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SUMMARY 

 

This research focuses on a two-product recovery system in the field of Reverse 

Logistics. As far as the knowledge about current literature, this research could be 

regarded as the first study on the multi-product recovery system involving two 

products and two flows of returned items. Firstly, a periodic review inventory 

problem is studied on the two-product recovery system in the situation of lost sales 

over a finite horizon. A dynamic programming model has been developed in order to 

obtain the optimal policy of production and recovery decisions, which aims to 

maximize the expected total profit in the finite horizon. However, the model is 

difficult to be solved efficiently as no nice property could be found. Thus, the special 

case of the multi-period problem, a single-period problem is investigated. 

 

Secondly, the optimal threshold level policy has been obtained for the system 

in a single period. For the single-period problem, the usual approach is to use Karush-

Kuhn-Tucker (KKT) conditions to find the optimal solution. In this case, the answer 

is very complex which results in 21 different cases. However, after analyzing these 21 

cases, we found out that they can be represented by an optimal multi-level threshold 

policy. This optimal policy is characterized by 6 order-up-to levels and 3 switching 

levels. By using the policy, the extension from the two-product situation to a general 

multi-product situation has been further discussed. 

 

Even though this multi-level threshold policy might not be optimal for the 

multi-period problem, it is intuitive, easy to use and provides good managerial 

perspectives. Hence, we apply this policy to the multi-period problem in the situation 
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of lost sales at first. We have found that different from the single-period problem, the 

threshold levels will not only depend on the current-period cost parameters, but also 

on the future cost-to-go function. 

 

Thirdly, we have developed an efficient way to compute these threshold levels: 

• Unlike the usual approach which uses a single function (or 

piecewise function) to represent the cost-to-go function, we just 

need to estimate the gradient of the cost-to-go function at the points 

of interest by Monte Carlo simulation. These gradients will be used 

to compute the threshold level. Hence, the performance of the 

results will not depend on the function we assume which can be a 

challenge for most of the approximate dynamic programming 

approaches. 

• We develop an Infinitesimal Perturbation Analysis (IPA) based 

approach to estimate the gradient. This approach not only uses the 

least computing resources but also its estimation quality is better. 

• The results of the numerical experiments show that the 

performance of this threshold policy is found to be promising under 

a wide range of settings. 

 

Finally, we have extended the multi-period problem to the situation of 

backorder. Furthermore, the lead time effect is investigated based on a simple case, 

where production lead time and recovery lead time of each product are assumed to be 

equal to the same nonzero constant. This multi-level threshold policy also shows good 

performance under a wide range of settings. 
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Chapter 1    Introduction 

 

1.1 Background 

 

In the recent decades, the management of the flows, opposite to the 

conventional supply chain flows, is addressed in the emerging field of ‘Reverse 

Logistics’. The returns flow of products or goods from downstream entity to upstream 

entity in the supply chain is due to different reasons. Product recovery may initiate the 

returns flow from users to producers. The returns flow of unsold goods from retailers 

to manufacturers is another example. Furthermore, the returns flow of defective 

products or spare parts for repair is also in the field. As for the definition of ‘Reverse 

Logistics’, there are a few versions, based on different emphases. 

 

According to a White Paper published by the Council of Logistics 

Management (CLM), Reverse Logistics is introduced as 

“[…] the term often used to refer to the role of logistics in recycling, waste 

disposal, and management of hazardous materials; a broader perspective includes all 

issues relating to logistics activities carried out in source reduction, recycling, 

substitution, reuse of materials and disposal”. (Stock, 1992) 

 

As defined by Fleischmann (2001), Reverse Logistics is the process of 

planning, implementing, and controlling the efficient, effective inbound flow and 

storage of secondary goods and related information opposite to the traditional supply 

chain direction for the purpose of recovering value or proper disposal. 
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According to Dowlatshahi (2005), Reverse Logistics is a $53 billion industry 

in the US alone. Costs derived from reverse-logistics activities in the US exceed $35 

billion per year. The customer returns rate may be as high as 15% of sales, and in 

sectors such as catalogue sales and e-commerce, it could reach as much as 35%. The 

following are the most frequently cited reasons for companies to engage in Reverse 

Logistics (Thierry, Salomon, Van Nunen, & Van Wassenhove, 1995; De Brito & 

Dekker, 2004; Ravi, Shankar, & Tiwari, 2005): 

• Economic reasons, both direct (consumption of raw materials, 

reduction of disposal costs, recovery of the added value of used products, etc.) 

and indirect (an environmentally friendly image and compliance with current 

or future legislation); 

• Legal reasons, because current legislation in many countries (including, 

for example, members of the European Union) holds companies responsible 

for recovering or properly disposing of the products they put on the market; 

• Social reasons, because society is aware of environmental issues and 

demands that companies behave more respectfully towards the natural 

environment, especially with regard to issues like emissions and the 

generation of waste. 

 

The above drivers are closely linked with the available options for recovering 

value from the products under consideration. Product recovery management may be 

defined as ‘the management of all used and discarded products, components, and 

materials for which a manufacturing company is legally, contractually, or otherwise 

responsible’ (Thierry et al., 1995). According to the re-entry point in the value adding 

process, there are the following forms of recovery: 
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• Repair. Products are brought to working order. This implies that 

typically the quality standard of repaired products is less than those for new 

products. Usually repair requires minor (dis)assembly, since only the non-

working parts are repaired or replaced. 

• Refurbishing. Products are upgraded to some pre-specified quality 

standards. Typically these standards are less than those for new products but 

higher than those for repaired products. 

• Remanufacturing. Used products are recovered such that the quality 

standards are as strict as those for new products. Necessary disassembly, over-

haul, and replacement operations are carried out in the recovery process. 

• Cannibalization. This involves selective disassembly of used products 

and inspection of potentially reusable parts. Parts obtained from 

cannibalization can be reused in the repair, refurbishing or remanufacturing 

process. 

• Recycling. Materials rather than products are recovered. These 

materials are reused in the manufacturing of new products. 

• Disposal. Products are disposed of in the form of landfilling or 

incineration. 

 

In the above categorization, the forms of refurbishing and cannibalization are 

also referred to as reuse. Refurbishing is denoting the reuse at the product level, 

whereas cannibalization is at the part level. Figure 1.1 describes the Reverse Logistics 

involving reuse, remanufacturing and recycling. 
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Figure 1.1 Reuse, remanufacturing and recycling in reverse logistics 
 

As the inbound flows of product recovery management, the returns flows are 

distinguished as follows: 

• End-of-use returns. Products are returned when they have reached the 

end of usage or lease period by customers. Remanufacturing and recycling are 

the major recovery options for them. 

• Commercial returns. Products are returned by the buyer to the original 

sender for refunding. Reuse, remanufacturing, recycling and disposal are 

possible recovery options for them. 

• Warranty returns. Products failing during use or damaged during 

delivery, spare parts, and product recalls due to security hazards are included 

in this category. Repair and disposal are possible recovery options for them. 

• Production scrap and by-products. Excess material is reintroduced in 

the production process. By-products are often transferred to alternative supply 

chain. Recycling and remanufacturing are possible recovery options for them. 

• Packaging. Crates, refillable bottles, pallets, reusable boxes and 

containers are best known examples in this category. Mostly, reusable 
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packaging is owned by logistics service providers who take charge of the 

recollection. Reuse and recycling are possible recovery options for them. 

 

A growing number of industries are now becoming interested in 

remanufacturing of end-of-use returns. Nowadays, products that can be 

remanufactured might include machine tools, medical instruments, copiers, 

automobile parts, computers, office furniture, mass transit, aircraft, tires etc. Table 1.1 

lists some large companies within these industries that currently apply product 

remanufacturing. 

 

Table 1.1 Some companies active in remanufacturing 
 

Company name Product References 

Abbott Laboratories Medical diagnostic instruments Sivinski and Meegan (1993) 
BMW Car engines, starting motors, 

alternators 
Vandermerwe and Oliff (1991) 

De Vlieg-Bullard Machine tools Sprow (1992) 
Grumman F-14 aircraft Kandebo (1990) 
Rank Xerox Copiers Thierry et al. (1995) 
Volkswagen Canada Car engines Brayman (1992) 

 
 

Reverse Logistics has also attracted the attention from academia in recent 

years (Prahinski & Kocabasoglu, 2006). The research in the field of Reverse Logistics 

has covered three aspects: design of network structure for collecting the returned 

products, joint inventory management of recoverable products and serviceable 

products, operational planning of recovery process and normal production 

(Fleischmann et al., 1997). Among these aspects, many of the studies published on 

Reverse Logistics have focused on the inventory management of recoverable products 

and serviceable products (Rubio, Chamorro, & Miranda, 2008). Some of the most 

notable works have analyzed the effects of the returns flow on traditional inventory-
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management models (see, for example, Fleischmann et al., 1997; De Brito & Dekker, 

2003; Minner, 2003; Fleischmann & Minner, 2004, for a review). Most of them are 

carried out on the basis of product recovery system, which undertakes the recovery 

process of returned products or goods. In many cases, the product recovery system 

also includes normal production of finished product. In practice, the product recovery 

system is often implemented as the remanufacturing of end-of-use returns. 

 

According to whether inventory of returned products is allowable, product 

recovery system is classified into autonomous recovery system and managed recovery 

system. The autonomous recovery system only contains the inventory of finished 

product. Once returned products enter the system, they are immediately put into the 

recovery process. Thus, simple Push-strategy is applicable to this kind of system. 

However, the managed recovery system contains inventories of both returned product 

and finished product. Study on this kind of two-echelon inventory system is more 

complex. 

 

In another aspect, product recovery system is classified according to 

differentiation of the returns flow or demands flow. In practice, the returned products 

are categorized according to different criteria, such as quality condition. Thus, the 

returns flow is divided. On the other hand, the demands flow is divided according to 

different customer segments, service levels, etc. For different demands flows, 

different recovery options are taken advantage of. Single-return-flow and single-

demand-flow recovery system has been widely studied in the field. There are also few 

studies on single-return-flow and multi-demand-flow recovery system. A more 

detailed literature review on product recovery system modeling is given in Chapter 2. 
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However, to the latest knowledge, multi-return-flow and multi-demand-flow recovery 

system is almost not investigated. 

 

Production planning and inventory control of the product recovery system has 

been attracting more research efforts. Many articles have appeared to explore the 

structure of the optimal policy or propose better heuristic policy for the product 

recovery system. In particular, we would review some important periodic review 

models here, which are related to our research. More details could be referred to in 

Chapter 2. 

 

Simpson (1978) proposes an inventory model based on fixed periodic review 

of a product recovery system with single product and single flow of returned items, 

and finds out the optimum solution structure for the multi-period problem. Inderfurth 

(1997) extends Simpson’s model by considering the impact of non-zero lead times 

both for production and recovery. Kiesmüller and Scherer (2003), present a method 

for the exact computation of the parameters which determine the optimal periodic 

policy in Simpson (1978). DeCroix (2006) extends Simpson (1978) and Inderfurth 

(1997) studies by identifying the structure of the optimal 

remanufacturing/ordering/disposal policy for a system where used products are 

returned to a recovery facility. Inderfurth (2001) presents a periodic review model for 

product recovery in stochastic remanufacturing systems with multiple reuse options, 

including a disposal option and incorporating uncertainties in returns and demands for 

the different serviceable options. Teunter (2002) considers a class of ordering policies 

and proposes EOQ (Economic Order Quantity) formulae (on the basis of the results 

proposed by Teunter, 2001) that are applicable to inventory systems with discounted 
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costs and with stochastic demand and return. DeCroix et al. (2005) propose a 

stochastic periodic review model of multistage system with stationary costs and 

stochastic demand over an infinite horizon. Ahiska and King (2010) discuss inventory 

optimization of a periodically reviewed single-product stochastic 

manufacturing/remanufacturing system with two stocking points (recoverable and 

serviceable inventories) developing a stochastic review period model by using 

Markov Decision Processes. 

 

From the aforementioned literature, we can find that most work is on single-

product recovery system involving a single returns flow and a single demands flow. 

Only Inderfurth (2001) considers multiple reuse options for multiple demands flows. 

However, the study on the product recovery involving multiple products and thus 

multiple demands flows is of practical value. 

 

 Many high-tech products, such as personal computers, copiers etc., have very 

short lifecycle. For their Original Equipment Manufacturers (OEMs) responsible for 

taking care of the end-of-use returns, well-implemented product recovery system is of 

much importance to both economical earnings and marketing image of the 

manufacturers. The product recovery system is required to be capable of dealing with 

the recovery of multiple products, which belong to the same product family. The 

returned items of each product can be recovered to finished items of any product at 

different cost.  

 

In addition, Behret and Korugan (2009) construct a simulation model by using 

the ARENA simulation program to analyze the effect of quality classification of 
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returned products, and find out that quality-based classification of returned products 

could result in significant cost savings especially when return rates are high. 

Therefore, the returned items of all the products are discriminated into multiple 

groups by different quality conditions or different cost requirements in the recovery 

process. 

 

1.2 Scope and Purpose of the study 

  

From the aforementioned literature, we can find that most work is on single-

product recovery system involving a single returns flow and a single demands flow. 

Only Inderfurth (2001) considers multiple reuse options for multiple demands flows. 

However, the study on the product recovery involving multiple products and thus 

multiple demands flows is of practical value. As one of the multi-product cases, the 

two-product case is easy to be implemented and could be the basis for the study on a 

general multi-product case. Therefore, a product recovery system involving two 

products is selected for this research. In addition, Behret and Korugan (2009) find that 

quality-based classification of returned products could result in significant cost 

savings. Thus, in the two-product recovery system studied, we classify the returned 

items of the two products into two groups by quality in contrast to most work 

disregarding this classification in the literature. 

 

As far as the knowledge about current literature, this research could be 

regarded as the first study on the multi-product recovery system involving two 

products and two flows of returned items. Furthermore, the extension of this research 

to a general multi-product recovery system is also discussed. 
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This research aims to obtain the optimal or near-optimal periodic review 

policy over a finite horizon for the inventory control of a two-product recovery 

system involving two products and two returns flows. 

 

A dynamic programming model has been developed in order to obtain the 

optimal policy of production and recovery decisions. However, the model is difficult 

to be solved efficiently as no nice property could be found. Thus, the special case of 

the multi-period problem, a single-period problem is investigated. The optimal multi-

level threshold policy has been obtained by solving KKT conditions for the single-

period problem. Even though this multi-level threshold policy might not be optimal 

for the multi-period problem, it is intuitive, easy to use and provides good managerial 

perspectives.  Hence, we apply this policy to the multi-period problem. It is further 

investigated how to compute the threshold levels, which depend not only on the 

current-period cost parameters but also the future cost-to-go function. We have 

developed an approximate dynamic programming model to derive the threshold levels 

in the multi-period situation. The performance of the threshold policy is proved to be 

good by comparing with the other two heuristic policies from the single-period 

problem under a wide range of settings. 

 

1.3 Organization 

 

The organization of this thesis is as follows. Chapter 2 reviews the research 

literature on product recovery system in the field of Reverse Logistics. Chapter 3 

describes the two-product recovery system in a finite horizon. A dynamic 
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programming model on this system is developed. Chapter 4 studies the two-product 

recovery system in a single period. Some good properties on the model of the system 

are proved. The optimal multi-level threshold policy of production and recovery 

decisions are obtained by solving KKT conditions. Furthermore, the managerial 

insights of the policy are provided. In addition, the extension from the two-product 

situation to a general multi-product situation is discussed. The multi-level threshold 

policy is assumed to be used for the multi-period problem. Chapter 5 focuses on the 

study of the two-product recovery system in the situation of lost sales over a finite 

horizon. An ADP model on the system is developed to help derive the threshold levels. 

This multi-level threshold policy is compared with two heuristic policies derived from 

the optimal policy of the single-period problem. In addition, the impact of system 

parameters is investigated. Chapter 6 and Chapter 7 consider the two-product 

recovery system in the situation of backorder over a finite horizon. In particular, 

Chapter 7 investigates the lead time effect of production and recovery processes. 

Chapter 8 provides a summary of the findings and proposes several possible 

directions for the future research. 
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Chapter 2    Literature review 

 

Chapter 2 reviews the previous studies on production and inventory control of 

product recovery system in the field of Reverse Logistics. Section 2.1 presents a 

classification table with the objective of intelligibly describing the papers. The studies 

on production and inventory control of product recovery system with single return 

flow and single demand flow will be reviewed in Section 2.2. Section 2.3 introduces 

the studies on production and inventory control of product recovery system with 

multiple flows of returns or multiple flows of demands or both. 

 

The research in the field of Reverse Logistics has covered three aspects: 

design of network structure for collecting the returned products, joint inventory 

management of recoverable products and serviceable products, operational planning 

of recovery process and normal production (Fleischmann et al., 1997). This branching 

is due to the stages of reverse logistics activities. From the other perspectives, Reverse 

Logistics covers green supply chain, closed-loop supply chain etc. Various closed-

loop supply chain processes and modeling framework of the closed-loop supply chain 

are presented (see, for example, Ferguson, M., Souza, G., 2010; Ferguson, M., 2010; 

Drake, M.J., Ferguson M., 2008, for a review). Paksoy et al. (2011) investigate a 

number of operational and environmental performance measures, in particular those 

related to transportation operations, within a closed-loop supply chain. 

 

However, we would focus on production planning and inventory management 

of product recovery system in the literature review. 
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2.1 Classification 

 

There are considerable amounts of research work on production planning and 

inventory management of product recovery system. Hence, it is helpful to provide a 

classification table, which is used to describe the papers that will be reviewed in the 

following sections. A general overview of Operations Management problems 

associated with product recovery is provided in Thierry et al. (1995). A review of 

quantitative models in the field of reverse logistics is given by Fleischmann et al. 

(1997). A review of environmentally conscious manufacturing and product recovery 

is given by Ilgin et al. (2010). 

 

Table 2.1 Legend for classification system 
 

Elements Descriptions 
Length of horizon Single period/Multiple periods/Infinite horizon 
Demand type Deterministic demand/Stochastic demand 
Review policy Periodic review/Continuous review 
Sales Backorder/Lost sale 
Products Single product/Multiple products 
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2.2 Product recovery system with single return flow and single 

demand flow 

 
 

 

Figure 2.1 Product recovery system with single return flow and single demand flow 
(adapted from Fleischmann et al., 1997) 

 In this section we review literature concerning quantitative inventory control 

models of product recovery system with single return flow and single demand flow, 

which are independent of each other. From a mathematical inventory theory 

perspective, deterministic and stochastic models can be distinguished, and the latter 

can be further subdivided into continuous and periodic review models. We treat each 

of these groups separately below. 

 

2.2.1 Deterministic models 

 

In deterministic models, the demand flow and return flow are known a priori 

for the entire planning horizon. Using the taxonomy of inventory theory, Table 2.2 

Demand 

 

Recovery 

Production 

or Procurement 

Disposal 

Recoverable 

inventory 

Serviceable 

inventory 

Return 
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lists deterministic models from literature. For each model, the planning horizon, and 

the cost criterion of the objective function are indicated. Some models explicitly 

consider the two types of inventory distinguished in Figure 2.1, whereas others take 

into account only a single aggregated stock point. Moreover, disposal of excess 

returns may or may not be allowed. In addition, fixed costs and lead times may or 

may not be included in the recovery system considered. Table 2.2 has listed some 

papers with their model characteristics. 

Table 2.2 Deterministic inventory models of product recovery system 
 

Literature Planning 

horizon 

Cost 

criterion 

Number of 

stock points 

Disposal Fixed 

costs 

Lead times 

Schrady (1967) ∞ Avg 2 - + + 
Mabini et al. 
(1992) 

∞ Avg 2 - + + 

Richter (1994) ∞ Avg 2 + + - 
Richter (1996, 
1997) 

∞ Avg 2 + + - 

Teunter (2001) ∞ Avg 2 + + - 
Richter and 
Sombrutzki 
(2000) 

T Total 1 - + - 

Beltran and 
Krass (2002) 

T Total 1 + + - 

Minner and 
Kleber (2001) 

T Total 2 + - - 

 
 

Schrady (1967) first extended the classical economic order quantity (EOQ) 

model by taking return flow into account. The model is developed on the product 

recovery system with constant demand rate and return rate, and fixed lead times for 

production and recovery processes. Disposal is not allowed. The costs considered are 

fixed setup costs for production and recovery processes and linear inventory holding 

costs for returned products and finished products. A control policy was proposed with 

fixed lotsizes for production and recovery where each production batch is followed by 

n identical recovery batches. The formulae on the optimal value of n and on the 

optimal lotsizes are derived similar to the classical EOQ model. 
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Richter (1994) considered Schrady’s model for alternating production and 

recovery batches (i.e. n = 1 in the above setting) and analyzed the dependence of the 

cost function on the return rate. He shows that costs are convex in the return rate if 

holding costs for recoverables do not exceed serviceable holding costs. Richter (1996, 

1997) extends the analysis to the case of multiple consecutive production and 

recovery batches. 

 

Teunter (2001) considered the same model for a modified disposal policy. The 

model assumes that all returns occurring during a certain time span are disposed, 

while all returns thereafter are accepted again. Disposal involves a linear cost per item. 

Moreover, it assumes different holding costs for recoverable, recovered, and produced 

items. The formulae on the optimal lotsizes in the policy are derived. 

 

Koh et al. (2002) considered a joint EOQ and EPQ model assuming a 

proportion of the used products to be returned. They found closed form expressions 

for the economic order quantity for new products and the optimal inventory level 

where the recovery process starts. Further they proposed a numerical procedure, 

which calculates the optimal number of set-ups in both recovery and production 

processes. Konstantaras and Papachristos (2008) proposed another method to obtain 

the optimal number of set-ups and proved it to be more computationally efficient. 

 

Besides the above static models, a few dynamic lotsizing models similar to the 

classical Wagner-Whitin model (Wagner and Whitin, 1958) have been proposed in 



Chapter 2 Literature review 

 

17 
 

the field. Most of these models consider a single stock point, which aggregates 

recoverable inventory and serviceable inventory. 

 

Beltran and Krass (2002) considered dynamic lotsizing for a single stock point 

facing both demand and returns. This is regarded as the modification of the original 

Wagner-Whitin model by allowing negative (net) demand. The authors proposed a 

dynamic programming algorithm, which is of different complexity in the general case 

and restrictive case. 

 

Richter and Weber (2001) extended the reverse Wagner-Whitin model to the 

case with additional variable manufacturing and remanufacturing cost. The authors 

proved the optimality of a policy starting with recovery before switching to 

production and gave an estimation for the optimal switching point. In addition, the 

impact of the disposal of excess inventory was investigated on the solution.  

 

Minner and Kleber (2001) proposed an optimal control policy for the product 

recovery system, where in addition to demand and returns, all actions (production, 

recovery and disposal) are modeled as non-stationary continuous processes. Results 

are illustrated in a scenario with seasonality and a fixed time lag between demand and 

returns. Pontryagin’s Maximum Principle is applied to obtain the optimal production 

and remanufacturing policies for deterministic but dynamic demands and returns 

when backorders are not allowed. 

 

Kiesmüller (2003b) investigated a one product recovery system for dynamic 

and deterministic demand and return rates. The optimal production rate, recovery rate 
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and disposal rate are determined for the system under the assumptions of a linear cost 

structure and zero lead time for production and recovery. Furthermore, the author 

showed how the results based on zero lead times were used to solve the control 

problems with positive lead times. 

 

Teunter et al. (2006) study the dynamic lot sizing problem with product 

returns. The authors propose a model that aims at determining those lot sizes for 

manufacturing and remanufacturing by minimizing the total cost composed of holding 

cost for returns and (re)manufactured products and set-up costs. 

 

Konstantaras and Papachristos (2007) propose a single product recovery and a 

periodic review inventory model with finite horizon and remanufacturing, 

manufacturing options. Demand is satisfied only by remanufactured or by newly 

manufactured products. They aim at identifying an optimal policy that specifies the 

period of switching from remanufacturing to manufacturing, the periods where 

remanufacturing and manufacturing activities take place and the corresponding lot 

sizes. 

 

2.2.2 Continuous review stochastic models 

 

Most continuous review models on the product recovery system are stationary 

and analyze the infinite horizon system behavior. They focus on determining optimal 

parameter values for predetermined control policies. In almost all cases, demand and 

returns are modeled as independent Poisson processes. Table 2.3 has listed some 

papers with their model characteristics. 
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Table 2.3 Continuous review inventory models of product recovery system 
 

Literature Planning 

horizon 

Cost 

criterion 

Number of 

stock points 

Disposal Fixed 

costs 

Lead 

times 
Heyman (1977) ∞ Avg 1 + - - 
Muckstadt and Iscaac 
(1981) 

∞ Avg 1 - + + 

Van der Laan et al 
(1996a,b) 

∞ Avg 1 + + + 

Yuan and Cheung 
(1998) 

∞ Avg 1 - + - 

Teunter (2002) ∞ NPV 2 - + - 
Van der Laan et al 
(1999a,b) 

∞ Avg 2 - + + 

Van der Laan and 
Salomon (1997) 

∞ Avg 2 + + + 

Inderfurth and van 
der Laan (1998) 

∞ Avg 2 + + + 

 
 

The proposed models can be divided into two groups, with one considering a 

single aggregated stock point and the other distinguishing recoverable and serviceable 

inventories. Within the former class, Heyman (1977) analyzed disposal policies to 

optimize the trade-off between additional inventory holding costs and production cost 

savings. The demand and returns are modeled as general independent compound 

renewal processes. He proposed a single parameter disposal level strategy: incoming 

returns exceeding this level are disposed of. For the case of Poisson distributed 

demands and returns, he derived an explicit expression for the optimal disposal level. 

For generally distributed demands and returns, an approximation is given. 

 

Muckstadt and Isaac (1981) considered a similar model where the recovery 

process is modeled as a multi-server queue. However, disposal decisions are not taken 

into account. The costs considered comprise serviceable holding costs, backorder 

costs, and fixed production costs. The production process is controlled by a traditional 

(s, Q)-rule whereas returned products directly enter the recovery queue. Values for s 
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and Q are determined based on an approximation of the distribution of the net 

inventory.  

 

Van der Laan et al. (1996a, b) proposed an alternative procedure for 

determining the control parameters in the above (s, Q)-model based on an 

approximation of the distribution of the net demand during the production lead time. 

A numerical comparison shows this approach to be more accurate in many cases. 

Moreover, the model is extended with a disposal option, for which several policies are 

compared numerically. 

 

Yuan and Cheung (1998) model dependent demand and returns by assuming 

an exponentially distributed market sojourn time. Moreover, items may eventually be 

lost with a certain probability. Lead times for both recovery and production are zero 

and there is no disposal option. The authors proposed an (s, S) reorder-order-up-to 

policy for production based on the sum of items on hand and in the market. The long-

run average costs by this policy are calculated based on a two-dimensional Markov 

process. A numerical search algorithm is proposed for finding optimal control 

parameter values. 

 

Van der Laan and Teunter (2006) considered a product recovery system 

including manufacturing and remanufacturing, both of which have equal non-zero 

lead times. The cost structure consists of setup costs, holding costs, and backorder 

costs. The system is controlled by certain extensions of (s, Q) policy, called push and 

pull remanufacturing policies. For all policies, the authors presented simple, closed-
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form formulae for approximating the optimal policy parameters under a cost 

minimization objective. 

 

Ouyang and Zhu (2008) extended traditional (s, Q) model into (sp, Q, sd) 

order-disposal strategy to control the manufacturing/remanufacturing hybrid system 

assuming demand and returns to be independent Poisson processes. They derived the 

expression of the system expected total cost per unit time as a function of the control 

parameters sp, Q and sd. They developed heuristic lower and upper bounds for the 

optimal solution. They compared the disposal strategy with the non-disposal strategy 

and investigated the robustness of the optimal solution through the numerical 

examples. 

 

Teunter (2002) distinguished serviceable and recoverable inventory and 

evaluated an EOQ-based heuristic under assuming demand and returns to be 

independent Poisson processes. Lotsizes for production and recovery are determined 

in a deterministic model (see Teunter, 2001, discussed above). Teunter and Vlachos 

(2002) investigated the impact of a disposal option for a similar situation. They 

concluded that only under certain circumstances, the disposal option can bring 

economic benefits. 

 

Van der Laan et al. (1999a, b) analyzed different policies for controlling 

serviceable and recoverable inventory in the above setting, considering non-zero lead 

times for production and recovery. In particular, a Push-strategy and a Pull-strategy 

for recovery are considered while production is controlled by an (s, S)-policy 

concerning the serviceable inventory position (serviceable inventory on hand minus 
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backorders plus outstanding orders). The Pull-strategy-based recovery is also 

controlled by an (s, S) policy based on the serviceable inventory position. Long-run 

expected costs for both strategies are computed by evaluating a two-dimensional 

Markov process. Control parameter values are determined via enumeration. 

Furthermore, Inderfurth and van der Laan (2001) improved the above model with a 

modified inventory position used for the case of a large difference between production 

lead time and recovery lead time. The modification for the inventory position is that 

only those outstanding orders are considered within a certain time window. 

 

Van der Laan and Salomon (1997) extended the above model to include a 

disposal option. For the Pull-strategy, the disposal is triggered by an upper bound on 

the recoverable inventory. However, for the Push-strategy, since the recoverable 

inventory is limited by the recovery lotsize, the disposal is controlled based on the 

serviceable inventory position. The authors showed that a disposal option 

significantly reduces the system costs by avoiding excessive stock in particular for 

large return rates. 

 

2.2.3 Periodic review stochastic models 

 

The models within this context aim to seek an optimal periodic review policy 

for production, recovery, and/or disposal decisions. The models can be distinguished 

by considering an aggregated stock point or both recoverable inventory and 

serviceable inventory. Within the former class, models differ mainly with respect to 

the assumptions on the relation between demand and returns. Table 2.4 has listed 

some papers with their model characteristics. 
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Table 2.4 Periodic review inventory models of product recovery system 
 

Literature Planning 

horizon 

Cost 

criterion 

Number of 

stock points 

Disposal Fixed 

costs 

Lead 

times 
Whisler (1967) T/∞ Avg 1 + - - 
Kelle and Silver 
(1989) 

T Total 1 - + - 

Toktay et al (1999) ∞ Avg 1 - - + 
Buchanan and Abad 
(1998) 

T Total 1 - - - 

Cohen et al (1980) T Avg 1 - - - 
Inderfurth et al (1998) T/∞ Avg N+1 + - + 

 
 

Whisler (1967) analyzed a single stock point receiving issued item returns 

after a stochastic market sojourn time and constructed a queueing model. The optimal 

control policy was found to be characterized by two critical numbers L < U. 

Whenever the inventory level at a review epoch lies outside the interval [L, U] it is 

optimal to produce up to L or dispose down to U, respectively. For intermediate 

inventory levels the optimal production and disposal decisions depend on additional 

parameters. 

 

Kelle and Silver (1989) analyzed a similar situation where issued items are 

returned after a stochastic time lag or are lost eventually. Thus, due to positive 

average net demand, no disposal option is included. On the other hand, fixed 

production costs are considered. The authors formulated a chance-constrained integer 

program, which can be transformed into a dynamic lotsizing model with possibly 

negative demand, based on an approximation of the cumulative net demand. 

 

Buchanan and Abad (1998) modified the above model by assuming for each 

period that returns are a stochastic fraction of the number of items in the market. This 

comes down to an exponentially distributed market sojourn time. Moreover, in each 
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period a fixed fraction of items from the market is lost. Under these conditions the 

authors derived an optimal production policy depending on two state variables, 

namely the on-hand inventory and the number of items in the market. 

 

Cohen et al. (1980) considered a similar system assuming a fixed market 

sojourn time. Moreover, a given fraction of demand in each period will not be 

returned. In addition, a certain fraction of on-hand inventory is lost due to decay in 

each period. The authors proposed a heuristic order-up-to policy which is optimal for 

the case of a market sojourn time of one period. 

 

Simpson (1970) assumed demand and returns to be independent with a 

positive expected net demand. He proposed a heuristic for computing an order-up-to 

level under linear costs and a stochastic production lead time when neglecting 

intermediate backorders cleared by returns. 

 

Mahadevan et al. (2003) modeled a product recovery system in the 

remanufacturing context assuming demand and returns to be independent Poisson 

processes. Taking no disposal into account, they applied a Push-strategy to combining 

production and remanufacturing decisions. They developed several heuristics based 

on traditional inventory models and investigated the performance of the system as a 

function of return rates, backorder costs, and lead times of production and 

remanufacturing. In addition, the lower and upper bounds on the optimal solution 

were developed. 
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Kiesmüller and Van der Laan (2001) considered the impact of dependency 

between demand and returns, which are assumed to be Poisson processes. The returns 

are correlated to the demand through a constant sojourn time in the market. In 

addition, two probabilities are introduced: the return probability and the probability 

that a returned item is in a sufficiently good condition to be recovered. By comparing 

the performance on the total average costs with the models neglecting the dependency, 

the authors suggested that it was worth to use the dependency information between 

demand and returns. 

 

A special class of periodic review models considering product returns is 

newsboy models. Vlachos and Dekker (2003) assumed a constant fraction of the sold 

items to be returned and re-sold only once. In Mostard and Teunter (2006), each sold 

item has a constant probability of being returned and once returned it has a constant 

probability of being recovered. Returned items can be re-sold more than once. In the 

above two models the optimal order quantity for the single period was sought. 

 

In addition, within the context of models distinguishing recoverable inventory 

and serviceable inventory, Simpson (1978) first considered the trade-off between 

material savings due to reuse of returned products versus additional inventory holding 

costs. Demand and returns of each period are modeled as generally distributed 

random variables that are correlated with known information. Optimality of a three 

parameter (L, M, U) policy to control production, recovery, and disposal is shown 

when neither fixed costs nor lead time are involved. The policy can be interpreted as 

‘recover while serviceable inventory is below M’ and then adjust the echelon 

inventory (i.e. the sum of both recoverable inventory and serviceable inventory) 
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according to Whisler’s (L, U)-policy. Kiesmüller and Scherer (2003) provided a 

method for the exact computation of the parameters in the (L, M, U) policy. Since the 

exact computation is quite time consuming, they also provided two different 

approximations. One is based on an approximation of the value-function in the 

dynamic programming problem while the other approximation is based on a 

deterministic model. 

 

Ahiska and King (2010) discuss inventory optimization of a periodically 

reviewed single product stochastic manufacturing/remanufacturing system with two 

stocking points (recoverable and serviceable inventories) developing a stochastic 

review period model by using Markov Decision Processes. 

 

Inderfurth (1997) extended Simpson’s model by considering the impact of 

non-zero lead times both for production and recovery. The difference between both 

lead times was shown to determine the system complexity. If lead times are equal 

Simpson’s policy can be shown to remain optimal by considering an appropriate 

inventory position rather than the net stock. In all other cases growing dimensionality 

of the underlying Markov model prohibits simple optimal control rules. A similar 

result holds if recoverables cannot be stored but need to be recovered or disposed of 

immediately. In this case Whisler’s (L, U)-policy is optimal for equal lead times and 

for a production lead time excess of one period. All other cases result again in fairly 

intractable situations. 

 

DeCroix (2006) extends Simpson (1978) and Inderfurth (1997) studies by 

identifying the structure of the optimal remanufacturing/ordering/disposal policy for a 
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system where used products are returned to a recovery facility. In particular, the 

author analyzes a multiechelon inventory system with inventory stages arranged in 

series. DeCroix et al. (2005) propose a stochastic periodic review model of multistage 

system with stationary costs and stochastic demand over an infinite horizon. Note that 

in the model, demand can be negative representing returns from customers. The 

authors also show the optimality of an echelon basestock policy for an infinite-

horizon series system where returns go directly to stock. 

 

Kiesmüller (2003a) considered similar situation where production lead time 

and recovery lead time are different. The recovery system is controlled by (S, M)-

policy, described by produce-up-to level S and remanufacture-up-to level M.  In 

contrast with previous models using inventory position as information for decision 

making, the author defined two variables aggregating related information for 

production and recovery decisions respectively. The two variables are dependent on 

the lead time and include all information about outstanding production and recovery 

orders which will arrive before the new released order. By means of numerical 

examples, the system performance, measured in average costs per time unit, can be 

improved substantially especially for large lead time differences. 
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2.3 Product recovery system with single return flow and multiple 

demand flows 

 

 

Figure 2.2 Product recovery system with single return flow and multiple demand 
flows (adapted from Kleber et al., 2002) 

 

In many situations, there are different options of reusing old products. In more 

details, old products are reused for making new products or spare parts. The new 

products from reusing old products are for different customer classes having different 

quality requirements. Therefore, multiple demand flows are possibly included in the 

product recovery system. 

 

Kleber et al. (2002) presented a continuous model of a product recovery 

system with returns of a single product and multiple alternating recovery options. 

Each of the recovery options corresponds to different demand classes, e.g. different 

product qualities or different markets. In the model, disposal option is included and 
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production option is alternative for each recovery option. The product recovery 

system is described in Figure 2.2. Demands and returns are assumed to be 

deterministic but dynamic. The optimal policy of production, recovery and disposal is 

obtained under linear cost by applying Pontryagin’s Maximum Principle. 

 

Inderfurth et al. (2001) investigated a periodic review model of a product 

recovery system with returns of a single product and multiple alternating recovery 

options. The system also includes one disposal option. There is no production option 

as alternation for each recovery option. Backorder is allowed in the system. Demands 

and returns are assumed to be stochastic with known probability distribution. Taking 

advantage of a linear allocation rule on product returns, they obtained a fairly simple 

near-optimal policy, characterized by a dispose-down-to level and a recover-up-to 

level for each recovery option. 

 

The above-presented two models have considered single returns flow, i.e. 

returns of a single product. However, in practice, returns of even a single product can 

vary in quality condition. Then, multiple flows of returns have to be considered, each 

representing a certain quality class. Behret and Korugan (2009) constructed a 

simulation model by using the ARENA simulation program to analyze the effect of 

quality classification of returned products. The analysis denotes that under different 

cost scenarios quality based classification of returned products have brought 

significant cost savings, especially when return rates are high. 

 

To recent knowledge of product recovery systems in the literature, multiple 

flows of returns and multiple flows of demands are not appearing at the same time in 
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these product recovery systems. However, as of the practical value, the product 

recovery system needs to be studied, which includes both multiple flows of returns 

and multiple flows of demands. Due to this, the following chapters will focus on the 

study of two-product recovery system. The returned items of the two products are 

discriminated into two groups by the required cost in recovery of them rather than by 

product type. In addition to recovery options using two groups of returned items, the 

two-product recovery system includes production option to make finished items of 

two products in order to satisfy customer demands. More details of the two-product 

recovery system will be introduced in Chapter 3. Obviously, the two-product recovery 

system includes two flows of returns and two flows of demands. 
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Chapter 3    The study on two-product recovery system in a 

finite horizon 

 

Chapter 3 focuses on the study of the two-product recovery system in a finite 

planning horizon. In the system, the stocking of the two products aims to satisfy 

stochastic customer demands in each period of the planning horizon. The inventory of 

the two products can be instantly replenished by production and recovery process as 

both processes are assumed to have zero lead time. When the system is short of 

inventory in a certain period, the sale would be either lost forever or allowed to be 

backordered in future periods. Section 3.1 introduces the details of the two-product 

recovery system in a finite horizon. In Section 3.2, a dynamic programming model of 

the system is developed in order to maximize the expected total profit in the finite 

horizon. Finally, Section 3.3 summarizes the main work in this chapter. 

 

3.1 Introduction 

 

Two products, which belong to the same product family, are provided to 

customers by an Original Equipment Manufacturer. At the same time, the 

manufacturer is required to take responsibility of dealing with returned products, 

which have reached the end of the usage at customers. The manufacturer would take 

advantage of the returned products in the recovery for finished products, which are 

assumed to be as good as those from normal production. The manufacturer would 

build up the two-product recovery system, in which both recovery process and normal 

production are used to make finished products. As the two products belong to the 

same product family, returned item of each old product can be recovered to finished 
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item of both new products. Therefore, the returned items of both old products 

regardless of product identity are discriminated into two groups by quality or the cost 

requirement in the process of value extraction and recovery. The returned items of 

each group are assumed to consume the same cost in the recovery for finished items 

of any certain product. After the discrimination, one group of returned items is always 

recovered at lower cost than the other. In addition, normal production is more costly 

than recovery such that normal production would be only used in case of insufficient 

returned items available for recovery. 

 

In particular, the occurring events in each period of the finite horizon are 

described here. Firstly, returned items arrive at the recovery system at the beginning 

of each period. They will be used for recovery in this period. Secondly, after 

observing on-hand inventories of finished products, the manufacturer would make 

production and recovery decisions. After that, the inventories of finished products get 

replenished instantly. The inventories are used to satisfy demands later in the same 

period. If the demands of current period could not be fully satisfied, the unsatisfied 

demands would be either lost forever or allowed to be backordered in future periods. 

Anyway, the penalty cost on the shortage would be incurred. On the other hand, if 

there are inventories left at the end of the period, the remaining inventories would be 

carried to subsequent periods and inventory holding cost would be counted in current 

period. Finally, the remaining returned items are disposed of and the disposal cost is 

assumed to be negligible. For the recovery system, the revenue is generated from 

selling finished products. The total cost consists of production cost, recovery cost, 

inventory holding cost of finished products and penalty cost of shortage. 
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The objective function is to maximize the expected total profit in a finite 

horizon. In order to fulfill the aim, we need to find the optimal policy of production 

planning and inventory control for the system. 

 

3.2 Production and recovery decisions for two products in the multi-

period context 

3.2.1 Assumptions and notations 

 

Firstly, in order to focus on the interesting aspects of the system and also 

simplify the modeling, we would make the following assumptions. The relaxation of 

certain assumptions has been discussed in Chapter 8.  

 

1) Demands for the two products follow independent stationary general 

distributions; 

2) Production and recovery processes of each product have zero lead time; 

3) No setup cost is considered for production or recovery process of each product; 

4) One unit of returned product is recovered to one unit of finished product; 

5) No disposal cost or salvage value is considered for the remaining returned 

products; 

6) No stocking of the remaining returned products is required in each period. 

 

Secondly, in order to simplify the notation, the two products in the system are 

denoted as product 1 and product 2 respectively. In addition, the returned items of two 

products are discriminated into two groups, denoted as group 1 and group 2 
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respectively. Without the loss of generality, returned item in group 2 is assumed to be 

recovered at lower cost than group 1 for each product. Thus, the related notations are 

listed as follows (i = 1, 2; j = 1, 2): 

 

M  length of planning horizon; 

( )t

ijr   quantity of recovering returned item in group i to product j in 

period t; 

( )t

jp   quantity of producing product j in period t; 

( )t

Sjx   initial inventory position of product j in period t; 

sj  selling price of product j; 

cRij unit cost of recovering returned item in group i to product j; 

cPj  production cost of per unit product j; 

hj  inventory holding cost of per unit product j per period; 

vj  penalty cost of per unit shortage of product j per period; 

( )t
iR   returned items in group i in period t; 

( )t

jD   demand for product j in period t; 

( , , )f x µ σ     probability density function w.r.t. x with known parameter 

( , )µ σ ; 

ERt  expected revenue in period t; 

ECt  expected cost in period t; 

EPt  expected profit in period t; 

( ) ( )
1 2( , )t t

t S Sf x x  expected maximum of the expected total profit from period t till 

final period. 
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The two-product recovery system is described in Figure 3.1. The Figure has 

shown inbound flows of returned items in group 1 and group 2, and outbound flows of 

product 1 and product 2 in demand. In particular, the inbound flow of returned items 

in group 1 and group 2 respectively, are shown on the upper and lower left of this 

Figure. On the other hand, the outbound flow of product 1 and product 2 respectively, 

are shown on the upper and lower right of this Figure. In addition, it can be seen from 

the Figure that there is no stocking of returned items in the system. Once the returned 

items have been allocated to the recovery for finished products, the remaining 

returned items would be disposed of. In the Figure, the time index (t) is omitted from 

the related notations for simplicity. All the notations shown in the Figure are related 

to the same period. 

 

Figure 3.1 The structure of the two-product recovery system 
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 The sequence of the occurring events and cost accounting of a certain period is 

described in Figure 3.2 as follows (i, j = 1, 2):  

 

 

Figure 3.2 The occurring events of the two-product recovery system at period t 
 

In addition, some restrictions on cost parameters are imposed so as to ensure 

the economical meaningfulness of the study. Firstly, for each product, selling price is 

higher than production cost, and penalty cost of shortage is higher than the profit from 

production. Therefore, there exist:  

1 1 2 2 1 1 1 2 2 2,   ,   ,   .
P P P P

s c s c v s c v s c> > > − > −   

 

Secondly, for each product, production cost is higher than recovery cost. 

Otherwise, recovery is unnecessary. Therefore, there exist: 

1 11 1 21 2 12 2 22,   ,   ,   .
P R P R P R P R

c c c c c c c c> > > >  

 

Finally, the recovery using returned item in group 2 is cheaper than that using 

returned item in group 1. Therefore, there exist: 

21 11 22 12,   .R R R Rc c c c< <  

 

Ri
(t) 

Period t 

Production and  
recovery: pj

(t), r1j
(t), r2j

(t) 
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3.2.2 Dynamic programming model of the two-product recovery system in 

the multi-period context 

We would develop a dynamic programming model of the two-product 

recovery system in a finite horizon. The objective is to obtain the optimal policy of 

production and recovery decisions for the recovery system. Firstly, we consider the 

calculation of the expected profit in period t. At the beginning of the period, the 

system receives the returned items of two products. They are discriminated into group 

1 and group 2, denoted as ( )
1

t
R  and ( )

2
t

R  respectively. The initial inventory position of 

product 1 and product 2 are found to be ( )
1
t

Sx  and ( )
2
t

Sx  respectively. Then, we would 

allocate the returned items to the recovery for finished products. At the same time, 

production would be used in case of insufficient returned items. Once production and 

recovery decisions have been made, the inventory of finished products would get 

replenished instantly. Then, the inventory would be used to satisfy the realization of 

stochastic demands in this period. The demands for the two products have been 

assumed to follow the known independent probability distributions. The expected 

revenue at period t is calculated as follows: 

( ) ( ) ( ) ( )
1 1 11 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 1 1 1 1 11 21 1 1 1 1

( ) ( ) ( ) ( ) ( )
2 2 2 2 12 22

( , , , , , , , )

( )) ( , , )

         ( )

t t t t
S

t t t t t t t t

t S S

t t t t t t t

S
x p r r

t t t t t

S

ER x x p p r r r r

s s s D x p r r f D dD

s D x p r r

µ µ µ σ
∞

+ + +
= + − − − − −

− − − − −

∫

( ) ( ) ( ) ( )
2 2 12 22

( ) ( )
2 2 2 2( , , ) .

t t t t
S

t t

x p r r
f D dDµ σ

∞

+ + +∫
                      (3.1) 

 

The consumption of returned items in two groups is no more than their 

availability. Therefore, there are the following constraints: 

( ) ( ) ( )
11 12 1

( ) ( ) ( )
21 22 2

;

.

t t t

t t t

r r R

r r R

+ ≤

+ ≤
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At period t, the cost includes production cost, recovery cost, inventory holding 

cost of finished products and penalty cost of shortage. Therefore, the expected cost of 

period t is calculated as follows: 

( ) ( ) ( )
1 1 11

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 11 11 12 12 21 21 22 22

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 11 21 1 1 1 1 10

( , , , , , , , )

   ( ) ( , , )
t t t

S

t t t t t t t t

t S S

t t t t t t

P P R R R R

x p r
t t t t t t t

S

EC x x p p r r r r

c p c p c r c r c r c r

h x p r r D f D dDµ σ
+ +

= + + + + +

+ + + + −
( )

21

( ) ( ) ( ) ( )
1 1 11 21

( ) ( ) ( ) ( )
2 2 12 22

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 11 21 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 12 22 2 2 2 2 20

( )
2 2 2

   ( ) ( , , )

   ( ) ( , , )

   (

t

t t t t
S

t t t t
S

r

t t t t t t t

S
x p r r

x p r r
t t t t t t t

S

t

S

v D x p r r f D dD

h x p r r D f D dD

v D x

µ σ

µ σ

+

∞

+ + +

+ + +

+ − − − −

+ + + + −

+ −

∫

∫

∫

( ) ( ) ( ) ( )
2 2 12 22

( ) ( ) ( ) ( ) ( ) ( )
2 12 22 2 2 2 2) ( , , ) .

t t t t
S

t t t t t t

x p r r
p r r f D dDµ σ

∞

+ + +
− − −∫

 

           (3.2) 

 

As
t t t

EP ER EC= − , the expected profit of period t is calculated as follows: 

 

( ) ( ) ( ) ( )
1 1 11 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 1 1 2 2 11 11 12 12 21 21 22 22

( ) ( ) ( ) ( ) ( )
1 1 1 11 21 10

( , , , , , , , )

   ( ) (
t t t t

S

t t t t t t t t

t S S

t t t t t t

P P R R R R

x p r r
t t t t t

S

EP x x p p r r r r

s s c p c p c r c r c r c r

h x p r r D f

µ µ

+ + +

= + − − − − − −

− + + + −∫
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1 1 11 21

( ) ( ) ( ) ( )
2 2 12 22

( ) ( )
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 11 21 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 12 22 2 2 2 2 20

, , )

   ( ) ( ) ( , , )
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t t t t
S

t t t t
S

t t

t t t t t t t

S
x p r r

x p r r
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S
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t t t t
S

t t t t t t t
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           (3.3) 

 

The expected maximum total profit from period t till final period is denoted 

as ( ) ( )
1 2( , )t t

t S S
f x x . Assume the expected maximum total profit beyond the planning 

horizon to be equal to zero, i.e. ( 1) ( 1)
1 1 2( , ) 0.M M

M S Sf x x
+ +

+ =  Thus, for the multi-period 
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problem, the Bellman’s equation of dynamic programming model can be written as 

follows (t = 1, 2,..., M): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( )
1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 11 12 21 22

, , , , , ,

( 1) ( 1)
1 1 2

,

( , ) { max { ( , , , , , , , )

                      [ ( , )]}}.

t t t t t t t t

t t

t t t t t t t t t t

t S S t S S
R R p p r r r r

t t

t S S
D D

f x x E EP x x p p r r r r

E f x x
+ +

+

=

+

           (3.4) 

 

The objective of studying the dynamic programming model is to obtain the 

optimal policy for the two-product recovery system in a finite horizon. However, due 

to the curse of dimensionality of dynamic programming, it is intractable to solve 

dynamic programming problem involving more than two states. 

 

The expected maximum total profit of the final period can be expressed as 

follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( )
1 2

, , , , , ,
( , ) [ max ].

M M M M M M M M

M M

M S S M
R R p p r r r r

f x x E EP=     (3.5) 

 

As shown in Formula (3.5), the maximization of the expected profit in a single 

period would be the standing point for solving the dynamic programming model. 

 

3.3 Summary 

In this Chapter, firstly, we have introduced the two-product recovery system in 

a finite horizon. Secondly, we have developed a dynamic programming model of the 

two-product recovery system. In the following Chapter, we would study the two-

product recovery system in a single period, which could be the basis for further study 

on the recovery system in the multi-period situation. 
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Chapter 4    The study on two-product recovery system in a 

single period 

 

Chapter 4 focuses on the two-product recovery system in a single period. 

Section 4.1 introduces the system. In Section 4.2, the expected profit maximization 

model of the system is developed. Furthermore, the objective function of the model 

proves to be concave on production and recovery decisions. Therefore, the optimal 

solution to the model can be obtained by solving KKT conditions. Based on the 

optimal solution, the optimal multi-level threshold policy is obtained. The related 

threshold levels of the policy are discovered. Their managerial insights are further 

explained. Section 4.3 discusses about the extension from the two-product case to a 

general multi-product case. Finally, Section 4.4 summarizes the main work in this 

chapter. 

 

4.1 Introduction 

 
The introduction to the two-product recovery system has been made in 

Chapter 3. In this chapter, the recovery system is studied in a single period. The 

occurring events of the two-product recovery system in a single period are similar to 

those in a certain period of a multi-period horizon as described in Chapter 3. However, 

the remaining finished products at the end of the single period have to be salvaged. 

Therefore, we need to consider their salvage value. Hereafter in this chapter, we 

would assume the salvage value of the remaining finished products to be equal to zero. 
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The aim of studying the two-product recovery system in a single period is to 

maximize the expected profit in this period, and to show certain good properties. 

These properties will help to obtain the optimal policy on production and recovery 

decisions in the single period. 

 

4.2 Production and recovery decisions for two products in a single 

period 

In this section, we would formulate and analyze the single-period problem on 

the two-product recovery system. As the related assumptions of the single-period 

problem are similar to the multi-period problem in Chapter 3, we would not repeat 

here. With regard to the independency between chapters, we would list the related 

notations of the single-period problem here. Different from the multi-period problem, 

the time index will be excluded from these notations. 

 

4.2.1 Notations 

The notations of the single-period problem are listed as follows (i = 1, 2; j = 1, 

2): 

rij quantity of recovering returned item in group i to product j; 

pj  quantity of producing product j; 

sj  selling price of product j; 

xSj  initial inventory of product j; 

xj replenishment level of product j after production and recovery; 

cRij unit cost of recovering returned item in group i to product j; 

cPj  production cost of per unit product j; 
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hj  inventory holding cost of per unit product j; 

vj  penalty cost of per unit shortage of product j; 

Ri  returned items in group i; 

Dj  demand for product j; 

( , , )f x µ σ  probability density function w.r.t. x with known 

parameter ( , )µ σ ; 

( , , )F x µ σ  cumulative distribution function w.r.t. x with known 

parameter ( , )µ σ ; 

1( , , )F x µ σ−  inverse function of ( , , )F x µ σ ; 

EP  expected profit in the single period. 

 

In Chapter 3, some restrictions have been made to cost parameters in order to 

ensure the economical meaning of studying the two-product recovery system. As 

different cost structures result in different forms of production and recovery, we 

would focus on the modeling of the recovery system based on a certain cost structure, 

which imposes other restrictions on cost parameters. Under the cost structure, we will 

obtain the optimal policy of production and recovery through solving the model. For 

the other cost structures, the process of modeling and solving can easily refer to it. 

The selected cost structure includes the restrictions on cost parameters: 

1 11 2 12P R P Rc c c c− > − , 1 21 2 22P R P Rc c c c− > − , and 11 21 12 22R R R Rc c c c− > − . 

 

4.2.2 The expected profit maximization model 

At the beginning of the single period, we have known the quantities of 

returned items and the initial inventory of two products. Then, we would make the 
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optimal production and recovery decisions in order to maximize the expected profit in 

the single period. As recovery decisions are subject to the availability of returned 

items, the expected profit maximization model of the single-period problem can be 

formulated as follows: 

1 2 11 12 21 22
1 2 11 12 21 22

0, 0, 0, 0, 0, 0

11 12 1

21 22 2

    max  ( , , , , , )

. .

    ;

    .

p p r r r r
EP p p r r r r

s t

r r R

r r R

≥ ≥ ≥ ≥ ≥ ≥

+ ≤

+ ≤

   (4.1) 

 

In Chapter 3, we have introduced the calculation of the expected profit at 

period t. According to Formula (3.3), the expected profit in a single period can be 

similarly calculated as follows: 

1 1 11 21

1 1 11 21

1 2 11 12 21 22
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+ + +
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∫

∫

  

           (4.2) 

 

In order to simplify the expression of Formula (4.2), let 1 1 11 21( , , )L p r r  and 

2 2 12 22( , , )L p r r  denote the accounting items related to stochastic demands for product 1 

and product 2 respectively. The two accounting items are expressed as follows: 
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1 1 11 21

1 1 11 21
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The inventory level of each product after replenishment is calculated as 

follows (j = 1, 2): 

1 2 .j Sj j j jx x p r r= + + +        (4.5) 

 

As the related decision variables act similarly in the function L1 (or L2), the 

first-order partial derivatives of the function L1 (or L2) with respect to them are equal 

to each other. In details, they are calculated as follows (j = 1, 2): 

1 2

= ( ) ( , , ).j j j

j j j j j j j j

j j j

L L L
s v s v h F x

p r r

δ δ δ
µ σ

δ δ δ
= = + − + +    (4.6) 

 

Lemma 4.1: The objective function of the expected profit maximization model is 

jointly concave on all the decision variables for the single-period two-product 

recovery system disregarding salvage value of the remaining finished products. 

Proof of Lemma 4.1: 

 
The Lemma 4.1 is proved if and only if the nonlinear part of the objective 

function, i.e. the functions L1 and L2, could be proved to be concave on all the 

decision variables. Firstly, we would prove the concavity property of the function L1. 
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According to Formula (4.6), the second-order partial derivative of the function 

L1 with respect to production decision (p1) can be calculated as follows (Let a denote 

its value.): 

2
1

1 1 1 1 1 12
1

( ) ( , , ) 0.
L

a s v h f x
p

µ σ
∂

= = − + + ≤
∂

 

 

As the related three decision variables act similarly in the function L1, all the 

second-order partial derivatives of the function L1 with respect to them are equal to 

each other. Thus, the Hessian matrix of the function L1 can be expressed as 

.

a a a

a a a

a a a

 
 
 
  

 

 

Given a random nonzero vector 1 2 3( , , )y y y , there exist: 

1

2
1 2 3 2 1 2 3

3

( , , ). . ( ) 0

a a a y

y y y a a a y a y y y

a a a y

   
   = + + ≤  
     

.     

 

Therefore, the Hessian matrix of the function L1 is negative semi-definite. 

Thus, the function L1 has been proved to be concave on its related decision variables. 

Similarly, the concavity of the function L2 can be proved. Finally, Lemma 4.1 has 

been proved. 

 

The concavity of the objective function has been shown in Lemma 4.1. 

Furthermore, we would apply the method of Lagrange Multipliers to find the 
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maximum. For the model, the Lagrangian function (denoted as L) can be expressed as 

follows: 

1 2 11 12 21 22 1 2 3 4 5 6 7 8

1 2 11 12 21 22 1 11 12 1 2 21 22 2

3 1 4 2 5 11 6 12 7 21 8 22

( , , , , , , , , , , , , , )

( , , , , , ) ( ) ( )

     .

L p p r r r r

EP p p r r r r r r R r r R

p p r r r r

λ λ λ λ λ λ λ λ

λ λ

λ λ λ λ λ λ

= + + − + + −

− − − − − −

  (4.7) 

 

In order to obtain the optimal solution to the model, we will need to consider 

the KKT conditions for the maximum of the Lagrangian function. As we have known, 

the necessary conditions are also sufficient for optimality when the objective function 

is concave and the inequality constraints are linear on decision variables. Lemma 4.1 

has shown the concavity of the objective function on decision variables. In addition, 

the inequality constraints are linear on decision variables. Therefore, the solution to 

KKT conditions is also the global maximum of the model. The optimal production 

and recovery decisions should satisfy all the KKT conditions at the same time. In 

details, the KKT conditions are listed as follows: 
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* *
1 11 12 1

* *
2 21 22 2

* * * * * *
3 1 4 2 5 11 6 12 7 21 8 22

* *
11 12 1

* *
21 22 2
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1 2 11 12 21 22
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+ ≤
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≤

 

          

 Through solving the above KKT conditions, we can obtain the optimal 

production and recovery decisions for the two products, which are dependent on the 

initial inventory of the two products and the availability of returned items. The 

optimal solution includes 21 cases given in Appendix B. However, after analyzing 

these 21 cases, we found out that they can be represented by an optimal multi-level 

threshold policy. This optimal policy is characterized by 6 order-up-to levels and 3 

switching levels. Once these threshold levels have been determined, we can use the 

optimal policy to make the optimal production and recovery decisions. Among the 

threshold levels, there are three order-up-to levels for each product corresponding to 

three different replenishment sources: production, recovery using returned items in 

group 1 and group 2 respectively. These order-up-to levels can be obtained by solving 

the related KKT conditions as follows: 

 

• Order-up-to level by production 

For each product, the order-up-to level by production is defined as the 

maximum inventory level by the replenishment of production. At the 

order-up-to level, the marginal profit of further replenishment is equal 
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to zero. With the combination of the related KKT conditions, we can 

determine the order-up-to level for product 1 as follows: 

 
*
1 0

* *
1 3 1 3*

1

1 1 1 1
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1 1 1
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Similarly, for product 2, the order-up-to level by production can be 

determined as follows: 

1 2 2 2
0 2 2

2 2 2

( , , ).Ps v c
BL F

s v h
µ σ− + −

=
+ +

    

  

 

• Order-up-to level by using the returned items in group 1 

For each product, the order-up-to level is defined as the maximum 

inventory level by the replenishment using the returned items in group 

1. If returned items in group 1 are enough for the allocation between 

the two products, the inventory of the two products will be replenished 

until the order-up-to level, at which the marginal profit of further 

replenishment is equal to zero. With the combination of the related 

KKT conditions, we can determine the order-up-to level of the two 

products as follows: 
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• Order-up-to level by using the returned items in group 2 

For each product, the order-up-to level is defined as the maximum 

inventory level by the replenishment using the returned items in group 

2. If returned items in group 2 are enough for the allocation between 

the two products, the inventory of the two products will be replenished 

until the order-up-to level, at which the marginal profit of further 

replenishment is equal to zero. With the combination of the related 

KKT conditions, we can determine the order-up-to level of the two 

products as follows: 
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Besides these order-up-to levels, three switching levels, denoted as SW1, SW2 

and RP, are used to control the interactive allocation of possibly limited returned 

items between the recovery processes of the two products, which involves the 

comparison of marginal profits. It can be found from the KKT conditions that the two 

products have equal marginal profits while being further replenished by a certain 

recovery source based on the respective inventory level after the optimal 

replenishment. So the optimal solution by solving the KKT conditions always 

maintains the equality of marginal profits between the two products. Suppose the final 

inventory level of product 2 after the optimal replenishment is at a certain order-up-to 

level, we would need to find out the corresponding inventory level of product 1 such 

that the two products have equal marginal profits. The details of the corresponding 

inventory levels, i.e. the switching levels SW1, SW2 and RP, are explained as follows:  

 

• Switching level SW1 

The switching level SW1 for product 1 corresponds to the order-up-to 

level BL0 for product 2. When the final inventory levels of the two 
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products after the optimal replenishment are at SW1 and BL0 

respectively, the two products will have equal marginal profits from 

recovering the returned items in group 1. Thus,  
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1 1 2 0
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• Switching level SW2 

The switching level SW2 for product 1 corresponds to the order-up-to 

level BL0 for product 2. When the final inventory levels of the two 

products after the optimal replenishment are at SW2 and BL0 

respectively, the two products will have equal marginal profits from 

recovering the returned items in group 2. Thus,  
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• Switching level RP 

The switching level RP for product 1 corresponds to the order-up-to 

level BL1 for product 2. When the final inventory levels of the two 

products after the optimal replenishment are at RP and BL1 
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respectively, the two products will have equal marginal profits from 

recovering the returned items in group 2. Thus,  
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Due to the restrictions on cost parameters mentioned before, we can tell the 

relative locations of the above-mentioned threshold levels based on their 

determination formulae in Tables A.1 and A.2 of Appendix A. Among the order-up-to 

levels of product 1, AL2 is the highest whereas AL0 is the lowest, and AL1 is between 

them. Furthermore, among the threshold levels of product 1, SW1 is located between 

AL0 and AL1 whereas the threshold level RP is located between AL1 and AL2. The 

threshold level SW2 is between SW1 and RP. In addition, among the order-up-to levels 

of product 2, BL2 is the highest whereas BL0 is the lowest, and BL1 is between them. 

The locations of all the threshold levels for the two products can be referred to in 

Figure 4.1. 

 

In the following section, we would further explain the insights of the above-

mentioned threshold levels. At the same time, the managerial insights to the optimal 

control of two-product recovery system are introduced. With the rules, we would 

know how to make the optimal production and recovery decisions for the two-product 

recovery system if the initial inventory of the two products and the availability of 

returned items are given. 
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4.2.3 Managerial insights to the optimal control of two-product 

recovery system in a single period 

 Firstly, we have described the relative locations of the order-up-to levels and 

the related threshold levels for the two products in Figure 4.1. 

 

 

Figure 4.1 The threshold levels for the inventory control of two-product recovery 
system 

 

In Figure 4.1, R1 and R2 denote the returned items incurring high and low 

recovery cost respectively; PA and PB denote the production of product 1 and product 

2 respectively; XS1 and XS2 denote the finished item inventory of product 1 and 

product 2 respectively. Different from traditional inventory problem, the product 

recovery system involves multiple sources of supplies for each product (either 

recovery with R1, R2 or doing production). Which sources to be used to replenish the 

inventory of finished items will depend on the initial inventory levels of finished 

items, the costs of recovery/production, and the availability of returned items. For 

example, we would expect the sources with lower recovery/production costs to be 
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used first, and the optimal replenishment level for these sources would be higher than 

other sources with higher recovery/production costs. 

 

Figure 4.1 has shown the order-up-to levels of PA, R1 and R2 for product 1, 

denoted by AL0, AL1 and AL2 respectively; and the order-up-to levels of PB, R1 and 

R2 for product 2, denoted by BL0, BL1 and BL2 respectively. Except AL0 and BL0, 

these order-up-to levels are the highest replenishment levels of the finished item 

inventory for the two products if the respective sources are used, and further 

replenishment beyond these levels would be unprofitable. For example, the highest 

replenishment level for product 1 is AL1 if R1 is used. The order-up-to levels AL0 and 

BL0 respectively, are the highest replenishment levels for product 1 and product 2 if 

production is used. In addition, they are also the lowest replenishment levels due to 

unlimited production capacity. 

 

To explain the insights of the above-mentioned order-up-to levels more clearly, 

we first assume that the replenishment of the two products are independent, i.e. only 

one product is available. Taking the replenishment of product 1 for example, we 

would compare the order-up-to levels of all the replenishment sources (R1, R2 and 

PA). As R2 is the cheapest, its order-up-to level AL2 is the highest while PA is the 

most expensive and so its order-up-to level AL0 is the lowest. Additionally, due to 

unlimited production capacity, AL0 is also the lowest level that we would order up to. 

As for R1, its order-up-to level AL1 is between AL0 and AL2. Due to cost difference 

between the replenishment sources, R2 would be the first choice of the three 

replenishment sources, then R1 if R2 is used up, and finally PA if R1 is used up. In the 

meantime, the choice of a particular replenishment source should only be made when 
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this replenishment source is still cost-effective. The final replenishment level would 

be subject to the availability of returned items. 

 

However, the above-mentioned order-up-to levels are not enough to control 

the two-product recovery system as there is interaction between the replenishment of 

the two products on the allocation of possibly limited returned items. In order to fulfill 

the optimal allocation, we need to refer to the threshold levels SW1, SW2 and RP. As 

shown in Figure 4.1, the threshold level SW1 is higher than AL0 but lower than AL1, 

RP is higher than AL1 but lower than AL2, whereas the threshold level SW2 is between 

SW1 and RP. In Figure 4.1, SW2 is shown to be lower than AL1 but it is not always like 

that because it is not subject to the selected cost structure but the other cost structures. 

All the three threshold levels are related to the inventory level of product 1. For each 

threshold level, the determination and insight can be referred to in Appendix A. 

 

As mentioned before, the three threshold levels are defined by comparing the 

marginal profits of using the recovery with R1 or R2 to replenish the two products. By 

the comparison, R1 or R2 would be allocated to the product, which is more profitable 

to be replenished. Thus, by this kind of allocation, the inventory level of the product 

with high marginal profit is increased whereas the inventory level of another product 

remains unchanged. With the inventory level increasing, the product with originally 

high marginal profit would have its marginal profit decreasing until the two products 

have equal marginal profits. We would define this kind of allocation rule as ‘fair’ 

allocation rule, which aims to balance the marginal profits of the two products being 

replenished with the recovery. If the allocation is based on the inventory levels, at 

which the two products have had equal marginal profits already, the allocation would 
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increase the inventory levels of the two products at the same time, and maintain the 

equality of marginal profits at the final inventory levels of the two products. The 

details about using the three threshold levels will be introduced later. 

 

Suppose that the initial inventory levels of product 1 and product 2 are lower 

than their order-up-to levels AL0 and BL0 respectively.  In this situation, due to the 

selected cost structure, it is more profitable to replenish product 1 than product 2 by 

using recovery sources. Therefore, both R1 and R2 prefer to replenish product 1 

whereas product 2 is replenished by PB. Due to unlimited production capacity, 

product 2 can be always replenished by PB to the order-up-to level BL0. The final 

level of product 1 after replenishment depends on the availability of returned items. 

As R2 is cheaper than R1, R2 will be used at first. Once R2 is used up and R1 is still 

cost-effective to replenish product 1, then R1 will be used. Based on the situation and 

different availability of returned items, we would introduce the threshold levels SW1, 

SW2 and RP as follows: 

 

• Threshold level SW1 

The threshold level SW1 indicates the inventory level of product 1, at 

which R1 would switch from the replenishment of product 1 to product 

2. If R2 is not enough to replenish the inventory of product 1 up to the 

threshold level SW1, the following allocation of R1 will be used to 

replenish product 1 until SW1 is reached. After that, if there are R1 left, 

the remaining R1 will switch to replenish product 2 in place of PB, 

instead of continuing the replenishment of product 1. If there are R1 

left after replacing all the PB at product 2, the remaining R1 will be 
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allocated to the two products following the ‘fair’ allocation rule. The 

‘fair’ allocation of R1 would increase the inventory levels of product 1 

and product 2 at the same time until the order-up-to levels AL1 and BL1 

are reached respectively.  

 

• Threshold level SW2 

The threshold level SW2 indicates the inventory level of product 1, at 

which R2 would switch from the replenishment of product 1 to product 

2. As R2 is cheaper than R1, the threshold level SW2 is higher than the 

threshold level SW1. If R2 is more than enough to increase the 

inventory level of product 1 to the threshold level SW2, R2 will switch 

to replenish product 2 in place of PB until all the PB at product 2 are 

replaced. After that, if there are still R2 left, the remaining R2 will be 

allocated between the two products following the ‘fair’ allocation rule. 

The ‘fair’ allocation of R2 would increase the inventory levels of 

product 1 and product 2 at the same time until the order-up-to levels 

AL2 and BL2 are reached respectively. 

 

• Threshold level RP 

The threshold level RP indicates the inventory level of product 1, at 

which product 1 has equal marginal profit from the recovery of R2, 

compared with product 2 at the order-up-to level BL1. The threshold 

level RP will be involved when the following allocation of R1 affects 

the existing allocation of R2. Suppose that the ‘fair’ allocation of R2 

has increased the inventory level of product 1 higher than SW2 but 
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lower than RP, and on the other hand, the inventory level of product 2 

has been increased between BL0 and BL1. Then, the following 

allocation of R1 will replace the existing allocation of R2 at product 2, 

and the saved R2 will be reallocated to product 1. Thus, the inventory 

levels of the two products will be increased at the same time by the 

process of replacement and reallocation. By the ‘fair’ allocation rule, 

the process would result in the final inventory levels of the two 

products, at which they have equal marginal profits from the recovery 

of R2. 

 

If R1 is enough to push the process but does not replace all the R2 at 

product 2, R1 can increase the inventory levels of product 1 and 

product 2 until the threshold levels RP and BL1 are reached 

respectively. After that, R1 will not be cost-effective. Otherwise, if R1 

has replaced all the R2 at product 2 but does not increase the inventory 

level of product 1 to the threshold level RP. As RP is higher than AL1, 

the resulting inventory level of product 1 may be either between AL1 

and RP or below AL1. When the resulting inventory level is between 

AL1 and RP and there are R1 left, the remaining R1 will replenish 

product 2 alone until the order-up-to level BL1 is reached. When the 

resulting inventory level is below AL1 and there are R1 left, the 

remaining R1 will replenish product 2 alone at first until the two 

products have equal marginal profits from the recovery of R1. After 

that, R1 will be ‘fairly’ allocated to the two products until the 
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inventory levels of product 1 and product 2 reach the threshold levels 

AL1 and BL1 respectively. 

 

 The allocation of multiple replenishment sources between the two products is 

more complicated as it depends on the initial inventory levels of the two products and 

the availability of returned items. It does not make much sense to describe all the 

allocation situations here. However, the optimal solution has included all the 

allocation situations, which can be referred to in Appendix B. The optimal solution 

has been obtained under the selected cost structure. Furthermore, we would describe 

the replenishment process of the two-product recovery system in Figure 4.2. The 

replenishment process is implemented in the main algorithm, which calls two sub-

algorithms to allocate R2 and R1 respectively in sequence. 

 

 In the following section, we would discuss about how to extend the results 

from the two-product case to a general multi-product case. 
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Figure 4.2 The inventory replenishment process of the two-product recovery system  
in a single period 
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4.3 The extension to a general multi-product recovery system 

The N-product recovery system can be drawn as follows. The demands follow 

some general distributions. 

 

Figure 4.3 The structure of the N-product recovery system 

 

Some restrictions on cost parameters are imposed so as to ensure the 

economical meaningfulness of the study on the N-product recovery system. Firstly, 

for each product, selling price is higher than production cost, and penalty cost of 

shortage is higher than the profit from production. Therefore, there exist: 
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higher than recovery cost. Otherwise, recovery is unnecessary. Therefore, there exist: 

1 2,  .
Pj R j Pj R j

c c c c> >  Finally, the recovery using returned item in group 2 is cheaper 

than that using returned item in group 1. Therefore, there exist: 2 1 .R j R jc c<  

  

The N-product recovery system can be firstly studied in the single period by 

referring to the two-product recovery system. Similarly, the optimal solution can be 

found by solving KKT conditions of Lagrangian function. The optimal solution to the 

single-period problem on the two-product recovery system has been shown in 

Appendix B based on a choice of cost structure: 1 11 2 12P R P Rc c c c− > − , 

1 21 2 22P R P Rc c c c− > − , and 11 21 12 22R R R Rc c c c− > − . For the N-product recovery system, 

the optimal solution can be similarly shown based on the cost structure (j = 1, 2,…, N-

1): 1 ( 1) 1( 1)Pj R j P j R j
c c c c+ +− > − , 2 ( 1) 2( 1)Pj R j P j R j

c c c c+ +− > − , and 

1 2 1( 1) 2( 1)R j R j R j R j
c c c c+ +− > − .  

 

In the N-product recovery system, there are three order-up-to levels for each 

product with respect to three replenishment sources. Based on the selected cost 

structure, there are three threshold levels for product j to controlling the interactive 

allocation of recovery replenishment sources between product j and product (j+1). 

Totally, the number of the threshold levels for the N-product recovery system is 

calculated as 3*N+3*(N-1) = 6*N-3. Although the solution structure of the optimal 

solution will increase with the number of products in the recovery system, the N-

product case can still be formalized as NLP problem and solved by KKT conditions. 

When the recovery system is extended from the single-period context to the multi-

period context, the threshold policy is considered to be used as it is easy to be 
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implemented. For example, for M-period problem of the N-product recovery system, 

the threshold levels of each period can be determined by referring to the work on the 

two-product recovery system. However, the computational complexity of the heuristic 

algorithm would increase with the number of products in the recovery system. 

 

4.4 Summary 

For the two-product recovery system involving two groups of returned items 

based on quality classification, we have obtained the optimal solution to the single-

period problem by solving KKT conditions. After analyzing the 21 cases of the 

optimal solution, we found out that they can be represented by an optimal multi-level 

threshold policy. Although the policy is a similar threshold policy to many works in 

the literature, it has more complicated structure due to multiple replenishment sources 

and multiple products. 

 

This optimal policy is characterized by 6 order-up-to levels and 3 switching 

levels. For each of the two products, there are 3 order-up-to levels corresponding to 

different replenishment sources. In addition, there are 3 switching levels to control the 

allocation of the returned items between the two products. The managerial insights of 

these threshold levels have been explained. The allocation of returned items between 

the two products would follow the fair allocation rule. The rule aims to balance the 

marginal profits from the recovery replenishment source between the two products. 

Based on the selected cost structure, we have shown the details of the replenishment 

process. For the other cost structures, the replenishment process and managerial rules 

can be similarly obtained. In particular, the extension from the two-product situation 

to a general multi-product situation has also been discussed. 
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The research results of the two-product recovery system in a single period will 

be used for further research on the recovery system in the multi-period context. The 

threshold policy is assumed to be used for the multi-period problem as it is intuitive, 

easy to use and provides good managerial perspectives even though it might not be 

optimal.
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Chapter 5    The study on two-product recovery system in a 

finite horizon with lost sale and zero lead time 

 

Chapter 5 focuses on the study of the two-product recovery system in a finite 

horizon. The stocking of two products in the recovery system aims to satisfy 

stochastic customer demands in each period of the planning horizon. The inventory of 

the two products can be instantly replenished by production and recovery processes as 

both processes are assumed to have zero lead time. If the inventory is in shortage, the 

recovery system will lose the sales. Section 5.1 introduces the two-product recovery 

system. In Section 5.2, an ADP model of the system is developed in order to 

maximize the expected total profit in the finite horizon. The model is used to derive 

the threshold levels, which are only dependent on the gradient of the cost-to-go 

function at the points of interest. Section 5.3 provides the details about how to 

determine the gradient of the cost-to-go function at the points of interest. Section 5.4 

gives numerical analysis on the recovery system. Finally, Section 5.5 summarizes the 

main findings. 

 

5.1 Introduction 

The occurring events in each period of the finite horizon are described here. 

Firstly, returned items arrive at the two-product recovery system at the beginning of 

each period. Secondly, after observing the on-hand inventories of finished products at 

the beginning of each period, the manufacturer makes production and recovery 

decisions. Once the decisions are made, inventories of finished products get 

replenished instantly. The inventories are used to satisfy demands later in the same 
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period. If the demands cannot be fully satisfied, the sales will be lost and penalty cost 

of the shortages will be incurred. Otherwise, if there are inventories left at the end of 

the period, the remaining inventories will be carried to future periods and inventory 

holding cost will be counted for the period. Finally, the remaining returned items are 

disposed of and disposal costs are negligible. The revenue is generated from the sale 

of finished products. The total cost consists of production cost, recovery cost and 

inventory holding cost of finished products and penalty cost of shortages. 

 

The objective is to maximize the expected total profit of the two-product 

recovery system in a finite horizon. In order to fulfill the aim, we need to find the 

optimal policy of production planning and inventory control. 

 

5.2 Approximate Dynamic programming model of the two-product 

recovery system in the multi-period context 

 

The dynamic programming model of the two-product recovery system in the 

multi-period context has been introduced in Chapter 3. In this Chapter, the recovery 

system is assumed to deal with stock shortage in the way of lost sale. The other 

assumptions and the related notations are referred to as in Chapter 3. Besides, some 

related notations are listed as follows (i, j = 1, 2): 

 

( )t

Sjx    initial inventory of product j in period t; 
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( )t

jx  inventory level of product j after production and 

recovery in period t; 

( ) ( )
1 2( , )t t

t S Sf x x  expected maximum of the expected total profit from 

period t till final period; 

EPt   expected profit in period t; 

MEP   maximum expected profit in final period; 

ETPt   expected total profit from period t till final period; 

~

tETP    approximation to ETPt; 

( )t

kATP  actual profit in period t at sample k of demands and 

returns; 

( )t

ju  gradient of the cost-to-go function in period t w.r.t. 

order-up-to level of product j; 

( )
,
t

j kgrad  sample gradient of ( )t

ju  at sample k of demands and 

returns. 

 

The transition relationship on initial inventory of each product between two 

subsequent periods can be expressed as follows ([X]+ := max{X, 0}; j = 1, 2): 

 ( 1) ( ) ( ) ( ) ( ) ( )
1 2[ ] .t t t t t t

Sj Sj j j j jx x p r r D
+ += + + + −        (5.1) 

 

In addition, the order-up-to level of each product at period t, i.e. inventory 

level after replenishment, is dependent on the initial inventory, which can be 

expressed as follows: 

( ) ( ) ( ) ( ) ( )
1 2 .t t t t t

j Sj j j j
x x p r r= + + +        (5.2) 
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As expressed in Chapter 3, the Bellman’s equation of dynamic programming 

is as follows (t = 1, 2, ..., M): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( )
1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 11 12 21 22

, , , , , ,

( 1
1 1

,

( , ) { max { ( , , , , , , , )

                                          [ (

t t t t t t t t

t t

t t t t t t t t t t

t S S t S S
R R p p r r r r

t

t S
D D

f x x E EP x x p p r r r r

E f x +
+

=

+ ) ( 1)
2, )]}}.t

Sx +

           (5.3) 

  

The objective of studying the dynamic programming model is to obtain the 

optimal policy for the two-product recovery system in the multi-period context. 

However, due to the curse of dimensionality of dynamic programming, it is 

intractable to solve dynamic programming problem involving more than two states. 

For this kind of dynamic programming problem, suboptimal methods are proposed, 

which focus on evaluation and approximation of the cost-to-go function. Based on the 

approximation, the ADP model is proposed to help derive the threshold levels of the 

threshold policy. Therefore, we can approximate the cost-to-go function at the points 

of interest by using the gradients as follows: 

 
( ) ( )
1 2

( ) ( )
1 2

( 1) ( 1)
1 1 2

,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 1 1 2 2

,

[ ( , )]

[ ([ ] ,[ ] )] .

t t

t t

t t

t S S
D D

t t t t t t t t

t
D D

E f x x

E f x D x D u x u x

+ +

+

+ +
+= − − ≈ +

   (5.4) 

 

To find the gradient ( )t

ju , we can use the first-order derivatives of the cost-to-

go function with respect to the inventory level of product j after replenishment, which 

is expressed as follows (j = 1, 2): 
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( ) ( )
1 2

( ) ( ) ( ) ( )
1 1 1 2 2

,( )

( )

[ ([ ] ,[ ] )]
.

t t

t t t t

t
D Dt

j t

j

E f x D x D

u
x

+ +
+∂ − −

=
∂

    (5.5) 

 

The details of computing the gradients will be discussed later. After the above-

mentioned approximation, the objective function of the dynamic programming model 

at period t, denoted as ETPt, can be expressed as follows: 

( ) ( )
1 1 2

( ) ( ) ( ) ( )
1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 11 21 2 2 2 12 22

( , )

( ) ( ).

t

t t

t t

t t t t

t

t t t t t t t t t t

t S S

ETP

EP f x x

EP u x u x

EP u x p r r u x p r r

+= +

≈ + +

≈ + + + + + + + +

  (5.6) 

 

As mentioned in Chapter 3, the expected profit function, denoted as EPt, is 

expressed as follows: 

( ) ( ) ( ) ( )
1 1 11 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 1 1 2 2 11 11 12 12 21 21 22 22

( ) ( ) ( ) ( ) ( )
1 1 1 11 21 10

( , , , , , , , )

( )

    ( )
t t t t

S

t t t t t t t t

t S S

t t t t t t

P P R R R R

x p r r
t t t t t

S

EP x x p p r r r r

s s c p c p c r c r c r c r

h x p r r D

µ µ

+ + +

= + − + + + + +

− + + + −

( ) ( ) ( ) ( )
1 1 11 21

( ) ( ) ( ) ( )
2 2 12 22

( ) ( )
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 11 21 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 12 22 2 2 2 20

( , , )

    ( ) ( ) ( , , )

    ( ) ( , , )

t t t t
S

t t t t
S

t t

t t t t t t t

S
x p r r

x p r r
t t t t t t

S

f D dD

s v D x p r r f D dD

h x p r r D f D dD

µ σ

µ σ

µ σ

∞

+ + +

+ + +

− + − − − −

− + + + −

∫

∫

∫

( ) ( ) ( ) ( )
2 2 12 22

( )
2

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 12 22 2 2 2 2    ( ) ( ) ( , , ) .

t t t t
S

t

t t t t t t t

S
x p r r

s v D x p r r f D dDµ σ
∞

+ + +
− + − − − −∫

 

          (5.7) 

 

After substituting Formula (5.7), Formula (5.6) can be further expressed as 

follows: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

~
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 11 12 21 22

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 2 1 1 2 2 11 11 12 12 21 21

( , , , , , , , )

( , , , , , , , )

( ) ( ) (

t t t t t t t t

t S S

t t t t t t t t

t S S

t t t t t t t

P P R R R

ETP x x p p r r r r

ETP x x p p r r r r

s u s u c p c p c r c r c r cµ µ

≈

= + + + − + + + + +
( ) ( ) ( ) ( )

1 1 11 21

( ) ( ) ( )
1 1 11

( )
22 22

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 11 21 1 1 1 1 10

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 11 21 1 1 1 1

)

    ( ) ( ) ( , , )

    ( ) ( ) ( , , )

t t t t
S

t t t
S

t

R

x p r r
t t t t t t t t

S

t t t t t t t t

S
x p r r

r

h u x p r r D f D dD

s v u D x p r r f D dD

µ σ

µ σ

+ + +

+ + +

− − + + + −

− + + − − − −

∫

( )
21

( ) ( ) ( ) ( )
2 2 12 22

( ) ( ) ( ) (
2 2 12 22

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 12 22 2 2 2 2 20

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2 12 22 2 2 2 2

    ( ) ( ) ( , , )

    ( ) ( ) ( , , )

t

t t t t
S

t t t
S

x p r r
t t t t t t t t

S

t t t t t t t t

S
x p r r

h u x p r r D f D dD

s v u D x p r r f D dD

µ σ

µ σ

∞

+ + +

+ + +

− − + + + −

− + + − − − −

∫

∫

)
.

t

∞

∫
 

          (5.8) 

 

The functions EPt and 
~

tETP , expressed in Formulae (5.7) and (5.8) 

respectively, are found to be similar to each other except for some coefficient 

differences. Therefore, we can prove the concavity of the function 
~

tETP  similar to the 

function EPt. Thus, we can find the optimal solution to maximize the function 
~

tETP  

by solving KKT conditions. The optimal solution has the same structures as that for 

the single-period problem in Appendix B. Therefore, the optimal multi-level threshold 

policy of the single-period problem could be conveniently used for the multi-period 

problem. However, due to coefficient differences, the threshold levels for the multi-

period problem need to be re-computed. For example, the threshold level ( )
0
t

AL , can 

be determined as follows: 
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( ) ( )
1 0

~

( )
1

( ) ( )
1 1 1 1 1 1 1 0 1 1

( )
( ) 1 1 1 1 1
0 1 1

1 1 1

0

( ) ( , , ) 0

( , , ).

t t

t

t

x AL

t t

P

t
t P

ETP

p

s u v c s v h F AL

u s v c
AL F

s v h

µ σ

µ σ

=

−

∂
=

∂

⇒ + + − − + + =

+ + −
⇒ =

+ +

    (5.9) 

 

Similarly, we can determine the other threshold levels at period t for the multi-

period problem. In Table 5.1, we have listed the formulae of determining the 

threshold levels for the single-period problem and the multi-period problem 

respectively. It could be seen from the formulae that the threshold level for the multi-

period problem is only dependent on the gradient of the cost-to-go function at the 

points of interest. 

 

Unlike the usual approach which uses a single function (or piecewise function) 

to represent the cost-to-go function across the whole state space, we just need to 

estimate the gradient of the cost-to-go function at the points of interest. These 

gradients will be used to compute the threshold level. Hence, the performance of the 

results will not depend on the function we assume which can be a challenge for most 

of the approximate dynamic programming approaches. 

 

As the gradients used to compute the threshold level are dependent on the 

threshold level conversely, we need to employ an iterative algorithm to find the 

threshold level. In the following, we would explain how to compute the threshold 

levels, taking the threshold level ( )
0
t

AL  as example. 
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Table 5.1 The formulae of determining the threshold levels for the single-
period problem and the multi-period problem 

 
 The single-period problem The multi-period problem 

( )

0

t
AL  

1 1 1 1
1 1

1 1 1

( , , )Ps v c
F

s v h
µ σ− + −

+ +
 

( )
1 1 1 1 1

1 1

1 1 1

( , , )
t

Pu s v c
F

s v h
µ σ− + + −

+ +
 

( )

1

t
AL  

1 1 1 11
1 1

1 1 1

( , , )Rs v c
F

s v h
µ σ− + −

+ +
 

( )
1 1 1 1 11

1 1

1 1 1

( , , )
t

Ru s v c
F

s v h
µ σ− + + −

+ +
 

( )

2

t
AL  

1 1 1 21
1 1

1 1 1

( , , )Rs v c
F

s v h
µ σ− + −

+ +
 

( )
1 1 1 1 21

1 1

1 1 1

( , , )
t

Ru s v c
F

s v h
µ σ− + + −

+ +
 

( )

1

t
SW

 

1 1 1 12 11 2
1 1

1 1 1

( , , )R R Ps v c c c
F

s v h
µ σ− + + − −

+ +

 

( )
1 1 1 1 12 11 2

1 1

1 1 1

( , , )
t

R R Pu s v c c c
F

s v h
µ σ− + + + − −

+ +

 

( )

2

t
SW

 

1 1 1 22 21 2
1 1

1 1 1

( , , )R R Ps v c c c
F

s v h
µ σ− + + − −

+ +

 

( )
1 1 1 1 22 21 2

1 1

1 1 1

( , , )
t

R R Pu s v c c c
F

s v h
µ σ− + + + − −

+ +

 

( )t
RP

 

1 1 1 22 21 12
1 1

1 1 1

( , , )R R Rs v c c c
F

s v h
µ σ− + + − −

+ +

 

( )
1 1 1 1 22 21 12

1 1

1 1 1

( , , )
t

R R Ru s v c c c
F

s v h
µ σ− + + + − −

+ +

 

( )

0

t

BL  
1 2 2 2

2 2

2 2 2

( , , )Ps v c
F

s v h
µ σ− + −

+ +
 

( )
1 2 2 2 2

2 2

2 2 2

( , , )
t

Pu s v c
F

s v h
µ σ− + + −

+ +
 

( )

1

t
BL  

1 2 2 12
2 2

2 2 2

( , , )Rs v c
F

s v h
µ σ− + −

+ +
 

( )
1 2 2 2 12

2 2

2 2 2

( , , )
t

Ru s v c
F

s v h
µ σ− + + −

+ +
 

( )

2

t
BL  

1 2 2 22
2 2

2 2 2

( , , )Rs v c
F

s v h
µ σ− + −

+ +
 

( )
1 2 2 2 22

2 2

2 2 2

( , , )
t

Ru s v c
F

s v h
µ σ− + + −

+ +
 

 

When determining the threshold level ( )
0
t

AL , the inventory level of product 1 

after replenishment, i.e. ( )
1

tx , is set as ( )
0
tAL . As for the ( )

2
tx , we can set it at any of the 
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three order-up-to levels, i.e. ( )
0
t

BL , ( )
1
t

BL  and ( )
2
t

BL . If the cost-to-go function is 

separable with the inventory levels of the two products, the gradient ( )
1

t
u  will be 

independent of the values of ( )
2
t

x . However, the cost-to-go function might not actually 

be separable, and so we use the average of the gradients at the three points as the 

approximation of the gradient ( )
1

tu  at ( )
0
tAL . Thus, the gradient ( )

1
tu   can be estimated 

as follows: 

( ) ( ) ( ) ( ) ( )
1 1 2 1 0

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1 0 20

( , | )

1
( , | , ).

3

t t t t t

t t t t t t t

kk

u x x x AL

u x x x AL x BL
=

=

≈ = =∑
             (5.10) 

 

To solve (5.10), we need to know ( )
0
t

AL  and ( )t

kBL  (k = 0, 1, 2). However, they 

can only be determined after having determined the corresponding gradients. Thus, 

we need to use an iterative approach to search for the threshold level ( )
0
t

AL  by using 

the pre-determined threshold levels of period t+1. 

 

Firstly, the gradient ( )
1

t
u  is estimated by using the threshold levels of period 

t+1 as initial value, i.e. ( ) ( 1) ( ) ( 1)
1 0 2,t t t t

kx AL x BL
+ += = . Then, the gradient is used to 

determine the threshold level ( )
0
tAL  by using Table 5.1, which is further used by 

smoothing with previous value to obtain the latest value of the threshold level. After 

that, we re-compute the gradient using the latest threshold level ( )
0
tAL . Then, the 

gradient is updated with previous value by smoothing, which is used to determine a 

new value of the threshold level. The computing and updating procedure is repeated 

until it converges. The algorithm is an iterative learning algorithm. Due to the time-

consuming computation, we will stop the iteration when the approximation has 
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satisfied our criterion. In the following algorithm, the stopping criterion can be tuned 

to suitable values according to the algorithm’s performance. The notations of the 

algorithm are listed as follows: 

m  the index for an iteration; 

( ),
1
t m

u   a weighted average of gradient ( )
1

t
u  up to iteration m; 

( ),
1

t mu   a stochastic gradient obtained at iteration m; 

( ),
0
t m

AL  the threshold level corresponding to a weighted average of 

gradient at iteration m; 

( ),
0
t m

AL   a weighted average of the threshold level at iteration m; 

( ) ( ) ( )
1 1 2( , )t t t

U x x  the set of gradients of the cost-to-go function with respect to 

( )
1

t
x  by averaging the gradients 

( ) ( ) ( ) ( ) ( ), 1 ( ) ( 1)
1 1 2 1 0 2( , | , )t t t t t m t t

k
u x x x AL x BL− += =  (k = 0, 1, 2); 

 

The main steps of the algorithm are shown as follows: 

 

Step 1. Set 
( ),0 ( 1) ( 1) ( 1) ( 1) ( 1)
1 1 1 2 1 0( , | )
t t t t t tu u x x x AL+ + + + += =  and ( ),0 ( 1)

0 0
t tAL AL += ; 

Step 2. Set m = 1; 

Step 3. Obtain ( ), ( ) ( ) ( )
1 1 1 2( , )t m t t tu U x x∈ ; 

Step 4. Update 
( ),
1
t m

u  by 

 
( ), ( ), 1 ( ), 1( ),
1 1 11( );
t m t m t m

t m

mu u u uβ
− −

= + −  

Step 5. Obtain 
( ),
0
t m

AL  by referring to the corresponding formula in Table 5.1; 

Step 6. Update the solution by 
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( ),( ), ( ), 1 ( ), 1
00 0 0( );
t m

t m t m t m

mAL AL AL ALα− −= + −  

Step 7. Set m = m + 1. If the stopping criterion is not met, go to Step 3. 

 
 
In general, we stop the algorithm if the total absolute change of the threshold 

level over a certain number of iterations is small. For example, if 

( ), ( ), 1
0 01,

m t i t i

i m L m L
AL AL δ−

= − + >
− <∑  (L: the number of consecutive results used for 

calculating the absolute change; δ : a small number.), then the algorithm will stop. In 

addition, because sampling is involved, stochastic gradients can be quite different 

from iteration to iteration. The instability of stochastic gradients makes the solution 

obtained in Step 5 fluctuating. Therefore, we need the averaging steps, i.e. Steps 4 and 

6, to help stabilize the solution. According to Gupal and Bazhenov (1972), the 

solution will surely converge to an optimal solution under certain conditions on the 

stepsizes m
α  and 

m
β , such as 

2

1 1
0,   0,   / 0,   ,   .

m m m m m mm m
α β α β α α

∞ ∞

= =
≥ > → = ∞ < ∞∑ ∑  

 

After the algorithm stops, we can obtain the threshold level ( )
0
t

AL . Similarly, 

we can determine the other threshold levels of period t by using the algorithm. 

However, as mentioned before, we need to have determined the threshold levels of 

period t+1 at first. As the threshold levels of the last period, i.e. period M, have been 

determined by solving the single-period problem, we can take advantage of backward 

way to determine the threshold levels from period M till period t. In addition, the 

algorithm requires the gradients to be determined at the points of interest. We will 

introduce it in the following section. 
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5.3 The determination of the gradient at the points of interest in the 

multi-period context 

As the objective function of the approximate dynamic programming model has 

similar concave property to the objective function of the single-period problem, we 

can refer to the optimal policy of the single-period problem for solving the multi-

period problem. While solving the multi-period problem, we take advantage of 

backward induction. Firstly, for the last period of the multi-period horizon, i.e. period 

M, the threshold levels are determined with reference to the single-period problem. 

Then, for the second last period, the threshold levels are determined by estimating the 

gradients of the cost-to-go function, i.e. the gradients of the expected maximum 

expected profit in the last period, which is expressed as follows: 

( ) ( ) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 11 12 21 22

( 1)

( 1) ( 1)
1 1( 1) , , , 0, 0, 0, 0, 0, 0

( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )
2 2 1 2 11 12 21 22

{ [ max ([ ] ,

  [ ] , , , , , , )]}.

M M M M M M M M M M

M

j

M M

MM
R R D D p p r r r r

j

M M M M M M M M

u

E EP x D
x

x D p p r r r r

− −

−

− − +

−
≥ ≥ ≥ ≥ ≥ ≥

− − +

∂
= −

∂

−

.                     (5.11) 

 

In this backward induction method, suppose we are now at period t to 

determine the threshold levels. Up to now, we have determined the threshold levels 

from period t+1 till the last period. Therefore, we have known how to make the 

optimal replenishment decisions based on the threshold levels and the optimal policy 

in these periods. In order to determine the threshold levels of period t, we need to 

estimate the gradients of the cost-to-go function, i.e. the gradients of the expected 
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maximum expected total profit earned from period t+1 till the last period, which is 

expressed as follows: 

 

( 1) ( 1) ( ) ( ) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 2 1 2 1 2 11 12 21 22

( )

( ) ( ) ( ) ( )
1 1 2 2( ) , , , 0, 0, 0, 0, 0, 0

( 1) ( 1) ( 1)
1 2 11

{ [ max ([ ] ,[ ] ,

                               , , ,

t t t t t t t t t t

t

j

t t t t

t
R R D D p p r r r r

j

t t t

u

E ETP x D x D
x

p p r r

+ + + + + + + +

+ +

≥ ≥ ≥ ≥ ≥ ≥

+ + +

∂
= − −

∂

( 1) ( 1) ( 1)
12 21 22, , )]}.t t tr r+ + +

                    (5.12) 

 

As there is no closed-form formula to compute the gradient ( )t

ju , we need to 

run Monte Carlo simulation, and estimate the gradient based on the simulation results. 

Firstly, we need to generate N sets of random realization of stochastic returns and 

demands in each period from period t till period M-1. Among them, sample k is 

expressed as

( 1) ( 1) ( ) ( )
1, 2, 1, 2,

( ) ( ) ( 1) ( 1)
1, 2, 1, 2,

                  

.......

                

t t t t

k k k k

M M M M

k k k k

R R D D

R R D D

+ +

− −

 
 
 
 
 

. The sample value of the cost-to-go 

function for sample k, is obtained by summing up the profit for the realization from 

period t+1 till period M-1 and the expected profit at period M after applying the 

optimal policy for these periods. The ( )*
k

ATP
τ  is used to calculate the profit of period τ 

(t < τ < M) for sample k. The profit function ( )*
k

ATP
τ is expressed as follows: 

( )* ( ) ( ) ( )* ( )* ( )* ( )* ( )* ( )* ( ) ( )
1 2 1 2 11 12 21 22 1, 2,

( ) ( )* ( )* ( )* ( ) ( )* ( )* ( )*
1 1 1 11 21 2 2 2 12 22

( )* ( )* ( )* ( )*
1 1 2 2 11 11 12 12

( , , , , , , , , , )

( ) ( )

(

k S S k k

S S

P P R R

ATP x x p p r r r r D D

s x p r r s x p r r

c p c p c r c r c

τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

τ τ τ τ

= + + + + + + +

− + + + + ( )* ( )*
21 21 22 22

( ) ( )* ( )* ( )* ( ) ( ) ( ) ( )* ( )* ( )*
1 1 1 1 11 21 1, 1 1, 1 2 12 22

( ) ( )* ( )* ( )* ( ) ( ) ( ) ( )* ( )*
2 2 2 2 12 22 2, 2 2, 2 2 12 2

)

( )[ ] [ ]

( )[ ] [

R R

s S k k S

s S k k S

r c r

h s x p r r D v D x p r r

h s x p r r D v D x p r r

τ τ

τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ

+ +

+

+

− + + + + − − − − − −

− + + + + − − − − − − ( )*
2 ] .τ +

                    (5.13)
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As there is no closed-form formula for the maximum expected profit at final 

period, i.e. 
k

MEP , we compute it by maximizing the expected profit EPM, k for sample 

k, which is calculated as Formula (5.7). 

           

Therefore, the cost-to-go function can be estimated as follows: 

( ) ( )
1 2

( 1) ( 1)
1 1 2

,

1 ( )*

1 1

[ ( , )]

1
( ).

t t

t t

t S S
D D

N M

k kk t

E f x x

ATP MEP
N

τ

τ

+ +
+

−

= = +
≈ +∑ ∑

               (5.14) 

 

As the function ( )*
kATP

τ  and the function
k

MEP  are both continuous functions, 

it is suitable to approximate the cost-to-go function by Monte Carlo sampling method. 

Furthermore, the gradient ( )t

ju  can be approximated by sample average of the gradient 

over all the realizations. The approximation of the gradient ( )t

ju  by averaging the 

sample gradient ( )
,
t

j kgrad  for sample k is expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( )
1 2 , 1 2

1

1
( , ) ( , ).

N
t t t t t t

j j k

k

u x x grad x x
N =

≈ ∑               (5.15) 

 

We would start from a two-period problem to introduce the determination of 

the sample gradient. Then, we would extend from the two-period problem to the 

three-period problem.  Finally, we can determine the sample gradient for any multi-

period problem by induction. In the determination of the sample gradient, we have 

taken advantage of an Infinite Perturbation Analysis (IPA) based approach. 
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5.3.1 The determination of sample gradient in the two-period problem 

For the two-period problem, the threshold levels of the last period can be 

obtained by referring to the single-period problem. The threshold levels of the first 

period are determined by using the gradients of the cost-to-go function estimated by 

Monte Carlo simulation. Before that, the sample gradient of the cost-to-go function 

needs to be determined. The sample k for Monte Carlo sampling is expressed as 

(2) (2) (1) (1)
1, 2, 1, 2,( , , , )k k k kR R D D . The sample gradient can be calculated as follows (j =1, 2): 

(2) (2)
(1) (1) (1) 1 2
, 1 2 (1) (2) (1) (2) (1)

1 2

( , ) .k k S k S
j k

j S j S j

MEP MEP x MEP x
grad x x

x x x x x

∂ ∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂ ∂
            (5.16) 

 

As (1)
1x and (1)

2x  are assumed to be independent of each other, the perturbation 

of (1)
jx  will be only propagated to (1)

Sjx  if there is no shortage of product j at the first 

period. Therefore, Formula (5.16) is further expressed as follows (j = 1, 2): 

(1) (1)
,

(1) (1) (1)
, 1 2

(2)

0,              if ;

( , )

,   otherwise.

j j k

j k

k

Sj

x D

grad x x

MEP

x

 <




= 


∂
∂

              (5.17) 

 

The term 
(2)

k

Sj

MEP

x

∂

∂
 in Formula (5.17) can be computed as follows by the related 

derivatives of the expected profit function EP2, k, which is expressed in Formula (5.7): 
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(2)

* * * *(2)* (2)* (2)*
2, 2, 2, 2,1 11 21
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1 11 21
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r x
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            (5.18) 

 

According to Formula (5.7), the partial derivatives of the function *
2,kEP can 

be determined as follows (j = 1, 2): 

*
2, (2)*

(2)

* *
2, 2,

(2)* (2)
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∂
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∂ ∂
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             (5.19) 

 

Based on Formulae (5.18) and (5.19), Formula (5.17) is further expressed as 

follows (j = 1, 2): 

(1) (1)
,

(1) (1) (1)
, 1 2 * *(2)* (2)* (2)* (2)*
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                    (5.20) 
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The above formula involves the partial derivatives of the optimal 

replenishment decisions with respect to initial inventory. These partial derivatives can 

be obtained according to the corresponding structure in Appendix B. Suppose that the 

optimal replenishment decisions for sample k match the structure S7 in the Appendix 

as follows: 

(1) (2) (1) (1) (2) (1) (1) (2) (2)
2, 1 1 1, 2, 1 1 1, 2, 1 2 1 0

(2)* (2)* (1) (2) (
1 11 1 2, 1 21

S7.  ,   ,   :

  0,                                                      ,             

k S k k S k k S S

k S

R x SW R R x SW R R x x SW BL

p r SW R x r

+ < + + > + + + ≤ +

= = − − 2)* (1) (2)*
2, 1 1

(2)* (1) (1) (2) (2) (2)* (1) (1) (2) (2)* (2)*
2 1 0 1, 2, 1 2 12 1, 2, 1 1 22 2 0

;   ( )

  ,   ,   0.      ( )

k

k k S S k k S

R x SW

p SW BL R R x x r R R x SW r x BL

= =

= + − − − − = + + − = =

 

 

From the structure S7, we can observe that the inventory levels of the two 

products after replenishment have reached the threshold levels SW1 and BL0 

respectively. Therefore, the perturbation on the initial inventory of the two products 

will not be propagated to the order-up-to level of the two products, i.e. 

(2)* (2)* (2)* (2)*
1 2 1 2
(2) (2) (2) (2)
1 1 2 2

0.
S S S S

x x x x

x x x x

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
 However, the perturbation would affect the related 

replenishment decisions. The impact can be determined as: 
(2)*

11
(2)
1

1
S

r

x

∂

∂
= − , 

(2)*
12

(2)
1

1
S

r

x

∂

∂
= , 

(2)*
2
(2)

1

1
S

p

x

∂

∂
= −  and 

(2)*
2
(2)

2

1
S

p

x

∂

∂
= − . Thus, we can conclude that if the initial inventory of 

product 1 is increased with a small amount ∆, the recovery using returned items in 

group 1 for product 1 will be saved with the same amount ∆ and be reallocated to 

product 2 in place of production for product 2; on the other hand, if the initial 

inventory of product 2 is increased with a small amount ∆, the same amount of 

production for product 2 will be saved. Despite the impact on the related 

replenishment decisions, the order-up-to level of each product remains unaffected. 
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According to Formula (5.20), the sample gradient is calculated as follows: 

(1) (1) (1)
1, 1 2 11 2 12

(1) (1) (1)
2, 1 2 2

( , ) ;

( , ) .

k R P R

k P

grad x x c c c

grad x x c

= + −

=

    

   

5.3.2 The determination of sample gradient in the three-period problem 

For the three-period problem, the threshold levels of the second and the last 

period can be obtained by referring to the two-period problem and the single-period 

problem respectively. Then, the threshold levels of the first period are determined by 

using the gradients of the cost-to-go function estimated by Monte Carlo simulation. 

Before that, the sample gradient of the cost-to-go function needs to be determined. 

The sample k for Monte Carlo sampling is expressed as 
(2) (2) (1) (1)
1, 2, 1, 2,

(3) (3) (2) (2)
1, 2, 1, 2,

      

      

k k k k

k k k k

R R D D

R R D D

 
 
 
 

. The 

sample gradient can be calculated as follows (j = 1, 2): 
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As the inventory levels of the two products (1)
1x  and (1)

2x  are assumed to be 

independent of each other, the perturbation of the (1)
jx  will be only propagated to the 

(2)
Sjx  if there is no shortage of product j at the first period. Therefore, Formula (5.21) is 

further expressed as follows (j = 1, 2): 

(1) (1)
,

(2)* (2)*
(2) (2)* (2)*(1) (1) (1) 1

1, 1 2, 1 2 (2) (2)

(2)*
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2, 1 2(2)

0,                                                  if ;

( , )( , )

  ( , ),       oth
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k
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Sj Sj
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x D
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grad x xgrad x x

x x

x
grad x x

x
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+=

∂ ∂

∂
+

∂
erwise.












 

                   (5.22) 

 

In the above formula, the perturbation of the initial inventory of product j at 

period 2 will be propagated to the final inventory of product i at the same period as 

follows (i, j = 1, 2): 

 
(2)* (2) (2)* (2)* (2)*

1 2
(2) (2) (2) (2) (2)

.i Si i i i

Sj Sj Sj Sj Sj

x x p r r

x x x x x

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
              (5.23) 

 

The above formula involves the partial derivatives of the optimal 

replenishment decisions with respect to the initial inventory of the two products at 

period 2. Similar to the two-period problem, these derivatives can be obtained by 

referring to the corresponding structure of the optimal replenishment decisions in 

Appendix B. Before that, the threshold levels at period 2 are computed on the basis of 

the objective function 
~

2ETP  considering the final two periods. The two gradients of 

~

2ETP  at the point of interest need to be estimated in the two-period context. Suppose 
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that the optimal replenishment decisions at period 2 for sample k match the structure 

S7. With the solution structure mentioned before, the perturbation on the initial 

inventory of the two products will not affect the order-up-to level of the two products. 

Therefore, the sample gradient for sample k can be calculated as 

(2)*
(1) (1) (1)
, 1 2 (2)

( , ) k
j k

Sj

ATP
grad x x

x

∂
=

∂
 according to Formula (5.22). 

 

In Formula (5.22), the partial derivatives of the function (2)*
kATP  can be 

determined as follows (j = 1, 2): 

(2)*
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(2)* (2)* (2)* (2)*(2)* (2)* (2)*
1 11 21

(2) (2)* (2) (2)* (2) (2)* (2)
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2 12
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∂

∂

∂ ∂ ∂ ∂∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ +

∂ ∂ ∂
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22
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22

).k

Sj Sj

ATP r

x r x

∂ ∂
+

∂ ∂ ∂

           (5.24)

 

 

According to Formula (5.13), the related partial derivatives of the function 

(2)*
kATP  are listed in Table 5.2 as follows. While calculating these partial derivatives, 

we have considered all the combinations of demand satisfaction. In order to 

summarize all the possible expressions, the related index and indicator are excluded 

from the notations in Table 5.2.  
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Table 5.2 The partial derivatives of the function ( )*
kATP

τ  with respect to initial 

inventory and replenishment decisions 
 

 

With reference to Formula (5.24), the two gradients for sample k are 

calculated as follows. According to the situation of demand satisfaction in period 2, 

we can refer to Table 5.2 to obtain the values of the related partial derivatives in the 

following formulae. 

(1) (1) (1)
1, 1 2

(2)* (2)* (2)* (2)*

11 2 12(2) (2)* (2)* (2)*
1 12 11 2

(1) (1) (1)
2, 1 2

(2)* (2)*

2(2) (2)*
2 2

( , )

;

( , )

.

k

k k k k
R P R

S

k

k k
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S

grad x x

ATP ATP ATP ATP
c c c

x r r p

grad x x

ATP ATP
c

x p

∂ ∂ ∂ ∂
= + − − = + −

∂ ∂ ∂ ∂

∂ ∂
= − =

∂ ∂

 

 

5.3.3 The determination of sample gradient in the N-period problem 

Since we have learned the induction rule in the determination of the sample 

gradient from the two-period problem to the three-period problem, we would extend 

to any N-period problem in order to determine the sample gradient at any period t of 

the multi-period horizon for the two-product recovery system. Before considering the 

N-period problem, suppose that we have known how to determine the sample gradient 
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for all the multi-period problems with less than N periods. Therefore, the threshold 

levels of each period except the first period can be determined for the N-period 

problem. With these threshold levels, the optimal policy helps to make the optimal 

replenishment decisions in these periods. In this situation, the sample gradient of the 

first period for the N-period problem can be calculated as follows (j = 1, 2): 

(1) (1) (1)
, 1 2

1
( )*

(1)
2

(2)* 1
( )*

(1) (1)
3

(2)* (2)* (2)*
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1, 1 2 2, 1 2(1) (1) (1)
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{ }

{ }
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j j
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ATP MEP
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ATP MEP

x x

ATP x x
grad x x grad x x

x x x

τ

τ

τ

τ

−

=

−

=

∂
= +

∂

∂ ∂
= + +

∂ ∂

∂ ∂ ∂
= + +

∂ ∂ ∂

∑

∑
           (5.25) 

 

The above formula is similar to Formula (5.21) for the sample gradient of the 

three-period problem, which indicates the same induction rule. Therefore, by 

induction, we can determine the sample gradient for any N-period problem. For the 

sample gradient at period t of the M-period horizon, we can take advantage of 

backward way. In more details, the sample gradient at period M-1 can be determined 

by solving the two-period problem considering the final two periods. Then the sample 

gradient at period M-2 can be determined by solving the three-period problem 

considering the final three periods. Finally, in this way of backward induction, the 

sample gradient for period t can be determined. The process of determining the 

sample gradient can be referred to in Appendix C. 
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5.4 Computational results 

5.4.1 The convergence of the threshold levels with period 

Firstly, we investigate the impact of inventory holding cost rate on the 

convergence of the threshold levels. A set of system parameters is given as follows: 

1 2 1 2

1 2 11 12 21 22

1 1 2 2

1 1 2

Cost:         4, 6, 15, 20,

                 12, 15, 6, 10, 2, 7;

Demand:  [ ] 200, [ ] 60; [ ] 100, [ ] 30;

Return:     [ ] 210, [ ] 70; [ ] 45,

P P R R R R

v v s s

c c c c c c

E D StDev D E D StDev D

E R StDev R E R StDev

= = = =

= = = = = =

= = = =

= = = 2[ ] 15.R =
 

 

In the following, we have shown the results about the threshold levels when 

the inventory holding cost rates h1 and h2 are both equal to 1, 2 and 3 respectively. 

Once the difference of all the threshold levels between two consecutive periods is no 

more than 1%, the convergence is regarded to have been achieved. As shown from the 

following results, the convergence takes place at the 13th last period, the 7th last period 

and the 6th last period when the inventory holding cost rates h1 and h2 are both equal 

to 1, 2 and 3 respectively. The results have shown that the threshold levels converge 

faster if the inventory holding cost rate is higher. When the inventory holding cost 

rate is high, the trade-off between inventory holding cost and penalty cost of 

inventory shortage is fulfilled at periods, which are not far from the end of the horizon. 

Thus, we can refer to the converged threshold levels while making production and 

recovery decisions for each period of a relatively long finite horizon. 
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Table 5.3 The threshold levels of each period for the 15-period problem when 
h1=h2=1 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

M=1 176.9 223.1 262.2 184.8 192.5 231.5 93.0 107.0 116.1 
M=2 205.9 309.1 445.4 217.4 229.4 351.5 111.6 161.7 202.1 
M=3 216.6 370.8 608.5 229.9 244.4 452.3 117.9 202.5 281.9 
M=4 221.3 398.5 756.3 235.7 251.6 496.4 119.9 216.7 355.9 
M=5 223.2 403.8 883.2 237.8 254.4 521.7 120.6 228.0 422.8 
M=6 223.9 415.0 976.8 238.6 255.9 539.5 120.8 245.0 472.2 
M=7 224.5 429.8 1034.7 239.5 257.2 556.3 120.7 261.3 502.3 
M=8 225.0 441.9 1068.7 240.0 258.0 576.9 120.6 271.0 521.3 
M=9 224.9 450.7 1096.2 240.2 258.7 593.0 120.5 276.4 536.6 
M=10 225.3 454.1 1124.7 240.4 259.2 603.0 120.5 280.5 552.9 
M=11 225.2 457.7 1153.6 240.9 258.9 608.2 120.2 281.8 564.9 
M=12 225.0 459.8 1176.4 240.5 259.2 610.4 120.2 282.6 571.6 
M=13 224.8 459.7 1191.0 240.4 259.2 612.4 120.3 283.9 573.4 
M=14 224.9 459.7 1202.5 240.5 259.3 614.7 120.2 285.5 576.4 
M=15 224.8 459.8 1210.3 240.6 259.2 616.4 120.2 285.8 576.3 
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Figure 5.1 The trend of the threshold levels when h1=h2=1 
 

Table 5.4 The threshold levels of each period for the 10-period problem when 
h1=h2=2 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

M=1 174.2 218.2 252.6 181.8 189.2 225.8 91.8 105.4 113.9 
M=2 199.8 279.1 408.3 210.4 220.8 306.4 108.5 141.5 189.7 
M=3 209.2 312.2 531.6 220.4 232.9 361.3 114.0 171.7 253.8 
M=4 211.7 320.6 606.3 223.4 236.3 369.9 115.3 178.8 295.0 
M=5 212.6 326.2 635.4 224.5 237.3 376.2 115.9 181.8 309.1 
M=6 212.8 327.6 648.6 224.8 237.7 377.6 116.1 183.1 316.1 
M=7 212.9 328.6 654.4 225.1 237.8 381.0 116.2 184.3 319.8 
M=8 213.0 328.4 657.0 225.2 238.2 379.5 116.1 185.0 320.7 
M=9 213.0 328.4 657.8 224.9 238.1 379.3 116.3 185.3 322.0 
M=10 212.8 329.0 658.8 224.9 238.0 379.7 116.4 186.0 322.1 
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Figure 5.2 The trend of the threshold levels when h1=h2=2 
 

Table 5.5 The threshold levels of each period for the 10-period problem when 
h1=h2=3 

 
 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
M=1 171.6 213.8 244.9 179.1 186.2 220.9 90.8 103.9 112.0 
M=2 194.9 261.5 373.0 204.4 214.1 279.1 105.9 132.1 176.4 
M=3 202.5 280.7 460.8 212.8 223.7 307.4 110.7 146.0 223.9 
M=4 204.4 285.0 489.9 215.1 226.0 313.6 112.0 151.9 232.7 
M=5 205.1 286.8 498.2 215.7 226.5 316.0 112.2 153.3 233.8 
M=6 205.2 287.8 502.6 216.1 226.8 317.3 112.2 153.6 234.6 
M=7 205.4 287.7 504.6 216.0 227.1 317.3 112.2 155.0 234.8 
M=8 205.4 287.7 503.2 215.9 227.0 317.4 112.2 155.1 235.3 
M=9 205.6 287.7 503.5 216.0 226.9 316.7 112.2 154.4 235.6 
M=10 205.4 287.7 503.9 216.0 227.2 317.1 112.3 154.9 235.8 
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Figure 5.3 The trend of the threshold levels when h1=h2=3 
 

5.4.2 The impact of stochastic returns and demands on the threshold levels 

Three sets of system parameters are given as follows: 

1 2 1 2 1 2

1 2 11 12 21 22

S1: 3, 3, 4, 6, 15, 20,

     12, 15, 6, 10, 2, 7.P P R R R R

h h v v s s

c c c c c c

= = = = = =

= = = = = =  

1 2 1 2 1 2

1 2 11 12 21 22

S2: 3, 3, 4, 6, 18, 20,

     16, 15, 10, 10, 2, 7.P P R R R R

h h v v s s

c c c c c c

= = = = = =

= = = = = =  

1 2 1 2 1 2

1 2 11 12 21 22

S3: 3, 3, 4, 6, 21, 20,

     20, 15, 14, 10, 2, 7.P P R R R R

h h v v s s

c c c c c c

= = = = = =

= = = = = =
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We will investigate the impact of stochastic returns and demands on the 

threshold levels, which have converged in the multi-period context. Firstly, we 

investigate how the expected value of returned items affects the threshold levels. 

Secondly, we investigate the impact of demand variability on the threshold levels. 

 

5.4.2.1 The impact of the expected value of returned items on the threshold levels 

We will investigate the impact of the expected value of returned items in two 

groups on the threshold levels based on the following stochastic demands: 

1 1 2 2[ ] 200, [ ] 60;     [ ] 100, [ ] 30.E D StDev D E D StDev D= = = =  

 

The impact of the expected value of returned items in group 1 

Firstly, we investigate the impact of the expected value of returned items in 

group 1 based on the following scenarios in Table 5.6: 

Table 5.6 The scenarios of returned items in group 1 

( 2 2[ ] 45, [ ] 15E R StDev R= = ) 

1[ ]E R  15 30 60 90 120 150 180 210 

1[ ]StDev R  5 10 20 30 40 50 60 70 
 

 

In the following, the threshold levels of the two products from the 

approximate dynamic programming model are shown in Table 5.7. Furthermore, the 

trend of the threshold levels is shown in Figure 5.4. The results have shown that all 

the threshold levels decrease with the expected value of returned items in group 1. For 

product 1, the threshold levels AL1, AL2 and RP are decreasing faster than its other 
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threshold levels. On the other hand, for product 2, the threshold levels BL1 and BL2 

are decreasing faster than BL0. As more returned items are available for the recovery 

in each period, the threshold levels would be decreased. 

 

As the interactive allocation of the returned items in two groups to the 

recovery, the expected value of returned items in group 1 would impact the threshold 

levels of the recovery processes using the returned items in two groups. In addition, 

the expected value of returned items in group 1 has less impact on the threshold levels 

related to production and switching. As production process never uses the returned 

items, it would not be impacted by the expected value of returned items. In addition, 

the two switching levels related to product 1, i.e. SW1 and SW2, are from the 

comparison of marginal profits of the recovery using returned items in group 1 and 

group 2 while the inventory level of product 2 is at the threshold level BL0. Therefore, 

the expected value of returned items in group 1 has less impact on the two switching 

levels. However, there is remarkable impact on the threshold level RP, which is from 

the comparison of marginal profits of the recovery using returned items in group 2 

while the inventory level of product 2 is at the threshold level BL1.  

Table 5.7 The threshold levels in different scenarios of returned items 
 in group 1 with parameter set 1 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

1[ ] 15E R =  229.1 500.3 761.4 245.9 267.8 560.7 122.1 228.3 332.1 

1[ ] 30E R =  228.6 485.6 747.6 245.3 266.9 544.4 121.5 224.3 328.4 

1[ ] 60E R =  227.8 456.7 713.2 243.8 263.4 511.9 120.5 213.1 319.6 

1[ ] 90E R =  225.3 418.2 664.4 240.6 257.7 469.0 119.5 203.9 310.5 

1[ ] 120E R =  221.1 376.6 613.1 234.8 250.1 423.6 118.1 195.9 299.2 

1[ ] 150E R =  216.1 340.8 566.1 228.8 242.1 381.9 116.2 183.6 280.6 

1[ ] 180E R =  210.6 308.7 529.8 222.1 234.2 345.7 114.1 169.4 257.2 

1[ ] 210E R =  205.4 287.7 503.9 216.0 227.2 317.1 112.3 154.9 235.8 
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Figure 5.4 The trend of the threshold levels in different scenarios of returned 
items in group 1 with parameter set 1 

 
Table 5.8 The threshold levels in different scenarios of returned items 

 in group 1 with parameter set 2 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

1[ ] 15E R =  222.9 485.6 960.2 239.8 486.4 766.5 122.2 231.4 331.6 

1[ ] 30E R =  222.8 476.6 950.2 239.6 476.0 758.5 121.8 223.5 325.4 

1[ ] 60E R =  221.6 451.9 924.5 238.4 451.7 737.2 120.5 210.8 313.4 

1[ ] 90E R =  219.3 417.1 883.5 235.1 417.1 700.0 118.9 203.8 305.1 

1[ ] 120E R =  215.3 372.2 827.0 229.4 372.1 646.7 116.9 193.2 290.5 

1[ ] 150E R =  210.4 337.8 773.9 223.9 337.6 596.0 114.9 182.2 273.5 

1[ ] 180E R =  205.1 304.4 734.1 216.8 304.7 557.4 113.6 169.1 251.1 

1[ ] 210E R =  200.0 283.2 705.8 211.3 282.5 531.2 112.3 154.6 233.2 
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Figure 5.5 The trend of the threshold levels in different scenarios of returned 
items in group 1 with parameter set 2 
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Table 5.9 The threshold levels in different scenarios of returned items 
 in group 1 with parameter set 3 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

1[ ] 15E R =  215.8 484.6 1158.7 233.9 686.4 965.7 122.4 230.6 332.8 

1[ ] 30E R =  216.3 479.1 1148.7 233.1 680.3 959.4 121.7 222.2 326.2 

1[ ] 60E R =  215.1 457.1 1124.1 231.7 665.5 941.4 120.0 207.5 312.5 

1[ ] 90E R =  212.5 418.9 1091.6 228.7 642.2 915.8 117.8 204.4 297.3 

1[ ] 120E R =  209.2 372.3 1030.6 223.6 592.2 858.5 115.7 193.7 283.4 

1[ ] 150E R =  204.2 334.1 973.8 217.7 540.5 801.4 114.7 182.0 267.6 

1[ ] 180E R =  198.5 298.5 935.1 211.3 502.2 760.9 113.7 169.6 250.6 

1[ ] 210E R =  193.8 277.4 909.4 205.4 475.3 734.2 112.0 155.3 232.5 

 

 

 
Figure 5.6 The trend of the threshold levels in different scenarios of returned 

items in group 1 with parameter set 3 
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The impact of the expected value of returned items in group 2 

Secondly, we investigate the impact of the expected value of returned items in 

group 2 based on the following scenarios in Table 5.10: 

 

Table 5.10 The scenarios of returned items in group 2 ( 1 1[ ] 90, [ ] 30E R StDev R= = ) 

2[ ]E R  30 45 60 75 90 105 120 

2[ ]StDev R  10 15 20 25 30 35 40 
 

 

In the following, the threshold levels of the two products from the 

approximate dynamic programming model are shown in Table 5.11. At the same time, 

the trend of the threshold levels is shown in Figure 5.7. From the figure, it can be 

found that all the threshold levels decrease with the expected value of returned items 

in group 2. For product 1, the threshold levels AL1, AL2 and RP are decreasing faster 

than its other threshold levels. On the other hand, for product 2, the threshold levels 

BL1 and BL2 are decreasing faster than BL0. The explanation to the results is similar to 

that on the impact of the expected value of returned items in group 1. 

 

Table 5.11 The threshold levels in different scenarios of returned items 
 in group 2 with parameter set 1 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

2[ ] 30E R =  226.8 440.3 696.5 242.2 260.8 493.3 119.9 206.7 315.5 

2[ ] 45E R =  225.3 418.2 664.4 240.6 257.7 469.0 119.5 203.9 310.5 

2[ ] 60E R =  223.7 396.2 632.3 237.9 254.2 445.1 118.9 201.2 305.2 

2[ ] 75E R =  221.4 376.0 600.4 235.0 250.5 422.9 118.1 198.6 298.5 

2[ ] 90E R =  219.0 357.6 571.2 232.2 246.4 403.5 117.2 195.1 291.3 

2[ ] 105E R =  216.6 342.0 543.0 228.9 242.6 385.4 116.4 191.1 283.4 

2[ ] 120E R =  213.8 326.6 511.2 225.8 239.1 364.7 115.9 185.8 270.7 
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    Figure 5.7 The trend of the threshold levels in different scenarios of 
returned items in group 2 with parameter set 1 
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Table 5.12 The threshold levels in different scenarios of returned items 
 in group 2 with parameter set 2 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

2[ ] 30E R =  221.2 440.8 937.4 236.8 441.1 744.6 119.1 205.7 307.7 

2[ ] 45E R =  219.3 417.1 883.5 235.1 417.1 700.0 118.9 203.8 305.1 

2[ ] 60E R =  217.9 387.9 827.9 232.4 388.1 652.9 118.5 200.2 297.1 

2[ ] 75E R =  215.5 365.3 775.5 229.6 366.3 610.6 117.4 198.5 291.1 

2[ ] 90E R =  212.8 346.4 722.6 226.6 346.5 568.0 116.8 195.4 283.1 

2[ ] 105E R =  210.5 327.1 666.9 223.4 327.7 526.5 116.1 191.8 274.5 

2[ ] 120E R =  207.9 308.7 611.1 220.1 309.1 481.8 115.7 188.3 263.3 

 

 

 

Figure 5.8 The trend of the threshold levels in different scenarios of returned 
items in group 2 with parameter set 2 
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Table 5.13 The threshold levels in different scenarios of returned items 
 in group 2 with parameter set 3 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

2[ ] 30E R =  214.4 440.2 1164.9 230.6 681.9 979.9 118.1 205.5 299.7 

2[ ] 45E R =  212.5 418.9 1091.6 228.7 642.2 915.8 117.8 204.4 297.3 

2[ ] 60E R =  211.0 395.4 1014.0 226.5 602.1 850.2 117.4 202.2 292.6 

2[ ] 75E R =  209.1 362.8 933.0 223.5 555.1 778.9 116.8 197.5 285.4 

2[ ] 90E R =  206.3 340.6 854.2 220.2 512.4 709.6 116.3 195.2 277.3 

2[ ] 105E R =  204.0 320.2 775.7 216.8 471.4 643.8 116.1 192.8 270.3 

2[ ] 120E R =  201.0 300.1 700.0 213.6 425.9 577.2 115.7 188.6 261.8 

 

 

 

Figure 5.9 The trend of the threshold levels in different scenarios of returned 
items in group 2 with parameter set 3 
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5.4.2.2 The impact of demand variability of two products on the threshold levels 

We will investigate the impact of demand variability of two products on the 

threshold levels with the following set of parameters on returned items: 

 

1 1 2 2[ ] 90, [ ] 30;     [ ] 45, [ ] 15.E R StDev R E R StDev R= = = =  
 

 
 
The impact of demand variability of product 1 

 
Firstly, the impact of demand variability of product 1 is investigated based on 

the following scenarios in Table 5.14. 

 
Table 5.14 The scenarios of demand for product 1 

( 1 2 2[ ] 200, [ ] 100, [ ] 30E D E D StDev D= = = ) 

StDev[D1] 20 40 60 100 150 200 

COV1 0.1 0.2 0.3 0.5 0.75 1.0 
 

In the following, the threshold levels of the two products from the 

approximate dynamic programming model are shown in Table 5.15. In addition, the 

trend of the threshold levels is shown in Figure 5.10. The results have shown that all 

the threshold levels related to product 1 increase with the demand variability of 

product 1 whereas the threshold levels related to product 2 seem unaffected. As the 

demands for the two products are independent of each other, the impact of demand 

variability of product 1 would only affect the threshold levels related to product 1. 

Furthermore, the higher demand variability results in the higher threshold levels to 

avoid possible stock shortage. 
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Table 5.15 The threshold levels in different scenarios of demand for product 1 with 
parameter set 1 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV1=0.1 210.0 378.7 625.5 216.1 223.9 429.1 120.2 203.0 312.9 
COV1=0.2 218.6 399.6 644.8 229.6 242.8 447.7 120.0 205.6 312.2 
COV1=0.3 225.3 418.2 664.4 240.6 257.7 469.0 119.5 203.9 310.5 
COV1=0.5 236.7 470.4 734.9 260.1 287.2 532.6 118.9 202.4 310.2 
COV1=0.75 243.6 577.3 892.2 281.9 324.0 658.0 118.8 206.8 314.6 
COV1=1.0 246.2 708.4 1073.8 305.2 370.5 803.7 118.8 207.0 317.1 

 

 

 

Figure 5.10 The trend of the threshold levels in different scenarios of demand 
for product 1 with parameter set 1 
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Table 5.16 The threshold levels in different scenarios of demand for product 1 with 
parameter set 2 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV1=0.1 208.1 408.0 851.5 214.6 408.3 666.7 119.4 207.3 301.9 
COV1=0.2 214.8 409.0 869.7 226.2 408.9 686.0 119.4 205.2 307.2 
COV1=0.3 219.3 417.1 883.5 235.1 417.1 700.0 118.9 203.8 305.1 
COV1=0.5 225.9 430.7 907.9 249.2 430.3 723.0 118.7 202.1 300.6 
COV1=0.75 227.1 442.4 926.3 256.1 442.5 746.9 119.3 201.0 302.3 
COV1=1.0 221.6 457.0 935.6 257.0 455.9 749.6 120.6 206.4 305.8 

 

 

 

Figure 5.11 The trend of the threshold levels in different scenarios of demand 
for product 1 with parameter set 2 
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Table 5.17 The threshold levels in different scenarios of demand for product 1 with 
parameter set 3 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV1=0.1 205.7 409.5 1060.1 212.3 618.4 881.8 116.8 207.3 293.3 
COV1=0.2 210.4 409.3 1079.9 221.9 630.6 902.3 117.8 204.5 297.2 
COV1=0.3 212.5 418.9 1091.6 228.7 642.2 915.8 117.8 204.4 297.3 
COV1=0.5 215.1 418.4 1089.2 237.9 649.5 918.7 118.3 201.7 296.5 
COV1=0.75 209.1 420.0 1086.0 238.5 654.7 921.6 119.2 200.7 301.8 
COV1=1.0 198.2 424.4 1081.9 231.7 631.5 918.2 120.8 203.7 304.4 

 

 

 

Figure 5.12 The trend of the threshold levels in different scenarios of demand 
for product 1 with parameter set 3 
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The impact of demand variability of product 2 

 

Secondly, the impact of demand variability of product 2 is investigated based 

on the following scenarios listed in Table 5.18: 

Table 5.18 The scenarios of demand for product 2 

( 2 1 1[ ] 100, [ ] 200, [ ] 60E D E D StDev D= = = ) 

 

StDev[D2] 10 20 30 50 75 100 

COV2 0.1 0.2 0.3 0.5 0.75 1.0 
 

In the following, the threshold levels of the two products from the 

approximate dynamic programming model are shown in Table 5.19. In addition, the 

trend of the threshold levels is shown in Figure 5.13. The results have shown that all 

the threshold levels related to product 2 increase with the demand variability of 

product 2 whereas the threshold levels related to product 1 seem unaffected. The 

explanation to the results is similar to that on the impact of demand variability of 

product 1. 

 
Table 5.19 The threshold levels in different scenarios of demand for product 2 with 

parameter set 1 
 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV2=0.1 225.8 425.3 659.2 240.5 258.4 476.4 107.3 187.3 287.1 
COV2=0.2 225.6 422.7 662.9 240.7 258.1 473.2 113.9 194.3 297.8 
COV2=0.3 225.3 418.2 664.4 240.6 257.7 469.0 119.5 203.9 310.5 
COV2=0.5 225.5 419.3 667.4 240.4 257.4 470.9 130.3 229.0 339.2 
COV2=0.75 225.3 425.4 678.0 240.5 257.6 477.8 141.6 274.0 401.1 
COV2=1.0 225.3 432.2 693.4 240.6 258.3 486.6 149.4 339.1 498.8 
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Figure 5.13 The trend of the threshold levels in different scenarios of demand for 
product 2 with parameter set 1 

 
Table 5.20 The threshold levels in different scenarios of demand for product 2 with 

parameter set 2 
 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV2=0.1 220.4 438.8 883.7 236.0 439.2 706.3 106.8 181.4 283.5 
COV2=0.2 219.8 424.2 887.2 235.4 425.7 704.0 113.4 191.9 290.8 
COV2=0.3 219.3 417.1 883.5 235.1 417.1 700.0 118.9 203.8 305.1 
COV2=0.5 219.6 413.1 879.4 234.6 412.3 694.1 130.0 223.6 322.9 
COV2=0.75 219.7 419.5 878.5 235.7 419.2 694.4 141.9 243.4 344.2 
COV2=1.0 219.8 424.3 908.3 235.5 424.0 718.1 148.6 340.1 491.5 
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Figure 5.14 The trend of the threshold levels in different scenarios of demand for 
product 2 with parameter set 2 

 
 

Table 5.21 The threshold levels in different scenarios of demand for product 2 with 
parameter set 3 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV2=0.1 212.9 408.4 1096.1 228.2 648.3 921.0 106.3 179.5 264.0 
COV2=0.2 212.6 417.4 1094.6 229.0 646.5 918.6 112.4 192.4 280.2 
COV2=0.3 212.5 418.9 1091.6 228.7 642.2 915.8 117.8 204.4 297.3 
COV2=0.5 213.1 417.0 1084.2 228.3 634.4 907.9 128.9 221.8 319.6 
COV2=0.75 213.4 423.4 1086.9 229.3 633.7 907.4 140.6 242.8 340.9 
COV2=1.0 214.2 440.6 1114.8 230.6 649.6 929.3 149.3 256.2 355.9 
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Figure 5.15 The trend of the threshold levels in different scenarios of demand for 
product 2 with parameter set 3 
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5.4.3 The comparison of three heuristic policies with respect to the 

expected average profit 

While using the threshold levels to help to make production and recovery 

decisions in a relatively long horizon, the resulting expected average profit is 

compared with those values obtained by using two heuristic policies from the single-

period problem. The following symbols will be used in the presentation of numerical 

results: 

H1 – Heuristic policy from the single-period problem disregarding scrap 

values of the remaining finished products; 

H2 – Heuristic policy from the single-period problem assuming scrap value of 

the remaining product 1 and product 2 to be equal to cR21 and cR22 respectively; 

H3 – Heuristic policy from solving the ADP model; 

EAP_H1 – Expected average profit calculated while the heuristic policy H1 is 

used in a relatively long horizon; 

EAP_H2 – Expected average profit calculated while the heuristic policy H2 is 

used in a relatively long horizon; 

EAP_H3 – Expected average profit calculated while the heuristic policy H3 is 

used in a relatively long horizon. 

 

The optimal policy for the single-period problem is used as heuristic policy for 

the multi-period problem. Two heuristic policies, denoted as H1 and H2 respectively, 

are derived from solving the single-period problem. The policy H1 disregards the 

scrap values of the remaining finished products whereas the policy H2 assumes the 

scrap value of product 1 and product 2 to be equal to cR21 and cR22 respectively. In 
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order to compare the threshold levels of the policies H1 and H2 with those of the 

policy H3 from solving the approximate dynamic programming model, we have 

selected the set of threshold levels when 1[ ] 210E R =  in Table 5.7. The threshold 

levels of the three heuristic policies have been shown in Table 5.22. In Figure 5.16, 

the threshold levels have been compared between the three heuristic policies. It is 

found that the corresponding threshold levels of the policy H3 are highest, whereas 

those threshold levels of the policy H1 are lowest. The difference of each 

corresponding threshold level between the policies H1 and H2 is small whereas the 

difference between the policies H1 and H3 is obviously large. 

 

Table 5.22 The threshold levels in three heuristic policies 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
H1 171.6 213.8 244.9 179.1 186.2 220.9 90.8 103.9 112.0 
H2 176.9 223.1 262.2 184.8 192.5 231.5 100.0 118.1 132.9 
H3 205.4 287.7 503.9 216.0 227.2 317.1 112.3 154.9 235.8 
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Figure 5.16 The comparison of the threshold levels in different heuristic 
policies 

 

Using the above three heuristic policies to make production and recovery 

decisions of the two-product recovery system in a relatively long horizon, the 
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resulting expected average profits are shown in Table 5.23. It can be found that the 

heuristic policy H3 performs best, secondly the policy H2 and finally the policy H1. 

Comparing the expected average profits between the policies H1 and H3, 7.2% 

increment can be achieved while using the policy H3 to replace the policy H1. 

 

Table 5.23 The expected average profit using different heuristic policies 

 
EAP_H1 2115.3 

 

EAP_H2 2186.2 

 

EAP_H3 2267.4 
 

A bound could be obtained by relaxing some assumptions. However, it might 

be too loose and become meaningless to be compared with the performance of the 

results by using our approach. Hence, the multi-level threshold policy by solving the 

ADP model is compared with the other two heuristic policies, which are derived from 

the optimal policy for the single-period problem. One of the two heuristic policies 

assumes scrap value of the remaining finished items to be a nonzero fixed value 

whereas another assumes scrap value to be zero. By this comparison, the threshold 

policy by solving the ADP model is found to have the best performance under a wide 

range of settings. Therefore, to some extent, we have proved that our approach is 

promising to solve the multi-period problem although the optimal solution is difficult 

to obtain. 

 

5.5 Summary 

In this Chapter, we have developed the ADP model of the two-product 

recovery system in the situation of lost sale over a finite horizon. The model aims to 
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determine the threshold levels as the multi-level threshold policy from the single-

period problem is assumed to be used for the multi-period problem. In the multi-

period situation, the threshold levels are found to be only dependent on the gradient of 

the cost-to-go function at the points of interest. 

 

For a given set of system parameters, we find that the threshold levels of any 

certain period would converge with the distance of this period from the last period of 

the planning horizon. In addition, the converging speed of the threshold levels is 

impacted by the inventory holding cost rate. The higher the inventory holding cost 

rate, the faster the threshold levels converge. The converging threshold levels are used 

in the optimal policy, which helps to make production and recovery decisions in the 

multi-period context. The impact of system parameters on the threshold levels has 

been investigated. The numerical results have shown that the more returned items 

from either group in each period would make the threshold levels lower. Among them, 

the threshold levels AL1, AL2, BL1, BL2 and RP, related to recovery processes, would 

obviously decrease with returned items increasing. However, there are small 

decreases on the threshold levels AL0 and BL0, related to production processes, and 

the threshold levels SW1 and SW2, related to switching the allocation of returned items 

to the recovery processes between the two products. On the other hand, with the 

increasing demand variability of a certain product, the threshold levels related to this 

product would increase at the same time whereas the threshold levels related to the 

other product seem unaffected. 

 

After determining the threshold levels in the multi-period situation, we can use 

the threshold policy to control the two-product recovery system. The performance of 
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this policy is compared with the two heuristic policies derived from the optimal policy 

of the single-period problem. Through the comparison of the resulting expected 

average profit, the policy from solving the ADP model outperforms the other two 

heuristic policies. 
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Chapter 6    The study on two-product recovery system in a 

finite horizon with backorder and zero lead time 

 

Chapter 6 focuses on the two-product recovery system in a finite horizon, in 

which backorder is allowed. In the recovery system, production and recovery 

processes are assumed to have zero lead time. Thus, the inventory of the two products 

can be instantly replenished by production and recovery processes. Section 6.1 

introduces the two-product recovery system. In Section 6.2, an ADP model of the 

recovery system is developed in order to minimize the expected total cost in the finite 

horizon. The model is used to derive the threshold levels, which are only dependent 

on the gradient of the cost-to-go function at the points of interest. Section 6.3 provides 

the details about how to determine the gradient at the points of interest. Section 6.4 

gives numerical analysis on the recovery system with respect to the effect of system 

parameters and provides the comparison with two other heuristic policies. Finally, 

Section 6.5 summarizes the main findings. 

 

6.1 Introduction 

 

The two-product recovery system in a finite horizon has been introduced in 

Chapter 3. Furthermore, Chapter 5 focuses on the study of the recovery system 

dealing with shortages as lost sales. However, Chapter 6 will study the two-product 

recovery, in which backorder is allowed. Thus, the objective is to minimize the 

expected total cost of the two-product recovery system in a finite horizon. In order to 
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fulfill the aim, we need to find the optimal policy, which helps to make production 

and recovery decisions in each period of the finite horizon. 

 

6.2 Approximate dynamic programming model of the two-product 

recovery system in the multi-period context 

The dynamic programming model of the two-product recovery system in the 

multi-period context has been introduced in Chapter 3. The model aims to maximize 

the expected total profit in the finite horizon. In this Chapter, the recovery system is 

assumed to allow unsatisfied demands to be backordered in future periods. Therefore, 

the dynamic programming model in this Chapter aims to minimize the expected total 

cost in the finite horizon. The related assumptions and notations are referred to as in 

Chapter 3. Besides, some related notations are listed as follows (i, j = 1, 2): 

( )t

Sjx    initial inventory position of product j in period t; 

( )t

jx  inventory position of product j after production and 

recovery in period t; 

( ) ( )
1 2( , )t t

t S Sf x x  expected minimum of the expected total cost from 

period t till final period; 

ECt   expected cost in period t; 

MEC   minimum expected cost in final period; 

ETCt   expected total cost from period t till final period; 

~

tETC    approximation to ETCt; 

( )t
kATC  actual cost in period t for sample k of demands and 

returns. 
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The transition relationship on initial inventory position of each product 

between two subsequent periods can be expressed as follows (j = 1, 2): 

 ( 1) ( ) ( ) ( ) ( ) ( )
1 2 .t t t t t t

Sj Sj j j j jx x p r r D
+ = + + + −       (6.1) 

 

In addition, inventory position of each product after replenishment at period t 

is dependent on the initial inventory, which can be expressed as follows: 

( ) ( ) ( ) ( ) ( )
1 2 .t t t t t

j Sj j j jx x p r r= + + +        (6.2) 

 

According to Formula (3.2) in Chapter 3, the expected cost at period t can be 

calculated as follows: 

( ) ( ) ( ) ( )
1 1 11 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 11 11 12 12 21 21 22 22

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 11 21 1 1 1 10

( , , , , , , , )

  + ( ) ( , ,
t t t t

S

t t t t t t t t

t S S

t t t t t t

P P R R R R

x p r r
t t t t t t

S

EC x x p p r r r r

c p c p c r c r c r c r

h x p r r D f D µ σ
+ + +

= + + + + +

+ + + −∫

( ) ( ) ( ) ( )
1 1 11 21

( ) ( ) ( ) ( )
2 2 12 22

( )
1

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 11 21 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 12 22 2 2 2 2 20

( ) ( )
2 2 2

)

  + ( ) ( , , )

  + ( ) ( , , )

  + (

t t t t
S

t t t t
S

t

t t t t t t t

S
x p r r

x p r r
t t t t t t t

S

t t

S

dD

v D x p r r f D dD

h x p r r D f D dD

v D x

µ σ

µ σ

∞

+ + +

+ + +

− − − −

+ + + −

− −

∫

∫

( ) ( ) ( ) ( )
2 2 12 22

( ) ( ) ( ) ( ) ( )
2 12 22 2 2 2 2) ( , , ) .

t t t t
S

t t t t t

x p r r
p r r f D dDµ σ

∞

+ + +
− −∫

  (6.3) 

 

 

As ( ) ( )
1 2( , )t t

t S Sf x x denotes the expected total cost from period t till final period in 

Chapter 6, we assume
2( 1) ( 1) ( 1)

1 1 2 1
( , ) [ ]M M M

M S S Pi Sii
f x x c x

+ + + +
+ =

= −∑ . The assumption means 

that normal production would be used to meet the backordered demands, which are 

not satisfied at final period. The objective of the dynamic programming model is to 
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minimize the expected total cost in the finite horizon. The Bellman’s equation of 

dynamic programming is as follows (t = 1, 2,..., M): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( )
1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 11 12 21 22

, , , , , ,

( 1
1 1

,

( , ) { min { ( , , , , , , , )

                                          [ (

t t t t t t t t

t t

t t t t t t t t t t

t S S t S S
R R p p r r r r

t

t S
D D

f x x E EC x x p p r r r r

E f x
+

+

=

+ ) ( 1)
2, )]}}.t

Sx
+

 

          (6.4) 

 

Under the above-mentioned assumption about the boundary value of 

Bellman’s equation, the objective function of the single-period problem on the final 

period can be expressed as follows: 

( ) ( ) ( ) ( )
1 1 11 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 11 11 12 12 21 21 22 22

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 11 21 1 1 1 10
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M M M M

S
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           (6.5) 

 

As the concave property of the objective function of the single-period problem 

has been proved in Chapter 3, we can obtain the optimal solution to minimize the 

objective function in Formula (6.5) by solving KKT conditions. The solution structure 

can be referred to in Appendix B. The formulae of determining the related threshold 

levels of the optimal policy for the single-period problem have been listed in Table 

6.1. 
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The objective of studying the dynamic programming model is to obtain the 

optimal policy for the two-product recovery system in a finite horizon. By similar 

approximation mentioned in Chapter 5, the cost-to-go function of dynamic 

programming at the points of interest can be represented by using the gradients as 

follows: 

 ( 1) ( 1) ( ) ( ) ( ) ( )
1 1 2 1 1 2 2( , ) .t t t t t t

t S S
f x x u x u x

+ +

+ ≈ +       (6.6) 

 

In the above formula, ( )t

ju (j = 1, 2), which denotes the first-order derivative of 

the cost-to-go function with respect to inventory level of product j after replenishment, 

is expressed as follows: 

( ) ( )
1 2

( ) ( 1) ( 1)
1 1 2( )

,
{ [ ( , )]}.

t t

t t t

j t S St
D D

j

u E f x x
x

+ +

+

∂
=

∂
      (6.7) 

 

Thus, the objective function of the dynamic programming model, denoted as 

ETCt, can be approximated as follows: 

( ) ( )
1 2

( 1) ( 1)
1 1 2

,

( ) ( ) ( ) ( )
1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 11 21 2 2 2 12 22

[ ( , )]

( ) ( ).

t t

t

t t

t t S S
D D

t t t t

t

t t t t t t t t t t

t S S

ETC

EC E f x x

EC u x u x

EC u x p r r u x p r r

+ +
+= +

≈ + +

≈ + + + + + + + +

  (6.8) 

 

After substituting Formula (6.3), Formula (6.8) can be further expressed as 

follows: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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          (6.9) 

 

The functions ECM and 
~

tETC , expressed in Formulae (6.5) and (6.9) 

respectively, are found to be similar to each other except for some coefficient 

differences. Therefore, we can prove the convex property of the function 
~

tETC  

similar to the function ECM. Thus, we can find the optimal solution to minimize the 

function 
~

tETC  by solving KKT conditions. The optimal solution has the same 

structures as that for the single-period problem in Appendix B. Thus, the policy of the 

multi-period problem by solving the ADP model is similar to the optimal policy of the 

single-period problem. However, due to coefficient differences, the threshold levels of 

the policy for the multi-period problem need to be re-computed. For example, the 

threshold level ( )
0
t

AL  can be determined as follows: 

( ) ( )
1 0

~

( )
1

( ) ( )
1 1 1 1 1 0 1 1

( )
( ) 1 1 1 1
0 1 1

1 1

0

( ) ( , , ) 0

( , , ).

t t

t

t

x AL

t t

P

t
t P

ETC

p

u v c v h F AL

v u c
AL F

v h

µ σ

µ σ

=

−

∂
=

∂

⇒ − + + + =

− −
⇒ =

+

              (6.10) 
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Given the gradients ( )
1

t
u  and ( )

2
t

u  , we can determine all the threshold levels in 

period t for the multi-period problem. In Table 6.1, we have listed the formulae of 

determining the threshold levels for the single-period problem and the multi-period 

problem respectively. 

Table 6.1 The formulae of determining the threshold levels for the single-
period problem and the multi-period problem 

 
 The single-period problem The multi-period problem 

( )

0

t
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1 1

1 1

1 1 1

( , , )
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v
F

v h c
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+ +
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Similar to Chapter 5, we determine each threshold level for the multi-period 

problem in Table 6.1 by an iterative learning algorithm, which uses the gradients of 

the cost-to-go function at the points of interest. The details can be referred to in 

Chapter 5. In the following, we will introduce how to determine the two gradients at 

the point of interest. 

 

6.3 The determination of the gradient at the points of interest in the 

multi-period context 

Without closed-form formula of the gradient ( )t

ju  at the point of interest ( ( )
1

t
x , 

( )
2
t

x ), we need to run Monte Carlo simulation, then estimate the gradient based on the 

simulation results. Before that, we need to approximate the cost-to-go function by 

Monte Carlo formulation. In Monte Carlo sampling, sample k is about the realization 

of stochastic returns and demands in each period from period t till period M-1, which 

is expressed as

( 1) ( 1) ( ) ( )
1, 2, 1, 2,

( ) ( ) ( 1) ( 1)
1, 2, 1, 2,

                  

.......

                

t t t t

k k k k

M M M M

k k k k

R R D D

R R D D

+ +

− −

 
 
 
 
 

. The cost-to-go function is 

approximated as follows: 

( ) ( )
1 2

( 1) ( 1)
1 1 2

,

1 ( )*

1 1

[ ( , )]

1
( ).

t t

t t

t S S
D D

N M

k kk t

E f x x

ATC MEC
N

τ

τ

+ +
+

−

= = +
≈ +∑ ∑

               (6.11) 

 

In the above formula, the sample value for sample k, is obtained by summing 

up the cost for the realization from period t+1 till period M-1 and the minimum 

expected cost at period M. Without a closed-form formula for the function 
kMEC , we 
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compute it by minimizing the expected cost ECM, k. In addition, the function ( )*
kATC
τ  

is used to calculate the cost of period τ (t < τ < M) for sample k. The function 

( )*
kATC
τ is expressed as follows: 

( )* ( ) ( ) ( )* ( )* ( )* ( )* ( )* ( )* ( )* ( )*
1 2 1 2 11 12 21 22 1, 2,

( )* ( )* ( )* ( )* ( )* ( )*
1 1 2 2 11 11 12 12 21 21 22 22

( ) ( )* ( )* ( )* ( )*
1 1 1 11 21 1,

( , , , , , , , , , )

[ ]

k S S k k

P P R R R R

s S k

ATC x x p p r r r r D D

c p c p c r c r c r c r

h x p r r D

τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ

τ τ τ τ τ +

= + + + + +

+ + + + − ( )* ( ) ( )* ( )* ( )*
1 1, 1 1 11 21

( ) ( )* ( )* ( )* ( )* ( )* ( ) ( )* ( )* ( )*
2 2 2 12 22 2, 2 2, 2 2 12 22

[ ]

[ ] [ ] .

k S

s S k k S

v D x p r r

h x p r r D v D x p r r

τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ

+

+ +

+ − − − −

+ + + + − + − − − −

 

                    (6.12)

  

At period M, the minimum expected cost MECk is calculated by minimizing 

the expected cost ECM,k in Formula (6.3). 

           

As the functions ECM, k and ( )*
kATC
τ  are both continuous functions, it is 

suitable to approximate the cost-to-go function by Monte Carlo sampling method. 

Furthermore, the gradient ( )t

ju  can be approximated by sample average. 

Corresponding to the gradient ( )t

ju , ( )
,
t

j kgrad  denotes the sample gradient for sample k 

at the point ( ( )
1

t
x , ( )

2
t

x ). Thus, the approximation can be expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( )
1 2 , 1 2

1

1
( , ) ( , ).

N
t t t t t t

j j k

k

u x x grad x x
N =

≈ ∑               (6.13) 

 

Starting with the two-period problem, we would introduce the determination 

of the above-mentioned sample gradient. Then, we would extend from the two-period 

problem to the three-period problem.  Finally, we can determine the sample gradient 

for any multi-period problem by induction. In the determination of the sample 
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gradient, we have taken advantage of an Infinite Perturbation Analysis (IPA) based 

approach. 

 

6.3.1 The determination of sample gradient in the two-period problem 

For the two-period problem, the threshold levels of the last period can be 

obtained by referring to the single-period problem. The threshold levels of the first 

period are determined by using the gradients of the cost-to-go function estimated by 

Monte Carlo simulation. Before that, the sample gradient of the cost-to-go function 

needs to be determined. The sample k for Monte Carlo sampling is expressed 

as (2) (2) (1) (1)
1, 2, 1, 2,( , , , )k k k kR R D D . The sample gradient can be calculated as follows (j =1, 2): 

(1) (1) (1)
, 1 2 (1) (2)

( , ) .k k

j k

j Sj

MEC MEC
grad x x

x x

∂ ∂
= =

∂ ∂
              (6.14) 

 

In the above formula, the term 
(2)

k

Sj

MEC

x

∂

∂
 can be determined as follows (j = 1, 2): 

(2 )

* * * *(2)* (2 )* ( 2)*
2, 2, 2, 2,1 11 21

(2) (2 )* (2) (2)* (2 ) (2 )* ( 2)
1 11 21

* *(2 )* (2)*
2, 2,2 12

(2)* (2 ) (2 )* ( 2)
2 12

( . . . )

            ( . .

k

Sj

k k k k

Sj Sj Sj Sj

k k

Sj Sj

MEC

x

EC EC EC ECp r r

x p x r x r x

EC ECp r

p x r x

∂

∂

∂ ∂ ∂ ∂∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂
+ + +

∂ ∂ ∂ ∂

* (2 )*
2, 22

( 2)* (2)
22

. ).k

Sj

EC r

r x

∂

∂ ∂

  

                    (6.15) 
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According to Formula (6.5), the partial derivatives of the function *
2,kEC can 

be determined as follows (j = 1, 2): 

*
2, (2)*

(2)

* *
2, 2,

(2)* (2)

* *
2, 2,

1(2)* (2)
1

* *
2, 2,

2(2)* (2)
2

( ) ( , , ) ;

;

;

.

k

j j Pj j j j Pj j

Sj

k k

Pj

j Sj

k k

R j

j Sj

k k

R j

j Sj

EC
v h c F x c v

x

EC EC
c

p x

EC EC
c

r x

EC EC
c

r x

µ σ
∂

= + + − −
∂

∂ ∂
= +

∂ ∂

∂ ∂
= +

∂ ∂

∂ ∂
= +

∂ ∂

             (6.16) 

 

Based on Formulae (6.15) and (6.16), Formula (6.14) is further expressed as 

follows (j = 1, 2): 

* *(2)* (2)* (2)* (2)*
2, 2,(1) (1) (1) 1 2 1 11

, 1 2 1 11(2) (2) (2) (2) (2) (2)
1 2

(2)* (2)* (2)*
21 2 12 22

21 2 12 22(2) (2) (2)

( , )

              

k k

j k P R

S Sj S Sj Sj Sj

R P R R

Sj Sj Sj

EC ECx x p r
grad x x c c

x x x x x x

r p r r
c c c c

x x x

∂ ∂∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂

(2)*

(2)
.

Sj
x∂

 

                    (6.17) 

 

The above formula involves the partial derivatives of the optimal 

replenishment decisions with respect to initial inventory. These partial derivatives can 

be obtained according to the corresponding structure in Appendix B. Suppose that the 

optimal replenishment decisions for sample k match the structure S7 in the Appendix 

as mentioned in Chapter 5. Therefore, the sample gradient in Formula (6.17) is 

calculated as follows: 
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(1) (1) (1)
1, 1 2 12 11 2

(1) (1) (1)
2, 1 2 2

( , ) ;

( , ) .

k R R P

k P

grad x x c c c

grad x x c

= − −

= −

      

 

6.3.2 The determination of sample gradient in the three-period problem 

For the three-period problem, the threshold levels of the second and the last 

period can be obtained by referring to the two-period problem and the single-period 

problem respectively. The threshold levels of the first period are determined by using 

the two gradients of the cost-to-go function with respect to inventory levels of the two 

products after replenishment. As the two gradients are estimated by Monte Carlo 

simulation, the sample gradient of the cost-to-go function needs to be determined at 

first. The sample k for Monte Carlo sampling is expressed as 
(2) (2) (1) (1)
1, 2, 1, 2,

(3) (3) (2) (2)
1, 2, 1, 2,

      

      

k k k k

k k k k

R R D D

R R D D

 
 
 
 

. 

The sample gradient can be calculated as follows (j = 1, 2): 

(1) (1) (1)
, 1 2
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∂
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In the above formula, the term 
(2)*

(2)
i

Sj

x

x

∂

∂
 is calculated as follows (i, j = 1, 2): 

 
(2)* (2) (2)* (2)* (2)*

1 2
(2) (2) (2) (2) (2)

.i Si i i i

Sj Sj Sj Sj Sj

x x p r r

x x x x x

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
              (6.19) 

 

The above formula involves the partial derivatives of the optimal 

replenishment decisions with respect to initial inventory of the two products at period 

2. Similar to the two-period problem, these derivatives can be obtained by referring to 

the corresponding solution structure in Appendix B. Before that, the threshold levels 

of the optimal policy at period 2 are determined on the basis of the objective function 

~

tETC  considering both period 2 and period 3. The two gradients of 
~

tETC at the point 

of interest need to be estimated in the two-period context. Suppose that the optimal 

replenishment decisions at period 2 for sample k match the above-mentioned structure 

S7 with the threshold levels at period 2. Therefore, the sample gradient for sample k is 

calculated as 
(2)*

(1) (1) (1)
, 1 2 (2)

( , ) k
j k

Sj

ATC
grad x x

x

∂
=

∂
 by Formula (6.18). The partial derivatives 

of the function (2)*
kATC  can be determined as follows (j = 1, 2): 
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1 11 21
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∂ ∂ ∂
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22

(2) (2)* (2)
22

).k
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∂ ∂
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           (6.20)

 

 

According to Formula (6.12), the related partial derivatives of the function 

(2)*
kATC  are determined and listed in Table 6.2 as follows. While calculating these 
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partial derivatives, we have considered all the combinations of demand satisfaction. In 

order to summarize all the possible expressions, the related index and indicator are 

excluded from the notations in Table 6.2. 

 

Table 6.2 The partial derivatives of the function ( )*
k

ATC
τ  with respect to initial 

inventory and replenishment decisions 
 

 

With reference to Formula (6.20), the two gradients for sample k are 

calculated as follows. According to the situation of demand satisfaction in period 2, 

we can refer to Table 6.2 to obtain the values of the related partial derivatives in the 

following formulae. 

(1) (1) (1)
1, 1 2

(2)* (2)* (2)* (2)*

12 11 2(2) (2)* (2)* (2)*
1 12 11 2

(1) (1) (1)
2, 1 2

(2)* (2)*

2(2) (2)*
2 2

( , )

;

( , )

.

k

k k k k
R R P

S

k

k k
P

S

grad x x

ATC ATC ATC ATC
c c c

x r r p

grad x x

ATC ATC
c

x p

∂ ∂ ∂ ∂
= + − − = − −

∂ ∂ ∂ ∂

∂ ∂
= − = −

∂ ∂

 

6.3.3 The determination of sample gradient in the N-period problem 

By backward induction as mentioned in Chapter 5, the sample gradient of the 

first period for the N-period problem can be calculated as follows (j = 1, 2): 
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           (6.21) 

 

For the sample gradient at period t (1 ≤ t ≤ M) in the M-period horizon of the 

two-product recovery system, we can take advantage of backward way to determine it. 

The sample gradient at period M -1 can be determined by solving the two-period 

problem considering the final two periods. Then, the sample gradient at period M-2 

can be determined by solving the three-period problem considering the final three 

periods. In this way of backward induction, the sample gradient at period t can be 

finally determined. The process of determining the sample gradient at period t can be 

referred to in Appendix C. 

 

6.4 Computational results 

6.4.1 The impact of stochastic returns and demands on the threshold levels 

Based on the same three sets of system parameters as Chapter 5, we will 

investigate the impact of stochastic returns and demands on the threshold levels, 

which have converged in the multi-period context. Firstly, we will investigate how the 

expected value of returned items affects the threshold levels. Secondly, we will 

investigate the impact of demand variability on the threshold levels. 
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6.4.1.1 The impact of the expected value of returned items on the threshold levels 

We will investigate the impact of the expected value of returned items in two 

groups on the threshold levels based on the following stochastic demands: 

1 1 2 2[ ] 200, [ ] 60;     [ ] 100, [ ] 30.E D StDev D E D StDev D= = = =  

 

The impact of the expected value of returned items in group 1 

Firstly, the impact of the expected value of returned items in group 1 will be 

investigated on the same scenarios as Table 5.6. 

 

In the following, the threshold levels of the two products from solving the 

approximate dynamic programming model are shown in Table 6.3. Furthermore, the 

trend of the threshold levels is shown in Figure 6.1. The results have shown that all 

the threshold levels decrease with the expected value of returned items in group 1. For 

product 1, the threshold levels AL1, AL2 and RP are decreasing faster than its other 

threshold levels. On the other hand, for product 2, the threshold levels BL1 and BL2 

are decreasing faster than BL0. As more returned items are available for the recovery 

in each period, the threshold levels would be decreased. 

 

As the interactive allocation of the returned items in two groups, the expected 

value of returned items in group 1 would impact the threshold levels of the recovery 

processes using the returned items in each group. In addition, the expected value of 

returned items in group 1 has less impact on the threshold levels related to production 

and switching. As production never uses the returned items, it would not be impacted 
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by the expected value of returned items. In addition, the two switching levels related 

to product 1, i.e. SW1 and SW2, are from the comparison of marginal profits of the 

recovery using returned items in group 1 and group 2 while the inventory level of 

product 2 is at the threshold level BL0. Therefore, the expected value of returned items 

in group 1 has less impact on the two switching levels. However, there is remarkable 

impact on the threshold level RP, which is from the comparison of marginal profits of 

the recovery using returned items in group 2 while the inventory level of product 2 is 

at the threshold level BL1.  

 

Table 6.3 The threshold levels in different scenarios of returned items in group 
1 with parameter set 1 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

1[ ] 15E R =  210.1 478.9 740.8 232.4 259.6 539.4 112.3 216.5 319.3 

1[ ] 30E R =  209.7 464.7 724.0 231.7 257.9 522.8 112.1 209.2 313.6 

1[ ] 60E R =  208.8 430.7 682.8 229.8 253.8 485.5 111.3 198.4 304.3 

1[ ] 90E R =  205.4 390.3 628.1 224.7 245.6 440.2 108.4 190.2 297.5 

1[ ] 120E R =  199.5 363.4 588.8 217.5 236.0 406.4 107.6 184.2 286.8 

1[ ] 150E R =  193.1 347.6 564.3 210.0 228.2 384.9 107.5 179.2 274.7 

1[ ] 180E R =  187.1 333.9 547.2 205.1 223.4 368.8 107.2 174.1 263.1 

1[ ] 210E R =  182.6 316.9 526.4 200.7 219.3 349.7 105.6 165.9 248.3 
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Figure 6.1 The trend of the threshold levels in different scenarios of returned 
items in group 1 with parameter set 1 

 
Table 6.4 The threshold levels in different scenarios of returned items in group 

1 with parameter set 2 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

1[ ] 15E R =  210.0 461.4 943.1 232.5 460.8 746.5 112.3 219.2 318.9 

1[ ] 30E R =  209.7 449.6 930.9 231.7 450.4 736.9 111.5 211.3 312.3 

1[ ] 60E R =  208.2 421.7 897.0 229.2 421.8 708.6 108.7 197.4 297.8 

1[ ] 90E R =  205.4 387.7 848.8 224.8 387.7 665.2 106.3 188.7 287.6 

1[ ] 120E R =  199.0 360.3 798.9 216.9 361.7 621.7 105.1 181.8 274.7 

1[ ] 150E R =  192.9 347.5 771.0 210.3 347.0 596.7 104.3 177.2 264.7 

1[ ] 180E R =  188.3 332.8 749.6 205.9 333.7 577.2 103.9 172.0 255.6 

1[ ] 210E R =  184.7 316.0 726.1 202.3 316.8 553.3 102.3 164.3 242.8 



Chapter 6 The study on two-product recovery system in a finite horizon 

with backorder and zero lead time 

 

133 
 

 

 

 

Figure 6.2 The trend of the threshold levels in different scenarios of returned 
items in group 1 with parameter set 2 
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Table 6.5 The threshold levels in different scenarios of returned items in group 
1 with parameter set 3 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

1[ ] 15E R =  210.1 461.0 1131.5 232.4 670.8 951.3 112.4 219.4 321.4 

1[ ] 30E R =  209.7 449.5 1132.9 231.6 662.4 943.6 111.5 210.8 313.2 

1[ ] 60E R =  208.3 422.5 1103.4 229.2 639.3 919.9 108.5 197.0 296.5 

1[ ] 90E R =  204.9 385.6 1050.3 224.1 598.2 872.7 105.8 187.7 280.6 

1[ ] 120E R =  199.6 361.5 1003.3 217.6 565.7 830.8 104.3 181.1 270.0 

1[ ] 150E R =  194.8 347.9 970.0 212.0 543.9 801.2 103.4 176.6 261.9 

1[ ] 180E R =  192.0 335.0 944.9 209.6 524.7 776.2 103.1 172.7 254.2 

1[ ] 210E R =  190.0 318.5 919.2 207.2 501.3 751.7 102.0 166.4 244.7 

 

 

 

Figure 6.3 The trend of the threshold levels in different scenarios of returned 
items in group 1 with parameter set 3 
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The impact of the expected value of returned items in group 2 

Secondly, the impact of the expected value of returned items in group 2 will 

be investigated on the same scenarios as Table 5.10. 

 

In the following, the threshold levels of the two products from solving the 

approximate dynamic programming model are shown in Table 6.6. Furthermore, the 

trend of the threshold levels is shown in Figure 6.4. The results have shown that all 

the threshold levels decrease with the expected value of returned items in group 2. For 

product 1, the threshold levels AL1, AL2 and RP are decreasing faster than its other 

threshold levels. On the other hand, for product 2, the threshold levels BL1 and BL2 

are decreasing faster than BL0. The results can be explained with reference to the 

above-mentioned impact of the expected value of the returned items in group 1. 

 

Table 6.6 The threshold levels in different scenarios of returned items in group 
2 with parameter set 1 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

2[ ] 30E R =  207.1 410.1 660.1 227.4 249.8 462.1 110.0 193.2 302.4 

2[ ] 45E R =  205.4 390.3 628.1 224.7 245.6 440.2 108.4 190.2 297.5 

2[ ] 60E R =  202.9 373.8 596.4 221.1 240.9 418.9 106.8 187.1 290.8 

2[ ] 75E R =  199.8 356.0 567.7 217.6 236.1 398.3 105.5 184.6 284.3 

2[ ] 90E R =  196.1 342.3 538.3 213.4 231.5 380.2 104.4 181.8 276.2 

2[ ] 105E R =  192.3 327.1 509.3 209.2 226.3 361.6 103.6 178.7 267.4 

2[ ] 120E R =  187.6 309.2 475.7 203.7 220.4 341.2 102.9 173.4 255.9 
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    Figure 6.4 The trend of the threshold levels in different scenarios of 
returned items in group 2 with parameter set 1 

 

Table 6.7 The threshold levels in different scenarios of returned items in group 
2 with parameter set 2 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

2[ ] 30E R =
 206.7 406.3 894.0 226.9 405.6 702.1 107.7 58.5 288.1 

2[ ] 45E R =  205.4 387.7 848.8 224.8 387.7 665.2 106.3 188.7 287.6 

2[ ] 60E R =  202.3 365.6 790.5 220.7 365.8 619.4 105.4 186.9 282.1 

2[ ] 75E R =  198.9 346.9 740.9 216.9 348.3 578.6 104.5 185.3 276.6 

2[ ] 90E R =  195.4 330.3 689.8 212.7 330.6 536.8 103.9 182.5 270.2 

2[ ] 105E R =  191.5 313.9 638.8 208.0 314.0 497.7 103.3 178.7 262.4 

2[ ] 120E R =  186.1 295.1 586.6 202.4 295.4 454.8 102.8 174.5 254.4 
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Figure 6.5 The trend of the threshold levels in different scenarios of returned 
items in group 2 with parameter set 2 
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Table 6.8 The threshold levels in different scenarios of returned items in group 2 with 
parameter set 3 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 

2[ ] 30E R =
 206.7 406.7 1121.3 226.7 637.6 935.1 107.1 189.1 282.1 

2[ ] 45E R =  204.9 385.6 1050.3 224.1 598.2 872.7 105.8 187.7 280.6 

2[ ] 60E R =  202.3 366.8 977.4 220.9 559.3 810.5 105.1 186.4 278.6 

2[ ] 75E R =  199.1 348.2 904.8 217.0 521.5 748.1 104.1 184.4 273.7 

2[ ] 90E R =  196.3 332.6 839.4 213.4 490.0 693.3 103.8 182.6 269.3 

2[ ] 105E R =  191.6 312.1 754.7 208.0 447.0 621.3 103.4 179.1 261.2 

2[ ] 120E R =  186.5 292.7 681.0 202.4 402.6 557.5 103.0 175.1 252.8 

 

 

 

Figure 6.6 The trend of the threshold levels in different scenarios of returned 
items in group 2 with parameter set 3 
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6.4.1.2 The impact of demand variability of two products on the threshold levels 

We will investigate the impact of demand variability of two products on the 

threshold levels with the following set of parameters on returned items: 

1 1 2 2[ ] 90, [ ] 30;     [ ] 45, [ ] 15.E R StDev R E R StDev R= = = =  
 
 

The impact of demand variability of product 1 

 
Firstly, the impact of demand variability of product 1 will be investigated on 

the same scenarios as Table 5.14. 

 

In the following, the threshold levels of the two products from solving the 

approximate dynamic programming model are shown in Table 6.9. Furthermore, the 

trend of the threshold levels is shown in Figure 6.7. The results have shown that all 

the threshold levels related to product 1 increase with the demand variability of 

product 1 whereas the threshold levels related to product 2 seem unaffected. As the 

demands for the two products are independent of each other, the impact of demand 

variability of product 1 would only affect the threshold levels related to product 1. 

Furthermore, the higher demand variability results in the higher threshold levels to 

avoid possible stock shortage. 

 

Table 6.9 The threshold levels in different scenarios of demand for product 1 with 
parameter set 1 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV1=0.1 203.1 358.0 597.2 210.5 219.6 404.0 109.6 190.9 301.7 
COV1=0.2 205.2 375.2 611.6 219.1 234.8 421.3 109.2 189.7 299.1 
COV1=0.3 205.4 390.3 628.1 224.7 245.6 440.2 108.4 190.2 297.5 
COV1=0.5 206.6 433.1 687.2 236.3 266.5 488.9 108.4 190.7 298.4 
COV1=0.75 214.9 518.1 816.6 258.5 302.3 589.2 109.4 193.1 300.7 
COV1=1.0 227.8 617.7 965.0 287.7 346.1 702.9 110.1 194.1 304.3 
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Figure 6.7 The trend of the threshold levels in different scenarios of demand 
for product 1 with parameter set 1 

 

 

Table 6.10 The threshold levels in different scenarios of demand for product 1 with 
parameter set 2 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV1=0.1 202.6 352.0 808.5 209.9 351.5 625.5 106.8 189.2 292.4 
COV1=0.2 203.7 365.5 813.1 217.4 365.3 633.2 106.5 188.5 287.9 
COV1=0.3 205.4 387.7 848.8 224.8 387.7 665.2 106.3 188.7 287.6 
COV1=0.5 206.7 429.8 920.6 236.3 429.8 725.9 106.5 189.1 284.7 
COV1=0.75 215.1 515.1 1087.6 258.7 517.3 865.6 106.5 190.6 286.8 
COV1=1.0 227.3 616.1 1279.9 288.8 617.0 1022.7 106.9 191.4 288.1 
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Figure 6.8 The trend of the threshold levels in different scenarios of demand 
for product 1 with parameter set 2 
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Table 6.11 The threshold levels in different scenarios of demand for product 1 with 
parameter set 3 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV1=0.1 202.7 352.2 846.2 210.0 564.1 799.3 106.4 187.9 289.8 
COV1=0.2 203.9 366.2 1016.8 217.3 575.3 842.8 106.2 187.6 282.4 
COV1=0.3 204.9 385.6 1050.3 224.1 598.2 872.7 105.8 187.7 280.6 
COV1=0.5 206.6 429.5 1133.9 236.4 658.5 949.2 105.9 188.4 279.7 
COV1=0.75 214.8 516.0 1324.2 258.9 787.1 1119.1 106.1 190.3 281.1 
COV1=1.0 228.0 617.8 1546.3 288.6 934.2 1315.4 106.6 191.3 283.1 

 

 
 

 
 

Figure 6.9 The trend of the threshold levels in different scenarios of demand 
for product 1 with parameter set 3 
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The impact of demand variability of product 2 

 

Secondly, the impact of demand variability of product 2 will be investigated 

on the same scenarios as Table 5.18. 

 

In the following, the threshold levels of the two products from solving the 

approximate dynamic programming model are shown in Table 6.12. Furthermore, the 

trend of the threshold levels is shown in Figure 6.10. The results have shown that all 

the threshold levels related to product 2 increase with the demand variability of 

product 2 whereas the threshold levels related to product 1 seem unaffected. The 

explanation to the results is similar to that on the impact of demand variability of 

product 1. 

 
Table 6.12 The threshold levels in different scenarios of demand for product 2 with 

parameter set 1 
 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV2=0.1 205.7 393.7 623.1 225.3 246.0 441.4 103.9 165.0 276.3 
COV2=0.2 205.6 391.5 627.0 224.7 246.0 440.0 106.5 177.0 286.7 
COV2=0.3 205.4 390.3 628.1 224.7 245.6 440.2 108.4 190.2 297.5 
COV2=0.5 205.2 391.0 628.9 224.3 245.1 440.7 114.3 214.1 321.6 
COV2=0.75 205.2 393.9 638.4 224.5 245.2 445.5 124.6 253.3 375.8 
COV2=1.0 205.3 399.9 651.5 224.5 245.4 452.3 137.3 307.2 456.1 
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Figure 6.10 The trend of the threshold levels in different scenarios of demand for 
product 2 with parameter set 1 

  
 

Table 6.13 The threshold levels in different scenarios of demand for product 2 with 
parameter set 2 

 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV2=0.1 205.1 391.3 845.0 224.5 391.4 666.1 102.6 164.6 262.9 
COV2=0.2 204.8 386.9 842.2 224.4 387.3 662.6 104.7 176.6 274.1 
COV2=0.3 205.4 387.7 848.8 224.8 387.7 665.2 106.3 188.7 287.6 
COV2=0.5 204.7 383.2 840.1 224.0 383.7 657.5 110.8 207.4 305.2 
COV2=0.75 205.0 385.9 840.0 224.3 386.9 658.4 114.5 224.8 323.1 
COV2=1.0 206.3 399.1 864.5 226.2 399.6 676.7 114.0 236.3 332.8 
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Figure 6.11 The trend of the threshold levels in different scenarios of demand for 
product 2 with parameter set 2 

 
Table 6.14 The threshold levels in different scenarios of demand for product 2 with 

parameter set 3 
 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
COV2=0.1 205.2 391.6 1055.2 224.4 605.2 877.3 102.2 164.7 254.4 
COV2=0.2 205.0 387.6 1051.3 224.3 600.6 873.8 104.3 175.4 266.1 
COV2=0.3 204.9 385.6 1050.3 224.1 598.2 872.7 105.8 187.7 280.6 
COV2=0.5 204.7 383.6 1047.9 224.0 592.7 869.0 110.1 206.9 302.8 
COV2=0.75 205.1 387.0 1047.9 224.5 592.5 868.0 113.9 224.0 321.5 
COV2=1.0 205.7 397.3 1066.9 225.5 602.9 881.3 113.6 235.3 330.1 
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Figure 6.12 The trend of the threshold levels in different scenarios of demand for 
product 2 with parameter set 3 
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6.4.2 The comparison of three heuristic policies with respect to the 

expected average cost 

While using the threshold levels to help to make production and recovery 

decisions in a relatively long horizon, the resulting expected average cost is compared 

with those values obtained by using two heuristic policies from the single-period 

problem. The following symbols will be used in the presentation of numerical results: 

H1 – Heuristic policy from the single-period problem disregarding scrap 

values of the remaining finished products; 

H2 – Heuristic policy from the single-period problem assuming scrap value of 

the remaining product 1 and product 2 to be equal to cR21 and cR22 respectively; 

H3 – Heuristic policy from solving the ADP model; 

EAC_H1 – Expected average cost calculated while the heuristic policy H1 is 

used in a relatively long horizon; 

EAC_H2 – Expected average cost calculated while the heuristic policy H2 is 

used in a relatively long horizon; 

EAC_H3 – Expected average cost calculated while the heuristic policy H3 is 

used in a relatively long horizon. 

 

The optimal policy of the single-period problem is used as heuristic policy for 

the multi-period problem. Two heuristic policies, denoted as H1 and H2 respectively, 

are derived from solving the single-period problem. The policy H1 disregards the 

scrap values of the remaining finished products whereas the policy H2 assumes the 

scrap value of product 1 and product 2 to be equal to cR21 and cR22 respectively. In 

order to compare the threshold levels of the policies H1 and H2 with those of the 
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policy H3 from solving the approximate dynamic programming model, we have 

selected the set of threshold levels when 1[ ] 210E R =  in Table 6.3. The threshold 

levels of the three heuristic policies have been shown in Table 6.15 and further 

compared in Figure 6.13. The results have shown that the corresponding threshold 

levels of the policy H3 are highest whereas the threshold levels of the policy H1 are 

lowest. The difference of each corresponding threshold level between the policies H1 

and H2 is small whereas the difference between the policies H1 and H3 is obviously 

large. 

 

Table 6.15 The threshold levels in three heuristic policies 

 AL0 AL1 AL2 SW1 SW2 RP BL0 BL1 BL2 

 
 

H1 151.7 204.0 238.0 162.0 171.2 212.0 79.8 96.9 106.3 
 

H2 156.7 213.4 255.7 167.5 177.4 222.6 88.7 111.3 127.9 
 

H3 182.6 316.9 526.4 200.7 219.3 349.7 105.6 165.9 248.3 
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Figure 6.13 The comparison of the threshold levels in different heuristic 
policies 

 

While using the three heuristic policies to make production and recovery 

decisions of the two-product recovery system in a relatively long horizon, the 

resulting expected average costs are shown in Table 6.16. The results have shown that 

the policy H3 performs best, secondly the policy H2 and finally the policy H1. By 
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comparing the expected average costs between the policies H1 and H3, 3.3% 

decrement can be achieved while using the policy H3 to replace the policy H1. 

 

Table 6.16 The expected average costs using different heuristic policies 

 
 

EAC_H1 2738.7 

 

EAC_H2 2698.1 
 

EAC_H3 2649.0 
   

6.5 Summary 

 

In this Chapter, we have developed the ADP model of the two-product 

recovery system in the situation of backorder over a finite horizon. The model aims to 

determine the threshold levels as the multi-level threshold policy from the single-

period problem is assumed to be used for the multi-period problem. In the multi-

period situation, the threshold levels are found to be only dependent on the gradient of 

the cost-to-go function at the points of interest. 

 

The impact of system parameters on the threshold levels has been investigated. 

The numerical results have shown that the more returned items from either group in 

each period would make the threshold levels lower. Among them, the threshold levels 

AL1, AL2, BL1, BL2 and RP, related to recovery processes, would obviously decrease 

with returned items increasing. However, there are small decreases on the threshold 

levels AL0 and BL0, related to production processes, and the threshold levels SW1 and 

SW2, related to switching the allocation of returned items to the recovery processes 
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between the two products. On the other hand, with the increasing demand variability 

of a certain product, the threshold levels related to this product would increase at the 

same time whereas the threshold levels related to the other product seem unaffected. 

 

After determining the threshold levels, we can use the threshold policy to 

control the two-product recovery system in the multi-period context. The performance 

of this policy is compared with the two heuristic policies derived from the optimal 

policy of the single-period problem. Through the comparison of the resulting expected 

average cost, the policy from solving the approximate dynamic programming model 

outperforms the other two heuristic policies. 
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Chapter 7    The study on two-product recovery system in a 

finite horizon with backorder and nonzero constant lead 

time  

 

Chapter 7 focuses on the two-product recovery system in a finite horizon, in 

which backorder is allowed. In the recovery system, all the lead times of production 

and recovery processes are assumed to be the same nonzero constant. Section 7.1 

introduces the recovery system. In Section 7.2, an ADP model of the recovery system 

is developed in order to minimize the expected total cost in a finite horizon. In the 

model, the lead time effect is considered. The model aims to derive the threshold 

levels, which are only dependent on the gradient of the cost-to-go function at the 

points of interest. Section 7.3 provides the details about how to determine the gradient 

at the points of interest. Section 7.4 gives the computational results about the 

performance of the policy from solving the ADP model. Finally, Section 7.5 

summarizes the main findings. 

 

7.1 Introduction 

Chapter 6 has studied the two-product recovery system in a finite horizon, in 

which backorder is allowed. In addition, production and recovery processes are 

assumed to have zero lead time. However, these processes often have nonzero lead 

time in practice. Therefore, this Chapter investigates the lead time effect of production 

and recovery processes. Hereafter, all the lead times of production and recovery 

processes are assumed to be the same nonzero constant. Due to the existence of lead 
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times, the initial inventory position at the beginning of each period in the planning 

horizon needs to include pipeline inventory. 

 

The objective of modeling the recovery system is to minimize the expected 

total cost in a finite horizon. In order to fulfill the aim, we need to obtain the optimal 

policy, which helps to make the optimal production and recovery decisions in each 

period of the planning horizon. 

 

7.2 Approximate dynamic programming model of the two-product 

recovery system in the multi-period context 

Since the related assumptions and notations for the two-product recovery 

system can be referred to in Chapter 3 and Chapter 6, we will not repeat here. The 

only different notation is as follows: 

L lead time of production and recovery processes for each product. 

 

The inventory position at the beginning of period t is net stock plus pipeline 

inventory. The inventory state transition equations between two consecutive periods 

can be written as follows (j = 1, 2): 

 ( 1) ( ) ( ) ( ) ( ) ( )
1 2 .t t t t t t

Sj Sj j j j jx x p r r D
+ = + + + −       (7.1) 

 

 Due to lead times existing in the system, production and recovery decisions 

made in period t will affect the joint inventory holding cost and penalty cost of 

shortage in period t + L. Thus, we take into account production and recovery costs of 
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period t, together with the joint inventory holding cost and penalty cost of shortage in 

period t + L. The expected cost in period t is calculated as follows: 

( ) ( ) ( ) ( )
1 1 11 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 11 11 12 12 21 21 22 22
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1 1 1 11 21 1 1 1 10
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t t t t
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t t t t t t
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h x p r r D f D dµ σ
+ + +

= + + + + +

+ + + −∫
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2 2 12 22
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S
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S
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S
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D
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∞
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  (7.2) 

 

In Formula (7.2), the transformed demand '
jD  is the aggregation of demands 

from period t till period t + L. The related characteristic parameters of the transformed 

demand are calculated as follows (j = 1, 2): 

' '( 1) ;     1 .
j j j j

L Lµ µ σ σ= + = +       (7.3) 

 

Let ( ) ( )
1 2( , )t t

t S Sf x x denote the expected total cost from period t till period M - L. 

Assume
2( 1) ( 1) ( 1)

1 1 2 1
( , ) [ ] .M L M L M L

M L S S Pj Sjj
f x x c x− + − + − + +

− + =
= −∑ The Bellman’s equation of 

dynamic programming can be written as follows (t = 1, 2,..., M - L): 

 

( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 11 12 21 22

( ) ( )
1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 11 12 21 22

, , , , , ,

1 1
,

( , ) { min { ( , , , , , , , )

                                          [ (

t t t t t t t t

t t

t t t t t t t t t t

t S S t S S
R R p p r r r r

t S
D D

f x x E EC x x p p r r r r

E f x

− −

+

=

+ ( 1) ( 1)
2, )]}}.t t

Sx+ +
 

          (7.4) 

 

Similar to Chapter 6, the approximation is made to the cost-to-go function in 

the above formula. The approximate dynamic programming model considering the 
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lead time effect is the same as that in Chapter 6 except that the expected cost of period 

t is calculated on the basis of the above-mentioned transformed demands. Therefore, 

similar threshold level policy can be obtained by solving the approximate dynamic 

programming model. Thus, the threshold levels of the policy are determined on the 

basis of the transformed demands. In addition, similar to Chapter 6, two gradients 

used for the approximation are estimated at the point of interest by Monte Carlo 

simulation. 

 

7.3 The determination of the gradient at the points of interest in the 

multi-period context 

Without a closed-form formula of the gradient ( )t

ju  at the point of interest ( ( )
1

t
x , 

( )
2
tx ), we need to run Monte Carlo simulation, and estimate the gradient based on the 

simulation results. Before that, we need to approximate the cost-to-go function of 

dynamic programming by Monte Carlo formulation. In Monte Carlo sampling, sample 

k is about the realization of stochastic returns in each period from period t + 1 till 

period M - L, and the realization of stochastic demands in each period from period t 

till period M - 1. The sample k is expressed as: 

( 1) ( 1) ( ) ( )
1, 2, 1, 2,

( ) ( ) ( 1) ( 1)
1, 2, 1, 2,

( ) ( )
1, 2,
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The cost-to-go function of dynamic programming is approximated as follows: 

( ) ( )
1 2

( 1) ( 1)
1 1 2

,

1 ( )*

1 1

[ ( , )]

1
( ).

t t

t t

t S S
D D

N M L

k kk t

E f x x

ATC MEC
N

τ

τ

+ +
+

− −

= = +
≈ +∑ ∑

       (7.5) 

  

In the above formula, the sample value for sample k, is obtained by summing 

up the cost in each period from period t + 1 till period M – L - 1 and the minimum 

expected cost in  period M - L. Without a closed-form formula of the function 
k

MEC , 

we would compute it by minimizing the expected cost ECM-L, k. In addition, the 

function ( )*
kATC
τ  is to calculate the cost of period τ at the optimum. The function 

( )
k

ATC τ  is expressed as follows ([X]+ := max{X, 0}; t < τ < M – L): 
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           (7.6)

  

At period M – L, we can calculate the minimum expected cost MECk by 

minimizing the expected cost ECM-L, k, which is calculated by Formula (7.2). 

          

As the function ECM-L, k and the function ( )
kATC
τ  are both continuous functions, 

it is suitable to approximate the cost-to-go function by Monte Carlo sampling method. 

Furthermore, the two gradients used for the approximate dynamic programming 

model can be approximated by sample average. 
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In the following, we present the computational results about applying the 

policy from solving the approximate dynamic programming model to the two-product 

recovery system in a finite horizon. At the same time, this policy is compared with the 

other two heuristic policies derived from the optimal policy of the single-period 

problem. 

 

7.4 Computational results 

The following symbols will be used in the presentation of numerical results: 

H1 – Heuristic policy from the single-period problem disregarding scrap 

values of the remaining finished products; 

H2 – Heuristic policy from the single-period problem assuming scrap value of 

the remaining product 1 and product 2 to be equal to cR21 and cR22 respectively; 

H3 – Heuristic policy from solving the ADP model; 

EAC_H1 – Expected average cost calculated while the heuristic policy H1 is 

used in a relatively long horizon; 

EAC_H2 – Expected average cost calculated while the heuristic policy H2 is 

used in a relatively long horizon; 

EAC_H3 – Expected average cost calculated while the heuristic policy H3 is 

used in a relatively long horizon. 

 

A set of system parameters is given as follows:  

1 2 1 2 1 2

1 2 11 12 21 22

1 1 2 2

1 1 2

Cost:         3, 3, 4, 6, 15, 20,

                 12, 15, 6, 10, 2, 7;

Demand:  [ ] 200, [ ] 60; [ ] 100, [ ] 30;

Return :    [ ] 90, [ ] 30; [ ] 4

P P R R R R

h h v v s s

c c c c c c

E D StDev D E D StDev D

E R StDev R E R

= = = = = =

= = = = = =

= = = =

= = = 25, [ ] 15.StDev R =
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In Table 7.1, we have shown the threshold levels of the policy from solving 

the approximate dynamic programming model and the two heuristic policies from the 

single-period problem under different values of fixed lead time L (L = 0, 1, 2). 

 

Table 7.1 The threshold levels in different heuristic policies (L=0, 1, 2) 

  AL1 AL2 AL3 SW1 SW2 RP BL1 BL2 BL3 

 
 

L=0 

 

H1 151.7 204.0 238.0 162.0 171.2 212.0 79.8 96.9 106.3 
 

H2 156.7 213.4 255.7 167.5 177.4 222.6 88.7 111.3 127.9 
 

H3 205.4 390.3 628.1 224.7 245.6 440.2 108.4 190.2 297.5 
 

L=1 

 

H1 331.7 405.6 453.8 346.2 359.3 416.9 171.4 195.6 208.9 
 

H2 338.8 418.9 478.8 354.1 368.0 432.0 184.0 216.0 239.4 
 

H3 409.0 627.1 869.5 435.9 463.9 677.6 207.6 299.8 407.5 
 

L=2 

 

H1 516.4 606.9 665.9 534.2 550.2 620.7 265.0 294.6 310.9 
 

H2 525.0 623.2 696.5 543.7 560.8 639.2 280.4 319.6 348.3 
 

H3 612.2 847.2 1089.1 644.1 676.6 897.7 310.3 410.9 519.4 

 

Furthermore, the expected average costs are calculated and shown in Table 7.2 

while using the above three policies to control the two-product recovery system in a 

relatively long horizon. The percentage of increment is calculated on the basis of the 

expected average cost by using the policy H1. Figure 7.1 has shown the trend of the 

expected average cost with the lead time. With the larger value of the lead time, the 

expected average cost is higher. The average inventory level per period increases with 

the lead time so as to reduce possible stock shortage. Therefore, the expected average 

cost will increase with the lead time as more inventory holding cost is incurred. 
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Table 7.2 The expected average cost using different heuristic policies (L=0, 1, 2) 

 L =0 Increment(%) L=1 Increment(%) L=2 

 

Increment(%) 

EAC_H1 3336.9  3409.5  3668.9  

EAC_H2 3297.9 -1.2 3357 -1.5 3598.8 -1.9 

EAC_H3 3208.7 -3.8 3247.5 -4.8 3445.2 -6.1 

 
 

 
 

Figure 7.1 The expected average cost using different heuristic policies (L=0, 1, 2) 

 

7.5 Summary 

 

In this Chapter, we have studied the two-product recovery system, in which 

backorder is allowed. For the system, the lead time effect has been investigated by 

assuming all the lead times of production and recovery processes to be the same 

nonzero constant. We have developed the ADP model of the system in order to 

minimize the expected total cost in the finite horizon. The model is used to derive the 

threshold levels as the multi-level threshold policy from the single-period problem is 

assumed to be used for the multi-period problem. In the multi-period situation, the 
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threshold levels are found to be only dependent on the gradient of the cost-to-go 

function at the points of interest. 

 

 

The computational results have shown that the policy from solving the 

approximate dynamic programming model outperforms the other two heuristic 

policies from the single-period problem. Between the two heuristic policies, the 

heuristic policy, which considers the scrap values of the remaining finished products, 

performs better. In addition, the expected average cost increases with the lead time as 

the average inventory of the system increases with the lead time. 
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Chapter 8    Conclusion 
 

The main purpose of this thesis is to develop mathematical models on the two-

product recovery system in a finite horizon in order to obtain the optimal or near-

optimal policy for production planning and inventory control. This chapter concludes 

the study by presenting a summary of research findings and discussing the 

implications and limitations of this research, as well as suggesting several directions 

for future research. 

 

8.1 Main findings 

 

In Chapter 3, we have developed a dynamic programming model for the two-

product recovery system in a finite horizon. The aim is to maximize the expected total 

profit in a finite horizon. However, the dynamic programming model is found to be 

difficult to be solved efficiently due to no nice property. Therefore, we have studied 

the single-period problem as the special case of the multi-period problem in Chapter 4. 

After modeling and solving the single-period problem, an optimal multi-level 

threshold policy is obtained. The related threshold levels are discovered and their 

insights are further explained. 

 

Even though this multi-level threshold policy might not be optimal for the 

multi-period problem, it is intuitive, easy to use and provides good managerial 

perspectives.  Hence, we apply this policy to the multi-period problem 
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In Chapter 5, we have proposed an ADP model to derive the threshold levels. 

We have found that different from the single-period problem, the threshold will not 

only depend on the current-period cost parameters, but also on the future cost-to-go 

function. The threshold levels are further found to be only dependent on the gradient 

of the cost-to-go function at the points of interest. Unlike the usual approach which 

uses a single function (or piecewise function) to represent the cost-to-go function, we 

just need to estimate the gradient of the cost-to-go function at the points of interest. 

These gradients will be used to compute the threshold level. As the threshold level 

and the gradient are dependent on each other, we have determined the threshold levels 

via an iterative algorithm. When estimating the gradient by a Monte Carlo simulation-

based technique, i.e. Sample Average Approximation (SAA), we develop an 

Infinitesimal Perturbation Analysis (IPA) based approach to determine the sample 

gradient. This approach not only uses the least computing resources but also its 

estimation quality is better. 

 

The threshold policy from solving the ADP model is compared with the two 

heuristic policies, which are derived from the optimal policy of the single-period 

problem. One heuristic policy assumes the scrap values of the two products to be 

nonzero fixed values whereas the other heuristic policy assumes the scrap values of 

the two products to be zero. By the comparison of the resulting expected average 

profits, we find that the policy from solving the ADP model performs best, followed 

by the heuristic policy considering the scrap value of finished products, and finally the 

heuristic policy disregarding the scrap value. Furthermore, with the best policy, the 

impact of system parameters has been investigated. The computational results have 

shown that the larger expected value of returned items in either group brings more 
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expected average profit. In addition, the higher the demand variability, the less the 

expected average profit. 

 

 In addition, Chapter 6 and Chapter 7 focus on the two-product recovery 

system in the situation of backorder over a finite horizon. The model aims to 

minimize the expected total cost over the finite horizon. Chapter 6 has done similar 

work as Chapter 5 to investigate the performance of the threshold policy and the 

impact of system parameters under different scenarios. Chapter 7 investigates the lead 

time effect of production and recovery processes. By assuming all the lead times of 

production and recovery processes to be the same nonzero constant, the expected 

average cost of the system is found to be increasing with the value of the constant lead 

time. This results from the aggregation of demand variability. 

 

8.2 Discussion about the relaxation of certain assumptions 

 

We would discuss about the relaxation of certain assumptions mentioned in 

Chapter 3.  

 

In Chapter 3, lead time is assumed to be equal to zero. In Chapter 7, the lead 

time effect has been considered in the situation of backorder based on a simple case 

that both production lead time and recovery lead time of each product are equal to the 

same nonzero constant. The threshold level is computed based on the gradient of the 

cost-to-go function which considers the constant lead time. If the simple case would 

be extended to a more complex case that production lead time and recovery lead time 

are different, the state space of dynamic programming will be increased due to the 
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lead time difference. If we still assume the multi-level threshold policy to be used for 

this case, the threshold levels need to be computed based on the cost-to-go function 

which considers not only the lead time effect but also the lead time difference 

between production and recovery. This could be further studied as one of the future 

directions. 

 

In Chapter 3, disposal cost is assumed to be negligible. Otherwise, disposal 

cost needs to be included in the total cost. For the single-period problem, the threshold 

policy remains unchanged expect that some threshold levels need to be recomputed. 

For example, the order-up-to level of product 1 by recovering the returns in group 1, 

is calculated as 1 1 1 11
1 1 1

1 1 1

( , , )Rs v c
AL F

s v h
µ σ− + −

=
+ +

. If disposal cost is considered and its 

cost rate is assumed as cD1, the order-up-to level is recomputed 

as 1 1 1 11 1
1 1 1

1 1 1

( )
( , , )R Ds v c c

AL F
s v h

µ σ− + − −
=

+ +
. For the multi-period problem studied over a 

long horizon, as the threshold policy is evaluated by measuring the expected average 

cost, the disposal cost would be regarded as negligible and need not be considered. 

 

In Chapter 3, it is assumed that there is no stocking of the returned products. 

This assumption is reasonable in some practical situations. For example, it might be 

cost-saving without establishing extra storage capacity for returned items. The same 

situation occurs if these returned items cannot be stored over a longer period because 

of environmental or similar reasons. Otherwise, if this assumption is relaxed to allow 

the stocking of returned items for future periods, disposal of unused returned items is 

optional and depends on the inventory states of both returned items and finished items. 

Thus, the stock holding cost of two groups of returned items will be considered in the 
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modeling and the threshold level for the disposal of returned items might be necessary 

to characterize the multi-level threshold policy. Furthermore, we need to investigate 

how to compute the threshold levels for both single-period case and multi-period case 

in the situations of having stocks of returned items. It could be further studied as one 

of the future directions. 

 

8.3 Suggestions for Future Work 

Demand substitution 

One-way (downward) substitution often exists in practice, especially in high-

tech industry. Inderfurth (2004) and Bayindir et al. (2007) considered one-way 

substitution of the finished product from production for that from recovery in the 

single-product recovery system. The one-way demand substitution will reduce 

shortages, and also incur additional substitution cost. If this one-way demand 

substitution is allowed in the two-product recovery system of this study, the optimal 

production and recovery decisions need to be re-considered. 

 
 

Capacitated production 

In the two-product recovery system of this study, production capacity is 

assumed to be unlimited. Production process will be used for the replenishment of 

finished item inventory if the recovery of returned items is not enough to achieve 

replenishment requirement. However, if production process is capacitated, how to 

determine the related threshold levels needs to be re-considered. In most existing 

models of this field, capacitated production is considered together with demand 
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substitution. For example, Li et al. (2007) considered the capacitated production 

planning problem in the single-product recovery system. 

 

Different lead times between production and recovery 

In the two-product recovery system of this study, if production lead time and 

recovery lead time are different, the state space of dynamic programming will be 

increased due to the lead time difference. If we still assume the multi-level threshold 

policy to be used for this case, how to compute the threshold levels based on the cost-

to-go function in the more complex case is one of the future directions. 

 

Stocking of returned items 

In the two-product recovery system of this study, if there is the stocking of 

returned items, disposal of unused returned items will depend on the inventory states 

of both returned items and finished items. The threshold level for the disposal of 

returned items needs to be determined for the multi-level threshold policy for both 

single-period case and multi-period case. It could be further studied as one of the 

future directions. 

 

Approximate dynamic programming model with neural network 

In the approximate dynamic programming model of this study, we have taken 

advantage of simple linear models to fulfill the approximation. On the other hand, 

neural networks represent a powerful and general class of approximation strategies 

used in approximate dynamic programming. By means of neural networks, a much 

richer class of nonlinear functions can be trained in an iterative way, which is 

matching the needs of approximate dynamic programming. If neural network 
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approximation would be used for the approximate dynamic programming model of 

this research, we need to take advantage of the problem structure. The advantage of 

this approximation method should be shown by the comparison with linear 

approximation.
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Appendix A    The threshold levels for the optimal inventory 

control of the two-product recovery system in a single period 
 

 

The related threshold levels for the optimal inventory control of the two-

product recovery system in a single period are listed in Table A.1 and Table A.2. 

Table A.1 includes the order-up-to levels for the inventory replenishment of the two 

products respectively. In addition, Table A.2 includes the threshold levels for the 

interactive inventory control of the two products. 
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Table A.1 The order-up-to levels for the optimal inventory control of the two-product 

recovery system in a single period 
 

 Formula Insight 

 

AL0 

 

1 1 1 1
1 1

1 1 1

( , , )Ps v c
F

s v h
µ σ− + −

+ +
 

Is to balance between the opportunity loss due to 
one unit of product 1 short arising from production 
process (s1+v1–cP1) and the opportunity loss due to 
having one unit excess of product 1 arising from 
production process (cP1+h1). 

 

AL1 
 

1 1 1 11
1 1

1 1 1

( , , )Rs v c
F

s v h
µ σ− + −

+ +
 

Is to balance between the opportunity loss due to 
one unit of product 1 short arising from recovery 
process by returned items in group 1 (s1+v1–cR11) 
and the opportunity loss due to having one unit 
excess of product 1 arising from the recovery 
process (cR11+h1). 

 

AL2 
 

1 1 1 21
1 1

1 1 1

( , , )Rs v c
F

s v h
µ σ− + −

+ +
 

Is to balance between the opportunity loss due to 
one unit of product 1 short arising from recovery 
process by returned items in group 2 (s1+v1–cR21) 
and the opportunity loss due to having one unit 
excess of product 1 arising from the recovery 
process (cR21+h1). 

BL0 
1 2 2 2

2 2

2 2 2

( , , )Ps v c
F

s v h
µ σ− + −

+ +
 

Is to balance between the opportunity loss due to 
one unit of product 2 short arising from production 
process (s2+v2–cP2) and the opportunity loss due to 
having one unit excess of product 2 arising from 
production process (cP2+h2). 

BL1 
1 2 2 12

2 2

2 2 2

( , , )Rs v c
F

s v h
µ σ− + −

+ +

 

Is to balance between the opportunity loss due to 
one unit of product 2 short arising from recovery 
process by returned items in group 1 (s2+v2–cR12) 
and the opportunity loss due to having one unit 
excess of product 2 arising from the recovery 
process (cR12+h2). 

BL2 

 

1 2 2 22
2 2

2 2 2

( , , )Rs v c
F

s v h
µ σ− + −

+ +

 

Is to balance between the opportunity loss due to 
one unit of product 2 short arising from recovery 
process by returned items in group 2 (s2+v2–cR22) 
and the opportunity loss due to having one unit 
excess of product 2 arising from the recovery 
process (cR22+h2). 
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Table A.2 The threshold levels for the interactive inventory control of the two-product 
recovery system in a single period 

  
 Formula Insight 

SW1 
1 1 1 12 11 2

1 1

1 1 1

( , , )R R Ps v c c c
F

s v h
µ σ− + + − −

+ +
 

Is to balance between the opportunity loss 
due to one unit of product 1 short arising 
from switching of returned items in group 
1 from the recovery process for product 1 
to that for product 2 in place of production 
process (s1+v1+cR12–cR11–cP2) and the 
opportunity loss due to having one unit 
excess of product 1 arising from no 
switching (cR11+cP2–cR12+h1). 

SW2 

 

1 1 1 22 21 2
1 1

1 1 1

( , , )R R Ps v c c c
F

s v h
µ σ− + + − −

+ +

 

Is to balance between the opportunity loss 
due to one unit of product 1 short arising 
from switching of returned items in group 
2 from the recovery process for product 1 
to that for product 2 in place of production 
process (s1+v1+cR22–cR21–cP2) and the 
opportunity loss due to having one unit 
excess of product 1 arising from no 
switching (cR21+cP2–cR22+h1). 

RP 

 

1 1 1 22 21 12
1 1

1 1 1

( , , )R R Rs v c c c
F

s v h
µ σ− + + − −

+ +

 

Is to balance between the opportunity loss 
due to one unit of product 1 short arising 
from no replacement and reallocation of 
returned items in group 2 by returned 
items in group 1 (s1+v1+cR22-cR21-cR12) and 
the opportunity loss due to having one 
unit excess of product 1 arising from the 
replacement and reallocation process 
(cR12+cR21-cR22+h1). 
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Appendix B    The structures of the optimal solution to the 

single-period problem on the two-product recovery system 
 

 

To maximize the expected profit in a single period, the optimal solution to the 

single-period problem on the two-product recovery system has different structural 

forms due to different combinations of the initial inventory of the two products and 

the availability of returned items. The solution structures involve the threshold levels, 

which have been explained in Chapter 4. In addition, there are notations: R1 and R2 

denote the availability of returned items in group 1 and group 2 respectively; xS1 and 

xS2 denote the initial inventory of product 1 and product 2 respectively; RL1 and RL2 

denote the replenishment level of product 1 and product 2 respectively. As some 

structures involve the comparison of marginal profits from allocating returned items 

to the recovery for the two products, we list the formulae of the related marginal 

profits as follows (j = 1, 2): 

1

1

2

2

( ) ( , , );

( ) ( , , ).

j j R j j j j j j j

j

j j R j j j j j j j

j

EP
s v c s v h F x

r

EP
s v c s v h F x

r

µ σ

µ σ

∂
= + − − + +

∂

∂
= + − − + +

∂

              (B.1) 

 

In order to obtain the perturbation effect of the initial inventory of the two 

products on the optimal replenishment decisions, we have listed nonzero values of the 

first-order derivatives of the optimal replenishment decisions with respect to the 

initial inventory of the two products in Table B.1. In more details, the solution 

structures are listed as follows: 
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1 2 1 0 2 0

* * *
1 0 1 2 1 11 1 21 2 1 0

* * *
2 0 2 12 22 2 0

S1.  ,   :

  ,   ,   ;   ( )

  ,                  0,    0.     ( )

S S

S

S

R R x AL x BL

p AL R R x r R r R RL AL

p BL x r r RL BL

+ + < <

= − − − = = =

= − = = =

 

 

0 1 2 1 1 2 0

* * *
1 11 1 21 2 0 1 1

* * *
2 0 2 12 22 2 0

S2.  ,   :

  0,                  ,   ;   ( )

  ,     0,    0.     ( )

S S

S

AL R R x SW x BL

p r R r R AL RL SW

p BL x r r RL BL

≤ + + ≤ <

= = = ≤ ≤

= − = = =

 

 

1 2 1 0 2 0

* * *
1 0 1 2 1 11 1 21 2 1 0

* * *
2 12 22 0 2 2

S3.  ,   :

  ,   ,   ;   ( )

  0,                               0,    0.     ( )

S S

S

R R x AL x BL

p AL R R x r R r R RL AL

p r r BL RL BL

+ + < ≥

= − − − = = =

= = = ≤ ≤

 

 

1 1 2 1 2 2

0 1 2 1 1 2 0

11 12

* * *
1 11 1 21 2 0 1 1

* * *
2 12 22 0 2 2

S4.  ,   ,   :

  0,   ,   ;   ( )

  0,   0,    0.     ( )

S S

S S

x R R x x x

EP EP
AL R R x AL x BL

r r

p r R r R AL RL AL

p r r BL RL BL

= + + =

∂ ∂
≤ + + ≤ ≥ ≥

∂ ∂

= = = ≤ ≤

= = = ≤ ≤

 

 

 

1 2 1 1 2 1 1 2 1

* * *
1 11 1 2 1 21 2 1 1

* * *
2 12 22 1 2 2

S5.  ,   ,   :

  0,   ,   ;   ( )

  0,   0,                       0.     ( )

S S S

S

R R x AL R x AL x BL

p r AL R x r R RL AL

p r r BL RL BL

+ + > + ≤ ≥

= = − − = =

= = = ≤ ≤

 

1 2 1 2 2

2 1 1 2 1

21 22

* * *
1 11 21 2 1 1 2

* * *
2 12 22 1 2 2

S6.  ,   ,   :

  0,   0,   ;   ( )

  0,   0,   0.    ( )

S S

S S

x R x x x

EP EP
R x AL x BL

r r

p r r R AL RL AL

p r r BL RL BL

= + =

∂ ∂
+ > ≥ ≥

∂ ∂

= = = < ≤

= = = ≤ ≤

 

2 1 1 1 2 1 1 1 2 1 2 1 0

* * *
1 11 1 2 1 21 2 1 1

* *
2 1 0 1 2 1 2 12 1 2 1

S7.  ,   ,   :

  0,                                                 ,          ;   ( )

  ,   

S S S S

S

S S S

R x SW R R x SW R R x x SW BL

p r SW R x r R RL SW

p SW BL R R x x r R R x

+ < + + > + + + ≤ +

= = − − = =

= + − − − − = + + *
1 22 2 0,   0.    ( )SW r RL BL− = =
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1 2 1 2 1 2 0

* * *
1 11 21 2 1 1 2

* * *
2 0 1 2 12 1 22 2 0

S8.  ,   :

  0,                       0,     ;   ( )

  ,   ,   0.    ( )

S S

S

SW R x SW R x BL

p r r R SW RL SW

p BL R x r R r RL BL

≤ + ≤ + <

= = = ≤ ≤

= − − = = =

 

 

1 2 1 2 1 2 1 2 1 2 1 2

0 1 2 1

21 22 11 12

* * *
1 11 21 2 1 1

* * *
2 12 1 22 0 2 1

S9.  ,   ,   :

  0,   0,     ;   ( )

  0,   ,   0.     ( )

S S S S

S

x R x x R x x R x x R x

EP EP EP EP
BL R x BL

r r r r

p r r R SW RL RP

p r R r BL RL BL

= + = + = + = +

∂ ∂ ∂ ∂
≤ + ≤ ≥ ≤

∂ ∂ ∂ ∂

= = = ≤ ≤

= = = ≤ ≤

 

 

1 2 1 2 1 1 2 1

* * *
1 11 21 2 1 1

* * *
2 12 1 2 22 2 1

S10.  ,   ,   :

  0,   0,               ;   ( )

  0,   ,   0.    ( )

S S S

S

AL R x RP x BL R x BL

p r r R AL RL RP

p r BL x r RL BL

≤ + ≤ < + >

= = = ≤ ≤

= = − = =

 

 

1 1 2 1 2 2 1 2 1 2 1 2

* *
1 11 2 1 2 12 2

1 0 1 2 1 2 1 1

11 12 11 12

* * * *
1 21 2 2 22

11 12

S11.  ,

       ,   :

  0,   ;   0,   0;

  solve  and

S S S S

S S

S S

x R R x x x x R x x R x

x r R x x r x

SW BL R R x x AL BL

EP EP EP EP

r r r r

p r R p r

EP EP

r r

= + + = = + = +

= + + = +

+ < + + + ≤ +

∂ ∂ ∂ ∂
< >

∂ ∂ ∂ ∂

= = = =

∂ ∂
=

∂ ∂
* * * *

11 12 1 11 12

1 1 1 0 2 1

  to obtain , .

( ,   )

r r R r r

SW RL AL BL RL BL

+ =

< ≤ < ≤

 

2 1 1 2 1 1 2 1 2 1 1

* * *
1 11 1 2 1 21 2 1 1

* * *
2 12 1 2 22 2 1

S12.  ,   ,   :

  0,   ,   ;   ( )

  0,   ,           0.    ( )

S S S S

S

S

R x AL x BL R R x x AL BL

p r AL R x r R RL AL

p r BL x r RL BL

+ < < + + + > +

= = − − = =

= = − = =
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1 2 2 1 2 1 2 1 2 2 0

* * *
1 11 21 2 1 1 2

* * *
2 2 0 1 2 1 2 12 1 22 2

S13.  ,   ,   :

  0,                                                 0,     ;           ( )

  ,   ,   

S S S S

S

S S S

x SW R x SW R R x x SW BL

p r r SW x RL SW

p SW BL R R x x r R r R x

< + > + + + ≤ +

= = = − =

= + − − − − = = + 1 2 2 0.   ( )SW RL BL− =

 

 

 

1 2 1 2 2 0

* * *
1 11 21 2 1 2

* * *
2 0 1 2 2 12 1 22 2 2 0

S14.  ,   :

  0,                               0,     0;     ( )

  ,   ,   .   ( )

S S

S

x SW R R x BL

p r r SW RL AL

p BL R R x r R r R RL BL

≥ + + <

= = = ≤ ≤

= − − − = = =

 

 

1 1 2 1 2 2

0 1 2 2 1
21 22

* * *
1 11 21 2 1 2

* * *
2 12 1 22 2 0 2 1

S15.  ,   :

  0,   0,     0;     ( )

  0,   ,   .   ( )

S S

S

x x x R R x

EP EP
BL R R x BL

r r

p r r SW RL AL

p r R r R BL RL BL

= = + +

∂ ∂
≤ + + ≤ ≤

∂ ∂

= = = ≤ ≤

= = = ≤ ≤

 

 

1 2 2 1 1 2 2 1

* * *
1 11 21 1 2

* * *
2 12 1 2 2 22 2 2 1

S16.  ,   ,   :

  0,   0,                        0;     ( )

  0,   ,   .   ( )

S S S

S

x RP R x BL R R x BL

p r r RP RL AL

p r BL R x r R RL BL

≥ + ≤ + + >

= = = ≤ ≤

= = − − = =

 

1 1 2 2 1 2 1 2 1 2 1 2

* *
1 21 1 2 22 1 2

2 0 1 2 1 2 1

21 22 21 22

* * * *
1 11 2 12 1

21 22

S17.  ,

        ,   :

  0,   0;   0,   ;

  solve  and

S S S S

S S

S S

x x x R R x x R x x R x

x r x x r R x

SW BL R R x x RP BL

EP EP EP EP

r r r r

p r p r R

EP EP

r r

= = + + = + = +

= + = + +

+ < + + + ≤ +

∂ ∂ ∂ ∂
> <

∂ ∂ ∂ ∂

= = = =

∂ ∂
=

∂ ∂
* * * *

21 22 2 21 22

2 1 0 2 1

  to obtain , .

( ,   )

r r R r r

SW RL RP BL RL BL

+ =

< ≤ < ≤
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1 2 1 2 1 2 1 1 2 1 2 1

* * *
1 11 21 1 1

* * *
2 12 1 2 1 2 22 2

S18.  ,   ,   ,   :

  0,   0,                                         ;           ( )

  0,   ,    

S S S S S S

S

S S

x RP R x RP R x x RP BL R R x x RP BL

p r r RP x RL RP

p r RP BL R x x r R x

< + > + + < + + + + > +

= = = − =

= = + − − − = + 1 2 1.   ( )S RP RL BL− =

 

 

1 2 1 2 2 1 1 2 2 2

* *
1 21 1 2 22 2

1 2 1 2 2 2

21 22 21 22

* * * *
1 11 2 12

* *
21 22 2

21 22

S19.  ,

     ,   :

  0,   0;   0,   0;

  solve  and  to

S S S S

S S

S S

x R x x x x x x R x

x r x x r x

RP BL R x x AL BL

EP EP EP EP

r r r r

p r p r

EP EP
r r R

r r

= + = = = +

= + = +

+ ≤ + + ≤ +

∂ ∂ ∂ ∂
< >

∂ ∂ ∂ ∂

= = = =

∂ ∂
= + =

∂ ∂

* *
21 22

1 2 1 2 2

 obtain , .

( ,   )

r r

RP RL AL BL RL BL≤ ≤ ≤ ≤

 

 

1 1 2 2 2

2 2 1

21 22

* * *
1 11 21 1 2

* * *
2 12 22 2 1 2 2

S20.  ,   :

  0,   0,   0;     ( )

  0,   0,   .  ( )

S S

S

x x x R x

EP EP
R x BL

r r

p r r RP RL AL

p r r R BL RL BL

= = +

∂ ∂
+ > ≤

∂ ∂

= = = < ≤

= = = < ≤

 

 

2 1 2 2 2

* * *
1 11 21 2 1 1 2

* * *
2 12 22 2 2 2 2

S21.  :

  0,   0,   ;   ( )

  0,   0,   .  ( )

S S

S

S

R x x AL BL

p r r AL x RL AL

p r r BL x RL BL

+ + > +

= = = − =

= = = − =

 

 

According to the above solution structures, the nonzero values of the first-

order derivatives of the optimal replenishment decisions with respect to the initial 

inventory of the two products are listed in Table B.1. 
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Table B.1 The nonzero values of the first-order derivatives of the optimal 
replenishment decisions with respect to the initial inventory of the two products 

 

 

S1  -1  
         -1     

S2        -1     

S3 -1            

S5   -1          

S7      -1    -1   -1 1    

S8        -1     

S10          -1   

S11   -C1 1-C1     C1 C1-1   

S12   -1       -1   

S13        -1  -1   -1   1  

S14        -1     

S16          -1   

S17     -C2 1-C2     C2 C2-1 

S18     -1    -1 -1 1  

S19      -C3 1-C3     C3 C3-1 

S21     -1       -1 

 

In Table B.1, the variables C1, C2 and C3 can be calculated as follows: 

*
1 1 1 2 1 11 1 1

1 * *
1 1 1 2 1 11 1 1 2 2 2 2 12 2 2

*
1 1 1 1 21 1 1

2 * *
1 1 1 1 21 1 1 2 2 2 1 2 22 2 2

1 1 1 1
3

( ) ( , , )
;

( ) ( , , ) ( ) ( , , )

( ) ( , , )
;

( ) ( , , ) ( ) ( , , )

( ) (

S

S S

S

S S

S

s v h f R x r
C

s v h f R x r s v h f x r

s v h f x r
C

s v h f x r s v h f R x r

s v h f x
C

µ σ

µ σ µ σ

µ σ

µ σ µ σ

+ + + +
=

+ + + + + + + +

+ + +
=

+ + + + + + + +

+ + +
=

*
21 1 1

* *
1 1 1 1 21 1 1 2 2 2 2 22 2 2

, , )
.

( ) ( , , ) ( ) ( , , )S S

r

s v h f x r s v h f x r

µ σ

µ σ µ σ+ + + + + + +

 

                     (B.2)
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∂
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1S
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∂

∂
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1S
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x

∂

∂
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1S

p

x

∂

∂
12

1S

r

x

∂

∂
22

1S

r

x

∂

∂
1

2S

p

x

∂

∂
11

2S

r

x

∂

∂
21

2S
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x

∂

∂
2

2S
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∂

∂
12
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r

x

∂

∂
22
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r
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∂
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Appendix C    The process of determining the sample 

gradient for the approximate dynamic programming models 

 
 

In Chapter 5 and Chapter 6, we have developed the approximate dynamic 

programming models for the two-product recovery system considering lost sale and 

backorder respectively. In addition, production and recovery processes are assumed to 

have zero lead time. Due to a liner approximation involved in modeling, the two 

gradients of the cost-to-go function of dynamic programming with respect to the 

inventory level of the two products after replenishment need to be estimated by 

sample average through Monte Carlo simulation. Furthermore, the sample gradient 

,j kgrad  (j = 1, 2) is to be determined for the M-period problem given the sample k 

about the realization of stochastic returns and demands as: 

(2) (2) (1) (1)
1, 2, 1, 2,

(3) (3) (2) (2)
1, 2, 1, 2,

( ) ( ) ( 1) ( 1)
1, 2, 1, 2,

                  

                  
.

......

            

k k k k

k k k k

M M M M

k k k k

R R D D

R R D D

R R D D
− −

 
 
 
 
 
 
 

 

 

As introduced in the two chapters, it is similar for the two products to 

determine the sample gradient of the cost-to-go function with regard to their 

respective inventory level after replenishment. We would take product 1 as an 

example to introduce the process of determining the sample gradient in Figure C.1 

and Figure C.2 for the two-product recovery system considering lost sale and 

backorder respectively. 
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Figure C.1 The determination of the sample gradient for the two-product recovery 
system assuming lost sale and zero lead time 
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Figure C.2 The determination of the sample gradient for the two-product recovery 
system assuming backorder and zero lead time 

 


