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SUMMARY

Cancer is a leading fatal disease with millions of people falling victim to it every

year. Indeed, the figures are alarming and increasing significantly with each passing

year. Cancer is a complex disease characterized by uncontrolled and unregulated

growth of cells in the body. Cancer growth can be broadly classified into three stages

namely, avascular, angiogenesis and metastasis based on their location and extent

of spread in the body. Mechanisms of cancer growth have been poorly understood

thus far and considerable resources have been committed to elucidate these mech-

anisms and arrive at effective therapeutic strategies that have minimal side effects.

Mathematical modeling can help in the modeling of cancer mechanisms, to propose

and validate hypothesis and to develop therapeutic protocols. This research intends

to contribute to this important area of cancer modeling and treatment.

Among these stages, study of avascular stage is quite relevant to the present

trend of technology development. Many mathematical models have been developed

to comprehend the avascular tumor growth, but the availability of a compendious

model is still elusive. This thesis proposes a simple mechanistic model to explain

the phenomenon of tumor growth observed from the multicellular tumor spheroid

experiments. The main processes incorporated in the mechanistic model for the

avascular tumor growth are diffusion of nutrients through the tumor from the mi-

croenvironment, consumption rate of the nutrients by the cells in the tumor and cell

death by apoptosis and necrosis.

Chemotherapy and immunotherapy are the main focus of this thesis - tumor

growth models are integrated with the pharmacokinetic and pharmacodynamic mod-

els of therapeutic drugs. The integrated model is used to optimize the therapeutic

interventions in order to kill the tumor cells and avert the catastrophic side effects

viii



by effectively leveraging multi-objective optimization and control methods. Further-

more, scaling and sensitivity analysis are applied on the tumor-immune models to

screen the dominating mechanisms affecting the tumor growth. Then, the dominant

mechanisms are used to test out the aspects of intrapatient and interpatient variabil-

ity. Application of reactive scheduling approach is addressed to nullify the effects

of intrapatient variability on the therapeutic outcome. Similarly, population-based

simulation studies are carried out to design diagnostic and therapeutic protocols

and to find the parametric combinations that determine the treatment outcome.

Overall, this thesis showcases the utility and ability of process systems engineering

approaches in improving the cancer diagnosis and treatment.
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NOMENCLATURE

Chapter 2

N Tumor cells

N0 Initial number of tumor cells
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Chapter 1 Introduction

Chapter 1

INTRODUCTION

‘Growth for the sake of growth is the ideology of the cancer cell.’

- Edward Abbey

1.1 Motivation

The global challenge driving the oncology community is to understand and ex-

ploit the complex nature of cancer growth to discover specific diagnostic indices

and treatment protocols for anti-cancer drugs. This challenge demands conduct-

ing laboratory and clinical experiments for the collection of informative data. The

aggregated knowledge from the experiments and clinical experiences must then be

translated into promising therapies and used in P4 (preventive, proactive, partic-

ipatory and personalized) medicine. Presently, cancer diagnostic and treatment

protocols are suggested based on the knowledge generated from clinical trials in-

volving particular cohort of patients, but are applied on other patient groups as well

(Kleinsmith, 2005). Also, for a given treatment protocol only few patients may be

cured and others may not. Variability in patient outcomes is one of the practical

challenges of the existing and emerging therapeutic protocols. Variability can be

broadly classified as interpatient and intrapatient variability. Interpatient varibility

is the difference in effect of therapy (target or side effects) on different patients. On

the other hand, intrapatient variability is the variations that occur in a given patient

during the treatment course. In fact, it is necessary to know the reason behind the

variability of the effect of diagnostic and treatment protocols on the patients, so

that the protocols can be tailored appropriately to individual patients or patient
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groups. It is to be noted that experiments that can elucidate the reasons for inter-

and intrapatient variability are costly and time-consuming. The objectives of any

therapy are to minimize the total number of cancer cells by maintaining it below

the lethal level while minimizing the side effects. Keeping this in view, the main

challenge is to find a way for the clinical implementation of novel and combinatorial

therapies. FDA approval is needed before any clinical implementation - the whole

process of discovery, laboratory trials and approval can take several years. Accord-

ing to recent studies, the cost involved in the research and development of a new

drug for Food and Drug Administration (FDA) approval is between US $ 500 million

and US $ 800 million and the development time is around 10-12 years. For example,

Dendreon took around 18 years to get FDA’s approval and around US $ 750 million

was invested. A lot of in vitro/in vivo experiments should be performed to clear

the different phases of FDA approval and understand the side effects, efficacy and

the variability of the therapy (Lord and Ashworth, 2010). In this context, in silico

(computer) based tools may help to investigate the fundamentals of cancer growth

and unique features of a given therapy and its protocols. Even FDA has recognized

and encouraged the population based pharmacokinetic and pharmacodynamic mod-

eling studies to ease the approval of new drugs with lesser number of experiments.

In this regard, Gatenby (1998) states that ‘recent research in tumor biology, partic-

ularly that using new techniques from molecular biology, has produced information

at an explosive pace. Yet, a conceptual framework within which all these new (and

old data) can be fitted is lacking’. Gatenby and Gawlinski (2003) stress the point

that clinical oncologists and tumor biologists possess virtually no comprehensive

theoretical model to serve as a framework for understanding, organizing and apply-

ing the data and emphasize the need to develop mechanistic models that provide

real insights into critical parameters that control system dynamics. Murray (2002)

states that ‘the goal is to develop models which capture the essence of various in-

teractions allowing their outcome to be more fully understood’. Tiina et al. (2007)

presented the results of a search in the PubMed bibliographic database which shows

2



Chapter 1 Introduction

that, out of 1.5 million papers in the area of cancer research, approximately 5% are

related to mathematical modeling. According to Byrne (1999), effective and efficient

treatment modalities can be developed by identifying the mechanisms which control

the cancer growth. Thus, once we understand the mechanism, the key components

of it can be modified to eliminate (or reduce pain arising from) the disease. This

state of knowledge may be possibly reached through laboratory experiments alone,

but at the cost of infinite time and numerous (replicated) experiments. However,

the achievement of this goal can be speeded up through the application of process

systems engineering techniques (Mathematical modeling, Control theory and Op-

timization) to describe different aspects of solid tumor growth in the absence or

presence of anti-cancer agents. This implies that sound and robust tools are essen-

tial in order to investigate the fundamentals of cancer growth and unique features

of a given therapy and its protocols.

1.1.1 Role of process systems engineering in cancer therapy

Mathematical modeling and simulation is a versatile tool in comprehending the

system behavior and has been used for different applications in natural science and

engineering disciplines (Quarteroni, 2009). A mathematical model is an abstraction

of a process system. It is composed of model equations and parameters. Usually,

available experimental data is used for estimating the model parameters and for val-

idating its prognostic ability. Then, parametric analysis (sensitivity analysis with

respect to parameters) of the model is performed to understand the domain and

variations of the system behavior with the variation in the parameters (Rodrigues

and Minceva, 2005). With understanding of the system and a valid model, one can

pursue model based process control and optimization (Edgar et al., 2001). In a sim-

ilar fashion, the applications of the tumor growth modeling are many (Deisboeck

et al., 2009). Firstly, cancer growth can be predicted and the main parameters re-

sponsible for it can be better understood. Secondly, these models can be combined
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with pharmacokinetic and pharmacodynamic models of the therapeutic agents to

study their impact on cancer growth (Quaranta et al., 2005). Thus, the combina-

tion model can serve as a decision-making tool for planning and scheduling of the

different therapies. In addition, interpatient and intrapatient variability scenarios

can be imitated by perturbing the parameters and optimization techniques can be

used to schedule a therapy accordingly. Modeling and in silico experiments can

provide new insights and offer different possibilities to understand and treat can-

cer. Experimentalists and clinicians are becoming increasingly aware of the role of

mathematical modeling and its value-addition along with medical techniques and

experimental approaches in order to accelerate our understanding in distinguishing

various possible mechanisms responsible for the tumor growth (Friedrich et al., 2007;

Gottfried et al., 2006; Kunz-Schughart et al., 1998; Kunz-Schughart, 1999; Oswald

et al., 2007).

Fig. 1.1. Change in death rates of different diseases in US from 1950 to 2003
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1.2 Cancer statistics

The word Cancer (meaning “crab” in Latin) was introduced by Hippocrates in

the 5th century BC to explain a group of diseases resulting from the abnormal growth

and spread of tissues to the other parts of the body and ultimately proving fatal.

Even though cancer has subsisted for a very long time, its existence is noticeably

increasing during the last 50 years. As of now, the probability that a randomly

selected person will get cancer has almost doubled when compared to 1950s (Klein-

smith, 2005). Cancer stands next only to heart disease in the list of most fatal

diseases in the world. From Figure 1.1, it is obvious that the decrease in death rate

of cancer patients over the years 1950-2003 has been minimal as compared to other

major diseases. Cancer related deaths have been escalating meteorically - according

to the World Health Organization (WHO), 7.6 million people died of cancer (out of

58 million deaths overall) in 2008. They speculated that cancer deaths will increase

to 18% and 50% by 2015 and 2030 respectively. Recently, the American Cancer

Society (ACS) reported that around 1.6 million new cancer cases and 0.6 million

cancer death cases occured in the US in 2009. According to another report on

worldwide cancer rates by the WHO’s International Agency for Research on Cancer

(IARC), North America leads the world in the rate of cancers diagnosed in adults,

followed closely by Western Europe, Australia and New Zealand. In Britain, it was

estimated using 2008 data that more than one in three were expected to develop

the disease over their survival period 1. According to Cancer Council Australia,

around 114,000 new cases of cancer were diagnosed in Australia in 2010 and it was

estimated that one in two Australians will be diagnosed of cancer by the age of 85.

Cancer deaths in Singapore reflected the global trend (27.1% of total deaths) during

the period 1998-2002 and approximately 49,400 new cases of cancer were diagnosed

during the period 2005-2009 2. The reasons for such alarming trends include the

1http://info.cancerresearchuk.org/cancerstats/incidence/risk/
2http://www.nrdo.gov.sg/uploadedFiles/NRDO/Cancer Trends Report%20 05-09.pdf
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non-availability of definite therapy for all types of cancer and the indeterminate

nature of the existing therapies for patients with same type of cancer.

The above mentioned figures have drawn the attention of researchers to under-

stand the mechanism of cancer and come out with better therapies. In this effort,

remarkable progress has been made in the past few decades in uncovering some of

the cellular and molecular mechanisms leading to cancer and the cumulative infor-

mation reveal that around 100 types of cancer exist. Their names are distinguished

from one another on the basis of its location and the cell type involved. Based on

the gravity of the cancer problem, Perumpanani (1996) remarks that ‘the research

community has taken on the challenge posed by cancer on a war-footing and this

has in recent years resulted in an explosion in our understanding of cancer’. Some

researchers claim that the analysis of cancer mechanisms has enhanced our under-

standing of the normal cells (Alberts et al., 2002; Kleinsmith, 2005). This may

lead to many fundamental discoveries in cell biology and broadly benefit the vari-

ous fields of medicine. Despite the advances made in the understanding of cancer

and mechanisms, much remains to be done before the deaths of millions of people

due to cancer can be reduced. One main challenge is to be able to understand and

exploit the complex nature and multiple stages of tumor growth. Another challenge

is to conduct the right laboratory and bedside experiments to collect useful data to

extract information regarding the mechanisms of cancer cell behavior.

1.3 What is cancer ?

Cancer is the uncontrolled proliferation of abnormal cells of any tissue or organ

in the human body. An abnormal cancer cell evolves from the normal cell due to

accumulation of DNA damage - this DNA damage (i.e. genetic mutations in pieces of

DNA) makes the cell immortal. The genes transferred from the parents might carry

with them an inherent risk or susceptibility to cancer. When such a “normal” but
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Table 1.1
Differences between benign and malignant tumors

Trait Benign Malignant
Nuclear size Small Large
Ratio of nuclear size to Low High
cytoplasmic volume
Nuclear shape Regular Pleomorphic (irregular shape)
Mitotic index Low High
Tissue organization Normal Disorganized
Differentiation Well differentiated Poorly differentiated
Tumor boundary Well defined Poorly defined

“risk prone” cell is exposed to external factors such as UV radiation, carcinogenic

chemicals etc., it could undergo a series of genetic mutations and transform into a

cancerous cell. Mutations cause the cell to evade cell death and grow improperly

with or without growth signals from the environment (Hanahan and Weinberg, 2000;

Martins et al., 2007). Once the cancer cell is formed, it searches for nutrients from

the nearby tissues and proliferates rapidly compared to the adjacent normal cells

(Tiina et al., 2007). The induced mutation by the external factors not only enhances

the proliferation rate of the cells but also decreases its death rate by down-regulating

and up-regulating the tumor suppressor genes and oncogenes respectively (Hanahan

and Weinberg, 2000). Over time, this results in the formation of a clump of cells

known as neoplasm or tumor. Tumor growth is based upon conditions like tumor

location, cell type, and nutrient supply. On the basis of the growth pattern, tumors

are classified into two fundamental groups. One group is benign tumors whose

growth is narrowed to a local area and are composed of well-differentiated cells.

The other one is malignant tumors which can invade the nearby tissues, migrate to

other parts of the body and their cells are poorly differentiated. The differences in

the microscopic appearance of the benign and malignant tumors are tabulated in

Table 1.1.
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1.3.1 Different stages of tumor growth

Generally, the overall cancer growth is categorized into three stages namely avas-

cular, angiogenesis and metastasis (Tiina et al., 2007). In avascular stage, the tu-

mor growth is localized and nutrients are consumed from the nearby tissues. At

this stage, the tumor is known as benign tumor as it is not life-threatening and its

growth rate is usually slower than that in the other two later stages. Initially, avas-

cular tumors get adequate nutrients and the cells flourish. As time proceeds, the

avascular tumor growth rate reduces and reaches saturation size due to insufficient

nutrition supply to the innermost cells in the tumor. Then, the nutrient-deficient

tumor cells signal the nearby blood vessels about their nutrient requirement leading

to the second stage called angiogenesis. Consequently, the tumor develops associ-

ation with the blood vessels in its proximity. Subsequently, the tumor cells loosen

and the cell debris flows through the connected blood vessels. The tumor cells can

thus migrate from their origin to the other parts of the body resulting in the final

stage called metastasis. After metastasis, the patient will be left with multiple tu-

mors in the body (Kleinsmith, 2005), because the migrated cancer cells invade the

other parts of the body via repetition of the above mentioned growth phases. At

the angiogenesis and metastasis stage, the tumor grows very randomly as well as

rapidly and is quite malignant. Treatment, at this stage, becomes quite complicated

and often unfruitful. Hence, the early detection of tumor in avascular stage enables

cancer cure with higher probability.

1.4 Clinical phases

The common phases any cancer patient undergoes are detection, diagnosis and

administration of therapy (Figure 1.2). A multidisciplinary team comprising of

specialized clinicians, pathologists, radiologists, pharmacists, nurses, general practi-
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Fig. 1.2. Clinical phases of cancer treatment

tioners is involved in the different phases (Airley, 2009). Experts advise for regular

screening tests, so that any cancer (if present) can be detected at an early stage.

1.4.1 Cancer detection

There are various detection routes for different cancers which are broadly classi-

fied as physical examination tests, laboratory tests, imaging techniques and visual

examination test. Physical examination tests include extraction of cells from the tu-

mor site (e.g. pap smear for cervical cancer). Imaging techniques such as mammog-

raphy, magnetic resonance imaging, ultrasonography, positron emission tomography

are generally used to detect breast tumor. In some of these techniques, high energy

radiations are employed to generate pictures of internal tissues and facilitating the

recognition of the abnormal tissue region(s). Similarly, in the laboratory tests, can-

cer prone proteins are measured from the blood sample (e.g. the concentration of

prostate-specific antigen (PSA) for prostate cancer). In the visual examination such

as colonscopy for colorectal cancer, a slender, flexible and optical fibre tube is in-

serted in the region and devices attached to the tube are used to visualize and locate

the abnormal tissues (Airley, 2009; Kleinsmith, 2005).

1.4.2 Cancer diagnosis

Detection procedures address the sign of cancer. However, the positive results

in the detection step do not mean the presence of cancer. Hence, they are followed

by diagnostic examinations for the confirmation of cancer. Diagnosis also includes

9



1.4 Clinical phases

quantification of cancer characteristics. In this regard, it requires the biopsy spec-

imen extracted from the tumor site. Microscopic and pathological studies are per-

formed to grade the tumor based on distinctive features such as cell morphology,

mitotic index and doubling time. Mitotic index indicates the percentage of dividing

cells where as doubling time implies the rate of division. Further, the tumor staging

is determined based on different criteria: (a) the size of the localized tumor and its

spread to the nearby tissues, (b) the extent of spread to the regional lymph nodes

and (c) the extent of spread to the distant parts (metastasis). This kind of staging

is known as TNM staging where T, N, M stands for tumor, lymph node and metas-

tasis respectively. Additionally, biochemical tests of the molecular components of

the cells may figure out gene or proteins expressed in the tumor which will serve as

biomarkers or prognostic indicators. For example, estrogen receptor is an indicator

of breast cancer prognosis. The information about tumor grading, staging concluded

from pathological and radiological data, patient’s blood cell count and his/her his-

torical health record, are referred for suggesting a particular therapy or combination

of therapies. Then, it is the role of oncology pharmacists to monitor and prepare

the therapy. Presently, they use their clinical and pharmaceutical expertise in de-

signing the treatment plan for an individual. The freedom of attempting intuitive

ideas regarding therapeutic inputs in designing cancer therapy is very less and it

demands foolproof evidence owing to ethical constraints.

1.4.3 Cancer therapy

Research efforts over the last hundred years has resulted in the development of

many treatment modalities. The most common of these are surgery, chemotherapy,

radiation therapy, and immunotherapy (Airley, 2009; Kleinsmith, 2005). However,

there is no specific therapy for treating all forms of cancer and each therapy has

its own advantages and deficiencies. As a rule, surgery is preferred to remove the

tumors provided its location permits surgical intervention. However, all cancer cells
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cannot be removed by surgery and hence surgery is usually followed or substituted by

chemotherapy and/or radiation therapy. Among these two, chemotherapy is better

than radiation therapy because it is a systemic therapy. In systemic therapies, drug

circulates in the blood stream and not only kills the residual cancer cells at the

tumor site but also annihilates migrated cancer cells. On the contrary, radiation

therapy is a localized therapy which is a better option in the early stages of cancer

(Shepard et al., 1999). In general, most of the patients undergo chemotherapy at

some stage of their treatment. Chemotherapy is administered as a course in cycles

based on the health condition of the patient rather than as a one-shot treatment

(Airley, 2009). This serves to lessen its side effects and to accomplish the goal of

the chemotherapy. The principle of chemotherapy is to recognize and attack the

rapidly proliferating cells by restraining DNA replication and by rupturing their

DNA. Consequently, it may also damage normal cells that are fast proliferating by

nature (e.g. blood cells, cells lining the intestines, colon, cells inside the mouth

and throat, cells in hair follicles). Yet another problem is that some cancer cells

may acquire mutations which make them resistant to chemotherapy drugs. In this

case, even the few drug resistant cancer cells may lead to the invasive growth of the

tumor. The side effects of chemotherapy can sometimes be worse than the disease

itself. Thus, only chemotherapy as an adjuvant therapy after surgery or as a prime

therapy, may not eradicate the tumor completely and may lead to serious side effects.

One solution to this challenging issue is the application of combination therapy. In

this regard, combining chemotherapy with emerging and targeted therapies such

as immunotherapy can be a promising and synergistic option to treat many cancer

types (Gabrilovich, 2007; Lake and Robinson, 2005).

1.4.4 Emerging and targeted therapies

Surgery, radiation therapy and chemotherapy either alone or in various combi-

nations are successful only when the tumor is identified in the initial stages. But,
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still there are some cancers (pancreas, liver or lungs) which are detected only at

their aggressive stages. Now, cancer scientists are putting lot of efforts in develop-

ing novel and effective treatment strategies with higher selectivity such that only

cancer cells are targeted while sparing the normal cells. Thus, these therapies are

known as targeted therapies. These include immunotherapy, gene therapy, and vi-

ral therapy. In immunotherapy, the main idea is to identify and extract or engineer

the immune cells which are cytotoxic to tumor cells to improve the selectivity and

cytotoxicity. Some forms of immunotherapy are Bacillus Calmette-Guerin (BCG)

(Bunimovich-Mendrazitsky et al., 2007), cytokine therapy, adoptive cell transfer

therapy. In BCG therapy, bacteria are injected into the patients to provoke the

immune system and eliminate tumor cells. The success of BCG therapy has been

notable in the treatment of early stage bladder cancer. Similarly, in cytokine ther-

apy, cytokines (proteins) are used to stimulate the immune response. This will be

discussed elaboratively in the following chapter. Gene therapy exploits the role of

oncogenes and tumor suppressor genes in cancer development based on discoveries

over the past two decades. In gene therapy, the defective genes are replaced by the

normal genes (Mesri et al., 2001). In one form of gene therapy, viruses containing the

normal copy of p53 gene (tumor suppressor gene) in their DNA are used to replace

the defective p53 gene. Alternatively, in viral therapy, viruses are engineered to

recognize the cells with defective p53 gene and kill them. This process is known as

lysis. ONYX-015 is one such engineered advenovirus, which replicates swiftly in the

defective p53 gene cells and eventually activates the immune response (Zurakowski

and Wodarz, 2007). However, these emerging therapies are still in their early phases

and demand the computational modeling support to test different hypothesis and

expedite the clinical implementation procedures.
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1.5 Our focus - avascular tumor growth

There are many reasons for concentrating on avascular tumor growth. The first

motivation is the increasing awareness of cancer among people. In the past, cancer

was often recognized only at the later stages. But nowadays, based on the health

history of their immediate family members, and due to better awareness programs,

people become cautious and undergo regular health checkups. Governments, in

developing countries, also organize mass health check and screening campaigns. If

anything, people will undergo more regular, frequent and possibly cheaper health

scans in the future. Thus, diseases such as cancer may be detected earlier rather than

later. The second motivation is provided by the advancements in the biomedical

field over the past 30 years (Preziosi, 2003), and sophistication of experimental

approaches such as imaging and gene sequencing. These advanced techniques can

locate tumors even when their size is very small (in the order of 100 µm). As a

result, data corresponding to avascular tumor growth should not be a constraining

factor in its modeling. Note, however, that it does not mean that avascular stage

is the most important. In fact, from a clinical point of view, angiogenesis and

metastasis are of equal (if not more) significance and modeling of these stages is

also important for designing cancer therapies. As a starting point to comprehend

the complexity of all stages of cancer, it will be better to start with a study of the

avascular tumor growth study. While avascular tumor growth is simple to model

mathematically, it also contains many of the phenomena that are similar to the case

of vascular models. Moreover, the reproducibility of experiments with avascular

tumor growth is better than with vascular tumors. The experiments of avascular

tumor growth can also be done in vitro in the form of multicellular tumor spheroids

(MCTS) which are quite cheap relative to animal experiments (Freyer, 1988; Freyer

and Sutherland, 1986b,a; Kunz-Schughart et al., 1998; Kunz-Schughart, 1999; Hlatky

et al., 1988a; Marusic et al., 1994; Maruic et al., 1994; Mueller-Klieser, 1997, 1987;

Oswald et al., 2007). Therefore, the modeling of avascular tumor can be helpful
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in making predictions and designing experiments on the advanced stages of cancer

as well (Tiina et al., 2007). Research in cancer biology related to avascular tumor

growth has provided a vast amount of data through in vitro (Freyer, 1988; Freyer

and Sutherland, 1986b,a) and in vivo experiments (Marusic et al., 1994) of different

cancer cell lines. Despite this, an appropriate mechanism-based mathematical model

for illustrating the tumor growth remains elusive. In the avascular stage, the tumor

growth involves the formation of three zones, namely proliferation zone, quiescent

zone and necrotic zone. Eventually, in the avascular stage, the tumor reaches a

steady size. The cause for the attainment of steady state by the tumor has been

hypothesized in different ways. The study of tumor growth and its use for the

development of cancer therapies is therefore an important area of research. Its

valuable outcomes can provide a helping hand in enhancing the quality of life and

increase life span of the cancer patients resulting in social and economic benefits to

the world.

1.6 Contributions

The thesis work seeks to address the following issues in the field of in silico

cancer research.

1. Mathematical Modeling: In this research, a mechanistic model is developed for

predicting the avascular tumor growth based on microenvironment conditions

(moving boundary problem). This work can be useful for tumor pathologists

who may wish to categorize the tumor cells into either benign or malignant

by estimating the model parameters using tumor growth data.

2. Optimization, Control: Tumor growth models are integrated with the phar-

macokinetic and pharmacodynamic models of cancer therapeutics and an op-

timization problem keeping in view the objectives of tumor reduction and
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minimization of side effects is formulated. Then, multi-objective stochastic

optimization is applied to design an optimal treatment plan.

3. Model reduction, Sensitivity analysis: Many of the unresolved issues in the

medical field remain so because they are not data rich. This makes it very

difficult to estimate model parameters precisely. Hence, model simplification

is an important step in model-based practical applications. In this work, a

tumor-immune model is reduced and sensitivity analysis is performed to find

the influential parametric groups. This facilitates the use of model based ex-

perimental design to design experiments and help experimentalists to generate

informative data.

4. Data driven analysis: The main idea is to mimic a veteran oncologist in sug-

gesting standard treatment plan for the cancer patients by employing quanti-

tative approaches. “Patients” are generated by varying the sensitive parame-

ters of the model. The average therapeutic protocol for the generated patient

cohort for a given therapy is determined by framing an optimization prob-

lem with suitable objectives and constraints. The obtained optimal treatment

planning is applied on these patients to study its effect on the tumor evolu-

tion during the therapeutic horizon. Later, data driven techniques are used to

derive “rules” based on key parameter values that can help predicting success

of the therapy on future patients.

1.7 Thesis organization

The second chapter describes different categories of mathematical models used

for tumor growth analysis and emphasizes the utility of optimal control theory in

designing cancer therapy protocols. Also, the challenges that can be addressed us-

ing PSE methodologies and tools are highlighted. In Chapter 3, a new mechanistic

model for avascular tumor growth is proposed based on the hypothesis of diffusion
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and consumption of nutrients. The proposed model is also validated with data

from multicellular tumor spheroid experiments. The application of multi-objective

optimization in the sequential scheduling of chemotherapy and immunotherapy for

a given “patient” (a tumor-immune-chemo model with known parameters) is the

subject of Chapter 4. Chapter 5 is devoted to the issue of intrapatient variability

and its effect on the treatment outcomes. Particularly, it focuses on the schedul-

ing of dendritic cell therapy under uncertainty using reactive scheduling strategy.

The interesting question of quantification of variability using sensitivity analysis is

also visited. Chapter 6 projects the usefulness of model reduction in promoting

model-based approaches in clinical settings. Model reduction using scaling and sen-

sitivity analysis is exemplified with an example of tumor-immune model. Chapter 7

addresses population based studies (interpatient variability) using reduced tumor-

immune model (from Chapter 6) to design diagnostic and therapeutic protocols.

Parametric combinations that determine the treatment outcome are also uncovered

using a classification tool. In the final chapter (Chapter 8), the key conclusions of

the thesis are summarized along with recommendations for future work.
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Chapter 2

LITERATURE REVIEW

‘Imagination is more important than knowledge.’

- Albert Einstein

In this chapter, the main focus is on the description of different classes and subclasses

of tumor growth models. Models depicting the interaction between tumor cells

and immune system are discussed by elaborating on the different mechanisms of

immune action. Development of treatment protocols using the combination of tumor

growth and pharmacokinetic-pharmacodynamic models is presented. The challenges

in deriving ideas from mathematical modeling techniques for clinical implementation

are briefly discussed.

2.1 Mathematical modeling of cancer growth

Cancer research is a very good example of multidisciplinary team that includes

biologists, clinicians, oncologists, pharmacists, general practitioners, radiologists,

mathematicians and engineers. The role of mathematicians and engineers in cancer

has been realized only in the recent years even though many mathematical models

were developed to expound tumor growth in the last few decades (Anderson and

Quaranta, 2008; Byrne, 2010). At the same time, Figure 2.1 shows the increasing

trend of number of research articles in the field of tumor microenvironment over

the 1995-2008 period (Witz, 2009). According to Anderson and Quaranta (2008),

the proposed models can be broadly classified as continuum, discrete and hybrid

models based on the scales of the mechanism of interest. Traditionally, tissue and
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Fig. 2.1. Publications on tumor microenvironment during 1995-2008

cell scale phenomena are studied using continuum and discrete models respectively.

Then, hybrid models are introduced in order to understand the effect of cell scale

phenomena on the tissue scale. Each type of model has its own advantages and

disadvantages.

There are many review articles which provide comprehensive details on the chrono-

logical development of mathematical models that deal with different stages of cancer

growth (Araujo and McElwain, 2004; Bellomo, Angelis and Preziosi, 2003; Byrne

et al., 2006; Lowengrub et al., 2010; Sanga et al., 2007, 2006; Tiina et al., 2007).

Araujo and McElwain (2004) presented a comprehensive discussion on the history of

studies related to solid tumor growth, illustrating the role of mathematical modeling

approaches from the early decades of twentieth century to the present time. This

review projected a proper balance between the mathematical models and experimen-

tal investigations which have been carried over these years. Such a comprehensive

review covering theoretical and experimental domain is indeed useful; otherwise, the

mathematical models have no utility by themselves. Overall, their work provided a

glimpse on the status and achievements of mathematical modeling of both avascular

and vascular tumor growth. It included the models of avascular tumors, multicellu-
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lar spheroids, models of tumor invasion and metastasis, as well as that of vascular

tumor. Thus, this review provides a general idea of models for tumor growth. The

review by Tiina et al. (2007) concentrated exclusively on the models of avascular

tumor growth. It discussed the broad classification of the avascular tumor growth

models into continuum mathematical models and discrete cell population models.

Tiina et al. (2007) pointed out the fact that the hitherto developed mathematical

models were very simple as they focused on certain general processes (diffusion of nu-

trients) that did not fully account for the complexity of the biology and biochemistry

of the avascular tumor growth. Another encouraging view from the authors is that

mathematical modeling has two-fold applications in cancer biology. On one hand,

they can be applied for the verification of hypotheses as suggested by the experimen-

talist and on the other hand, they provide a framework for predicting the outcomes

of other intuitive ideas. They highlighted the impact of mathematical modeling in

tumor biology by considering an example under the category of continuum model.

This review also included the theory of multiphase models, tissue mechanics models,

and discrete models. According to Tiina et al. (2007), the motivation for the dis-

crete models is the advances in biotechnology which makes it feasible to capture data

related to phenomena occurring at mesoscopic and microscopic levels (Figure 2.2).

This cellular level knowledge is used to obtain information about the macroscale

phenomena of tumor growth by using multiscale modeling. Similarly, Lowengrub

et al. (2010) have provided a broad classification of models. Specifically, this work

has focused on the continuum models, their analysis and model calibration using

clinical data to predict tumor morphology and growth. However, the complexity of

the models increases significantly by incorporating the updated knowledge of cancer

biology at different scales.

By raising this issue of model complexity, Tiina et al. (2007) introduced the

parameterization of the models as an important challenge. A well-parameterized

model implies that, only from the knowledge of parameter values, we should be able

to differentiate the variations in the system behavior. As a simple example, based
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Fig. 2.2. Different spatial scales in tumor growth studies

on the value of Reynolds number (Re), we are able to conclude the characteristics of

the flow of a Newtonian fluid through a circular pipe such as laminar (Re < 2100)

or turbulent (Re > 2100). Thus, better parameterized models are the models where

the parameters have physical meaning. The key message is that simpler and better

parameterized mechanistic models are required and are important as compared to

other models that just fit the data.

2.2 Continuum models

Continuum modeling approach is very convenient to study large scale systems.

Continuum models are useful once a cell is already transformed to a cancerous cell

after undergoing mutations in its genetic code. Tumors are considered as collection

of cells in continuum models in which they are described as density or volume frac-

tion of cells. Experimentally, it is observed that transformation in the tumor occur

as it progresses and results in the formation of different regions. In continuum mod-

els, the rules are framed for different regions of the tumor but not for each and every

cell. Thus, individual cells in the tumor cannot be tracked separately. They are usu-

ally, described using ordinary, partial differential and integro-differential equations

and detail explanation is provided in the later part. The main advantage is that

continuum models have fewer parameters and they can be easily estimated from the
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Fig. 2.3. Classification of tumor growth models

available experimental model system like multicellular tumor spheroids. Continuum

models are quite relevant to quantify the macroscale tumor behaviour.

Another review chapter by Byrne in Preziosi (2003) is mainly based on earlier

valuable contributions (Byrne, 1999, 1997; Byrne and Chaplain, 1998, 1996, 1995;

Byrne and Gourley, 1997). This review further narrowed down to the continuum

models of the avascular tumor growth. Continuum models for avascular tumor

growth can be further classified into two categories: homogeneous and heterogeneous

models (see Figure 2.3). These are explained in the next section.

2.2.1 Homogenous models

Homogenous models are those in which all the tumor cells are assumed to be alike

and they ignore the spatial effects in explaining the growth dynamics of the tumor

growth. These are the earliest models and are formulated as system of differential

equations. All homogeneous models are empirical (e.g. exponential model, logistic

model, Gompertzian model). These models are data-specific and are unable to shed
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light on the inherent mechanisms governing the tumor cells because they are built

by data-fitting of in vitro and in vivo experimental results. Marusic et al. (1994)

used the in vitro data of multicellular tumor spheroids available for 15 different cell

lines (Freyer, 1988) to test several empirical models. In vivo tumor growth data

obtained by injecting tumor cells from two of the above mentioned cell lines into

athymic mice were used to test different empirical models (Marusic et al., 1994).

The exponential growth model is the simplest homogenous model in which the total

number of cells in the solid tumor increases exponentially with time. In this model,

all cells are assumed to receive the nutrients and other growth factors abundantly.

This model is quite precise in representing the very early growth of the tumor and

is given by Equations (2.1) and (2.2):

dN

dt
= kN, with N(t = 0) = N0, (2.1)

N(t) = N0e
kt (2.2)

where, k > 0 is the net rate at which the cells proliferate, and N0 represents

the initial number of the tumor cells. The exponential model does not capture the

decreased growth rate of tumor cells and their attainment of final saturation which

are obtained from the in vitro and in vivo experiments. The decrease in growth

rates and final saturation happen because, with the increase in the tumor size, all

cells will not have access to same amount of nutrients and growth factors. In order

to capture the saturation of tumor size a generalized empirical model is given by

Equations (2.3) and (2.4):

dN

dt
=
k

α
N

[
1−

(
N

θ

)α]
, with N(t = 0) = N0, (2.3)

N(t) = θ

(
Nα

0

Nα
0 + (θα −Nα

0 )e−kt

)
(2.4)
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where, θ is the carrying capacity of tumor size and α is a parameter which

determines whether the saturated tumor size is attained quickly or slowly. When

α = 1, the model is called the logistic growth model and when α→0+, the model

is called the Gompertzian growth model. In this way many empirical models were

fitted to the experimental data, but the parameters of the models could always be

related to exact phenomenon of the tumor growth.

2.2.2 Heterogenous models

Functional models are also called as compartmental models or spatially averaged

models and they assume that different cell types are in different compartments based

on cell kinetics (Preziosi, 2003). Cell kinetics is the transformation of a cell from

one phase to another phase depending on the environmental conditions. Based on

the availability of nutrients and activity of the cells, there are three types of cells

namely proliferating cells, quiescent cells and necrotic cells. Usually, the outer layer

of tumor consists of proliferating cells, as they will be getting sufficient nutrients.

The cells in the inner layer next to proliferation zone are called the quiescent cells.

Quiescent cells do not proliferate but they are alive, because the quantum of nutrient

supply reaching them is just able to keep them alive. The innermost zone of the

tumor consists of necrotic cells which are dead due to the inadequacy of nutrients. In

Piantadosi (1985), the transition between the resting and growing cells is expressed

in terms of ordinary differential equations. Furthermore, the model assumes that

production of the growing fraction and loss fraction from the resting fraction of cell

population follows first order kinetics. Garner et al. (2006) analyzed a simple cell

population model to study the long-term behavior of quiescent and proliferating

cells. An example of the functional model is shown below (Figure 2.4) for different

types of tumor cells.

dP

dt
= (kpp − kpq − kpd)P + kqpQ (2.5)
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Fig. 2.4. Functional models

dQ

dt
= kpqP − (kqp + kqd)Q, (2.6)

dD

dt
= kpdP + kqdQ− λD (2.7)

P (0) = p0, Q(0) = q0, D(0) = d0 where P , Q, D are the densities of proliferating

cells, quiescent cells, dead cells respectively and p0, q0, d0 are their initial conditions.

Although these functional models neglect the spatial effects, they provide insight

into the overall growth dynamics of solid tumors. These models can be used for

estimating the kinetic parameters from experimental data and to study the response

of different therapeutic agents.

2.2.3 Spatio-temporal models

The next class in the heterogeneous model family is spatio-temporal models

which relate the variations of different cell types in space and time with nutrient

variation. The spatio-temporal models can be further sub-divided into different zone

model (DZM) and mixed zone model (MZM). DZM is based on the notion that

different types of cells are present in the separate regions of the tumor and they
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are separated by boundaries. The goal, then, is to find the position of the interface

between the regions spatially and temporally on the basis of the nutrient levels. The

motivation for DZMs was from the idea of biologists which focused on the effect of

the tumor growth due to variations in the composition of the medium surrounding

the tumors. The main measurements made by the biologists in these experiments

are: radii of the tumors over time, nutrient distribution within the tumors and the

ratio of the radii of different zones in the tumor. Thus, the key variables in these

types of models are: R(t), the position of the outer tumor radius of the assumed

radially symmetric tumor; Ci(r, t), the concentration distribution of the diffusible

chemical (this may be nutrients, anti-cancer drugs, growth inhibitors); Rq(t), the

locus of the boundary separating proliferating and quiescent cells; and Rn(t), the

locus of the boundary separating the quiescent and necrotic cells. Since the tumor

size changes with time, the domains on which the model is formulated also changes

and this problem falls in the category of moving boundary problems. The simplest

DZM which explains the growth of a radially symmetric, avascular tumor include

equations governing the evolution of the important diffusible chemicals Ci(r, t), the

outer tumor radius R(t), and the quiescent and necrotic radii Rq(t) and Rn(t). The

principle of mass balance is used to derive equations for Ci(r, t) and R(t) where

as Rq(t) and Rn(t) are based on the assumption that quiescent and necrotic zone

formation is the result of concentration of chemicals (mainly the growth factors)

falling below their threshold values. The model equations are stated in both words

and in mathematics to clearly emphasize the connection between the underlying

physical assumptions and the mathematical formulation.

The chemical concentration, Ci(r, t)

 rate of change of

chemical concentration

 =

 flux due to

diffusion

−
 rate of chemical

consumption


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∂Ci
∂t

=
Di

r2

∂

∂r

(
r2∂Ci
∂r

)
− Γ(Ci, R,Rq, Rn) (2.8)

In Equation (2.8), Di denotes the assumed constant diffusion coefficient of the

chemical i and Γ(Ci, R,Rq, Rn) denotes its rate of consumption or production. In

reality, Γ(Ci, R,Rq, Rn) is a nonlinear function that depends on the type of cell

line and the chemical of interest. In order to observe the behavior of the model,

sometimes, only vital chemicals are considered and it is also assumed that their

consumption rate is constant or follows some typical trends (Michaelis - Menten).

The outer tumor radius, R (t)

 rate of change of

tumor volume

 =

 total rate of cell

proliferation

−
 total rate of

cell death



1

3

d

dt

(
R3
)

= R2dR

dt
=

R∫
0

S (c, R,Rq, Rn)r2dr −
R∫

0

N (c, R,Rq, Rn)r2dr (2.9)

In Equation (2.9), S (c, R,Rq, Rn) and N (c, R,Rq, Rn) denote respectively the rates

of cell proliferation and cell decay within the tumor. Cell proliferation rate is as-

sumed constant in many cases to make the model simpler, but in reality, it may

depend on the local concentration of the nutrients. The total death rate is assumed

to be the combination of apoptosis and necrosis. Apoptosis occurs in the quiescent

and proliferating zones and necrosis result from the deprivation of the nutrients in

the necrotic zone.

The contributions of Burton (1966) and Greenspan (1972) are deemed as pioneer-

ing studies in the development of heterogeneous models. These two seminal works

in the field of modeling of avascular tumor growth has been quoted extensively and

form the basis for most of the future works. According to Burton (1966), the tumor

growth decrease happens because of the formation of the necrotic region which is
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based on the concentration of oxygen in the solid tumor. The model assumes that

the tumor is spherical in shape, and diffusion is the only mode for the transport of

oxygen to all cells in the tumor and the consumption rate of oxygen per unit volume

of the tumor tissue is constant. Then, this diffusion based model was solved and an

analytical relation between the critical radius, necrotic radius and tumor radius was

derived. Critical radius is the tumor radius at which the necrotic region begins to

form at its centre. An empirical fitting of the Gompertzian relation to this analyti-

cal equation was done. The author observed that the fit is good over a range of 100

fold increase in tumor size and matches closely with the experimental results based

on the 18 different types of the tumors. The best part of this work is the ability

of the model to predict without any reference to physiological parameters of the

tumor. However, there is a drawback in this work; the analytical relation was based

on the assumption that, the concentration gradient of oxygen is zero everywhere in

the necrotic zone which is not always the case (Casciari et al., 1992). In Greenspan

(1972), the author developed a model of tumor growth based on diffusion and in-

corporated different hypotheses to model the internal processes responsible for the

tumor growth. The main assumptions are:

1. Disintegration of necrotic cells into a number of chemical compounds and their

role in inhibiting the mitosis of cancer cells (transforming of proliferating cells

to quiescent cells).

2. Surface tension among living cancer cells maintain a compact and solid mass

and it is responsible for the inward motion of cells from the outer region to

compensate the loss due to the disintegration of necrotic cells.

3. The loss of necrotic core is proportional to its volume

4. All living cells are identical and are analogous to incompressible fluid as they

assumed that the density of cells is the same everywhere in the tumor.
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5. The proliferation rate of cell volume by mitosis is based on the concentration

of the nutrients and the chemicals produced by the necrotic region.

The theory of Greenspan (1972) considered two different possibilities responsible

for the introduction of inhibitory factors. The first one is a chemical inhibitor that

is the product of necrosis resulting from the insufficient nutrient supply. The second

possibility is purely based on the products of the metabolic processes of the living

cells. Based on these assumptions, the author has analyzed tumor growth retarda-

tion due to necrosis and waste products and finally concluded that these analyses

can be related to experimental observations based on the onset of necrosis. The

work of Greenspan (1972) proved to be the main impetus for the theory of growth

inhibitory factors in later works (Adam and Maggelakis, 1989; Adam, 1987a,b, 1986;

Glass, 1973; Shymko and Glass, 1976). But these models neglected the cell volume

loss due to necrosis. In Glass (1973), they considered the chalone mechanism to

illustrate the growth retardation of the tumor. Chalones are the mitotic inhibitors

which are partially responsible for the controlled replication of the cells. They fur-

ther assumed that the production of chalone was uniform throughout the tissue,

which then diffuse and decay. Shymko and Glass (1976) extended this hypothesis

to higher dimensions and endeavored to study the effect of different geometries on

the pattern and the stability of growth. Then, Adam (1989, 1988, 1987a,b, 1986)

improved the idea of Glass (1973) by regarding the spatially non-uniform inhibitor

production, different geometries and validating with experimental results of Folk-

man and Hochberg (1973). In addition to non-uniform inhibitor production, a new

model by Chaplain et al. (1994) introduced a nonlinear, spatially dependent diffu-

sion coefficient to explain the diffusion of a growth inhibitory factor. The results

from this model were shown to be compatible with the experimental findings over

the profiles of the growth inhibitory factors.

28



2.2 Continuum models

The extended work of Burton (1966) and Greenspan (1972) by Deakin (1975) ar-

gued that the rate of oxygen consumption cannot be uniform throughout the tumor.

This argument was based on the experimental evidence from Sutherland and Du-

rand (1973). Deakin (1975) considered that the oxygen consumption is proportional

to the oxygen concentration but considered the non-uniformity of oxygen only to the

viable rim thickness. Later McElwain and Ponzo (1977) investigated the effects of

this non-uniformity and produced three different phases in the tumor development.

Another important contribution of Sutherland and Durand (1973) is the obser-

vation of dormancy of multicellular spheroids without the formation of necrotic

region. This issue was further emphasized by the results of Durand (1976). The

additional cell loss mechanism is noticed as apoptosis (Kerr, 1971; Kerr et al., 1972)

and the model by McElwain and Morris (1978) was the first work to include it. A

blended model was introduced based on the propositions of these works (Deakin,

1975; Greenspan, 1972; McElwain and Ponzo, 1977). According to the review paper

Tiina et al. (2007), the model proposed by Casciari et al. (1992) is a “breakthrough”

example of mathematical modeling in tumor biology. This work provided the im-

petus to study the effect of concentration gradients of multiple nutrients such as

oxygen, glucose, lactate ions, carbon dioxide, bicarbonate ions, chlorine ions and

hydrogen ions and their varying consumption rates. It also included the effect of

the waste products of the metabolism. The main assumption of the model is that

cellular metabolism and cell growth rates are mainly dependent on the local con-

centration of oxygen, glucose concentration and extracellular pH. The authors have

used empirical expressions for the consumption rate of oxygen and glucose and the

cell proliferation rate based on the experimental data. Moreover, they assumed that

the necrotic zone formation is based on the critical concentration of glucose. This

model was validated with published data of EMT6/Ro spheroids in terms of oxygen

and glucose profiles at the centre of the tumor and their consumption rates. The

model showed a good fit when the spheroid growth data is below 700 µm. The
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model was quite successful in predicting the viable rim thickness at particular con-

ditions. The authors finally suggest that other factors like cell-cell contact effects

may be used to explain the tumor growth. Despite these improved aspects, their

model did not include apoptosis. In the paper Busini et al. (2007), a comprehen-

sive mechanistic model comprising the main processes related to tumor growth like

nutrient consumption, mitosis, apoptosis and necrosis was discussed. The model

was represented in population balance equations and was combined with the drug

models. Their solution was validated with both in vitro and in vivo results. The

shortcoming of this work is that it did not include the quiescent zone formation.

There are some works which have emphasized on the effect of acidosis on tumor

growth (Gatenby and Gawlinski, 2003, 1996; Gatenby et al., 2006; Smallbone et al.,

2005). The hypothesis in the literature is that the transformation of cells from pro-

liferating to quiescent or necrotic is attributed to the acidic environment (lower pH

value)(Vaupel et al., 1989). In the hypoxic conditions (oxygen deficient), glycolytic

phenotype is observed where glucose is metabolized via glycolysis or anaerobic res-

piration and produces lactic acid. There is also a theory known as Warburg effect

which states that the tumor cells adopt glycolysis pathway for glucose metabolism

even in the normoxic conditions. Based on these theories, acidosis is included in

the continuum models by the considering the variation of H+ ion concentration in

the tumor. Other modeling works found consistency with experimental observations

about the correlation of apoptotic pathways in the normal cells near the tumor with

the acidic environment (Gatenby and Gawlinski, 1996). In contrast, the MZMs

suggest that the regions of different types of cells are not separated sharply, but

gradually. Thus, MZM aims to find spatial and temporal variation of the number of

cells of different types per unit volume of the tumor. These models come under the

category of multiphase models (Ambrosi and Preziosi, 2002; Breward et al., 2003,

2002).

∂φi
∂t

+∇ · (viφi) = ∇ · (Di∇φi) + λi(φi, Ci)− µi(φi, Ci) (2.10)
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where, for different phase (cell type) ’i’, φi is the volume fraction (
∑

i φi = 1), vi is

the velocity, Di is the random motility or diffusion, λi(φi, Ci) is the chemical and

phase dependent production, and µi(φi, Ci) is the chemical and phase dependent

degradation/death. The first MZM was probably suggested by Ward and King

(1997). Unlike DZMs, this model does not consider different layers for different

type of cells in the avascular tumor. Instead, it presumes a mixture of live and dead

cells and describes the variation of live cell density and dead cell density with the

variation of the nutrients. DZMs have considered the a priori knowledge of tumor

structure with three different regions. According to Ward and King (1997) the

structure of different regions of tumor growth should not be assumed but it should

be produced from the solutions of the models. In this paper, the authors proposed

a model without any such presumptions about the tumor structure in the form of

a system of partial differential equations to describe the growth of an avascular

tumor spheroid. Moreover, the authors also performed asymptotic analysis (effects

of limiting values of parameters) in order to distinguish the exponential growth phase

and retardation growth phase of the tumor. This model was then extended by the

inclusion of pharmacokinetics and pharmacodynamics of the diffusible drug and its

effects were compared between the multicellular spheroids and the monolayer cases.

Another example of MZM is the model by Sherratt and Chaplain (2001). According

to them, most of the previous models developed were based on in vitro experiments

on multicellular spheroids. Consequently, this model is inclined towards representing

in vivo phenomena rather than in vitro and considers the nutrient source as nearby

tissues. In addition, the model also included the concept of cell movement reflecting

the contact inhibition of migration. Similarly, the work by Breward et al. (2002)

considered two phase model to describe the avascular tumor growth which was

further advanced by accounting for ATP production from energy metabolism in the

models of multicellular tumor spheroids (Bertuzzi et al., 2007; Venkatasubramanian

et al., 2006). There are other good examples of MZM (Tindall and Please, 2007;

Tindall et al., 2008). In Tindall and Please (2007), effects of cell cycle dynamics
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was considered and their main focus was on two different conditions of chemotatic

responses of proliferating cells and quiescent cells to the external nutrient supply

and their effects on the tumor structure. They extended this work in Tindall et al.

(2008) to study the formation of necrotic region in avascular tumors and analytically

proved that necrotic core is correlated with low levels of nutrient concentration.

2.2.4 Discrete and hybrid models

Discrete modeling focuses on tracking and updating the state of individual cells

which are guided by specific biophysical rules. Framing of these rules is a challenging

task that demands a lot of experimental analyses related to inter and intracellular

events (e.g. biochemical pathways, cell cycle) controlling the cell survival and death.

However, discrete modeling will be very useful for studying the mechanisms such as

nutrient consumption, cell division, interaction with the microenvironment (growth

factors, extracellular matrix, and immune system) and the progressive steps of trans-

formation of a normal cell to a cancer cell. In short, discrete models characterize

the state of the cells based on the microenviroment conditions. Some of the review

works are given here (Abbott et al., 2006; Drasdo et al., 2007; Anderson and Quar-

anta, 2008; Araujo and McElwain, 2004; Byrne et al., 2006; Deisboeck et al., 2009;

Lowengrub et al., 2010; Moreira and Deutsch, 2002; Quaranta et al., 2008, 2005).

Hybrid modeling is also known as multiscale modeling. It is the combination of

both continuum and discrete models. These models attempt to provide comprehen-

sive explanation of the tumor growth on the basis of the mutual information transfer

between sub-cellular, cellular and tumor scales (Bellomo, Angelis and Preziosi, 2003;

Kim and Stolarska, 2007; Martins et al., 2007; Stolarska et al., 2009; Weinan et al.,

2007). Consequently, it helps to relate the mishappenings at the cell level to the

aggressiveness and morphology of the tumor. In the hybrid approaches of tumor

modeling, the diffusion of nutrients is explained by the continuum models and the
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cell state is defined by the discrete model based on the local concentration of the

nutrients. As a result, the computational cost for both discrete model simulation

and hybrid model simulation increases significantly with the increase in number of

cells.

Some works have used continuum and discrete models to compare the tumor

evolution using multicellular tumor spheroids (Byrne and Drasdo, 2009; Schaller

and Meyer-Hermann, 2006). Eventually, they concluded that continuum models are

simple and suitable enough to use for predicting the tumor growth. However, the

discrete or hybrid models might be necessary to understand microscale mechanisms

taking place in the cells (Schaller and Meyer-Hermann, 2006).

2.2.5 Model calibration

The parameters of the model play a vital role in predicting the outputs of interest

through simulations. In the field of tumor growth modeling, the parameters are ob-

tained in different ways. The parameters are estimated from the tumor growth data

gathered from in vivo, in vitro experiments and magnetic resonance images (MRI).

In vivo studies are done using DNA transfection methods. In these methods, DNA

of the tumor cell is transfected into normal cells to transform them to tumor cells

followed by injecting them into laboratory mice (Kleinsmith, 2005). However, this is

an arduous procedure and requires the modification of the mice subjects by knock-

ing out some genes to nullify the effect of immune system on tumor growth. On

the other hand, conventional suspension and monolayer in vitro experiments do not

exactly represent the tumor growth. Therefore, alternatively, multicellular tumor

spheroid experiments (MCTS) are preferred as a model experimental system for

avascular tumor (LaRue et al., 1998; Kunz-Schughart, 1999; Kunz-Schughart et al.,

1998; Mueller-Klieser, 1997). MCTS replicates the three dimensional network of

cell-cell and cell-matrix interactions. This experimental methodology was adapted

33



Chapter 2 Literature Review

in the area of cancer research by Sutherland and coworkers in 1971. Initially, this

methodology was aimed to be applied to radiobiology. However, later, it was em-

ployed to a significant level in the fields of biomedical research and basic cell biology.

They are used to study the effect of local microenvironments on cellular growth, cell-

cell contact, cell metabolism, cell cycle regulation, cell doubling time, the effect of

epigenetic factors in controlling radiation survival, DNA repair process, quiescent

cell formation and cell survival under hypoxic conditions (Mueller-Klieser, 1987). In

addition, MCTS has contributed to the comprehension of therapeutic response of

the cells and in screening the mechanistic studies of drug penetration, binding and

innovative therapeutic strategies such as combination therapy and the evaluation

of toxic effects on the normal cells. Tumor heterogeneity (proliferating, quiescent

and necrotic cells) is also reflected from these experiments. Even though, tumor cell

type-dependent variations are seen in spheroid growth, the physiological parameters

derived from MCTS are general in nature. Despite the above, MCTS has secured

little success in the clinical implementation for testing the drugs on the tumor ma-

terial extracted from the patients. This could be due to the reason that the growth

characterstics of cancer cells might vary in different stages.

2.3 Tumor and its interaction with immune system

The main function of the immune system is to fight against the abnormal changes

in the body, and the successful functioning of it lies in its ability to distinguish the

“self” and “non-self” based on the self marking molecules. The immune system

recognizes the abnormality with the help of antigens presented by the injured or

abnormal cells. If the immune system exhibits a response based on the antigen

recognition, then antigens are called immunogenic. According to immunosurveil-

lance theory by Lewis Thomas (Ichim, 2005): “Effector cells of the immune system

actively patrol the body to identify and eradicate incipient tumor cells”. Tumors

are also classified as immunogenic and non-immunogenic. Immunogenic tumors are
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Fig. 2.5. Classification of immune actions

those which are recognized by the immune cells in the human body. But not all

antigens are immunogenic. Before studying the tumor-immune interactions, we can

take a brief look at the mechanisms of the immune system. In this regard, the review

paper by Adam et al. (2003) provides a comprehensive discussion on the immune

response in cancer.

In our body, the immune action is carried out by specialized cells called lym-

phocytes which are mostly present in the blood. The common lymphocytes are

macrophages, dendritic cells, natural killer (NK) cells, lymphokine activated killer

(LAK) cells, B-cells and T-cells. Immune response is categorized as natural immu-

nity, humoral immunity and cellular immunity based on the lymphocytes (Figure

2.5). Macrophages, dendritic cells, natural killer cells are responsible for natural im-

munity, in which these cells directly attack the infected cells (cancer cell) and act as

antigen presenting cells (APC). Antigen is an agent which can easily be recognized

by immune cells. Thus, APC highlights the infected cells and alerts the T-cells for

further action against the infected cells. In humoral immunity, antibodies produced

by B-cells encounters the infected cells. Each B-cell has a specific antibody of a

particular shape. The concept of antibody-antigen interaction resembles the mech-

anism of lock and key. When the shape of an antibody of a B-cell matches exactly
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with the shape of the antigen corresponding to the infected cells, B-cell proliferates

and produces plasma cells which actively secrete the antibodies. These antibodies

neutralize the activity of the infected cell by inhibiting their cell division process,

by producing a lethal group of enzymes called complement and by opsonization. In

opsonization, antibodies coat the infected cells in order to make them easily rec-

ognizable by the killer lymphocytes. This process is known as antibody dependent

cell-mediated cytotoxicity. In cellular immunity, the key players are T-cells which

are further classified as helper T-cells (CD4+) and cytotoxic T-cells (CD8+). Helper

T-cells gets activated by the natural immune cells and regulates the production of

the cytokines. Cytokines are the proteins which keep the momentum of all the im-

mune cells as per their requirement. Interleukins and interferons are regarded as the

important cytokines to fulfill the immune action. Cytotoxic T-cells directly attack

the infected cells after its activation by the cytokines.

Cancer immunotherapy is broadly classified into different schemes - monoclonal

antibody therapy (MAT), adoptive-cell-transfer therapy (ACT), vaccine therapy

and interleukin therapy (Figure 2.6). The common aspect of all schemes of im-

munotherapy is to enhance the immunogenicity of the individual. Immunogenicity

is the ability of the immune system to recognize tumor cells. MAT is based on

the mechanism of humoral immunity while others are based on cellular immunity.

In MAT, antibodies are produced in large quantities using hybridoma technology

and injected into the patient. In ACT, tumor infiltrating lymphocytes exhibiting

the anti-tumor activity are found. They are then isolated and cultured in larger

quantities in the presence of cytokines (interleukin) and injected back to the patient

(Dudley et al., 2002; Dudley and Rosenberg, 2003). In vaccine therapy, APCs are

engineered externally to recognize the tumor associated antigens and trigger the

cellular mediated immunity. At present, extensive clinical studies are being done

on dendritic cell therapy (Aarntzen et al., 2008; Ballestrero et al., 2008; Banchereau
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Fig. 2.6. Description of different immune actions

et al., 2001; Dhodapkar et al., 1999; Jacobs et al., 2009; Svane et al., 2003; Vuylsteke

et al., 2006; Ludewig and Hoffman, 2005).

2.3.1 Tumor-immune models

Many tumor-immune interaction models have been developed and some of the

review works are Bellomo, Bellouquid and De Angelis (2003); Bellomo and Preziosi

(2000). They can be classified on the basis of immune cells interaction and model

type (e.g. functional and spatio-temporal) models). In the first type of classification

there are two categories of models. In the first category, all types of immune cells

are included as one ensemble called as effector cells (Joshi et al., 2009; Kirschner

and Panetta, 1998; Kuznetsov and Knott, 2001; Kuznetsov et al., 1994). Contrast-

ingly, in the second category of models, the kinetics and interaction of different

immune cells and their activation by cytokines is studied (Cappuccio et al., 2007;

Castiglione and Piccoli, 2007, 2006; De Boer and Hogeweg, 1986; Pappalardo et al.,

2005; de Pillis et al., 2009, 2006, 2005; Castiglione et al., 2004; Piccoli and Cas-
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tiglione, 2006; Szymanska, 2003). In some models, phenomena such as sneaking

through and tumor dormancy are introduced - these models account for situations

where the tumor camouflages the immune system. The only model in which the

parameters are estimated using experimental data is that of Kuznetsov et al. (1994)

and it was further extended by distinguishing the action of different immune cells.

The aforementioned tumour-immune models are functional type, where spatial vari-

ations of immune cells are neglected. There are some works which considered spatio-

temporal tumour-immune models and solved using lattice fixed discrete models such

as cellular automata (Mallet and De Pillis, 2006).

2.4 Model-based design of treatment protocols of cancer

therapy

The field of mathematical modeling of anticancer therapies has witnessed sev-

eral contributions over the past four decades (Eisen, 1979; Swan, 1990; Martin, 1992;

Swan, 1995; Swierniak et al., 2009). A recent review on modeling as a tool for plan-

ning cancer therapies by Swierniak et al. (2009) focuses majorly on optimization

of cell cycle phase-specific chemotherapy, anti-angiogenic therapy and the effect of

drug resistance. Cell cycle phase models are the compartmental models where the

compartments indicate different phases of the cell cycle (Agur et al., 1988; Panetta

and Adam, 1995; Gardner, 2000; Dua et al., 2008). The review also briefly addresses

the strategies of optimal control such as bang-bang control and singular control in

the model-based cancer therapy with age structured models accounting for kinetic

heterogeneity of cancer cells. Eventually, this work stresses on multiscale models

and its utility in realizing personalized therapy as a reality. Another mini-review

(Gardner and Fernandes, 2003) was on computational assistance as new tools for

chemotherapy. It discussed about the issues associated with the application of op-

timal control theory to cancer chemotherapy. This work also highlights examples

(Panetta and Fister, 2000; Swierniak et al., 1996) to depict the variations of the
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sub-optimal or optimal solutions with different problem formulations and model

simplification strategies. Gardner and Fernandes (2003) also summarize the advan-

tages and disadvantages of computational tools such as OncoTCap developed by

Day and colleagues at the University of Pittsburgh Cancer Institute1 and KITT

- Kinetically tailored treatment (Gardner, 2002). These models include the com-

plex interactions involved in the tumor growth, the effect of cell cycle phase specific

drugs, effect of cell cycle phase non-specific cytostatic drugs and the phenomenon

of drug resistance. These simulators are used to analyze different phenomena and

therapy schedules of drugs with individual patient kinetic parameters as inputs (es-

timated from the tumor biopsy tests). Finally, Gardner and Fernandes (2003), also

emphasize on the need for validation of the simulators with individual patient data

so as to open avenues for promising and individual therapies.

2.4.1 Pharmacokinetic and pharmacodynamic modeling

Pharmacokinetics (PK) is the study of the flow of a drug in the body which

includes the mechanisms of absorption, distribution, metabolism, excretion and lib-

eration of the drug. Hence the pharmacokinetic models describe the relationship

between the dosage and the concentration of the drug in the blood after its admin-

istration (Swierniak et al., 2009). There are different routes of drug administration

(oral, intravenous, intramuscular, peritoneal) and the route employed decides the

structure of the PK models. The common parameters in these models are volume of

distribution, clearance rate, and biological half life. The PK models can be classified

as non-compartmental model (same as non-parametric models) and compartmental

models (functional models) (Holford et al., 2010). In non-compartmental analysis,

blood/plasma samples are collected at some regulated intervals to estimate the total

drug exposure by estimating the area under the curve of drug concentration-time

graph. Compartmental models are kinetic models which are used to predict the

1http:// www.oncotcap.pitt.edu/2000
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drug concentration over time. Thus, non-compartment models are model indepen-

dent while compartment models are model dependent. Compartmental models are

further divided into single and multiple compartmental models. In single compart-

ment models, the whole body is assumed to be homogeneous, without any variations

in the drug penetration in different tissues. Conversely, in multiple compartment

models, the variations of the drug in different tissues are considered. Pharmacody-

namics (PD) is the study of the biochemical and physiological effects of the drug

on the target (microorganisms, tumor cells) and other organs of the body. Thus,

pharmacodynamic models quantify therapeutic and toxic effects. For example, the

effect of the drug on tumor and normal cells corresponds to therapeutic and toxic ef-

fects respectively. The important parameters of pharmacodynamic representations

are half maximal inhibitory concentration (IC50) and half maximal effective con-

centration (EC50). Also PK-PD models differ from each other based on the model

structures (linear and nonlinear). Overall, PK-PD model simulation is helpful in

order to understand the drug concentration, answer the practical issues faced by

the clinicians and to design the treatment protocols. The metrics used to evaluate

the drug activity are area under the curve (AUC, see definition in Equation (2.11)),

maximum (Cmax) and minimum (Cmin) concentration of drug for a given dosage

(Figure 2.7). In short, PK is what the body does to the drug and PD is what the

drug does to the body.

AUC =

t∫
0

C(t) dt (2.11)

2.4.2 Optimal control theory (OCT)

OCT is a mature discipline with numerous applications in both science and

engineering disciplines for deriving control policies. Its importance and usage in

biomedical domain is increasing (Nof and Parker, 2009). OCT deals with finding

a control law or trajectory of the decision variables such that a specific optimality
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Fig. 2.7. Metrics of PK-PD modeling

criterion is achieved. In terms of cancer therapy, the control law is related to the

intervention times and dosage of the drug such that tumor is completely eliminated

and side effects due to the drug is minimized. The control problem includes cost

function(s) (objective(s) (J)) which are a function of state variables (X(t)), input

or control or manipulated variables (U(t)) as shown in Equation (2.12). Thus, an

optimal control problem is a set of system equations describing the control actions

for minimizing or maximizing the cost functions. The independent variable is time

(t) , to is the initial time and tf is the final time. The terms Φ and L given in

Equation (2.12) represent the endpoint cost and Lagrangian respectively. Equation

(2.13) represents the dynamic model of the real system. And b in Equation (2.14)

corresponds to equality and inequality constraints on state variables, input variables

and time to be considered while proposing a control law.

Elements of the optimal control problem

Objectives:

J = Φ(x(t0), t0, x(tf ), tf ) +

tf∫
t0

L(x(t), u(t), t)dt (2.12)
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Dynamic model:

•
x(t) = f(x(t), u(t), t) (2.13)

Constraints:

b(x(t), u(t), t) ≤ 0 (2.14)

The state variables in the context of cancer therapy are the density of cells (cancer

cells, normal cells, immune cells) and the concentration of therapeutic agents. The

input variables denote the therapeutic dosages. The cost functions include mini-

mization of tumor burden (area under the curve of tumor evolution), final tumor

size, maximum tumor size and minimization of therapeutic burden (area under the

curve of concentration of therapeutic agent) and cumulative dosage rate of therapeu-

tic agent for a given time horizon. The usual decision variables are type of therapy,

time of intervention, dosage rate and duration of therapeutic intervention. The con-

straints are on the drug dosage rate, maximum and minimum concentration of the

drug in the body during the treatment course. Particularly, many domain problems

relevant to cancer therapy were formulated and solved using OCT. These include

Swan (1986, 1990, 1995), Murray (1990a,b), Martin (1992), Iliadis and Barbolosi

(2000), Barbolosi and Iliadis (2001), Parker and Doyle (2001), Matveev and Savkin

(2002), de Pillis and Radunskaya (2003), Piccoli and Castiglione (2006), Cappuc-

cio et al. (2007), Castiglione and Piccoli (2007), de Pillis et al. (2007), Ledzewicz

and Schttler (2007), Dua et al. (2008) and Chareyron and Alamir (2009). Often,

these optimal control problems are nonlinear and hence numerical techniques are

employed for solving them.

2.4.3 Description of optimization problem formulation using cancer ther-

apy models

Broadly, cancer therapy models are characterized based on tumor stage, type

of therapies (surgery, radiation therapy, chemotherapy, immunotherapy, viral ther-
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apy), and models used for tumor growth and PK-PD of the drugs. In the model

based therapeutic design, until now, optimal control theory was fully exploited in

order to address the scheduling of therapies using a therapeutic agent (Barbolosi

and Iliadis, 2001; Cappuccio et al., 2007; Dua et al., 2008; Ghaffari and Naserifar,

2010; Harrold and Parker, 2009; Martin, 1992; Swan, 1995) and combination of ther-

apeutic agents (Chareyron and Alamir, 2009; de Pillis et al., 2006; Tse et al., 2007;

Kiran et al., 2009). In the above work, tumor growth, pharmacokinetic, pharma-

codynamic models were coupled and optimization of the therapy with objectives,

constraints and decision variables on tumor cells, normal cells and therapeutic agents

was demonstrated. The formulated optimization problem was solved using different

algorithms like gradient based methods, evolutionary methods (genetic algorithm,

particle swarm optimization, differential evolution, simulated annealing etc.).

One major focus of the above-mentioned work was on the formulation of ob-

jectives and constraints so as to achieve better solutions (Gardner and Fernandes,

2003). Depending on how one formulates the objectives, one may have a single

or multi-objective optimization problem. However, as mentioned before, scheduling

cancer therapy usually involves multiple objectives such as the need to shrink tumor

growth and avoidance of treatment side effects. In some of the previous work (Dua

et al., 2008), different objectives related to the tumor cells and therapeutics was com-

bined into a single objective. In such a strategy, the assignment of weights to the

different objectives is an intricate issue. Often, in such cases, the problem is solved

repeatedly by varying the weightage of objectives to find the best solution using

gradient based methods and evolutionary algorithms. Such a strategy can be time-

consuming. On the other hand, very little work has been done using multi-objective

optimization strategy where the problem is solved by considering all the objectives

for sets of solutions (Pareto set)(McCall et al., 2007; Kiran et al., 2009; Kiran and

Lakshminarayanan, 2009). Multi-objective optimization enables the understanding

of the therapeutic consequences and provides a chance to choose a solution from

the Pareto set as per the requirements of the decision maker. The selection of the
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solution from the Pareto set may not always be straightforward - a systematic post

analysis of the Pareto set is essential in order to choose an appropriate solution.

The chosen solution is called as optimal compromised solution, because the optimal

solution for one objective may not be the optimal solution for the other objective(s).

Thus, the post-Pareto-optimality analysis facilitates the decision making process.

2.5 Challenges in the model-based applications

There are some challenging aspects that need to be addressed before using tumor

growth models in actual practice. Mathematical models can become highly complex

by integrating all the knowledge on cell and tissue acquired by biologists relating to

the tumor growth phenomenon. In general, complexity can be related to the model

structure, the number of parameters in the model and their order of magnitude,

nonlinearity in parameters/states, practical constraints in measurement times and

in manipulating the input variables, magnitude and character of measurement errors

etc (Sun, 2006; Sun and Hahn, 2006). These reasons necessitate more tumor size

measurements to estimate parameters with acceptable precision. Often, however,

the availability of tumor size data for a given patient is quite limited. In such cases,

the precise estimation of all the patient parameters can become quite difficult. In

some of the earlier work, non-dimensionalization strategy was used to ease numer-

ical solution of the models (Kirschner and Panetta, 1998; Kuznetsov et al., 1994;

de Pillis et al., 2006; Ward and King, 1997). However, the theoretical implications of

parametric groups were not highlighted. Even the parametric sensitivity on the out-

put of interest is studied using one parameter at a time (OAT) method (Kirschner

and Panetta, 1998; Kuznetsov et al., 1994; de Pillis et al., 2009, 2006, 2005).

The main drawback of the existing tumor growth models is that some of them

are too simple while some are too complex to explain the mechanism of the nutri-

ents effect on tumor growth. Model validation, an important feature in the model

building process is found to be missing for some theoretical models in the literature.
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Another important challenge in the case of mechanistic tumor model is that the tu-

mor size varies with time; consequently, the position of the tumor surface changes.

This is known as free boundary problems. The numerical solution for free boundary

problems is very challenging as they involve solving of partial differential equations

where the spatial domain is not fixed.

Model reduction is an important issue for modeling based practical applications

(Sun, 2006; Sun and Hahn, 2006). In doing so, care should be taken to avoid the loss

of information in the process of model reduction. Scaling and sensitivity analysis

can be used for model reduction. With reduced models, the computational time

taken for model simulation may be significantly reduced. Reduction in time for a

single simulation may not seem to be very significant. However, if one resorts to

optimization of inputs or performs parameter estimation where the model may be

simulated a few thousand times, the savings in time can be quite significant and

useful. Then, global sensitivity analysis of the reduced model will help to unearth

the key parameters of the model. Similarly, model reduction will definitely be an

impetus for employing physiological models in clinical practice. The information ex-

tracted about the key parameters in the model can be further utilized in formulating

diagnostic and treatment protocols for patients or patient cohorts.

2.5.1 Description of the strategy implemented in this thesis work

A schematic representation of the strategy employed in this thesis work is shown

in Figure 2.8. The models in this thesis work are chosen based on the situation as

follows. Spatio-temporal models are used for comprehending the mechanism of the

tumor growth phenomenon. On the other hand, functional models are considered

for designing cancer treatment protocols for patients and patient cohorts. After

the first step of mathematical model selection, the parameters are taken from the

literature. Then, the raw models are subjected to a priori model analysis to reduce

the model and facilitate the application of effective numerical procedures. Then,
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Fig. 2.8. Strategy followed in this thesis

the reduced models are used to formulate optimization problems for realistically -

considered applications. The aim of the thesis is to develop simulation based tumor

growth studies that might be decision-support tools for the clinicians and oncological

pharmacists.

46



Chapter 3

MATHEMATICAL MODELING OF AVASCULAR

TUMOR GROWTH BASED ON DIFFUSION OF

NUTRIENTS AND ITS VALIDATION

‘All models are wrong, but some are useful.’

- George E P Box

3.1 Introduction

In this chapter, a mathematical model based on the diffusion of nutrients is

developed by considering the physiological changes accompanying the growth of

avascular tumor. Avascular tumor growth involves the formation of three different

zones namely proliferation, quiescent and necrotic zones. The main processes on

which avascular tumor growth depends are: (i) diffusion of nutrients through the

tumor from the contiguous tissues, (ii) consumption rate of the nutrients by the

cells in the tumor and (iii) cell death by apoptosis and necrosis. In the model, it

is assumed that the tumor is spherical and the principal nutrients responsible for

its growth are oxygen and glucose. By solving for the concentration profiles using

the proposed model which describes the above processes, the radii of the quiescent

and necrotic zones as well as that of the tumor are computed. The proposed model

is also validated using in vitro tumor growth data and Gompertzian empirical rela-

tionship parameters available in the literature. The model is shown to be successful

in capturing the saturated volume of the avascular tumor for different nutrient con-
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Fig. 3.1. Different zones in avascular tumor growth

centrations at the tumor surface and the concentration profiles of the nutrients in

the tumor.

3.2 The proposed model

The meaning of different zone model (DZM) and mixed zone model (MZM) is

same as discussed in the previous chapter. In practical terms there is no significant

difference between the DZMs and MZMs - the results from MZM almost resembles

the pattern of DZM proving that proliferating cells are at the outer rim, necrotic cells

are at the centre and quiescent cells in between (see Figure 3.1). Although spatial-

temporal models are mechanistic, some models do not include apoptosis (Burton,

1966; Casciari et al., 1992), quiescence (Busini et al., 2007) or the multi-nutrient

effect (Burton, 1966; Casciari et al., 1992). Besides this, some models are not val-

idated with any experimental results (Greenspan, 1972; Tindall and Please, 2007;

Ward and King, 1997). Based on the assumption that the tumor cells transform

to necrotic cells only when the nutrient concentrations are below their critical val-

ues and the presence of apoptotic dead cells is very negligible (implying that there

would be no dead cells in the outer region), a new DZM is proposed. The proposed

model is also validated with the in vitro experimental results provided by Freyer

and Sutherland (1986b) and Gompertzian empirical relation.
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A simple DZM that incorporates the key mechanisms occurring in the tumor

is presented in this chapter. The mechanisms are nutrient diffusion, nutrient con-

sumption, and cell death processes (apoptosis and necrosis). The proposed model

also includes the quiescent region along with proliferation and necrotic region, which

has been neglected in most of the previous models. In quiescent region, tumor cells

neither proliferate nor die. Though the different regions have been incorporated

in the model, it is assumed that the size of proliferating cells, quiescent cells and

necrotic cells are the same. The model assumes a spherical shape for the tumor and

ignores the extracellular matrix in between the cells.

The vital nutrients for cell proliferation in the tumor are glucose and oxygen.

The diffusion coefficients and surface concentration of these nutrients are assumed

constant. Initially, all cells in the tumor are proliferative as adequate nutrients

diffuse from the surrounding tissue to each and every cell. Consequently, the tumor

grows exponentially. As time proceeds, the total radius of the tumor increases and

concentration of nutrients decreases in the central part of the tumor and, at a certain

time, the nutrients reach critical concentration. Once the first nutrient attains its

critical concentration at the centre, quiescent region appears in the tumor. In the

quiescent region, the cells will neither proliferate nor die. Similarly, necrotic region

starts when the second nutrient achieves its critical concentration at the centre. In

the necrotic region, cells die due to shortage of both the nutrients (Hlatky et al.,

1988a). Therefore, the position of quiescent radius and necrotic radius is decided by

the value of critical concentration of first nutrient and second nutrient respectively.

Actually, any of the nutrients can be the first nutrient or second nutrient; it all

depends on the concentration of the nutrients at the tumor surface, their diffusivity,

critical concentration and consumption rate. With further increase in tumor radius,

the quiescent and necrotic radii increase as well. The tumor radius reaches a steady

state value when the quiescent region and necrotic region engulfs most of the total

tumor region. In addition to necrosis (Byrne and Chaplain, 1998, 1996; Tindall
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et al., 2008), there is natural cell death process (known as apoptosis) where cells

in the proliferating region die because of age factor. McElwain and Morris (1978)

assumed that apoptosis is the only cell loss mechanism in their model. Necrosis is

characterized by the membrane damage and energy depletion while apoptosis is the

result of genetic changes in the cell (Bell et al., 2001). Therefore, total death rate of

cells in the tumor is the sum of necrosis rate and apoptosis rate and this is reflected

in our model. However, to keep the model complexity within manageable limits, it

is assumed that the degradation of necrotic and apoptotic cells will not affect the

diffusion and consumption rate of the nutrients.

3.2.1 Model equations

As discussed above, the diffusion and consumption of the nutrients are captured

in Equations (3.1) and (3.2) to give the spatial and temporal variation of the nu-

trients. Many models based on single nutrient (Burton, 1966; Casciari et al., 1992;

Ward and King, 1997) and multiple nutrients did use the quasi-steady-state form of

Equation (3.1) or (3.2) , because the time taken for diffusion is very less than the

time taken for tumor growth. Moreover, it is considered that the nutrient consump-

tion follows Michaelis-Menten type of kinetics with fixed values for its parameters.

Equation (3.2) implies that there is no nutrient consumption in the necrotic zone.

 rate of change of

nutrient concentration

 =

 flux due to

diffusion

−
 rate of nutrient

consumption


If (Ci ≥ critical concentration of all the nutrients (oxygen and glucose))

∂Ci
∂t

=
Di

r2

∂

∂r

(
r2∂Ci
∂r

)
−
(

µiCi
Ki + Ci

)
(3.1)
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else

∂Ci
∂t

=
Di

r2

∂

∂r

(
r2∂Ci
∂r

)
(3.2)

where, r is the radial position in the tumor; i = 1 and i = 2 represents glucose

and oxygen respectively. Equations (3.3) through (3.5) give the temporal variation

of the tumor radius at the different stages of tumor growth. These equations include

decay rate of dead cells based on apoptosis as well as necrosis. The apoptosis-based

dead cells decay at a rate proportional to the volume of the viable zone (proliferation

and quiescent), whereas necrosis based dead cells decay at a rate proportional to

the volume of the necrotic zone. As stated earlier, the model assumes that decayed

cells do not affect the diffusion and consumption of the nutrients.

The outer tumor radius, R(t)

 rate of change of

volume of tumor

 =

 total rate of cell

proliferation

−
 total decay rate of

dead cells


First stage (all cells are in proliferation zone; Rq = 0, Rn = 0)

3R2dR

dt
= A(R3)− Ap(R3) (3.3)

Second stage, (appearance of quiescent zone Rq > 0, Rn = 0)

3R2dR

dt
= A(R3 −R3

q)− (ApR
3) (3.4)

Third stage (appearance of necrotic zone appears Rq > Rn, Rn > 0)

3R2dR

dt
= A(R3 −R3

q)− (Ap(R
3 −R3

n))− (NeR
3
n) (3.5)

where, Rn(t) is the radial position of the outer radius of necrotic zone from the

tumor centre, Rq(t) is the radial position of the outer radius of quiescent zone from
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the tumor centre, A is proliferation rate constant, Ap is apoptosis rate constant, Ne

is necrosis rate constant.

Equations (3.1) to (3.5) must be solved to get R(t), Rq(t) and Rn(t). The

solution of these equations is non-trivial because of the dependence of R(t), Rq(t)

and Rn(t) on the location of the critical concentration of the nutrients in the tumor.

Section 3.3 presents the details on the model solution. The initial conditions and

the boundary conditions of the model are as shown below.

Initial conditions (at t = 0)

R = rp (the initial tumor radius in the experimental data of Freyer and Sutherland

(1986b))

Ci = Ci∞ at all r

Boundary conditions

at r = R

Ci = Ci∞ where Ci∞ is concentration of the nutrient at the tumor surface

at r = 0

∂Ci

∂r
= 0 (because of symmetry assumption)

3.3 Model solution

3.3.1 Non-dimensionalization of equations

Let

Ci
∗ = Ci

C1∞
, r∗ = r

R

where, C1∞ is concentration of glucose at the tumor surface, which is considered

as reference concentration and R(t) represents tumor radius at any time

∂Ci
∗

∂t
=
Di

R2

∂

∂r∗

(
r∗2

∂C∗i
∂r∗

)
−
(

µiCi
∗

Ki + Ci
∗C1∞

)
(3.6)
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3.3.2 Numerical procedure

For non-dimensionalization, one can choose either C1∞ or C2∞ as the reference

concentration. Here, C1∞ has been chosen as reference concentration, because C1∞

is greater than C2∞. Therefore, the solution of dimensionless concentrations of

oxygen and glucose is always bounded between 0 and 1. The non-dimensionalized

partial differential equation (3.6) and the outer tumor radius equations (Equation

(3.3) to (3.5) as appropriate) are solved to get the tumor radius at different times.

Equation (3.6) can be transformed to a set of ordinary differential equations and

solved using the “Method of lines” (Lee and Schiesser, 2003). In this method, the

spatial derivatives are transformed to algebraic form by using a finite difference

approximation of required accuracy. The set of ordinary differential equations can

be solved as initial value problems using MATLAB (Shampine, 1994). Note that

the number of finite difference points is fixed along the tumor radius.

Nutrient concentrations, tumor radius, necrotic zone radius and quiescent zone

radius are functions of time. However, there are no equations available for the

temporal variation of necrotic zone radius and quiescent zone radius. Therefore, the

number of unknowns (5) are more than the number of equations (3). In order to

deal with this scenario, the equations are solved for short time intervals by assuming

necrotic zone radius (Rn) and quiescent zone radius (Rq) as piecewise constant. The

question is: what would be the range of the time interval over which the radii of

the necrotic zone and quiescent zone may be considered as constant? It is known

that cells take a few hours to several days for completing a cell cycle (Kleinsmith,

2005). Therefore, it is logical to proceed with the proposition that time interval may

be based upon the duration of cell cycle. Thus, the cell cycle theory informs that

noticeable growth of tumor radius is seen after every few hours to days. Therefore,

the following solution strategy is devised. Initially, quiescent and necrotic zones do

not exist. Rq(0) and Rn(0) are therefore taken as zero. The equations are solved
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for a 3 hour horizon (say from t = 0 to t = 3 hours). At the end of 3 hours, the

concentration profile of glucose and oxygen are examined in order to locate Rq and

Rn corresponding to their critical concentrations. Then, the obtained values of Rq

and Rn are substituted in the appropriate outer tumor radius equations (one of

Equations (3.3) to (3.5)) based on the tumor stage and simulated for next 3 hours.

These solution steps are repeated for the next block of 3 hours using appropriate

initial conditions for the state variables until the tumor radius attains a steady state

value.

3.4 Model validation and discussion

Model validation is a very crucial and essential part of mathematical modeling.

In this work, the model is validated with the available in vitro results in the lit-

erature and with a well known empirical relation related to tumor growth called

Gompertzian relation (Burton, 1966). The values of the model parameters and

their references are presented in Table 3.1. These parameters are either measured

directly (diffusivities, critical concentration of the nutrients, maximum consump-

tion rates) or estimated (Michaelis-Menten constants, proliferation rate constant,

apoptosis rate constant, necrotic rate constant) by fitting to a model. Note that

the validation data sets are independent from data sets that were used to derive the

model parameters summarized in Table 3.1. Thus, the proposed model has been

subjected to stringent tests as reported below.

3.4.1 Validation with in vitro data (Freyer and Sutherland, 1986b)

In Freyer and Sutherland (1986b), EMT6/Ro mouse mammary carcinoma cell

spheroids were cultured in suspension in either 0.28 mmol/L or 0.07 mmol/L oxygen

and 16.5, 5.5, 1.7, 0.8 mmol/L glucose to study the effects of glucose and oxygen on

spheroid growth. They determined the value of mean size of a spheroid population
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Table 3.1
Parameter values

Symbols Quantity Value Units
D1 Diffusivity of glucose 1.1× 10−6 cm2/s

(Casciari et al., 1988)
C1c Critical concentration of glucose 7.7× 10−6 mole/cm3

(Hlatky et al., 1988b)
µ1 Maximum consumption rate of glucose 4× 10−8 mole/cm3.s

(Casciari et al., 1992)
K1 Michaelis-Menten constant for glucose 4× 10−8 mole/cm3

(Casciari et al., 1992)
D2 Diffusivity of oxygen 1.82× 10−5 cm2/s

(Mueller-Klieser and Sutherland, 1985)
C2c Critical concentration of oxygen 2× 10−8 mole/cm3

(Jiang et al., 2005)
µ2 Maximum consumption rate of oxygen 1.43916× 10−8 mole/cm3.s

(Casciari et al., 1992)
K2 Michaelis-Menten constant for oxygen 4.640× 10−9 mole/cm3

(Casciari et al., 1992)
A Proliferation rate constant 0.12− 5.2 1/day

Burton (1966)
Ap Apoptosis rate constant 1.5× 10−6 1/hour

(Busini et al., 2007)
Ne Necrosis rate constant 1.36× 10−2 1/hour

(Busini et al., 2007)

by measuring the two orthogonal diameters on each of 50 spheroids using an inverted

microscope fitted with a calibrated eyepiece reticule. Using the above data, they

evaluated the total spheroid volume variation with time for 28 days, maximum

volume of the tumor, exponential doubling time and tumor diameter at the onset

of necrosis for different media conditions.

Simulated growth curve was obtained from the proposed model using the param-

eter values in Table 3.1. Figure 3.2 shows the simulated growth curve of the tumor

for 28 days in comparison with the experimental data when the glucose and oxy-

gen concentrations in the media are 16.5 mmol/L and 0.28 mmol/L respectively.

There is a high degree of agreement between the simulated growth curve and the

55



Chapter 3 Mathematical modeling of avascular tumor growth based on diffusion of
nutrients and its validation

Fig. 3.2. Tumor growth curves of simulated and experimental data
at 16.5 mmol/L glucose and 0.28 mmol/L oxygen

Fig. 3.3. Quiescent and necrotic radius at different tumor radius
during its growth at 16.5 mmol/L glucose and 0.28 mmol/L oxygen
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Fig. 3.4. Tumor growth curves of simulated and experimental data
at 16.5 mmol/L glucose and 0.07 mmol/L oxygen

Fig. 3.5. Quiescent and necrotic radius at different tumor radius
during its growth at 16.5 mmol/L glucose and 0.07 mmol/L oxygen
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Table 3.2
Maximum volume of multicellular tumor spheroids at different con-
centrations

External oxygen External glucose Maximum Maximum
concentration concentration volume volume

(mmol/L) a (mmol/L)a (cm3)a (cm3)b

0.28

16.5 4.4× 10−2c 9× 10−3

5.5 1.1× 10−2c 3.2× 10−3

1.7 8.3× 10−4 1.1× 10−3

0.8 8.3× 10−4 4.54× 10−4

0.07

16.5 7.7× 10−3 2.6× 10−3

5.5 6.1× 10−4 6.99× 10−4

1.7 1.5× 10−4 1.56× 10−4

0.8 7.8× 10−5 4.48× 10−5

a Freyer and Sutherland (1986)
b Proposed model
c Extrapolated values (experimental)

experimental data. The simulated curve shows that once the quiescent and necrotic

zones are formed in the tumor, the tumor growth retards and reaches a final state

(see Figure 3.2 for t > 25 days). In addition, the proposed model was able to locate

the position of outer radius of the quiescent and necrotic zones as shown in Figure

3.3. The tumor diameter at the onset of necrosis is almost the same as that of the

estimated value (0.0516 cm) in Freyer and Sutherland (1986b). In order to test the

prognostic ability of the model, the simulated results are verified with the exper-

imental data, when the oxygen concentration is changed to 0.07 mmol/L. These

results are shown in Figures 3.4 and 3.5 respectively. It is seen that the tumor

diameter at the onset of necrosis (0.0510 cm) is in good agreement with the value

given in Freyer and Sutherland (1986b). Table 3.2 shows the comparison between

simulated values and the experimental values of the maximum volume of the tumor

for different combinations of glucose and oxygen concentrations. The experimental

values (3rd column) are from Freyer and Sutherland (1986b). The agreement be-

tween the experimental values and our model predictions (4th column) is very good.

Interestingly, it is observed from Table 3.2 that for a given concentration of oxygen,
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the maximum volume of the tumor increases with the increase in the concentration

of glucose. The reason is that, if the nutrient concentration at the tumor surface

were increased, the nutrient takes longer time to reach its critical value at the tumor

centre and, over the same time, the tumor radius would have increased to a higher

value.

3.4.2 Validation with in vitro data (Sutherland et al., 1986)

In Sutherland et al. (1986), oxygenation and development of necrosis in spheroids

of HT29 cell line of colon adenocarcinoma was compared with Co112 cell line. Ini-

tially HT29 cell spheroids were cultured in an ambience of DMEM furnished with

10% fetal bovine serum and after five days the medium was further equilibrated with

5% CO2 (v/v) and air. These conditions maintained the concentration of glucose

and partial pressure of oxygen at 25 mmol/L and 141 mm of Hg respectively at the

surface of the spheroids. During the growth, the partial pressure of oxygen P(O2) in

the spheroids was determined by the oxygen microelectrode measurements (OMM).

In the process of culturing of HT29 spheroids, they have shown the variation of pro-

files of oxygen concentration inside the spheroids for different sizes of HT29 spheroids

with the help of OMM. In this work, the proposed model is validated with these

experimental results by considering the same ambient conditions. Figures 3.6-3.13

show the comparison between the model and the experimental results. The model

is able to predict the decreasing trend of the oxygen concentration from the surface

of the spheroids to the centre. Moreover, the model captures the thickness of the

viable rim of the spheroids to be 0.02531 cm, when the diameter of the spheroid is

1.415 cm, which is close to the experimental value (0.0225 cm). However, in Figures

3.6-3.12, it is observed that the model predictions deviate from the experimental

values at the surface of the spheroids. The reason is that the model assumes the

concentration of the nutrients at the surface to be constant and their values are the

same as in the medium. In contrast, in the experiments, there is a concentration
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Fig. 3.6. Profile of partial pressure of oxygen (PO2) in the HT29
spheroids when its diameter is 1039 µm

Fig. 3.7. Profile of partial pressure of oxygen (PO2) in the HT29
spheroids when its diameter is 1116 µm

gradient of the nutrients from the bulk medium to the surface. This also implies

that the deviation of the model will be more when the diameter of the spheroids is

very small and this is seen clearly in Figure 3.13.
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Fig. 3.8. Profile of partial pressure of oxygen (PO2) in the HT29
spheroids when its diameter is 1169 µm

Fig. 3.9. Profile of partial pressure of oxygen (PO2) in the HT29
spheroids when its diameter is 1415 µm
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Fig. 3.10. Profile of partial pressure of oxygen (PO2) in the HT29
spheroids when its diameter is 2077µm

Fig. 3.11. Profile of partial pressure of oxygen (PO2) in the HT29
spheroids when its diameter is 2156 µm
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Fig. 3.12. Profile of partial pressure of oxygen (PO2) in the HT29
spheroids when its diameter is 2314 µm

Fig. 3.13. Variation of partial pressure of oxygen (PO2) at the centre
of the HT29 spheroids with the increase in its diameter
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Fig. 3.14. Comparison between the proposed model and Casciari
et al. (1992) model on the basis of variation of oxygen concentration
at the centre of the EMT6/Ro spheroids with the increase in its
diameter

3.4.3 Comparison with Casciari et al. (1992) model

Casciari et al. (1992) validated their model with the experiment results of Mueller-

Klieser and Sutherland (1982), where EMT6/Ro spheroids were cultured in 500 ml

Bellco flasks containing 300 ml BME with 15% fetal bovine serum, 0.21 mmol/L

oxygen and 5.5 mmol/L glucose. The proposed model is now tested with the same

experimental results - the result is shown in Figure 3.14. The discrepancy between

the model and the experimental results at the lower spheroid diameter is due to

assumption that the concentration of nutrients at the surface is equal to that in the

bulk medium. However, the model is able to capture the decreasing nature of the

oxygen concentration at the centre even for spheroid diameter beyond 700 µm as in

the experimental results, which is not seen in the Casciari et al. (1992) model. Note

that the proposed model is simpler than the Casciari et al. (1992) model but can

provide better representation of the experimental data in some regions.
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Table 3.3
Values of the parameter k1 of Gompertzian empirical relation

External oxygen External glucose k1

concentration (mmol/L) concentration (mmol/L) (1/day)

0.28

16.5 9.12
5.5 7.86
1.7 8.1
0.8 6.56

0.07

16.5 7.03
5.5 5.05
1.7 6.28
0.8 3.81

3.4.4 Comparison with parameters of Gompertzian relation based on

experimental data (Burton, 1966)

Gompertzian relation is given by:

v

v0

= exp(k1(1− exp(−k2t)) (3.7)

where, v0 is the initial volume of the tumor, v is the volume of the tumor at any

time, and k1 and k2 are the Gompertzian parameters.

According to Burton (1966), the value of k1 ranges from 6.1 to 16.7 - this is based

on the fitting of Gompertzian relation on experimental tumor growth data of around

18 different tumors. In Burton (1966), a Gompertzian relation was fitted to the data

(obtained from the model reported therein) and k1 was determined to be around 8.

This model assumed that oxygen is the only nutrient and its consumption rate is

constant. As stated earlier, these assumptions are not realistic (Freyer and Suther-

land, 1985). Using the proposed model, the values for tumor volume at different

times is generated for various combinations of nutrient concentrations considered

in. The tumor volume versus time data was used in Equation (3.7) to estimate the

parameters k1 and k2. Table 3.3 shows that most of the estimated values of k1 are

in good agreement with the literature values (6.1 - 16.7) indicating the validity of
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the proposed avascular tumor growth model. The exceptions occur at the lower

value of external oxygen concentration when the external glucose concentration is

5.5 mmol/L or 0.8mmol/L.

3.5 Conclusions

In this chapter, a new mathematical model for avascular tumor growth was intro-

duced. It is mechanistic and considers all the relevant cellular process (proliferation,

apoptosis and necrosis) and their dependency on the diffusion and consumption of

the nutrients. The model is simple yet powerful. It was successful in capturing the

tumor growth and the maximum volume achieved under different media conditions.

On the basis of the results of onset of necrosis, the proposition that necrotic zone

is observed when the concentrations of both vital nutrients are below their critical

values appears to be true. Moreover, the model is predictive in identifying the size

of proliferation zone, quiescent zone and necrotic zone and their effect on the overall

tumor growth. Therefore, the proposed model can be a supporting tool for tumor

pathologists in determining tumor growth relevant parameters corresponding to the

tumor sample extracted from the patients.
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Chapter 4

SEQUENTIAL SCHEDULING OF CANCER

IMMUNOTHERAPY AND CHEMOTHERAPY USING

MULTI-OBJECTIVE OPTIMIZATION

‘We must develop knowledge optimization initiatives to leverage our key

learnings.’

- Scott Adams

4.1 Introduction

In the previous chapter, the utility of spatio-temporal models in diagnostic pro-

cedures were discussed, while from this chapter onwards, the focus is on using func-

tional models to develop therapeutic strategies. In general, the objectives of any

therapy or combination of therapies are to minimize the total number of cancer

cells by maintaining it below the lethal level while minimizing the side effects. In

this chapter, the main contribution is the therapeutic protocol analysis for a given

patient and given time horizon using multi-objective optimization.

Chemotherapy is one of the prominent treatment modalities of cancer and gen-

erally, all cancer patients undergo chemotherapy at some stage of their treatment.

However, it is not always a comprehensive solution as an adjuvant therapy or as a

prime therapy for tumor regression. Therefore, chemotherapy is administered to the

patient in synergistic combination with the other treatment modalities such as im-

munotherapy in order to eliminate the tumor. In the present chapter, chemotherapy

using doxorubicin and its combination with adoptive-cell-transfer therapy (ACT) is
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considered. ACT is one immunotherapy scheme where the recognized anti-tumor

T-cells are cultured externally and administered to the patient (Ho et al., 2003; Dud-

ley and Rosenberg, 2003; Rosenberg et al., 2008). Practically, ACT has proved its

worth by causing tumor regression in patients with melanoma or lymphoma (Dudley

et al., 2002).

An in silico pharmacokinetic/pharmacodynamic model describing the interac-

tion between tumor cells, immune cells and doxorubicin is used to formulate a

multi-objective optimization problem by considering clinically relevant objectives

and constraints. Then, the multi-objective optimization problem is solved using a

Pareto based approach known as non-dominated sorting genetic algorithm (NSGA-

II) (Deb et al., 2000) for different cases in order to discover a therapeutically effi-

cacious treatment regimen. Then, a systematic post analysis is performed using L2

norm method (Kasprzak and Lewis, 2001) in order to choose and recommend an ap-

propriate solution from the Pareto set obtained from NSGA-II. The chosen solution

can be considered as the optimal compromise solution, because the optimal solution

for one objective may not be the optimal solution for the other objective(s). The

details about these methods are provided in the later part of this chapter. In this

chapter, the main focus is on the comparison of the efficacy of the chemotherapy

alone and and its combination with ACT.

4.2 Mathematical model

Tumor-immune interaction models explain interactions between different type of

immune cells and tumor cells. There are many tumor-immune interaction models

as discussed in chapter 2. The model employed in this chapter is taken from the

work of Kuznetsov et al. (1994) because it is the mother model for tumor-immune

interactions. It explains different phenomena of tumor-immune interactions like

sneak-through and tumor dormancy. “Sneak-through” is the phenomenon in which

immune system evades tumor. In tumor dormancy phase, tumor size remains con-
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stant with almost no increase in the number of tumor cells. The assumptions of the

model are that the tumor is immunogenic and is not metastasized. Here, all immune

cells (natural killer cells and cytotoxic T-cells) are considered as effector cells and

the tumor growth follows the logistic equation. The interaction between the tumor

cells and effector cells is assumed to follow a kinetic scheme in which effector cells

interact with the tumor cells and form effector-tumor conjugates which later trans-

form to inactivated effector cells or lethally-hit tumor cells. The parameters of the

model were estimated based on the experimental data of B-lymphoma BCL1 in the

spleen of the mice (Siu et al., 1986). The activity of the chemotherapeutic drug is

included in the model (Martin, 1992). In the following equations, the symbols E(t),

T (t), and M(t) represent the number of effector cells, tumor cells and chemother-

apeutic drug concentration respectively. It is assumed that the drug reaches the

tumor location very quickly after its intervention. Therefore, its transport from the

point of injection to the tumor location is negated.

dE

dt
= s+

pET

g + T
−mET − d1E + s1 − J(M)E (4.1)

dT

dt
= aT (1− bT )− nET − L(T,M) (4.2)

dM

dt
= u− γM (4.3)

L(T,M) = k(M −Mth)H(M −Mth)T

J(M) = Kl(1− e−M)H1(M −Mmax)

 (4.4)

where, H is the Heaviside function:

if (M −Mth) < 0, then H = 0,

if (M −Mth) ≥ 0, then H = 1,

if((M −Mmax) ≥ 0), then H1 = 1,

if((M −Mmax) < 0), then H1 = 0
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Table 4.1
Parameter values (Kuznetsov et al., 1994; Martin, 1992)

Parameter Value Unit
a 0.18 day−1

b 2.0× 10−9 cells−1

n 1.01× 10−7 day−1cells−1

k 8.4× 10−3 day−1[D]−1

Mth 10 [D]
γ 0.27 day−1

s 1.3× 104 cellsday−1

p 0.1245 day−1

g 2.019× 107 cells
m 3.422× 10−10 day−1cells−1

d1 0.0412 day−1

Mmax 50 [D]
Umax 51 [D]day−1

S1max 107 cells

[D] is the Chemotherapeutic drug (doxorubicin) concentration

Initial conditions

E(0) = 3.2× 105, T (0) = 1× 1010, M(0) = 0

In Equation (4.1), ‘s’ (a fraction of the total lymphocytes in the body) is the

natural flow rate of effector cells to the tumor location (non-stimulated by tumor

presence). The second term with parameters ‘p’ and ‘g’ in Equation (4.1) corre-

sponds to the accumulation of effector cells due to stimulation by cytokines (such

as interleukin) released from the effector cells that are in contact with tumor cells.

Effector cells degrade as a result of their natural life time (d1E ) and their exhaustive

interaction with the tumor cells (mET ). Biologically, this term denotes the impair-

ment of the effector cells functionality due to their continuous stimulation by the

tumor antigens. This could be due to the release of anti-cytokine molecules by tumor

cells which reduce the concentration of the cytokines required for the activation of

the effector cells. ‘s1’ is the input rate of externally administered anti-tumor effector

cells. J(M)E denotes the elimination of the effector cells when the chemotherapeu-
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tic drug concentration exceeds the Mmax value (Equation (4.4)) where k is the rate

of elimination of the effector cells. In Equation (4.2), ‘a’ is the maximal growth

rate of the tumor cells and it incorporates both their proliferation and death rates

whereas ‘1/b’ is the carrying capacity of the tumor cells, where aT (1− bT ) signifies

tumor growth because of nutrients such as glucose and oxygen without the effect

of immune response. The tumor cells are killed by their interaction with effector

cells and chemotherapeutic intervention. The pharmacokinetics of the chemother-

apeutic drug is illustrated by Equation (4.3) where ‘u’ is its input rate and ‘γ’ is

its decay rate. The pharmacodynamics of the drug is indicated by L(T,M), where

it is clarified that the drug can have predominant effect on tumor cells only if its

concentration is more than the threshold concentration (Mth) (Equation (4.4)). Kl

is the rate of elimination of tumor cells due to the chemotherapeutic drug. The

parameter values are given in Table 4.1. Another assumption is that parameters

of the patient model do not change significantly during the treatment horizon. As

a result, the problem of treatment protocol design can be solved as an open loop

optimal control problem using the integrated model to explore the efficacious and

endurable possibility for tumor regression. The three basic assumptions regarding

the delivery of chemotherapeutic drug are:

(a) Intravenous injection of the drug

(b) Instantaneous mixing of the drug with the plasma

(c) the time taken by the drug to reach the tumor site is negligible.

4.3 Multi-objective optimization

Multi-objective optimization (MOO) is the optimization of two or more conflict-

ing objectives of a physical system represented in the form of a mathematical model

subjected to some known constraints. MOO is widely used in many fields such

as process design, aerospace, medical applications, and automobile design. Unlike
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single objective optimization, one gets a set of solutions known as Pareto-optimal

set with multi-objective optimization. The decision maker will have the freedom

to choose a solution based on his/her experience and acquaintance with the system

(Tamaki et al., 1996). The goal of the multi-objective optimization is to find the

Pareto set. There are many methods to find the Pareto solutions - e.g. weighted

sum method, ε - constraint method (Nemhauser et al., 1989), non-Pareto and Pareto

based evolutionary algorithms (Tamaki et al., 1996). In the present work, a Pareto

based approach known as non-dominated sorting genetic algorithm (NSGA-II) im-

plemented in MATLAB (R2007a) is used. This algorithm is preferred over other

multi-objective algorithms (Pareto-archived evolution strategy (PAES) and strength

Pareto evolutionary algorithm (SPEA)) in terms of elitism and computational com-

plexity (Deb et al., 2000).

4.3.1 Non-domination set (Pareto set)

Let us assume that there are ‘n’ decision variables and ‘p’ objectives. MOO tries

to find a point x = (x1, ..., xn) which minimizes (or maximizes) the values of the

objective functions f = (f1, ..., fp) within the feasible region F of x.

Definition (Tamaki et al., 1996): Let x0, x1, x2 ∈ F

x1 is said to be dominated by (or inferior to) x2, if f(x1) is partially greater than

f(x2)

fi(x
1) ≥ fi(x

2), ∀i=1,.....,p and fi(x
1) > fi(x

2), ∃i = 1,......p.

x0 is the Pareto-optimal (or non-dominated), if there doesn’t exist any x ∈ F such

that x dominates x0

4.3.2 NSGA-II

The schematic representation of non-dominated sorting genetic algorithm (NSGA)

is shown in Figure 4.1. First, the population size and the stopping criteria (e.g. the

maximum number of generations) are provided. Then, the population is initialized
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Fig. 4.1. Schematic representation of NSGA-II

randomly within the bounds of the decision variables. The initialized population

is sorted out based on the non-domination criteria into different fronts. Parents

from this population are selected based on two metrics namely rank and crowding

distance. The members of the first front completely belong to the non-dominant

set, the second front members are dominated only by the first front and so on. Each

individual of the population is assigned a rank (fitness) based on the front in which

they are present. Individuals in the first front are assigned rank 1 and in the second

front are assigned rank 2 and so on. Crowding distance is a metric that measures the

closeness of the individuals to its neighbors. A larger crowding distance is preferred

to maintain diversity in the population. Individuals are selected as parents based on

the rank value; if two individuals have the same rank, then their crowding distance

is considered (a larger crowding distance is preferred). Parent population is sent

through the genetic operators such as crossover and mutation to generate the child

population. The child population is combined with the current generation popu-

lation. This is called as recombination. These steps are repeated to produce next

generation child population. Elitism of the algorithm is assured, since the previous
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Fig. 4.2. L2 norm method

and current best individuals are added in the population. The same procedure is

continued until the GA evolves to the maximum number of generations. Overall, the

prominent tuning parameters in this algorithm are the number of generations, prob-

abilities for crossover and mutation processes. Matlab implementation of NSGA-II

can be easily obtained in the internet. The main challenging task in this algorithm

is the choice of population size and maximum number of generations. Generally,

higher the population size and the number of generations are preferred. However,

it is computationally intensive. In this work, the population size and the number of

generations are chosen based on the iterative preliminary runs of the optimization

problem.

4.3.3 Post-Pareto-optimality analysis

In the literature, there are many methods for post-Pareto-optimality analysis

such as clustering techniques, ranking techniques and distance based methods such

as L2 norm. Here, L2 norm method involving the concept of utopia point is used

to find the optimal compromise solution (Kasprzak and Lewis, 2001). Utopia point

is the theoretically best performance point; in our case, the origin is assumed as
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Fig. 4.3. Schematic representation of the problem

the utopia point because the target of giving therapy is to completely eliminate the

tumor cells with no drug overload. Hence in accordance with L2 norm method, the

optimal compromise design point is the one which lies on the Pareto frontier and is

geometrically nearest to the utopia point (Figure 4.2).

4.4 Problem formulation

The main objective of this work is to determine the optimal time of intervention,

type of intervention (chemo or immune) and dosage level of the intervention to

achieve a desired and controlled tumor evolution. Figure 4.3 shows the inputs and

outputs of this system. The therapeutic agents considered here are doxorubicin and

anti-tumor effector cells. In general, oncologists try to attain multiple objectives

(e.g. eradication of tumor cells while minimizing the side effects of the drugs)

when they treat cancer patients. Oncologists prefer to give treatments in cycles

within a stipulated course period. The time period of the cycles are chosen in

such a way that the patient would be able to recoup from the effects of the drug

administered in the previous cycle. Usually, the side effects are evaluated using

the count of blood cells such as neutrophils and platelet cells. Presently, in the

standard clinical practice the average cycle time for various chemotherapeutic agents

is around three to four weeks and the duration time of the clinical treatment varies

from months to a year (Rose, 2005). In this work, the cycle time is assumed to
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be four weeks and stipulated course period (tf ) as 1 year. Therefore, the total

number of therapeutic interventions (N) is taken as 12. Keeping in view the usual

objectives of the oncologists, multiple (three) objectives (McCall et al., 2007) and

the constraints to be satisfied for the therapeutic interventions are considered. The

objectives considered are listed and discussed next. Mathematically, objective 1

corresponds to minimizing the area under the tumor profile as shown in Figure 4.4.

However, with only objective 1, desired results may not be ensured because it may

so happen that the number of tumor cells may shoot up to a very high value at any

point of time, even while remaining at low values during the rest of the treatment

period. Such abrupt increases in the concentration of the tumor cells may lead to

further stages of cancer such as vascularization and metastasis. At these stages, the

disease is very difficult to treat. In order to handle this issue, the minimization of

objectives 2 and 3 are also considered. Objective 2 corresponds to the tumor size

on the final day of the stipulated course period which is practically expected to be

very low value. Objective 3 controls the maximum possible tumor size throughout

the stipulated course time. The incorporation of constraints (ii-iv) in the problem

formulation prevents the side effects due to doxorubicin. Constraints (ii) and (iii)

are related to input rate and maximum concentration of doxorubicin respectively.

High drug concentrations (beyond the safe limits, i.e., greater than Mmax), could

destroy neighboring normal tissues and the patients may experience undesirable side

effects. Practically, constraints (ii) and (iii) imply the instantaneous and short-term

effects of the drug. Constraint (iv) is a measure of drug clearance in the body. It

physically interprets the long-term effect of the drug on the organs such as the heart

or liver and the blood cell count. Constraint (vii) conveys that the minimum value

of tumor size should be more than or equal to 1 tumor cell. If this is not taken into

account, the tumor size will go to a negligibly low value ( 10−20) which is due to

the continuous nature of state variable. Mathematically, the lower value may sound

good; however, it has no medical significance.
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Objectives

Objective 1: min
tf∫
0

T (t) dt

Objective 2: min (T (tf ))

Objective 3: min (Tmax)

Constraints

(i) : Equations (4.1) through (4.4) i.e. the mathematical model

(ii) : 0 ≤ u(ti) ≤ umax

(iii): 0 ≤ M(t) ≤Mmax

(iv) :
tf∫
0

M(t) dt ≤ 4100

(v) : tf = 1 year

(vi) : N (no. of therapeutic interventions) = 12

(vii): min(T (t)) ≥ 1

where, ti is the intervention time and umax is the upper bound on the input rate

of doxorubicin

In this chapter, the comparison of the efficacies between chemotherapy and its

combination with ACT is particularly sought using the above problem formulation.

In the case of combination therapy, the number of immunotherapeutic interventions

are regarded as a decision variable as well and determined the optimum number

of immunotherapeutic interventions required to replace the chemotherapeutic inter-

ventions while satisfying all the constraints.
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4.4.1 Non-dimensionalization

Model equations (4.1-4.3) are non-dimensionalized in order to simplify the im-

plementation of the optimization method. The reference values of effector cells (Er),

tumor cells (Tr), and chemotherapeutic drugs (Mr) are chosen in such a way that

the input rate of externally administered effector cells and chemotherapeutic drug

range between 0 and 1. Then, the non-dimensionalized model is crosschecked by

comparing the evolutions of tumor and effector cells with the original model for the

given initial conditions (as shown in Figure 4.4). The transformed model is as shown

below (Equations (4.5 - 4.8)).

dE•

dt
= s• +

pE•T •

g• + T •
−m•E•T • − d1E

• + s•1 − J(M•)E• (4.5)

dT •

dt
= aT •(1− T •)− n•E•T • − L(T •,M•) (4.6)

dM•

dt
= u• − γM• (4.7)

L(T •,M•) = k(M•Mr −Mth)H(M•Mr −Mth)T
•

J(M•) = Kl(1− e−M
•Mr)H1(M•Mr −Mmax)

 (4.8)

E• = E
Er

, T • = T
Tr

, M• = M
Mr

, s• = s
Er

, g• = gb, m• = m
b

, s•1 = s1
Er

, n• = nEr,

u• = u
Mr

where, Er = 1× 107 cells, Tr = 1/b = 5× 108 cells, Mr = 51 [D]

4.5 Results and discussion

4.5.1 Case 1: Chemotherapy

In this case external interventions of doxorubicin alone are considered. The prob-

lem formulation of multi-objective optimization problem is implemented in MAT-
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Fig. 4.4. Comparison between original and non-dimensionalized model

Fig. 4.5. Algorithm to find the optimal compromise solution

LAB (R2007a) and solved to find the timing and dosage of 12 chemotherapeutic

interventions within the course time. The population size and number of gener-
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Fig. 4.6. Pareto solutions for the problem formulation for case 1 (i.e.
only chemotherapy)

ations in NSGA-II are taken as 100 and 250 respectively. The objectives are as

described earlier. The steps to decide the best solution from Pareto solutions are

as shown in Figure 4.5. Pareto solution obtained has two clusters as shown in Fig-

ure 4.6. Pareto solution highlights that cluster 1 completely favors objective 1 and

cluster 2 slightly favors objective 2. Objective 3 is constant and same in both the

clusters. The reasons for differences in the clusters are investigated by analyzing

the therapeutic design (Intervention timings and profiles of tumor cells, effector cells

and doxorubicin) corresponding to the centroids (c1 and c2 as shown in Figure 4.6 of

cluster 1 and cluster 2. The evolution of tumor cells, effector cells and doxorubicin

corresponding to the solutions of the centroid of each cluster is presented in Figure

4.7

In Figure 4.7, the major difference in the tumor profiles is observed between

100th and 150th day and it is due to different intervention timings between 50th and

100th day where the frequency of interventions corresponding to cluster 1 is more

than cluster 2. Comparison of the evolution of tumor cells between the two clusters

shows that the solutions of cluster 1 will be favorable than cluster 2. Also, the
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Fig. 4.7. Comparison of evolution of states between cluster 1 and cluster 2

Fig. 4.8. Evolution of states corresponding to the proposed treat-
ment protocol of doxorubicin
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optimal compromise solution chosen from the Pareto set using L2 norm belongs to

cluster 1. The evolution of tumor and effector cells corresponding to the finally

chosen solution is shown in Figure 4.8 and also it is compared with the standard

treatment protocol of doxorubicin where standard dosage (40-50 [D]/day) is given

at the beginning of each cycle (Alberts et al., 2002). It is seen in Figure 4.8 that the

tumor cells are significantly controlled based on the proposed treatment protocol of

doxorubicin than the standard treatment protocol. Also, the evolution of effectors

cells corresponding to the proposed solution are maintained at higher level than the

standard protocol. In real cases, not all patients are cured with the existing standard

protocol. One of the probable reasons could be that it negates the immunogenicity

factor (i.e. tumor reduction due to the localization of the effector cells at the tumor

site) which is considered in this work. Figure 4.8 shows that even though the

tumor cells are eliminated to an extent with the proposed protocol, the effect of

chemotherapeutic drug is not sufficient. That is the tumor size at the end of the

course time is in the order of 105 cells which is more than the cure level (103 -

104 cells) (McCall et al., 2007; Khaloozadeh et al., 2009). Cure level is the level of

tumor cells which can be eliminated with the natural ability of the patient without

any external intervention. Also, at this size, tumor is not recognizable (< 109

cells) even with the available imaging techniques and tumor cells relapses very soon.

Finally, tumor relapse may lead to critical stages of cancer. In order to avoid

this, more chemotherapeutic drug should be given by increasing the frequency or

dosage of chemotherapeutic interventions. However, it is not a viable option because

of the constraints. Thus, additional intervention of effector cells along with the

chemotherapy may result in complete elimination of the tumor. This leads to the

following questions: (i) Out of the 12 interventions, how many interventions should

be with effector cells ? (ii) What is the optimal dosage of the interventions ? and (iii)

What are the intervention times during the course period ? In the following section,

optimal chemo-immune combination therapy administration will be developed.
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4.5.2 Case 2: Immune-chemo combination therapy

In this case, an additional objective (objective 4, F2) related to the number

of interventions of effector cells (Ne) is included (Equation (4.9)). However, other

objectives and constraints in the problem formulation are same as mentioned in

Section 4.4. The minimization of objective 4 is important. Biologically, it means,

excessive immune cells may lead to the heavy competition among themselves for the

cytokine (Ho et al., 2003). Cytokines are proteins that are the limiting and essential

constituents for the persistent activation of cytotoxic lymphocytes.

F2 = Ne (4.9)

Overall, in the combination therapy optimization problem, there are 4 objectives,

25 decision variables and 3 constraints. Among the 25 decision variables, there are

24 continuous variables and one integer variable. The integer variable corresponds

to the number of immunotherapeutic interventions (which could range from 1 to

12), and the 24 continuous variables relate to the timing (12) and amount (12) of

the interventions (either chemotherapy or immunotherapy). The multi-objective

optimization is now solved again using NSGA-II with population size and number

of generations being 100 and 250 respectively. Finally, a Pareto front comprising of

multiple solutions is obtained. As it is a 4-dimensional objective function space, the

solution cannot be readily visualized. To make visualization easier, the objectives

relevant to tumor cells and effector cells are summarized separately. F1 corresponds

to the distance between the tumor related objectives on the Pareto curve and their

values in utopia point. Then F1 is plotted against F2 (the number of effector cells

interventions) as shown in Figure 4.9 .

F1 =
√

(objective 1)2 + (objective 2)2 + (objective 3)2 (4.10)
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Fig. 4.9. Reduced representation of Pareto solutions for the problem
formulation for case 2 (i.e. combination therapy)

The Pareto data set obtained indicates that the maximum value of F2 is 4 even

though the maximum bound for F2 is specified as 12. This confirms that more than

4 interventions of effector cells may lead to therapeutic burden. In other words, the

effect of additional effector cells on tumor regression is negligible. Figure 4.9 shows

that the minimum value of F1 decreases with the increase in number of effector cell

interventions and suggests that 4 interventions of effector cells is sufficient for tumor

regression within the given course time. Then, the optimal compromise solution is

obtained using L2 norm post-Pareto-optimality analysis method. The treatment

protocol corresponding to the optimal compromise solution for the combination

therapy is shown in Figure 4.10 and the corresponding progression of tumor cells,

effector cells and chemo-drug is presented in Figure 4.11. The tumor cells during

and at the end of treatment course are significantly lower in the case of combination

therapy than the proposed chemotherapy. The first two consecutive interventions of

effector cells are given on first two consecutive days of the course time to immediately

check the higher number of intial tumor cells. The maximum dosage of effector cells

is given on the first day followed by decreased dosage of the second intervention. This
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Fig. 4.10. Treatment protocol corresponding to the proposed com-
bination therapy

Fig. 4.11. Evolution of states corresponding to the proposed combination therapy
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Fig. 4.12. Comparison of tumor relapse time between the proposed
chemotherapy and the proposed combination therapy

decrease could be to avoid overdosage and hence therapeutic burden. Instead, the

second intervention is accompanied by the maximum dose of doxorubicin to suppress

tumor growth. Another interesting observation is the decreasing trend of tumor size

until 70 days due to the early interventions and during this period no additional

therapeutic interventions are made. The remaining interventions of effector cell and

doxorubicin are fairly spread out in time. Moreover, the interventions are made only

when the growing phase of tumor cells is detected. Thus, the above features justify

the coherency in the proposed combination therapy protocol.

Tumor relapse time (TRT) is considered as another metric to evaluate the effect

of the proposed optimal therapeutic strategies in case 1 (chemotherapy only) and

case 2 (combination therapy). TRT is defined as the time taken by the tumor to

recur and reach peak from its size at the end of the course time. The increase in

tumor cells is dangerous and increases the probability of tumor transformation to

later stages which limits the efficacy of the therapy (Alberts et al., 2002). A larger

value of TRT is better and it indicates patient survival time without interventions.
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It is observed in Figure 4.12 that the peak tumor size corresponding to the combi-

nation therapy is higher than chemotherapy. This is because of the different ratio of

effector cells and tumor cells (E:T) between proposed combination therapy (0.016)

and proposed chemotherapy (0.03) at their respective TRTs. Thus, higher ratio

(E:T) controls the peak values during tumor progression. Clinically, this suggests

that the measurement of the density of effector cells at the tumor location is essen-

tial along with blood cell count. Also, the steady state analysis in either case shows

no difference in tumor size and time taken to reach steady state after the treat-

ment course. However, TRT for the combination therapy is approximately 3 times

more than the chemotherapy (Figure 4.12). Moreover, after combination therapy,

it takes an extra 90 days for the tumor to reach the peak value attained with the

proposed chemotherapy. Overall, the in silico analysis supports that the proposed

combination strategy is pragmatic and appears to be effective than chemotherapy

alone.

4.6 Conclusions

In this chapter, the main idea was to use multi-objective optimization and

post-Pareto-optimality analysis to determine and compare therapeutic strategies

for treatment of tumor. Chemotherapy alone and a combination therapy that in-

cludes chemotherapy and immunotherapy are considered. The multi-objective func-

tions chosen for achieving the satisfactory tumor reduction and the total number

of therapeutic interventions are based on the accepted medical protocols and cur-

rent clinical practice. The simulation results indicate that the performance of the

proposed chemotherapy protocol is better than the standard protocol and suggests

taking into account the immunogenicity factor prior to every therapeutic interven-

tion. However, chemotherapy alone is not sufficient for eradicating the tumor in

the stipulated course time of one year. Additional intervention of effector cells (i.e.

immunotherapy) is required for satisfying all the objectives of the problem. Using
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the L2 norm method to find the optimal compromise solution from the Pareto set,

it is seen that four immunotherapeutic interventions out of twelve interventions is a

better option for treating tumors. More than four immunotherapeutic interventions

lead to unnecessary therapeutic burden with negligible improvement in patient con-

dition. The results suggest that the first two interventions of effector cells should

be at the early phase of the course time in order to control the tumor cells. Then,

remaining interventions are suggested whenever there is a steep rise in the tumor

profile. Thus, the intervention timings seem rational. TRT value is also signifi-

cantly better for the combination therapy. In broader sense, this chapter highlights

that optimization techniques implemented in the treatment planning simulators can

support the oncology pharmacists in determining and analyzing the therapeutic

schedule of a given therapy. In this chapter, it was assumed that the variation of

the patient parameters is negligible. However, in the next chapter, intrapatient vari-

ability is accounted during the treatment and applied the optimization techniques

to guide immunotherapy.
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Chapter 5

MODEL-BASED SENSITIVITY ANALYSIS AND

REACTIVE SCHEDULING OF DENDRITIC CELL

THERAPY

‘Sensitivity analysis for modellers? Would you go to an orthopaedist

who didn’t use X-ray?’

- Jean-Marie Furbringer

5.1 Introduction

Intrapatient variability is a key challenge in cancer treatment. This makes it nec-

essary to find the factors affecting tumor growth and accordingly schedule therapies

over the treatment horizon for a given patient. In this chapter, model-based studies

are performed to investigate these issues for optimal immunotherapeutic interven-

tion. Dendritic cell therapy is a targeted immunotherapy where the dendritic cells

and its activating agents such as interleukin are engineered, stimulated to recognize

and specifically to eradicate tumors. A mathematical model that integrates tumor

dynamics and dendritic cell therapy is used to perform the analysis. Unlike the

previous chapter, in this chapter different types of immune cells are explicitly con-

sidered instead of assuming all of them as effector cells. Global sensitivity analysis

of the model is done using high dimensional model reduction (HDMR) technique fol-

lowed by variance based analysis and the key parameters altering the tumor growth

are identified. The variations in these key parameters are deemed to result in in-

trapatient variability during the treatment phase. Then, reactive scheduling is used
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Fig. 5.1. Dendritic cell/Vaccine therapy

to schedule dendritic cell interventions with and without interleukin interventions

under the varying conditions of the patient. Moreover, the key parameters obtained

from HDMR are verified using the reactive scheduling and nominal scheduling ap-

proaches. Besides saving costs, the in silico analysis done in this chapter may be

useful to the oncology community in designing experiments to clinically measure the

influential parameters.

5.1.1 Dendritic cell therapy

Dendritic cells (DC) are the professional antigen presenting cells which are

present in small amounts in the blood and almost every tissue. They work at the

interface between the peripheral tissues and lymphoid organs and induce the T-cell

mediated immune response. In dendritic cancer vaccine (DCV) therapy, dendritic

cells are fused with tumor associated antigens to mature and transform to antigen-

loaded dendritic cells (Ballestrero et al., 2008; Banchereau et al., 2001; Nencioni

et al., 2008). Then, these matured dendritic cells are injected back to the patient

(see Figure 5.1). Tumor associated antigens can be of different forms (DNA, RNA,
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proteins, peptides, killed tumor cells and cell lysates). Overall, the main parameters

of DCV are type of DC subset and its maturation, dosage, frequency and route of

injection of DC. Like other therapies, higher frequency of DC dosage might lead

to activation-induced death of T-cells. Even the induced cytotoxic T-cells may kill

DCs. In either case, efficacy of the vaccine reduces. In order to overcome this,

oncologists are proposing combination therapies, presuming their synergistic action

on the tumor size. In such cases, adjuvant therapy such as interleukin therapy can

be given to maintain the prolonged activity of the T-cells (Banchereau et al., 2001).

5.2 Scheduling under uncertainty

In the domain of mathematical modeling, system uncertainty is a very impor-

tant issue. Here, one quantifies the uncertainty in the model output that is gen-

erated from the uncertainty in the parameters and input factors (Marino et al.,

2008; Saltelli et al., 2008). In model-based approaches, uncertainties of model pa-

rameters are considered using different methods such as bounded form, probability

description, and fuzzy description (Li and Ierapetritou, 2008a). Bounded form and

probability description methods are used when the historical data related to pa-

rameters are available. Else, fuzzy description is used. A probability description is

preferred when specific information about the distribution of parameters is known

whereas bounded form is considered only when we know the range of the parameters.

However, it is not often that parameter of a biological system has a detailed descrip-

tion. Theoretically, in this case, the problem is solved by assuming that parameters

follow a simple probabilistic distribution such as uniform distribution. Scheduling

under uncertainty is a challenging problem in technological and biomedical systems.

It is broadly classified as preventive scheduling (schedule generation) and reactive

scheduling (schedule revision) (Li and Ierapetritou, 2008a,b). Preventive scheduling

is used when the knowledge of the possible uncertain events are available based

on the historical experiences. Thus, in this case, rigorous analysis is made before
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implementing the schedule. Different techniques for preventive scheduling include

stochastic scheduling, robust optimization, fuzzy programming, sensitivity analysis

and parametric programming. Contrastingly, in reactive scheduling or reschedul-

ing, the schedule is regularly updated or modified and adapted to the unexpected

disturbances of the system (Li and Ierapetritou, 2008b). It is considered that the

present problem of DCV therapy falls under the category of reactive scheduling.

This is because patients are regularly monitored by oncologists and the treatment

plan may be adjusted based on their condition at the time of their regular check up.

If there is any change in patient’s condition from what was expected, the treatment

schedule is suitably rescheduled. However, there are some shortcomings with reac-

tive scheduling. The prime concern is the reaction time available to make updated

decisions. The reaction time varies for different unexpected scenarios. Another

important point is that the reactive decisions can be taken only after identifying

the reasons for the unexpected scenario. In the language of mathematical model-

ing, this means unraveling the sensitive parameters responsible for uncertainty in

the measurable or observable variables. Taking into consideration the positive and

shortcomings discussed above, a hybrid approach that involves global sensitivity

analysis (Marino et al., 2008) followed by reactive scheduling is proposed in this

chapter. This approach involves the application of global sensitivity analysis of the

model to find the prominent parameters and considering uncertainty only in these

parameters to perform reactive scheduling. The main asssumptions in this study are

that the parameters follow uniform distribution and the uncertainty in the output

of interest (eg., tumor growth) is only because of variations in the parameters.

5.3 Mathematical model

Among all tumor-immune models, the only work which explicitly includes the

activity of dendritic cells is that of Piccoli and Castiglione (2006) and this work is

focused on the investigation of DCV therapy scheduling. The model explains the
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tumor evolution and its interaction with the helper T-cells (CD4+) and cytotoxic

T-cells (CD8+) due to the intervention of externally modified and antigen-loaded

dendritic cells. The model assumes that all tumor cells are immunogenic. In other

words, tumor cells are recognized by injected dendritic cells and are presented to

cytotoxic T-cells. The interactions between the cytotoxic T-lymphocytes and the

tumor cells are represented by a kinetic scheme and are presented in the form of

ordinary differential equations. The states in the model are denoted by

(a) H(t), helper T-cells (CD4+)

(b) C(t), cytotoxic T-cells (CD8+)

(c) M(t), tumor cells

(d) D(t), dendritic cells

(e) I(t), interleukin

dH

dt
= a0 − b0H + c0Dd0γ(H, f0) (5.1)

dc

dt
= a1 − b1C + c1I(M +D)d1γ(C, f1) (5.2)

dM

dt
= d2γ(M, f2)− e2MC (5.3)

dD

dt
= −e3DC + u1 (5.4)

dI

dt
= a4HD − c4CI − e4I + u2 (5.5)

where

γ(x, θ) = x(1− x/θ)

The first two terms (a0 , b0H) in Equation (5.1) depict the natural flow of helper

T-cells to the tumor site (non-stimulated by tumor presence) and their natural decay

rate respectively. Similarly, the first two terms (a1, b1C) in Equation (5.2) repre-

sent the natural flow rate of cytotoxic T-cells to the tumor site (non-stimulated

by tumor presence) and their natural decay rate respectively. The model assumes
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that tumor growth follows the logistic equation with the constants d2 and f2. d2

is the maximal growth rate of tumor cells and f2 is carrying capacity of tumor

cells. These parameters signify tumor growth because of nutrients such as glucose

and oxygen without the effect of immune response. The term e2MC in Equa-

tion (5.3) represents pharmacodynamics which means the elimination of tumor cells

due to CD8+ T-cells. Equation (5.4) explains the pharmacokinetics (e3DC) and

‘u1’ is the input rate of the matured and antigen-loaded dendritic cells. Once the

dendritic cells are injected, the CD4+ T-cells, CD8+ T-cells, and interleukins are

triggered as shown in Equations (5.1, 5.2 & 5.5) respectively by the following terms

(c0Dd0γ(H, f0), c1I(M + D)d1γ(C, f1), a4HD). In the same way, the second and

third terms in Equation (5.5) denote the loss of interleukin (IL-2) as a result of

its interactions with CD8+ T-cells and its natural decay respectively and ‘u2’ is

the input rate of externally administered interleukin. Another assumption in the

model is that externally administered DCV is the only source of dendritic cells. The

parameter values of the mathematical model are given in Table 5.1.

5.4 Global sensitivity analysis

Global sensitivity analysis (GSA) is an approach to identify and quantify the

factors (parameters) contributing to the variation in the objective of interest (tu-

mor size). Unlike local sensitivity analysis, the factors are varied simultaneously

over a wide range in GSA. Saltelli et al. (2008) describe the different methods that

are available to perform GSA based on the a priori knowledge of the relationship

between inputs and outputs. The measures used for linear relationship between the

parameters and the output are Pearson correlation coefficient, partial correlation

coefficient and regression coefficient. For monotonic nonlinear relationships, rank

based transforms such as Spearman rank coefficient, partial rank correlation coeffi-

cient and rank regression coefficient could be considered. Variance based methods

(VBM) such as Sobol method, extended Fourier amplitude sensitivity tests (EFAST)
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Table 5.1
Parameter values (Piccoli and Castiglione, 2006)

Parameter Description Value Units
c=cells, h=hours

a0 birth rate 10−4 ch−1mm−3

b0 death rate 0.005 h−1

c0 Maximum proliferation rate 10
d0 1/2 saturation constant 10−2 c−1h−1mm3

f0 Carrying capacity 1 cmm−3

a1 birth rate 10−4 ch−1mm−3

b1 death rate 0.005 h−1

c1 Maximum proliferation rate 10
d1 1/2 saturation constant 10−2 h−1(mm−3/c)2

f1 Carrying capacity 1 cmm−3

d2 1/2 saturation constant of tumor 0.02 h−1

e2 Killing of tumor cells by CD8+ T-cells 0.1 c−1h−1mm3

f2 Carrying capacity of tumor 1 cmm−3

e3 CD8+ T cells killing of DC 0.1 c−1h−1mm3

a4 IL-2 production 10−2 c−1h−1mm3

c4 IL-2 uptake 10−7 c−1h−1mm3

e4 IL-2 degradation rate 10−2 h−1

are preferred owing to their wider applicability (Marino et al., 2008; Saltelli et al.,

1999). In these approaches variance of the output is decomposed into contributions

from different factors. Sensitivity indices are calculated to rank the factors based

on their contributions. The main advantages of VBM are: (i) sensitivity measure

is model-free (ii) it is able to realize the impact of full range of variations of each

input factor and the interactions among the input factors and (iii) reliability. In

spite of these advantages, there is one major disadvantage. In most of the cases,

direct relationship between input and output factors is unknown. As a result, it

is computationally expensive to evaluate output by solving nonlinear differential

equations for different set of input factors. In that regard, metamodeling approach

is an alternative where the inputs and outputs are directly related and it is a com-

putationally cheaper approximation of the original model. Then, the philosophy of

variance based sensitivity analysis can be extended to these metamodels for identify-
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ing highly contributing input factors. High dimensional model reduction (HDMR)

(Li et al., 2001, 2002) a metamodeling approach is used in this work to find the

sensitive dimensionless groups. HDMR requires less number of model executions for

computing the sensitivity indices.

5.4.1 Theoretical formulation of HDMR

HDMR not only captures the contributions of individual inputs contribution but

also the contributions of their interactions. The mapping between input-output in

the domain Ω of X is given by the following expression:

f(X) = f0 +
n∑
i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + ......+ f12...n(x1, x2, ...xn) (5.6)

In the above equation f(X) is the output variable and xi’s (i=1, 2,.., n) are

the input variables. f0 is the mean value (zeroth order) of the function f(X),

fi(xi) is the individual contribution (first order) of xi and fi(xi, xj) is the interac-

tive contribution (second order) of xi and xj. Similarly, f12...n(x1, x2, ...xn) is the nth

order contribution of all input variables. Component functions fi(xi), fi(xi, xj),...,

f12...n(x1, x2, ...xn) can also be a nonlinear. Component functions are orthogonal

which means that each component function provide unique information. The com-

ponent functions are optimally tailored for the given output f(X) over the domain

Ω of X. Each component function is obtained by minimizing the objective function

with orthogonality condition as a constraint

min
fi1 i2..il

∫
Ω

wi1i2..il(x̂, u)Zdu

Z =

[
f(u)− f0 −

n∑
i=1

fi(ui)−
∑

1≤i<j≤n
fij(ui, uj)− ..−

∑
1≤ii<..<il

fi1i2..il(ui1 , ui2 , .., uil)

]2

The orthogonality condition confirms that all component functions are deter-

mined step-by-step. Here, x̂ = σ2
f , du = du1du2......dun, and wi1i2...il(x̂, u) is a
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weight function. There are two different HDMR expansions namely cut- and RS

(random sampling)-HDMR. Cut-HDMR is used when the output f(x) is expressed

about a known reference point. Conversely, RS-HDMR relies on the average value of

f(X) over the whole domain Ω. In this work, RS-HDMR is used to perform global

sensitivity assessments.

5.4.2 RS-HDMR

In RS-HDMR, the variables xi ( i = 1, ...., n) are scaled by linear transformations

for all i, such that their values lie between 0 and 1. Then, the output function f(X) is

defined in the unit hypercube domainKn = {(x1, x2, ...xn)|0 ≤ xi ≤ 1, i = 1, 2, ..., n}.

The component functions are obtained as indicated in Equations (5.7-5.9) below

f0 =

∫
Kn

f(X) dX (5.7)

fi(xi) =

∫
Kn−1

f(xi, X
i) dX i − f0 (5.8)

fij(xi, xj) =

∫
Kn−2

f(xi, xj, X
ij)dX ij − fi(xi)− fj(xj)− f0 (5.9)

The model output variance is expressed in terms of the inputs variance (Li et al.,

2002) and is shown in Equations (5.10-5.12)

σ2
f =

∫
Kn

[f(X)− f0]2dX (5.10)

=
n∑
i=1

1∫
0

f 2
i (xi)dxi +

∑
1≤i<j≤n

1∫
0

1∫
0

f 2
ij(xi, xj)dxidxj + ........ (5.11)

=
n∑
i=1

σ2
i +

∑
1≤i<j≤n

σ2
ij + ..... (5.12)
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Let

Vf = σ2
f , Vi =

n∑
i=1

σ2
i , Vij =

∑
1≤i<j≤n

σ2
ij

Si = Vi

Vf
, Sij =

Vij

Vf
,.....

where, Vf is the variance of the model output and Vi, Vij are the partial variances

of the inputs. Si, Sij are the sensitivity indices. The sum of all sensitivity indices is

equal to 1.
n∑
i=1

Si +
∑

1≤i<j<n

Sij + ........+ S1,2,...,n = 1 (5.13)

The integrals in Equations (5.7-5.11) can be evaluated using Monte Carlo tech-

niques, but would be highly computational intensive. In order to overcome the

computational effort and simplify the problem, the component functions are ap-

proximated by the orthonormal basis functions as seen in Equations (5.14-5.15).

fi(xi) ≈
k∑
r=1

αirϕr(xi) (5.14)

fij(xi, xj) ≈
l∑

p=1

 l
′∑

q=1

βijpqϕp(xi)ϕq(xj)

 (5.15)

In the above equations, k, l, l
′

denote the order of the polynomial expansion,

αirand βijpq are constant coefficients that need to be determined, and ϕr(xi), ϕp(xi)

,ϕq(xj) are the orthonormal basis functions. The orthogonal conditions for the basis

functions are given in Equations (5.16-5.17)

b∫
a

ϕk(x) dx = 0 (5.16)

b∫
a

ϕk(x)ϕl(x)dx = 0 (5.17)
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Table 5.2
Parameter bounds

Parameter Lower bound Upper bound
a0 0.5× 10−4 2× 10−4

b0 2.5× 10−3 1× 10−2

c0 5 20
d0 5× 10−3 2× 10−2

a1 5× 10−5 2× 10−4

b1 2.5× 10−3 1× 10−2

c1 5 20
d1 5× 10−3 2× 10−2

d2 1× 10−2 4× 10−2

e2 1× 10−1 4× 10−1

e3 5× 10−2 2× 10−1

a4 5× 10−3 2× 10−2

c4 5× 10−8 2× 10−7

e4 5× 10−3 2× 10−2

H0 1× 10−2 4× 10−2

C0 1× 10−2 4× 10−2

M0 5× 10−2 2× 10−1

Thus, in HDMR, the main objective is to find the constant coefficients in the

basis functions approximate the component functions. According to Li et al. (2002),

for most of the practical applications, the second order HDMR expansion suffices.

5.5 Results and discussion

5.5.1 Uncertainty and sensitivity analysis using HDMR

The parameters of the mathematical model given in Table 5.1 are perturbed over

a range as indicated by the lower and upper bounds in Table 5.2. A uniform distri-

bution is used for the parameters within those ranges. The lower bound and upper

bound of parameter distribution are as shown in Table 5.2. Monte Carlo simula-

tions are used to comprehend the variance of model output (uncertainty analysis).

Monte Carlo simulations involve choosing of parameters from the distribution based

on different sampling techniques to evaluate the model output. In the present work,
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Latin hypercube sampling is used, because, it requires lesser samples (compared to

other sampling strategies) to provide an unbiased estimate of the model output and

ensures the coverage of the entire domain of the parameter space. The model output

of interest, in this case, is related to the tumor cells and the expression is given by

Equation (5.18).

G =

tf∫
0

M(t, P ) dt (5.18)

where, G is model output, P is the parameter set (inputs) and tf is the final time. It

is assumed that measurement error associated with G is negligible. It implies that

the variations in G is only because of variations in the parameters. Uncertainty

analysis of G is done for different sample sizes (N) and the HDMR model in combi-

nation with variance based method is then applied to uncover the key parameters.

The HDMR model is justified based on the accuracy value for first and second order

component functions and the average G values (f0). It is known that a good meta-

model (HDMR model) is possible if it is built using larger number of samples. Table

5.3 shows that with the increase in sample size from 1000 to 7000, ∆f0 is observed to

decrease drastically to a very low value. So, HDMR analysis is concluded with 7000

samples. Relative percentage error is the allowable percentage of error in predicting

the validation data set by the HDMR model. Accuracy value denotes the prognostic

ability of the HDMR model. If the accuracy value is 100%, it means that the model

is able to reproduce the results of the data used for validation. It is obvious that

accuracy value of a model always increases with the increase in relative percentage

error and for a given sample size, similar trend is observed for both first order and

second order component function HDMR models. Also, for a given sample size and

relative percentage error, the accuracy value increase appreciably from first order

to the second order component function. The accuracy values for 20% relative error

are more than 97% for all sample sizes and for both 1st and 2nd order component

functions. Overall, Table 5.3 conveys that a reasonable and simple metamodel can

represent the data generated by the parameter perturbations. Table 5.4 presents
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Table 5.3
Variation of accuracy with sample size and relative error

Accuracy
Sample Size (N) f0 ∆f0 1st order 2nd order

(average G value) = |(f0)j+1 − (f0)j | Relative error (%) Relative error (%)

5% 10% 20% 5% 10% 20%

1000 0.821 0.031 63.5 93.5 97.5 84 97 98.5

3000 0.852 0.01 72.5 93.7 98 82.7 97.5 99.2

5000 0.862 0.001 78.6 95.8 98.3 98.2 99.2 99.7

7000 0.863 80.4 95.3 97.5 93.7 97.8 98.9

Table 5.4
Parameter ranking (R)

Sample Size (N) 1st order (Si)
∑
Si 2nd order (Sij)

∑
Sij

R1 R2 R3 R4 R1 R2 R3 R4 R5

1000 9 6 10 5 0.812 (9,10) (6,9) (5,10) (5,9) (5,6) 0.102

3000 9 6 10 5 0.798 (6,9) (5,6) (9,10) (5,9) (6,10) 0.1477

5000 9 6 10 5 0.834 (6,9) (9,10) (6,10) (5,9) (5,6) 0.1375

7000 9 6 10 5 0.842 (6,9) (9,10) (5,9) (5,6) (5,10) 0.1096

ranking order of the individual and interactive contributions of the parameters to

the output G. The parameter numbers provided in Table 5.4 follows to the serial

number order mentioned in Table 5.2. Consistency in the ranking of the individual

contributions of the parameters is seen for all the sample sizes. The summation

of the sensitivity indices of individual contributions and interactive contributions

account for approximately 80% and 12% respectively for the total variance of G.

Although, there is disparity in the sequence of the interactive contributions, the

interactive parameter sets are almost the same for all sample sizes. Thus, the sen-

sitive parameters responsible for the tumor evolution are d2, b1, e2 and a1. The

overall contributions of the parameters are (evaluated using Equations (5.10-5.13)):

d2 (31%), e2 (21%), b1 (16%), a1 (15%), other first order interactions (12%) and

higher order interactions (5%).
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5.5.2 Validation of HDMR results using reactive scheduling

The sensitive parameters obtained via HDMR analysis are verified by the applica-

tion of reactive scheduling approach on the dendritic cell therapy planning problem.

The physiological model described in section 5.3 will serve as the “patient”. In this

regard, three cases are considered. The first case is nominal scheduling, where the

schedule for the total time horizon is based on the initially observed parameter val-

ues and does not consider their variation. In the second and third cases, reactive

scheduling is considered by varying the sensitive parameters and insensitive param-

eters (as found from the HDMR analysis) respectively. Then, the results of all the

cases are compared. In this optimization problem, the objective is to minimize the

number of tumor cells by the end of time horizon using appropriate interventions

of dendritic cells. The interventions are assumed to be spaced evenly at two weeks.

The duration of each intervention is fixed to be 1 hour. Practically, this implies that

the patient’s condition is checked once every two weeks and appropriate dendritic

cell intervention is provided (Banchereau et al., 2001). Here, the time horizon to

eliminate the tumor is taken to be around 6 months (or 4500 hours). Thus, the pa-

tient undergoes 14 interventions over the treatment horizon. The nominal schedule

resembles the situation where the physician designs the treatment schedule based

on initial observation of the patient and proceeds to give corresponding dosage of

dendritic cells until the end of the time horizon. However, in reactive scheduling,

the treatment schedule is updated based on the patient’s condition at the time of

each intervention. As a result, the number of interventions for which the dosage of

dendritic cells to be planned will decrease everytime by 1 at each intervention point.

The dosage of dendritic cells is constrained between 0 and 2 units (Banchereau et al.,

2001). This optimization problem is solved using simulated annealing (Kirkpatrick

et al., 1983) algorithm implemented in MATLAB.
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Problem formulation

Objectives

• min
u(tk)

M(tf )

where, k is the intervention number and k = 1, 2...., 14

Constraints

• Mathematical model

• tf = 6 months

• Intervention timings are fixed, tk = (k − 1)× 14× 24

•

if (tk < t < tk + 1)

0 ≤ u1 ≤ 2

else

u1 = 0


Decision Variables

• Dosage of dendritic cells at each intervention

5.5.3 Comparison between nominal and reactive schedule for cases 1-3

In cases 1 and 3, the dosages of dendritic cells are expected to be the same with

either nominal schedule or reactive schedule. This is because case 1 considers no

variation in parameters and case 3 considers variation only in the non-key parame-

ters. From Figure 5.2, it is seen that the dosage rates for case 1 in either schedules

are almost same. In case 2, the key parameters (d2, b1, e2 and a1 ) found from

HDMR analysis are varied randomly and Figure 5.3 shows that there is a signifi-

cant difference between dosage values of dendritic cells to achieve approximately the

same final tumor size. In Figure 5.4 which corresponds to case 3, the dosage rates

are observed to be practically the same except at the interventions 2 and 4.
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Defining a metric α (= sum of absolute dosage differences of dendritic cells be-

tween nominal scheduling and reactive scheduling) helps us to compare cases 1, 2

and 3. Recall that, in every case for both nominal scheduling and reactive schedul-

ing, the intervention timings and number of interventions are fixed and only the

dosage values are different. From Figure 5.5, it is seen that α is significantly more

Fig. 5.2. Comparison between nominal and reactive schedule when
parameters are not varied

Fig. 5.3. Comparison between nominal and reactive schedule when
key parameters are varied
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Fig. 5.4. Comparison between nominal and reactive schedule when
non-key parameters are varied

Fig. 5.5. Comparison of α value for the three cases

for case 2 than cases 1 and 3. The slight difference observed between cases 1 and 3 is

probably due to neglecting of the minor contribution of non-key parameters on the

tumor size. Thus, validation with reactive scheduling is able to support and consol-

idate the findings of HDMR analysis about the key parameters contributing to the

tumor growth. These results emphasize the need for clinicians to perform suitable

experiments and measurements in order to find out the values of key effects and
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use them to plan the further course of treatment. In the following section, reactive

scheduling is extended to the combination of dendritic cell therapy and interleukin

therapy, while taking into account the variation of the key parameters during the

treatment course.

5.5.4 Reactive scheduling of combination therapy and dendritic cell

therapy

Here, reactive scheduling is used to determine the schedule of combination ther-

apy (dendritic cell and interleukin) and compared with dendritic cell therapy, while

considering the intrapatient variability. Intrapatient variability is accounted by vary-

ing the key parameters (d2, e2, b1, a1) randomly between the consecutive interven-

tions and these variations are shown in Table 5.5. The arrow marks in Table 5.5

indicate the increase or decrease of a parameter with respect to its previous value.

The problem formulation for the combination therapy is same as before except that

an integer variable is included to represent whether the intervention is with dendritic

cell or interleukin. The decision variables are the dosage values of dendritic cell or

interleukin at each intervention. As seen earlier, for reactive scheduling, the num-

ber of decision variables decrease after every intervention of either dendritic cells or

interleukin. The additional constraint is that tumor size at any point of time should

be greater than 1× 10−10cells/mm3 (≈ 0 tumor cells). According to the literature,

the number of tumor cells per mm3 is in the range of 106 (Laszlo Kopper, 2001). If

this constraint is not included then the dosage values will be such that the number

of tumor cells goes to the order of 10−20 by the end of the course. This implies

that more dosage of dendritic cells is given even when the number of tumor cells

is significantly small. A branch and bound algorithm implemented in MATLAB is

used to solve this mixed integer nonlinear problem (MINLP) 1.

1http://tomopt.com/tomlab/optimization/minlp.php
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Problem formulation

Objectives

• min
u(tk)

M(tf )

where k is the intervention number and k = 1, 2..., 14

Constraints

• Mathematical model

• tf = 6 months

• Intervention timings are fixed, tk = (k − 1)× 14× 24

• i is an integer variable which decides if the intervention is with dendritic cells

(i = 1) or interleukin (i = 2)

Table 5.5
Variation of key parameters

Parameter variation Time (hours) a1 × 103 b1 d2 e2

(adjacent Intervention timings)
Initial 0.1 0.005 0.02 0.1

135.8(0-336) 0.0562 (↓) 0.0039(↓) 0.0333(↑) 0.1096(↑)
572.1(336-672) 0.0540(↓) 0.0049(↑) 0.0488(↑) 0.1555(↑)
722.7(672-1008) 0.0474(↓) 0.0032(↓) 0.0419(↓) 0.0895(↓)

1210.5(1008-1344) 0.0692(↑) 0.0026(↓) 0.0255(↓) 0.1256(↑)
1550.6(1344-1680) 0.0892(↑) 0.0022(↓) 0.0263(↑) 0.0688(↓)
1788.4(1680-2016) 0.0710(↓) 0.0028(↑) 0.0397(↑) 0.1203(↑)
2195.8(2016-2352) 0.0813(↑) 0.0032(↑) 0.0504(↑) 0.0759(↓)
2360.5(2352-2688) 0.0945(↑) 0.0016(↓) 0.0338(↓) 0.0462(↓)
2859.9(2688-3024) 0.0981(↑) 0.0023(↑) 0.0253(↓) 0.0501(↑)
3342.9(3024-3360) 0.0772(↓) 0.0016(↓) 0.0192(↓) 0.0937(↑)
3448.2(3360-3696) 0.0932(↑) 0.0014(↓) 0.0272(↑) 0.1269(↑)
3718.7(3696-4032) 0.1088(↑) 0.0017(↓) 0.0490(↑) 0.2448(↑)
4359.6(4032-4368) 0.0781(↓) 0.0016(↓) 0.0536(↑) 0.3359(↑)
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•

if (tk < t < tk + 1)

0 ≤ ui ≤ uimax

else

ui = 0


• min(M(t)) ≥ 1×10−10(≈ 0)

Decision Variables

• Dosage of dendritic cells or interleukin at each intervention

The effect of intrapatient variability on the tumor growth can be better understood

from the tumor profile in no therapy case (Figure 5.6). The tumor progresses steeply

until 720 hours (approximately) due to the increase in the rate of nutrients (glucose

and oxygen) supply to tumor cells (d2 ↑). Then, at 1210 hours a drop in tumor size

is observed. This can be related to the following effects - a net increase in natural

infiltration of CD8+ T-cells (a1 ↑, b1 ↓), an increased activity of CD8+ T-cells on

tumor cells (e2 ↑) and increased resistivity of nutrient supply (d2 ↓). Similarly, the

tumor progression can be correlated with the biological changes for the decreasing

trend after 3000 hours.

The controlled tumor growth due to the dendritic cell therapy and combination

therapy is also highlighted in Figure 5.6. Tumor is almost eliminated by the end

of time horizon in either therapy. The plot suggests that for this given patient

variability (Table 5.5), dendritic cell therapy is sufficient rather than the combination

therapy and the corresponding treatment protocol of the dendritic cell therapy is

projected in Figure 5.7. The fluctuation in the dosage levels is noticed in Figure

5.7 and medical reasons are analyzed next. Interventions such as 2, 6, and 12 are

reduced from their previous interventions because the tumor size is very small at

that time point. However, there are interventions (3, 9, and 10) where the dosage

values are less even though the tumor size is at a higher value and similarly, the
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Fig. 5.6. Evolution of tumor for different therapy cases

Fig. 5.7. Reactive schedule of dendritic cell therapy
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Fig. 5.8. Comparison of total dosage between reactive scheduling
and nominal scheduling

interventions (13, 14) after 3000 hours are of higher value when the tumor size is

low. This shows that in the latter case, the interventions are purely based on the

parameter values at that time (Table 5.5). For example at intervention 3, e2 is

at a higher value which means the natural ability of elimination tumor by CD8+

T-cells is more, so there is a reduction in dosage. Thus, reactive scheduling checks

the tumor size and patient parameters at every intervention and makes the decision

accordingly to avoid overdosage. It is observed that the total dosage with reactive

schedule is approximately 25% less than the nominal schedule (Figure 5.8).

5.6 Conclusions

The main challenge addressed in this chapter was intrapatient variability during

treatment course. Intrapatient variability can be understood by investigating the

key mechanisms responsible for tumor growth. In this chapter, a mathematical

model representing the immune action of dendritic cells on the tumor was analyzed

using a global sensitivity analysis technique and the key parameters of the model

contributing to the tumor growth were elucidated. The key mechanisms were found
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to be proliferation of tumor cells, its interaction with CD8+ T-cells and the source

and decay mechanisms of CD8+ T-cells. From a broader perspective, the biological

implication from the global sensitivity analysis is that development of drugs that

can activate and perpetuate CD8+ T-cells is important to eliminate tumors. The

results of HDMR were validated by formulating an optimization problem and by

comparing the outcomes of nominal and reactive scheduling. This work points to

the importance of using tumor size data to determine the key model parameters and

using the latest parameter estimates to schedule future therapeutic interventions on

the patient. Reactive scheduling was also applied to compare combination therapy

and dendritic cell therapy. In the case study, it was seen that dendritic cell therapy is

enough to eliminate tumor. Overall, reactive scheduling is very useful in the medical

field to plan therapies considering the intrapatient variability and avoid side effects.
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Chapter 6

APPLICATION OF SCALING AND SENSITIVITY

ANALYSIS FOR TUMOR-IMMUNE MODEL

REDUCTION

‘Although our intellect always longs for clarity and certainty, our

nature often finds uncertainty fascinating.’

- Karl Von Clausewitz

6.1 Introduction

In the previous chapters, it is seen that mathematical modeling plays a facil-

itating role in comprehending tumor growth and its interaction with the immune

system. However, there are some hindrances in modeling these phenomena. Firstly,

the complexity of the tumor-immune model increases with the inclusion of dynam-

ics of different types of immune cells. In this chapter, complexity is considered in

terms of number of parameters and differences in the order of magnitude of their

values. This may result in non-identifiability, imprecise measurement/ estimation

of the parameters. Secondly, very few parameters in the model will significantly

influence the evolution of state variables and it is important for us to know these

sensitive parameters.

In this chapter, a recent and elaborate tumor-immune model is considered and

its reduced parametric representation is obtained through a systematic approach

without any loss in its predictive ability. The schematic representation of the se-

quential methodology (scaling analysis followed by sensitivity analysis) adopted in
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Fig. 6.1. Sequential methodology

this chapter is shown in Figure 6.1. Scaling analysis is a systematic technique

which involves grouping of parameters in a model and representing it in a reduced

parametric form. Scaling approach also ensures that the coefficients in the model

(parametric groups) are approximately in the order-of-one. The advantage of scal-

ing approach is quantified using theoretical identifiability analysis and by evaluating

the condition number of the Fisher information matrix. With reduced models, the

computational time taken for model evaluation may be significantly reduced. Sub-

sequently, global sensitivity analysis of the reduced model is performed to unearth

the key parametric groups of the model. Such model reduction and parameter anal-

ysis may be necessary in order to increase the possibility of bringing model-based

approaches to standard medical practice and patient care.

6.2 Mathematical model

Tumor-immune model considered in this chapter is adapted from the work by

de Pillis et al. (2009). In the model, it is considered that, symbols, T , N , L, C, I

represent tumor cells, natural killer (NK) cells, cytotoxic (CD8+) T-cells, circulating

lymphocytes, and interleukin respectively. The units of immune cells (N , L, C) and

cytokines (I) are given in number of cells per litre of blood and international unit
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(IU) per litre of blood respectively, while the tumor (T ) is represented as total

number of cells. In Equation (6.1), the first term corresponds to the nutrients based

on tumor growth. The second and third terms explain the elimination of tumor

cells due to NK cells, CD8+ T-cells. The expression for D is given in Equation (6.2)

where d and l signify the immune strength (recognizing and attacking capacity)

known as immunogenicity against the tumor cells. In Equation (6.3), eC denotes

the localization of natural killer cells at the tumor site based on the number of

circulating lymphocytes. fN denotes the natural decay of NK cells. The loss of

natural killer cells due to its interaction with tumor cells is given by pNT . The

activation of NK cells by interleukin is given by pNNI/(gN + I). In Equation (6.4),

jTL/(k+T ) elucidates the stimulation of the CD8+ T-cells as a result of the presence

of lysed tumor cells debris. Similarly, r1NT represent the stimulation of cytotoxic

cells due to the presence of the NK-lysed tumor cells. The localization of activated

CD8+ T-cells at the tumor location is captured by r2CT term. The activation

of cytotoxic cells by interleukin is described by pILI/(gI + I). However, excessive

number of cytotoxic cells in the presence of interleukin leads to its deactivation and

is shown by the term uL2CI/(κ + I). In previous work (de Pillis et al., 2006),

the natural decay of cytotoxic T-cells was expressed as −mL. Later, in de Pillis

et al. (2009), it was modified to θmL/(θ + I) owing to the realization that the

cytotoxic T-cells decrease only due to the increased concentration of interleukin

above a threshold limit. In Equation (6.5), −µII, ϕC and ωLI/(ζ + I) quantify

the natural decay of interleukin, production of interleukin by the helper T-cells and

CD8+ T-cells respectively. In Equation (6.6), α is the natural ability of the bone

marrow to generate lymphocytes in any individual and β is the overall decay rate

of the circulating lymphocytes. The parameter values are given in Table 6.1.

dT

dt
= aT (1− bT )− cNT −DT (6.1)

D = d
(L/T )l

s+ (L/T )l
(6.2)
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dN

dt
= eC − fN − pNT +

pNNI

gN + I
(6.3)

dL

dt
=
θmL

θ + I
+

jTL

k + T
− qLT + (r1N + r2C)T − uL2CI

κ+ I
+

pILI

gI + I
(6.4)

dI

dt
= −µII + ϕC +

ωLI

ζ + I
(6.5)

dC

dt
= α− βC (6.6)

Model reduction analysis is applied on the model and Equations (6.1-6.6) are

considered while applying scaling and sensitivity analysis. The above model has

29 parameters and this can pose significant challenges for parameter estimation

in the face of limited patient data. We might therefore benefit by obtaining a

minimal parametric model and determining the key parameter combinations with

high accuracy for enabling clinical applications.

6.3 Scaling analysis

Scaling analysis is a systematic procedure for non-dimensionalization of depen-

dent and independent variables as well as their derivatives in a mathematical model

representing a physical process. Non-dimensionalization is done such that the vari-

ables and their derivatives are bounded by order-of-one scale which is a unique aspect

of the scaling analysis proposed by Krantz (2007b,a). The order-of-one scaling en-

sures that the values of the dimensionless variables, their derivatives and coefficients

in the model lie between zero and more-or-less one. Order-of-one scaling not only fa-

cilitates minimum parametric representation but also supports model simplification

based on the magnitude of the dimensionless parameter groups. One key advantage

of the scaled model is that if the coefficient value of any term is very low, it can be

ignored. Similar conclusions cannot be made based on coefficient values in the case

of the original model.
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Table 6.1
Parameter values

Parameter Value Units
a 4.31× 10−1 Day−1

b 1.02× 10−9 Cells
c 2.9077× 10−13 l/Cells−1perday−1

e 1.3875× 10−3 Day−1

f 1.25× 10−2 Day−1

p 2.794× 10−13 Cells−1perday−1

pN 6.68× 10−2 Day−1

gN 2.5036× 105 IU/l
m 9× 10−3 Day−1

θ 2.5036× 10−3 IU/l
q 3.422× 10−10 Cells−1perday−1

r1 2.9077× 10−11 Cells−1perday−1

r2 5.8467× 10−13 Cells−1perday−1

pI 2.971 Day−1

gI 2.5036× 103 IU/l
u 4.417× 10−14 l2/Cells−2perday−1

κ 2.5036× 103 IU/l
j 1.245× 10−2 Day−1

k 2.019× 107 cells
α 1.4175× 107 Cells/lday−1

β 6.3× 10−3 Day−1

υ 5.199× 10−1 Day−1

µI 11.7427 Day−1

ω 7.874× 10−2 IU/Cells−1perday−1

ϕ 2.38405× 10−7 IU/Cells−1perday−1

ζ 2.5035× 103 IU/l
d 2.34 Day−1

l 2.09
s 3.8× 10−3

6.3.1 Algorithm

1. Mathematical model representing the physical process (tumor-immune inter-

actions): model equations, initial, boundary and auxiliary conditions are as-

sumed to be available.

2. Introduce scale factors and reference factors for all dependent, independent

variables and their derivatives.
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3. Form dimensionless variables in the model equations.

4. Use the coefficient of the dominating phenomenon and divide both sides of the

equations with it.

5. Determine the scale factors and reference factors.

6. Check if the magnitude of all the dimensionless coefficients in the model is of

the order-of-one. If not, the algorithm is repeated from step 4.

7. After successful implementation of steps 1 to 6, the minimum parametric rep-

resentation of the model is obtained.

In the equations below, subscripts ‘f ′ and ‘s′ refers to reference factors and scale

factors respectively. The reference values Tf , Nf , Lf , If , Cf are considered to be

zero because their minimum possible value is zero. 1/α1, 1/α2, 1/α3, 1/α4, 1/α5

refer to scaling factors for time derivatives of T , N , L, I and C respectively. The

transformed variables are as given below.

T ∗ =
T−Tf

Ts
, N∗ =

N−Nf

Ns
, L∗ =

L−Lf

Ls
, I∗ =

I−If
Is

, C∗ =
C−Cf

Cs
,
(
dT
dt

)∗
= α1

(
dT
dt

)
,(

dN
dt

)∗
= α2

(
dN
dt

)
,
(
dL
dt

)∗
= α3

(
dL
dt

)
,
(
dI
dt

)∗
= α4

(
dI
dt

)
,
(
dC
dt

)∗
= α5

(
dC
dt

)

6.3.2 Reduced model

The minimum parametric model is shown in Equations (6.7-6.11) and the scale

factors are given below.

Ts = 1
b
, Ns = eCs

f
, Cs = α

β
, Ls = 5.268 × 105, Is = 1073, α1 = 1

abT 2
s

, α2 = 1
eCs

,

α3 = 1
r1NsTs

, α4 = 1
µIs

, α5 = 1
α

(
dT

dt

)∗
= α1

(
dT

dt

)
= T ∗ − T ∗2 − Π1N

∗T ∗ − Π2T
∗
(
L∗

T ∗

)Π3

(6.7)

(
dN

dt

)∗
= α2

(
dN

dt

)
= C∗ − Π4N

∗ − Π5N
∗T ∗ +

Π6N
∗(

Π7

I∗
+ 1
) (6.8)
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Table 6.2
Parametric groups

Groups Expression Value
Π1 (cNs)/a 1.6849× 10−4

Π2 (d/as)(Ls/Ts)
l 2.0949× 10−4

Π3 l 2.0900
Π4 (fNs)/(eCs) 1
Π5 (pNsTs)/(eCs) 0.0219
Π6 (pNNs)/(eCs) 5.344
Π7 (gN)/(Is) 233.3
Π8 (θmLs)/(r1NsTsIs) 1.5538× 10−9

Π9 (jLs)/(r1NsTs) 9.2121× 10−4

Π10 K/Ts 0.0206
Π11 (qLs)/(r1Ns) 0.0248
Π12 (r2Cs)/(r1Ns) 0.1811
Π13 (uLs

2Cs)/(r1NsTs) 3.8739
Π14 κ/Is 2.333
Π15 (pILs)/(r1NsTs) 0.2198
Π16 (gI)/(Is) 2.333
Π17 (ϕCs)/(µIs) 0.0426
Π18 (ωLs)/(µIs) 3.2921
Π19 ζ/Is 2.333

(
dL
dt

)∗
= α3

(
dL
dt

)
= Π8

(
L∗

I∗

)
+ Π9L∗

(Π10
T∗ +1)

− Π11L
∗T ∗ +N∗T ∗ + Π12C

∗T ∗

−Π13L∗
2C∗

(Π14
I∗ +1)

+ Π15L∗

(Π16
I∗ +1)

(6.9)

(
dI

dt

)∗
= α4

(
dI

dt

)
= −I∗ − Π17C

∗ +
Π18L

∗(
Π19

I∗
+ 1
) (6.10)

(
dC

dt

)∗
= α5

(
dC

dt

)
= 1− C∗ (6.11)

The number of parameters in the model has been reduced significantly from 29

to 19 as a result of the scaling procedure. This reduction implies that the number

of measurements required for model parameter estimation can be reduced. The

dimensionless groups are shown in Table 6.2. The reduced model is verified by com-
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paring the evolution of its states with that of original model for a set of given initial

conditions and parameter values (Figure 6.2). The approximation error between the

original model and the reduced model depends on the terms that are neglected; in

the present study, the approximation error is about 3%. The coefficients of various

terms in the reduced model are approximately in the same range and are within

order-of-one scale (Table 6.3). From Table 6.4, the magnitude of scale factors for

the rate of change of the states is found to be in the order given below:

L∗ > I∗ > T ∗ > N∗ > C∗

The rate of change for N and C are significantly less than the others and it

implies that N and C remain almost constant. This is in accordance with evidence

presented in the literature that the number of N and C cells present in the body is

Table 6.3
Values of dimensionless coefficients

Coefficients Value Coefficients Value
reduced model reduced model

Π1 2× 10−4 Π11 2.48× 10−2

Π2 2× 10−4 Π12 0.1811
Π4 1 (Π13)/(Π14 + I∗) ≈ 1.6
Π5 2.19× 10−2 (Π15)/(Π16 + I∗) ≈ 10−2

(Π6)/(Π7 + I∗) ≈ 0.0228 Π17 4.26× 10−2

Π8 1.533× 10−9 (Π18)/(Π19 + I∗) ≈ 1.4109
(Π9)/(Π10 + T ∗) ≈ 10−4 − 10−2

Table 6.4
Scale factors of rate of change of the scaled states

State Expression Value
T ∗ 1/(α1Ts) 0.43
N∗ 1/(α2Ns) 0.012
L∗ 1/(α3Ls) 13.51
I∗ 1/(α4Is) 11.74
C∗ 1/(α5Cs) 0.0063
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Fig. 6.2. Comparison of evolution of states between original model
and reduced model

very high and only a small fraction of it interacts with the tumor (de Pillis et al.,

2009).

The parametric groups presented in Table 6.2 reveals that some dimensionless

groups are related. Also, not all dimensionless groups will have significant effect on

tumor growth. The implication is that it is no need to estimate all the dimensionless

groups for obtaining the complete model to predict the tumor growth. Next, global

sensitivity analysis is applied to find out the key mechanisms for tumor growth.

6.4 Global sensitivity analysis for correlated inputs

Let us assume that there are n inputs (xi=1,2,..,n) and f(X) is the model output.

In HDMR, the model output is expressed in terms of the orthogonal contributions

of the input factors. This is also known as ANOVA representation.

f(X) = f0 +
n∑
i=1

f(xi) +
n∑
i 6=j

f(xi, xj) + ........+ f(x1, x2, ..., xn) (6.12)
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f(X) = f0 +
2n−1∑
j=1

fpj
(Xpj

) (6.13)

f0 is the average value of the output and f(xi) is the individual contributions.

Then, f(xi, xj)..., f(x1, x2, ..., xn) represent the interactive contributions. The total

number of terms including individual and interactive contributions is 2n − 1. And

fpj
(Xpj

) is the generalized representation of contribution of all terms. If Z is taken

as the overall variance of the model output, one can define partial variance as fol-

lows: Zi=1,2,..,n is the partial variance of the individual input i, Zij(i 6=j) is the partial

variance of the input factors i and j, Zijk(i 6=j 6=k) is the partial variance of the input

factors i, j and k and so on.

Z = V (f(X)) =

∫
Kn

f 2(X) dX − f 2
0 (6.14)

f0 =

∫
Kn

f(X) dX (6.15)

Zi = Vi =

1∫
0

f 2
i (xi) dxi, Zij = Vij =

1∫
0

1∫
0

f 2
ij(xi, xj) dxi dxj, ..... (6.16)

The sensitivity indices are defined as:

Si =
Zi
Z
, Sij =

Zij
Z
, Sijk =

Zijk
Z

, ..... (6.17)

The sum of all the sensitivity indices add up to 1

n∑
i=1

Si +
∑

1≤i<j≤n

Sij + ......+ S123...n = 1 (6.18)

2n−1∑
j=1

Spj
= 1 (6.19)
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The definitions for sensitivity indices given in Equations (6.18 -6.19) are under

the assumption that the input factors are independent. The usage of these equations

to find sensitivity indices for the correlated input factors may lead to ambiguous re-

sults (Xu and Gertner, 2008; Li et al., 2010). To handle this situation, a novel

technique known as structural and correlative sensitive analysis (SCSA) is intro-

duced (Li et al., 2010). According to Li et al. (2010), metamodeling using HDMR is

same for both correlated and uncorrelated input factors. The main difference lies in

the evaluation of sensitivity indices. In the former case, the contribution of an input

or subset of inputs (Xpj
) is the combination of structural and correlated contribution

(Equation 6.20). While in the latter case, the contribution of an input or subset of

inputs is same as the structural contribution. Superscripts ’a’ and ’b’ correspond to

structural and correlated sensitivity indices respectively and the estimation of their

sensitivity indices are given by Equations (6.21-6.22).

Spj
= SaPj

+ SbPj
(6.20)

Spj
=
Cov(fPj

, f(X))

V (f(X))
≈

N1∑
s=1

fPj
(x

(s)
Pj

)(f(X)(s) − fm)

N1∑
s=1

(f(X)(s) − fm)2

(6.21)

SaPj
=
V ar(fPj

)

V (f(X))
≈

N1∑
s=1

(fPj
(x

(s)
Pj

))2

N1∑
s=1

(f(X)(s) − fm)2

(6.22)

where ‘s’ correspond to number of samples generated by varying the input factors

within a chosen sample space and fm is the average value of all samples (f(X)(s)).
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6.5 Results and discussion

6.5.1 Comparison between original model and reduced model via theo-

retical identifiability analysis

The main idea in this section is to quantify the advantage of scaling analysis via

theoretical identifiability analysis. Identifiability analysis is one of the key steps be-

fore parameter estimation in the model building process (Rodriguez-Fernandez and

Banga, 2010). It questions the existence of a unique solution of model parameters

for a given set of observations. Broadly, there are two main classes of identifiability

analysis, a priori and a posterior identifiability analysis. In a priori identifiability

analysis, the uniqueness is tested with the assumption that the real system and

model have identical structure; there are no experimental constraints for collect-

ing the output data. In addition, it is assumed that the measured output data is

perfect data, i.e., noise free data. Hence, it is also called as the theoretical identi-

fiability analysis. To the contrary, in a posterior identifiability analysis (practical

identifiability analysis), measured output data is noisy and it considers the practical

constraints such as variations of manipulated variables, cost involved in conducting

the experiments.

In the present work, the focus is on theoretical identifiability analysis using the

sensitivity matrix i.e., the Jacobian matrix of the model output at different times

for a parameter set of the considered model structure. Therefore, it is also called as

sensitivity identifiability (Cintron-Arias et al., 2009).

Let us assume a nonlinear dynamic system of the form

dY
dt

= g(Y (t), U(t), t, P )

M(t) = h(Y (t), P )

Y (0) = Y0(P )

(6.23)
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where Y , U , P , t represent the states, inputs, parameters and time variable re-

spectively. Y0 is the initial condition of the state vector Y . g(.) and h(.) includes

the state equations and output equations respectively. In the tumor-immune model,

Y corresponds to tumor cells, natural killer (NK) cells, cytotoxic (CD8+) T-cells,

circulating lymphocytes, and interleukin respectively. M corresponds to the daily

measurement of tumor cells over the 1 month period. Tumor data is generated by

simulating the original model and subsequently used for performing the identifia-

bility analysis on original and reduced model. The information about the system

captured in the measurements is quantified by Fisher information matrix (FIM) as

given in Equation (6.24). The sufficient condition for theoretically identifiable is the

non-singularity (i.e. low condition number) of FIM.

FIM =
v∑
i=1

GT
i Gi (6.24)

where

Gi =



∂y1

∂p1

∂y1

∂p2
......∂y1

∂pj

∂y2

∂p1

∂y2

∂p2
......∂y2

∂pj

.........................

∂ym

∂p1

∂ym

∂p2
......∂ym

∂pj


i

(6.25)

is the sensitivity matrix and ν is the number of measurements (equal to 31 in this

case). The number of parameters is indicated by the variable j (j = 29 for the

original tumor-immune model and j = 19 for the reduced model). Let FIM1(29×

29) and FIM2(19 × 19) represent the Fisher information matrix for the assumed

measurement data for the original and reduced model respectively. Let CN1 and

CN2 refer to the condition numbers of FIM1 and FIM2 respectively. Rc is the

index which quantifies the effect of scaling analysis on the conditioning of FIM.

Rc =
log(CN2)

log(CN1)
(6.26)
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The values of CN1 and CN2 are estimated to be 6.7×1051 and 5.7×1024 respectively

and therefore Rc is 0.4774. This value of Rc indicates that the conditioning of FIM is

improved significantly after scaling analysis (which helped to reduce the parameter

set from 29 to 19). Indirectly, scaling analysis favors the re-parameterization of the

model such that parameters are better identifiable. However, the value of CN2 is still

high implying that scaling analysis alone may not ensure the complete identifiability

of the parameters. Hence, it is necessary to find the sensitive parameters to the

measured output.

The sensitivity matrix corresponding to the reduced model is further analyzed to

identify the sensitive parameters. As discussed before, it is assumed that only tumor

size is measured daily for a period of one month. At any given ith measurement, the

sensitivity matrix is as given below

Gi =

[
∂T

∂Π1

∂T

∂Π2

......
∂T

∂Πj

]
i

(6.27)

where i = 0, 1, 2, , 30 and j = 19.

G∗ =



G0

G1

∗

∗

G30


i

=



[
∂T
∂Π1

∂T
∂Π2

...... ∂T
∂Π19

]
0[

∂T
∂Π1

∂T
∂Π2

...... ∂T
∂Π19

]
1

∗

∗[
∂T
∂Π1

∂T
∂Π2

...... ∂T
∂Π19

]
30


(6.28)

The total sensitivity matrix for 31 measurements is given by G∗ and it is scaled

as shown below

GS = G∗ × diag[Π1 Π2 ∗ ∗ Π19] (6.29)

GS = [col1 col2 . . . . .col19] (6.30)

SI1 = sum(col1), SI2 = sum(col2), ........., SI19 = sum(col19)
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Fig. 6.3. Sensitivity indices of the parametric groups

“coli ” stands for columnwise elements of Gs sensitivity index and “SI” is an

index which implies the variation of tumor cells with respect to the parametric

groups (Πi). In Figure 6.3 the values of SI for all the parameters are projected in

the decreasing order of their contribution. It is observed that the parameters Π3,

Π18, Π2, Π19, and Π13 are the most sensitive parametric groups. The determination

of these sensitive parameters guides parameter estimation in deciding the parameters

to be estimated and the parameters to be fixed at their nominal values for a given

dataset of measured variables (discussed in Section 6.5.3). In the following section,

the sensitive parametric groups are further verified using global sensitivity analysis.

6.5.2 Sensitive parametric groups based on global sensitivity analysis

The parameters (i.e., dimensionless groups (Πi) of the reduced model are directly

varied by 25% of their nominal values. The nominal values of the dimensionless

groups are obtained by substituting the nominal values of the parameters of original

model (Table 6.1). The dimensionless groups (Πi) are assumed to follow a uniform

distribution within their sample space (Marino et al., 2008). The samples are chosen

from the sample space using experimental designs such as Latin hypercube sampling
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for HDMR. The main advantage of this experimental designs is the “better” coverage

of the entire sample space for the given sample size (McKay et al., 1979). Then, the

chosen parameter samples (inputs) are used to evaluate the output uncertainty by

using Monte Carlo strategy. This can also be defined as in silico population based

studies. Then, GSA techniques are applied on the HDMR model generated from

the data set of inputs and output to find the sensitive input factors responsible for

the output variability. The output of interest (O) is given in Equation (6.31) and it

is clinically measured to study therapeutic effects.

O =

tf∫
0

T (t) dt (6.31)

The results of relative importance of the parameters are based on both structural and

correlated contributions are presented in Table 6.5. In Table 6.5, N1 is the number

of samples used for building the HDMR model and Ri is the ith rank of an input or

subset of inputs. According to Li et al. (2002), for many systems HDMR expansion

upto second order contribution is a good approximation of the output. The first

and second order contributions are calculated for different sample sizes. A very high

degree of consistency in the parameter rankings is seen for different sample sizes.

The average first order and the second order contributions of the key parameters

are found to be approximately 77% and 19% of the total variance of O respectively.

The important point is that most of the parameters and parameter combinations

are common in both first and second order contributions for the different sample

sizes. The key parameters affecting the tumor evolution are Π3, Π18, Π2, Π19, and

Π13. Moreover, the values of the structural sensitivity indices for the key parameters

(Table 6.6) indicate that the structural contribution is dominating.
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Table 6.5
Relative importance of parameter groups (Πi) based on Spj

using HDMR model

Sample Size Ranking of 1st order contribution
∑
Si

(N1) R1 R2 R3 R4 R5

7000 Π3 Π18 Π2 Π19 Π13 0.786
(0.401) (0.166) (0.106) (0.075) (0.038)

9000 Π3 Π18 Π2 Π19 Π13 0.804
(0.405) (0.176) (0.107) (0.073) (0.043)

10000 Π3 Π18 Π2 Π19 Π13 0.740
(0.375) (0.162) (0.097) (0.07) (0.036)

Sample Size Ranking of 2nd order contribution
∑
Sij

(N1) R1 R2 R3 R4 R5

7000 (Π3,Π18) (Π3,Π19) (Π2,Π3) (Π3,Π13) (Π18,Π19)
0.084 0.047 0.032 0.021 0.018 0.202

9000 (Π3,Π18) (Π2,Π3) (Π18,Π19) (Π2,Π18) (Π2,Π13)
0.089 0.031 0.018 0.015 0.004 0.157

10000 (Π3,Π18) (Π3,Π13) (Π2,Π3) (Π2,Π18) (Π13,Π18)
(0.084) (0.047) (0.030) (0.02) (0.019) 0.20

Table 6.6
Structural sensitivity indices (Sapj

) for the key parameters

Sample Size (N1) Ranking of 1st order contribution
7000 Π3 Π18 Π2 Π19 Π13

(0.396) (0.164) (0.107) (0.0751) (0.0375)
9000 Π3 Π18 Π2 Π19 Π13

(0.41) (0.177) (0.107) (0.078) (0.045)
10000 Π3 Π18 Π2 Π19 Π13

(0.373) (0.156) (0.098) (0.069) (0.037)
Sample Size (N1) Ranking of 2nd order contribution

7000 (Π3,Π18) (Π3,Π19) (Π2,Π3) (Π3,Π13) (Π18,Π19)
0.082 0.048 0.033 0.022 0.0178

9000 (Π3,Π18) (Π2,Π3) (Π18,Π19) (Π2,Π18) (Π2,Π13)
0.092 0.0325 0.0195 0.017 0.004

10000 (Π3,Π18) (Π3,Π13) (Π2,Π3) (Π2,Π18) (Π13,Π18)
(0.0817) (0.0456) (0.0294) (0.0212) (0.0198)

It is seen from Figure 6.4 that the component functions change monotonically

with variations in most of the parameters (Π3, Π2, Π19, Π13). O decreases with

the increase of Π2, Π3, and Π19 and O increases with the increase of Π13. The
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Fig. 6.4. Patterns of HDMR component functions with the variations
in key parameters. X-axis: Scaled key parameter values, Y-axis:
Scaled values of the component functions

component function corresponding to the parameter Π18 increases at a decreasing

rate and reaches a maximum value very close to Π18 = 1. In addition, the sensitive

parameters obtained via global sensitivity analysis are the same sensitive parameters

obtained in the identifiability analysis step. Thus, the model analysis indicates

that the major mechanisms controlling tumor growth are the immunogenicity and

cytotoxicity of CD8+ T-cells over tumor cells; effect of tumor microenvironment
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such as nutrients (Π2, Π3, Π13) and the activation of cytokines (interleukin) in the

presence of CD8+ T-cells (Π18, Π19). This macroscale analysis suggests to tumor

pathologists that they could look at the gene networks related to these mechanisms

and locate the responsible genes.

Here, the analysis is done after the parameters are known. However, in reality, all

these 19 parameters of the reduced model are not known. In that case, patient spe-

cific tumor growth and immunological data could be used to estimate them. Then,

sensitivity analysis within a range of these parameter estimates might help tumor

pathologists in designing experiments for finding the key mechanism (Kontoravdi

et al., 2005). Appropriate therapies can then be developed to target the respective

genes and control the tumor growth. This emphasizes that experiments should be

designed in a way that the identified key parameters are precisely estimated.

6.5.3 Comparison between original model and reduced model - Param-

eter estimation

Parameter estimation is one of the prime steps in the model building process. It

is an optimization problem where the objective is to minimize the nonlinear least

squares measure i.e., the closeness of fit between the measurements (data) (yi) and

the model output (yi
M) (as shown in Equation (6.32)). The values of yi

M is based

on the decision variables (model parameters (Pr)) guided by the optimizer (Englezos

and Kalogerakis, 2001). In this section, the confidence intervals of the parameter

estimates of the original and reduced models are compared. There are two types of

confidence intervals for parameters: individual confidence intervals and joint con-

fidence intervals. Former type assumes that the parameters are independent from

each other; as a result it may be misleading. The joint parameter regions can be

obtained from different methods such as linear approximation and F-test or log-

likelihood. In the present work, F-test method is used because it avoids the error
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arising from the approximations of derivatives or Hessian matrices. The joint con-

fidence interval of the parameters (Jc) is computed using Equation (6.33). Kn is

the number of parameters, Nb is the number of observations, ψ1 is the significance

level and S(Pr
∗) is the objective value corresponding to the parameter estimates. In

this respect, in silico data is generated using the nominal parameter values given in

Table 6.1. The data (yi) consists of tumor size for 30 days with the initial number

of 108 cells. Different datasets are generated by adding different levels of noise in

order to imitate real world clinical data. These datasets are then used for parameter

estimation using both models. In the case of reduced model, only the sensitive pa-

rameters found in the previous section are estimated, while fixing other parameters

at their nominal values. Because sensitive parameters are better identifiable than

the insensitive parameters (Sobol, 2001). This optimization problem is solved using

gradient-based methods (‘fmincon’) implemented in MATLAB (R2007a).

S(Pr) =
N∑
i=1

[
yMi − yi

]T [
yMi − yi

]
(6.32)

Jc = S(P ∗r )

[
1 +

Kn

Nb −Kn

Fψ1

Kn,Nb−Kn

]
(6.33)

The results presented in Table 6.7 shows that the objective values for both

models are approximately of the same order, but the confidence region increases

with the increase in the magnitude of the noise level. The confidence region is

smaller for the parameter estimates of the reduced model than for the original

model. This could be attributed to fewer parameters in the reduced model. In

Table 6.7, the computational effort is indicated in terms of function counts and

iterations. The results clearly indicate that the computational effort for any given

dataset for reduced model is significantly lower for the reduced model than for the

original model. Moreover, the closeness between parameter estimates and the “true”

values is lesser for reduced model than original model (Table 6.8). The definition

for closeness is as given below:
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Table 6.7
Comparison of confidence regions between original and reduced models

Original model
% Noise Objective function Jc Function count
added value S(pr

∗) (iterations)

0 4.75× 10−6 0.0066 2828(51)

1 3.9× 10−4 0.5434 2422(55)

5 1.3× 10−2 18.02 2812(37)

−1 5.2× 10−4 0.725 2182(48)

−5 6.4× 10−3 8.863 2511(50)
Reduced model

% Noise Objective function Jc Function count
added value S(pr

∗) (iterations)

0 2.13× 10−5 3.78× 10−5 27(2)

1 5.35× 10−4 9.47× 10−4 18(2)

5 2.33× 10−2 4.12× 10−2 363(21)

−1 1.1× 10−3 1.9× 10−3 28(2)

−5 7.1× 10−3 1.26× 10−2 80(10)

Table 6.8
Closeness between parameter estimates and “true” values

% noise added Original model Reduced model
0 15.01 1.33× 10−2

1 15.65 8.7× 10−5

5 16.85 2.7× 10−2

−1 14.06 0.76
−5 6.08 2.04
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Let us assume that “DF” represents the difference between parameter esti-

mates and “true values (TV )” and RF = DF/(TV ). Closeness measure (CM) is the

logarithm of sum of absolute values of “RF”.

CM = log10(sum(abs(RF ))) (6.34)

Overall, the reduced model performs better and can thus be used for practical ap-

plications such as designing model-based diagnostic and therapeutic protocols. In

spite of these advantages, scaling analysis can become very difficult for large and

complex systems, particularly if done manually. We are aware that some research

groups (apart from ours) are trying to develop computer codes to automate the scal-

ing analysis procedure. When these codes are available, scaling large scale models

in an error free manner can be easily accomplished.

6.6 Conclusions

This chapter exemplifies the significance of model reduction techniques in com-

prehending tumor-immune interactions. However, complexity of physiological mod-

els may hinder their clinical applications. Tumor-immune model elucidating the

immunogenic tumor growth was considered in this work. Scaling approach was used

to obtain a minimal tumor-immune model with significantly smaller number of pa-

rameters and without any loss in the predictive ability. The magnitude of coefficients

in the minimal model is in the order-of-one value unlike the original model. The

time derivative scale factors showed that rate of change of CD8+ T cells is very

high in comparison with natural killer cells and circulating lymphocytes. The ad-

vantage of scaling analysis is quantified and found the identifiable parameters using

theoretical identifiability analysis. It was observed that the scaling analysis helps

in conditioning the Fisher Information matrix. Further, global sensitivity analysis

was performed to identify the key parameters affecting the tumor growth. The re-
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sults obtained from global sensitivity analysis were in agreement with the results

of theoretical identifiability analysis. The mechanisms controlling the immunogenic

tumor growth were tumor microenvironment, immunogenicity and amplification of

cytokine production due to CD8+ T-cells. This suggests that the pathologists may

look into these relevant gene networks for discovering the genetic factors and facil-

itate personalized therapy. The results presented in this work computed that the

uncertainty of the parameter estimates of reduced model is smaller than that of

the original model. Also, the computational effort of reduced model for parameter

estimation is significantly less compared to the computational effort required for

the original model. In the next chapter, this reduced tumor-immune model is used

to conduct model-based population studies wherein the population is generated in

silico by varying the key parameters affecting the tumor growth. This may help us

to understand and address the effect of interpatient variability on protocol design.
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Chapter 7

POPULATION BASED OPTIMAL EXPERIMENTAL

DESIGN IN CANCER DIAGNOSIS AND

CHEMOTHERAPY - IN SILICO ANALYSIS

‘In my opinion, no single design is apt to be optimal for everyone.’

- Donald Norman

7.1 Introduction

Interpatient variability is one of the critical issues in the clinical implementation

of cancer diagnostic and therapeutic protocols. Presently, cancer diagnostic and

therapeutic protocols are suggested based on clinical trials conducted on a particu-

lar cohort of patients. However, these developed protocols are used on other patient

groups as well (Kleinsmith, 2005). Also, for a given treatment protocol, only few

patients may be fully cured and others may not be. In fact, it is necessary to know

the reasons behind the observed variability in the effect of diagnostic and treatment

protocols on patients - this will help to tailor and improve the protocols to meet

the treatment objectives. These experiments will cost significant time and money.

According to recent studies, the cost involved in the research and development of a

new drug for Food and Drug Administration (FDA) approval is between US $ 500

million and US $ 800 million and the development time is around 10-12 years. It is

reported that 1 out of 1000 potential drugs reaches the clinical stage and around 90%

of the drugs fail during clinical trials (Holford et al., 2010).1 This means, failure of a

1http://www.news-medical.net/news/2004/12/07/6730.aspx
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drug can be quite frustrating in terms of wasted effort and expenditure. Currently,

big pharmaceutical companies are trying to minimize this loss by embracing the op-

tion of modeling and simulation (in silico experiments) based clinical trials (Holford

et al., 2010). In fact, FDA is recognizing and encouraging clinical trial simulations

using pharmacokinetic and pharmacodynamic models to ease the approval of new

drugs with lesser number of experiments (Hooker and Vicini, 2005).2 At the same

time, these in silico experiments might help in customizing optimal dosing regimens

of existing therapies for a specific population.

According to recent reviews on modeling of cancer growth (Lowengrub et al., 2010)

and optimization of anticancer therapies (Swierniak et al., 2009), little or no work

has been done on population based studies for designing diagnostic protocol and the

post-therapy analysis of therapeutic protocols. Consequently, the main questions

addressed in this chapter are: (i) how does one design diagnostic protocols such

that the patient specific parameters are better estimated and (ii) how to capitalize

on previous records of patient treatment to find patient specific parameters that

decide the outcome of the therapy. In order to address these issues, reduced tumor-

immune model from the previous chapter is used for performing population-scale

studies. In this chapter, a diagnostic protocol is proposed for the population using

the concept of optimal design of experiments. Figure 7.1 projects the idea of choosing

a diagnostic protocol based on information index for a given in silico patient cohort.

To do this, a multi-objective optimization problem is formulated with the objectives:

(i) maximization of information index and (ii) minimization of measurement effort

during the medical examinations.

Even though treatment protocol for a given drug or therapy is suggested based on

human trials, the application of the same treatment protocols might fail with some

patients (as shown in Figure 7.2). This is to be expected because the human trials

2http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances
/UCM072137.pdf
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Fig. 7.1. Determination of diagnostic protocol (Di) for a patient pop-
ulation based on information index (Ii) evaluated using the mathe-
matical model

Fig. 7.2. Post - therapy analysis using statistical modeling to find
the rules determining the therapeutic effect on a patient
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do not cover the entire range of population. In this regard, post-therapy analysis of

historical treatment database of any therapy can be helpful in determining thera-

peutic success. Consequently, the outcome of the analysis can guide in suggesting a

therapeutic protocol to new patients. To facilitate this, another multi-objective op-

timization problem based on optimal control theory is formulated and a treatment

protocol is chosen from Pareto solutions for the given patient cohort. Then, the

chosen protocol is applied on the same patient cohort and the patients are classified

based on the tumor response at the end of treatment course. Patient parameters

(treated as input data) and the treatment outcome (treated as output data) are used

to build a classification model and rules are determined based on the parameters to

estimate the therapy outcome.

7.2 Mathematical model

The only difference in the model presented below from the previous chapter is

that the pharmacokinetics and pharmacodynamics of doxorubicin are also included.

Symbols T , N , L, C, I, M in the model stand for tumor cells, natural killer (NK)

cells, cytotoxic (CD8+) T-cells, circulating lymphocytes, interleukin and chemother-

apeutic drug (doxorubicin) respectively. Equation (7.6) describes the pharmacoki-

netics of doxorubicin and its pharmacodynamic effects are given by last terms in

Equations (7.1, 7.3 & 7.5). Π24 is the pharmacokinetic parameter and Π20, Π21, Π22,

Π23 are the pharmacodynamic parameters and U is the input rate of doxorubicin.

α1, α2, α3, α4, α5 are the time derivative scale factors and Ts, Ns, Ls, Is, Cs are

the scale factors for tumor cells, NK cells, CD8+ T-cells, interleukin and circulating

lymphocytes respectively. The reduced tumor-immune model is as given below.

α1Ts

(
dT ∗

dt

)
= T ∗ − T ∗2 −Π1N

∗T ∗ −Π2T
∗
(
L∗

T ∗

)Π3

−Π20(1− exp(−M∗Ms))T
∗Ts

(7.1)
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α2Ns

(
dN∗

dt

)
= C∗ − Π4N

∗ − Π5N
∗T ∗ +

Π6N
∗(

Π7

I∗
+ 1
) − Π21(1− exp(−M∗Ms))N

∗Ns

(7.2)

α3Ls
(
dL∗

dt

)
= Π8

(
L∗

I∗

)
+ Π9L∗

(Π10
T∗ +1)

− Π11L
∗T ∗ +N∗T ∗ + Π12C

∗T ∗ − Π13L∗2C∗

(Π14
I∗ +1)

+ Π15L∗

(Π16
I∗ +1)

−Π22(1− exp(−M∗Ms))L
∗Ls

(7.3)

α4Is

(
dI∗

dt

)
= −I∗ − Π17C

∗ +
Π18L

∗(
Π19

I∗
+ 1
) (7.4)

α5Cs

(
dC∗

dt

)
= 1− C∗ − Π23(1− exp(−M∗Ms))C

∗Cs (7.5)

Ms

(
dM∗

dt

)
= −Π24M

∗Ms + U (7.6)

7.3 Population-based studies

7.3.1 Optimal design of experiments for cancer diagnosis

After tumor detection, different diagnostic tests are carried out to analyze the

tumor characteristics. The components of immune system are monitored to inves-

tigate the immune action on the tumors before the treatment process is initiated.

It is not practical to continuously monitor the tumor and immune system behavior.

The time gap between the tumor detection and initiation of treatment depends on

several factors such as type of cancer, stage of cancer, physician-patient interaction.3

Here, the time gap is taken as 1 month. During this period, sampling times of tumor

and immune cells can be very important and the measurement should yield accurate

information on the patient’s health status i.e. measurements should be such that

the patient parameters can be accurately estimated.

An optimization problem is formulated to determine which states (tumor, CD8+

T-cells and interleukin) are to be measured and at what time points they should

be measured. The objective is to minimize the covariance matrix of the estimated

3http://www.cancerhelp.org.uk/about-cancer/cancer-questions/waiting-times-for-tests-and-
treatment-after-cancer-diagnosis
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parameters which is equivalent to maximization of Fisher information matrix (FIM)

(Englezos and Kalogerakis, 2001). The elements of FIM are the sensitivity indices of

the parameters. Generally, the maximization of FIM is done by reducing the matrix

to a scalar quantity. In this regard, there are different scalar criteria to maximize

FIM - these include D-optimality, A-optimality and E-optimality. D-optimality is

the most common approach (which uses the determinant value of FIM as the scalar

metric for optimization) and it gives equal weightage to all the parameters (k).

There are many biomedical applications based on D-optimality criterion, one such

example is the work by Hulting et al. (2006).

FIM =
v∑
i=1

Gi
TGi (7.7)

where

Gi =



∂z1
∂k1

∂z1
∂k2

...... ∂z1
∂kp

∂z2
∂k1

∂z2
∂k2

...... ∂z2
∂kp

.........................

∂zm

∂k1

∂zm

∂k2
......∂zm

∂kp


i

(7.8)

Cov(
∧
k) ≥ FIM−1 (7.9)

In Equations (7.7) and (7.8), z represents states, k represents parameters, m

is the number of states, p is the number of parameters and ν is the number of

observations. According to Cramer-Rao inequality, the covariance matrix of the

parameters is greater than or equal to inverse of FIM (Equation 7.9).

One key focus of the present work is on optimal design of experiments for a given

population where the objective is to maximize population Fisher information ma-

trix (PFIM) (Aarons and Ogungbenro, 2010; Hooker and Vicini, 2005; Silber et al.,

2009). This is essential in order to take care of interpatient variability. In this work,

a patient is assumed to be represented by the reduced form of tumor-immune model

which was explained in Section 7.2. In the previous chapter, using the same model,

the key parameteric groups (Π3, Π18, Π2, Π19, Π13) affecting the tumor growth (no
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treatment case) were determined using global sensitivity analysis techniques. In the

present study, interpatient variability is simulated by varying the key parameteric

groups influencing the tumor growth while fixing the remaining insensitive parame-

teric groups at their nominal values. The parametric groups are assumed to follow

uniform distribution. And another assumption is that the measurement error asso-

ciated with state variables (tumor, immune cells and interleukin) is negligible. It

means the variation in the state variables is only because of the variations in the

parametric groups. Then, the key parametric groups are varied by ±25% of their

nominal values and the patient population is chosen from the parameter space using

Latin hypercube sampling. The above population selection is quite similar to later

phases of clinical trial where different individuals are randomly selected to test the

new protocols (Airley, 2009; Kleinsmith, 2005). Here, the population size (nP1) is

chosen as 300 which is equivalent to considering 300 patients for analyzing the fea-

tures of their tumors. In formulation A of the problem, objective 1a corresponds to

the determinant of the Fisher information matrix and objective 2a is the numbers of

states to be measured (y1). The practical implication of second objective is to reduce

the measurement effort. The decision variables included are the sampling timings

(xi) and two integer variables y1 and y2. y1 represents the number of states (CD8+

T-cells, interleukin) to be measured in addition to the measurement of tumor. If y1

turns out to be 1, then it means only tumor measurement is enough. If y1 turns out

to be 3, then it means all states need to be measured at the sampling times. For

y1 = 2 there are two possibilities (tumor and CD8+ T-cells (y2 = 1) or tumor and

interleukin (y2 = 2)). The choice of the possibility is based on the integer variable

y2.

Problem formulation A

Objectives

Objective 1a: min
xi,y1,y2

− log10

(
mean

(
nP1∑
j=1

|det(FIMj)|

))
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Objective 2a: min(y1)

Decision variables

xi (i = 1, 2, ., 5) are the sampling times

y1 - number of states to be measured in addition to state 1

y2 - combination of states to be measured if y1 = 2

Constraints

Constraint 1a: 0 ≤ xi ≤ 30 days (Continuous variable)

Constraint 2a: 1 ≤ y1 ≤ 3 (Integer variable)

Constraint 3a: 1 ≤ y2 ≤ 2 (Integer variable)

This mixed integer dynamic optimization problem is solved using non-dominated

sorted genetic algorithm (NSGA II) implemented in MATLAB (R2007a) (Deb et al.,

2000). The main advantages of NSGA II are that it is very easy to implement and

requires less computational effort than other genetic algorithms. The Pareto set

obtained is projected in Figure 7.3. Lesser value of objective 1a implies that more

information is captured. Figure 7.3 shows that the information content increases

by 133% when another state (CD8+ T-cells) is measured in addition to tumor size.

Adding the extra measurement of interleukin (to CD8+ T-cells & tumor size mea-

surement) increases the information content by an extra 20%. This makes sense

because most of the information about interleukin dynamics can be captured from

the dynamics of CD8+ T-cells. Overall, maximum information is captured by mea-

suring all the states. The best times for sampling the states are presented in Figure

7.4. Clearly, three groups of sampling times is observed from Figure 7.4. The fre-

quency of sampling is higher in the initial days after detection. The first two samples

must be collected on 2nd day and then the next two samples must be taken on the
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Fig. 7.3. Pareto solution (problem formulation A) corresponding to
population based design of diagnostic protocol

Fig. 7.4. Proposed sampling times of tumor, CD8+ T-cells and
interleukin during diagnosis
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7th and 8th days. The final sample must be taken close to the end of diagnostic time.

This is an acceptable and logical result because the system dynamics is significant

during the first 10 days after the tumor detection and, after that; the system has

almost reached a steady state.

7.3.2 Optimal design of chemotherapeutic protocol and post-therapy

analysis

Tumor diagnosis is followed by selection of the treatment modalities and dosage

planning. Usually, chemotherapy (being a systemic therapy) is preferred (Stuschke

and Pottgen, 2010; Kleinsmith, 2005) and is administered periodically over the treat-

ment course. For example, doxorubicin (60− 75 mg/m2) is given once every 3− 4

weeks (Airley, 2009). In this work, for simplicity, the intervention is assumed to be

given once every 3 weeks and the treatment horizon is considered as one year. The

approximate number of interventions (nI) per year is equal to 18. However, some-

times, the side effects of chemotherapy such as neutropenia (Rivera et al., 2003) and

cardiotoxicity (Swain et al., 2003) are more critical than the tumor growth itself.

Therefore, it is necessary to include relevant constraints on doxorubicin while de-

signing the treatment protocol. To understand the effect of doxorubicin, a patient

cohort is generated by changing the values for parametric groups in the model. The

parameters in this part of the study include not only those found to be important

from global sensitivity analysis but also the pharmacokinetic (Π24) and pharma-

codynamic (Π20, Π21, Π22, Π23) parameters. From Equation (7.6), lower value of

Π24 indicates the decrease in the decay of doxorubicin. As a result, the drug con-

centration in the body might increase. Similarly, lower value of pharmacodynamic

parameters signifies the phenomenon of drug resistance. Another important question

posed is whether the key parameters affecting the tumor remain the same or change

due to the inclusion of pharmacokinetics and pharmacodynamics of doxorubicin.

This question is answered in the later sections based on post-therapy analysis.
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A multi-objective optimization problem is formulated to find a compromise solu-

tion balancing the objectives: tumor elimination and reduction of side effects. In the

formulation below, objectives 1b-3b are related to tumor cells and they correspond

to overall tumor growth control, minimization of final tumor size at the end of treat-

ment course and the minimization of maximum possible tumor size respectively. The

remaining objectives 4b and 5b emphasize on the reduction of doxorubicin dosages

and controlled regulation of circulating lymphocytes respectively. Therefore, these

objectives serve to prevent infections due to the imbalance in immune cells (Rivera

et al., 2003). Constraint 1b is the time duration to achieve the targets of the treat-

ment. Constraint 2b relates to the total number of interventions (nI). C3 and C4

represents the constraint on the maximum drug concentration and drug concentra-

tion in the body during the treatment course respectively (Hon and Evans, 1998;

Laginha et al., 2005). Constraints 3b and 4b help to prevent immediate and long

term side effect on the patients respectively.

Problem formulation B

Objectives

Objective 1b: min


nP2∑
j=1

(
tf∫
0

T dt

)
j

nP2



Objective 2b: min

nP2∑
j=1

(Tf)
j

nP2



Objective 3b: min

nP2∑
j=1

(max(T ))j

nP2


Objective 4b:

18∑
i=1

qi

Objective 5b: max

nP2∑
j=1

(min(C))j

nP2


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Decision variables: qi where nP2 is the population size (300), qi is the dosage

of each intervention

Constraints

Constraint 1b: tf =365 days

Constraint 2b: nI =18

Constraint 3b: C3 =
(

(Mmax)i=1,2,...,n

)
max
≤ 50

Constraint 4b: C4 =
(

(AUC)i=1,2,...,n

)
max
≤ 4100

The above multi-objective optimization problem is solved using NSGA-II algo-

rithm implemented in MATLAB (R2007a). The obtained Pareto solution space is

as shown in Figure 7.5. From the problem formulation, it is clearly seen that the

Fig. 7.5. Pareto solution (problem formulation B) corresponding to
population based design of treatment protocol
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main concern is to understand the effect of chemotherapy on tumor cells and cir-

culating lymphocytes. Thus, in Figure 7.5, the objectives related to tumor cells

(objectives 1b, 2b, and 3b) and circulating lymphocytes (objectives 5b) are plotted

against the objective 4b (total dosage of doxorubicin (given in scaled units))4. It is

observed that objectives 1b, 2b decreases with the increase in doxorubicin dosage.

Initially, the decrease of objective 2b is steep with the increase in objective 4b and

after that, it stays almost constant. It implies that the effect of doxorubicin dosage

becomes insignificant in decreasing the final tumor size when the total doxorubicin

dosage exceed 5 units. However, it is noticed that the decrease of objective 3b

(maximum possible tumor size) is significant only when the value of the total drug

dosage is greater than 10 units. Also, from the values of objective 5b in Figure 7.5,

it can be said that the variation of objective 5b with objective 4b is practically neg-

ligible. Overall, Pareto solution suggests that the total doxorubicin dosage should

be in between 10 units and 15 units in order to satisfy all the objectives related to

tumor growth. Thus, the therapeutic protocol corresponding to the encircled point

in Figure 7.5 is chosen and is presented in Figure 7.6.

The selected treatment protocol is then implemented on the patient cohort used

in the optimization problem and their corresponding tumor evolution is computed

(Figure 7.7). It is noticed that tumor regression is observed in 43% of the patients

while there is no effect of the therapy on the others. According to Khaloozadeh

et al. (2009), a patient is said to be in “safer zone” if the number of tumor cells is

less than 104. Thus, the treatment protocol applied on the patient cohort indicates

that only some patients are brought to a safe level. This resembles the real scenario

wherein due to interpatient variability only a portion of patients with same tumor

size are cured with the standard treatment protocols.

It is important to derive the “rules” which determine the success of the proposed

treatment protocol. In this regard, the patient cohort is divided into two groups viz.

cured and uncured at the end of the treatment period. A dataset which includes the

4One scaled unit is equivalent to 60 mg/m2
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Fig. 7.6. Proposed treatment protocol for the considered patient cohort

Fig. 7.7. Tumor evolution in different patients

patient parameters and their therapy outcome (after the execution of the proposed

treatment protocol) is created for this purpose. This dataset is used to develop a
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statistical model in the form of classification tree using the classification algorithm

“classregtree” command implemented in MATLAB (R2007a). This command gen-

erates a classification tree for the response variable as a function of the predictors

(patient parameters).

Initially, 100 model building runs are carried out on the dataset. In each run,

the dataset is randomly divided into training (70%) and testing (30%) sets and a

classification model is generated using training set. Each generated model is tested

with their respective testing set. Models with more than 90% correct classification

of test samples are selected from these 100 models and in our case, 2 such models

were found. In order to choose a model among these two selected models, further

testing is performed.

Each selected model is checked for its consistency in terms of correct classifica-

tion by carrying out 1000 runs where, in each run, the training and testing samples

are selected randomly. Finally, the best model is chosen and its decision tree is

Fig. 7.8. Rules to determine the success of proposed treatment pro-
tocol on the population
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presented in Figure 7.8. It is observed that the average correct classification by the

decision tree is 90%. In Figure 7.8, ‘N’ and ‘Y’ means no and yes respectively, S1 and

S2 corresponds to the safe level and unsafe level of tumor size by final time respec-

tively. The prominent parameters influencing the treatment protocol and grouping

of patient cohort are found to be pharmacodynamic parameters (Π20, Π21), pharma-

cokinetic parameter (Π24) and the parameter related to the activation of interleukin

due to presence of CD8+ T-cells (Π18). Furthermore, the decision tree (given in

Figure 7.8) is cross validated with the decision tree obtained from the commercial

data mining software, CART5. The decision tree obtained from CART confirms that

pharmacokinetic (Π24) and pharmacodynamic parameters (Π20, Π21) determine the

treatment outcome which is also in agreement with the literature (Canal et al.,

1998). If the pharmacokinetic and pharmacodynamic parameters are low, then the

drug concentration in the patient remains at a high level leading to acute side effects.

This highlights that it is very important and informative to monitor the drug activity

in the patient to estimate the pharmacokinetic and pharmacodynamic parameters

during the initial interventions. Such early quantification of drug activity can help

to decide whether to increase the drug dosage (within the safer limits) or opt for

alternative drugs in the future interventions on this patients. Analysis of historical

record of the outcomes obtained by applying different therapies on different patient

cohorts may help to pave way for understanding the epidemiological differences and

personalizing therapy for the patients by making effective use of existing treatment

modalities.

7.4 Conclusions

This work exemplifies the significance of modeling and optimization techniques

in designing diagnostic and therapeutic protocols for cancer. Tumor-immune model

elucidating the immunogenic tumor growth was considered in this work. The sim-

5http://salford-systems.com/cart.php
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plified model is used to imitate cohort based clinical trials to find optimal sampling

times of measurement of tumor, CD8+ T-cells and interleukin during diagnosis and

determine optimal doxorubicin dosage for the standard protocol. Multi-objective

optimization problems were formulated to study optimal design of diagnosis and

therapy. The results of diagnosis protocols reveal that more information can be

captured by measuring interleukin concentration and CD8+ T-cells along with the

tumor measurement. It was found that the frequency of sampling needs to be high

within first 10 days after tumor is detected which is in coherent with the dynamics of

the states. Similarly, “cohort based” studies were performed to determine a better

treatment protocol of doxorubicin. Then, statistical classification techniques helped

to identify that pharmacokinetic, pharmacodynamic and CD8+ T-cells activation

parameters determine the success of the proposed treatment protocol. Such in silico

analysis can be helpful in the eventual development of personalized therapy.
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Chapter 8

CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

‘One ounce of practice is worth a thousand pounds of theory.’

- Swami Vivekananda

8.1 Conclusions

Cancer is a global issue and an important multidisciplinary field of research with

a lot of open ended and challenging problems. The main thrust of this thesis is

to highlight that application of process systems engineering techniques can play an

important role in addressing the problems related to cancer dynamics and its treat-

ment. The main focus of this thesis is to study the initial stages of cancer progression

- avascular tumor growth and its interaction with the therapeutic agents. In the

first two chapters, the role of modeling in cancer, broader review of works which

were done hitherto, challenges and contributions of this thesis were introduced.

The first objective of this work was to develop a mechanistic mathematical model

to describe the avascular tumor growth. The proposed model accounts for all the

pertinent cellular processes (proliferation, apoptosis and necrosis) and their depen-

dency on the diffusion and consumption of the nutrients. The model was able to syn-

chronize with the experimental results in terms of predicting tumor growth and max-

imum volume achieved under different microenvironment conditions. The results

of onset of necrosis clarifies the proposition that necrotic zone is the consequence
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of the critical concentrations of both vital nutrients. The time at which necrotic

zone starts might indicate tumor vascularization (connection with the nearby blood

vessels). Additionally, the model is prognostic in distinguishing the size of prolifer-

ation zone, quiescent zone and necrotic zone and their effect on the overall tumor

growth. Practically, it is formidable to measure the diffusive and consumption rate

parameters of the nutrients. Therefore, the proposed model can be useful for tumor

pathologists in determining those parameters from the multicellular tumor spheroid

experimental data using the sample extracted from the patient.

The second objective was to propose a therapeutic protocol for a given patient

while considering practical multiple objectives associated with cancer therapies.

Chemotherapy is the common adjuvant therapy given to the patient at stage or

another during the course of cancer treatment and, nowadays, they are combined

with the targeted therapies to reduce the side effects. Thus, the multiple objectives

can be broadly related to tumor reduction and reduction of side effects. This sce-

nario is dealt in chapter 4 by formulating a multi-objective optimization problem

using a tumor-immuno-chemo model (patient representation) adapted from the lit-

erature. NSGA -II was used to find the solution set known as Pareto set and the

decision variables represented the timing and dosage of the interventions. Then,

post-Pareto-optimality analysis was done to choose a solution from Pareto set. The

results for the considered patient have shown that the performance of the proposed

chemotherapy protocol was better than the standard protocol employed in medi-

cal practice. However, at the end of the treatment course the number of tumor

cells were in the range of 105 cells. Alternatively, the combination of chemotherapy

and immunotherapy resulted in almost complete elimination of tumor cells. Also,

post-treatment analysis based on tumor relapse time has indicated that combina-

tion therapy is better than chemotherapy. As a whole, this work suggests that

the immunogenicity factor (intensity of tumor-immune interactions) must be taken

into account prior to every therapeutic intervention. The real outcome of this work
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emphasizes on the utility of computer based pre-treatment analysis or treatment

planning decision-support system for oncologists in deciding a treatment protocol

for a patient.

Intrapatient variability is one of the major challenges in cancer therapy because

variability in patient dynamics (response to drugs) might result in overdosage or

underdosage of therapeutic agents. Thus, it is necessary to monitor the patient

regularly and look for tumor growth variations which can be attributed to different

factors. The questions addressed were related to the parameters which are to be

monitored when a patient visits the clinic and how to reschedule the interventions

based on those parameter values. In chapter 5, this challenge was investigated using

a mathematical model elucidating the interaction between tumor cell and different

types of immune cells. The key parameters affecting the tumor growth were found

out using global sensitivity analysis techniques. The key mechanisms were found

to be the proliferation of tumor cells due to nutritional effect, its interaction with

CD8+ T-cells and the availability of CD8+ T-cells. These key parameters are

further crosschecked by formulating an optimization problem and comparing the

nominal and reactive schedules of the dendritic cell interventions. The nominal and

reactive schedules for variation in non-key parameters were approximately the same,

while in the case of key parameter variations they were different. Similar results

were observed in these simulation studies. Further, for a given parametric variation,

reactive scheduling was applied to propose the dosage interventions of single therapy

of dendritic cells and the combination therapy of dendritic cells and interleukin. The

case study has shown that dendritic cells interventions alone were enough to control

and bring down the tumor size. Moreover, the cumulative dosage of dendritic cells

for the reactive scheduling was lesser than the nominal scheduling. The practical

implication is that combination therapy is not an absolute solution when the patient

variability is significant. So, it is important to re-estimate the patient parameters

154



8.1 Conclusions

regularly and this kind of treatment planning simulators/decision-support systems

will be useful in rescheduling the therapeutic interventions.

Another issue addressed in this thesis relates to the importance of simplification

of complex physiological models in order to facilitate its clinical applications. The

complexity of physiological models increases with the inclusion of updated knowl-

edge about them. In this regard, scaling and sensitivity analysis approaches were

utilized to obtain a reduced parametric model. As a case study, a comprehensive

and highly parameterized tumor-immune model was taken from literature. Scal-

ing analysis helped in obtaining a minimal model with lesser number of parameters

than the original model without any loss of information. That is, no reduction in the

predictive ability of the model. At the same time, the values of the coefficients in

the model equation were in the order-of-one. This implies that corresponding terms

in the equation with lowest coefficient values can be nullified. Also, the advantage

of scaling analysis is quantified using theoretical identifiability analysis. Further,

the application of global sensitivity analysis helped in finding the key parameters

affecting tumor growth. The key mechanisms were found to be the effect of nutri-

ents, intensity of interaction between tumor cells and CD8+ T-cells and they are

in agreement with the previous case study done in chapter 5. Another comparison

between reduced and original model was done on the basis of parameter estima-

tion. The results have shown that the uncertainty of the parameter estimates of

the reduced model is smaller than that of the original model (as expected). Also,

the computational effort is significantly less for the parameter estimation of reduced

model when compared to the original model.

The simplified model was used to imitate cohort-based clinical trials and ac-

counted for interpatient variability. Then, for a given patient cohort (generated

by varying key parameters), optimal sampling times for collecting tumor cells and

immune cells from patient during diagnosis (before treatment is commenced) and
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Fig. 8.1. Application of this thesis work in the clinical practice

optimal doxorubicin dosage for the existing standard protocol were suggested. In

this regard, multi-objective optimization problems were formulated for studying op-

timal design of diagnosis and therapy. The results for optimal design of diagnostic

protocol indicates that more information can be captured by measuring interleukin

concentration and CD8+ T-cells along with the tumor measurement. Similarly,

cohort based studies were performed to determine a better treatment protocol for

the generated patient cohort. However, only some patients were cured and some

weren’t after the application of the chosen treatment protocol. Then using this pa-

tient cohort data (parameters and therapeutic outcomes), a statistical analysis was

performed to outline rules based on parameter values that would ensure the success

of the proposed treatment protocol. In summary, the above contributions stress that

in silico analysis can be helpful in studying the failure analysis of a given treatment

protocol and helps in suggesting an appropriate treatment plan for a patient.

Overall, algorithms and tools developed in this research work can be used as tumor

and treatment planning simulators by tumor pathologists, oncologists and oncology

pharmacists. The ideas generated in this thesis are supported theoretically and are

envisioned with a mission (Figure 8.1) to implement tumor and treatment planning

simulators in the clinics to achieve the goals of cancer therapy in a more efficient

way.
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8.2 Recommendations for future work

8.2.1 Validation of the tumor growth models

The main limitation of mathematical modeling is that there is no perfect model

which can exactly replicate all the scenarios observed in a real system. Also, model

accuracy is dependent on the dataset used to build the model and numerical tech-

niques used to solve the model. Hence, a model should be thoroughly validated and

understand its range of predictive capability before using it for real time applica-

tions.

The mechanistic model developed in this work (Chapter 3) was validated with

some of the in vitro and in vivo tumor growth data. However, it needs to be val-

idated further with some more cell studies encompassing different types of cancer

in order to test its robustness. Moreover, the mechanistic avascular tumor growth

model developed in this work focused only on the diffusion of nutrients, but not on

the dynamics of the growth factors. It was assumed that the presence of growth

factors allows the tumor cells to uptake the nutrients and nurture. It is necessary to

understand the mechanism that underlies how the presence of growth factors regu-

lates the tumor growth. Another issue is the availability of wide range of models to

explain a given phenomenon, for example, tumor-immune interactions. The ques-

tion is which model is to be chosen for tumor growth predictions and therapeutic

analysis. One of the ways could be the approaches of model discrimination. Even-

tually, a model chosen from model discrimination procedure can be used to analyze

the clinical data on tumor growth which is available in the form of images. The

probable challenge is in using the image data to estimate model parameters.

8.2.2 Model-based therapeutic design

In the present thesis work, therapeutic analysis were done using doxorubicin,

immune cells and interleukin interventions by formulating optimization problems.
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Similar analysis can be extended to other types of cancer drugs for improving their

protocol design and for proposing innovative combinatorial strategies. In addition,

even though the present work has focused on model simplification which helps in

reducing model simulation time, it did not address the issue of computational time

for optimization which is one of the important factors in order to promote in silico

analysis in the clinical applications. In this regard, a comparative study of dif-

ferent optimization algorithms can be done for solving a therapeutic design based

optimization problem and also novel algorithms can be proposed.

8.2.3 Multiscale modeling

Cancer diagnosis is a very crucial phase to reap the benefits of available treat-

ment modalities. Presently, tumor pathological studies based on multicellular tu-

mor spheroid (MCTS) experiments have made a great impact in grading the tumor

cells (Rodrguez-Enrquez et al., 2008; Mueller-Klieser, 1997). These experiments

closely resemble in vivo tumor growth experiments. The effect of microenviron-

ment, therapeutics and cell-cell interactions on tumor growth is better understood

and treatment regimens can be planned accordingly. Many mathematical model-

ing approaches have been suggested to extract the physiological reasons and to test

different hypotheses on MCTS growth. However, most of the mechanistic models

(replicating MCTS experiments) discussed so far capture the macroscopic level ob-

servations and ignore the microscopic level issues. Cancer cells are formed due to

genetic changes which eventually result in the distortion of the cell division process.

The prime objective of the work proposed here is to pinpoint the distortion. In

general, a cell divides by passing through different phases of the cell cycle. The

phases of the cell cycle are G1, S, G2 and M. G1 and G2 are the preparatory phases

for the DNA-duplication (S) and mitosis (M) respectively. In different phases differ-

ent activated proteins are needed to carry on the cell cycle events. These proteins

are activated via phosphorylation by phase-wise phosphorylated cyclin dependent
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kinases (cdk) complexes (Qu et al., 2003). Formation and phosphorylation of cdk

complexes initiate as soon as a cell is divided into two daughter cells. The source for

the activation of cdk complexes are phase dependent cyclins and adenosine triphos-

phate (ATP) produced from the glucose metabolism. Transfer from one phase of

the cell cycle to other phase indirectly depends on the concentration of ATP which

is the product of glycolysis and oxidative phosphorylation. According to the con-

troversial theory of Warburg effect, enhanced glycolysis is a feature of a cancer cell.

It means that the oxidative phosphorylation process is avoided in the cell and the

total ATP is produced only by the glycolytic pathway (Moreno-Snchez et al., 2007;

DeBerardinis et al., 2008). In addition to this, there are cell cycle checkpoints based

on the threshold concentration of the growth factors and proteins. Usually, if any

abnormality is observed, p53 pathway triggers the cell to commit suicide known

as apoptosis (Danilo and Jose, 2009). But, these controlling mechanisms are be-

lieved to be inactive in the cancer cells. Most of the previous works were focused

on particular individual pathways. So, the future work could focus to integrate the

aforementioned biochemical pathways of cell cycle progression and cell division with

the glucose metabolism and analyze the cancerous features by calculating the time

taken to complete a cell cycle.

The main steps include:

1. Acquisition and preprocessing of metabolome, proteome and genome data from

the available databases.

2. Application of data mining techniques to develop the network models eluci-

dating the causality and relationship among the metabolites, proteins, and

genes.

3. Parametric sensitivity analysis of the network models will be performed to

investigate the key parameters affecting the cell cycle progression and its di-

vision.
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4. Application of multiscale modeling to predict the tumor growth and the vari-

ation in the tumor morphology over time.

The above four steps will be explained in detail below.

Building of network models

The goal of the proposed work is to develop a network model among the metabo-

lites, proteins and genes which quantify biochemical pathways from the omics data.

With the advent of whole genome sequence and other high-throughput experimen-

tal technologies, biological research has transformed from data poor to a data rich

discipline (Mosca et al., 2010; Joyce and Palsson, 2006). The large data sets being

interpreted to find the relationships and causalities. Relationship analysis is a subset

of causality, as causality not only checks the relationship between the components

but also highlights the direction of the relationship. The network model obtained

should be validated prior to its usage for further research and applications. In this

regard, the complete dataset should be preprocessed and can be divided into train-

ing and validation datasets. Preprocessing is necessary in order to reduce the effect

of noise in the data on the network model construction. Then network models can

be built using training sets and verified using validation sets. The topology of the

network models can be further consolidated by comparing with available pathways

from the literature. Particularly, available information on feedback loops (positive

or negative) can be checked. Alternatively, the developed network model can be

split into smaller networks and some networks with strong theoretical backup can

be selected for comparison.

Identification and ranking of the key mechanism of the network

Network models facilitate the comprehension of the integrated biochemical path-

ways driving the cell cycle. However, these models are complex with numerous

variables and parameters. Model complexity is one of the issues of multiscale net-
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Fig. 8.2. A multiscale framework for comprehending cancer using OMICS data

work models. Unlike the systematic but heuristic scaling approach used in this

work, alternative scaling approaches for large scale systems need to be developed

to simplify the models and enable their applications. Moreover, often, very few

parameters significantly influence the evolution of components in the network. Per-

turbation analysis of the models can be performed to find the dominant parameters

and hence, enable us to identify the significant mechanisms. Sensitivity analysis is

the approach to identify the factors contributing to the uncertainty of an objective

of interest. The output variance can be decomposed into contributions from dif-

ferent factors. Sensitivity indices can be calculated to rank the factors based on

their contributions to the overall uncertainty. The rules based on the key factors

affecting the intracellular processes can be combined with the macroscopic mod-

els to understand the multiscale phenomena. The expected outcome might be the
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development of a topology of complex and large datasets of different scales. The

analysis of the topology may help in understanding the key differences of intracellu-

lar processes between normal and cancer cells. Practically, this kind of studies may

enable the identification of specific biomarkers for specific types of cancer. This may

ultimately lead to the discovery and design of targeted therapies. In this perspec-

tive, the application of data mining techniques and multiscale modeling supports

the investigation of cancer biomarkers, development of novel drugs and prediction

of tumor progression. The gist of the proposition is presented in Figure 8.2.

8.2.4 Statistical analysis using clinical data of cancer

In general, cancer related clinical data includes patient details (e.g. age, sex,

race), background information (e.g. symptoms, family history/predisposing con-

ditions, tobacco use), cancer type/location/stage (findings based on physical ex-

amination, laboratory tests and image analysis), treatment plan/summary (height,

pretreatment weight, therapy regimen, route of administration, schedule, side ef-

fects). Hitherto, around 100 types of cancer have been discovered and huge clinical

data have been generated. However, very few works have focused on transforming

Fig. 8.3. Identification of diagnostic features and the prediction of
therapeutic design using clinical data
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the available data to knowledge. In this regard, statistical analysis of clinical data

can be helpful. The first step could be to construct a database using data from

cancer clinics in a given geographical region. Then, the patients could be classified

according to sex, age, race, location for a given cancer type (Figure 8.3). After

classification, the data sets could be analyzed using statistical tools to find out can-

cer prone diagnostic features and relate them to the therapeutic design. Overall,

the above-mentioned approach might help in bringing the personalized therapy in

practice.
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Scaling analysis

Appendix
Example for scaling analysis in Chapter 6

Step 1

dN

dt
= eC − fN − pNT +

pNNI

gN + I

t = 0, N = N0

Step 2 & 3

1

α2

(
dN

dt

)∗
= eCsC

∗ − fNsN
∗ − pNsTsN

∗T ∗ +
pNNsN

∗(
gN

IsI∗
+ 1
)

t = 0, N∗ =
N0

Ns

Step 4

1

α2eCs

(
dN

dt

)∗
= C∗ − fNs

eCs
N∗ − pNsTs

eCs
N∗T ∗ +

pNNs

eCs

N∗(
gN

IsI∗
+ 1
)

t = 0, N∗ =
N0

Ns

Step 5

1

α2eCs
= 1 ⇒ α2 =

1

eCs

Similarly, it is done for other model equations. Later other scale factors are
found and substituted in the model equations.

Step 6 & 7

(
dN

dt

)∗
= C∗ − Π4N

∗ − Π5N
∗T ∗ +

Π6N
∗(∏

7

I∗
+ 1
)

Π4 = 1,Π5 = 0.0219,
Π6

Π7 + I∗
= 0.0228

t = 0, N∗ =
N0

Ns

=
N0βf

eα
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