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Summary

In this thesis, we study radio resource allocation problems in wireless orthogonal fre-

quency division multiplexing (OFDM) systems using both centralized optimization

and game theoretic approaches. Unlike many other works that use real numbers

for bit-loading from the information theoretic approach, we consider only integer

numbers for this purpose. Firstly, the subcarrier-and-bit allocation (SBA) problem

in single-cell OFDM system with quality of service (QoS) support is formulated as

a mixed integer non-linear programming (MINLP) with nonlinearities in both the

objective function and constraints. We propose a method to convert the MINLP

to an equivalent binary linear programming (BLP), thus drastically reducing the

time required to find the optimal solution. Then we extend our study to subcarrier,

bit and power allocation in multi-cell OFDM system with QoS support, a problem

that can also be formulated as a MINLP with much higher complexity due to the

co-channel interference (CCI) among the cells. We manage to convert the MINLP

to a BLP, again making it possible to find the optimal solution much easier and

faster. The optimal solution can be used as a performance bound to benchmark

existing heuristic algorithms, as well as distributed decision-making methods such

as game theoretic approaches. Investigations on the optimal solution also give us

the inspiration to find a way to improve the system performance when resource



Summary vii

allocation is made in a distributed manner.

In order to reduce the computational complexity and information exchange

required by the centralized optimization in wireless systems, distributed decision-

making is introduced together with game theory to be used as a strong and powerful

tool to analyse the problem. Spectrum sharing games with equal rights are formu-

lated on distributed wireless systems with BER requirements and fixed modulation.

We start our study on a simple 2-player non-cooperative game with a single carrier

by analysing the impact of the payoff function and the effect of channel conditions

on the existence of Nash equilibrium (NE). It is shown that there is always at least

one NE that exists in the game. The probabilities of having one or two NEs can

also be estimated with a numerical method. The existence of NE is shown to be

applicable to N -player games with a simple assumption that the payoff functions

are non-negative when a player chooses to transmit. With the optimal solution

obtained from centralized optimization, we calculate the price of anarchy (PoA)

for the games using computer simulations. Our analysis is extended to multi-

carrier OFDM systems to show that a NE need not always exists. We also study

the repeated play of spectrum sharing games and convergence of games based on

potential games with coupled constraints, which have at least a NE so that the

game-play will always converge. Then we propose an algorithm to ensure a stable

solution for the games albeit suboptimal solutions may result.

Lastly, we study resource allocation games with adaptive modulation in multi-

cell OFDMA systems, where we show that at least one NE exists for the 2-player

single-carrier case. However, in more general scenarios with multiple players and

multiple subcarriers, the existence of NE cannot be guaranteed. Next we study the
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myopic play of repeated adaptive modulation games and propose an algorithm to

make sure that the games will converge. Finally, interference avoidance is intro-

duced by modifying the payoff function to mitigate CCI and improve performance

in the multi-cell case.
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Chapter 1

Introduction

Many upcoming wireless applications such as audio/video streaming, mobile Inter-

net and video conferencing are demanding for higher and higher data rates. Despite

the fact that the radio spectrum is scarce, the explosive increase in the number of

users in wireless and mobile networks around the world further strains on the need

for higher network capacities. As a result, the question of how to improve the

spectrum utilization efficiency of wireless communication networks has imposed a

great challenge on current technologies. In the meantime, the emerging hetero-

geneous services have brought up another question on how the diverse quality of

service (QoS) can be fulfilled, in the most effective and efficient way to the network

operator.

As a leading candidate for the next generation mobile cellular networks and

other wireless networks, Orthogonal Frequency Division Multiplexing (OFDM) has

attracted very much attention from the academia and industries. By dividing a

very broad bandwidth into tens or even thousands of narrow bands, OFDM can

transform the whole channel that is subject to frequency-selective fading into many



Chapter 1. Introduction 2

subcarriers where each of them is subject to flat-fading. In a multiuser OFDM

network where the so-called ‘multiuser diversity’ exists, almost all of the subcarriers

can be fully utilized by assigning them to those users who see that their assigned

subcarriers are having good channel conditions. Various techniques and algorithms

have been proposed for such resource allocation in radio networks. More details of

OFDM and resource allocation and management techniques are discussed in this

chapter.

1.1 Orthogonal Frequency Division Multiplexing

1.1.1 Advantages of OFDM

OFDM is a multi-carrier modulation scheme which can achieve high spectral ef-

ficiency near to the Nyquist rate. In OFDM, subcarriers are placed together as

densely and closely as they can while still maintaining orthogonality among them,

thus resulting in very high spectrum utilization of the whole frequency band. In

an OFDM system with K subcarriers, the low-pass equivalent OFDM signal is

expressed as

c(t) =
K∑
k=1

sk(t)e
i2πkt/T , 0 ≤ t < T, (1.1)

where {sk(t)} are the data symbols and T is the OFDM symbol duration.

With a subcarrier spacing of 1/T , two arbitrary subcarriers ki and kj are or-

thogonal over each symbol period. Such a property of orthogonality can be shown
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as:

1

T

∫ T

0

(
ei2πkit/T

)∗ (
ei2πkjt/T

)
dt

=
1

T

∫ T

0

(
ei2π(kj−ki)t/T

)
dt

= δkikj ,

where (·)∗ denotes the complex conjugate operator and δkikj is the Kronecker delta

defined as

δkikj =


1, if ki = kk

0. if ki 6= kj

(1.2)

A diagram showing five orthogonal subcarriers of OFDM is illustrated in Fig.

1.1.

Frequency 
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1

𝑇
 

Figure 1.1: An illustration of five OFDM subcarriers.

Broadband radio signals are generally subject to frequency-selective fading,

where the frequency components at different frequency bands will experience dif-

ferent levels of attenuation. Such fading will result in intolerable distortions in

single-carrier systems, whereas OFDM has the inherent capability to mitigate this.

The division of a broadband to many narrow bands can effectively transform the
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frequency-selective fading to flat-fading on each subcarrier, so that the data sym-

bols transmitted on a subcarrier can be more easily recovered.

Delay spread can cause intersymbol interference (ISI) to radio signals, especially

when the length of the spread is comparable to the duration of symbols. In single

carrier systems, when the data rate gets higher and higher, the symbol duration

becomes shorter and shorter and ISI can be more and more severe. The parallel

transmission of date symbols over the many subcarriers in OFDM, as a contrast,

results in much longer symbol duration. Together with the use of cyclic prefix as a

guard interval, which should have a length not less than the delay spread, ISI can

be completely eliminated in OFDM systems.

Modulation and demodulation of OFDM signals can be efficiently implemented

with inverse fast Fourier transform (IFFT) and FFT blocks, respectively. Mean-

while, frequency-flat fading on a subcarrier requires only simple frequency domain

equalizer at the receiving end. With the technological advancements in digital

signal processing (DSP) and emergence of low cost DSP components, OFDM has

become a popular technology for broadband wireless communications. Besides its

use in wireline communications, OFDM has also been adopted in several wireless

standards such as IEEE 802.11 a/g/n, IEEE 802.16 (WiMAX) and 3GPP-LTE

(Long Term Evolution). More and more use of OFDM are anticipated in the near

future.

1.1.2 Multiple Access Techniques in OFDM

To allow more than one user to have access to the wireless medium at the same

time, several multiple access (MA) techniques have been developed and deployed
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in radio networks. These techniques can also be used in OFDM systems to support

multiple mobile terminals.

With many subcarriers available in OFDM systems, an intuitive way is dividing

the subcarriers into several groups and assigning a group of subcarriers to a user.

As different portions of the frequency band are allocated to different users, this

method is referred to as Frequency Division Multiple Access (FDMA). An example

of OFDM with FDMA is illustrated in Fig. 1.2(a). If the allocation of subcar-

riers to a user is fixed and when the subcarriers are experiencing deep fades, the

corresponding subcarriers are wasted.

Time Time Time
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(a) FDMA-OFDM (b) TDMA-OFDM (c) OFDMA

User 1 User 2 User 3

 


   

Figure 1.2: Different MA techniques in OFDM systems.

As contrast to the division of the radio spectrum in frequency domain in FDMA,

Time Division Multiple Access (TDMA) divides the spectrum in time domain.

With the division of time into many small intervals called time slots, the whole

OFDM symbol consisting of all subcarriers is assigned to one user at a time, and

the users take turn to gain access to the channel by transmitting at different OFDM

symbols. Fig. 1.2(b) shows an example to illustrate TDMA-OFDM scheme. Sim-

ilarly, fixed and exclusive allocation of a time slot to a single user will result in

those subcarriers which are in deep fades being underutilized.

To combine the advantages of FDMA and TDMA, a combinatorial MA scheme
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was invented for OFDM systems. With partitions in both frequency and time di-

mensions, orthogonal frequency division multiple access (OFDMA) assigns slots to

users along the OFDM subcarrier index as well as OFDM symbol index. Adaptive

subcarrier-to-user assignment can be achieved based on the feedback of channel

conditions. Meanwhile, by assigning different numbers of subcarriers to different

users, various data rates can be supported in view of fulfilling the differentiated

QoS requirements. An illustrative example of OFDMA is shown in Fig. 1.2(c).

An advantage of OFDMA is that it can exploit the so-called “multiuser diversity”,

which will be introduced in the next section.

Code division multiple access (CDMA) can also be combined with OFDM and

is known as Multi-carrier CDMA (MC-CDMA) or OFDM-CDMA. It allows mul-

tiple users to access the same subcarriers at the same time, where the co-channel

interference (CCI) can be mitigated with the use of orthogonal codes among the

users. Therefore in OFDM-CDMA, dynamic channel allocation could be simplified

to fixed channel allocation without much performance loss.

1.2 Resource Allocation in Wireless Networks

Hostile wireless environment imposes a great deal of challenges on how to efficiently

utilize the radio spectrum for reliable high-speed, high-capacity communications.

On the other hand, variations in channel conditions among different users provide

the opportunity for higher throughput by exploiting multiuser diversity gain. In

order to achieve such an increase in throughput, radio resources need to be managed

in an efficient way by adapting to the instantaneous conditions of radio links.

Throughout this thesis, we refer to the transmitter schemes that adapt to channel
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variations as dynamic. In contrast, schemes that do not adapt to channel variations

are referred to as fixed.

1.2.1 Single-Cell System

We first consider a single-cell system in cellular networks, in which there exists only

one base station (BS). A fully connected centralized network can also be treated as

a single-cell system. As depicted in the previous sections, subcarriers of an OFDM

system generally experience different channel conditions, as long as their spacing

in frequency is larger than the coherence bandwidth. Assuming such a frequency-

selective behaviour remains constant for some time span, e.g. a few OFDM symbol

periods, we can make use of the channel state information (CSI) to adaptively

manage radio resources.

A. Point-to-Point Scenario

A point-to-point communication consists of a single transmitter and a single re-

ceiver, which corresponds to a single link in an ad hoc network, or a single-cell

system with only one user. In this case, all the subcarriers are available to the

receiver, and the optimal solution of resource allocation is provided by the water

filling (WF) theorem in information theory [1]. To achieve the channel capacity

with a given power budget, the transmission power is adapted to the transfer func-

tion of the channel, in such a way that more power is applied to frequencies with

better channel conditions and less power to the frequencies undergoing deep fading.

Despite its computational complexity, WF assumes continuous frequency attenua-

tion functions, as well as continuous relationship between the allocated power and

achievable capacity.
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To leverage the WF benefits in OFDM systems, a discrete scheme called finite

tones water filling is formulated as a non-linear continuous optimization problem.

It can be solved analytically by applying the technique of Lagrangian multipli-

ers, which delivers solutions with continuous rates for discrete subcarriers [2]. To

achieve discrete WF in practice, continuous rates need to be replaced by bit as-

signment with integer values.

For realistic communication systems, only a fixed number of modulation types

are available for data transmission. According to the channel states, the number

of bits to be transmitted on a subcarrier can be determined by choosing the most

suitable modulation assignment from a finite set. This process is called bit loading,

while the process of deciding the corresponding transmission power is called power

loading. The combinatorial process of bit-and-power loading can be formulated as

an mixed integer programming (MIP) problem, with an objective to maximize data

rate and a constraint on the power limit. Although MIP problems are generally

difficult to solve, simple greedy algorithms can yield optimal solution for single-user

systems.

B. Point-to-Multipoint Scenario

This scenario corresponds to a single-cell system with multiple users. As the avail-

able subcarriers need to be shared by multiple terminals, MA schemes are necessary

for these systems. Multiuser diversity can also be exploited due to the fact that the

fading process is statistically independent for different terminals, if their antennas

are physically separated by a minimum spacing of several wavelengths, which is

generally true in reality. Since the subcarriers are likely to be in different channel

states for different users, a subcarrier seemed to be in deep fading to a user could
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be assigned to another user seeing it with good channel condition.

With adaptive modulation and multiuser diversity, resource allocation prob-

lem can similarly be formulated as an MIP to maximize overall transmission rate

with power limit constraint. Although the optimal solution can be found by us-

ing greedy algorithm again [3], the fairness issue arises as terminals with better

average channel conditions are always favourable, and those terminals subject to

greater path loss will suffer from higher transmission delay. To fulfil different QoS

requirements, constraints are added to ensure minimum data rates for different

users accordingly, resulting in the so-called rate adaptive optimization. If the ob-

jective function is changed to minimize total transmission power, while ensuring

each terminal’s specific data rates with constraints, the problem becomes the mar-

gin adaptive optimization.

Both rate and margin adaptive optimizations belong to the group of mixed

integer non-linear programming (MINLP) problems, which are in general known

to be difficult and have been claimed to be NP-hard [2]. Despite its intensive

computational requirement, the large performance gain of dynamic OFDMA has

attracted a lot of research interests and many suboptimal schemes are proposed to

deliver solutions at reduced complexity.

To obtain the optimal solution more easily, especially when the number of

variables are large, we present a method to convert the MINLP to an equivalent

binary linear programming (BLP), by exploiting some properties of the subcarrier-

and-bit allocation (SBA) in OFDM systems. The BLP can reduce CPU runtime

by a factor of 102–105 compared to some heuristic algorithms, while preserving

optimality of the solution. Details of the BLP will be presented in Chapter 2.
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1.2.2 Multi-Cell System

In practical systems, a cellular network usually consists of multiple cells each serv-

ing various numbers of users. However, due to inevitable CCI among neighbouring

cells, a technique called frequency partitioning is normally used in conventional

networks to overcome the CCI problem. Frequency partitioning is achieved by

grouping several neighbouring cells into a cluster, and no frequency reuse is al-

lowed among those cells in the same cluster. Thus the whole network can be

partitioned into many clusters and CCI from neighbouring cells in the same cluster

is eliminated. An illustration of cellular networks partitioned with different cluster

sizes are shown in Fig. 1.3(a)-1.3(c). Depending on the size of clusters, efficiency

of spectral reuse is inversely proportional to the number of cells in a cluster. As

higher efficiency figures become more and more desirable in future data-centric

networks, aggressive spectral reuse with cluster size equal to one has emerged, e.g.

in WiMax networks [5].
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Figure 1.3: Cellular networks partitioned with different cluster sizes.

A. Centralized Optimization

In multi-cell systems with central units, such as core networks, optimal system

performance can be obtained by managing all resources of the cells in the network

together using a joint optimization. In such a centralized optimization for multi-cell
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resource allocation, there are enormous numbers of resource variables depending

on the number of cells, number of users in a cell, number of frequency subcarriers

in the system, number of modulation levels available and so on. Due to CCI among

the cells, however, the process of allocating so many resources is intertwined and

the optimal solution is very difficult to find.

Optimization of multi-cell resource allocation can be formulated as a MINLP

problem in a way similar to the single-cell scenario. However, CCI existing among

the cells introduces highly non-linear constraints to the problem, which makes

the MINLP much more difficult to solve than that of the single-cell scenario. By

decoupling the power-loading process from SBA, we introduce a method to convert

the MINLP to an equivalent BLP to reduce the complexity of searching. Although

the BLP problem is still not simple enough to implement in real networks, optimal

solution can be found in much shorter time than MINLP, if it were not impossible in

the MINLP case. With optimal solution available as the benchmark, performance

of heuristic and suboptimal algorithms can also be compared and further improved.

We present in Chapter 3 the details of this method.

B. Game Theoretic Approach

Centralized optimization for multi-cell systems hinges on several practical chal-

lenges, such as frame level synchronization needed for all radios in the network

area, significant computational power expected at the central unit as well as huge

signalling overheads required to feedback all CSI from every network node to the

central unit. Potential processing delays and information exchange will also ob-

struct the achievement of diversity gains especially in fast-fading channels. Some

of these problems can be avoided by using distributed resource allocation schemes.



Chapter 1. Introduction 12

Here distributed means that each cell individually manages its own resources based

on its locally observed channel conditions, and possibly also on it locally measured

noise and interference levels.

However, due to strong coupling between locally allocated resources and in-

terference created elsewhere in the network, locally maximizing the capacity of

individual cells will not in general lead to the best overall network capacity. To

investigate how multiple cells compete for common radio resources, game theory

has been explored and applied. In its non-cooperative setting, game theory models

the conflicts among a set of rational players, each seeking to maximize his own

utility or payoff by selecting the best strategy available. Every BS in a multi-cell

network can be considered as a player of the game, while the utility can be a func-

tion related to the cell capacity and the strategies determine how radio resources

are allocated. More details on game theory, utility function, Nash equilibrium and

resource allocation algorithms will be presented in Chapters 4–6.
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1.3 Contributions

The contributions of our works are summarized as follows:

• In single-cell systems, a method to convert the MINLP to an equivalent BLP

is presented so that the optimal solution can be obtained with much shorter

time. This study was reported in a conference paper published on IEEE VTC

2007 Spring.

• In multi-cell systems with CCI, the MINLP can also be converted to a BLP

in order to obtain the optimal solution more easily. This study was reported

in a conference paper published on IEEE WCNC 2008.

• The optimal solution from centralized optimization is used as the performance

bound to benchmark the results obtained from heuristic and game theoretic

algorithms.

• Non-cooperative games on opportunistic access in distributed wireless sys-

tems are formulated. Fixed modulation with integer bits are used in the

games. Existence of NE is studied and an algorithm is proposed to ensure

convergence for the game-play. This study was reported in a journal pa-

per for possible publication on IEEE Transactions on Communications. It is

currently under the third revision.

• Resource allocation in multi-cell OFDMA systems are formulated as non-

cooperative games with adaptive modulation and integer bit-loading. The

existence of NEs and convergence of game-play are investigated. Some of

this study were reported in two conference papers published on IEEE PIMRC
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2009 and IEEE Globecom 2009. The complete study was submitted to IEEE

Transactions on Vehicular Technology.

• A new utility function facilitating interference avoidance (IA) is proposed

for the game on multi-cell system, and it is shown to achieve better perfor-

mance for the overall system. This study was reported in a conference paper

published on IEEE MILCOM 2008.

1.4 Thesis Outline

The thesis is organized as follows: Centralized optimization of resource allocation

in OFDMA systems with a single cell is presented in Chapter 2, and the study

on multi-cell systems follows in Chapter 3. As a useful tool for analysing dis-

tributed decision-making, game theory is introduced in Chapter 4. Applications

of game theory in wireless communications and the motivation to our work are

also discussed in this chapter. In Chapter 5, spectrum sharing games on a dis-

tributed wireless system with QoS constraints are formulated and investigated.

Then resource allocation games in multi-cell networks with adaptive modulation

are studied in Chapter 6. Lastly, concluding remarks are presented in Chapter 7.
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Chapter 2

Single-Cell OFDMA Systems

The idea on adaptive SBA for multiuser OFDM systems has been extensively stud-

ied and many algorithms were proposed. Among these proposals, some aimed to

minimize the total power consumption of the system [6] [7], while others tried to

solve the dual problem of maximizing the overall throughput of the system [8]–[10].

Due to nonlinearities of the objective functions and constraints, however, finding

the optimal solutions is computation intensive and time consuming. As a result,

several suboptimal algorithms were proposed. Some of these algorithms relaxed

the integer constraints into floating points, and others decoupled the combinatorial

problem into two or more intermediate steps.

Mobile communication systems must be able to provide various services to users

with QoS. Therefore optimal allocation of radio resources in OFDM systems while

satisfying respective QoS requirements is essential, which was discussed in [11]

and [12]. Although in these reported works, convexity of the objective function

can be ensured through appropriate substitution, the resulting MINLP still have a

complexity exponentially increasing with the product between the number of sub-
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carriers and number of users in the system. Two heuristic suboptimal algorithms

were proposed to reduce the complexity but solving the problem still requires a

time too long to adapt the system to the change of channels in time.

By exploiting some properties of SBA in OFDM systems, we propose an ap-

proach to convert the MINLP optimization problem to a BLP problem. Firstly we

notice that only discrete values are taken for the bit-loading process in practical

systems, thus binary variables can be used to represent the selections of these val-

ues. Secondly, by making use of the exclusive allocation of a subcarrier to a single

user, these binary variables can further be made use of in the allocation of sub-

carriers. The resulting BLP problem has a drastically reduced complexity and the

optimization problem can be solved much faster than the two algorithms proposed

in [12]. Also note that the optimality of solution is preserved, as no relaxation or

assumption is made during the conversion.

The transmission power required for a certain class of QoS can be expressed as

a function of SER and channel gain [6]. However, since BER is usually specified

as one of the QoS parameters instead of SER, it has been used in the calculations

as a lower bound for SER [6] [11] [12]. As constellation sizes increase, more and

more data bits will be loaded in one OFDM symbol, and such use of BER as

direct substitution for SER can result in increased excess of transmission power

than what is actually required. This approximation can be accepted by users as it

results in better performance than expected. However, to service providers, it not

only leads to unnecessary waste of radio resources, but also may cause unfairness

when allocating power among those users who are using different constellation

sizes or having services of different BER requirements. We demonstrate that our
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approach can easily obtain solution which is closer to what is actually desired with

the use of two approximations between BER and SER.

2.1 Problem Formulation

The optimization problem of SBA in multiclass multiuser OFDM systems has been

formulated as an MINLP problem in [12]. Let us consider the downlink of a rate-

adaptive OFDM system which has K subcarriers in total. Two classes of service

are supported, where Class A service provides constant data rate of RA bits per

OFDM symbol and target BER of PbA , and Class B service provides minimum data

rate of RB bits per OFDM symbol and target BER of PbB . The number of users

is LA for Class A and LB for Class B, respectively. With a target to minimize the

overall transmission power while satisfying all data rate and BER constraints for

both Class A and Class B users, the optimization problem is formulated as:

min
akl ,r

k
l

ρA

LA∑
l=1

K∑
k=1

2a
k
l r

k
l − 1

Gk
l

+ ρB

LA+LB∑
l=LA+1

K∑
k=1

2a
k
l r

k
l − 1

Gk
l

, (2.1)

subject to

K∑
k=1

akl r
k
l = RA, for l = 1, . . . , LA, (2.2)

K∑
k=1

akl r
k
l ≥ RB, for l = LA + 1, . . . , LA + LB, (2.3)

LA+LB∑
l=1

akl = 1, ∀k, (2.4)

akl ∈ {0, 1} and rkl ∈ {0, 2, 4, 6}, ∀l and ∀k, (2.5)
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where constants

ρA ≈
N0

3

[
Q−1

(
PbA
4

)]2

, ρB ≈
N0

3

[
Q−1

(
PbB
4

)]2

(2.6)

correspond to service class A and B, respectively. And we recall that Q(x) =

1√
2π

∫∞
x
e−

t2

2 dt.

Take note that since BER is upper bounded by SER, PbA and PbB are used

in place of the actual SER, PeA and PeB , in (2.6). If the exact values of PeA and

PeB are to be used, ρA and ρB are no longer constants but rather depending on

the values of rkl chosen. This will result in highly nonlinear objective function

where in each term, both the exponent and coefficient contain the optimization

variables, thus adding more load to the already intensive computation for solving

the problem. Although such a widely accepted approximate use of BER in place

of SER is first adopted, more accurate approaches to SER approximation will be

discussed in Section 2.3.

In the above formulation, akl denotes the assignment indicator which equals 1

when subcarrier k is assigned to user l and otherwise 0. Assuming no subcarrier

sharing among different users, then for any given akl = 1, akl′ = 0 for all l′ 6= l.

The number of bits modulated in one OFDM symbol on subcarrier k for user l

is denoted as rkl . We consider M-QAM with square signal constellations in our

system, where M = 2r
k
l denotes the constellation size. With M = 4, 16 and 64,

rkl takes on a value of 2, 4 and 6, respectively. rkl = 0 means that no information

bit is to be transmitted on subcarrier k by user l. Also, Gk
l denotes the channel

gain of subcarrier k as seen by user l. Flat fading on each subcarrier is ensured by

carefully designing the OFDM signal using a cyclic prefix, which should be longer
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than the maximum delay of the multipath channel to mitigate ISI. The power

spectral density (PSD) of additive white Gaussian noise (AWGN), N0, is assumed

to be identical for all users on any subcarrier.

2.2 Linearization and Simplification

The problem formulated in (2.1)–(2.5) has an exponential objective function and

2(LA + LB)K integer optimization variables on discrete set. Generally, global

minimum will not be guaranteed for this objective function. A polynomial of order

six is used to replace the exponential function [12]. However, the computation

time to obtain optimal solution is still prohibitively long when (LA+LB)K is large

(> 10).

By noticing some special characteristics of the MINLP problem, however, we

can linearise and simplify the problem into an equivalent BLP problem, without

compromising optimality. First we observe that function g(akl , r
k
l ) = 2a

k
l r

k
l − 1 can

only take on discrete values of 0, 3, 15 and 63, therefore it can be replaced by a

new function

f(bkl,i) = 3
(
bkl,1 + 5bkl,2 + 21bkl,3

)
, (2.7)

with additional constraints:

3∑
i=1

bkl,i ≤ 1, ∀l and ∀k, (2.8)

where bkl,i ∈ {0, 1}, i = 1, 2 and 3 are three new binary variables for any given l and

k. This additional constraint ensures that either all bkl,i equal to 0 or only one of

them equals to 1, so that outputs of functions g(akl , r
k
l ) and f(bkl,i) are equivalent.
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Furthermore, notice that when akl r
k
l takes on a value of 2, 4 or 6, it corresponds to

2bkl,1, 4bkl,2 and 6bkl,3 respectively, given bkl,i = 1 for i = 1, 2 and 3. Therefore we can

replace akl r
k
l with

∑3
i=1(2i)bkl,i and consequently the nonlinear constraints in (2.2)

and (2.3) are converted to their linear counterparts as shown in (2.10) and (2.11).

At this stage, we have changed the nonlinear objective function and constraints

to be linear, at an expense of increased numbers of variables and constraints. How-

ever, since no subcarrier sharing is allowed among the users, we notice that when

akl = 0 or 1,
∑3

i=1 b
k
l,i takes on a corresponding value of 0 or 1. Hence akl can

be eliminated and constraints (2.4) and (2.8) can be combined into (2.12). The

original MINLP problem is further simplified and reduced to a BLP problem as

follows:

min
bkl,i

ρA

LA∑
l=1

K∑
k=1

f(bkl,i)

Gk
l

+ ρB

LA+LB∑
l=LA+1

K∑
k=1

f(bkl,i)

Gk
l

, (2.9)

subject to

K∑
k=1

3∑
i=1

(2i)bkl,i = RA, for l = 1, 2, . . . , LA, (2.10)

K∑
k=1

3∑
i=1

(2i)bkl,i ≥ RB, for l = LA + 1, . . . , LA + LB, (2.11)

LA+LB∑
l=1

3∑
i=1

bkl,i ≤ 1, ∀k, (2.12)

bkl,i ∈ {0, 1}, for i = 1, 2 and 3,∀l and ∀k, (2.13)

where f(bkl,i) is given by (2.7), ρA and ρB are constants shown in (2.6).

Computation complexity of the newly formulated BLP problem is drastically

reduced due to its linearity, even though the number of variables is increased from

2(LA + LB)K to 3(LA + LB)K. Also note that no relaxations or approximations
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are made during the linearisation and simplification process, therefore optimality

of the problem is preserved. With the original optimization problem converted to

a standard BLP problem, it can be readily solved by standard packages such as

CPLEX with greatly reduced time.

2.3 Approximate Relationships

between SER and BER

We notice that the equation to calculate required transmit power to support a

certain bit rate and BER was formulated in [6] for M-ary QAM. This formulation,

using BER in place of SER, have been subsequently adopted by many literatures

including [11] and [12], as well as in (2.6) of this thesis. The reason to make such

an approximation is that BER is normally specified as one of the QoS parameters,

while its relationship with SER is generally not so straightforward. Even though

approximate relationships between SER and BER exists, they are related to con-

stellation size which is yet to be decided. This makes the objective function more

complicated and increases computation complexity.

With the inverse Q-function being monotonically decreasing, a loose lower

bound for SER results in unnecessary higher transmission power than what is

actually needed, and hence better performance will be achieved than expected.

In single-class multiuser OFDM systems, those users who are using higher order

constellation will be given much higher extra power than those using lower or-

der constellation. On the other hand, in multiclass systems, unfairness also exists

when distributing power to different service classes which are having different BER
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requirements. As unfairness and extra waste of power are undesirable for service

providers, it is important to look for a solution which can closely approximate what

is actually required.

An exact expression of BER related to average signal-to-noise ratio (SNR) per

symbol was given in [14], with Gray-coded M-QAM. The reverse relationship of

getting the instantaneous transmission power with a given BER, however, is not

easily obtainable. Therefore in this section, we consider two approximate relation-

ships between SER and BER and then make use of (2.6) to calculate the required

transmission power. We show that constants ρA and ρB can be integrated in the

respective constellation assignment parameters during formulation if some approx-

imate relationships between SER and BER are used. Earlier approaches in [11]

[12] will rely on whether a new convex function can be identified. Even if such a

function can be found, if it is not simple enough, prohibitively high computation

complexity is still unavoidable.

The first approximation is using the lower bound of SER for M-ary QAM mod-

ulation given as [13]

Pe ≥
M − 1

(M/2)
Pb, (2.14)

where Pe and Pb represent SER and BER, respectively. Taking equality in (2.14) as

the lower bound and substituting it into (2.6), we have the following new constants:

ρA,1 =
N0

3

[
Q−1

(
3

8
PbA

)]2

, ρB,1 =
N0

3

[
Q−1

(
3

8
PbB

)]2

;

ρA,2 =
N0

3

[
Q−1

(
15

32
PbA

)]2

, ρB,2 =
N0

3

[
Q−1

(
15

32
PbB

)]2

; (2.15)

ρA,3 =
N0

3

[
Q−1

(
63

128
PbA

)]2

, ρB,3 =
N0

3

[
Q−1

(
63

128
PbB

)]2

,
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where ρj,i denotes the constant for service class j, j = A,B, with M-QAM modu-

lation such that M=22i.

The objective function of the BLP problem now becomes

min
bkl,i

LA∑
l=1

K∑
k=1

f(ρA,i, b
k
l,i)

Gk
l

+

LA+LB∑
l=LA+1

K∑
k=1

f(ρB,i, b
k
l,i)

Gk
l

, (2.16)

where

f(ρj,i, b
k
l,i) = 3

(
ρj,1b

k
l,1 + 5ρj,2b

k
l,2 + 21ρj,3b

k
l,3

)
, for j = A,B. (2.17)

Constraints (2.10)–(2.13) remain unchanged.

For the second approximation, under usual operating conditions of low BER, say

Pb < 10−3, errors are usually made in such a way that the error symbol selected is

the “nearest neighbour” to the correct symbol on the signal constellation. Assuming

Gray code on the bit-to-symbol mapping, there is only one bit change of error for

the nearest neighbour symbol. The relationship between BER and SER can be

approximated by [13]

Pe ≈ cPb, (2.18)

where c = log2M equals to the number of bits per OFDM symbol. Note that since

one symbol error could comprises of more than one bit error, the more precise

relationship is given by Pe ≤ cPb. By substituting (2.18) into (2.6), we have the
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following new set of constants:

ρ′A,1 =
N0

3

[
Q−1

(
PbA
2

)]2

, ρ′B,1 =
N0

3

[
Q−1

(
PbB
2

)]2

;

ρ′A,2 =
N0

3

[
Q−1 (PbA)

]2
, ρ′B,2 =

N0

3

[
Q−1 (PbB)

]2
; (2.19)

ρ′A,3 =
N0

3

[
Q−1

(
3

2
PbA

)]2

, ρ′B,3 =
N0

3

[
Q−1

(
3

2
PbB

)]2

.

These constants (2.19) can be directly applied to (2.17) as f(ρ′j,i, b
k
l,i) for j = A,B

and i = 1, 2, 3, while the objective function (2.16) and constraints (2.10)–(2.13)

need not change. We should also note that since the different approximate rela-

tionships between SER and BER only affect values of the constants which can be

pre-calculated, complexity of the BLP problem remains the same.

2.4 Numerical Results

Computer simulation results are presented in Fig. 2.1 and Fig. 2.2 to compare

the performance of the converted BLP problem with the two heuristic suboptimal

algorithms proposed in [12], namely the quadratic fitting (QF) and two-step (TS)

approaches. The solution using the optimal method in [12] will not be considered

since its computation time is very much longer. The computation time are obtained

with the simulations run on a personal computer equipped with an Intel Pentium

4 2.8GHz processor and 1GB memory.

Fig. 2.1 shows the computation complexity in terms of CPU time for the three

methods, averaged over 100 simulations. K is set to range from 4 to 20 in a step

of 4 with LA = 2, LB = 1 and RA = 4, RB = 3 bits/OFDM symbol. It is evident

that the BLP approach requires much less computation time than the other two
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Figure 2.1: Comparison of computation complexity with LA = 2, LB = 1
and RA = 4, RB = 3 bits per OFDM symbol.

algorithms, due to the linearised objective function and constraints used. Although

the CPU time for BLP increases with the number of subcarriers, the increment is

too small to be obviously reflected on the log-scale Y-axis.

In Fig. 2.2, a plotting of total power consumption allocated by the three meth-

ods are shown, in which 25 instances of randomly generated channel conditions are

used. The system parameters are set with K = 8, LA = 2, LB = 1 and RA = 12,

RB = 13 bits/OFDM symbol. With its solution being optimal, power consumption

allocated by the BLP approach is always less than or equal to those done by the

suboptimal QF and TS algorithms under same channel conditions.

We compare the average power savings of the two SER and BER relationships

given in (2.14) and (2.18) with reference to the result obtained using Pe ≈ Pb,

under various conditions of system traffic load in Fig. 2.3. The system traffic load

is defined as the percentage of minimum total rate requirement to the realizable

system capacity over an OFDM symbol period. With a maximum number of K
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Figure 2.2: Comparison of total power consumption with K = 8, LA = 2,
LB = 1 and RA = 12, RB = 13 bits per OFDM symbol.

subcarriers and at most 6 bits can be loaded on each subcarrier, the realizable

system capacity is 6K and the traffic load is given by

η =
LARA + LBRB

6K
× 100%. (2.20)

From Fig. 2.3, we can see that the approximate relationship in (2.14) results in

around 6% power saving and close to 12% under low and high traffic load, re-

spectively. On the other hand, the approximation in (2.18) can lead to more than

10% power saving under low load and close to 30 % under high load. Since the

approximation in (2.18) is using BER as upper bound for SER, it could lead to

slight degradation in the actual BER performance. However, such a degradation is

negligible when the system is operating under low BER (Pb < 10−3) requirement,

whereas the approximation in (2.18) can provide a significant saving in total trans-

mission power under heavy traffic condition, or equivalently a considerable increase
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in system throughput under a given power constraint.

Figure 2.3: Average transmission power saved using different SER approx-
imations over Pe ≈ Pb, with K = 512, LA = 12 and LB = 6.

To understand the process of bit-loading under different traffic loads, the av-

erage numbers of subcarriers loaded with c = 2, 4 and 6 bits/OFDM symbol are

illustrated in Fig. 2.4. As we can see from the figure, when system traffic is rela-

tively low, all the allocated subcarriers are loaded with only 2 bits/OFDM symbol.

More and more allocated subcarriers are loaded with 4 bits/OFDM symbol and

eventually 6 bits/OFDM symbol as the traffic increases to medium and high load,

until the realizable system capacity is reached. Also note that the total number

of allocated subcarriers always equals to K (K = 512 in our simulation) when

the traffic load is larger than 40%. This is intuitively reasonable as the power

increment for loading more bits to an already allocated subcarrier, as indicated in

(2.7), is generally higher than spreading the data bits to other available subcarriers

which is not undergoing deep fade. Therefore the process of allocating the avail-

able subcarriers of the OFDM system takes precedence over that of loading more
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bits to a subcarrier. Such information could be made use of to further reduce the

complexity of the optimization problem.

Figure 2.4: Average number of subcarriers loaded with c = 2, 4 and 6 bits
per OFDM symbol under different conditions of system traffic
load, with K = 512, LA = 12 and LB = 6.

2.5 Conclusion

In this chapter, we considered the optimization of resource allocation in single-cell

OFDM systems with multiclass QoS requirements. To reduce the exponential com-

plexity of the original MINLP problem, we propose a method to convert it to a

BLP problem. As a result, the linear optimization problem has a drastically re-

duced complexity and maintains the optimality without relaxations applied. Since

the equivalent BLP problem can be solved much faster than MINLP, a larger num-

ber of subcarriers and users can be taken into consideration. With linearity and

optimality preserved, the BLP is highly effective and efficient for the optimiza-

tion of resource allocation in multiclass multiuser OFDM systems. On the other
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hand, using better approximations for SER has been shown to reduce the unwanted

transmission power wastage and hence the fairness among users of different service

classes can be better maintained.
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Chapter 3

Multi-Cell OFDMA Systems

In multi-cell OFDMA systems, radio resource allocation can be made by a central

unit located at the radio network controller (RNC) and the problem can be similarly

formulated as MINLP. With a frequency reuse factor (FRF) equal to one, the

high CCI interrelates the assignment of subcarriers in all the cells which results

in nonlinear objective functions and constraints. Some algorithms are proposed

to use interference avoidance techniques to prevent serious CCI among the users

[15] [16], while many others are proposed with the concept of reuse partitioning,

which assigns various FRF values to different groups of subcarriers to increase

system capacity [17] [18]. In [19] and [20], the issue of power control and subcarrier

assignment in a sectorized two-cell downlink OFDMA system was studied, where

the optimal allocation was investigated, a distributed practical resource allocation

algorithm with low complexity was proposed and the optimal value of the FRF was

characterised. To our best knowledge, however, no optimal solution to the MINLP

has been reported and hence there is a lack of performance bound to benchmark

different heuristic algorithms.
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In this chapter, we present a method to convert the original MINLP problem to

an equivalent BLP, so that the complexity is drastically reduced and the optimal

solutions can be obtained with relatively small amount of time. With these optimal

solutions, we next investigate the insights of resource allocation process that lead

to the best system performance. Results of the investigation inspired us on a way

to improve the performance when resource allocation is being made in a distributed

manner, details of which will be presented in the subsequent chapters related to

game theory. Finally, unlike those existing works using the information theoretic

approach [15]–[18], discrete values are used in our bit-loading process and hence

our results are more readily applicable to practical systems.

3.1 System Model And Notations

Consider a multi-cell OFDMA system with N BSs, and the number of randomly

distributed users in BS n is Ln, n ∈ N , where N = {1, . . . , N} denotes the set

of BSs. In the centralized model, radio resources of all N BSs are being allocated

through a central unit located at RNC. The total available bandwidth is equally

divided into K OFDM subcarriers, in such a way that subcarriers are subject to

flat and uncorrelated fading. We assume that intersymbol interference resulting

from multipath can be removed through the use of cyclic prefix. The maximum

total transmission power of each BS over all subcarriers is limited to Pmax.

Consider user l in BS n on subcarrier k, l ∈ Ln, n ∈ N and k ∈ K, where

Ln = {1, . . . , Ln} denotes the set of users in BS n and K = {1, . . . , K} denotes

the set of subcarriers. Assuming FRF equal to one, all K subcarriers are available

to each BS. Depending on interference level and channel condition, the effective
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bit rate on a subcarrier can be achieved by selecting the most suitable modulation

level from one of M -QAM’s, where M ∈ {4, 16, 64}. Instead of separately defining

the subcarrier assignment and modulation index variables, we integrate them into

a group of assignment variables denoted as akqln , where q ∈ Q = {1, . . . , Q} is

the set of modulation indexes. akqln = 1 if subcarrier k is allocated to user l in

BS n with modulation index q, and akqln = 0 otherwise. Assume Q = 3, then

q = 1, 2 and 3 correspond to the cases where 4-QAM, 16-QAM and 64-QAM are

chosen, respectively. Each user therefore transmits 2q bits per OFDM symbol on

the assigned subcarrier. Different subcarriers assigned to a user can use different

modulation indexes, while each subcarrier in each BS can only use one modulation

index.

The channel gain of subcarrier k from BS j (j ∈ N ) to user l located in BS n

is denoted as Gkj
ln . The aggregate CCI imposed on user l can be either measured

or computed if all channel conditions are known. pkqln is the transmission power

of BS n on subcarrier k required for modulation index q, so that user l in BS n

can recover the signal with a specified BER. We further assumed that there is no

sharing of any subcarrier among the users in a BS. CCI on subcarrier k experienced

by user l in BS n is thus given by

Ikln =
N∑
j=1,
j 6=n

Gkj
ln

Lj∑
l′=1

Q∑
q=1

akql′jp
kq
l′j

 , ∀l,∀n and ∀k. (3.1)

Fig. 3.1 shows a 3-cell system where each cell has two users. We denote user l in

BS n as mln. The solid line represents received signal for the designated receiver,

while those dotted lines represent interfering signals from adjacent BSs.
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Figure 3.1: Example of a 3-cell OFDMA system.

To support multiple service classes, QoS requirements are specified by {Rln, B
ER
ln },

which correspond to the minimum data rate and BER requirement for user l in

BS n, respectively. For a particular q, the signal-to-interference-plus-noise ratio

(SINR) threshold is a function of symbol error rate (SER) [29]. Under usual op-

erating conditions of low BER (BER
ln < 10−3), we have SERln ≈ 2q · BER

ln [13]. The

average SINR required to achieve BER
ln is thus given by

Gkn
ln p

kq
ln

Ikln +N0

≥ γqln, (3.2)

where γqln denotes the SINR threshold for user l in BS n with modulation index q.

The PSD of AWGN, N0, is assumed to be identical on all subcarriers for all users.
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3.2 Solution To Centralized Optimization

3.2.1 Direct Formulation as MINLP

Utility functions are widely used in economics to quantify the satisfaction level

of users, or the benefits of resource usage. In wireless communications, utility

functions have also been used to bridge across different protocol layers to optimize

resource utilization [70]. For simplicity, we define the utility function to be the

reward minus the cost, where the sum of data rates can be considered as rewards

and the total transmit power as costs. The pricing on the power consumption

helps to regulate the CCI among the BSs in multi-cell systems. This is also the

adopted objective function in some of the reported works, for example [68]. Using

the variables defined in the last section, the utility function of BS n is given by

un =
Ln∑
l=1

rln − c
K∑
k=1

pkn, ∀n, (3.3)

where rln =
∑K

k=1

∑Q
q=1 2q · akqln represents the total data rate of user l in BS n and

pkn =
∑Ln

l=1

∑Q
q=1 a

kq
lnp

kq
ln is the transmission power on subcarrier k in BS n. The

power cost factor, c, is used to make the throughput and power which have different

units to have the basis to sum together. The assignment parameters, akqln ’s, and

power terms, pkqln ’s, are the unknowns to be solved.

From the system’s perspective, our aim is to maximize the total utility from

all BSs yet satisfying the rate and BER requirements of all users. Therefore a

centralized optimization can be formed:

max
akqln ,p

kq
ln

U =
N∑
n=1

un, (3.4)
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subject to

K∑
k=1

Q∑
q=1

2q · akqln ≥ Rln, ∀n ∈ N and ∀l ∈ Ln, (3.5)

Gkn
ln p

kq
ln

Ikln +N0

≥ akqlnγ
q
ln, ∀n ∈ N ,∀l ∈ Ln,∀k ∈ K and ∀q ∈ Q, (3.6)

K∑
k=1

Ln∑
l=1

Q∑
q=1

akqlnp
kq
ln ≤ Pmax, ∀n ∈ N , (3.7)

Ln∑
l=1

Q∑
q=1

akqln ≤ 1, ∀n ∈ N and ∀k ∈ K, (3.8)

akqln ∈ {0, 1} and pkqln ∈ R+, ∀n ∈ N ,∀l ∈ Ln,∀k ∈ K and ∀q ∈ Q. (3.9)

In this formulation, (3.5) and (3.6) ensure that the data rate and BER require-

ments are fulfilled, respectively. The maximum transmission power of each BS is

constrained by (3.7). The exclusive assignment of any subcarrier in each BS to not

more than one user within that BS is enforced by (3.8), where at most one akqln ,

∀l and ∀q for any given n and k, could be set to one and the remaining are all

zero. Solving such a MINLP is prohibitive due to its nonlinear objective function

(3.4) and non-linear constraints (3.6) and (3.7). For example, (3.6) consist of sum-

mations of terms where each term is the product of two binary variables and an

unknown power which takes a real number.

3.2.2 Conversion to BLP

We take some measures to reduce the computation complexity so that optimal

solution becomes possible. Through some manipulations, the interdependency be-

tween SBA and PA (power allocation) can be decoupled. The required power for

every possible SBA combination can be first computed. Then with a change of
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variables, the MINLP can be converted to a BLP so that the optimal solution can

be found more efficiently.

We first consider a single subcarrier in BS n, where the superscript k is omitted

for simplicity. Since no subcarrier sharing among the users in the same BS is

allowed, i.e. to fulfil (3.8), either one out of Ln users in BS n will be selected to use

this subcarrier with a suitable q, or none of the users is selected. Mathematically,

this means that for BS n, either only one out of Q× Ln assignment variables aqln,

∀l, ∀q, can take on value of 1, or all of them equal to 0 which corresponds to the

case where no user is transmitting on the subcarrier. For example, if user l̃ is

selected with modulation index q̃, then aq̃
l̃n

= 1 and aqln = 0 for all q 6= q̃ or l 6= l̃.

It is therefore more convenient to use a symbolic notation bq̃
l̃n

to denote such a

SBA choice when the subcarrier is allocated, and b0
n to denote the case where the

subcarrier is not allocated to any user in BS n.

All possible choices of SBA for all the users in BS n are grouped in a set

Bn = {b0
n, b

q
ln | q ∈ Q; l ∈ Ln} with cardinality QLn + 1. For example, in a 2-cell

system where each cell has 2 users and the modulation index can be chosen from

Q, we have B1 = {b0
1, b

1
11, b

2
11, b

3
11, b

1
21, b

2
21, b

3
21} and B2 = {b0

2, b
1
12, b

2
12, b

3
12, b

1
22, b

2
22, b

3
22}

for BS 1 and 2, respectively.

For any BS n, we can select one element from Bn independently. Denoting the

n-ary Cartesian product of all Bn’s as B = ×n∈NBn, we can see that each element of

B is a N -tuple vector b = [b1, . . . , bn, . . . , bN ], where bn is an element selected from

Bn. Since every bn ∈ Bn corresponds to a SBA choice in BS n, a given vector b ∈ B

represents a particular SBA combination of all N BSs of the whole system. Using

the 2-cell system for illustration again, if b̃ = [b3
21, b

2
12], the first element indicates
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Table 3.1: An example of the mapping between b and combinations of aqln.

b a1
11 a2

11 a3
11 a1

21 a2
21 a3

21 a1
12 a2

12 a3
12 a1

22 a2
22 a3

22

[b0
1, b

0
2] 0 0 0 0 0 0 0 0 0 0 0 0

[b1
11, b

0
2] 1 0 0 0 0 0 0 0 0 0 0 0

[b2
11, b

0
2] 0 1 0 0 0 0 0 0 0 0 0 0

...
...

. . .
...

[b3
21, b

0
2] 0 0 0 0 0 1 0 0 0 0 0 0

[b0
1, b

1
12] 0 0 0 0 0 0 1 0 0 0 0 0

...
...

. . .
...

[b2
21, b

3
22] 0 0 0 0 1 0 0 0 0 0 0 1

[b3
21, b

3
22] 0 0 0 0 0 1 0 0 0 0 0 1

that user 2 (l = 2) from cell 1 (n = 1) transmits at 64-QAM (q = 3), whilst the

second element indicates that user 1 in cell 2 transmits at 16-QAM on the same

subcarrier. Therefore B represents the space of all possible SBA combinations for

all the N BSs, with
∏N

n=1(QLn + 1) combinations in total. From our definition,

given b̃ = [bq̃1
l̃11
, . . . , bq̃n

l̃nn
, . . . , bq̃N

l̃NN
], we have aq̃n

l̃nn
= 1, and aqnlnn = 0 for any ln 6= l̃n

or qn 6= q̃n, ∀n ∈ N . Hence when b is given, it is sufficient to derive the values of

aqln, ∀l, n, q. The mapping between b and values of aqln’s is illustrated in Table 3.1

for the 2-cell example.

With each combination of SBA on one subcarrier being independent of that on

another subcarrier, we introduce the choice indicators ekb ∈ {0, 1}, where ek
b̃

= 1

indicates that a particular combination vector b̃ is selected on subcarrier k, and

ekb = 0 for all b 6= b̃. Since only one combination will be selected on every

subcarrier, constraints (3.8) are equivalent to

∑
b∈B

ekb = 1, ∀k ∈ K. (3.10)
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Conditioned on ek
b̃

= 1, the corresponding values of akqln are known. Representing

the non-zero variables as akq̃n
l̃nn

= 1, ∀n, we substitute them into (3.6) for BS ñ to

get Gkñ
l̃ññ
pkq̃ñ
l̃ññ

= (Ik
l̃ññ

+N0)γ q̃ñ
l̃ññ

. Using (3.1), constraints (3.6) for all BSs reduce to

a set of linear equations which can be written as

Gk
b̃
pk
b̃

= N0γb̃, (3.11)

where

Gk
b̃

=



Gk1
l̃11

−γ q̃1
l̃11
Gk2
l̃11

· · · −γ q̃1
l̃11
GkN
l̃11

−γ q̃2
l̃22
Gk1
l̃22

Gk2
l̃22

· · · −γ q̃2
l̃22
GkN
l̃22

...
...

. . .
...

−γ q̃N
l̃NN

Gk1
l̃NN

−γ q̃N
l̃NN

Gk2
l̃NN

· · · GkN
l̃NN


N×N

,

and pk
b̃

= [pkq̃1
l̃11
, . . . , pkq̃n

l̃nn
, . . . , pkq̃N

l̃NN
] and γb̃ = [γ q̃1

l̃11
, . . . , γ q̃n

l̃nn
, . . . , γ q̃N

l̃NN
] are two col-

umn vectors of length N . The elements Gkj

l̃nn
’s, j ∈ N , pkq̃k

l̃nn
’s and γ q̃n

l̃nn
’s take the

subscripts l̃n’s and superscripts q̃n’s given by b̃. Assuming that Gk
b̃

is non-singular,

the power vector pk
b̃

is given by

pk
b̃

= (Gk
b̃
)−1N0γb̃, (3.12)

where X−1 denotes inverse of matrix X. Using the same 2-cell example, given

b̃ = [b3
21, b

2
12], we have

Gk
b̃

=

 Gk1
21 −γ3

21G
k2
21

−γ2
12G

k1
12 Gk2

12

 ,
pk
b̃

= [pk3
21, p

k2
12] and γb̃ = [γ3

21, γ
2
12].
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We next define

ρk
b̃

=
∑

pkq̃n
l̃nn
∈pk

b̃

pkq̃n
l̃nn

=
N∑
n=1

Ln∑
l=1

Q∑
q=1

akqlnp
kq
ln , given any ek

b̃
= 1, (3.13)

then the objective function (3.4) can be converted to

max
akqln ,e

k
b

N∑
n=1

Ln∑
l=1

rln − c
K∑
k=1

∑
b∈B

ρkbe
k
b, (3.14)

where ρkb’s, ∀ekb = 1, are constants. It can be seen that the new objective function

(3.14) is linear, and the constraints (3.6) can be removed since the required SINR

have been guaranteed by (3.12). Constraints (3.7) for maximum power limit of

each station are then converted to

K∑
k=1

∑
b∈B

ekbpkb ≤ Pmax · 1, (3.15)

where 1 is a vector of length N with all elements having values 1.

In a way similar to how ρkb is introduced, we further define two sets of constants:

σk
b̃

=
N∑
n=1

Ln∑
l=1

Q∑
q=1

2q · akqln , given any ek
b̃

= 1, (3.16)

δk
b̃,ln

=

Q∑
q=1

2q · akqln , given any ek
b̃

= 1,∀l ∈ Ln and ∀k ∈ K. (3.17)

These values actually give the total data bits on a subcarrier in all BSs, and the

data bits for every single user on a subcarrier, respectively, for each SBA combi-

nation. The objective function (3.14) and constraints (3.5) can then be converted

equivalently to the forms involving only the choice indicators, ek
b̃
’s, as optimization
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variables. The original MINLP is finally transformed to an equivalent BLP given

by

max
ekb

K∑
k=1

∑
b∈B

(
σkb − cρkb

)
ekb, (3.18)

subject to

K∑
k=1

∑
b∈B

δkb,lne
k
b ≥ Rln, ∀n ∈ N ,∀l ∈ Ln and (3.19)

K∑
k=1

∑
b∈B

ekbpkb ≤ Pmax · 1, (3.20)

∑
b∈B

ekb = 1, ∀k ∈ K, (3.21)

ekb ∈ {0, 1}, ∀b ∈ B and ∀k ∈ K. (3.22)

We can see that the objective function has been converted to a linear form and

the nonlinearities in constraints are eliminated, thus the complexity of optimization

is drastically reduced, even though at the expense of an increased number of vari-

ables from 2KQ
∑N

n=1 Ln to K
∏N

n=1(QLn + 1). Compared with the MINLP, the

BLP requires potentially large numbers of constants to be calculated before it can

be solved. Among these constants, however, σkb’s and δkb,ln’s need to be calculated

only once and can be stored in lookup tables, while ρkb’s are periodically calcu-

lated at the beginning of the cycles where channel conditions of the subcarriers

are updated. With all variables having binary values, the BLP in (3.18)-(3.22) can

be efficiently solved by an algorithm which selects one out of the
∏N

n=1(QLn + 1)

combinations on a subcarrier, and repeats K times over all the subcarriers to de-

cide the optimal solution. Since quite a number of SBA combinations may not be

feasible, some measures could be taken to reduce the search space.
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To check for the feasibility of a SBA combination, (3.11) can be rewritten in

the following form

[
I− Fk

b

]
pkb = vkb, given any ekb = 1, ∀b and ∀k, (3.23)

where I is the identity matrix of size N × N , vkb = [vkql1 , . . . , v
kq
ln , . . . , v

kq
lN ] with

vkqln = N0γ
q
ln/G

kn
ln , and Fk

b is also a N ×N matrix with its (i, j)th element given by

[
Fk

b

]
ij

=


0, if j = i;

γqliG
kj
li /G

ki
li , if j 6= i.

(3.24)

By Perron-Frobenius theorem for non-negative matrices, there exists a non-negative

power vector, pkb, if and only if the maximum eigenvalue of Fk
b does not lie outside

the unit circle, or the spectral radius of Fk
b is not larger than one [67]. Without

considering data rate constraints, the feasibility region Ω is defined over all b ∈ B,

k ∈ K, where non-negative solutions exist for the power vector. As a result, any ekb

which corresponds to a region outside Ω can immediately be set to zero to reduce

search time. In the implementation, when the power vector pk
b̃

cannot be solved for

its corresponding ek
b̃
, all those power vectors on subcarrier k that have more users

than those existing ones in b̃ are infeasible as well and need not to be calculated.

3.3 Numerical Results

Computer simulations for a 3-cell OFDMA system are conducted, where each cell

has a radius of 100 and is separated by 100
√

3 among each other. BSs are lo-

cated at the centre of the cells, and locations of the two users in each cell are
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randomly generated. The propagation model takes into consideration the path

loss, shadowing and fast fading. The path loss (in dB) at a distance d from a BS

is taken as L(d) = L(d0) + 10α log10(d/d0), with d0 = 10 being the reference point

(L(d0) = 0dB) and α = 3.8. The shadowing effect is modelled as a lognormal

random variable with 10dB standard deviation. The four-path Rayleigh model is

used to model frequency selective fading with an exponential power profile. We

consider a multi-cell OFDMA system with 16 subcarriers. The receiver thermal

noise is -70dBm, and the required BER is 10−5 for every user. The maximum total

transmission power for each BS is 40dBm.

Figure 3.2: Example 1 of the optimal solution on subcarrier-and-bit allo-
cation.

Consider a snapshot of user distribution and channel conditions shown in Fig.

3.2. The optimal SBA solution for such a scenario is also presented in the histogram

shown in Fig. 3.2. It is observed that every subcarrier except subcarrier 6 has been

occupied by all three BSs, which corresponds to FRF = 1 on these subcarriers.

Such an allocation can fully utilize the available radio bandwidth in all cells and

help to increase total capacity of the whole system. In the exceptional case where

subcarrier 6 is exclusively assigned to user 2 in BS 1, it is due to the fact that

this user is located very closely to the cell boundary of BS 1, and the user may be



Chapter 3. Multi-Cell OFDMA Systems 43

Figure 3.3: Example 2 of the optimal solution on subcarrier-and-bit allo-
cation.

subject to strong attenuation in path loss, therefore reusing this subcarrier in any

other BSs must be avoided to prevent causing severe interference which can lead

to failure of meeting the user’s SINR requirement.

In Fig. 3.3, optimal solution of Example 2 is shown for another snapshot of

user distribution and channel conditions. In this case the number of subcarriers

with RFR=1 has reduced to only two, whilst three other subcarriers are shared by

two BSs and the rest are exclusively allocated to only one BS. In this scenario, we

can see that most of the users are located in the outer part of the cells, and some

are very close to the border of their corresponding cell and the neighbouring cells,

e.g. user 2 in BS 1 and user 2 in BS 2. Such users will usually suffer from strong

CCI and low SINR. To overcome this problem, the optimal solution is to allocate

exclusive subcarriers to these two users, in order to eliminate CCI and to ensure

SINR fulfilment, resulting in only a single use on these subcarriers over the 3 cells.

Also we notice that there are three subcarriers which are allocated to two cells,

therefore the optimal solution has adaptively assigned various reuse factors to the

subcarriers according to instantaneous path losses of the whole system.

In Fig. 3.4(a), we show the average utility of the system under different mini-
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Figure 3.4: Under various minimum rate requirements, (a) average utility
(b) user data rate.

mum rate requirements. As the minimum rate required by the users increases, we

can see that the utility of the system decreases. The difference in the allocated data

rate among the users, however, will reduce as the minimum data rate increases,

which can also be considered as a form of increased fairness among the users. The

result of a simulation instance is illustrated in Fig. 3.4(b), which clearly shows

that the fairness among users increases at the expense of reduced data rates for

user 1 in BS 2 and user 1 in BS 3. We can tradeoff between the system utility and

fairness by setting appropriate minimum data rates for the users, and the optimal

solution will achieve the best total utility while maintaining the fairness.
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3.4 Conclusion

Adaptive subcarrier-bit-and-power allocation (SBPA) problem in the downlink of

multi-cell OFDMA systems with FRF equal to one is considered in this chapter.

We presented a method to convert the MINLP problem to an equivalent BLP

in multi-cell OFDMA systems, by which the centralized optimal solution can be

obtained without relaxation and approximation. The optimal solution can serve as

the benchmark for comparing the performance of heuristic algorithms developed

using interference avoidance or reuse partitioning techniques.
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Chapter 4

Game Theory in Wireless

Communications

Game theory is a mathematical tool developed to model situations where multiple

decision makers have conflicts or competitions among each, and to analyse how

such decision makers interact strategically to achieve their objectives. Depend-

ing on whether cooperative behaviour may be enforced among groups of players,

games can be broadly classified into cooperative and non-cooperative games. The

players in a non-cooperative game are assumed to be selfish and rational, and

they make decisions independently. The selfishness and rationality assumptions of

non-cooperative games imply that every player will always adopts a strategy that

will maximize his own payoff, which makes the non-cooperative game theory a

very powerful tool to model wireless systems consisting of independent agents that

compete for radio resources among themselves. Therefore our work in this thesis

focuses on applying non-cooperative games to model radio resource allocation in

wireless systems.
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In this chapter, we will first introduce the basic concepts of non-cooperative

games, then review the applications of game theory on wireless systems, and finally

present our motivation on using integer bit numbers in game studies.

4.1 Introduction to Non-cooperative Games

4.1.1 Strategic Form Games and Pure Strategies

In this subsection, we first introduce the static game which has a single stage and

the players have only one move. The players are assumed to make their moves

simultaneously without knowing what others choose. A static non-cooperative

game can be represented in strategic form as

Γ = 〈N ,S, {un}n∈N 〉 ,

where the three major components are represented by:

• N – a finite set of players;

• S – a strategy space of the game; and

• un – payoff/utility function of player n, for n ∈ N .

The opponents of player n refers to all the players belonging to N except n himself,

which is often designated by subscript −n for convenience. The pure strategy space

of an individual player is denoted as Sn, for n ∈ N , where a pure strategy, sn ∈ Sn,

assigns zero probability to all moves except one, i.e. a player’s move is deterministic.

If the set of eligible strategies for a player is independent on the strategies cho-

sen by other players, the strategy space of the game is simply the Cartisian product
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of all strategy spaces of the players, given as S = ×n∈NSn. This is likely to be the

case if the game has no constraints, or if the payoff function of one player contains

the variables of other players but the constraints are free from variables of other

players. However, in games formulated with constraints that contain other players’

variables, such as resource allocation games with QoS requirement in wireless net-

works, the set of eligible strategies of a player changes as the players change their

strategies, hence S 6= ×n∈NSn.

Definition 1. A joint strategy of Γ, ŝ, refers to any possible combination of the

strategies chosen by more than one players.

Definition 2. A strategy profile of Γ, s = (s1, . . . , sN), refers to a joint strategy

which consists of the selected strategies of every player and is eligible to the game

such that all the constraints are satisfied.

A joint strategy does not necessarily satisfy all constraints and may not be

eligible to the game as a solution. Therefore a joint strategy may or may not be

a strategy profile, depending on whether all constraints can be satisfied. We refer

to the collective strategies of the opponents as ŝ−k ∈ S−k, where S−k = S \ Sk.

For any given strategy sn ∈ Sn and an arbitrary joint strategy from the opponents

s−n ∈ S−n, there is no guarantee that all players’ constraints will be satisfied for

(sn, s−n. Hence, it is more appropriate to define the strategy space, S, of the game

as the set of all strategy profiles with all constraints being satisfied, which also

implies that s is feasible, ∀s ∈ S.

The payoff function, un(s), quantifies the payoff of player n in the game for a

given strategy profile s, hence is a scalar-valued function un(s) : S 7→ R, where

R denotes the set of real numbers. By convention, un can also be denoted as
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0,  0 0,   4 

5,   0 3,   2 

Player 2 chooses 
Not transmit 

Player 2 chooses 
Transmit 

Best response  
of Player 1 

Best response  
of Player 2 

Ineligible joint  
strategy 

0,   0 0,   4 

5,   0 

Player 1 chooses 
Not transmit 

Player 1 chooses 
Transmit 

Player 2 chooses 
Not transmit 

Player 2 chooses 
Transmit 

Player 1 chooses 
Not transmit 

Player 1 chooses 
Transmit 

(a) Both players can transmit together (b) Both players cannot transmit together 

Figure 4.1: A non-cooperative wireless transmission game.

un(s′n, s−n) = un(s1, . . . , sn−1, s
′
n, sn+1, . . . , sN) to emphasize the payoff for different

strategies of player n with any given joint strategy of his opponents.

Let’s look at a non-cooperative wireless transmission game as a simple example.

In this game, there are two transmission pairs (players) which are deciding to

transmit or not on a common frequency channel. Assuming that BER requirements

can be fulfilled when both players transmit, the payoff table of the game is shown in

Fig. 4.1(a). Player 1 chooses the row and Player 2 chooses the column, where each

player has two strategies specified by the number of rows or number of columns.

The payoff received by Player 1 is represented by the first number in the interior of

a table cell, and the payoff for Player 2 is provided by the second number. Suppose

that Player 1 transmits and Player 2 does not transmit, then Player 1 gets a payoff

of 5 and Player 2 gets 0. If both player choose to transmit, they will get a payoff

of 3 and 2, respectively. The payoff of Player 1 is reduced when Player 2 transmits

because higher transmission power is required which results in higher cost.

On the other hand, if BER requirements can not be met when both players

transmit due to poor channel condition or power limit, the joint strategy consisting

of both players transmitting is ineligible in the game. This is shown in Fig. 4.1(b).

Such a change in strategy space of the game could lead to different outcomes for

the game, which will be discussed in more details in the next subsection.
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4.1.2 Nash Equilibrium

Due to the existence of competitions and lack of coordination among selfish players,

stability of game-play is a very important issue in non-cooperative games. The

concept of NE studies the existence and properties of stable outcome for non-

cooperative games.

Definition 3. A (pure) Nash equilibrium, s∗ ∈ S, is a strategy profile in a non-

cooperative game such that, for any n ∈ N ,

un(s∗n, s
∗
−n) ≥ un(sn, s

∗
−n), ∀sn ∈ Sn. (4.1)

In other words, if the game is at a NE point, no player can improve his payoff

with a unilateral deviation, given all other players’ chosen strategies. If there exists

a game-master, she would suggest a NE to the players, on which all players will

agree and will not deviate in the absence of coordination, since all players can obtain

maximum achievable payoff. Therefore a NE can be considered as the strategy

profile such that all players could obtain their best responses simultaneously.

Definition 4. The best response of player n to a given joint strategy s−n ∈ S−n is

a strategy βs−n ∈ Sn such that:

βs−n = arg max
sn∈Sn

un(sn, s−n), (4.2)

and (βs−n , s−n) ∈ S. In other words, given any s−n, one or more of the eligible

strategies of player n that would achieve maximum payoff are the best responses

for the player.
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We consider the examples in Fig. 4.1 to show how NEs could be found. For the

game with payoff table given in Fig. 4.1(a), assuming Player 2 not transmitting,

the best response of Player 1 is to transmit since 5 > 0; similarly if the given

strategy of Player 2 is to transmit, the best response of Player 1 is still to transmit

since 3 > 0. Vice versa, the best response of Player 2 is to transmit no matter

Player 1 chooses to transmit or not, since the payoff received by Player 2 is always

positive when he transmits. Marking each best response of Player 1 with a ‘square’

and each best response of Player 2 with a ‘circle’, respectively, the procedure to

find out the NE(s) in the game is illustrated in Fig. 4.2(a). Therefore we can see

that both players will choose to transmit, which is the outcome of the game, or a

unique NE for this game.

Whereas for the other game with payoff table given in Fig. 4.1(b), the NEs are

either Player 1 or 2 transmits, while the other player must not transmit. And the

procedure to search for the NEs in this game is illustrated in Fig. 4.2(b). It also

shows how NE(s) would change if the strategy space of a game has changed.

The existence of pure NE(s) is an important consideration when game theoretic

approach is used, as it decides whether stable solution(s) exist. For example, for

the power control games which deal with best effort transmission rate (i.e., without

any rate or QoS constraint), it was shown that a unique NE solution always exists

[68]. An existence theorem that has been widely applied in radio resource allocation

games is called the Debreu-Fan-Glicksberg theorem [62].
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1 

0 

0 

1 

Best response for player 1 given a2=0 is a1=1 

Best response for player 1 given a2=1 is a1=1 

Best response for player 2 given a1=1 is a2=1 

Best response for player 2 given a1=0 is a2=1 

0 1 

0 

1 

Best response for player 1 given a2=0 is a1=1 

Best response for player 1 given a2=1 is a1=0 

Best response for player 2 given a1=1 is a2=0 

Best response for player 2 given a1=0 is a2=1 

𝑎2 
𝑎1 

𝑎2 
𝑎1 

(a) 

(b) 

Figure 4.2: A graphical illustration to show how to find out: (a) A single
NE in the game shown in Fig. 4.1(a); (b) Two NEs in the game
shown in Fig. 4.1(b).

Debreu-Fan-Glicksberg Theorem. A strategic game 〈N ,S, {un}n∈N 〉 has at

least one pure NE if, ∀n ∈ N , the following conditions hold.

• Sn is a compact and convex set;

• the payoff function un is continuous in S and quasi-concave in Sn

A real number set Sn is compact if and only if it is closed and bounded. A set

Sn in a vector space over R is convex if for any pair of points in Sn, every point on

the straight line segment joining them also lies entirely inside Sn. Illustrations of

a convex set and non-convex set are shown in Fig. 4.3(a) and 4.3(b), respectively.

Also, a function f(x) is quasi-concave if f(λx + (1 − λ)x′) ≥ min{f(x), f(x′)},

∀x, x′ ∈ Sn and ∀λ ∈ [0, 1].

4.1.3 Repeated Games

Whether one or more NEs exist in a game is important in game theory, and if a NE

does exist, how the players might reach the NE without coordination is another
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(a) A convex set (b) A non-convex set

X

Y

X

Y

Figure 4.3: Illustrations of convex set and non-convex set.

important issue. One possible way to study the convergence to NE in a game is to

have the game repeatedly played, where we assume that the players in the game

know the actions of all other players in the previous interactions. Such games

are formally defined as repeated games with observable actions and perfect recall,

which means that all players know all the moves of others, and that each player

remember the history of his own moves in all the previous stages.

In repeated games, an action or move refers to the decision a player makes in a

given round, which should be differentiated from strategy that is used to refer to the

rule in mapping a possible information state of the player into an action. Therefore

a strategy in repeated games can be represented as s : X−n → Xn, where Xn and

X−n denotes the action space of user n and that of his opponents, respectively. A

repeated game can be expressed in strategic form as Γ = 〈N ,X , {un}n∈N 〉, where

X denotes the action space of the game. For a given action profile of his opponents,

x−n ∈ X−n, a player might choose the best action or one of the better actions to

improve his payoff as a response, which are formally defined as the best and better

responses, respectively.
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Definition 5. The better response of player n to the action profile x ∈ X is an

action x′n such that:

un(x′n, x−n) ≥ un(x). (4.3)

4.2 Applications of Game Theory

4.2.1 Non-Cooperative Games

In OFDMA cellular systems, the complexity of optimization increases rapidly with

the number of subcarriers, number of users and number of cells in the centralized

approach. There is also a need to obtain all channel information of all the BSs.

Recently there are efforts to reduce computation complexity and information ex-

change by performing radio resource management (RRM) at the respective BS. A

suboptimal approach was proposed to have the decision of subcarrier allocation

made at a RNC, followed by performing bit and power allocations at every individ-

ual BS [25]. More algorithms were proposed to have resource allocation centrally

made at each BS but decentralized across the BSs [26]–[28].

As an effective tool to study these decentralized, multi-agent systems, game

theory has been extensively applied in recent reported works in this context. Also

due to generally little to no coordination among the agents in distributed systems,

they will compete among each other for radio resources to maximize their own

payoff. The steady state of such competitions can be described by the concept of

Nash equilibrium (NE). Conditions for the existence and uniqueness of pure NE, as

well as the convergence to one of the pure NEs if they exist, have been investigated

in [67]–[69] for OFDMA systems. To improve the efficiency of game solutions, an
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algorithm was proposed with a pricing function proportional to transmission power

in [71] to achieve at lower power levels and higher utility than the terminals can

achieve when they individually strive to maximize utility.

In the context of SBPA for OFDMA systems, various types of games have been

formulated, where conditions for the existence and uniqueness of NE, as well as the

convergence to one or any of the NE that exists have been investigated and derived.

For instance, a potential game on the uplink of multi-cell OFDMA systems was

formulated in [79]. The NE has been proved to be unique and convergence to the

NE is guaranteed. In [86], a power minimizing game was proposed for OFDMA-

based distributed systems. By taking the interference power minimization into

consideration, the game was shown to be a potential game and the existence of NE

and convergence to the NE were also proved. Game theory has also been applied to

relay-based OFDMA systems [80] [81], as well as to multiuser MC-CDMA systems

[72]. A recent work on OFDMA femtocell networks was also reported in [73], where

two-tier resource allocation games were formulated on the macrocell and femtocell

levels to achieve efficient and fair resource sharing.

However, most of the existing results were obtained by tackling the problem

from an information theoretic aspect [67]–[81], whereby algorithms which relax the

bit loading process to a real number is developed. The next step is to approximate

the computed real values to the nearest integer so that practical modulation level

can be used. Unfortunately, this can be efficiently performed only with the pres-

ence of a centralized controller. None of these reported works mentioned about

how this can be achieved in a distributed system – it is of no surprise that the

decisions from the distributed decision makers may contradict and further worsen
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the interference of some of the subcarriers if without any coordination. This makes

WF-based algorithms, which is optimal for single-user system, become inefficient

under multiuser environment. To our best knowledge, there is no attempt to for-

mulate the non-cooperative game model of OFDMA systems directly using integer

number of bits.

Besides its applications in OFDMA systems, RRM can also be applied to other

areas such as dynamic spectrum access which represents a new paradigm in man-

aging scarce radio spectrum resource. Unlike conventional method where the spec-

trum is exclusively assigned to and used by primary licensed users, a more flexible

approach using dynamic spectrum assignment is under initiative. With the fore-

cast regulatory policy changes and radio technology advancements, opportunistic

spectrum sharing is very promising to improve spectrum utilization. There are two

possible ways to realize this vision. One way is to allow secondary users of lower

access priority to operate in the spectrum white space while not interfering the

operation of the primary network. The other way is to operate all radios at equal

rights to opportunistically access the spectrum for transmission.

Reconfigurable or cognitive radios are believed to be an enabling platform to

realize this ambitious vision. These distributed radios are envisioned to be equipped

with the computational intelligence to sense, learn and dynamically adapt to the

radio environment. Like radios in ad-hoc networks [74] [82], there are no centralized

controllers such as BSs to decide which nodes to transmit. The lack of central unit

imposes a challenge to system designers in making efficient use of radio resources,

since global optimization may not always be possible. With competitions on radio

resource for transmission, cognitive radios interact among each other in a selfish
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way and their decisions are made in a distributed manner.

Game theory is again a suitable mathematical tool to analyse such interac-

tive decision makers with conflict-of-interests. A non-cooperative game model is

proposed in [83] such that the spectrum sharing problem can be formulated as an

oligopoly market, where the market is dominated by a small number of sellers. The

power optimization problem in decentralized cognitive radio networks, satisfying

interference temperature limits at multiple measurement points, has been formu-

lated as a potential game to ensure the existence of and convergence to a pure NE

[75]. Potential games have a nice property of convergence and will be introduced

in more details in Section 5.4.2. In order to have efficient cognitive medium access

control (MAC), two MAC problems are proposed, one as a channel allocation game

and the other as a per channel multiple access game, respectively [76]. The first

game shows near optimal allocation of channels at NE solution and the second

admits a NE that is both fair and Pareto-optimal.

Regardless of whether game theory is applied to RRM of distributed nodes, or

as an attempt to distribute the computation among BSs, stability and convergence

are two highly desirable properties in wireless system design. If a stable solution

cannot be guaranteed by an algorithm, the system would not be reliable since its

output state will eventually become unpredictable. Although the convergence of

power control in cellular systems are extensively investigated in some works such

as [60], such a study in the works using game theory still has much to explore. To

enhance system stability, a virtual referee was introduced to monitor the competi-

tions among the non-cooperative players [61], such that when the outcome of game

is not desirable, the virtual referee will reduce the transmission rates of some of
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the users in order to improve the overall efficiency.

Unfortunately, only a few known problems can achieve these objectives in non-

cooperative games, including power control games which can be modelled as po-

tential games [35]. For most of these works, the objective is to maximize either

the individuals’ capacity or SINR, and the problems are formulated from the in-

formation theoretic perspective, where real numbers of bits are obtained through

applying water-filling algorithm. However, rounding the real numbers to integers

for practical implementation in an uncoordinated manner would actually make the

system to deviate from the equilibrium point and cause instability. Furthermore,

there is no guarantee of transmission quality in a power game if each user is just to

maximize its SINR. In situations where we expect individuals to meet specific QoS

supports such as BER requirements, as will be seen shortly, the problem changes

to a game with discrete strategy space.

4.2.2 Games with Coordination and Cooperation

The purely non-cooperative game model could be overly pessimistic in infrastructure-

based networks, such as cellular networks, broadband access networks and wireless

local area networks (WLAN). Since a centralized operator retains the control over

common resources in these networks, the non-cooperative setting may not be able

to fully capture the gain that could be obtained if coordination were made.

As an alternative to centralized optimization, meanwhile, cooperative game the-

ory has been applied to analyse networks with spectrum sharing [41], which can

help us better understand some of the issues involved in cooperation and bargain-

ing. In a cooperative game, players coordinate to achieve a mutually desirable
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solution, by bargaining with each other before the game is played. If an agreement

is reached, players act according to the agreement made, otherwise players act in

a non-cooperative way. The agreement reached must be compulsory so that no

players are allowed to deviate from what is agreed upon, which can be enforced by

a central controller. For example, Uplink scheduling in LTE systems was consid-

ered in [42], where the scheduling problem was represented as a Nash bargaining

solution, and an algorithm was proposed to tradeoff between the increase of total

throughput and fairness towards the different users.

In daily life, a market serves as a central gathering point, where people can ex-

change goods and negotiate transactions to satisfy their needs through bargaining.

Cooperative game theory for resource allocation in single-cell multiuser OFDMA

systems is applied in [38], where the BS serves the function of a market. The dis-

tributed users can negotiate via the BS to cooperate in making decisions on the

subcarrier usage, such that each of them can operate at its optimum point and joint

agreements are made about their operating points. Such a model can be extended

to multi-cell cases where the RNC can act as a market and the BSs are players who

can negotiate and bargain between each other.

The cooperative game model faces some challenges similar to centralized op-

timization, such as large signalling overhead, high computation complexity and

processing delay. A semi-distributed scheme was proposed in [25] to reduce over-

head and computational load by splitting the decisions between RNC and BSs. The

RNC coordinates mutual interference (inter-cell) at a super-frame level, whereas

each BS makes faster frame level channel assignment decision based on the resource

utility values for its users.
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Between the two extremes of purely noncooperative and completely coopera-

tive settings, there could exist games with various degrees of coordination lying

in. It remains to be a vastly open issue to fully exploit the coordination gain in

infrastructure-based networks to maximize system performance, yet keeping the

complexity to a minimal level with appropriate game models. By appropriately

splitting the scopes of resource allocation between RNC and BSs, and introducing

bargaining among the BSs to enhance cooperation, we could obtain some benefits

from both coordination and autonomy. It it also possible to combine the use of

non-cooperative and cooperative games depending on the need of system study,

such as [43], where a game-theoretic framework for radio resource management

in heterogeneous wireless access networks was proposed. In this framework, two

non-cooperative games were formulated to obtain bandwidth allocation to a service

area, as well as to an incoming connection, respectively, while a bargaining game

was used to satisfy the connection-level QoS requirements.

4.2.3 Cognitive Radios and Networks

Wireless networks are evolving towards networks of small, smart devices which

opportunistically utilize the radio spectrum with minimal coordination and infras-

tructure. This evolution is motivated by the emergence of cognitive radios (CRs)

and the underlying software defined radio (SDR) technological advancements. Pro-

posed by Mitola in [44], cognitive radios are envisioned to have the capabilities to

measure and analyse their environment, and make decisions in terms of their trans-

mission parameters to maximize their own defined payoff parameters, through a

process known as cognition cycle. Naturally a network consisting of such intel-
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Figure 4.4: A game theoretic model for the cognition cycle [46].

ligent terminals can be modelled by a game theoretic framework, in which the

players of the game are the terminals and the strategic actions they can take are

the transmission parameters. Each player will rationally and independently decide

their own actions to maximize his utility, which can be some performance measures

depending on throughput, delay, power consumption and so on. A game theoretic

model of the cognition cycle is depicted in Fig. 4.4.

The performance of such networks is ultimately limited by interferences, and

therefore efficient and adaptive interference management techniques are essential

elements in network design. With possible heterogeneous capabilities and require-

ments, the smart terminals independently measure the channels and autonomously

make decisions to maximize their own benefit. Such actions affect not only their

own performance but also that of the local neighbourhood or even of the entire

network. Several previous works have shown that cooperation in ad hoc networks

can increase the throughput per node [47] or improve spectral efficiency [48] by



Chapter 4. Game Theory in Wireless Communications 62

exploiting some form of multiuser diversity. While sufficient evidence exists that

various forms of cooperation may improve network performance ([47]–[51]), the

issue on how to enable and exploit cooperation, e.g. by developing higher layer

distributed protocols, has become a recent research focus.

The concept of cognitive radios is envisioned to eventually extend to cognitive

networks, where each node individually adapts based on network-wide considera-

tions to yield better overall performance to the network as a whole [52]. In this

context, network nodes are expected to be aware of their environment, to be able

to dynamically adapt to that environment, and to be able to learn from outcomes

of past decisions. Both more sophisticated adaptation and the ability to learn

are expected from future radios, to solve complex problems such as opportunistic

utilization of spectrum. The study of how these radios will learn and how fast

they will converge to effective solutions becomes relevant. There has been work on

applying game theory to analyse the performance of cognitive networks, but there

is still much to be done in this area.

4.2.4 Spectrum Sharing Games

The frequency spectrum is a fundamental resource whose management has been

performed primarily through policies imposed by national regulatory authorities.

To eliminate interference between different wireless technologies, current policies

allocate a fixed spectrum slice to each wireless technology. This static assignment

prevents devices from efficiently utilizing allocated spectrum, resulting in spectrum

holes (no devices in area) and very poor utilization [40].

To achieve higher efficiency in spectrum utilization, currently there is much ef-
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fort by regulators to study the use of more flexible spectrum management policies

such as those using market mechanisms and liberalization. An overview of alter-

natives to the static spectrum management approach is presented in [39], where

three broad categories of spectrum sharing are identified.

On the other hand, many researchers are currently engaged in designing spec-

trum sharing schemes using game theory. A broad category of spectrum sharing

games consists of those games in which the players are network operators. For

example, a spectrum sharing game between two cellular operators along the na-

tional border of two countries was studied in [53], while another scenario where

the mobile users can freely roam across the BSs of different operators and attach

to the one with the most favourable signal quality was investigated in [54]. There

are also other spectrum sharing games modelling the competition between cellular

and Wi-Fi operators [55], as well as among Wi-Fi operators [56] and heterogenous

wireless systems [57]. Such studies have provided some insights on the competitions

and interactions among the players of spectrum sharing games.

Cognitive radios can detect whether a certain radio band or channel is being

occupied, sense the interference levels in the channels, as well as control the trans-

mission power and manage spectrum usage dynamically [45]. These capabilities

enable a flexible sharing of the wireless spectrum which can enhance spectrum

utilization. A typical scenario is called opportunistic spectrum sharing, in which

the radio spectrum is licensed to primary users (operators), while secondary users

(cognitive radios) are allowed to utilize the channels as long as they do not interfere

with the primary users [40], [58], [59]. Fig. 4.5 provides an example of opportunis-

tic spectrum sharing where the unused spectrum from a TV broadcast channel is
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Figure 4.5: An example of opportunistic spectrum sharing.

utilized to provide Wi-Fi connections to a residential community. Located within

the coverage of primary user X, secondary user 2 can not make use of channel A as

it would interfere with X. Secondary users 1 and 3, however, can emit on channel

A as long as they control their transmission power not to interfere further than

ds(1, A) and ds(3, A), respectively.

There are also recent studies investigating spectrum sharing among cognitive

radios in OFDMA networks, e.g. [61]. It can be seen that game theory has been

applied to various spectrum sharing schemes, particularly with the players being

the network operators and cognitive radios. Such studies provide insights on the

possible consequence of greedy behaviour in wireless networks with distributed

resource allocation.
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4.3 Motivation

Although game theory has been extensively applied in many areas of wireless com-

munications, there still exist several issues that need to be solved or improved, one

of them being the way how existence of NE is proved. In most existing works, the

Debreu-Fan-Glicksberg theorem forms the basis for the proofs of NE existence in

various non-cooperative games formulated. With the assumption that the strategy

spaces of all players are compact and convex, it implies that the strategy variables

are continuous. When such strategy variables are representing the numbers of bits

to transmit, they may no longer be appropriate since the actual numbers of bits

transmitted should be integer values in reality. Hence potential issues could exist

on the NE existence proved under such an assumption.

For demonstration purpose, we look at a resource allocation game with QoS

constraint in the downlink of a cellular system. The system consists of N cells,

where each cell has one user. Each BS attempts to transmit to its corresponding

user over a common frequency channel, causing ICI among the cells. The SINR of

user n can be expressed as:

γn =
pnG

n
n∑

j 6=n pjG
j
n +N0

, (4.4)

where pn is the transmitted power from BS n and Gj
n is the path loss from BS j to

user n, respectively.

To achieve high spectral efficiency, we assume M -QAM is used. For a specific



Chapter 4. Game Theory in Wireless Communications 66

BER requirement, the transmission rate is approximated by [61]:

rn = W log2(1 + c3γn), (4.5)

where W is the bandwidth, c3 = − c2
ln(BERn/c1)

, and c1 ≈ 0.2 and c2 ≈ 1.5 with a

small BERn.

It can be seen that each BS needs to choose how much transmit power to use.

By considering the BS and its corresponding user as a player of the game, the above

system can be formulated as a resource allocation game as below:

〈N ,P , {un}n∈N 〉 , (4.6)

where P is the strategy space of transmission power for all players. The payoff

function of a player is defined as the transmission rate minus the power cost, given

as follows:

un = rn − cpn, (4.7)

where c is the cost factor of transmission power.

Such a radio resource allocation game can be shown to have at least one NE

by applying the Debreu-Fan-Glicksberg theorem. Firstly, Pn ∈ R+ is compact and

convex; secondly, un is continuous in P for any n ∈ N ; lastly, un is a log function

in pn minus a linear term also in pn, which is quasi-concave in Pn. Since all the

conditions stated in Debreu-Fan-Glicksberg theorem are met, existence of NE in

the game is guaranteed.

Although NE existence can be easily proved using the information theoretic

approach where the payoff function is usually log-based, a certain issue could arise
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Figure 4.6: An example of NE in a radio resource allocation game.

when the results are to be implemented in practical systems. As an example, let’s

take a look at Fig. 4.6 which shows a single NE in a 2-player game. The NE is

given by the intersection point of the two curves representing the best responses

of player 1 and 2, respectively. The NE suggests that the players are to transmit

at a data rate greater than 1 bits, which in practice will lead to that both players

transmit at a rate of 2 bits after rounding the real number to an integer. However,

if both players do transmit 2 bits at the same time, the solution is infeasible and

both of their BER requirements could not be met due to high CCI.

On the other hand, if we use discrete values for the bit rates to analyse the

game, we would find that the actual NEs for the system are either player 1 to

transmit 2 bits and player 2 not to transmit, or vice versa. This example shows

that when real numbers are used to determine the numbers of bits to transmit,

the NE(s) found can be different from the reality where only integer values are

practical for the numbers of bits. Therefore we are motivated to use integer values
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for the bit-loading process in non-cooperative resource allocation games, resulting

in discrete strategy spaces for the games formulated. Our analysis on the games

hence uses an approach different from those where information theory are usually

applied, and the details will be presented in the next two chapters.
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Chapter 5

Spectrum Sharing Games

In this chapter, we study the existence of static NE solutions when distributed

nodes are opportunistically accessing a common frequency channel for transmission,

and those nodes which decide to transmit must fulfil their BER requirements. The

payoff function of each node is a trade-off between the revenue generated from

throughput and the cost of energy consumed. This chapter contributes in the

following ways. The problem of distributed nodes accessing a common frequency

channel is formulated as a non-cooperative resource allocation game (NRAG) where

integer number of transmitted bits is used and BER requirement is expressed in

term of SINR. To our best knowledge, some simulation works have been reported

[77] but there is no theoretical proof to assure that the problem has pure NE

solutions. We first prove that for NRAG with only two players, there is at least

one NE solution, and we numerically compute the probabilities where there are

one or two pure NEs under Rayleigh fading channel conditions. Then we extend

the investigation to N -player NRAG, where a reasonable assumption is made such

that a player’s strategy is to transmit only if positive payoff can be received. We
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prove by mathematical induction that there exists at least one pure NE with integer

bit-loading and BER requirement in the presence of N players. We benchmark the

performance of NRAG to that when a centralized decision maker is used. The price

of anarchy is obtained based on the average performance of NE solutions, which

shows that almost two-third loss in performance could occur when the number

of nodes is large (i.e., higher interference). The results derived from this work

are finally extended to the discussions on the existence of NE in multi-channel

distributed networks.

5.1 System Model and Game Formulation

We consider N communication pairs spatially distributed over a region that are

competing to transmit over a common frequency band. For brevity, TXn and

RXn are used to denote the transmitter and the receiver of communication pair n,

respectively, where n ∈ N , withN = {1, . . . , N} denoting the set of communication

pairs. TXn will transmit only if there exists a transmission power pn so that the

designated RXn can meet the QoS requirement in term of specific BER for a given

transmission rate, otherwise, the transmission link is unreliable and TXn prefers

not to transmit.

When two or more communication pairs (N ≥ 2) are transmitting at the same

time, CCI exists. The total interference power experienced by RXn can be written

as

In =
N∑
j=1,
j 6=n

ajpj ·Gn,j, (5.1)

where Gn,j denotes the channel gain from TXj to RXn, for n, j ∈ N . We use an to
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denote the choice of communication pair n: an = 1 if TXn is transmitting, otherwise

an = 0. Let γn be the SINR threshold to satisfy the BER requirement of pair n

transmitting with M -QAM modulation, where the transmission rate rn = log2M .

Then the SINR at RXn must satisfy:

pn ·Gn,n

In +N0

= anγn, (5.2)

where N0 is the PSD of AWGN and is assumed to be identical for all receivers. If

transmitting, an = 1 and pair n has a throughput of rn bits per symbol duration,

else an = 0 which also implies pn = 0.

The reward from successful transmission of rn bits is given by ξnrnan, where

ξn denotes the reward generated per transmitted bit for pair n. The cost for

transmission comes from power consumption and is given by ζn × pn, where ζn is

the cost per unit power consumed by TXn. The payoff for each pair is given as

the reward subtracted by cost. Without loss of generality, denoting cn = ζn
ξn

and

ignoring the constant of proportionality, the payoff function for player n is given

by

un = rnan − cnpn. (5.3)

Such a payoff function with linear pricing has also been adopted in some reported

works, for example, [78] and [68]. The term cn can be used to reflect priorities

among the transmission pairs if different values are used.

Without loss of generality, we assume rn
cn
< Pmax,n, where Pmax,n denotes the

maximum achievable power of TXn. Then the individual transmission power, pn,

can be bounded in two ways:
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Case 1: 0 ≤ pn <
rn
cn

. This ensures that un > 0 for all pairs that choose to

transmit.

Case 2: 0 ≤ pn ≤ Pmax,n, i.e. each transmitter is just bounded by a maximum

transmission power. This gives no constraint on the payoff. Even if SINR can be

met, some transmission pairs might receive negative payoffs.

For the case where rn
cn
≥ Pmax,n, all pairs that choose to transmit will receive

un > 0, which is the same as Case 1 except that pn is bounded by Pmax,n instead.

Since each transmission pair will try to maximize its own payoff, the system

can be formulated as a collection of optimizations,

max
an

un, ∀n ∈ N , (5.4)

subject to

pn ·Gn,n

In +N0

= anγn, ∀n ∈ N , (5.5)
Case 1: 0 ≤ pn <

rn
cn

;

Case 2: 0 ≤ pn ≤ Pmax,n,

∀n ∈ N , (5.6)

an ∈ {0, 1} ∀n ∈ N . (5.7)

Equations (5.5) and (5.6) represent the SINR requirement at RXn and power con-

straint at TXn, respectively. The optimization variables consist of an’s only, as

shown in (5.7). This is because the power variables, pn’s, can be computed using

the method to be described in Section 5.1.2, conditioned on a given combination

of an’s.
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Due to interactions among the communication pairs through In, the SINR con-

straints have nonlinear terms which consist of the products, anaj, for n, j ∈ N

and j 6= n. Therefore the optimizations in (5.4)–(5.7) are non-linear programming

problems. The optimal choice of pair n also depends on all other transmission

pairs’ decisions. In the next section, we will show the necessary condition for the

existence of stable solutions to the problem.

It may be good to compare the optimality of the solution obtained in the above

whereby distributed decisions are made with the social welfare (SW). The SW is

defined as the total payoff received by all the individuals [30],

u =
N∑
n=1

un. (5.8)

Then the optimal solution is obtained by maximizing the SW over the union of all

players’ constraints. Mathematically, this can be written as

SW : max
{an}n∈N

u, (5.9)

subject to the same constraints (5.5) – (5.7). It can be expected that the optimal

value of SW is the same as the optimal solution obtained by centralized optimiza-

tion presented in Chapter 3.

5.1.1 Formulation of Non-cooperative Games

Under circumstances where distributive decisions are made and there exists conflict-

of-interest among the decision-makers, game theory is a useful tool to study and

analyse such systems. In our system, since the decision for TXn whether to trans-
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mit depends on maximizing its payoff which is also influenced by the decisions

made by other communication pairs through the CCI generated, opportunistic

transmission among the pairs can be modelled as a non-cooperative game with

each communication pair being a player.

The system described in (5.4) – (5.7) can be formulated as a NRAG in the

strategic form given by:

NRAG : Γ = 〈N ,A, {un}n∈N 〉 , (5.10)

where N and A denote the set of players and the strategy space, respectively.

The players are the transmission pairs, and a strategy is the choice of a player to

transmit or not to transmit.

We assume that the NRAG is a game with complete information, so that every

player knows the payoffs and strategies available to other players. Furthermore,

the players are assumed to be rational and selfish, thus each of them will try to

maximize his own payoff for a given joint strategy of his opponents.

5.1.2 Strategy Profile and Strategy Space

Since the selection of a strategy should be deterministic rather than probabilistic

for implementable practical systems, throughout this chapter we shall consider

only the pure strategies. In the formulated NRAG, any combination of an ∈ {0, 1},

∀n ∈ N , is a possible joint strategy to the game. A method was proposed in [66] to

convert a MINLP to a BLP by solving the values of pn for any given joint strategy.

The key point is that the SINR constraints for all the N players form a set of linear
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equations which can be expressed as

(A ◦G) p = (a ◦ γ)N0, (5.11)

where a = [a1 · · · aN ]T , p = [p1 · · · pN ]T , γ = [γ1 · · · γN ]T and

G =



G1,1 −γ1G1,2 · · · −γ1G1,N

−γ2G2,1 G2,2 · · · −γ2G2,N

...
...

. . .
...

−γNGN,1 −γNGN,2 · · · GN,N


. (5.12)

The (i, j)-th element of matrix A is denoted as [A]i,j = aiaj, ∀i, j ∈ N . The

operator ◦ denotes the Hadamard product, or entry-wise product of two matrices

or vectors.

Assuming that a feasible solution of the power vector, p, exists, it can be

obtained as

p = (A ◦G)−1 (a ◦ γ)N0. (5.13)

Therefore with a given combination of an’s, ∀n ∈ N , the transmission power for

all pairs can be determined. In particular, if the solution is not a positive power

vector, the SINR of transmitting players cannot be met concurrently. On the other

hand, even if positive power vector is obtained, in order to be in the strategy space

of Γ, all the power constraints given in (5.6) must be satisfied.
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5.2 2-Player Non-cooperative Game

5.2.1 Existence of NE

We first consider the simplest two-player NRAG, which can be formulated as fol-

lows:

NRAG-2: Γ2 = 〈{1, 2},A, {u1, u2}〉 .

A joint strategy of Γ2 can thus be represented by a 2-tuple, (a1, a2), with a1, a2 ∈

{0, 1}. Without loss of generality, we assume a fixed modulation, 4-QAM, is used

if TXn transmits, i.e., rn = 2.

Using the case where both players transmit as an example, the transmission

power of both players can be computed from (5.13) as


p1 = (G2,2 + γ2G1,2)γ1N0

∆

p2 = (G1,1 + γ1G2,1)γ2N0

∆

, (5.14)

where

∆ = G1,1G2,2 −G2,1G1,2γ1γ2. (5.15)

It can be easily seen that p1 and p2 will take non-negative values only if ∆ > 0. By

substituting (5.14) into the payoff functions of both players, un can be expressed

as a function of channel gains.

For each of the five possible joint strategies, we can compute the payoffs for the

two players. These values can be tabulated in a 2×2 table, as shown in Fig. 5.1. Us-

ing Fig. 5.1(e) as an example, the strategy space is given by {(0, 0), (0, 1), (1, 0), (1, 1)}

where a ‘0’ indicates no transmission while a ‘1’ indicates transmission with 4-QAM.
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Each entry in the table is the collection of the payoffs for player 1 and player 2,

denoted as (u1(a1, a2), u2(a1, a2)), respectively. It is not difficult to show that the

following properties hold:

(a) u1(0, 0) = u2(0, 0) = 0, u2(1, 0) = u1(0, 1) = 0;

(b) u1(1, 0) > u1(1, 1), u2(0, 1) > u2(1, 1).

The reason behind (a) follows the definition of the payoff functions, where if

there is no transmission, the players receive zero payoff. The reason to (b) is

intuitive: if the opponent transmits, the player has to increase its transmission

power to sustain its quality, and hence results in a smaller payoff. For Case 1, a

joint strategy will not be a strategy profile if SINR requirement cannot be met even

it is transmitting at maximum power, or if its payoff is negative even though SINR

can be met. For Case 2, a joint strategy will not be a strategy profile only if SINR

cannot be satisfied, whereas the payoffs for some players could be negative with

a certain strategy profile. However, a rational player will always prefer a strategy

with zero payoff (i.e. no transmission) over that with a negative payoff.

In Fig. 5.1, we use α, β, α− and β− to denote positive utility values, where

0 < α− < α, 0 < β− < β. The notation ‘−’ is used to denote some negative utility

value in Case 2. A ‘cross’ is used if the joint strategy is not a strategy profile. A

‘do not care’ indicates that there are more than one joint strategies which will not

affect the choice of NE(s).

We first consider Case 1, in which a player transmits only if it can achieve a

positive payoff. All possible scenarios are shown in Fig. 5.1(a)–5.1(e). For example,

Fig. 5.1(d) illustrates a scenario where (1, 1) is marked with a ‘cross’ to indicate

that it is not a strategy profile due to at least one of the two reasons aforementioned.
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Figure 5.1: All possible scenarios of NE existence for 2-player NRAG game.
Case 1: (a)-(e); Case 2: (a)-(k). α > α− > 0, β > β− > 0.

In this example, the strategy space is given by {(0, 0), (0, 1), (1, 0)}. The players

have positive payoffs, i.e. u1 = α > 0, u2 = β > 0.

Using Fig. 5.1(e) as another example, we illustrate the procedure to look for

the NE in NRAG-2. In this case, the best response of player 2, regardless of his

opponent’s (player 1) decision to transmit or not, is to transmit. The two best

response solutions are marked using the circles. Similar argument holds for player

1 and the best responses are marked with squares. From Definition 3, the best

response common to both gives the NE, i.e., (a1 = 1, a2 = 1) is the NE solution.

In the situation shown in Fig. 5.1(d), if we follow the same working procedure,

(a1 = 1, a2 = 0) and (a1 = 0, a2 = 1) are found to be two NEs. Similarly, we can

show that the remaining scenarios shown in Fig. 5.1(a)–(c) have only one NE.

We shall next consider Case 2, in which the payoff can take negative values as

long as the transmission power is less than Pmax,n to meet the SINR requirement.

Fig. 5.1(a)–5.1(k) show all the possible scenarios. It is not difficult to verify that
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for any of the scenarios in Fig. 5.1(f)–5.1(i), if we replace every cell containing

negative payoff with a ‘cross’, then the scenario becomes one of those in Fig. 5.1(a)–

5.1(e). For example, if u1(1, 1) < 0 < u1(1, 0) and u2(1, 1) < 0 < u2(0, 1), the

corresponding payoff table shown in Fig. 5.1(i) has the same NEs as the one shown

in Fig. 5.1(d). For the two exceptional cases in Fig. 5.1(j) and 5.1(k), the game has

only one NE solution. But if cell (1,1) is replaced with a ‘cross’, the game becomes

the same as that in Fig. 5.1(d), which has two NEs. More will be discussed when

we referred to the NE regions in Fig. 5.2 shortly.

We have shown that in either Case 1 or 2, for two players, at least one NE exists

through listing all the possible strategy space. Therefore we have the following

theorem.

Theorem 5.1. There exists at least one NE in Γ2.

Proof. We prove the theorem by examining the existence of NE under all possible

conditions of the payoff functions, u1 and u2. In fact, all the possible scenarios of

u1 and u2 have been illustrated in Fig. 5.1(a)–(e) for Case 1 and Fig. 5.1(a)–(k)

for Case 2. It can be seen that there are one or two NEs corresponding to each

scenario in Fig. 5.1. Since the scenarios listed are exhaustive, we can conclude that

there exists at least one NE in any condition, hence Theorem 5.1 is proved.

5.2.2 Effect of Channel Conditions

Having shown that NRAG-2 has at least one NE, we now study how the number of

NEs changes as channels vary using a numerical example. The interference gains

are fixed at G2,1 = 0.03, G1,2 = 0.05. The direct paths G1,1 and G2,2 ∈ [0, 2]. For

simplicity, the transmission power limit is removed in this study. By using the NE
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Figure 5.2: Illustration of Nash equilibrium regions for 2-player NRAG
game with G2,1 = 0.03 and G1,2 = 0.05.

definition given in (4.1), the regions where various strategy profiles become the

NEs of Γ2 can be drawn, as shown in Fig. 5.2(a) and 5.2(b) for Case 1 and Case 2,

respectively. The behaviours of NE for both cases are the same except at regions

IMCJ and ILFN shown in 5.2(b), which will be explained further.

Now we consider the NE regions shown in Fig. 5.2 as follows. In region AEHD,

both players will choose not to transmit due to poor channel conditions because

u1(1, 0) ≤ 0 and u2(0, 1) ≤ 0, which corresponds to Fig. 5.1(a) in Case 1 and Fig.

5.1(f) in Case 2. There is only one NE at (0, 0) for this region. Since the area of

AEHD depends only on the main path gains and is usually very small, we have

amplified the background noise N0 to enlarge this region in our illustration. Next

we consider region EBCH, which corresponds to u1(1, 0) > 0 and u2(0, 1) ≤ 0, or

Fig. 5.1(b) for Case 1 and Fig. 5.1(g) for Case 2. To prevent negative payoff from

transmission, Player 2 always chooses not to transmit regardless of player 1’s choice.

On the other hand, player 1 will always choose to transmit to obtain positive payoff

since player 2 is not transmitting. This results in a single NE at (1, 0). Similarly,

region DHFG represents the case where u1(1, 0) ≤ 0 and u2(0, 1) > 0, or Fig.

5.1(c) for Case 1 and Fig. 5.1(h) for Case 2. Hence, this region corresponds to a
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case where only one NE exists at (0, 1).

Finally, region HCKF corresponds to u1(1, 0) > 0 and u2(0, 1) > 0, which can

be further divided into the following sub-regions:

1) IJKL: This corresponds to u1(1, 1) > 0 and u2(1, 1) > 0, or Fig. 5.1(e). Both

players will always choose to transmit in order to have positive payoffs, and a

unique NE exists at (1, 1).

2) IMCJ : In this case, u1(1, 1) > 0 and u2(1, 1) ≤ 0. This corresponds to Fig.

5.1(d) for Case 1 and Fig. 5.1(j) for Case 2. The NE in this region is different for

both cases. Two NEs, (1, 0) and (0, 1), for Case 1 and a single NE exists at (1, 0)

for Case 2.

3) ILFN : In this case, u1(1, 1) ≤ 0 and u2(1, 1) > 0. This corresponds to Fig.

5.1(d) for Case 1 and Fig. 5.1(k) for Case 2. Again the behaviour of NE is different.

Two NEs, (1, 0) and (0, 1), for Case 1 and a single NE exists at (0, 1) for Case 2.

4) HMIN : In this case, u1(1, 1) ≤ 0 and u2(1, 1) ≤ 0, or ∆ ≤ 0. This corresponds

to Fig. 5.1(d) for Case 1, and Fig. 5.1(d) and 5.1(i) for Case 2. As a result, two

NEs exist where both (1, 0) and (0, 1) are the NEs for both cases.

We now explain the difference in regions DHFG and ILFN where both have

(0,1) as the only NE, and regions EBCH and IMCJ where both have (1,0) as

the only NE. For example, the scenarios corresponding to the regions EBCH and

IMCJ are quite different, as reflected in Fig. 5.1(g) and Fig. 5.1(j), respectively.

Region EBCH corresponds to the scenario in Fig. 5.1(g), where u1(1, 0) > 0 if

only player 1 transmits but u2(0, 1) ≤ 0 if only player 2 transmits. Physically this

is due to the fact that G2,2 is small and hence high power is required for player 2

to transmit for the required BER, resulting in negative payoff value.
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As a contrast, at region IMCJ , u1(1, 0) > 0 and u2(0, 1) > 0, however,

u1(1, 1) > 0 and u2(1, 1) ≤ 0. It can be seen that player 1 will always choose

to transmit since a positive payoff will be received no matter what player 2’s choice

is. As a result, player 2 can only chose not to transmit to avoid receiving a negative

payoff. Hence (1, 0) becomes the only NE. This corresponds to the scenario in Fig.

5.1(j), which usually happens when the interference from player 1 to player 2 is

strong. A similar analysis can be applied to Fig. 5.2(a) for Case 1.

5.2.3 Probabilities of Given Strategy Profile As NE

We next examine how the probability of having a given strategy profile as the

NE can be computed under all possible channel conditions at a given location.

The probabilities of all NE existence scenarios can be estimated with the method

introduced in this section. Without loss of generality, we use Case 2 as an example.

The two boundary curves, NI and IM , in Fig. 5.2(b) can be shown to be hyperbolic

with the following expressions:

NI : G2,2 = f1(G1,1) =
γ2

2
cN0 +

γ1γ2G2,1

2G1,1

(cN0 + 2G1,2), for xN ≤ G1,1 ≤ xI ,

(5.16)

IM : G2,2 = f2(G1,1) =
γ1γ2G1,2

2G1,1 − cN0γ1

(cN0 + 2G2,1), for xI ≤ G1,1 ≤ xM .

(5.17)
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Denoting a point P on plane G1,1–G2,2 as (xP , yP ), the coordinates of the vertices

of region HMIN can be found as:

xH = xN =
γ1

2
cN0, (5.18)

xI =
γ1

2
(cN0 + 2G1,2), (5.19)

xM =
γ1

2
(cN0 + 2G1,2 +

4G2,1G1,2

cN0

), (5.20)

yH = yM =
γ2

2
cN0. (5.21)

The probability of having two NEs in Γ2, conditioned on G2,1 and G1,2, can

thus be obtained as

P2NE|G2,1,G1,2 =

∫ xI

xH

∫ f1(x)

yH

fx(x)fy(y) dydx+

∫ xM

xI

∫ f2(x)

yH

fx(x)fy(y) dydx, (5.22)

with fx(x) and fy(y) denoting the probability density functions (pdfs) of G1,1 and

G2,2, respectively. The area corresponding to the integral in (5.22) is enclosed by

the red lines as indicated in Fig. 5.2.

The above computation is conditioned on the given interference path gains, G2,1

and G1,2. Denoting the pdfs of G2,1 and G1,2 as fu(u) and fv(v), respectively, the

overall probability of having two pure NEs in Γ2 is given by

P2NE =

∫ ∞
0

∫ ∞
0

P|u,vfu(u)fv(v) dvdu (5.23)

The pdfs of channel gains in (5.22) and (5.23) are in general forms. In practice,

for example, they can be log-normal or Rayleigh distributions for slow or fast fading,

respectively, where the mean values are related to the path losses. However, the
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probability of having two pure NEs in Γ2 cannot be obtained in a closed form for

the given pdfs of channel gains. Similarly we can compute the probabilities that

there is only one NE (corresponding to either (0,0), or (1,1), or (1,0), or (0,1)).

We present a method to estimate these probabilities. Theoretically the value

of a channel gain ranges from 0 to ∞. We divide the channel x into ten ranges,

with each range having a probability of occurrence equal to 0.1. Denote the index

of the ranges as i, i = 1, . . . , 10. The mean value of the ith channel gain, x̄i, is used

to represent the overall channel gain over this range, where

∫ x̄i

0

fx(x) dx = 0.1i− 0.05 (5.24)

Repeat the same procedure for the other channels y, u and v. After getting the

mean values of the ten ranges for all the channels, there are 104 possible combi-

nations of channel gains, each having a probability of occurrence equal to 10−4.

For each channel gain combination, we can calculate the payoff values for both

players using all joint strategies, and determine the NE(s). Finally, by counting

the number of NE occurrences and normalizing it with the total population 104,

we can obtain the estimated probability of having two pure NEs (or one pure NE)

in Γ2, for the given pdfs of the main and interference paths.

We use the numerical method to compute the probabilities where the game has

two NEs and only a unique NE at (1, 1), respectively, for the system shown in Fig.

5.3. The propagation model of each transmission link comprises of path loss and

multipath fading. Assuming a path loss exponent, α = 3.8, the path loss (in dB) at

a distance d from the transmitter can be taken as L(d) = L(d0) + 10α log10(d/d0),

with d0 = 1 being the reference distance (L(d0) = 0dB). The small-scale fading
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1TX

2RX

1RX

2TX

1,1G

2,1G

1,2G

2,2G

Figure 5.3: Model of the ad hoc system used to estimate the probability
of two NEs in Γ2. The locations of TX1, TX2 and RX1 are
fixed as shown. The distances between TX1 and TX2, as well
as between TX1 and RX1, are 150 and 50, respectively. RX2

is randomly distributed in the shaded square with equal prob-
ability, where the edge of the square has a length of 200.

superimposed upon the path loss is assumed to have Rayleigh distribution with

unit mean power. For simplicity, we assume no power limit for the transmitters.

Thermal noise power at the receivers is taken to be -70dBmW.

Simulation results of the above system with two different sets of parameters are

shown in Fig. 5.4 and 5.5. It can be seen that when RX2 is located around TX2,

it has a higher probability for (1, 1) to become a unique NE. As a contrast, the

probability of having two NEs is relatively low in this area. However, when the

location of RX2 is moving farther away from TX2, the probability of having two

NEs will first increase and then decrease, while it becomes less and less possible
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Figure 5.4: Results of the system in Fig. 5.3 with γ1 = 20, γ2 = 20 and
c = 50. (a) Probability of two NEs in Γ2; (b) Probability of
having (1,1) as NE in Γ2.

for (1, 1) to be a NE. The isolines shown underneath the three-dimensional graphs

represent the loci of RX2 where along the contour, the probability of having a given

number of NEs is the same. As γ1, γ2 and c increase, the area where Γ2 has (1, 1)

as a unique NE will reduce.

5.3 N-Player Non-cooperative Game

To extend our study to NRAG with more than two players, we first take a look at

the 3-player NRAG, Γ3. The payoff table of Γ3 can be illustrated using two 2-player

2× 2 payoff tables, one for a3 = 0 and one for a3 = 1. An example of a simple Γ3

where no NE exists is shown in Fig. 5.6(b) for Case 2. The strategy space of the

game is {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, and (1, 1, 1)

is not an eligible joint strategy. We use squares, circles and triangles to represent

the best responses of player 1, 2 and 3, respectively. As we can see, there exists no
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Figure 5.5: Results of the system in Fig. 5.3 with γ1 = 30, γ2 = 40 and
c = 100. (a) Probability of two NEs in Γ2; (b) Probability of
having (1,1) as NE in Γ2.

strategy profile which contains best responses for all the three players. Hence the

existence of NE cannot be guaranteed for Case 2 in Γ3.

On the other hand, for Case 1 in which any joint strategy that results in negative

payoff is marked by a ‘cross’ as shown in Fig. 5.6(a), (1, 0, 0), (0, 1, 0) and (0, 0, 1)

are the three NEs. Therefore the example shows that the payoff function need to

be carefully chosen to guarantee the existence of NE. If negative payoff values are

allowed, they will cause instability to systems consisting of more than two players.

In this subsection, we shall generalize Γ2 to N -player NRAG, ΓN , and show

that for Case 1, i.e. un > 0, ∀an = 1, ΓN has at least one NE. The assumption

that a player transmits only if he receives positive payoff is not unreasonable.

This can be explained when deciding the best response for a given joint strategy

of the opponents. If a player receives non-positive payoff when transmitting, he

will inevitably diverse from transmission to no transmission, since a zero payoff is
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(a) Case 1 (b) Case 2

Best response 
for player 1

Best response 
for player 2

Best response 
for player 3

Ineligible joint 
strategy

Figure 5.6: Payoff tables for a 3-Player NRAG example. (a) Case 1: three
NEs exist; (b) Case 2: no NE exists.

still better than a negative one. We have seen from the example in Fig. 5.6(b)

that, the existence of non-positive payoff value for a player who transmits actually

causes instability in the game. However, by excluding such joint strategies from

the strategy space of the game, it helps to enforce the existence of NE.

Before we proceed to prove the existence of NE in the N -player game for Case

1, ΓN , we need to introduce the following results.

Theorem 5.2. For any player n ∈ N in ΓN , assuming both un(ai = 0, a−i) > 0

and un(ai = 1, a−i) > 0 for a given i ∈ N and i 6= n, we have un(ai = 0, a−i) >

un(ai = 1, a−i).

Proof. We can prove this theorem intuitively. When a player chooses to transmit,

he will generate non-zero interference to all other players that are also transmitting

at the same time. As a result, the aggregate interference level experienced by

all other players that are transmitting will increase. In order to maintain their

respective SINR thresholds, the players have to increase the transmission power.

Since the payoff function for any player decreases with that player’s transmission
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power, the payoff values of players that are already transmitting will all decrease

when a new player begins to transmit.

Corollary 5.3. For any player n ∈ N in ΓN ,

(a) if (an = 0, a−n) is ineligible, then (an = 1, a−n) is also ineligible;

(b) for a given i ∈ N and i 6= n, if βa−n(ai = 0, a−i) = 0, then βa−n(ai = 1, a−i) is

also 0.

Theorem 5.4. There exists at least one NE in the N-player NRAG, ΓN , ∀N > 2.

Proof. We prove by induction. From Theorem 5.1, there exists at least one NE in

Γ2, or when N = 2. We assume that this holds for N−1, i.e., ΓN−1 has at least one

NE, and we denote the set of NEs in ΓN−1 as EN−1, where EN−1 is non-empty. Next

we consider the N -player game which can be divided into two subgames: (N − 1)-

player games corresponding to aN = 1 and aN = 0, i.e. player N chooses to or not

to transmit, respectively. These two subgames are denoted as ΓN−1(aN = 1) and

ΓN−1(aN = 0), respectively. It can be seen that the payoff table of ΓN−1(aN = 0)

is identical to that of ΓN−1.

Denoting a NE in ΓN−1 as a∗ΓN−1
∈ EN−1, (a∗ΓN−1

, aN = 1) and (a∗ΓN−1
, aN = 0)

are two possible joint strategies for ΓN . According to a∗ΓN−1
, we further denote the

sets of players who are transmitting and not transmitting as N1 and N0, respec-

tively, i.e. ai = 1, ∀i ∈ N1, and aj = 0, ∀j ∈ N0. One of the following situations

applies.

(a) If (a∗ΓN−1
, aN = 1) is eligible, we have un > 0 for all n ∈ N1 ∪ {N}, and

therefore βan(a∗ΓN−1
, aN = 1) = 1 = an. Meanwhile, by applying Theorem 5.2, we

also have βaj(a
∗
ΓN−1

, aN = 1) = 0 = aj, ∀j ∈ N0. We can see that the strategy

profile (a∗ΓN−1
, aN = 1) consists of all the best responses of the N players. Hence it
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is a NE of ΓN .

(b) If (a∗ΓN−1
, aN = 1) is an ineligible joint strategy, player N has to choose aN =

0. With aN = 0, un remains the same as those of ΓN−1 for all n ∈ {1, . . . , N − 1}.

Since a∗ΓN−1
∈ EN−1 is a NE, (a∗ΓN−1

, aN = 0) is also a NE in ΓN .

In conclusion, for EN−1 6= ∅, there exists at least one a∗ΓN−1
∈ EN−1. If

(a∗ΓN−1
, aN = 1) is eligible, it is a NE of ΓN . Otherwise, (a∗ΓN−1

, aN = 0) is a

NE. Hence Theorem 5.4 is proved by induction.

5.4 Repeated Games and Convergence

of Game-play

5.4.1 Repeated Games and Myopic Play

If complete information of the opponent players is assumed and only one NE exists,

each player can individually decide the NE and select its transmission strategy. The

problem gets more complicated if multiple NEs exist since these NEs cannot be

achieved simultaneously, but only one could be selected at a time for a practical

system. Although the existence of at least one NE has been proved for N -player

NRAG, it provides no information on how the distributed players can achieve

these stable solutions. In this section, we look into the convergence behaviour

of a practical algorithm which aims at achieving one of the NEs. Moreover, the

assumption that every player has the complete information of the opponent players

requires a lot of information exchange overheads. We shall look into how such an

assumption could be relaxed through performing measurement.

One way to achieve a NE in practice is to play the formulated NRAG repeatedly
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among the players in a round-robin manner, such that in each stage the players

update their actions sequentially after observing the actions of the opponent play-

ers. This introduces the concept of repeated game, as opposed to the single-stage

static game discussed in Sections 5.2 and 5.3. In the context of repeated game, an

action taken by player n refers to the decision of the player in a given round and

is denoted as xn. Although the actions of his opponents are not directly known to

player n, they can be observed through measurement of the aggregate interference

In defined in (5.1). The game is also assumed to be myopic, i.e. the players are

short-sighted optimizers each trying to maximize the payoff for the next round

only.

The classical nonlinear distributed Gauss-Seidel algorithm [89] can be modified

and used in the myopic game:

1. In the initial stage, no player would transmit on the common channel. The

order for the players to update their actions and the maximum number of iterations

are predefined.

2. The first player in the list updates his action profile (a1, p1) against the

CCI obtained by measurement. In the first round, the CCI would be zero due

to no transmission initially. This maximizes his payoff at the moment of update.

Then the second player will update his action profile by observing the interference

generated by the first player, and the third player will update his action profile

based on the measurement of interference generated by the first two players, and

so on. In general, at the (t+ 1)th round, the nth player in the list will update his
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action profile according to:

x(t+1)
n = D

(
x

(t+1)
1 , . . . , x

(t+1)
n−1 , x

(t)
n , x

(t)
n+1, . . . , x

(t)
N

)
, (5.25)

where D returns the best response solution under the given opponents’ joint action,

which comprises the actions taken by player 1 to player n−1 at the (t+1)th round,

and those taken by player n+1 to player N at the tth round. The action for player

n can be determined by substituting the respective actions taken by the opponents

into (5.5) to obtain pn and by maximizing (5.4) to decide on an’s. The process is

repeated until player N makes his decision.

3. Repeat step 2 for the next round until convergence is observed or the maxi-

mum number of iterations has been reached.

Basically, myopic play of a game in some way is different from the static game.

For example, in a particular round of the myopic game where the instantaneous

actions taken by the players at round t can be denoted as x(t) = {ax,px}, the

power vector, px, is generally different from p given by (5.13) even if ax = a, i.e.

px 6= p|ax . This is because if the game is played myopically and before the game

becomes stable, the power vector will change in each round even though ax may

remain the same.

5.4.2 Condition of Convergence for ΓN

Based on our simulations using the myopic play, we observe that the NRAG con-

verges to a steady state for some of the channel realizations generated. However,

there are also situations where the game cycles through a few stages and does not

converge, resulting in unstable power and BER performance. Such an oscillation
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could be due to lack of complete information seen by the players, which would

lead to the players attempting to achieve a stage that is not feasible to satisfy all

constraints. Therefore we shall see what we could do to the algorithm so that the

myopic play of the game converges to a stable solution.

In the literature, myopic play of a potential game is well-known to be able

to converge to its NE solution. Potential games are a group of games where the

difference in the payoff due to unilaterally deviation in each player can be reflected

by a global function. The details can be found in [34]–[37]. A potential game is

defined as:

Definition 6. For a strategic game Γ = 〈N ,X , {un}n∈N 〉, a function P : X 7→ R

is called

(i) an exact potential function if for all n ∈ N and (xn, x−n), (x′n, x−n) ∈ X :

un(x′n, x−n)− un(xn, x−n) = P (x′n, x−n)− P (xn, x−n); (5.26)

(ii) an ordinal potential function if for all n ∈ N and (xn, x−n), (x′n, x−n) ∈ X :

un(x′n, x−n) > un(xn, x−n)⇔ P (x′n, x−n) > P (xn, x−n). (5.27)

A game is called an exact (or ordinal) potential game if there exists an exact (or

ordinal) potential function for that game.

The formulated NRAG cannot be described as a potential game. However,

using the framework developed in [35], convergence to NE for this game can be

understood more easily by using the concept of potential game.
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Theorem 5.5. When a joint strategy â is fixed, the NRAG reduces to a non-

cooperative power allocation game (NPAG) which is a potential game.

Proof. The payoff function of player n can be expressed as

un(pn) =


rn − cpn, if ân = 1;

0, if ân = 0.

(5.28)

If we define a function P =
∑

n∈N un(pn), it can be easily shown that

P (p′n)− P (pn) = un(p′n)− un(pn), ∀n ∈ N . (5.29)

Therefore the NPAG is an exact potential game with a potential function P .

If the given â is feasible with all the constraints, then set Pn|an is compact and

there is at least one NE in the NPAG. The distributed Gauss-Seidel algorithm with

best response also ensures that the game will converge to a NE of the NPAG.

Let us re-examine the process of myopic game and see how we can use Theorem

5.5 to explain the convergence of NRAG. In a myopic game, each player takes turn

to decide his action xn = {a(t+1)
n , p

(t+1)
n } given by (5.25). In the initial stage, each

player tends to transmit because the interference level is zero. As the interference

level gradually builds up, a player updating his transmission power at each decision

point may stop transmission if the payoff value is non-positive or some constraints

are not met. Suppose after some number of plays, the joint strategy converges to

a steady profile â, i.e., â
(T )
n = â

(T−1)
n , ∀n ∈ N , then for the subsequent play the

game becomes a NPAG. Under this circumstance, from Theorem 5.5, the game is

guaranteed to converge to a NE of the NPAG.
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5.4.3 Heuristic Algorithm to Achieve Convergence

Although there are existing algorithms to ensure convergence in distributed systems

based on continuous sets [21] [22], a practical algorithm for non-cooperative games

with discrete strategy space is still lacking. Even though our analysis shows that the

NRAG has at least one NE, the myopic play cannot guarantee the convergence of

the game for all channel realizations. This happens because some of the players may

repeatedly choose the same joint strategy after a number of game plays and results

in “toggling” in the joint strategy, rather than converging to a stable joint strategy.

This observation inspires us on a method to modify the myopic play of NRAG –

we shall eliminate the “toggling” between transmitting and not transmitting for

the players, which leads to instability in the solution.

One way to realize this is to introduce the number-of-attempts (NOA) variables

which keep track of the numbers of transitions of an’s, ∀n ∈ N . A large NOA indi-

cates that the value of an is frequently toggled. If the NOA of player n has reached

the maximum number of allowable attempts, the common channel is deemed un-

sustainable to support transmission with a stable BER requirement for this player,

and consequently player n will stop from further attempts of transmission on the

channel. By eliminating such repeated “toggling” of an’s in game-play, the NRAG

will gradually arrive at a stable â and finally converge as a NPAG.

To explain in more details, we denote the NOA variable of player n as wn, and

the maximum value that wn can take as Wn, ∀n ∈ N . We propose a heuristic

algorithm using NOA to ensure convergence for the game-play as follows:

Step 1: All wn’s are initialized to zero;

Step 2: In the mth iteration, where m = 1, 2, . . . , Player 1 chooses his best re-
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sponse {am1 , pm1 } according to (5.25), player 2 chooses {am2 , pm2 } and so on, until all

{amn , pmn }’s have been chosen, ∀n ∈ N ;

Step 3: In each iteration, if amn is updated to 0 whereas its previous value, am−1
n = 1,

player n increments wn by 1. If wn ≥ Wn, player n will no longer attempt to trans-

mit, and amn will remain 0 afterwards;

Step 4: Repeat Steps 2 and 3 until a stable â is achieved and eventually the game

converges.

Hereafter we refer to the modified NRAG with NOA as the convergent-NRAG

(CNRAG). Take note that the CNRAG only make use of local information on CCI

measurement, and converges to a NE of the NPAG with fixed â. However, the NE

of the NPAG is not necessarily the same as that of the NRAG, as the â given may

not satisfy â ∈ A.

5.5 Discussions

5.5.1 Simulation Results

To evaluate the efficiency of N -player NRAG in resource allocation, we run com-

puter simulations to compare the payoff values given by various channel conditions.

The optimal SW defined in (5.9) will be used to benchmark the efficiency of the

NRAG. Take note that the optimal SW is usually not the same as the maximum

NE values, as the optimal SW is obtained through the centralized approach and

needs not to be a NE solution.

A number of players are randomly generated in a circular area with a diameter

of 50 metres. The actual distance is randomly generated between 1 and dmax, where
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dmax is the maximum distance between the transmitter and receiver of a player.

The propagation model is the same as that in Section 5.2.3 which consists of path

loss and multipath fading. The results are averaged over a total of 104 simulation

instances. For each instance, we search for all the possible NEs and evaluate the

total payoff of all players for each NE solution. The NE solutions with maximum

and minimum total payoff value are denoted as NEmax and NEmin, respectively.

We plot the average total payoff against various numbers of players and dmax in

Fig. 5.7.

The optimal values of SW are not shown in Fig. 5.7 since it is too close to

NEmax. It is found that the difference between the total payoff of NEmax and

the optimal SW are less than 0.5%. From Fig. 5.7, it can be seen that the total

payoff values of NEmax increase with N , which shows that the frequency channel

can be more efficiently utilized by more players in the NRAG. However, when dmax

is large (dmax > 20), the total payoff values of NEmin decrease with N . This is

because when both dmax and N increase, the players have higher probability of

experiencing severe interference, which could lead to deteriorated performance if

there is no coordination among them.

Next we plot the price of anarchy (PoA) versus number of players for various

dmax in Fig. 5.8. The PoA is defined as the ratio of optimal SW to NEmin, which

is a measure of how good the result is when the game is played selfishly versus that

of the social optimal when a central authority is present. It can be seen that the

performance loss is very little (< 2%) with dmax = 5. As dmax increases, however,

the performance loss gradually increases and can become as large as nearly 65%

when N is also large. This shows that as the interference between players increases,
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Figure 5.7: Performance of the best and worst NE solutions, versus differ-
ent number of players and dmax.

Figure 5.8: Price of anarchy for the NRAGs, versus different number of
players and dmax.

the interaction among the selfish players could lead to highly undesirable results

from a system perspective.

To study the convergence of myopic play of the NRAG, we find out the numbers

of stages needed for the game to converge in a total of 103 channel realizations.



Chapter 5. Spectrum Sharing Games 99

Figure 5.9: CDFs of CNRAG with different values of maximum NOA: (a)
N = 3 (b) N = 6.

Then the cumulative distribution function (CDF) on the convergence of CNRAG

is plotted in Fig. 5.9(a) and 5.9(b) for N = 3 and N = 6, respectively. The most

important factor affecting the speed of convergence is the maximum NOA allowed.

The smaller the maximum NOA, the faster the convergence of the NRAG. This

conclusion is intuitive because with a larger NOA, more game stages are allowed

before a player decides to stop attempting for transmission again. However, no

matter how slowly it does, the game will eventually converge if the value of NOA

is finite. And it can also be seen that if NOA is not used, or Wn = ∞, ∀n ∈ N ,

the convergence of NRAG is not guaranteed.

In Fig. 5.10, performance of the CNRAG with different values of maximum

NOA is compared to the optimal solution. It is obvious that the repeated play

of NRAG without NOA is highly unstable. Although its total payoff sometimes

seems to be higher than the optimal solution, it is compromised at the cost of

causing instability to the system, which results in some of the constraints not
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Figure 5.10: Network payoff comparison for CNRAG with different values
of maximum NOA: (a) N = 3 (b) N = 6.

being satisfied. As a contrast, the CNRAG is much more stable than the NRAG,

implying that an equilibrium could be achieved with all the constraints satisfied.

It can be seen that the CNRAG with maximum NOA equal to 1 incurs slightly

more performance loss than those with higher value of maximum NOA, as a larger

number of maximum NOA allows the system to explore more possible stages with

potentially higher payoff, at the expense of slower convergence.

5.5.2 Multi-channel Allocation Game

We shall see how the results for ΓN can be applied when the problem defined

in Section 5.3 where only one channel is available for transmission is extended to

multi-channel systems. We refer to the case where distributed nodes each attempts

to get one channel for transmission but there are K available channels. Define the

variables akn = 1 if communication pair n (n ∈ N ) uses channel k (k ∈ K) to

transmit, otherwise akn = 0. In this case, the channel selection of player n can
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be represented by a vector an = {a1
n, . . . , a

k
n, . . . , a

K
n }, which also represents the

strategy of player n. The multi-channel allocation problem can be formulated as

max
an

un, ∀n ∈ N , (5.30)

subject to

pn ·Gk
n,n

Ikn +N0

= aknγn, ∀n ∈ N , (5.31)

pn ≤ Pmax,n, ∀n ∈ N , (5.32)

K∑
k=1

akn ≤ 1, ∀n ∈ N , (5.33)

akn ∈ {0, 1}, ∀n ∈ N , (5.34)

where Ikn =
∑N

j=1,j 6=n a
k
jpj ·Gk

n,j.

Unlike the single-channel NRAG considered in the previous section, the exis-

tence of NE solution cannot be guaranteed when the game is played on multiple

channels. To illustrate this, we present an example of the multi-channel game in

which a NE solution does not exist. Let us consider the payoff tables shown in Fig.

5.11, which are obtained under the following parameters: N = 3, K = 2, c = 2,

Pe = 10−5, N0 = −70dBmW, Pmax,n =∞, and the channel gains are given by

G1 = G2 =


5 0.2 0.3

0.3 5 0.2

0.2 0.3 5

× 10−5, (5.35)

where the i, j-th element of Gk gives the value of Gk
i,j for k = 1, 2 and i, j = 1, 2, 3.
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Ineligible joint 
strategy

Figure 5.11: An example to show that a pure NE does not exist in the
multi-channel game. In this case, N = 3 and K = 2, (a)
a1

3 = a2
3 = 0; (b) a1

3 = 1; (c) a2
3 = 1. This example clearly

shows that there exists no strategy profile which can be the
best responses of all the three players.

The payoff tables corresponding to a1
3 = a2

3 = 0, a1
3 = 1 and a2

3 = 1 are shown

in Fig. 5.11 (a)–(c), respectively. By marking the best responses of the three

players with the corresponding symbols respectively (‘square’ for player 1, ‘circle’

for player 2 and ‘triangle’ for player 3), for all the given joint strategies of their

opponents, this example clearly shows that there is no strategy profile which can

simultaneously become the best responses of all three players. Hence no NE exists

for this set of channel realizations.

The possibility of no NE in the multi-channel NRAG does exist due to the

randomness of wireless channels. However, this problem can be overcome if we first

partition the N players into K groups and make the kth group of users compete

on channel k only.

Theorem 5.6. There exists at least a pure strategy NE in the multi-channel NRAG
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provided channel assignment is fixed to each group of users.

Proof. The proof is intuitive. We can partition the set of players in N into K

subsets, denoted as N1, N2, . . . , NK , respectively. Since there is no interference

across the channels, the group of players in each channel will play the single-channel

NRAG independently. From Theorem 5.4, each single-channel NRAG has at least

a NE. The joint strategies given by n-ary Cartesian product of the NEs for all

single-channel NRAGs will give the NEs of the multi-channel NRAG.

Some algorithms have to be adopted to strategically partition the players into

groups with appropriate channels in order to maximize system performance. A

possible solution is those transmission pairs which are well separated should be

grouped together since they create the least amount of interference and hence

result in overall lower power consumption or higher payoff for each other.

5.6 Conclusion

In this chapter, we studied opportunistic transmission of distributed nodes over

a common channel using a non-cooperative game theoretic approach. Unlike the

commonly adopted information theoretic approach, with the objective to maximize

SINR and generally results in real numbers of bits to be transmitted, in our work,

a transmission pair transmits only if its SINR and transmission power constraints

can be satisfied. The payoff functions of the players in the game are taken as

the reward due to successful data transmission minus the cost of power consumed.

With the SINR constraints imposed, the strategies chosen by the players coupled

with each other and a joint strategy needs to fulfil all the constraints to justify as
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a strategy profile of the game.

We first showed that there always exists at least a NE solution in the 2-player

single-channel NRAG under all possible channel realizations. We proposed a nu-

merical method to estimate the probabilities of having a unique NE and two NEs,

respectively, and the computed results are presented. Subsequently we extended

our analysis to more general case with N players, where a reasonable assumption

on the payoff function is made to ensure the existence of NE. Then we show by

mathematical induction that there also exists at least a NE solution in the N -player

NRAG if we ensure that a strategy profile should only have positive payoff when a

player transmits.

We also study the condition to ensure convergence of the game if it is played

myopically among the players. Based on this condition, we proposed a heuristic

algorithm by modifying the NRAG so that myopic play of the game will always

converge to a stable outcome under all channel conditions. Then the price of

anarchy for the game is estimated using computer simulations with various settings,

and the results on convergence and performance of the CNRAG are presented.

Finally, we took a step further and applied the results derived for single-channel

NRAGs to multi-channel NRAGs. An example is used to show that NE solutions

may not exist for the multi-channel game under certain channel realizations. How-

ever, the problem can be modified so that sub-optimal solutions which can ensure

the existence of NEs are possible, although having more efficient and fairer algo-

rithms to improve the optimality of sub-optimal solutions remains to be a chal-

lenging problem.
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Chapter 6

Adaptive Modulation Games

OFDMA has become a promising candidate for future wireless systems due to its

ability to mitigate multipath fading and its efficient implementation using IFFT

and FFT blocks [23]. The dynamic radio environment, although hostile, provides

different channel conditions on the subcarrier seen by users at various locations.

Such variations can be exploited to achieve multiuser diversity gain which can

improve the overall system performance, while how to allocate radio resources

efficiently remains to be a challenging design problem.

On the other hand, adaptive modulation technique which adjusts modulation

levels based on the received signal quality and channel conditions, is proven to be

able to improve system capacity and coverage reliability [85]. This is also known

as bit loading in the context of OFDM, and from a practical point of view, it can

improve energy efficiency of OFDMA systems.

In Chapter 5 we studied on the sharing of a single channel for transmission with

fixed modulation, and briefly extended our discussions to the existence of NE with

multiple subcarriers in 5.5.2. In this chapter, we present our study on SBPA games
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in the downlink of multi-cell OFDMA systems using adaptive modulation, where

the BSs are treated as the players, for the reasons to reduce both the computation

complexity and amount of channel information exchanged. We first formulate the

NRAG for N -BS K-subcarrier OFDMA systems, with each BS having L users. The

game is denoted as NRAG-N{L}/K and an integer number of bits is allocated to

each subcarrier according to the channel conditions.

We prove that NRAG-2{1}/1 has at least one NE under all channel conditions.

However, the existence of NE solution cannot be guaranteed in general for games

with N > 2, Ln ≥ 2 or K ≥ 2. Some exception to this is when there is no

power constraint for the BSs. Repeated play of the game is a way to obtain a

stable solution if not all channel information are available to the players. Based

on our observations during simulations, we discuss how we developed an algorithm

which ensures convergence to a stable solution for the modified NRAG, denoted as

convergent NRAG (CNRAG).

We also modified the payoff functions so that the players receive penalties when

they take up too many subcarriers. Such a formulated model inherently introduces

interference avoidance mechanism to the players and is abbreviated as CNRAG-

IA. We show that a better overall system payoff can be achieved in CNRAG-IA

as compared to CNRAG. Although game theoretic approach is used to study the

competitions and interactions among rational players, how good is the solution

found remains unclear as the optimal solution is not easily available for comparison.

With the methods introduced in Chapters 2 and 3, however, the optimal solution

becomes much easier to obtain and can be used to benchmark the performance of

those algorithms using game theoretic approach. Therefore finally, we compare the
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performances of CNRAG and CNRAG-IA with the network payoff obtained from

centralized optimization.

6.1 Static Game Formulation

For the multi-cell OFDMA system described in Section 3.1, although it is possible

to obtain the centralized optimal solution, computation complexity remains high.

Furthermore, the use of a centralized controller may not be always possible, or it

is a large overhead to transmit all channel information. Under such circumstances,

one may want to have resource allocation processed at every individual BS in a dis-

tributed manner. Non-cooperative game theory can therefore be used, and we shall

consider only the pure strategies since the selection of a strategy is deterministic

rather than probabilistic.

The SBPA problem in a multi-cell OFDMA system can be formulated as a

NRAG given in the strategic form as

Γ = 〈N ,S, {un}n∈N 〉 ,

where N and S denote the set of BSs and strategy space of the game, respectively.

The payoff function of player n,

un =
Ln∑
l=1

rln − c
K∑
k=1

pkn =
K∑
k=1

Ln∑
l=1

Q∑
q=1

(2qakqln − cp
kq
ln ), ∀n ∈ N , (6.1)

is the same as that in (3.3).

We denote the game as NRAG-N{L}/K, where N , L and K are the number of
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BSs, number of users in each BS, and number of subcarriers, respectively. It can

also be expressed as

NRAG: max
An,Pn

un, ∀n ∈ N , (6.2)

subject to

Gkn
ln p

kq
ln

Ikln +N0

= akqlnγ
q
ln, ∀n ∈ N ,∀l ∈ Ln,∀k ∈ K and ∀q ∈ Q, (6.3)

K∑
k=1

Ln∑
l=1

Q∑
q=1

pkqln ≤ Pmax, ∀n ∈ N , (6.4)

Ln∑
l=1

Q∑
q=1

akqln ≤ 1, ∀n ∈ N and ∀k ∈ K, (6.5)

akqln ∈ {0, 1} and pkqln ∈ R+, ∀n ∈ N ,∀l ∈ Ln,∀k ∈ K and ∀q ∈ Q. (6.6)

A strategy for a player in NRAG comprises two components: SBA and PA

matrices, i.e., sn = {An,Pn},∀n ∈ N . The elements in the SBA matrix are

SBA variables which take on discrete values whilst those in the PA matrix are PA

variables which take on continuous values. In NRAG, player n chooses the best

response βn ∈ Sn to maximize his payoff un. However, since the payoff function

contains the joint strategy of his opponents, s−n, player n is unable to maximize

his own payoff without taking the strategies of his opponents into consideration.

The best response for each player again involves solving a MINLP of much smaller

scale, where the joint strategy of the opponents is known. The method described

in Chapter 2 can thus be applied to obtain the solution.

Next we show that the NRAG is equivalent to a game with discrete strategy

space, where only the SBA variables are considered. We define the strategy space,

A, as the set of strategy profiles which contains only the SBA components of all
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strategy profiles in S. The following Theorem about A holds.

Theorem 6.1. In NRAG, 〈N ,S, {un}n∈N 〉 and 〈N ,A, {un}n∈N 〉 have the same

NE solutions.

Proof. The proof to this is intuitive. Conditioned on any given Ã ∈ A, by substi-

tuting all the values of ãkqln ∈ Ã into (6.3), the SINR constraints reduce to a set of

linear equations. Since the number of equations is equal to that of PA variables,

the PA matrix can be easily computed and is unique as the given Ã is feasible.

On the other hand, since Ã is the binary component of the strategy space of Γ

(i.e.,S), by definition, the SINR constraints are already satisfied. Therefore spec-

ifying the strategy space A contains the same information as specifying S, since

P|Ã = {P1, . . . ,PN} can be readily obtained once Ã = {Ã1, . . . ,
˜̃AN} is given.

Hence, hereafter, we only need to consider the strategy space A rather than S.

6.2 Search for NEs

By definition, the solutions of NRAG, if it exists, should be given by one of the

NE points. Searching for NE points should be made by directly applying (4.1) to

each of the strategy profile in S. However, as the strategy space of NRAG are

not directly obtainable through n-ary Cartesian product of the individual strategy

spaces of all players, in this section, we look into systematic search for the NE of

the NRAG.

In the formulated NRAG, the conditions for any strategy profile in S to become

a NE depend on whether that is an equilibrium point to all the players, so that

none of the player has the intention to change his strategy. Fortunately, by making
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use of Theorem 6.1, the search space for strategy profiles can be obtained quite

easily and the problem might not be that intractable. A way to identify the search

space and to find a NE is as follows:

1. For each player n ∈ N , we can find all SBA strategies for player n which

satisfy (6.5). Denote the set of SBA strategies as Ãn.

2. We next list down all the possible joint SBA strategies Ã = ×n∈N Ãn.

3. For each joint SBA strategy in Ã, the SINR constraints (6.3) reduce to a set

of linear equations. Together with the power constraints (6.4), the required trans-

mission power can be solved using Eq. (3.12). All transmission power computed

must be non-negative and have to satisfy the maximum transmission power limit

of the BS, and for those A which do not meet these requirements are infeasible

solutions to be removed. Repeat the process and all the strategy profiles can be

identified and denoted as A. After including the corresponding PA matrix, the set

of strategy profiles is denoted as S.

4. If S 6= ∅, go through all the strategy profiles in S to search for the NE based

on its definition in (4.1). Some algorithms based on enumeration method were

proposed in [90] and [91]. Other algorithms, such as those based on continuation

or heuristic methods ([92]–[94]), are also available for finding NEs.

As an example, we consider the NRAG with a 2-cell system with fixed mod-

ulation (4-QAM) and two subcarriers. Each BS has four available strategies: do

not transmit (N), transmit on subcarrier 1 (T1), transmit on subcarrier 2 (T2)

and transmit on both subcarriers (Tb), i.e., An = {N, T1, T2, Tb} for n = 1, 2. In

this example, we have also introduced a minimum data rate of 2 bits per user to

illustrate how the search space for NE could be affected by different constraints.
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Figure 6.1: Examples of NE existence in a 2-cell 2-subcarrier OFDMA
system using 4-QAM, where each cell has a single user with
Rmin = 2 and Pmax = 0.1. (a) A unique NE exists; (b) Two
NEs exist.

At first, without considering the data rate and power constraints, strategy space

of the game is simply given by the Cartesian product of the strategy spaces of the

two players. Therefore there are sixteen strategy profiles in A = A1 × A2. The

payoff tables for two sets of channel conditions are shown in Fig. 6.1(a) and 6.1(b).

When the rate and power constraints are imposed on the players in this example,

some of the strategy profiles become infeasible if any of the constraints is not

satisfied. Such strategy profiles that could not fulfil the rate or power requirements

are represented by the grey and red cells, respectively, and are not available for

the players to choose. In case (a), by removing those strategies that do not meet

the rate requirement, the number of feasible strategies has been reduced from 16

to 9. Among the remaining strategies, it can been seen that strategy Tb is always

preferable over T1 and T2 due to higher payoff for both players. Therefore there

exists a unique NE in this NRAG, which is (Tb, Tb). As a contrast, the number of

feasible strategies further reduces to only 4 in case (b), whereas the NRAG has two

NEs instead of one.
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6.3 NE in 2-player Non-cooperative

Modulation Game

Existence of NEs is important when game theoretic approach is used, as it decides

whether stable solutions exist. However, the study on NE existence becomes very

complicated when the complexity of NRAG is high. Therefore, we first study the

simplest form of our proposed game, NRAG-2{1}/1, which corresponds to a single-

carrier two-cell system with one user per cell. The system under consideration

here is different from what we have presented in Chapter 3, in the sense that the

decisions are now being distributively made by the individual BSs (as players of the

game), rather than the decision being made in a centralized manner. Each player

can choose his strategy by setting one of the SBA variables in {a0, a1, . . . , aQ} to

be 1, or equivalently by selecting his modulation level from Q̂ = {0, 1, . . . , Q},

where q = 0 means no transmission is made. In this section, we first show how the

best response of a player depends on the opponent’s strategy, and then prove that

NRAG-2{1}/1 has at least one NE.

6.3.1 Behavior in the Best Response

Theorem 6.2. In NRAG-2{1}/1, ∀q′2, q2 ∈ Q̂, given that q′2 > q2, we have

β1(q′2) ≤ β1(q2), β1(q′2), β1(q2) ∈ Q̂.

In other words, player 1’s best response is a non-increasing function over the mod-

ulation level adopted by player 2.

Proof. We first remove the power constraint. Without loss of generality, we take
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player 1 as the reference and observe the following:

Observation 6.3. For q′2 > q2, we define ∆ as below and it can be shown that

∆q1(q
′
2, q2) := p1(q1, q

′
2)− p1(q1, q2) > 0. (6.7)

∆q1(q
′
2, q2) represents the power difference for player 1 to transmit at modulation

level q1 when player 2 changes his modulation level from q2 to q′2. Observation

6.3 reveals that if player 1 decides to transmit using modulation level q1, higher

transmission power is required for player 1 when his opponent transmits at higher

modulation level than when his opponent transmits at lower modulation level. This

is intuitive since if the opponent transmits at higher power, player 1 also needs

to transmit at higher power to maintain the transmission quality due to higher

interference level. To prove this is quite straightforward. Given q2 is adopted by

player 2, the transmission power of player 1 can be obtained as

p1 =
(G2

2 +G2
1γq2)N0γq1

G1
1G

2
2 −G1

2G
2
1γq1γq2

, (6.8)

where γqn is the SINR threshold for modulation level qn (n = 1, 2), and γq′2 >

γq2 if q′2 > q2. By substituting (6.8) into ∆q1(q
′
2, q2) defined in (6.7) and after

simplification, it is not difficult to show that ∆q1(q
′
2, q2) is always greater than

zero.

Observation 6.4. For any q′1 > q1 and q′2 > q2, we have

∆q′1
(q′2, q2) > ∆q1(q

′
2, q2). (6.9)
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The result reveals that the power difference for player 1 is increasing on q1. By

relaxing q1, q2 and q′2 to real numbers and taking the partial derivative of ∆q1(q
′
2, q2)

in the direction q1, it is not difficult to show that

∂

∂q1

∆q1(q
′
2, q2) > 0. (6.10)

Eq. (6.10) shows a gradual increase in ∆q1(q
′
2, q2) if q1 increases, hence, (6.9) is

proved.

We now proceed to prove Theorem 6.2. For any q1 > β1(q2), q1 ∈ Q̂, from the

definition of best response, we have

u1(β1(q2), q2) > u1(q1, q2). (6.11)

It is not difficult to show using (6.7) that (6.11) is equivalent to

u1(β1(q2), q′2) + c∆β1(q2)(q
′
2, q2) > u1(q1, q

′
2) + c∆q1(q

′
2, q2). (6.12)

From Observation 6.4, ∆β1(q2)(q
′
2, q2) < ∆q1(q

′
2, q2), this leads to

u1(β1(q2), q′2) > u1(q1, q
′
2). (6.13)

Note that (6.13) is different from (6.11) as the opponent’s strategy is q′2 and not q2.

Eq. (6.13) can be interpreted as follows. Since we have assumed that q1 > β1(q2),

and player 1 gets a lower payoff when applying any strategy greater than β1(q2),

by definition, the best response for player 1, β1(q′2), cannot be anything which is
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greater than β1(q2). Hence, we have

β1(q′2) ≤ β1(q2),

and Theorem 6.2 is proved.

Theorem 6.2 can be visualized by using a graphical method illustrated in Fig.

6.2. The strategy profiles of NRAG-2{1}/1 are represented by a (Q+ 1)× (Q+ 1)

table as shown. The effect of power constraints is now becoming clear, that it

only makes some of these joint strategies to become ineligible to NRAG and should

not affect the validity of Theorem 6.2. The best response of player 1 to a given

modulation level of player 2 is indicated by a square in the table, and that of player

2 given player 1’s strategy is indicated by a circle.

0 1 𝑄 2 ⋯ 

𝑄 

0 

1 

2 

⋮ 

𝛽1 0  

𝛽1 1  

𝛽1 𝑄  

𝛽2 0  𝛽2 1  

𝛽2 𝑄  

𝑁𝐸 

𝑞2 
𝑞1 

Best response for player 1 Best response for player 2 

(b) All possible cases of player 2’s best response 

(a) All possible cases of player 1’s best response 

Figure 6.2: Graphical illustration of the existence of NE in NRAG-2{1}/1.

The implication of Theorem 6.2 is as follows. If we start from left to right

where the modulation level used by player 2 increases, the position of the square

marker gradually takes smaller q1 (or at least remains the same). Similarly, from

top to bottom of the table where the modulation level used by player 1 increases,
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the position for the circle marker gradually takes smaller q2. If a grid contains both

a square and a circle, then the strategy profile represented by that grid is a NE.

All possibilities which may happen at the intersection of the two trajectories are

shown in the subfigure of Fig. 6.2 and it is therefore postulated that there exists

at least one NE given by the intersection point.

6.3.2 Existence of NE

We use both Theorem 6.2 and Tarski’s Fixed Point Theorem to show that there

exists a non-empty set of fixed points in NRAG-2{1}/1, and then show each fixed

point corresponds to a NE.

Tarski’s Fixed Point Theorem. [87]: Let L be a complete lattice and let f :

L 7→ L be an order-preserving function. Then the set of fixed points of f in L is

also a complete lattice.

A complete lattice is a non-empty partially ordered set in which all subsets

have both a supremum and an infimum. A fixed point is a point that is mapped to

itself by the function, i.e., x is a fixed point of function f if and only if f(x) = x.

Tarski’s Fixed Point Theorem guarantees the existence of at least one fixed point

of f . Readers can refer to [88] for more details.

Theorem 6.5. There exists at least one NE in NRAG-2{1}/1.

Proof. From Theorem 6.2, for any q1 ≤ q′1, q1, q
′
1 ∈ Q̂,

β2(q1) ≥ β2(q′1). (6.14)

Therefore β2(x) is an order-reversing function. Applying Theorem 6.2 once more,



Chapter 6. Adaptive Modulation Games 117

we then have

β1(β2(q1)) ≤ β1(β2(q′1)). (6.15)

Defining the function f = β1(β2(x)), it can be seen that f is order-preserving.

Since Q̂ = {0, 1, . . . , Q} where 0 < 1 < · · · < Q is clearly totally ordered, hence Q̂

is also a partially ordered set. Therefore L =
〈
Q̂,≤

〉
is a complete lattice. From

Tarski’s Fixed Point Theorem, the set of fixed points of function f in L is also a

complete lattice and non-empty. This shows that there exists at least one fixed

point of f in L.

We now prove that a fixed point of f is equivalent to a NE in NRAG-2{1}/1,

by showing that a fixed point is a necessary and sufficient condition for a NE.

Denoting a NE of NRAG-2{1}/1 as (q∗1, q
∗
2), q∗1, q

∗
2 ∈ Q̂, from the definition of NE,

β1(q∗2) = q∗1 (6.16)

and β2(q∗1) = q∗2. (6.17)

Substituting (6.17) into (6.16), we have

β1(β2(q∗1)) = f(q∗1) = q∗1. (6.18)

We can see that q∗1 is a fixed point of f = β1(β2(x)), and hence a fixed point of f

is a necessary condition of a NE.

Next, denoting a fixed point of f as q̃1, if q̃1 is given as the strategy of player

1, the best response of player 2 would be

β2(q̃1) = q̃2. (6.19)
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And the best response of player 1 to q̃2 would be

β1(q̃2) = β1(β2(q̃1)) = f(q̃1) = q̃1. (6.20)

Comparing (6.19) to (6.17) and (6.20) to (6.16), respectively, it can be seen that

(q̃1, q̃2) is a NE of NRAG-2{1}/1. Hence a fixed point of f is also a sufficient

condition of a NE. The proof on existence of NE in NRAG-2{1}/1 is complete.

6.4 Extensions to More Complicated Systems

Although NE always exists for NRAG-2{1}/1, the existence of NE requires further

investigation when the number of subcarriers, number of BSs and number of users

in a BS are large. Simple examples can be used to show that the existence of NE

cannot be guaranteed for these more complicated NRAGs.

6.4.1 NRAG-2{1}/K with K > 1

We here extend NRAG-2{1}/1 to OFDMA systems, NRAG-2{1}/K, where there

are K subcarriers and two BSs. Each player needs to determine which subcarriers

to transmit and at what modulation levels.

For simplicity reason, we assume that there are no power constraints, i.e., (6.4)

are removed. Under such an assumption, the strategy chosen by a player on a

subcarrier will not be affected by the decisions of his opponents on other subcarriers,

i.e., the players compete for a subcarrier and the decision is independent from the

outcome on any other subcarriers. Hence NRAG-2{1}/K can be considered as a

game consisting of K independent NRAG-2{1}/1 games, i.e., all players compete
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Figure 6.3: A possible case of no NE in NRAG-3{1}/2 with Q = 1.

with each other on every subcarrier independently. Given that each NRAG-2{1}/1

has at least one NE from Theorem 6.5, the NE space of NRAG-2{1}/K is obtained

by the Cartesian product of the NEs for all K NRAG-2{1}/1 games.

6.4.2 NRAG-N{L}/K with N > 2

The NE existence in NRAG-2{1}/K can be generalized to the case where each BS

has L users, i.e. NRAG-2{L}/K, for L ≥ 1. However, in practical systems where

the number of BSs is usually greater than two, NE does not always exist in N -cell

OFDMA systems (N > 2). To illustrate this, we consider NRAG-3{1}/2 where

each BS has one user and two subcarriers. We further assume that Q = 1, i.e.,

each player has two strategies: either to transmit with a given modulation level or

no transmission. A possible case where no NE exists is presented with its payoff
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Table 6.1: Does a NE always exist in NRAG-N{L}/K?

Single-carrier Multi-carrier 

Single user in 
each BS 

Multiple users 
in each BS 

Single user in 
each BS 

Multiple users 
in each BS 

2 BSs Yes Yes Yes Yes 

>2 BSs Yes* Yes* No No 

* With the assumption that  0, 1, ,nu n N 

table shown in Fig. 6.3. This result shows that there does not exist a strategy

profile which can be the best responses of all players concurrently, even there are

only three cells. The results of our study on the NE existence of NRAG-N{L}/K

are summarized in Table 6.1.

6.5 Convergence of Game-play

Our study in the previous sections has provided some insights on the existence of

NEs for NRAG, and showed that a NE cannot be generally guaranteed. Further-

more, the searching of NE is through exhaustive search using Definition 3, based

on the assumption that every player has complete information including the payoff

values of the opponent players. In distributed systems where only local informa-

tion is available to an agent, the search for NE becomes more challenging even if

NE does exist. In this section, we consider the myopic play of NRAG using the

modified distributed Gauss-Seidel algorithm described in Subsection 5.4.1, as well

as ensuring convergence of the game-play.

The examples presented in Fig. 6.3 disclosed that the formulated NRAG may

not always have a NE solution under some channel conditions. If the NE is not to

be obtained through exhaustive search but rather through myopic play, we have to
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Figure 6.4: A simulation example showing the ‘cycling’ in NRAG-3{1}/1
with Q = 3.

answer questions such as:

(1) If there is at least one NE in the NRAG, will the game eventually converge to

one of the NE solutions?

(2) If there is no NE or if it does not converge to the NE, is it still possible to have

the game converge to a steady state with necessary modifications?

Based on our simulations using myopic play, we observe that sometimes the

NRAG converges to a steady state. However, there are also situations at which

the game cycles among a few states and does not converge, resulting in unstable

power and BER performance. Taking NRAG-3{1}/1 with Q = 3 as an example,

for one set of the given channel conditions, the payoff table is computed and shown

in Fig. 6.4. In this example, when q3 = 0 is given, player 1 and 2 will settle on

the strategy profile (3, 0, 0). However, when q1 = 3 and q2 = 0, player 3 tends to

choose q3 to be 1 over 0. Consequently the play of the game will enter a loop as

illustrated by the arrows in Fig. 6.4. Since no stable solution exists, the game has

no NE.
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6.5.1 Potential Games and Convergence to a NE

The formulated NRAG cannot be described as a potential game. However, using

the framework developed in [35], convergence to NE for this game can be under-

stood more easily by using the concept of potential game given in Definition 6.

Theorem 6.6. Assuming that the SBA for all BSs are fixed and given by Ãn, ∀n,

the NRAG reduces to a NPAG which is a potential game.

Proof. Given Ãn, the payoff function of player n can be expressed as

un(pn,p−n) = r̃n − c
K∑
k=1

pkn, ∀n ∈ N , (6.21)

where r̃n is the total data rate of BS n and is related to ãkqln only. If we define

P (pn,p−n) =
∑
n∈N

un(pn,p−n), (6.22)

it can be shown that P (p′n,p−n)−P (pn,p−n) = un(p′n,p−n)−un(p′n,p−n). There-

fore the NPAG is an exact potential game with a potential function given by P . If

the given SBA is feasible on all the subcarriers, then the set Pn|Ãn
is compact and

there exists at least one NE in the NPAG.

Let us re-examine the process of myopic game and see how we can use Theorem

6.6 to explain the convergence of NRAG. In a myopic game, each player takes turn

to decide his action xn = {A(t+1)
n , P

(t+1)
n } given by (5.25). In the initial stage,

each player tend to transmit at high rate using high modulation level because the

interference level is zero. As the interference level gradually builds up, the player

updates the SBA matrix (and hence PA matrix) at each decision point. Suppose
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after some number of plays, the SBA component of the players converge to a steady

profile, i.e., A
(T )
n = A

(T−1)
n , ∀n ∈ N , then for subsequent play the game becomes

a NPAG. Under this circumstance, from Theorem 6.6, NPAG is guaranteed to

converge to its NE, x∗ ∈ S.

Hence, it is not difficult to conclude that convergence to one of the NEs is thus

guaranteed by using the distributed Gauss-Seidel algorithm with best response

provided: (1) There exists at least a NE in S; (2) After NRAG has been played

for a number of rounds, the SBA should show convergence to a steady SBA action

profile corresponding to the NE.

6.5.2 Ensuring Convergence for NRAG

NRAG has no guarantee on the existence of NE and convergence to NE even if it

exists. The myopic play of NRAG normally involves either players swapping the

subcarriers occupied to avoid excessive interference or changing the modulation

level used from high to low as the interference level in the system gradually builds

up. In some cases, the players may have experienced transitions from high to low

modulation level previously, but still repeatedly choose to increase the modulation

level at a later stage when the interference level of the subcarrier is deemed to be

suitable again, and this may result in “looping” in the SBA profiles chosen.

Theorem 6.6 implies that unless SBA becomes stable among the players, the

game will not converge. If SBA is stabilized, NRAG becomes NPAG and will

eventually converge. If the game does not converge, the SBA profiles of certain

players must be repeatedly changing for some players. We use the method with

NOA described in Subsection 5.4.3 once again to eliminate the “cycling” between
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higher and lower modulation levels for some players which leads to instability in

the solution.

To explain in more details, we define Wn as the NOA matrix of BS n:

Wn :=

[
W1

n · · · WQ
n

]
Ln×KQ

, ∀n ∈ N . (6.23)

Here Wq
n is the NOA matrix for modulation level q ∈ Q with its (i, j)th element

given by [Wq
n]i,j = wjqin, for i ∈ Ln and j ∈ K, where wjqin is the NOA variable

which takes a integer value, and is used to store the number of attempts that has

been made for user i in BS n, with modulation level q on subcarrier j. All the

wjqin variables are initialized to zero and can take up to a maximum value Win, for

i ∈ Ln. As the myopic plays progress, when the modulation level of a user in

BS n is adjusted to a lower one, the NOA variable corresponding to the previous

higher modulation level is incremented by one. When the maximum NOA, Win,

is reached, that particular modulation level is deemed unsustainable and will be

forbidden for future use.

Theorem 6.7. For any finite Win, the modified NRAG using NOA always con-

verges .

Proof. We prove this by contradiction. Assume that the NRAG does not converge,

then the SBA profile must not be stable and there exists infinite number of changes

in the modulation level from low to high as well as from high to low. On the other

hand, since Q, K, Ln and N are all finite, the total number of SBA combinations

is also finite. With the use of NOA, any change of SBA combinations that involves

the modulation level changing from high to low can occur at most Win times, for
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Figure 6.5: An example of a NRAG-3{1}/1 played: (a) without NOA; (b)
Max NOA=1. It clearly shows that the use of NOA helps to
stabilize the play of the game and to settle the game at an
equilibrium.

i ∈ Ln. Hence the number of changes in the modulation level from high to low is

finite, which contradicts to the assumption and the proof is complete.

Hereafter we refer to the modified NRAG with NOA as CNRAG. To better

illustrate the function of NOA, we use the same example in Fig. 6.5(a) where no

NE exists in the original NRAG. The game play of CNRAG using NOA is shown

in Fig. 6.5(b). As we can see, when the player changed from q = 2 to q = 1, the

value of the corresponding element in NOA was set to one. Subsequently q = 2

would not be selected again since the maximum NOA (=2 in this example) had

been reached. The player settled on q = 1 and eventually the game converged to a

stable solution.

Because the CNRAG does not have the same strategy space for the players as

that of the NRAG, the NE is modified if deletion of strategies has taken place.
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6.6 Improving Network Payoff with IA

6.6.1 Advantage of IA over Water Filling

In NRAG, each player wants to maximize his payoff but the competitions among

the players can lead to an equilibrium point that is highly inefficient. From a

network perspective, it is preferable to let each player use a payoff function which

also reflects the network’s desires in order to achieve good overall network payoff.

In Section 6.1, we choose (6.1) as the player payoff function, which is also related

to the payoff function defined in (3.4) for centralized approach. This also ensures

that both the centralized and game theoretic approaches have the basis to compare

the performance. However, another relevant question arises: how can a network

designer leads the players to reach a desirable equilibrium point in NRAG, or how

to modify the game to have more preferable NEs?

Mechanism design looks into how to put in incentive mechanisms or to obtain

optimal design parameters of a game, in order to achieve a more desirable outcome

from the system point of view. Particularly, pricing has been used as a technique

to regulate the usage of a certain resource. In NRAG, pricing on the transmission

power has been incorporated in the payoff function (6.1), e.g. in [68], to lessen

possible severe CCI among the BSs. We will show that such a pricing mechanism

is not the most effective way in multi-cell OFDMA systems.

The process of maximizing (6.1) in a single BS is effectively the same as per-

forming iterative water-filling over all the subcarriers [68]. In NRAG for multi-cell

systems, making all BSs to operate at their own optimal solutions does not guar-

antee that the system global optimal can be obtained [33]. Since every player tries
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to maximize his own payoff in the NRAG, a BS will choose to transmit as long as

the resulting payoff value is positive on a subcarrier. It is shown that the optimal

solution in a single-cell system tends to load the data bits over all the subcarriers

[24]. However, multi-cell systems which apply some kind of interference avoidance

mechanism can achieve better overall network payoff. A good discussion on this

can be found in [33].

6.6.2 Pricing Mechanism for IA

For OFDMA multi-cell systems with FRF equal to one, IA would be a more effective

way to alleviate strong CCI among the BSs. We use a 2-BS system, with each

BS using 2 subcarriers to transmit 4 data bits, to illustrate this concept. If WF

approach is used, both BS will transmit 2 bits on each subcarrier, resulting in CCI

to each other. On the other hand, to avoid unnecessary interference, each BS may

also choose a higher modulation level to transmit the 4 bits on different subcarrier

and results in zero CCI. It can be seen from Fig. 6.6 that at low interference, WF

outperforms IA. As the interference level increases, however, the power needed in

WF eventually arrives at a crossover point, beyond which WF is outperformed by

IA. Similar conclusion can be observed for 6 bits to be loaded on 3 subcarriers.

The example shows that WF algorithm may not result in desirable solution from

the system perspective, especially in the interference limited environments.

To discourage the BSs from excessively occupying the subcarriers in the system,

we propose to include the number of subcarriers used by each BS as a cost factor

in the player’s payoff functions. The new payoff function is given by
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Figure 6.6: Interference Avoidance versus Water Filling.

vn = un −
K∑
k=1

Ln∑
l=1

Q∑
q=1

bakqln =
K∑
k=1

Ln∑
l=1

Q∑
q=1

[
(2q − b) akqln − cp

kq
ln

]
, ∀n ∈ N . (6.24)

where b is the spectrum cost factor, a value set to tradeoff bit rate with the num-

ber of allocated subcarriers, with a unit of bits/MHz. Since
∑K

k=1

∑Ln

l=1

∑Q
q=1 a

kq
ln

corresponds to the total number of subcarriers occupied by BS n, b can also be

considered as the cost of using the spectrum.

With appropriate values of b, the new payoff function can prevent players in

the NRAG from unnecessarily occupying too many subcarriers and causing strong

interference to the others, thus the behaviours similar to IA are incorporated in the

game. By including the number of subcarriers used by the respective BS as a cost

in its utility function, we show that strong interference among the players (BSs)

can be avoided and as a result better resource usage can be achieved. Simulation
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Figure 6.7: CDFs of CNRAG with different values of NOA.

results to be presented in the next section show that (6.24) is effective in improving

the overall performance of the multi-cell systems.

6.7 Results and Discussions

Simulations are conducted for a 3-cell OFDMA system, where each cell has a radius

of 100 and is separated by 100
√

3 among each other. BSs are located at the centre

of the cells, and the locations of the users in each cell are randomly generated with

uniform distribution. The radio propagation model takes into consideration the

path loss, shadowing and fast fading. The path loss (in dB) at a distance d from

the BS is taken as L(d) = L(d0)+10α log10(d/d0), with d0 = 10 being the reference

point (L(d0) = 0dB) and α = 3.8. The shadowing effect is modelled as a lognormal

random variable with 10dB standard deviation. The four-path Rayleigh model is

used to model frequency selective fading with an exponential power profile. The

receiver thermal noise is -70dBmW.
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For each channel and location realization, we study the number of stages needed

for the solution to converge. The CDF on the convergence of CNRAG is plotted

in Fig. 6.7. It can be seen that the speed of convergence only slightly decrease

when the number of subcarriers increases. The most important factor which affects

the speed of convergence is the maximum NOA allowed. The CNRAG converges

much more slowly when the value of NOA is getting larger. This conclusion is

intuitive because more number of game stages are allowed before a SBA strategy

is considered to be aborted. However, no matter how slowly it does, the game

will converge if the value of NOA is finite. Through intensive simulations for K

ranging from 8 to 128, we find that in general NOA=2 gives the best improvement

in network payoff although at the expense of sacrificing the convergence speed.

To study the average network payoff and to compare the performance of the

three different games – NRAG, CNRAG and CNRAG-IA, we generate 103 instances

of user and channel realizations and the results are shown in Fig. 6.8. The figure

shows that for both K = 64 and K = 128, the performance of CNRAG is slightly

better than that of the original NRAG which occasionally does not converge. More

importantly, while the result of the original NRAG is not stable, CNRAG always

converges to a steady state. On the other hand, CNRAG-IA shows clear improve-

ment in network payoff over both NRAG and CNRAG, while still being able to con-

verge and remain stable. Although the results from both CNRAG and CNRAG-IA

could not reach the optimal solutions of the overall system, they do provide stable

and convergent results to support the user requirements in a decentralized manner.

The performance difference cannot be easily seen from Fig. 6.8 since all differ-

ent schemes transmit at different number of bits and the actual value of network



Chapter 6. Adaptive Modulation Games 131

Figure 6.8: Network payoff comparison for the different games.

payoff is affected by the value of c, the power cost factor. Therefore we compare

the performance of the three games in term of the transmission power required

to transmit a single bit, and the results are shown in Fig. 6.9. It can be seen

that NRAG requires more than 2dBm (or about 20%) than the optimal solution to

transmit a single data bit. With the introduction of NOA, CNRAG not only makes

sure the game will converge, but also provides a performance improvement of about

0.6dBm. And by taking interference avoidance into consideration, CNRAG-IA im-

proves the performance further with another 0.6dBm reduction in the transmission

power per bit, without increasing the complexity of the game.

An example to compare the SBA of CNRAG, CNRAG-IA, and the optimal

solution is shown in Fig. 6.10. For illustrative purpose, we reduce the number of

subcarriers to 3, and every BS has only one user. Results of the repeated plays

are taken at the end of the tenth iteration. It can be seen that in CNRAG, the

players put the bits on more than one subcarriers, as contrast to the optimal case
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Figure 6.9: Comparison on transmission power per bit for the different
games.

where the three BSs load all the bits on three distinctive subcarrier so that no

interference is caused among each other. As a contrast, the outcome of CNRAG-

IA using new utility function (6.24) happened to be exactly the same as the optimal

case. Although it does not guarantee to result in the optimal solution every time,

CNRAG-IA generally achieves better overall system utility over CNRAG.

6.8 Conclusion

The adaptive allocation of subcarrier, bit and power resources in multi-cell OFDMA

systems were studied using the non-cooperative game theoretic approach. In con-

trast to the previous works, integer values were used in our study. The simplest

NRAG-2{1}/1 was first studied, which has shown that there exists at least one NE

for the game. However, as the numbers of players, users in a BS and subcarriers

increase, the existence of NE cannot be guaranteed. In the case where no NE ex-
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Figure 6.10: Comparison of subcarrier-and-bit allocation: (a) Optimal (b)
CNRAG (c) CNRAG-IA.

ists, it was shown that the myopic play of NRAG will oscillate in a cycle of two

or more stages and will not arrive at a stable outcome. Based on the framework

of potential games with coupled constraints which can guarantee convergence, the

procedure of the myopic play was modified to detect and remove those modulation

levels which could lead to unstable outcome. As a result of removing the possible

cycling of the game stages, the game would eventually converge without increasing

the complexity significantly. Moreover, an additional term was introduced in the

payoff function to enforce interference avoidance among neighbouring BS. The IA

mechanism was proved to be effective in mitigating CCI, with CNRAG-IA able to

achieve higher network payoff than CNRAG. Finally, the network payoff obtained

by all the three game theoretic approaches were compared with the centralized

approach.



134

Chapter 7

Conclusion

In this thesis, we studied radio resource allocation problems in wireless systems

using both the centralized optimization and game theoretic approaches. Firstly,

the SBA in single-cell multiuser multiclass OFDMA systems was formulated as

a MINLP optimization problem. The MINLP is highly nonlinear and complex to

solve. Thus a method was proposed to convert it into a BLP which has a drastically

reduced complexity due to its linearity. As a result, the optimal solution can be

obtained much more easily than before.

Secondly, the similar resource allocation problem was extended to multi-cell

OFDMA systems. As the complexity of the formulated MINLP increases exponen-

tially with the number of cells and number of users in a cell, it is much more difficult

to solve the MINLP directly. Once again, a method was proposed to convert the

MINLP into a BLP to obtain the optimal solution much more easily without relax-

ation and approximation. The optimal solutions can act as a performance bound

to benchmark the results obtained from other approaches such as game theory and

heuristic algorithms.
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Thirdly, the opportunistic transmission of distributed nodes over a common

channel was studied using a non-cooperative game theoretic approach. In the for-

mulated NRAG, integer numbers of bits are used which results in discrete strategy

spaces for the players. It was shown that there is at least one NE solution in the

2-player single-channel NRAG under all possible channel realizations. Then the

N-player NRAG was also shown by mathematical induction to have at least one

NE solution, with the assumption that a strategy profile should only have posi-

tive payoff when a player transmits. However, existence of NE does not guarantee

convergence to one of the NEs when the game is played repeatedly. To overcome

this problem, it was shown that the NRAG will become a NPAG when the sub-

carrier assignments are fixed, and the NPAG is a potential game which will always

converge. Therefore we proposed an algorithm introducing NOA to the NRAG in

order to ensure convergence of game-play without increasing the complexity sig-

nificantly. The price of anarchy for the games was also estimated using computer

simulations with various settings.

Lastly, the SBPA in multi-cell OFDMA systems was studied using the non-

cooperative game theoretic approach. With integer numbers of bits being used,

our study also dealt with discrete strategy spaces of the players. The simplest

NRAG-2{1}/1 was first studied and shown that there is at least one NE for the

game. However, existence of NE cannot be guaranteed for the games with more

players or subcarriers, hence the myopic play of NRAG will oscillate and no stable

outcome can be obtained. Based on the framework of potential games with coupled

constraints, an algorithm using NOA was proposed to modify the procedure of

myopic play so that those unsustainable modulation levels which could lead to
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unstable outcomes would be detected and removed. As a result, the game will

eventually converge without increasing the complexity significantly. Moreover, by

introducing a cost factor on the spectrum usage to the payoff functions of the

players, IA mechanism was proved to be effective in mitigating CCI, with CNRAG-

IA being able to achieve higher network payoff than CNRAG.
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[54] M. Félegyházi and J.-P. Hubaux, “Wireless Operators in a Shared Spectrum,”
in Proc. IEEE INFOCOM 2006, pp. 1-11, Apr. 2006.



Bibliography 141

[55] A. Zemlianov and G. de Veciana, “Cooperation and decision making in wireless
multi-provider setting,” in Proc. IEEE INFOCOM 2005, pp. 386-397, Mar.
2005.

[56] M. M. Halldorsson, J. Y. Halpern, L. E. Li, and V. S. Mirrokni, “On spectrum
sharing games,” in Proc. ACM PODC 2004, pp. 107-114, Jul. 2004.

[57] R. Etkin, A. P. Parekh, and D. Tse, “Spectrum sharing for unlicensed bands,”
IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 517-528, Apr. 2007.

[58] C. Peng, H. Zheng, and B. Y. Zhao, “Utilization and fairness in spectrum
assignment for opportunistic spectrum access,” Mobile Networks and Applica-
tions, vol. 11, no. 4, pp. 555-576, Aug. 2006.

[59] H. Zheng and L. Cao, “Device-centric spectrum management,” in Proc. IEEE
DySPAN 2005, pp. 56-65, Nov. 2005.

[60] R. D. Yates, “A framework for uplink power control in cellular radio systems,”
IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1341-1347, Sept. 1995.

[61] Z. Han, Z. Ji, and K. J. R. Liu, “Non-cooperative resource competition game
by virtual referee in multi-cell OFDMA networks,” IEEE J. Sel. Areas Com-
mun., vol. 25, no. 6, pp. 1079-1090, Aug. 2007.

[62] D. Fudenberg and J. Tirole, Game Theory. MIT Press, Cambridge, MA, 1991.

[63] J. Zander, “Performance of optimum transmitter power control in cellular
radio systems,” IEEE Trans. Veh. Tech., vol. 41, no. 1, pp. 57-62, Feb. 1992.

[64] S. A. Grandhi and J. Zander, “Constrained power control in cellular radio
systems,” in Proc. IEEE VTC’94, pp. 824-828, vol. 2, Jun. 1994.

[65] Z. Mao and X. Wang, “Efficient optimal and suboptimal radio resource allo-
cation in OFDMA system,” IEEE Trans. Wireless Commun., vol. 7, no. 2, pp.
440-445, Feb. 2008.

[66] Z. Liang, Y. H. Chew, and C. C. Ko, “A linear programming solution to
subcarrier, bit and power allocation for multicell OFDMA systems,” in Proc.
IEEE WCNC’08, pp. 1273-1278, Mar. 2008.

[67] Z. Han, Z. Ji, and K. J. R. Liu, “Power minimization for multi-cell OFDM
networks using distributed non-cooperative game approach,” in Proc. IEEE
GLOBECOM’04, pp. 3742-3747, Nov. 2004.

[68] H. Kwon and B. G. Lee, “Distributed resource allocation through noncooper-
ative game approach in multi-cell OFDMA systems,” in Proc. IEEE ICC’06,
pp. 4345-4350, Jun. 2006.

[69] L. Wang and Z. Niu, “Adaptive power control in multi-cell OFDM systems: A
noncooperative game with power unit based utility,” IEICE Trans. Commun.,
vol E89-B, no. 6, pp. 1951-1954, 2006.



Bibliography 142

[70] G. Song and Y. Li, “Cross-layer optimization for OFDM wireless networks-
part I: Theoretical framework,” IEEE Trans. Wireless Commun., pp.614-624,
Mar. 2005.

[71] D. Goodman and N. Mandayam, “Power control for wireless data,” IEEE
Personal Commun., vol. 7, no. 2, pp. 48-54, Apr. 2000.

[72] F. Meshkati, M. Chiang, H. V. Poor and S. C. Schwartz, “A game-theoretic
approach to energy-efficient power control in multicarrier CDMA systems,”
IEEE J. Sel. Areas Commun., vol. 24, no. 6, pp. 1115-1129, Jun. 2006.

[73] CH Ko and HY Wei, “On-demand resource-sharing mechanism design in two-
tier OFDMA femtocell networks,” IEEE Trans. Veh. Tech., vol. 60, no. 3, pp.
1059-1071, Mar. 2011.

[74] T. ElBatt and A. Ephremides, “Joint scheduling and power control for wireless
ad hoc networks,” IEEE Trans. Wireless Commun., vol. 3, no. 1, pp. 74-85, Jan.
2004.

[75] H. Li, Y. Gai, Z. He, K. Niu and W. Wu, “Optimal power control game
algorithm for cognitive radio networks with multiple interference temperature
limits,” in Proc. IEEE VTC’08 Spring, pp. 1554-1558, May. 20087.

[76] M. Felegyhazi, M. Cagalj and J. - P. Hubaux, “Efficient MAC in cognitive
radio systems: A game-theoretic approach,” IEEE Trans. Wireless Commun.,
vol 8, no. 4, pp. 1984-1995, Apr. 2009.

[77] Q. D. La, Y. H. Chew, W. H. Chin and B. H. Soong, “A game theoretic
distributed dynamic channel allocation scheme with transmission option,” in
Proc. of IEEE MILCOM’08, pp. 1-7, Nov. 2008.

[78] C. U. Saraydar, N. B. Mandayam and D. J. Goodman, “Efficient power control
via pricing in wireless data networks,” IEEE Trans. Commun., vol 50, no. 2,
pp. 291-303, Feb. 2002.

[79] Q. Jing and Z. Zheng, “Distributed resource allocation based on game theory
in multi-cell OFDMA systems,” Int J Wireless Inf Networks, vol. 16, no. 1-2,
pp. 44-50, Mar. 2009.

[80] L. Xiao and L. Cuthbert, “Multi-cell non-cooperative power allocation game
in relay based OFDMA systems,” in Proc. IEEE VTC Spring’09, pp. 1-5, Apr.
2009.

[81] L. Xiao, L. Cuthbert and T. Zhang, “Distributed multi-cell power allocation
algorithm for energy efficiency in OFDMA relay systems,” in Commun. Work-
shops’09. ICC Workshops’09, pp. 1-5, Jun. 2009.

[82] V. Kawadia and P. R. Kumar, “Principles and protocols for power control in
wireless ad hoc networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 1, pp.
76-88, Jan. 2005.



Bibliography 143

[83] D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in cog-
nitive radio networks: Dynamic game, inefficiency of Nash equilibrium, and
collusion,” IEEE J. Sel. Areas Commun., vol. 265, no. 1, pp. 192-202, Jan.
2008.

[84] Z. Liang, Y. H. Chew, and C. C. Ko, “On the Nash equilibrium solutions
of integer bit loading OFDMA resource allocation games,” in Proc. IEEE
PIMRC’09, pp. 1692-1696, Sept. 2009.

[85] 3GPP, “Technical specification group radio access Network; Physical layer
aspects of UTRA high speed downlink packet access,” Tech. Rep. TR 25.848,
V4.0.0, Release 4, 3GPP, Mar. 2001.

[86] Q. D. La, Y. H. Chew and B. H.. Soong, “An interference minimization game
theoretic subcarrier allocation algorithm for OFDMA-based distributed sys-
tems,” in Proc. IEEE Globecom’09, pp. 1-6, Nov.-Dec. 2009.

[87] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,” Pacific
J. Math., vol. 5, no. 2, pp. 285-309, 1955.

[88] A. Granas and J. Dugundji, Fixed Point Theory. Springer-Verlag, New York,
2003.

[89] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods (2nd Edition). Athena Scientific Press, 1989.

[90] O. L. Mangasarian, “Equilibrium points of bimatrix games,” J. Society for
Industrial and Applied Mathematics, vol. 12, no. 4, pp. 778-780, Dec. 1964.

[91] J. Dickhaut and T. Kaplan, “A program for finding Nash equilibria,” The
Mathematica Journal, vol. 1, no. 4, pp. 87-93, 1991.

[92] S. Govindan and R. Wilson, “A global Newton method to compute Nash
equilibria,” J. Economic Theory, vol. 110, no. 1, pp. 65-86, May 2003.

[93] B. Blum, C. R. Shelton and D Koller, “A continuation method for Nash equi-
libria in structured games,” J. Artificial Intelligence Research, vol. 25, pp. 457-
502, 2006.

[94] R. Porter, E. Nudelman, and Y. Shoham, “Simple search methods for finding a
Nash equilibrium,” Games and Economic Behavior, vol. 63, no. 2, pp. 642-662,
Jul. 2008.


