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SUMMARY   

 

Acute myocardial infarction (AMI), which is caused by occlusion of coronary 

artery, results in myocardial infarction and this may eventually contribute to the 

development of heart failure. Ironically, reperfusion therapy, which restores blood 

flow and significantly limits ischemic injury, causes reperfusion injury and 

contributes to the final infarct size. Amelioration of reperfusion injury will 

therefore improve the efficacy of reperfusion therapy.  However, there is still no 

effective treatment to limit reperfusion injury, and this is contributing to a 

growing epidemic of heart failure.  Recent developments have indicated that 

secretion of mesenchymal stem cells (MSCs) can reduce reperfusion injury. 

However, the cardioprotective factor in the secretion and underlying mechanism 

of its cardioprotection remains to be elucidated.  

To identify the active component in MSC secretion, 0.2 µM filtered culture 

medium conditioned by human embryonic stem cell-derived MSCs was filtered 

sequentially through filters with decreasing pore sizes.  Only the >1000 kDa 

fraction reduced infarct size in a mouse MI/R injury model. This physically 

limited the size of cardioprotective factor to 100-220 ηm and the candidate factor 

to exosome. Electron microscopy showed the presence of 100 ηm particles in the 

conditioned medium. Further analysis revealed the presence of co-

immunoprecipitating exosome-associated proteins and the co-sedimentation of 

these proteins with membrane lipids after ultracentrifugation.  These proteins were 

determined to have an exosome-like flotation density of 1.10-1.16 µg/ml by 

sucrose gradient centrifugation. These exosomes could be purified by size 
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exclusion on HPLC and this purified exosome significantly reduced infarct size in 

the same mouse model.  

To assess if the secretion of cardioprotective exosome was restricted to hESC-

derived MSCs, we derived 5 MSCs cultures from various tissues of 3 first-

trimester aborted fetuses. These MSCs were highly expandable, displayed typical 

MSC surface antigen and gene expression profile, and possessed the MSC tri-

lineage differentiation potential. Like hESC-MSCs, they produced exosomes that 

were cardioprotective in mouse MI/R injury model. Therefore, production of 

cardioprotective exosomes was not restricted to hESC-MSCs but was common to 

all MSCs. 

To understand the cardioprotective mechanism of MSC exosome, the biochemical 

potential of exosome in vitro and in vivo was assessed. Proteomic profiling of 

exosome identified 866 proteins that together had the potential to drive diverse 

biological processes. Several of these processes had the potential to reduce injury 

during reperfusion including enhancing glycolysis, inhibiting the formation of 

membrane attack complex, reducing oxidative stress and activating pro-survival 

kinases. Consistent with the in vitro data, exosome treatment in mouse model 

promoted pro-survival signaling, enhanced ATP production and redox balance. 

These probably contributed to the reduced infarct size and preserved cardiac 

function and geometry that observed in the exosomes treated group.   

In summary, we identified exosome as the cardioprotective component in MSCs 

secretion.  We further demonstrated that secretion of cardioprotective exosomes 

was not restricted to hESC-MSCs and suggested potential mechanisms underlying 

this cardioprotection. These findings not only redefined the paracrine mechanism 
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of MSCs, more importantly they might lead to the development of adjunctive 

reperfusion therapy.
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INTRODUCTION 

This introduction are adapted with modifications from a published review article 

“Mesenchymal stem cell exosome: a novel stem cell-based therapy for 

cardiovascular disease”1 of which I am the first author. 

 

Myocardial Ischemia/Reperfusion Injury 

Acute myocardial infarction (AMI), commonly known as heart attack occurs 

during a sudden obstruction of blood supply to part of the heart by vulnerable 

atherosclerotic plaque rupture2. AMI causes substantial irreversible cell death if 

left untreated for a substantial period of time3. Based on estimates by World 

Health Organization, 7.2 million people died from AMI in 2004, representing 12% 

of all global deaths. It is projected that by 2030, almost 10 million people will die 

from AMI, a 38% increase in 25 year4. In Singapore, AMI accounted for 19.2% of 

all deaths in 20095, which was the number two cause of death.  

Reperfusion therapy or the restoration of blood flow by percutaneous coronary 

intervention (PCI), thrombolytic therapy or bypass surgery is currently the 

mainstay of treatment for AMI and is responsible for the significant reduction in 

AMI mortality6. It was shown that the mortality rate of AMI in Germany reduced 

from 16.2% in 1994 to 9.9% in 2002 in tandem with the increasing use of 

reperfusion therapy6. The efficacy of reperfusion therapy has led to increasing 

survival of patients with severe AMI who would not otherwise survive.  Despite 

adequate reperfusion, however, most patients still suffer irreversible myocardial 

cell loss. Ironically, reperfusion itself is an important contributor to irreversible 

myocardial cell loss due to a phenomenon referred to as reperfusion injury7. Based 
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on studies in animal models of AMI, reperfusion injury contributed up to 50% of 

the final infarct size7. Amelioration of reperfusion injury and subsequent reduction 

of myocardial infarct size will dramatically improve patient prognosis. More 

importantly, by reducing reperfusion injury, the progression of AMI to heart 

failure that is highly dependent on infarct size8-13 might be reduced, thus relieving 

the phenomenon of the ever-growing epidemic of heart failures14-16.  

It was recognized by Jennings et al. as early as 1960 that reperfusion of severely 

ischemic tissue causes lethal injury17. They observed significant morphological 

alteration in ischemic canine myocardium after the onset of reperfusion. These 

include cardiomyocyte swelling, mitochondrial clarification, 

amorphous/flocculent densities representing calcium phosphate deposits, 

hypercontracture and loss of sarcomere organization. It was believed that several 

abrupt biochemical and metabolic changes during reperfusion causes lethal 

reperfusion injury. These include the generation of reactive oxygen species 

(ROS)18,19, intracellular Ca2+ overload20, the rapid restoration of physiologic pH21 

and inflammation22. The complex interaction of each biochemical and metabolic 

changes, together mediates cardiomyocyte death through apoptosis, necrosis, 

inflammation and hypercontracture7. But the very existence of lethal reperfusion 

injury was actively debated23. It became more widely accepted only when infarct 

size was shown to be reduced by interventions applied at the onset of reperfusion8.  

These interventions including postconditioning which involved several cycles of 

brief mechanically interrupted-reperfusion applied at the onset of reperfusion or 

pharmacological agents applied before the onset of reperfusion have demonstrated 

some protection against reperfusion injury in animals or small clinical trials in 

terms of reducing infarct size and/or improving heart function8.  The obvious 
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implication of these findings is that adjunctive therapies at the onset of reperfusion 

might salvage more myocardium at risk. Unfortunately, over the past 30 years, 

most of the agents failed to reproduce these beneficial effects in large-scale 

clinical trial and none has been translated into clinical practice24-27. This have led 

to speculations that reducing reperfusion injury may not be tractable to 

pharmaceutical interventions28.  

 

Mesenchymal Stem Cells In The Treatment Of Acute Myocardial Infarction 

With the emergence of stem cells as potential regenerative medicine, attempts to 

use stem cells to reduce infarct size and enhance cardiac function in animal 

models and patients have increased exponentially.  To date, stem cell therapy for 

the heart accounts for one third of the publications in the regenerative medicine 

field29. The rationale for the use of stem cells to repair cardiac tissues was based 

on the hypothesis that these cells could differentiate into cardiomyocytes and 

supporting cell types to replace cells lost during MI/R injury, and achieve cardiac 

repair30.  Among stem cells currently being tested in clinical trials for the heart, 

MSCs are the most widely used stem cells. Part of the reasons is their easy 

availability in accessible tissues such as bone marrow aspirate, fat tissue31 and 

their large capacity for ex vivo expansion32.  MSCs are also known to have 

immunosuppressive properties33. Therefore another attractive advantage is that 

they could be used in allogeneic transplantation which is very practical in clinic. 

Besides, they are also reported to have highly plastic differentiation potential that 

included not only adipogenesis, osteogenesis and chondrogenesis34-39, but also 

endothelial and cardiovascular differentiation40, neurogenic differentiation41-43, 

and neovascular differentiation44-46.  
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MSCs transplantation in most AMI animal models generally resulted in reduced 

infarct size, improved left ventricular ejection fraction, increased vascular density, 

and myocardial perfusion47-51. In a recent phase I randomized double blind 

placebo-controlled dose-escalation clinical trial, single infusion of allogeneic 

MSCs in patients with AMI was documented to be safe with some provisional 

indications that the MSC infusion improved outcome with regard to cardiac 

arrhythmias, pulmonary function, left ventricular function, and symptomatic 

global assessment52.   

Despite numerous studies on the transplantation of MSCs in patients and animal 

models, insight into the mechanistic issues underlying the effect of MSC 

transplantation remains vague.  An often-cited hypothesis is that transplanted 

MSCs differentiate into cardiomyocyte and supporting cell types to repair cardiac 

tissues.  However, contrary to this differentiation hypothesis, most transplanted 

MSCs are entrapped in the lungs and the capillary beds of tissues other than the 

heart53,54.  And depending on the method of infusion, 6% or less of the 

transplanted MSCs persist in the heart two weeks after transplantation55.  In 

further contradiction, transplanted MSCs were observed to differentiate 

inefficiently into cardiomyocytes56 while ventricular function was rapidly restored 

less than 72 h after transplantation57.  All these observations are physically and 

temporally incompatible with the differentiation hypothesis and have thus 

prompted an alternative hypothesis that the transplanted MSCs mediate their 

therapeutic effect through secretion of paracrine factors that promote survival and 

tissue repair58. 
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Paracrine Secretion of MSCs 

Paracrine secretion of MSCs was reported more than 15 years ago when 

Haynesworth et al. reported that MSCs synthesize and secrete a broad spectrum of 

growth factors and cytokines such as VEGF, FGF, MCP-1, HGF, IGF-I, SDF-1 

thrombopoietin59-63 that exert effects on cells in their vicinity 64. Paracrine 

secretion have been postulated to promote arteriogenesis61; support the stem cell 

crypt in the intestine65; protect against ischemic renal59,60 and limb tissue injury62; 

support and maintain hematopoiesis63; support the formation of megakaryocytes 

and proplatelets66; and promote breast cancer metastasis67. Many of these factors 

such as VEGF, HGF, bFGF were also found to exert beneficial effects on the heart, 

including neovascularization68, attenuation of ventricular wall thinning50 and 

increased angiogenesis69,70.  

In 2005, Gnecchi et al. showed that intramyocardial injection of either culture 

medium conditioned by MSCs overexpressing the Akt gene (Akt-MSCs) or the 

Akt-MSCs reduced infarct size in a rodent model of AMI to the same extent. This 

provided the first direct evidence that cellular secretion alone could be 

cardioprotective57,71.  Again, in 2008, Timmers et al. showed that culture medium 

conditioned by hESC-MSCs significantly reduced infarct size by approximately 

50% in a pig and mouse model of MI/R injury when administered intravenously in 

a single bolus just before reperfusion72. These observations represent a very 

important step forward in our understanding of the cardioprotective mechanism of 

MSC-based therapy in AMI. It clearly demonstrated that cardiac repair could be 

achieved without the actual participation of the cells themselves but by simply 

administering their secretion. These discoveries explained the fast acting effect of 

MSCs after transplantation and explained why the low efficiency of engraftment 
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and differentiation did not affect the efficacy of the MSC transplantation. More 

importantly, these findings could potentially facilitate the translation of cell-free 

secretion as an adjunctive therapy to reperfusion therapy if the active 

cardioprotective factor of these paracrine secretions could be identified.  

 

Thesis 

The specific aims of this PhD project were to identify the active cardioprotective 

factor of the MSCs secretion and to elucidate the mechanisms of the 

cardioprotection.  The findings from this project have been either published in 

peer-reviewed papers or are in manuscripts under peer review for publication. The 

papers and manuscripts are attached in the following chapter. I am also a co-

author of 4 publications73-76 where I contributed my expertise in exosome biology.  

These publications are in areas that are not directly relevant to my thesis.  

Four papers in the following chapters described the work leading to discoveries 

that exosome is the cardioprotective factor in the MSC secretion, secretion of 

cardioprotective exosome is a property of MSCs, exosome carries a cargo that has 

diverse biochemical and cellular potential and the exosome elicits cellular 

responses that are known to be cardioprotective and are consistent with its 

biochemical cargo. 

In the first paper, “Exosome secreted by MSC reduces myocardial 

ischemia/reperfusion injury”, we addressed the question “What is the active 

cardioprotective factor of the MSCs secretion?” By filtering the secretion 

sequentially through filters with decreasing pore sizes, fractions containing 

molecules within different molecular weight ranges were generated. We found 
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that only >1000 kDa 0.2µM filtered fraction reduced infarct size. This finding 

limited the physical size of cardioprotective factor to 100-220 ηm, which is much 

larger than the typical paracrine mediators that usually consist of growth factors, 

cytokines and chemokines77. Under the transmission electron microscope, we 

observed ~100 ηm diameter particles in the secretion. Based on the size range and 

morphology of these particles and current research literature we postulated that 

the likely candidate was a secreted phospholipid vesicle known as exosome.  

We next investigated whether exosomes are present in the secretion.  We first did 

a proteomic analysis of MSC secretion using mass spectrometry and antibody 

array to check if the secretion contained proteins that are commonly found in 

exosomes such as CD9, CD81 and Alix78. 738 proteins were detected and these 

included most of the reported exosomes-associated protein. The presence of some 

of exosomes-associated proteins was confirmed by Western blot analysis. 

Furthermore, we observed exosome-associated proteins, CD9 and Alix, co-

immunoprecipitated with another exosome-associated proteins, CD81, suggesting 

that these proteins were in a single complex. As exosomes are routinely purified 

by ultracentrifugation, we checked if we could precipitate CD9 by 

ultracentrifuging the secretion. The result showed that CD9 could be precipitated. 

At the same time, we also observed enrichment of major plasma membrane 

component such as cholesterol, sphingomyelin and phosphotidylcholine in the 

ultracentrifugation pellet. We further checked if the flotation densities of CD9 and 

CD81 fall within the typical density range of exosome, which is 1.10-1.18 g/ml. 

The results showed that they both floated in the density range of exosome and 

pretreatment with a detergent-based cell lysis buffer decreased the apparent 

flotation densities of CD9 and CD81 to that of proteins in a similar molecular 
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weight range. By limited trypsinization, we also showed that CD9, a membrane-

bound protein, was partially susceptible to trypsin digestion, and this partial 

susceptibility of CD9 was detergent-sensitive. This was consistent with its 

localization in a lipid membrane. In summary, these observations suggested the 

existence of exosomes in the secretion.  

To prove the existence of exosome in the secretion, we tried to purify exosomes 

from the secretion by size exclusion on a HPLC. The first 8 eluted fractions (F1 to 

F8, based on the absorbance profile at 220 nm) from HPLC were collected. Only 

F1 to F4 contained proteins as shown by silver staining. Proteins were distributed 

among F2, F3, and F4 fractions according to the principle of size-exclusion 

fractionation that larger proteins were eluted first followed by smaller proteins.  

Proteins in F2 were generally larger than those in F3 which in turn were larger 

than those in F4.   In contrast, proteins in the F1 fraction had a MW distribution 

that spanned the entire MW spectrum of F2, F3, and F4.  Dynamic light scattering 

analysis showed that F1 contained homogeneously sized particles with a 

hydrodynamic radius of 55-65 ηm. Western blot analysis showed that CD9 was 

present exclusively in the F1 and had a flotation density in the range of exosome, 

i.e. 1.10-1.18 g/ml. These features of the F1 fraction, i.e., the proteins with a wide 

spectrum of MW, exclusive presence of CD9 and homogenously sized particles 

were consistent with presence of exosome and indicated that exosomes were 

successfully purified from the secretion by HPLC fractionation.  When 0.4 μg of 

F1 proteins were administered to a mouse model of MI/R injury 5 min prior to 

reperfusion, it reduced infarct size to the same extent as 3 μg secretion proteins. In 

summary, we had identified exosome as the cardioprotective component in MSC 

secretion. 
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In the second paper, “Derivation and characterization of human fetal MSCs: an 

alternative cell source for large-scale production of cardioprotective 

microparticles”, we assessed if cardioprotective exosome was secreted by MSCs 

in general. Five MSC cultures were derived from limb, kidney and liver tissues of 

3 first-trimester aborted fetuses. These fetal tissue-derived MSCs have a stable 

karyotype and similar telomerase activities to hESC-MSCs. They are highly 

expandable, each line has the potential to generate at least 1016-19 cells or 107–10 

doses of cardioprotective secretion for a pig model of MI/R injury. They displayed 

a typical MSC surface antigen profile, but unlike previously described fetal MSCs, 

they did not express pluripotency-associated markers such as Oct4, Nanog or 

Tra1-60.  They have the potential to differentiate into adipocytes, osteocytes and 

chondrocytes in vitro. Global gene expression analysis by microarray revealed a 

typical MSC gene expression profile that was highly correlated among the five 

fetal MSC cultures and with that of hESC-MSCs. Most importantly, like hESC-

MSCs, they produced exosomes that were cardioprotective in a mouse model of 

MI/R injury. Together we demonstrated that fetal tissues-derived MSCs also 

produced cardioprotective exosome and that the secretion of protective exosomes 

was not an exclusive characteristic of hESC-MSCs but possibly a universal 

property of all MSCs. 

 

In the third paper, “Characterizing the biological potency of MSC exosome by 

cellular and biochemical validation of its proteome”, we assessed the biochemical 

potential of exosome in vitro to identify candidate mechanisms for 
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cardioprotective effect of hESC-MSCs. We profiled the proteome of MSC 

exosome to identify 866 proteins. These proteins could be functionally clustered 

into 32 over-represented biological processes. Together, these suggested 

exosomes had a potential to drive a diverse spectrum of cellular and biochemical 

activities. To evaluate and verify this potential, we selected proteins for which 

assays to assess either their biochemical and/or cellular activities were available 

and that together, would demonstrate the wide spectrum of biochemical and 

cellular potential in exosomes, and provide candidate molecular mechanisms for 

the cardioprotective properties of MSC exosomes. The proteins investigated here 

include glycolytic enzymes for the breakdown of glucose to generate ATP and 

NADH, PFKB3 that increases glycolysis, CD73 that hydrolyses AMP to 

adenosine capable of activating signaling cascades through adenosine receptors, 

CD59 that inhibits the formation of membrane attack complex (MAC) and 20S 

proteasome that degrade oxidized protein.   

All five enzymes (GAPDH, PGK, PGM, ENO, PKm2) in the ATP generating 

stage of the glycolysis were present in the exosome proteome. In addition, 

PFKFB3 a powerful allosteric activator of phosphofructokinase, which catalyzes 

the commitment to glycolysis79, was shown to be present in the phosphorylated 

form. This predicted that exposure of cells to exosome could result in increased 

glycolytic flux in the cells. Consistent with the prediction, exosomes significantly 

increased ATP level in oligomycin-treated cells. Another group of proteins, 

PMSA1-7 and PMSB1-7, which form the 20S proteasome, were also detected in 

our exosome proteome. The presence of all seven α- and all seven β-subunits of 

the 20S core particle suggest that MSC exosomes contained intact 20S proteasome 

complexes and therefore potentially possessed 20S proteasome enzymatic activity. 
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Consistent with this, MSC exosome was able to degrade short fluorogenic 

peptides and this degradation was inhibited by lactacystin, a specific proteasome 

inhibitor.  

Besides these 2 groups of proteins, CD73, an enzyme that converts AMP into 

adenosine, was also found in exosome proteome. This suggested that exosomes 

might have the potential to induce adenosine-mediated signaling. Consistent with 

this hypothesis, we demonstrated exosomes could hydrolyze AMP to adenosine 

by CD73 and subsequently induced phosphorylation of AKT and ERK1/2 in a 

serum starvation cell model. This phosphorylation of ATK and ERK1/2 could be 

abolished by theophylline, a non-selective adenosine receptor antagonist that 

antagonized A1, A2A, A2B, and A3 receptors80. In addition, we also verified the 

functional ability of another important protein detected in exosome, CD59, an 

inhibitor of the formation of membrane attack complex (MAC). We showed that 

MSC exosomes were able to inhibit complement-mediated lysis of sheep red 

blood cells. This inhibition was abolished when a CD59 blocking antibody was 

used to pre-treat the exosome, showing that CD59 of exosomes was directly 

involved in the inhibition of complement lysis. All together, in this paper, our 

interrogation and biochemical validation of the exosome proteome have 

uncovered a diverse range of biochemical and cellular activities and identified 

several candidate biological processes for the cardioprotective effect of the 

exosome.  Further validation studies in appropriate animal models will be required 

to determine if one or more of these candidate pathways contributed to the 

efficacy of MSC exosome in reducing reperfusion injury in the treatment of AMI.   
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In the fourth paper, “Exosomes target multiple mediators to reduce cardiac injury”, 

we described both therapeutic and mechanistic actions of MSC exosomes in an 

animal model MI/R injury. First, we studied the mode of action of exosome 

cardioprotection by asking whether exosomes exert their therapeutic effect via 

blood cells or via direct interaction with myocardial cells. Exosome treatment in 

ex vivo MI/R experiments by the Langendorff setup reduced infarct size to the 

same extent as in vivo. This suggested that exosomes directly targeted myocardial 

cells to reduce MI/R injury without involving circulating cells. We further showed 

that vigorous agitation to disrupt exosome abolished its cardioprotective effect. 

This demonstration highlighted the importance of intact lipid membrane in 

mediating exosome cardioprotection. 

We then examined the cardiac performance of exosome-treated heart. Functional 

and geometry assessment of left ventricle by MRI measurement showed 

significant preservation of both end-diastolic and end-systolic volume, improved 

ejection fraction, decreased thinning of the infarct area during scar maturation and 

improved systolic thickening of the infarcted area in the exosome-treated group. 

These observations were consistent with the infarct size reduction seen after 

exosome treatment. By invasive pressure-volume loop recording, we also 

observed higher contractility and relaxation in exosome treated mice 28 days after 

infarction, which is consistent with the consequences of reduced dilation and 

improved systolic performance. Besides functional improvement, we also 

observed attenuation of inflammation including reduced neutrophil infiltration and 

reduced white blood cell count after MI/R injury in exosome treated mice. These 

are likely secondary to the reduced cardiac injury after exosome treatment.  
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Having established the functional improvement in exosomes treated heart after 

MI/R injury, we explored potential mechanisms of this therapeutic effect. We 

selectively evaluated the potential mechanisms that we previously proposed in our 

exosome biochemical study paper to confirm whether they are valid in the in vivo 

MI/R injury model. We first explored the possibility that exosome reduced infarct 

size by activating survival pathways, especially PI3K/AKT pathway. Exosome 

treatment induced AKT and GSK3 phosphorylation within 1-hour after 

reperfusion. However, ERK1/2 phosphorylation was not altered in exosome 

treated group. These suggested that exosomes specifically target AKT and GSK3 

pathway to induce pro-survival effects. At the same time, c-JNK, a known 

activator of pro-apoptotic was significantly dephosphorylated. In addition, we 

demonstrated that ADP/ATP and NAD+/NADH ratio in the area at risk of 

exosome-treated mice were significantly lower in 30 minutes after reperfusion 

compared with the saline-treated control. These observations were consistent with 

our previous in vitro biochemical and cellular validations. Together, these findings 

highlighted the fast acting effect of exosomes and suggested that activating 

survival pathway, enhancing ATP production and correcting redox balance 

through glycolysis might be the potential cardioprotective mechanisms of 

exosome. In conclusion, this study showed the therapeutic action of exosome and 

suggested potential mechanisms of exosomes in ameliorating reperfusion injury. 
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Abstract Human ESC-derived mesenchymal stem cell (MSC)-conditioned medium (CM) was previously shown to
mediate cardioprotection during myocardial ischemia/reperfusion injury through large complexes of 50–100 nm. Here we show
that these MSCs secreted 50- to 100-nm particles. These particles could be visualized by electron microscopy and
were shown to be phospholipid vesicles consisting of cholesterol, sphingomyelin, and phosphatidylcholine. They contained
coimmunoprecipitating exosome-associated proteins, e.g., CD81, CD9, and Alix. These particles were purified as a homogeneous
population of particles with a hydrodynamic radius of 55–65 nm by size-exclusion fractionation on a HPLC. Together these
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myocardial ischemia/reperfusion injury. Therefore, MSC mediated its cardioprotective paracrine effect by secreting exosomes.
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Introduction

Mesenchymal stem cells (MSCs) derived from adult bone
marrow have emerged as one of the most promising stem
cell types for treating cardiovascular disease (Pittenger and
Martin, 2004). Although the therapeutic effect of MSCs has
been attributed to their differentiation into reparative or
replacement cell types (e.g., cardiomyocytes, endothelial
cells, and vascular smooth cells) (Minguell and Erices, 2006;
Zimmet and Hare, 2005), it remains to be established if the
number of differentiated cell types generated is therapeu-
tically relevant. Recent reports have suggested that some of
these reparative effects are mediated by paracrine factors
secreted by MSCs (Caplan and Dennis, 2006a; Gnecchi et al.,
2005, 2006; Schafer and Northoff, 2008). In support of this
paracrine hypothesis, many studies have observed that MSCs
secrete cytokines, chemokines, and growth factors that
could potentially repair injured cardiac tissue mainly
through cardiac and vascular tissue growth and regeneration
(Caplan and Dennis, 2006b; Liu and Hwang, 2005). This
paracrine hypothesis could potentially provide for a non-
cell-based alternative for using MSCs in treatment of
cardiovascular disease (Pittenger and Martin, 2004). Non-
cell-based therapies as opposed to cell-based therapies are
generally easier to manufacture and are safer as they are
nonviable.

We have previously performed an unbiased proteomic
analysis of a chemically defined medium conditioned by
highly expandable human ESC-derived MSC cultures (Lian et
al., 2007; Sze et al., 2007). We identified N200 proteins in
the secretion of these MSCs (Sze et al., 2007). Computational
analysis of the secretome predicted that collectively, the
secretome has the potential to repair injured tissue such as
in myocardial ischemia/reperfusion (MI/R) injury (Sze et al.,
2007). MI/R injury refers to cell death and functional
deterioration that occurs during reperfusion therapy to
restore blood flow and salvage cardiomyocytes at risk of
dying from ischemia in an acute MI (AMI) (Cannon et al.,
2000; Saraste et al., 1997). Therefore, the effectiveness of
reperfusion therapy can be greatly enhanced by preventing
reperfusion injury for which there is currently no treatment
(Knight, 2007). We tested the computational prediction of
tissue salvage during reperfusion injury in a pig and mouse
models of MI/R injury. An intravenous bolus administration of
MSC-CM just before reperfusion substantially reduced infarct
size in both pig and mouse models of MI/R injury by ~60 and
~50%, respectively (Timmers et al., 2008). There was also a
significant preservation of cardiac function and reduction of
oxidative stress as early as 4 h after reperfusion (Timmers et
al., 2008). However, the active component in the secretion
and the mechanism by which it mediates this fast-acting
effect on MI/R injury have not been elucidated.

It is obvious that the immediacy of this protective effect
precludes the relatively lengthy process of gene transcription
and tissue regeneration as part of themechanism. Also, many
of the secreted proteins are membrane and intracellular
proteins, and are not known to cross plasma membranes
readily. This suggests that if these proteins mediate the
cardioprotective effect, the mechanism underlying the
therapeutic effect of MSC secretion must involve a vehicle
that facilitates crossing of membranes, thus representing a
radical shift from our present understanding of MSC paracrine

secretion which is limited to extracellular signaling by
cytokines, chemokines, and growth factors. To better
understand the cardioprotective paracrine effects of MSCs,
we then systematically fractionated the MSC-CM using
membranes with different molecular weight cut off
(MWCO). Based on these fractionations, we demonstrated
that the cardioprotective activity was in a N1000-kDa MW
fraction (Timmers et al., 2008). This suggested that the
cardioprotective effect was mediated by large complexes
with a diameter of 50–100 nm.

Here we demonstrate that these large complexes are
exosomes. By improving our proteomic analysis, we extend-
ed our previously reported list of 201 secreted proteins to
739 proteins and observed the presence of many exosome-
associated proteins. Some of these proteins were in
detergent-sensitive complexes. These proteins can be
sedimented by ultracentrifugation together with the mem-
brane phospholipids. Size-exclusion fractionation by HPLC
and dynamic light scattering analysis revealed the presence
of a population of particles with a hydrodynamic radius (Rh)
of 55–65 nm. More importantly, this HPLC fraction reduced
infarct size in a mouse model of MI/R injury.

Results

Cardioprotective secretion contains
exosome-associated proteins that form multiprotein
complexes

To identify the active component, we had previously
fractionated the CM by ultrafiltration through membranes
with different MWCO. It was shown that CM filtered through a
membrane with MWCO of 1000 kDa was not protective in a
mouse model of MI/R injury (Timmers et al., 2008). However,
CM concentrated by 125 times against a similar membrane
was protective. We observed that after filtration through
filters with a MWCO smaller than 0.2 mm such as 100, 300,
500, or 1000 kDa, the filtered CM was not cardioprotective
(Fig. 1A). In contrast, CM concentrated against a 1000-kDa
membrane (Timmers et al., 2008) or a 100-kDa membrane to
retain particles N1000 or 100 kDa, respectively, was
cardioprotective (Fig. 1). These observations suggested
that the active fraction consisted of large complexes of
N1000 kDa or had a predicted diameter of 50–100 nm.
Consistent with this, visualization of the CM by electron
microscopy revealed the presence of spherical structures
with a diameter of 50–100 nm and the morphology of a lipid
vesicle (Fig. 1B). Based on this size range and morphology,
we postulated that the likely candidate was a secreted
phospholipid vesicle known as exosome (Fevrier and Raposo,
2004; Keller et al., 2006).

To test this, we first determined if the CM contained the
subset of proteins that are commonly found in exosomes such
as CD9, CD81, and Alix (Olver and Vidal, 2007). These
proteins were not present in our previous proteomic profiling
of the secretion (Sze et al., 2007). By making modifications
to our proteomics methodology, we extended our list of
proteins found in the MSC secretion from 201 to 739 proteins
(Supplementary Table 1). The computationally predicted
biological activities of this proteome suggested that the
secretion will have significant biological effects on cardiac
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tissue injury and repair (Fig. S1). The subsets of exosome-
associated proteins CD9, CD81, and Alix were confirmed to
be present in the secretion by Western blot analysis (lane 1,
Fig. 2A). The MW of CD9 and CD81 was the expected 25 and
22–26 kDa, respectively. Consistent with our hypothesis that
the large complexes are exosomes, we observed that CD9
and Alix coimmunoprecipitated with CD81, suggesting that
these proteins were in a single complex (Fig. 2A).

A 24-kDa CD9 sediments at 200 000 g and is retained
by membrane with 500-kDa MWCO

As exosomes are routinely purified by ultracentrifugation
(Thery et al., 2006), we next determined if CD9 was
associated with a large complex that can be precipitated

by ultracentrifugation. The CMwas first fractionated through
a membrane (MWCO=500 kDa) into a N500-kDa retentate
fraction and a b500-kDa filtrate fraction followed by
ultracentrifugation of both fractions. The 24-kDa CD9 was
found in the N500-kDa retentate fraction and could be
precipitated by ultracentrifugation (Fig. 2B). CD9 was not
detected in the b500-kDa filtrate fraction. Consistent with
our exosome hypothesis, major plasma membrane phospho-
lipids such as cholesterol, sphingomyelin, and phosphatidyl-
choline were also precipitated by ultracentrifugation at
200 000 g for 2 h as evidenced by their enrichment in the
precipitate (Fig. 2C).

Figure 1 Cardioprotective properties of CM fractions. (A)
Saline, HEK293 CM, or different preparations of hESC-MSC CM
were administered to a mouse model of MI/R injury as described
under Materials and methods. The b1000, b500, b300, and
b100 kDa represented CM filtered sequentially with membranes
that had MWCO of 1000, 500, 300, and 100 kDa, respectively.
The N100 kDa represented CM concentrated 50 times against a
TFF membrane with MWCO of 100 kDa. The infarct size (IS) was
expressed as a fraction of the area at risk (AAR) in the left
ventricle. (B) Transmission electron microscopic picture of CM;
scale bar represents 500 nm.

Figure 2 Presence of large lipid complexes in CM. (A)
Coimmunoprecipitation of CD81, CD9, and Alix. After immuno-
precipitation of hESC-MSC CM with anti-CD81 or mouse IgG, the
immunoprecipitate (IP) and supernatant (S) were analyzed by
Western blot hybridization using antibody against CD9 and Alix.
(B) Size fractionation by ultrafiltration and ultracentrifugation.
CM was concentrated 5X using a membrane with MWCO of
500 kDa. The retentate and the unfiltered CM were then
ultracentrifuged at 200 000 g for 2 h. The supernatant and the
pellet were analyzed by Western blotting for the presence of
CD9. Lanes 1–3: Different protein amount of CM. Lanes 4 and 5:
The pellet (P) and supernatant (S) after ultracentrifugation of
unfiltered CM. Lane 6: Retentate (R) after filtration of CM
through a membrane with MWCO of 500 kDa. Lanes 7 and 8: The
pellet (RP) and supernatant (RS) after ultracentrifugation of
retentate. Lane 9: Filtrate (F) after filtration of CM through a
membrane with MWCO of 500 kDa. (C) Amount of cholesterol,
spingomyelin, and phosphatidylcholine in CM and in the pellet
after 200 000 g ultracentrifugation of the CM was assayed and
quantitated as picomole per microgram protein.
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Proteins in the CM are associated with phospholipid
membrane

As exosomes are phospholipid vesicles, they are known to have
a typical density range of 1.10 to 1.18 g ml−1 that could be
resolved on sucrose gradients (Raposo et al., 1996; Thery et
al., 2006).We therefore postulated that the flotation densities
of the putative exosome-associated proteins would be
different before and after release from such vesicles by a
detergent-based buffer. Therefore, CM or CM pretreated with
a detergent-based lysis buffer was fractionated on a sucrose
density gradient by equilibrium ultracentrifugation. The
fractions were analyzed for the distribution of CD9 and
CD81. Both CD9 and CD81 which coimmunoprecipitated (Fig.
2A) had a similar flotation density that was heavier than that
expected of proteins in their MW range (Fig. 3). Pretreatment
with a detergent-based cell lysis buffer decreased the
apparent flotation densities of CD9 and CD81 to that of
proteins in a similar MW range (Fig. 3). Our observations
demonstrated that the detergent-sensitive flotation densities
of proteins were consistent with their location in lipid vesicles.

Exosomal proteins are either membrane bound or
encapsulated

As many of the secreted proteins in the CM are known
membrane or cytosolic proteins, we investigated if these
proteins in the CM were also membrane bound or localized
within the lumen of the putative exosomes by limited
trypsinization. Membrane-bound proteins would expected
to be partially resistant whereas luminal proteins are
expected to be resistant to trypsinization. Treatment with

a detergent-based lysis buffer would abrogate this resis-
tance. As expected, CD9, a membrane-bound protein was
susceptible to trypsin digestion and generated two detect-
able tryptic peptide intermediates (Fig. 4). In contrast, SOD-
1, a cytosolic protein was resistant to trypsin digestion.
Pretreatment of CM with a detergent-based cell lysis buffer
abolished the resistance of CD9 and SOD-1 to trypsin
digestion. The detergent-sensitive partial susceptibility of
CD9 and resistance of SOD-1 to trypsin digestion were
consistent with their localization in a lipid membrane and
lumen of an exosome, respectively.

Purification of a homogeneous population of
exosomes by HPLC fractionation

To demonstrate directly that the active cardioprotective
component in the secretion is an exosome, CM and
nonconditioned medium (NCM) were first fractionated by
size exclusion on a HPLC column (Fig. 5A).The eluent was
monitored by absorbance at 220 nm and then examined by
dynamic light scattering which has a hydrodynamic radius
(Rh) detection range of 1 to 1000 nm. The first four eluting
fractions in CM (F1–F4) were not present in the NCM and
therefore represented secretion from the hESC-MSCs. F1, the
fastest eluting fraction with a retention time of 12 min,
represented the fraction containing the largest particles in
the CM. The particles in F1 were sufficiently homogeneous in
size such that they could be determined by dynamic light
scattering to have a hydrodynamic radius (Rh) of 55–65 nm.
All other peaks contained particles that were too heteroge-
neous in size to be estimated by dynamic light scattering. F1
contained 4% of total protein input but contained ∼50% of
the CD9 in the input (Fig. 5B). Proteins were distributed
among F2, F3, and F4 fractions according to the principle of
size-exclusion fractionation such that larger proteins were
eluted first in F2 followed by the smaller proteins in F3 and
the smallest in F4 (Fig. 5C). In contrast, proteins in the F1
fraction had a MW distribution that spanned the entire MW
spectrum of F2, F3, and F4 (Fig. 5C). The proteins in the F1
fraction despite having a MW range of 20 to 250 kDa

Figure 3 Protein analysis of CM fractionated on a sucrose
gradient density. CM or CM pretreated with lysis buffer was
loaded on a sucrose density gradient prepared by layering 14
sucrose solutions of concentrations from 22.8 to 60% (w/v) in a
SW60Ti centrifuge tube and then ultracentrifuged for 16.5 h at
200 000 g, 4 °C, in a SW60Ti rotor. The gradients were removed
from the top and the density of each fraction was calculated by
weighing a fixed volume of each fraction. The fractions were
analyzed by Western blot analysis for CD9 and CD81 in CM (upper
panel) and pretreated CM (lower panel). The distribution of a
protein standardmolecular weightmarker set after fractionation
in a similar gradient is denoted at the bottom of the figure.

Figure 4 Trypsinization of CM. CM treated with either PBS or
lysis buffer was digested with trypsin and an aliquot was
removed at 0.5, 2, 10, and 20 min. A trypsin inhibitor, PMSF,
was then added to terminate the trypsinization reaction and the
aliquots were analyzed for the presence of CD9 and SOD-1 by
Western blot hybridization.
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sedimented at a similar flotation density of 1.11–1.16 g/ml
(Fig. 6B) that was similar to that of CD9 in the CM (Fig. 3).
These features of the F1 fraction, i.e., the presence of
proteins with a wide spectrum of MW sizes and identical
flotation density, the exclusive presence of CD9, and a
homogeneous size, indicated that a homogeneous exosome
population was purified from the CM by HPLC fractionation.
When 0.4 μg of F1 protein was administered to a mouse
model of MI/R injury 5 min prior to reperfusion, the F1
fraction reduced infarct size to the same extent as 3 μg CM
protein (Fig. 7A). All animals in this study had the same
degree of endangered myocardium, as illustrated by similar
area at risk within the left ventricle (Fig. 7B).

Paracrine effect was mediated through heart tissues

For elucidating the mechanism of this paracrine effect, an
important prerequisite is the identification of the target
tissues. Here we determine that the paracrine effect on MR/I
injury was a heart autonomous effect and was independent of
circulating cells including immune cells. Using an ex vivo
mouse Langendorff heart model of ischemia/reperfusion
injury, we observed that conditioned medium reduced
relative infarct size to the same extent as in a mouse model
(Fig. 8).

Discussion

The trophic effects of MSC transplantation on ameliorating the
deleterious consequences of myocardial ischemia have been
implicated in several studies (Caplan and Dennis, 2006a).
Transplantation of MSCs into ischemic myocardium has been
shown to induce several tissue responses such as an increased

Figure 6 Flotation densities of proteins in CM and HPLC-
purified F1 fraction were determined by fractionating CM and F1
onto a sucrose gradient density as described above. The 13
fractions for (A) CM and (B) F1 were separated on a SDS-PAGE and
then stained with silver. (C) To evaluate the distribution of
smaller proteins, the F1 was also assayed for CD9 (20 kDa) by
Western blot hybridization. Proteins in the N1.20 g/ml density
fractions were denatured proteins.

Figure 5 HPLC fractionation of CM. (A) HPLC fractionation and
dynamic light scattering of CM and NCM. CM and NCM were
fractionated on a HPLC using a BioSep S4000, 7.8 mm×30 cm
column. The components in CM or NCM were eluted with 20 mM
phosphate buffer with 150 mM NaCl at pH 7.2. The elution mode
was isocratic and the run time was 40 min. The eluent was
monitored for UV absorbance at 220 nm. Each eluting peak was
then analyzed by light scattering and signals as measured in
voltage are represented by solid triangles. The eluted fractions,
F1 to F8, were collected, their volumes were adjusted to 50% of
the input volume of CM, and an equal volume of each fraction
was analyzed for (B) the presence of CD9 by Western blot
hybridization. Lanes 1–3 were CM loaded at 2X, 1X, or 0.5X of
the volume loaded used for each of the fractions, F1 to F8 (lanes
4–11), and therefore represented the equivalent of 100, 50, and
25% input CM. (C) Equal volumes of F1–F8 were separated on a
SDS-PAGE and then stained with silver.
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production of angiogenic factors and decreased apoptosis
(Tang et al., 2005). It was postulated that these responses
were better explained by secretion of paracrine factors than
by differentiation of MSCs. In this context, MSCs were shown
to secrete many growth factors and cytokines that have

effects on cells in their vicinity. To date, many of these
studies have focused exclusively on proteins that are known to
be secreted. These proteins generally included cytokines,
chemokines, and other growth factors (Caplan and Dennis,
2006a). However, our unbiased proteomic profiling of proteins
in the secretion of MSCs revealed an abundance of membrane
and cytosolic proteins (Sze et al., 2007). This suggests that the
trophic effects of MSCs may not be mediated by soluble
growth factors and cytokines alone. This was underscored by
our observation that the cardioprotective effects of CM were
mediated by 50- to 100-nm complexes of N1000 kDa (Timmers
et al., 2008) and not small soluble proteins.

Based on the size of the complex, we postulated that the
cardioprotective complex in the CM was likely to be an
exosome. Exosomes are formed from multivesicular bodies
with a bilipid membrane (Fevrier and Raposo, 2004; Keller et
al., 2006). They have a diameter of 40–100 nm and are known
to be secreted by many cell types (Fevrier and Raposo, 2004;
Keller et al., 2006). Electron microscopy confirmed that the
CM contained lipid-like vesicles of about 50–100 nm in
diameter. The functions of exosomes are not known but they
are thought to be important in intercellular communications.
Although exosomes are known to have a cell-type-specific
protein composition, most carry a common subset of proteins
that included CD9, CD81, Alix, TSP-1, SOD-1, and pyruvate
kinase (Olver and Vidal, 2007). CD9 and CD81 are tetrapannin
membrane proteins that are also localized in the membrane
of exosomes. Consistent with the presence of exosomes, CM
contained coimmunoprecipitating complexes of CD81, CD9,
and Alix. Ultracentrifugation precipitated CD9 with phospho-
lipids and cholesterol, suggesting that the CD81, CD9, and
Alix complex was associated with a phospholipid vesicle. This
was confirmed by the detergent-sensitive flotation densities
of these proteins where we demonstrated that the flotation
densities of these proteins in the CM were that of phospho-
lipid vesicles and that detergent treatment which dissolved
phospholipid membrane altered the flotation densities of the
proteins. We further demonstrated that CD9 in the CM was a
membrane-bound protein while SOD-1 was localized within a
lipid vesicle by their respective partial and complete
resistance to trypsin degradation and the abrogation of this
resistance by detergent. Taken together, our observations
demonstrated that exosomes with a diameter of 50–100 nm
are present in the CM and are therefore the likely candidate
for the cardioprotective component in the CM. This was
confirmed when a HLPC-purified homogeneous population of
particles that had an enrichment of CD9 and a Rh of 55–
65 nm substantially reduced infarct size in a mouse model
of MI/R injury at a reduced protein dosage equivalent to
∼10% of the CM dosage. We further demonstrated using an
ex vivo mouse Langendorff heart model of MI/R injury that
this paracrine effect was a heart autonomous effect, and
was independent of circulating cells, such as immune cells or
platelets.

In summary, we have identified exosome as the cardio-
protective component in MSC paracrine secretion. This
involvement of exosomes represents a radical shift in our
current understanding of the paracrine effect of MSC
transplantation on tissue repair which hitherto has been
limited to cytokine, chemokine, or growth factor-mediated
extracellular signaling. It also highlights for the first time the
role of exosome as mediator of tissue repair. As lipid vesicles,

Figure 7 Cardioprotective exosomes. A 0.4 μg F1 protein was
administered intravenously to a mouse model of MI/R injury
5 min before reperfusion. Infarct sizes (IS) as a percentage of the
area at risk (AAR) on treatment with saline (n=10), conditioned
medium from hESC-MSCs (n=6), and HPLC fraction (n=5) were
measured. Saline treatment resulted in 34.5±3.3% infarction.
CM treatment resulted in 21.2±2.6% infarction (P=0.022
compared to saline) and F1 fraction treatment resulted in 17.0±
3.6% infarction (P=0.004 compared to saline). (B) AAR as a
percentage of the left ventricle (LV), showing the amount of
endangered myocardium after MI/R injury. All animals were
affected to the same extent by the operative procedure,
resulting in 39.1±2.2% of AAR among the groups. Each bar
represents mean±SEM.

Figure 8 Secretion reduced myocardial ischemia-reperfusion
injury ex vivo. Perfusion buffer containing 3.5 μg/ml CM was
used to perfuse mouse heart in an ex vivo mouse Langendorff
heart model of MI/R injury 5 min before reperfusion. Infarct
sizes (IS) as a percentage of the area at risk (AAR) on treatment
with PBS (n=4) and CM (n=4) were measured after 3 h
reperfusion. Langendorff_PBS treatment resulted in 49.3±5.3%
infarction. Langendorff_CM treatment resulted in 24.6±4.4%
infarction (Pb0.001 compared to Langendorff_PBS). As a
reference for comparison, the in vivo effects of saline and CM
on IS/AAR as described in Fig. 7 are also included.
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exosomes represent an ideal vehicle to effect an immediate
physiological response to repair and recover from injury
through the rapid intracellular delivery of functional
proteins. Recently, it was demonstrated that in addition to
proteins, microvesicles have the potential to mediate
intercellular transfer of genetic material (reviewed in
Quesenberry and Aliotta, 2008). Several tumor cell types
(Rosell et al., 2009; Taylor and Gercel-Taylor, 2008),
peripheral blood cells (Hunter et al., 2008; Valadi et al.,
2007), endothelial progenitor cells (Deregibus et al., 2007),
and embryonic stem cells (Ratajczak et al., 2006) have been
shown to secrete RNA-containing microvesicles. More impor-
tantly, these microvesicular RNA could be transferred to
other cells and translated in the recipient cells (Deregibus et
al., 2007; Ratajczak et al., 2006; Valadi et al., 2007). We also
recently demonstrated that the MSC-derived exosomes
described here also contained miRNAs and these miRNAs
were predominantly in the precursor form (Chen et al.,
2010). For reperfused ischemic myocardium, this feature of
rapid initiation of cellular repair through the intracellular
delivery of functional proteins and possibly RNA is particu-
larly critical as the time window for therapeutic intervention
is very narrow. We speculate that the involvement of
exosomes in cardioprotection may represent a general
function of exosomes in tissue repair. It is possible that
different cell types produce exosomes that are specific for
certain type of cells or injuries. If true, this novel tissue-
repair function of exosomes could potentially engender new
approaches to the development of biologics.

Materials and methods

Preparation of CM

The culture of HuES9.E1 cells and preparation of HuES9.E1 CM
were performed as described previously (Lian et al., 2007; Sze
et al., 2007). For the b100-, b300-, b500-, or b1000-kDa
preparations in Fig. 1, the CM was first concentrated 25X by
tangential flow filtration (TFF) using a membrane with a 10-
kDa MWCO (Sartorius, Goettingen, Germany) and then filtered
sequentially through membranes with MWCO of 1000 kDa
(Sartorius), 500 kDa (Millipore, Billerica, MA), 300 kDa
(Sartorius), and finally 100 kDa (Sartorius). All other CM and
NCM used were concentrated 25X or 50X by TFF using a
membrane with 10- or 100-kDa MWCO (Sartorius). The CM and
NCM preparations were filtered with a 0.2-μm filter before
storage or use.

Electron microscopy, antibody array assay,
protein analysis

Electron microscopy, antibody array assay, and protein
analysis were done using standard protocols; for details
please refer to Supplementary Materials and Methods.

LC MS/MS analysis

Proteins in 2ml of dialyzed CM or NCMwere analysis by LCMS/
MS using standard protocols with some modifications; for
details please refer to Supplementary Materials and Methods.

Immunoprecipitation of exosome-associated
proteins

Dynabead M-280 sheep anti-mouse IgG (Invitrogen Corpora-
tion, Carlsbad, CA) was washed using 0.1% BSA/PBS before
incubation with mouse anti-human CD81 antibody for 2 h
with gentle shaking at room temperature. The dynabeads
were washed twice and incubated with CM with gentle
shaking for 2 h at room temperature. The supernatant was
then collected, and the dynabeads were gently washed twice
before PBS was added. The supernatant and the dynabeads
were denatured, resolved on 4–12% SDS-PAGE, and analyzed
by Western blotting.

Sucrose gradient density equilibrium centrifugation

To generate the sucrose gradient density for centrifugation,
14 sucrose solutions with concentrations from 22.8 to 60%
were prepared and layered sequentially in an ultracentrifuge
tube (Beckman Coulter Inc., CA) starting with the most
concentrated solution. CM was loaded on top before
ultracentrifugation for 16.5 h at 200 000 g, 4 °C in a
SW60Ti rotor (Beckman Coulter Inc.). After centrifugation,
13 fractions were collected starting from the top of the
gradient. The densities of each were determined by weighing
a fixed volume. For pretreatment with detergent-based lysis
buffer (Cell Extraction Buffer, Biovision, Mountain View,
CA), CM was incubated with an equal volume of the lysis
buffer containing protease inhibitors (Halt Protease Inhibitor
Cocktail, Thermo Fisher Scientific Inc., Waltham, MA) for
30 min at room temperature with gentle shaking. The protein
concentration of CM was quantified using the NanoOrange
Protein Quantification kit (Invitrogen Corporation) according
to the manufacturer's instructions.

Sphingomyelin, phosphatidylcholine, and cholesterol
assay

Cholesterol, sphingomyelin, and phosphatidylcholine concen-
tration in CM and pellet from the ultracentrifugation of CM at
200 000 g for 2 h at 4 °C was determined using commercially
available assay kits. Cholesterol was measured using the
Amplex Red Cholesterol Assay kit (Invitrogen Corporation),
sphingomyelin, and phosphatidylcholine were measured using
the Sphingomyelin Assay Kit and Phosphatidylcholine Assay Kit
(Cayman Chemical Company, Ann Arbor, MI) respectively.

Limited trypsinization of CM

CM was incubated with equal volumes of either PBS or lysis
buffer (Cell Extraction Buffer, Biovision, Mountain View, CA)
for 45 min at 4 °C with gentle shaking. Then 16 μl of 10×
trypsin (Invitrogen Corporation) was added and incubated at
37 °C with gentle shaking. An aliquot was removed at 30 s,
1 min, 5 min, and 20 min, and 1 μl of a 100 mM trypsin
inhibitor, PMSF (Sigma-Aldrich, St. Louis, MO), was added. The
mixture was denatured and analyzed byWestern blot analysis.

HPLC dynamic light scattering

The instrument setup consisted of a liquid chromatography
system with a binary pump, an auto injector, a thermostated
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column oven and a UV-visible detector operated by the
Class VP software from Shimadzu Corporation (Kyoto,
Japan). The Chromatography columns used were TSK
Guard column SWXL, 6×40 mm and TSK gel G4000
SWXL, 7.8×300 mm from Tosoh Corporation (Tokyo,
Japan).The following detectors, Dawn 8 (light scattering),
Optilab (refractive index), and QELS (dynamic light
scattering), were connected in series following the UV-
visible detector. The last three detectors were from
Wyatt Technology Corporation (CA, USA) and were
operated by the ASTRA software. For details please refer
to Supplementary Materials and Methods.

MI and surgical procedure

All experiments were performed in accordance with the
Guide for the Care and Use of Laboratory Pigs prepared by
the Institute of Laboratory Animal Resources and with prior
approval by the Animal Experimentation Committee of the
Faculty of Medicine, Utrecht University, the Netherlands.
The CM and the HPLC fraction 1 (F1) were tested in a mouse
model of MI/R injury. MI was induced by 30 min left
coronary artery (LCA) occlusion and subsequent reperfu-
sion. Five minutes before reperfusion, mice were intrave-
nously infused with 200 μl saline-diluted CM containing 3 μg
protein or HPLC F1 containing 0.4 μg protein via the tail
vein. Control animals were infused with 200 μl saline. After
24 h reperfusion, infarct size (IS) as a percentage of the
area at risk (AAR) was assessed using Evans’ blue dye
injection and TTC staining as described previously (Arslan
et al., 2010).

Mouse Langendorff heart model of ischemia/
reperfusion injury

For the mouse Langendorff heart model of ischemia/
reperfusion injury, mice were given heparin 50 IE subcuta-
neously. The suture was placed in vivo without placing the
knot. Hereafter, the heart was excised and aortic root was
canulated and perfused in the Langendorff setup. After
10 min recovery, the suture was tightened to induce
ischemia for 30 min. Just 5 min prior to reperfusion, the
perfusion buffer was changed for a second buffer contain-
ing 3.5 μg/ml MSC-CM. Reperfusion was allowed for 3 h
before Evans' blue dye injection and TTC staining for infarct
size assessment, as described previously (Arslan et al.,
2009).
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Supplementary Table 1 
Alphabetical list of 739 unique gene products identified by LC-MS/MS and antibody array 
 

02-Sep BPNT1 COL5A3 FAM3C        HINT1        ITGB4BP      MYH9 PPIA RPLP2        THBS2 
07-Sep BTD          COL6A1       FAM49B       HIST1H4      K-ALPHA-1 MYL6         PPIB         RPS10        THOP1        
AARS         C14orf141    COL6A2 FAM62A       HIST1H4A     KPNB1        NAGK         PPP2R1A      RPS15A       THY1         
ACAA2        C19orf10 COL6A3       FBLN1 HIST1H4B     KRT1 NANS PPP2R4       RPS16        TIMP1 
ACAT2 C1orf58 COL7A1 FBLN5        HIST1H4C     KRT14        NARS         PPP5C        RPS19        TIMP2 
ACO1         C1orf78      COPA FBN1 HIST1H4D     KRT2         NEDD8 PPP6C        RPS2 TIMP3        
ACTB C1QBP        COPG         FBN2         HIST1H4E     KRT27        NEFM         PRDX1 RPS20        TKT 
ACTC1        C1R COPS3        FDPS         HIST1H4F     KRT4         NIT2         PRDX2        RPS23 TLN1 
ACTN1 C1S          COPS4        FGF16 HIST1H4H     KRT5         NME1 PRDX3 RPS3 TMOD2        
ACTN2        C21orf33     COPS8        FGFRL1 HIST1H4I     KRT6L        NPC2         PRDX4 RPS4X        TMOD3        
ACTN3 CALR CORO1B FH HIST1H4J     KRT7         NPEPPS PRDX5        RPS5 TNC 
ACTN4 CAND1 CORO1C       FKBP10       HIST1H4K     KRT75        NPM1         PRDX6 RPS7         TNFRSF11B    
ACTR1A       CAP1         COTL1 FKBP1A HIST1H4L     KRT77        NQO1         PRG1         RPS8         TNFRSF12A  
ACTR1B       CAP2 CRIP2        FKBP3        HIST2H2AA3   KRT9         NRP1 PRKACA       RPS9         TNFSF12  
ACTR2 CAPG CS           FLNA         HIST2H2AA4   KRTHB4       NRP2         PRKCSH RPSA TNPO1 
ACTR3        CAPN1 CSE1L        FLNB HIST2H4A     LAMA4        NT5E         PRNP         RSU1         TP53I3       
ACTR3B       CAPN2        CSRP1 FLNC         HIST2H4B     LAMB1 NUCB1        PROCR RTN4         TPI1         
ADAM9 CAPZA1 CSRP2        FLRT2        HIST4H4      LAMC1        OLFML3       PROSC        S100A11 TPM1 
ADSL         CAPZA2       CST3 FLT1 HLA-A        LANCL1       P4HA1        PRSS23 S100A16      TPM2         
ADSS         CAPZB CTGF         FN1          HLA-B        LAP3 P4HB PRSS3        SARS TPM3 
AEBP1        CARS         CTHRC1       FSCN1 HMX1         LASP1        PABPC1 PSAP         SDC4 TPM4         
AGA          CBR1 CTSB         FSTL1        HNRPA1 LDHA         PABPC4       PSAT1 SDCBP        TRAP1 
AGRN CBR3         CTSD FSTL5 HNRPA1L-2    LDHAL6B      PAFAH1B1     PSMA1        SEC22B       TRHDE        
AHCY CCBL2        CTSZ         FTL          HNRPA2B1     LDHB PAFAH1B2 PSMA2        SEC23A       TROVE2       
AK1 CCDC19       CXCL1 G6PD         HNRPC LEPRE1       PAFAH1B3     PSMA3        SEC31A       TSKU         
AK2          CCL18 CXCL12       GALNT2 HNRPCL1      LGALS1 PAICS PSMA6 SEMA3C       TUBA1A       
AKR1A1 CCL2 CXCL16 GALNT5       HNRPD        LGALS3       PAM          PSMA7        SEMA7A TUBA6        
AKR1B1       CCL7 CXCL2 GANAB        HNRPDL       LGALS3BP PAPPA PSMB1        SERPINB1     TUBA8        
ALCAM CCN4 CXCL9 GAPDH        HNRPH2       LMNA         PARK7        PSMB2        SERPINB6     TUBB 
ALDH2 CCR4 CYCS         GARS HNRPK LOC196463    PARP1 PSMB3        SERPINE1 TUBB2C       
ALDH7A1      CCR5 D4ST1        GAS6         HNRPL        LOC283523 PARVA        PSMB4        SERPINE2     TUBB3        
ALDOA CCT2 DAG1         GBA          HNRPR LOC347701    PCBP1 PSMB5        SERPINF1 TUBB4 
ALDOC        CCT3         DCI          GBE1 HNRPU        LOC646821    PCBP2        PSMD11       SERPINH1     TUBB6        
ANGPT4 CCT4 DCN          GDF1 HNT          LOC649125    PCDH18 PSMD13       SERPINI2     TUBB8        
ANP32B CCT5 DDAH2        GDF11 HSP90AB1     LOC653214    PCDHGB6      PSMD5 SFRP1 TWF1         
ANXA1        CCT6A        DDB1         GDF15        HSP90B1      LOC654188    PCK2 PSMD6        SFRP4 TXN          
ANXA2 CCT7 DDT          GDF3 HSPA1A       LOC728378    PCMT1        PSMD7        SH3BGRL3     TXNL5        
ANXA5        CCT8         DDX17        GDF5 HSPA1B       LOXL2        PCNA PSME1 SIL1         TXNRD1       
ANXA6 CD109 DES          GDF8 HSPA1L LRP1         PCOLCE PSME2        SLC1A5       UBE1         
AP1B1        CD248 DKK1 GDI1 HSPA4        LTA PDCD6IP      PTBP1 SLC3A2 UBE2L3 
AP1S1        CD44 DLD          GDI2         HSPA5        LTA4H PDGFA PTK7         SND1         UBE2N        
AP2A1 CD59 DNAJC3       GLO1         HSPA6 LTB  PDGFC        PTPRCAP      SNRPD1 UBE2V1       
AP2A2        CD81 DPP3 GLRX HSPA8        LTB4DH       PDGFRB       PTX3 SNRPE        UBE3B        
AP2B1 CD9 DPYSL2       GLT8D3       HSPB1 LTBP1        PDIA3 PURA         SOD1         UCHL1        
AP3B1        CDC37        DPYSL3 GLUD1        HSPD1        LTBP2 PDIA4        PXDN SPARC        UCHL3 
APEX1        CDC42 DSTN         GM2A         HSPE1 LUM          PDIA6 PYCR1        SPOCK UGDH         
API5 CDH11 DYNLL1       GNPDA1       HSPG2        M6PRBP1      PDLIM1       PYGB         SPTAN1 UGP2 
APOA1BP CDH13 ECHS1        GNPNAT1      HSPH1        MACF1 PDLIM5 QARS         SPTBN1       UROD         
APOE         CDH2 ECM1 GOT1 HTRA1        MADH4 PDLIM7       QPCT         SPTBN4       USP14 
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APP CFL1 EEF1A1       GOT2         IDH1 MAP1B        PEPD QSCN6 SRP9         USP5         
APRT         CFL2         EEF1A2 GPC1 IFNG MAPK1        PFN1         RAB11B       SRPX         VARS         
ARCN1        CHID1        EEF1B2       GPC5 IGF2R MAPRE1       PFN2         RAB1A SRPX2        VASN         
ARHGAP1      CHRDL1 EEF1G        GPI          IGFBP2       MAT2A PGCP RAB6A        SSB          VAT1 
ARHGDIA CLEC11A      EEF2 GREM1 IGFBP3 MAT2B        PGD RAC1         ST13 VCL          
ARPC1A CLIC1 EFEMP2       GRHPR        IGFBP4       MCTS1        PGK1         RAN ST6GAL2      VCP 
ARPC1B       CLIC4        EIF2S3 GRN IGFBP5 MDH1 PGK2 RANBP5       STAT1 VEGFC 
ARPC2        CLSTN1 EIF3S9       GSN IGFBP7       MDH2         PGLS         RARRES2 STC1         VIL2         
ARPC3        CLTC         EIF4A1       GSR          IGKC         MFAP4        PGM1         RARS         STC2 VIM 
ARPC4 CLTCL1 EIF4A2 GSS          IL13 MGAT5 PGRMC2       RBMX         STIP1        VPS26A       
ARTS-1       CLU          EMILIN1      GSTK1        IL15 MIF          PHGDH        RHOA SULF1 VPS35 
ATIC         CMPK EML2 GSTO1 IL15RA MMP1         PHPT1 RNASE4       SVEP1        VTN          
ATP5B CNDP2 ENO1 GSTP1        IL1RAP MMP10 PICALM       RNH1         SYNCRIP      WARS         
ATP6AP1 CNN2         ENO2         GTPBP9       IL2 MMP14        PKM2         RNPEP        TAGLN        WDR1 
ATP6AP2      CNN3 ENO3 GZMA IL21R MMP2 PLAU RPL10A       TAGLN2 WNT5A        
ATP6V1B2 COL12A1 EPPK1        H2AFY IL3 MRC2         PLEC1        RPL11        TALDO1       WNT5B 
ATP6V1G2     COL18A1      EPRS         HADH         IL6 MRLC2 PLEKHC1 RPL12 TARS XPO1         
B2M          COL1A1 ESD          HARS         IL6ST MSN          PLOD1        RPL14 TCN2         YKT6         
B4GALT1 COL1A2       ETF1 HARS2        IL8 MTAP PLOD2 RPL18        TCP1         YWHAB 
BASP1 COL2A1 ETFB         hCG_1641617  ILF2 MTPN         PLOD3        RPL22        TFPI         YWHAE        
BAT1         COL3A1       ETHE1        hCG_2023776  ILF3         MVP          PLS1 RPL30        TGFB1 YWHAG 
BBS1         COL4A1 EXT1         HEXA         INHBA        MXRA5        PLS3         RPL5 TGFB2 YWHAH        
BCAT1        COL4A2       FAH          HEXB IQGAP1       MXRA8        PLSCR3       RPL7         TGFBI YWHAQ 
BGN COL5A1 FAHD1        HGF ISOC1        MYH11 POSTN RPLP0 THBS YWHAZ        
BLVRA        COL5A2       FAM129B      HIBCH        ITGA2 MYH14        PPCS         RPLP1        THBS1  

 
 Black font Identified by LC MS/MS 
Grey shade Identified by antibody array 
Underline Identified by LC MS/MS and antibody array 

 White font Identified by LC MS/MS and are present on exosomes secreted by at least 4 different cell 
types(Olver and Vidal, 2007) 

 
 
Table 1.  Proteomic profile of CM as determined by LC MS/MS and antibody array.  For LC MS/MS, 4 

independent samples were analyzed, proteins were considered present if detected in at least 3 of 4 samples. 

For antibody array, 3 independent samples were analyzed, the cytokines and other proteins were considered 

to be present in the conditioned medium if the signal intensity is 2 fold higher (p<0.05) than that in non-

conditioned medium. 
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Supplementary Materials and Methods 

Electron Microscopy 

Formvar-coated carbon grids were coated with a drop of 0.01% Poly Lysine for 1 

minute before excess fluid was drained off with a filter paper. 50concentrated 

samples of either MSC-CM or NCM were pipetted onto the labeled grids and after 

one minute, excess samples were drained off with a filter paper.  A drop of 1% pH 

6 phosphotungstic acid was then added onto each grid and after one minute, 

excess liquid was drained off with a filter paper leaving a thin monolayer that was 

allowed to dry thoroughly at room temperature. The samples grids were screened 

using a high-resolution transmission electron microscope, Philips CM120 and 

micrographs images were taken. 

 

LC MS/MS analysis 

Proteins in two ml of dialyzed CM or NCM were reduced, alkylated and tryptic 

digested as described. The samples were then desalted by passing the digested 

mixture through a conditioned Sep-Pak C-18 SPE cartridge (Waters, Milford, MA, 

USA), washed twice with a 3% acetonitrile (ACN) (JT Baker, Phillipsburg, NJ) 

and 0.1% formic acid (FA) buffer, and eluted with a 70% ACN and 0.1% FA 

buffer. The eluted samples were then dried to about 10% of their initial volumes 

by removing organic solvent in a vacuum centrifuge. To reduce the sample 

complexity, offline peptide fractionation was carried out with a HPLC system 

(Shimadzu, Japan) through a Polysulfoethyl SCX column (200 mm x 4.6 mm) 

(PolyLC, USA).  Mobile phase A (5 mM KH4PO4 + 30% acetonitrile) and mobile 

phase B (5 mM KH4PO4 + 30% acetonitrile + 350 mM KCl) at 1 ml/min. Eight 

fractions were collected and dried with a vacuum centrifuge. Fractionated samples 
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were loaded into the auto sampler of a Shimadzu micro HPLC system coupled 

online to a LTQ-FT Ultra linear ion trap mass spectrometer (Thermo Electron, 

Bremem, Germany) fitted with a nanospray source.  Injected peptides were 

trapped and desalted in a Zorvax 300SB-C18 enrichment column (5 mm x03 mm, 

Agilent Technologies, Germany) and eluted into a nano-bored C18 packed 

column (75 µm x 100 Å, Michrom Bioresources, Auburn, CA).  A 90 minute 

gradient at a constant flow rate of 20 ml/min with a splitter to an effective flow 

rate of 200 ηl/min was used to elute the peptides into the mass spectrometer. The 

LTQ was operated in a data-dependent mode by performing MS/MS scans for the 

8 of the most intense peaks from each MS scan in the FTMS.  For each 

experiment, MS/MS (dta) spectra of the eight SCX fractions were combined into a 

single mascot generic file by a home-written program. Protein identification was 

achieved by searching the combined data against the IPI human protein database 

(version 3.34; 69,164 sequences, 29,064,825 residues) via an in-house Mascot 

server (Version 2.2.04, Matrix Science, UK). The search parameters were: a 

maximum of 2 missed cleavages using trypsin; fixed modification was 

carbaminomethylation of cysteine and variable modifications was oxidation of 

methionine. The mass tolerances were set to 10 ppm and 0.8 Da for peptide 

precursor and fragment ions respectively. Protein identification was accepted as 

true positive if two different peptides were found to have scores greater than the 

homology scores. 

 

Antibody array assay 

500 µl of conditioned or non-conditioned medium from 3 independent 

preparations were assayed for the presence of cytokines and other proteins using 
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RayBio® Biotin Label-based Human Antibody Array I according to 

manufacturer’s instructions (RayBio, Norcross, GA). The cytokines and other 

proteins were considered to be present in the conditioned medium if the signal 

intensity is 2 fold higher (p<0.05) than that in non-conditioned medium. 

 

Protein analysis 

Analysis of proteins by western blot hybridization was performed using standard 

protocols.  Briefly, proteins were denatured, separated on 4-12% polyacrylamide 

gels, electroblotted onto a nitrocellulose membrane and probed with antibodies 

against human CD9, CD81, Alix and SOD-1 (Santa Cruz Biotechnology, Santa 

Cruz, CA) followed by horseradish peroxidase-coupled secondary antibodies 

against the mouse primary antibody (Santa Cruz Biotechnology, Santa Cruz, CA).  

The blot was then incubated with a chemiluminescent HRP substrate to detect 

bound primary antibody, and therefore the presence of the antigen.  

 

HPLC dynamic light scattering 

The instrument setup consisted of a liquid chromatography system with a binary 

pump, an auto injector, a thermostated column oven and a UV-visible detector 

operated by the Class VP software from Shimadzu Corporation (Kyoto, Japan). 

The Chromatography columns used were TSK Guard column SWXL, 6 x 40 mm 

and TSK gel G4000 SWXL, 7.8 x 300 mm from Tosoh Corporation (Tokyo, 

Japan). The following detectors, Dawn 8 (light scattering), Optilab (refractive 

index) and QELS (dynamic light scattering) were connected in series following 

the UV-visible detector. The last three detectors were from Wyatt Technology 

Corporation (California, USA) and were operated by the ASTRA software.  The 
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components of the sample were separated by size exclusion i.e. the larger 

molecules will elute before the smaller molecules. The eluent buffer used was 20 

mM phosphate buffer with 150 mM of NaCl at pH 7.2. This buffer was filtered 

through a pore size of 0.1 μm and degassed for 15 minutes before use. The 

chromatography system was equilibrated at a flow rate of 0.5 ml/min until the 

signal in Dawn 8 stabilized at around 0.3 detector voltage units. The UV-visible 

detector was set at 220 ηm and the column was oven equilibrated to 25ºC. The 

elution mode was isocratic and the run time was 40 minutes. The volume of 

sample injected ranged from 50 to 100 µl. The % area of the exosome peak vs. all 

other peaks was integrated from the UV-visible detector. The hydrodynamic 

radius, Rh, was computed by the QELS and Dawn 8 detectors. The highest count 

rate (Hz) at the peak apex was taken as the Rh.  Peaks of the separated components 

visualized at 220 ηm were collected as fractions for further characterization 

studies. 
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The therapeutic effects of mesenchymal stem cells (MSCs) transplantation are increasingly thought to be
mediated by MSC secretion. We have previously demonstrated that human ESC-derived MSCs (hESC-MSCs)
produce cardioprotective microparticles in pig model of myocardial ischemia/reperfusion (MI/R) injury. As
the safety and availability of clinical grade human ESCs remain a concern, MSCs from fetal tissue sources
were evaluated as alternatives. Here we derived five MSC cultures from limb, kidney and liver tissues of
three first trimester aborted fetuses and like our previously described hESC-derived MSCs; they were highly
expandable and had similar telomerase activities. Each line has the potential to generate at least 1016–19 cells
or 107–10 doses of cardioprotective secretion for a pig model of MI/R injury. Unlike previously described fetal
MSCs, they did not express pluripotency-associated markers such as Oct4, Nanog or Tra1-60. They displayed
a typical MSC surface antigen profile and differentiated into adipocytes, osteocytes and chondrocytes in vitro.
Global gene expression analysis by microarray and qRT-PCR revealed a typical MSC gene expression profile
that was highly correlated among the five fetal MSC cultures and with that of hESC-MSCs (r2N0.90). Like
hESC-MSCs, they produced secretion that was cardioprotective in a mouse model of MI/R injury. HPLC
analysis of the secretion revealed the presence of a population of microparticles with a hydrodynamic radius
of 50–65 nm. This purified population of microparticles was cardioprotective at ∼1/10 dosage of the crude
secretion.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Mesenchymal stem cells (MSCs) are multipotent stem cells that
have a limited but robust potential to differentiate into mesenchymal
cell types, e.g. adipocytes, chondrocytes and osteocytes, with
negligible risk of teratoma formation. MSC transplantation has been
used to treat musculoskeletal injuries, improve cardiac function in
cardiovascular disease and ameliorate the severity of graft-versus-
host-disease [1]. In recent years, MSC transplantations have demon-

strated therapeutic efficacy in treating different diseases but the
underlying mechanism has been controversial [2–9]. Some reports
have suggested that factors secreted by MSCs [10] were responsible
for the therapeutic effect on arteriogenesis [11], stem cell crypt in the
intestine [12], ischemic injury [9,13–18], and hematopoiesis [19,20].

We have recently demonstrated that human MSCs derived from
human embryonic stem cells (hESC-MSCs) [21] secrete N200 proteins
[22] and that a single bolus administration of hESC-MSCs conditioned
medium (CM) 5 min prior to reperfusion significantly reduced infarct
size by 60% and improved cardiac function in a pig andmousemodel of
myocardial ischemia/reperfusion (MI/R) injury [23]. In addition, this
cardioprotectionwasmediated by large complexes of about 50–100 nm
in diameter. The size of these large secreted complexes suggests that
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they are microparticles which are broadly defined as secreted
membrane particles in the size range of 0.05–1 μm [24].

A requisite for translating cardioprotective MSC secretion into
clinical applications is a clinical grade MSC source but this is currently
limited by restricted access to clinical grade hESCs. Therefore,
alternative tissue or cell sources that are amenable to the generation
of highly expandable, clinical grade MSCs have to be developed. Here
we examined fetal tissues as a candidate tissue source.

Five MSC cultures, Fllb, F1ki, F2lb, F3lb and F3li were generated
from limb (lb), kidney (ki) and liver (li) tissues of three fetuses in
three independent experiments. These fetal MSCs fulfilled the
defining criteria of a MSC. They were highly proliferative. Each line
has the potential of generating 1016–19 cells, and therefore the
capacity to produce large amount of secretion. More importantly,
these cells produce secretion that reduced infarct size in a mouse
model of MI/R injury [23]. Like the secretion of hESC-MSCs, this
cardioprotection was also mediated by large complexes. Fraction-
ation of the secretion by size exclusion on an HPLC revealed the
presence of a population of homogenously sized particles with a
hydrodynamic radius of 50–65 nm and these particles were cardio-
protective in a mouse model of MI/R injury. The size of these large
secreted complexes suggests that they are microparticles which are
broadly defined as secreted membrane particles in the size range of
0.05–1 μm [24].

2. Materials and methods

2.1. Derivation of fetal tissue derived MSCs

The collection of fetal tissue was carried out under a KK Women's
and Children's Hospital (KKH) IRB approved protocol (EC200804062)
in accordance with guidelines from Singapore Bioethics Advisory
Committee [25] which stated that the decision to donate the fetal
tissue must be made independently from any decision to abort. Only
patients who have already consented to Termination of Pregnancy
(TOP) in KKH Outpatient Clinic were recruited. Recruitment was
carried out in strict adherence to KKH IRB's regulations to ensure
patient's rights and privacy, and to provide confidential counseling for
patient's fully informed consent to voluntary donation. TOP for fetal
abnormalities and sexual assault cases and in minor (16 and below)
were excluded. Patients with medical problems were also excluded.

The aborted specimens were collected in special sterile plastic
bottles and sent to the hospital's Department of Laboratory Medicine
for full pathological examinations. Appropriate pieces of fetal tissues
were dissected, washed several times in sterile saline, minced, and
placed in DMEM supplemented with 10% serum replacement
medium, EGF (20 ng/ml) and FGF2 (20 ng/ml) to attach to plastic
tissue culture dishes for 24–48 h. Under this condition, MSCs whose
defining characteristic is adherence to plastic migrated out of the
tissues and adherence to the plastic culture dish. The large tissue
pieces are then washed off leaving a homogenous cell culture. The
cells were maintained at 25%–80% confluency or 15–50,000 cells per
cm2 and were split 1:4 at confluency by trypsinization. On reaching
2×107 cells usually within 2 weeks, the culture was designated P1.
Master cell banks of early passage cells grown in culture medium
supplemented with animal replacement medium were set up for all
the lines. For all experimental work described in this study, cells at
p10 were expanded in HuES Expansion medium containing 10% ES
cell fetal bovine serum 1% L-glutamine, 1% non essential amino acids,
and 88% DMEM (high glucose, no sodium pyruvate). All medium
components were obtained from Invitrogen Corporation, Carlsbad,
CA. Differentiation of the fetal MSCs to adipocytes, chondrocytes and
osteocytes was performed using adipogenic, chondrogenic and
osteogenic hMSC Differentiation BulletKits, respectively (Lonza,
Walkersville, MD) as per manufacturer' instructions. Karyotyping by
G-banding was performed at the Cytogenetics Laboratory, KKH.

2.2. Telomerase activity

Relative telomerase activity was measured by SYBR® Green real
time quantitative telomeric repeat amplification protocol assay using
a modified method as described by Wege et al. [26]. Briefly, 3 million
cells were harvested and cell lysate was prepared using a commer-
cially available mammalian cell extraction kit (BioVision, Singapore).
The composition of the reagents for the PCR amplification was 1 μg of
protein cell lysate, 10 μl of 2× SYBR Green Super Mix (BioRad,
Singapore) with 0.1 μg of TS primer (5′-AATCCGTCGAGCAGACTT-3′),
0.1 μg of ACX primer (5′-GCGCGG[CTTACC]3CTAACC-3′) and 10 mM
EGTA in a total volume of 25 μl. The reactionwasfirst incubated at 25 °C
for 20 min to allow the telomerase in the cell lysate to elongate the TS
primers followed by 2min incubation at 95 °C to inactivate telomerase
activity and denature the primers. The telomerase product was
amplified by PCR for 40 cycles of 95 °C for 30 s and 60 °C for 90 s. The
relative telomerase activitywas assessed against that of HEK cells using
the threshold cycle number (or Ct value) for 1 μg protein cell lysate.

2.3. Surface antigen analysis

Expression of cell surface antigens on fetal MSCs was analyzed
using flow cytometry. The cells were trypsinized for 5 min,
centrifuged, resuspended in culture media and incubated in a
bacterial culture dish for 1 h in a 37 °C, 5% CO2 incubator. The cells
were then collected, centrifuged, and washed in 2% FBS. A total of
2.5×105 cells were then incubated with each of the following
conjugated monoclonal antibodies: CD29-PE, CD44-FITC, CD49a-PE,
CD49e-PE, CD105-FITC, CD166-PE, CD73-FITC, CD34-FITC, and CD45-
FITC (PharMingen, San Diego, CA) for 60 min on ice. After incubation,
cells were washed and resuspended in 2% FBS. Nonspecific fluores-
cence was determined by incubation of similar cell aliquots with
isotype-matched mouse monoclonal antibodies (PharMingen, San
Diego, CA). Data were analyzed by collecting 20,000 events on a BD
FACSCalibur™ Flow Cytometer (BD Biosciences, San Jose, CA)
instrument using CELLQuest software.

2.4. Quantitative RT-PCR

Total RNA was extracted from cells using TRIzol® LS Reagent
(Invitrogen Corporation, Carlsbad, CA) according to manufacturer's
instruction. Total RNA was converted to cDNA using the High
Capacity cDNA Reverse Transcription Kit (Applied Biosystems Inc.,
Foster City, CA) that was based on oligo-dT primed reverse
transcription. Real time PCR was performed on a StepOne™ Plus
Real-Time PCR System (Applied Biosystems Inc, Foster City, CA) using
2× Fast SYBR® Green Master Mix (Applied Biosystems Inc, Foster
City, CA) according to manufacturer's instruction. The primers for
OCT4 were 5′-AGTGAACAGGGAATGGGTGAA-3′ and 5′-AAG CGG CAG
ATG GTC GT-3′, and for SOX2 were 5′-TGAGAGAAAGAAGAGGA-
GAGA-3′ and 5′-TGGGGGAAAAAAAGAGAGAGG-3′.

2.5. Illumina gene chip analysis

Total RNA was prepared in technical triplicates from different
passages of F1lb (p10, p12, p14), F1ki (p12, p14, p16), F2lb (p10, p12,
p14), F3lb (p10, p12, p14) and F3li (p10, p16), and from two technical
replicates of the previously described hESC-MSCs line, Hues9.E1
(p19). Five hundred nanograms of RNA was converted to biotinylated
cRNA using the Illumina RNA Amplification Kit (Ambion, Inc., Austin,
TX) according to the manufacturer's directions. Seven hundred fifty
nanograms of the biotinylated cRNA was hybridized to the Sentrix
HumanRef-8 Expression BeadChip Version 3 (Illumina, Inc., San Diego,
CA), and washing and scanning were performed according to the
Illumina BeadStation 500× manual. The data were analyzed using
Genespring GX 10. Quantile normalization was performed by a shift to
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75th percentile, and the normalized data were baseline transformed
to the median of all samples.

2.6. SDS–PAGE analysis and western blot hybridization

For SDS–PAGE analysis, total proteins in CM were separated on
4–12% SDS–polyacrylamide gels and stained with silver. For western
blot hybridization, the proteins were electroblotted onto a nitro-
cellulose membrane after first separating on an SDS–PAGE. The
membrane was blocked and incubated with the primary anti-human
antibodies that included 1:60 dilution of mouse anti-CD9, 1:60

dilution of mouse anti-CD81, 1:56 dilution of mouse anti-Alix, 1:200
dilution of mouse anti-pyruvate kinase (PK), 1:60 dilution of mouse
anti-SOD-1 or 1:60 dilution of goat anti-TSP-1. The blot was then
incubated with a horseradish peroxidase-coupled secondary anti-
body. The secondary antibodies used were 1:1250 or 1:1364 dilution
of goat anti-mouse IgG or 1:1364 dilution of donkey anti-goat IgG.
All antibodies were obtained from Santa Cruz Biotechnology, Santa
Cruz, CA except mouse anti-PK which is from Abcam Inc., Cambridge,
MA. The blot was then incubated with HRP-enhanced chemilumi-
nescent substrate (Thermo Fisher Scientific Inc., Waltham, MA) and
then exposed to an X-ray film.

Fig. 1. Characterization of fetal MSC cultures. (A) Cellular morphology under phase contrast. Representative images of the five different MSCs, F1lb (p8) and F1ki (p8) derived from
the limb and kidney tissues of the same fetus; F2lb (p8) derived from the limb of a second fetus; and F3lb (p8) and F3li (p8) derived from the limb and liver tissues of the same third
fetus. (B) Karyotype analysis by G-banding was performed each of the fetal MSC cultures, F1lb (p10) F2lb (p10), F3lb (p10), F1ki (p12), and F1li (p12).
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2.7. HPLC purification of microparticles

The instrument setup consisted of a liquid chromatography system
with a binary pump, an auto injector, a thermostated column oven
and a UV–visible detector operated by the Class VP software from
Shimadzu Corporation (Kyoto, Japan). The Chromatography columns
used were TSK Guard column SWXL, 6×40 mm and TSK gel G4000
SWXL, 7.8×300 mm from Tosoh Corporation (Tokyo, Japan). The
detectors Dawn 8 (light scattering), Optilab (refractive index) and
QELS (dynamic light scattering) were connected in a series following
the UV–visible detector. The last three detectors were from Wyatt
Technology Corporation (California, USA) and were operated by the
ASTRA software. The components of the sample were separated by
size exclusion, that is, the larger molecules will elute before the
smaller molecules. The eluent buffer used was 20 mM phosphate
buffer with 150mM of NaCl at pH 7.2. This buffer was filtered through
a pore size of 0.1 μm and degassed for 15 min before use. The
chromatography system was equilibrated at a flow rate of 0.5 ml/min
until the signal in Dawn 8 stabilized at around 0.3 detector voltage
units. The UV–visible detector was set at 220 nm and the column was
oven equilibrated to 25°C. The elution mode was isocratic and the run
time was 40 min. The volume of sample injected ranged from 50 to
100 μl. The hydrodynamic radius, Rh was computed by the QELS and
Dawn 8 detectors. The highest count rate (Hz) at the peak apex was
taken as the Rh. Peaks of the separated components visualized at 220
nm were collected as fractions for further characterization studies.

2.8. Testing secretion for cardioprotection

The secretion was prepared by growing the fetal MSCs in a
chemically defined serum-free culture medium for 3 days as
previously described [22]. Briefly, cells at p12 were first expanded
in serum-containing culture medium as described above. At p15, 80%
confluent cell cultures were washed three times with PBS and then
incubated in a chemically defined medium consisting of DMEM
without phenol red (Invitrogen Corporation, Carlsbad, CA) and
supplemented with insulin, transferrin, and selenoprotein (ITS)
(Invitrogen Corporation, Carlsbad, CA), 5 ng/ml FGF2 (Invitrogen
Corporation, Carlsbad, CA), 5 ng/ml PDGF AB (Peprotech, Rocky Hill,
NJ), glutamine–penicillin–streptomycin, and β-mercaptoethanol
overnight. The cell culture was then washed with PBS and replaced
with fresh chemically defined medium for another 3 days to produce
the conditioned medium. This CM was collected and clarified by
centrifugation at 500× g. The clarified CM concentrated 50 times by
reducing its volume by a factor of 50 using a tangential flow filtration
system with membrane MW cutoff of 100 kDa (Satorius, Goettingen,
Germany). The use of a membrane MW cutoff of 100 kDa allows
molecules with MW of less than 100 kDa to pass through the filter
resulting a preferential loss of molecules less than 100 kDa. The
concentrated CM was then sterilized by filtration through a 220 nm
filter.

The CM was tested in a mouse model of MI/R injury. MI was
induced by 30 min left coronary artery (LCA) occlusion and
subsequent reperfusion. Five minutes before reperfusion, mice were
intravenously infused with 200 μl saline diluted CM containing 3 μg
protein for Hues9.E1 (hESC-MSCs) CM or 150 μg protein for fetal MSC
CM or 10 μg protein for HPLC F1 via the tail vein. Control animals were
infused with 200 μl saline. After 24 h of reperfusion, infarct size (IS) as
a percentage of the area at risk (AAR) was assessed using Evans' blue
dye injection and TTC staining as described previously [23].

2.9. Statistical analysis

Two-way ANOVA with post-hoc Dunnett was used to test the
difference in infarct size between groups. Correlation coefficient of
each pairs of array was assessed using Pearson correlation test.

3. Results

3.1. Generating MSC cultures from human fetal tissues

We generated five MSC cultures from fetal limb (F1lb, F2lb, F3lb),
kidney (F1ki) and liver (F3li) tissues of three fetuses in three
independent experiments using feeder- and serum-free culture
condition as previously described [21]. A homogenous culture of
putative fibroblast-like MSCs migrated out of the tissues and adhered
to the plastic culture dish, 2 days after fetal tissues were plated on
gelatinized tissue culture plates. This observation was consistent with
the defining characteristic of MSCs i.e. adherence to plastic. The large
tissue pieces were then washed off leaving a homogenous cell culture.
This procedure was performed on five different fetal tissues
originating from 3 fetuses in 3 independent experiments. Each time,
a homogenous culture of putative MSCs was obtained that form a
typical fingerprint whorl at confluency (Fig. 1A). The cultures were
designated P1 when 2×107 cells were generated. The average
population doubling time of all five cultures was between 48 and
72 h and was most optimal at between 25% and 80% confluency or
15–50,000 cells per cm2. The cells could be maintained in continuous
culture for at least 20 passages at a 1:4 split with minimal changes in
population doubling time. The karyotype of all five cultures at p10–12
was normal i.e. 46 XX or 46XY as determined byG-banding (Fig. 1B). At
passages 14, 16 and 18, telomerase activity in all fiveMSC cultures was
determined and the average cellular telomerase activity over three
passages in each of the five cultures was equivalent to that of the
previously describedHues9.E1 hESC-MSCs [21] (Fig. 2). Allfive cultures
could be expanded to at least passage 20 without obvious changes in
the population doubling time. At a 1:4 split ratio and starting with 107

cells, each line would generate 1016 cells at passage 15 or 1019 cells at
passage 20.

3.2. Assessment of fetal cultures as MSCs

The five putative MSC cultures derived from fetal tissues were
assessed according to the ISCT minimal criteria for the definition of
human MSCs [27]. All five presumptive MSC cultures derived from
three different fetuses were grown on plastic culture dishes as a
monolayer of adherent spindle-shaped cells (Fig. 1A). They were all
CD29+, CD44+, CD49a+ CD49e+, CD105+, CD166+, MHC I+, CD34−

Fig. 2. Telomerase activity in hESC-MSCs and fetalMSCs. Relative telomerase activitywas
measured by real time quantitative telomeric repeat amplification protocol. This qPCR-
based assay quantifies product generated in vitro by telomerase activity present in the
samples. The relative telomerase activity which is directly proportional to the amount of
telomerase products was assessed by the threshold cycle number (or Ct value) for 1 μg
protein cell lysate. Hues9.E1 referred to a previously described hESC-MSCs line and HEK
is a human embryonic kidney cell line. The Ct value for each fetal MSCswas themean for
three passages, P16, P18, and P20, and that for Hues9.E1 was themean for two passages,
P20 and P22. The assay was performed in triplicate for each passage.
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and CD45− as represented by F1lb MSCs (Fig. 3A). We observed
that F1lb MSCs were HLA-DRlo but the remaining four cultures were
HLA-DR−. In contrast to previous reports [28–37], these fetal MSCs-
like hESC-MSCs did not express pluripotency-associated proteins
Oct4, SSEA-4, and Tra1-60 as exemplified by F1lb MSCs (Fig. 3B).
However, transcripts of OCT4 and SOX2 were readily detected by
real time PCR but their levels were at least ten times lower than
those in hES3 human ESCs (Fig. 3C). All five presumptive fetal MSC
cultures could be induced to differentiate to osteoblasts, adipocytes
and chondroblasts in vitro (Fig. 4).

3.3. Gene expression profile

Genome-wide gene expression profiling of the fetal MSCs and
hESC-MSCs was performed using microarray hybridization to assess
1) the relatedness among the five fetal MSC cultures derived from
three different tissues and 2) the relatedness between the fetal MSC
cultures and hESC-MSCs. Microarray hybridization was performed in
duplicate on Sentrix Human Ref-8 Expression BeadChip version 3
(Illumina, Inc., San Diego, CA) using RNA from two or three different
passages of the MSC cultures. The gene expression profile between

Fig. 3. Marker profiling. (A, B) F1lb MSCs at p11 or p12 were stained with a specific antibody conjugated to a fluorescent dye and analyzed by FACS. Nonspecific fluorescence was
determined by incubation of similar cell aliquots with isotype-matched mouse monoclonal antibodies. (C) Relative transcription level of OCT4 and SOX2 was measured using
quantitative RT-PCR. hES3, a human embryonic stem cells line was set as the baseline for comparison.

Fig. 4. Differentiation of fetal MSCs. Fetal MSCs were induced to undergo osteogenesis, adipogenesis and chondrogenesis. After a) osteogenesis, b) adipogenesis and c)
chondrogenesis, the differentiated cells were stained with von Kossa stain, Oil Red and Alcian blue, respectively. Images of differentiated fetal MSCs as represented by differentiated
F3lb MSCs at 100×magnification.
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different passages of each culture, between the five cultures or
between each fetal MSC culture and hESC-MSCs was highly similar
with a correlation value of N0.9 (Fig. 5).

3.4. Cardioprotective activity of secretion

Secretion by two of the fetal MSC cultures, F1lb and F1ki were
tested for cardioprotective activity in a mouse model of myocardial
ischemia and reperfusion injury as previously described [23].
Briefly, the cultures were grown in a chemically defined medium
and the secretion harvested as we have previously described [22]. A
typical culture of 109 cells yielded 100 mg protein. The gross protein
composition of secretion from both F1lb and F1ki as determined by
silver staining of proteins resolved on a one-D SDS–PAGE appeared
similar to each other, to that of Hues9.E1 hESC-MSCs and also to that
from F3lb derived from fetal limb tissues of a different sex (Fig. 6A).
However, the relative abundance of specific proteins such as TSP-1,
SOD-1, CD81 and CD9 was different among all the secretions (Fig.
6B). Nevertheless, the secretion from either F1lb or F1ki when
administered to a mouse model of MI/R injury significantly reduced
infarct size to the same extent as mice treated with hESC-MSC CM
(Fig. 6C–G). Conditioned medium from F1lb, F1ki and hESC-MSCs
reduced the relative infarct size (IS) by 50%, 42% and 39%
respectively (pb0.05; Fig. 6G). The area at risk (AAR) as a
percentage of the left ventricular (LV) wall was similar in all the
mice tested (Fig. 6G).

3.5. Microparticles mediated the cardioprotection effects of the secretion

We had previously shown that the cardioprotection effects of
secretion from hESC-MSCs were mediated by large complexes of
∼1000 kDa [23]. To determine if there were such complexes in the
secretion of the fetal MSCs, the CM was fractionated by size exclusion
on an HPLC column. We observed five fractions that were present in

the CM but not in the non-conditionedmedium (NCM) (Fig. 7A). NCM
was essentially culturemedium that had not been exposed to cells but
was processed, concentrated and filtered in the samemanner as CM. It
was previously shown to have no cardioprotective effect and was
equivalent to saline in this respect [23]. These five fractions, F1–F5
therefore represented secretion from the MSCs. In a size exclusion
fractionation where larger molecules are eluted faster than smaller
ones, we observed that only proteins in fraction F2 to F5 followed this
principle of fractionation. Proteins in the fastest eluting F1 fraction
contained proteins that spanned in entire MW spectrum of F2 to F5.
This suggested that the proteins in F1 were in large aggregates
(Fig. 7B). To confirm this, sizes of molecules in the five fractions were
determined by dynamic light scattering analysis which has a detection
range of 1 to 500 nm according to the manufacturer specification
(Wyatt Technology Corporation, www.wyatt.com). The sizes of
molecules in fractions F2 to F5 were too heterogeneous to be
determined by dynamic light scattering analysis. In spite of the wide
MWspectrumof proteins in F1, the size ofmolecules in F1 fractionwas
sufficiently homogenous to be determined as having a hydrodynamic
radius of 50–65 nm by dynamic light scattering analysis. When
administered to the mouse model of MI/R injury as described above,
these HPLC-purified microparticles reduced infarct size at b1/10
dosage of the secretion (Fig. 7C–F).

4. Discussion

The trophic effects of MSCs transplantation on ameliorating the
deleterious consequences of myocardial ischemia have been impli-
cated in several studies [10]. Transplantation of MSCs into ischemic
myocardium has been shown to induce several tissue responses such
as an increased production of angiogenic factors and decreased
apoptosis [38] that were better explained by secretion of paracrine
factors than by differentiation of MSCs, the so-called paracrine
hypothesis.

Fig. 5. Gene expression analysis. Total RNA was prepared in technical replicates from different passages of F1lb (p10, p12, p14), F1ki (p10, p14, p16), F2lb (p10, p12, p14), F3lb (p10,
p12, p14) and F3li (p10, p16), and from two technical replicates of the previously described hESC-MSCs line, Hues9.E1 (p19). Seven hundred fifty nanograms of biotinylated cRNA
from each sample was used for microarray analysis on the Sentrix HumanRef-8 Expression BeadChip Version 3 (Illumina, Inc., San Diego, CA). The gene expression profile of all
samples was normalized by a shift to the 75th percentile, baseline transformed to median of all samples, and a heat map of correlation between pairs of array plotted.
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We have recently demonstrated that hESC-MSC secretion reduces
infarct size in mouse and pig MI/R injury model [23]. To translate this
finding into a clinical application, an important requisite would be a
safe, relatively accessible and highly proliferative source of MSCs that
has the potential to generate large number of cells to minimize batch
to batch variation. Although hESC-MSCs are highly proliferative and
have the capacity to generate large number of cells, the number of
clinical grade hESC lines and their accessibility is limited. To
circumvent this limitation, we derived human MSCs directly from
fetal human tissues. The traditionally used bone marrow for deriving
MSCs was not an attractive alternative as a single bone marrow

aspirate usually generates only ∼109 cells. We rationalized that fetal
tissues being developmentally less mature may generate MSCs with
expansion potential equivalent to that of hESC-MSCs.

The fetal MSCs-like hESC-MSCs, fulfilled the basic criteria for MSCs
as defined by The International Society for Cellular Therapy [27]. They
adhered to plastic, have a typical MSCs-like surface antigen profile as
defined by the presence of surface antigens such as CD29, CD44,
CD49a, CD49e, CD105, CD166, and MHC I and the absence of surface
antigens such as HLA-DR, CD34 and CD45 [39–41], and a typical MSCs
differentiation potential that includes adipogenesis, chondrogenesis
and osteogenesis. Irrespective of their tissue of origin, the five fetal

Fig. 6. Cardioprotective secretion. (A) Proteins in culture medium conditioned by hESC-MSCs (Hues9.E1), F1lb, F1ki or F3lb were separated on a 4%–12% SDS–PAGE gradient gel and
stained with silver. Two micrograms of proteins was loaded in each lane. (B) Western blot analysis. CM from hESC-MSCs (Hues9.E1), F1lb, F1ki and F3lb at 4, 8, 16 and 16 μg,
respectively, were resolved on an SDS–PAGE, electroblotted onto nitrocellulose membrane and probed with antibodies against TSP-1, SOD-1, CD81 and CD9. (C–F) Representative
pictures of Evan blue (blue) and TTC (pink) staining on hearts of mice treated with (C) saline, (D) HuES9.E1, (E) F1lb, or (F) F1ki. (G) AAR as a percentage of the left ventricle (LV),
showing the amount of endangered myocardium after MI/R injury. All animals were affected to the same extent by the operative procedure, resulting in 39.4±2.0% of AAR among
the groups. Infarct size (IS) as a percentage of the area at risk (AAR) upon treatment with saline (n=10), CM from hESC-MSCs (n=10), F1lb-MSCs (n=6) and F1ki-MSCs (n=6).
Saline treatment resulted in 34.5±3.3% infarction, whereas conditioned medium from hESC-MSCs, F1lb-MSCs and F1ki-MSCs resulted in 21.2±3.3%, 17.4±3.7% and 19.9±2.6%,
respectively. Each bar represents mean±SEM.
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MSC cultures derived from different tissues of three individual fetuses
have a nearly identical genome-wide gene expression profile. Their
gene expression profiles were also similar to that of the previously
described hESC-MSCs, Hues9.E1. They were as equally proliferative as
Hues9.E1 and had high levels of telomerase activity. Although the
secretion by MSCs derived from different tissues, that is, limb and
kidney tissues were grossly similar to that from hESC-MSCs, Hues9.E1,
closer examination of specific proteins by western blot hybridization

(Fig. 6B) demonstrated that there were quantitative differences in the
protein composition. Consistent with this observation, secretion from
the fetal MSCs significantly reduced infarct size in a mouse model of
MI/R injury but at a higher dosage of 150 μg instead of 3 μg per mouse.
We postulate that this difference in effective dosage was due
primarily to the quantitative differences in the protein composition
and candidate proteins will have to be identified through systematic
evaluation and validation of quantitative high throughput proteomic

Fig. 7. Cardioprotective HPLC-isolated microparticles. (A) HPLC fractionation and dynamic light scattering of F1lb CM and NCM. F1lb CM and NCM were fractionated on an HPLC
using BioSep S4000, 7.8 mm×30 cm column. The components in F1lb CM or NCM were eluted with 150 mM of NaCl in 20 mM phosphate buffer, pH 7.2. The elution mode was
isocratic and the run time was 40 min. The eluent was monitored with a UV–visible detector set at 220 nm and light scattering signal was collected. The solid rhombus represented
light scattering signal as measured in voltage; (B) The eluted fractions, F1 to F12 were collected, their volumes were adjusted to 10% of the input volume of CM and equal volume
of F1–F12 was separated by gel electrophoresis and stained with silver. (C–E) Representative pictures of Evan blue (blue) and TTC (pink) staining on hearts of mice treated with
(C) saline, (D) F1lb, or (E) HPLC F1. (F) Infarct size (IS) as a percentage of the area at risk (AAR) upon treatment with saline (n=10), F1lb CM (n=6) and HPLC F1 (n=6). Saline-
treated mice had a 34.5±3.3% relative infarct size while F1lb CM- and HPLC F1-treated mice had a 17.4±3.7% and 18.1±2.0% relative infarct size, respectively. AAR as a
percentage of the left ventricle (LV), showing the amount of endangered myocardium after MI/R injury. All animals were affected to the same extent by the operative procedure,
resulting in 39.4±2.0% of AAR among the groups. Each bar represents mean±SEM.
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analysis. We further demonstrate that consistent with our previous
observations [23], the cardioprotective effect of secretion from fetal
MSCs was mediated by large complexes in the range of 100 to 200 nm
or possibly, microparticles.

Microparticle is a minimally defined term that encompasses a
broad spectrum of secreted particles in the size range of 0.05–1 μm.
Microparticles are known to be produced by numerous cell types
[42–48]. Although the function of microparticles remains poorly
understood, there is irrefutable evidence that microparticles have
important functions. As summarized by many recent reviews [46–57],
microparticles are definitively associated with many diseases such as
cancer, atherosclerosis and cerebral ischemia. However, the specific
role ofmicroparticles in disease process and/or progress remains to be
determined. As some microparticles carried biologically active
materials includingproteins andRNAs that can be transferredbetween
cells, it is likely that microparticles would have an impact either
positively or negatively on a disease process and/or progress. This has
led to suggestions that microparticles could be exploited as potential
therapeutic vectors [58]. However, the broad definition of micro-
particles which encompasses all secreted membrane vesicles to
include the more defined exosomes (50–100 nm), microvesicles
(100–1000 nm), ectosomes (50–200 nm), membrane particles
(50–80 nm), exosome-like vesicles (20–50 nm) and apoptotic vesicles
(50–500 nm) [24] has impeded our understanding of microparticles.
Other than exosomes which are the most stringently defined
microparticles to date, the major distinguishing parameter for these
different classes of microparticles is their size.

In this report where we not only demonstrated directly for the first
time that purified microparticles in MSC secretion were cardiopro-
tective, we also purified these microparticles by size exclusion on an
HPLC which is currently one of the most precise methods for size
fractionation of molecules or particles. The purified microparticles
were determined by dynamic light scattering analysis to be a
population of homogenously sized particles with a hydrodynamic
radius of 50–65 nm. This particle size which translated into an
approximate diameter of 100–130 nm was consistent with our
previous observation that filtration through a membrane with an
MW cutoff of 1000 kDa caused the filtrate to lose its cardioprotective
function while that part of secretion retained by the same filter or the
retentate was cardioprotective [23]. A membrane with an MW cutoff
of 1000 kDa has a 100-nm nominal pore size according to the
manufacturer (Pall Corp. http://www.pall.com/). This essentially
meant that the filtrate contained particles with diameter of less than
50–100 nm and these b50–100 nm particles were not cardioprotec-
tive. On the other hand, the retentate containing particles N50–100 nm
was cardioprotective. Together, this study and our previous study [23]
demonstrated that cardioprotection by the secretion of hESC-MSCs
and fetal MSCs was similarly mediated by microparticles with
diameters of N50–100 nm. Our previous study also suggested that
secretion devoid of themicroparticles but containing all other secreted
proteins as represented by the CM filtrate through a membrane with
an MW cutoff of 1000 kDa was not cardioprotective [23]. This
observation of no cardioprotective activity could therefore be
extrapolated to HPLC fraction 2 to 4 where there were no micro-
particles and the secreted proteins were eluted according to the size
exclusion principle, and were therefore soluble.

The involvement of microparticles in mediating the paracrine
effect of MSC transplantation on tissue repair represents a radical shift
in our current understanding of the paracrine effect of MSC which
hitherto has been limited to cytokine, chemokine or growth factor-
mediated extracellular signaling [10].

Together our report demonstrated that MSCs derived from fetal
tissues are a viable alternative to human ESCs as a tissue source of
highly proliferative MSCs that produces cardioprotective secretion. A
single fetal tissue could potentially generate 1016 to 1019 MSCs. A 109

cell culture secretes 100 mg protein. We have previously shown that

the effective cardioprotective dose for a pig model of MI/R injury was
10 mg protein per 60–70 kg pig [23]. Therefore, a single fetal tissue
could potentially generate sufficient MSCs to produce 108–11 doses.
Together with the relatively simple purification of these micro-
particles to a population of homogenously sized microparticles, the
use of secretion from fetal MSCs represents a viable strategy to
address an urgent unmet therapeutic need for treating MI/R injury
[59].
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Abstract  

 

Exosomes secreted by human ESC derived mesenchymal stem cells (hESC-MSCs) 

were recently found to reduce infarct size in a mouse model of myocardial 

ischemia reperfusion injury.  A requisite for elucidating the underlying 

mechanism is an understanding of the biological potency in these exosomes.  Here 

we profiled the proteome of MSC exosome to identify 857 proteins that together 

suggest a potential to drive a diverse spectrum of cellular and biochemical 

activities. As an illustration and validation of this diverse potential, hESC-MSC 

exosomes were determined to contain glycolytic enzymes capable of generating 

ATP and NADH or increasing glycolysis in vitro and in vivo, 20S proteasome that 

hydrolyzed small peptides, CD73 that activated adenosine-mediated signaling 

pathway to phosphorylate ERK and AKT in cells, and CD59 that inhibited 

complement-mediated cell lysis.  The presence of this diverse array of biological 

activities known to be critical in ameliorating tissue injury and facilitating tissue 

repair provides candidate mechanisms for cardioprotective effect of exosome from 

hESC-MSC. 

 

Keywords:  Mesenchymal Stem Cells, exosome, proteome, glycolysis, 

proteasome, ecto- 5’ nucleotidase, complement-mediated cell lysis 
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Introduction 

Exosomes were once thought to be “trash bags” for cells to discard unwanted 

proteins1.  However, exosomes are increasingly viewed as having important 

physiological function particularly in cellular communication.  Exosomes are bi-

lipid membrane vesicles of 50-100 ηm that are secreted by many cell types2.  They 

belong to a class of secreted cellular products known as microparticles which 

broadly encompasses all secreted membrane vesicles.  Other than exosomes, 

microparticles include microvesicles (100-1000 ηm), ectosomes (50-200 ηm), 

membrane particles (50-80 ηm), exosome-like vesicles (20-50 ηm) and apoptotic 

vesicles (50-500 ηm).  The major distinguishing parameter for these different 

classes of microparticles is their size and the best defined class is the exosomes.  

Exosomes have a density in sucrose of 1.10 to 1.19 g/ml, sedimented at 100,000 g, 

has a cholesterol-rich lipid membrane containing sphingomyelin, ceramide, lipid 

rafts and exposed phosphatidylserine.  The process of exosome biogenesis is 

complex and involves complex intracellular membrane trafficking and cargo 

sorting through the biosynthetic and endocytotic pathways.  As evidence of this 

complex biogenesis, the hallmark features of exosomes are markers of the 

endoplasmic reticulum and the endosomes such as Alix, Tsg101, Rab proteins, etc.  

Exosomes are stored in multivesicular bodies prior to release via fusion of the 

multivesicular bodies (MVBs) with the plasma membrane.  

Exosomes have been shown to mediate intercellular communication particularly 

in immune or tumor cells3-8. Recently we extended this function to include tissue 

repair when we reported that exosomes secreted by human ESC-derived MSCs 

reduced infarct size by about 50% in a mouse model of myocardial ischemia 

reperfusion (MI/R) injury9, 10. These exosomes were purified as a population of 
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homogenously sized microparticles of about 50-100 ηm in diameter by size 

exclusion on HPLC and they carry both protein and RNA load9, 11, 12.  However, 

the mechanism/s underlying this cardioprotective effect by MSC exosomes has yet 

to be elucidated.  Part of the reason could be attributed to a deficiency in our 

understanding of the biological potency of exosomes in general.  Despite 

extensive proteomic and RNA profiling of exosomes from various cell types and 

biological fluids, the biological potency of the proteins and RNAs in exosomes 

remains largely uninvestigated.  Most studies to date on the biological potency are 

limited to  the immune responses that are elicited by exosomes from immune cells, 

particularly the dendritic cells2 but the molecular or biochemical basis of these 

biological responses have yet to be elucidated. 

To address this deficiency, we performed a comprehensive proteomic profiling of 

HPLC-purified exosome to first identify proteins present in these exosomes and 

then using these proteins to predict the types of biological activity or potential in 

the exosomes.  This was then validated by either biochemical or cellular assays. A 

total of 857 unique gene products were detected and they could be functionally 

clustered into 32 over-represented biological processes indicating that exosomes 

have the potential to exert a wide spectrum of biochemical or cellular effects.  To 

evaluate and verify this potential, we selected proteins for which assays to assess 

either their biochemical and/or cellular activities are available and that together, 

would demonstrate the wide spectrum of biochemical and cellular potential in 

exosomes, and provide candidate molecular mechanisms for the cardioprotective 

properties of MSC exosomes. The proteins investigated here include glycolytic 

enzymes for the breakdown of glucose to generate ATP and NADH, PFKB3 that 

increases glycolysis, CD73 that hydrolyses AMP to adenosine capable of 
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activating signaling cascades through adenosine receptors, CD59 that inhibits the 

formation of membrane attack complex (MAC) and 20S proteasome.   

 
 
 
Materials and Methods 
 

Preparation of exosomes 

Exosomes were purified from huES9.E1 derived MSCs conditioned media (CM) 

using HPLC as described earlier. In brief, CM collected from MSCs culture was 

concentrated 50x by tangential flow filtration (TFF) using a membrane with a 100 

kDa MWCO (Sartorius, Goettingen, Germany). After that, CM was passed 

through chromatography columns (TSK Guard column SWXL, 6x40 mm and 

TSK gel G4000 SWXL, 7.8x300 mm, Tosoh Corp., Tokyo, Japan). Exosomes 

were collected from the first peak of the elution, concentrated using 100 kDa 

MWCO filter (Sartorius). Exosomes were filtered with a 0.22 µm filter before 

storage or use. 

 

LC MS/MS 

Proteins in two ml of dialyzed exosomes were reduced, alkylated and tryptic 

digested as described13. The samples were then desalted by passing the digested 

mixture through a conditioned Sep-Pak C-18 SPE cartridge (Waters, Milford, MA, 

USA), washed twice with a 3% acetonitrile (ACN) (JT Baker, Phillipsburg, NJ) 

and 0.1% formic acid (FA) buffer, and eluted with a 70% ACN and 0.1% FA 

buffer. The eluted samples were then dried to about 10% of their initial volumes 

by removing organic solvent in a vacuum centrifuge. To reduce sample 

complexity, offline peptide fractionation was carried out with a HPLC system 
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(Shimadzu, Japan) through a Polysulfoethyl SCX column (200 mm x 4.6 mm) 

(PolyLC, USA).  Mobile phase A (5 mM KH4PO4 + 30% acetonitrile) and mobile 

phase B (5 mM KH4PO4 + 30% acetonitrile + 350 mM KCl) at 1 ml/min. Eight 

fractions were collected and dried with a vacuum centrifuge. Fractionated samples 

were loaded into the auto sampler of a Shimadzu micro HPLC system coupled 

online to a LTQ-FT Ultra linear ion trap mass spectrometer (Thermo Electron, 

Bremem, Germany) fitted with a nanospray source.  Injected peptides were 

trapped and desalted in a Zorvax 300SB-C18 enrichment column (5 mm x03 mm, 

Agilent Technologies, Germany) and eluted into a nano-bored C18 packed 

column (75 µm x 100 Å, Michrom Bioresources, Auburn, CA).  A 90 minute 

gradient at a constant flow rate of 20 ml/min with a splitter to an effective flow 

rate of 200 ηl/min was used to elute the peptides into the mass spectrometer. The 

LTQ was operated in a data-dependent mode by performing MS/MS scans for the 

8 of the most intense peaks from each MS scan in the FTMS.  For each 

experiment, MS/MS (dta) spectra of the eight SCX fractions were combined into a 

single mascot generic file by a home-written program. Protein identification was 

achieved by searching the combined data against the IPI human protein database 

(version 3.34; 69,164 sequences, 29,064,825 residues) via an in-house Mascot 

server (Version 2.2.04, Matrix Science, UK). The search parameters were: a 

maximum of 2 missed cleavages using trypsin; fixed modification was 

carbaminomethylation of cysteine and variable modification was oxidation of 

methionine. The mass tolerances were set to 10 ppm and 0.8 Da for peptide 

precursor and fragment ions respectively. Protein identification was accepted as 

true positive if two different peptides were found to have scores greater than the 

homology scores. 
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Antibody array 

500 µl of non-conditioned media and exosomes were assayed for the presence of 

cytokines and other proteins using RayBio® Biotin Label-based Human Antibody 

Array I according to manufacturer’s instructions (RayBio, Norcross, GA). The 

cytokines and other proteins were considered to be present in the exosomes if the 

signal intensity is 2 fold higher (p<0.05) than that in non-conditioned medium. 

 

Western blot hybridization 

12 µg exosomes were separated on 4-12% SDS-polyacrylamide gels and 

electroblotted onto a nitrocellulose membrane. The membrane was transferred to 

the membrane holder of SNAP i.d. system (Millipore, Billerica, MA), blocked and 

incubated with primary anti-human antibodies, which included mouse anti-

GAPDH (1:100 dilution), mouse anti-PGK (1:60), mouse anti-PGD (1:60), rabbit 

anti-PFKFB3 (1:60), mouse anti-pyruvate kinase (PK, 1:200), mouse anti- 20S 

proteasome α1-7 (1:200), mouse anti-CD73 (1:60) and mouse anti-CD59 (1:200) . 

The blot was then incubated with a horseradish peroxidase-coupled secondary 

antibody. The secondary antibody used was goat anti-mouse IgG (1:1250) or 

donkey anti-rabbit IgG (1:1250). All antibodies were obtained from Santa Cruz 

Biotechnology, Santa Cruz, CA except mouse anti-PK which was from Abcam 

Inc., Cambridge, MA. The blot was then incubated with HRP-enhanced 

Chemiluminescent substrate (Thermo Fisher Scientific Inc., Waltham, MA) and 

then exposed to  X-ray film. 

 

Enzymatic Assays 
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Pyruvate Kinase assay:  

5 μg of exosome (in 12 μl) was lysed using a cell extraction kit (Biovision, 

Mountain view, CA). The  lysed exosome extract was incubated with 50 μl of 

reaction mix from a commercially available  PK assay kit (Biovision). In this 

assay, pyruvate produced by PK was oxidized by pyruvate oxidase to produce 

fluorescences (Ex/Em= 535/587 nm). The increase in fluorescence intensity is 

therefore proportional to the amount of pyruvate produced.  

GAPDH and PGK assay:  

GAPDH and PGK activity were measured based on their downstream product, 

ATP in the glycolysis reaction using 2 commercially available kits, KDalert 

GAPDH assay kit (Ambion Inc., Austin, TX) and ApoSENSOR ADP/ATP ratio 

assay kit (Biovision). Briefly, exosomes were lysed using a cell extraction kit 

(Biovision). To measure GAPDH activity, 10 μg of lysed exosomes was added to 

KDalert reaction buffer containing D-glyceraldehyde-3-phosphate, NAD+ and Pi 

to form 1, 3-bisphosphoglycerate + NADH+ H+. 250 U/ml of PGK and 60 µM 

ADP were then added to convert 1, 3-bisphosphoglycerate and ADP to 3-

phosphoglycerate and ATP. The amount of ATP produced which was proportional 

to GAPDH activity, was then measured using ATP luciferase assay. To measure 

PGK activity, 10 μg of lysed exosomes was added to the 1, 3-bisphosphoglycerate 

produced from the above assay. ADP was added to allow the formation of ATP. 

ATP amount which is proportional to PGK activity was then quantified using ATP 

luciferase assay. 

20S proteasome assay: 

The proteasome activity was measured using a 20S proteasome activity assay kit 

(Millipore) based on detection of the fluorophore 7-Amino-4 methylcoumarin 
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(AMC) after cleavage from the labeled substrate LLVY-AMC by 20S proteasome 

in the presence or absence of lactacystin, a specific 20S proteasome inhibitor. 

Briefly, 4 μg of exosome was incubated with a reaction buffer containing LLVY-

AMC in the presence or absence of 25µM actacystin. The samples and AMC 

standards were incubated at 37 ºC and fluorescense intensity at Ex/Em= 380/460 

nm was monitored for 2 hours.  

CD73 assay: 

CD73 (NT5E) enzymatic activity in exosome was determined by incubating 2.5 

µg of exosome in 100 µl Tris buffer pH 7.4 containing 50 µM AMP (Sigma-

Aldrich, St Louis, MO).  The amount of phosphate ions released from the 

hydrolysis of AMP was then determined by Colorlock Gold kit (Innova 

Biosciences, Cambridge, UK) as per manufacturer’s instruction. 

Cell assays 

Glycolysis  

H9C2 cardiomyocytes were plated onto a 96 well plate (poly-lysine coated) at 

30,000 cells per well. After 5 hours, the cells were washed twice with Tyrode’s 

buffer before incubating in Tyrode’s buffer containing 20 µmol oligomycin 

(Sigma-Aldrich), 6 mmol glucose, and with or without 0.1 µg/ml exosomes for 15, 

30 and 60 minutes. Cellular ATP concentration was measured using ATPlite 1step 

luminescence ATP detection assay system (PerkinElmer, Zaventem, Belgium). 

Adenosine-mediated signaling 

H9C2 cardiomyocytes were plated onto a 6 well plate at 200,000 cells per well 

and serum starved overnight. The cells were then incubated with fresh serum-free 

medium with or without 1mM theophylline for another hour.  In the meantime, 

two series of serum-free media were prepared.  One series contained no 
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supplement, 50 μM AMP alone, 0.1μg/ml exosomes alone or a combination of 50 

μM AMP and 0.1μg/ml exosomes.  The second series was similar to the first 

except that the media contained 1mM theophylline.  Both series were incubated at 

37°C for 30 minutes.  The first series was used to replace medium of the cells that 

were being cultured in serum-free medium alone and the second series to those 

cells that were being cultured in theophylline-containing medium. After five 

minutes, the cells were harvested and lysed using a commercially available 

mammalian cell extraction kit (BioVision) in the presence of a protease and 

phosphatase inhibitor cocktail 1 (Sigma Aldrich). Protein concentration was 

determined by standard Bradford assay. 10 μg of the total proteins were analysed 

by western blot hybridization using 1:2000 dilution of rabbit anti-pERK 1/2 (Cell 

Signaling, 9101S), 1:2000 dilution of rabbit anti-AKT (Cell Signaling, 9271S), 

1:500 dilution of rabbit anti-ERK1 (Santa Cruz,sc-94) and 1:500 dilution of rabbit 

anti-AKT (Cell Signaling, 9272S). 

Complement-mediated cell lysis  

Briefly, sheep red blood cells (SRBCs) were purchased (Innovative Research, 

Southfield, MI) and washed three times with phosphate buffered saline (PBS) 

before resuspending at 1×108 cell/ml PBS. Purified complement components, 

C5b6, C8 and C9 were purchased from Calbiochem (San Diego, CA), and C7 

from Sigma-Aldrich (St Louis, MO).  Assembly of intact C5b-9 on SRBCs was 

initiated by a 15 min incubation (37 °C) with 1ml each of C5b6 (0.1µg/ml) and C7 

(0.4µg/ml) in the presence or absence of exosomes at a final concentration of 0.1 

µg/ml. The SRBCs were then washed and incubated with 1ml each of C8 

(0.4µg/ml,) plus C9 (0.4µg/ml) with or without a blocking CD59 antibody at a 

final concentration of 0.05 µg/ml for an additional 30 min. After that the SRBCs 
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were centrifuged and the amount of hemoglobin released by the lysed SRBCs in 

the supernatant was measured by absorbance at 415 nm. Total (100%) hemolysis 

was obtained by treating the cells with 1% (w/v) Triton X-100. 

 

 

Results 

Proteomic profiling of exosome 

Exosomes were purified from culture medium conditioned by HuES9.E1, a human 

ESC-derived mesenchymal stem cells14 by HPLC as previously described9, 10. 

Proteomic profiling using mass spectrometry and antibody approaches were 

performed as previously described9-11on 3 independently prepared batches of 

HPLC-purified exosomes. A total of 857 proteins were detected and these proteins 

were denoted by their gene symbol to facilitate analysis (Table 1).  Of these, 320 

gene products were found in the 739 proteins previously identified in the 

unfractionated conditioned medium9, 10 (Figure. 1).  

Based on data analysis of 15 proteomic analyses carried out on exosomes purified 

from cultured cells and from biological fluids, Thery et al. had observed that a set 

of about 17 proteins, namely glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), pyruvate kinase (PK), eukaryotic translation elongation factor 1A1 

(EEF1A1), milk fat globule EGF factor 8 protein (MFGE8), tetraspanins, 14-3-3 

proteins, Gα proteins, clathrin, Alix (PDCD6IP), MHC class1, annexins (ANX), 

Rab proteins, ezrin(VIL2), radixin(RDX) and moesin (MSN)(ERM), actin, tubulin, 

HSP70 and HSP90 were found to be present in at least 50% of the exosomes that 

were characterized2.  Not unexpectedly, most of these proteins were also found in 

the proteome of the HPLC-purified MSC exosomes (Table 1). Also consistent 

69



with the endosomal origin of exosomes, we detected the presence of endosome-

associated proteins such as Alix (PDCD6IP) and Rab (Table 1). 

 

Computational analysis of exosome proteome 

To better understand the biological significance of the proteins in the exosomes, 

functional clustering of the 857 proteins into biological processes was performed 

using PANTHER (Protein ANalysis THrough Evolutionary Relationships) 

analytical software15, 16.  The observed frequency of genes from the exosome 

proteome in each biological process was compared with the reference frequency 

of genes in the NCBI database for that biological process.  The 857 gene products 

could be clustered into 32 biological processes that were over-represented 

(p<0.001) and 3 that were under-represented (p<0.001) (Figure. 2). 

These biological processes could be further classified into several activities 

associated with exosome biology e.g. communication, cellular motility, 

inflammation and exosome biogenesis.  As exosomes are generally postulated to 

function as vehicles of intercellular communication and morphogen signaling4, 17 

and mediators of immune activity2, the involvement of exosome proteins in signal 

transduction pathways, cell structure, cell motility and immune responses was not 

unexpected.  A fourth class of processes that we tentatively termed as “exosome 

biogenesis” essentially reflected the biogenesis and release of exosomes through 

the involvement of endosomes, ESCRT-mediated sorting and the formation of 

multivesicular bodies, and fusion with the plasma membrane.  Therefore, proteins 

such as those involved in trans-golgi network, intracellular protein traffic, general 

vesicle transport, endocytosis, receptor-mediated endocytosis, other protein 

targeting and localization and exocytosis are not unexpectedly enriched in 
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exosomes. Other biological processes that we classified as tissue repair and 

regeneration include those that are involved in the development and differentiation 

of mesodermal and ectodermal tissues including skeletal development and 

angiogenesis.  These biological processes are consistent with the differentiation 

potential of mesenchymal stem cells18 and reflected the cellular origin of the 

exosomes.  In our classification of metabolism, we included processes involved in 

catabolic or anabolic metabolisms that produce energy and building blocks for 

growth and regeneration.  Blood clotting was also a significantly over-represented 

biological process that we postulated may be important in ameliorating tissue 

injury. All three under-represented biological processes were not unexpectedly 

involved in regulating gene expression at the transcriptional level. Most proteins 

involved in these processes tend to be transported efficiently into the nucleus, 

making them less likely to be associated with exosomes. We also observed that 

419 proteins found in the conditioned medium (CM) were not present in the 

exosome (Figure. 1) and these proteins could be functionally clustered into eleven 

over-represented and two under-represented biological processes.  Of the over-

represented processes, six were also found in the clustering of the 857 proteins 

found in exosomes while the remaining five, namely amino acid activation, 

protein folding, chromatic packaging and remodeling, protein complex assembly 

and mRNA splicing were not.  The two under-represented biological processes 

were also found to be under-represented for the exosome proteins.  The diverse 

array of proteins in MSC exosomes indicated that they have the potential to 

participate in a wide spectrum of biochemical and cellular activities.  To test this 

hypothesis, we selected those proteins for which assays to test their biochemical 
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and cellular activities are available, and that together would provide an indication 

for the wide diversity in activities of exosomes 

 

Exosome enhanced cellular ATP production through glycolysis 

One prominent feature of the exosome proteome was the presence of all five 

enzymes in the ATP generating stage of the glycolysis (Figure. 3A): 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase 

(PGK), phosphoglucomutase (PGM), enolase (ENO) and pyruvate kinase m2 

isoform (PKm2).  Of these, GAPDH, PGK, and PKm2 that generate either ATP or 

NADH were further confirmed to be present by immunoblotting (Figure. 3B).  

Their enzymatic activities were determined to be 1.1 µU, 3.59 µU and 5.5 µU per 

µg protein respectively (Figure. 3C) where 1 unit (U) of enzyme activity is 

defined as the activity required for the production of 1 µmole of product per 

minute. 

In addition, exosome contains PFKFB3 which converts fructose 6-phosphate to 

fructose 2, 6-bisphosphate.  PFKFB3 is one of four PFKFB isoforms encoded by 

four different genes, PFKFKB1, 2, 3 and 4. PFKFBs are responsible for 

maintaining the cellular level of fructose-2,6-bisphosphate, a powerful allosteric 

activator of phosphofructokinase19 which catalyses the commitment to glycolysis.  

They are thought to be responsible for the high glycolytic rate or “Warburg effect” 

in cancer cells20. The kinase activity of PFKFB3 is upregulated by 

phosphorylation by protein kinases such as cAMP-dependent protein kinase and 

protein kinase C.  Mass spectrometry analysis revealed the presence of PFKFB3 

in the exosome and immunoblotting further demonstrated that this enzyme was 

phosphorylated (Figure. 3A).  
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The presence of ATP-generating glycolytic enzymes and phosphorylated PFKFB3 

in exosomes predicted that exposure of cells to exosome could increase glycolytic 

flux and increase ATP production. To test this, we determined if these exosomes 

could increase ATP synthesis in oligomycin-treated H9C2 cells.  Since 

oligomycin inhibits mitochondrial ATPase21, oligomycin-treated cells would have 

to utilize glycolysis as their major source of cellular ATP. Consistent with the 

presence of glycolytic enzymes and PFKFB3, and our previous demonstration that 

H9C2 cells could internalize MSC exosomes12, exosomes increased ATP level in 

oligomycin-treated cells by 75.5 + 28.8% or 55.8 + 16.5% in 15 to 30 minutes of 

exposure to exosomes respectively, possibly through increased glycolysis.  

 

20S proteasome in exosome is enzymatically active  

Mass spectrometry analysis of MSC exosomes not only detected the presence of 

all seven α- (PMSA1-7) and all seven β-subunits (PMSB1-7) of the 20S core 

particle, but also the three beta subunits of “immunoproteasome”, PMSB8 (β5i or 

LMP7), PMSB9 (β1i or LMP2), PMSB10 (β2i or LMP10) gene product 22. The 

presence of some of the 20S proteasome peptides was further confirmed by 

western blot hybridization (Figure. 4A).  The presence of all seven α- and all 

seven β-subunits of the 20S core particle suggest that MSC exosomes contain 

intact 20S proteasome complexes and therefore potentially possess 20S 

proteasome enzymatic activity. 

Consistent with this, MSC exosome was able to degrade short fluorogenic 

peptides with an enzymatic activity of 5.00 µU/µg protein and this degradation 

was inhibited by lactacystin, a specific proteasome inhibitor (Figure. 4B).  We 

also observed that unlike the glycolytic enzyme assays described above, 20S 
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proteasome activity in the exosomes could be detected without lysing the 

exosomes.  This suggested that the 20S proteasome may be present on the surface 

and not in the lumen of exosomes   It was previously observed that 20S 

proteasome preferentially assembles in an “end-on” configuration on 

phosphatidylinositol lipid monolayer, ER and Golgi lipid films23 such that 

entrance to 20S proteasome is perpendicular to membrane.  Therefore, this 

together with our observations suggests that 20S proteasomes in the exosomes 

were attached to external membrane surface and their entrances were 

perpendicular to the exosome membrane.  

 

Exosome phosphorylated ERK and AKT via CD73 (ecto-5’-ectonucleotidase, 

NT5E) 

Ecto-5'-nucleotidase (NT5E or CD73) together with ecto-apyrase (CD39) 

enzymatically convert precursor nucleotides into adenosine.  During cellular 

injury, cells release ATP and ADP24. CD39 hydrolyzes extracellular ATP and 

ADP to AMP which is then degraded to adenosine by ecto-5'-nucleotidase. 

Adenosine has a half-life of less than ten seconds in human blood.  It is a powerful 

vasodilator but is not used clinically as a vasodilator as it is very short acting.  It is 

used for the rapid treatment of supraventricular tachycardias.  Adenosine is an 

endogenous purine nucleoside that modulates many physiological processes 

through four known adenosine receptor subtypes (A1, A2A, A2B, and A3)25.  

CD73 was found to be present in the MSC exosomes by mass spectrometry 

analysis and confirmed by immunoblotting (Figure. 5A). The enzyme activity was 

determined to be 22.04 µU/µg protein. To determine if exosomes could activate 

adenosine signaling in cells via CD73-mediated hydrolysis of AMP, H9C2 
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cardiomyocytes were serum starved overnight and then exposed to exosomes and 

AMP.  Cell lysates were then analyzed for phosphorylation of ERK1/2 and AKT 

(Figure. 5B, C).  After overnight serum starvation, exposure to exosomes and 

AMP induced phosphorylation of ERK1/2 and AKT.  The phosphorylation of 

ERK1/2 and AKT was abolished in the presence of theophylline, a non-selective 

adenosine receptor antagonist that antagonized A1, A2A, A2B, and A3 receptors26. 

 
Exosome inhibited the formation of membrane attack complex  

The complement system is a part of the innate immune system which 

complements the function of antibodies.  Upon activation, a biochemical cascade 

is initiated to generate several key products: C3b which binds to the surface of 

pathogens and enhance phagocytosis of these pathogens; C5a which helps to 

recruit inflammatory cells by chemotaxis; and C5b which initiates formation of 

the MAC consisting of C5b, C6, C7, C8, and polymeric C9.  MAC deposited on 

the target cell forms a transmembrane channel which causes subsequent cell lysis.  

Aberrant activation of the complement pathway is thought to play a deleterious 

role in ischemia reperfusion injury27.  

MSC exosome was found to contain CD59 by mass spectrometry analysis and this 

was confirmed by immunoblotting (Figure. 6A). Since CD59 inhibits formation of 

MAC28, this suggested that exosomes may inhibit complement activation and 

subsequent complement-mediated cell lysis.  Consistent with this hypothesis, 

exosome inhibited complement-mediated lysis of sheep red blood cells (SRBCs) 

(Figure. 6B). This inhibition was abolished when a CD59 blocking antibody was 

used to pre-treat the exosomes, showing that CD59 of exosomes is directly 

involved in the inhibition of complement lysis.
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Discussion 

In this report, we profiled the proteome of 3 independently prepared, HPLC-

purified ESC-derived MSC exosome using mass spectrometry and cytokine array 

and identified 857 proteins.  These proteins included many proteins commonly 

found in other exosomes.  Clustering of these proteins according to their functions 

suggested that the exosome has the potential to drive many biological processes.  

To evaluate this hypothetical biological potential, we examined a set of proteins 

selected on the basis that assays for their biochemical and cellular activities are 

available, and that as a group, they would illustrate the wide ranging diversity in 

activities.  More importantly, the biochemical and cellular activities of these 

selected proteins could potentially ameliorate tissue injury in acute myocardial 

ischemia/reperfusion injury. 

The proteome of MSC exosomes contained a diverse array of proteins.  A 

significant fraction are proteins that are involved in the highly regulated and 

complex intracellular membrane trafficking and sorting through the biosynthetic 

and endocytotic pathways29 and the presence of these proteins is probably a 

reflection of the biogenesis of exosomes.  It was previously observed that 

exosomes from different cell sources carry a common set of proteins, many of 

which are reflective of their biogenesis30. The complexity in the biogenesis of 

exosome and selective loading of the protein and RNA cargo load suggest a heavy 

investment of cellular resources and such commitment must be underpinned by 

important physiological functions.   

Although exosomes have been discovered for more than 30 years, the biological 

significance of exosome is just starting to be uncovered. It has been implicated in 

an increasing number of important physiological and pathological processes such 
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as disposal of unwanted protein1, antigen presentation31, genetic exchange32, 

immune responses33, 34 and tumor metastasis33-38.  Together, these observations 

suggest that as a group or individually, exosomes may modulate many biological 

processes.  The latter possibility is supported by the wide array of proteins and 

RNAs that has been found in exosomes12, 39.  In addition to the functions of 

exosomes listed above, we have recently observed that exosomes secreted by 

MSCs could reduce infarct size in a mouse model of acute myocardial 

ischemia/reperfusion injury9. To investigate and elucidate the underlying 

molecular mechanism, we undertook a systematic proteomic interrogation of the 

MSC exosomes to reveal the cellular and biochemical potential of these exosomes 

and to identify candidate biological activities that could ameliorate tissue injury in 

acute myocardial ischemia/reperfusion injury9. 

We first determined that the glycolytic enzymes that are responsible for 

generating ATP and NADH19, were not only present in the exosomes but were 

also biochemically active.  In addition, the exosomes also contained the active 

phosphorylated form of PFKB3 that catalyzed the formation of fructose-2,6-

bisphosphate, a powerful allosteric activator of phosphofructokinase These 

observations indicated that MSC exosomes have the potential to restore cellular 

ATP and NADH through glycolysis, independent of mitochondrial function.  

Besides being the major site of ATP production, mitochondria is also the major 

organelle in regulating cell death40.  Loss of mitochondrial function and 

subsequent depletion of ATP generally represent the early steps in the cascade 

leading to cell death during pathological conditions such as acute myocardial 

ischemia/reperfusion injury.  ATP deficiency, a major index of cell viability, is the 

key consequence of mitochondrial dysfunction.  Since MSC exosomes could be 
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internalized by cells12, exosome has the potential to restore cellular ATP level by 

increasing cellular content of glycolytic enzymes or phosphorylated PFKB3 in 

cells with mitochondrial damage.  Indeed, when mitochondrial ATPase in H9C2 

cells was inhibited by oligomycin, exosomes could increase ATP production in 

these cells.  

The presence of all seven α and β subunits that together constitute the 20S 

proteasome and the subsequent validation of 20S proteasome enzymatic activity in 

the exosomes suggested that the therapeutic activity of MSC exosomes could be 

partly attributed to the presence of 20S proteasome.  20S proteasome is 

responsible for the degradation of about 90% of all intracellular oxidatively 

damaged proteins41 and reduced proteasomal activity has been postulated to be a 

contributing factor in the pathogenesis of aging-related neurodegenerative 

diseases such as Alzheimer’s disease and Parkinson’s disease42, 43 or 

cardiovascular disease44-46.   

The biochemical potential of MSC exosomes to hydrolyze AMP to adenosine by 

CD73 and to subsequently induce phosphorylation of AKT and ERK1/2 through 

the adenosine receptor illustrated the capacity of MSC exosomes to hydrolyze 

AMP released by distressed cells and stimulated survival signaling pathways.  A 

recent position paper from the European Society of Cardiology highlighted the 

activation of adenosine receptor and phosphorylation of the pro-survival kinases 

such as PI3 kinase-AKT and ERK1/2 as possibly having a role in the limiting 

reperfusion injury47.  Therefore, the activation of adenosine receptor which has 

been shown to be cardioprotective47, 48may also be a molecular mechanism 

mediating the amelioration of reperfusion injury by exosomes.  

78



The inhibition of complement-mediated lysis of red blood cells by CD59 on 

exosomes represents yet another candidate mechanism for the cardioprotective 

effect of the exosome. Complement activation is a known mediator of 

ischemia/reperfusion injury in tissues such as intestines, heart and kidney, and its 

attenuation or inhibition has been shown to ameliorate tissue injury49-51.   

In summary, our interrogation and biochemical validation of the exosome 

proteome have uncovered a diverse range biochemical and cellular activities, and 

identified several candidate pathways for the cardioprotective effect of the 

exosome.  Further validation studies in appropriate animal models will be required 

to determine if one or more of these candidate pathways contributed to the 

efficacy of MSC exosome in reducing reperfusion injury in the treatment of acute 

myocardial injury.  The multitude of biochemical potentials in MSC exosomes 

provides for the possibility of simultaneously targeting more than one mediator of 

tissue injury and potentially inducing a therapeutic synergy similar to that 

observed in combination drug therapy.  This possibility of being able to target 

multiple mediators of injury is further enhanced by the use of enzymes to drive 

these targeting activities.  Since enzyme activities are dictated by their 

microenvironment e.g. substrate concentration or pH, the enzyme-based 

therapeutic activities of exosomes could be activated or attenuated in proportion to 

the severity of disease-precipitating microenvironment.  Consequently, the 

efficacy of exosome-based therapeutics could be highly responsive to and yet 

limited by the disease precipitating micro-environment.  Together, these features 

could render exosome-based therapeutics intrinsically safer and more efficacious.  
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Figures 

Figure 1: Intersection of the 739 proteins previously identified in MSC 

conditioned medium versus the 857 proteins identified in purified exosomes. 

 

 

 

 

84



419 320 537

Conditioned 
Medium 
(CM) 

Exosome

Figure 1

85



Figure 2. Proteomic analysis of exosome proteins. The 857 gene products in 

exosomes were functionally clustered into 32 over-represented and three under-

represented biological processes (p<0.001). The 419 proteins found in the 

conditioned medium (CM) but not in the exosome were functionally clustered into 

11 over-represented and 2 under-represented biological processes.  Black bars 

represent processes for gene products in the exosomes and white bars represent 

processes for gene products in the CM but not exosomes. 
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Figure 3: Exosome regulates glycolysis. (A) Schematic diagram of glycolysis. (B) 

Western blot analysis of conditioned medium (CM) and exosome (Exo) for 

geraldehyde phosphate dehydrogenase (GAPDH), phosphoclycerate kinase (PGK), 

pyruvate kinase m2 isoform (PKm2) and pPFKFB3. (C) Enzymatic activities of 

GAPDH, PGK and PKm2 in MSC exosome were determined by the production of 

ATP or pyruvate using commercially available assay kit. One unit (U) enzyme 

activity is defined as the activity to generate 1 µmole product per minute at 37°C. 

(D) Effect of exosome on ATP production in oligomycin-treated cells.  H9C2 

cardiomyocytes were washed twice with Tyrode’s buffer and then incubated in 

Tyrode’s buffer containing 20 µmol of a mitochondrial inhibitor, oligomycin,  6 

mmol glucose, and with or without 0.1 µg/ml exosomes for 15, 30 and 60 minutes. 

Cellular ATP concentration was measured using ATPlite 1step luminescence ATP 

detection assay system and normalized to that of sample without exosomes at 15 

minutes. *p=0.0173, **p=0.0090 
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Figure 4: 20S proteasome in exosome. (A) Western blot analysis of MSC 

conditioned medium (CM) and exosome (Exo) using an antibody specific for 

PMSA 1-7 peptides. (B) Proteasome activity in MSC exosome was determined 

using a commercially available proteasome activity assay kit (Millipore).  

Proteasome activity was measured by the rate of degradation of a fluorogenic 

peptide in the absence or presence of lactacystin, a proteasome inhibitor. One unit 

(U) enzyme activity is defined as the activity to generate 1 µmole product per 

minute at 37°C. *p=0.00023 
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Figure 5: Exosome phosphorylated ERK and AKT via NT5E (ecto-5’-

ectonucleotidase CD73). (A) Western blot analysis of MSC CM and exosome for 

CD73 using a specific antibody. (B) CD73 activity in conditioned medium (CM) 

and exosomes (Exo) was measured by the production of phosphate ion from the 

hydrolysis of AMP.  (C) H9C2 cells were serum starved overnight and then 

incubated with medium with or without 1mM theophylline for one hour.  The cells 

were then exposed for 5 min to medium that had been pre-incubated for 30 

minutes with 50 μM AMP, 0.1μg/mL exosome or AMP and exosome.  The cells 

were then harvested and lysed. 10 μg total proteins were immunoblotted using 

1:2000 dilution of rabbit anti-pERK 1/2, 1:2000 dilution of rabbit anti ERK1/2, 

1:500 dilution rabbit anti-pAKT or 1:500 dilution of rabbit anti AKT. 
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Figure 6: Exosome inhibited the formation of membrane attack complex (MAC). 

(A) Western blot analysis of MSC conditioned medium (CM) and exosome (Exo) 

using a CD59-specific antibody. (B) SRBCs were washed and then re-suspended 

in PBS with C5b6 and C7 in the presence or absence of exosome. The mixture 

was incubated at 37°C for 15 min before C8 and C9 were added with or without a 

blocking CD59 antibody for additional 30 min incubation. The cells were 

centrifuged and the amount of hemoglobin released by the lysed SRBC in the 

supernatant was measured by absorbance at 415 nm. The positive control (total 

hemolysis) was supernatant from cells completely lysed with Triton X-100.  The 

negative control is the sample without addition of complement components.  The 

absorbance value of  positive control was normalized to 100%*p=2.8E-06, 

**p=3.51E-08 
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Figure 6
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Table 1

A2M C11orf59 COPS4 FBXW8 HNRNPA1 KRT16 MMP3 PRR4 RPS3 TGFB2

ABI3BP C1orf78 COPS8 FEN1 HP KRT17 MOS PRSS23 RPS4X TGFBI

ACAA2 C1R CPS1 FER1L3 HPX KRT18 MPO PSMA1 RPS5 TGM2

ACAT2 C1S CREG1 FGA HRSP12 KRT19 MPZL1 PSMA2 RPSA TGOLN2

ACLY C20orf114 CRIPT FGB HSP90AA1 KRT2 MRC2 PSMA3 RRAS2 THBS1

ACSL1 C3 CRTAP FGF16 HSP90AB1 KRT27 MSN PSMA4 RTN4 THBS2

ACTA1 C5orf24 CSF1 FGF18 HSP90B1 KRT28 MXRA5 PSMA5 RUVBL1 THY1

ACTA2 C9orf19 CSF2 FGF19 HSPA1A KRT3 MYADM PSMA6 S100A11 TIMP1

ACTB C9orf91 CSF3 FGFRL1 HSPA1L KRT4 MYCBPAP PSMA7 S100A13 TIMP2

ACTG2 CACNA2D1 CSPG4 FGG HSPA5 KRT5 MYH14 PSMB1 S100A8 TIMP3

ACTN1 CACNA2D4 CST4 FLG2 HSPA6 KRT6A MYH9 PSMB10 S100P TKT

ACTN2 CALR CTA-221G9.4 FLJ13197 HSPA8 KRT6B MYL6B PSMB2 SAA4 TLN1

ACTN3 CAND1 CTBP2 FLJ22184 HSPB1 KRT6C MYO1C PSMB3 SASS6 TMBIM1

ACTN4 CAP1 CTNNA1 FLJ32784 HSPD1 KRT7 NBL1 PSMB4 SCAMP3 TMED10

ACTR1A CAPNS1 CTNNA2 FLNA HSPG2 KRT72 NEFH PSMB5 SCGB2A1 TMED9

ACTR2 CAPZA1 CTNNB1 FLNB HTRA1 KRT73 NEK10 PSMB6 SCYE1 TMEM16B

ACTR3 CASP14 CTNND1 FLNC HYI KRT74 NID1 PSMB7 SDC1 TMEM2

ADAM10 CAT CTSG FLOT1 ICAM1 KRT76 NLRP8 PSMB8 SDC2 TMEM47

ADAM9 CAV1 CXCL16 FLOT2 ICAM5 KRT77 NME1 PSMB9 SDC4 TMEM51

ADAMTS12 CCDC129 CXCL2 FLT1 IDH3B KRT78 NOMO1 PSMC5 SDCBP TNC

AEBP1 CCDC64B CXorf39 FN1 IFITM2 KRT79 NRAS PSMD11 SEC14L4 TNFRSF11B

AFM CCL2 CYBRD1 FREM3 IFNG KRT8 NRG2 PSMD14 SEMA5A TNFRSF12A

AGRN CCL20 DBF4B FST IFRD1 KRT80 NRLN1 PSMD6 SEPT2 TNFRSF1A

AHCY CCL28 DCD FTL IFT140 KRT84 NRP1 PSMD7 SEPT7 TNFSF18

AHNAK2 CCL7 DCHS2 FUCA2 IGF2R KRT9 NT5E PTGFRN SERINC5 TNFSF5

AHSG CCR4 DCLK2 GALNT5 IGFBP3 LACRT NTF5 PTK7 SERPINA1 TPBG

AKR1B1 CCR5 DCN GANAB IGFBP4 LAMA4 NUSAP1 PTPRK SERPINB3 TPI1

AKR7A2 CCT5 DCTN1 GAPDH IGFBP6 LAMB1 OBFC1 PTRF SERPINE1 TRAP1

ALB CCT6A DECR1 GAPDHS IGFBP7 LAMC1 ODZ3 PTTG1IP SERPINE2 TREM1

ALCAM CD109 DEFA1 GARS IGHA1 LAMP1 OFD1 PTX3 SERPINF1 TREML2P

ALDH2 CD151 DIP2B GAS6 IGHA2 LAMP2 OPRM1 PXDN SFN TRIM40

ALDH3A2 CD248 DIRAS2 GDF1 IGHG1 LAP3 OSM PZP SFRP1 TRIM41

ALDH6A1 CD276 DKFZp686D0972 GDF11 IGHG2 LCN1 OTC QPCTL SFRP4 TSN

ALDH7A1 CD44 DKK1 GDF3 IGHG4 LCN2 OXNAD1 QSOX1 SHANK3 TSNAX

ALDH9A1 CD47 DKK3 GDF5 IGHM LDHA OXTR RAB10 SLAIN1 TSPAN14

ALDOA CD59 DMBT1 GDF8 IGJ LDHAL6B P4HB RAB11B SLC16A1 TSPAN4

ALDOB CD63 DNASE1L1 GDF9 IGKC LDHB PAICS RAB14 SLC16A3 TSPAN6

ALDOC CD81 DNPEP GDI1 IGKV1-5 LEPRE1 PAN3 RAB15 SLC1A4 TSPAN9

ALOX12P2 CD82 DPYS GDI2 IGL@ LGALS1 PAPPA RAB1A SLC1A5 TSTA3

ANG CD9 DPYSL2 GFRA3 IGLV4-3 LGALS3 PARP10 RAB1B SLC22A2 TTLL3

ANGPTL2 CDC2L5 DSP GLDC IGSF8 LGALS3BP PARP16 RAB2A SLC25A10 TTN

ANPEP CDC42 DULLARD GLUD1 IL10 LGALS8 PARVG RAB33B SLC25A13 TTYH3

ANXA1 CDH13 ECM1 GNA13 IL11 LGR6 PC RAB35 SLC2A1 TUBA1A

ANXA11 CDIPT ED1 GNAI2 IL13 LIF PCOLCE RAB39B SLC2A3 TUBA1B

ANXA2 CDK5R2 EDG2 GNAL IL15RA LMNA PDCD6 RAB5A SLC38A2 TUBA1C

ANXA2P1 CEACAM8 EDIL3 GNAS IL17B LOC124220 PDCD6IP RAB5B SLC38A3 TUBB

ANXA3 CFB EEA1 GNAT3 IL17R LOC283523 PDGFA RAB5C SLC39A14 TUBB2A

ANXA4 CFI EEF1A1 GNB1 IL19 LOC284297 PDGFC RAB6A SLC3A2 TUBB2C

ANXA5 CFL1 EEF1G GNB2 IL1F9 LOC388344 PDGFRB RAB7A SLC44A1 TUBB3

ANXA6 CFL2 EEF2 GNB4 IL1RAP LOC389827 PDIA3 RAB8A SLC44A2 TUBB6
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ANXA7 CFTR EFEMP2 GNG12 IL1RAPL1 LOC442497 PEBP1 RAB8B SLC7A10 UBA52

AP1S1 CHMP2A EHD1 GNPDA1 IL1RL2 LOC653269 PFAS RAC1 SLC7A5 UBB

APEH CHST12 EHD2 GOT2 IL22RA1 LOC727942 PFKFB3 RAC2 SMARCA4 UBE1

APOA1 CITED1 EHD4 GPC1 IL23A LOC728320 PFN1 RAD21 SMC1A UBE2N

APOE CLASP2 EIF4A1 GPC5 IL3 LOC728378 PFN2 RALA SORT1 UGP2

APP CLDN1 EMILIN1 GPI IL5 LOC730013 PGAM2 RAN SPACA1 UNC13B

ARF1 CLEC11A ENG GPR112 IL6ST LRP1 PGD RAP1A SPARC UNC45A

ARF4 CLIC1 ENO1 GREM1 IL7 LRP6 PGK1 RAP1B SPOCK1 VAMP3

ARF5 CLIC6 ENO2 GRM2 IL8 LRRFIP2 PGLYRP2 RAP1B SPRY4 VANGL1

ARHGAP18 CLPX ENO3 GRM3 INHBA LTBP1 PIGR RAP2C SPTAN1 VASN

ARHGAP23 CLSTN1 ENTPD4 GRM7 INHBB LTBP2 PIP RARRES1 SPTBN1 VAT1

ARHGDIA CLTA ENTPD4;LOXL2 GSN INSR LTF PKM2 RASA1 SPTBN4 VCAN

ARHGEF1 CLTC EPB41L3 GSTM1 IQGAP1 LYAR PLAB RASA4 SRGN VCL

ARL6IP5 CLTCL1 EPHA2 GSTM2 ITGA11 LYZ PLAU RB1CC1 SRI VCP

ARMS2 CLU EPO GSTM5 ITGA2 MADH4 PLEC1 RCOR2 SRPX2 VEGFC

ARPC3 CMIP ESM1 GSTO1 ITGA3 MAMDC2 PLEKHG3 RDH5 ST6GALNAC6 VIL1

ARPC4 CNGB1 ETFB GSTP1 ITGA4 MAP1A PLOD1 RFTN1 STAT1 VIL2

ARPC5 COL12A1 F2R GTPBP2 ITGA5 MAP2K6 PLOD2 RGN STC1 VIM

ASH1L COL14A1 F3 GYLTL1B ITGAL MAP3K1 PLOD3 RHOC STC2 VTI1A

ASL COL18A1 F8 GZMA ITGAV MARCKS PLP2 RMND5A STOM VTN

ATP1A1 COL1A1 FADD H2AFV ITGB1 MARCKSL1 PLSCR3 RNF123 STOML3 WDR49

ATP1B3 COL1A2 FAH H2AFX ITGB5 MAT1A PLTP RNF40 STX12 WDR52

ATP2B1 COL2A1 FAM108A1 HBB ITIH2 MBD3 PLUNC RPL10A STX2 WNT5A

ATP2B4 COL3A1 FAM129B HBE1 ITIH4 MCC PNO1 RPL12 SURF4 YBX1

ATP5A1 COL4A1 FAM29A HDAC5 ITPR2 MCM10 PODN RPL15 SVEP1 YWHAB

ATP5B COL4A2 FAM3B HERC5 JUP MDH1 POLN RPL18 SYT1 YWHAE

ATP8B3 COL4A3 FAM64A HGF KIAA0146 MDH2 POSTN RPL23 SYT9 YWHAG

ATRN COL5A1 FAM71F1 HGFR KIAA0256 ME1 POTE2 RPL29 TAAR2 YWHAQ

ATXN1 COL5A2 FAP HISPPD2A KIAA0467 MECP2 PPIA RPL35A TAGLN YWHAZ

AXL COL6A1 FASN HIST1H2AE KIAA1881 MFAP4 PPIB RPLP0 TALDO1 ZBTB4

BASP1 COL6A2 FAT HIST1H2BA KPNB1 MFGE8 PPME1 RPS10 TAS2R60 ZNF134

BDNF COL6A3 FAT2 HIST1H2BL KRT1 MFSD2 PPP1CC RPS16 TCN1 ZNF503

BGN COL7A1 FAT4 HIST1H4H KRT10 MIF PRDM16 RPS18 TF ZNF614

BHMT2 COMP FBLN1 HIST2H2BE KRT13 MMP1 PRDX1 RPS2 TFG

BRMS1 COPB1 FBN1 HLAA KRT14 MMP10 PRDX6 RPS24 TFRC

BSG COPS3 FBN2 HMGCS2 KRT15 MMP2 PRNP RPS27A TGFB1

Identified by LC MS/MS
Identified by antibody arrays
Identified by both LC MS/MS and antibody arrays
Identified by LC MS/MS and was found to be present in at least 50% of exosomes characterized[2]

Table 1: Proteomic profile of 3 independently prepared exosomes as determined by LC MS/MS and antibody arrays. 
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Abstract 

Background 

Paracrine factors secreted by stem cells are believed to mediate therapeutic actions of current 

cell therapy for myocardial infarction. The usage of stem cell secretion represents an 

attractive ‘off-the-shelf’ therapeutic alternative for cell therapy. Here we describe both 

therapeutic and mechanistic actions of mesenchymal stem cell (MSC)-derived exosomes in 

myocardial ischemia/reperfusion (I/R) injury. 

Methods and Results 

Mice underwent 30 minutes ischemia, followed by reperfusion. Compounds were 

administered 5 minutes before reperfusion. Cardiac function and geometry were assessed 

using 9.4T mouse-MRI and invasive PV-loop recordings. Purified exosomes reduced infarct 

size to the same extent as MSC-conditioned medium when compared to saline treatment 

(38.5±1.8% vs. 21.3±2.2%, p<.001). Ex vivo I/R experiments showed similar infarct size 

reduction compared to the in vivo situation, suggesting that exosomes directly improve 

myocardial survival. Post-infarct heart tissue analysis revealed that exosomes enhanced 

survival via Akt and GSK-3β phosphorylation. Apoptosis was also reduced as shown by 

reduced phosphorylated c-JNK levels and reduced TUNEL-positive staining. Exosomes 

prevented energy depletion (ADP/ATP) and improved redox state (NAD+/NADH) in the 

myocardium after I/R. Furthermore, exosome treatment reduced infarct-induced inflammation 

after ischemia/reperfusion. Compared to saline treatment, exosomes prevented left ventricular 

dilatation (end-diastolic volume: 81±7 vs. 58±4 μL, p=.021) and preserved systolic and 

contractile performance 28 days after I/R. 

Conclusions 
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Systemic administration of MSC-derived exosomes 5 minutes prior to reperfusion reduces 

infarct size and preserves cardiac function and geometry. Exosome treatment promotes pro-

survival signaling, enhances energy balance and reduces secondary inflammation. Hence, 

MSC-derived exosomes are a potential candidate as an adjunctive for reperfusion therapy in 

patients with myocardial infarction. 

Keywords: myocardial infarction, reperfusion, paracrine hypothesis, exosomes, mesenchymal 

stem cells 
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The socio-economic burden of myocardial infarction (MI) and related complications (e.g. 

heart failure) is increasing in Western societies. Recent advances in (interventional) 

cardiology have resulted in timely and optimized coronary flow through the culprit artery. 

Subsequently, more patients survive the initial infarction, but have worsened cardiac 

performance and increased infarct related morbidity.1 The increase in morbidity after MI 

triggered the search for adjunctive therapeutics to further limit excessive tissue loss and 

enhance cardiac performance. Stem cell therapy has been shown to have great potential in the 

treatment of patients with MI.2 More interestingly, it is widely accepted that the observed 

therapeutic effects are mediated by stem cell secretion. This so called ‘paracrine hypothesis’ 

has gained much attention and is supported by recent experimental data3. It has been shown 

that MSC-CM enhance cardiomyocyte and/or progenitors survival after hypoxia-induced 

injury.4-8 Furthermore, MSC-CM induce angiogenesis in the infarcted myocardium.5, 6, 9 We 

have shown in both murine and porcine models of myocardial I/R that MSC-CM reduces 

infarct size.10 Interestingly, we found that the therapeutic action was irrespective of the cell 

source for the MSCs; human embryonic stem cell-derived MSCs were not superior to those 

derived from distinct fetal cell sources (e.g. limb, kidney). High performance liquid 

chromatography (HPLC) and dynamic light scatter (DLS) analyses revealed that both MSC 

sources secreted similar cardioprotective microparticles with a size ranging from 50-65 ηm.11 

Purification of these microparticles resulted in the identification of exosomes as the 

cardioprotective factor in MSC-CM12.  

Exosomes are bi-lipid membrane vesicles with a diameter of 50-100 ηm. They are secreted by 

various cell types and are involved in immune responses, intercellular communication and 

antigen presentation.13  Multivesicular bodies store the exosomes within the cell and release 

them upon fusion with the plasma membrane. The identification of exosomes as the 

cardioprotective factor in MSC secretion make it an potential therapeutic tool in treating 
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myocardial reperfusion injury. In contrast to cell-based therapy, MSC-derived exosomes 

provide an ‘off-the-shelf’ therapeutic. Furthermore, exosomes are potentially safer compared 

to cell therapy since they are non-viable. In addition, the biologic-based approach of 

exosomes may reduce the manufacturing costs. Although we previously described that 

exosomes reduce infarct size in mice,12 the functional consequence and the mechanism for its 

cardioprotective actions remain unknown.  

In the present study, we describe the functional improvement after exosomes treatment in 

myocardial I/R. In addition, we identified for the first time several pathways involved in 

myocardial I/R injury that are targeted simultaneously by MSC-derived exosomes to exert 

cardioprotective actions.  
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Methods 

Animals and Experimental Design 

Male C57Bl6/J mice (10-12 wks old, 25-30 g) received standard diet and water ad libitum. 

Saline or exosomes were administered intravenously via the tail vein, 5 minutes before 

reperfusion. Myocardial infarction was induced by temporary left coronary artery ligation, 

just below the left atrial appendage as described previously.14  Where possible, 

recommendations from the National Heart Lung and Blood Institute (NHLBI) Working 

Group on the Translation of Therapies for Protecting the Heart from Ischemia15 were applied; 

Digital photos of infarcts were encrypted before being analyzed by the researcher. Heart 

function and geometry assessment was done by a technician blinded to treatment. All animal 

experiments are performed in accordance with the national guidelines on animal care and with 

prior approval by the Animal Experimentation Committee of Utrecht University.  

 

Myocardial I/R Injury In Vivo 

Mice were anesthetized with a mixture of Fentanyl (Jansen-Cilag) 0.05 mg/kg, Dormicum 

(Roche) 5 mg/kg and medetomidine 0.5 mg/kg through an intraperitoneal injection. Core 

body temperature was maintained around 37°C during surgery by continuous monitoring with 

a rectal thermometer and automatic heating blanket. Mice were intubated and ventilated 

(Harvard Apparatus Inc.) with 100% oxygen. The left coronary artery (LCA) was ligated for 

30 minutes with an 8-0 Ethilon (Ethicon) with a section of polyethylene-10 tubing placed over 

the LCA. Ischemia was confirmed by bleaching of the myocardium and ventricular 

tachyarrhythmia. In sham operated animals the suture was placed beneath the LCA without 

ligating. Reperfusion was initiated by releasing the ligature and removing the polyethylene-10 

tubing. Reperfusion of the endangered myocardium was characterized by typical hyperemia in 

the first few minutes. In a subgroup of mice, a piece of the loosened suture was left in place to 
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determine the area-at-risk (AAR) during termination. The chest wall was closed and the 

animals received subcutaneously Antisedan (Pfizer) 2.5 mg/kg, Anexate (Roche) 0.5 mg/kg 

and Temgesic (Schering-Plough) 0.1 mg/kg. 

 

Data Supplement 

The online Data Supplement contains detailed information on exosome purification, 

Langendorff I/R injury, infarct size calculation, MRI measurements, invasive LV pressure 

measurements, immunohistochemistry, flow cytometry (cytokine and survival kinases) and 

ELISA for ADP/ATP and NAD+/NADH.  

 

Statistical Analysis 

Data are represented as Mean±SEM. One-way ANOVA with post-hoc 2-sided Dunnett t-test 

adjustment (saline was set as control) was used for infarct size comparison between the 

groups. Non-parametric t-test was used for 2 group comparisons. All statistical analyses were 

performed using SPSS 15.1.1. and p < 0.05 was considered significant. The authors had full 

access to and take full responsibility for the integrity of the data. All authors have read and 

agree to the manuscript as written.
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Results 

Intact Exosomes Reduce Myocardial I/R Injury In Vivo and Ex Vivo 

Thirty minutes ischemia followed by 24 hours reperfusion in saline treated animals resulted in 

39±1.8% infarction within the AAR (IS/AAR; Figure 1A). A single i.v. bolus of exosomes 5 

minutes prior to reperfusion reduced infarct size to 45% (21±2.2% IS/AAR; p<0.001). We 

performed ex vivo I/R experiments in the Langendorff setup, to study whether exosomes exert 

their therapeutic effect via blood cells or via direct survival enhancement of myocardial cells. 

Three hours reperfusion with normal buffer after 30 minutes ischemia resulted in 49±5.3% 

IS/AAR. Surprisingly, ex vivo exosome treatment reduced infarct size to the same extent as in 

the in vivo situation (23±1.5% IS/AAR; p=0.002). This suggests that exosomes directly target 

myocardial cells to reduce I/R injury. It is postulated that exosomes fuse with target cells in 

order to release their content.13 To test this  hypothesis, we disrupted the exosomes by 

vigorous agitation (2x30 sec) in a homogenizer (Precellys®24, Bertin Technologies, France). 

As a result, disrupted exosomes failed to reduce infarct size in vivo (37±3.0% IS/AAR; 

p=.994). In our experiments, the extent of endangered myocardium was similar in all groups 

(mean AAR/LV = 40±1.3%; Figure 1B). 

 

Exosome Treatment Prevents Left Ventricular Dilatation and Improves Cardiac 

Performance 

We performed serial cardiac MRI measurements to assess both left ventricular (LV) function 

and geometry after I/R injury. There were no differences in LV function and dimensions at 

baseline. The infarct size reduction in exosome treated animals translated into significant 

preservation of both end-diastolic and –systolic volume (EDV, ESV) during follow-up. In 

addition, ejection fraction was significantly improved after exosomes treatment at all time 
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points (Figure 2A-C). Wall thickness (WT) of the infarcted area (free wall) was equally 

increased in saline and exosomes treated animals 1 day after reperfusion (Figure 2D), 

presumably caused by tissue edema. However, exosome treatment resulted in decreased 

thinning of the infarct area during scar maturation. This finding is in line with the infarct size 

reduction seen after exosome treatment. There were no differences in WT in the remote 

myocardium between the groups (Figure 2E). The higher extent of viable tissue after exosome 

treatment also significantly improved systolic thickening of the infarcted area at all time 

points (Figure 2F), and in the remote myocardium 28 days after infarction (Figure 2G).  

We performed invasive pressure-volume (PV) loop recording to determine the hemodynamic 

consequences of reduced dilatation and improved systolic performance after exosome 

treatment. In support of increased viability of the endangered myocardium, we observed 

higher contractility and relaxation in exosome treated mice 28 days after infarction. In 

addition, preserved LV geometry was associated with reduced end-diastolic pressure (EDP) in 

exosome treated animals (Table 1). 

 

Exosome Treatment Reduces Inflammation After I/R 

Myocardial I/R is characterized by accentuated tissue and systemic inflammation.16 In line 

with reduced cardiac damage upon exosome treatment, we observed reduced neutrophil 

infiltration, but not a significant macrophage influx, in exosome treated hearts compared to 

saline treatment (Figure 3A and B). In patients after MI , high peripheral white blood cell 

(WBC) count is associated with larger infarct size, worse cardiac performance and poor 

clinical outcome.17-21 In concordance with clinical studies, our experiments revealed that 

infarct size reduction and improved cardiac performance in exosome treated animals is 

associated with reduced WBC count after I/R injury (Figure 3C). The reduction of neutrophil 
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infiltration and peripheral WBC count also suggest that exosomes are probably non-

immunogenic. 

 

Exosome Treatment Phosphorylates Akt/GSK3 Pathway, Inhibits c-JNK Signaling and 

Reduces Apoptosis After I/R 

Paracrine actions of MSC secretion is shown to be mediated via enhanced phosphorylation of 

survival pathways, especially of PI3K/Akt pathway.3-7 In our study, exosome treatment 

induced Akt and GSK3 phosphorylation, it was already significant at 1 hour reperfusion 

(Figure 4A and B). ERK1/2 phosphorylation has been shown to be protective as well in 

myocardial I/R injury.22 In our experiments, however, ERK1/2 phosphorylation was not 

altered after exosome treatment (Figure 4C). These findings suggest that MSC-derived 

exosomes specifically target Akt and GSK3 pathways to induce pro-survival effects. 

Phosphorylation of c-JNK is a known activator of pro-apoptotic signaling in myocardial I/R 

injury. As shown in Figure 4D, exosome treatment also reduced deleterious phosphorylation 

of c-JNK at 1 hour reperfusion. To support the reduction of apoptotic signaling, we performed 

a TUNEL staining on heart sections 1 day after reperfusion. Indeed, apoptosis was reduced 

after exosome treatment compared to saline treated mice (Figure 4E). 

 

Exosome Treatment Restores Energy Depletion and Redox State 

Myocardial I/R injury results in rapid depletion of ATP and increased oxidation of NADH 

into NAD+.22 We studied these processes at very early time points to demonstrate the fast 

mode of action of exosome treatment after I/R injury. Figure 5A and B demonstrate that 
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exosome treatment just prior to reperfusion restores both ADP/ATP and NAD+/NADH levels 

30 minutes after reperfusion.   
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Discussion 

Previous studies have shown that MSC transplantation is successful in improving cardiac 

function after infarction. Nevertheless, a biologic-based approach may be preferable for it to 

overcome the limitations of cell-based therapy. MSC-derived-exosomes are a) non-viable, b) 

relatively easy to scale up and manufacture, c) non-immunogenic thus facilitating d) an ‘off-

the-shelf’ therapeutic option in acute MI. So far, the vast majority of research examining the 

paracrine actions of MSCs has focused on single mediators within the secretion. However, the 

pathophysiological changes after myocardial I/R are complex and multifactorial involving 

many cell types (resident and migrating cells) and many intracellular signaling cascades. For 

this reason, it is likely that MSC secretion targets multiple mediators of injury to exert 

therapeutic effects. We have shown that exosomes are robust and reproducible candidates for 

adjunctive therapy in MI.11, 12 Exosomes have shown to be promising as vaccination vehicles 

and have great potential for cancer treatment.13, 23-25 For this reason, we believe that exosomes 

also serve as a drug delivery platform for the cardioprotective factors in MSC secretion.  

In the present study, we have demonstrated that intravenous MSC-derived exosome 

administration just 5 minutes prior to reperfusion reduces infarct size with approximately 

45%. Our clinically relevant model shows that MSC-derived exosomes have the potential to 

be successful in acute MI. Patients suffering from an acute myocardial infarction may benefit 

from MSC-derived exosomes when administered intravenously in the ambulance or in the 

emergency room before undergoing reperfusion therapy.  

Our results showed that, as a consequence of reduced infarct size, MSC-derived exosome 

treatment resulted in a significant preservation of LV geometry and both systolic and diastolic 

performance during long-term follow-up. Although infarct size was reduced, exosome 

treatment did not reduce reperfusion-induced edema as shown by equal increase of thickness 
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of the free wall (infarct area) 1 day after reperfusion. The similar extent of tissue edema at day 

1 in the MRI studies suggests that the amount of endangered myocardium did not differ 

between the groups. Ex vivo I/R experiments revealed that exosomes directly target 

myocardial cells to enhance viability. In addition, it appeared that the therapeutic action 

required intact exosomes. The latter is supported by previous experiments in which we 

showed that exosomes have shown to fuse with cardiomyocytes.26 Disruption of the bi-lipid 

membrane of the exosome could prevent fusion and thereby release of cardioprotective 

content to the target cell. 

Having established the functional improvements of MSC-derived exosomes after myocardial 

I/R, we explored potential mechanisms for the therapeutic effect. First, we observed 

decreased tissue and systemic inflammation in exosome treated animals. It is likely that the 

reduced inflammation is secondary to the reduced cardiac injury after exosome treatment, 

since leukocyte influx did not differ between the groups at 1 hour reperfusion. 

Cardioprotective interventions targeting primarily inflammation have usually profound anti-

inflammatory effects at very early time points after reperfusion.14, 16 

Secondly, MSC-derived exosomes appear to activate specific pro-survival pathways. 

Compared to saline treatment, exosomes significantly enhanced Akt and GSK3 

phosphorylation whereas phosphorylation of ERK1/2 was not altered. It is difficult to address 

whether exosomes phosphorylate Akt and GSK3 independent from each other. It is known 

that phosphorylated Akt in turn phosphorylates GSK3, thereby inactivating detrimental 

actions of GSK3 on cardiomyocyte mitochondria.27 Nevertheless, in our study the net effect 

of phosphorylated Akt and (subsequent) GSK3 is enhanced survival of myocardial cells after 

I/R injury. These findings corroborate earlier reports in which the paracrine mechanisms of 

MSC transplantation in experimental MI are mediated by Akt phosphorylation3-7. Hereafter, 

we assessed the level of apoptotic signaling and subsequent apoptosis. Phosphorylation of c-
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JNK is a known mediator of apoptosis in myocardial I/R injury.22 MSC-derived exosomes 

reduced c-JNK activation, thereby, together with enhanced survival kinase phosphorylation, 

reducing apoptosis of myocardial cells.  

Finally, we studied whether MSC-derived exosomes were also able to prevent fast occurring 

detrimental events in I/R injury. It is known that reperfusion-induced apoptosis is an active 

process causing ATP depletion within the first few minutes after reperfusion. In addition, 

reperfusion allows restoration of aerobic glycolysis in which energy is transferred to NADH. 

Subsequently, NADH is oxidized into NAD+ during oxidative phosphorylation in order to 

generate ATP in the mitochondria. We have shown that exosome treatment results in reduced 

ATP depletion and increased NADH availability compared to saline treatment. This effect 

was significantly present as early as 30 minutes after reperfusion. Whether exosomes increase 

ATP and NADH availability directly, via decreased injury to mitochondria (phosphorylated 

Akt/GSK3 pathway results in reduced mitochondrial damage) or promoted glycolysis remains 

to be addressed.  

In conclusion, we have shown that MSC-derived exosomes reduce infarct size and prevent 

heart function deterioration after myocardial I/R injury. The main mode of action of MSC-

derived exosomes is enhancing viability, preventing apoptosis of myocardial cells and 

restoring energy balance. More importantly, our study demonstrates that MSC-derived 

exosomes are effective when administered in the late ischemic period, just prior to 

reperfusion. For this reason, MSC-derived exosomes are a potential candidate for adjunctive 

therapy for patients suffering from acute myocardial infarction. 
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Table 1. Invasive left ventricular pressure measurements 28 days after infarction 

 Saline Exosomes p 

BPM 480±7 476±3 .60 

ESP 110±2 137±10 .12 

EDP 15±1 7±1 .009 

dP/dTmax 7496±152 8951±246 .009 

dP/dTmin -6680±75 -8241±396 .009 

Data are represented as Mean±SEM, n=5/group. BPM=beats per minute, ESP=end-systolic 
pressure, EDP=end-diastolic pressure. 
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Figure 1. MSC-derived exosomes reduce myocardial I/R injury in vivo and ex vivo. A, 
Infarct size (IS) as a percentage of the area-at-risk (AAR) 1 day after I/R injury; *p<0.001 and 
†p=0.002 compared to saline. B, AAR as a percentage of the left ventricle (LV). Each bar 
represents Mean±SEM, n=6/group for in vivo and n=4/group for ex vivo experiments.  
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Figure 2. MSC-derived exosomes prevent LV dilation and improve systolic function 
after myocardial I/R injury. A, End-diastolic volume (EDV, µL); *p=0.029 and †p=0.006 
compared to saline. B, End-systolic volume (ESV); *p=0.04, †p=0.017 and ‡p=0.002 
compared to saline. C, Ejection fraction (EF, %); *p=0.035, †p=0.015 and ‡p=0.002 
compared to saline. D, Wall thickness of the infarct area (WT, mm); *p<0.001 compared to 
baseline and †p=0.04 compared to saline. E, WT of the remote myocardium. F, systolic wall 
thickening (SWT, %); *p=0.011, †p=0.042 and ‡p=0.040 compared to saline. G, SWT of the 
remote myocardium; *p=0.012 compared to saline. Representative MRI images are shown. 
Note the increased LV dimensions at systole and diastole in saline treated animals; Each bar 
represents Mean±SEM, n=10/group for ischemic/reperfused animals n=6/group for sham 
operated mice.  
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Figure 3. MSC-derived exosomes reduce secondary inflammation after myocardial I/R 
injury. A, Neutrophil influx (Ly6-Gpos cells); *p=0.016 compared to saline. B, Macrophage 
influx (MAC3pos cells). Representative staining are shown. C, Peripheral white blood cell 
counts after myocardial I/R injury; *p=0.045 and †p=0.009 compared to saline. Each bar 
represents Mean±SEM, n=6/group/time point. 
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Figure 4. MSC-derived exosomes reduce apotosis via induced phosphorylation of Akt 
and GSK3, and reduced c-JNK phosphorylation after myocardial I/R injury. Tissue 
levels of A, phospho-Akt (pg/ml); *p=0.025 and †p=0.025 compared to saline. B, phospho-
GSK3α/ß; *p=0.025 and †p=0.016 compared to saline. C, phospho-ERK1/2. D, phospho-c-
JNK; *p=0.045 compared to saline. E, TUNELpos nuclei in hearts 1 day after I/R injury. 
Representative images are shown above the bars; *p=0.009 compared to saline. Each bar 

represents Mean±SEM, n=6/group/time point. 
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Figure 5. MSC-derived exosomes restore ADP/ATP and NAD+/NADH levels and inhibit 
MAC formation. Tissue levels of A, ADP/ATP; *p=0.047 compared to saline. B, 
NAD+/NADH; *p=0.027 compared to saline. C, MACs; *p=0.045 compared to saline. Each 
bar represents Mean±SEM, n=8/group/time point. 

 

 

 

 

127



Supplemental Material 

Exosome Purification 

Exosomes were purified from huES9.E1 derived MSCs conditioned media (CM) 

using HPLC as described earlier.1 In brief, CM collected from MSCs culture was 

concentrated 50x by tangential flow filtration (TFF) using a membrane with a 100 

kDa MWCO (Sartorius, Goettingen, Germany). After that, CM was passed 

through chromatography columns (TSK Guard column SWXL, 6x40 mm and 

TSK gel G4000 SWXL, 7.8x300 mm, Tosoh Corp., Tokyo, Japan). Exosomes 

were collected from the first peak of the elution, concentrated using 100 kDa 

MWCO filter (Sartorius). Exosomes were filtered with a 0.22 µm filter before 

storage or use. 

 

Infarct Size 

Infarct size (IS) as a percentage of the left ventricle (LV) was determined using 

Evans’ blue dye injection and TTC staining, 1 day after reperfusion (n=6/group). 

The LCA was ligated once again at the level marked by the suture left in place. 

Evans’ blue dye (4%) was injected via the thoracic aorta in a retrograde fashion. 

By doing so, one can demarcate the area-at-risk (AAR), the extent of myocardial 

tissue that underwent ischemia (i.e. endangered myocardium). Hearts were rapidly 

explanted, rinsed in 0.9% saline and put in -20ºC freezer for 1 hour. Hereafter, 

hearts were mechanically sliced into four 1-mm cross sections. Heart sections 

were incubated in 1% triphenyltetrazolium-chloride (Sigma-Aldrich) at 37ºC for 

15 minutes before placing them in formaldehyde for another 15 minutes. Viable 

tissue stains red and infarcted tissue appears white. Heart sections were digitally 

photographed (Canon EOS 400D) under a microscope (Carl Zeiss®). IS, AAR 
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and total LV area were measured using ImageJ software (version 1.34). Infarct 

size was corrected for the weight of the corresponding heart slice. 

 

Myocardial I/R Injury Ex Vivo 

Mice (n=4/group) were given heparin 50 IE subcutaneously. The suture was 

placed beneath the LCA in vivo without ligating. Hereafter, the heart was excised 

and aortic root was canulated and perfused in the Langendorff setup. After 10 min 

recovery, the suture was tightened to induce ischemia for 30 min. Just 5 min prior 

to reperfusion, the perfusion buffer was changed for a second buffer containing 

0.4 μg/ml MSC-derived exosomes or control. Reperfusion was initiated by 

releasing the suture. Following 3 hours of reperfusion, Evans' blue dye was 

injected after re-ligating the suture to demarcate the AAR. Subsequently, TTC 

staining was performed for infarct size assessment. 

 

Cardiac Magnetic Resonance Imaging 

Twenty-six mice (n=10/group in ischemic and n=6/group in sham operated mice) 

underwent serial assessment of cardiac dimensions and function by high 

resolution magnetic resonance imaging (MRI, 9.4 T, Bruker, Rheinstetten, 

Germany) under isoflurane anesthesia before, 1, 7 and 28 days after MI. Long axis 

and short axis images with 1.0 mm interval between the slices were obtained and 

used to compute end-diastolic volume (EDV, largest volume) and end-systolic 

volume (ESV, smallest volume). The ejection fraction (EF) was calculated as 

100*(EDV-ESV)/EDV. Wall thickness (WT) and systolic wall thickening (SWT) 

were assessed from both the septum (remote myocardium) and free wall (infarct 
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area). All MRI data are analyzed using Qmass digital imaging software (Medis, 

Leiden, The Netherlands). 

 

Pressure-Volume Loop Recordings 

In a subset of mice, invasive assessment of cardiac performance and LV pressure 

development was performed 28 days after infarction. A Millar 1.4F pressure 

catheter (model SPR-839) was inserted in a retrograde fashion via the right 

common carotid artery. Systolic function was assessed by LV end-systolic 

pressure and dP/dtmax, whereas diastolic function by LV end-diastolic pressure and 

dP/dtmin. 

 

Immunohistochemistry 

Upon termination, hearts were excised and fixated in 4% formaldehyde and 

embedded in paraffin. Paraffin sections were stained for Ly-6G (for neutrophils; 

rat anti-mouse Ly-6G 1:100, Abcam, Cambridge, United Kingdom), MAC-3 (for 

macrophages; rat anti-mouse MAC-3 1:30, BD Pharmingen, Breda, the 

Netherlands) and Terminal deoxynucleotidyl transferase dUTP Nick End labeling 

(TUNEL) staining. 

 

Sections were stained by overnight incubation with the first antibody at 4°C for 

MAC-3 or by 1 hour incubation at RT for Ly-6G. Before staining, sections were 

deparaffinized and endogenous peroxidase was blocked by 30 minutes incubation 

in methanol containing 1.5% H2O2. Antigen retrieval was performed by 20 

minutes boiling in citrate buffer (MAC-3 and Ly-6G). 
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For MAC-3, sections were pre-incubated with normal goat serum and incubated 

with the primary antibody (1:30 overnight at 4°C). Sections were then incubated 

for 1 hour at RT with a biotin labeled secondary antibody, followed by 1 hour 

incubation with streptavidin-horseradish peroxidase at RT and developed with 

AEC. 

For Ly-6G, sections were incubated with the primary antibody (1:100 for 1 hour at 

RT). Sections were then incubated for 30 minutes with a secondary antibody 

followed by 30 minutes incubation with Powervision poly-HRP anti-rabbit IgG 

(ImmunoVision Technologies, Daily City, USA). The staining was immediately 

visualized with Vector NovaREDTM substrate kit following the manufacturer's 

instructions (Vector Laboratories Inc., Burlingame, USA).  

 

Protein Isolation 

Total protein was isolated from snap frozen infarcted heart sections using 1 ml 

TripureTM Isolation Reagent (Roche) according to the manufacturers' protocol. 

 

Flow Cytometry 

Phosphorylated target protein for Akt (Ser473), glucogen synthase kinase-3α/β 

(GSK-3α/β; Ser21/Ser9), extracellular signal-regulated kinases-1/2 (ERK1/2; 

Thr202/Tyr204), c-Jun N-terminal kinase (c-JNK; Thr183/Tyr185) were measured 

using the Bio-Plex Multiplex Assay (Bio-Rad Laboratories) according to the 

instructions of the manufacturer, after 1:5 dilution in assay buffer. 

 

ADP/ATP and NAD+/NADH measurementADP/ATP and NAD+/NADH ratio 

in area at risk of mouse model MI/R injury were measured. MI was induced by 30 
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min left coronary artery (LCA) occlusion and subsequent reperfusion. Five 

minutes before reperfusion, mice were intravenously infused with 200 µl saline 

diluted exosomes containing 0.4 µg protein via the tail vein. Control animals were 

infused with 200 µl saline. After 0 min, 5 min and 30 min of reperfusion, area at 

risk (AAR) was excised and frozen immediately using liquid nitrogen. Frozen 

tissue samples were then homogenized with 1 ml of NAD+/NADH extraction 

buffer (Biovision, Mountain view, CA) and supernatant was collected after spinning 

at 14,000 xg for 5 minutes. After that, the supernatant was filtering through 10 

kDa MWCO filter (Biovision) before performing the ADP/ATP and 

NAD+/NADH ratio assays according to the assay manual (Biovision). For 

ADP/ATP and NAD+/NADH ratio assay, 5 µl or 3 µl of supernatant was used 

respectively. 

 

 

1. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, 

Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim 

SK. Exosome secreted by MSC reduces myocardial ischemia/reperfusion 

injury. Stem Cell Res. 2010;4(3):214-222. 
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CONCLUSION  

This conclusion are adapted with modifications from a published review article 

“Mesenchymal stem cell exosome: a novel stem cell-based therapy for 

cardiovascular disease”1 of which I am the first author. 

 

Exosomes As The Cardioprotective Component 

The discovery that MSC secretion reduced myocardial infarct size after 

ischemia/reperfusion71,72 sparks the possibility of identifying a secreted 

cardioprotective factor to reduce the infarct size of AMI patients undergoing 

reperfusion therapy.  A secreted factor would be potentially much simpler to 

produce or manufacture, to administer to patient and to understand. 

This thesis accomplished this by identifying exosome, a bi-lipid membrane vesicle 

containing proteins and RNAs, as the cardioprotective factor in MSC secretion.  

By reducing the complexity of MSC secretion to a single entity, amelioration of 

reperfusion injury during reperfusion therapy of myocardial ischemia could be 

achieved through exosomes instead of MSC transplantation. This would 

circumvent the safety concerns and limitations associated with cell transplantation. 

These include the proarrhythmic effects when the donor cells fail to couple with 

the host tissue81-83; the risk that the biological potency of the transplanted cells 

may persist even if treatment is terminated as a result of adverse outcomes; the 

long-term safety concerns of the ossification and/or calcification in tissues due to 

the potential of MSCs to differentiate into osteocytes and chondrocytes84; the risk 

of  occlusion of intravascularly administered MSCs in the distal microvasculature 
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due to the relatively large size of MSCs85 and other limitations that are generally 

universal in cell-based therapy such as the immediate availability of large quantity 

of cells and the costly storage and administration of viable cells.  

Besides mitigating the risks associated with cell transplantation, exosomes can 

also circumvent some of the challenges associated with the use of small soluble 

biological factors such as growth factors, chemokines, cytokines, transcription 

factors, genes and RNAs77. The delivery of soluble factors to the right cell type 

and in the case of those factors that work intracellularly, delivery into the right 

cellular compartments while maintaining the stability, integrity and biological 

potency of these factors during manufacture, storage and subsequent 

administration remain challenging77. As a bi-lipid membrane vesicle, exosomes 

not only have the capacity to carry a large cargo load, but also protect the contents 

from degradative enzymes or chemicals. For example, protein and RNA in MSC 

exosomes were protected from degradation by trypsin and RNase as long as the 

lipid membrane was not compromised86,87. We also found that storage without 

potentially toxic cryopreservatives at -20°C for 6 months did not compromise the 

cardioprotective effects of MSC exosomes or their biochemical activities (Lai RC, 

Lim SK, unpublished data). The bi-lipid membrane, also allows exosomes to 

circumvent many of the challenges associated with small soluble biological 

factors including the maintenance of stability, integrity and biological potency 

during manufacturing, storage and administration77. 
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Exosomes As The Therapeutic Agent 

In our profiling of the exosome proteome, we identified more than 800 proteins 

and uncovered a diverse range of biochemical and cellular potential of MSC 

exosomes. These observations suggested that despite being smaller than a cell, 

exosomes are relatively complex biological entities making them ideal therapeutic 

candidates to treat complex injuries such as MI/R injury7 that occurs during 

treatment to restore oxygen to ischemic heart tissues of AMI patients. During 

reperfusion, the restoration of blood and oxygen to ischemic myocardium 

paradoxically exacerbates the ischemia-induced cellular insults7. This is because 

the biochemical cascades required for cell survival that are initiated by cells 

during no-flow ischemia88 are not compatible with the rapid restoration of flow 

and oxygen supply, and at the same time, the ischemic cells cannot alter their 

biochemical activities expeditiously enough to adapt to this restoration. This latter 

phenomenon was best evidenced by the reduction of MI/R injury through 

postconditioning where cells were exposed to repeated short nonlethal cycles of 

reperfusion/ischemia to facilitate biochemical adaptation to reperfusion89-100. 

We postulate that with their complex cargo, exosomes would have adequate 

potential to participate in a wide spectrum of biochemical and cellular activities, 

and mitigate some of the MI/R injuries such as ATP deficit due to mitochondrial 

damage101, activation of complements102,103, oxidative stress7 and cell death. We 

demonstrated that exosomes could enhance glycolysis and thereby circumvent 

mitochondrial damages to increase ATP production.  Exosomes could also 

ameliorate complement activation by inhibiting the formation of membrane attack 

complex through CD59 on their membranes. The presence of intact functional 20S 

proteasome in exosomes could reduce oxidative stress by degrading oxidized 
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proteins. Exosomes could enhance cell survival by activating adenosine-mediated 

signaling pathway to phosphorylate ERK1/2 and AKT through adenosine 

produced by CD73 on their membrane. Furthermore, exosome treatment in a 

mouse model MI/R injury activated pro-survival kinases by phosphorylating 

AKT104, GSK3105, inhibited mediator of apoptosis by dephosphorylating c-JNK106, 

and at the same time increased ATP production, enhanced redox balance possibly 

through glycolysis within the 1st hour of reperfusion. These observations 

demonstrated the biochemical potential of exosomes and suggested possible 

mechanisms for the reduction of MI/R injury. Furthermore, the results that 

exosomes reduced infarct size in the Langendorff setup of the I/R experiment 

suggested exosomes might promote these cardioprotective mechanisms directly in 

myocardial cells.   

In addition to its potential to target many processes simultaneously, a hallmark 

feature of exosome is the exertion of its effects through enzymes. Since enzyme 

activities are catalytic rather than stoichiometric, and are dictated by their 

microenvironment (e.g., substrate concentration or pH), the enzyme-based 

therapeutic activities of exosomes could be activated or attenuated according to 

the release of injury-associated substrates, which in turn, is proportional to the 

severity of disease-precipitating microenvironment. Resolution of the disease-

precipitating microenvironment would reduce the release of injury-associated 

substrates and also the activity of exosome enzymes. Consequently, the efficacy 

of exosome-based therapeutics could be highly responsive to, but also limited by, 

the disease-precipitating microenvironment. 

Exosomes are known to bear numerous membrane proteins that have binding 

affinity to other ligands on cell membranes or the extracellular matrix, such as 
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transferrin receptor, tumor necrosis factor, lactadherin, integrins and tetraspanin 

proteins (e.g., CD9, CD63 and CD81)107. These membrane bound molecules 

provide a potential mechanism for the homing of exosomes to a specific tissue or 

microenvironment. For example, integrins on exosomes could home exosomes to 

cardiomyocytes that express ICAM1, a ligand of integrins after MI/R injury108, or 

to VCAM-1 on endothelial cells109. Besides, tetraspanin proteins, which function 

primarily to mediate cellular penetration, invasion and fusion events110, could 

facilitate cellular uptake of exosomes by specific cell types.  

Together, the features discussed here render exosome a highly efficacious 

therapeutic candidate in neutralizing the complexity of MI/R and a potential 

adjuvant to complement current reperfusion therapy. Furthermore, during 28 days 

follow up in the MI/R injury mouse model, we observed that exosome treatment 

which significantly reduced infarct size after reperfusion also significantly 

preserved both cardiac function and geometry. This is consistent with the findings 

that a smaller infarct size prevents heart function deterioration and retards the 

progress to heart failure 8-13.  

More importantly, the animal models used in the demonstration of MSC exosome-

mediated cardioprotection had two important features that highlighted the clinical 

relevance and practicality of an exosome-based adjuvant to reperfusion therapy.  

Both animal models used in our study had experimentally induced lethal ischemia 

that causes similar level of pathological substrate as that in the average patient 

with AMI72.  Exosome was administered to these animals just before reperfusion, 

which is a clinically feasible time point.  These two features facilitate the 

translation of MSC exosome into an adjunctive therapy to reduce reperfusion 

injury during treatment of  AMI patients . 
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Exosome As MSCs’ Vehicle of Choice for Intercellular Communication 

Besides the involvement of exosomes in MI/R injury, this thesis also showed that 

production of cardioprotective exosomes was not restricted to hESC-MSCs as 

different fetal tissue-MSCs were also found to produce cardioprotective exosomes. 

This suggested that producing protective exosomes might be a universal property 

of all MSCs. This property may be a reflection of the stromal support role of 

MSCs in maintaining a microenvironmental niche for other cells such as 

hematopoietic stem cells111,112. The secretion of exosomes may also be a dominant 

function of MSCs. We recently observed that when GFP-labeled exosome-

associated protein CD81, a tetraspanin membrane protein usually found localized 

to the plasma membrane, is expressed in hESC-MSCs, they exhibit a punctate 

cytosolic distribution and these labeled proteins were secreted (see Figure 2 of 

review attached in appendix)1. The difference in cellular distribution and secretion 

of CD81 in hESC-MSCs and HEK293 cells suggest that MSCs are prolific 

producers of exosomes. This leads to the speculation that exosome might be the 

MSCs’ vehicle of choice for intercellular communication. 

 

Future Challenge 

The future challenge of this study is to translate this finding into a clinically useful 

therapeutic agent. The first major challenge would be to manufacture Good 

Manufacturing Practice (GMP) grade exosomes from non-autologous cell sources. 

Although exosomes have already been tested in clinic as a form of cancer 

vaccine113-115, exosomes used for these tests were produced during short-term ex 
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vivo culture of autologous dendritic cells. For this reason, manufacturing of these 

exosomes cannot provide sufficient guidance for the MSC exosomes GMP 

production. This manufacturing process faces many unique challenges, which 

involve ethical, legal, technical, monetary and regulatory/safety issues.  

The other major challenge will be the cell source for derivation of MSCs since the 

use of hESCs for the derivation of MSCs presents both ethical and legal 

challenges. While ethical objections to the derivation and use of hESCs have 

initially hindered hESC research, they have abated. Instead, the use and 

applications of hESCs is now being hindered by complex and widespread 

patenting in some countries116 and the ban on stem cell-related patents in other 

countries117. To encourage the development of hESC-based therapeutic 

applications, the need for freedom to use and share hESC resources and 

knowledge must be balanced with a need to incentivize commercial development 

of stem cells by protecting the intellectual property generated from research and 

development efforts. Unfortunately, this balance has not yet been reached.  

Another technical challenge is the finite expansion capacity of hESC-MSC. This 

resulted in the need for constant re-derivation of MSCs and re-validation of each 

of the derived cell batch, which are both time consuming and costly. Therefore, a 

robust scalable and highly renewable cell source will be central to the 

development of a commercially viable manufacturing process for the production 

of MSC exosomes in sufficient quantity and quality to support clinical testing or 

applications. To address this issue, we demonstrated that immortalization of the 

hESC-MSCs by Myc did not compromise the quality or yield of exosomes118. 

Therefore, this provides a potentially inexhaustible cell source for MSC exosome 

production. The translation of MSC exosomes into clinical applications is also 
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complicated by the relative novelty of exosomes with few precedents in the 

regulatory and safety space of biopharmaceuticals. This will require the 

formulation of new standards for manufacture, safety and quality control. 

 

With the demonstration of the involvement of exosomes in cardioprotection and 

the proteomic prediction of its therapeutic potential, we speculate that these 

exosomes will have similar positive effect in other reperfusion injuries such as 

those involved in stroke and renal ischemia disease. On the other hand, it is also 

possible that different cell types produce exosomes that are specific for certain 

type of cells or injuries.  If true, this novel tissue-repair function of exosomes 

could potentially engender new approaches to the development of biologics that 

are much needed in the clinic. 

140



 
 

 

BIBLIOGRAPHY 

 

1. Lai, R.C., Chen, T.S. & Lim, S.K. Mesenchymal stem cell exosome: a novel stem 
cell-based therapy for cardiovascular disease. Regenerative Medicine 6, 481-492 
(2011). 

2. Finn, A.V., Nakano, M., Narula, J., Kolodgie, F.D. & Virmani, R. Concept of 
vulnerable/unstable plaque. Arteriosclerosis, Thrombosis, and Vascular Biology 
30, 1282-1292 (2010). 

3. Garcia-Dorado, D. & Piper, H.M. Postconditioning: Reperfusion of "reperfusion 
injury" after hibernation. Cardiovascular Research 69, 1-3 (2006). 

4. Organization, W.H. Cardiovascular diseases Fact Sheets.  (2009). 
5. Health, M.o. Health Facts Singapore: Principal Causes of Death.  (2009). 
6. Bassand, J.P., et al. Implementation of reperfusion therapy in acute myocardial 

infarction. A policy statement from the European Society of Cardiology. Eur 
Heart J 26, 2733-2741 (2005). 

7. Yellon, D.M. & Hausenloy, D.J. Myocardial reperfusion injury. The New 
England journal of medicine 357, 1121-1135 (2007). 

8. Ovize, M., et al. Postconditioning and protection from reperfusion injury: where 
do we stand? Position paper from the Working Group of Cellular Biology of the 
Heart of the European Society of Cardiology. Cardiovasc Res 87, 406-423 (2010). 

9. Bellandi, F., Maioli, M., Gallopin, M., Toso, A. & Dabizzi, R.P. Increase of 
myocardial salvage and left ventricular function recovery with intracoronary 
abciximab downstream of the coronary occlusion in patients with acute 
myocardial infarction treated with primary coronary intervention. Catheterization 
and Cardiovascular Interventions 62, 186-192 (2004). 

10. Burns, R.J., et al. The relationships of left ventricular ejection fraction, end-
systolic volume index and infarct size to six-month mortality after hospital 
discharge following myocardial infarction treated by thrombolysis. Journal of the 
American College of Cardiology 39, 30-36 (2002). 

11. Page, D.L., Caulfield, J.B., Kastor, J.A., DeSanctis, R.W. & Sanders, C.A. 
Myocardial changes associated with cardiogenic shock. New England Journal of 
Medicine 285, 133-137 (1971). 

12. Sharpe, N. & Doughty, R. Epidemiology of heart failure and ventricular 
dysfunction. Lancet 352, 3-7 (1998). 

13. Sobel, B.E., Bresnahan, G.F., Shell, W.E. & Yoder, R.D. Estimation of infarct 
size in man and its relation to prognosis. Circulation 46, 640-648 (1972). 

14. Jhund, P.S. & McMurray, J.J.V. Heart Failure After Acute Myocardial Infarction: 
A Lost Battle in the War on Heart Failure? Circulation 118, 2019-2021 (2008). 

15. McCullough, P.A., et al. Confirmation of a heart failure epidemic: findings from 
the Resource Utilization Among Congestive Heart Failure (REACH) study. 
Journal of the American College of Cardiology 39, 60-69 (2002). 

16. Bleumink, G.S., et al. Quantifying the heart failure epidemic: prevalence, 
incidence rate, lifetime risk and prognosis of heart failure. European Heart 
Journal 25, 1614-1619 (2004). 

17. Jennings, R.B., Sommers, H.M., Smyth, G.A., Flack, H.A. & Linn, H. 
Myocardial necrosis induced by temporary occlusion of a coronary artery in the 
dog. Arch Pathol 70, 68-78 (1960). 

18. Zweier, J.L. Measurement of superoxide-derived free radicals in the reperfused 
heart. Evidence for a free radical mechanism of reperfusion injury. Journal of 
Biological Chemistry 263, 1353-1357 (1988). 

141



 
 

 

19. Hearse, D.J., Humphrey, S.M. & Chain, E.B. Abrupt reoxygenation of the anoxic 
potassium arrested perfused rat heart: A study of myocardial enzyme release. 
Journal of Molecular and Cellular Cardiology 5, 395-407 (1973). 

20. Piper, H.M., Garc√≠a-Dorado, D. & Ovize, M. A fresh look at reperfusion 
injury. Cardiovascular Research 38, 291-300 (1998). 

21. Lemasters, J.J., et al. The pH paradox in ischemia-reperfusion injury to cardiac 
myocytes. EXS 76, 99-114 (1996). 

22. Vinten-Johansen, J. Involvement of neutrophils in the pathogenesis of lethal 
myocardial reperfusion injury. Cardiovascular Research 61, 481-497 (2004). 

23. Przyklenk, K. Lethal myocardial 'reperfusion injury': The opinions of good men. 
Journal of Thrombosis and Thrombolysis 4, 5-6 (1997). 

24. Bolli, R., et al. Myocardial protection at a crossroads: The need for translation 
into clinical therapy. Circulation Research 95, 125-134 (2004). 

25. Cannon Iii, R.O. Mechanisms, management and future directions for reperfusion 
injury after acute myocardial infarction. Nature Clinical Practice Cardiovascular 
Medicine 2, 88-94 (2005). 

26. Dirksen, M.T., Laarman, G.J., Simoons, M.L. & Duncker, D.J.G.M. Reperfusion 
injury in humans: A review of clinical trials on reperfusion injury inhibitory 
strategies. Cardiovascular Research 74, 343-355 (2007). 

27. Kloner, R.A. & Rezkalla, S.H. Cardiac protection during acute myocardial 
infarction: Where do we stand in 2004? Journal of the American College of 
Cardiology 44, 276-286 (2004). 

28. Knight, D.R. Editorial overview: cardioprotective drugs for myocardial ischemic 
injury--a therapeutic area at risk. Curr Opin Investig Drugs 8, 190-192 (2007). 

29. Mummery, C.L., Davis, R.P. & Krieger, J.E. Challenges in using stem cells for 
cardiac repair. Sci Transl Med 2, 27ps17 (2010). 

30. Passier, R., van Laake, L.W. & Mummery, C.L. Stem-cell-based therapy and 
lessons from the heart. Nature 453, 322-329 (2008). 

31. Lee, R.H., et al. Characterization and expression analysis of mesenchymal stem 
cells from human bone marrow and adipose tissue. Cellular Physiology and 
Biochemistry 14, 311-324 (2004). 

32. Giordano, A., Galderisi, U. & Marino, I.R. From the laboratory bench to the 
patient's bedside: An update on clinical trials with Mesenchymal Stem Cells. 
Journal of Cellular Physiology 211, 27-35 (2007). 

33. Le Blanc, K. & Pittenger, M.F. Mesenchymal stem cells: Progress toward 
promise. Cytotherapy 7, 36-45 (2005). 

34. Bruder, S.P., et al. Bone regeneration by implantation of purified, culture-
expanded human mesenchymal stem cells. Journal of Orthopaedic Research 16, 
155-162 (1998). 

35. Johnstone, B., Hering, T.M., Caplan, A.I., Goldberg, V.M. & Yoo, J.U. In vitro 
chondrogenesis of bone marrow-derived mesenchymal progenitor cells. 
Experimental Cell Research 238, 265-272 (1998). 

36. Pittenger, M.F., et al. Multilineage potential of adult human mesenchymal stem 
cells. Science 284, 143-147. (1999). 

37. Haynesworth, S.E., Goshima, J., Goldberg, V.M. & Caplan, A.I. Characterization 
of cells with osteogenic potential from human marrow. Bone 13, 81-88 (1992). 

38. Yoo, J.U., et al. The chondrogenic potential of human bone-marrow-derived 
mesenchymal progenitor cells. J Bone Joint Surg Am 80, 1745-1757 (1998). 

39. Dennis, J.E., et al. A quadripotential mesenchymal progenitor cell isolated from 
the marrow of an adult mouse. J Bone Miner Res 14, 700-709. (1999). 

40. Gojo, S., et al. In vivo cardiovasculogenesis by direct injection of isolated adult 
mesenchymal stem cells. Experimental Cell Research 288, 51-59 (2003). 

41. Sanchez-Ramos, J., et al. Adult bone marrow stromal cells differentiate into 
neural cells in vitro. Experimental Neurology 164, 247-256 (2000). 

142



 
 

 

42. Woodbury, D., Schwarz, E.J., Prockop, D.J. & Black, I.B. Adult rat and human 
bone marrow stromal cells differentiate into neurons. Journal of Neuroscience 
Research 61, 364-370 (2000). 

43. Kohyama, J., et al. Brain from bone: Efficient “meta-differentiation” of marrow 
stroma-derived mature osteoblasts to neurons with Noggin or a demethylating 
agent. Differentiation 68, 235-244 (2001). 

44. Kobayashi, T., et al. Enhancement of angiogenesis by the implantation of self 
bone marrow cells in a rat ischemic heart model. J Surg Res 89, 189-195 (2000). 

45. Tomita, S., et al. Autologous transplantation of bone marrow cells improves 
damaged heart function. Circulation 100, II247-256 (1999). 

46. Sato, T., et al. Coronary vein infusion of multipotent stromal cells from bone 
marrow preserves cardiac function in swine ischemic cardiomyopathy via 
enhanced neovascularization. Lab Invest 91, 553-564 (2011). 

47. Amado, L.C., et al. Cardiac repair with intramyocardial injection of allogeneic 
mesenchymal stem cells after myocardial infarction. Proceedings of the National 
Academy of Sciences of the United States of America 102, 11474-11479 (2005). 

48. Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J. & Kessler, P.D. Human 
mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult 
murine heart. Circulation 105, 93-98 (2002). 

49. Valina, C., et al. Intracoronary administration of autologous adipose tissue-
derived stem cells improves left ventricular function, perfusion, and remodelling 
after acute myocardial infarction. European Heart Journal 28, 2667-2677 (2007). 

50. Shake, J.G., et al. Mesenchymal stem cell implantation in a swine myocardial 
infarct model: Engraftment and functional effects. Annals of Thoracic Surgery 73, 
1919-1926 (2002). 

51. Schuleri, K.H., et al. Autologous mesenchymal stem cells produce reverse 
remodelling in chronic ischaemic cardiomyopathy. European Heart Journal 30, 
2722-2732 (2009). 

52. Hare, J.M., et al. A Randomized, Double-Blind, Placebo-Controlled, Dose-
Escalation Study of Intravenous Adult Human Mesenchymal Stem Cells 
(Prochymal) After Acute Myocardial Infarction. Journal of the American College 
of Cardiology 54, 2277-2286 (2009). 

53. Karp, J.M. & Leng Teo, G.S. Mesenchymal Stem Cell Homing: The Devil Is in 
the Details. Cell Stem Cell 4, 206-216 (2009). 

54. Wagner, J., Kean, T., Young, R., Dennis, J.E. & Caplan, A.I. Optimizing 
mesenchymal stem cell-based therapeutics. Current Opinion in Biotechnology 20, 
531-536 (2009). 

55. Freyman, T., et al. A quantitative, randomized study evaluating three methods of 
mesenchymal stem cell delivery following myocardial infarction. European 
Heart Journal 27, 1114-1122 (2006). 

56. Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J. & Kessler, P.D. Human 
Mesenchymal Stem Cells Differentiate to a Cardiomyocyte Phenotype in the 
Adult Murine Heart. Circulation 105, 93-98 (2002). 

57. Gnecchi, M., et al. Evidence supporting paracrine hypothesis for Akt-modified 
mesenchymal stem cell-mediated cardiac protection and functional improvement. 
FASEB J 20, 661-669 (2006). 

58. Caplan, A.I. & Dennis, J.E. Mesenchymal stem cells as trophic mediators. J Cell 
Biochem 98, 1076-1084 (2006). 

59. Patschan, D., Plotkin, M. & Goligorsky, M.S. Therapeutic use of stem and 
endothelial progenitor cells in acute renal injury: Ça ira. Current Opinion in 
Pharmacology 6, 176-183 (2006). 

60. Tögel, F., et al. Administered mesenchymal stem cells protect against ischemic 
acute renal failure through differentiation-independent mechanisms. American 
Journal of Physiology - Renal Physiology 289(2005). 

143



 
 

 

61. Kinnaird, T., Stabile, E., Burnett, M.S. & Epstein, S.E. Bone marrow-derived 
cells for enhancing collateral development: Mechanisms, animal data, and initial 
clinical experiences. Circulation Research 95, 354-363 (2004). 

62. Nakagami, H., et al. Novel autologous cell therapy in ischemic limb disease 
through growth factor secretion by cultured adipose tissue-derived stromal cells. 
Arteriosclerosis, Thrombosis, and Vascular Biology 25, 2542-2547 (2005). 

63. Van Overstraeten-Schlögel, N., Beguin, Y. & Gothot, A. Role of stromal-derived 
factor-1 in the hematopoietic-supporting activity of human mesenchymal stem 
cells. European Journal of Haematology 76, 488-493 (2006). 

64. Haynesworth, S.E., Baber, M.A. & Caplan, A.I. Cytokine expression by human 
marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone 
and IL-1 alpha. J Cell Physiol 166, 585-592 (1996). 

65. Leedham, S.J., Brittan, M., McDonald, S.A.C. & Wright, N.A. Intestinal stem 
cells. Journal of Cellular and Molecular Medicine 9, 11-24 (2005). 

66. Cheng, L., Qasba, P., Vanguri, P. & Thiede, M.A. Human mesenchymal stem 
cells support megakaryocyte and pro-platelet formation from CD34+ 
hematopoietic progenitor cells. Journal of Cellular Physiology 184, 58-69 (2000). 

67. Karnoub, A.E., et al. Mesenchymal stem cells within tumour stroma promote 
breast cancer metastasis. Nature 449, 557-563 (2007). 

68. Miyahara, Y., et al. Monolayered mesenchymal stem cells repair scarred 
myocardium after myocardial infarction. Nat Med 12, 459-465 (2006). 

69. Min, J.Y., et al. Significant improvement of heart function by cotransplantation 
of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs. 
Annals of Thoracic Surgery 74, 1568-1575 (2002). 

70. Kinnaird, T., et al. Marrow-Derived Stromal Cells Express Genes Encoding a 
Broad Spectrum of Arteriogenic Cytokines and Promote In Vitro and In Vivo 
Arteriogenesis Through Paracrine Mechanisms. Circulation Research 94, 678-
685 (2004). 

71. Gnecchi, M., et al. Paracrine action accounts for marked protection of ischemic 
heart by Akt-modified mesenchymal stem cells. Nat Med 11, 367-368 (2005). 

72. Timmers, L., et al. Reduction of myocardial infarct size by human mesenchymal 
stem cell conditioned medium. Stem Cell Research 1, 129-137 (2008). 

73. Chen, T.S., et al. Enabling a robust scalable manufacturing process for 
therapeutic exosomes through oncogenic immortalization of human ESC-derived 
MSCs. Journal of Translational Medicine 9(2011). 

74. Chen, T.S., et al. Mesenchymal stem cell secretes microparticles enriched in pre-
microRNAs. Nucleic Acids Research 38, 215-224 (2009). 

75. Park, J.E., et al. Hypoxic tumor cell modulates its microenvironment to enhance 
angiogenic and metastatic potential by secretion of proteins and exosomes. 
Molecular and Cellular Proteomics 9, 1085-1099 (2010). 

76. Timmers, L., et al. Human mesenchymal stem cell-conditioned medium improves 
cardiac function following myocardial infarction. Stem Cell Research 6, 206-214 
(2011). 

77. Mirotsou, M., Jayawardena, T.M., Schmeckpeper, J., Gnecchi, M. & Dzau, V.J. 
Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. 
Journal of Molecular and Cellular Cardiology 50, 280-289 (2011). 

78. Olver, C. & Vidal, M. Proteomic analysis of secreted exosomes. Subcell Biochem 
43, 99-131 (2007). 

79. Pilkis, S.J., El-Maghrabi, M.R., Pilkis, J. & Claus, T. Inhibition of fructose-1,6-
bisphosphatase by fructose 2,6-bisphosphate. The Journal of biological chemistry 
256, 3619-3622 (1981). 

80. Jacobson, K.A. Introduction to adenosine receptors as therapeutic targets. 
Handbook of experimental pharmacology, 1-24 (2009). 

144



 
 

 

81. Chang, M.G., et al. Proarrhythmic potential of mesenchymal stem cell 
transplantation revealed in an in vitro coculture model. Circulation 113, 1832-
1841 (2006). 

82. Pak, H.N., et al. Mesenchymal stem cell injection induces cardiac nerve sprouting 
and increased tenascin expression in a swine model of myocardial infarction. 
Journal of Cardiovascular Electrophysiology 14, 841-848 (2003). 

83. Price, M.J., et al. Intravenous mesenchymal stem cell therapy early after 
reperfused acute myocardial infarction improves left ventricular function and 
alters electrophysiologic properties. International Journal of Cardiology 111, 
231-239 (2006). 

84. Breitbach, M., et al. Potential risks of bone marrow cell transplantation into 
infarcted hearts. Blood 110, 1362-1369 (2007). 

85. Furlani, D., et al. Is the intravascular administration of mesenchymal stem cells 
safe?. Mesenchymal stem cells and intravital microscopy. Microvascular 
Research 77, 370-376 (2009). 

86. Lai, R.C., et al. Exosome secreted by MSC reduces myocardial 
ischemia/reperfusion injury. Stem Cell Res 4, 214-222 (2010). 

87. Chen, T.S., et al. Mesenchymal stem cell secretes microparticles enriched in pre-
microRNAs. Nucleic Acids Res 38, 215-224 (2010). 

88. Zucchi, R., Ghelardoni, S. & Evangelista, S. Biochemical basis of ischemic heart 
injury and of cardioprotective interventions. Current medicinal chemistry 14, 
1619-1637 (2007). 

89. Na, H.S., et al. Ventricular premature beat-driven intermittent restoration of 
coronary blood flow reduces the incidence of reperfusion-induced ventricular 
fibrillation in a cat model of regional ischemia. Am Heart J 132, 78-83 (1996). 

90. Zhao, Z.Q., et al. Inhibition of myocardial injury by ischemic postconditioning 
during reperfusion: comparison with ischemic preconditioning. Am J Physiol 
Heart Circ Physiol 285, H579-588 (2003). 

91. Tsang, A., Hausenloy, D.J., Mocanu, M.M. & Yellon, D.M. Postconditioning: a 
form of "modified reperfusion" protects the myocardium by activating the 
phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95, 230-232 (2004). 

92. Yang, X.M., Philipp, S., Downey, J.M. & Cohen, M.V. Postconditioning's 
protection is not dependent on circulating blood factors or cells but involves 
adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. 
Basic Research in Cardiology 100, 57-63 (2005). 

93. Skyschally, A., et al. Ischemic postconditioning: experimental models and 
protocol algorithms. Basic Res Cardiol 104, 469-483 (2009). 

94. Halkos, M.E., et al. Myocardial protection with postconditioning is not enhanced 
by ischemic preconditioning. Annals of Thoracic Surgery 78, 961-969 (2004). 

95. Yang, X.M., et al. Multiple, brief coronary occlusions during early reperfusion 
protect rabbit hearts by targeting cell signaling pathways. Journal of the 
American College of Cardiology 44, 1103-1110 (2004). 

96. Kin, H., et al. Postconditioning attenuates myocardial ischemia-reperfusion injury 
by inhibiting events in the early minutes of reperfusion. Cardiovascular Research 
62, 74-85 (2004). 

97. Staat, P., et al. Postconditioning the human heart. Circulation 112, 2143-2148 
(2005). 

98. Piot, C., et al. Effect of cyclosporine on reperfusion injury in acute myocardial 
infarction. The New England journal of medicine 359, 473-481 (2008). 

99. Thibault, H., et al. Long-term benefit of postconditioning. Circulation 117, 1037-
1044 (2008). 

100. Granfeldt, A., Lefer, D.J. & Vinten-Johansen, J. Protective ischaemia in patients: 
preconditioning and postconditioning. Cardiovasc Res 83, 234-246 (2009). 

145



 
 

 

101. Halestrap, A.P., Kerr, P.M., Javadov, S. & Woodfield, K.Y. Elucidating the 
molecular mechanism of the permeability transition pore and its role in 
reperfusion injury of the heart. Biochimica et biophysica acta 1366, 79-94 (1998). 

102. Frangogiannis, N.G., Smith, C.W. & Entman, M.L. The inflammatory response in 
myocardial infarction. Cardiovascular Research 53, 31-47 (2002). 

103. Vakeva, A.P., et al. Myocardial infarction and apoptosis after myocardial 
ischemia and reperfusion: role of the terminal complement components and 
inhibition by anti-C5 therapy. Circulation 97, 2259-2267 (1998). 

104. Gnecchi, M., Zhang, Z., Ni, A. & Dzau, V.J. Paracrine mechanisms in adult stem 
cell signaling and therapy. Circulation Research 103, 1204-1219 (2008). 

105. Juhaszova, M., et al. Role of glycogen synthase kinase-3beta in cardioprotection. 
Circulation Research 104, 1240-1252 (2009). 

106. Murphy, E. & Steenbergen, C. Mechanisms underlying acute protection from 
cardiac ischemia-reperfusion injury. Physiol Rev 88, 581-609 (2008). 

107. Mathivanan, S. & Simpson, R.J. ExoCarta: A compendium of exosomal proteins 
and RNA. Proteomics 9, 4997-5000 (2009). 

108. Kukielka, G.L., et al. Regulation of intercellular adhesion molecule-1 (ICAM-1) 
in ischemic and reperfused canine myocardium. Journal of Clinical Investigation 
92, 1504-1516 (1993). 

109. Rieu, S., Geminard, C., Rabesandratana, H., Sainte-Marie, J. & Vidal, M. 
Exosomes released during reticulocyte maturation bind to fibronectin via integrin 
alpha4beta1. European journal of biochemistry / FEBS 267, 583-590 (2000). 

110. Hemler, M.E. Tetraspanin proteins mediate cellular penetration, invasion, and 
fusion events and define a novel type of membrane microdomain. Annu Rev Cell 
Dev Biol 19, 397-422 (2003). 

111. Owen, M. Marrow stromal stem cells. J Cell Sci Suppl 10, 63-76 (1988). 
112. Muguruma, Y., et al. Reconstitution of the functional human hematopoietic 

microenvironment derived from human mesenchymal stem cells in the murine 
bone marrow compartment. Blood 107, 1878-1887 (2006). 

113. Escudier, B., et al. Vaccination of metastatic melanoma patients with autologous 
dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J 
Transl Med 3, 10 (2005). 

114. Morse, M.A., et al. A phase I study of dexosome immunotherapy in patients with 
advanced non-small cell lung cancer. Journal of Translational Medicine 3, 9 
(2005). 

115. Dai, S., et al. Phase I clinical trial of autologous ascites-derived exosomes 
combined with GM-CSF for colorectal cancer. Mol Ther 16, 782-790 (2008). 

116. Mathews, D.J., Graff, G.D., Saha, K. & Winickoff, D.E. Access to stem cells and 
data: persons, property rights, and scientific progress. Science 331, 725-727 
(2011). 

117. Smith, A. 'No' to ban on stem-cell patents. Nature 472, 418 (2011). 
118. Chen, T.S., et al. Enabling a robust scalable manufacturing process for 

therapeutic exosomes through oncogenic immortalization of human ESC-derived 
MSCs. Journal of Translational Medicine 9, 47 (2011). 

 

 

 

146



 
 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reproduced from Regenerative Medicine, July 2011, Volume 6, Issue 4, Pages 481-492 
with permission of Future Medicine Ltd.  

147



481

Review

ISSN 1746-075110.2217/RME.11.35 © 2011 Lai Ruenn Chai, 
Chen Tian Sheng, Lim Sai Kiang

Mesenchymal stem cell exosome: a novel stem  
cell-based therapy for cardiovascular disease

Stem cells in the treatment of acute 
myocardial infarction
Acute myocardial infarction (AMI) is the primary 
cause of disease-related death in the world [1–3]. It 
is characterized by the disruption of blood sup-
ply to the heart muscle cells, which lead to myo-
cardial infarction or death of cardiomyocytes. 
Reperfusion therapy or the restoration of blood 
flow by thrombolytic therapy, bypass surgery or 
percutaneous coronary intervention (PCI) is cur-
rently the mainstay of treatment for AMI and is 
responsible for the significant reduction in AMI 
mortality [4]. The efficacy of reperfusion therapy 
has led to increasing survival of patients with 
severe AMI who would not otherwise survive. 
However, many (23%) of these survivors prog-
ress to fatal heart failure within 30 days [5]. This 
phenomenon of an increasing number of severe 
AMI survivors contributes to an ever growing 
epidemic of heart failures [6–8]. 

Heart failure is characterized by dilatation 
and hypertrophy with fibrosis within the myo-
cardium. The progression of an AMI survivor 
to heart failure is a multifactorial process that 
has been hypothesized to include the develop-
ment of myocardial stunning and hibernation, 
remodeling and chronic neuroendocrine activa-
tion [9], and is dependent on the extent of the 
AMI suffered by the patient [10–15]. The develop-
ment of reperfusion therapy and its subsequent 
improvements have significantly increased the 
salvage of ischemic myocardium from infarction 

and reduced infarct size, but further substantive 
improvement to reperfusion therapy is likely to 
require adjunctive therapies. 

Although it was recognized as early as 1960 
that reperfusion of severely ischemic tissue causes 
lethal injury [16], the concept that reperfusion 
causes de novo lethal injury became more widely 
accepted only when infarct size was shown to be 
reduced by interventions applied at the onset of 
reperfusion (reviewed in [10]). Such interventions, 
also known as postconditioning, involve ischemic 
conditioning or application of pharmacological 
agents before the onset of reperfusion, and have 
demonstrated some protection against reperfu-
sion injury in animals and in small clinical tri-
als. However, none of these agents have proven 
to be efficacious in large clinical trials and this 
has led to speculations that reducing reperfusion 
injury may not be tractable to pharmaceutical 
interventions [17].

With the emergence of stem cells as potential 
therapeutic agents, attempts to use stem cells to 
reduce infarct size and enhance cardiac function 
in animal models and patients have increased 
exponentially. To date, stem cell therapy for the 
heart accounts for a third of publications in the 
regenerative medicine field [18]. Mummery et al. 
have recently reviewed the use of both adult and 
embryonic stem cells, such as bone marrow-
derived stem cells, which include hematopoi-
etic stem cells (HSCs) and mesenchymal stem 
cells (MSCs), endogenous cardiac progenitor cells 
(CPCs), human embryonic stem cells (hESCs), 

Cardiovascular disease is a major target for many experimental stem cell-based therapies and mesenchymal 
stem cells (MSCs) are widely used in these therapies. Transplantation of MSCs to treat cardiac disease has 
always been predicated on the hypothesis that these cells would engraft, differentiate and replace 
damaged cardiac tissues. However, experimental or clinical observations so far have failed to demonstrate 
a therapeutically relevant level of transplanted MSC engraftment or differentiation. Instead, they indicate 
that transplanted MSCs secrete factors to reduce tissue injury and/or enhance tissue repair. Here we review 
the evidences supporting this hypothesis including the recent identification of exosome as a therapeutic 
agent in MSC secretion. In particular, we will discuss the potential and practicality of using this relatively 
novel entity as a therapeutic modality for the treatment of cardiac disease, particularly acute 
myocardial infarction.
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induced pluripotent stem cells, and hESC-
derived cardiomyocytes [18]. The use of bone 
marrow-derived stem cells such as HSCs and 
MSCs to repair cardiac tissues was predicated on 
the hypothesis that these cells could differentiate 
into cardiomyocytes and supporting cell types. 
However, careful rodent experimentation has 
demonstrated that few of the transplanted bone 
marrow cells engraft and survive, and fewer cells 
differentiate into cardiomyocytes or supporting 
cells [18]. In spite of this, transplantation of bone 
marrow stem cells improves some cardiac func-
tions in animal models and patients, and this 
has been attributed to a paracrine effect [18]. 
Although the presence of CPCs in fetal hearts is 
well established, the presence of CPCs in postna-
tal or adult heart remains controversial, and the 
possibility that the so-called CPCs from post-
natal hearts are bone marrow cells has remained 
unresolved. Transplanted cardiomyocytes iso-
lated from in vitro differentiation of hESCs and 
induced pluripotent stem cells could engraft in 
the heart to form a synctium with each other, 
but not with the recipient heart. This failure to 
couple with the recipient cardiomyocytes could 
cause arrhythmia, a potentially fatal condition. 

Despite our still evolving understanding of 
stem cell transplantation in treating cardiac 
disease, stem cell transplantation has already 
being tested in clinical trials. In a recent review 
of more than 20 clinical trials that primarily 
used adult stem cells, such as bone marrow stem 
cells, mobilized peripheral blood stem cells and 
skeletal myoblasts to treat heart disease [19], the 
trends favored such transplantations to treat car-
diac disease when measured using clinical end 
points of death, recurrence of AMI or hospitaliza-
tion for heart failure. The failure to elicit a more 
robust therapeutic response has been attributed 
to low engraftment of cells and poor survival 
of engrafted cells with an untested caveat that 
improved engraftment and survival will enhance 
the therapeutical efficacy. A general consensus 
from these clinical trials is that bone marrow- or 
blood-derived stem cells do not replenish lost car-
diomyocytes or vascular cells to any meaningful 
extent. Instead, circumstantial evidence suggests 
that these stem cells secrete factors that exert a 
paracrine effect on the heart tissues [19]. 

MSCs & the treatment of 
cardiovascular disease
Among the stem cells currently being tested in 
clinical trials for the heart, MSCs are the most 
widely used stem cells. Part of the reason for this is 
their easy availability in accessible tissues, such as 

bone marrow aspirate and fat tissue [20], and their 
large capacity for ex vivo expansion [21]. MSCs are 
also known to have immunosuppressive prop-
erties [22] and, therefore, could be used in allo-
geneic transplantation. They are also reported to 
have highly plastic differentiation potential that 
included not only adipogenesis, osteogenesis and 
chondrogenesis [23–28], but also endothelial, car-
diovascular [29], neurogenic [30–32] and neovascu-
lar differentiation [33–35]. MSCs transplantation 
in most animal models of AMI generally resulted 
in reduced infarct size, improved left ventricular 
ejection fraction, increased vascular density and 
myocardial perfusion [36–40]. In a recent Phase I, 
randomized, double-blind, placebo-controlled 
dose-escalation clinical trial, single infusion 
of allogeneic MSCs in patients with AMI was 
documented to be safe with some provisional 
indications that the MSC infusion improved 
outcomes with regard to cardiac arrhythmias, 
pulmonary function, left ventricular function 
and symptomatic global assessment [41]. 

Despite numerous studies on the transplanta-
tion of MSCs in patients and animal models, 
insight into the mechanistic issues underlying the 
effect of MSC transplantation remains vague. An 
often cited hypothesis is that transplanted MSCs 
differentiate into cardiomyocytes and support-
ing cell types to repair cardiac tissues. However, 
contrary to this differentiation hypothesis, most 
transplanted MSCs are entrapped in the lungs 
and the capillary beds of tissues other than the 
heart [42,43]. Furthermore, depending on the 
method of infusion, 6% or less of the trans-
planted MSCs persist in the heart 2 weeks after 
transplantation [44]. In addition, transplanted 
MSCs were observed to differentiate inefficiently 
into cardio myocytes [45] while ventricular func-
tion was rapidly restored less than 72 h after 
transplantation [46]. All these observations are 
physically and temporally incompatible with 
the differentiation hypothesis and have thus 
prompted an alternative hypothesis that the 
transplanted MSCs mediate their therapeutic 
effect through secretion of paracrine factors that 
promote survival and tissue repair [47].

Paracrine secretion of MSCs
Paracrine secretion of MSCs was reported more 
than 15 years ago when Haynesworth et al. [48] 

reported that MSCs synthesize and secrete a 
broad spectrum of growth factors and cytokines 
such as VEGF, FGF, MCP-1, HGF, IGF-I, SDF-1 
and thrombopoietin [49–53], which exert effects on 
cells in their vicinity. These factors have been pos-
tulated to promote arteriogenesis [51]; support the 
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stem cell crypt in the intestine [54]; protect against 
ischemic renal [49,50] and limb tissue injury [52]; 
support and maintain hematopoiesis [53]; and 
support the formation of megakaryocytes and 
proplatelets [55]. Many of these factors have also 
been demonstrated to exert beneficial effects 
on the heart, including neovascularization [56], 
attenuation of ventricular wall thinning [39] and 
increased angiogenesis [57,58]. 

In 2006, Gnecchi et al. demonstrated that 
intramyocardial injection of culture medium con-
ditioned by MSCs overexpressing the Akt gene 
(Akt-MSCs) or Akt-MSCs reduced infarct size in 
a rodent model of AMI to the same extent [46]. 
This provided the first direct evidence that cellu-
lar secretion could be cardioprotective [46,59]. The 
authors subsequently attributed the cardiopro-
tective effect of the conditioned medium to the 
culturing of the cells under hypoxia and the over-
expression of AKT, which induced secretion of 
Sfrp2. siRNA mediated-silencing of Sfrp2 expres-
sion in Akt-MSCs abrogated the cytoprotective 
effect of their secretion [60]. 

Our group recently demonstrated that culture 
medium conditioned by human ESC-derived 
MSCs (hESC-MSCs) significantly reduced 
infarct size by approximately 50% in a pig and 
mouse model of myocardial ischemia/reperfusion 
(MI/R) injury when administered intravenously 
in a single bolus just before reperfusion [61]. 
However, these MSCs were derived from hESCs 
instead of rat bone marrow and were not geneti-
cally modified to overexpress Akt. The condi-
tioned medium was prepared using a chemically 
defined medium without hypoxia treatment. 

We further demonstrated through size frac-
tionation studies that the active component was 
a large complex 50–200 nm in size. Using elec-
tron microscopy, ultracentrifugation studies, 
mass spectrometry and biochemical assays, we 
identified this complex as an exosome, a secreted 
bi-lipid membrane vesicle of endosomal origin 
(FIGURE 1). When purified by size exclusion using 
high-performance liquid chromatography, hESC-
MSC exosomes also reduced infarct size, but at a 
tenth of the protein dosage used for conditioned 
medium [62]. We subsequently showed that exo-
somes constitute about 10% of the conditioned 
medium in terms of protein amount [Lai RC, Lim SK, 

Unpublished Data]. Therefore, the therapeutic 
activity in the hESC-MSC conditioned medium 
could be attributed primarily to the exosome [62]. 
The secretion of cardioprotective exosomes was 
not unique to hESC-MSCs and was also found 
to be produced under non hypoxic culture con-
ditions by MSCs derived from aborted fetal 

tissues [63]. Therefore, these observations suggest 
that the secretion of protective exosomes is a char-
acteristic of MSCs and may be a reflection of the 
stromal support role of MSCs in maintaining a 
microenvironmental niche for other cells such as 
hematopoietic stem cells. The secretion of exo-
somes may also be a dominant function of MSCs. 
We recently observed that when GFP-labeled 
exosome-associated protein CD81 is expressed 
in hESC-MSCs (FIGURE 2A), they exhibit a punctate 
cytosolic distribution and these labeled proteins 
were secreted (FIGURE 2C). CD81 is a classical tet-
raspanin membrane protein usually found local-
ized to the plasma membrane (as typified by 
their distribution in HEK 293 cells) (FIGURE 2B). 
The cellular distribution of the labeled CD81 in 
hESC-MSCs and its cellular secretion suggest 
that MSCs are prolific producers of exosomes, 
and that exosome, whose main function is to 
mediate intercellular communication (as dis-
cussed later), is also MSCs’ vehicle of choice for 
intercellular communication.

What are exosomes?
Exosomes are one of several groups of secreted 
vesicles, which also include microvesicles, ecto-
somes, membrane particles, exosome-like vesicles 
or apoptotic bodies (reviewed in [64]). Exosomes 
were first found to be secreted by sheep reticu-
locytes approximately 50 years ago [65,66]. They 
have since been shown to be secreted by many cell 
types, including B cells [67], dendritic cells [68], 
mast cells [69], T cells [70], platelets [71], Schwann 
cells [72], tumor cells [73] and sperm [74]. They are 
also found in physiological fluids such as nor-
mal urine [75], plasma [76] and bronchial lavage 
fluid [77]. 

Compared with other secreted vesicles, exo-
somes have much better defined biophysical and 
biochemical properties(reviewed in [64]). They 
have a diameter of 40–100 nm, with a density in 
sucrose of 1.13–1.19 g/ml, and can be sedimented 
at 100,000 g. Their membranes are enriched in 
cholesterol, sphingomyelin and ceramide, and 
are known to contain lipid rafts. The presence of 
exposed phosphatidylserine was reported to be 
present on the membrane of some exosomes [78,79] 
and absent from others [80,81]. Exosomes contain 
both proteins and RNAs. Most exosomes have an 
evolutionarily conserved set of proteins, including 
tetraspanins (CD81, CD63 and CD9), Alix and 
Tsg101, but they also have unique tissue/cell type-
specific proteins that reflect their cellular source. 
Mathivanan and Simpson have set up ExoCarta, 
a freely accessible web-based compendium of 
proteins and RNAs found in exosomes [82,201]. 
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The functions of exosomes are not known, 
but they are believed to be important for inter-
cellular communications. Exosomes were first 
documented in 1996 to mediate immune com-
munication when it was observed that, when 
secreted by antigen-presenting cells (APCs), 
they bear functional peptide–MHC com-
plexes [67]. This also provides the implication 
that exosomes could be used therapeutically. 
The therapeutic potential of exosomes was 
subsequently illustrated by the use of exosomes 
secreted by tumor peptide-pulsed dendritic 
cells to suppress tumor growth [68]. Ironically, 
exosomes are also implicated in tumorigen-
esis, with the observation that microvesicles 
mediate intercellular transfer of the oncogenic 

receptor EGFRvIII [83]. Exosomes have also 
been reported to have the potential to protect 
against tissue injury such as MI/R injury [62] or 
acute tubular injury [84]. 

In recent years, exosomes have also been impli-
cated in neuronal communication or pathogen-
esis. For example, exosomes have been found to 
be released by neurons [85], astrocytes [86] and 
glial cells [87] to facilitate diverse functions that 
include removal of unwanted stress proteins [88] 
and amyloid fibril formation [89,90]. Exosomes 
containing D-synuclein have been demonstrated 
to cause cell death in neuronal cells, suggest-
ing that exosomes may amplify and propagate 
Parkinson’s disease-related pathology [91,92]. It 
was also reported that, in Alzheimer’s disease, 
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 Figure 1. Paracrine effects of mesenchymal stem cells.
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E-amyloid is released in association with exo-
some [93]. More recently, oligodendrocytes were 
demonstrated to secrete exosomes to coordinate 

myelin membrane biogenesis [94]. Besides neu-
ronal communication, exosomes secreted by 
cardiomyocyte progenitor cells were reported 
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Figure 2. Expression and detection of CD81–green fluorescent fusion protein in cell lines. 
(A & B) Expression of CD81–GFP in HuES9.E1 MSC and HEK293 cells. A CD81–GFP fusion gene was 
cloned into a pLVX-puro lentiviral expression vector to generate a CD81–GFP lentivirus. After infecting 
HuES9.E1 MSCs and HEK293 cells with the virus followed by drug selection, the cells were seeded 
onto a glass chamber slide and stained for DAPI. (C) Secretion of CD81–GFP fusion protein. Cell lysate 
and CM were prepared from HuES9.E1 MSCs and CD81–GFP-transfected HuES9.E1 MSCs. The cell 
lysate and CM were analyzed by western blot hybridization using antibodies against CD81 (top panel), 
GFP (middle panel) and ACTIN (bottom panel). 
CM: Conditioned media; GFP: Green fluorescent protein; MSC: Mesenchymal stem cell.
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to stimulate the migration of the endothelial 
cells [95], while those secreted by the egg facilitate 
the fusion of the sperm and egg [96]. 

Exosomes have also been implicated as a vehi-
cle for viral and bacterial infection (reviewed 
in [97]), including the assembly and release 
of HIV [98–100] and intercellular spreading of 
infectious prions in transmissible spongiform 
encephalopathies. The association of exosomes 
with disease or pathological conditions makes 
exosomes good sentinels for diseases. It was 
reported that the miRNA profile of circulating 
exosomes could be indicative or diagnostic of 
ovarian cancer [101]. Similarly, the proteins in 
the urinary exosome have been demonstrated 
to reflect acute kidney injury and are candi-
date diagnostic markers [102]. More recently, 
the function of exosomes as vehicles for inter-
cellular communication has been exploited for 
the delivery of therapeutic siRNAs to the brain 
and to provide for alternative drug delivery 
systems [103]. 

Exosome as an alternative 
therapeutic of MSCs?
The paracrine hypothesis introduces a radically 
different dimension to the therapeutic appli-
cations of MSCs in regenerative medicine. By 
replacing transplantation of MSCs with admin-
istration of their secreted exosomes, many of 
the safety concerns and limitations associated 
with the transplantation of viable replicating 
cells could be mitigated. For example, the use 
of viable replicating cells as therapeutic agents 
carries the risk that the biological potency of 
the agent may persist or be amplified over time 
when the need has been resolved, and cannot be 
attenuated after treatment is terminated. This 
could lead to dire consequences, especially if 
treatment was terminated as a recult of adverse 
outcomes. Although repeated direct endomyo-
cardial transplantation of MSCs has been dem-
onstrated to be relatively safe [104], intravascular 
administration could lead to occlusion in the 
distal microvasculature as a consequence of the 
relatively large cell size [105]. Transplantation 
of MSCs has been reported to induce proar-
rhythmic effects [106–108]. Their potential to dif-
ferentiate into osteocytes and chondrocytes has 
also raised long-term safety concerns regarding 
ossification and/or calcification in tissues as 
reported in some animal studies [109]. 

Besides mitigating the risks associated with 
cell transplantation, exosomes can also circum-
vent some of the challenges associated with the 
use of small soluble biological factors such as 

growth factors, chemokines, cytokines, tran-
scription factors, genes and RNAs [110]. The 
delivery of these factors to the right cell type 
and, in the case of those factors that work intra-
cellularly, the delivery into the right cellular 
compartments, while maintaining the stability, 
integrity and biological potency of these factors 
during manufacture, storage and subsequent 
administration remains a costly challenge. As 
a bi-lipid membrane vesicle, exosomes not only 
have the capacity to carry a large cargo load, 
but also protect the contents from degradative 
enzymes or chemicals. For example, protein and 
RNA in MSC exosomes were protected from 
degradation by trypsin and RNase as long as the 
lipid membrane was not compromised [62,111]. 
We also found that storage without potentially 
toxic cryopreservatives at -20°C for 6 months 
did not compromise the cardioprotective effects 
of MSC exosomes or their biochemical activities 
[Lai RC, Lim SK, Unpublished Data]. 

Exosomes are known to bear numerous 
membrane proteins that have binding affin-
ity to other ligands on cell membranes or the 
extracellular matrix, such as transferrin recep-
tor, tumor necrosis factor receptors, lactadherin, 
integrins and tetraspanin proteins (e.g., CD9, 
CD63 and CD81) [82]. These membrane bound 
molecules provide a potential mechanism for 
the homing of exosomes to a specific tissue or 
microenvironment. For example, integrins on 
exosomes could home exosomes to cardiomy-
ocytes that express ICAM1, a ligand of inte-
grins after MI/R injury [112], or to VCAM-1 
on endothelial cells [113]. Tetraspanin proteins, 
which function primarily to mediate cellular 
penetration, invasion and fusion events [114], 
could facilitate cellular uptake of exosomes by 
specific cell types. 

Exosomes may also facilitate the uptake of 
therapeutic proteins or RNAs into injured cells. 
Although cellular uptake of exosomes has been 
demonstrated to occur through endocytosis, 
phagocytosis and membrane fusion [115–117], the 
mechanism by which these processes are regu-
lated remains to be determined. It was observed 
that the efficiency of exosome uptake correlated 
directly with intracellular and microenviron-
mental acidity [117]. This may be a mechanism 
by which MSC exosomes exert their cardio-
protective effects on ischemic cardiomyoctyes 
that have a low intracellular pH [118]. 

Despite being smaller than a cell, exosomes 
are relatively complex biological entities that 
contain a range of biological molecules, includ-
ing proteins and RNA, making them an ideal 
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therapeutic candidate to treat complex injuries 
such as MI/R injury. It is well established that 
MI/R injury occurs paradoxically in response 
to a therapy that is highly effective in resolving 
the disease precipitating problem of no flow and 
ischemia. During MI/R injury, the restoration 
of blood and oxygen to ischemic myocardium 
paradoxically exacerbates the ischemia-induced 
cellular insults. This is because the biochemical 
cascades required for cell survival that are initi-
ated by cells during no flow and ischemia [119] 
are not compatible with the rapid restoration 
of flow and oxygen supply, and at the same 
time, cells cannot alter their biochemical 
activities expeditiously enough to adapt to this 
restoration. This latter phenomenon was best 
evidenced by the reduction of MI/R through 
postreperfusion conditioning or postcondi-
tioning where cells were exposed to repeated 
short nonlethal cycles of reperfusion/isch-
emia to facilitate biochemical adaptation to 
reperfusion [120–131]. 

We postulate that with their complex cargo, 
exosomes would have adequate potential to par-
ticipate in a wide spectrum of biochemical and 
cellular activities, and simultaneously target and 
correct the various ischemia-induced cascades, 
and prevent occurrence of the paradoxical reac-
tions induced by reperfusion. In addition, many 
of the proteins in the exosomes are enzymes. 
Since enzyme activities are catalytic rather than 
stoichiometric, and are dictated by their micro-
environment (e.g., substrate concentration or 
pH), the enzyme-based therapeutic activities 
of exosomes could be activated or attenuated 
according to the release of injury-associated 
substrates, which in turn, is proportional to the 
severity of disease-precipitating microenviron-
ment. Resolution of the disease-precipitating 
microenvironment would reduce the release of 
injury-associated substrates and also the activ-
ity of exosome enzymes. Consequently, the 
efficacy of exosome-based therapeutics could 
be highly responsive to, but also limited by, the 
disease-precipitating microenvironment. 

Together, the features discussed here ren-
der exosomes a highly efficacious therapeutic 
in neutralizing the complexity of MI/R and 
an effective adjuvant to complement current 
reperfusion therapy. 

Translating hESC-MSC exosomes  
into therapeutics
The translation of cardioprotective MSC exo-
somes into a therapeutic agent presents several 
unique challenges. The first major challenge 

would be to manufacture Good Manufacturing 
Practices (GMP) grade exosomes from non-
autologous cell sources. Although exosomes as 
therapeutics have already been tested as a form 
of cancer vaccine in the clinic [132–134], these 
tests were limited to exosomes produced dur-
ing short-term ex vivo culture of autologous 
dendritic cells. These exosomes, also known 
as dexosomes, were found to be safe in the 
small clinical trials [132]. Unfortunately, the 
manufacture of these exosomes cannot provide 
guidance for the large-scale GMP production 
of exosomes from nonautologous cell sources 
such as exosomes from hESC-MSCs. This 
manufacturing process faces many unique chal-
lenges, including ethical, legal, technical and 
regulatory/safety issues.

The use of hESCs for the derivation of MSCs 
presents both ethical and legal challenges. 
While ethical objections to the derivation and 
use of hESCs have initially hindered hESC 
research, they have abated. Instead, the use and 
applications of hESCs is now being hindered 
by complex and widespread patenting in some 
countries [135] and the ban on stem cell-related 
patents in other countries [136]. To encourage 
the development of hESC-based therapeutic 
applications, the need for freedom to use and 
share hESC resources and knowledge must be 
balanced with a need to incentivize commer-
cial development of stem cells by protecting the 
intellectual property generated from research 
and development efforts. Unfortunately, this 
balance has not yet been reached.

One of the major technical hurdles to the 
use of hESC-MSCs is their large but finite 
expansion capacity, resulting in the need for 
constant costly re-derivation from hESC and 
re-validation of each of the derived cell batch. 
Therefore, a robust scalable and highly renew-
able cell source will be central to the develop-
ment of a commercially viable manufacturing 
process for the production of MSC exosomes 
in sufficient quantity and quality to support 
clinical testing or applications. To address this 
issue, we demonstrated that immortalization of 
the ESC-MSC by Myc did not compromise the 
quality or yield of exosomes [137]. Therefore, this 
provides a potentially inexhaustible cell source 
for MSC exosome production. The translation 
of MSC exosomes into clinical applications is 
also complicated by the relative novelty of exo-
somes with few precedents in the regulatory and 
safety space of biopharmaceuticals. This will 
require the formulation of new standards for 
manufacture, safety and quality control.
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Future perspective
The discovery of stem cells and their potential in 
regenerative medicine has evoked much excite-
ment and hope in treating some of today’s most 
intractable diseases, including cardiac disease. 
However, much of the euphoria has dissipated as 
animal experimentation revealed and identified 
potential problems in translating the use of stem 
cells to treat cardiac disease. Although the repro-
ducible large-scale preparation of homogenous 
clinically compliant ‘normal’ healthy cells has 
been a major preoccupation in the development 
of stem cell-based therapies in general, this has 

proven not to be an impediment in the devel-
opment of such therapies for cardiac disease, as 
evidenced by the large number of stem cell-based 
clinical trials that are already being conducted. 
Instead, the problems facing stem cell-based 
therapies for cardiac disease are potentially more 
insidious. At present, most of the stem cells used 
in clinical trials are MSCs and bone marrow 
mononuclear cells that are generally considered 
to be safe. However, despite eliciting a sometimes 
positive therapeutic response, these cells often 
do not integrate or persist in the heart tissues. 
By contrast, the use of myogenic cells, such as 

Executive summary

Stem cells in the treatment of acute myocardial infarction
 � Advances in reperfusion therapy have increased survival of patients with severe acute myocardial infarction and contributed to a 

growing epidemic of heart failure.
 � As reperfusion therapy itself causes lethal injury and has been demonstrated to be intractable to pharmaceutical intervention, stem cells 

are being scrutinized as alternative therapeutic agents.
 � Attempts using stem cells to treat heart disease have generated mixed outcomes.
 � Transplantation of bone marrow stem cells generally improved cardiac functions with little evidence of engraftment and differentiation 

of the transplanted stem cells. 
 � Effects of stem cell transplantation have been attributed to secretion of paracrine factors by the transplanted stem cells.

Mesenchymal stem cells & the treatment of cardiovascular disease
 � Animal studies and early clinical trials demonstrated that mesenchymal stem cell (MSC) transplantation improved cardiac function after 

myocardial infarction.
 � Inefficient MSC engraftment and differentiation, and their rapid cardioprotective effects suggested that MSCs act via a secretion-based 

paracrine effect rather than a cell replacement effect.
Paracrine secretion of MSCs
 � MSCs synthesize a broad spectrum of growth factors and cytokines that exert paracrine effects.
 � Gnecchi et al. produced the first evidence that cellular secretion alone improved cardiac function in an animal model of acute 

myocardial infarction.
 � Culture medium conditioned under nonhypoxic conditions by untransformed MSCs derived from human embryonic stem cells or 

aborted fetal tissues reduce infarct size in animal models of myocardial ischemia/reperfusion.
 � Exosome is the primary mediator of MSCs’ paracrine effect.

What are exosomes?
 � Exosomes are bi-lipid membrane vesicles secreted by many cell types into culture medium and other bodily fluids such as blood and urine.
 � They function as mediators of intercellular communication.

Exosome as an alternative therapeutic for MSC?
 � Exosome-based therapy circumvents some of the concerns and limitations in using viable replicating cells and does not compromise 

some of the advantages associated with using complex therapeutic agents such as cells.
 � Exosomes are ideal therapeutic agents because their complex cargo of proteins and genetic materials has the diversity and biochemical 

potential to participate in multiple biochemical and cellular processes, an important attribute in the treatment of complex disease.
 � Exosomes home to specific tissue or microenvironment.
 � Their bi-lipid membranes can protect their biologically active cargo allowing for easier storage of exosomes, which allows a longer shelf-

life and half-life in patients.
 � Their biological activities are mainly enzyme-driven and, therefore, their effects are catalytic and not stoichiometric.
 � Having enzyme-driven biological activities, they are dependent on the microenvironment (e.g., substrate concentration or pH) and could 

be activated or attenuated in proportion to the severity of disease-precipitating microenvironment.
 � Exosome-based therapy cannot replace lost myocardium but can prevent or delay loss of myocardium.

Challenges for translating embryonic stem cell-MSC exosomes into therapeutics 
 � Ethical issues exist, especially with the derivation and use of human embryonic stem cells for generating MSCs.
 � Legal issues include excessive intellectual property protection in some countries, which hinder research and development. A ban on 

embryonic stem cell-related intellectual property in other countries de-incentivize research and development.
 � Technical limitations include the need for a robust scalable and highly renewable cell source embryonic stem cell-MSCs to support large 

scale, commercially viable manufacturing process.
 � Exosomes are relatively novel biological entities with few precedents to establish safety and manufacturing guidance.
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