass 

sand was well controlled to be significantly less than 0.2%.  
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Glass powder  

Taha and Nounu [2009] also used 20% glass powder as ASR suppressant in concrete containing 

50% and 100% glass sand. ASR expansion was tested on concrete prisms according to BS 812-

123, till 78 weeks. Very fine glass powder with an average size particle passing 45 μm was used 

as cement replacement, resulting in significant reduction in ASR expansion. The available alkali 

in concrete was considered as an alkali activator for the hydration of glass powder and consumed 

in the chemical reaction of the hydration process to form the microstructure of concrete. The 

available reactive alkali in glass powder was dissolved during the early stage of hydration and 

react with other chemical elements to form other reaction products of concrete. Therefore, it 

would not be free for further ASR at later stages.  

Shi et al. [2005] dealt with the fineness and pozzolanic activity of glass powders with four 

different sizes. Used as cement replacement to reduce ASR expansion, the size distribution of 

glass powder was almost the same as that of Portland cement. From the ASR expansion results, 

the replacement of cement with 20% glass powder significantly reduced expansion, from 0.50% 

to lower than 0.2% at 14 days. The high pozzolanic activity of glass powder may be the main 

reason for restraining ASR expansion. 

Dyer and Dhir [2001] examined the chemical reactions of glass cullet used as cement component. 

In the ASR test as per modified ASTM C 1260 method, the expansion of all prisms decreased 

with more glass powder up to 40% of cement, particularly for green and brown glass powder. In 

chemical terms, the ASR of glass cullet is not different from pozzolanic reaction; both involve 

alkali reactants and yield an amorphous gel. The main difference between the two reactions is the 

timescale involved: pozzolanic reaction occurs during the first few months subsequent to mixing, 

whereas the ASR is generally slower and the detrimental effects only become apparent in the 
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mature concrete. It has been postulated that the reason for the difference in the nature of the two 

types of gel formed by the two reactions is the different amounts of calcium ions present in the 

pore solution during reaction, with high calcium levels leading to the beneficial pozzolanic gel. 

By reducing the particle size and hence increasing the surface area available for reaction, the 

material reacts relatively rapidly in an environment in which there is still much calcium available 

in solution. It is also probable that the greater space available for gel formation in immature 

concrete and the more uniform distribution of gel that is likely to arise will assist in preventing 

the deleterious effects encountered in more mature material. Thus, finer particles favor a 

relatively rapid, beneficial pozzolanic reaction over the slower, deleterious ASR.  

Shao et al. [2000] studied the ASR expansion of concrete containing ground waste glass as 

partial cement replacement. Cement was replaced 30% by volume by 150, 75 and 38 μm glass 

powder, and tests were carried out according to ASTM C 1260. While both 150 and 75 μm glass 

batches experienced a similar amount of expansion, the 38 μm glass further reduced the 

expansion to half of the control specimens. The expansion tests showed that ground glass did not 

expand and it actually helped suppress the expansion as compared to the control. This was also 

indicative of pozzolanic activity. According to the test, the finer the particle size, the less the 

expansion would become.  

Shayan and Xu [2004] proposed the value-added utilization of waste glass in concrete as 

pozzolan instead of as fine aggregates. The glass powder contained particles less than 10 μm. For 

the ASR expansion test, the control mortar bars were made to contain plain cement and 80% 

glass sand, and the cement was replaced by 10%, 20% and 30% glass powder. All mortars with 

glass powder showed less ASR expansion than the one without glass. Furthermore, the long term 

mortar bar tests, conducted at 38 ˚C and 100% RH, were undertaken in combination with 
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nonreactive and reactive aggregates and with the same levels of cement replacement. Glass 

powder itself did not cause any expansion when the aggregate was nonreactive. Moreover, the 

presence of even 30% glass powder did not release sufficient amount of alkali to trigger the 

reactivity. Even when used as aggregate rather than cement, the 30% glass powder still did cause 

deleterious mortar bar expansion. The test results indicated that powder could be used without 

harmful effects.  

Idir et al. [2010] examined both ASR and pozzolanic reaction of glass particles in mortar. The 

particle sizes ranged from 8 μm to 3.75 mm. Mortars with glass powder and fine glass aggregates, 

either separately or combined, were monitored for length expansion. They found that only glass 

particles larger than 1 mm would cause ASR expansion. Therefore, the use of glass fines (<1 mm) 

led to reduction in ASR expansion. In addition, the glass fines could increase compressive 

strength as well, as a beneficial result of its pozzolanic reaction.  

b. Mechanical confinement  

Fiber reinforcement has proved to be also successful in mechanically reducing ASR expansion. 

Mechanical confinement through either external load application or through fiber reinforcement 

can reduce expansion caused by ASR [Yi and Ostertag, 2005; Ostertag et al., 2007]. Previous 

work on suppressing ASR expansion by fiber includes: 

Meyer and Baxter [1998] determined the effectiveness of randomly distributed fiber 

reinforcement in straining ASR expansion of mortar with 10% clear glass sand in accordance 

with ASTM C 1260, by using hooked steel fibers, deformed steel fibers and polypropylene fibers. 

The addition of fibers was 1.5% by volume of concrete mixture for each kind of fiber. The 

addition of the fibers reduced the expansion by up to 60%, due to a multi-directional constraining 
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effect. Steel fibers were more effective in straining the ASR expansion and reducing the damage 

due to ASR.  

Park and Lee [2004] used steel and polypropylene (PP) fibers to suppress ASR expansion in 

mortar containing various green and brown glass sands. The internal pressure created by ASR 

gel caused ASR expansion and cracks in the mortar containing waste glasses. Such internal 

expansion can be suppressed by randomly distributing discontinuous fibers. ASR expansion 

decreased with an increase in the contents of both fibers. For 20% brown glass mortar, the 

relative expansion defined by ASTM C 1260 was suppressed under 0.2% with a steel fiber 

content of more than 1.0% by volume. The PP fibers did not bring the expansion rate down 

below 0.2%, which necessitated additional suppressive measures such as adding extra PP fiber. 

The suppressing effect of both fibers in brown glass was more prominent than in the green glass.  

c. Chemical admixtures 

The most widely used chemical admixtures in mitigating ASR expansion is lithium salts. McCoy 

and Caldwell [1951] extensively investigated the effectiveness and dosage influences of versatile 

chemical admixtures, including lithium salt (1% by mass of cement of LiCl, Li2CO3, LiF, LiNO3 

and Li2SO4). The test results revealed that lithium salts could effectively retrain ASR expansion 

of sand of Pyres glass. Thereafter, lithium compounds have been extensively studied and 

confirmed as effective in ASR mitigation [Stark, 1992; Hudec and Banahene, 1993]. However, 

until now the underlying mechanisms are not yet well understood and different explanations 

have emerged, although sometimes they seem to contradict each other. For instance, Collins et al. 

[2004] and Feng et al. [2005] concluded that lithium ion was easy to incorporate into ASR gel 

product due to its small ionic radius and higher surface charge density, rather than other alkali 

ions, such as Na+ and K+ in concrete. Subsequently, the nature and chemical composition of ASR 



37 
 

gel would be changed. However, Stark et al. [1993] and Prezzi et al. [1998] considered that the 

Li+ ions added during mortar preparation were sequestered primarily by cement hydration 

products and not available to participate in the ASR. As a result, there would be less Li+ ions to 

exchange reactions with bivalent cations (Ca2+ and Mg2+) which should suppress expansion. 

Besides, lithium compounds may reduce the solubility of the reactive silica and the ability of any 

dissolved silica to be repolymerised and form ASR gel particles [Mitchell et al., 2004]. The use 

of lithium compounds in mitigation of ASR expansion by glass sand in concrete is summarized.  

Taha and Nounu [2009] used 1% anhydrous LiNO3 as ASR suppressant in concrete containing 

50% and 100% glass sand. ASR expansion was tested on concrete prisms according to BS 812-

123, till 78 weeks. LiNO3 was dissolved in water and then added to concrete mix as a chemical 

admixture. The test results showed that LiNO3 was very effective in reducing ASR expansion to 

below 0.2%, in the long term.   

Topcu et al. [2008] reported the ASR suppressant of Li2CO3, at the amount of 1% and 2%, in 

glass sand mortar. According to the test results of accelerated mortar bars, 2% was sufficient in 

reducing ASR expansion but 1% Li2CO3 was not. However, the effect of Li2CO3 on ASR is not 

yet well understood.  

2.2.5 Other Durability Properties  

Up to now, tests on durability properties of glass concrete other than ASR have been seldom 

reported, since ASR has always been of the most concern. However, other durability aspects 

should be also examined for the practical development of glass sand concrete.  

Ozkan and Yuksel [2008] investigated the durability properties of cement mortars with waste 

glass as pozzolan, at replacement of 10%, 30% and 50%. Resistance to sodium chloride and 
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sulfates were tested by comparing compressive strength of mortar specimens exposed to these 

chemicals with the strength of reference specimens. The specimens were immersed in pure water 

for 7 days and then put in 4% NaCl, 4% Na2SO4, or 4% MgSO4 solutions, for the next 21 days. 

Finally, the compressive strengths of these mortar cubes were measured. It was observed that the 

residual strength of mortars exposed to chloride attack was reduced as the replacement ratio was 

increased, except for the case of 10% replacement ratio for which the residual strength was found 

to be higher than that of control mix. Residual strengths of specimens cured in MgSO4 decreased 

with increasing replacement ratio. The maximum loss in strength was 8.26% at the replacement 

ratio of 50%. However, residual strength of mortar with glass powder exposed to sodium sulfate 

attack was higher than that of reference group at 10% and 30% replacement levels. These results 

showed that the replacement of cement by glass powder increased durability of mortars to sulfate 

attack.  

In addition to other mechanical properties, Kou and Poon [2009] investigated the chloride ion 

penetration of self-compacting concrete with the use of waste glass sand, at replacement content 

of 15%, 30% and 45%. The tests were carried out in accordance with ASTM C 1202 on 28 and 

90 days. The chloride ion penetrability decreased with increase in glass content, indicating an 

increase in resistance to chloride ion penetration. This was due to the lower porosity of glass 

cullet compared to natural sand. Moreover, the glass sand had a finer particle size distribution 

than that of natural sand, resulting in a better packing efficiency of the concrete at the fine scales.   

Chen et al. [2006] studied the use of waste E-glass particles in concrete, from 0 to 50% 

replacement of sand, in a step of 10%. Chloride penetration and sulfate attack were tested 

according to ASTM C 1202 and C 267, respectively. By incorporating E-glass, the total charge 

passed decreased with higher content. Concretes with E-glass particles have a denser internal 
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structure providing the specimen with effective barrier against chloride-ion penetration. Such 

improvement of chloride penetration resistance is more prominent in E-glass concrete with 

higher w/c ratio. The strength and weight loss of specimens, after five cyclic wet-and-dry 

exposure to sulfate solution, decreased with higher E-glass concrete, particular with lower w/c 

ratio. The surface defects of teste specimens also gave a qualitative evidence of sulfate effect. 

From the test results, E-glass particles with a size less than 75 µm have three characteristics: high 

aluminosilicate content, glassy state and finely divided state. Thus, high reactive potential and 

large specific surface area are provided to activate effective pozzolanic reaction in E-glass 

concrete mixes, resulting in higher compressive strength, higher resistance of sulfate attack and 

lower chloride penetration.  

Wang [2009] replaced natural sand by LCD glass in concrete, at 0, 20%, 40%, 60% and 80% 

replacement. The sulfate attack and chloride ion penetration was tested as per ASTM C 1012 and 

C 1202, at the age of 7 and 28 days, respectively. The concrete weight loss caused by the sulfate 

attack decreased with increasing glass sand replacement. The charge passed of concrete with 

glass sand was less than that of control concrete, ranging from 750 to 3250 Coulombs. The 

optical microscope result indicated that the LCD glass sand could densely integrate with the 

cement paste. Based on SEM results, the dense CSH gel hydrate was produced in the glass 

concrete and connected into a continuous matrix, which generated a denser concrete structure, 

confirming that LCD glass concrete has a better strength and durability.  
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2.3 Role of Sand in Concrete 

2.3.1 Sand in Plastic Concrete 

According to Alexander and Mindess [2005], the plastic properties of concrete are more 

influenced by the characteristics of sand than coarse aggregates. The influence of sand properties 

or characteristics on the plastic properties of concrete is summarized as follows.  

Particle shape 

Particle shape has a major influence on workability and water requirement of a concrete mix as it 

affects particle packing and particle interlocking. Rounded, less angular particles are able to roll 

or slide over each other in the plastic mix with the minimum resistance. However, flat, elongated 

or highly angular particles render the concrete harsh, causing voids and honeycombing. 

Furthermore, sand has greater effect in gap-graded concrete mixes where particle interference or 

interaction among coarse aggregates is reduced. 

Particle surface texture 

Surface texture influences the plastic properties of a concrete mix in two ways: the surface area 

effect and the inter-particle friction effect. Rough particles have a larger surface area than 

smooth particles of equivalent size and shape. Further, rough particles induce a higher inter-

particle friction, requiring greater external effect to move the particles over each other in a mix. 

These two effects combined to increase the water requirement for rough-textured aggregates. In 

general, clean natural sand has smoother texture than crushed sand, since the processes of 

abrasion and attrition generally render them smooth. However, it is possible for natural sands to 

have rough texture, for example, if they are derived from coarse-grained rocks or where rock 

minerals weather at varying rates.  
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Grading 

Grading of sand has a very important influence on workability of a mix. It influences the total 

aggregate surface area and the relative aggregate volume in a concrete mix. In general, 

workability is best served by conforming to standard grading which ensures that voids of any one 

particle size are overfilled by particles of the next smaller size. Particular attention should be 

paid to the quantity and nature of materials small than 300 µm. The finer fractions (less than 150 

µm and less than 75 µm) have a greater influence on cohesiveness and bleeding of the mix; 

quantities required in a mix will depend on the nature of the sand, with higher quantities 

generally being preferable in crushes sand.  

Fines content 

Caution should be paid to the nature of the fines (less than 75 µm) and tighter control should be 

exercised over fines content of natural sand.  For crushed fines, improved concrete properties, 

such as reduced bleeding and increased cohesiveness can result from fines content sometime 

exceeding 10%. However, free-and-thaw resistance may be decreased by excessive amount of 

ultra-fines [Neville, 1995]. 

The relative effects of sand on the plastic properties of concrete are summarized in Table 2.4. 

 

2.3.2 Sand in Hardened Concrete: Mechanical Properties 

According to Alexander and Mindess [2005], aggregate properties that affect concrete strength 

are shape, surface texture, stiffness, strength and toughness and grading. Shape, surface texture 

and grading have direct effects on the stress concentration, the degree of micro-cracking and 

crack branching before and during failure in the composite material. 
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Shape 

Angular particles improve concrete strength over rounded particles, with flexural strength more 

enhanced than compressive strength. These improvements are attributed to the greater degree of 

mechanical interlock, internal friction, and increased surface area associated with angular 

aggregates [Kaplan, 1959].   

Surface texture 

Aggregate surface texture significantly affects concrete strength since it improves the bond 

between paste and aggregate. Flexural strength is obviously increased by a rougher surface 

texture, although compressive strength is relatively slightly affected. In addition, high strength 

concrete benefits from a rougher surface texture of aggregate, which produces a superior cement-

aggregate bond [Alexander et al., 1995].  

Elastic modulus 

Aggregate elastic modulus is also important for concrete strength, with continuous increase in 

strength with increasing aggregate elastic modulus. The possible explanation is that stiffer 

aggregates attract higher fraction of load in the composite.   

Grading 

Aggregate grading mainly affects water requirement in concrete and thus w/c ratio, which 

normally determines concrete strength. Sand content can have an indirect influence on strength 

by affecting the degree of compact of concrete. In addition, a larger amount of very fine material 

may increase strength by improving the bond at ITZ. 
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2.3.3 Sand in Hardened Concrete: Durability Properties 

The durability of concrete is governed by its transport properties, with a notable exception of 

alkali-silica reaction (ASR). The incorporation of non-permeable sand into porous and penetrable 

cement paste would result in both beneficial and negative influences. Within certain amount, the 

overall penetrability tends to be reduced due to the low permeability of sand and the increased 

tortuosity. However, with excessive volume of aggregate, a more porous and weak Interface 

Transition Zone (ITZ) would increase the penetrability and provide pathway for chemical ions. It 

should be noted that very fine sand will have less effect as the size of these particles approaches 

that of the ITZ itself. With extreme fineness such particles actually participate in the “fine filler” 

effect, which generally improves the ITZ properties [Alexander and Mindess, 2005].  

2.4 Concrete without Sand (No-Fines Concrete) 

According to ACI 522R-10, pervious concrete is a zero-slump, open-graded material consisting 

of Portland cement, coarse aggregate, little or no fine aggregate, admixtures and water. Pervious 

concrete is often used as a synonym for no-fines concrete [Ghafoori and Dutta, 1995 a]. No-fines 

concrete has many different names, such as pervious, porous and permeable concrete. The 

aggregate is generally of a single size, usually 9.5 or 19 mm, surrounded by a thin layer of 

hardened cement paste at the points of contact to form a discontinuous system. Thus, the most 

common application of no-fines concrete is in low traffic volume areas. Although no-fines 

concrete has been used for paving for more than 20 years in U.S., only a few investigations have 

been carried out to determine its performance [Ghafoori and Dutta, 1995 b; Haselbach and 

Freeman, 2006; Schaefer et al., 2006; Bentz, 2008; Mahboub et al., 2009; Haselbach and Liu, 

2010; Sumanasooriya et al., 2010].  
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2.4.1 Mix Proportion  

The mix proportion for no-fines concrete depends predominantly on its final application. In 

pavement application, the concrete strength is critical and aggregate-cement (A/C) ratio as low as 

4 is used. For previous building application, no-fines wall for example, A/C ratio usually ranges 

from 6 to 10. The leaner mix ensures that the void ratio is high and prevents capillary transport 

of water. However, low strength must first to be improved to an acceptable level. 

The water content is desired for the chemical action of cement so as to provide bond among the 

aggregates. For a given mix proportion and aggregate size and type, there is a narrow optimum 

range of water-cement (w/c) ratio for a particular A/C ratio, usually falling within 0.26 to 0.45 for 

the needed workability [ACI 522R-10].  

The aggregates used in no-fines concrete application are usually uniformly-sized. A 5% 

oversized and 10% undersized aggregate are acceptable for use but there should be no particles 

smaller than 5 mm [Neville, 1995], if sufficient voids are required for water flow. This is 

because small particles will tend to fill the voids, affecting the porosity of the concrete and the 

associated properties. With more than 30% sand, the concrete started to exhibit properties of 

normal concrete.  

The use of no-fines concrete as a building material has been extremely limited, mainly due to its 

high interconnectivity and permeability. Normally, 15% or higher void content is required for 

no-fines concrete for the purpose of rapid percolation of water. At such higher void contents, 

some critical aspects for the use as structural concrete, such as compressive strength and 

permeability to chemical substances like chloride ions, might be compromised. Relatively high 

strength and low permeability of concrete can only be achieved by reducing the air void content 
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by sand in no-fines concrete mixtures. Fig. 2.9 is used to estimate the volume of the paste for a 

mixture using normal weight No. 8 aggregate. It can be clearly seen that approximate 32% of 

paste (beyond this paste volume, air void content is less than 2%) should be used to fill the voids 

to achieve a dense concrete.   

Excess Paste Theory 

A theoretical aspect of mix design for concrete, namely excess paste theory is briefly introduced 

in this part. Kennedy [1940] advocated methods of concrete mix proportioning based on the 

assumption that the consistency of concrete depends on two factors: the volume of cement paste 

in excess of the amount required to fill the voids of the compacted aggregates, and the 

consistency of the paste itself.   

The logical basis of this method is diagrammatically illustrated in Fig. 2.10. Diagram A 

represents a selection of freshly mixed concrete in which the voids in the dry rodded aggregates 

is filled cement paste, as denoted by the black areas. In this condition, the internal friction 

between aggregate particles is high and the concrete will be harsh and unworkable. However, if 

additional amount of cement paste is added to the concrete and assumed uniformly distributed, 

the individual aggregate particles will be forced apart, filmed by a thin coating with thickness of 

t. Therefore, the cement paste film is proportional to the surface area of the aggregates. To 

achieve the required workability, the amount of excess paste also depends on w/c ratio- lower 

w/c ratio requiring larger excess amounts than higher ratios. 

The amount of excess paste is determined by the following formula: 

p C KA                                                           (2.1) 
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where p represents the volume of paste per unit volume of concrete, C is the void ratio of 

combined fine and coarse aggregates, K is the consistency factor and A is the specific surface 

area of combined aggregates.  

To apply this method, it is necessary to establish an empirical relationship between the 

consistency factor and the consistency for each of the w/c ratio and for each of the aggregates. 

Also, it is necessary to establish by experiment a diagram like Fig. 2.11 for each kind of the 

coarse and fine aggregates for the least voids ratio. As commented by Powers [1968], the 

procedure of evaluating K is more complicated than can be justified by the degree of accuracy 

attained from the practical point of view. As a summary for this excess paste theory, experiments 

must be made with the aggregates alone to obtain a basis for calculating or graphically 

estimating the optimum ratio of coarse to fine aggregate, and other experiments must be made 

with concrete mixtures to establish the consistency factor.  

2.4.2 Fresh Properties 

The void content is dependent on the A/C ratio and ranges from 13 to 28% for A/C ratio between 

4 and 6. It was found that the density of no-fines concrete is generally about 70% of conventional 

concrete when made with similar components [Malhotra, 1976]. The density of no-fines concrete 

normally varies from 1600~1900 kg/m3. Compaction has an influence on the void content and 

unit weight of no-fines concrete. In a laboratory test [Ghafoori and Dutta, 1995 c], the unit 

weight varies between 1643 and 1932 kg/m3, due to different compaction levels.  

2.4.3 Mechanical Properties 

The various mechanical properties of no-fines concrete depends on cement content, w/c ratio, 

compaction level, and aggregate gradation and quality. The compressive strength is significantly 
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affected by the mix proportions and compaction efforts. Generally speaking, the compressive 

strength of no-fines concrete varies between 3.5 and 28 MPa. The relation between compressive 

strength and void content was determined by Meininger [1998] (see Fig. 2.12) in a series of 

laboratory tests in which a small amount of sand was added to the mixture. The compressive 

strength increased from 10.3 MPa to 17.2 MPa. The sand added was between 10% and 20% of 

the aggregates by weight. The increased fines filled some of the voids, reducing the void content 

from 26% to 17%. A decrease in the voids causes the concrete to bond more effectively, thus 

increasing the compressive strength. Ghafoori and Dutta [1995 c] determined that strength 

development of no-fines concrete was independent of the curing condition since there was only a 

negligible difference in strength between wet and sealed curing. A sealed compressive strength 

of 20.7 MPa was readily achieved with A/C ratio of 4.5 or less. Yang and Jiang [2003] found that 

a composite consisting of a surface layer and base layer of pervious concrete with different 

aggregate gradations, and thus pore size, attained a compressive strength of 50 MPa and a 

flexural strength of 6 MPa. Based on tests, Mahboub et al. [2009] however concluded that 

compressive strength and permeability were not directly related, at least for the specific type of 

mixtures used in their study.  

The splitting tensile strength of no-fines concrete varied between 1.22 and 2.83 MPa. The greater 

splitting tensile strength was achieved with a lower w/c ratio according to Ghafoori and Dutta 

[1995 c]. More favorable properties for the lower A/C ratio could be attributed to the improved 

interlocking behavior between the aggregate particles. The relationship between flexural strength 

and void content was also reported by Meininger [1998]. In his beam specimen tests, the flexural 

strength increased with the compressive strength, but no regression analysis was presented.  
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Drying shrinkage in no-fines concrete is usually smaller than conventional concrete [Ghafoori 

and Dutta, 1995 c] due to its structural characteristics, and decreases as the A/C ratio increases. 

With the reduction in A/C ratio, there is more cement paste available to undergo volumetric 

contraction and axial shrinkage. Moreover, the decrease in A/C ratio compromised the 

contribution of coarse aggregate in restraining drying shrinkage.  

2.4.4 Durability 

Meininger [1998] reported that a minimum air void content of approximately 15% was required 

to achieve significant percolation for no-fines concrete. No research has been conducted on the 

resistance of no-fines concrete to aggressive attack by sulfate-bearing or acidic water. The 

durability of no-fines concrete under free-and-thawing conditions is also not well documented 

[ACI 522R-10], which is critical for application in cold weather [Schaefer et al., 2006].  

Recently, a successful development of a virtual pervious concrete based on a correlation filter 3D 

reconstruction algorithm has been demonstrated by Bentz [2008]. In his work, the extensive 

study of such 3D virtual pervious concrete on exploring durability issues such as freezing-and-

thawing resistance and clogging can provide a novel tool to understand the link between 

durability and the microstructure of pervious concrete.  

2.5 Summary 

In summary, inconsistent conclusions on diverse properties of glass mortar and concrete, some 

contradictory findings on ASR and the lack of durability properties of glass concrete will require 

a comprehensive study into the research of glass cementitious composites. Moreover, concrete 

with no sand is only limited to pavement or non-structural applications. Further efforts should be 

put into the structural application.   
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Table 2-1: Chemical compositions of commercial glasses [McLellan and Shand, 1984] 

Glasses and uses SiO2 Al2O3 B2O3 Na2O K2O MgO CaO BaO PbO Others 

Soda-lime glasses 
Containers 66-75 0.7-7 12-16 0.1-3 0.1-5 6-12 

Float 73-74 13.5-15 0.2 3.6-3.8 8.7-8.9

Sheet 71-73 0.5-1.5 12-15 1.5-3.5 8-10 

Light bulbs 73 1 17 4 5 

Tempered ovenware 75 1.5 14 9.5 

Borosilicate 
Chemical apparatus 81 2 13 4 

Pharmaceutical 72 6 11 7 1 

Tungsten sealing 74 1 15 4 

Lead glasses 
Color TV funnel 54 2 4 9 23 

Neon tubing 63 1 8 6 22 

Electronic parts 56 2 4 9 29 

Optical dense flint 32 1 2 65 

Barium glasses 
Color TV panel 65 2 7 9 2 2 2 2 10% SrO
Optical dense barium crown 36 4 10 41  9%  ZnO

Aluminosilicate glasses 
Combustion tubes 62 17 5 1 7 8 

Fiberglass 64.5 24.5 0.5 10.5 

Resistor substrates 57 16 4 7 10 6 

 

 

Table 2-2: Summary of effect of glass sand on fresh density of concrete 

Previous study Glass sand content, % Fresh density, kg/m3 

Topcu and Canbaz, 2004 

0 2340 
15 2335 
35 2340 
45 2330 
60 2335 

Taha and Nounu, 2008 
0 2440 

50 2430 
100 2390 

Ismail and Hashmi, 2009 

0 2477 
10 2446 
15 2428 
20 2421 
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Table 2-3: Summary of test methods for ASR expansion for aggregates [Zhu et al., 2009].  

Test method  Comment 

ASTM C 227: Standard 
test method for potential 
alkali reactivity of cement-
aggregate combinations 
(mortar-bar method) 

High alkali cement (Na2Oeq > 0.6%) mortar bar test to determine 
cement-aggregate reactivity 
Specimens stored in high-humidity containers at 38 °C 
Requires one year or even longer if necessary for completion 
Excessive leaching of alkalis from specimens 

ASTM C 1260: Standard 
test method for potential 
alkali reactivity of 
aggregates (mortar-bar 
method) 

Accelerated mortar bar test for aggregate reactivity 
Bars immersed in 1 N NaOH solution for 14 days at 80 °C 
Alkali content of the cement is not a significant factor affecting 
expansion due to the high alkali solution. Suitable for screening 
to determine alkali-reactive sand. Due to the severe exposure, 
potentially unsuitable for absolute test. Results of concrete prism 
test should prevail. 

ASTM C 1293: Standard 
test method for 
determination of length 
change of concrete due to 
alkali-silica reaction 

Concrete prism test, regarded as best indicator of field 
performance, conducted at 38 °C and 100% RH 
High-alkali cement (1.25% Na2Oeq), with a cement content of 
420 kg/m3 
Coarse aggregate test (non-reactive fine aggregate) or vice-versa 
Requires one year for completion 
Can be used to test effectiveness of suppressant over 2 years 
Widely accepted, but lengthy test method 

BS 812-123: Testing 
aggregate: method for 
determination of alkali-
silica reactivity- concrete 
prism method 

Concrete prism test, generally regarded as best indicator of field 
performance, conducted at 38 °C  and 100% RH 
High-alkali cement (0.8-1.0% Na2Oeq), with a volume fraction of 
22.2% in concrete 
Fine aggregate test (non-reactive coarse aggregate) or vice-versa 
Requires 52 weeks for completion 

RILEM TC 106-3: 
Detection of potential 
alkali-reactivity of 
aggregates- method for 
aggregate combination 
using concrete prisms 

Concrete prism test, conducted at 38 °C and 100% RH 
High-alkali cement (raised to 1.25% by adding NaOH to the 
mixing water), with a cement content of 440 kg/ m3 in concrete 
Test requires 52 weeks for completion, mainly used in mainland 
EU 

Na2Oeq=%Na2O+0.658×%K2O 
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Table 2-4: Influence of sand on plastic properties of concrete [Alexander and Mindess, 2005] 

Concrete 
property 

Coarser sand  
(FM*>2.9) 

Finer sand  
(FM<2.0) 

Fines content  
(<75 µm fraction) 

Water 
requirement 

Tend to lower the water 
requirement by reducing 
overall aggregate specific 
surface 

May increase water 
requirement; however, a 
certain amount of fines is 
required to lubricate a mix, 
and this will not increase 
the water requirement 

Excessive fines content 
will increase water 
requirement 

Workability Tend to increase 
workability provided 
particle interference is not 
included 

May reduce workability, 
but see comment above. 
Minus 300 µm fraction has 
relative large influence 

This fraction is a portion of 
the minus 300 µm fraction 
that is important to 
workability. Excessive 
fines will cause mix to be 
sticky, particularly if 
cement content is high 

Cohesiveness Will tend to reduce 
cohesiveness, but coarser 
sands are suitable in rich 
mixes 

Will influence 
cohesiveness since they 
tend to have a larger fines 
content 

Fines content largely 
governs mix cohesiveness. 
Type of fines is also 
important 

Segregation Tend to promote 
segregation by increasing 
workability without 
contaminant increase in 
cohesiveness 

Adequate proportion of 
minus 300 µm fraction 
helps control segregation 

Helps to control 
segregation by making mix 
more cohesive 

Bleeding Tend to increase bleeding 
by reducing specific 
surface 

Better able to control 
bleeding provided it has 
adequate fines content 

Bleeding largely controlled 
by fines content. 
Inadequate fines lead to 
bleeding 

*FM: Fineness Modulus. 
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Figure 2-1: Mechanism of ASR [Thomas et al., 2007a]. 
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Figure 2-2: Loss in engineering properties of concrete due to ASR [Swamy and Al-Asali, 1989]. 
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Figure 2-3: Double layer theory [Prezzi et al., 1997]. 
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Figure 2-4: Literature review of effect of glass sand content on ASR expansion. 
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Figure 2-5: Illustration of pessimum effect of glass particle size by Jin et al. [2000]. 
 

 

 
 
 

Figure 2-6: Leaching and dissolution of a particle of glass according to Dhir et al. [2009]. 
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Figure 2-7: SEM image of mortar with brown glass sand [Rajabipour et al., 2010].  
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Figure 2-8: Literature review of influence of glass sand size on ASR expansion. 
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Figure 2-9: Relationship between paste and void content for No. 8 aggregate size designations 
[ACI 522R]. 

 

 

Figure 2-10: Illustration of excess paste theory [Kennedy, 1940]. 
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Figure 2-11: Void ratio as functions of the proportion of coarse aggregate [Powers, 1968]. 
 

5 10 15 20 25 30
0

10

20

30

40

C
om

pr
es

iv
e 

st
re

ng
th

, M
P

a

Air content, %

high air void content 
in no-fines concrete

 
 

 
Figure 2-12: Relationship between air content and compressive strength for no-fines concrete 

[ACI 522R]. 
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Chapter 3. Glass Sand Cementitious Composites 

3.1 General 

This chapter studies the use of recycled waste glass as sand in both mortar and concrete, starting 

with the processing of waste glass from as received bottles into purpose-fitted sand. Diverse 

properties in fresh and hardened states are presented for mortar and concrete. Durability of glass 

mortar and concrete is also included, with an emphasis on alkali-silica reaction and its mitigation 

methods. Finally, discussions on the test results are presented.  

 

3.2 Processing of Recycled Glass and Properties 

3.2.1 Collection and Crushing 

In this study, only soda-lime glasses were used from waste glass bottles, collected from a local 

recycler. Of all the types of glasses, the soda-lime glass is the only one that matters in the waste 

due to its popular and large quantities of use. Concerning safety, only unbroken glass bottles 

were chosen, avoiding broken bottles or debris. Those bottles were originally used for beer, wine, 

cooking sauces, or other domestic purposes. Glass for these purposes is primarily produced in 

three colors: clear, green and brown. Clear glass is produced from clean quartz sand with low 

content of iron oxides, since these may give the glass a vague color. Green glass is colored by 

oxides of Cr and Co, while brown glass is produced by adding oxides of Mn, Fe, Ni, and Co 

[Christensen and Damagaard, 2010]. The glasses bottles were exactly the same as what they 

would be stored in recycling plant before disposal into landfills, with residua, dirt, toxic water or 

other chemical contaminations from other kinds of wastes (as-received status, see Fig. 3.1a).  

Before crushing, the glass bottles were cleaned by water by the following steps. 
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(1) Immerse glass bottles into tap water for 1 day (Fig. 3.1b);  

(2) Remove metal/plastic caps and neck-caps, wooden corks, as well as plastic/paper 

labels; 

(3) Clean the surface of glass bottles with tap water.  

(4) Separate the glass bottles by different colors (Fig. 3.1c); 

It should be mentioned that dirt and chemical contaminations could be removed, provided that 

they were water-dissolvable. However, they could retain on the surface if they were not, like glue, 

oil, cooking sauce, etc, since no detergent was used in this process. In such cases, the properties 

of glass, mainly the chemical composition, would be affected. The degree of contamination of 

glass was found to be directly related to its original use. Usually, if the bottle is used for water-

dissolved liquid, negligible contaminations would be left after water washing. In the opposite, 

the glasses would be contaminated to a higher degree if they were used to contain water-

indissolvable materials. Considering the local use of glass products, green and brown glass 

bottles are mainly used for beer and wine, clear glass bottles would be used in versatile ways, 

such as wine, medicine, oil and cooking sauces. Therefore, clear glass bottles were contaminated 

glass rather than brown or green glass bottles.  

The crushing process was implemented by a jaw crusher (Fig. 3.1d), the output size of which 

could be manually adjusted. Glass bottles were efficiently reduced in size into the required range 

for sand by ASTM C 33 (see Fig. 3.1e). The crushed glass sand fell well into the required ASTM 

grading range, as shown in Fig. 3.2. Fig. 3.1e shows the crushed glass sand, which would exhibit 

angular shape, sharper edge, smooth surface texture and higher aspect ratio than natural sand 

(Fig. 3.1f), because of its brittle characteristics. The saturated surface dry (SSD) specific gravity 

and water absorption capacity were determined according to ASTM C 128 as 2.53 and 0.07% 

(compared with 2.65 and 1.0% for natural sand) respectively. Chemical compositions of glasses 
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with different colors were analyzed by energy dispersive spectrum X-ray spectroscopy (EDS) 

and are shown in Table 3.1. 

 

3.3 Recycled Glass in Mortar 

3.3.1 Test Program 

In this study, the glass particles were used to replace natural sand as fine aggregates by 0, 25, 50, 

75 and 100 percent in mortar. Fresh and mechanical properties, including fresh density, air 

content and flowability, compressive strength, flexural strength, splitting tensile strength, static 

and dynamic elastic moduli as well as drying shrinkage were investigated for glass mortar. 

Durability properties, in terms of resistance to chloride ion penetration, sulfate attack and ASR, 

were also carried out. All properties were investigated for mortars containing brown, green, clear 

and mixed-colored (green: brown=2:1 by mass) glasses. The effects of glass color, content and 

particle size on ASR expansion were examined in this study. To mitigate the ASR expansion, 

different methods were investigated. The overall test program is summarized in Fig. 3.3a.  

3.3.1.1 Materials 

Natural sand passing a 4.75-mm sieve was used as reference sand for glass sand mortar. The 

specific gravity and water absorption capacity of natural sand was 2.65 and 1.0% respectively. 

The grading curves of fine aggregates are shown in Fig. 3.2. Type I ordinary Portland cement 

(OPC) conforming to ASTM C 150 was used in this study, and the chemical compositions are 

listed in Table 3.2 (determined by X-ray fluorescence [XRF]). The equivalent sodium alkali 

content of OPC, calculated as Na2Oeq=Na2O+0.658K2O, is 0.6%.  

The chemical compositions of Class F fly ash, GGBS and silica fume, added as ASR suppressor, 

were also analyzed by XRF and are included in Table 3.2. Table 3.3 shows the fineness and 

density of each material. Smooth steel fibers, with length of 5 mm and diameter of 0.16 mm, 
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were used as reinforcement to reduce ASR expansion. In determination of the potential 

pozzolanic characteristics of glass, glass particles were further finely ground to less than 75 μm 

and used as partial cement replacement. Solid lithium chloride (LiCl) and lithium carbonate 

(Li2CO3) were used as additional chemical admixtures for ASR mitigation.  

3.3.1.2 Mix Proportions and Test Methods 

Except for the ASR tests, mix proportion of mortar was selected in accordance with ASTM C 

109, with water: cement: sand = 0.485: 1: 2.75, by mass. The natural sand was replaced by 

recycled glass particles at 0, 25%, 50%, 75% and 100%, by mass, for each tested property. There 

were totally five mixtures for each color glass, from which various mortar properties were 

studied. In addition, mixed color sand (with green-to-brown glass= 2:1 by mass) was also 

examined as for single color glass. All the tests were carried out as per corresponding ASTM 

standards (see Table 3.4). No superplasticizer was added in mortar mixture. 

According to ASTM C 1260, the mortar proportion is as follows, water: cement: sand = 0.47: 1: 

2.25, by mass. The grading requirement for sand is shown in Table 3.5. For each color, the 

natural sand was replaced at five levels: 0, 25%, 50%, 75% and 100%. One series of mortar 

containing 100% glass sand with green-to-brown mixing ratios of 3:1, 2:1, 1:1, 1:2 and 1:3 were 

also studied. For every ASR mitigating method with single color glass, there were five mixtures 

with different glass sand content up to 100%. The content of pozzolans used as cement 

replacement was 30% for fly ash, 60% for GGBS and 10% for silica fume by mass, respectively. 

Ground glass powder was also used as cement substitution to mitigate ASR, at content of 20%. 

The added amount of steel fibers used was 1.5% by volume of mortar. The addition of LiCl and 

Li2CO3 compounds was 1% of cement by mass. Regarding LiCl, the content of chloride ion was 

0.84% of cement by mass, lower than 1.0%, the limit for reinforced concrete under exposure 

class of C0 [ACI 318]. The solid lithium compounds were dissolved in the mixing water and thus 

added to mortar mix. During mixing, the carbonated lithium would not be totally dissolved in the 



63 
 

mixing water due to its low solubility. Therefore, all the solid particles should be poured into the 

mixer with no residue attached to the container wall. Mix proportions of mortar for ASR 

expansion study are summarized in Table 3.5.  

3.3.1.3 Preparation of Mortar Specimens 

The dimensions, numbers and tested properties of mortar specimens are summarized in Table 

3.4. All the mortar specimens were covered with plastic sheets for 24 h after casting, followed by 

demolding and curing in water until the age of tests, including RCPT and sulfate attack tests. For 

the drying shrinkage tests, the mortar specimens were cured in water for three days after 

demolding and then transferred into a controlled room (30 ˚C and 65% RH) for measurements up 

to 56 days. For the ASR tests, all specimens were put in 80 ˚C water for one day and the initial 

length taken before transferring to 80 ˚C 1 N NaOH solution for curing. The expanded lengths 

were subsequently measured after 7, 14, 21 and 28 days. ASR expansion was reported as the 

average value obtained from three mortar bars.  

3.3.2 Test Results and Discussion 

Major properties of mortar containing various contents of glass sand are reported and discussed 

as follows, at both fresh and hardened states.  

3.3.2.1 Fresh Properties 

a. Fresh density 

For all mortar mixes, no segregation or bleeding was observed during mixing and casting. The 

fresh density decreased with higher content of glass sand, as shown in Fig. 3.4a, due to the 

smaller specific gravity of glass compared to natural sand. The glass color had no effect on the 

fresh density, especially when the glass content was less than 75%. The fresh density of mortar 

with 100% brown, green, clear and mixed colored glass sand was 97, 96, 95 and 97% of that of 

normal mortar, respectively. 
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b. Air content 

The air content of glass sand mortar was between 3 and 3.5%, increasing slightly with higher 

glass sand content up to 75% (Fig. 3.4b). With 100% glass sand, clear glass mortar showed the 

highest air content of 5.9%, almost twice of that of reference mortar. The results in this study are 

in agreement with those of Park et al. [2004]. The sharper edge and higher aspect ratio of glass 

sand enable more air to be retained at the surface of glass particles. It is also noted that the high 

air content contributed to the low density in mortars with 100% glass sand.  

c. Flow  

The flowability of glass mortar was reduced, as shown in Fig. 3.4c. The flow is defined as the 

increase in mortar base diameter after 15 times of drop on a flow table (expressed as the 

percentage of the original base diameter). For glass sand content less than 75%, there was no 

difference in flow between different colors glass. The flow for complete brown, green, clear and 

mixed color glass mortar was 75, 90, 60 and 82%, respectively. The sharper edge, angular shape 

and higher aspect ratio of glass particles reduced the flowability of mortar by hindering the 

movement of cement paste and the particles. In addition, the increased surface area of glass sand 

compared to nearly round natural sand would require more paste to coat and lubricate and more 

water to wet all glass particle surfaces.  

3.3.2.2 Mechanical Properties 

a. Compressive strength 

Fig. 3.5 shows the 7- and 28-day compressive strength of glass mortar. The addition of glass 

sand led to a decrease in compressive strength due to its smooth surface and sharper edge, which 

resulted in weaker bond strength at the Interfacial Transition Zone (ITZ) between glass particles 

and cement paste matrix, which normally dominates the mechanical and durability properties of 

cementitious compositions. The green glass mortar showed the least reduction in compressive 

strength at each replacement ratio. Mortar with mixed color glass sand showed comparable 
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strength as those with brown glass sand. Clear glass sand manifested the most reduction in the 

compressive strength, perhaps due to a higher degree of chemical contaminations. In addition, 

the compressive strength was not significantly affected by glass sand if the content was less than 

25%.  The strength development of mortar with glass sand was slightly higher than that of 

reference mortar. At 7 days, mortar with 100% brown, green, clear and mixed glass sand showed 

strength equal to 72%, 75%, 60% and 70% of reference mortar, respectively. At 28 days, this 

ratio became 78%, 87%, 64% and 76%. The pozzolanic characteristic of fine glass particles 

(<1.18 mm) might be the reason, which occurs at a later stage and refines the microstructure, 

thereby reducing the porosity and enhancing the bond strength at the ITZ.  

b. Flexural strength 

Fig. 3.6 shows the flexural strength of glass mortar at 7 and 28 days. The reduction in flexural 

strength was obvious for glass sand content exceeding 25%, especially in the case of clear glass. 

For the other types of glasses, the reduction in 28-day strength was smaller than 10% if the glass 

content was less than 75%. The flexural strength of complete brown, green, clear and mixed 

glass sand mortar was 71%, 76%, 64%, 70%; and 76%, 90%, 70%, 76%, respectively, of that of 

reference mortar at 7 and 28 days. The reduction in flexural strength was similar to that of 

compressive strength, and was also due to the weakened bond at ITZ. The chemical 

contaminations in clear glass were expected to further affect the bond strength between clear 

glass particles and cement paste, resulting in even lower flexural strength.  

c. Splitting tensile strength 

The splitting tensile strengths of glass mortar at 28 days are shown in Fig. 3.7. The waste glass 

mortar exhibited splitting tensile strength between 2.85 and 3.95 MPa. With 25% of brown, 

green, clear and mixed glass sand, the splitting tensile strength of mortar showed a slight 

increase.  However, higher percentages of glass sand led to reduced splitting tensile strength 

regardless of the glass color. For clear glass mortar, the splitting tensile strength decreased 
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consistently with the glass content. The splitting tensile strength relative to the reference mortar 

without glass sand was 93%, 92%, 77% and 79%, respectively, for complete brown, green, clear 

and mixed color glass mortar. Compared to compressive and flexural strength, the reduction in 

splitting tensile strength was less prominent, probably due to the sharper edge and higher aspect 

ratio of glass sand associated with higher degree of internal friction [Alexander and Mindess, 

2005].  

d. Static and dynamic modulus of elasticity 

The static and dynamic modulus of elasticity of glass mortar, determined at 28 days, are shown 

in Fig. 3.8. The static and dynamic modulus of mortar varied from 23 to 30 GPa and 27 to 36 

GPa, respectively. The glass sand caused an obvious reduction in the modulus of elasticity in the 

case of clear glass. With other color glass sand, the reduction was less, especially for glass 

content of up to 50%. At a glass content of 100%, the static elastic modulus of brown, green, 

clear and mixed glass mortar was 97%, 93%, 80% and 88% of that of reference mortar. For the 

dynamic modulus, they were 90%, 92%, 77% and 89%, respectively. Although the elastic 

modulus of glass is higher than sand [Yang et al., 1995], the weaker bond and porous 

microstructure at ITZ in glass mortar would lead to lower modulus, especially in clear glass 

mortar. The existence of micro-cracks in clear glass sand particles would further lower the elastic 

modulus of mortar. Brown, green and mixed glass mortar, on the other hand, only showed 

slightly reduced modulus. Compared with other mechanical properties, the elastic modulus was 

the least affected.  

e. Drying shrinkage 

The drying shrinkages of mortar specimens with mixed color glass are shown in Fig. 3.9. All 

mortar mixes showed stable drying shrinkage after 21 days, indicating that the dimension and 

surface of mortar specimens were appropriate and accessible for movement and diffusion of 

moisture to surface and outer environment. All mortar mixes had drying shrinkage less than 700 
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×10-6 at 56 days. The reference mortar had the highest drying shrinkage, compared with all glass 

mortars, suggesting that the replacement of sand by glass particles improve the dimension 

stability of mortar. The reduced shrinkage could be due to the negligible water absorption 

capacity of glass particles [Edward, 1966, Alexander and Mindess, 2005; Kou and Poon, 2009; 

Wang and Huang, 2010; Ling et al., 2011]. The In addition, the relatively higher volume fraction 

of fine aggregates in glass mortar might also contribute to smaller drying shrinkage. However, 

mortar with 75% glass sand showed the lowest drying shrinkage while 100% showed 

intermediate values. The reason might be due to the porous microstructure at ITZ and higher 

portion of finer particles in glass sand, which incurred the movement of moisture.  

3.3.2.3 Durability Properties 

a. Rapid chloride permeability test (RCPT) 

The RCPT results at 28 days are shown in Fig. 3.10. All the mortar specimens showed quite high 

values of total charge passed, with the reference mortar showing the highest of 6764 (±966) 

Coulombs, due to the porous structure of cement paste and the lack of coarse aggregates. The 

total charge passed in 25%, 50%, 75% and 100% brown, green, clear and mixed glass mortar 

was 94, 93, 85 and 42%; 91, 69, 57 and 42%, 84, 71, 63 and 68%, and 82, 64, 36, and 44%, 

respectively, of that of reference sand mortar.  The resistance of mortar to chloride ion 

penetration seemed to increase due to the lower porosity and permeability of glass sand [Scholze, 

1990], in spite of the more porous ITZ microstructure. Another possible reason is the finer size 

distribution of crushed glass sand, leading to better packing efficiency of mortar at the fine 

scales[Kou and Poon, 2009], and pozzolanic reaction which consumed OH- and improved 

impermeability. Contrary to mechanical properties, mortar with clear glass sand did not show the 

poorest performance in RCPT, especially at 25%, 50% and 75% glass content. Instead, brown 

glass mortar showed the least resistance at such glass contents. Mixed color glass mortar 
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exhibited the highest resistance while green glass mortar showed intermediate resistance to 

chloride ion penetration.  

According to nordtest method NT build 492, the non-steady-state migration coefficient Dnssm of 

chloride is calculated as   

 
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where Dnssm = non-steady-state migration coefficient, ×10-12 m2/s; 

           U = absolute value of the applied voltage, V; 

           T = average value of the initial and final temperatures in the anolyte solution, ˚C; 

           L = thickness of the specimen, mm; 

           xd = average value of the penetration depth, mm; 

           t = test duration, h. 

In this study, a voltage of 60 V was applied for 6 hours. At the end of the test, the specimens 

were axially split to measure the depth of chloride penetration, xd, by spraying with 0.1 N 

AgNO3 solution. The reported result of non-steady-migration coefficient was the average of 

three specimens and shown in Fig. 3.10. The migration coefficient for brown, green, clear and 

mixed color glass, at 25, 50, 75 and 100% glass content, was 94, 104, 83 and 68%; 75, 59, 55 

and 46%; 88, 73, 52 and 61%; and 80, 59, 37 and 36% of that of the reference sand mortar. The 

calculated migration coefficients verified the RCPT results that glass sand would increase the 

resistance to chloride ion penetration. Also, the effect of glass color was confirmed by the values 

of the migration coefficient. That is, mixed color glass mortar had the lowest chloride migration 

coefficient while clear glass mortar exhibited intermediate result, at contents of 25, 50 and 75%. 

The detrimental effect of internal micro-cracks in clear glasses was not obvious. This is because 

unlike mechanical properties, the chloride conductivity would not be affected if the crack is less 

than 200 μm wide [Aldea et al., 1999].  



69 
 

b. Sulfate attack  

After curing in water for 28 days, three mortar prisms and three cubes were weighed (SSD) 

before immersion in saturated MgSO4 solution for 24 hours, followed by oven-drying at 105 ˚C 

for the next 24 hours. The wet-and-dry procedure was repeated for 10 cycles and the weight loss, 

compressive strength and flexural strength were recorded. The results are shown in Fig. 3.11. All 

glass mortars showed comparable weight loss regardless of glass color. Visual observation (Fig. 

3.12) of the specimens revealed that the exterior cement paste was dissolved, exposing the glass 

sands. The compressive strength of brown, green, clear and mixed glass mortar, at the glass 

content of 25, 50, 75 and 100%, was 106, 100, 93 and 98%; 121, 118, 124 and 115%; 98, 81, 81 

and 78%; 115, 104, 113 and 97% of that of control mortar mix. The flexural strength was 103, 88, 

88 and 90%; 107, 109, 99 and 92; 90, 75, 79 and 72%; and 98, 89, 98 and 81% of that of 

reference mortar. Clear glass mortar exhibited the lowest compressive strength and flexural 

strength after the sulfate attack tests, while green glass mortar exhibited the highest resistance to 

sulfate attack. It is noted that the glass mortar exhibited higher compressive strength after sulfate 

attack tests compared to those cured in water for 28 days (see Section 3.3.2.2a and b). This is 

because of the lesser porosity and better packing efficiency at finer scales [Kou and Poon, 2009], 

as well as pozzolanic reaction of glass particles, leading to reduced permeability of mortar.    

3.3.3 Alkali-Silica Reaction in Glass Mortar 

3.3.3.1 Effect of Type, Content, and Size of Glass Sand 

a. Effect of glass type and content 

The ASR expansions of mortar with green, brown, clear and mixed color glass sand are shown in 

Figs. 3.13a-c. At 14 days, mortar containing natural sand showed 0.053% in expansion, mortar 

with 25%, 50%, 75% and 100% green, brown and clear glass sand showed 0.036, 0.022, 0.012 

and 0.005%; 0.032, 0.020, 0.009 and 0.009%; 0.049, 0.065, 0.128 and 0.137%, respectively. 

With increasing content of glass sand, ASR expansion increased substantially for clear glass 
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mortar but not so for green and brown glass mortars. At the same replacement content, green and 

brown glass sand mortar would show similar ASR expansions, indicating that the green and 

brown color glass had the same reactivity with alkali within 28 days. Some researchers [Jin et al., 

2000; Park and Lee, 2004] pointed out that green color glass would be the least reactive in ASR 

due to its highest content of Cr2O3, which is added for greenish color. In this study, this effect 

was clearly observed, when one compares the results for green and clear glass mortar. In addition, 

in spite of the less content of Cr2O3, brown glass mortar also exhibited similarly small ASR 

expansion as green glass mortar due to the Fe2O3, which is added to give brownish color to the 

glass. Based on the double-layer theory [Prezzi et al., 1997], the higher valence of Cr3+ in green 

glass and Fe3+ in brown glass will lower the double-layer thickness and the repulsion forces, 

resulting in the much lower ASR expansion than clear glass mortar. However, Dhir et al. [2009] 

attributed the different alkali resistance of different colored glasses to the manufacturing process, 

rather than the minor chemical difference, as discussed earlier.  

In this study, the results showed that clear glass would accelerate ASR expansion of mortar but 

remain innocuous (i.e. expansion less than 0.2%) if the total sand replacement content was less 

than 50%. Green and brown glass would suppress the ASR between glass sand and alkali, 

indicating that they were non-reactive. At 28 days, the reference mortar showed expansion of 

0.149% and mortar with 25%, 50%, 75% and 100% of green, brown and clear glass sand showed 

expansion of 0.136, 0.074, 0.070 and 0.030%; 0.131, 0.059, 0.026, and 0.012%; and 0.120, 0.212, 

0.471 and 0.705%, respectively. This is in contrast to some published results [Shayan and Xu, 

2004, Taha and Nounu, 2009; Topcu et al, 2008; Park and Lee, 2004, Meyer and Baxter, 1997; 

Kou and Poon, 2009; Limbachiya, 2009; Ismail and Al-Hashimi, 2009; Saccani and Bignozzi, 

2010; Zhu et al., 2009; Rajabipoour et al., 2010], as shown in Fig. 3.14.  

Shi [2009] reviewed the ASR in glass concrete and proposed that the mechanism of expansion in 

concrete caused by glass sand was different from that by traditional ASR expansion 
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[Rajabipoour et al., 2010]. According to Shi [2009], Na+ and Ca2+ are firstly dissolved from glass 

when the OH- in pore solution attacks the glass particle surface, followed by the 

depolymerization of silicate network. The reaction, as shown in Eq. (3.2), then occurs to form 

ASR gel of C-N-S-H:  

 2

3
Ca Na SiO OH C N S H                                  (3.2)

           

The swelling capacity of the ASR gel depends on its chemical composition, especially on the 

ratio of CaO/(SiO2+Na2O) [Tang et al., 1987]. It is speculated that in the ASR gel produced in 

soda-lime glass, the content of calcium is relative higher than other types of glass or natural sand. 

Therefore, the non-swelling ASR gel in glass mortar would lead to lesser expansion. The same 

statement was also made by Saccani and Bignozzi [2010]. 

b. Effect of mixed color glass 

To determine the glass color effect, ASR expansion of mixed color glass sand, with green glass: 

brown glass=2: 1, by mass, was tested at 25, 50, 75 and 100% glass content and the results are 

shown in Fig. 3.13d. The mixed color glass mortar showed similar ASR expansion as single 

color glass mortar, decreasing with higher glass sand content. The effect of combining two 

different color glasses, on ASR at different sand replacement content, is in disagreement with 

previous results [Jin et al., 2000], which stated that the mixed color glass mortar caused larger 

expansion than single color glass mortar. The effect of mixed color glass sand was also tested at 

100% level with green glass: brown glass ratio varying as 3:1, 2:1, 1:1, 1:2 and 1:3, as well as 

complete green or brown glass sand, as shown in Fig. 3.13e. From the test results, it is hard to 

relate the ASR expansion of mixed color glass mortar from those of single color glass mortars. 

At early ages less than a week, the mixed color glass mortars showed almost the same expansion, 

but slightly less than the pure green or brown glass sand mortar. However, this trend reversed as 

the mixed glass sand mortar expanded more than single glass sand mortar in the following week. 

The test results for the third week showed no difference between different mix ratios. At the end 
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of 4th week, the ASR expansion decreased with higher fraction of brown glass sand. At the same 

time, it should be noted that all the mortars exhibited small expansion, in spite of the inconsistent 

trend with varying color mix ratios. However, it is interesting to note that a great difference 

between green and brown glass mortar started emerging at 63 days of testing. A higher fraction 

of green glass sand could result in a much higher ASR expansion, indicating that brown glass 

would exhibit less alkali reactivity especially in the long term, which has not been reported 

before. 

c. Effect of glass particle size 

The effect of glass particle size on ASR expansion of green, brown and clear glass sand mortars 

are shown in Fig. 3.15. For each color glass, there are in total 5 different single-sized glass sands, 

including 2.36, 1.18, 0.6, 0.3 and 0.15 mm, to replace 25% of natural sand. All the three colored 

glass mortars showed the same trend, that is, ASR expansion continuously increased with 

increasing size of glass sand, at each test age. The maximum and minimum ASR expansion 

occurred with 2.36 mm and 0.15 mm-size glass sand respectively, regardless of glass color. 

Mortar with 25% graded glass sand, as specified by ASTM C 1260 for sand grading, showed 

intermediate expansion (Figs. 3.13 a-c) compared to single-size glass sand mortars. From the test 

results, single-size green and brown glass mortars showed reduced ASR expansion than normal 

sand mortar (0.053%), while single-size clear glass showed increased ASR expansion if it was 

larger than 0.6 mm. These can be explained by the alkali non-reactivity of green and brown glass 

and alkali reactivity of larger particles of clear glass. Once again, brown glass, particularly of 

larger sizes, showed less ASR expansion than green glass at any age, as previously noted on the 

effect of glass content on ASR expansion.   

It is expected that the finer the glass sand, the higher the ASR expansion because of increasing 

surface area of sand particles. However, the experimental results showed the opposite trend. 

Moreover, there was no pessimum effect of glass sand size on ASR expansion, which is different 
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from previous findings by Jin et al. [2000]. This can be attributed to the pozzolanic reaction 

between silica in glass sand and cement hydration product, Ca(OH)2 [Dyer and Dhir, 2001; Shi, 

2009]. However, the pozzolanic reaction would not occur if the glass sand was too large. In this 

study, it can be noted that if glass sand was smaller than 2.36 mm, pozzolanic reaction would 

occur since the ASR expansion started decreasing from 2.36 mm till 0.15 mm. Without 

pozzolanic reaction, the ASR expansion should be higher with decreasing particle size due to 

larger surface area. This critical particle size for pozzolanic reaction to occur was differently 

observed as 0.6-1.18 mm by Idir et al. [2010], Jin et al. [2000] and Xie et al. [2003]; or 0.15-0.30 

mm by Yamada and Ishiyama [2005]. Test results in this study as well as results from literature 

are summarized in Fig. 3.16.  

Recently, Rajabipour et al. [2010] and Maraghechi et al. [2012] have stated that the glass ASR is 

actually not a surface reaction, but a pozzolanic reaction, regardless of glass size. It was found 

that ASR expansion resulted from internal cracks was more prominent for brown glass. The 

product of the pozzolanic reaction at glass particle surface is non-swelling due to the low 

SiO2/CaO ratio, while the ASR expansion occurs inside glass particles, with OH- ions 

penetrating through the cracks in the glass particles where the SiO2/CaO ratio is higher. This 

conclusion is confirmed from expansion tests and SEM observations.  

In this study, internal cracks were clearly observed in clear glass sand (Fig. 3.17a). No crack was 

found for green or brown glass sand mortar, especially at 100% content (Fig. 3.17b). In 

summary, the influence of clear glass particle size would be attributed to the following reasons: 

(1) pozzolanic reaction occurs more easily with finer particles; and (2) larger glass particles 

exhibit more inherent cracks which initiate expansive ASR gel. In contrast, for green and brown 

glass, only the first was true since no inherent crack was observed in the glass particles.  
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The relation between ASR expansion and glass sand size is significant for the study of ASR 

expansion with random size distribution of crushed glass sand. Based on the results, it can be 

concluded that ASR expansion decreases with smaller glass particles, provided that it is finer 

than 2.36 mm. Therefore, an effective method to mitigate ASR expansion of glass concrete is to 

control the crushing process to ensure the size of glass particles is less than 2.36 mm. The 

relation of ASR expansion between multiple-size glass mortar and single-size glass mortar could 

be assumed to be proportional to the individual mass fraction. From the ASR expansions of 

single sizes of different color glass, the brown color glass sand would exhibit the least expansion 

than green glass and clear glass. This was consistent with the ASR expansion of multiple-size 

glass sand mortar, as discussed earlier regarding color effect. With more fine glass particles at 

the surface of mortar bar specimens, more pores would be refined by pozzolanic reaction. The 

permeability of mortar would be decreased, resulting in less supply of alkalis to mortar 

specimens in the tests.  

3.3.3.2 Mitigation Methods 

To suppress the potential ASR in mortar containing glass sand, different mitigation methods are 

investigated, including mineral admixtures, chemical admixtures and additional reinforcements. 

For each mitigation method, the amount was selected according to its common use as in normal 

concrete. In this study, the content of cement replacement by mass was 30%, 60% and 10% for 

fly ash, GGBS and silica fume, respectively. The addition of LiCl and Li2CO3 was 1% of cement 

by mass. The amount of steel fibers was 1.5% by volume of total mortar mixture.   

a.  Fly ash 

The effect of replacing 30% of cement by class F fly ash on ASR expansion of green, brown and 

clear glass sand mortar at different contents are shown in Tables 3.7-9. The suppressing effect of 

fly ash on ASR expansion is so obvious that the expansion at 14 days was less than 0.02% for all 

mixtures, significantly lower than 0.1%, as required by ASTM C 1567 for innocuous reaction. 
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The ASR expansion was quite small up to 28 days. The most significant effect of fly ash is the 

dilution of active alkali content in cement since only active alkali involves in ASR [Alexander 

and Mindess, 2005]. Also, the microstructure of mortar, especially near the surface, was 

improved by pozzolanic reaction of fly ash, thus the porosity and permeability was reduced. 

Although the amount of alkali in the 1 N NaOH solution would have been sufficient for ASR, the 

pathway for alkali and water to penetrate into the interior of mortar specimens was clogged and 

thus the ASR was suppressed.  

After 28 days of curing, the surface of all mortar bars remained quite smooth and no crack was 

observed. The surface of mortar bar, around 1 mm deep, appeared to be more densified than the 

interior structure, preventing alkali from penetrating inward. Xu et al. [1995] observed the same 

test results in accelerated mortar bar tests, in which the reaction was confined merely to a few 

small particles close to the exterior surface of the specimens with no signs of reaction in the 

center portion of mortar bar specimens [Xu et al., 1995].  

The test results showed that 30% fly ash is more than sufficient to suppress ASR expansion 

caused by recycled glass sand.  

b.  GGBS 

The effect of replacing 60% of cement by GGBS on ASR expansion of green, brown and clear 

glass sand mortar at different contents are shown in Tables 3.7-9. At 14 days, the reference 

mortar (60% GGBS with no glass sand) showed expansion of 0.018%. The ASR expansions for 

green, brown and clear glass sand mortar were 0.016, 0.007, 0.006 and 0.006%; 0.002, -0.002,    

-0.001 and -0.001%; 0.007, 0.008, 0.004 and 0.006%, for 25, 50, 75 and 100% content, 

respectively. The suppressing mechanism for GGBS on ASR expansion was similar as for fly 

ash; pozzolanic reaction of GGBS would reduce porosity of paste and Interfacial Transit Zone 

(ITZ). Also, according to the double-layer theory [Prezzi et al., 1997], the mineral admixtures 
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could not only reduce the aggressiveness of the pore solution to the acidic aggregates but also 

reduce the negative surface charge of the glass particles by lowering the pH value of the pore 

solution in cement paste. The lower the ionic concentration and the surface charge of the particle, 

the smaller the expansive pressure that can develop for the ASR product gels. 

c.  Silica fume 

The effect of replacing 10% of cement by silica fume on ASR expansion of green, brown and 

clear glass sand mortar at different contents are shown in Tables 3.7-9. At 14 days, the reference 

mortar (10% silica fume with no glass sand) showed expansion of 0.020%. The ASR expansions 

for green, brown and clear glass sand mortar were 0.033, 0.018, 0.013 and 0.018%; 0.021, 0.018, 

0.015 and 0.013; and 0.021, 0.025, 0.021 and 0.017%, at glass content of 25, 50, 75 and 100%. 

All the mortars showed expansion much less than 0.1%.  

The suppressing effect of silica fume on ASR could be primarily attributed to its ultra fine 

particle size, which is good for improving the porous microstructure at ITZ and thus reduces 

porosity and increases strength. The size, distribution and continuity of pores inside the paste 

could significantly affect ASR, by the ingress of water and the ions diffusion [Prezzi et al., 1997]. 

If free water loses the pathway to ingress to the particle surface where active silica is dissolved, 

the ASR gel formed would not cause any damage since it cannot absorb free water. After 28 days, 

the specimen surface remained un-cracked and was densified due to pozzolanic reaction, same as 

observed in fly ash mortar. Nevertheless, the pozzolanic behavior of silica fume would also 

contribute to the reduction in pH of cement paste, densification of microstructure, and formation 

of a CSH with a low CaO/SiO2 ratio [Hasparky et al., 2000].  

d. Steel fibers 

The effect of adding 1.5%, by volume, of steel fibers on ASR expansions of green and brown 

glass sand mortar at various glass contents are shown in Tables 3.7 and 8. At 14 days, the 
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expansion of reference mortar (1.5% steel fibers with no glass) was 0.025%. The expansions for 

green and brown glass sand mortars were 0.019, 0.016, 0.005 and -0.008%; 0.021, 0.008, 0.004 

and 0.005%. The performance of green and brown glass sand mortars, with the addition of steel 

fiber, was identical at the same glass content. All mortars showed expansion less than 0.1%, 

indicative of the efficiency of the steel fibers. At 21 and 28 days, all mortars did not show 

expansion higher than 0.1%. The function of steel fibers in restraining ASR in glass sand mortar 

is the same as in normal sand mortar. The internal pressure created by ASR gel causes ASR 

expansion and cracking and thus could be suppressed by randomly distributing discontinuous 

single fibers [Park and Lee, 2004]. Crack fiber interactions resist crack propagation and opening 

due to the chemo-mechanical confinement on the ASR gel. According to Ostertage et al. [2007], 

fibers could not only impose compressive stress on the expanding ASR gel but also prevent the 

ASR gel from leaving the reaction site. However, it should be noted that the addition of steel 

fibers would reduce the flowability of fresh mortar mixture. 

e.  Glass Powder 

The effect of replacing 20% cement by glass powder on ASR expansion of green and brown 

glass sand at different glass sand contents are shown in Tables 3.7 and 8. The suppressing effect 

of green glass powder was relatively more prominent than brown glass. At 14 days, the green 

and brown glass powder mortar showed expansion of 0.031, 0.016, 0.012, 0.010, and 0.004%; 

and 0.040, 0.025, 0.014, 0.012 and 0.006% for 0, 25, 50, 75 and 100% replacement ratio of glass 

sand. The constraining effect on ASR expansion for green and brown glass powder may be 

firstly due to the content of Cr2O3 and Fe2O3, which could effectively reduce the ASR expansion, 

as mentioned previously regarding color effect. The suppressing effect of glass powder was more 

obvious at lower glass sand content less than 50%, especially in the reference mortar mix without 

glass. Moreover, as discussed earlier on the influence of glass particle size, the finer the glass 

sand, the less ASR expansion. If the glass sand particle is fine enough, such as less than 0.075 
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mm, the ASR would be totally eliminated while pozzolanic reaction would occur instead. That 

was why fine glass powder could replace cement and suppress ASR. Taha and Nounu [2009] 

attributed the ASR suppressing effect of glass powder to the non-availability of both alkali in 

concrete and reactive silica in glass particles. Dyer and Dhir [2001] explained the chemical 

reactions of glass powder used as cement component in detail. In the chemical terms, the ASR of 

glass powder is identical to pozzolanic reaction, except for the time at which each reaction 

occurs. The fine glass powder has a high surface area and hence favors the rapid pozzolanic 

reaction over the deleterious ASR. The ASR mitigating use of glass powder as cement 

replacement could thus widen the application of waste glasses [Shayan and Xu, 2004], resulting 

in value-added utilization.  

f.  Lithium Chloride and Lithium Carbonate 

The effect of adding 1% LiCl and Li2CO3 by weight of cement on ASR expansion of green and 

brown glass sand mortar at 0, 25, 50, 75 and 100% glass content are shown in Tables 3.7 and 8. 

Green glass sand showed reduced ASR expansion at all glass content, and the effectiveness is 

more obvious at low glass content. The suppressing effect of Li2CO3 is more prominent than 

LiCl, because of the higher ratio of [Li]/[Na]. The ratio of [Li]/[Na] for 1% LiCl and Li2CO3 is 

0.74 and 0.84, respectively. For brown glass, the effect of Li2CO3 in ASR was similar as for 

green glass. However, the LiCl did not show any suppression effect in ASR, especially for 

normal sand mortar. There is a minimum content of lithium compounds required to effectively 

suppress ASR, below which the expansion would not be reduced but would be higher instead 

[Collins et al., 2004]. From the test results, the content of lithium compounds used in this study, 

that is, 1% of cement by mass, is high enough to suppress ASR for green glass but not for brown 

glass.  

So far, the ASR suppressing mechanism of lithium is not well known [Taha and Nounu, 2009]. It 

was expected that lithium compounds could change the nature and chemical composition of the 
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ASR gel; reduce the solubility of the reactive silica; and reduce the ability of dissolved silica to 

be repolymerised and increase the repulsive force between the particles of the ASR gel and thus 

the expansive ability of the ASR gel will be reduced. Until now, there is no standard to specify 

the ASR of aggregates with lithium compounds as suppressant.  

g.  Comparison of different methods 

Different ASR suppressing methods are compared, as shown in Fig. 3.18, for green, brown and 

clear glass sand mortars with different glass contents at 14, 21 and 28 days. Fly ash apparently 

showed the highest reducing effect, followed by GGBS. The restraining effect of silica fume in 

clear glass sand is much more obvious than in green and brown glass. Both green and brown 

glass powder showed ASR suppressing effect in glass sand mortar, although the effect was less 

than fly ash and GGBS. Compared with the substitution of cement, addition of steel fiber or 

lithium compounds was less effective in reducing ASR expansion. It is suggested that concrete 

with recycled glass sand should incorporate mineral materials, such as fly ash and GGBS, in 

preventing potential deleterious ASR expansion, particularly in the case of clear glass. However, 

the negative effect of such ASR mitigation methods must also be noted. The addition of lithium 

compound would add to production costs of concrete, although the amount used in this study is 

low enough to avoid a substantial difference. In addition, the use of fly ash and GGBS could 

reduce concrete strength at the early age. Moreover, the utilization of steel fibers or silica fume 

could result in significant decrease in workability, for which superplasticizer would become 

necessary to maintain the same workability.  

3.3.4 Summary  

1. Use of waste glass in mortar resulted in higher air content and lower density and flow. It 

also resulted in lower compressive, flexural and splitting tensile strength, elastic modulus 

but better dimensional stability. However, the effect was minimal if glass content was 
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less than 50%. Also, due to a higher degree of contaminations clear glass mortar showed 

the poorest mechanical performance.  

2. Replacement of natural sand by waste glass particles led to higher resistance to chloride 

ion penetration. With respect to resistance to sulfate attack, glass sand mortar showed 

results comparable to normal sand mortar.  

3. Mortar with clear glass sand exhibited higher ASR expansion and was potentially 

deleterious if the glass content was higher than 50%; while green and brown glass 

mortars proved to be innocuous at any glass content. Also, ASR expansion decreased 

with smaller glass sand size, due to pozzolanic reaction of fine glass particles. Brown 

glass exhibited the least alkali reactivity, especially in long term, although the reason is 

not well known.  

4. Fly ash and GGBS were the most effective ASR suppressing methods. Addition of steel 

fibers or lithium compounds was less effective. The effectiveness of different methods,  

in decreasing order was   

(i) Fly ash, GGBS, Li2CO3, Silica Fume, Fiber, Powder, and  LiCl for green sand 

mortar, 

(ii) Fly ash, GGBS, Silica Fume, Fiber, Powder, Li2CO3, and LiCl for brown sand 

mortar, and 

(iii) Fly ash, GGBS, and Silica Fume for clear sand mortar. 

5. Green and brown glasses can be used in mortar as fine aggregates without compromising 

durability properties, regardless of content. For clear glass, ASR could be effectively 

reduced to acceptable limit using the mitigation methods mentioned above provided that 

the glass content is more than 25%.  
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3.4 Recycled Glass in Concrete 

3.4.1 Test Program 

As shown in Fig. 3.3b, properties of concrete containing glass sand as fine aggregates in fresh 

and hardened states were investigated. They included fresh density, air content and slump; 

compressive strength, splitting tensile strength and flexural strength, dynamic and static modulus 

of elasticity and drying shrinkage. In addition, durability in terms of resistance to chloride ion 

penetration was studied. ASR expansion was also investigated based on accelerated mortar bar 

test. Moreover, the use of 30% fly ash or 60% GGBS as cement replacement was also studied as 

ASR mitigation methods for which the compressive strength was also investigated. 

3.4.1.1 Mix Proportions of Concrete 

Three concrete mixes were designated, according to ACI 211.1, namely C30, C45 and C60, for 

compressive strength of 30, 45 and 60 MPa at 28 days. The water-cement (w/c) ratio was 0.45, 

0.38 and 0.32 respectively. The concrete mixes were designed for 100 mm nominal slump, with 

the use of superplasticizer. For each mix proportion, the natural sand was replaced by glass sand 

at 0, 25, 50, 75 and 100% by mass.  For concrete mixes of different grade, the water and coarse 

aggregates content were kept constant and the cement content was increased while the sand 

content decreased with lower w/c ratio. In the determination of the properties of glass concrete 

with mineral admixtures, 30% fly ash and 60% GGBS was used to separately substitute cement 

by mass in C45 concrete, at each glass sand replacement ratio. There were thus 25 mix 

proportions in total, as shown in Table 3.10. 

3.4.1.2 Materials and Test Methods 

Compared with the materials used in glass mortar, the only difference for glass concrete is the 

incorporation of coarse aggregates with maximum size of 19 mm, whose grading is plotted in 

Fig. 3.2. The oven-dry unit weight, specific gravity and water absorption capacity of coarse 
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aggregate are 1650 kg/m3, 2.65, and 0.8%, respectively. Apart from compressive strength which 

was tested following BS EN 12390-3, all the tests were conducted as per ASTM standards as 

shown in Table 3.4. For mixes with fly ash or GGBS, only compressive strength and ASR tests 

were carried out. It should be noted that the ASR was carried out on mortars screened from fresh 

concrete mixture. The accelerated mortar-bar tests followed ASTM C 1567 for concrete 

containing fly ash and GGBS.  

3.4.1.3 Preparation of Concrete Specimens 

All the concrete specimens were consolidated on a vibration table. For the ASR tests, mortar was 

collected by sieving the fresh concrete mixture through a 4.75-mm sieve and was then cast into 

bars. Therefore, the ASR test specimen contained no aggregate particle larger than 4.75-mm. All 

the specimens stayed in molds with moisture for 24 hours. After demolding, the specimens were 

thus transferred into a fog room (30 ˚C, 100% RH) until the test age. Regarding drying shrinkage, 

two prisms were cured in water for 27 days after demolding and then put in controlled room (30 

˚C, 65% RH) for length measurements after 4, 7, 14, 28 and 56 days of drying. For ASR test, the 

mortar bars were put in 80 ˚C water for 24 hours after demolding, and initial lengths were 

measured thereafter. They were then transferred into 80 ˚C 1 N NaOH solution and their lengths 

were measured at the following 4, 7, 10 and 14 days. For long term investigations, the mortar 

bars were measured weekly till 49 days. The dimensions and numbers of test concrete specimens 

are summarized in Table 3.4. 

3.4.2 Test Results and Discussion  

3.4.2.1 Fresh Properties 

a. Fresh density 

The fresh density of glass concrete is shown in Fig. 3.19. Fresh density obviously decreased with 

increasing glass sand replacement ratio and increasing w/c ratio. Compared with the specific 
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gravity of natural sand of 2.65, glass sand had a lower value of 2.53, leading to reduction in 

density at the same grade. Higher grade concrete mix had a higher proportion of cement which 

was of a higher specific gravity than sand, contributing to the increase in density. The test results 

in this study are consistent with other results reported in the literature [Park et al., 2004; Topcu 

and Canbaz, 2004; Taha and Nounu, 2008].  

b. Air content 

As shown in Fig. 3.20, all concrete mixes had air content between 0.5 and 1.5%. There seemed 

to be no clear trend in the relation between the air content and concrete grade. The air content did 

not increase unless the glass sand was higher than 25%. The irregular shape of glass sand gave a 

larger surface area and thus the concrete was able to retain more air voids. However, on the other 

hand, the smooth surface area of glass particles would retain less air voids. These two conflicting 

effects resulted in the minimum air content occurring at a glass content of 25%. The opposite 

conclusions on air content of glass concrete, by Park et al. [2004] and Topcu and Canbaz [2004], 

could be explained by these two effects.  

c. Slump 

In this study, all concrete mixes showed no bleeding or segregation during mixing and casting. 

All concrete mixes showed slump values of 100±20 mm, meeting the target workability (as 

shown in Fig. 3.21). The dosage of added superplasticizer was constant for each concrete grade, 

that is, 1.3, 2.6 and 3.6 L/m3 for C30, C45 and C60 mixes, respectively.  There was no clear 

change in the slump values due to glass sand. Although the sharper edge and more angular shape 

of crushed glass sand would reduce the slump of concrete [Park et al., 2004; Limbachiya, 2009; 

Taha and Nounu, 2009], its impermeable smooth surface may also cause poorer cohesion with 

cement paste [Terro, 2006]. These two opposing actions simultaneously result in non-prominent 

change on slump values.  
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Compared to manufactured aggregates and recycled aggregates, one apparent advantage of glass 

sand is its negligible water absorption. As a result, the glass particles would not absorb water 

from cement paste, leading to no reduction in workability.   

3.4.2.2 Mechanical Properties 

a. Compressive strength 

The compressive strengths of glass concrete at 7, 28 and 90 days are shown in Fig. 3.22. The 

strength of all concrete mixes increased with time and satisfied the design value at 28 days. At 7 

days, compared to the normal concrete, the strength of 25, 50, 75 and 100% glass sand concrete 

for C30, C45 and C60 were 101(±3), 92(±6), 87(±2) and 93(±6) %; 105(±3), 107(±1), 102(±3) 

and 108(±4) %; and 98(±3), 101(±2), 102(±6) and 102(±10)%, respectively. At 28 days, the 

relative strength would become 96(±4), 100(±4), 99(±4) and 97(±3) %; 101(±7), 104(±6), 

106(±1), 106(±6); and 96(±2), 96(±9), 96(±6) and 94(±9) %. For C30 concrete mixes, 

replacement of natural sand by glass sand would reduce the strength slightly. It is also noted that 

this reduction would be lesser with time, maybe as a result of pozzolanic reaction of glass sand. 

For C45 concrete mixes, the strength consistently increased with more glass sand, at both 7 and 

28 days, while for C60 the glass sand would slightly decrease the compressive strength at 28 

days although it increased the strength at 7 days. 

At the age of 90 days, all the concrete mixes manifested increasing strength with more glass sand. 

The relative strength was 102(±2), 113(±3), 111(±7), 121(±3) %; 100(±5), 107(±7), 116(±4), 

116(±5) %; and 99(±1), 102(±5), 102(±1), 111(±2) %. It can be attributed to the pozzolanic 

reaction of fine glass particles at long term. Some researchers reported that the inherent cracks of 

glass sand would compromise the compressive strength of concrete [Taha and Nounu, 2009]. 

However, in this study, this was not observed since the glass concrete continued to increase 

strength with more glass sand, especially in the long term. 
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From the test results, glass sand would have no obvious trend on compressive strength of 

concrete, up to 100% replacement. Compared with natural sand, the crushed sand had more 

angular shape, sharper edge and poorer geometry. Also, usually, the bond strength between glass 

particles and cement paste would be weakened due to the chemical contamination, which always 

exists for recycled waste glass. It might be the main reason for the decrease in compressive 

strength. However, the higher fraction of smaller sized particles would make better distribution 

or packing of concrete and hence mechanical performances. Moreover, angular particles might 

be able to improve concrete strength over rounded particles (natural sand in this study). Also, the 

crushed glass sand had an elongated aspect ratio, compared to natural sand, which may also 

contribute to the strength increase. The negative factors should be more prominent at early age, 

when the pozzolanic reaction was not greatly activated.  

As an extension of the study on glass concrete, use of mineral admixtures in concrete grade C45 

containing glass sand was examined. Fly ash and GGBS were used to replace 30% and 60% of 

cement, respectively, in C45 concrete.  The compressive strengths of glass concrete containing 

30% fly ash or 60% GGBS at 7, 28 and 90 days are shown in Fig. 3.23. The incorporation of 

mineral admixtures would not change the glass sand effect on compressive strength. At 7 days, 

both mineral admixtures resulted in lower strength due to the reduction of cement content and 

relatively slower pozzolanic reaction of the admixtures compared to cement. However, at 28 

days, the differences between mixes with and without fly ash or GGBS were significantly 

reduced. At 90 days, glass concrete with fly ash showed higher compressive strength than glass 

concrete without fly ash, while glass concrete with GGBS still showed lower strengths.  

b. Flexural strength 

As shown in Fig. 3.24, the flexural strength at 28 days increased with lower w/c ratio or higher 

grade of concrete. For each concrete grade, the flexural strength continuously increased with 

higher glass sand content up to 100%. Mix C60-100 exhibited the highest flexural strength of 



86 
 

8.14 MPa. The higher aspect ratio of crushed glass sand might have contributed to the higher 

flexural strength of concrete, in the same way as fibers in enhancing the resistance of concrete to 

tension. Kaplan [1959] found that flexural strength was increased more significantly by angular 

aggregates compared to compressive strength. These improvements can be explained by the 

greater degree of mechanical interlock, internal friction, and increased surface area associated 

with angular aggregates [Alexander and Mindess, 2005].  

c. Splitting tensile strength 

The test results of splitting tensile strength of glass concrete at 28 days are shown in Fig. 3.25. 

The splitting tensile strength increased with higher concrete grade, due to lower w/c ratio and 

thus less porous micro-structure of cement paste. The splitting tensile strength was not reduced 

by the use of glass sand for all concrete grades. In fact, mixes with 100% glass sand showed the 

highest splitting tensile strength, for each concrete grade. In contrast to compressive strength, the 

splitting tensile strength was less vulnerable to the reduced cohesion between particles and paste.  

d. Modulus of elasticity 

Fig. 3.26 shows the modulus of elasticity of glass concrete at 28 days. The dynamic modulus 

appeared to be insensitive to both glass sand content and w/c ratio, with all mixes showing values 

between 42.1 and 44.0 GPa. The static modulus of glass concrete varied from 30.0 to 33.0 GPa. 

It increased slightly with higher concrete grade and glass sand content, especially for C30 

concrete. As mentioned earlier, better packing of aggregates can be achieved by crushed glass 

sand due to its finer size distribution. Uniformly distributed aggregate particles might increase 

the modulus of concrete because of higher degree of interlocking and particle interference. The 

higher modulus of elasticity of glass compared with natural sand may lead to higher elastic 

modulus for concrete containing glass sand [Yang et al., 1995].  
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e. Drying shrinkage 

Drying shrinkages of glass concrete are shown in Fig. 3.27. According to ACI 224R-01, a typical 

value for drying shrinkage strain of concrete in structures is 600×10-6 mm/mm. Up to 90 days, all 

the concrete mixes showed stable shrinkage values less than 600×10-6. At lower w/c ratio, the 

drying shrinkage could be more affected by the glass sand surface characteristics, surface texture 

and ITZ microstructure. For the C45 and C60 concrete mixes, particularly the latter, use of glass 

sand could reduce drying shrinkage due to the negligible water absorption of glass sand [Edward, 

1966, Alexander and Mindess, 2005; Kou and Poon, 2009; Wang and Huang, 2010; Ling et al., 

2011], although the reduction was not always consistent because of the reduced fineness of glass 

sand. Compared with natural sand, the glass sand may not absorb water from cement paste due to 

its negligible water absorption, which could lower the moisture loss from cement paste, leading 

to reduce the drying shrinkage. However, for C30 concrete, no obvious effect of glass sand on 

drying shrinkage was observed. It is postulated that the porous microstructure at higher w/c ratio 

would dominate the drying shrinkage rather than the aggregate particle properties. As a result, 

the moisture movement or evaporation was less hindered.  

3.4.2.3 Durability 

a. Rapid chloride permeability test (RCPT) 

The RCPT results at 28 and 90 days are shown in Figs. 3.28, together with the migration 

coefficient calculated by Eq. (3.1). At 28 days, for the same w/c ratio, the total charge passed 

was substantially reduced by increasing glass sand content, except 25% for C30 and C45. For 

C30 and C45 concretes, plain or 25% glass concrete exhibited test results higher than 2000 

Coulombs, indicative of moderate permeability according to ASTM C 1202. With 50 and 75% 

glass sand, the RCPT result might be reduced to between 1000 and 2000 Coulombs, classified as 

low permeability concrete. If natural sand was totally replaced, the charge passed of less than 

1000 Coulombs could be achieved. For C60 concrete, plain, 25 and 50%, 75 and 100% glass 
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sand concrete showed moderate, low and very low permeability, respectively. In addition, the 

total charge passed also decreased with decreasing w/c ratio, due to the improved CSH 

microstructure and reduced porosity. However, this trend could not be clearly seen at 75 or 100% 

glass sand replacement ratio, indicating that w/c ratio was not critical at such high glass sand 

content. At 90 days, each concrete mix showed reduced permeability because of more hydration 

of cement and denser microstructure of cement paste. Also, the effect of glass sand on 

permeability remained unchanged.  

The migration coefficient of chloride ions exhibited almost the same trend as RCPT results; it 

decreased with time from 28 to 90 days, and with lower w/c ratio and higher glass sand content. 

The test results indicated that the resistance of concrete to chloride ion penetration was enhanced 

in terms of both total charge passed and depth of chloride penetration. The main reason for the 

higher resistance of glass sand concrete was the improvement in the microstructure of ITZ and 

cement paste matrix due to the pozzolanic reaction of fine glass particles. The reduced w/c ratio 

also improved the microstructure of cement paste. 

b. Alkali-silica reaction (ASR) expansion  

The ASR expansion results of C30, C45 and C60 glass concrete are shown in Fig. 3.29. All 

concrete mixes showed expansion less than 0.1% at 14 days, indicative of innocuous sand. Also, 

at 28 days, all mixes showed expansion below 0.2% except mix C60-0, suggesting that no 

potential deleterious ASR would occur in glass concrete. At 49 days, all reference concrete 

mixes without glass sand exhibited expansions greater than 0.2% while mixes with 75 and 100% 

glass sand consistently showed values less than this limit. ASR expansion decreased with glass 

sand content, regardless of concrete grade. The reduced ASR expansion indicated that glass sand, 

at least that of brown color, would not react with alkali in cement to cause ASR expansion. 
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One rational explanation is that calcium ions dissolved from soda-lime glass led to non-swelling 

ASR gel, which was confirmed by Rajabipour et al. [2010] via SEM observation and EDS 

analysis. It was found that the expansive ASR only occurs inside micro-cracks (< 2 μm) of glass 

particles, with pozzolanic reaction occurring at the glass particle surface. In this study, no large 

micro-crack was found in the brown glass particles, resulting in non-expansive pozzolanic 

reaction at the glass surface. This was verified by SEM results, as shown in Fig. 3.30. Brown 

glass particles of various sizes were not subjected to ASR deterioration, as no crack was 

observed at the surface or inside the particles (Fig. 3.30a). From Figs. 3.30b~d, the reaction 

product at glass surface was found to be non-swelling and did not cause cracks, supporting the 

hypothesis that pozzolanic reaction more readily occurs rather than ASR [Rajabipour et al., 

2010]. The pozzolanic reaction product, secondary CSH gel, seemed to produce a densified ITZ 

microstructure, with lesser porosity. This thin layer of coating (about 2 μm) could hinder the 

further ingress of hydroxide ions which could corrode the glass structure. 

In addition, the ASR expansion was generally lower for concrete mixes with lower compressive 

strengths (higher w/c ratio), as shown in Fig. 3.31. Therefore, higher strength would not equate 

with better durability, in terms of ASR. Also, for concretes containing 25, 50, 75 and 100% glass 

sand, the maximum ASR expansion occurs at a w/c ratio of 0.38, that is, grade C45 concrete. 

The mix proportions are shown in the Table 3.11. Grade C60 concrete with the lowest w/c ratio 

of 0.32, and lowest sand content, showed the highest expansion at 28 days. The reason may be 

due to the higher cement content. It is well known that alkalis from cement hydration are the 

necessary conditions for ASR to occur. In the accelerated mortar bar tests, NaOH solution is 

thought to provide sufficient amount of alkali for sand to react with. However, the fact that the 

alkali penetrated only up to the surface layer of mortar would result in no reaction for the sand 

inside the mortar, due to the absence of alkali. Therefore, mixes containing more cement will 

facilitate ASR to occur by providing alkalis resulting in swelling of reaction products. On the 
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other hand, with lower w/c ratio, the stiffness and tensile strength of cement paste will increase 

and thus restrain the development of ASR expansion. In summary, w/c ratio could either increase 

or decrease the ASR expansion. As a result, the largest expansion occurred with C45 concrete 

containing glass sand.  

From the test results shown in Figs. 3.32 and 3.33, the ASR expansions of C45concrete mixes 

were effectively decreased, by cement replacement with fly ash or GGBS, regardless of glass 

sand content or test age. According to ASTM C 1567, expansion less than 0.1% at 14 days for 

combinations of cement, fly ash or GGBS and aggregate indicates a low risk of deleterious 

expansion. All the mixes showed expansion smaller than 0.02% at 14 days, 0.04% at 28 days and 

0.1% at 49 days. It is noted that the expansion rate was also reduced compared to concrete with 

pure cement. The effect of fly ash and GGBS on ASR can be attributed to: (1) the reduced 

alkalinity of the pore solutions by depletion of cement and thus alkalis content; (2) the restricted 

transport properties of the cementitious system via reduced porosity and changed nature of the 

ITZ; and (3) formation of extra CSH phases via pozzolanic reactions and less CH available for 

ASR [Helmuth, 1993]. The excellent ASR mitigating efficiency of fly ash and GGBS can 

substantially prolong the life-time of structure, if cracking due to ASR is considered as vital.    

3.4.3 Summary  

In this study, various contents of glass particles were used as sand substitution in concrete of 

three grades from 30 to 60 MPa. The following conclusions can be drawn from the test results:  

1. Glass sand caused no obvious influence on fresh properties of concrete, that is, only 

slight reduction in fresh density, marginal increase in air content and negligible change in 

slump were observed. 

2. Up to 100% replacement ratio, glass sand would not reduce mechanical properties. In 

contrast, it could even increase the compressive strength, splitting tensile strength, 
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flexural strength, and static modulus. The drying shrinkage would be inconsistently 

reduced with the use of glass sand at lower w/c ratios. 

3. Resistance to chloride ion penetration of concrete was significantly improved by using 

glass sand. Glass concrete at various glass sand contents (with or without mineral 

admixtures) showed innocuous ASR expansion at 14 and 28 days.  

4. Recycled waste glass can be incorporated into concrete as fine aggregates, up to 100% 

replacement ratio, without deleterious effect on concrete. Mineral admixtures can also be 

introduced in glass concrete to further improve its durability.  

 

3.5 Comparison of Effect of Glass Sand in Mortar and Concrete 

From the experiments on glass sand mortar and concrete, it is found that the effect of replacing 

natural sand with glass particles was not consistent between mortar and concrete. In the case of 

mortar, the addition of glass sand resulted in a reduction in flowability and mechanical properties. 

However, in case of concrete, use of glass sand resulted in similar or improved workability and 

mechanical properties.    

The 4-level micro-structure of concrete and its ITZ are shown in Figs 3.34 and 3.35, respectively. 

Concrete is a three phase material, at the scale of 10-1-10 m, composed of aggregates embedded 

in a mortar matrix and an ITZ. At the scale of 10-3-10-1 m, mortar is also a three phase composite 

material composed of cement paste matrix, sand particles and ITZ. From the point of view of 

composites, the properties of mortar depend on the individual properties of each phase while 

they affect those of concrete. Therefore, the effect of replacing natural sand by glass particles in 

concrete can be attributed to the change in mortar properties. 

As discussed earlier, the effect of glass particles could be negative or positive. For instance, in 

terms of flowability or workability, the more angular shape, sharper edge and higher aspect ratio 
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of glass particles are detrimental while the smooth surface texture and negligible water 

absorption are beneficial. The net effect could be negative or beneficial, depending on which 

factors are more dominant. It is expected that the net effect is related to the sand/cement (s/c) 

ratio, by mass. The ratio of s/c is 2.75 for mortar, and 1.96, 1.33 and 0.93 for C30, C45 and C60 

concrete, respectively. A higher s/c ratio means less cement paste to coat the surface of sand, 

which increases the friction between aggregate particles as well as hinders the movement of 

cement paste. Therefore, the flowability of mortar was greatly reduced while the workability of 

concrete was not much changed.  

Also, the different effect of glass sand on mechanical properties of mortar and concrete could 

also be explained by the s/c ratio. In concrete, a lower s/c ratio results in an increased thickness 

of cement paste between sand particles, which provides a better binding effect for sand particles. 

It means that the mortar in concrete has better mechanical properties, than on its own.  

 

3.6 Expanded Study on ASR in Mortars with Glass Sand 

As ASR remains a major concern in the use of glass sand, an expanded investigation on ASR 

expansion of mortar with glass sand was carried out, for the better understanding and control of 

ASR in glass mortar and concrete. The long term performance of green and brown glass sand 

mortar is first reported herein. Next, ASR was studied using single-size glass sand at 100% 

replacement of natural sand, and this was aimed at examining the contribution of each single 

sand size to ASR. Finally, the optimal content was explored for each mitigation method, such as 

mineral and chemical admixture, and fiber reinforcement, for 1.18-mm green glass sand. 

3.6.1 Comparison of ASR in Green and Brown Glass Mortars  

An extensive study was carried out to explore the ASR in green and brown glass sand mortars in 

the long term. The mix proportions were the same as mortar (that is, water, cement and sand) 
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portion of C30, C45 and C60 concrete mixes, as listed in Table 3.11. However, the mortar was 

not screened from fresh concrete mixture but mixed according to the mix ratio. In the study, the 

size distributions of both green and brown glass sands were strictly according to ASTM C 1260 

requirement (Table 3.5).  

The ASR expansions of brown glass sand mortars of C30, C45 and C60 mixes are plotted in Fig. 

3.36. All the mixes showed ASR expansion less than 0.2% at 28 days, suggesting alkali non-

reactivity. The test results indicated that ASR expansion consistently decreased with higher 

brown glass sand content at each mix. At 100% of sand replacement, the ASR expansion and 

development rate were extremely low; at the end of the test period of 140 days, the expansion 

was less than 0.05%, regardless of mortar mix. Also, no crack was observed on surface of 

specimens with 100% brown glass sand. This finding confirmed some previous conclusions that 

soda-lime glass sand might not exhibit alkali reactivity [Scanni and Bignozzi, 2009; Zhu et al., 

2009]. It can be attributed to the pozzolanic reaction of fine glass sand, which has been 

confirmed by previous literature [Dyer and Dhir, 2001; Xie and Xi, 2002; Shi et al., 2005] and 

the calcium ions from the soda-lime glass, which could lead to non-expansive ASR gel.  

The ASR expansions of green glass sand mortar of C30, C45 and C60 mixes are also shown in 

Fig. 3.36. The ASR behavior of green glass sand mortar was quite different from brown glass 

sand mortar, especially after 28 days. Within the first 28 days (or 21 days for C45), the green 

glass sand mortar showed similar trend as brown glass sand mortar, that is, reduced expansion 

with increasing glass sand content. However, thereafter, the ASR expansion showed a reversed 

trend, with higher ASR expansion at higher glass sand content. The ASR expansion rate of 75% 

green glass sand mortar increased noticeably faster than 25 and 50% green glass sand mortar. At 

49 days, mortar with 75% green sand showed the highest expansion, followed by 50 and 25%, 

for both C45 and C60 mixes. Mortar with 100% green sand did not expand faster before 35 days. 

Although at 49 days, the 100% glass mortar of all mixes did not show the highest ASR 
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expansion, they exhibited the highest expansion rate which suggested that they might have the 

greatest expansion at a later age, e.g., that of C60 after 112 days. The visual observation also 

confirmed this result (Fig.3.37a), with a more map-pattern cracks were detected in 100% mortar 

specimens. In addition, for C30/45/60, mixes with 0, 25, 50 and 75% green glass sand registered 

0.2% expansion almost at the same time, indicating comparable durability with respect to ASR. 

With 100% of green glass sand, mortar would not expand more than 0.2% before 49 to 56 days.   

For the effect of w/c ratio on ASR, it can be seen from Fig. 3.38 that C45 mix (w/c=0.38) would 

exhibit the highest expansion while C30 mix (w/c=0.49) showed the lowest for both brown and 

green glass sand regardless of glass sand content (except green C60-100). Higher w/c ratio would 

have two effects on ASR: (1) increased expansion due to reduced tension strength and high 

susceptibility to tensile cracking; and (2) decreased expansion because of a more porous 

microstructure, which enables the formed ASR gel to escape from reaction site, releasing the 

tensile stress which is built up in glass due to the constraint. Therefore, a pessimum effect of w/c 

ratio on ASR expansion may result from these two factors.  

3.6.2 Effect of Glass Particle Size on ASR Expansion 

The effect of glass particle size on ASR expansion was investigated at two different mixes, that 

is using ASTM standard mix and a slightly modified mix (see Table 3.11). In this study, all 

mortar mixes contained 100% single-sized glass particles. It is well known that single-size 

particles will result in larger void content than well-graded particles. Therefore, more paste will 

be required to fill the increased voids. To produce a good quality mortar, the s/c ratio was 

decreased from 2.25 in ASTM standard mix to 1.6 in modified mix, while the w/c ratio remained 

at 0.47.  

The effect of green and brown glass particle size on ASR expansion is shown in Fig. 3.39. For 

green glass sand mortar, the ASR expansion increased with the glass sand size, and peaked at a 
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particle size of 1.18 mm, regardless of mix ratio. With a larger size of 2.36 mm, the ASR 

expansion reduced slightly.  

Similar results have been reported by Idir et al. [2010]. Smaller glass sand should have larger 

surface area, which allows ASR to readily occur, causing more expansion. However, with a size 

lower than the critical value, pozzolanic reaction would occur instead, which may form non-

swelling CSH gel. Some models based on the assumption that ASR is a surface reaction have 

been proposed to explain this pessimum effect [Bazant and Steffens, 2000; Bazant et al., 2000]. 

However, based on previous discussion, swelling ASR would occur inside inherent micro-cracks 

of glass particles, rather than at surfaces. Therefore, more inherent micro-cracks would render 

more reaction and higher expansion.   

It is interesting to note that such pessimum was not observed for brown glass sand; as particles of 

all sizes 2.36 mm showed low expansions except after 49 days regardless of mix ratio (Figs. 

3.39c and d). Therefore, the study on effect of particle size provides a plausible explanation on 

the different ASR expansion of green and brown glass in the long term. The extremely high 

alkali reactivity of 1.18 mm and 2.36 mm green sand particles might cause increased expansion 

and rapid expansion rate. Thus, the following section will discuss the versatile ASR mitigation 

methods based on the modified mix with 1.18 mm green sand particles.  

For natural sand, ASR expansion was largest with 0.3 and 0.6 mm size sand (Fig. 3.39e). The 

results confirm that traditional ASR is a surface reaction, increasing with larger surface area. 

When a large amount of reactive material is present in a finely divided form (i.e., under 75 μm), 

there might be considerable petrographic evidence of the ASR and yet no significant expansion 

[Mehta and Monteiro, 2006].  

Fig. 3.40 displays the microstructure of mortar with 1.18-mm green glass sand and shows some 

representative cracks caused by ASR. There were two types of cracks in glass sand mortar: 
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cracks inside of the glass particles (Figs. 3.40a and g); and cracks in the matrix which initiated 

from inside the glass particles (Figs. 3.40b and c). No crack was found along the surface of glass 

particle (Fig. 3.40d). Fig. 3.40g presents that a typical crack, about 10 μm wide, formed within a 

glass particle due to the expansive stress of ASR gel after imbibing water. Fig. 3.40b shows that 

the crack extended from the glass sand particle to cement paste and Fig. 3.40c clearly displays 

that the crack, around 15 μm wide, was filled with the ASR gel, which was obviously different 

from cement paste in morphology and microstructure. It is postulated that the ions, such as OH-, 

Na+, Ca2+ penetrate into the glass structure (inherent micro-cracks inside the glass particles could 

render this penetration) and form ASR gel which causes expansion. This expansion results in 

tensile stress inside glass particles. Moreover, this expansion would be restrained by the 

surrounding cement paste matrix, thus causing tensile stress to develop in the matrix. Once the 

tensile stress exceeds the tensile strength of glass, cracks would initiate and propagate in the 

glass particles (Figs. 3.40e, f and g). Subsequently, such cracks may extend to cement paste 

matrix if the tensile stress is more than the tensile strength of cement paste (Figs. 3.40b and c). It 

is noted that there were also some micro-cracks in cement paste matrix, far away from the glass 

surface (Fig. 3.40i), which seemed to be caused by drying shrinkage during the SEM sample 

preparation. The ASR mechanism for glass particle is represented in Fig. 3.41.  

3.6.3 Optimal Content of ASR Mitigation Methods   

From earlier test results (section 3.3.3.2), the content of each ASR mitigation method was fixed 

corresponding to common usage. The effect of content (or the optimal content) was determined 

in this extensive study. The various amounts investigated for different methods are summarized 

in Table 3.12. Three types of ASR mitigation methods were considered: (a) replacement of 

cement by supplementary cementitious material (SCM); (b) addition of fiber reinforcement; and 

(c) addition of lithium compounds. The results (with average and variation) of each method at 

different days are shown in Fig. 3.42. The ASR reduction efficiency (defined as the ratio of 



97 
 

reduced ASR expansion over the value for 1.18 mm green glass sand mortar) for each method is 

listed in Table 3.13, for 14, 21, 28 and 56 days.  

3.6.3.1 Supplementary Cementitious Materials (SCM) 

As expected, the replacement of cement by SCM, e.g. fly ash, GGBS and silica fume in this 

study, can prevent or minimize ASR, because of their pozzolanic reaction. A number of studies 

have established the ASR suppressing mechanism of pozzolanic reaction [Diamond, 1981; 

Hasparyk et al., 2000; Helmuth, 1993; Monteiro, et al., 1997; Turanli et al., 2003; Xu et al., 

1995], which results in: (a) enhanced impermeability of cement paste and hence reduced 

mobility of ions (particularly OH- in AMBT in this study); (b) reduced alkalinity of pore 

solutions as a result of depletion of cement; (c) reduced amount of Ca(OH)2, which formed into 

secondary CSH gel; and (d) increased strength of cement paste provided by mineral admixtures, 

leading to higher resistance to the expansive stress developed by ASR.  

In the case of fly ash, the ASR restraining effect was clearly significant, both in terms of absolute 

expansion and expansion rate (Figs. 3.37c and 3.42a). All mortar specimens with fly ash showed 

significantly low expansion values, less than 0.02% at all the ages up to 56 days. This effect was 

prominent even with 10% of fly ash, and higher fly ash content did not change the results. It is 

also noted that some early-age values were negative, indicative of autogenous shrinkage instead 

of expansion. Although ASR expansion generally increased with time, a decrease in expansion 

was also observed from 14 to 21 days and from 49 to 56 days. Some researchers have reported 

the self-healing of micro-cracks in cement systems due to fly ash [Termkhajornkit et al., 2009]. It 

has been specifically reported that cracks with widths below 0.1 mm can be closed by a self-

healing process [Reinhardt and Jooss, 2003; Sahmaran et al., 2008]. The self-healing capacity 

due to fly ash may origin from its pozzolanic characteristics, which can occur at later age, thus 

filling the pores and micro-cracks. As a result, the resistance of paste to alkali diffusion from 

external NaOH solution would increase.  
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With cement partially replaced by GGBS, the ASR expansion of glass mortar decreased with 

higher content of GGBS (see Figs. 3.37d and 3.42b). Up to 28 days, mixes with 30% or more 

GGBS exhibited less than 0.2% ASR expansion. Also, at 56 days, the ASR expansion was less 

than 0.2% with 45% GGBS, while with 60% GGBS it was only 0.02%. Based on the test results, 

GGBS was effective in reducing ASR expansion if at least 30% of cement content was replaced 

by it.  

With silica fume, ASR expansion was effectively suppressed when it replaced 12.5% of cement. 

The expansion was higher than 0.20% at 14 days, with 5%, 7.5% and 10% silica fume, although 

they all exhibited less expansion than the reference mortar specimen. Compared with the first 14 

days, the ASR expansion increased very slowly thereafter. Fig. 3.37e shows the cracks on the 

surface of mortar bars with silica fume at low silica fume contents. There were only few major 

cracks which increased in width with time, while the remaining surface area remained uncracked.  

In addition, mortar with 10% silica fume showed the highest expansion, indicating a pessimum 

content. Chen et al. [1993] reported that the pessimum replacement for densified silica fume in 

suppressing ASR expansion was 15%. Hasparyk et al. [2000] also observed a pessimum for 

silica fume at 4% replacement when dealing with the ASR of quartzite aggregate, while 12% 

replacement would produce innocuous behavior. This critical content agrees well with the result 

in this study. However, no plausible reason has been provided to explain this pessimum effect.  

The addition of silica fume can significantly reduce the porosity of cement paste, especially at 

ITZ, because of its ultra-fine particle size (average 0.1 μm compared with 10 μm of cement 

particle). Compared to this filling effect, the pozzolanic reaction might play a secondary role in 

restraining ASR expansion. The less produced gel, due to the reduced alkaline and higher 

restraining, will increase the volume and stress in the vicinity of reaction site and crack will 

occur once the expansive stress exceeds the tensile strength of cement paste. Thus, it can result in 
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higher expansion due to higher degree of restraining if more silica fume is used. However, if 

enough cement is substituted by silica fume (12.5% in this study) the alkali will be quite low and 

less likely to react with glass particles. Furthermore, Diamond [1997] stated that silica fume in 

concrete does not always prevent ASR distress; instead, sometimes it can induce ASR distress 

particularly when oversized or un-dispersed grains can react to generate expansive ASR gel if the 

alkali hydroxide concentration is high enough.  

In summary, it should be noted that not all the SCMs were able to adequately reduce ASR. It 

depends on the ASR refraining mechanisms of each SCM and the amount used.  

3.6.3.2 Fiber Reinforcement 

The ASR expansion of mortar bars with varying amount of steel fibers (smooth fiber with length 

of 5 mm and diameter of 0.16 mm) is shown in Fig. 3.42d. The overall ASR restraining 

efficiency of steel fiber was less than SCMs. Adding more than 1% of steel fiber could 

effectively reduce the expansion below 0.1% at 14 days. However, all mortars with steel fibers 

had expansion exceeding 0.2% at 28 days and 0.7% at 56 days. Also, a pessimum content of 1% 

was observed at 28 days. At less than this content, more fibers may cause greater expansion. 

Turanli et al. [2001] reported that 1% of steel microfiber would instead increase the ASR 

expansion than the reference plain specimen, but no reason was provided. The possible reason 

could be the relatively weak bond at fiber-matrix interface (as shown in Fig. 3.40i), through 

which the alkali ions can penetrate to reach the glass particles more easily. Exceeding this 

pessimum content, more fibers may effectively restrain crack growth via fiber bridging function. 

Based on the chemo-mechanical confinement model [Ostertag et al., 2007], if the ASR gel is 

prevented from leaving the reaction site through the cracks, the Si4+ ion concentration would 

increase, retarding further dissolution of glass sand. However, this pessimum effect disappeared 

after 28 days. At 56 days, cracks were clearly observed on the surface of mortar bars although 

the expansion decreased consistently with higher steel fiber content (Fig. 3.37f).  
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3.6.3.3 Lithium Compounds 

The appearance of mortar bars with of LiCl and Li2CO3 are shown in Figs 3.37g and h, and test 

results are shown in Figs. 3.42e and f. Both lithium salts can reduce the ASR expansion 

remarkably, to far below 0.1%. The difference between 0.5 and 2% of lithium compound was 

quite small. The efficiency of LiCl and Li2CO3 was comparable. Some literature reported the 

minimum value of molar ratio of [Li]/[Na] to effectively reduce ASR expansion, such as 0.9 for 

LiCl [Collins et al., 2004], which was not observed in this study, suggesting that 0.5% by mass 

of cement should be  enough for LiCl and Li2CO3 to control ASR.  

3.6.3.4 Comparison of Different Methods 

From Table 3.13, the optimum content for each method is determined as follows: 10-50% for fly 

ash; 45-60% for GGBS; 12.5% for silica fume; 1.5-2.0% for steel fiber; and 0.5-2.0% for lithium 

chloride or lithium carbonate. Moreover, the effectiveness of different methods, at corresponding 

optimum content, generally decreases in the order of: fly ash, lithium compounds, GGBS, silica 

fume, and steel fibers. 

The type and amount of ASR suppressor to be used should be selected according to user’s 

requirement, such as compressive strength. The compressive strengths of mortar with different 

amounts of each method at 28 days are shown in Table 3.14. From the test results, more than 20% 

strength will be lost if fly ash content exceeds 40%. Although this strength loss can be offset by 

pozzolanic reaction at a later age, caution should be exercised if early strength of concrete is of 

main concern. In contrast, even at 60% replacement ratio of cement by GGBS, compressive 

strength would not be affected. This is due to the high CaO content of 40%, which could be 

converted to Ca(OH)2 and result in pozzolanic reaction at an early age. This is also the reason for 

the usage of high GGBS content as cement replacement.  

However, silica fume appeared to actually reduce the compressive strength rather than increase it. 

Silica fume may be more pronounced in pore structure refinement with w/c ratio lower than 0.47, 
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which is used in this study. The other reason may be the un-dispersed grains of silica fume, as 

discussed by Diamond [1997]. It should be mentioned that in this study no superplasticizer was 

used for the dispersion of silica fume to avoid complexity in analyzing the results. All mortars 

containing silica fume exhibited sufficient flowability for casting.  

The deformability (or strain at peak stress) of mortar with steel fibers under compression was 

significant increased, although the compressive strength was actually reduced. The benefit of 

fiber reinforcement for cement-based composites is in toughness, ductility, impact resistance, 

fatigue endurance and impermeability, rather than on compressive strength.  

With regard to the addition of lithium compounds, particularly Li2CO3, the compressive strength 

of mortar would also be reduced. It is postulated that the carbonate retards the hydration of 

Portland cement and thus delay the alkali-silica reaction. Since lithium treatment is expensive, it 

would presumably be applied only to those concretes at high risk of ASR [McCoy and Caldwell, 

1951; Diamond, 1997].  

3.6.3.5 Practical Use of Fly Ash and GGBS as ASR Suppressor 

For practical ASR mitigation, fly ash and GGBS are recommended, especially if sustainability 

and economy concerns are taken into account. It is well known that fly ash and slag, as industry 

by-products, are disposed in landfills in massive quantities all over the world since they are not 

yet re-utilized in sufficiently large amount. If they can be used as cement replacement, not only 

negative environmental impacts are reduced but also better concrete durability (i.e. the reduced 

ASR expansion for glass mortar in this study) can be achieved.  

With respect to ASR restraining, steel fiber, silica fume and lithium compound may lose 

competition due to their higher prices, since concrete is a cost-sensitive industry.  

As a final stage of study, 30% fly ash and 60% GGBS were selected as ASR reducing methods 

to examine the expansion of C45 green glass sand mortar (with sand grading following ASTM C 
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1260). The results are shown in Fig. 3.43. The ASR reductions at different ages are also listed in 

Table 3.15. Compared with the reference green glass sand mortar, all mortars with 30% fly ash 

or 60% GGBS exhibited substantially smaller expansions, less than 0.1% up to 49 days 

regardless of glass sand content. With the use of fly ash or GGBS, the alkali reactivity of green 

glass sand was found to diminish since mortar with higher content of green glass showed less 

expansion. In addition, the suppressing effect of fly ash and GGBS was more pronounced at later 

age, from less than 70% (mostly) at 7 days to more than 90% (except the reference mortar) at 49 

days. It is noted that at early age, some mortar mixes with green glass sand such as C45-100 

exhibited higher expansion instead (Table 3.15). It might be due to the extremely small 

expansion of reference mortar at early age (Fig. 3.36e). After 21 days, all mortar mixes 

containing fly ash or GGBS exhibited less expansion compared with the reference mortar with 

the same glass content. Therefore, fly ash and GGBS were proved to be effective at restraining 

ASR expansion for glass sand mortar.  

3.6.4 Summary  

From the experimental investigations on ASR expansions of green and brown glass sand mortars, 

the following conclusions can be drawn: 

1. Brown glass sand showed better ASR resistance than green glass sand in the long term. 

The reason is attributed to the extreme alkali reactivity of 1.18 mm glass particles in 

green glass sand.  

2. Higher strength (or lower w/c ratio) does not necessarily mean better durability of 

concrete with respect to ASR, due to the reduced porosity which caused slower release of 

formed expansive ASR gel.  

3. Not all the mitigation methods showed increasing efficiency with higher utilization 

amount. The optimal content for each mitigation method is determined as 10-50% for fly 
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ash, 45-60% for GGBS, 12.5% for silica fume, 1.5-2.0% for steel fibers and 0.5-2.0% for 

lithium compounds. 

4. Fly ash and GGBS could be used for practical application on the basis that they both 

remarkably suppressed ASR expansion.  

 

3.7 Summary 

Recycled waste glass was used as alternative to natural sand, up to 100 percent, in cement mortar 

and concrete. The influences of glass sand on major properties of mortar and concrete have been 

reported in this Chapter. The conclusions can be drawn: 

1. Mechanical performance of mortar would be reduced by the use of glass sand while that 

of concrete was enhanced instead. The durability properties of both mortar and concrete 

were improved due to the pozzolanic reaction of fine glass particles.  

2. Clear glass showed much higher alkali reactivity compared to brown and green glass. At 

the same time, green glass exhibited larger ASR expansion in the long term, attributed to 

the extremely low alkali resistance of green glass particles with size of 1.18 mm.  

3. It was observed that ASR for glass particle was not a surface reaction but initiated from 

pre-existed internal cracks of glass particle. Cracks form initially inside glass particles 

and grow in width and finally expand to surrounding cement paste. 

4. Among various ASR mitigation methods, fly ash and GGBS proved to be the most 

efficient at optimum cement replacement of 10-50% and 45-60%, respectively. 
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Table 3-1: Chemical compositions of green, brown and clear glass, and natural sand 

Composition, % Green Brown Clear Natural Sand 

SiO2 71.22 72.08 72.14 88.54 

Al2O3 1.63 2.19 1.56 1.21 

Fe2O3 0.32 0.22 0.06 0.76 

CaO 10.79 10.45 10.93 5.33 

MgO 1.57 0.72 1.48 0.42 

Na2O 13.12 13.71 13.04 0.33 

K2O 0.64 0.16 0.62 0.31 

TiO2 0.07 0.1 0.05 0.05 

Cr2O3 0.22 0.01 — — 

 
 
 
 
 
 

Table 3-2: Chemical compositions of cement, fly ash, GGBS and silica fume 

Composition, % Cement Fly ash GGBS Silica fume 

SiO2 20.8 38.9 32.15 95.95 
Al2O3 4.6 29.15 12.87 0.28 
Fe2O3 2.8 19.64 0.36 0.32 
CaO 65.4 2.5 40.67 0.16 
MgO 1.3 2.1 6.05 0.37 
SO3 2.2 0.19 4.95 0.18 

Na2O 0.31 0.26 0.28 0.05 
K2O 0.44 0.48 0.51 0.57 

  

 

Table 3-3: Physical properties of cement, fly ash, GGBS and silica fume 

Physical test Cement Fly ash GGBS Silica fume 

Fineness 
Blaine specific surface 

area of 393 m2/kg 
85% passing  

45 µm 
Average primary 

particle of 16.7 µm 
BET surface area 

of 21.33 m2/g 
Specific gravity 3.15 2.20 2.93 2.20 
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Table 3-4: Test properties, specimen numbers, test age and dimensions, and standard methods for 
glass mortar and concrete 

Test 
No. of 

specimens
Test age, 

days 
Dimensions, 

ASTM standards 
mm 

Mortar 

Fresh density C 185 

Air content C 185 

Flow C 1437 

Compressive strength 6 7, 28 50×50×50 C 109 
Flexural strength 6 7, 28 40×40×160 C 348 

Elastic modulus 3 28 Ø100×200 C 469 & 215 

Splitting tensile strength 3 28 Ø100×200 C 496 

Drying shrinkage 3 56 25×25×285 C 596 

RCPT 3 28 Ø100×50 C 1202 

ASR 3 7-28 25×25×285 C 1260 & 1567 

Sulfate attack 3 28 40×40×160 C 267 

Concrete 

Fresh density C 138 

Air content C 138 

Slump C 143 

Compressive strength 9 7, 28, 90 100×100×100 BS EN 12390-3 

Flexural strength 3 28 100×100×400 C 78 

Elastic modulus 3 28 Ø100×200 C 469 & 215 

Splitting tensile strength 3 28 Ø100×200 C 496 

Drying shrinkage 2 90 75×75×285 C 157 

ASR 3 7-49 25×25×285 C 1260 & 1567 

RCPT 6 28, 90 Ø100×50 C 1202 
 

Table 3-5: Grading requirement of sand by ASTM C 1260 

Sieve size 
Mass, %

Passing Retained on 

4.75 mm 2.36 mm 10 

2.36 mm 1.18 mm 25 

1.18 mm 600 μm 25 

600 μm 300 μm 25 
300 μm 150 μm 15 
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Table 3-6: Mix proportions of glass mortar for ASR study 

Mix No. Water, g Cement, g Pozzolan, g Sand, g Glass sand, g Addition, g 
Ref-0 207 440 — 990 0 —
Ref-25 207 440 — 743 248 —
Ref-50 207 440 — 495 495 —
Ref-75 207 440 — 248 743 —
Ref-100 207 440 — 0 990 —

FA-0 207 308 132 990 0 —
FA-25 207 308 132 743 248 —
FA-50 207 308 132 495 495 —
FA-75 207 308 132 248 743 —
FA-100 207 308 132 0 990 — 

GGBS-0 207 176 264 990 0 —
GGBS-25 207 176 264 743 248 —
GGBS-50 207 176 264 495 495 —
GGBS-75 207 176 264 248 743 —
GGBS-100 207 176 264 0 990 —

SF-0 207 396 44 990 0 —
SF-25 207 396 44 743 248 —
SF-50 207 396 44 495 495 —
SF-75 207 396 44 248 743 —
SF-100 207 396 44 0 990 —

GP-0 207 352 88 990 0 —
GP-25 207 352 88 743 248 —
GP-50 207 352 88 495 495 —
GP-75 207 352 88 248 743 —
GP-100 207 352 88 0 990 —

Fiber-0 207 440 — 990 0 85
Fiber-25 207 440 — 743 248 85
Fiber-50 207 440 — 495 495 85
Fiber-75 207 440 — 248 743 85
Fiber-100 207 440 — 0 990 85

LiCl-0 207 440 — 990 0 4.4
LiCl-25 207 440 — 743 248 4.4
LiCl-50 207 440 — 495 495 4.4
LiCl-75 207 440 — 248 743 4.4
LiCl-100 207 440 — 0 990 4.4

LiCO-0 207 440 — 990 0 4.4
LiCO-25 207 440 — 743 248 4.4
LiCO-50 207 440 — 495 495 4.4
LiCO-75 207 440 — 248 743 4.4
LiCO-100 207 440 — 0 990 4.4
FA: Fly ash, GGBS: Ground granulated blast-furnace slag; SF: Silica fume; GP: Glass powder; 
Fiber: Steel fiber; LiCl: Lithium chloride; LiCO: Lithium carbonate.   
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Table 3-7: ASR expansion (%) of mortar with green glass sand 

Time, 

day 

Glass 

content, % 
Reference Fly Ash GGBS 

Silica 

Fume 

Steel 

Fiber 
Powder LiCl Li2CO3

7 

0 0.0165 0.0026 0.0062 0.0076 0.0086 0.0050 0.0212 0.0117 

25 0.0121 -0.0004 0.0029 0.0203 0.0012 0.0034 0.0058 0.0074 

50 0.0059 0.0016 -0.0025 0.0094 0.0006 0.0005 0.0029 0.0054 

75 0.0067 0.0018 -0.0002 0.0079 -0.0041 -0.0027 0.0036 0.0050 

100 0.0028 0.0011 -0.0019 0.0126 -0.0062 -0.0018 0.0001 0.0040 

14 

0 0.0533 0.0100 0.0186 0.0202 0.0253 0.0311 0.0594 0.0188 

25 0.0361 0.0044 0.0164 0.0333 0.0194 0.0136 0.0248 0.0122 

50 0.0222 0.0070 0.0072 0.0179 0.0155 0.0100 0.0158 0.0080 

75 0.0121 0.0075 0.0056 0.0126 0.0054 0.0056 0.0102 0.0063 

100 0.0051 0.0061 0.0061 0.0177 -0.0008 0.0037 0.0058 0.0045 

21 

0 0.1040 0.0135 0.0293 0.0348 0.0493 0.0582 0.1006 0.0283 

25 0.0825 0.0091 0.0248 0.0423 0.0276 0.0300 0.0437 0.0176 

50 0.0354 0.0094 0.0120 0.0245 0.0172 0.0203 0.0228 0.0114 

75 0.0282 0.0112 0.0089 0.0192 0.0058 0.0083 0.0095 0.0071 

100 0.0150 0.0079 0.0100 0.0195 0.0016 0.0055 0.0044 0.0053 

28 

0 0.1490 0.0230 0.0411 0.0542 0.0844 0.0911 0.1388 0.0608 

25 0.1357 0.0169 0.0335 0.0530 0.0606 0.0533 0.0734 0.0417 

50 0.0742 0.0140 0.0171 0.0350 0.0400 0.0365 0.0427 0.0290 

75 0.0704 0.0144 0.0127 0.0229 0.0230 0.0189 0.0185 0.0220 

100 0.0304 0.0130 0.0087 0.0247 0.0055 0.0126 0.0076 0.0166 
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Table 3-8: ASR expansion (%) of mortar with brown glass sand 

Time, 

day 

Glass 

content, % 
Reference Fly Ash GGBS 

Silica 

Fume 

Steel 

Fiber 
Powder LiCl Li2CO3

7 

0 0.0165 0.0031 0.00624 0.00758 0.00863 0.0085 0.0212 0.0142 

25 0.0142 0.0030 0.0013 0.0077 0.019 0.0069 0.0237 0.0100 

50 0.0087 0.0062 0.0008 0.0048 0.0048 0.0041 0.0117 0.0022 

75 0.0040 -0.001 0.0004 0.0068 0.0033 0.002 0.009 0.0028 

100 0.0052 0.0054 0.0005 0.0023 0.0035 0.003 0.0086 0.0019 

14 

0 0.0533 0.0100 0.0186 0.0202 0.0253 0.0402 0.0594 0.0288 

25 0.0320 0.0097 0.002 0.021 0.0213 0.0247 0.0520 0.0257 

50 0.0196 0.0112 -0.0017 0.0175 0.0081 0.0139 0.0225 0.0126 

75 0.0087 0.0014 -0.0008 0.0148 0.0043 0.0115 0.0115 0.0050 

100 0.0090 0.0066 -0.0011 0.0126 0.0049 0.0056 0.0133 0.0029 

21 

0 0.104 0.0135 0.0293 0.0348 0.0493 0.0802 0.1006 0.0506 

25 0.0916 0.0095 0.0086 0.0326 0.0420 0.0595 0.0919 0.0476 

50 0.0355 0.0086 0.0078 0.0224 0.0190 0.0403 0.0371 0.0235 

75 0.0194 0.0008 0.0034 0.0209 0.0120 0.0267 0.0196 0.0125 

100 0.012 0.0065 0.0005 0.0141 0.0082 0.0142 0.0164 0.0075 

28 

0 0.1490 0.0230 0.0411 0.0542 0.0844 0.1117 0.1388 0.0839 

25 0.1305 0.0105 0.0225 0.0554 0.064 0.075 0.1278 0.0781 

50 0.0594 0.0109 0.026 0.028 0.043 0.0493 0.059 0.0383 

75 0.0262 0.0007 0.0086 0.0234 0.0373 0.0339 0.0343 0.0212 

100 0.0123 0.0049 0.0094 0.011 0.0184 0.0134 0.0233 0.0111 
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Table 3-9: ASR expansion (%) of mortar with clear glass sand 

Time, 

days 

Glass 

content, %
Reference Fly Ash GGBS 

Silica 

Fume 

7 

0 0.0165 0.0026 0.0062 0.0076 

25 0.0175 0.0021 -0.0012 0.0092 

50 0.0188 0.0000 -0.0022 0.0131 

75 0.0186 0.0018 -0.0007 0.0111 

100 0.0149 0.0029 -0.0001 0.0069 

14 

0 0.0533 0.0100 0.0186 0.0202 

25 0.0486 0.0098 0.0071 0.0213 

50 0.0654 0.0057 0.0143 0.0252 

75 0.1284 0.0073 0.0043 0.0206 

100 0.1368 0.0080 0.0057 0.0171 

21 

0 0.1040 0.0135 0.0293 0.0348 

25 0.0888 0.0127 0.0162 0.0299 

50 0.1334 0.0084 0.0201 0.0304 

75 0.2768 0.0101 0.0124 0.0274 

100 0.3435 0.0093 0.0104 0.0267 

28 

0 0.1490 0.0230 0.0411 0.0542 

25 0.1198 0.0168 0.0199 0.0425 

50 0.2118 0.0149 0.0224 0.0549 

75 0.4710 0.0121 0.0134 0.0384 

100 0.7046 0.0108 0.0120 0.0389 
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Table 3-10: Mix proportions of glass concrete 

Mix No. 
Content, kg/m3 

Water Cement Pozzolan CA sand glass w/c 
C30-0 187 382 — 1058 748 0 0.49 
C30-25 186 381 — 1056 560 187 0.49 
C30-50 186 379 — 1052 372 372 0.49 
C30-75 185 378 — 1047 185 555 0.49 
C30-100 184 376 — 1043 0 737 0.49 

C45-0 187 492 — 1060 656 0 0.38 
C45-25 187 491 — 1057 491 164 0.38 
C45-50 185 488 — 1051 325 325 0.38 
C45-75 185 487 — 1048 162 487 0.38 
C45-100 184 485 — 1044 0 647 0.38 

C60-0 187 585 — 1060 578 0 0.32 
C60-25 187 585 — 1060 434 145 0.32 
C60-50 186 582 — 1055 288 288 0.32 
C60-75 186 580 — 1051 143 430 0.32 
C60-100 185 577 — 1047 0 571 0.32 

C45-0-FA 181 334 143 1027 636 0 0.38 
C45-25-FA 181 333 143 1024 476 158 0.38 
C45-50-FA 180 332 142 1021 317 317 0.38 
C45-75-FA 180 331 142 1018 157 473 0.38 
C45-100-FA 179 330 141 1015 0 629 0.38 

C45-0-GGBS 184 194 290 1041 645 0 0.38 
C45-25-GGBS 183 193 289 1038 482 160 0.38 
C45-50-GGBS 183 192 288 1034 321 321 0.38 
C45-75-GGBS 182 192 288 1032 160 480 0.38 
C45-100-GGBS 182 191 287 1029 0 637 0.38 

       CA: coarse aggregates; FA: Fly ash, GGBS: Ground granulated blast-furnace slag. 

 

Table 3-11: Mix proportions of ASTM standard mortar and screened mortar from concrete (by 
mass)  

Mix Water Cement Sand CA 

ASTM C1260 0.475 1 2.25 — 

C30 0.49 1 1.96 2.77 

C45 0.38 1 1.33 2.15 

C60 0.32 1 0.93 1.81 

Modified mix 0.475 1 1.6 — 
                  CA: coarse aggregates. 
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Table 3-12: Amounts of each ASR mitigation method 

ASR mitigation method and amounts, % 
Fly ash*  GGBS* Silica fume* Steel  fiber# LiCl* Li2CO3* 

10 15 5 0.5 0.5 0.5 

20 30 7.5 1 1 1 

30 45 10 1.5 1.5 1.5 

40 
60 12.5 2 2 2 

50 
*content of cement by mass; #content of total mixture by volume 

 
 

Table 3-13: Effect of different methods on expansion of mortar with 100% green 1.18-mm glass sand 

Method 
Amount,

% 
Expansion, % Reduction in expansionѱ, % 

14 d. 21 d. 28 d. 56 d. 14 d. 21 d. 28 d. 56 d. 

Reference — 0.5667 1.0705 1.3146 1.7412 — — — — 

Fly ash* 

10 .0043 -.0004 .0055 .0121 99 100 100 99 

20 -.0008 -.0069 -.0029 .0032 100 100 100 100 

30 .0078 .0001 .0114 .0121 99 100 99 99 

40 .0038 .0004 .0086 .0126 99 100 99 99 

50 .0084 .0038 .0076 .0114 99 100 99 99 

GGBS* 

15 .0216 .2097 .5001 1.0532 96 80 62 40 

30 .0114 .0205 .1707 .7961 98 98 87 54 

45 .0118 .0150 .0199 .1807 98 99 98 90 

60 .0088 .0098 .0100 .0202 98 99 99 99 

Silica fume* 

5.0 .2622 .3123 .3137 .3661 54 71 76 79 

7.5 .3632 .3820 .3853 .4144 36 64 71 76 

10.0 .4634 .5378 .5417 .5696 18 50 59 67 

12.5 .0139 .0314 .0353 .0456 98 97 97 97 

Steel fiber# 

0.5 .1314 .3501 .6399 1.0902 77 67 51 37 

1.0 .2376 .4396 .6930 1.1017 58 59 47 37 

1.5 .0420 .1177 .3763 .8504 93 89 71 51 

2.0 .0288 .0569 .2268 .7185 95 95 83 59 

LiCl* 

0.5 .0095 .0156 .0125 .0152 98 99 99 99 

1.0 .0094 .0142 .0098 .0155 98 99 99 99 

1.5 .0083 .0105 .0093 .0117 99 99 99 99 

2.0 .0113 .0148 .0079 .0140 98 99 99 99 

Li2CO3* 

0.5 .0084 .0131 .0170 .0203 99 99 99 99 

1.0 .0096 .0157 .0157 .0194 98 99 99 99 

1.5 .0084 .0123 .0154 .0177 99 99 99 99 

2.0 .0093 .0136 .0175 .0209 98 99 99 99 

*content of cement by mass; #content of total mixture by volume,  
ѱreduction compared to reference mortar at the same age. 
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Table 3-14: Mortar compressive strength and relative strength of each method at 28 days 

Method Amount,  
% 

 Compressive strength,  
MPa 

Relative strength,  
% 

Reference — 50.8 100 

fly ash* 

10 47.6 94 
20 42.8 84 
30 43.5 86 
40 37.9 75 
50 29.2 58 

GGBS* 

15 53.3 105 
30 52.5 103 
45 48.7 96 
60 49.3 97 

Silica fume* 

5.0 48.3 95 
7.5 47.0 93 
10.0 45.8 90 
12.5 43.6 86 

Steel fiber# 

0.5 52.3 103 
1.0 49.2 97 
1.5 44.6 88 
2.0 43.3 85 

LiCl* 

0.5 48.8 96 
1.0 42.3 83 
1.5 41.4 82 
2.0 39.3 77 

Li2CO3* 

0.5 36.7 72 
1.0 31.3 62 
1.5 28.2 56 
2.0 27.8 55 

*content of cement by mass; #content of total mixture by volume 
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Table 3-15: Effect of 30% fly ash or 60% GGBS on ASR expansion of C45 green glass sand 
mortar 

Method 
Amount,  

% 
Expansion, % Reduction in expansion*, % 

14 d. 21 d. 28 d. 49 d. 14 d. 21 d. 28 d. 49 d. 

Reference 

0 .0680 .1617 .1778 .3121 

— 

25 .0705 .1698 .2649 .4971 

50 .0489 .1691 .3003 .5978 

75 .0235 .1042 .2867 .6749 

100 .0068 .0145 .0210 .3435 

Fly ash 

0 .0121 .0190 .0245 .0505 82 88 86 84 

25 .0081 .0121 .0150 .0337 89 93 94 93 

50 .0058 .0099 .0125 .0343 88 94 96 94 

75 .0088 .0119 .0128 .0292 63 89 96 96 

100 .0092 .0124 .0107 .0233 -36 14 49 93 

GGBS 

0 .0198 .0274 .0342 .0746 71 83 81 76 

25 .0092 .0212 .0283 .0460 87 88 89 91 

50 .0071 .0185 .0243 .0365 86 89 92 94 

75 .0094 .0190 .0249 .0323 60 82 91 95 

100 .0077 .0169 .0195 .0224 -14 -17 7 93 

Note: -means expansion increase,  
          *reduction compared to reference mortar at the same age and glass content.  
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Figure 3-1: Processing of recycled waste glass sand. 
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Figure 3-2: Grading curve of crushed glass sand and natural aggregates. 
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Figure 3-3: Test program for recycled glass sand in (a) mortar, and (b) concrete. 
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Figure 3-4: Fresh properties of glass mortar: (a) density, (b) air content, and (c) flowability. 
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Figure 3-5: Compressive strength of glass mortar. 
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Figure 3-6: Flexural strength of glass mortar. 
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Figure 3-7: Splitting tensile strength of glass mortar. 
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Figure 3-8: Static and dynamic modulus of elasticity of glass mortar.  
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Figure 3-9: Drying shrinkage of mixed color glass mortar.  
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Figure 3-10: RCPT results of glass mortar at 28-day. 
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Figure 3-11: Sulfate attack test results of glass mortar: (a) weight loss, (b) compressive strength, 

and (c) flexural strength. 
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(a) Green glass sand                          (b) Brown glass sand 
 

 
 

(b) Clear glass sand                          (d) Mixed glass sand 
 
 

Figure 3-12: Picture of mortar specimens with (a) green, (b) brown, (c) clear, and (d) mixed 
color glass sand after sulfate attack tests. 
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(c) Clear glass sand

  
Figure 3-13: ASR expansion of mortar with different colored glass sands. 
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Figure 3-13 (continued): ASR expansion of mortar with different colored glass sands. 
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Figure 3-14: Effect of glass sand content on ASR expansion at 14 days. 
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Figure 3-15: Effect of glass particle size on ASR expansion (glass content of 25%). 



127 
 

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R
 e

xp
an

si
on

, 
%

Glass sand size, mm

 Zhu et al., 2009, 100% clear
 Meyer & Baxter, 1997, 10% brown
 Meyer & Baxter, 1997, 10% mixed
 Jin et al., 2000, 10% clear
 Meyer & Baxter, 1997, 10% green
 Rajabipour et al., 2010, 10% green
 Rajabipour et al., 2010, 25% green
 Shayan & Xu, 2004, 100% mixed
 Idir et al., 2010, 20% mixed
 current study, 25% green
 current study, 25% brown
 current study, 25% clear

 

 

 
 
 

Figure 3-16: Comparison of effect of glass particle size on ASR expansion. 
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(a) cracks initiated from internal cracks in mortar with 100% clear glass sand. 
 
 

 

 

(b) no crack in mortar with 100% green glass sand. 
 
 

Figure 3-17: SEM micrographs of glass mortar.  
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Figure 3-18: Comparison of different mitigation methods on ASR expansion of mortar with (a) 

green, (b) brown, and (c) clear glass sand. 
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Figure 3-19: Fresh density of glass concrete. 
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Figure 3-20: Air content of fresh glass concrete. 
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Figure 3-21: Slump of glass concrete.  
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Figure 3-22: Compressive strength of glass concrete. 
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Figure 3-23: Compressive strength of glass concrete with 30% fly ash or 60% GGBS. 
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Figure 3-24: Flexural strength of glass concrete. 
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Figure 3-25: Splitting tensile strength of glass concrete. 
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Figure 3-26: Static and dynamic modulus of elasticity of glass concrete. 
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Figure 3-27: Drying shrinkage of glass concrete.  
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Figure 3-28: RCPT results of glass concrete.  
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Figure 3-29: ASR expansion of concrete with brown glass sand.  
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Figure 3-30: SEM micrographs of brown C45-100 glass mortar after 49 days of ASR testing. 
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Figure 3-31: Effect of w/c ratio on ASR expansion. 
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(a) C45 Fly Ash
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Figure 3-32: ASR expansions of brown glass concrete C45 with (a) 30% fly ash, and (b) 60% 
GGBS. 
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Figure 3-33: ASR expansion comparison. 
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Figure 3-34: Four level microstructure of cement-based composite materials [Constantinides and 
Ulm, 2004; Richardson, 2004].  



142 
 

 

 

                                                 

(a) SEM micrograph 

 

 

(b) Diagrammatic representation 

 

Figure 3-35: (a) SEM micrograph of higher Portlandite (CH) concentration in the ITZ (wall 
effect) of mortar [Heukamp et al., 2003]; (b) Diagrammatic representation of the ITZ and bulk 

cement paste in concrete [Mehta and Monteiro, 2006].   
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(b) C45-Brown
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(c) C60-Brown

 
 

Figure 3-36: ASR expansion of mortar containing brown and green glass sand. 
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(d) C30-Green
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(f) C60-Green

 
 

Figure 3-36 (continued): ASR expansion of mortar containing brown and green glass sand. 
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Figure 3-37: Pictures of (a) C60 mortars with different green glass sand contents, (b) mortars with 100% 
2.36- and 1.18-mm green glass sand, and mortar with 1.18-mm green glass sand mitigated by (c) fly ash, (d) 

GGBS, (e) silica fume, (f) steel fiber, (g) LiCl, and (h) Li2CO3. 
   



146 
 

 
 
 
 

0.30 0.35 0.40 0.45 0.50
0.000

0.025

0.050

0.075

0.100

0.30 0.35 0.40 0.45 0.50
0.00

0.05

0.10

0.15

0.20

0.30 0.35 0.40 0.45 0.50
0.0

0.1

0.2

0.3

0.4
14-day 

 Ref
 25%
 50%
 75%
 100%

A
S

R
 e

xp
a

n
si

on
, %

w/c ratio w/c ratio
 

28-day 49-day

w/c ratio

 

 
 

(a) Brown glass sand mortar 
 

0.30 0.35 0.40 0.45 0.50
0.000

0.025

0.050

0.075

0.100

0.30 0.35 0.40 0.45 0.50
0.0

0.1

0.2

0.3

0.4

0.30 0.35 0.40 0.45 0.50
0.0

0.2

0.4

0.6

0.8

 Ref
 25%
 50%
 75%
 100%

A
S

R
 e

xp
an

si
o

n,
 %

w/c ratio

14-day

w/c ratio

 

49-day28-day

w/c ratio  
 

(b) Green glass sand mortar 
 
 

Figure 3-38: Effect w/c ratio on glass sand mortar ASR expansion. 
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Figure 3-39: Effect of glass particle size on ASR expansion. 
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Figure 3-39 (continued): Effect of glass particle size on ASR expansion.  
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Figure 3-40: SEM pictures of mortar with 1.18-mm green glass sand. 
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Figure3-41: Mechanism for ASR of glass particle. 
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Figure 3-42: ASR expansion of mortar with different mitigation methods. 
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Figure 3-42 (continued): ASR expansion of mortar with different mitigation methods. 
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(a) Green C45-Fly Ash
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Figure 3-43: ASR expansions of green glass mortar C45 with (a) 30% fly ash and (b) 60% GGBS.
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Chapter 4. Sandless Concrete 

4.1 General 

In this chapter, the concept of “sandless concrete”, that is concrete containing no sand, either 

natural or manufactured, is proposed. The designation of mix proportions for “sandless concrete” 

is first elaborated, followed by a study into “sandless concrete” properties. The fresh, mechanical 

and durability characteristics of “sandless concrete” were investigated and discussed.  

 

4.2 Methodology 

As mentioned previously, there is no sound alternative material to totally replace natural sand. In 

this study, “sandless concrete” was proposed and examined to meet the challenge of depleting 

raw materials without negatively affecting concrete characteristics. The volume fraction of sand 

in normal concrete is between 20 and 27%.  If totally eliminated from the concrete mixture, this 

volume should be filled by other ingredients, that is, coarse aggregates, cement and water. The 

mix design of “sandless concrete” is therefore to seek a suitable mix ratio among coarse 

aggregates, cement and water. The mix design of “sandless concrete” was studied using two 

different approaches. The first method can be considered as an extension of no-fines concrete, 

while the other one is based on coarse aggregates packing and excess paste theory.  

In no-fines concrete, there are two key parameters in governing the mix proportions: 

aggregate/cement (A/C) ratio and water-cement (w/c) ratio. To ensure a high air void content and 

water permeability, the A/C ratio in no-fines concrete is higher than 4:1, and normally ranges 
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from 6 to 10. The w/c ratio ranges from 0.26 to 0.45, which provides good aggregate coating and 

paste stability. It is logical to increase the cement paste content and replace the single-sized 

aggregates in no-fines concrete with multi-sized aggregates to make a dense and non-pervious 

concrete mixture. Therefore, in this study, the effect of A/C ratio and the gradation of coarse 

aggregates on compressive strength are first studied with various w/c ratios, to obtain suitable 

mix proportions (that is, A/C and w/c ratios) for further study of various properties of “sandless 

concrete”.  

The second approach is based on the least void content of coarse aggregates (or maximum 

aggregates packing) and excess paste theory [Powers, 1968]. Mix design requires the engineer to 

produce concrete of the appropriate workability, strength and durability, as economically as 

possible [Mindess et al., 2003; Alexander and Mindess, 2005]. The packing of coarse aggregates 

is important in the mix design since it determines the voids content. Better packing will provide a 

perfect option to fill the voids between coarse aggregates, thus reducing the required amount of 

cement paste. According to excess paste theory, excess cement paste is necessary to form a thin 

layer of coating on the surface of aggregates to overcome frictions between aggregate particles 

and provide lubrication for the movement of aggregates. The volume of cement paste in excess 

of the amount required to fill the voids of the compacted aggregate is vital in the consistency of 

concrete [Kennedy, 1940]. Therefore, in this study, the dense packing of coarse aggregates is 

first obtained by a binary mixture of 10- and 20-mm aggregates. The cement content was 

determined by the above approaches and the water content would be controlled by the desired 

w/c ratios.  

The details of each method are illustrated in the following two distinct test programs.  
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4.3 Approach 1: Extension of No-Fines Concrete  

4.3.1 Test Program 

In this test program, the mix design was a modification of that for no-fines concrete, but with 

lower A/C ratio and the use of multi-sized aggregates. The test program consisted of two parts. 

The first part was aimed at arriving at suitable mix proportions for the production of “sandless 

concrete”. Focus was placed on the compressive strength since it is the most important parameter 

for concrete mix design from the structural point of view. The compressive strength depends on 

water-cement (w/c) ratio, aggregate-cement (A/C) ratio [Gilkey, 1961; Mindess et al., 2003], presence of 

chemical and mineral admixtures and type and maximum size of aggregates. At the same time, aggregate 

gradation is also important. The second part dealt with the effect of cement replacement by Class F 

fly ash in “sandless concrete”. From the first part of the study, it was noted that the cement 

content was quite high for mixes with an A/C ratio less than 3. Instead of increasing the volume 

of aggregates which could reduce the workability of concrete, it would be more practical and 

economical to reduce the cement content by replacing it with other cementitious materials, 

keeping the total amount of cementitious materials unchanged. Thus, Class F fly ash was used to 

partially replace cement by up to 50%, by mass, to investigate its effect on the properties of 

“sandless concrete” in its fresh and hardened states.  

4.3.1.1 Materials 

Ordinary Portland cement (OPC) conforming to ASTM C 150 Type I cement was used for all 

mixtures in this study. The crushed granite aggregates had a nominal size ranging from 1.18 to 

9.5 mm, and the gradation is shown as GI in Fig. 4.1. It complied with the grading requirement 

for aggregate size No. 89 in ASTM C 33, bounded by GU (upper bound) and GL (lower bound).  

The aggregates had an oven-dry (OD) specific gravity of 2.65, effective water absorption 
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capacity of 0.5%, and dry bulk density of 1650 kg/m3. The chemical compositions of the fly ash 

complied with ASTM C 618. Natural sand with a maximum size of 4.75 mm was used as fine 

aggregates in a normal concrete mix that was included in the test program for comparison 

purpose.  The sieve analysis result of the natural sand is also shown in Fig. 4.1.  

4.3.1.2 Aggregate Grading and Mix Proportions 

In the first part of the study, three aggregate gradations, GU, GI and GL, as shown in Fig. 4.1, 

were investigated. Gradations GU and GL were obtained by sieving the coarse aggregates into 

different sizes and then recombining them manually.  For aggregate grading GI, four different 

A/C ratios, namely 2.0, 2.5, 3.0, and 3.5 were included; while for aggregate gradings GU and GL, 

only mixes with an A/C ratio of 2.5 were cast. Also, for each aggregate grading and A/C ratio, the 

w/c ratio was varied from 0.30 to 0.55 in steps of 0.05. In all, 36 batches were prepared. 

In the second part of this test program, eight mix proportions using aggregates of grading GI (Fig. 

4.1), as shown in Table 4.1, were investigated. The mix M-0 was a “sandless concrete” without 

fly ash, and was proportioned with A/C=2.5 and w/c=0.45, according to the first part of the study, 

to obtain a 28-day cube compressive strength of 40 MPa. There were six other “sandless concrete” 

mixes, M-10 to M-50, containing Class F fly ash which replaced the cement content by 10%, 

20%, 25%, 30%, 40% and 50% by mass, respectively. The reference mix M-N was a normal 

concrete with the same cement content as mix M-0, and was included in the program for the 

purpose of comparison. It was designated such that 40% of the total aggregates content was 

natural sand by mass while other proportions remained unchanged. It should be mentioned that 

mix M-N in this study seems to be not representative of normal concrete due to its high water 

and cement content. The purpose of selecting M-N as reference is primarily to determine the 

possible influences of total elimination of sand in concrete.  
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4.3.1.3 Test Specimens 

In the first part of the test program, three 100 mm cubes each were cast to determine the 7- and 

28-day compressive strength. For each batch of concrete mixes in the second part, three 100 mm 

concrete cubes each were cast for the determination of compressive strengths at 1, 3, 7, 28 and 

90 days, three 100×200 mm cylinders each for splitting tensile strengths at 7 and 28 days, three 

100×100×400 mm beams each for flexural strengths at 7 and 28 days, and two 75×75×285 mm 

prisms for drying shrinkage measurement. Also, six 100×200 mm cylinders were prepared for 

compressive strength at 7 and 28 days. In addition, a 100×200 mm cylinder was prepared for the 

purpose of Rapid Chloride Permeability Test (RCPT) at 28 days and another three cylinders each 

to determine the cylinder compressive strengths at 7 and 28 days.  

The component materials were mixed in a power-driven pan mixer. All the specimens were 

compacted on a vibration table. After casting, the test specimens were finished with a steel 

trowel and covered with a plastic sheet, to prevent water loss, for a period of 24±1 hours. They 

were then demolded and stored in a fog room (30 ˚C and 100% RH) until the age of testing.    

4.3.1.4 Test Methods 

Fresh concrete properties, including slump, unit weight and air content, were determined 

according to ASTM C 143, C 138 and C 231, respectively. Setting times were measured from 

penetration resistance in accordance with ASTM C 403. Cube compressive strength was 

obtained as per BS EN 12390-3 and cylinder compressive strength as per ASTM C 39. Splitting 

tensile strength, flexural strength and elastic modulus were determined according to ASTM C 

496, C 78 and C 469, respectively. Resistance to chloride ion penetration was investigated based 

on ASTM C 1202. 
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For drying shrinkage, two concrete prisms were placed in a conditioned room (30 °C and 65% 

RH) immediately after demolding. Specifications [ACI 224R] often require moist curing of at 

least 7 days for higher degree of cement hydration. Moist curing of 1 day for concrete 

overestimates the drying shrinkage, which can simulate a more severe environment. However, 

regarding the use of fly ash, the drying shrinkage may be underestimated because of the reduced 

amount of hydrated cement paste. Therefore, the drying shrinkage of “sandless concrete” with 

fly ash under longer moist curing condition should be compared in future. However, the 

comparison between normal and “sandless” concrete can still be obtained from this curing 

scheme. A pair of metal pins was attached using epoxy glue to the two side surfaces of each 

prism, at a distance of 200 mm apart. Measurements of the distance between the pins were 

recorded for more than 120 days after the specimens had been placed in the conditioned room.  

4.3.2 Test Results and Discussion 

4.3.2.1 Mix Design 

A dense concrete was obtained for each batch of “sandless concrete” for all mixes, except for the 

mix with aggregate grading GI and A/C ratio of 3.5, in which the amount of cement paste was 

insufficient to fill the voids, resulting in large voids (see Figs. 4.2a and b). For such a concrete 

mix, only the bottom of the cube was filled with cement paste while the aggregates near the top 

face were merely coated and cemented together by a thin binder layer. The structure was similar 

to that of no-fines or pervious concrete. However, for the other mixes with sufficient cement 

paste, the behavior of the concrete cubes under compression was similar to normal concrete 

(Figs. 4.2c and d). For “sandless concrete” with low compressive strength (that is, those having 

w/c ratio higher than 0.4 or with A/C ratio more than 3.5), the hardened concrete failed along the 
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interfacial area between the aggregates and the cement paste, with the aggregates remaining 

unbroken.  

4.3.2.2 Effect of Aggregate Gradation 

Fig. 4.3 shows the average 7- and 28-day compressive strength of “sandless concrete” for mixes 

with aggregate gradations GU, GI and GL, and A/C ratio equaled to 2.5. Mixes with gradation 

GU exhibited a slightly lower strength than the mixes with other gradings, particularly when w/c 

ratio exceeded 0.4. One possible reason is that there was a larger percentage of smaller size 

particles, resulting in a weaker interlock action among the coarse aggregates.  Also, at higher w/c 

ratios, the bond at the interfacial zone becomes weaker due to bleeding. The difference in 

compressive strength due to the different aggregate gradations was however generally small, 

especially at lower w/c ratios.  

4.3.2.3 Effect of A/C and w/c Ratios 

Fig. 4.4 shows the average 7- and 28-day compressive strength of “sandless concrete” for mix GI 

with various A/C and w/c ratios. In general, the compressive strength decreased linearly with w/c 

ratio for a given A/C ratio. Mixes with A/C ratio of 3.5 exhibited much lower strengths, 

compared with other mixes with A/C ratios of 2.0, 2.5 and 3.0. There was no significant 

difference in compressive strengths among mixes with A/C ratios between 2.0 and 3.0. A 

compressive strength of higher than 30 MPa could be readily obtained at 28 days. Moreover, all 

mixes other than those with A/C ratio of 3.5, gained higher strength than 40 MPa at 28 days, if 

the w/c ratio was less than 0.5. As shown in Fig. 4.4, a reduction in w/c ratio led to an increase in 

the compressive strength. This is the same as in normal concrete, for which the strength largely 

depends on the capillary/space ratio of the paste, which is governed by the w/c ratio [Mindess et 

al., 2003].  
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Based on the preliminary study on the mix design with respect to compressive strength, the mix 

proportion was determined as A/C=2.5 and w/c=0.45 with aggregate gradation GI in order to 

obtain 40 MPa strength at 28 days. Thus mix proportion, as shown in Table 4.1, was used for the 

second part of the study. 

4.3.2.4 Properties in the Fresh State 

During the mixing and vibration processes, no obvious bleeding or segregation was observed.   

The fresh properties of “sandless concrete”, including air content, slump and unit weight are 

listed in Table 4.2. All mixes gave a slump of at least 100 mm, without the need for 

superplasticizer. Normal concrete had a more uniform aggregate gradation and thus better 

workability than “sandless concrete”, regardless of fly ash content. Compared with mix M-0, the 

slump of each mix increased with the percentage of cement replaced by fly ash. The spherical 

shape and smoother surface coupled with the smaller specific gravity of fly ash make it more 

efficient in filling voids than cement, thereby improving the workability.  

The finish-ability of the concrete improved with partial cement replacement by fly ash. The total 

air content in “sandless concrete” ranged from 1.3% to 1.9%, compared to 1.6% in the normal 

concrete mix M-N. The unit weight varied from 2230 to 2305 kg/m3, which was similar to that of 

normal concrete mix M-N with a unit weight of 2285 kg/m3, and decreased with fly ash 

replacement ratios higher than 25%. 

The setting times of the mixes are shown in Table 4.2. The times of initial and final setting are 

defined as when the penetration resistance reached 3.5 and 27.6 MPa, respectively. Mix M-N and 

M-0 showed similar initial and final setting times because of the same cement and water content 

while all other mixes except M-10 showed extended setting times due to the replacement of 
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cement with fly ash. The maximum delay was 58 min and 55 min for the initial and final setting 

times, respectively, both occurring at 50% fly ash replacement level. This was due to the 

relatively low cement content and slow reaction process of fly ash with cement hydration product, 

which contributed to the retardation in concrete setting. The time interval between initial and 

final setting however seemed unaffected.  

4.3.2.5 Mechanical Properties 

a. Compressive Strength 

The variation of cube compressive strength with fly ash replacement ratio at various ages of 

concrete is shown in Fig. 4.5a. It is well known that the addition of fly ash would reduce the 

early-age strength but increase the long term strength of concrete. The same was observed in 

“sandless concrete” mixes with fly ash, which showed lower strength than M-0 at 1, 3 and 7 days. 

With higher fly ash replacement ratio, this trend was more obvious. For example, the early 

strength of M-50 (50% fly ash) was significantly reduced to only 30% and 50% of that of M-0 at 

1 and 3 days, respectively. For all tested mixtures, the proportional increase in compressive 

strength was measured up to 7 days. However, beyond 7 days, mixes with fly ash replacement 

ratio of between 20 and 30% showed a much faster rate of increase in compressive strength, and 

had strengths almost equal to that of the normal concrete at 90 days. 

The relation between the cylinder compressive strength fc’ and cube compressive strength fcu  at 

both 7 and 28 days is shown in Fig. 4.5d. The relation between fc’ and fcu was found to be  

        ' 0.941c cuf f                                                                (4.1) 

with a coefficient of correlation of 0.9168.  
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b. Splitting Tensile Strength 

The splitting tensile strength at 7 and 28 days for all mixes are shown in Fig. 4.5b. All the 

“sandless concrete” mixes showed lower splitting tensile strength than normal concrete mix M-N. 

This is because the packing of aggregates in “sandless concrete” was not as good as that in 

normal concrete.  At 7 days, the splitting tensile strength of “sandless concrete” was about 75% 

that of normal concrete unless the fly ash replacement ratio was more than 30%. With a 

replacement ratio of 50%, the splitting tensile strength of M-50 was 83% of that of M-0 without 

fly ash. However, at 28 days, the splitting tensile strength continuously increased with the 

replacement ratio, with the peak occurring at a fly ash replacement ratio of 40%.  This is the 

same as what has been reported for conventional concrete [Siddique, 2004], and could be due to 

the late pozzolanic reaction of the fly ash. The increase in splitting tensile strength from 7 to 28 

days varied from 7 to 52% when the fly ash replacement ratio increased from 0 to 50%.  

c. Flexural Strength 

The flexural strength, in terms of average modulus of rupture, of “sandless concrete” is shown in 

Fig. 4.5c.  All “sandless concrete” mixes exhibited lower flexural strength than normal concrete 

mix M-N, similar to splitting tensile strength. The flexural strength at 7 days did not show a clear 

decrease with the increase in fly ash replacement ratio up to 30%. The flexural strength of M-50 

with 50% fly ash was 87% that of M-0 without fly ash. The increase in flexural strength from 7 

to 28 days ranged from 19% for M-0 to 36% for M-50. Mixes with higher fly ash content 

exhibited higher strength gain. At 28 days, the flexural strength continued to increase with the 

increase in the replacement ratio, also up to 30%, and the increase in strength over that of M-0 

was significant. Mix M-30, with 30% fly ash, exhibited the highest flexural strength, 118% of 
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that of M-0. This is attributed to the pozzolanic reaction and enhanced interfacial bond between 

the paste and coarse aggregates.  

Fig. 4.6a shows the relation between the splitting tensile strength fst and the cylinder compressive 

strength fc’ of “sandless concrete”.  From regression analysis, the following relation was 

established:  

 '0.586st cf f                                                               (4.2a) 

with a coefficient of correlation of 0.631, in which fst and fc’ are both expressed in MPa, or in 

view of Eq (4.1), 

        0.568st cuf f                                                               (4.2b) 

The ratio of the splitting tensile to compressive strength fst/fc’ on the other hand ranged from 

0.071 to 0.113, with an average of 0.094. The ratio was dependent on the compressive strength 

of “sandless concrete”, being higher at lower strength. This was in agreement with that for 

normal concrete [Mindness et al., 2003]. It was also noted that this ratio generally increased with 

the increase in the fly ash replacement level, due to the pozzolanic reaction.  

The relationship between the flexural strength fr and the cylinder compressive strength fc’ is 

shown in Fig. 4.6b, and the following expression was established through regression analysis:  

'0.758r cf f                                                                    (4.3a) 

with a coefficient of correlation of 0.737, in which  fr and fc’ are both expressed in MPa, or in 

view of Eq. (4.1), 
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0.735r cuf f                                                                    (4.3b) 

d. Elastic modulus 

The elastic modulus of the “sandless concrete” are listed in Table 4.2. The “sandless concrete” 

exhibited lower modulus than normal concrete due to the elimination of sand. Compared with 

mortar, the lower modulus of pure cement paste in “sandless concrete” resulted in lower elastic 

modulus of concrete as a composite of coarse aggregates and cement paste. Also, it is noted that 

the elastic modulus of “sandless concrete” containing fly ash was generally lower than that 

without fly ash.  However, there was no clear relation between the elastic modulus and fly ash 

replacement ratio.  

The elastic modulus of the specimen is plotted against the cylinder compressive strength in Fig. 

4.6c. The modulus increased with the increase in concrete strength, similar to normal concrete. 

The relation between Ec and fc’ according to ACI 318 Building Code [2008] for normal concrete 

is also plotted in Fig. 4.6c. The elastic modulus of “sandless concrete” was smaller than that of 

normal concrete for the same compressive strength. The reduced modulus was probably caused 

by the weak and soft paste between aggregate particles in “sandless concrete” compared to a 

stiffer sand mortar in normal concrete.  From the regression analysis of the test data, the relation 

between Ec and fc’ of “sandless concrete” is established as:  

'3784c cE f                                                                  (4.4a) 

with a coefficient of corrosion of 0.7078, in which Ec and fc’ are both expressed in MPa, or in 

view of Eq. (4.1), 
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3671c cuE f                                                                  (4.4b) 

4.3.2.6 Durability 

a. Drying Shrinkage 

The drying shrinkage of “sandless concrete”, taken as the average measurements from two 

prisms, after 1 day of initial moist curing is shown in Fig. 4.7. All the mixes showed stable 

readings after 90 days and all the measured shrinkages were below 750 ×10-6.  Normal concrete 

mix M-N showed the highest drying shrinkage of 709 ×10-6 at 90 days, while M-50 with 50% fly 

ash replacement exhibited the lowest drying shrinkage of 553 ×10-6.  At 90 days, mixes M-0 to 

M-40 had drying shrinkage of between 86% and 99% that of normal concrete. “Sandless 

concrete” showed lesser drying shrinkage due to the increased percentage of large coarse 

aggregates which could more effectively restrain the length change of paste.  Fly ash generally 

reduced the drying shrinkage, although this effect was inconsistent for M-20 and M-30 which 

exhibited slightly higher shrinkages than M-0. 

b. Rapid Chloride Permeability Test (RCPT) 

RCPT is the most widely used method to determine resistance of concrete to chloride ion 

penetration because of its simplicity and short test duration.  Although there has been criticism of 

this technique, especially for concrete with added pozzolans [Feldman et al., 1994; Shi, 2004; 

Scanlon and Sherman, 1996], the RCPT can be seen as an indicator of both permeability and 

resistivity properties of concrete [Smith et al., 2004]. 

 The RCPT results at 28 days are shown in Fig. 4.8 in terms of the total charge passing the 

specimen in 6 hours.  In this study, the total charge passed was lower in “sandless concrete” than 

in normal concrete M-N.  This is because of a smaller ITZ between aggregate particles and 
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cement paste in “sandless concrete”. Sand is smaller in size but larger in surface area than coarse 

aggregate, thus the interfacial surface area, which is dominated by porous and weak cement paste, 

is higher in normal concrete. 

 The total charge passed was significantly reduced with fly ash replacement ratio.  For mixes M-

10 and M-50, the total charge passed was 3589 and 2308 Coulombs respectively and classified as 

“moderate penetration”, while those for M-20, M-25, M-30 and M-40, with fly ash replacement 

ratios of 20, 25, 30 and 40%, were lesser than 2000 Coulombs and leveled as “low penetration”.  

Mix M-30 showed the least total charge passed of 1376 Coulombs. The hydration process of fly 

ash was accelerated by the high amount of cement. The secondary CSH refined the 

microstructure and decreased the concrete porosity. Therefore, the total charge would reduce 

with increasing amount of fly ash. In this study, the 30% fly ash mixture showed the least RCPT 

values, probably due to the higher chloride binding capability at this fly ash replacement ratio 

[Dhir and Jones, 1999]. Also, when fly ash was used as cement replacement at high content, the 

increase in capillary porosity might be due to reduced cement hydration products in the system 

and delayed pozzolanic reaction. 

4.3.3 Summary  

Based on the study carried out, the following conclusions may be made: 

1. Aggregates complying with ASTM No. 89 grading requirement were found suitable for 

use in “sandless concrete”. The compressive strength did not vary significantly for 

different aggregate gradations, especially if the w/c ratio was less than 0.4. The 

compressive strength increased with decreasing w/c ratio.  A cube compressive strength 

greater than 40 MPa at 28 days can be readily obtained if the A/C ratio is below 3 and the 
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w/c ratio between 0.3 and 0.5.  Similar to normal concrete, “sandless concrete” failed 

along the interfacial area between aggregate and cement paste under axial compression. 

2. “Sandless concrete” with fly ash exhibited good workability and the air content for all 

mixes was low and comparable to normal concrete. The times of initial and final setting 

were both extended with cement partially replaced by fly ash.  

3. The development of compressive strength was similar in all “sandless concrete” mixes up 

to 7 days. The strength continuously decreased with higher fly ash replacement ratio. 

However, after 7 days, mixes with 20% to 30% fly ash replacement ratio exhibited higher 

rates in strength gain, and exhibited comparable strength to normal concrete at the end of 

90 days. Splitting tensile and flexural strengths of “sandless concrete” also decreased 

with an increase in fly ash replacement ratio at 7 days, but they generally increased at 28 

days due to pozzolanic reaction of fly ash, peaking at a replacement ratio of between 30% 

and 40%. Elastic modulus of “sandless concrete” was smaller than that of normal 

concrete due to the filled cement paste between coarse aggregates rather than mortar in 

normal concrete.   

4. The “sandless concrete” showed lesser drying shrinkage than normal concrete, and fly 

ash could further reduce the drying shrinkage despite inconsistency. The resistance to 

chloride ion penetration of “sandless concrete” was highest with a fly ash replacement 

ratio of between 20 to 40%.  
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4.4 Approach 2: Aggregates Packing and Excess Paste Theory 

In this test program, the mix design is based on the packing of coarse aggregates and excess 

paste theory.  

4.4.1 Test Program 

4.4.1.1 Mix Design 

In order to produce a workable “sandless concrete”, the cement paste has to bind and lubricate 

the coarse aggregates adequately. From the economical point of view, the paste should be 

minimal, which requires the coarse aggregates to be densely packed. The concept of void content 

is illustrated in Fig. 4.9, of which Kosmatka et al. [1995] explained that a smaller void content 

could be obtained by mixing portions of two aggregate sizes. Thus, it was decided to use two 

coarse aggregate sizes of 10- and 20-mm in the mix proportion so as to reduce the void content 

in the concrete. The voids in the aggregates for different combinations of 10- and 20-mm 

aggregates were determined following ASTM C 29. Fig. 4.10a shows that a void content of less 

than 0.31 (or 31%) could be obtained if the volume fraction of 20-mm aggregates is between 60% 

and 100%. The ratio of 10- to 20-mm aggregates was thus selected as 40:60 in this study, and the 

corresponding aggregate size distribution is shown in Fig. 4.10b, which satisfies the ASTM C 33 

grading requirement for size No.67 aggregates. The paste volume was designed to fill the void 

and coat the aggregate particles so as to lubricate the movement of aggregate particles (Fig. 2.10). 

The amount of excess paste was selected by experiments. Different volumes of excess paste was 

examined to determine the suitable or the minimum amount of excess paste for accepted 

workability. In this study, an amount of about 10% excess paste was found to provide the 

concrete acceptable workability, which means that the total paste volume is 341 L/m3. The 
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cement and water content were then calculated based on the desired w/c ratio and total paste 

volume. Fig. 4.11 summarizes the steps for mix design approach 2.  

As shown in Table 4.3 and Fig. 4.12, four groups of “sandless concrete” with w/c ratios of 0.40, 

0.45, 0.50 and 0.55 were investigated. For comparison purpose, four corresponding groups of 

normal concrete containing natural sand were also included. At the same w/c ratio, both 

“sandless concrete” and normal concrete mixes had the same cement and water content. For 

normal concrete, the content of coarse aggregates was selected according to ACI 211.1, with 

ratio of 10- to 20-mm coarse aggregates remaining at 40:60 as in “sandless concrete”, while 

natural sand was determined as per volume method. Furthermore, for each “sandless concrete” 

mixture, Class F fly ash was used to replace cement at 0, 10, 20, 30, 40 and 50%, by mass.  

4.4.1.2 Materials 

Apart from the coarse aggregates, the other materials used, that is, cement, fly ash and sand, 

were the same as in previous section (Section 4.3). The physical properties of the two categories 

of coarse aggregates were as follows: oven-dry (OD) specific gravity = 2.60; surface-dry (SSD) 

specific gravity = 2.61; and effective water absorption capacity = 0.56%. A polycarboxylate-

based superplasticizer was used in concrete production. Tap water was used as mixing water.  

4.4.1.3 Preparation of Test Specimens 

For each mixture, 100-mm cubes were cast for the determination of compressive strengths at 1, 7, 

28 and 90 days; Ø100×200 mm cylinders for splitting tensile strength and elastic modulus at 28 

days; 100×100×400 mm beams for flexural strength at 28 days; and 75×75×285 mm prisms for 

drying shrinkage. For each of the above properties, three specimens were prepared and the 

average readings reported herein.  
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For the resistance to chloride ion penetration and sulfate attack tests, Ø100×200 mm cylinders 

were prepared. Three specimens were cast for RCPT for each mix, and four specimens for 

sulfate attack tests. All specimens were covered by plastic sheets for 24 hours after casting, then 

demolded and transferred into a fog room (30 ˚C and 100% RH) and cured until the testing age. 

4.4.1.4 Test Methods 

Cube compressive strength of concrete was determined according to BS EN 12390-3, and 

splitting tensile strength and flexural strength were tested as per ASTM C 496 and C 78, 

respectively. For drying shrinkage measurements, specimens were demolded one day after 

casting and then placed in a curing room (30 ˚C and 65% RH) to simulate a real-life environment 

[Atis, 2003]. Measurements were taken at 7, 14, 28, 56, 90, 120, 180 and 360 days.  

The resistance of concrete to chloride ion penetration was investigated at the concrete age of 180 

days using RCPT method as per ASTM C 1202. The resistance to sulfate attack was determined 

according to ASTM C 267. After curing in the fog room for 180 days, two concrete cylindrical 

specimens were immersed in saturated MgSO4 solution for 24 hours followed by oven drying (at 

110 ˚C) for another 24 hours. After 20 such cycles, the specimens were weighed and tested for 

dynamic modulus and compressive strength to determine the loss in weight, modulus and 

strength when compared with two other specimens that remained in the fog room.  

4.4.2 Test Results and Discussion 

4.4.2.1 Fresh Properties 

No bleeding or segregation was observed in each concrete mix. The target slump was 50 mm, 

and a polycarboxylate-based superplasticizer was added for this purpose. The dosage of 

superplasticizer was limited to 2% of the total weight of cement and fly ash so as not to cause 
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other problems, such as delayed setting or severe bleeding. The “sandless concrete” exhibited 

slump values of between 50 and 100 mm, except for the group with w/c ratio of 0.40, as shown 

in Fig. 4.13, which had slump values between 25 and 50 mm. According to ACI 211.1 [2002], 

the minimum slump requirement for structural construction is 25 mm; thus the “sandless 

concrete” mix satisfied this requirement. It is also noted that the replacement of cement by fly 

ash did not substantially improve the workability due to the reduced paste volume of “sandless 

concrete”.  

Except slump test, no other quantitative measurement was taken for fresh concrete mixtures. 

However, the flowability of “sandless concrete” was qualitatively reduced compared to normal 

concrete based on visual observation, due to the increased content of coarse aggregates, which 

resulted in a higher degree of particle interlocking and absence of lubrication provided by fine 

particles. Also, the flowability generally decreased with decreasing w/c ratio for “sandless 

concrete” because of the lower water content. However, the effect of fly ash was not obvious.  

4.4.2.2 Compressive Strength 

The developments of compressive strength for all mixtures are shown in Fig. 4.14. The normal 

concrete exhibited similar compressive strength as “sandless concrete” without fly ash. It is clear 

that the use of fly ash would result in reduced early age strength. In the first 7 days, the 

compressive strength of “sandless concrete” decreased continuously with increasing fly ash 

content. The compressive strength of “sandless concrete” with 50% of cement replaced by fly 

ash were 50%, 51%, 41% and 36% of those mixes without fly ash, at w/c ratios of 0.40, 0.45, 

0.50 and 0.55, respectively. However, the strength ratio increased to 80%, 72%, 62% and 54% at 

28 days, and 90%, 89%, 77% and 73% at 90 days. The improved long-term compressive strength 

was due to the pozzolanic reaction between fly ash and cement hydration products, which 
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densified the microstructure of concrete and improved the ITZ between aggregate and paste 

matrix. The pozzolanic reaction of fly ash occurred at later stages with higher w/c ratios.  

Also, the compressive strength of “sandless concrete” decreased as the w/c ratio increased, 

especially above 0.50. At 90 days, all the mixtures with w/c ratios of 0.40 and 0.45 showed 

similar compressive strength. However, at w/c ratio of 0.50, replacing 50% of cement by fly ash 

resulted in obvious reduction in compressive strength. Also, at w/c ratio of 0.55, the compressive 

strength decreased significantly if fly ash content was more than 20%. 

4.4.2.3 Splitting Tensile Strength 

The splitting tensile strengths at 28 days are shown in Fig. 4.15a. At lower fly ash contents, all 

the concrete mixes showed comparable splitting tensile strength regardless of the w/c ratio. The 

effect of fly ash on splitting tensile strength was not significant if the content was lower than 

30%. It is noted that with 20% and 30% fly ash content, “sandless concrete” even showed higher 

tensile strength compared to normal concrete and “sandless concrete” without fly ash.  

The contribution to splitting tensile strength by the inclusion of fly ash was again attributed to 

pozzolanic reaction which improved the CSH structure of the concrete. Compared to normal 

concrete, “sandless concrete” with or without fly ash showed comparable splitting tensile 

strength at w/c ratios of 0.40 and 0.45. However, at higher w/c ratios of 0.50 and 0.55, the 

splitting tensile strength reduced with fly ash content higher than 30%.  

4.4.2.4 Flexural Strength 

The effect of w/c ratio on flexural strength (modulus of rupture) at 28 days was not obvious (see 

Fig. 4.15b). All the mixes exhibited flexural strengths between 4.1 and 5.5 MPa, except the mix 

with a w/c ratio of 0.55 and 50% fly ash content. At w/c ratios of 0.40 and 0.45, “sandless 
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concrete” exhibited slightly higher flexural strength than normal concrete and incorporation of 

fly ash did not reduce the flexural strength if it was less than 20%. At w/c ratios of 0.50 and 0.55, 

the flexural strength of “sandless concrete” was lower than that of normal concrete, probably due 

to weaker bond between paste and coarse aggregates. For all w/c ratios, fly ash higher than 30% 

would lead to reduction in flexural strength.  

4.4.2.5 Elastic Modulus 

The elastic modulus at 28 days is shown in Fig. 4.15c. Generally, the elastic modulus decreased 

with w/c ratio from 0.40 to 0.55, for the same fly ash content. For a given w/c ratio, “sandless 

concrete” showed lower elastic modulus than normal concrete because of the lack of fine 

aggregates. As a composite material, the modulus of concrete depends on its constituents and 

their volumetric fractions. In “sandless concrete”, the phase between coarse aggregates is cement 

paste instead of mortar in concrete, which is of higher modulus. This may explain the reduction 

in modulus for “sandless concrete” although the volume of aggregates remained the same. The 

influence of fly ash on modulus did not show a universal trend for various w/c ratios. The elastic 

modulus started to decrease at a critical fly ash content, which was 10%, 20%, 20% and 30%, 

respectively, for concrete with w/c ratios of 0.40, 0.45, 0.50 and 0.55. Thus, the reduction in 

modulus due to fly ash was more prominent in “sandless concrete” with lower w/c ratio. 

However, the increase in the paste volume, due to the less specific gravity of fly ash especially at 

high content, may also contribute to the reduced modulus of concrete. This effect should be 

further studied in future by replacing cement with fly ash by volume instead of by mass.  
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4.4.2.6 Relations between Compressive Strength and other Mechanical Properties 

From regression analysis, the relations between compressive strength fcu and splitting tensile 

strength fst, flexural strength fr, and elastic modulus Ec, were obtained as follows and shown in 

Fig. 4.16: 

0.573st cuf f   (current study)                                            (4.5a) 

'0.56 0.50st c cuf f f    (ACI 318)                                    (4.5b) 

0.684r cuf f   (current study)                                             (4.6a) 

'0.62 0.55r c cuf f f     (ACI 318)                                    (4.6b) 

4144c cuE f    (current study)                                              (4.7a) 

'4730 3706c c cuE f f     (ACI 318)                                   (4.7b) 

with coefficient of correlation of 0.6345, 0.5405 and 0.4486 respectively, in which, fst, fr, Ec and 

fcu are all expressed in MPa. Approximated relationships by present design code ACI 318 [2008] 

are also provided below each corresponding equation, where the cylinder strength fc’ is estimated 

as 80% of cube strength fcu for normal weight concrete [Mehta and Monteiro, 2006].  

Compared with Eqs. (4.2b, 4.3b and 4.4b), the relation with compressive strength of splitting 

tensile strength and flexural strength showed slight lower value, which means the tensile strength 

of “sandless concrete” by design Approach 2 exhibited lower tensile strength at the same 

compressive strength. This was thought to be caused by the reduced amount of cement paste 
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between coarse aggregate particles, resulting in smaller bond to resist tensile stress. However, it 

is noted that elastic modulus showed higher value by Approach 2 at the same compressive 

strength. It is due to the higher degree of aggregate particle interlock or contact, leading to 

composites with higher stiffness.   

Compared with ACI 318, “sandless concrete”, either by Approach 1 or 2, exhibits higher value 

of splitting tensile and flexural strength compared to normal concrete, with the equal 

compressive strength. Moreover, by Approach 2, the “sandless concrete” have higher modulus of 

elasticity than normal weight concrete of the same compressive strength. This means that 

designated “sandless concrete” is more conservative in tensile strength if the compressive 

strength is identical to normal concrete. Approach 2 will also produce conservative “sandless 

concrete” in terms of elastic modulus while Approach 1 shows lower modulus, which should be 

taken into consideration during design. 

The low values of R2 for Eqs. (4.5a, 4.6a and 4.7a) indicated that other parameters, such as 

density apart from compressive strength, may also affect the tensile strength and modulus. This 

could be further studied in future.   

4.4.2.7 Drying shrinkage 

The drying shrinkages of all concrete mixes up to 360 days are shown in Fig. 4.17. All the 

drying shrinkage strains were less than 700×10-6 at 360 days, regardless of w/c ratio or fly ash 

content. At a w/c ratio of 0.40, normal concrete showed the highest drying shrinkage at all ages; 

and the drying shrinkage consistently decreased with more cement replaced by fly ash. The 

“sandless concrete” showed less drying shrinkage than normal concrete, due to a higher content 

of coarse aggregates which could more effectively restrain shrinkage of paste than finer size 
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aggregates. Also, the densified microstructure due to pozzolanic reaction of fly ash which 

prevented moisture evaporation further helped in reducing the drying shrinkage. As published in 

literature [Atis, 2003; Bilodeau and Malhotra, 2000; Kumar et al., 2007], this study shows that 

fly ash, as cement replacement, could effectively reduce drying shrinkage, even with the same 

water content (see Table 4.3). With incorporation of fly ash, the reduced water loss, from 

capillary and gel pores, indicated that the pore sizes were reduced or refined. The drying 

shrinkage strains of “sandless concrete” were close to or slightly less than normal concrete, at 

w/c ratios of 0.45 and 0.50. However, at w/c ratio of 0.55, “sandless concrete” mix with less than 

20% fly ash showed higher shrinkage than normal concrete.  

The drying shrinkage of “sandless concrete” increased with higher w/c ratio up to 0.50. At a w/c 

ratio of 0.55, the shrinkage was, however, lower, especially with cement replaced by fly ash by 

more than 20%. One possible explanation might be due to the better interlock between coarse 

aggregates in “sandless concrete” at higher w/c ratios. 

4.4.2.8 Resistance to Chloride Ion Penetration 

RCPT was carried out as per ASTM C 1260 for “sandless concrete” at the age of 180 days. Some 

literature has stated that fly ash could effectively decrease permeability of concrete, based on 

RCPT results [Bilodeau and Malhotra 2000; Malhotra 2002]. However, RCPT has been 

criticized for its drawbacks for testing concrete with supplementary cementing materials, such as 

fly ash, silica fume and ground granulated blast-furnace slag. The current passed during RCPT is 

related to all ions, especially OH-, in the pore solution and not only chloride ions. It was pointed 

out that the significant reduction in total charge passed with mineral materials, was mainly 

caused by the OH- consumption by pozzolanic reaction, although this led to improved 

microstructure [Wee et al., 2000].  
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All the normal concrete mixes exhibited moderate penetrability except the one with w/c ratio of 

0.50 which showed high penetrability of chloride ion (Fig. 4.18a). Compared with normal 

concrete, “sandless concrete” showed less total charge passed, probably due to decreased ITZ 

between cement paste matrix and aggregates. Moreover, the total charge passed decreased with 

increasing w/c ratio from 0.40 to 0.55. However, this difference became quite insignificant when 

fly ash content was higher than 20%, for which all concrete mixtures had total charge passed less 

than 1000 Coulombs, indicative of very low permeability of chloride ion.   

As a comparison, the RCPT results of concrete with w/c ratio of 0.45 at 28 days are also plotted 

in Fig. 4.18a. The total charge passed was significantly reduced from 28 to 180 days, due to 

continuous cement hydration. It is noted that the reduction effect of fly ash was more obvious at 

180 days than at 28 days. At 28 days, the pozzolanic reaction between fly ash and cement 

hydration product was not completed, but with time passing the microstructure of concrete was 

enhanced by further pozzolanic reaction, resulting in lower charge passed.  

At the end of RCPT tests, the specimens were axially split to measure the depth of chloride ion 

penetration via spraying 0.1 N AgNO3 solution. Similar to NT build 492, the non-steady-state 

migration coefficient Dnssm of chloride could be calculated by Eq. (3.1) and plotted in Fig. 4.18c. 

The penetration depth and migration coefficient of chloride ion were also reduced by the 

incorporation of fly ash. It is noted that both RCPT and migration coefficient did not decrease 

significantly at higher contents of fly ash. This could be because the pozzolanic reaction would 

not be fully realized due to the limited amount of cement hydration product, Ca(OH)2 at high fly 

ash content.  



179 
 

If all test results regarding chloride permeability, including those for glass mortar (section 

3.3.2.3a), glass concrete (section3.4.2.3a) as well as “sandless concrete” are considered, a good 

linear relation is found to exist between RCPT results and chloride ion migration coefficient, as 

shown in Fig. 4.18c, and given by. 

Dnssm = 0.0057 Q                                                                (4.8) 

with an coefficient of correlation of 0.8874, in which Dnssm and Q are expressed in 10-12 m2/s and 

Coulombs, respectively.  

4.4.2.9 Sulfate Resistance 

The action of sulfates present in groundwater and seawater on concrete is perhaps the most 

widespread and common form of chemical attack [Mindess et al., 2003]. The damage caused by 

sulfate attack may involve expansion and cracking of concrete as a whole, as well as softening 

and disintegration of cement paste. The replacement of cement by Class F fly ash as mineral 

admixture would increase the resistance to sulfate attack due to: (1) reduction in Ca(OH)2 

concentration in cement paste; and (2) reduction in the porosity and permeability in 

microstructure of cement paste due to pozzolanic reaction by the fly ash.  

The reduction in weight, dynamic modulus and compressive strength of “sandless concrete” 

specimens after sulfate resistance tests, compared to specimens placed in the fog room for the 

same time period, are shown in Fig.4.19. In general, the reductions in properties were more 

prominent with higher w/c ratio and fly ash content. The weight loss of all concrete mixes with a 

w/c ratio of 0.40 was about 4% to 5%, and the effect of fly ash was insignificant. For other 

concrete mixes, the weight loss increased quickly with fly ash content of more than 20%. The 
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“sandless concrete” with a w/c ratio of 0.55 and fly ash replacement content of 50% suffered the 

maximum weight loss of 10.9%.  

The same concrete mix also showed the highest reduction, 84%, in dynamic modulus. Other 

concrete mixes with w/c ratios equal or exceeding 0.45 and with fly ash replacement ratio more 

than 20% also suffered more than 60% reduction in dynamic modulus, indicating a loss in 

structural integrity of composite material. The reduction in dynamic modulus was due to the 

softening and spalling of concrete, as well as development of internal and external cracks 

between the aggregates and cement paste.  

Also, the reduction in compressive strength varied among the different concrete mixes. For the 

concrete mixes with low w/c ratios of 0.40 and 0.45, the reduction was minimal when the fly ash 

replacement ratio was less than 40% and 30%, respectively. Otherwise, the maximum reduction 

in compressive strength was about 10% and 20% respectively. However, for concrete mixes with 

higher w/c ratios of 0.50 and 0.55, the reduction was as high as 77 and 71% respectively. It 

appeared that the compressive strength was less affected than the dynamic modulus.  

The appearance of “sandless concrete” specimens after sulfate attack tests are shown in Fig. 4.20, 

with w/c ratios of 0.45 and 0.50. For each w/c ratio, normal concrete mix and “sandless concrete” 

without fly ash showed the least vulnerability to sulfate attack while mix with 50% fly ash 

exhibited the most vulnerability. For concrete mix with w/c ratio of 0.50 and 50% fly ash, its 

surface layer of cement paste was completely dissolved by the MgSO4 solution, leaving coarse 

aggregates exposed. Wide cracks could be seen between aggregate particles and paste.  

4.4.3 Summary  

Based on the experimental studies, the following conclusions can be achieved, 
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1. “Sandless concrete” showed almost the same mechanical properties as normal concrete at 

various w/c ratios. 

2. Up to 50% of cement content, fly ash would compromise early age strengths but show 

comparable mechanical properties at later stage. Fly ash could effectively reduce drying 

shrinkage with higher content, due to densified microstructure.  

3. Fly ash could significantly improve the resistance to chloride ion penetration. At the same 

time, RCPT was proved to be reliable for concrete with fly ash. However, the addition of 

fly ash would reduce the resistance to wet-and-drying sulfate attack.  

 

4.5 Comparison of Mix Design Approaches 

Although both mix design approaches could work out suitable mix proportions for “sandless 

concrete” with almost the same properties as normal concrete, the two approaches are governed 

by different factors. The first approach uses A/C and w/c ratio to determine the mix proportion. 

Cement content is the key link between water and aggregates, which will vary if any ratio 

changes, resulting in substantial difference. It is difficult to compare the influence of one factor 

while keeping the other constant, since the ingredient content would be changed.  

Compared to the first approach, the latter approach, which is based on the maximum aggregate 

packing and excess paste theory, is more economical. The necessary information for this method 

is the optimization of aggregate packing and excess paste amount. After the determination of 

these two parameters, the amount of coarse aggregates and cement paste remains unchanged 
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while cement and water content varies responding to different w/c ratio. Therefore, for the sake 

of economy and practice, the second method is recommended. 

 

4.6 Summary 

Two mix design approaches have been proposed for “sandless concrete” (concrete without fine 

aggregates) in this Chapter. The major properties of resulted “sandless concrete” were 

investigated. Also, fly ash was incorporated as cement substitution up to 50% in sandless 

concrete. From the experimental study, the following conclusions can be drawn: 

1. No distinct properties were found for “sandless concrete”, made by either design 

approach, from conventional concrete, except the reduced workability. 

2. The mix design approach based on maximum aggregate packing and excess paste theory 

is preferable, due to its advantages in economy. 

3. For “sandless concrete”, substitution of cement by fly ash showed comparable 

mechanical behaviors at late age although the early age strengths were reduced. Fly ash 

could significantly reduce drying shrinkage and chloride ion penetration of “sandless 

concrete”, due to the densified microstructure caused by pozzolanic reaction. 
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Table 4-1: Mix proportions for “sandless concrete” by Approach 1 
Mix 
No. 

Content, kg/m3 
Cement CA Water Fly Ash Sand 

M-N 588 882 265 — 588 

M-0 588 1470 265 — — 

M-10 530 1456 265 59 — 

M-20 470 1445 265 118 — 

M-25 441 1438 265 147 — 

M-30 412 1432 265 176 — 

M-40 353 1420 265 235 — 

M-50 294 1407 265 294 — 
                                  CA: coarse aggregates. 

Table 4-2: Properties of “sandless concrete” by Approach 1 

Mix 
No. 

Slump, 
mm 

Air Content,
% 

Density,
kg/m3 

Time of initial setting / 
final setting, h: min 

Modulus, 
GPa 

M-N 210 1.6 2285 4: 16 / 5: 35 27.3 ±0.52 

M-0 100 1.8 2305 4: 17 / 5: 48 24.5 ±0.94 

M-10 110 1.9 2290 4: 11 / 5: 37 23.2 ±0.10 

M-20 125 1.4 2295 4: 22 / 5: 45 20.9 ±0.58 

M-25 160 1.4 2285 4: 30 / 5: 57 20.5 ±0.26 

M-30 130 1.5 2250 4: 40 / 6: 20 25.1 ±0.49 

M-40 135 1.3 2235 4: 56 / 6: 11 24.0 ±0.54 

M-50 160 1.8 2230 5: 15 / 6: 43 20.9 ±0.80 
 

Table 4-3: Mix proportions for “sandless concrete” by Approach 2 

Mix No. 
Content, kg/m3 Paste volume 

L/m3 Cement Fly Ash Water CA-10 CA-20 Sand w/c
NC40 475  0  190  457  685  571  0.40  341  

SLC40-1 475  0  190  685  1027 —   0.40  341  
NC45 444  0  200  457  685  571  0.45  341  

SLC45-1 444  0  200  685  1027 —  0.45  341  
NC50 417  0  209  457  685  571  0.50  341  

SLC50-1 417  0  209  685  1027 —  0.50  341  
NC55 393  0  216  457  686  571  0.55  341  

SLC55-1 393  0  216  685  1027 —  0.55  341  
      Note: NC: normal concrete; SLC: “sandless concrete”;  
                CA-10: coarse aggregates with maximum size of 10 mm;  
                CA-20: coarse aggregates with maximum size of 20 mm. 
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Figure 4-1: Aggregate grading curves. 
 

 

 

Figure 4-2: Photographs of “sandless concrete” cube specimens: 
  (a) & (b) - With insufficient cement paste (A/C=3.5, w/c=0.5), 
 (c) & (d) - With sufficient cement paste (A/C=2.5, w/c=0.45). 
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Figure 4-3: Compressive strength with different grading of coarse aggregates. 
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Figure 4-4: Compressive strength with different aggregate-cement (A/C) ratios. 
  



186 
 

 

 

-10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

cylinder strength

"Sandless concrete" 
fly ash content, %

Normal
concrete

(a)

C
om

pr
es

si
ve

 s
tr

en
gt

h,
 M

P
a

1-day

3-day

7-day

28-day

90-day

cube strength

"Sandless concrete" 
fly ash content, %

Normal
concrete

(b)

S
pl

itt
in

g 
te

ns
ile

 s
tr

en
gt

h,
 M

P
a

   7-day
 28-day

 

(c)

F
lx

ur
al

 s
tr

en
gt

h,
 M

P
a

   7-day
 28-day

"Sandless concrete" 
fly ash content, %

Normal
concrete

 

(d)

fc' = 0.94fcu

R2= 0.9168

C
yl

in
de

r 
co

m
pr

es
si

ve
 s

tr
en

gt
h,

 M
P

a

Cube compressive strength, MPa

 
 

 

Figure 4-5: Strength development of “sandless concrete”: (a) compressive strength, (b) splitting 
tensile strength, (c) flexural strength, (d) relation between cylinder and cube strength.
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Figure 4-6: Relations between compressive strength and (a) splitting tensile strength, (b) flexural 
strength, and (c) elastic modulus. 
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Figure 4-7: Drying shrinkage of “sandless concrete”. 
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Figure 4-8: RCPT results at 28 days. 
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Figure 4-9: Illustration of void content of aggregate particles [Kosmatka et al., 1995]. 
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Figure 4-10: (a) Void content, and (b) grading curve of combined aggregates. 
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Figure 4-11: Steps for mix design Approach 2.   
 

 

 

Figure 4-12: Test program of the second mix design method. 
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Figure 4-13: Slump of “sandless concrete”. 
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Figure 4-14: Compressive strength of “sandless concrete”. 
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Figure 4-15: (a) Splitting tensile strength, (b) flexural strength and (c) elastic modulus of 

“sandless concrete”.  
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Figure 4-16: Relation between compressive strength and (a) flexural and splitting tensile strength, 
and (b) elastic modulus. 
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Figure 4-17: Drying shrinkage of “sandless concrete”. 
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Figure 4-18: (a) RCPT result, (b) Dnssm of “sandless concrete”, and (c) Relation between RCPT 
and Dnssm. 
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Figure 4-19: (a) Weight, (b) Dynamic modulus, and (c) Compressive strength loss of “sandless 
concrete” after sulfate attack. 
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Figure 4-20: Pictures of “sandless concrete” after sulfate attacks with w/c ratio of (a) 0.45, and (b) 
0.50. 
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Chapter 5. Conclusions and Recommendations 

5.1 Review of Work 

This study was carried out to ensure the sustainability of concrete from the perspective of 

replacing or eliminating natural sand as an ingredient in making concrete. In the first part, the 

effects of waste glass particles on mortar and concrete properties were experimentally 

determined, at both fresh and hardened states, by replacing natural sand with different colored 

glass particles by up to 100%. The different effects of glass particles on mortar and concrete, 

especially for fresh and mechanical properties, were compared and discussed. Durability 

properties, in terms of resistance to chloride ion penetration as well as sulfate attack, were also 

examined.  

Of primary concern for mortar and concrete containing waste glass particles, alkali-silica 

reaction (ASR) was thoroughly studied. The effects of glass color, content and particle size on 

ASR were investigated based on accelerated mortar-bar tests. Moreover, microstructure of ASR 

gel was observed to study the ASR mechanism for glass particles in cementitious composites. 

Also, different mitigation methods were carried out to suppress ASR expansion in mortar with 

glass particles. Finally, the optimal content for each mitigation method was determined. 

In the second part, this study proposes the concept of “sandless concrete” which means that no 

sand (or fine aggregates) is contained in concrete mixture. Its viability was examined based on 

two different mix design approaches. The first approach extends the idea of no-fines concrete, 

for which two parameters are dominating, namely, aggregate/cement ratio and water/cement 
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ratio. The second approach is based on the maximum aggregates packing and excess paste theory. 

For each mix design approach, “sandless concrete” was investigated for its fresh, mechanical and 

durability properties, and compared with normal concrete. In addition, class F fly ash was used to 

substitute cement in “sandless concrete” by up to 50%, in order to decrease its high content of 

cement. Finally, the two mix design approaches were compared and discussed.  

 

5.2 Summary of Main Findings 

From the studies carried out on waste glass mortar and concrete, as well as “sandless concrete”, 

the following conclusions, as summarized in Table 5.1, can be drawn: 

1. Mortar and concrete containing waste glass particles as sand replacement 

a. The fresh density and air content of mortar and concrete were not significantly 

affected by the incorporation of glass sand particles. Slump tests suggested that 

the use of glass sand would not compromise the workability of concrete, although 

it decreased the flowability of glass mortar.  

b. Use of glass sand particles, regardless of color, resulted in a reduction in 

compressive, flexural and splitting tensile strength, and elastic modulus for mortar. 

This was due to a weakened ITZ. However, in the case of concrete, the 

mechanical properties might benefit from the pozzolanic reaction of fine glass 

particles, which refined the pore size and reduced the porosity of cement paste. 

Also, the higher aspect ratio of waste glass particles compared to natural sand 

contributed to the improvement in mechanical properties by a bridging effect. For 

both mortar and concrete, drying shrinkage was reduced, which implied a better 
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dimension stability, and this was primarily attributed to the negligible water 

absorption. The different effects of waste glass particles on the mechanical 

properties, of mortar and concrete, were first illustrated by this study. The 

differences were caused by the relative fraction of sand and cement in the two 

composites. The higher ratio of sand/cement ratio in mortar indicated less cement 

paste to coat the surface of sand and higher friction between sand particles, which 

hindered the movement of cement and reduce bond strength at ITZ between sand 

particles.   

c. The resistance to chloride ion penetration could be substantially improved by 

incorporating glass particles in both mortar and concrete, due to pozzolanic 

reaction of the glass particles. With respect to sulfate resistance, glass mortar 

showed comparable physical and mechanical performance as mortar with natural 

sand. Such findings on durability properties were in agreement with previous 

literature [Kou and Poon, 2009; Ling et al., 2011].  

d. ASR was potentially deleterious for glass mortar with clear color glass but not for 

green or brown glasses, judging by their small expansions (less than 0.1% at 14 

days) from accelerated mortar-bar tests. ASR expansion increased with larger 

glass particle size, regardless of glass color, which is in agreement with previous 

results (Fig. 3.16). In the long term, green glass sand mortar showed significantly 

higher expansion than brown glass sand. This is the first sophisticated study to 

find the high reactivity of green glass particles larger than 0.6 mm.  
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e. Furthermore, from the microstructure study, ASR cracks first occurred within the 

glass particles and then extended to the surrounding cement paste. It is in 

agreement with a recent publication [Maraghechi et al., 2012].  

f. This study first evaluated the efficiency of different ASR mitigating methods. 

Based on the performance, 30% fly ash or 60% GGBS was recommended to 

suppress the ASR expansion for mortar and concrete containing glass particles, 

compared with other mitigation methods.  

2. “Sandless concrete” 

a. The concept and viability of “sandless concrete” for structural application were 

first investigated. Two different mix design methods were investigated to produce 

a satisfactory “sandless concrete”. It was found that the principle of “excess paste 

theory” applied for the mix design of “sandless concrete”. Although the 

workability of “sandless concrete” in terms of slump by both mix design 

approaches was reduced, it could still meet the requirement of ACI 211.1 design 

code.  

b. “Sandless concrete” showed almost the same mechanical properties as normal 

concrete at various w/c ratios except the reduced modulus of elasticity. Also, it 

was found that the empirical formulas provided by ACI 318 would conservatively 

estimate the tensile strength for “sandless concrete”. However, modulus of 

elasticity would be comprehended.  

c. The influences of fly ash in “sandless concrete” were almost identical as in 

normal concrete. Up to 50% of cement content, fly ash would compromise early 
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age strengths but show comparable mechanical properties at later stage. Fly ash 

could effectively reduce drying shrinkage and enhance the resistance to chloride 

ion penetration at higher content, due to the densified microstructure by 

pozzolanic reaction.  

 

5.3 Limitations of Study and Suggestions for Future Research 

Some limitations and recommendations are presented for future research in the area of glass sand 

cementitious composites and “sandless concrete”, from this study. They are: 

1. All the results and analyses of this study are based on accelerated mortar-bar tests, which 

cannot reflect the real site condition well. ASR should be investigated in the long term 

under circumstances close to reality. With regard to the ASR test of concrete in long term, 

some existing standard methods, including ASTM C 1293, BS 812-123, and RILEM 

AAR-3, are available.  

2. The different ASR reactivity of green and brown glass particles (larger than 0.6 mm) in 

the long term remains not clarified. The distribution and density of micro-cracks of glass 

sand caused by crushing should be studied, especially for clear glass which shows the 

highest alkali reactivity. ASR reaction gel should be investigated based on its chemical 

compositions, to better understand its expansion characteristics. SEM and EDS could 

provide such valuable information, to complement and help explain the test results. In 

addition, some other advanced techniques can also be employed in the study of ASR gel 

with respect to the morphology, such as soft X-ray microscopy, X-ray microtomography, 

neutron diffraction and texture analysis [Monteiro et al., 2009]. Furthermore, the 
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mechanical properties of ASR gel can be determined in the nano-scale (~10-9 m) which 

will be increasingly significant in future research in concrete, especially for durability. 

Nano-indentation has been successfully used to study the cement hydration product of 

CSH gel [Constantinides and Ulm, 2004]. The same rationale can be applied in the study 

of other detrimental mechanisms in concrete, which is beneficial for durability study. 

Lastly, a plausible explanation should be proposed to interpret the occurrence of 

pozzolanic reaction rather than ASR at glass particle surface, if micro-mechanical and 

morphology characteristics of ASR gel can be known.  

3. More durability properties should be determined to complete the database of glass sand 

mortar and concrete, including resistance to wear, freeze-and-thawing, water permeability, 

etc. Nevertheless, such durability properties might not be significant compared to ASR.   

4. This study is only an initial effort to propose the concept of “sandless concrete” and test 

its basic properties, through two different mix design approaches. A number of areas 

remain unexplored for its application. First, the mix design methods used in this study 

should be further optimized to yield satisfactory properties for structural construction, 

especially workability. In mix design Approach 2, the amount of excess paste should be 

more scientifically studied in future, which may show different performances for 

“sandless concrete”. In addition, besides fly ash, other by-products or waste materials can 

also be included in “sandless concrete” as binding materials to increase its sustainability. 

More investigations on the durability properties of “sandless concrete” should also be 

considered in the future.  
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5. Fundamental aspects of “sandless concrete”, in terms of a two-phase composite, should 

be investigated, including the nature of interfacial zone between coarse aggregate 

particles and cement paste (microstructure, porosity, and permeability), the optimum 

packing of coarse aggregates (theoretically and experimentally), and the optimum amount 

of excess paste (including statistically measured thickness of paste coating on coarse 

aggregate particles and specific surface area of aggregate particles), etc. The engineering 

properties of “sandless concrete”, as reported in this study, should be linked with those 

basic material behaviors.  

  



205 
 

Table 5-1: Overview of the main contributions from the study 

Studies Contribution 

Glass sand cementitious 

composites 

1. Characterized fresh properties of mortar and concrete with up to 100% 

glass sand, which were not much affected except for the flowability of 

mortar; 

2. Explored mechanical properties of mortar and concrete containing 

glass sand, which were compromised in case of mortar but enhanced 

for concrete; 

3. Complemented durability properties of glass sand mortar and concrete, 

notably, the resistance to chloride ion penetration was found to 

significantly increase with glass sand. 

Alkali-silica reaction for 

glass particles in 

cementitious composites 

1. Determined the effect of glass color, content and particle size on ASR 

expansion; 

2. Studied the mechanism of ASR for glass particles, which was found to 

form and cause cracks within glass particles, different from traditional 

ASR; 

3. Investigated the efficiency and determined the optimum dosage of 

different ASR mitigation methods; 30% fly ash or 60% GGBS proved 

to be efficient and recommended for practical use. 

"Sandless concrete" 

1. Proposed two different concrete mix design approaches, which were 

both proved to be suitable; 

2. Examined properties of "sandless concrete" at both fresh and hardened 

states, which were comparable to normal concrete except for the 

decreased workability; 

3. Used fly ash as cement replacement in "sandless concrete", by which 

the cement content was significantly reduced. 



206 
 

References 

ACI 211.1-91, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass 
Concrete (Reapproved 2002), American Concrete Institution, Farmington Hills, MI, 2002, 
38 pp.  

ACI 318-08, Building Code Requirements for Structural Concrete (ACI 318-08) and 
Commentary, American Concrete Institute, Farmington Hills, MI, 2008, 465 pp.  

ACI 224R-01, Control of Cracking in Concrete Structure, American Concrete Institute, 
Farmington Hills, MI, 2001, 46 pp.  

ACI 522R-10, Report on Pervious Concrete, American Concrete Institute, Farmington Hills, MI, 
2010, 38 pp. 

Ahn, N., and Fowler, D. W., An Experimental Study on the Guidelines for Using Higher 
Contents of Aggregate Microfines in Portland Cement Concrete, Report No. ICAR 102-
1F, International Center for Aggregates Research, University of Texas, Austin, 2001, 435 
pp.   

Aldea, C. M.; Shah, S. P.; and Karr, A., “Effect of Cracking on Water and Chloride Permeability 
of Concrete,” Journal of Materials in Civil Engineering, V. 11, No. 3, 1999, pp. 181-187. 

Alexander, M.; Mindess, S.; Diamond, S.; and Qu, L., “Properties of Paste/Rock Interfaces and 
Their Influence on Composite Behavior,” Materials and Structures, V. 28, No. 183, 1995, 
pp. 497-506. 

Alexander, M., and Mindess, S., Aggregates in Concrete, First Edition, Taylor & Francis, 2005, 
435 pp.  

AS 3600, Concrete Structures, Australian Standard International, Sydney, 2001. 

ASTM C 29/C 29M-97, Standard Test Method for Bulk Density (“Unit Weight”) and Voids in 
Aggregate, ASTM International, West Conshohocken, PA, 2003, 4 pp. 

ASTM C 33-03, Standard Specification for Concrete Aggregates, ASTM International, West 
Conshohocken, PA, 2003, 11 pp. 

ASTM C 39/C 39M-05, Standard Test Method for Compressive Strength of Cylindrical Concrete 
Specimens, ASTM International, West Conshohocken, PA, 2005, 7 pp.  

ASTM C 78-02, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam 
with Third-Point Loading), ASTM International, West Conshohocken, 2002, PA, 3 pp. 



207 
 

ASTM C 109/C 109M-05, Standard Test Method for Compressive Strength of Hydraulic Cement 
Mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM International, West 
Conshohocken, PA, 2005, 9 pp.  

ASTM C 125-03, Standard Terminology Relating to Concrete and Concrete Aggregates, ASTM 
International, West Conshohocken, PA, 2003, 14 pp. 

ASTM C 128-01, Standard Test Method for Density, Relative Density (Specific Gravity), and 
Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, 2007, 7 pp. 

ASTM C 138/C 138M-01a, Standard Test Method for Density (Unit Weight), Yield, and Air 
Content (Gravimetric) of Concrete, ASTM International, West Conshohocken, PA, 2001, 
4 pp.  

ASTM C 143/C 143M-05a, Standard Test Method for Sump of Hydraulic-Cement Concrete, 
ASTM International, West Conshohocken, PA, 2005, 4 pp. 

ASTM C 150-05, Standard Specification for Portland Cement, ASTM International, West 
Conshohocken, PA, 2005, 8 pp. 

ASTM C 157/C 157M-06, Standard Test Method for Length Change of Hardened Hydraulic-
Cement Mortar and Concrete, ASTM International, West Conshohocken, PA, 2006, 7 pp. 

ASTM C 185-02, Standard Test Method for Air Content of Hydraulic Cement Mortar, ASTM 
International, West Conshohocken, PA, 2002, 3 pp.  

ASTM C 215-08, Standard Test Method for Fundamental Transverse, Longitudinal, and 
Torsional Resonant Frequencies of Concrete Specimens, ASTM International, West 
Conshohocken, PA, 2008, 7 pp.  

ASTM C 227-03, Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate 
Combinations (Mortar-Bar Method), ASTM International, West Conshohocken, PA, 
2003, 5 pp. 

ASTM C 231-03, Standard Test Method for Air Content of Freshly Mixed Concrete by the 
Pressure Method, ASTM International, West Conshohocken, PA, 2003, 9 pp. 

ASTM C 267-01, Standard Test Methods for Chemical Resistance for Mortars, Grouts, and 
Monolithic Surfacings and Polymer Concretes, ASTM International, West Conshohocken, 
PA, 2006, 6 pp.  

ASTM C 348-02, Standard Test Method for Flexural Strength of Hydraulic-Cement Mortar, 
ASTM International, West Conshohocken, PA, 2002, 6 pp.  

ASTM C 403/C 403M-06, Standard Test Method for Time of Setting of Concrete Mixtures by 
Penetration Resistance, ASTM International, West Conshohocken, PA, 2006, 7 pp. 



208 
 

ASTM C 469-02, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of 
Concrete in Compression, ASTM International, West Conshohocken, PA, 2002, 5 pp.  

ASTM C 496/C 496M-04, Standard Test Method for Splitting Tensile Strength of Cylindrical 
Concrete Specimens, ASTM International, West Conshohocken, PA, 2004, 5 pp.  

ASTM C 596-01, Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic 
Cement, ASTM International, West Conshohocken, PA, 2001, 3 pp.  

ASTM C 618-08a, Standard Specification for Coal Fly Ash and Raw or Calcined Natural 
Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2005, 3 pp. 

ASTM C 1012/C 1012 M-10, Standard Test Method for Length Change of Hydraulic-Cement 
Mortars Exposed to a Sulfate Solution, ASTM International, West Conshohocken, PA, 
2010, 7 pp.  

ASTM C 1202-05, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist 
Chloride Ion Penetration, ASTM International, West Conshohocken, PA, 2005, 6 pp.  

ASTM C 1260-07, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-
Bar Method), ASTM International, West Conshohocken, PA, 2007, 5 pp.  

ASTM C 1293-01, Standard Test Method for Determination of Length Change of Concrete Due 
to Alkali-Silica Reaction, ASTM International, West Conshohocken, PA, 2001, 6 pp.  

ASTM C 1437-01, Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM 
International, West Conshohocken, PA, 2001, 2 pp.  

ASTM C 1567-08, Standard Test Method for Determining the Potential Alkali-Silica Reactivity 
of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar 
Method), ASTM International, West Conshohocken, PA, 2008, 6 pp.  

Atis, C. D., “High-Volume Fly Ash Concrete with High Strength and Low Drying Shrinkage,” 
Journal of Materials in Civil Engineering, V. 15, No. 2, 2003, pp. 153-156.  

BACSD, “White Paper on Sustainable Development,” Concrete International, V. 27, No. 2, 
2005, pp. 19-21. 

Bazant, Z. P., and Steffens, A., “Mathematical Model for Kinetics of Alkali-Silica Reaction in 
Concrete,” Cement and Concrete Research, V. 30, No. 3, 2000, pp. 419-428.  

Bazant, Z. P.; Zi, G.; and Meyer, C., “Fracture Mechanics of ASR in Concretes with Waste Glass 
Particles of Different Sizes,” Journal of Engineering Mechanics, V. 126, No. 3, 2000, pp. 
226-232. 

Bentz, D. P., “Virtual Pervious Concrete: Microstructure, Percolation, and Permeability,” ACI 
Materials Journal, V. 105, No. 3, 2008, pp. 297-301. 



209 
 

Berra, M.; Mangialardi, T.; and Paolini, A. E., “Application of the NaOH Bath Test Method for 
Assessing the Effectiveness of Mineral Admixtures against Reaction of Alkali with 
Artificial Siliceous Aggregate,” Cement and Concrete Composites, V. 116, No., 3, 1994, 
pp. 207-218. 

Berube, M. A.; Duchesne, J.; and Chouinard, D., “Why the Accelerated Mortar Bar Method 
ASTM C 1260 Is Reliable for Evaluating the Effectiveness of Supplementary Cementing 
Materials in Suppressing Expansion due to Alkali-Silica Reactivity,” Cement, Concrete 
and Aggregate, V. 17, No. 1, 1995, pp. 26-34.  

Bilodeau, A., and Malhotra, V. M., “High-Volume Fly Ash System: Concrete Solution for 
Sustainable Development,” ACI Materials Journal, V. 97, No. 1, 2000, pp. 41-48. 

BS 812-123, Testing Aggregates - Method for Determination of Alkali-Silica Reactivity - 
Concrete Prism Method, British Standard Institution, London, 1999, 18 pp. 

BS 8500-2, Concrete – Complementary British Standard to BS EN 206-1 Part 2: Specification 
for Constituent Materials and Concrete, British Standards Institution, London, 2006, 46 
pp.  

BS DD 249, Testing Aggregate - Method for the Assessment of Alkali-Silica Reactivity – 
Potential Accelerated Mortar-Bar Method, British Standards Institution, London, 1999, 
12 pp.  

BS EN 12390-3, Testing Hardened Concrete Part 3: Compressive Strength of Test Specimens, 
British Standards Institution, London, 2009, 22 pp.  

CCAA T60, Guide to the Specification and Use of Manufactured Sand in Concrete, Cement 
Concrete & Aggregates Australia, Sydney, 2008. 

Chen, C. H.; Huang, R.; Wu, J. K.; and Yang, C. C., “Waste E-glass Particles Used in 
Cementitious Mixtures,” Cement and Concrete Research, V. 36, No. 3, 2006, pp. 449-
456.  

Chen, H.; Soles, J. A.; and Malhotra, V. M., “Investigations of Supplementary Cementing 
Materials for Reducing Alkali-Aggregate Reactions,” Cement and Concrete Composites, 
V. 15, No. 1-2, 1993, pp. 75-84. 

Christensen, T. H., and Damaggard, A., Recycling of Glass, In Christensen, T. H., (Eds), Solid 
Waste Technology & Management, Chapter 5.2, John Wiley & Sons, Chichester, 2010. 

Collins, C. L.; Idelker, J. H.; Willis, G. S.; and Kurtis, K. E., “Examination of the Effects of 
LiOH, LiCl, and LiNO3 on Alkali-Silica Reaction,” Cement and Concrete Research, V. 
34, No. 8, 2004, pp. 1403-1415. 

Constantinides, G., and Ulm, F. J., “The Effects of Two Types of C-S-H on the Elasticity of 
Cement-Based Materials: Results from Nanoindentation and Micromechanical Modeling,” 
Cement and Concrete Research, V. 34, No. 1, 2004, pp. 67-80.  



210 
 

Dhir, R. K., and Jones, M. R., “Development of Chloride-Resisting Concrete Using Fly Ash,” 
Fuel, V. 78, No. 2, 1999, pp. 137-142. 

Dhir, R. K.; Dyer, T. D.; and Tang, M. C., “Alkali-Silica Reaction in Concrete Containing Glass,” 
Materials and Structures, V. 42, No. 10, 2009, pp. 1451-1462. 

Diamond, S., “Effects of Two Danish Flyashes on Alkali Contents of Pore Solutions of Cement-
Flyash Pastes,” Cement and Concrete Research, V. 11, No. 3, 1981, pp. 383-394. 

Diamond, S., “Alkali-Silica Reaction – Some Paradoxes,” Cement and Concrete Composites, V. 
19, No. 5, 1997, pp. 391-401. 

Dyer, T. D., and Dhir, R. K., “Chemical Reactions of Glass Cullet Used as Cement Component,” 
Journal of Materials in Civil Engineering, V. 13, No. 6, 2001, pp. 412-417. 

Edwards, A. G., “Shrinkage and Other Properties of Concrete Made with Crushed Rock 
Aggregates from Scottish Source,” BGWF Journal, Autumn, 1966, pp. 23-41. 

Feldman, R. F.; Chan, G. W.; Brousseau, R. J.; and Tumidajski, P. J., “Investigation of the Rapid 
Chloride Permeability Test,” ACI Materials Journal, V. 91, No. 3, 1994, pp. 246-255.  

Feng, X.; Thomas, M. D. A.; Bremner, T. W.; Balcom, B. J.; and Folliard, K. J., “Studies on 
Lithium Salts to Mitigate ASR Induced Expansion in New Concrete: A Critical Review,” 
Cement and Concrete Research, V. 35, No. 9, 2005, pp. 1789-1796.  

Figg, J. W., “Reaction between Cement and Artificial Glass in Concrete,” 5th International 
Conference on Concrete Alkali Aggregate Reactions, Cape Town, South Africa, 1981, pp. 
252-257.  

Ghafoori, N., and Dutta, S., “Development of No-fines Concrete Pavement Applications,” 
Journal of Transportation Engineering, V. 121, No. 3, 1995a, pp. 283-288. 

Ghafoori, N., and Dutta, S., “Building and Nonpavement Application of No-fines Concrete,” 
Journal of Materials in Civil Engineering, V. 7, No. 4, 1995b, pp. 286-289. 

Ghafoori, N., and Dutta, S., “Laboratory Investigation of Compacted No-fines Concrete for 
Paving Materials”, Journal of Materials in Civil Engineering, V. 7, No. 3, 1995c, pp. 
183-191. 

Ghafoori, N., and Diawara, H., “Strength and Wear Resistance of Sand-Replaced Silica Fume 
Concrete,” ACI Materials Journal, V. 104, No. 2, 2007, pp. 206-214. 

Gilkey, H. J., “Water-Cement Ratio versus Strength- Another Look,” Journal of the American 
Concrete Institute, V. 57, No. 10, 1961, pp. 1287-1312. 

Hansen, T. C., Recycling of Demolished Concrete and Masonry, RILEM Report No. 6, Chapman 
and Hall, London, 1994.  



211 
 

Haselbach, L. M., and Freeman, R. M., “Vertical Porosity Distributions in Pervious Concrete 
Pavement,” ACI Materials Journal, V. 103, No. 6, 2006, pp. 452-458.  

Haselbach, L. M., and Liu, L., “Calcium Hydroxide Formation in Thin Cement Paste Exposed to 
Air,” ACI Materials Journal, V.107, No. 4, 2010, pp. 365-371. 

Hasparky, N. P.; Monteiro, P. J. M.; and Carasek, H., “Effect of Silica Fume and Rice Husk Ash 
on Alkali-Silica Reaction,” ACI Materials Journal, V. 97, No. 4, 2000, pp. 486-492. 

Helmuth, R., and Stark, D., “Alkali-Silica Reactivity Mechanisms,” In J. P. Skalny (ed.) 
Materials Science of Concrete III, American Ceramic Society, Westerville, OH, 1992, pp. 
131-208. 

Helmuth, R., “Alkali-Silica Reactivity: An Overview of Research,” SHRP-C-342, National 
Research Council, Washington, DC, 1993, pp. 1-11.  

Heukamp, F. H.; Ulm, F. J.; and Germaine, J. T., “Poroplastic Properties of Calcium-Leached 
Cement-Based Materials,” Cement and Concrete Research, V. 33, No. 8, 2003, pp. 1155-
1173.  

Hobbs, W., Alkali-Silica Reaction in Concrete, Telford, London, 1988.  

Hudec, P. P., and Banahene, N. K., “Chemical Treatments and Admixtures for Controlling 
Alkali Reactivity,” Cement and Concrete Composites, V. 15, No. 1-2, 1993, pp. 21-26.  

Idir, R.; Cyr, M.; and Tagnit-Hamou, A., “Use of Fine glass as ASR Inhibitor in Glass Aggregate 
Mortars,” Construction and Building Materials, V. 24, No. 7, 2010, pp. 1309-1312.  

Ismail, Z. Z., and Al-Hashimi, E. A., “Recycling of Waste Glass as A Partial Replacement for 
Fine Aggregate in Concrete,” Waste Management, V. 29, No. 2, 2009, pp. 655-659. 

Jin, W.; Meyer, C.; and Baxter, S., “Glascrete”-Concrete with Glass Aggregate,” ACI Materials 
Journal, V. 97, No. 2, 2000, pp. 208-213. 

Kaplan, M. F., “Flexural and Compressive Strength of Concrete as Affected by the Properties of 
Coarse Aggregate,” ACI Journal Proceedings, V. 55, 1959, pp. 1193-1207.  

Kennedy, C. T., “The Design of Concrete Mixes,” ACI Journal Proceedings, V. 36, No. 2, 1940, 
pp. 373-400.  

Kou, S. C., and Poon, C. S., “Properties of Self-Compacting Concrete Prepared with Recycled 
Glass Aggregate,” Cement and Concrete Composites, V. 31, No. 2, 2009, pp. 107-113.  

Kumar, B.; Tike, G. K.; and Nanda, P. K., “Evaluation of Properties of High-Volume Fly-Ash 
Concrete for Pavements,” Journal of Materials in Civil Engineering, V. 19, No. 10, 2007, 
pp. 906-911. 



212 
 

Limbachiya, M. C., “Bulk Engineering and Durability Properties of Washed Glass Sand 
Concrete,” Construction and Building Materials, V. 23, No. 2, 2009, pp. 1078-1083. 

Ling, T. C.; Poon, C. S.; and Kou, S. C., “Feasibility of Using Recycled Glass in Architectural 
Cement Mortar,” Cement and Concrete Composites, V. 33, No. 8, 2011, pp. 848-854. 

Mahboub, K. C.; Canler, J.; Rathbone, R.; Robl, T.; and Davis, B., “Pervious Concrete: 
Compaction and Aggregate Gradation,” ACI Materials Journal, V. 106, No. 6, 2009, pp. 
523-528. 

Malhotra, V. M., “No-Fines Concrete – Its Properties and Applications,” ACI Journal 
Proceedings, V. 73, No. 11, 1976, pp. 628-644. 

Malhotra, V. M., “Making Concrete Greener with Fly Ash,” Concrete International, V. 21, No. 5, 
1999, pp. 61-66. 

Malhotra, V. M., “High-Performance High-Volume Fly Ash Concrete,” Concrete International, 
V. 24, No. 7, 2002, pp. 30-34.  

Maraghechi, H.; Shafaatian, S. M. H.; Fischer, G.; and Rajabipour, F., “The Role of Residual 
Cracks on Alkali Reactivity of Recycled Glass Aggregates,” Cement and Concrete 
Composites, V. 34, No. 1, 2012, pp. 41-47. 

McCoy, W. J., and Caldwell, A. G., “New Approach to Inhibiting Alkali-Aggregate Expansion,” 
ACI Journal Proceedings, V. 47, No. 5, 1951, pp. 693-706.  

McLellan, G. W., and Shand, E. B., Glass Engineering Handbook, McGraw-Hill, New York, 
1984.  

Mehta, P. K., “Reducing the Environmental Impact of Concrete,” Concrete International, V. 23, 
No. 10, 2001, pp. 61-66. 

Mehta, P. K., “Greening of the Concrete Industry for Sustainable Development,” Concrete 
International, V. 24, No. 7, 2002, pp. 23-28. 

Mehta, P. K., and Monteiro, P. J. M.; Concrete: Microstructure, Properties, and Materials, third 
ed., McGraw-Hill, New York, 2006.  

Meininger, R. C., “No-fines Pervious Concrete for Paving,” Concrete International, V. 10, No. 8, 
1998, pp. 20-27. 

Meyer, C., and Baxter, S., Use of Recycled Glass for Concrete Masonry Blocks, Final Report to 
New York State Energy Research and Development Authority, Report No. 97-15, Albany, 
NY, 1997. 

Meyer, C., and Baxter, S., Use of Recycled Glass and Fly Ash for Precast Concrete, Final Report 
to New York State Energy Research and Development Authority, Report No. 98-18, NY, 
1998.  



213 
 

Meyer, C., “The Greening of the Concrete Industry,” Cement and Concrete Composites, V. 31, 
No. 8, 2009, pp. 601-605.  

Mindess, S.; Yong, J. F.; and Darwin, D., Concrete, 2nd edition, Prentice Hall, NJ, 2003. 

Mitchell, L. D.; Beaudoin, J. J.; and Grattan-Bellew, P., “The Effects of Lithium Hydroxide 
Solution on Alkali Silica Reaction Gels Created with Opal,” Cement and Concrete 
Research, V. 34, No. 4, 2004, pp. 641-649.  

Monteiro, P. J. M.; Wang, K.; Sposito, G.; dos Santos, M. C.; de Andrade, W. P., “Influence of 
Mineral Admixtures on the Alkali-Aggregate Reaction,” Cement and Concrete Research, 
V. 27, No. 12, 1997, pp. 1899-1909. 

Monteiro, P. J. M.; Kirchheim, A. P.; Chae, S.; Fischer, P.; MacDowell, A. A.; Schaible, E.; and 
Wenk, H. R., “Characterizing the Nano and Micro Structure of Concrete to Improve Its 
Durability,” Cement and Concrete Composites, V. 31, No. 8, 2009, pp. 577-584.  

Naik, T., “Greener Concrete Using Recycled Materials,” Concrete International, V. 24, No. 7, 
2002, pp. 45-49. 

Neville, A. M., Properties of Concrete, 4th edition, Longman, London, 1995. 

NT BUILD 492, Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration 
Coefficient from Non-Steady-State Migration Experiments, NORDTEST, Espoo, 1999, 8 
pp. 

Ostertage, C. P.; Yi, C.; and Monteiro, P. J. M., “Effect of Confinement on Properties and 
Characteristics of Alkali-Silica Reaction Gel,” ACI Materials Journal, V. 104, No. 3, 
2007, pp. 276-282. 

Ozkan, O., and Yuksel, I., “Studies on Mortars Containing Waste Bottle Glass and Industrial By-
Products,” Construction and Building Materials, V. 22, No. 6, 2008, pp. 1288-1298.  

Park, S. B., and Lee, B., “Studies on Expansion Properties in Mortar Containing with Waste 
Glass and Fibers,” Cement and Concrete Research, V. 34, No. 7, 2004, pp. 1145-1152. 

Park, S. B.; Lee, B. C.; and Kim, J. H., “Studies on Mechanical Properties of Concrete 
Containing Waste Glass Aggregate,” Cement and Concrete Research, V. 34, No. 12, 
2004, pp. 2181-2189.  

Powers, T. C., The Properties of Fresh Concrete, John Wiley & Sons, New York, 1968. 

Prezzi, M.; Monteiro, P. J. M.; and Sposito, G., “The Alkali-Silica Reaction, Part I: Use of the 
Double-Layer Theory to Explain the Behavior of Reaction-Product Gels,” ACI Materials 
Journal, V. 94, No. 1, 1997, pp. 10-17.  

Prezzi, M.; Monteiro, P. J. M.; and Sposito, G., “Alkali-Silica Reaction – Part 2: The Effect of 
Chemical Admixtures,” ACI Materials Journal, V. 95, No. 1, 1998, pp. 3-10.  



214 
 

Ranc, R.; Isabelle, H.; Clement, J. Y.; and Sorrentino, D., “Limits of Application of the ASTM C 
227 Mortar Bar Test. Comparison with Two Other Standards on Alkali Aggregate 
Reactivity,” Cement, Concrete and Aggregate, V. 16, No. 1, 1994, pp. 63-72. 

Rajabipour, F.; Maraghechi, H.; and Fischer, G., “Investigating the Alkali Silica Reaction of 
Recycled Glass Aggregates in Concrete Materials,” Journal of Materials in Civil 
Engineering, V.22, No. 12, 2010, pp. 1201-1208.  

Reinhardt, H.-W., and Jooss, M., “Permeability and Self-Healing of Cracked Concrete as A 
Function of Temperature and Crack Width,” Cement and Concrete Research, V. 33. No. 
7, 2003, pp. 981-985.  

Richardson, I. G., “Tobermorite/Jennite- and Tobermorite/Calcium Hydroxide-based Models for 
the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, β-
Dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-Furnace 
Slag, Metakaolin, or Silica Fume,” Cement and Concrete Research, V. 34, No. 9, 2004, 
pp. 1733-1777. 

RILEM TC 106-AAR, “Recommendations of RILEM TC 106-AAR: Alkali Aggregate Reaction 
A. TC 106-2 - Detection of Potential Alkali-Reactivity of Aggregates – The Ultra-
Accelerated Mortar-Bar Test B. TC 106-3 - Detection of Potential Alkali-Reactivity of 
Aggregates- Method for Aggregate Combinations Using Concrete Prisms,” Materials and 
Structures, V. 33, No. 229, 2000, pp. 283-293. 

Rogers, C.; Thomas, M. D. A.; and Hooton, R. D., “Prevention of Damage due to Alkali-
Aggregate Reaction (AAR) in Concrete Construction-Canadian Approach,” Cement, 
Concrete and Aggregate, V.19, No. 1, 1997, pp. 26-32. 

Saccani, A., and Bignozzi, M. C., “ASR Expansion Behavior of Recycled Glass Fine Aggregates 
in Concrete,” Cement and Concrete Research, V. 40, No. 4, 2010, pp. 531-536. 

Sahmaran, M.; Li, V. C.; and Andrade, C., “Corrosion Resistance Performance of Steel-
Reinforced Engineered Cementitious Composite Beams,” ACI Materials Journal, V. 105, 
No. 3, 2008, pp. 243-250. 

Scanlon, J. M., and Sherman, M. R., “Fly Ash Concrete: An Evaluation of Chloride Penetration 
Test Method,” Concrete International, V. 18, No. 6, 1996, pp. 57-62. 

Schaefer, V. R.; Wang, K.; Suleiman, M. T.; and Keveern, J. T., Mix Design Development for 
Pervious Concrete in Cold Weather Climates, Final Report, Report 2006-1, National 
Concrete Pavement Technology, Feb. 2006, 67 pp.  

Schmidt, A., and Saia, W. H. F., “Alkali-aggregate Reaction Tests on Glass Used for Exposed 
Aggregate Wall Panel Work,” ACI Materials Journal, V. 60, 1963, pp. 1235-1236.  

Scholze, H., Glass: Nature, Structure, and Properties, Springer-Verlag, NY, 1990.  



215 
 

Shao, Y.; Lefor, T.; Moras, S.; and Rodriguez, D., “Studies on Concrete Containing Ground 
Waste Glass,” Cement and Concrete Research, V. 30, No. 1, 2000, pp. 91-100. 

Shayan, A., and Xu, A., “Value-Added Utilisation of Waste Glass in Concrete,” Cement and 
Concrete Research, V. 34, No. 5, 2004, pp. 81-89.  

Shi, C., “Effect of Mixing Proportions of Concrete on Its Electrical Conductivity and the Rapid 
Chloride Permeability Test (ASTM C1202 or AASHTO T277) Results,” Cement and 
Concrete Research, V. 34, No. 3, 2004, pp. 537-545. 

Shi, C.; Wu, Y.; Riefler, C.; and Wang, H., “Characteristics and Pozzolanic Reactivity of Glass 
Powders,” Cement and Concrete Research, V. 35, No. 5, 2005, pp. 987-993.  

Shi, C., and Zheng, K., “A Review on the Use of Waste Glasses in the Production of Cement and 
Concrete,” Resource, Conservation and Recycling, V. 52, No. 2, 2007, pp. 234-247. 

Shi, C., “Corrosion of Glasses and Expansion Mechanism of Concrete Containing Waste Glasses 
as Aggregates,” Journal of Materials in Civil Engineering, V. 21, No. 10, 2009, pp. 529-
534. 

Siddique, R., “Performance Characteristics of High-Volume Class F Fly Ash Concrete,” Cement 
and Concrete Research, V. 34, No. 3, 2004, pp. 487-493. 

Siddique, R., Waste Materials and By-Products in Concrete, Springer, Berlin, 2008.  

Stark, D. C., “Lithium Salt Admixtures – An Alternative Method to Prevent Expansive Alkali-
Silica Reactivity,” In: Proceedings of the 9th International Conference on Alkali-
Aggregate Reaction in Concrete, London, 1992, pp. 1-7.  

Stark, D.; Morgan, B.; and Okamoto, P., Eliminating or Minimizing Alkali-Silica Reactivity, 
National Research Council, Washington, D.C., 1993, pp. 75-93.  

Sumanasooriya, M. S.; Bentz, D. P.; and Neithalath, N., “Planar Image-Based Reconstruction of 
Pervious Concrete Pore Structure and Permeability Prediction,” ACI Materials Journal, 
V.107, No. 4, 2010, pp. 413-421. 

Suwito, A.; Jin, W.; Xi, Y.; and Meyer, C., “A Mathematical Model for the Pessimum Size 
Effect of ASR in Concrete,” Concrete Science and Engineering (RILEM), V. 4, No. 13, 
2002, pp. 23-34. 

Swamy, R. N., and Al-Asali, M. M., “Engineering Properties of Concrete Affected by Alkali-
Silica Reaction,” ACI Materials Journal, V. 85, No. 5, 1988, pp. 367-374. 

Taha, B., and Nounu, G., “Properties of Concrete Contains Mixed Colour Waste Recycled Glass 
as Sand and Cement Replacement,” Construction and Building Materials, V. 22, No. 5, 
2008, pp. 713-720.  



216 
 

Taha, B., and Nounu, G., “Utilizing Waste Recycled Glass as Sand/Cement Replacement in 
Concrete,” Journal of Materials in Civil Engineering, V. 21, No. 12, 2009, pp. 709-721. 

Tang, M. H.; Xu, Z.; and Han, S., “Alkali-Reactivity of Glass Aggregate,” Durability of Building 
Materials, V. 4, No. 4, 1987, pp. 377-385. 

Termkhajornkit, P.; Nawa, T.; Yamashiro, Y.; and Saito, T., “Self-Healing Ability of Fly Ash-
Cement Systems,” Cement and Concrete Composites, V. 31, No. 3, 2009, pp. 195-203.  

Terro, M. J., “Properties of Concrete Made with Recycled Crushed Glass at Elevated 
Temperatures,” Building and Environment, V. 41, No. 5, 2006, pp. 633-639.  

Thomas, M. D. A, and Innis, F. A., “Use of the Accelerate Mortar Bar Test for Evaluating the 
Efficacy of Mineral Admixtures for Controlling Expansion due to Alkali-Silica Reaction,” 
Cement, Concrete and Aggregates, V. 21, No. 2, 1999, pp. 157-164. 

Thomas, M. D. A.; Fournier, B.; Folliard, K. J.; Ideker, J. H.; and Shehata, M., Test Methods for 
Evaluating Preventive Measures for Controlling Expansive due to Alkali-Silica Reaction 
in Concrete, Report No. ICAR 302-1, International Center for Aggregates Research, US, 
2006, 57 pp.  

Thomas, M. D. A.; Fournier, B.; Folliard, K. J.; Ideker, J. H.; and Rescendez, Y., The Use of 
Lithium to Prevent or Mitigate Alkali-Silica Reaction in Concrete Pavement and 
Structures, Report No. FHWA-HRT-06-133, Department of Transportation, US, 2007a.  

Thomas, M. D. A.; Fournier, B.; Folliard, K. J.; Shehata, M. H.; Ideker, J. H.; and Rogers, C., 
“Performance Limits for Evaluating Supplementary Cementing Materials Using 
Accelerated Mortar Bar Test,” ACI Materials Journal, V. 104, No. 2, 2007b, pp. 115-122. 

Topcu, I. B., and Canbaz, M., “Properties of Concrete Containing Waste Glass,” Cement and 
Concrete Research, V. 34, No. 2, 2004, pp. 267-274.  

Topcu, I. B.; Boga, A. R.; and Bilir, T., “Alkali-Silica Reactions of Mortars Produced by Using 
Waste Glass as Fine Aggregate and Admixtures such as Fly Ash and Li2CO3,” Waste 
Management, V. 28, No. 5, 2008, pp. 878-884. 

Turanli, L.; Bektas, F.; and Monteiro, P. J. M., “Use of Ground Clay Brick as A Pozzolanic 
Material to Reduce the Alkali-Silica Reaction,” Cement and Concrete Research, V. 33, 
No. 10, 2003, pp. 1539-1542.  

Turanli, L.; Shomglin, K.; Ostertag, C. P.; and Monteiro, P. J. M., “Reduction in Alkali-Silica 
Expansion Due to Steel Microfibers,” Cement and Concrete Research, V. 31, No. 5, 2001, 
pp. 825-827.  

United Nations, Report of the World Commission on Environment and Development, Brundtland 
Commission, Brundtland, 1987.  



217 
 

Villalobos, S.; Lange, D. A.; and Roesler, J. R., Evaluation, Testing and Comparison between 
Crushed Manufactured Sand and Natural Sand, Technical Note, University of Illinois, 
Department of Civil & Environmental Engineering, Urbana, IL, 2005.  

Wang, H., “A Study of the Effects of LCD Glass Sand on the Properties of Concrete,” Waste 
Management, V. 29, No. 1, 2009, 335-341.  

Wee, T. H.; Suryavanshi, A. K.; and Tin, S. S., “Evaluation of Rapid Chloride Permeability Test 
(RCPT) Results for Concrete Containing Mineral Admixtures,” ACI Materials Journal, V. 
97, No. 2, 2000, pp. 221-232.  

Wigum, B. J., and Danielsen, S. W., Production and Utilisation of Manufactured Sand, COIN 
Project Report 12-2009, SINTEF Building and Infrastructure, Oslo, 2009. 

Xie, Z., and Xi, Y., “Use of Recycled Glass as A Raw Material in the Manufacture of Portland 
Cement,” Materials and Structures, V. 35, No. 8, 2002, pp. 510-515. 

Xie, Z.; Xiang, W.; and Xi, Y., “ASR Potentials of Glass Aggregates in Water-Glass Activated 
Fly Ash and Portland Cement Mortars,” Journal of Materials in Civil Engineering, V. 15, 
No. 1, 2003, pp 67-74.  

Xu, G. J. Z.; Watt, D. F.; and Hudec, P. P., “Effectiveness of Mineral Admixtures in Reducing 
ASR Expansion,” Cement and Concrete Research, V. 25, No. 6, 1995, pp. 1225-1236. 

Yamada, K., and Ishiyama, S., Maximum Dosage of Glass Cullet as Fine Aggregate Mortar, 
London: Thomas Telford, 2005.  

Yang, C. C.; Huang, R.; Yeih, W.; and Sue, I. C., “Aggregate Effect on Elastic Moduli of 
Cement-Based Composite Materials,” Journal of Marine Science and Technology, V. 3, 
No. 1, 1995, pp. 5-10.  

Yang, J., and Jiang, G., “Experimental Study on Properties of Pervious Concrete Pavement 
Materials,” Cement and Concrete Research, V. 33, No. 3, 2003, pp. 381-386. 

Yi, C. K., and Osertag, C. P., “Mechanical Approach in Mitigating Alkali-Silica Reaction,” 
Cement and Concrete Research, V. 35, No. 1, 2005, pp. 67-75.  

Yuksel, I.; Ozkan, O.; and Bilir, T., “Use of Granulated Blast-Furnace Slag in Concrete as Fine 
Aggregate,” ACI Materials Journal, V. 103, No. 3, 2006, pp. 203-208. 

Yuksel, I., and Genc, A., “Properties of Concrete Containing Nonground Ash and Slag as Fine 
Aggregate,” ACI Materials Journal, V. 104, No. 4, 2007, pp. 397-403. 

Zhu, H., and Byars, E. A., “Alkali-Silica Reaction of Recycled Glass in Concrete,” In: 12th 
International Conference on Concrete Alkali Aggregate Reactions (ICAAR), Beijing, 
China, 2004, pp. 811-820. 



218 
 

Zhu, H.; Chen, W.; Zhou, W.; and Byars, E. A., “Expansion Behaviour of Glass Aggregates in 
Different Testing for Alkali-Silica Reactivity,” Materials and Structures, V. 42, No. 4, 
2009, pp. 485-494.  

 


