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SUMMARY

This research focuses on a two-product recovery system in the field of Reverse
Logistics. As far as the knowledge about current literature, this research could be
regarded as the first study on the multi-product recovery system involving two
products and two flows of returned items. Firstly, a periodic review inventory
problem is studied on the two-product recovery system in the situation of lost sales
over a finite horizon. A dynamic programming model has been developed in order to
obtain the optimal policy of production and recovery decisions, which aims to
maximize the expected total profit in the finite horizon. However, the model is
difficult to be solved efficiently as no nice property could be found. Thus, the special

case of the multi-period problem, a single-period problem is investigated.

Secondly, the optimal threshold level policy has been obtained for the system
in a single period. For the single-period problem, the usual approach is to use Karush-
Kuhn-Tucker (KKT) conditions to find the optimal solution. In this case, the answer
is very complex which results in 21 different cases. However, after analyzing these 21
cases, we found out that they can be represented by an optimal multi-level threshold
policy. This optimal policy is characterized by 6 order-up-to levels and 3 switching
levels. By using the policy, the extension from the two-product situation to a general

multi-product situation has been further discussed.

Even though this multi-level threshold policy might not be optimal for the
multi-period problem, it is intuitive, easy to use and provides good managerial

perspectives. Hence, we apply this policy to the multi-period problem in the situation

v



of lost sales at first. We have found that different from the single-period problem, the

threshold levels will not only depend on the current-period cost parameters, but also

on the future cost-to-go function.

Thirdly, we have developed an efficient way to compute these threshold levels:

Unlike the usual approach which uses a single function (or
piecewise function) to represent the cost-to-go function, we just
need to estimate the gradient of the cost-to-go function at the points
of interest by Monte Carlo simulation. These gradients will be used
to compute the threshold level. Hence, the performance of the
results will not depend on the function we assume which can be a
challenge for most of the approximate dynamic programming
approaches.

We develop an Infinitesimal Perturbation Analysis (IPA) based
approach to estimate the gradient. This approach not only uses the
least computing resources but also its estimation quality is better.
The results of the numerical experiments show that the
performance of this threshold policy is found to be promising under

a wide range of settings.

Finally, we have extended the multi-period problem to the situation of

backorder. Furthermore, the lead time effect is investigated based on a simple case,

where production lead time and recovery lead time of each product are assumed to be

equal to the same nonzero constant. This multi-level threshold policy also shows good

performance under a wide range of settings.
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background

In the recent decades, the management of the flows, opposite to the
conventional supply chain flows, is addressed in the emerging field of ‘Reverse
Logistics’. The returns flow of products or goods from downstream entity to upstream
entity in the supply chain is due to different reasons. Product recovery may initiate the
returns flow from users to producers. The returns flow of unsold goods from retailers
to manufacturers is another example. Furthermore, the returns flow of defective
products or spare parts for repair is also in the field. As for the definition of ‘Reverse

Logistics’, there are a few versions, based on different emphases.

According to a White Paper published by the Council of Logistics
Management (CLM), Reverse Logistics is introduced as

“[...] the term often used to refer to the role of logistics in recycling, waste
disposal, and management of hazardous materials; a broader perspective includes all
issues relating to logistics activities carried out in source reduction, recycling,

substitution, reuse of materials and disposal”. (Stock, 1992)

As defined by Fleischmann (2001), Reverse Logistics is the process of
planning, implementing, and controlling the efficient, effective inbound flow and
storage of secondary goods and related information opposite to the traditional supply

chain direction for the purpose of recovering value or proper disposal.



Chapter 1 Introduction

According to Dowlatshahi (2005), Reverse Logistics is a $53 billion industry
in the US alone. Costs derived from reverse-logistics activities in the US exceed $35
billion per year. The customer returns rate may be as high as 15% of sales, and in
sectors such as catalogue sales and e-commerce, it could reach as much as 35%. The
following are the most frequently cited reasons for companies to engage in Reverse
Logistics (Thierry, Salomon, Van Nunen, & Van Wassenhove, 1995; De Brito &
Dekker, 2004; Ravi, Shankar, & Tiwari, 2005):

. Economic reasons, both direct (consumption of raw materials,

reduction of disposal costs, recovery of the added value of used products, etc.)

and indirect (an environmentally friendly image and compliance with current
or future legislation);

° Legal reasons, because current legislation in many countries (including,

for example, members of the European Union) holds companies responsible

for recovering or properly disposing of the products they put on the market;

° Social reasons, because society is aware of environmental issues and

demands that companies behave more respectfully towards the natural

environment, especially with regard to issues like emissions and the

generation of waste.

The above drivers are closely linked with the available options for recovering
value from the products under consideration. Product recovery management may be
defined as ‘the management of all used and discarded products, components, and
materials for which a manufacturing company is legally, contractually, or otherwise
responsible’ (Thierry et al., 1995). According to the re-entry point in the value adding

process, there are the following forms of recovery:
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° Repair. Products are brought to working order. This implies that
typically the quality standard of repaired products is less than those for new
products. Usually repair requires minor (dis)assembly, since only the non-
working parts are repaired or replaced.

° Refurbishing. Products are upgraded to some pre-specified quality
standards. Typically these standards are less than those for new products but
higher than those for repaired products.

° Remanufacturing. Used products are recovered such that the quality
standards are as strict as those for new products. Necessary disassembly, over-
haul, and replacement operations are carried out in the recovery process.

° Cannibalization. This involves selective disassembly of used products
and inspection of potentially reusable parts. Parts obtained from
cannibalization can be reused in the repair, refurbishing or remanufacturing
process.

. Recycling. Materials rather than products are recovered. These
materials are reused in the manufacturing of new products.

° Disposal. Products are disposed of in the form of landfilling or

incineration.

In the above categorization, the forms of refurbishing and cannibalization are
also referred to as reuse. Refurbishing is denoting the reuse at the product level,
whereas cannibalization is at the part level. Figure 1.1 describes the Reverse Logistics

involving reuse, remanufacturing and recycling.
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Figure 1.1 Reuse, remanufacturing and recycling in reverse logistics

As the inbound flows of product recovery management, the returns flows are
distinguished as follows:

End-of-use returns. Products are returned when they have reached the

end of usage or lease period by customers. Remanufacturing and recycling are

the major recovery options for them.

Commercial returns. Products are returned by the buyer to the original

sender for refunding. Reuse, remanufacturing, recycling and disposal are
possible recovery options for them.

Warranty returns. Products failing during use or damaged during
delivery, spare parts, and product recalls due to security hazards are included
in this category. Repair and disposal are possible recovery options for them.

Production scrap and by-products. Excess material is reintroduced in
the production process. By-products are often transferred to alternative supply
chain. Recycling and remanufacturing are possible recovery options for them.

Packaging. Crates, refillable bottles, pallets, reusable boxes and

containers are best known examples in this category. Mostly, reusable
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packaging is owned by logistics service providers who take charge of the

recollection. Reuse and recycling are possible recovery options for them.

A growing number of industries are now becoming interested in
remanufacturing of end-of-use returns. Nowadays, products that can be
remanufactured might include machine tools, medical instruments, copiers,
automobile parts, computers, office furniture, mass transit, aircraft, tires etc. Table 1.1
lists some large companies within these industries that currently apply product

remanufacturing.

Table 1.1 Some companies active in remanufacturing

Company name Product References

Abbott Laboratories Medical diagnostic instruments  Sivinski and Meegan (1993)

BMW Car engines, starting motors, Vandermerwe and Oliff (1991)
alternators

De Vlieg-Bullard Machine tools Sprow (1992)

Grumman F-14 aircraft Kandebo (1990)

Rank Xerox Copiers Thierry et al. (1995)

Volkswagen Canada Car engines Brayman (1992)

Reverse Logistics has also attracted the attention from academia in recent
years (Prahinski & Kocabasoglu, 2006). The research in the field of Reverse Logistics
has covered three aspects: design of network structure for collecting the returned
products, joint inventory management of recoverable products and serviceable
products, operational planning of recovery process and normal production
(Fleischmann et al., 1997). Among these aspects, many of the studies published on
Reverse Logistics have focused on the inventory management of recoverable products
and serviceable products (Rubio, Chamorro, & Miranda, 2008). Some of the most

notable works have analyzed the effects of the returns flow on traditional inventory-
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management models (see, for example, Fleischmann et al., 1997; De Brito & Dekker,
2003; Minner, 2003; Fleischmann & Minner, 2004, for a review). Most of them are
carried out on the basis of product recovery system, which undertakes the recovery
process of returned products or goods. In many cases, the product recovery system
also includes normal production of finished product. In practice, the product recovery

system is often implemented as the remanufacturing of end-of-use returns.

According to whether inventory of returned products is allowable, product
recovery system is classified into autonomous recovery system and managed recovery
system. The autonomous recovery system only contains the inventory of finished
product. Once returned products enter the system, they are immediately put into the
recovery process. Thus, simple Push-strategy is applicable to this kind of system.
However, the managed recovery system contains inventories of both returned product
and finished product. Study on this kind of two-echelon inventory system is more

complex.

In another aspect, product recovery system is classified according to
differentiation of the returns flow or demands flow. In practice, the returned products
are categorized according to different criteria, such as quality condition. Thus, the
returns flow is divided. On the other hand, the demands flow is divided according to
different customer segments, service levels, etc. For different demands flows,
different recovery options are taken advantage of. Single-return-flow and single-
demand-flow recovery system has been widely studied in the field. There are also few
studies on single-return-flow and multi-demand-flow recovery system. A more

detailed literature review on product recovery system modeling is given in Chapter 2.
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However, to the latest knowledge, multi-return-flow and multi-demand-flow recovery

system is almost not investigated.

Production planning and inventory control of the product recovery system has
been attracting more research efforts. Many articles have appeared to explore the
structure of the optimal policy or propose better heuristic policy for the product
recovery system. In particular, we would review some important periodic review
models here, which are related to our research. More details could be referred to in

Chapter 2.

Simpson (1978) proposes an inventory model based on fixed periodic review
of a product recovery system with single product and single flow of returned items,
and finds out the optimum solution structure for the multi-period problem. Inderfurth
(1997) extends Simpson’s model by considering the impact of non-zero lead times
both for production and recovery. Kiesmiiller and Scherer (2003), present a method
for the exact computation of the parameters which determine the optimal periodic
policy in Simpson (1978). DeCroix (2006) extends Simpson (1978) and Inderfurth
(1997) studies by identifying the structure  of  the  optimal
remanufacturing/ordering/disposal policy for a system where used products are
returned to a recovery facility. Inderfurth (2001) presents a periodic review model for
product recovery in stochastic remanufacturing systems with multiple reuse options,
including a disposal option and incorporating uncertainties in returns and demands for
the different serviceable options. Teunter (2002) considers a class of ordering policies
and proposes EOQ (Economic Order Quantity) formulae (on the basis of the results

proposed by Teunter, 2001) that are applicable to inventory systems with discounted
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costs and with stochastic demand and return. DeCroix et al. (2005) propose a
stochastic periodic review model of multistage system with stationary costs and
stochastic demand over an infinite horizon. Ahiska and King (2010) discuss inventory
optimization of a  periodically  reviewed  single-product  stochastic
manufacturing/remanufacturing system with two stocking points (recoverable and
serviceable inventories) developing a stochastic review period model by using

Markov Decision Processes.

From the aforementioned literature, we can find that most work is on single-
product recovery system involving a single returns flow and a single demands flow.
Only Inderfurth (2001) considers multiple reuse options for multiple demands flows.
However, the study on the product recovery involving multiple products and thus

multiple demands flows is of practical value.

Many high-tech products, such as personal computers, copiers etc., have very
short lifecycle. For their Original Equipment Manufacturers (OEMs) responsible for
taking care of the end-of-use returns, well-implemented product recovery system is of
much importance to both economical earnings and marketing image of the
manufacturers. The product recovery system is required to be capable of dealing with
the recovery of multiple products, which belong to the same product family. The
returned items of each product can be recovered to finished items of any product at

different cost.

In addition, Behret and Korugan (2009) construct a simulation model by using

the ARENA simulation program to analyze the effect of quality classification of
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returned products, and find out that quality-based classification of returned products
could result in significant cost savings especially when return rates are high.
Therefore, the returned items of all the products are discriminated into multiple
groups by different quality conditions or different cost requirements in the recovery

process.

1.2 Scope and Purpose of the study

From the aforementioned literature, we can find that most work is on single-
product recovery system involving a single returns flow and a single demands flow.
Only Inderfurth (2001) considers multiple reuse options for multiple demands flows.
However, the study on the product recovery involving multiple products and thus
multiple demands flows is of practical value. As one of the multi-product cases, the
two-product case is easy to be implemented and could be the basis for the study on a
general multi-product case. Therefore, a product recovery system involving two
products is selected for this research. In addition, Behret and Korugan (2009) find that
quality-based classification of returned products could result in significant cost
savings. Thus, in the two-product recovery system studied, we classify the returned
items of the two products into two groups by quality in contrast to most work

disregarding this classification in the literature.

As far as the knowledge about current literature, this research could be
regarded as the first study on the multi-product recovery system involving two
products and two flows of returned items. Furthermore, the extension of this research

to a general multi-product recovery system is also discussed.
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This research aims to obtain the optimal or near-optimal periodic review
policy over a finite horizon for the inventory control of a two-product recovery

system involving two products and two returns flows.

A dynamic programming model has been developed in order to obtain the
optimal policy of production and recovery decisions. However, the model is difficult
to be solved efficiently as no nice property could be found. Thus, the special case of
the multi-period problem, a single-period problem is investigated. The optimal multi-
level threshold policy has been obtained by solving KKT conditions for the single-
period problem. Even though this multi-level threshold policy might not be optimal
for the multi-period problem, it is intuitive, easy to use and provides good managerial
perspectives. Hence, we apply this policy to the multi-period problem. It is further
investigated how to compute the threshold levels, which depend not only on the
current-period cost parameters but also the future cost-to-go function. We have
developed an approximate dynamic programming model to derive the threshold levels
in the multi-period situation. The performance of the threshold policy is proved to be
good by comparing with the other two heuristic policies from the single-period

problem under a wide range of settings.

1.3 Organization

The organization of this thesis is as follows. Chapter 2 reviews the research
literature on product recovery system in the field of Reverse Logistics. Chapter 3

describes the two-product recovery system in a finite horizon. A dynamic

10



Chapter 1 Introduction

programming model on this system is developed. Chapter 4 studies the two-product
recovery system in a single period. Some good properties on the model of the system
are proved. The optimal multi-level threshold policy of production and recovery
decisions are obtained by solving KKT conditions. Furthermore, the managerial
insights of the policy are provided. In addition, the extension from the two-product
situation to a general multi-product situation is discussed. The multi-level threshold
policy is assumed to be used for the multi-period problem. Chapter 5 focuses on the
study of the two-product recovery system in the situation of lost sales over a finite
horizon. An ADP model on the system is developed to help derive the threshold levels.
This multi-level threshold policy is compared with two heuristic policies derived from
the optimal policy of the single-period problem. In addition, the impact of system
parameters is investigated. Chapter 6 and Chapter 7 consider the two-product
recovery system in the situation of backorder over a finite horizon. In particular,
Chapter 7 investigates the lead time effect of production and recovery processes.
Chapter 8 provides a summary of the findings and proposes several possible

directions for the future research.

11
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Chapter 2 Literature review

Chapter 2 reviews the previous studies on production and inventory control of
product recovery system in the field of Reverse Logistics. Section 2.1 presents a
classification table with the objective of intelligibly describing the papers. The studies
on production and inventory control of product recovery system with single return
flow and single demand flow will be reviewed in Section 2.2. Section 2.3 introduces
the studies on production and inventory control of product recovery system with

multiple flows of returns or multiple flows of demands or both.

The research in the field of Reverse Logistics has covered three aspects:
design of network structure for collecting the returned products, joint inventory
management of recoverable products and serviceable products, operational planning
of recovery process and normal production (Fleischmann et al., 1997). This branching
is due to the stages of reverse logistics activities. From the other perspectives, Reverse
Logistics covers green supply chain, closed-loop supply chain etc. Various closed-
loop supply chain processes and modeling framework of the closed-loop supply chain
are presented (see, for example, Ferguson, M., Souza, G., 2010; Ferguson, M., 2010;
Drake, M.J., Ferguson M., 2008, for a review). Paksoy et al. (2011) investigate a
number of operational and environmental performance measures, in particular those

related to transportation operations, within a closed-loop supply chain.

However, we would focus on production planning and inventory management

of product recovery system in the literature review.

12
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2.1 Classification

There are considerable amounts of research work on production planning and
inventory management of product recovery system. Hence, it is helpful to provide a
classification table, which is used to describe the papers that will be reviewed in the
following sections. A general overview of Operations Management problems
associated with product recovery is provided in Thierry et al. (1995). A review of
quantitative models in the field of reverse logistics is given by Fleischmann et al.
(1997). A review of environmentally conscious manufacturing and product recovery

is given by Ilgin et al. (2010).

Table 2.1 Legend for classification system

Elements Descriptions

Length of horizon Single period/Multiple periods/Infinite horizon
Demand type Deterministic demand/Stochastic demand
Review policy Periodic review/Continuous review

Sales Backorder/Lost sale

Products Single product/Multiple products

13
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2.2 Product recovery system with single return flow and single
demand flow

Serviceable
inventory

_s

Demand

Production
or Procurement

Recoverable
inventory
EEEEE— —>|

Recovery

Return

Disposal

Figure 2.1 Product recovery system with single return flow and single demand flow
(adapted from Fleischmann et al., 1997)

In this section we review literature concerning quantitative inventory control
models of product recovery system with single return flow and single demand flow,
which are independent of each other. From a mathematical inventory theory
perspective, deterministic and stochastic models can be distinguished, and the latter
can be further subdivided into continuous and periodic review models. We treat each

of these groups separately below.

2.2.1 Deterministic models

In deterministic models, the demand flow and return flow are known a priori

for the entire planning horizon. Using the taxonomy of inventory theory, Table 2.2

14
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lists deterministic models from literature. For each model, the planning horizon, and
the cost criterion of the objective function are indicated. Some models explicitly
consider the two types of inventory distinguished in Figure 2.1, whereas others take
into account only a single aggregated stock point. Moreover, disposal of excess
returns may or may not be allowed. In addition, fixed costs and lead times may or
may not be included in the recovery system considered. Table 2.2 has listed some
papers with their model characteristics.

Table 2.2 Deterministic inventory models of product recovery system

Literature Planning Cost Number of Disposal Fixed Lead times
horizon criterion stock points costs

Schrady (1967) Avg 2 - + +

Mabini et al. o0 Avg 2 - + +

(1992)

Richter (1994) Avg 2 + + -

Richter (1996, Avg 2 + + -

1997)

Teunter (2001) o0 Avg 2 + + -

Richter and T Total 1 - + -

Sombrutzki

(2000)

Beltran and T Total 1 + + -

Krass (2002)

Minner and T Total 2 + - -

Kleber (2001)

Schrady (1967) first extended the classical economic order quantity (EOQ)
model by taking return flow into account. The model is developed on the product
recovery system with constant demand rate and return rate, and fixed lead times for
production and recovery processes. Disposal is not allowed. The costs considered are
fixed setup costs for production and recovery processes and linear inventory holding
costs for returned products and finished products. A control policy was proposed with
fixed lotsizes for production and recovery where each production batch is followed by
n identical recovery batches. The formulae on the optimal value of n and on the

optimal lotsizes are derived similar to the classical EOQ model.

15
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Richter (1994) considered Schrady’s model for alternating production and
recovery batches (i.e. n = 1 in the above setting) and analyzed the dependence of the
cost function on the return rate. He shows that costs are convex in the return rate if
holding costs for recoverables do not exceed serviceable holding costs. Richter (1996,
1997) extends the analysis to the case of multiple consecutive production and

recovery batches.

Teunter (2001) considered the same model for a modified disposal policy. The
model assumes that all returns occurring during a certain time span are disposed,
while all returns thereafter are accepted again. Disposal involves a linear cost per item.
Moreover, it assumes different holding costs for recoverable, recovered, and produced

items. The formulae on the optimal lotsizes in the policy are derived.

Koh et al. (2002) considered a joint EOQ and EPQ model assuming a
proportion of the used products to be returned. They found closed form expressions
for the economic order quantity for new products and the optimal inventory level
where the recovery process starts. Further they proposed a numerical procedure,
which calculates the optimal number of set-ups in both recovery and production
processes. Konstantaras and Papachristos (2008) proposed another method to obtain

the optimal number of set-ups and proved it to be more computationally efficient.

Besides the above static models, a few dynamic lotsizing models similar to the

classical Wagner-Whitin model (Wagner and Whitin, 1958) have been proposed in

16
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the field. Most of these models consider a single stock point, which aggregates

recoverable inventory and serviceable inventory.

Beltran and Krass (2002) considered dynamic lotsizing for a single stock point
facing both demand and returns. This is regarded as the modification of the original
Wagner-Whitin model by allowing negative (net) demand. The authors proposed a
dynamic programming algorithm, which is of different complexity in the general case

and restrictive case.

Richter and Weber (2001) extended the reverse Wagner-Whitin model to the
case with additional variable manufacturing and remanufacturing cost. The authors
proved the optimality of a policy starting with recovery before switching to
production and gave an estimation for the optimal switching point. In addition, the

impact of the disposal of excess inventory was investigated on the solution.

Minner and Kleber (2001) proposed an optimal control policy for the product
recovery system, where in addition to demand and returns, all actions (production,
recovery and disposal) are modeled as non-stationary continuous processes. Results
are illustrated in a scenario with seasonality and a fixed time lag between demand and
returns. Pontryagin’s Maximum Principle is applied to obtain the optimal production
and remanufacturing policies for deterministic but dynamic demands and returns

when backorders are not allowed.

Kiesmiiller (2003b) investigated a one product recovery system for dynamic

and deterministic demand and return rates. The optimal production rate, recovery rate
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and disposal rate are determined for the system under the assumptions of a linear cost
structure and zero lead time for production and recovery. Furthermore, the author
showed how the results based on zero lead times were used to solve the control

problems with positive lead times.

Teunter et al. (2006) study the dynamic lot sizing problem with product
returns. The authors propose a model that aims at determining those lot sizes for
manufacturing and remanufacturing by minimizing the total cost composed of holding

cost for returns and (re)manufactured products and set-up costs.

Konstantaras and Papachristos (2007) propose a single product recovery and a
periodic review inventory model with finite horizon and remanufacturing,
manufacturing options. Demand is satisfied only by remanufactured or by newly
manufactured products. They aim at identifying an optimal policy that specifies the
period of switching from remanufacturing to manufacturing, the periods where
remanufacturing and manufacturing activities take place and the corresponding lot

sizes.

2.2.2 Continuous review stochastic models

Most continuous review models on the product recovery system are stationary
and analyze the infinite horizon system behavior. They focus on determining optimal
parameter values for predetermined control policies. In almost all cases, demand and
returns are modeled as independent Poisson processes. Table 2.3 has listed some

papers with their model characteristics.
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Table 2.3 Continuous review inventory models of product recovery system

Literature Planning Cost Number of Disposal Fixed Lead
horizon criterion stock points costs times

Heyman (1977) e Avg 1 4 - -

Muckstadt and Iscaac o Avg 1 - + +

(1981)

Van der Laan et al o0 Avg 1 o + +

(1996a,b)

Yuan and Cheung o0 Avg 1 - + -

(1998)

Teunter (2002) oo NPV 2 = a -

Van der Laan et al o0 Avg 2 - + +

(1999a,b)

Van der Laan and o0 Avg 2 o + +

Salomon (1997)

Inderfurth and van 0 Avg 2 + + +

der Laan (1998)

The proposed models can be divided into two groups, with one considering a
single aggregated stock point and the other distinguishing recoverable and serviceable
inventories. Within the former class, Heyman (1977) analyzed disposal policies to
optimize the trade-off between additional inventory holding costs and production cost
savings. The demand and returns are modeled as general independent compound
renewal processes. He proposed a single parameter disposal level strategy: incoming
returns exceeding this level are disposed of. For the case of Poisson distributed
demands and returns, he derived an explicit expression for the optimal disposal level.

For generally distributed demands and returns, an approximation is given.

Muckstadt and Isaac (1981) considered a similar model where the recovery
process is modeled as a multi-server queue. However, disposal decisions are not taken
into account. The costs considered comprise serviceable holding costs, backorder
costs, and fixed production costs. The production process is controlled by a traditional

(s, @)-rule whereas returned products directly enter the recovery queue. Values for s
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and Q are determined based on an approximation of the distribution of the net

inventory.

Van der Laan et al. (1996a, b) proposed an alternative procedure for
determining the control parameters in the above (s, ()-model based on an
approximation of the distribution of the net demand during the production lead time.
A numerical comparison shows this approach to be more accurate in many cases.
Moreover, the model is extended with a disposal option, for which several policies are

compared numerically.

Yuan and Cheung (1998) model dependent demand and returns by assuming
an exponentially distributed market sojourn time. Moreover, items may eventually be
lost with a certain probability. Lead times for both recovery and production are zero
and there is no disposal option. The authors proposed an (s, S) reorder-order-up-to
policy for production based on the sum of items on hand and in the market. The long-
run average costs by this policy are calculated based on a two-dimensional Markov
process. A numerical search algorithm is proposed for finding optimal control

parameter values.

Van der Laan and Teunter (2006) considered a product recovery system
including manufacturing and remanufacturing, both of which have equal non-zero
lead times. The cost structure consists of setup costs, holding costs, and backorder
costs. The system is controlled by certain extensions of (s, Q) policy, called push and

pull remanufacturing policies. For all policies, the authors presented simple, closed-
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form formulae for approximating the optimal policy parameters under a cost

minimization objective.

Ouyang and Zhu (2008) extended traditional (s, Q) model into (s,, Q, Sq)
order-disposal strategy to control the manufacturing/remanufacturing hybrid system
assuming demand and returns to be independent Poisson processes. They derived the
expression of the system expected total cost per unit time as a function of the control
parameters s,, Q and sq. They developed heuristic lower and upper bounds for the
optimal solution. They compared the disposal strategy with the non-disposal strategy
and investigated the robustness of the optimal solution through the numerical

examples.

Teunter (2002) distinguished serviceable and recoverable inventory and
evaluated an EOQ-based heuristic under assuming demand and returns to be
independent Poisson processes. Lotsizes for production and recovery are determined
in a deterministic model (see Teunter, 2001, discussed above). Teunter and Vlachos
(2002) investigated the impact of a disposal option for a similar situation. They
concluded that only under certain circumstances, the disposal option can bring

economic benefits.

Van der Laan et al. (1999a, b) analyzed different policies for controlling
serviceable and recoverable inventory in the above setting, considering non-zero lead
times for production and recovery. In particular, a Push-strategy and a Pull-strategy
for recovery are considered while production is controlled by an (s, S)-policy

concerning the serviceable inventory position (serviceable inventory on hand minus
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backorders plus outstanding orders). The Pull-strategy-based recovery is also
controlled by an (s, S) policy based on the serviceable inventory position. Long-run
expected costs for both strategies are computed by evaluating a two-dimensional
Markov process. Control parameter values are determined via enumeration.
Furthermore, Inderfurth and van der Laan (2001) improved the above model with a
modified inventory position used for the case of a large difference between production
lead time and recovery lead time. The modification for the inventory position is that

only those outstanding orders are considered within a certain time window.

Van der Laan and Salomon (1997) extended the above model to include a
disposal option. For the Pull-strategy, the disposal is triggered by an upper bound on
the recoverable inventory. However, for the Push-strategy, since the recoverable
inventory is limited by the recovery lotsize, the disposal is controlled based on the
serviceable inventory position. The authors showed that a disposal option
significantly reduces the system costs by avoiding excessive stock in particular for

large return rates.

2.2.3 Periodic review stochastic models

The models within this context aim to seek an optimal periodic review policy
for production, recovery, and/or disposal decisions. The models can be distinguished
by considering an aggregated stock point or both recoverable inventory and
serviceable inventory. Within the former class, models differ mainly with respect to
the assumptions on the relation between demand and returns. Table 2.4 has listed

some papers with their model characteristics.
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Table 2.4 Periodic review inventory models of product recovery system

Literature Planning Cost Number of Disposal Fixed Lead
horizon criterion stock points costs times

Whisler (1967) T/oo Avg 1 + - -

Kelle and Silver T Total 1 - + -

(1989)

Toktay et al (1999) o0 Avg 1 - = +

Buchanan and Abad T Total 1 - - -

(1998)

Cohen et al (1980) T Avg 1 - - -

Inderfurth et al (1998) T/oo Avg N+1 + = +

Whisler (1967) analyzed a single stock point receiving issued item returns
after a stochastic market sojourn time and constructed a queueing model. The optimal
control policy was found to be characterized by two critical numbers L < U.
Whenever the inventory level at a review epoch lies outside the interval [L, U] it is
optimal to produce up to L or dispose down to U, respectively. For intermediate
inventory levels the optimal production and disposal decisions depend on additional

parameters.

Kelle and Silver (1989) analyzed a similar situation where issued items are
returned after a stochastic time lag or are lost eventually. Thus, due to positive
average net demand, no disposal option is included. On the other hand, fixed
production costs are considered. The authors formulated a chance-constrained integer
program, which can be transformed into a dynamic lotsizing model with possibly

negative demand, based on an approximation of the cumulative net demand.

Buchanan and Abad (1998) modified the above model by assuming for each
period that returns are a stochastic fraction of the number of items in the market. This

comes down to an exponentially distributed market sojourn time. Moreover, in each
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period a fixed fraction of items from the market is lost. Under these conditions the
authors derived an optimal production policy depending on two state variables,

namely the on-hand inventory and the number of items in the market.

Cohen et al. (1980) considered a similar system assuming a fixed market
sojourn time. Moreover, a given fraction of demand in each period will not be
returned. In addition, a certain fraction of on-hand inventory is lost due to decay in
each period. The authors proposed a heuristic order-up-to policy which is optimal for

the case of a market sojourn time of one period.

Simpson (1970) assumed demand and returns to be independent with a
positive expected net demand. He proposed a heuristic for computing an order-up-to
level under linear costs and a stochastic production lead time when neglecting

intermediate backorders cleared by returns.

Mahadevan et al. (2003) modeled a product recovery system in the
remanufacturing context assuming demand and returns to be independent Poisson
processes. Taking no disposal into account, they applied a Push-strategy to combining
production and remanufacturing decisions. They developed several heuristics based
on traditional inventory models and investigated the performance of the system as a
function of return rates, backorder costs, and lead times of production and
remanufacturing. In addition, the lower and upper bounds on the optimal solution

were developed.
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Kiesmiiller and Van der Laan (2001) considered the impact of dependency
between demand and returns, which are assumed to be Poisson processes. The returns
are correlated to the demand through a constant sojourn time in the market. In
addition, two probabilities are introduced: the return probability and the probability
that a returned item is in a sufficiently good condition to be recovered. By comparing
the performance on the total average costs with the models neglecting the dependency,
the authors suggested that it was worth to use the dependency information between

demand and returns.

A special class of periodic review models considering product returns is
newsboy models. Vlachos and Dekker (2003) assumed a constant fraction of the sold
items to be returned and re-sold only once. In Mostard and Teunter (2006), each sold
item has a constant probability of being returned and once returned it has a constant
probability of being recovered. Returned items can be re-sold more than once. In the

above two models the optimal order quantity for the single period was sought.

In addition, within the context of models distinguishing recoverable inventory
and serviceable inventory, Simpson (1978) first considered the trade-off between
material savings due to reuse of returned products versus additional inventory holding
costs. Demand and returns of each period are modeled as generally distributed
random variables that are correlated with known information. Optimality of a three
parameter (L, M, U) policy to control production, recovery, and disposal is shown
when neither fixed costs nor lead time are involved. The policy can be interpreted as
‘recover while serviceable inventory is below M’ and then adjust the echelon

inventory (i.e. the sum of both recoverable inventory and serviceable inventory)
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according to Whisler’s (L, U)-policy. Kiesmiiller and Scherer (2003) provided a
method for the exact computation of the parameters in the (L, M, U) policy. Since the
exact computation is quite time consuming, they also provided two different
approximations. One is based on an approximation of the value-function in the
dynamic programming problem while the other approximation is based on a

deterministic model.

Ahiska and King (2010) discuss inventory optimization of a periodically
reviewed single product stochastic manufacturing/remanufacturing system with two
stocking points (recoverable and serviceable inventories) developing a stochastic

review period model by using Markov Decision Processes.

Inderfurth (1997) extended Simpson’s model by considering the impact of
non-zero lead times both for production and recovery. The difference between both
lead times was shown to determine the system complexity. If lead times are equal
Simpson’s policy can be shown to remain optimal by considering an appropriate
inventory position rather than the net stock. In all other cases growing dimensionality
of the underlying Markov model prohibits simple optimal control rules. A similar
result holds if recoverables cannot be stored but need to be recovered or disposed of
immediately. In this case Whisler’s (L, U)-policy is optimal for equal lead times and
for a production lead time excess of one period. All other cases result again in fairly

intractable situations.

DeCroix (2006) extends Simpson (1978) and Inderfurth (1997) studies by

identifying the structure of the optimal remanufacturing/ordering/disposal policy for a
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system where used products are returned to a recovery facility. In particular, the
author analyzes a multiechelon inventory system with inventory stages arranged in
series. DeCroix et al. (2005) propose a stochastic periodic review model of multistage
system with stationary costs and stochastic demand over an infinite horizon. Note that
in the model, demand can be negative representing returns from customers. The
authors also show the optimality of an echelon basestock policy for an infinite-

horizon series system where returns go directly to stock.

Kiesmiiller (2003a) considered similar situation where production lead time
and recovery lead time are different. The recovery system is controlled by (S, M)-
policy, described by produce-up-to level S and remanufacture-up-to level M. In
contrast with previous models using inventory position as information for decision
making, the author defined two variables aggregating related information for
production and recovery decisions respectively. The two variables are dependent on
the lead time and include all information about outstanding production and recovery
orders which will arrive before the new released order. By means of numerical
examples, the system performance, measured in average costs per time unit, can be

improved substantially especially for large lead time differences.
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2.3 Product recovery system with single return flow and multiple
demand flows

serviceables

| remanufacturing |

i, II

recoverables

return
flow r

demand

m

production p,,

Figure 2.2 Product recovery system with single return flow and multiple demand
flows (adapted from Kleber et al., 2002)

In many situations, there are different options of reusing old products. In more
details, old products are reused for making new products or spare parts. The new
products from reusing old products are for different customer classes having different
quality requirements. Therefore, multiple demand flows are possibly included in the

product recovery system.

Kleber et al. (2002) presented a continuous model of a product recovery
system with returns of a single product and multiple alternating recovery options.
Each of the recovery options corresponds to different demand classes, e.g. different
product qualities or different markets. In the model, disposal option is included and
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production option is alternative for each recovery option. The product recovery
system is described in Figure 2.2. Demands and returns are assumed to be
deterministic but dynamic. The optimal policy of production, recovery and disposal is

obtained under linear cost by applying Pontryagin’s Maximum Principle.

Inderfurth et al. (2001) investigated a periodic review model of a product
recovery system with returns of a single product and multiple alternating recovery
options. The system also includes one disposal option. There is no production option
as alternation for each recovery option. Backorder is allowed in the system. Demands
and returns are assumed to be stochastic with known probability distribution. Taking
advantage of a linear allocation rule on product returns, they obtained a fairly simple
near-optimal policy, characterized by a dispose-down-to level and a recover-up-to

level for each recovery option.

The above-presented two models have considered single returns flow, i.e.
returns of a single product. However, in practice, returns of even a single product can
vary in quality condition. Then, multiple flows of returns have to be considered, each
representing a certain quality class. Behret and Korugan (2009) constructed a
simulation model by using the ARENA simulation program to analyze the effect of
quality classification of returned products. The analysis denotes that under different
cost scenarios quality based classification of returned products have brought

significant cost savings, especially when return rates are high.

To recent knowledge of product recovery systems in the literature, multiple

flows of returns and multiple flows of demands are not appearing at the same time in
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these product recovery systems. However, as of the practical value, the product
recovery system needs to be studied, which includes both multiple flows of returns
and multiple flows of demands. Due to this, the following chapters will focus on the
study of two-product recovery system. The returned items of the two products are
discriminated into two groups by the required cost in recovery of them rather than by
product type. In addition to recovery options using two groups of returned items, the
two-product recovery system includes production option to make finished items of
two products in order to satisfy customer demands. More details of the two-product
recovery system will be introduced in Chapter 3. Obviously, the two-product recovery

system includes two flows of returns and two flows of demands.
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Chapter 3 The study on two-product recovery system in a
finite horizon

Chapter 3 focuses on the study of the two-product recovery system in a finite
planning horizon. In the system, the stocking of the two products aims to satisfy
stochastic customer demands in each period of the planning horizon. The inventory of
the two products can be instantly replenished by production and recovery process as
both processes are assumed to have zero lead time. When the system is short of
inventory in a certain period, the sale would be either lost forever or allowed to be
backordered in future periods. Section 3.1 introduces the details of the two-product
recovery system in a finite horizon. In Section 3.2, a dynamic programming model of
the system is developed in order to maximize the expected total profit in the finite

horizon. Finally, Section 3.3 summarizes the main work in this chapter.

3.1 Introduction

Two products, which belong to the same product family, are provided to
customers by an Original Equipment Manufacturer. At the same time, the
manufacturer is required to take responsibility of dealing with returned products,
which have reached the end of the usage at customers. The manufacturer would take
advantage of the returned products in the recovery for finished products, which are
assumed to be as good as those from normal production. The manufacturer would
build up the two-product recovery system, in which both recovery process and normal
production are used to make finished products. As the two products belong to the

same product family, returned item of each old product can be recovered to finished
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item of both new products. Therefore, the returned items of both old products
regardless of product identity are discriminated into two groups by quality or the cost
requirement in the process of value extraction and recovery. The returned items of
each group are assumed to consume the same cost in the recovery for finished items
of any certain product. After the discrimination, one group of returned items is always
recovered at lower cost than the other. In addition, normal production is more costly
than recovery such that normal production would be only used in case of insufficient

returned items available for recovery.

In particular, the occurring events in each period of the finite horizon are
described here. Firstly, returned items arrive at the recovery system at the beginning
of each period. They will be used for recovery in this period. Secondly, after
observing on-hand inventories of finished products, the manufacturer would make
production and recovery decisions. After that, the inventories of finished products get
replenished instantly. The inventories are used to satisfy demands later in the same
period. If the demands of current period could not be fully satisfied, the unsatisfied
demands would be either lost forever or allowed to be backordered in future periods.
Anyway, the penalty cost on the shortage would be incurred. On the other hand, if
there are inventories left at the end of the period, the remaining inventories would be
carried to subsequent periods and inventory holding cost would be counted in current
period. Finally, the remaining returned items are disposed of and the disposal cost is
assumed to be negligible. For the recovery system, the revenue is generated from
selling finished products. The total cost consists of production cost, recovery cost,

inventory holding cost of finished products and penalty cost of shortage.
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The objective function is to maximize the expected total profit in a finite
horizon. In order to fulfill the aim, we need to find the optimal policy of production

planning and inventory control for the system.

3.2 Production and recovery decisions for two products in the multi-

period context

3.2.1 Assumptions and notations

Firstly, in order to focus on the interesting aspects of the system and also
simplify the modeling, we would make the following assumptions. The relaxation of

certain assumptions has been discussed in Chapter 8.

1) Demands for the two products follow independent stationary general
distributions;

2) Production and recovery processes of each product have zero lead time;

3) No setup cost is considered for production or recovery process of each product;

4) One unit of returned product is recovered to one unit of finished product;

5) No disposal cost or salvage value is considered for the remaining returned
products;

6) No stocking of the remaining returned products is required in each period.

Secondly, in order to simplify the notation, the two products in the system are
denoted as product 1 and product 2 respectively. In addition, the returned items of two

products are discriminated into two groups, denoted as group 1 and group 2
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respectively. Without the loss of generality, returned item in group 2 is assumed to be
recovered at lower cost than group 1 for each product. Thus, the related notations are

listed as follows (i =1, 2;j=1, 2):

M length of planning horizon;

rij(.” quantity of recovering returned item in group i to product j in
period t;

py’ quantity of producing product j in period ¢,

xg.) initial inventory position of product j in period ¢;

S selling price of product j;

CRijj unit cost of recovering returned item in group i to product j;

CPj production cost of per unit product j;

h; inventory holding cost of per unit product j per period;

Vi penalty cost of per unit shortage of product j per period;

R" returned items in group i/ in period ;

DY demand for product j in period £;

f(x,u,0) probability density function w.r.t. x with known parameter
(u,0);

ER; expected revenue in period ¢;

EC, expected cost in period t;

EP; expected profit in period #;

£(x0,x8))  expected maximum of the expected total profit from period ¢ till

final period.

34



Chapter 3 The study on two-product recovery system in a finite horizon

The two-product recovery system is described in Figure 3.1. The Figure has
shown inbound flows of returned items in group 1 and group 2, and outbound flows of
product 1 and product 2 in demand. In particular, the inbound flow of returned items
in group 1 and group 2 respectively, are shown on the upper and lower left of this
Figure. On the other hand, the outbound flow of product 1 and product 2 respectively,
are shown on the upper and lower right of this Figure. In addition, it can be seen from
the Figure that there is no stocking of returned items in the system. Once the returned
items have been allocated to the recovery for finished products, the remaining
returned items would be disposed of. In the Figure, the time index (¢) is omitted from
the related notations for simplicity. All the notations shown in the Figure are related

to the same period.

D1 D,
Production —

R, rm+ry

> | Recovery

Disposal

Production —> —>

R; rot+ry

Y

Recovery

Disposal

Figure 3.1 The structure of the two-product recovery system
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The sequence of the occurring events and cost accounting of a certain period is

described in Figure 3.2 as follows (i, j = 1, 2):

Ri(t) ®

Period ¢

Production and

recovery: pi”, (",

Figure 3.2 The occurring events of the two-product recovery system at period ¢

In addition, some restrictions on cost parameters are imposed so as to ensure
the economical meaningfulness of the study. Firstly, for each product, selling price is
higher than production cost, and penalty cost of shortage is higher than the profit from
production. Therefore, there exist:

8, > Cpys Sy >Cpyy V> 8 —Cpys Vy > 8, —Chpy.

Secondly, for each product, production cost is higher than recovery cost.
Otherwise, recovery is unnecessary. Therefore, there exist:

CPI > CRll’ CPI > CR21’ CP2 > CR12’ CP2 > CR22'

Finally, the recovery using returned item in group 2 is cheaper than that using

returned item in group 1. Therefore, there exist:

Crat <Cgits Crym < Cpip-
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3.2.2 Dynamic programming model of the two-product recovery system in

the multi-period context

We would develop a dynamic programming model of the two-product
recovery system in a finite horizon. The objective is to obtain the optimal policy of
production and recovery decisions for the recovery system. Firstly, we consider the
calculation of the expected profit in period f. At the beginning of the period, the

system receives the returned items of two products. They are discriminated into group

1 and group 2, denoted as R’ and R!" respectively. The initial inventory position of

product 1 and product 2 are found to be x|, and x{) respectively. Then, we would

allocate the returned items to the recovery for finished products. At the same time,
production would be used in case of insufficient returned items. Once production and
recovery decisions have been made, the inventory of finished products would get
replenished instantly. Then, the inventory would be used to satisfy the realization of
stochastic demands in this period. The demands for the two products have been
assumed to follow the known independent probability distributions. The expected
revenue at period ¢ is calculated as follows:

ER,(x{).x55. P pa ooy oy )

=Sty TS, =5 J.: ® (D1(t) - vatl) - pl(t) - ri(lt) - rZ({)))f(Dl(t)’lul > O-l)le(t)

(1) (1), (1)
s1tpr D

(1) (1) (1) (1) (1) (1) (1)
o (D) =Xg—py =1y =1y ) (D, fhy,0,)dD;”.

2 X+ i)

3.1

The consumption of returned items in two groups is no more than their

availability. Therefore, there are the following constraints:

(1) (1) ().
h thy SR

(10 4 (0 0]
r +5, SR.
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At period #, the cost includes production cost, recovery cost, inventory holding
cost of finished products and penalty cost of shortage. Therefore, the expected cost of

period ¢ is calculated as follows:

() (1) (1) )y (1) () (1) _.(0)
EC (x5, X535, P15 Py 5Ty 5Ky sTay s hy)

_ (1) (1) (1) (1) (1) (1)
SCp Py T Cp Py iyt Criphy F Cpoihay T Crinhyy

T S O S SO S ) ) @)
+h1J.0 (xs1+p1 Tt _Dl )f(Dl ’lul’o-l)le

“ (1) (1) (1) (1) (1) (1) (1)
+VIJ. () 4 (D 40 m(Dl “Xs1 — P Th Ty )f(D1 ’ﬂ1’0-1)dD1
Xgitp

el )
-

2J0
(1) (1) (1)

(1) (1) (1) (1)
+V2J.(,) () (0 (0 D" = x5, =py —hy =1 ) f (D), 4,,0,)dD,".
Xgatpy Hhy iy

(1) (1) (1) (1) (1) (1) (1)
(Xg+ P, +1, +1y —D,") f(D,”, i,,0,)dD,

(3.2)
As EP = ER — EC,, the expected profit of period ¢ is calculated as follows:
(1) (1) (1) @) (1) (1) (1) (1)
EB(xg,, X5y, D)5 Py shy 5Ty sty sTay )
_ (1) (1) (1) (1) (1) (1)
=SSl TS, = Cp Py —Cpa Py~ Crithiy T Cridhn T Crail T Craatan
(1) (1) 4 (1) 4 (1)
Xgp+py A
(1) (1) (1) (1) (1) (1) (1)
- 1J.0 (xs1+p1 +n _Dl )f(Dl ’lul’o-l)le
* (1) (1) (1) (1) (1) (1) (1)
_(S1+V1)J.X(,>+ ), (1) (,>(D1 —Xgg TP Th Ty )f(D1 ’lul’o-l)le
s1 Pt )
—n Xf*'l)”’(z')“lg)“l(é)( 0 4 0 4O 40 _ piOy £ (DO dD"
2}, Xgo T Dy Thy TIy , ) f (D, i1y, 0,)dD,
- (1) (1) (1) (1) (1) (1) (1)
_(Sz"'Vz)J. oo 0Dy =Xy =Py —hy =1y ) (D, fy,0,)dD;”.
XgpFpy Hihp +yy
(3.3)

The expected maximum total profit from period ¢ till final period is denoted

as f,(x{),x{)). Assume the expected maximum total profit beyond the planning

horizon to be equal to zero, i.e. f,,, (xiy ™, x4 ) =0. Thus, for the multi-period
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problem, the Bellman’s equation of dynamic programming model can be written as

follows (r =1, 2,..., M):

(1) (t) () (1) (1) (1) (t) (t) (t) (t)
RO = B max(ERGE s pl )

[fm (x(’“) X§’§ -

D(’) DU)

(3.4)

The objective of studying the dynamic programming model is to obtain the
optimal policy for the two-product recovery system in a finite horizon. However, due
to the curse of dimensionality of dynamic programming, it is intractable to solve

dynamic programming problem involving more than two states.

The expected maximum total profit of the final period can be expressed as

follows:

fu (D XMy = max EP,]. (3.5)

M M M M M M M M
R )R( ) p( ) pD ) ) () ()

As shown in Formula (3.5), the maximization of the expected profit in a single

period would be the standing point for solving the dynamic programming model.

3.3 Summary

In this Chapter, firstly, we have introduced the two-product recovery system in
a finite horizon. Secondly, we have developed a dynamic programming model of the
two-product recovery system. In the following Chapter, we would study the two-
product recovery system in a single period, which could be the basis for further study

on the recovery system in the multi-period situation.
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Chapter 4 The study on two-product recovery system in a
single period

Chapter 4 focuses on the two-product recovery system in a single period.
Section 4.1 introduces the system. In Section 4.2, the expected profit maximization
model of the system is developed. Furthermore, the objective function of the model
proves to be concave on production and recovery decisions. Therefore, the optimal
solution to the model can be obtained by solving KKT conditions. Based on the
optimal solution, the optimal multi-level threshold policy is obtained. The related
threshold levels of the policy are discovered. Their managerial insights are further
explained. Section 4.3 discusses about the extension from the two-product case to a
general multi-product case. Finally, Section 4.4 summarizes the main work in this

chapter.

4.1 Introduction

The introduction to the two-product recovery system has been made in
Chapter 3. In this chapter, the recovery system is studied in a single period. The
occurring events of the two-product recovery system in a single period are similar to
those in a certain period of a multi-period horizon as described in Chapter 3. However,
the remaining finished products at the end of the single period have to be salvaged.
Therefore, we need to consider their salvage value. Hereafter in this chapter, we

would assume the salvage value of the remaining finished products to be equal to zero.
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The aim of studying the two-product recovery system in a single period is to
maximize the expected profit in this period, and to show certain good properties.
These properties will help to obtain the optimal policy on production and recovery

decisions in the single period.

4.2 Production and recovery decisions for two products in a single
period

In this section, we would formulate and analyze the single-period problem on
the two-product recovery system. As the related assumptions of the single-period
problem are similar to the multi-period problem in Chapter 3, we would not repeat
here. With regard to the independency between chapters, we would list the related
notations of the single-period problem here. Different from the multi-period problem,

the time index will be excluded from these notations.

4.2.1 Notations

The notations of the single-period problem are listed as follows (i =1, 2; j =1,

2):
rij quantity of recovering returned item in group i to product j;
Dj quantity of producing product j;
5 selling price of product j;
Xsj initial inventory of product j;
X replenishment level of product j after production and recovery;
CRij unit cost of recovering returned item in group i to product j;
Cpj production cost of per unit product j;
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h; inventory holding cost of per unit product j;
Vj penalty cost of per unit shortage of product j;
R; returned items in group i;

D; demand for product j;

fx,u,0) probability  density function w.r.t. x with known
parameter (i,0) ;

F(x,u,0) cumulative distribution function w.r.t. x with known
parameter (i,0) ;

F~'(x,u,0) inverse function of F(x,u,0);

EP expected profit in the single period.

In Chapter 3, some restrictions have been made to cost parameters in order to
ensure the economical meaning of studying the two-product recovery system. As
different cost structures result in different forms of production and recovery, we
would focus on the modeling of the recovery system based on a certain cost structure,
which imposes other restrictions on cost parameters. Under the cost structure, we will
obtain the optimal policy of production and recovery through solving the model. For
the other cost structures, the process of modeling and solving can easily refer to it.

The selected cost structure includes the restrictions on cost parameters:

Cp; ~Crit > Cpy T Crizs> Cpy ~Croy 2 Cpy ~Crops and Cri1 ~Cra1 2 Criz ~Crap-

4.2.2 The expected profit maximization model

At the beginning of the single period, we have known the quantities of

returned items and the initial inventory of two products. Then, we would make the
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optimal production and recovery decisions in order to maximize the expected profit in
the single period. As recovery decisions are subject to the availability of returned
items, the expected profit maximization model of the single-period problem can be

formulated as follows:

max EP(py, pystiyshas by 1)
120, p,20,7,20,1, 20,15, 20,1, 20

s.t. 4.1)
h+n, SR
Iy, tr, <R,.

In Chapter 3, we have introduced the calculation of the expected profit at
period ¢. According to Formula (3.3), the expected profit in a single period can be

similarly calculated as follows:

EP(pysDysTiyshysTaysTyy)
=St Syl = Cp Py~ Cpy Py — Crinliy T Crinlia T Crattar ~ Cranlan

Xs1tPy 1+,

JIJO (X, + p, +1,+1, —D)f (D, 14;,0,)dD,

_(S1+v1) (Dl_xSl_pl_’il_rﬂ)f(Dl’lul’o-l)le

Xg1tpithitn

XgotPrthnthy

_hz (xs2+p2+r12+r22_D2)f(D2nU2’O-2)dD2

0

_(S2+v2) (Dz_xsz_pz_nz_rzz)f(Dzuuz’o-z)dDz'

XgotPrtlinthy

4.2)

In order to simplify the expression of Formula (4.2), let L (p,,r,.1,,) and
L,(p,.1,,1,) denote the accounting items related to stochastic demands for product 1

and product 2 respectively. The two accounting items are expressed as follows:
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Xs1tpitHhtn
lﬂ(p1”11’r21):_}llj.0 (X, + p+1,+15,— D) f(Dy, 4, 0,)dD,

—(s,+v) (D, —xg,— p,— 1, = 1) f(Dy, ty,0,)dD,.

X1t Pty

(4.3)

Xgo +1)2+I‘12+I‘77

L,(py,1iys1y)=—hy 0 (Xgy + py+1,+ 1y —Dy) f(Dy, i,,0,)dD,

— (s, "'Vz)J.)C (D, = X5, = Py =1y —1,) [ (D, 14, 0,)dD,.

(4.4)

oo

s2tPrthiptry

The inventory level of each product after replenishment is calculated as
follows (j =1, 2):

X) =Xyt Py Hn; 0, 4.5

As the related decision variables act similarly in the function L; (or L), the
first-order partial derivatives of the function L, (or L,) with respect to them are equal
to each other. In details, they are calculated as follows (j = 1, 2):

§Lj §Lj 6Lj
= :§r :sj+vj—(sj+vj+hj)F(xj,,uj,o'j), (4.6)

2j

Y Lj

Lemma 4.1: The objective function of the expected profit maximization model is
jointly concave on all the decision variables for the single-period two-product
recovery system disregarding salvage value of the remaining finished products.
Proof of Lemma 4.1:

The Lemma 4.1 is proved if and only if the nonlinear part of the objective
function, i.e. the functions L; and L, could be proved to be concave on all the

decision variables. Firstly, we would prove the concavity property of the function L;.
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According to Formula (4.6), the second-order partial derivative of the function

L, with respect to production decision (p;) can be calculated as follows (Let a denote
its value.):

J°L,
op’

1

a=

=—(s,+v, +h) f(x,4,0,)<0.

As the related three decision variables act similarly in the function L, all the
second-order partial derivatives of the function L; with respect to them are equal to

each other. Thus, the Hessian matrix of the function L; can be expressed as

a a a
a a a
a a a

Given a random nonzero vector (y,,y,,Y;), there exist:

a a al(y

(VY. y3).la a al.y, :a(y1+y2+y3)230-
a a a|l\y

Therefore, the Hessian matrix of the function L, is negative semi-definite.
Thus, the function L; has been proved to be concave on its related decision variables.

Similarly, the concavity of the function L, can be proved. Finally, Lemma 4.1 has

been proved.

The concavity of the objective function has been shown in Lemma 4.1.

Furthermore, we would apply the method of Lagrange Multipliers to find the
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maximum. For the model, the Lagrangian function (denoted as L) can be expressed as

follows:

L(Pys Pas Ko Tis Tops Togs Ao A Ay Ay A, A A, Ay)

= EP(Pys Pys 1o ligs T ) F A (1 + 1, = R) + A, (1 + 15, = R,) 4.7)
—Ap = Ap, = At — Aty — A1y — Ay,

In order to obtain the optimal solution to the model, we will need to consider
the KKT conditions for the maximum of the Lagrangian function. As we have known,
the necessary conditions are also sufficient for optimality when the objective function
is concave and the inequality constraints are linear on decision variables. Lemma 4.1
has shown the concavity of the objective function on decision variables. In addition,
the inequality constraints are linear on decision variables. Therefore, the solution to
KKT conditions is also the global maximum of the model. The optimal production
and recovery decisions should satisfy all the KKT conditions at the same time. In

details, the KKT conditions are listed as follows:

OEP

=4 =0;
op,
OEP
———1,=0;
sp,
5Ef)+/1‘_/15:0;
or,
5—Ef)+/1‘—/16=0;
o,
5Ef)+/12_/17 —0;
ory,
5E*P+/7.2—/18 0
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A(ry +1, = R)=0;
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/13 P 4p2 /15 2‘6’3*2:/17’.2*1:/18”2*2:0;

r +r12_R

r21+r22£R2;

prO,pZZOr >O,r1220r >0, r2220
A <031=1,..,8).

Through solving the above KKT conditions, we can obtain the optimal
production and recovery decisions for the two products, which are dependent on the
initial inventory of the two products and the availability of returned items. The
optimal solution includes 21 cases given in Appendix B. However, after analyzing
these 21 cases, we found out that they can be represented by an optimal multi-level
threshold policy. This optimal policy is characterized by 6 order-up-to levels and 3
switching levels. Once these threshold levels have been determined, we can use the
optimal policy to make the optimal production and recovery decisions. Among the
threshold levels, there are three order-up-to levels for each product corresponding to
three different replenishment sources: production, recovery using returned items in
group 1 and group 2 respectively. These order-up-to levels can be obtained by solving

the related KKT conditions as follows:

¢  Order-up-to level by production

For each product, the order-up-to level by production is defined as the
maximum inventory level by the replenishment of production. At the

order-up-to level, the marginal profit of further replenishment is equal
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to zero. With the combination of the related KKT conditions, we can

determine the order-up-to level for product 1 as follows:

p, >0, A4,p =0, and — -4=0
1 XF:A[ﬂ
S, +v, —c
= AL =F! M’ ,0)).
0 (s1+v1+hl #>0)

Similarly, for product 2, the order-up-to level by production can be
determined as follows:

S, +Vv, —Cpy
s, +v,+h,

BL,=F'(

M, 0,).

¢ Order-up-to level by using the returned items in group 1

For each product, the order-up-to level is defined as the maximum
inventory level by the replenishment using the returned items in group
1. If returned items in group 1 are enough for the allocation between
the two products, the inventory of the two products will be replenished
until the order-up-to level, at which the marginal profit of further
replenishment is equal to zero. With the combination of the related
KKT conditions, we can determine the order-up-to level of the two

products as follows:
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Order-up-to level by using the returned items in group 2

For each product, the order-up-to level is defined as the maximum
inventory level by the replenishment using the returned items in group
2. If returned items in group 2 are enough for the allocation between
the two products, the inventory of the two products will be replenished
until the order-up-to level, at which the marginal profit of further
replenishment is equal to zero. With the combination of the related
KKT conditions, we can determine the order-up-to level of the two

products as follows:
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Besides these order-up-to levels, three switching levels, denoted as SW;, SW,
and RP, are used to control the interactive allocation of possibly limited returned
items between the recovery processes of the two products, which involves the
comparison of marginal profits. It can be found from the KKT conditions that the two
products have equal marginal profits while being further replenished by a certain
recovery source based on the respective inventory level after the optimal
replenishment. So the optimal solution by solving the KKT conditions always
maintains the equality of marginal profits between the two products. Suppose the final
inventory level of product 2 after the optimal replenishment is at a certain order-up-to
level, we would need to find out the corresponding inventory level of product 1 such
that the two products have equal marginal profits. The details of the corresponding

inventory levels, i.e. the switching levels SW;, SW, and RP, are explained as follows:

e Switching level SW;

The switching level SW; for product 1 corresponds to the order-up-to

level BLy for product 2. When the final inventory levels of the two
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products after the optimal replenishment are at SW; and BL,
respectively, the two products will have equal marginal profits from

recovering the returned items in group 1. Thus,

SEP
51,

_ JEP

on,

5 =SW; %,=BL,

OEP _
= =Cpy T Crin
X =SW,

n
S; + Vi +Crip = Crii —Cpo
s +v, +h

= SW,=F'( M 0)).

Switching level SW,

The switching level SW, for product 1 corresponds to the order-up-to
level BLy for product 2. When the final inventory levels of the two
products after the optimal replenishment are at SW, and Bl
respectively, the two products will have equal marginal profits from

recovering the returned items in group 2. Thus,

OEP _ OEP
5’”2*1 X =SW, 5}”2; x,=BL,
OEP e ¢
5}; e P2~ Cran
— SW. = F71(S1 +V + Croy —Crat ,0)).
? s, +v, +h MR
Switching level RP

The switching level RP for product 1 corresponds to the order-up-to
level BL; for product 2. When the final inventory levels of the two

products after the optimal replenishment are at RP and BL,
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respectively, the two products will have equal marginal profits from

recovering the returned items in group 2. Thus,

_ JEP

x =RP

S; V) + Croy = Crot —Criz

= RP=F'(
s +v, +h,

s H50).

Due to the restrictions on cost parameters mentioned before, we can tell the
relative locations of the above-mentioned threshold levels based on their
determination formulae in Tables A.1 and A.2 of Appendix A. Among the order-up-to
levels of product 1, AL, is the highest whereas AL, is the lowest, and AL; is between
them. Furthermore, among the threshold levels of product 1, SW; is located between
ALy and AL, whereas the threshold level RP is located between AL; and AL,. The
threshold level SW; is between SW, and RP. In addition, among the order-up-to levels
of product 2, BL; is the highest whereas BL is the lowest, and BL; is between them.
The locations of all the threshold levels for the two products can be referred to in

Figure 4.1.

In the following section, we would further explain the insights of the above-
mentioned threshold levels. At the same time, the managerial insights to the optimal
control of two-product recovery system are introduced. With the rules, we would
know how to make the optimal production and recovery decisions for the two-product
recovery system if the initial inventory of the two products and the availability of

returned items are given.
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4.2.3 Managerial insights to the optimal control of two-product

recovery system in a single period

Firstly, we have described the relative locations of the order-up-to levels and

the related threshold levels for the two products in Figure 4.1.

Xgq Xs2
AL, — — BL,
RP
AL, — — BL,
SwW,
R2 -
SW,
R1 - | R1 — BL,
ALjg—— —
” PB
0 0

Figure 4.1 The threshold levels for the inventory control of two-product recovery
system

In Figure 4.1, RI and R2 denote the returned items incurring high and low
recovery cost respectively; PA and PB denote the production of product 1 and product
2 respectively; Xsi and Xs» denote the finished item inventory of product 1 and
product 2 respectively. Different from traditional inventory problem, the product
recovery system involves multiple sources of supplies for each product (either
recovery with R/, R2 or doing production). Which sources to be used to replenish the
inventory of finished items will depend on the initial inventory levels of finished
items, the costs of recovery/production, and the availability of returned items. For

example, we would expect the sources with lower recovery/production costs to be
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used first, and the optimal replenishment level for these sources would be higher than

other sources with higher recovery/production costs.

Figure 4.1 has shown the order-up-to levels of PA, RI and R2 for product 1,
denoted by ALy, AL and AL, respectively; and the order-up-to levels of PB, R/ and
R2 for product 2, denoted by BLy, BL; and BL, respectively. Except ALy and BLy,
these order-up-to levels are the highest replenishment levels of the finished item
inventory for the two products if the respective sources are used, and further
replenishment beyond these levels would be unprofitable. For example, the highest
replenishment level for product 1 is AL, if R/ is used. The order-up-to levels ALy and
BL, respectively, are the highest replenishment levels for product 1 and product 2 if
production is used. In addition, they are also the lowest replenishment levels due to

unlimited production capacity.

To explain the insights of the above-mentioned order-up-to levels more clearly,
we first assume that the replenishment of the two products are independent, i.e. only
one product is available. Taking the replenishment of product 1 for example, we
would compare the order-up-to levels of all the replenishment sources (R/, R2 and
PA). As R2 is the cheapest, its order-up-to level AL, is the highest while PA is the
most expensive and so its order-up-to level AL is the lowest. Additionally, due to
unlimited production capacity, ALy is also the lowest level that we would order up to.
As for R, its order-up-to level AL, is between ALy and AL,. Due to cost difference
between the replenishment sources, R2 would be the first choice of the three
replenishment sources, then R/ if R2 is used up, and finally PA if RI is used up. In the

meantime, the choice of a particular replenishment source should only be made when
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this replenishment source is still cost-effective. The final replenishment level would

be subject to the availability of returned items.

However, the above-mentioned order-up-to levels are not enough to control
the two-product recovery system as there is interaction between the replenishment of
the two products on the allocation of possibly limited returned items. In order to fulfill
the optimal allocation, we need to refer to the threshold levels SW;, SW, and RP. As
shown in Figure 4.1, the threshold level SW; is higher than AL, but lower than AL,
RP is higher than AL, but lower than AL,, whereas the threshold level SW, is between
SW, and RP. In Figure 4.1, SW, is shown to be lower than AL, but it is not always like
that because it is not subject to the selected cost structure but the other cost structures.
All the three threshold levels are related to the inventory level of product 1. For each

threshold level, the determination and insight can be referred to in Appendix A.

As mentioned before, the three threshold levels are defined by comparing the
marginal profits of using the recovery with R/ or R2 to replenish the two products. By
the comparison, R/ or R2 would be allocated to the product, which is more profitable
to be replenished. Thus, by this kind of allocation, the inventory level of the product
with high marginal profit is increased whereas the inventory level of another product
remains unchanged. With the inventory level increasing, the product with originally
high marginal profit would have its marginal profit decreasing until the two products
have equal marginal profits. We would define this kind of allocation rule as ‘fair’
allocation rule, which aims to balance the marginal profits of the two products being
replenished with the recovery. If the allocation is based on the inventory levels, at

which the two products have had equal marginal profits already, the allocation would
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increase the inventory levels of the two products at the same time, and maintain the
equality of marginal profits at the final inventory levels of the two products. The

details about using the three threshold levels will be introduced later.

Suppose that the initial inventory levels of product 1 and product 2 are lower
than their order-up-to levels ALy and BLg respectively. In this situation, due to the
selected cost structure, it is more profitable to replenish product 1 than product 2 by
using recovery sources. Therefore, both R/ and R2 prefer to replenish product 1
whereas product 2 is replenished by PB. Due to unlimited production capacity,
product 2 can be always replenished by PB to the order-up-to level BLy. The final
level of product 1 after replenishment depends on the availability of returned items.
As R2 is cheaper than R/, R2 will be used at first. Once R2 is used up and R/ is still
cost-effective to replenish product 1, then R/ will be used. Based on the situation and
different availability of returned items, we would introduce the threshold levels SWi,

SW, and RP as follows:

e Threshold level SW;
The threshold level SW; indicates the inventory level of product 1, at
which RI would switch from the replenishment of product 1 to product
2. If R2 is not enough to replenish the inventory of product 1 up to the
threshold level SW), the following allocation of R/ will be used to
replenish product 1 until SW; is reached. After that, if there are R/ left,
the remaining R/ will switch to replenish product 2 in place of PB,
instead of continuing the replenishment of product 1. If there are R/

left after replacing all the PB at product 2, the remaining R/ will be
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allocated to the two products following the ‘fair’ allocation rule. The
“fair’ allocation of R/ would increase the inventory levels of product 1
and product 2 at the same time until the order-up-to levels AL; and BL,;

are reached respectively.

e Threshold level SW,
The threshold level SW, indicates the inventory level of product 1, at
which R2 would switch from the replenishment of product 1 to product
2. As R2 is cheaper than R/, the threshold level SW; is higher than the
threshold level SW,. If R2 is more than enough to increase the
inventory level of product 1 to the threshold level SW,, R2 will switch
to replenish product 2 in place of PB until all the PB at product 2 are
replaced. After that, if there are still R2 left, the remaining R2 will be
allocated between the two products following the ‘fair’ allocation rule.
The ‘fair’ allocation of R2 would increase the inventory levels of
product 1 and product 2 at the same time until the order-up-to levels

AL, and BL, are reached respectively.

e Threshold level RP
The threshold level RP indicates the inventory level of product 1, at
which product 1 has equal marginal profit from the recovery of R2,
compared with product 2 at the order-up-to level BL;. The threshold
level RP will be involved when the following allocation of R/ affects
the existing allocation of R2. Suppose that the ‘fair’ allocation of R2

has increased the inventory level of product 1 higher than SW, but
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lower than RP, and on the other hand, the inventory level of product 2
has been increased between BL, and BL;. Then, the following
allocation of R/ will replace the existing allocation of R2 at product 2,
and the saved R2 will be reallocated to product 1. Thus, the inventory
levels of the two products will be increased at the same time by the
process of replacement and reallocation. By the ‘fair’ allocation rule,
the process would result in the final inventory levels of the two
products, at which they have equal marginal profits from the recovery

of R2.

If RI is enough to push the process but does not replace all the R2 at
product 2, RI can increase the inventory levels of product 1 and
product 2 until the threshold levels RP and BL; are reached
respectively. After that, R/ will not be cost-effective. Otherwise, if R/
has replaced all the R2 at product 2 but does not increase the inventory
level of product 1 to the threshold level RP. As RP is higher than AL,
the resulting inventory level of product 1 may be either between AL,
and RP or below AL,. When the resulting inventory level is between
AL; and RP and there are R/ left, the remaining R/ will replenish
product 2 alone until the order-up-to level BL; is reached. When the
resulting inventory level is below AL; and there are R/ left, the
remaining R/ will replenish product 2 alone at first until the two
products have equal marginal profits from the recovery of RI. After

that, R/ will be ‘fairly’ allocated to the two products until the
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inventory levels of product 1 and product 2 reach the threshold levels

AL, and BL,; respectively.

The allocation of multiple replenishment sources between the two products is
more complicated as it depends on the initial inventory levels of the two products and
the availability of returned items. It does not make much sense to describe all the
allocation situations here. However, the optimal solution has included all the
allocation situations, which can be referred to in Appendix B. The optimal solution
has been obtained under the selected cost structure. Furthermore, we would describe
the replenishment process of the two-product recovery system in Figure 4.2. The
replenishment process is implemented in the main algorithm, which calls two sub-

algorithms to allocate R2 and R/ respectively in sequence.

In the following section, we would discuss about how to extend the results

from the two-product case to a general multi-product case.
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Main Algorithm

Look at Xs; and X.,, allocate R2 until R2 are all
used or until the limits are reached by using
Algorithm Allocate_R2.

Look at the updated X, Xs,, allocate R1 until
R1 are all used or until the limits are reached
by using Algorithm Allocate_R1.

Produce product 1 and product 2 up to the
levels AL, and BL, respectively if X;; and X,
are below them.

Algorithm Allocate_R2 Algorithm Allocate R1
If X,<AL,, allocate R2 to If X,<AL,, allocate R1 to product 1 up to the
product 1 up to the maximum level AL,
maximum level AL,

If ALy< Xs,<SW,, allocate R1 to product 1 up
to the maximum level SW,

If ALy< Xs,<SW,, allocate R2

to product 1 up to the
maximum level SW, If Xs,2SW; and X.,<BL,, allocate R1 to product

2 up to the maximum level BLy

If SW,<X;,<RP and BLy<X.,<BL, and there are
R2 allocated to product 2, replace R2 at
product 2 by R1 and then allocate the saved
R2 to product 1; in this way, replenish
product 1 and product 2 up to the maximum
levels RPand BL, respectively or until R2 are

If X, 2SW, and X,<BL,,
allocate R2 to product 2 up
to the maximum level BL,,

all replaced.
If X,2SW, and Xg,>BL,,
allocate R2 fairly to product
1 and product 2 up to the If Xs;2SW,; and X,2BL,, allocate R1 fairly to
maximum levels AL, and BL, product 1 and product 2 up to the maximum
respectively. levels AL, and BL, respectively

Figure 4.2 The inventory replenishment process of the two-product recovery system
in a single period
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4.3 The extension to a general multi-product recovery system

The N-product recovery system can be drawn as follows. The demands follow

some general distributions.

)41 D,
Production
R; m ru+ry
> > | Recovery
D2 D,

Disposal\

Production —>

R, riptry

) 4

Recovery

Disposal

PN
Production —

riNnt N

Recovery

Figure 4.3 The structure of the N-product recovery system

Some restrictions on cost parameters are imposed so as to ensure the
economical meaningfulness of the study on the N-product recovery system. Firstly,
for each product, selling price is higher than production cost, and penalty cost of

shortage is higher than the profit from production. Therefore, there exist:

;> Cpis V)

;>s;,—¢p (G=1,2, ..., N). Secondly, for each product, production cost is
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higher than recovery cost. Otherwise, recovery is unnecessary. Therefore, there exist:

Cpj > Cgyj» Cp > Cpy ;- Finally, the recovery using returned item in group 2 is cheaper

than that using returned item in group 1. Therefore, there exist: c,,; <cy,;-

The N-product recovery system can be firstly studied in the single period by
referring to the two-product recovery system. Similarly, the optimal solution can be
found by solving KKT conditions of Lagrangian function. The optimal solution to the
single-period problem on the two-product recovery system has been shown in

Appendix B based on a choice of cost structure: cp —cCgy >Cpy—Cry >
Cpy = Cra > Cpy = Cpan» AN Cpy —Cpyy > Cyy — Cpoy - FOI the N-product recovery system,

the optimal solution can be similarly shown based on the cost structure (j =1, 2,..., N-

D): Cpi ~Crij > Cp(jrty ~ Crigjs) ) Cp; ~Craj 2 Cpjen) ~ Cra(j+1 ) and

Crij ~Craj 2 Crigj+1y ~ Cragj+1) -

In the N-product recovery system, there are three order-up-to levels for each
product with respect to three replenishment sources. Based on the selected cost
structure, there are three threshold levels for product j to controlling the interactive
allocation of recovery replenishment sources between product j and product (j+1).
Totally, the number of the threshold levels for the N-product recovery system is
calculated as 3*N+3*(N-1) = 6*N-3. Although the solution structure of the optimal
solution will increase with the number of products in the recovery system, the N-
product case can still be formalized as NLP problem and solved by KKT conditions.
When the recovery system is extended from the single-period context to the multi-

period context, the threshold policy is considered to be used as it is easy to be
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implemented. For example, for M-period problem of the N-product recovery system,
the threshold levels of each period can be determined by referring to the work on the
two-product recovery system. However, the computational complexity of the heuristic

algorithm would increase with the number of products in the recovery system.

4.4 Summary

For the two-product recovery system involving two groups of returned items
based on quality classification, we have obtained the optimal solution to the single-
period problem by solving KKT conditions. After analyzing the 21 cases of the
optimal solution, we found out that they can be represented by an optimal multi-level
threshold policy. Although the policy is a similar threshold policy to many works in
the literature, it has more complicated structure due to multiple replenishment sources

and multiple products.

This optimal policy is characterized by 6 order-up-to levels and 3 switching
levels. For each of the two products, there are 3 order-up-to levels corresponding to
different replenishment sources. In addition, there are 3 switching levels to control the
allocation of the returned items between the two products. The managerial insights of
these threshold levels have been explained. The allocation of returned items between
the two products would follow the fair allocation rule. The rule aims to balance the
marginal profits from the recovery replenishment source between the two products.
Based on the selected cost structure, we have shown the details of the replenishment
process. For the other cost structures, the replenishment process and managerial rules
can be similarly obtained. In particular, the extension from the two-product situation

to a general multi-product situation has also been discussed.
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The research results of the two-product recovery system in a single period will
be used for further research on the recovery system in the multi-period context. The
threshold policy is assumed to be used for the multi-period problem as it is intuitive,
easy to use and provides good managerial perspectives even though it might not be

optimal.
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Chapter 5 The study on two-product recovery system in a
finite horizon with lost sale and zero lead time

Chapter 5 focuses on the study of the two-product recovery system in a finite
horizon. The stocking of two products in the recovery system aims to satisfy
stochastic customer demands in each period of the planning horizon. The inventory of
the two products can be instantly replenished by production and recovery processes as
both processes are assumed to have zero lead time. If the inventory is in shortage, the
recovery system will lose the sales. Section 5.1 introduces the two-product recovery
system. In Section 5.2, an ADP model of the system is developed in order to
maximize the expected total profit in the finite horizon. The model is used to derive
the threshold levels, which are only dependent on the gradient of the cost-to-go
function at the points of interest. Section 5.3 provides the details about how to
determine the gradient of the cost-to-go function at the points of interest. Section 5.4
gives numerical analysis on the recovery system. Finally, Section 5.5 summarizes the

main findings.

5.1 Introduction

The occurring events in each period of the finite horizon are described here.
Firstly, returned items arrive at the two-product recovery system at the beginning of
each period. Secondly, after observing the on-hand inventories of finished products at
the beginning of each period, the manufacturer makes production and recovery
decisions. Once the decisions are made, inventories of finished products get

replenished instantly. The inventories are used to satisfy demands later in the same
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period. If the demands cannot be fully satisfied, the sales will be lost and penalty cost
of the shortages will be incurred. Otherwise, if there are inventories left at the end of
the period, the remaining inventories will be carried to future periods and inventory
holding cost will be counted for the period. Finally, the remaining returned items are
disposed of and disposal costs are negligible. The revenue is generated from the sale
of finished products. The total cost consists of production cost, recovery cost and

inventory holding cost of finished products and penalty cost of shortages.

The objective is to maximize the expected total profit of the two-product
recovery system in a finite horizon. In order to fulfill the aim, we need to find the

optimal policy of production planning and inventory control.

5.2 Approximate Dynamic programming model of the two-product

recovery system in the multi-period context

The dynamic programming model of the two-product recovery system in the
multi-period context has been introduced in Chapter 3. In this Chapter, the recovery
system is assumed to deal with stock shortage in the way of lost sale. The other
assumptions and the related notations are referred to as in Chapter 3. Besides, some
related notations are listed as follows (i, j = 1, 2):

o initial inventory of product j in period ¢
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xi.’) inventory level of product j after production and

recovery in period t;

£ (x80,x) expected maximum of the expected total profit from

period ¢ till final period;

EP, expected profit in period #;

MEP maximum expected profit in final period;

ETP; expected total profit from period ¢ till final period;

E%Pt approximation to ETP;;

ATP" actual profit in period ¢ at sample k of demands and
returns;

u' gradient of the cost-to-go function in period ¢ w.r.t.

order-up-to level of product j;

grad) sample gradient of u{’ at sample k of demands and

returns.

The transition relationship on initial inventory of each product between two

subsequent periods can be expressed as follows ([X]*:= max{X, 0};j=1,2):
XD =[x 4 py) + rl(j’) +r — D;’) T". 5.1

S S 2j

In addition, the order-up-to level of each product at period ¢, i.e. inventory
level after replenishment, is dependent on the initial inventory, which can be

expressed as follows:

0 — O 4 (0 4 ) D)
X, =X +p;An+n; 5.2)
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As expressed in Chapter 3, the Bellman’s equation of dynamic programming
is as follows (r =1, 2, ..., M):
© 1) O (O SO SO L0 L0 0 L0
Ji(xgi s xg5) = (,)Ii(,){p(,) p(,)r(l,l) 0. (,){EP(xs1’xs2’p1 P2 T sl Ty s Ty))

[fa (™ x5O )

D(’) (’)

(5.3)

The objective of studying the dynamic programming model is to obtain the
optimal policy for the two-product recovery system in the multi-period context.
However, due to the curse of dimensionality of dynamic programming, it is
intractable to solve dynamic programming problem involving more than two states.
For this kind of dynamic programming problem, suboptimal methods are proposed,
which focus on evaluation and approximation of the cost-to-go function. Based on the
approximation, the ADP model is proposed to help derive the threshold levels of the
threshold policy. Therefore, we can approximate the cost-to-go function at the points
of interest by using the gradients as follows:

(+1) (141
[fra G x5 )]

[le([x(t) D(t)] [x(t) D(t)] )]Nu(t)xl(t)+u(t) (t).

Du) Dy

(5.4)

Du) D

To find the gradient u!”, we can use the first-order derivatives of the cost-to-

go function with respect to the inventory level of product j after replenishment, which

is expressed as follows (j =1, 2):
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9 E Lfu(x"=D"T [ = DY)
u = 20 . 5.5)

J axy)

The details of computing the gradients will be discussed later. After the above-
mentioned approximation, the objective function of the dynamic programming model
at period ¢, denoted as ETP,, can be expressed as follows:

ETP
=EP+ f,,(x".%")

~ 0 (0 L (1) (D)
=EP +u"x" +u, x,

+1

(5.6)

- (1) ¢ ,.(1) (1) (1) (1) (1) ¢ ,.(1) (1) (1) (1)
=EBR+u" (xg +p 5y +15))tuy (X, +py +1y +15)

As mentioned in Chapter 3, the expected profit function, denoted as EP;, is
expressed as follows:

(1) .(1) (1) ) (1) () (1) (1)
EB(xg), X5y, D)5 Py 5Ty sy 5Ty sTay)

(1) (1)

(1) (1)
+Crialiy +Crulyl’ FCrmly’)

— (1) (1)
=S4+ S0 —(Co Py FCpaPy F Cppy

(1) (1) 4 (1) 4 (1)
[ SR T

Xg (t) (1) (t) (t) (1) 0 )
-hj, )+ p” )+ 1) = DI F (D, 1y, 6,)dD),

oo

—(s +v1)J. (

(1) (1), (1)
Xgp+p HhAn

(1) (1) (1) (1) (1) (1) (1)
,>(D1 —Xg —p —hy — ) ) (D, ,0,)dDy
1
§3+ps 1y 33

Xg (t) (1) (1) (t) (1) 0 )
_hZJ.o (Xg, +py" +1y +1, =D) (D, 1y, 0,)dD,

oo

2 12

—(s,+V, )J. ® Dét) - x;’; - p(t) -y - rz(é))f(Dg)’ﬂz’ o, )dD;,t)'

4

(5.7)

After substituting Formula (5.7), Formula (5.6) can be further expressed as

follows:
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(1) (1) (1) )y (1) (1) (1) _.(0)
ETP(Xg,Xg5, P s P2 »hy »ha o Tar 5 1o )
- - () (1) (1) @) (1) () (1) (1)
= ETP (Xg , X535 P, s Py s hy > Ty s Ty s Ty
_ (1) (1) (1) (1) (1) (1) (1) (1)
= (8w )+ (S, uy )iy —(Cp Py + oDy FCpihiy F Crialiy FCraily)’  Croly’)

(

(1, (), (),
Xgptp AR A

)
(1) (1) (1) (1) (1) (1) (1) (1)
_(hl_ul )J.o (xs1 tp Rt _Dl )f(Dl ’lul’o-l)le
OGN (1) (1) (1) (1) (1) (1) (1)
_(Sl+vl+”1 )J. (), (D), (1) (;)(Dl —Xgg TP Th Ty )f(D1 ’lul’o-l)le
Xgp +p
N[BT 0, 0 0 0 0
—(h, —u, )J.o (Xg+p, +1, +ny —D,")f(D,", t,,0,)dD,

N[ (1) (1) (] (1) (1) (1) (1)
—(s,+v, +u, )J.X(,>+p(,>+r(,>+r“> Dy’ —xg, —p,’ =1y, =1y ) f(Dy), 14,,0,)dD,’".
S2 2 12 22

(5.8)

The functions EP; and Ei’Pt , expressed in Formulae (5.7) and (5.8)

respectively, are found to be similar to each other except for some coefficient

differences. Therefore, we can prove the concavity of the function ETP, similar to the

function EP;. Thus, we can find the optimal solution to maximize the function Ei’Pt
by solving KKT conditions. The optimal solution has the same structures as that for
the single-period problem in Appendix B. Therefore, the optimal multi-level threshold
policy of the single-period problem could be conveniently used for the multi-period
problem. However, due to coefficient differences, the threshold levels for the multi-

period problem need to be re-computed. For example, the threshold level AL

, > can

be determined as follows:
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JETP 0
PO
A
=5, +u"” +v,—cp — (s, +v,+h)F (AL , 4t,,6,) =0 (5.9)
®
Sou +s +v —c
:>A()t)=F1( 1 1 1 Pl’ﬂ1’o-1)-

s +v +h

Similarly, we can determine the other threshold levels at period ¢ for the multi-
period problem. In Table 5.1, we have listed the formulae of determining the
threshold levels for the single-period problem and the multi-period problem
respectively. It could be seen from the formulae that the threshold level for the multi-
period problem is only dependent on the gradient of the cost-to-go function at the

points of interest.

Unlike the usual approach which uses a single function (or piecewise function)
to represent the cost-to-go function across the whole state space, we just need to
estimate the gradient of the cost-to-go function at the points of interest. These
gradients will be used to compute the threshold level. Hence, the performance of the
results will not depend on the function we assume which can be a challenge for most

of the approximate dynamic programming approaches.

As the gradients used to compute the threshold level are dependent on the
threshold level conversely, we need to employ an iterative algorithm to find the

threshold level. In the following, we would explain how to compute the threshold

levels, taking the threshold level AL’ as example.
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Table 5.1 The formulae of determining the threshold levels for the single-
period problem and the multi-period problem

The single-period problem The multi-period problem
(1) L8+ —c ) _
ALO F 1( 1 1 Pl ’ﬂ1’0-1) F_l(ul +8 +V, —Cp ,ﬂl,o'l)
S'1‘|'Vl-|'h1 S1+v1+hl
(1) 8+, —c ) _
AL] F I(M’ﬂl’dl) F'_1 ul +S1+VI CRll’ﬂl’o-l)
S +v +hy s +v, +h
(1) 8ty —c ) -
ALZ F I(M’ﬂl’oﬁ) F—l(u1 +8, +V, —Cpy ”ul’o.l)
S v +hy s, +v, +h
— — (1)
SWI(I) F—I(S1+VI+CR12 Cri1 sz’ﬂl’o.l) F_l(ul +S1+VI+CR12_CR“_CP2,,ul,O'l)
S +v+hy s +v +h
(1) i1, 8 AV A C oy = Cy =C ® — —
SWZ F 1( 17V TR0 " CRo1 T Cp2 ’ﬂl’o.l) F_l(ul + 8, TV, +Crop —Croy —Cps ’lu1’0-1)
SV +hy s +v, +h
— — (1)
RP(I) F—l(sl+v1+CR22 Cra1 —Cr12 .0, F_1(M1 + 8, +V, +Cryy = Crot —Crin 0,0
S +v+hy SV +hy o
Q) Y S +s,+v,—c
Lo (M’ﬂz’o}) F 1% 2 2 Pz’ﬂz’o'z)
S2+V2+h2 S2+V2+h2
(1) 8, +v,—c¢ ) _
L ) e S
S, +vy +hy s, +v,+h,
(1) 8, +v, —c (0 _
BL2 I(M’ﬂz’o}) F—l(uz T8tV —Crpy 1, 0,)
S, +v, +hy s, +v,+h,

When determining the threshold level AL, the inventory level of product 1

after replenishment, i.e. x\", is set as AL’ . As for the x\”, we can set it at any of the
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three order-up-to levels, ie. BL)’, BL" and BL) . If the cost-to-go function is

separable with the inventory levels of the two products, the gradient u” will be

independent of the values of x{"”. However, the cost-to-go function might not actually

be separable, and so we use the average of the gradients at the three points as the
approximation of the gradient u"” at AL’. Thus, the gradient u"” can be estimated
as follows:

u” (x0, x0 1x0 = ALY
(5.10)

1 <2
~ (D (A0 0 L) _ AT® ) _ pr®)
NEE ol (", x| x" =AL),x,” =BL).

To solve (5.10), we need to know AL and BL (k =0, 1, 2). However, they

can only be determined after having determined the corresponding gradients. Thus,

t

we need to use an iterative approach to search for the threshold level AL’ by using

the pre-determined threshold levels of period #+1.

Firstly, the gradient " is estimated by using the threshold levels of period

t+1 as initial value, ie. x” = ALy™,x)” = BL{*" . Then, the gradient is used to

determine the threshold level AL by using Table 5.1, which is further used by
smoothing with previous value to obtain the latest value of the threshold level. After
that, we re-compute the gradient using the latest threshold level AL . Then, the
gradient is updated with previous value by smoothing, which is used to determine a
new value of the threshold level. The computing and updating procedure is repeated

until it converges. The algorithm is an iterative learning algorithm. Due to the time-

consuming computation, we will stop the iteration when the approximation has
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satisfied our criterion. In the following algorithm, the stopping criterion can be tuned
to suitable values according to the algorithm’s performance. The notations of the

algorithm are listed as follows:

m the index for an iteration;

—(1),m . . (t) . .

u a weighted average of gradient ;" up to iteration m;
u™" a stochastic gradient obtained at iteration m;

—(t),m

ALo the threshold level corresponding to a weighted average of
gradient at iteration m;

ALP™ a weighted average of the threshold level at iteration m;
U (x",x") the set of gradients of the cost-to-go function with respect to

x” by averaging the gradients

(D O [ L0 Z A7Om=1 () _ prihy (= :
w”(x",xy 1 x7 =AL; X, =BL™) (k=0,1, 2);

The main steps of the algorithm are shown as follows:

—(),0
Step 1. Set 1 = u1(t+1)(xl(t+1)’x;t+1) |x1(t+1) _ AL(OM)) and ALg)’O _ ALgH) |
Step 2. Set m= 1,
Step 3. Obtain ul(’)”" c Ul(t)(xl(t),x;t)) :

—(t),m

Step 4. Update u; by

—(t),m —(t),m—1 —(t),m-1
w =w B, @ —w ),

Step 5. Obtain A_Lg)’m by referring to the corresponding formula in Table 5.1;

Step 6. Update the solution by
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——(1)m
(t),m __ (1),m—1 (1),m—1y,
AL = ALY+ (ALy " — ALD™);

Step 7. Set m = m + 1. If the stopping criterion is not met, go to Step 3.

In general, we stop the algorithm if the total absolute change of the threshold

level over a certain number of iterations is small. For example, if

m A
Zi:ln—L+l,ln>L

calculating the absolute change; o : a small number.), then the algorithm will stop. In

(f)"'—ALﬁ)’)""IH<5 (L: the number of consecutive results used for

addition, because sampling is involved, stochastic gradients can be quite different
from iteration to iteration. The instability of stochastic gradients makes the solution
obtained in Step 5 fluctuating. Therefore, we need the averaging steps, i.e. Steps 4 and
6, to help stabilize the solution. According to Gupal and Bazhenov (1972), the

solution will surely converge to an optimal solution under certain conditions on the

stepsizes @, and S , such as

amzo’ ﬁm>0’ am/ﬁm_)o’ Z:zlam:oo’ Z:;:lal721<oo

After the algorithm stops, we can obtain the threshold level AL;’. Similarly,

we can determine the other threshold levels of period ¢ by using the algorithm.
However, as mentioned before, we need to have determined the threshold levels of
period r+1 at first. As the threshold levels of the last period, i.e. period M, have been
determined by solving the single-period problem, we can take advantage of backward
way to determine the threshold levels from period M till period ¢. In addition, the
algorithm requires the gradients to be determined at the points of interest. We will

introduce it in the following section.

75



Chapter 5 The study on two-product recovery system in a finite horizon
with lost sale and zero lead time

5.3 The determination of the gradient at the points of interest in the
multi-period context

As the objective function of the approximate dynamic programming model has
similar concave property to the objective function of the single-period problem, we
can refer to the optimal policy of the single-period problem for solving the multi-
period problem. While solving the multi-period problem, we take advantage of
backward induction. Firstly, for the last period of the multi-period horizon, i.e. period
M, the threshold levels are determined with reference to the single-period problem.
Then, for the second last period, the threshold levels are determined by estimating the
gradients of the cost-to-go function, i.e. the gradients of the expected maximum

expected profit in the last period, which is expressed as follows:

(M-1)

Uu;

0
= E [ max EP, ([x"™" =D"™"T",

= —{ i i |
OxM=D " Rgu) gUD) p(MD pM-DT ()50 p (M) 50 (M) 50 0150, M) 50,00 >0

2V,

j 2

(M -1) (M-1) 9+ (M) W) (M) (M) (M) (M)
[x; —-D, e spysny shy sy sy D1

5.11)

In this backward induction method, suppose we are now at period ¢ to
determine the threshold levels. Up to now, we have determined the threshold levels
from period #+1 till the last period. Therefore, we have known how to make the
optimal replenishment decisions based on the threshold levels and the optimal policy
in these periods. In order to determine the threshold levels of period ¢, we need to

estimate the gradients of the cost-to-go function, i.e. the gradients of the expected
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maximum expected total profit earned from period #+1 till the last period, which is

expressed as follows:

u(t)

d

= — max
ax('t) Rl““),Rﬁ’“),Dl“),Dﬁ') p}’“)2(),p‘,’“)2(),4‘1’“)2(),4‘,’“)2(),r§l'“)2(),r§3'“)>()
j 2 2 2 2 2 2

ETP([x(t) D(t)] [x(t) Dz(t)]+’

(+1) (141 (t+1) (+) (D) (4D)
PPy Sk shy by by DI

(5.12)

As there is no closed-form formula to compute the gradient ug.’), we need to

run Monte Carlo simulation, and estimate the gradient based on the simulation results.
Firstly, we need to generate N sets of random realization of stochastic returns and

demands in each period from period ¢ till period M-1. Among them, sample k is

(t+1) (t+1) (1) (1)
Rl,k RZ,k Dl,k D2,k
expressed asj ....... . The sample value of the cost-to-go

RO R peh pien
1,k 2,k s ,
function for sample k, is obtained by summing up the profit for the realization from
period #+1 till period M-1 and the expected profit at period M after applying the

optimal policy for these periods. The ATP™" is used to calculate the profit of period ©
(t < t< M) for sample k. The profit function ATP ™" is expressed as follows:
O (x| x| pO" | pOF L8 08 0 Lor o po
ATE (X5, Xgy Py 5Py shy oha sTyy oty Dy Do)
=5, + T+ ) 5, (0 + pS K+ 1)

(7)* (z)* (T) (T) (T) (T)
—(cp Py HCppy FCrnhy FCriahy FCrula T Crnln )

(T) (T) (7)* (7)* (7) (7) (7) (0* _ (T)* (T)*
(hvl +Sl)[xs1 th D ] _Vl[le — X — D Iy ]
(T) (T)* (7)* (0* _ (T) (7) (7) (0* _ (T)* (T)* 9+
—(hy, +5,)[x55 +5y, +1, ] WDy — x5, — P, -5, 1.
(5.13)
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As there is no closed-form formula for the maximum expected profit at final

period, i.e. MEF_, we compute it by maximizing the expected profit EPy, x for sample

k, which is calculated as Formula (5.7).

Therefore, the cost-to-go function can be estimated as follows:

() (r+])
D;E)p[f’“(x“ s X5y )]

1 N M—-1 (7)* (514)
~ NZH(Z ATP”" + MEP)).

T=t+1

As the function ATP”" and the function MEP, are both continuous functions,
it is suitable to approximate the cost-to-go function by Monte Carlo sampling method.

. ) . .
Furthermore, the gradient u;” can be approximated by sample average of the gradient
over all the realizations. The approximation of the gradient ui.’) by averaging the

sample gradient grad! for sample k is expressed as follows:

t t t 1 - t t t
ug.)(xl(),xg))zNZgrad;,;(xf),xé)). (5.15)
k=1

We would start from a two-period problem to introduce the determination of
the sample gradient. Then, we would extend from the two-period problem to the
three-period problem. Finally, we can determine the sample gradient for any multi-
period problem by induction. In the determination of the sample gradient, we have

taken advantage of an Infinite Perturbation Analysis (IPA) based approach.
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5.3.1 The determination of sample gradient in the two-period problem

For the two-period problem, the threshold levels of the last period can be
obtained by referring to the single-period problem. The threshold levels of the first
period are determined by using the gradients of the cost-to-go function estimated by
Monte Carlo simulation. Before that, the sample gradient of the cost-to-go function

needs to be determined. The sample k& for Monte Carlo sampling is expressed as

(R, R, D}, D). The sample gradient can be calculated as follows (j =1, 2):

0oy OMER, _ OMER, 3  OMEP, o)

)
grad; [ (x;”, x, = . (5.16)
2 a” o o x ox)

As x{"and x{" are assumed to be independent of each other, the perturbation

of x} will be only propagated to xg’ if there is no shortage of product j at the first

period. Therefore, Formula (5.16) is further expressed as follows (j =1, 2):

0, if x < DV);
grad;f,z (", x"y = 5.17)
OMEP,

EWERE otherwise.
X .
Sj

b

@
oxg;

The term in Formula (5.17) can be computed as follows by the related

derivatives of the expected profit function EP; i, which is expressed in Formula (5.7):
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OMEP,

o

:aEPZ,k* (aEPZ,k* ap1(2)* aEPz,k* a’"1(12)* aEPZ,k* arZ(IZ)*) (5.18)
P R N ‘

OEP,, op®" OEP,,  or?" OEP, or?

[EEEWE) " 3,@ BEEWE)
dpy oxg'  dny  dxg'  dn,)  Oxg

).

According to Formula (5.7), the partial derivatives of the function EP,, can

be determined as follows (j =1, 2):

aEPZ,k*_ hF (2)* .
FES =5, 4y, =08+ +h)F (X7, 14, 0,);
Si
OEP,, _OEPR, e
ap('Z)* ax@) pj»
J Si
(5.19)
OEP,  _OER,
P ay W
OEP,, _OEPR,
a2 oy

Based on Formulae (5.18) and (5.19), Formula (5.17) is further expressed as

follows (j =1, 2):

e () _ D).
0, 1ij <Dj,k,

rad®) (2", x") = . .
8 J,k( 1 2 ) aEPZ,k' axl(Z)* aEPz,k' x;z)* ap(z)* or

1 1

o0
_ _ 1
2 2 @ 2 2] 2
oY ox o) ox ‘n ox i ox
5 s s Sj

s1 52
AT L il |
—Cryy az(lz) “tp J 2(2) “Cri2 81%2) —Cryy 82?2) , otherwise.
ij ij ij ij
(5.20)
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The above formula involves the partial derivatives of the optimal
replenishment decisions with respect to initial inventory. These partial derivatives can
be obtained according to the corresponding structure in Appendix B. Suppose that the
optimal replenishment decisions for sample k match the structure S7 in the Appendix
as follows:

S7. R +x) <SW, RY+RY+x3 >SW, R)+R +x +x3 <SW +BL:

(2)% _ 2)% _ (1) (2) 2)* _ p). 2 _
p- =0, hio =SW—Ry —xg . n =R (g7 =SW)

(2)% _ (1) (1) (2) (2) (2)* _ p(l) (1) 2) _ (2)% _ 2)% _
Py =SW+BL —R;—R,; — x5 —Xg,, I, =R +R;+x7 —SW, n, =0. (" =BL)

From the structure S7, we can observe that the inventory levels of the two
products after replenishment have reached the threshold levels SW; and BLy
respectively. Therefore, the perturbation on the initial inventory of the two products

will not be propagated to the order-up-to level of the two products, i.e.

ox?" ol o oY :
== ==y = =5 =0. However, the perturbation would affect the related
oxg oxy' o oxg,  Oxg,

@y 9r
replenishment decisions. The impact can be determined as: “(2) =-1, 12(2) =1,
Xs1 oxg)
" p?" . o
S 2(2) =—1 and S 2(2) =—1. Thus, we can conclude that if the initial inventory of
Xs1 Xso

product 1 is increased with a small amount A, the recovery using returned items in
group 1 for product 1 will be saved with the same amount A and be reallocated to
product 2 in place of production for product 2; on the other hand, if the initial
inventory of product 2 is increased with a small amount A, the same amount of
production for product 2 will be saved. Despite the impact on the related
replenishment decisions, the order-up-to level of each product remains unaffected.
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According to Formula (5.20), the sample gradient is calculated as follows:

@D Dy .
gradl,k(xl 32Xy )= Cpy FCpy —Crins

@ D Dy
gradz,k X5X ) =Cpy.

5.3.2 The determination of sample gradient in the three-period problem

For the three-period problem, the threshold levels of the second and the last
period can be obtained by referring to the two-period problem and the single-period
problem respectively. Then, the threshold levels of the first period are determined by
using the gradients of the cost-to-go function estimated by Monte Carlo simulation.

Before that, the sample gradient of the cost-to-go function needs to be determined.

R® R® pO pw
The sample k for Monte Carlo sampling is expressed as bE e T TR

[C) >16)) (2) (2)
Rl,k Rz,k Dl,k D2,k

sample gradient can be calculated as follows (j =1, 2):

gradﬂ,z (", xM)
:%{ATP;Z)*+MEP,(}
ox;
_0ATP”" OMEP,
oo ox}
_0ATP”"  OMEP, ox;*" OMEP, ox\""
ox; ox” ox’  ox” ol
aATPk(Z)* axl(Z)* 2) .2 _(2)* ax(Z)* (2) (2 (2)*
= grad ) (7", X7 +—=2—grad;’) (", ;7).
(1) @ , 1) .
ox; ox; ox;

(5.21)
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As the inventory levels of the two products x!” and x{ are assumed to be

independent of each other, the perturbation of the x{" will be only propagated to the

x; if there is no shortage of product j at the first period. Therefore, Formula (5.21) is

further expressed as follows (j =1, 2):

e (D) .
0, 1ij <Dj,k’

JATP?"  ox*”
) @)
oxg oxg;
X(Z)* 2 2)% 2)%
+—2—grad)) (x”",x”"),  otherwise.

(2)
Si

M 1M

Dy _ @) [ LF ()
gradj,k()c1 Xy )=

gradl,k (7, x7)

(5.22)

In the above formula, the perturbation of the initial inventory of product j at
period 2 will be propagated to the final inventory of product i at the same period as
follows (i, j =1, 2):

@ 6) @ @ X
ox;”" oxg’  dp, or.”"  ory;

1

= + .
B B @ @ @
dxg'  Oxg  oxg o oxg O

(5.23)

The above formula involves the partial derivatives of the optimal
replenishment decisions with respect to the initial inventory of the two products at
period 2. Similar to the two-period problem, these derivatives can be obtained by
referring to the corresponding structure of the optimal replenishment decisions in

Appendix B. Before that, the threshold levels at period 2 are computed on the basis of

the objective function E7~"P2 considering the final two periods. The two gradients of

ETP, at the point of interest need to be estimated in the two-period context. Suppose
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that the optimal replenishment decisions at period 2 for sample k£ match the structure
S7. With the solution structure mentioned before, the perturbation on the initial
inventory of the two products will not affect the order-up-to level of the two products.

Therefore, the sample gradient for sample k& can be calculated as

JATP?"
1 1 1 k

grad') (x;",x)=—~—

Js ax(Z)

Sj

according to Formula (5.22).

In Formula (5.22), the partial derivatives of the function ATP®" can be

determined as follows (j = 1, 2):

JATP”"
oxg;’
_ OATR”" N (aATP;”* dp?"  OATP®" or’" 0ATP®" ar;?*)
ox’ op?" oxg'  on" oxy  on oxy
N (aATP;”* op?"  OATP?" orY"  0ATP™" ar;§>*) (5.24)
9 (2)* 9 (2) 9 (2)* 9 (2) 9 (2)* 9 2) 7"
/2 Xsj ur X 5 X

According to Formula (5.13), the related partial derivatives of the function
ATP™" are listed in Table 5.2 as follows. While calculating these partial derivatives,

we have considered all the combinations of demand satisfaction. In order to
summarize all the possible expressions, the related index and indicator are excluded

from the notations in Table 5.2.
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Table 5.2 The partial derivatives of the function ATP™" with respect to initial
inventory and replenishment decisions

Product lunderage  sytv;  SyhVy  SpVpCp  SitViGey  SitViGrar SitValey SitVplrin SptVorGenm
product 2 underage

Product 1 underage sty -h, SV Cpy SitVi-Cryy  StViCray  -(hatery) ~(hatcraa) ~(hytcraa)
product 2 overage

Product 1 overage -hy Sytvy  -(htey) {hitean)  -lhitcrar)  Sptvaecpy SytVy-Crin S2tVo-Craa
product 2 underage

Product 1 overage -hy -h, ~(hytepy) A(hytepy)  -(hytepar)  -(hatee) ~(hat€ry,) ~(hatcraa)
product 2 overage

With reference to Formula (5.24), the two gradients for sample k are
calculated as follows. According to the situation of demand satisfaction in period 2,
we can refer to Table 5.2 to obtain the values of the related partial derivatives in the

following formulae.

1 1 1
gradl(’k) (xl( ),xé )
aATBc(Z)* aATBc(Z)* aATBc(Z)* aATBc(Z)* .
= * - * - * =cC C 2 —C 2;
axg’zli) arl(22) arl(lz) apéz) RI11 P R1

grad} (s )

_0ATB”" 0ATPR?”"

TTal g
N

5.3.3 The determination of sample gradient in the N-period problem

Since we have learned the induction rule in the determination of the sample
gradient from the two-period problem to the three-period problem, we would extend
to any N-period problem in order to determine the sample gradient at any period ¢ of
the multi-period horizon for the two-product recovery system. Before considering the

N-period problem, suppose that we have known how to determine the sample gradient
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for all the multi-period problems with less than N periods. Therefore, the threshold
levels of each period except the first period can be determined for the N-period
problem. With these threshold levels, the optimal policy helps to make the optimal
replenishment decisions in these periods. In this situation, the sample gradient of the

first period for the N-period problem can be calculated as follows (j =1, 2):

grad(l) (xl(l) , le))
d .
== v {ZATP(” +MEP,}
aATP,j”* 0 - (5.25)
:—axj” PR {Z ATP®" + MEP,}
aATEc(Z)* axl(Z) @) (" 2) ox (2)* @) (2
= axy) + axﬁl) grad,’; (x, )+ — ax§1> grady’ (x,” ,x;,7).

The above formula is similar to Formula (5.21) for the sample gradient of the
three-period problem, which indicates the same induction rule. Therefore, by
induction, we can determine the sample gradient for any N-period problem. For the
sample gradient at period ¢ of the M-period horizon, we can take advantage of
backward way. In more details, the sample gradient at period M-/ can be determined
by solving the two-period problem considering the final two periods. Then the sample
gradient at period M-2 can be determined by solving the three-period problem
considering the final three periods. Finally, in this way of backward induction, the
sample gradient for period ¢ can be determined. The process of determining the

sample gradient can be referred to in Appendix C.

86



Chapter 5 The study on two-product recovery system in a finite horizon
with lost sale and zero lead time

5.4 Computational results

5.4.1 The convergence of the threshold levels with period

Firstly, we investigate the impact of inventory holding cost rate on the
convergence of the threshold levels. A set of system parameters is given as follows:

Cost: v, =4,v, =6,s5, =135,5, =20,

Cp = 12, Cpy = 15’CR11 = 6’CR12 = 10’CR21 = 2’CR22 =7,
Demand: E[D,]=200,StDev[D,]=60; E[D,]=100,StDev[D,]=30;
Return:  E[R,]=210,StDev[R,]1=70; E[R,]= 45, StDev[R,] =15.

In the following, we have shown the results about the threshold levels when
the inventory holding cost rates h; and h» are both equal to 1, 2 and 3 respectively.
Once the difference of all the threshold levels between two consecutive periods is no
more than 1%, the convergence is regarded to have been achieved. As shown from the
following results, the convergence takes place at the 13" Jast period, the 7™ last period
and the 6™ last period when the inventory holding cost rates /4, and 4, are both equal
to 1, 2 and 3 respectively. The results have shown that the threshold levels converge
faster if the inventory holding cost rate is higher. When the inventory holding cost
rate is high, the trade-off between inventory holding cost and penalty cost of
inventory shortage is fulfilled at periods, which are not far from the end of the horizon.
Thus, we can refer to the converged threshold levels while making production and

recovery decisions for each period of a relatively long finite horizon.
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Table 5.3 The threshold levels of each period for the 15-period problem when

hi=hy=1

ALy AL, AL, SW SW, RP BL, BL, BL,
M=1 176.9 223.1 262.2 184.8 192.5 231.5 93.0 107.0 116.1
M=2 205.9 309.1 445.4 2174 2294 351.5 111.6 161.7 202.1
M=3 216.6 370.8 608.5 229.9 244 .4 4523 117.9 2025 281.9
M=4 221.3 398.5 756.3 235.7 251.6 496.4 119.9 216.7 3559
M=5 223.2 403.8 883.2 237.8 254.4 521.7 120.6 228.0 4228
M=6 2239 415.0 976.8 238.6 2559 539.5 120.8 245.0 472.2
M=7 224.5 429.8  1034.7 239.5 257.2 556.3 120.7 261.3 502.3
M=8 225.0 4419  1068.7 240.0 258.0 576.9 120.6 271.0 521.3
M=9 2249 450.7  1096.2 240.2 258.7 593.0 120.5 276.4 536.6
M=10 2253 454.1 1124.7 240.4 259.2 603.0 120.5 280.5 5529
M=11 225.2 4577  1153.6 240.9 258.9 608.2 120.2 281.8 564.9
M=12 225.0 459.8 11764 240.5 259.2 610.4 120.2 282.6 571.6
M=13 2248 4597 1191.0 240.4 259.2 612.4 120.3 2839 5734
M=14 2249 459.7  1202.5 240.5 259.3 614.7 120.2 285.5 576.4
M=15 2248 459.8  1210.3 240.6 259.2 616.4 120.2 285.8 576.3
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Figure 5.1 The trend of the threshold levels when h;=h,=1

Table 5.4 The threshold levels of each period for the 10-period problem when

hi=h,=2
AL, AL AL, SW, SW, RP BL, BL, BL,
M=1 1742 2182 2526  181.8 189.2  225.8 91.8 1054 1139
M=2 199.8 279.1 4083 2104 220.8 3064  108.5 1415  189.7
M=3 209.2 3122 531.6 2204 2329 3613 1140 1717 2538
M=4 2117 3206 6063 2234 2363 3699 1153 178.8  295.0
M=5 212.6 3262 6354 2245 2373 3762 1159 181.8 309.1
M=6 212.8 3276 648.6 2248 2377 3776 116.1 183.1 316.1
M=7 2129 3286 6544 2251 2378 381.0 1162 1843 319.8
M=8 213.0 3284 6570 2252 2382 3795 116.1 185.0 320.7
M=9 213.0 3284 657.8 2249 238.1 3793 1163 1853 322.0
M=10 212.8 329.0 658.8 2249 238.0 379.7 1164 186.0 322.1
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Table 5.5 The threshold levels of each period for the 10-period problem when

Figure 5.2 The trend of the threshold levels when h=h,=2

h1=h2:3
ALy AL, AL, SWi SW, RP BL,y BL, BL,
M=1 171.6 213.8 244.9 179.1 186.2 220.9 90.8 103.9 112.0
M=2 194.9 261.5 373.0 204.4 214.1 279.1 105.9 132.1 1764
M=3 202.5 280.7 460.8 212.8 223.7 307.4 110.7 146.0 2239
M=4 204.4 285.0 489.9 215.1 226.0 313.6 112.0 151.9 2327
M=5 205.1 286.8 498.2 215.7 226.5 316.0 112.2 153.3 2338
M=6 205.2 287.8 502.6 216.1 226.8 317.3 112.2 153.6 234.6
M=7 205.4 287.7 504.6 216.0 227.1 317.3 112.2 155.0 2348
M=8 205.4 287.7 503.2 215.9 227.0 317.4 112.2 155.1 2353
M=9 205.6 287.7 503.5 216.0 226.9 316.7 112.2 1544 235.6
M=10 205.4 287.7 503.9 216.0 227.2 317.1 112.3 1549 235.8
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Figure 5.3 The trend of the threshold levels when /;=h,=3

5.4.2 The impact of stochastic returns and demands on the threshold levels

Three sets of system parameters are given as follows:

S1:h, =3,h, =3,v, =4,v, =6,5, =15,5, =20,

Cpy =12,0p5 = 15,04y = 6,51, =10, 049 = 2,049 =77,

Sz:hl :3’h2 :3’\)1 :4’\)2 :6’5‘1 :18,S2 :20,

cp =16,c,, =15,cp,, =10,cp,, =10,y =2,¢10p = 7.

S?’:hl :3’h2 :3’\)1 :4’\)2 :6’5‘1 :21,S2 :20,

Cpy =20,¢,, =15,¢4,, =14, 1, =10,Cp,) =2,y = 7.
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We will investigate the impact of stochastic returns and demands on the
threshold levels, which have converged in the multi-period context. Firstly, we
investigate how the expected value of returned items affects the threshold levels.

Secondly, we investigate the impact of demand variability on the threshold levels.

5.4.2.1 The impact of the expected value of returned items on the threshold levels

We will investigate the impact of the expected value of returned items in two
groups on the threshold levels based on the following stochastic demands:

E[D,]=200,StDev[D,]=60; E[D,]=100,StDev(D, ] =30.

The impact of the expected value of returned items in group 1

Firstly, we investigate the impact of the expected value of returned items in
group 1 based on the following scenarios in Table 5.6:

Table 5.6 The scenarios of returned items in group 1

(E[R,]=45,StDev[R,]=15)

E[R] 15 30 60 90 120 150 180 210
StDev[R,] 5 10 20 30 40 50 60 70

In the following, the threshold levels of the two products from the
approximate dynamic programming model are shown in Table 5.7. Furthermore, the
trend of the threshold levels is shown in Figure 5.4. The results have shown that all
the threshold levels decrease with the expected value of returned items in group 1. For

product 1, the threshold levels AL;, AL, and RP are decreasing faster than its other
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threshold levels. On the other hand, for product 2, the threshold levels BL; and BL,
are decreasing faster than BLy. As more returned items are available for the recovery

in each period, the threshold levels would be decreased.

As the interactive allocation of the returned items in two groups to the
recovery, the expected value of returned items in group 1 would impact the threshold
levels of the recovery processes using the returned items in two groups. In addition,
the expected value of returned items in group 1 has less impact on the threshold levels
related to production and switching. As production process never uses the returned
items, it would not be impacted by the expected value of returned items. In addition,
the two switching levels related to product 1, i.e. SW; and SW,, are from the
comparison of marginal profits of the recovery using returned items in group 1 and
group 2 while the inventory level of product 2 is at the threshold level BLy. Therefore,
the expected value of returned items in group 1 has less impact on the two switching
levels. However, there is remarkable impact on the threshold level RP, which is from
the comparison of marginal profits of the recovery using returned items in group 2
while the inventory level of product 2 is at the threshold level BL;.

Table 5.7 The threshold levels in different scenarios of returned items
in group 1 with parameter set 1

ALy, AL, AL, SwW; SW, RP BL, BL, BL,

E[R]1=15 2291 5003 7614 2459 2678 560.7 122.1 2283 332.1

E[R]1=30 228.6 485.6 747.6 2453 2669 5444 121.5 2243 3284

E[R]1=60 227.8 456.7 7132 2438 2634 5119 120.5 213.1 319.6

E[R]=90 2253 4182 6644 240.6 257.7 469.0 1195 2039 3105

E[R]1=120 221.1 376.6 613.1 2348 250.1 423.6 118.1 1959 299.2

E[R]1=150 216.1 340.8 566.1 2288 242.1 3819 1162 183.6 280.6

E[R]=180 210.6 308.7 529.8 222.1 2342 3457 114.1 1694 257.2

E[R =210 2054 287.7 5039 2160 2272 317.1 1123 1549 235.8
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Figure 5.4 The trend of the threshold levels in different scenarios of returned
items in group 1 with parameter set 1

Table 5.8 The threshold levels in different scenarios of returned items

in group 1 with parameter set 2

ALy, AL, AL, SW; SW, RP BLy, BL, BL,
E[R]=15 2229 4856 960.2 239.8 4864 766.5 1222 2314 331.6
E[R]=30 2228 476.6 950.2 239.6 476.0 7585 121.8 2235 3254
E[R]1=60 221.6 4519 9245 2384 451.7 7372 120.5 210.8 3134
E[R]=90 2193 417.1 883.5 2351 417.1 700.0 1189 203.8 305.1
E[R]=120 2153 3722 827.0 2294 3721 6467 1169 193.2 2905
E[R]=150 2104 337.8 7739 2239 337.6 5960 1149 1822 2735
E[R]=180 205.1 3044 734.1 2168 3047 5574 113.6 169.1 251.1
E[R =210 2000 2832 7058 211.3 2825 531.2 1123 1546 2332
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Figure 5.5 The trend of the threshold levels in different scenarios of returned

items in group 1 with parameter set 2
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Table 5.9 The threshold levels in different scenarios of returned items
in group 1 with parameter set 3

ALy AL, AL, SW; SW, RP BL, BL, BL,
E[R]= 15 215.8 484.6 1158.7 2339 6864 9657 1224 230.6 3328
E[Rl] =30 216.3 479.1 1148.7 233.1 680.3 9594 121.7 2222 3262
E[R]= 60 215.1 457.1 1124.1 2317 6655 9414 120.0 207.5 3125
E[Rl] =90 212.5 4189 1091.6 2287 6422 9158 117.8 2044 297.3
E[Rl] =120 209.2 3723 1030.6 223.6 5922 858.5 115.7 193.7 2834
E[R]= 150 2042 334.1 973.8 2177 5405 8014 1147 182.0 267.6
E[Rl] =180 198.5 298.5 9351 211.3 5022 7609 113.7 169.6 250.6
E[R]= 210 193.8 2774 9094 2054 4753 7342 112.0 1553 2325
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Figure 5.6 The trend of the threshold levels in different scenarios of returned
items in group 1 with parameter set 3
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The impact of the expected value of returned items in group 2

Secondly, we investigate the impact of the expected value of returned items in

group 2 based on the following scenarios in Table 5.10:

Table 5.10 The scenarios of returned items in group 2 ( E[R,]=90, StDev[R,]=30)

E[R,] 30 45 60 75 90 105 120
StDev[R, | 10 15 20 25 30 35 40

In the following, the threshold levels of the two products from the
approximate dynamic programming model are shown in Table 5.11. At the same time,
the trend of the threshold levels is shown in Figure 5.7. From the figure, it can be
found that all the threshold levels decrease with the expected value of returned items
in group 2. For product 1, the threshold levels AL;, AL; and RP are decreasing faster
than its other threshold levels. On the other hand, for product 2, the threshold levels
BL; and BL, are decreasing faster than BLy. The explanation to the results is similar to

that on the impact of the expected value of returned items in group 1.

Table 5.11 The threshold levels in different scenarios of returned items
in group 2 with parameter set 1

ALy, AL, AL, SwW, SW, RP BL, BL, BL,

E[R,]=30 226.8 4403 6965 2422 260.8 4933 1199 206.7 3155

E[R,]=45 2253 4182 6644 240.6 2577 4690 119.5 2039 3105

E[R,]=60 22377 3962 6323 2379 2542 4451 1189 201.2 3052

E[R,]=T75 2214 3760 6004 235.0 2505 4229 1181 198.6 298.5

E[R,]1=90 219.0 3576 5712 2322 2464 4035 117.2 1951 2913

E[R,]=105 216.6 342.0 543.0 2289 2426 3854 1164 191.1 2834

E[R,]=120 2138 3266 511.2 2258 239.1 3647 1159 1858 270.7
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Figure 5.7 The trend of the threshold levels in different scenarios of

returned items in group 2 with parameter set 1
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Table 5.12 The threshold levels in different scenarios of returned items
in group 2 with parameter set 2

AL, AL, AL, SW; SW, RP BL, BL, BL,
E[R,]=30 2212  440.8 9374 236.8 441.1 7446 119.1 2057 307.7
E[R,]=45 2193 417.1 8835 2351 417.1 7000 1189 203.8 305.1
E[R,]=60 2179 3879 8279 2324 388.1 6529 118.5 200.2 297.1
E[R,]=T5 215.5 3653 7755 2296 3663 6106 117.4 1985 291.1
E[R,]1=90 212.8 3464 722.6 2266 3465 5680 116.8 1954 283.1
E[R,]=105 210.5 327.1 6669 2234 3277 5265 116.1 191.8 2745
E[R,]=120 2079 308.7 611.1 220.1 309.1 481.8 1157 1883 263.3
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Figure 5.8 The trend of the threshold levels in different scenarios of returned

items in group 2 with parameter set 2
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Table 5.13 The threshold levels in different scenarios of returned items

in group 2 with parameter set 3

ALy AL AL, SwW, SW, RP BLy, BL, BL;
E[R,]1=30 2144 440.2 11649 2306 6819 9799 118.1 2055 299.7
E[R,]=45 2125 4189 1091.6 2287 6422 9158 117.8 2044 297.3
E[R,]=60 211.0 3954 1014.0 226.5 602.1 850.2 117.4 2022 292.6
E[R,]=T75 209.1 362.8 933.0 2235 5551 7789 1168 1975 2854
E[R,]=90 206.3 340.6 854.2 220.2 5124 709.6 1163 1952 277.3
E[R,]=105 204.0 3202 7757 2168 4714 643.8 116.1 1928 270.3
E[R,]=120 201.0 300.1 700.0 213.6 4259 577.2 11577 183.6 261.8
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Figure 5.9 The trend of the threshold levels in different scenarios of returned

items in group 2 with parameter set 3
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5.4.2.2 The impact of demand variability of two products on the threshold levels

We will investigate the impact of demand variability of two products on the

threshold levels with the following set of parameters on returned items:

E[R =90, StDev[R,1=30; E[R,]=45,StDev[R,]=15.

The impact of demand variability of product 1
Firstly, the impact of demand variability of product 1 is investigated based on

the following scenarios in Table 5.14.

Table 5.14 The scenarios of demand for product 1

( E[D,]=200, E[D,]=100, StDev[D,]=30)

StDev[D1] 20 40 60 100 150 200

cov, 0.1 0.2 0.3 0.5 0.75 1.0

In the following, the threshold levels of the two products from the
approximate dynamic programming model are shown in Table 5.15. In addition, the
trend of the threshold levels is shown in Figure 5.10. The results have shown that all
the threshold levels related to product 1 increase with the demand variability of
product 1 whereas the threshold levels related to product 2 seem unaffected. As the
demands for the two products are independent of each other, the impact of demand
variability of product 1 would only affect the threshold levels related to product 1.
Furthermore, the higher demand variability results in the higher threshold levels to

avoid possible stock shortage.
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Table 5.15 The threshold levels in different scenarios of demand for product 1 with

parameter set 1

ALy ALy AL, SWwW, SWwW, RP BL, BL, BL,
CoV;=0.1 210.0 378.7 625.5 216.1 2239 429.1 120.2 203.0 312.9
CcCoV;=0.2 218.6  399.6 644.8 2296 242.8 447.7 120.0 2056 312.2
COoV;=0.3 225.3 418.2 664.4 2406 2577 469.0 119.5 2039 310.5
CoV;=0.5 236.7 470.4 7349 260.1 2872 532.6 1189 2024 310.2
Ccov,=0.75 243.6  577.3 892.2 2819 3240 6580 118.8 2068 314.6
CcCoV;=1.0 246.2 708.4 1073.8 3052 370.5 803.7 118.8 207.0 317.1
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Figure 5.10 The trend of the threshold levels in different scenarios of demand

for product 1 with parameter set 1
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Table 5.16 The threshold levels in different scenarios of demand for product 1 with

parameter set 2

ALy AL, AL, SW: SW, RP BL, BL, BL,
cov,=0.1 208.1 408.0 851.5 214.6 4083 666.7 1194 207.3 3019
CcCoV;=0.2 214.8 409.0 869.7 226.2 4089 686.0 1194 2052 307.2
COoV;=0.3 219.3 417.1 8835 235.1 417.1 700.0 1189 203.8 305.1
cov,=0.5 2259 4307 9079 249.2 4303 723.0 118.7 202.1 300.6
Ccov=0.75 227.1 4424 9263 256.1 4425 7469 1193 201.0 302.3
CcCoV;=1.0 221.6 457.0 9356 257.0 4559 749.6 1206 2064 305.8
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Figure 5.11 The trend of the threshold levels in different scenarios of demand
for product 1 with parameter set 2
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Table 5.17 The threshold levels in different scenarios of demand for product 1 with
parameter set 3

ALy AL, AL, SW, SW, RP BLy, BL, BL,

cov,=0.1 205.7 409.5 1060.1 2123 6184 881.8 116.8 2073 2933

Ccov,=0.2 2104 4093 10799 2219 630.6 9023 117.8 2045 2972

cov,=0.3 2125 4189 1091.6 2287 6422 9158 117.8 2044 2973

CcoVv,=0.5 215.1 4184 1089.2 2379 649.5 9187 1183 201.7 296.5

Ccovi=0.75 209.1 420.0 1086.0 238.5 6547 921.6 119.2 200.7 3018

cov,=1.0 198.2 4244 10819 231.7 6315 9182 120.8 203.7 3044
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Figure 5.12 The trend of the threshold levels in different scenarios of demand
for product 1 with parameter set 3
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The impact of demand variability of product 2

Secondly, the impact of demand variability of product 2 is investigated based

on the following scenarios listed in Table 5.18:

Table 5.18 The scenarios of demand for product 2
(E[D,]=100, E[D,]= 200, StDev[D,]=60)

StDev[D;]

10

20

30

50

75

100

cov,

0.1

0.2

0.3

0.5

0.75

1.0

In the following, the threshold levels of the two products from the

approximate dynamic programming model are shown in Table 5.19. In addition, the

trend of the threshold levels is shown in Figure 5.13. The results have shown that all

the threshold levels related to product 2 increase with the demand variability of

product 2 whereas the threshold levels related to product 1 seem unaffected. The

explanation to the results is similar to that on the impact of demand variability of

product 1.

Table 5.19 The threshold levels in different scenarios of demand for product 2 with
parameter set 1

AL, AL, AL, SW; SW, RP BL, BL, BL,
CoV,=0.1 225.8 4253 6592 240.5 2584 4764 1073 1873 287.1
COV,=0.2 225.6 42277 6629 240.7 258.1 4732 1139 1943 2978
COV,=0.3 2253 4182 6644 240.6 2577 469.0 1195 2039 310.5
COV,=0.5 2255 4193 6674 2404 2574 4709 1303 229.0 339.2
COV,=0.75 2253 4254 678.0 2405 257.6 4778 141.6 2740 401.1
CoV,=1.0 2253 4322 6934 240.6 2583 486.6 1494 339.1 498.8
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Figure 5.13 The trend of the threshold levels in different scenarios of demand for
product 2 with parameter set 1

Table 5.20 The threshold levels in different scenarios of demand for product 2 with
parameter set 2

ALy AL, AL, SwW; SW, RP BLy BL, BL,
COV,=0.1 2204 438.8 883.7 2360 439.2 7063 106.8 1814 283.5
COV,=0.2 219.8 4242 887.2 2354 4257 704.0 1134 1919 290.8
COV,=0.3 2193 417.1 8835 2351 417.1 700.0 1189 203.8 305.1
COV,=0.5 219.6  413.1 8794 2346 4123 694.1 1300 223.6 3229
COV,=0.75 219.7 4195 878.5 2357 4192 6944 1419 2434 3442
COV,=1.0 219.8 4243 9083 2355 424.0 718.1 148.6 340.1 4915
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Figure 5.14 The trend of the threshold levels in different scenarios of demand for
product 2 with parameter set 2

Table 5.21 The threshold levels in different scenarios of demand for product 2 with
parameter set 3

ALy AL, AL, SW; SW, RP BLy BL, BL,
COV,=0.1 2129 4084 1096.1 228.2 6483 921.0 1063 1795 264.0
COV,=0.2 212.6 4174 10946 229.0 6465 9186 1124 1924 280.2
COV,=0.3 2125 4189 1091.6 228.7 6422 9158 1178 2044 2973
COV,=0.5 213.1 417.0 10842 2283 6344 9079 1289 221.8 319.6
COV,=0.75 2134 4234 1086.9 2293 633.7 9074 140.6 242.8 340.9
COV,=1.0 2142  440.6 1114.8 230.6 649.6 9293 1493 2562 3559
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Figure 5.15 The trend of the threshold levels in different scenarios of demand for

product 2 with parameter set 3

108



Chapter 5 The study on two-product recovery system in a finite horizon
with lost sale and zero lead time

5.4.3 The comparison of three heuristic policies with respect to the
expected average profit

While using the threshold levels to help to make production and recovery
decisions in a relatively long horizon, the resulting expected average profit is
compared with those values obtained by using two heuristic policies from the single-
period problem. The following symbols will be used in the presentation of numerical
results:

H1 - Heuristic policy from the single-period problem disregarding scrap

values of the remaining finished products;

H?2 — Heuristic policy from the single-period problem assuming scrap value of

the remaining product 1 and product 2 to be equal to cr21 and cr22 respectively;

H3 — Heuristic policy from solving the ADP model;

EAP_HI - Expected average profit calculated while the heuristic policy HI is

used in a relatively long horizon;

EAP_H?2 - Expected average profit calculated while the heuristic policy H2 is

used in a relatively long horizon;

EAP_H3 — Expected average profit calculated while the heuristic policy H3 is

used in a relatively long horizon.

The optimal policy for the single-period problem is used as heuristic policy for
the multi-period problem. Two heuristic policies, denoted as HI and H2 respectively,
are derived from solving the single-period problem. The policy HI disregards the
scrap values of the remaining finished products whereas the policy H2 assumes the

scrap value of product 1 and product 2 to be equal to cr2i and cr2 respectively. In
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order to compare the threshold levels of the policies HI and H2 with those of the
policy H3 from solving the approximate dynamic programming model, we have

selected the set of threshold levels when E[R ]=210 in Table 5.7. The threshold

levels of the three heuristic policies have been shown in Table 5.22. In Figure 5.16,
the threshold levels have been compared between the three heuristic policies. It is
found that the corresponding threshold levels of the policy H3 are highest, whereas
those threshold levels of the policy HI are lowest. The difference of each
corresponding threshold level between the policies HI and H2 is small whereas the

difference between the policies H/ and H3 is obviously large.

Table 5.22 The threshold levels in three heuristic policies

AL,y AL, AL, Sw, SW, RP BL, BL, BL,

Hl1 171.6 2138 2449 179.1 186.2  220.9 90.8 1039 112.0
H2 176.9 2231 2622 184.8 1925 2315 100.0 118.1 132.9
H3 2054 287.7 5039 216.0 2272 317.1 1123 1549  235.8
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Figure 5.16 The comparison of the threshold levels in different heuristic
policies

Using the above three heuristic policies to make production and recovery

decisions of the two-product recovery system in a relatively long horizon, the
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resulting expected average profits are shown in Table 5.23. It can be found that the
heuristic policy H3 performs best, secondly the policy H2 and finally the policy HI.
Comparing the expected average profits between the policies HI and H3, 7.2%

increment can be achieved while using the policy H3 to replace the policy HI.

Table 5.23 The expected average profit using different heuristic policies

EAP _HI 21153

EAP_H2 2186.2

EAP_H3 2267.4

A bound could be obtained by relaxing some assumptions. However, it might
be too loose and become meaningless to be compared with the performance of the
results by using our approach. Hence, the multi-level threshold policy by solving the
ADP model is compared with the other two heuristic policies, which are derived from
the optimal policy for the single-period problem. One of the two heuristic policies
assumes scrap value of the remaining finished items to be a nonzero fixed value
whereas another assumes scrap value to be zero. By this comparison, the threshold
policy by solving the ADP model is found to have the best performance under a wide
range of settings. Therefore, to some extent, we have proved that our approach is
promising to solve the multi-period problem although the optimal solution is difficult

to obtain.

5.5 Summary
In this Chapter, we have developed the ADP model of the two-product

recovery system in the situation of lost sale over a finite horizon. The model aims to
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determine the threshold levels as the multi-level threshold policy from the single-
period problem is assumed to be used for the multi-period problem. In the multi-
period situation, the threshold levels are found to be only dependent on the gradient of

the cost-to-go function at the points of interest.

For a given set of system parameters, we find that the threshold levels of any
certain period would converge with the distance of this period from the last period of
the planning horizon. In addition, the converging speed of the threshold levels is
impacted by the inventory holding cost rate. The higher the inventory holding cost
rate, the faster the threshold levels converge. The converging threshold levels are used
in the optimal policy, which helps to make production and recovery decisions in the
multi-period context. The impact of system parameters on the threshold levels has
been investigated. The numerical results have shown that the more returned items
from either group in each period would make the threshold levels lower. Among them,
the threshold levels AL;, AL,, BL;, BL, and RP, related to recovery processes, would
obviously decrease with returned items increasing. However, there are small
decreases on the threshold levels ALy and BL, related to production processes, and
the threshold levels SW; and SW5, related to switching the allocation of returned items
to the recovery processes between the two products. On the other hand, with the
increasing demand variability of a certain product, the threshold levels related to this
product would increase at the same time whereas the threshold levels related to the

other product seem unaffected.

After determining the threshold levels in the multi-period situation, we can use

the threshold policy to control the two-product recovery system. The performance of
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this policy is compared with the two heuristic policies derived from the optimal policy
of the single-period problem. Through the comparison of the resulting expected

average profit, the policy from solving the ADP model outperforms the other two

heuristic policies.
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Chapter 6 The study on two-product recovery system in a
finite horizon with backorder and zero lead time

Chapter 6 focuses on the two-product recovery system in a finite horizon, in
which backorder is allowed. In the recovery system, production and recovery
processes are assumed to have zero lead time. Thus, the inventory of the two products
can be instantly replenished by production and recovery processes. Section 6.1
introduces the two-product recovery system. In Section 6.2, an ADP model of the
recovery system is developed in order to minimize the expected total cost in the finite
horizon. The model is used to derive the threshold levels, which are only dependent
on the gradient of the cost-to-go function at the points of interest. Section 6.3 provides
the details about how to determine the gradient at the points of interest. Section 6.4
gives numerical analysis on the recovery system with respect to the effect of system
parameters and provides the comparison with two other heuristic policies. Finally,

Section 6.5 summarizes the main findings.

6.1 Introduction

The two-product recovery system in a finite horizon has been introduced in
Chapter 3. Furthermore, Chapter 5 focuses on the study of the recovery system
dealing with shortages as lost sales. However, Chapter 6 will study the two-product
recovery, in which backorder is allowed. Thus, the objective is to minimize the

expected total cost of the two-product recovery system in a finite horizon. In order to
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fulfill the aim, we need to find the optimal policy, which helps to make production

and recovery decisions in each period of the finite horizon.

6.2 Approximate dynamic programming model of the two-product
recovery system in the multi-period context

The dynamic programming model of the two-product recovery system in the
multi-period context has been introduced in Chapter 3. The model aims to maximize
the expected total profit in the finite horizon. In this Chapter, the recovery system is
assumed to allow unsatisfied demands to be backordered in future periods. Therefore,
the dynamic programming model in this Chapter aims to minimize the expected total
cost in the finite horizon. The related assumptions and notations are referred to as in
Chapter 3. Besides, some related notations are listed as follows (i, j =1, 2):

xg) initial inventory position of product j in period f;

(1) . o . .
X; inventory position of product j after production and

recovery in period t;

£, x) expected minimum of the expected total cost from

period ¢ till final period;

EC, expected cost in period ¢;

MEC minimum expected cost in final period;

ETC, expected total cost from period ¢ till final period;

E7~"Ct approximation to ETC;;

ATC,” actual cost in period ¢ for sample k& of demands and
returns.
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The transition relationship on initial inventory position of each product
between two subsequent periods can be expressed as follows (j =1, 2):

) _ 0 0 00 D
Xy =X tp; th;tn;—D. (6.1)

In addition, inventory position of each product after replenishment at period ¢

is dependent on the initial inventory, which can be expressed as follows:

() _ (1) (1) (1) (1)
X; =Xg tpj th; thy. (6.2)

According to Formula (3.2) in Chapter 3, the expected cost at period ¢ can be

calculated as follows:
() (1) (] (1) (f) (1) (f) (f)
EC, (x5, x5,, P> Py »hy ’r12 N,

_ (1) (1) (f) (f)
=Cp Pyt Cpy Py +CR11 +CR12 tCrohoy T Crnly

+h ],
* (1) (1) (1 _ t (t) 0) 0)
+V1 J.x")+p")+r“)+r“) (Dl xSl pl )f(D ’lul’ O- )dD

(t)

X0+ pO 40 4D

() +p" 1 + 5 =D (D", ,0,)dD;”
(6.3)

(/)+p(/)+r(/)+r”

+h, (xgy+py” 41y + 1) = D) (DY, pt,,0,)dDS”

- (1) (1) (1) _ (f) (f) (1) (1)
+V2J. “)+p“)+r“)+r“)(D2 —Xgo ™ P» )f(Dz ’:uz’o-z)dDz .
S2 2 12 22

As f,(x{), x10) denotes the expected total cost from period ¢ till final period in

Chapter 6, we assume f,,,, (x{" ™, x{5*) = Z (cpl=xg"™]" . The assumption means

that normal production would be used to meet the backordered demands, which are

not satisfied at final period. The objective of the dynamic programming model is to
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minimize the expected total cost in the finite horizon. The Bellman’s equation of
dynamic programming is as follows (¢ =1, 2,..., M):

@) ()Y _ : @ () @) @) () () (1) (1)
Ji(Xs s Xgy) = R}’ﬁ;e&”{p}” 0 El)lrll},) 0 r§;){ECt(xs1 s Xsos Py 2Py Ty Ty Ty Ty )

+ E G x5

D pi

(6.4)

Under the above-mentioned assumption about the boundary value of
Bellman’s equation, the objective function of the single-period problem on the final

period can be expressed as follows:
M) (M) (M) WMy (M) (M) (M) (M)
EC, (x5 s Xgy s Py s Py shy Ky 5Ty Ty )
_ (M) (M) (M) (M) (M) (M)
SCp Py T Cpa Dy iy T Crinhy Tt Gy T oty

(M)

*hf,

- (M) (M) (M) (M) (M) (M) (M)
+(V1 +CPI)J.X(M)+p(M)+r(M)+r(M)(Dl —Xg TP —h Ty )f(D1 ’lul’o-l)le
S1 1 11 21

(M)

(M) (M
R R R T

)
(M) (M) (M) (M) (M) (M) (M)
(xs1 +p Ty _Dl )f(Dl ’lul’o-l)le

) 400

(M) (M)
Xgp Py, 2
(M) (M) (M) (M) (M) (M) (M)
+hy [ (X 4+ pM 4 500 4 30— DY F(DM, g1y, 0,)dDS

(M) (M) (M) _

* (M) _ (M) (M) (M)
+(V2+sz)J.X(M>+p(M>+r(M>+r(M> D" = x5, — P, hh  —ny ) (D), 1, 0,)dD;)" .
S2 2 12 22

12
(6.5)

As the concave property of the objective function of the single-period problem
has been proved in Chapter 3, we can obtain the optimal solution to minimize the
objective function in Formula (6.5) by solving KKT conditions. The solution structure
can be referred to in Appendix B. The formulae of determining the related threshold
levels of the optimal policy for the single-period problem have been listed in Table

6.1.
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The objective of studying the dynamic programming model is to obtain the
optimal policy for the two-product recovery system in a finite horizon. By similar
approximation mentioned in Chapter 5, the cost-to-go function of dynamic
programming at the points of interest can be represented by using the gradients as
follows:

L Get™xs) = " s (6.6)

In the above formula, uy) (j =1, 2), which denotes the first-order derivative of

the cost-to-go function with respect to inventory level of product j after replenishment,

is expressed as follows:

u'l” = i{ E [f, (x5 x50 (6.7)

J ax;f) p® i

Thus, the objective function of the dynamic programming model, denoted as
ETC,, can be approximated as follows:

ETC

t

_ (t+1) (t+1)
- Ect + (,)E (,)[fm-l(xSl ’xsz )]

D}" .} (6.8)
~EC, +u"x\" +u"x{"

- (1) ¢ 1.(1) (1) (1) (1) (1) ¢ (1) (1) (1) (1)
=EC +u"(xg +p" +n, +n)+u, (x5, +py +hy +1,).

After substituting Formula (6.3), Formula (6.8) can be further expressed as

follows:
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(6.9)

The functions ECy and E7~“Ct , expressed in Formulae (6.5) and (6.9)

respectively, are found to be similar to each other except for some coefficient

differences. Therefore, we can prove the convex property of the function E7~"Ct

similar to the function ECy. Thus, we can find the optimal solution to minimize the

function E7~"Ct by solving KKT conditions. The optimal solution has the same

structures as that for the single-period problem in Appendix B. Thus, the policy of the
multi-period problem by solving the ADP model is similar to the optimal policy of the
single-period problem. However, due to coefficient differences, the threshold levels of

the policy for the multi-period problem need to be re-computed. For example, the

threshold level AL’ can be determined as follows:

JETC, 0
p;”

(1) _ A 7(0)
X =AL

:>u1(t)_V1+CP1+(V1+h1)F(ALg)uU1’O-1):0 (6.10)

—y"_
i

vith

c

= ALY = F (2 P4, 0).
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Given the gradients u” and u’

, we can determine all the threshold levels in

period ¢ for the multi-period problem. In Table 6.1, we have listed the formulae of

determining the threshold levels for the single-period problem and the multi-period

problem respectively.

Table 6.1 The formulae of determining the threshold levels for the single-
period problem and the multi-period problem

The single-period problem

The multi-period problem

(7)
AL

(1)
AL

(1)
AL

(1)
sw

(1)
SW.

(1)
RP

(1)
BL

(7)
BL

(1)
BL

V

=i
F (————.4,0)
v, +h +cp
F Vi +Cp —Criy ”ul’o.l)
v, +h +cp
4V, +Cp, —C
F I(M’ﬂl’al)
v, +h +c,,
F—l(vl +Cpi +Criz = Crit —Cpo ”ul’o.l)
v, +h+cp
F—l(V1 +Cpi T Crap = Cro1 —Cpa 1, 0,)
v, +h +cp
F—1(V1 tCpi F+Croz = Crot ~Crio 1,0))
v, +h +cp
-1 V2
F (—’ﬂz’o-z)
v, +h, +cp,
1.V, +Cp,—C
F I(M’ﬂz’dz)
v, +h, +cp,
1, V2t Cpy = Crpy
Fo(>—2—% u,,0,)

v, +h,+c,,

(1)

4.V, —u, —C
F(———" u,0)
1,01
vi+h
-1 vl_ul(t)_chl
F (———. 1,0))
v +h
-1 vl_ul(t)_CRZI
F (——W—,1,,0))
v +h
(1)
V= +Cpy —Cpyy —C
AT vR-lihl RITCP o
|
(1)
V=" +Cpny = Cpoy —C
FGh vR-zih1 R1"C o)
1
(1)
V= +Chy —Cpoy —C
FG szjhl R1CR2 )
|
V=g =Gy
F (—’ﬂz’o-z)
v, +h,
-1 Vz_”ét)_cmz
F (————F=,u,,0,)
v, +h,
-1 Vz_ug)_CRzz
F (————*,u,,0,)

v, +h,
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Similar to Chapter 5, we determine each threshold level for the multi-period
problem in Table 6.1 by an iterative learning algorithm, which uses the gradients of
the cost-to-go function at the points of interest. The details can be referred to in
Chapter 5. In the following, we will introduce how to determine the two gradients at

the point of interest.

6.3 The determination of the gradient at the points of interest in the
multi-period context

(1)

Without closed-form formula of the gradient ui.’) at the point of interest ( x,",

x\"), we need to run Monte Carlo simulation, then estimate the gradient based on the

simulation results. Before that, we need to approximate the cost-to-go function by
Monte Carlo formulation. In Monte Carlo sampling, sample k is about the realization
of stochastic returns and demands in each period from period ¢ till period M-1, which
(t+1) (t+1) (1) (1)
Rl,k R2,k Dl,k D2,k
is expressed as | ....... . The cost-to-go function is
(M) M) (M-1) (M=)
Rl,k R2,k Dl,k D2,k
approximated as follows:

(t+1) _(1+1)
B L ()

1 N M—-1 (7)* (611)
~ NZH(Z ATC" + MEC,).

T=t+1

In the above formula, the sample value for sample %, is obtained by summing
up the cost for the realization from period #+1 till period M-1 and the minimum

expected cost at period M. Without a closed-form formula for the function MEC,, we
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compute it by minimizing the expected cost ECy k. In addition, the function ATC""
is used to calculate the cost of period 7 (f < 7 < M) for sample k. The function

ATC(" is expressed as follows:

(@)* (1) (7) (7)* @* (o) _(o)* _(0)* _(7)* (7)* (7)*
ATC,” (x5, X5, , Py 5Dy Shy ohhy »hy by Dy DoY)

— @ (@ (o @ (@ (o)
=CpPy " T Cpa Dy HCrly T tCriphy T Cpoly Tty

(@ 4 @ L @O | @F _ @ @F _ (0 _ @F _ (@F _ (0
+hsl[xS1 tp TR th _Dl,k | +V1[D1,k —Xgr =D —hy T |

@) 4 @ OF | (OF _ o @OF _ (0 _ @F _ (0F _ (0
thy,lxg, +p,” +nhy" +1y, =Dy I +v,[Dy —xg, —py, —1y —ny 1.

(6.12)

At period M, the minimum expected cost MEC is calculated by minimizing

the expected cost ECyx in Formula (6.3).

As the functions ECy, k and ATC;”" are both continuous functions, it is
suitable to approximate the cost-to-go function by Monte Carlo sampling method.

. (1) .
Furthermore, the gradient u;’ can be approximated by sample average.

Corresponding to the gradient u!”, grad|’, denotes the sample gradient for sample k

at the point (x”, x{"). Thus, the approximation can be expressed as follows:

t t t 1 - t t t
ug)(xl(),xé))zNZgrad;,z(xf),xé)). (6.13)
k=1

Starting with the two-period problem, we would introduce the determination
of the above-mentioned sample gradient. Then, we would extend from the two-period
problem to the three-period problem. Finally, we can determine the sample gradient

for any multi-period problem by induction. In the determination of the sample
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gradient, we have taken advantage of an Infinite Perturbation Analysis (IPA) based

approach.

6.3.1 The determination of sample gradient in the two-period problem

For the two-period problem, the threshold levels of the last period can be
obtained by referring to the single-period problem. The threshold levels of the first
period are determined by using the gradients of the cost-to-go function estimated by
Monte Carlo simulation. Before that, the sample gradient of the cost-to-go function

needs to be determined. The sample k for Monte Carlo sampling is expressed

as(R, R’ D}, D;) . The sample gradient can be calculated as follows (j =1, 2):

40y OMEC, _OMEC,

grad;f,z(xl s X, 20 3,0 (6.14)
j 5

In the above formula, the term G, can be determined as follows (j = 1, 2):

ox;
OMEC,
oxg’
:aECZ,k*_’_(aECZ,k* ap”" 9EC,, 9n" O9EC, ar;f‘)*)
oxy; op” oxy  onY" Toxy  ony  oxy)

0EC,,” op?" OEC,, 95" OEC,, or?"

@* 3.2 @F 3. @ "y @
ap, axsj or, axsj or,, axsj

(6.15)
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According to Formula (6.5), the partial derivatives of the function EC,, can

be determined as follows (j =1, 2):

—aECZ”‘*— +h. +c, ) F(x*" —Cc, =V
FRE) =+ h o) (G, 1,0,) =cp=v 3
]
0EC,,  0EC,, e
vy wy (6.16)
dEC,,” OEC,, '
i _ Koo
I
0EC,,  0EC,, .\
oy

Based on Formulae (6.15) and (6.16), Formula (6.14) is further expressed as
follows (j =1, 2):

JEC,, ox" OJEC,, ox{" ap>” N o

’ : c Con =5+

2 5.2 @ 9@ o) T ORI )
dx, O oxg, Oxg ox ox;

o L. Oy ot o dn
* Cra p) (2) +Cpy p) (2) T Cri p) (2) +Cra p) 2) °
ij ij ij ij

W, M My
grad; ; (x",x,") =

(6.17)

The above formula involves the partial derivatives of the optimal
replenishment decisions with respect to initial inventory. These partial derivatives can
be obtained according to the corresponding structure in Appendix B. Suppose that the
optimal replenishment decisions for sample k match the structure S7 in the Appendix
as mentioned in Chapter 5. Therefore, the sample gradient in Formula (6.17) is

calculated as follows:
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@D Dy .
gradl,k(xl 3%y )= Ciy = Criy —Cpo

grady; (%", ") =—¢;,

6.3.2 The determination of sample gradient in the three-period problem

For the three-period problem, the threshold levels of the second and the last
period can be obtained by referring to the two-period problem and the single-period
problem respectively. The threshold levels of the first period are determined by using
the two gradients of the cost-to-go function with respect to inventory levels of the two
products after replenishment. As the two gradients are estimated by Monte Carlo

simulation, the sample gradient of the cost-to-go function needs to be determined at

R® R® pO pw
first. The sample k for Monte Carlo sampling is expressed as S

R® R® p® p®
1,k 2,k Lk 2,k
The sample gradient can be calculated as follows (j =1, 2):

M (M (W)
grad; ; (x",x,")

0 .
:W{ATCIEZ) +MEC,}
J
= az {ATC?" + MEC, }
ax§j>
_0ATC”"  OMEC, (6.18)
oxg;’ oxg;’
_0ATC*" OMEC, ox”" OMEC, ox\”"
oxg;’ ox”" oxg  ox oxy
JATC?"  9x®" R . oy
= + rad? (x?", x7" )+ =2~ grad?) (x*", x7).
ax;j) axf;) 8 l,k( 1 2 ) ax;j) 8 2,k( 1 2 )
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(2)*

X.
In the above formula, the term #

is calculated as follows (i, j = 1, 2):
oxg;

@) o) @) @) @)
ox;”" oxg’  dp, or; on,;

1

@~ 3,@ @ @ P
dxg’  oxg’  oxg o oxg o Oxg

(6.19)

The above formula involves the partial derivatives of the optimal
replenishment decisions with respect to initial inventory of the two products at period
2. Similar to the two-period problem, these derivatives can be obtained by referring to
the corresponding solution structure in Appendix B. Before that, the threshold levels

of the optimal policy at period 2 are determined on the basis of the objective function

E7~"Ct considering both period 2 and period 3. The two gradients of E7~"Ct at the point

of interest need to be estimated in the two-period context. Suppose that the optimal
replenishment decisions at period 2 for sample k£ match the above-mentioned structure

S7 with the threshold levels at period 2. Therefore, the sample gradient for sample £ is

M 0y OATC,™

calculated as grad| (x", x, W by Formula (6.18). The partial derivatives
X

of the function ATC”" can be determined as follows (j = 1, 2):

JATC?"
oxg;’
_OATC (aATc,ﬁ”* op”"  QATC. or "  0ATC” ar;f>*)
oxy; op”" oxy  on oxy  onY oxf
. (aATc,ﬁ”* opy”"  QATCY" or"  0ATC” ar;;”*) (6.20)
P ox® or®  ox® oar®”  9x® ’
P X " Xsj Iy X

According to Formula (6.12), the related partial derivatives of the function

ATC?" are determined and listed in Table 6.2 as follows. While calculating these
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partial derivatives, we have considered all the combinations of demand satisfaction. In
order to summarize all the possible expressions, the related index and indicator are

excluded from the notations in Table 6.2.

Table 6.2 The partial derivatives of the function ATC,”" with respect to initial
inventory and replenishment decisions

Product 1 underage Cp1-Vy Cr11-Vy Cr21-Vy Cpy-V3 €12V, Craz-V3
product 2 underage

Product 1 underage Vi h, Cp17V1 Cru1Vy Cra17V1 hytce, hy+egy, hy+egs,
product 2 overage

Product 1 overage hy V2 hytcey hytcany hytCaay CpamVa Cr127V2 Craz~V2
product 2 underage

Product 1 overage h; h, hy+cpy hy+epyy hy+epay hy+cp, hyt+cpy, hy+cgay

product 2 overage

With reference to Formula (6.20), the two gradients for sample k are
calculated as follows. According to the situation of demand satisfaction in period 2,
we can refer to Table 6.2 to obtain the values of the related partial derivatives in the
following formulae.

gradl(’lk) (x, xM)

JATC?" 0ATC?" 0ATC" OJATC”
= 2 S oy 2 — Cri2 —Cri1 —Cpas
W e e e

grad(l) ( ) , le))

_ATC®' QATCY"
T2 P ="Cpa-
52

6.3.3 The determination of sample gradient in the N-period problem

By backward induction as mentioned in Chapter 5, the sample gradient of the

first period for the N-period problem can be calculated as follows (j =1, 2):
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grad}) (x", x;")
0 .
== 7 {ZATC(” +MEC, }
a (T)*
== (2) ZATC +MEC,} (6.21)
_aATC'EZ)* 0 ZATC<”*+MEc}
oxy; Tox g =
aATCIEZ)* axl(Z)* (2) (2)* (2)* ox (2)* (2) (2)* (2)*
= ang) ax_(gf) grad;(x, )+ —— ™ (2) grady (x” ,x;7").

For the sample gradient at period ¢ (1 <t < M) in the M-period horizon of the
two-product recovery system, we can take advantage of backward way to determine it.
The sample gradient at period M -1 can be determined by solving the two-period
problem considering the final two periods. Then, the sample gradient at period M-2
can be determined by solving the three-period problem considering the final three
periods. In this way of backward induction, the sample gradient at period ¢ can be
finally determined. The process of determining the sample gradient at period ¢ can be

referred to in Appendix C.

6.4 Computational results

6.4.1 The impact of stochastic returns and demands on the threshold levels

Based on the same three sets of system parameters as Chapter 5, we will
investigate the impact of stochastic returns and demands on the threshold levels,
which have converged in the multi-period context. Firstly, we will investigate how the
expected value of returned items affects the threshold levels. Secondly, we will

investigate the impact of demand variability on the threshold levels.
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6.4.1.1 The impact of the expected value of returned items on the threshold levels

We will investigate the impact of the expected value of returned items in two
groups on the threshold levels based on the following stochastic demands:

E[D,]1=200,StDev[D,1=60; E[D,]=100, StDev[D,]=30.

The impact of the expected value of returned items in group 1

Firstly, the impact of the expected value of returned items in group 1 will be

investigated on the same scenarios as Table 5.6.

In the following, the threshold levels of the two products from solving the
approximate dynamic programming model are shown in Table 6.3. Furthermore, the
trend of the threshold levels is shown in Figure 6.1. The results have shown that all
the threshold levels decrease with the expected value of returned items in group 1. For
product 1, the threshold levels ALi, AL, and RP are decreasing faster than its other
threshold levels. On the other hand, for product 2, the threshold levels BL; and BL,
are decreasing faster than BLy. As more returned items are available for the recovery

in each period, the threshold levels would be decreased.

As the interactive allocation of the returned items in two groups, the expected
value of returned items in group 1 would impact the threshold levels of the recovery
processes using the returned items in each group. In addition, the expected value of
returned items in group 1 has less impact on the threshold levels related to production

and switching. As production never uses the returned items, it would not be impacted
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by the expected value of returned items. In addition, the two switching levels related

to product 1, i.e. SW; and SW,, are from the comparison of marginal profits of the

recovery using returned items in group 1 and group 2 while the inventory level of

product 2 is at the threshold level BL,. Therefore, the expected value of returned items

in group 1 has less impact on the two switching levels. However, there is remarkable

impact on the threshold level RP, which is from the comparison of marginal profits of

the recovery using returned items in group 2 while the inventory level of product 2 is

at the threshold level BL;.

Table 6.3 The threshold levels in different scenarios of returned items in group
1 with parameter set 1

ALy, AL, AL, SW; SW, RP BLy, BL, BL,
E[R ]1=15 210.1 4789 740.8 2324 2596 5394 1123 2165 3193
E[R]=30 209.7 4647 724.0 231.7 2579 5228 112.1 209.2 313.6
E[R ]1=60 208.8 430.7 682.8 229.8 2538 4855 111.3 1984 3043
E[R]1=90 2054 3903 628.1 2247 2456 4402 1084 190.2 2975
E[R]=120 199.5 3634 588.8 2175 236.0 4064 107.6 1842 286.8
E[R]=150 193.1 347.6 5643 2100 2282 3849 107.5 1792 274.7
E[R]1=180 187.1 3339 5472 205.1 2234 3688 107.2 174.1 263.1
E[R]=210 182.6 3169 5264 200.7 2193 349.7 1056 1659 2483
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Figure 6.1 The trend of the threshold levels in different scenarios of returned
items in group 1 with parameter set 1

Table 6.4 The threshold levels in different scenarios of returned items in group
1 with parameter set 2

ALy, AL, AL, SW, SW, RP BLy, BL, BL,
E[R ]1=15 210.0 4614 943.1 2325 4608 7465 1123 2192 3189
E[R]=30 209.7 449.6 9309 231.7 4504 7369 1115 2113 3123
E[R ]1=60 208.2 4217 897.0 229.2 421.8 708.6 108.7 1974 297.8
E[R]1=90 205.4 3877 848.8 2248 3877 6652 1063 188.7 287.6
E[R]1=120 199.0 360.3 7989 2169 361.7 621.7 105.1 181.8 274.7
E[R]1=150 1929 347.5 771.0 210.3 347.0 596.7 1043 177.2 264.7
E[R]1=180 188.3 332.8 749.6 2059 333.7 577.2 1039 172.0 255.6
E[R]=210 1847 316.0 726.1 2023 3168 553.3 1023 1643 242.8
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Figure 6.2 The trend of the threshold levels in different scenarios of returned

items in group 1 with parameter set 2
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Table 6.5 The threshold levels in different scenarios of returned items in group

1 with parameter set 3

ALy AL, AL, SwW; SW, RP BL, BLi BL,
E[R1]=15 210.1 461.0 1131.5 2324 670.8 9513 1124 2194 3214
E[Rl] =30 209.7 4495 11329 231.6 6624 9436 111.5 210.8 3132
E[R]= 60 208.3 4225 11034 229.2 6393 9199 108.5 197.0 296.5
E[Rl] =90 2049 3856 1050.3 224.1 598.2 87277 105.8 187.7 280.6
E[Rl] =120 199.6 361.5 10033 217.6 565.7 830.8 1043 181.1 270.0
E[R]= 150 194.8 3479 9700 212.0 5439 801.2 1034 176.6 261.9
E[Rl] =180 192.0 3350 9449 209.6 5247 776.2 103.1 1727 254.2
E[R]= 210 190.0 318.5 919.2 2072 501.3 751.7 102.0 166.4 244.7
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e e
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Figure 6.3 The trend of the threshold levels in different scenarios of returned

items in group 1 with parameter set 3
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The impact of the expected value of returned items in group 2

Secondly, the impact of the expected value of returned items in group 2 will

be investigated on the same scenarios as Table 5.10.

In the following, the threshold levels of the two products from solving the
approximate dynamic programming model are shown in Table 6.6. Furthermore, the
trend of the threshold levels is shown in Figure 6.4. The results have shown that all
the threshold levels decrease with the expected value of returned items in group 2. For
product 1, the threshold levels AL, AL, and RP are decreasing faster than its other
threshold levels. On the other hand, for product 2, the threshold levels BL; and BL,
are decreasing faster than BLy. The results can be explained with reference to the

above-mentioned impact of the expected value of the returned items in group 1.

Table 6.6 The threshold levels in different scenarios of returned items in group
2 with parameter set 1

ALy, AL, AL, Sw, SwW, RP BL, BL; BL,

E[R,]=30 207.1 410.1 660.1 2274 249.8 462.1 1100 1932 3024

E[R,]=45 2054 3903 628.1 2247 2456 4402 1084 190.2 297.5

E[R,]=60 2029 3738 5964 221.1 2409 4189 106.8 187.1 290.8

E[R,]=T75 199.8 356.0 567.7 217.6 236.1 3983 1055 184.6 2843

E[R,]1=90 196.1 3423 5383 2134 2315 3802 1044 181.8 276.2

E[R,]=105 1923 327.1 5093 209.2 2263 361.6 103.6 178.7 267.4

E[R,]=120 187.6 309.2 4757 203.7 2204 3412 1029 1734 2559
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Figure 6.4 The trend of the threshold levels in different scenarios of
returned items in group 2 with parameter set 1

Table 6.7 The threshold levels in different scenarios of returned items in group
2 with parameter set 2

ALy, AL, AL, SwW; SW, RP BL, BL, BL,
E[R,]=30 206.7 4063 8940 2269 4056 702.1 107.7 585 288.1
E[R,]=45 2054 3877 8488 2248 387.7 6652 1063 183.7 287.6
E[R,]=60 2023 3656 7905 220.7 3658 6194 1054 1869 282.1
E[R,]=T75 1989 3469 7409 2169 3483 578.6 1045 1853 276.6
E[R,]1=90 1954 3303 689.8 2127 330.6 536.8 1039 1825 2702
E[R,]=105 191.5 3139 6388 208.0 3140 4977 1033 1787 2624
E[R,]=120 186.1 295.1 586.6 2024 2954 4548 102.8 1745 2544
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Figure 6.5 The trend of the threshold levels in different scenarios of returned

items in group 2 with parameter set 2
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Table 6.8 The threshold levels in different scenarios of returned items in group 2 with
parameter set 3

AL, AL, AL, SW, SW, RP BLy, BL, BL,

E[R,]=30 206.7 406.7 1121.3 2267 637.6 935.1 107.1 189.1 282.1

E[R,]=45 2049 385.6 1050.3 224.1 5982 8727 1058 187.7 280.6

E[R,]=60 2023 366.8 977.4 2209 559.3 8105 105.1 1864 278.6

E[R,]=T75 199.1 3482 904.8 217.0 521.5 748.1 104.1 1844 273.7

E[R,]1=90 1963 3326 8394 2134 490.0 6933 103.8 182.6 269.3

E[R,]=105 191.6 312.1 7547 208.0 447.0 621.3 103.4 179.1 2612

E[R,]=120 186.5 2927 681.0 2024 402.6 557.5 103.0 175.1 252.8
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Figure 6.6 The trend of the threshold levels in different scenarios of returned
items in group 2 with parameter set 3
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6.4.1.2 The impact of demand variability of two products on the threshold levels

We will investigate the impact of demand variability of two products on the

threshold levels with the following set of parameters on returned items:

E[R =90, StDev[R1=30; E[R,]=45,S5tDev[R,]=15.

The impact of demand variability of product 1
Firstly, the impact of demand variability of product 1 will be investigated on

the same scenarios as Table 5.14.

In the following, the threshold levels of the two products from solving the
approximate dynamic programming model are shown in Table 6.9. Furthermore, the
trend of the threshold levels is shown in Figure 6.7. The results have shown that all
the threshold levels related to product 1 increase with the demand variability of
product 1 whereas the threshold levels related to product 2 seem unaffected. As the
demands for the two products are independent of each other, the impact of demand
variability of product 1 would only affect the threshold levels related to product 1.
Furthermore, the higher demand variability results in the higher threshold levels to

avoid possible stock shortage.

Table 6.9 The threshold levels in different scenarios of demand for product 1 with
parameter set 1

ALy AL, AL, SW; SW; RP BLy BLi BL,

cov,=0.1 203.1 358.0 5972 2105 219.6 4040 109.6 1909 301.7

CcoVv,=0.2 2052 3752 611.6 219.1 2348 4213 1092 189.7 299.1

cov,=0.3 2054 3903 628.1 2247 2456 4402 1084 190.2 2975

Ccov,=0.5 206.6  433.1 6872 2363 2665 4889 1084 190.7 2984

Covi=0.75 2149 518.1 816.6 258.5 302.3 589.2 1094 193.1 300.7

cov,=1.0 227.8 617.7 965.0 2877 346.1 7029 110.1 1941 3043
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Figure 6.7 The trend of the threshold levels in different scenarios of demand

for product 1 with parameter set 1

parameter set 2

Table 6.10 The threshold levels in different scenarios of demand for product 1 with

ALy, AL, AL, SW,  SW, RP BL, BL, BL,
cov,=0.1 202.6  352.0 808.5 2099 3515 6255 106.8 189.2 2924
Ccov,=0.2 203.7 3655 813.1 2174 3653 6332 106.5 188.5 2879
Ccov,=0.3 2054 387.7 848.8 2248 38777 6652 1063 188.7 287.6
CoV,=0.5 206.7 429.8 920.6 2363 4298 7259 106.5 189.1 284.7
cov=0.75 215.1 515.1 1087.6 2587 517.3 865.6 106.5 190.6 286.8
cov,=1.0 2273 616.1 12799 288.8 617.0 1022.7 1069 1914 288.1
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Figure 6.8 The trend of the threshold levels in different scenarios of demand
for product 1 with parameter set 2
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Table 6.11 The threshold levels in different scenarios of demand for product 1 with
parameter set 3

ALy, AL, AL, SW; SwW, RP BL, BL, BL,
COoV;=0.1 202.7 3522 846.2 210.0 564.1 799.3 106.4 1879 289.8
COoV;=0.2 203.9 366.2 1016.8 217.3 5753 8428 106.2 187.6 2824
CcoVv;=0.3 204.9 385.6 10503 224.1 598.2 8727 105.8 187.7 280.6
CcoV;=0.5 206.6 429.5 11339 2364 658.5 949.2 1059 188.4 279.7
Ccovy=0.75 214.8 516.0 13242 2589 787.1 1119.1 106.1 190.3  281.1
CoV=1.0 228.0 617.8 15463 288.6 9342 13154 1066 191.3 283.1
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Figure 6.9 The trend of the threshold levels in different scenarios of demand
for product 1 with parameter set 3
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The impact of demand variability of product 2

Secondly, the impact of demand variability of product 2 will be investigated

on the same scenarios as Table 5.18.

In the following, the threshold levels of the two products from solving the

approximate dynamic programming model are shown in Table 6.12. Furthermore, the

trend of the threshold levels is shown in Figure 6.10. The results have shown that all

the threshold levels related to product 2 increase with the demand variability of

product 2 whereas the threshold levels related to product 1 seem unaffected. The

explanation to the results is similar to that on the impact of demand variability of

product 1.

Table 6.12 The threshold levels in different scenarios of demand for product 2 with
parameter set 1

AL, AL, AL, SW; SW, RP BL, BL, BL,
COV,=0.1 205.7 3937 6231 2253 2460 4414 103.9 165.0 276.3
COV,=0.2 205.6 3915 627.0 2247 246.0 4400 1065 177.0 286.7
CoV,=0.3 2054 3903 628.1 2247 2456 4402 1084 1902 2975
COV,=0.5 205.2 391.0 6289 2243 2451 4407 1143 2141 321.6
COV,=0.75 2052 3939 6384 2245 2452 4455 1246 2533 375.8
CoV,=1.0 2053 3999 6515 2245 2454 4523 1373 3072 456.1
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Figure 6.10 The trend of the threshold levels in different scenarios of demand for
product 2 with parameter set 1

Table 6.13 The threshold levels in different scenarios of demand for product 2 with
parameter set 2

ALy, AL, AL, Sw; SW, RP BLy, BL, BL,
COV,=0.1 205.1 3913 8450 2245 3914 666.1 102.6 1646 2629
COV,=0.2 204.8 3869 8422 2244 3873 6626 1047 176.6 274.1
COoV,=0.3 2054 3877 848.8 224.8 3877 6652 1063 188.7 287.6
COV,=0.5 2047 3832 840.1 224.0 3837 6575 110.8 2074 305.2
COV,=0.75 2050 3859 840.0 2243 3869 6584 1145 2248 323.1
COV,=1.0 2063 399.1 8645 2262 399.6 6767 114.0 2363 3328
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Figure 6.11 The trend of the threshold levels in different scenarios of demand for
product 2 with parameter set 2

Table 6.14 The threshold levels in different scenarios of demand for product 2 with
parameter set 3

ALy, AL, AL, SW; SW, RP BLy BL, BL,
COoV,=0.1 205.2 391.6 10552 2244 6052 8773 1022 1647 2544
COV,=0.2 205.0 387.6 1051.3 2243 600.6 873.8 1043 1754 266.1
COV,=0.3 2049 385.6 1050.3 224.1 5982 8727 105.8 187.7 280.6
COV,=0.5 204.7 383.6 10479 224.0 5927 869.0 110.1 2069 302.8
COV,=0.75 205.1 387.0 1047.9 2245 5925 868.0 1139 2240 3215
COV,=1.0 205.7 397.3 10669 2255 6029 8813 113.6 2353 330.1
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Figure 6.12 The trend of the threshold levels in different scenarios of demand for
product 2 with parameter set 3
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6.4.2 The comparison of three heuristic policies with respect to the

expected average cost

While using the threshold levels to help to make production and recovery
decisions in a relatively long horizon, the resulting expected average cost is compared
with those values obtained by using two heuristic policies from the single-period
problem. The following symbols will be used in the presentation of numerical results:

H1 - Heuristic policy from the single-period problem disregarding scrap

values of the remaining finished products;

H?2 — Heuristic policy from the single-period problem assuming scrap value of

the remaining product 1 and product 2 to be equal to crp; and cgry, respectively;

H3 — Heuristic policy from solving the ADP model;

EAC_HI - Expected average cost calculated while the heuristic policy HI is

used in a relatively long horizon;

EAC_H?2 — Expected average cost calculated while the heuristic policy H2 is

used in a relatively long horizon;

EAC_H3 — Expected average cost calculated while the heuristic policy H3 is

used in a relatively long horizon.

The optimal policy of the single-period problem is used as heuristic policy for
the multi-period problem. Two heuristic policies, denoted as HI and H2 respectively,
are derived from solving the single-period problem. The policy HI disregards the
scrap values of the remaining finished products whereas the policy H2 assumes the
scrap value of product 1 and product 2 to be equal to cro; and cry respectively. In

order to compare the threshold levels of the policies HI and H2 with those of the
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policy H3 from solving the approximate dynamic programming model, we have

selected the set of threshold levels when E[R ]=210 in Table 6.3. The threshold

levels of the three heuristic policies have been shown in Table 6.15 and further

compared in Figure 6.13. The results have shown that the corresponding threshold

levels of the policy H3 are highest whereas the threshold levels of the policy HI are

lowest. The difference of each corresponding threshold level between the policies H/

and H2 is small whereas the difference between the policies H/ and H3 is obviously

large.
Table 6.15 The threshold levels in three heuristic policies
ALy AL, AL, SWi SW, RP BL, BL, BL,
Hli 151.7 204.0 238.0 162.0 171.2 212.0 79.8 96.9 106.3
H2 156.7 2134  255.7 167.5 177.4  222.6 88.7 111.3 127.9
H3 182.6 3169 5264 200.7 2193 3497 105.6 1659 2483
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Figure 6.13 The comparison of the threshold levels in different heuristic
policies

While using the three heuristic policies to make production and recovery
decisions of the two-product recovery system in a relatively long horizon, the
resulting expected average costs are shown in Table 6.16. The results have shown that

the policy H3 performs best, secondly the policy H2 and finally the policy HI. By
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comparing the expected average costs between the policies H/ and H3, 3.3%

decrement can be achieved while using the policy H3 to replace the policy H].

Table 6.16 The expected average costs using different heuristic policies

EAC_HI 2738.7
EAC_H2 2698.1
EAC_H3 2649.0

6.5 Summary

In this Chapter, we have developed the ADP model of the two-product
recovery system in the situation of backorder over a finite horizon. The model aims to
determine the threshold levels as the multi-level threshold policy from the single-
period problem is assumed to be used for the multi-period problem. In the multi-
period situation, the threshold levels are found to be only dependent on the gradient of

the cost-to-go function at the points of interest.

The impact of system parameters on the threshold levels has been investigated.
The numerical results have shown that the more returned items from either group in
each period would make the threshold levels lower. Among them, the threshold levels
ALy, ALy, BLy, BL, and RP, related to recovery processes, would obviously decrease
with returned items increasing. However, there are small decreases on the threshold
levels ALy and BLy, related to production processes, and the threshold levels SW; and

SW,, related to switching the allocation of returned items to the recovery processes
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between the two products. On the other hand, with the increasing demand variability
of a certain product, the threshold levels related to this product would increase at the

same time whereas the threshold levels related to the other product seem unaffected.

After determining the threshold levels, we can use the threshold policy to
control the two-product recovery system in the multi-period context. The performance
of this policy is compared with the two heuristic policies derived from the optimal
policy of the single-period problem. Through the comparison of the resulting expected
average cost, the policy from solving the approximate dynamic programming model

outperforms the other two heuristic policies.
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Chapter 7 The study on two-product recovery system in a
finite horizon with backorder and nonzero constant lead
time

Chapter 7 focuses on the two-product recovery system in a finite horizon, in
which backorder is allowed. In the recovery system, all the lead times of production
and recovery processes are assumed to be the same nonzero constant. Section 7.1
introduces the recovery system. In Section 7.2, an ADP model of the recovery system
is developed in order to minimize the expected total cost in a finite horizon. In the
model, the lead time effect is considered. The model aims to derive the threshold
levels, which are only dependent on the gradient of the cost-to-go function at the
points of interest. Section 7.3 provides the details about how to determine the gradient
at the points of interest. Section 7.4 gives the computational results about the
performance of the policy from solving the ADP model. Finally, Section 7.5

summarizes the main findings.

7.1 Introduction

Chapter 6 has studied the two-product recovery system in a finite horizon, in
which backorder is allowed. In addition, production and recovery processes are
assumed to have zero lead time. However, these processes often have nonzero lead
time in practice. Therefore, this Chapter investigates the lead time effect of production
and recovery processes. Hereafter, all the lead times of production and recovery

processes are assumed to be the same nonzero constant. Due to the existence of lead
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times, the initial inventory position at the beginning of each period in the planning

horizon needs to include pipeline inventory.

The objective of modeling the recovery system is to minimize the expected
total cost in a finite horizon. In order to fulfill the aim, we need to obtain the optimal
policy, which helps to make the optimal production and recovery decisions in each

period of the planning horizon.

7.2 Approximate dynamic programming model of the two-product

recovery system in the multi-period context

Since the related assumptions and notations for the two-product recovery
system can be referred to in Chapter 3 and Chapter 6, we will not repeat here. The
only different notation is as follows:

L lead time of production and recovery processes for each product.

The inventory position at the beginning of period ¢ is net stock plus pipeline
inventory. The inventory state transition equations between two consecutive periods

can be written as follows (j =1, 2):

XU = x4 p 40 - DO, (7.1)
Due to lead times existing in the system, production and recovery decisions
made in period ¢ will affect the joint inventory holding cost and penalty cost of

shortage in period ¢ + L. Thus, we take into account production and recovery costs of
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period ¢, together with the joint inventory holding cost and penalty cost of shortage in

period ¢ + L. The expected cost in period ¢ is calculated as follows:

O (D SO S0 L0 L0 L0 L0
Ect(xSl’xSZ’pl ’pZ ’ 11 ’r12 ’ 21 ’ 22)

_ (1) (] (1) (f) (f) (f)
SCp Pyt Cpa Py F iy HCpiphy t Cratlyy T Crnl,

FORMOIC NG

+h [ 8+ p® 4+ 1 + 1 = D)) f (D, 4,6,)dD,
=X D _ 0 _ 72
+Vlf oy DX =P =1 =B f (D 4, 0)dD, (7.2)

x‘g’)+p“)+r“)+r,,

+h, (x5 +py" + 15"+ 155" = D,)f (D, 445, 0,)dD,

” 00 (r) (r)
+v2J.X(/)+ (OINON (;)(DZ xSZ pZ )f(DZ’ILIZ’O- )dD
s2 Py Thy *ip

In Formula (7.2), the transformed demand D} is the aggregation of demands
from period ¢ till period ¢ + L. The related characteristic parameters of the transformed
demand are calculated as follows (j = 1, 2):

M, =(L+Dyu,; o,=VL+lo, (7.3)

Let £, (x{), x7) denote the expected total cost from period 7 till period M - L.

Assume f,, . (X 70 xy ) = Z Cpl=xg"""T". The Bellman’s equation of

dynamic programming can be written as follows (r =1, 2,..., M - L):

(1) @) @) @) (D) (f) (1) (1) (1)
f(xSI ’xs Rl(’fl)EJ;@"'){pU) (0 I:I,])_l“) “o, U){EC (XSI Xs> Pros Pa sty 5Ty Ty s Ty )

[fra (7 x5O )

Du) ()

(7.4)

Similar to Chapter 6, the approximation is made to the cost-to-go function in

the above formula. The approximate dynamic programming model considering the
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lead time effect is the same as that in Chapter 6 except that the expected cost of period
t is calculated on the basis of the above-mentioned transformed demands. Therefore,
similar threshold level policy can be obtained by solving the approximate dynamic
programming model. Thus, the threshold levels of the policy are determined on the
basis of the transformed demands. In addition, similar to Chapter 6, two gradients
used for the approximation are estimated at the point of interest by Monte Carlo

simulation.

7.3 The determination of the gradient at the points of interest in the
multi-period context

(1)

Without a closed-form formula of the gradient uy) at the point of interest (x;"”,

x"), we need to run Monte Carlo simulation, and estimate the gradient based on the

simulation results. Before that, we need to approximate the cost-to-go function of
dynamic programming by Monte Carlo formulation. In Monte Carlo sampling, sample
k is about the realization of stochastic returns in each period from period ¢ + 1 till
period M - L, and the realization of stochastic demands in each period from period ¢

till period M - 1. The sample k is expressed as:

(t+) (t+1) ® 0
R Ry, D D,

Lk 1,k

(M-L) p(M-L) (M~L-1) (M—-L-1)
Rl,k R2,k Dl,k D2,k

(M-L) (M-L)
0 0 Dy, Dy,

(M-1) (M-1)
0 0 Dy, Dy,

155



Chapter 7 The study on two-product recovery system in a finite horizon
with backorder and nonzero constant lead time

The cost-to-go function of dynamic programming is approximated as follows:

(t+1)  _(1+])
B L ()

1 «w M-L-1 (o (7.3)
zﬁzkﬂ(z ATC”" + MEC)).

T=t+1

In the above formula, the sample value for sample &, is obtained by summing
up the cost in each period from period ¢ + 1 till period M — L - 1 and the minimum

expected cost in period M - L. Without a closed-form formula of the function MEC, ,
we would compute it by minimizing the expected cost ECy.r k. In addition, the

function ATC”" is to calculate the cost of period 7 at the optimum. The function
ATC” is expressed as follows ([X]":= max{X,0}; t< < M- L):

(7) (1) (7) (7) (r) _.(7) (r) _.(7) (1) (i),i=T,....,T+L (i),i=T,....,T+L
ATC,” (x5, s Xg5 s Py s Py 5Ty 5T 5Ty 5Ty ’Dl,k ’Dz,k )

_ (7) (7)
=Cp Pyt Cpa Pyt Cp iyt Crinhiy T Crotloy T Crly

T+L

(7) (7) (7) (7) @+ L (i) (7) (7) (7) () 7+

+hlxg +p7 +n7 +1, _Z,-:T Dl,k] +V1[Z,-:, Dl,k_xSI P —h ]
(@ (@ 4 (7)) 4 (D) NGRS L (i) (@ (@) _ (1) _ (O
+h2[xsz TP, _Z,-:T DZ,k] +V2[Z,-:, Dz,k TXgy TPy Thy TIp I
(7.6)

At period M — L, we can calculate the minimum expected cost MEC; by

minimizing the expected cost ECyr, k, Which is calculated by Formula (7.2).

As the function ECy.1 « and the function ATC,” are both continuous functions,

it is suitable to approximate the cost-to-go function by Monte Carlo sampling method.
Furthermore, the two gradients used for the approximate dynamic programming

model can be approximated by sample average.
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In the following, we present the computational results about applying the
policy from solving the approximate dynamic programming model to the two-product
recovery system in a finite horizon. At the same time, this policy is compared with the
other two heuristic policies derived from the optimal policy of the single-period

problem.

7.4 Computational results

The following symbols will be used in the presentation of numerical results:
H1 - Heuristic policy from the single-period problem disregarding scrap
values of the remaining finished products;

H?2 — Heuristic policy from the single-period problem assuming scrap value of
the remaining product 1 and product 2 to be equal to cr21 and cr22 respectively;
H3 — Heuristic policy from solving the ADP model;

EAC_HI - Expected average cost calculated while the heuristic policy HI is
used in a relatively long horizon;

EAC_H?2 — Expected average cost calculated while the heuristic policy H2 is
used in a relatively long horizon;

EAC_H3 — Expected average cost calculated while the heuristic policy H3 is

used in a relatively long horizon.

A set of system parameters is given as follows:

Cost: h =3,h,=3,v,=4,v, =6,s, =15,5, =20,

Cp = 12, Cpy = 15’CR11 = 6’CR12 = 10’CR21 = 2’CR22 =7,
Demand: E[D,]=200,StDev[D,]=60; E[D,]=100, StDev[D,]=30;
Return: E[R]1=90,StDev[R,]=30; E[R,]=45,5tDev[R,]=15.
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In Table 7.1, we have shown the threshold levels of the policy from solving
the approximate dynamic programming model and the two heuristic policies from the

single-period problem under different values of fixed lead time L (L =0, 1, 2).

Table 7.1 The threshold levels in different heuristic policies (=0, 1, 2)

AL,y AL, AL; SWi SW, RP BL, BL, BL;

L=0 H1 151.7 204.0 238.0 1620 1712 212.0 79.8 96.9 106.3
H2 1567 2134 2557 1675 1774 2226 88.7 111.3 1279
H3 2054 390.3 628.1 2247 2456 4402 1084 190.2 2975
L=1 H1 3317 405.6 453.8 3462 3593 4169 1714 195.6 2089
H2 338.8 4189 478.8 3541 368.0 4320 184.0 216.0 2394
H3 4090 627.1 869.5 4359 4639 6776 207.6 299.8 407.5
L=2 H1 5164 606.9 6659 5342 5502 620.7 265.0 294.6 3109
H2 5250 6232 696.5 5437 560.8 639.2 2804 319.6 3483
H3 6122 8472 1089.1 644.1 676.6 897.7 3103 4109 5194

Furthermore, the expected average costs are calculated and shown in Table 7.2
while using the above three policies to control the two-product recovery system in a
relatively long horizon. The percentage of increment is calculated on the basis of the
expected average cost by using the policy HI. Figure 7.1 has shown the trend of the
expected average cost with the lead time. With the larger value of the lead time, the
expected average cost is higher. The average inventory level per period increases with
the lead time so as to reduce possible stock shortage. Therefore, the expected average

cost will increase with the lead time as more inventory holding cost is incurred.
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Table 7.2 The expected average cost using different heuristic policies (L=0, 1, 2)

L=0 Increment(%) L=1 Increment(%) L=2 Increment(%)

EAC _HI 3336.9 3409.5 3668.9
EAC _H2 32979 -1.2 3357 -1.5 3598.8 -1.9
EAC _H3 3208.7 -3.8 3247.5 4.8 3445.2 -6.1
3700
3600
3500
—f=—EAC_H1
3400
——EAC_H2
3300 e—EAC_H3
3200 "
3100 L

Figure 7.1 The expected average cost using different heuristic policies (L=0, 1, 2)

7.5 Summary

In this Chapter, we have studied the two-product recovery system, in which
backorder is allowed. For the system, the lead time effect has been investigated by
assuming all the lead times of production and recovery processes to be the same
nonzero constant. We have developed the ADP model of the system in order to
minimize the expected total cost in the finite horizon. The model is used to derive the
threshold levels as the multi-level threshold policy from the single-period problem is

assumed to be used for the multi-period problem. In the multi-period situation, the
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threshold levels are found to be only dependent on the gradient of the cost-to-go

function at the points of interest.

The computational results have shown that the policy from solving the
approximate dynamic programming model outperforms the other two heuristic
policies from the single-period problem. Between the two heuristic policies, the
heuristic policy, which considers the scrap values of the remaining finished products,
performs better. In addition, the expected average cost increases with the lead time as

the average inventory of the system increases with the lead time.
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Chapter 8 Conclusion

The main purpose of this thesis is to develop mathematical models on the two-
product recovery system in a finite horizon in order to obtain the optimal or near-
optimal policy for production planning and inventory control. This chapter concludes
the study by presenting a summary of research findings and discussing the
implications and limitations of this research, as well as suggesting several directions

for future research.

8.1 Main findings

In Chapter 3, we have developed a dynamic programming model for the two-
product recovery system in a finite horizon. The aim is to maximize the expected total
profit in a finite horizon. However, the dynamic programming model is found to be
difficult to be solved efficiently due to no nice property. Therefore, we have studied
the single-period problem as the special case of the multi-period problem in Chapter 4.
After modeling and solving the single-period problem, an optimal multi-level
threshold policy is obtained. The related threshold levels are discovered and their

insights are further explained.
Even though this multi-level threshold policy might not be optimal for the

multi-period problem, it is intuitive, easy to use and provides good managerial

perspectives. Hence, we apply this policy to the multi-period problem
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In Chapter 5, we have proposed an ADP model to derive the threshold levels.
We have found that different from the single-period problem, the threshold will not
only depend on the current-period cost parameters, but also on the future cost-to-go
function. The threshold levels are further found to be only dependent on the gradient
of the cost-to-go function at the points of interest. Unlike the usual approach which
uses a single function (or piecewise function) to represent the cost-to-go function, we
just need to estimate the gradient of the cost-to-go function at the points of interest.
These gradients will be used to compute the threshold level. As the threshold level
and the gradient are dependent on each other, we have determined the threshold levels
via an iterative algorithm. When estimating the gradient by a Monte Carlo simulation-
based technique, i.e. Sample Average Approximation (SAA), we develop an
Infinitesimal Perturbation Analysis (IPA) based approach to determine the sample
gradient. This approach not only uses the least computing resources but also its

estimation quality is better.

The threshold policy from solving the ADP model is compared with the two
heuristic policies, which are derived from the optimal policy of the single-period
problem. One heuristic policy assumes the scrap values of the two products to be
nonzero fixed values whereas the other heuristic policy assumes the scrap values of
the two products to be zero. By the comparison of the resulting expected average
profits, we find that the policy from solving the ADP model performs best, followed
by the heuristic policy considering the scrap value of finished products, and finally the
heuristic policy disregarding the scrap value. Furthermore, with the best policy, the
impact of system parameters has been investigated. The computational results have

shown that the larger expected value of returned items in either group brings more
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expected average profit. In addition, the higher the demand variability, the less the

expected average profit.

In addition, Chapter 6 and Chapter 7 focus on the two-product recovery
system in the situation of backorder over a finite horizon. The model aims to
minimize the expected total cost over the finite horizon. Chapter 6 has done similar
work as Chapter 5 to investigate the performance of the threshold policy and the
impact of system parameters under different scenarios. Chapter 7 investigates the lead
time effect of production and recovery processes. By assuming all the lead times of
production and recovery processes to be the same nonzero constant, the expected
average cost of the system is found to be increasing with the value of the constant lead

time. This results from the aggregation of demand variability.

8.2 Discussion about the relaxation of certain assumptions

We would discuss about the relaxation of certain assumptions mentioned in

Chapter 3.

In Chapter 3, lead time is assumed to be equal to zero. In Chapter 7, the lead
time effect has been considered in the situation of backorder based on a simple case
that both production lead time and recovery lead time of each product are equal to the
same nonzero constant. The threshold level is computed based on the gradient of the
cost-to-go function which considers the constant lead time. If the simple case would
be extended to a more complex case that production lead time and recovery lead time

are different, the state space of dynamic programming will be increased due to the
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lead time difference. If we still assume the multi-level threshold policy to be used for
this case, the threshold levels need to be computed based on the cost-to-go function
which considers not only the lead time effect but also the lead time difference
between production and recovery. This could be further studied as one of the future

directions.

In Chapter 3, disposal cost is assumed to be negligible. Otherwise, disposal
cost needs to be included in the total cost. For the single-period problem, the threshold
policy remains unchanged expect that some threshold levels need to be recomputed.
For example, the order-up-to level of product 1 by recovering the returns in group 1,

S;+V = Criy

is calculated as AL =F'(
s+ +h

,i,,0,). If disposal cost is considered and its

cost rate is assumed as c¢p;, the order-up-to level is recomputed

sty _(CRII _CDI)

as AL, = F'(
s +v +hy

,M4,,0,) . For the multi-period problem studied over a

long horizon, as the threshold policy is evaluated by measuring the expected average

cost, the disposal cost would be regarded as negligible and need not be considered.

In Chapter 3, it is assumed that there is no stocking of the returned products.
This assumption is reasonable in some practical situations. For example, it might be
cost-saving without establishing extra storage capacity for returned items. The same
situation occurs if these returned items cannot be stored over a longer period because
of environmental or similar reasons. Otherwise, if this assumption is relaxed to allow
the stocking of returned items for future periods, disposal of unused returned items is
optional and depends on the inventory states of both returned items and finished items.

Thus, the stock holding cost of two groups of returned items will be considered in the
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modeling and the threshold level for the disposal of returned items might be necessary
to characterize the multi-level threshold policy. Furthermore, we need to investigate
how to compute the threshold levels for both single-period case and multi-period case
in the situations of having stocks of returned items. It could be further studied as one

of the future directions.

8.3 Suggestions for Future Work

Demand substitution

One-way (downward) substitution often exists in practice, especially in high-
tech industry. Inderfurth (2004) and Bayindir et al. (2007) considered one-way
substitution of the finished product from production for that from recovery in the
single-product recovery system. The one-way demand substitution will reduce
shortages, and also incur additional substitution cost. If this one-way demand
substitution is allowed in the two-product recovery system of this study, the optimal

production and recovery decisions need to be re-considered.

Capacitated production

In the two-product recovery system of this study, production capacity is
assumed to be unlimited. Production process will be used for the replenishment of
finished item inventory if the recovery of returned items is not enough to achieve
replenishment requirement. However, if production process is capacitated, how to
determine the related threshold levels needs to be re-considered. In most existing

models of this field, capacitated production is considered together with demand
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substitution. For example, Li et al. (2007) considered the capacitated production

planning problem in the single-product recovery system.

Different lead times between production and recovery

In the two-product recovery system of this study, if production lead time and
recovery lead time are different, the state space of dynamic programming will be
increased due to the lead time difference. If we still assume the multi-level threshold
policy to be used for this case, how to compute the threshold levels based on the cost-

to-go function in the more complex case is one of the future directions.

Stocking of returned items

In the two-product recovery system of this study, if there is the stocking of
returned items, disposal of unused returned items will depend on the inventory states
of both returned items and finished items. The threshold level for the disposal of
returned items needs to be determined for the multi-level threshold policy for both
single-period case and multi-period case. It could be further studied as one of the

future directions.

Approximate dynamic programming model with neural network

In the approximate dynamic programming model of this study, we have taken
advantage of simple linear models to fulfill the approximation. On the other hand,
neural networks represent a powerful and general class of approximation strategies
used in approximate dynamic programming. By means of neural networks, a much
richer class of nonlinear functions can be trained in an iterative way, which is

matching the needs of approximate dynamic programming. If neural network
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approximation would be used for the approximate dynamic programming model of
this research, we need to take advantage of the problem structure. The advantage of
this approximation method should be shown by the comparison with linear

approximation.
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Appendix A

Appendix A The threshold levels for the optimal inventory
control of the two-product recovery system in a single period

The related threshold levels for the optimal inventory control of the two-
product recovery system in a single period are listed in Table A.1 and Table A.2.
Table A.1 includes the order-up-to levels for the inventory replenishment of the two
products respectively. In addition, Table A.2 includes the threshold levels for the

interactive inventory control of the two products.
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Table A.1 The order-up-to levels for the optimal inventory control of the two-product
recovery system in a single period

Formula

Insight

ALy

&

+v,—cpy

s +v +h

s #50,)

Is to balance between the opportunity loss due to
one unit of product 1 short arising from production
process (si+vi—cp1) and the opportunity loss due to
having one unit excess of product 1 arising from
production process (cpi+h1).

AL,

s +v +h

F—l(sl +V —Criy

s #50,)

Is to balance between the opportunity loss due to
one unit of product 1 short arising from recovery
process by returned items in group 1 (s;+vi—cri1)
and the opportunity loss due to having one unit
excess of product 1 arising from the recovery
process (CR11+h1).

AL,

—1(31 V)~

s, +v, +h

s H501)

Is to balance between the opportunity loss due to
one unit of product 1 short arising from recovery
process by returned items in group 2 (si+Vi—Cr21)
and the opportunity loss due to having one unit
excess of product 1 arising from the recovery
process (cra1+h)).

BL,

_1(s2+v2 —Cpy

s, +v, +h,

+#,0,)

Is to balance between the opportunity loss due to
one unit of product 2 short arising from production
process (s>+vo—cp2) and the opportunity loss due to
having one unit excess of product 2 arising from
production process (cpat+h2).

BL,

F

1,8y TV, —Crpn

s, +v, +h,

+#4,0,)

Is to balance between the opportunity loss due to
one unit of product 2 short arising from recovery
process by returned items in group 1 (sx+vo—cri2)
and the opportunity loss due to having one unit
excess of product 2 arising from the recovery
process (cria+hy).

BL,

F

1,8 TV, —Crap

§,+v,+h,

+#4,0,)

Is to balance between the opportunity loss due to
one unit of product 2 short arising from recovery
process by returned items in group 2 (sx+Vvy—Cr22)
and the opportunity loss due to having one unit
excess of product 2 arising from the recovery
process (croa+hy).
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Table A.2 The threshold levels for the interactive inventory control of the two-product
recovery system in a single period

Formula

Insight

S; V) +Crip = Crist —Cp

Is to balance between the opportunity loss
due to one unit of product 1 short arising
from switching of returned items in group
1 from the recovery process for product 1
to that for product 2 in place of production
process  (sj+vi+criz—crii—cp2) and the
opportunity loss due to having one unit
excess of product 1 arising from no
switching (crii1+cpa—criat+hi).

Is to balance between the opportunity loss
due to one unit of product 1 short arising
from switching of returned items in group
2 from the recovery process for product 1
to that for product 2 in place of production
process  (sj+Vvi+cra—Cro1—cp2) and the
opportunity loss due to having one unit
excess of product 1 arising from no
SWitChing (CRZ 1+cpr—Cr2+h1 ) .

-1
swy F( :#4,07)
s +v +h
SW, F—l(sl TV +Crap TCrot ~Cpy ’:Ul’o-l)
s, +v, +h
4,8 +V, +Cpyy —Cpyy —C
Rp F (A TtRn T Tkl Rlz”ul’o-l)

s, +v, +h

Is to balance between the opportunity loss
due to one unit of product 1 short arising
from no replacement and reallocation of
returned items in group 2 by returned
items in group 1 (s1+v1+crao-cr21-cri2) and
the opportunity loss due to having one
unit excess of product 1 arising from the
replacement and reallocation process
(cri2+CR21-CR22HNY).
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Appendix B The structures of the optimal solution to the
single-period problem on the two-product recovery system

To maximize the expected profit in a single period, the optimal solution to the
single-period problem on the two-product recovery system has different structural
forms due to different combinations of the initial inventory of the two products and
the availability of returned items. The solution structures involve the threshold levels,
which have been explained in Chapter 4. In addition, there are notations: R; and R,
denote the availability of returned items in group 1 and group 2 respectively; xs; and
xs2 denote the initial inventory of product 1 and product 2 respectively; RL; and RL,
denote the replenishment level of product 1 and product 2 respectively. As some
structures involve the comparison of marginal profits from allocating returned items
to the recovery for the two products, we list the formulae of the related marginal

profits as follows (j =1, 2):

OEP

arl,- =84V, —=Cp;—(s;+v, +h)F(x;,1;,0,);

SEP (B.1)
>, =8,+V, = Cpy; — (8, 4V, +h)F(x,, 14;,0)).

2j

In order to obtain the perturbation effect of the initial inventory of the two
products on the optimal replenishment decisions, we have listed nonzero values of the
first-order derivatives of the optimal replenishment decisions with respect to the
initial inventory of the two products in Table B.1. In more details, the solution

structures are listed as follows:
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SI. R +R, +x, <AL, x;, <BL,:

p;:ALo_Rl_Rz_xsv rl*lle’ rZ*IZRZ; (Rl‘leLO)
p;:BLo_xsz’ r;;:o, 1’2*220. (RL, = BL,)

S2. AL <R +R, +x, <SW, x,, <BL,:

p. =0, n =R, r,=R; (AL, <RL <SW,)
p; = BL, - x;,, rl*z =0, r;z =0. (RL,=BL))

S3. R +R, +x, <AL

0°

=2BL,:

xSZ - (U

p;:ALo_Rl_Rz_xsv rl*lle’ rZ*IZRZ; (Rl‘leLO)

p. =0, h,=0, r,=0. (BL,<RL,<BL,)
JoEP JEP
S4. ALOSR1+R2+)CSISALI, xSZZBLO, a— > 3
rll X =R +Ry+xg, r12 X =Xgo
Pf =0, rl*l =R, r2*1 =R,; (AL,<RL <AL)
py=0. 5,=0, r,=0. (BL,<RL,<BL)
SS. R +R, + x5, > AL, R, +xg < AL, Xgy 2 BL :
Pf =0, rl*l =AL - R, — xg, r2*1 =R,; (RL =AL)
p,=0, r,=0, r,=0. (BL <RL,<BL)
JEP JEP
S6. R2+)CSI>ALl, xSZZBLl, — >—
or,, x or,,
=Ry +xg,

X =Xg2

pi=0. K,=0. K= Ry (AL <RL<AL)
pi=0, 5, =0, 1, =0. (BL <RL,<BL)

S7. R, +x, <SW,, R+R,+x,>SW, R +R,+xy+x,<SW,+BL,:

p, =0, 1y =SW, =R, - x, r =R,; (RL, =SW)

]

P, =SW,+BL,~ R =R, = X; = Xg,, 1, =R +R,+x,,—SW,, 1, =0. (RL,=BL))
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S8. SW, <R, +x, <SW,, R +x,<BL,:

pr:o’ rlj:o, r;:Rz; (SW, <RL <SW,)
P;:BLO_R1_XS2’ ’3*2:R1’ r2*2=0. (RL, = BL,)

JoEP JoEP JEP JoEP
S9. BL, <R +x,, <BL, > , & <
aer X =Ry +x5, arzz X =R +x5, aril X =Ry +Xg, al’iz X =Ri+xg,
p, =0, r,=0, r,=R,; (SW,<RL <RP)
p,=0, r,=R, r,=0. (BL,<RL,<BL)
S10. AL <R, +x, <RP, x;, <BL, R+x,>BL,:
p, =0, 1, =0, r, =R,; (AL, <RL <RP)
p,=0, 1, =BL —xg, 1, =0. (RL,=BL)
S11. SW,+BL, <R +R, + x5, + x5, <AL +BL,,
JoEP < JEP JoEP S JoEP
arll X =R +Ry+x5, arlz X =Xg ’ arll X =Ry +x5, al’iz X =R +x5,

szo, r2*1:R2; p;ZO’ r2*2:0;

JEP JEP
solve —— =
or,

h 12

and r,, +1, = R, to obtain r;,, 1;,.

X, =iy +Xs,

(SW, <RL < AL, BIL,<RL, <BL)

X =1+ Ry +Xg

S12. R, +x,, <AL, x,,<BL, R +R,+x, +x5,>AL +BL:

]

PTZO, ’ii:Alﬂ_Rz_xsn n =Ry (RL =AL)
p=0. fy=BL—xy  ra=0. (RL=BL)
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S13. x5, <SW,, R, +x,, >SW,, R+R, +x, +x;, <SW,+BL,:

§2 —

]

p, =0, n=0, 1y =SW,-xg; (RL, = SW,)
p;:SW2+BLo_R1_R2_xs1_xs2’ ’3*2:R1’ r2'*2:R2+xs1_SW2' (RL, = BL,)

S14. x;, >SW,, R +R,+x,, <BL,:

pi =0, F=0. K0 (SW,<RL<AL)
p;:BLo_R1_R2_xs2’ ’3*2:R1’ rz*zsz‘ (RL, = BL,)

S15. BL,<R +R,+x, <BL,,

X =Xg) X =R +Ry+Xg,

pi =0, 1,=0, r,=0; (SW,<RL<AL)

]

p,=0, r,=R, r,=R, (BL,<RL <BL)

S16. x;, 2RP, R, +x,, <BL, R +R,+xg,>BL:

pi=0, 1’ =0, r=0; (RP<RL <AL)

]

p,=0, 1, =BL ~R,~xy,, 1,=R,. (RL,=BL)

S17. SW,+BL, <R +R, + x;, +x;,, <RP+BL,,

OEP|  _ OEP| JEP
or,, " on,

or,, or,,

X =Xg| Xy =Ry +R +xg, X =R, +xg, X =R, +xg5,
p =0, 1, =0; p,=0, 1, =R;
OEP

)

or,,

solve and r, +r,, = R, to obtain r,,,7,,.

X=X Xy =rp+R+X5,

(SW, <RL, <RP, BL,<RL, <BL)
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S18. x;, <RP, R, +xg >RP, R, +x, +x,, <RP+BL, R+R,+x, +x;,>RP+BL,:

PTZO, rl*l =0, r2*1 =RP —xy; (RL, = RP)
P =0, 1, =RP+BL —R, — X —Xs,, I, =R,+x3—RP. (RL,=BL)

S19. RP+BL <R, +x,, +x,, <AL, +BL,,

S2 —
JoEP < JoEP JoEP S JoEP
aer X =Ry +Xg, arzz X =Xg aer X =Xgy arzz Xy =Ry +x5,

pi =0, 1, =0; p,=0, r,=0;

JEP JOEP
solve —— =—

5

and r,, +1,, = R, to obtain r,, 1,,.

Xy=ry+xg)

(RP<RL < AL,, BL <RL, <BL,)

“ T
X =hyt Xy 2

S20. R, +x,, > BL,

p, =0, r,=0, r,=0; (RP<RL <AL)
p,=0, 1,=0, 1, =R, (BL <RL,<BL)
S21. R, +x,, + x5, > AL, +BL, :

PTZO, ”1*1:0, ”2*1 =AL, — x5 (RL =AL))

P, =0. 5, =0, 1, =BL, —x;,. (RL,=BL,)

According to the above solution structures, the nonzero values of the first-
order derivatives of the optimal replenishment decisions with respect to the initial

inventory of the two products are listed in Table B.1.
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Table B.1 The nonzero values of the first-order derivatives of the optimal

replenishment decisions with respect to the initial inventory of the two products

op, Odp, dy, dy, On, Or, Op, Op, On, O, Or, O,
oxg, Oxg, Oxg OXxg, OXg OXg, Ox; OXg, OXg OXg, OX; OXg,

S1 -1 -1

S2 -1

S3 -1

S5 -1

S7 -1 -1 -1 1

S8 -1

S10 -1

S11 -G 1G4 G G-1

S12 -1 -1

S13 -1 -1 -1 1

S14 3

S16 -1

S17 -G, 1-G G -1

S18 -1 -1 -1 1

S19 -G 1-G G -1

S21 -1 -1

In Table B.1, the variables C;, C, and C3 can be calculated as follows:

_ (S1+V1+h1)f(R2+xs1+r1iuu1’o-1) .
(s, + v+ 1) f (R, + X5+ 1y, 14,0,) + (5, +v, + 1) f(Xg, + 1y, 1y, 0)

1

_ (S1+V1+h1)f(xs1+r2$1’ﬂ1’0-1) .
’ (s, 4V + 1) f(xgy + 15 1y, 0) + (5, v, + 1) f (R + X, + 1y, [y, 0,)

_ (S1+V1+h1)f(xs1+r2$1’ﬂ1’0-1)
’ (s + v +h) f (X 150, 1,0+ (5, v, + 1) f (X5, + 1y, 1y, 0)

(B.2)
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Appendix C The process of determining the sample
gradient for the approximate dynamic programming models

In Chapter 5 and Chapter 6, we have developed the approximate dynamic
programming models for the two-product recovery system considering lost sale and
backorder respectively. In addition, production and recovery processes are assumed to
have zero lead time. Due to a liner approximation involved in modeling, the two
gradients of the cost-to-go function of dynamic programming with respect to the
inventory level of the two products after replenishment need to be estimated by
sample average through Monte Carlo simulation. Furthermore, the sample gradient

grad;, (j =1, 2) is to be determined for the M-period problem given the sample &
about the realization of stochastic returns and demands as:

(2) (2) ) (6))
Rl,k R2,k Dl,k D2,k
(3) (3) (2) (2)
Rl,k R2,k Dl,k D2,k

(M) (M) (M-1) (M-1)
R, R2,k Dl,k D2,k

As introduced in the two chapters, it is similar for the two products to
determine the sample gradient of the cost-to-go function with regard to their
respective inventory level after replenishment. We would take product 1 as an
example to introduce the process of determining the sample gradient in Figure C.1
and Figure C.2 for the two-product recovery system considering lost sale and

backorder respectively.
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Given the order-up-to level of products 1 and 2 as x®
and % and the returns and demands of sample k at
this period as R{%, R, DY, DL

o _ pn
If x5 <D

grad,, =
end
Else
59 =57 D% 52 1P -DYI"
Go to period t (t=2). Period 1

-

)
4
1. Given the returns and demands of sample k at
period t as RE®, RED, DI, DY, and the optimal
allocation decisions, the gradient of the profit ATP,
over x® is calculated as follows:

QATP,  PATP, &x%)  2ATP, ox%
= T A0-
o a0 o ) o
2. Update gradient:
grad , =grad, . +—*

DATE,
a
3. Calculate initial inventories of period t+1:
+H) £ T 1] 1] 1] -
XED —[x8 4 g0 4 0 0 DO

(t+l) (64
S

=[xQ +pP +1P +rP - DOT.
If ¢ =0 and x4 =0

end
Else

t=t+1

Go to period t. Period t

1. Given the optimal allocation decisions, the gradient
of the maximum expected profit MEP over x® is
calculated as follows:

OMEP _ oMEP ox3"  OMEP x>
B B e e

2. Update gradient:
grad,; = grad, , +

end Period M

Figure C.1 The determination of the sample gradient for the two-product recovery
system assuming lost sale and zero lead time
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Given the order-up-to level of preducts 1 and 2 as =™
and = and the returns and demands of sample k at
this period as g7, R, DY, D§Y

Dz
grad;; =0
)

Go to period t (t=2). Period 1

1. Given the returns and d:Fna nds of sample k at
period t as RGP, REY, DY, DY and the optimal
allocation decisions, the gradient of the cost ATC, over
™ is calculated as follows:

BATC, 2ATC, &%) 2ATC, &2

o T ) AP ady ad>

2. Update gradient:
2ATC,

grad,, :8"‘1‘31,#@
3. Calculate initial inventories of period t+1:

(1) _ () ) e} ( @ -
x5 =Xy Hpln by —D;

0 = 0 P04 720 4 D —Dg,{.
t=t+1
Go to period t.

Period t

Ho

1. Given the optimal allocation decisions, the gradient
of the minimum expected cost MEC over x2 is

calculated as follows:
IMEC _ BMEC oxy” | OMEC il
RO IO o0 B0 5
2. Update gradient:

oMEC
grad, ; = grad,; +w-

end Period M

Figure C.2 The determination of the sample gradient for the two-product recovery
system assuming backorder and zero lead time
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