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Summary

In many practical areas, people are interested in finding a nearest correlation matrix

in the following sense:

min
1

2
∥H ◦ (X −G)∥2F

s.t. Xii = 1 , i = 1, 2, . . . , n ,

Xij = eij , (i, j) ∈ Be ,

Xij ≥ lij , (i, j) ∈ Bl ,

Xij ≤ uij , (i, j) ∈ Bu ,

X ∈ Sn
+ .

(1)

In model (1), the target matrix is positive semidefinite. Moreover, it is required

to satisfy some prescribed constraints on its components. Thus the problem may

become infeasible. To deal with this potential problem in model (1), we will borrow

the essential idea of the exact penalty method via considering the penalized version

by taking a trade-off between the prescribed constraints and the weighted least

v



Summary vi

squares distance as follows:

min Fρ(X, r, v, w)

s.t. Xii = 1 , i = 1, 2, . . . , n ,

Xij − eij = rij , (i, j) ∈ Be ,

lij −Xij = vij , (i, j) ∈ Bl ,

Xij − uij = wij , (i, j) ∈ Bu ,

X ∈ Sn
+ ,

(2)

where

Fρ(X, r, v, w) :=
1

2
∥H ◦ (X −G)∥2F + ρ

( ∑
(i,j)∈Be

|rij|+
∑

(i,j)∈Bl

max(vij, 0)

+
∑

(i,j)∈Bu

max(wij, 0)
)

for a given penalty parameter ρ > 0 that controls the weights allocated to the

prescribed constraints in the objective function.

To solve problem (2), we apply the idea of the majorization method by solving

a sequence of unconstrained inner problems iteratively. Actually, the inner prob-

lem is produced by the Lagrangian dual approach. Since the objective function in

the inner problem is not twice continuously differentiable, we investigate a semis-

mooth Newton-CG method for solving the inner problem based on the strongly

semismooth matrix valued function. The convergence analysis is also included to

justify our algorithm. Finally, we implement our algorithm with numerical results

reported for a number of examples.



Chapter 1
Introduction

The nearest correlation matrix (NCM) problem is an important optimization model

with many applications in statistics, finance and risk management and etc. In 2002,

Higham [11] considered the following correlation matrix problem:

min
1

2
∥H ◦ (X −G)∥2F

s.t. Xii = 1 , i = 1, 2, . . . , n ,

X ∈ Sn
+ ,

(1.1)

where Sn is the real Euclidean space of n×n symmetric matrices; Sn
+ is the cone of

all positive semidefinite matrices in Sn; ∥ · ∥F denotes the Frobenius norm induced

by the trace inner product ⟨A,B⟩ =Tr(AB), for any A,B ∈ Sn; ”◦” denotes the

Hadamard product A ◦B = [AijBij]
n
i,j=1, for any A,B ∈ Sn; The weighted matrix

H is symmetric and Hij ≥ 0 for all i, j = 1, . . . , n. If the size of problem (1.1) is

small and medium, some public softwares based on the Interior-Point-Methods such

as SeDuMi [36] and SDPT3 [37] can be applied to solve (1.1) directly, see Higham

[11] and Toh, Tütüncü and Todd [38]. But if the size of (1.1) becomes large,

there exist some difficulties to use IPMs. Recently, Qi and Sun [27] proposed an

augmented Lagrangian dual approach for solving (1.1), which was fast and robust.

Furthermore, if there is some additional information, we can naturally extend (1.1)

1



2

to the following optimization problem:

min
1

2
∥H ◦ (X −G)∥2F

s.t. Xii = 1 , i = 1, 2, . . . , n ,

Xij = eij , (i, j) ∈ Be ,

Xij ≥ lij , (i, j) ∈ Bl ,

Xij ≤ uij , (i, j) ∈ Bu ,

X ∈ Sn
+ ,

(1.2)

where Be, Bl and Bu are three index subsets of { (i, j) | 1 ≤ i < j ≤ n }. Be, Bl

and Bu satisfy the following relationships: 1) Be ∩ Bl = ∅; 2 ) Be ∩ Bu = ∅; 3) for

any index (i, j) ∈ Bl∩Bu, −1 ≤ lij < uij ≤ 1; 4) for any index (i, j) ∈ Be∪Bl∪Bu,

−1 ≤ eij, lij, uij ≤ 1. Denote by qe, ql and qu the cardinalities of Be, Bl and Bu

respectively. Let m := qe + ql + qu. Note that the inexact smoothing Newton

method can be applied to solve problem (1.2), see Gao and Sun [9].

However, in practice, people should notice the following key issues: i) the target

matrix in (1.2) is positive semidefinite; ii) the target matrix in (1.2) is asked to

satisfy some prescribed constraints on its components. Thus, the problem may

become infeasible. To solve problem (1.2), we apply the essential idea of the

exact penalty method. Now we consider the penalized problem by taking a trade-

off between the prescribed constraints and the weighted least squares distance as

follows:

min Fρ(X, r, v, w)

s.t. Xii = 1 , i = 1, 2, . . . , n ,

Xij − eij = rij , (i, j) ∈ Be ,

lij −Xij = vij , (i, j) ∈ Bl ,

Xij − uij = wij , (i, j) ∈ Bu ,

X ∈ Sn
+ ,

(1.3)
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where

Fρ(X, r, v, w) :=
1

2
∥H ◦ (X −G)∥2F + ρ

( ∑
(i,j)∈Be

|rij|+
∑

(i,j)∈Bl

max(vij, 0)

+
∑

(i,j)∈Bu

max(wij, 0)
)

and ρ > 0 is a given penalty parameter that controls the allocated weight to the

prescribed constraints in the objective function.

For simplicity, we define four linear operators A1 : Sn → ℜn, A2 : Sn → ℜqe ,

A3 : Sn → ℜql and A4 : Sn → ℜqu to characterize the constraints in (1.3),

respectively, by

A1(X) := diag(X) ,

(A2(X))ij := Xij , for (i, j) ∈ Be ,

(A3(X))ij := Xij , for (i, j) ∈ Bl ,

(A4(X))ij := Xij , for (i, j) ∈ Bu .

For each X ∈ Sn, A1(X) is defined to be the vector formed by the diagonal entries

of X, A2(X), A3(X) and A4(X) are three column vectors in ℜqe , ℜql and ℜqu

obtained by storing Xij, (i, j) ∈ Be, Xij, (i, j) ∈ Bl and Xij, (i, j) ∈ Bu column by

column respectively. Let A : S → ℜm be defined by

A(X) :=


A1(X)

A2(X)

−A3(X)

A4(X)

 , X ∈ Sn . (1.4)

We denote

b :=


b1

b2

b3

b4

 , (1.5)



4

where b1 ∈ ℜn is the vector of all ones, b2 := {eij}(i,j)∈Be , b3 := −{lij}(i,j)∈Bl
and

b4 := {uij}(i,j)∈Bu . Finally we define that

y :=


{0}n

r

v

w

 ∈ ℜm , (1.6)

where r, v and w are three column vectors in ℜqe , ℜql and ℜqu obtained by storing

rij, (i, j) ∈ Be, vij, (i, j) ∈ Bl and wij, (i, j) ∈ Bu column by column respectively.

Given by the above preparations, (1.3) can be rewritten as:

min Fρ(X, y)

s.t. A(X) = b+ y ,

X ∈ Sn
+ ,

(1.7)

where

Fρ(X, y) :=
1

2
∥H ◦ (X −G)∥2F + ρ

(
∥r∥1 +

∑
(i,j)∈Bl

max(vij, 0)+
∑

(i,j)∈Bu

max(wij, 0)
)
.

In order to solve the above penalized problem (1.7), we will apply the essential

idea of the majorization method by solving a sequence of unconstrained inner

problems iteratively. We analyze the convergence properties to ensure the efficiency

of our majorization method. In fact, the inner problem is generated by the well-

known Lagrangian dual approach based on the metric projection and the Moreau-

Yosida regularization. Since the objective function in the inner problem is not twice

continuously differentiable, by taking advantage of the strongly semismooth, we

propose a semismooth Newton-CG method to solve the inner problem. Moreover,

we show that the positive definiteness of the generalized Hessian of the objective

function is equivalent to the constraint nondegeneracy of the corresponding primal
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problem. At last, we test the algorithm with some numerical examples and report

the corresponding numerical results. These numerical experiments show that our

algorithm is efficient and robust.

We list some other useful notations in our thesis. The matrix E ∈ Sn denotes

the matrix of all ones. Bαβ denotes the submatrix of B indexed by α and β where α

and β are the index subsets of {1, 2, . . . , n}. Eij denotes the matrix whose (i, j)th

entry is 1 and all other entries are zeros. For any vector x, Diag(x) denotes the

diagonal matrix whose diagonal entries are the elements of x. TK(x) denotes the

tangent cone of K at x. lin
(
TK(x)

)
denotes the lineality space of TK(x). NK(x)

denotes the normal cone of K at x. δK(·) denotes the indicator function with

respect to set K. dist(x, S) denotes the distance between a point x and a set S.

1.1 Outline of the thesis

The remaining parts of this thesis are organized as follows. In Chapter 2, we

present some preliminaries to facilitate the later discussions. In Chapter 3, we

introduce the majorization method to deal with (1.7) and analyze its convergence

properties. Chapter 4 concentrates on the semismooth Newton-CG method for

solving the inner problems and the convergence analysis. In Chapter 5, we discuss

some implementation issues and report our numerical results. The last Chapter is

about some conclusions.



Chapter 2
Preliminaries

In this chapter, we introduce some preliminaries which are very useful in our later

discussions. The related references are listed in the bibliography.

2.1 Generalized Jacobian and semismoothness

Let F : O ⊆ ℜn → ℜm be a locally Lipschitz continuous function on an open set

O. By Rademacher’s theorem [32, Section 9.J], F is almost everywhere F(réchet)-

differentiable in O. Denote by DF the set of points in O where F is F-differentiable.

Let F ′(x) : ℜn → ℜm be the derivative of F at x ∈ O and F ′(x)∗ : ℜm → ℜn

be the adjoint of F ′(x). Then, the B-subdifferential of F at x ∈ O, denoted by

∂BF (x), is

∂BF (x) = { lim
xk→x

F ′(xk) , xk ∈ DF} . (2.1)

Clarke’s generalized Jacobian of F at x is defined as the convex hull of ∂BF (x),

i.e.,

∂F (x) = conv{∂BF (x)} . (2.2)

We proceed to summarize some useful properties of ∂F , see [7, Proposition 2.6.2].

6



2.2 The matrix valued function and Löwner’s operator 7

Proposition 2.1.1.

a) ∂F is a nonempty convex compact subset of ℜm×n.

b) ∂F is closed at x; that is, if xi → x, Zi ∈ ∂F (xi), Zi → Z, then Z ∈ ∂F (x).

To facilitate the latter discussions, we borrow the concept of semismoothness, which

is first introduced in [22] and later extended to vector-valued function, see [28, 29].

Definition 2.1.1. F is said to be semismooth at x if

a) F is directionally differentiable at x; and

b) for any h ∈ ℜn and V ∈ ∂F (x+ h) with h→ 0,

F (x+ h)− F (x)− V h = o(∥h∥).

Furthermore, F is said to be strongly semismooth at x if F is semismooth at x and

for any h ∈ ℜn and V ∈ ∂F (x+ h) with h→ 0,

F (x+ h)− F (x)− V h = O(∥h∥2).

More details of the strongly semismooth can be found in [6, 34].

2.2 The matrix valued function and Löwner’s op-

erator

Let X ∈ Sn admit the following spectral decomposition:

X = Pdiag(λ(X))P T , (2.3)

λ1(X) ≥ · · · ≥ λn(X) are the eigenvalues of X being arranged in the the non-

increasing order and P ∈ On is the corresponding orthogonal matrix of orthonormal

eigenvectors of X.
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Let ϕ : R → R be a scalar function, then the corresponding Löwner’s operator

matrix valued function at X is defined by [20]

ϕSn(X) :=
n∑

j=1

ϕ(λj)(X)PjP
T
j = Pdiag

(
ϕ(λ1(X)) , ϕ(λ2(X)) , · · · , ϕ(λn(X))

)
P T .

For Löwner’s operator, the following theorem is often very useful. More details

can be found in [6, 14].

Theorem 2.2.1. If X has spectral decomposition as in (2.3), the function ϕSn is

(continuously) differentiable at X if and only if ϕ is (continuously) differentiable

at λj(X)(j = 1, · · · , n). In this case, the F(réchet) derivative of ϕSn at X, for any

H ∈ Sn is given by

ϕ′
Sn(X)[H] = P (ϕ[1](Λ) ◦ (P THP ))P T ,

where ϕ[1](Λ) is the first-order divided difference matrix whose entries ϕ[1](λi, λj) (i, j =

1, 2, · · · , n) are defined as

ϕ[1](λi, λj) =


ϕ(λi)−ϕ(λj)

λi−λj
if λi ̸= λj,

ϕ′(λi) if λi = λj.

2.3 The metric projection operator ΠSn
+
(·)

For X ∈ Sn, let ΠSn
+
(X) be the metric projection of X onto Sn

+. Suppose that X

has the spectral decomposition as in (2.3). Then

ΠSn
+
(X) = PΛ+P

T ,

where Λ+ is a diagonal matrix whose diagonal entries are the nonnegative parts of

the respective diagonal entries of Λ, i.e.,

Λ+ := Diag
(
max(λ1(X) , 0 ) , · · · ,max(λn(X) , 0 )

)
.
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In [34], Sun and Sun demonstrate that ΠSn
+
(·) is strongly semismooth everywhere

in Sn.

Define three index sets of positive, zero and negative eigenvalues of λ(X), re-

spectively, as

α∗ := { i : λi(X) > 0 }, β∗ := { i : λi(X) = 0 }, γ∗ := { i : λi(X) < 0 }.

Recall the contents in section 2, let UX : Sn −→ Sn be defined by

UXH = P (WX ◦ (P THP ))P T , for H ∈ Sn, (2.4)

where

WX :=


Eα∗α∗ Eα∗β∗ (vij)i∈α∗

j∈γ∗

ET
α∗β∗ 0 0

(vji)i∈α∗
j∈γ∗

0 0

 , vij =
λi(X)

λi(X)− λj(X)
, i ∈ α∗, j ∈ γ∗.

(2.5)

In [24], Pang, Sun and Sun show that UX ∈ ∂BΠSn
+
(X).

In general, let K be a closed convex set in a finite dimensional real Hilbert space.

It is famous that the metric projector ΠK(·) is globally Lipschitz continuous with

modulus 1 and ∥z − ΠK(z)∥2 is continuously differentiable. More details can be

found in [40].

Moreover, we introduce the concept of Jacobian amicability, see [2].

Definition 2.3.1. The metric projector ΠK(·) is Jacobian amicable at x ∈ X if

for any V ∈ ∂ΠK(x) and d ∈ X such that V d = 0, it holds that

d ∈
(
lin(TK(ΠK(x)))

)⊥
, (2.6)

where
(
lin(TK(ΠK(x)))

)⊥
is defined by(

lin(TK(ΠK(x)))
)⊥

:= { d ∈ X : ⟨d , h⟩ = 0 , ∀ h ∈ lin(TK(ΠK(x))) } . (2.7)
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ΠK(·) is said to be Jacobian amicable if it is Jacobian amicable at every point in

X .

The following proposition is useful in the later discussions, see [2, Proposition 2.10].

Proposition 2.3.1. The projection operator ΠSn
+
(·) is Jacobian amicable every-

where in Sn.

2.4 The Moreau-Yosida regularization

Let f : E → (−∞,+∞] be a closed proper convex function. The Moreau-Yosida

regularization of f at x ∈ E is defined by

ψf (x) := min
y∈E

f(y) +
1

2
∥y − x∥2. (2.8)

The unique optimal solution of (2.8), denoted by Pf (x), is called the proximal

point of x associated with f . The following results are useful in our thesis. They

mainly comes from [30, 33].

Proposition 2.4.1. Let f : E → (−∞,+∞] be a closed proper convex function,

ψf be the Moreau-Yosida regularization of f and Pf be the associated proximal

point mapping. Then, ψf is continuously differentiable. Furthermore, it holds that

∇ψf (x) = Qf (x) = x− Pf (x), x ∈ E . (2.9)

Proposition 2.4.2. Let f be a closed proper convex function on E . For any x ∈ E ,

∂Pf (x) has the following two properties:

(i) Any V ∈ ∂Pf (x) is self-adjoint.

(ii) ⟨V d, d⟩ ≥ ∥V d∥2 for any V ∈ ∂Pf (x) and d ∈ E .
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Theorem 2.4.1 (Moreau decomposition). Let f : E → (−∞,+∞] be a closed

proper convex function and f ∗ be its conjugate. Then any x ∈ E has the decom-

position

x = Pf (x) + Pf∗(x). (2.10)

As an important application in our thesis, we introduce the following example.

Let f(x) = ∥x∥# be any norm function defined on E and ∥ · ∥∗ be the dual norm

of ∥ · ∥#, i.e., for any x ∈ E , ∥x∥∗ = supy∈E{⟨x, y⟩ : ∥y∥# ≤ 1}. Since f is a

positively homogeneous convex function, the conjugate function f ∗ must be the

indicator function of ∂f(0). Direct calculation shows that

∂f(0) = B1
∗ := {x ∈ E : ∥x∥∗ ≤ 1}.

Therefore, Pf∗(x) = ΠB1
∗(x) for any x ∈ E . According to the Moreau decomposi-

tion, it holds that Pf (x) = x− Pf∗(x) = x− ΠB1
∗(x).



Chapter 3
A Majorization Method

3.1 Introduction

This section is devoted to giving an general introduction to the majorization

method.

Let F : ℜn → ℜ be a continuous function and K ⊂ ℜn be a closed convex set.

We consider the following optimization problem:

min F (x)

s.t. x ∈ K .
(3.1)

The function F̂ k(x) is said to be the majorization function of F (x) at xk for k ≥ 0

if it satisfies

F̂ k(xk) = F (xk) and F̂ k(x) ≥ F (xk) , ∀ x ∈ K . (3.2)

The procedures of a majorization method for solving (3.1) are mainly summarized

as follows. Firstly, we properly choose an initial guess x0 ∈ K. Secondly, for

any k ≥ 0, we minimize the function F̂ k(x) over the set K to obtain the optimal

solution xk+1 iteratively.

12



3.2 The majorization method for the penalized problem 13

In order to apply the majorization method efficiently, we must consider the fol-

lowing issues carefully: i) to obtain a fast convergence, the majorization functions

may approximate the original function; ii) to solve the generated optimization

problems more easily, the majorization functions may be simpler than the original

function. These two issues often contradict with each other. We should deal with

this dilemma according to the specific problem. Interested readers can refer to

[12, 13, 16, 17, 19, 23] for more details about the majorization method.

3.2 The majorization method for the penalized

problem

Write F = {X ∈ Sn | X ≽ 0, Xii = 1, 1 ≤ i ≤ n} and δF(·) as its indicator

function. It is clear to see that the problem (1.2) is equivalent to

min
1

2
∥H ◦ (X −G)∥2 + δF(X)

s.t. Xij = eij , (i, j) ∈ Be ,

Xij ≥ lij , (i, j) ∈ Bl ,

Xij ≤ uij , (i, j) ∈ Bu .

(3.3)

As we have already mentioned in the introduction, the intersection of F and the

feasible set defined by the constraints of (3.3) may be empty, which motivates us

to apply the essential idea of the nonsmooth penalty method to (3.3). This yields

the penalized problem

min
1

2
∥H ◦ (X −G)∥2F + ρ

( ∑
(i,j)∈Be

|Xij − eij|+
∑

(i,j)∈Bl

max(lij −Xij, 0)

+
∑

(i,j)∈Bu

max(Xij − uij, 0)
)
+ δF(X),

or equivalent problem (1.7), where ρ is some positive penalty parameter. It may

be also noteworthy that our penalized method is exact since, by [8, Theorem 4.2],
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if the original problem is feasible and the corresponding Lagrangian multipliers

associated with (3.3) exist, then the penalized problem (1.7) has the same solution

set as the problem (1.2) for all ρ greater than some positive threshold which is

related to the Lagrangian multipliers. See [3, 4] for more details of the exact

penalization.

Now we focus on the penalized problem (1.7). Note that in (1.7), the objective

function is

1

2
∥H ◦ (X −G)∥2F + ρ

(
∥r∥1 +

∑
(i,j)∈Bl

max(vij, 0) +
∑

(i,j)∈Bu

max(wij, 0)
)
.

In order to design an efficient majorization method for solving (1.7), we first need

to find the proper majorization functions of

1

2
∥H ◦ (X −G)∥2F

and

ρ
(
∥r∥1 +

∑
(i,j)∈Bl

max(vij, 0) +
∑

(i,j)∈Bu

max(wij, 0)
)
,

respectively. For simplicity, let y be defined in (1.6), let g1(X, y) be defined by

g1(X, y) :=
1

2
∥H ◦ (X −G)∥2F , (3.4)

let g2(X, y) be defined by

g2(X, y) := ∥r∥1 +
∑

(i,j)∈Bl

max(vij, 0) +
∑

(i,j)∈Bu

max(wij, 0) (3.5)

and let K denote the feasible set of problem (1.7), i.e.,

K = { (X, y) : X ∈ Sn
+ , A(X) = b+ y }.

For any (X, y) and (Xk, yk) in K, let ĝ1(X, y;X
k, yk) be defined by

ĝ1(X, y;X
k, yk) :=

1

2
∥H ◦ (Xk −G)∥2F + ⟨H ◦H ◦ (Xk −G) , X −Xk⟩

+
α

2
∥X −Xk∥2F (3.6)
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and let ĝ2(X, y;X
k, yk) be defined by

ĝ2(X, y;X
k, yk) := ∥r∥1 +

β

2
∥r − rk∥2 +

∑
(i,j)∈Bl

(max(vij, 0) +
β

2
|vij − vkij|2)

+
∑

(i,j)∈Bu

(max(wij, 0) +
β

2
|wij − wk

ij|2), (3.7)

where α is larger than or equal to the Lipschitz constant of ∇Xg1(X, y) and β is

a fixed positive number. Obviously, ĝ2(X, y;X
k, yk) is a majorization function of

g2(X, y) due to the definition (3.2). Next, we prove that ĝ1(X, y;X
k, yk) is also a

majorization function of g1(X, y).

Proposition 3.2.1. For all (Xk, yk) and (X, y) in K, ĝ1(X, y;X
k, yk) is a ma-

jorization function of g1(X, y).

Proof. For all (Xk, yk) and (X, y) in K, we have

| g1(X, y)− g1(X
k, yk)− ⟨∇Xg1(X

k, yk) , X −Xk⟩ |

= |
∫ 1

0

⟨∇Xg1(X
k + θ(X −Xk), yk)−∇Xg1(X

k, yk) , X −Xk⟩dθ|

≤
∫ 1

0

|⟨∇Xg1(X
k + θ(X −Xk), yk)−∇Xg1(X

k, yk) , X −Xk⟩|dθ

≤
∫ 1

0

∥∇Xg1(X
k + θ(X −Xk), yk)−∇Xg1(X

k, yk)∥F · ∥X −Xk∥Fdθ

≤
∫ 1

0

θL∥X −Xk∥2Fdθ

=
L

2
∥X −Xk∥2F ,

where L is the Lipschitz constant of ∇Xg1(·). Since α ≥ L, it follows that

g1(X, y)

≤ g1(X
k, yk) + ⟨∇Xg1(X

k, yk) , X −Xk⟩+ L

2
∥X −Xk∥2F

≤ 1

2
∥H ◦ (Xk −G)∥2F + ⟨H ◦H ◦ (Xk −G) , X −Xk⟩+ α

2
∥X −Xk∥2F

= ĝ1(X, y;X
k, yk).
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The proof is completed.

Now, we can present the algorithm of the majorization method for solving the

problem (1.7).

Algorithm 1 (Majorization Method) :

Step 0. Select a proper penalty parameter ρ > 0. Start to solve problem (1.7).

Step 1. Set k := 0. Choose an initial point (X0, y0) ∈ K properly.

Step 2. By applying (3.6) and (3.7), respectively generate the majorization func-

tions of g1(·) and g2(·) as

ĝk1(·) = ĝ1(· ;Xk, yk)

and

ĝk2(·) = ĝ2(· ;Xk, yk).

Due to (3.2), at (Xk, yk), Fρ(·) is majorized by

F̂ k
ρ (·) := F̂ρ(· ;Xk, yk) = ĝ1(· ;Xk, yk) + ρĝ2(· ;Xk, yk) = ĝk1(·) + ρĝk2(·) .

Then solve the following optimization problem

min F̂ k
ρ (X, y)

s.t. (X, y) ∈ K
(3.8)

to obtain the optimal solution (Xk+1, yk+1).

Step 3. If Xk+1 = Xk and yk+1 = yk, stop; otherwise, set k := k + 1 and go to

Step 2.
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3.3 Convergence analysis

In this section, we discuss the convergence analysis of the majorization method.

We first prove the following lemma.

Lemma 3.3.1. Let {(Xk, yk)} be the sequence generated by Algorithm 1. Then

the following two conclusions hold:

i) {Fρ(X
k, yk)} is a nonincreasing sequence.

ii) The infinite sequence {Fρ(X
k, yk)} satisfies

α

2
∥Xk+1−Xk∥2F+

ρβ

2
∥yk+1−yk∥2 ≤ Fρ(X

k, yk)−Fρ(X
k+1, yk+1), k = 0, 1, · · · .

Proof. i) Firstly, by the definition of majorization function as in (3.2), it is obvious

that

F̂ k
ρ (X

k, yk) = Fρ(X
k, yk) , ∀ k ≥ 0 .

Secondly, since (Xk+1, yk+1) is an optimal solution to problem (3.8), then

F̂ k
ρ (X

k+1, yk+1) ≤ F̂ k
ρ (X

k, yk), ∀ k ≥ 0.

Thirdly, by applying Proposition 3.2.1, for any (Xk, yk) and (Xk+1, yk+1) in K, we

obtain that

g1(X
k+1, yk+1) ≤ ĝ1(X

k+1, yk+1;Xk, yk) = ĝk1(X
k+1, yk+1). (3.9)

In addition, by the definition of g2(·) as in (3.5) and the definition of ĝ2(·) as in

(3.7), obviously,

g2(X
k+1, yk+1) ≤ ĝ2(X

k+1, yk+1;Xk, yk) = ĝk2(X
k+1, yk+1). (3.10)

Furthermore, by combining (3.9) and (3.10), we establish that

Fρ(X
k+1, yk+1) ≤ F̂ k

ρ (X
k+1, yk+1), ∀ k ≥ 0.
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Thus, we complete the proof by noting that

Fρ(X
k+1, yk+1) ≤ F̂ k

ρ (X
k+1, yk+1) ≤ F̂ k

ρ (X
k, yk) = Fρ(X

k, yk), ∀ k ≥ 0.

ii) Since (Xk+1, yk+1) is an optimal solution to problem (3.8), it holds that

0 ∈

 ∇Xg1(X
k, yk) + α(Xk+1 −Xk)

ρβ(yk+1 − yk)

+

 0

∂y(ρg2(X
k+1, yk+1))


+NK(X

k+1, yk+1).

Then there exist

τ k+1 ∈ ∂y(ρg2(X
k+1, yk+1))

and  ξk+1
1

ξk+1
2

 ∈ NK(X
k+1, yk+1)

such that ∇Xg1(X
k) + α(Xk+1 −Xk)

ρβ(yk+1 − yk)

+

 0

τ k+1

+

 ξk+1
1

ξk+1
2

 = 0. (3.11)

Moreover, by recalling the properties of normal cone, we obtain

⟨ξk+1
1 , Xk −Xk+1⟩ ≤ 0 (3.12)

and

⟨ξk+1
2 , yk − yk+1⟩ ≤ 0. (3.13)
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Therefore, by applying (3.11), (3.12) and (3.13), for each k ≥ 0, it follows that

Fρ(X
k, yk)− Fρ(X

k+1, yk+1)

= g1(X
k, yk) + ρg2(X

k, yk)− g1(X
k+1, yk+1)− ρg2(X

k+1, yk+1)

≥ g1(X
k, yk) + ρg2(X

k, yk)−
(
g1(X

k, yk) + ⟨∇Xg1(X
k, yk) , Xk+1 −Xk⟩

+
α

2
∥Xk+1 −Xk∥2F + ρg2(X

k+1, yk+1) +
ρβ

2
∥yk+1 − yk∥2

)
= −⟨∇Xg1(X

k, yk) , Xk+1 −Xk⟩ − α

2
∥Xk+1 −Xk∥2F + ρg2(X

k, yk)

− ρg2(X
k+1, yk+1)− ρβ

2
∥yk+1 − yk∥2

≥ −⟨∇Xg1(X
k, yk), Xk+1 −Xk⟩ − α

2
∥Xk+1 −Xk∥2F + ⟨τ k+1 , yk − yk+1⟩

+ ⟨ξk+1
1 , Xk −Xk+1⟩+ ⟨ξk+1

2 , yk − yk+1⟩ − ρβ

2
∥yk+1 − yk∥2

= ⟨−∇Xg1(X
k, yk)− ξk+1

1 , Xk+1 −Xk⟩ − α

2
∥Xk+1 −Xk∥2F

+ ⟨−τ k+1 − ξk+1
2 , yk+1 − yk⟩ − ρβ

2
∥yk+1 − yk∥2

=
α

2
∥Xk+1 −Xk∥2F +

ρβ

2
∥k+1 − yk∥2.

The proof is complete.

Now, we are ready to prove the convergence of the majorization method.

Theorem 3.3.1. Let {(Xk, yk)} be the sequence generated by the Algorithm 1.

Then the following three conclusions hold:

i) The infinite sequence {(Xk, yk)} is bounded.

ii) Any accumulation point (X∗, y∗) of {(Xk, yk)} is a solution to the penalized

problem (1.7).

iii) The sequence {Fρ(X
k, yk)} converges to the optimal value of (1.7).

Proof. i) Obviously, the infinite sequence {Xk} is bounded as the feasible set K is

bounded. Furthermore, by applying i) in Lemma 3.3.1, the infinite sequence {yk}
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is bounded because the sequence {yk} satisfy

∥yk∥1 ≤ Fρ(X
0, y0), for each k ≥ 0.

Thus, the infinite sequence {(Xk, yk)} is bounded.

ii) Assume that {(X∗, y∗)} is an arbitrary accumulation point of {(Xk, yk)}. Let

{(Xnk , ynk)} be a subsequence of {(Xk, yk)} such that {(Xnk , ynk)} converges to

(X∗, y∗). Since (Xnk+1, ynk+1) is an optimal solution to the following problem

min F̂ nk
ρ (X, y)

s.t. (X, y) ∈ K ,

we obtain that

0 ∈

 ∇Xg1(X
nk , ynk) + α(Xnk+1 −Xnk)

ρβ(ynk+1 − ynk)


+

 0

∂y(ρg2(X
nk+1, ynk+1))

+NK(X
nk+1, ynk+1) ,

which is equivalent to

−

 ∇Xg1(X
nk , ynk) + α(Xnk+1 −Xnk)

ρβ(ynk+1 − ynk)

∈
 0

∂y(ρg2(X
nk+1, ynk+1))


+NK(X

nk+1, ynk+1). (3.14)

In addition, by the continuity of g1(·), it follows that

∇Xg1(X
nk , ynk) → ∇Xg1(X

∗, y∗), as k → ∞. (3.15)

Furthermore, by ii) in Lemma 3.3.1, we have

∞∑
k=0

α

2
∥Xnk+1 −Xnk∥2F +

∞∑
k=0

ρβ

2
∥ynk+1 − ynk∥2 ≤ Fρ(X

0, y0)− Fρ(X
∗, y∗),

which implies that

α(Xnk+1 −Xnk) → 0, as k → ∞ (3.16)
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and

ρβ(ynk+1 − ynk) → 0, as k → ∞. (3.17)

Hence, by combining (3.14), (3.15), (3.16), (3.17) and (b) in Proposition 2.1.1 of

Chapter 2, we know that

−

 ∇Xg1(X
∗, y∗)

0

 ∈

 0

∂y(ρg2(X
∗, y∗))

+NK(X
∗, y∗) ,

which equivalently means {(X∗, y∗)} is a solution to problem (1.7).

iii) Recall that Fρ(X
k, yk) is a nonincreasing sequence by i) in Lemma 3.3.1 and

it holds that

Fρ(X
k, yk) ≥ 0, for all k ≥ 0,

thus this sequence admits a limit. By applying the previous conclusion, it follows

that

lim
k→∞

Fρ(X
k, yk) = lim

k→∞
Fρ(X

nk , ynk) = Fρ(X
∗, y∗) .

This completes the proof.



Chapter 4
A Semismooth Newton-CG Method

4.1 Introduction

In this section, we give an introduction to the nonsmooth Newton’s method which

is a generalization of the classical Newton’s method.

Let F : ℜn → ℜn be a (locally) Lipschitz function. The nonsmooth Newton’s

method for solving F (x) = 0 is given by [29]

xk+1 = xk − V −1
k F (xk), Vk ∈ ∂F (xk), k = 0, 1, 2 . . . , (4.1)

where x0 is an initial point.

A counterexample in [15] indicates that the above iterative method may not

converge. However, Qi and Sun [29] show that the iterate sequence generated by

(4.1) converges superlinearly if F is a semismooth function. In our thesis, it seems

that the classical Newton’s method is improper. Furthermore, there may not exist

quadratic convergence. We mainly borrow the essential idea of Qi and Sun [25] to

construct the inexact globalized semismooth Newton’s method.

22
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4.2 The semismooth Newton-CG method for the

inner problem

In this section, we focus on the inner problem (3.8) generated in the kth step of

Algorithm 1, which is equivalent to the optimization problem as follows:

min g(X, y)

s.t. A(X) = b+ y ,

X ∈ Sn
+ ,

(4.2)

where

g(X, y) =
1

2
∥H ◦ (Xk −G)∥2F + ⟨H ◦H ◦ (Xk −G) , X −Xk⟩+ α

2
∥X −Xk∥2F

+ρ
(
∥r∥1 +

β

2
∥r − rk∥2 +

∑
(i,j)∈Bl

(max(vij, 0) +
β

2
|vij − vkij|)

+
∑

(i,j)∈Bu

(max(wij, 0) +
β

2
|wij − wk

ij|)
)
,

A is defined in (1.4), b is defined in (1.5) and y is defined in (1.6). The corre-

sponding ordinary Lagrangian function L(X, y, z) : Sn
+ × ℜm × ℜm → ℜ is given

by

L(X, y, z) := g(X, y) + ⟨z, b−A(X) + y⟩ . (4.3)

To simplify the latter discussions, we give some notations and definitions in

advance. For any z1 ∈ ℜn, z2 ∈ ℜqe , z3 ∈ ℜql and z4 ∈ ℜqu , we denote z :=

(z1, z2, z3, z4) ∈ ℜn ×Rqe ×ℜql ×ℜqu ; Conversely, for any z ∈ ℜm, we characterize

z := (z1, z2, z3, z4), where z1 ∈ ℜn, z2 ∈ ℜqe , z3 ∈ ℜql and z4 ∈ ℜqu . The above

relationships also extend to the sets

{ (h1, h2, h3, h4, h) : h1 ∈ ℜn, h2 ∈ ℜqe , h3 ∈ ℜql , h4 ∈ ℜqu , h ∈ ℜm }

and

{ (d1, d2, d3, d4, d) : d1 ∈ ℜn, d2 ∈ ℜqe , d3 ∈ ℜql , d4 ∈ ℜqu , d ∈ ℜm }.



4.2 The semismooth Newton-CG method for the inner problem 24

Let A∗
1, A∗

2, A∗
3 and A∗

4 be the adjoints of A1, A2, A3 and A4, respectively, defined

by

A∗
1x := Diag(x), for x ∈ ℜn ,

A∗
2x :=

1

2

∑
(i,j)∈Be

xij(E
ij + Eji), for x ∈ ℜqe ,

A∗
3x :=

1

2

∑
(i,j)∈Bl

xij(E
ij + Eji), for x ∈ ℜql

and

A∗
4x :=

1

2

∑
(i,j)∈Bu

xij(E
ij + Eji), for x ∈ ℜqu .

Obviously, in (4.2), A : S → ℜm is surjective. The adjoint of A takes the following

form:

A∗z := A∗
1z1 +A∗

2z2 −A∗
3z3 +A∗

4z4, z ∈ ℜm.

Denote f : Sn → ℜ by

f(X) :=
1

2
∥H ◦ (X −G)∥2F , X ∈ Sn ,

then,

∇f(X) = H ◦H ◦ (X −G) .

Finally, we denote

D(z) :=
1

α
(∇f(Xk)−A∗z)

and

C(z) := f(Xk) + ⟨z, b−A(Xk) + yk⟩ − 1

2ρβ
∥z2∥2 −

1

2ρβ
∥z3∥2 −

1

2ρβ
∥z4∥2.

Given by the previous discussions, the Lagrangian dual problem of (4.2) is

max
z∈Rm

inf
X∈Sn

+
y∈ℜm

L(X, y, z) . (4.4)
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Let E : ℜm → ℜ be defined by

E(z) := − inf
X∈Sn

+
y∈ℜm

L(X, y, z), z ∈ ℜm . (4.5)

Then, (4.4) is equivalent to

min E(z)

s.t. z ∈ ℜm ,
(4.6)

where E(z) can be written as

E(z) = − inf
X∈Sn

+
y∈ℜm

[ α
2
(∥X −Xk +D(z)∥2F − ∥D(z)∥2F ) + ρ(∥r∥1 +

β

2
∥r − rk +

1

ρβ
z2∥2)

+ ρ(
∑

(i,j)∈Bl

max(vij, 0) +
β

2
∥v − vk +

1

ρβ
z3∥2) + ρ(

∑
(i,j)∈Bu

max(wij, 0)

+
β

2
∥w − wk +

1

ρβ
z4∥2) + C(z)

]
.

Recall the metric projection introduced in Section 2.3 of Chapter 2, we know

that

X ′ = ΠSn
+
(Xk −D(z)) (4.7)

is the optimal solution to the optimization problem

min
α

2
(∥X −Xk +D(z)∥2F − ∥D(z)∥2F )

s.t. X ∈ Sn
+ .

Therefore, E(z) can be equivalently written as

E(z) = −α
2
(∥Xk −D(z)− ΠSn

+
(Xk −D(z))∥2F − ∥D(z)∥2F )− inf

r∈ℜqe
ρβ(

1

β
∥r∥1

+
1

2
∥r − (rk − 1

ρβ
z2)∥2)− inf

v∈ℜql
ρβ(

1

β

∑
(i,j)∈Bl

max(vij, 0)

+
1

2
∥v − (vk − 1

ρβ
z3)∥2)− inf

w∈ℜqu
ρβ(

1

β

∑
(i,j)∈Bu

max(wij, 0)

+
1

2
∥w − (wk − 1

ρβ
z4)∥2)− C(z).
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By applying Position 2.4.1 in Chapter 2, we respectively obtain

∇z2( inf
r∈ℜqe

1

β
∥r∥1 +

1

2
∥r − rk +

1

ρβ
z2∥2) = − 1

ρβ
Π[− 1

β
, 1
β
](r

k − 1

ρβ
z2) , (4.8)

∇(z3)ij(inf
vij

1

β
max(vij, 0) +

1

2
∥vij − (vk)ij +

1

ρβ
(z3)ij∥2)

= − 1

ρβ
Π[0, 1

β
]((v

k)ij −
1

ρβ
(z3)ij), (i, j) ∈ Bl (4.9)

and

∇(z4)ij(inf
wij

1

β
max(wij, 0) +

1

2
∥wij − (wk)ij +

1

ρβ
(z4)ij∥2)

= − 1

ρβ
Π[0, 1

β
]((w

k)ij −
1

ρβ
(z4)ij), (i, j) ∈ Bu . (4.10)

Thus the gradient of E at z takes the following form:

∇zE(z) =


A1ΠSn

+
(Xk −D(z))

A2ΠSn
+
(Xk −D(z)) + Π[− 1

β
, 1
β
](r

k − 1
ρβ
z2)− rk + 1

ρβ
z2

−A3ΠSn
+
(Xk −D(z)) + Π[0, 1

β
](v

k − 1
ρβ
z3)− vk + 1

ρβ
z3

A4ΠSn
+
(Xk −D(z)) + Π[0, 1

β
](w

k − 1
ρβ
z4)− wk + 1

ρβ
z4

−b . (4.11)

For problem (4.2), the generalized Slater condition holds if A : Sn → ℜm is onto ,

∃ X ∈ int(Sn
+), ȳ ∈ ℜm such that A(X) = b+ ȳ ,

(4.12)

where ”int” denotes the topological interior of a given set. Under the generalized

Slater condition, we know that the famous Lagrangian dual approach described in

[31] holds. Hence, we can first solve the problem (4.6) to obtain a solution z∗ ∈ ℜm.

Next, by applying the example introduced in Section 2.4 of Chapter 2, we know

that the optimal solution to the following problem

inf
r∈ℜqe

(
1

β
∥r∥1 +

1

2
∥r − rk +

1

ρβ
z2∥2)
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is

r′ = P 1
β
∥·∥1(r

k − 1

ρβ
z2) = rk − 1

ρβ
z2 − Π[− 1

β
, 1
β
](r

k − 1

ρβ
z2) . (4.13)

Similarly, the optimal solution to the following problem

inf
v∈ℜql

(
1

β

∑
(i,j)∈Bl

max(vij, 0) +
1

2
∥v − vk +

1

ρβ
z3∥2)

is

(v′)ij = P 1
β
max(·,0)((v

k)ij −
1

ρβ
(z3)ij)

= (vk)ij −
1

ρβ
(z3)ij − Π[0, 1

β
]((v

k)ij −
1

ρβ
(z3)ij) , (i, j) ∈ Bl (4.14)

and the optimal solution to the following problem

inf
w∈ℜqu

(
1

β

∑
(i,j)∈Bu

max(wij, 0) +
1

2
∥w − wk +

1

ρβ
z4∥2)

is

(w′)ij = P 1
β
max(·,0)((w

k)ij −
1

ρβ
(z4)ij)

= (wk)ij −
1

ρβ
(z4)ij − Π[0, 1

β
]((w

k)ij −
1

ρβ
(z4)ij) , (i, j) ∈ Bu . (4.15)

Finally, by applying (4.7), (4.13), (4.14) and (4.15), the solution (X∗, y∗) of (4.2)

takes the following relationships as

X∗ = ΠSn
+
[Xk − 1

α
(∇f(Xk)−A∗z∗)]

and

y∗ =


0

r∗

v∗

w∗

 ,

where

u∗ = P 1
β
∥·∥1(r

k − 1

ρβ
z∗2) = rk − 1

ρβ
z∗2 − Π[− 1

β
, 1
β
](r

k − 1

ρβ
z∗2) ,
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v∗ = P 1
β
max(·,0)(v

k − 1

ρβ
z∗3) = vk − 1

ρβ
z∗3 − Π[0, 1

β
](v

k − 1

ρβ
z∗3)

and

w∗ = P 1
β
max(·,0)(w

k − 1

ρβ
z∗4) = wk − 1

ρβ
z∗4 − Π[0, 1

β
](w

k − 1

ρβ
z∗4) .

Note that the metric projector ΠSn
+
(·), Π[− 1

β
, 1
β
](·) and Π[0, 1

β
](·) fails to be contin-

uously differentiable. By observing (4.11), E can not be twice continuously differ-

entiable. Fortunately, ΠSn
+
(·), Π[− 1

β
, 1
β
](·) and Π[0, 1

β
](·) are strongly semismooth. In

this situation, we borrow the idea of Qi and Sun [25] to construct a quadratically

converging Newton’s method to solve the problem (4.6).

Denote

F (z) := ∇zE(z), z ∈ ℜm

Note that ΠK(·) is globally Lipschitz continuous with modulus 1 whenK is a closed

convex set. Thus, F is Lipschitz continuous on ℜm. From the contents in Section

2.1 of Chapter 2, we know that generalized Hessian of E at z ∈ ℜm is defined as

∂2E(z) := ∂F (z) = conv{∂BF (z)}.

For any z ∈ ℜm, we define

∂̂2E(z) :=
1

α
A∂ΠSn

+
(Xk −D(z))A∗

+
1

ρβ


0 0 0 0

0 I2 − ∂Π[− 1
β
, 1
β
](r̂) 0 0

0 0 I3 − ∂Π[0, 1
β
](v̂) 0

0 0 0 I4 − ∂Π[0, 1
β
](ŵ)

 ,

where I2 is an identity operator in ℜqe , I3 is an identity operator in ℜql , I4 is

an identity operator in ℜqu , r̂ = rk − 1
ρβ
z2, v̂ = vk − 1

ρβ
z3, ŵ = wk − 1

ρβ
z4 and



4.2 The semismooth Newton-CG method for the inner problem 29

A∂ΠSn
+
(·)A∗ takes the form of

A∂ΠSn
+
(·)A∗ :=
A1∂ΠSn

+
(·)A∗

1 A1∂ΠSn
+
(·)A∗

2 A1∂ΠSn
+
(·)(−A∗

3) A1∂ΠSn
+
(·)A∗

4

A2∂ΠSn
+
(·)A∗

1 A2∂ΠSn
+
(·)A∗

2 A2∂ΠSn
+
(·)(−A∗

3) A2∂ΠSn
+
(·)A∗

4

(−A3)∂ΠSn
+
(·)A∗

1 (−A3)∂ΠSn
+
(·)A∗

2 A3∂ΠSn
+
(·)A∗

3 (−A3)∂ΠSn
+
(·)A∗

4

A4∂ΠSn
+
(·)A∗

1 A4∂ΠSn
+
(·)A∗

2 A4∂ΠSn
+
(·)(−A∗

3) A4∂ΠSn
+
(·)A∗

4

 .

By [page75] in Clarke [7], for any h ∈ ℜm, we have

∂2E(z)h ⊆ ∂̂2E(z)h.

Now, we can borrow the Algorithm 5.1 in [25] or Algorithm 3.1 in [26] to solve

the problem (4.6).

Algorithm 2 (Semismooth Newton-CG Method) :

Step 0. Set the parameters as η ∈ (0, 1), µ ∈ (0, 1), σ ∈ (0, 1/2). Choose an

initial point z0 ∈ ℜm. Set k := 0.

Step 1. Compute an element Vk ∈ ∂̂2E(zk). Then apply the CG (Hestenes and

Stiefel [10]) or PCG to obtain a solution dk for the following equation

∇E(zk) + Vkd = 0 (4.16)

satisfying

∥∇E(zk) + Vkd
k∥ ≤ ηk∥∇E(zk)∥, (4.17)

where ηk := min{∥∇E(yk), η∥}. If (4.17) or

∇E(zk)Tdk ≤ −ηk∥dk∥2

is not satisfied, set dk := −B−1
k ∇E(zk), where matrix Bk is positive definite

in Sm.
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Step 2. Set tk := σjk and zk+1 := zk + tkd
k, where jk is the smallest nonnegative

integer j satisfying

E(zk + σjdk)− E(zk) ≤ µσj∇E(zk)Tdk .

Step 3. Set k := k + 1 and go to Step 1.

For implementing Algorithm 2, Vk is required at each kth step. Applying the

contents in Section 2.2 and Section 2.3 of Chapter 2, we can calculate one element

Vz ∈ ∂̂2E(z) as follows.

Denote

X(z) := ΠSn
+
[Xk − 1

α
(∇f(Xk)−A∗z)]

and

λ(z) := λ(X(z)).

Let X(z) admit the spectral decomposition as

X(z) = Pdiag(λ(z))P T , P ∈ OX(z).

Define three index sets of positive, zero and negative eigenvalues of λ(z), respec-

tively, as

α∗ := {i : λi(z) > 0}, β∗ := {i : λi(z) = 0}, γ∗ := {i : λi(z) < 0}.

Let Uz : Sn −→ Sn be defined by

UzH = P (Wz ◦ (P THP ))P T , H ∈ Sn, (4.18)

where

Wz :=


Eα∗α∗ Eα∗β∗ (vij)i∈α∗

j∈γ∗

ET
α∗β∗ 0 0

(vji)i∈α∗
j∈γ∗

0 0

 , vij =
λi(z)

λi(z)− λj(z)
, i ∈ α∗, j ∈ γ∗.
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From Pang, Sun and Sun [24], we know that Uz ∈ ∂BΠSn
+
(X(z)). Then for any

h ∈ ℜm, we can define Vz : ℜm → ℜm by

Vzh :=
1

α
A(Uz(A∗h)) +

1

ρβ


0

h2 − C2h2

h3 − C3h3

h4 − C4h4



=
1

α
AP (Wz ◦ (P T (A∗h)P ))P T +

1

ρβ


0

h2 − C2h2

h3 − C3h3

h4 − C4h4

 , (4.19)

where C2 is a qe × qe diagonal matrix such that

(C2)ii =

 0, if |(rk)i − 1
ρβ
(z2)i| > 1

β

1, if |(rk)i − 1
ρβ
(z2)i| ≤ 1

β
,

(4.20)

C3 is a ql × ql diagonal matrix such that

(C3)ii =

 0, if |(vk)i − 1
ρβ
(z3)i| > 1

β
or |(vk)i − 1

ρβ
(z3)i| < 0

1, if 0 ≤ |(vk)i − 1
ρβ
(z3)i| ≤ 1

β

(4.21)

and C4 is a qu × qu diagonal matrix such that

(C4)ii =

 0, if |(wk)i − 1
ρβ
(z4)i| > 1

β
or |(wk)i − 1

ρβ
(z4)i| < 0

1, if 0 ≤ |(wk)i − 1
ρβ
(z4)i| ≤ 1

β
.

(4.22)

By applying the results above, we obtain that Vzh ∈ ∂̂2E(z)h. In particular, we

do not need Vz explicitly in Algorithm 2.

4.3 Convergence analysis

In this section, we focus on the convergence analysis of the semismooth Newton-CG

method.
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In problem (4.2), the generalized Slater condition (4.12) naturally holds, then

the infinite sequence {zk} generated by Algorithm 2 is bounded. Furthermore,

this sequence has at least one accumulation point denoted by z∗. Here, z∗ is the

solution to problem (4.6). By borrowing the convergence results from Qi and Sun

[25] and Bai, Chu and Sun [2], we have the following theorem.

Theorem 4.3.1. Suppose that both {∥Bk∥} and {∥B−1
k ∥} in Algorithm 2 are

uniformly bounded. Then, any accumulation point z∗ of the infinite sequence {zk}

generated by Algorithm 2 is a solution to the problem (4.6). Moreover, if every

element in ∂̂2E(z∗) is positive definite at any z∗, then the infinite sequence {zk}

converges to solution z∗ of (4.6) quadratically.

In Theorem 4.3.1, the key point is to characterize the positive definiteness of

every element in ∂̂2E(z∗). Here, we need the concept of constraint nondegeneracy.

More details can be found in [5]. To apply the constraint nondegeneracy, we

reformulate (4.2) as follows:

min q(X, r, v, w, tr, tv, tw)

s.t. A1(X) = b1 ,

A2(X)− b2 = r ,

−A3(X)− b3 = v ,

A4(X)− b4 = w ,

X ∈ Sn
+ ,

(r, tr) ∈ Kr ,

(v, tv) ∈ Kv ,

(w, tw) ∈ Kw ,

(4.23)
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where

q(X, r, v, w, tr, tv, tw)

=
1

2
∥H ◦ (Xk −G)∥2F + ⟨H ◦H ◦ (Xk −G) , X −Xk⟩+ α

2
∥X −Xk∥2F

+ ρ(tr +
β

2
∥r − rk∥2 + tv +

β

2
∥v − vk∥2 + tw +

β

2
∥w − wk∥2) ,

Kr := { (r, tr) ∈ ℜqe+1 | tr ≥ ∥r∥1 } ,

Kv := { (v, tv) ∈ ℜql+1 | tv ≥
∑

(i,j)∈Bl

max(vij, 0) }

and

Kw := { (w, tw) ∈ ℜqu+1 | tw ≥
∑

(i,j)∈Bu

max(wij, 0) } .

Assume that z̄ is an optimal solution to problem (4.6). By recalling the rela-

tionship between primal variables and dual variables, we have

X = ΠSn
+
(Xk − 1

α
(∇f(Xk)−A∗z̄))

and

ȳ :=


0

r̄

v̄

w̄

 ,

where

r̄ = P 1
β
∥·∥1(r

k − 1

ρβ
z̄2) = rk − 1

ρβ
z̄2 − Π[− 1

β
, 1
β
](r

k − 1

ρβ
z̄2) ,

v̄ = P 1
β
max(·,0)(v

k − 1

ρβ
z̄3) = vk − 1

ρβ
z̄3 − Π[0, 1

β
](v

k − 1

ρβ
z̄3)

and

w̄ = P 1
β
max(·,0)(w

k − 1

ρβ
z̄4) = wk − 1

ρβ
z̄4 − Π[0, 1

β
](w

k − 1

ρβ
z̄4) .
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Obviously, (X, r̄, v̄, w̄, t̄r, t̄v, t̄w, z̄) is the KKT point to problem (4.23). Then, the

constraint nondegeneracy of (4.23) is

A1 0 0 0 0 0 0

A2 −I 0 0 0 0 0

−A3 0 0 −I 0 0 0

A4 0 0 0 0 −I 0

I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I





Sn

ℜqe

ℜ

ℜql

ℜ

ℜqu

ℜ


+



{0}m

lin
(
TSn

+
(X)

)
lin

(
TKr(r̄, t̄r)

)
lin

(
TKv(v̄, t̄v)

)
lin

(
TKw(w̄, t̄w)

)


=



ℜm

Sn

ℜqe

ℜ

ℜql

ℜ

ℜqu

ℜ



.

(4.24)

Equivalently, we can rewrite (4.24) as
A1 0 0 0 0 0 0

A2 −I 0 0 0 0 0

−A3 0 0 −I 0 0 0

A4 0 0 0 0 −I 0




lin

(
TSn

+
(X)

)
lin

(
TKr(r̄, t̄r)

)
lin

(
TKv(v̄, t̄v)

)
lin

(
TKw(w̄, t̄w)

)

 =


ℜn

ℜqe

ℜql

ℜqu

 . (4.25)

For any r̄ ∈ ℜqe , we define three index sets, respectively, as

Irp := { i : (r̄)i > 0 }, Irz := { i : (r̄)i = 0 }, Irn := { i : (r̄)i < 0 }.

From [7, Theorem 2.4.9], we can characterize TKr(r̄, t̄r) and lin
(
TKr(r̄, t̄r)

)
as

TKr(r̄, t̄r) := {(d, s) ∈ ℜqe+1 | s ≥
∑
i∈Irp

di −
∑
i∈Irn

di +
∑
i∈Irz

|di| } (4.26)

and

lin
(
TKr(r̄, t̄r)

)
:= {(d, s) ∈ ℜql+1 | s =

∑
i∈Irp

di−
∑
i∈Irn

di , di = 0, for i ∈ Irz}. (4.27)
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Similarly, for any v̄ ∈ ℜql and w̄ ∈ ℜqu , we define six index sets, respectively, as

Ivp := { i : (v̄)i > 0 }, Ivz := { i : (v̄)i = 0 }, Ivn := { i : (v̄)i < 0 }

and

Iwp := { i : (w̄)i > 0 }, Iwz := { i : (w̄)i = 0 }, Iwn := { i : (w̄)i < 0 }.

Then we can characterize TKv(v̄, t̄v), TKw(w̄, t̄w), lin
(
TKv(v̄, t̄v)

)
and lin

(
TKw(w̄, t̄w)

)
respectively as

TKv(v̄, t̄v) := {(d, s) ∈ ℜql+1 | s ≥
∑
i∈Ivp

di +
∑
i∈Ivz

max(di, 0)} , (4.28)

TKw(w̄, t̄w) := {(d, s) ∈ ℜqu+1 | s ≥
∑
i∈Iwp

di +
∑
i∈Iwz

max(di, 0)} , (4.29)

lin
(
TKv(v̄, t̄v)

)
:= {(d, s) ∈ ℜql+1 | s =

∑
i∈Ivp

di , di = 0, for i ∈ Ivz} (4.30)

and

lin
(
TKw(w̄, t̄w)

)
:= {(d, s) ∈ ℜqu+1 | s =

∑
i∈Iwp

di , di = 0, for i ∈ Iwz} . (4.31)

Let λ1 ≥ · · · ≥ λn be the eigenvalues of X being arranged in the non-increasing

order. Denote ζ := {i | λi > 0, i = 1, · · · , n}. Then there exists an orthogonal

matrix P ∈ ℜn×n such that

X = P

 Λζ 0

0 0

P T , (4.32)

where Λζ is the diagonal matrix whose diagonal entries are λi for i ∈ ζ. Denote

ϑ := {1, 2, · · · , n}\ζ. Let P := [PζPϑ] with Pζ ∈ ℜn×|ζ| and Pϑ ∈ ℜn×|ϑ|. From [1],

we can characterize TSn
+
(X) and lin

(
TSn

+
(X)

)
as

TSn
+
(X) = {B ∈ Sn | P T

ϑ BPϑ ∈ Sn
+} (4.33)
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and

lin
(
TSn

+
(X)

)
= {B ∈ Sn | P T

ϑ BPϑ = 0}. (4.34)

With the above preparations given, we first prove the following theorem.

Theorem 4.3.2. Assume that (X, ȳ, t̄r, t̄v, t̄w, z̄) is the KKT point to problem

(4.23). Let P be an orthogonal matrix such that X has the spectral decomposition

as in (4.32). Then the following three conclusions are equivalent:

i) The primal constraint nondegeneracy (4.25) of problem (4.23) holds.

ii) Any element in ∂̂2E(z̄) is symmetric and positive definite.

iii) Vz̄ (calculated by the method introduced in section 2) ∈ ∂̂2E(z̄) is symmetric

and positive definite.

Proof. ”i) ⇒ ii)” Step 1:

Suppose that V is an arbitrary element in ∂̂2E(z̄), by applying Proposition 2.4.2

in Chapter 2, we know that any element in ∂P 1
β
∥·∥1(r

k − 1
ρβ
z̄2) is symmetric and

positive semidefinite, any element in ∂P 1
β
max(·,0)(v

k − 1
ρβ
z̄3) is symmetric and posi-

tive semidefinite, any element in ∂P 1
β
max(·,0)(w

k − 1
ρβ
z̄4) is symmetric and positive

semidefinite and any element in ∂ΠSn
+
(X) is symmetric and positive semidefinite,

hence, V is symmetric and positive semidefinite.

Step 2:

Since V is an element in ∂̂2E(z̄), then there existW1 ∈ ∂ΠSn
+
(X), V2 ∈ ∂P 1

β
∥·∥1(r

k−
1
ρβ
z̄2), V3 ∈ ∂P 1

β
max(·,0)(v

k − 1
ρβ
z̄3) and V4 ∈ ∂P 1

β
max(·,0)(w

k − 1
ρβ
z̄4) such that

V h =
1

α
AW1A∗h+

1

ρβ
V2h2 +

1

ρβ
V3h3 +

1

ρβ
V4h4 , for any h ∈ ℜm . (4.35)
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Assume that there exits a d ∈ ℜm such that ⟨d, V d⟩ = 0. On one hand, by applying

Proposition 2.4.2 in Chapter 2, we have

⟨d , AW1A∗d⟩ = ⟨A∗d , W1A∗d⟩ ≥ ∥W1A∗d∥2 ,

⟨d2 , V2d2⟩ ≥ ∥V2d2∥2 ,

⟨d3 , V3d3⟩ ≥ ∥V3d3∥2

and

⟨d4 , V4d4⟩ ≥ ∥V4d4∥2 ,

which implies

W1A∗d = 0 ,

V2d2 = 0 ,

V3d3 = 0

and

V4d4 = 0 .

In addition, by the definition of Jacobian amicability and Proposition 2.3.1 of

Chapter 2, it follows that

A∗d ∈
(
lin(TSn

+
(X))

)⊥
. (4.36)

On the other hand, by applying (4.25), for this d ∈ ℜm, there existX1 ∈ lin
(
TSn

+
(X)

)
,

(r1, tr1) ∈ lin
(
TKr(r̄, t̄r)

)
, (v1, tv1) ∈ lin

(
TKv(v̄, t̄v)

)
and (w1, tw1) ∈ lin

(
TKw(w̄, t̄w)

)
such that


A1 0 0 0 0 0 0

A2 −I 0 0 0 0 0

−A3 0 0 −I 0 0 0

A4 0 0 0 0 −I 0





X1

r1

tr1

v1

tv1

w1

tw1


=


d1

d2

d3

d4

 . (4.37)
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Thus, we obtain 

d1 = A1(X1) ,

d2 = A2(X1)− r1 ,

d3 = −A3(X1)− v1 ,

d4 = A4(X1)− w1 .

(4.38)

With the above preparations, by applying (4.36) and (4.38), we have

⟨d , d⟩

= ⟨A1(X1) , d1⟩+ ⟨A2(X1)− r1 , d2⟩+ ⟨−A3(X1)− v1 , d3⟩+ ⟨A4(X1)− w1 , d4⟩

= ⟨A∗
1d1 , X1⟩+ ⟨A∗

2d2 , X1⟩ − ⟨r1 , d2⟩+ ⟨−A∗
3d3 , X1⟩ − ⟨v1 , d3⟩

+⟨A∗
4d4 , X1⟩ − ⟨w1 , d4⟩

= ⟨A∗d , X1⟩ − ⟨r1 , d2⟩ − ⟨v1 , d3⟩ − ⟨w1 , d4⟩

= −⟨r1 , d2⟩ − ⟨v1 , d3⟩ − ⟨w1 , d4⟩ . (4.39)

Recall the characterization of TKr(r̄, t̄r) (4.26) and lin
(
TKr(r̄, t̄r)

)
(4.27), we obtain

that

(r1)i = 0 , for any i ∈ {j : r̄j = 0} .

Moreover, by direct calculation, we know that there exists a number χr ∈ [0, 1],

such that

(V2d2)i =

 (d2)i , if r̄i ̸= 0

χr(d2)i , if r̄i = 0 .
(4.40)

Since V2d2 = 0, it follows that

(d2)i = 0 , for any i ∈ {j : r̄j ̸= 0}.

Hence,

⟨r1 , d2⟩ = 0 .

Similarly, recall the characterization of TKv(v̄, t̄v) (4.28), TKw(w̄, t̄w) (4.29), lin
(
TKv(v̄, t̄v)

)
(4.30) and lin

(
TKw(w̄, t̄w)

)
(4.31), we obtain that

(v1)i = 0 , for any i ∈ {j : v̄j = 0}
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and

(w1)i = 0 , for any i ∈ {j : w̄j = 0} .

By direct calculation, we also know that there exist two numbers χv ∈ [0, 1] and

χw ∈ [0, 1], such that

(V3d3)i =

 (d3)i , if v̄i ̸= 0

χv(d3)i , if v̄i = 0
(4.41)

and

(V4d4)i =

 (d4)i , if w̄i ̸= 0

χw(d4)i , if w̄i = 0 .
(4.42)

Since V3d3 = 0 and V4d4 = 0, it follows that

(d3)i = 0 , for any i ∈ {j : v̄j ̸= 0}

and

(d4)i = 0 , for any i ∈ {j : w̄j ̸= 0} .

Hence, we have

⟨v1 , d3⟩ = 0

and

⟨w1 , d4⟩ = 0 .

Therefore, by (4.39), we obtain that

⟨d , d⟩ = 0 ,

which implies that d = 0. We conclude that the nonsingularity of V holds.

Step 3:

By combining the conclusions in Step 1 and Step 2, we know that V is symmetric

and positive definite. The proof is complete.
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”ii) ⇒ iii)” It is obviously true since Vz̄ ∈ ∂̂2E(z̄).

”iii) ⇒ i)” We prove this conclusion by contradiction. Assume on the contrary

that the primal constraint nondegeneracy (4.25) of problem (4.23) does not hold.

Firstly, for simplicity, we denote

Z :=


A1 0 0 0 0 0 0

A2 −I 0 0 0 0 0

−A3 0 0 −I 0 0 0

A4 0 0 0 0 −I 0




lin

(
TSn

+
(X)

)
lin

(
TKr(r̄, t̄r)

)
lin

(
TKv(v̄, t̄v)

)
lin

(
TKw(w̄, t̄w)

)

 .

Then, there exists 0 ̸= d ∈ ℜm such that d ∈ Z⊥, namely, there exists 0 ̸= d ∈ ℜm

such that, for any X ∈ lin
(
TSn

+
(X)

)
, any (r, tr) ∈ lin

(
TKr(r̄, t̄r)

)
, any (v, tv) ∈

lin
(
TKv(v̄, t̄v)

)
and any (w, tw) ∈ lin

(
TKw(w̄, t̄w)

)
, we have

⟨


A1(X)

A2(X)− r

−A3(X)− v

A4(X)− w

 , d
⟩
= 0 , (4.43)

which implies

⟨A1(X) , d1⟩+ ⟨A2(X)− r , d2⟩+ ⟨−A3(X)− v , d3⟩+ ⟨A4(X)− w , d4⟩

= ⟨A∗
1d1 , X⟩+ ⟨A∗

2d2 , X⟩ − ⟨r , d2⟩+ ⟨−A∗
3d3 , X⟩ − ⟨v , d3⟩

+⟨A∗
4d4 , X⟩ − ⟨w , d4⟩

= ⟨A∗d , X⟩ − ⟨r , d2⟩ − ⟨v , d3⟩ − ⟨w , d4⟩

= 0. (4.44)

By noting that d ∈ Z⊥, we can set X = 0. Then (4.43) reduces to

⟨r , d2⟩+ ⟨v , d3⟩+ ⟨w , d2⟩ = 0 ,
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together with (4.44), it follows that

⟨A∗d , X⟩ = 0 , for any X ∈ lin
(
TSn

+
(X)

)
. (4.45)

Secondly, recall the characterization of TSn
+
(X) (4.33) and lin

(
TSn

+
(X)

)
(4.34),

for any X ∈ lin
(
TSn

+
(X)

)
, we have

0 = ⟨A∗d , X⟩

= ⟨P TA∗dP , P TXP ⟩

= ⟨

 P T
ζ A∗dPζ P T

ζ A∗dPϑ

P T
ϑ A∗dPζ P T

ϑ A∗dPζ

 ,

 P T
ζ XPζ P T

ζ XPϑ

P T
ϑ XPζ 0

⟩.
It follows that

P T
ζ A∗dPζ = 0 (4.46)

and

P T
ζ A∗dPϑ = 0. (4.47)

Thirdly, by recalling the definition of Vz̄ in (4.19), we have

⟨d , Vz̄d⟩ =
1

α
⟨d , AUz̄A∗d⟩+ 1

ρβ
⟨d2 , d2 − C2d2⟩

+
1

ρβ
⟨d3 , d3 − C3d3⟩+

1

ρβ
⟨d4 , d4 − C4d4⟩. (4.48)

Denote

t′2 :=
∑
i∈Irp

(d2 − C2d2)i −
∑
i∈Irn

(d2 − C2d2)i .

By the characterization of TKr(r̄, t̄r) (4.26), we can obtain that

(d2 − C2d2, t
′
2) ∈ TKr(r̄, t̄r),

which implies that

⟨d2 , d2 − C2d2⟩ = 0. (4.49)



4.3 Convergence analysis 42

Similarly, denote

t′3 :=
∑
i∈Irp

(d3 − C3d3)i

and

t′4 :=
∑
i∈Iwp

(d4 − C4d4)i .

By the characterization of TKv(v̄, t̄v) (4.28) and TKw(w̄, t̄w) (4.29), we can obtain

that

(d3 − C3d3, t
′
3) ∈ TKv(v̄, t̄v)

and

(d4 − C4d4, t
′
4) ∈ TKw(w̄, t̄w) ,

which implies that

⟨d3 , d3 − C3d3⟩ = 0 (4.50)

and

⟨d4 , d4 − C4d4⟩ = 0. (4.51)

Moreover, by applying (4.46) and (4.47), we obtain that

⟨d , AUz̄A∗d⟩

= ⟨A∗d , Uz̄A∗d⟩

= ⟨P TA∗dP , Wz̄ ◦ (P TA∗dP )⟩

= ⟨

 0 0

0 Q

 ,

 Eζζ Ω12

ΩT
12 0

 ◦

 0 0

0 Q

⟩
= 0 , (4.52)

where Q ∈ ℜ|ϑ|×|ϑ| and Ω12 ∈ ℜ|ζ|×|ϑ|.

Finally, by combining (4.48), (4.49), (4.50), (4.51) and (4.52), we obtain

⟨d , Vz̄d⟩ = 0 ,
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which contradicts with the positive definiteness of Vz̄. This completes the proof.

Now, we are ready to prove the convergence result of Algorithm 2 which is similar

to Theorem 3.5 in [26].

Theorem 4.3.3. Let the sequence {zk} be generated by Algorithm 2 which is

applied to solve the problem (4.6). Assume that both {∥Bk∥} and {∥B−1
k ∥} in

Algorithm 2 are uniformly bounded. If the primal constraint nondegeneracy (4.25)

of problem (4.23) holds at the accumulation point of the sequence {zk}, then the

whole sequence {zk} quadratically converges to the unique solution of (4.6).

Proof. Firstly, since the generalized Slater’s condition (4.12) of problem (4.2) nat-

urally holds, then the sequence {zk} is bounded and has at least one accumulation

point which is denoted by z∗. Furthermore, by applying Theorem 4.3.1, we know

that the accumulation point z∗ solves the optimization problem (4.6), i.e., it is an

optimal solution to problem (4.6). Finally, since the primal constraint nondegener-

acy (4.25) of problem (4.23) holds at z∗, by applying Theorem 4.3.1 and Theorem

4.3.2, it follows that the whole sequence {zk} quadratically converges to z∗. This

completes the proof.



Chapter 5
Numerical Experiments

5.1 Implementation issues

In this section, we address several practical issues in the numerical implementation

for solving the problem (1.3).

i) CG in Newton’s method.

To solve (4.16) more efficiently, we need a proper preconditioner to ap-

ply PCG method instead of CG method. In our numerical implementation,

we borrow the essential idea developed in [9, 39] to design an approximate

diagonal preconditioner. We denote by A the matrix representation of A

defined in (1.4) with respect to the standard basis in Sn and UM the matrix

representation of Uz defined in (4.18) with respect to the standard basis in

ℜm. Then the coefficient matrix in (4.16) can be represented as AUMA
T . By

noting that the special structure of A, we can easily compute

d(i,j) := ((P ◦ P )Wz(P ◦ P )T ))(i,j), for 1 ≤ i ≤ j ≤ n ,

whereWz and P are defined in (4.18). Thus we simply use diag(A(Diag(d))AT )

44
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as our diagonal preconditioner for AUMA
T . Numerical results indicate that

this preconditioner works well.

Besides (4.16), we have another choice to calculate the Newton direction,

i.e., we apply the PCG method to the following perturbed Newton equation:

∇E(zk) + (Vk + ϵkI)d = 0 , (5.1)

where εk = min(10−3, 0.1∥∇E(zk)∥). Since Vk is positive semidefinite for

each k ≥ 0, then the matrix (Vk+ ϵkI) is also positive definite for each k ≥ 0.

ii) The stopping criterion.

We terminate Algorithm 2 if ∥∇zE(z)∥ < 10−5. Moreover, we terminate

Algorithm 1 if
∥Xk+1 −Xk∥F
max(∥Xk∥F , 1)

< tol

and
∥yk+1 − yk∥
max(∥yk∥, 1)

< tol ,

where tol = 10−4. Finally, we let Cont denote the total number of constraints

and Con1 denote the number of the constraints which the solution satisfies.

Once ρ is updated, we let Con2 denote the number of the constraints which

the later solution satisfies. We terminate the whole algorithm if

|Con1− Con2|
|Cont|

≤ ra or ρ > 2000 .

where ra = 0.01%. Actually, other stopping criterion can also be used. For

example, we can terminate the whole algorithm if

|Con1− Con2| = 0 or ρ > 2000 .

It depends on the practical need.
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To achieve a faster convergence rate, we apply a so-called continuation

technique in our numerical implementation. Generally speaking, at the first

step of the majorization method, we set a tolerance for the inner problem in

advance; later, for any k ≥ 1, we introduce a parameter called CTk and input

min(CTk × ∥∇zkE(z
k)∥ , 10−5 ) as a tolerance for the inner problem at the

(k+1)th step. Hence, we can balance the accuracy between outer problem

and inner problem.

iii) Parameters and settings.

In our numerical implementation, we set the Lipschitz constant α as the

maximum value in the matrix H ◦H. Let β = 0.005, η = 0.01, µ = 10−4 and

σ = 0.5. We choose the initial penalty parameter ρ to be 10 and update it by

multiplying 5. In fact, the users can choose the other initial value of ρ and

increase ρ by multiplying other factors. It depends on the practical need.

For simplicity, we fix Bk = I for all k > 0. We start from the initial points

as X = G, r = 0, v = 0, w = 0. We define the ratio as probe := 2qe
n(n−1)

,

probl :=
2ql

n(n−1)
and probu := 2qu

n(n−1)
respectively.

5.2 Numerical results

In this section, we report our numerical results. The numerical experiments are

performed on CPU of Core Duo 2.26 GHz and RAM of 4.00 GB. The version of

matlab is 7.9.0. The testing examples are given blow.

Example 5.2.1 We set the ratio probe = [0.001, 0.01, 0.1, 0.3], probl = 0.1 and

probu = 0.1 respectively. We take lij = −0.3 for (i, j) ∈ Bl and uij = 0.3 for

(i, j) ∈ Bu. eij is randomly generated with all entries uniformly distributed in

[-0.3, 0.3]. The weight matrix H is randomly generated with all entries uniformly
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distributed in [0.1, 1]. The correlation matrix G is the 387× 387 1-day correlation

matrix from RiskMetrics(15 June 2006). For testing purposes we set G as

G := 0.9G+ 0.1C ,

where C is a randomly generated symmetric matrix with entries in [−1, 1].The

matlab code is load x.mat; G = subtract(x); C = 2*rand(387)-1; C = ( C + C’)/2;

G = 0.9 *G + 0.1 *C; G = G -diag(diag(G)) + eye(387).

Example 5.2.2 We set n = [500, 1000] and the ratio probe = [0.001, 0.01, 0.1, 0.3],

probl = 0.1 and probu = 0.1 respectively. We take eij = Gij, lij = −0.3 for

(i, j) ∈ Bl and uij = 0.3 for (i, j) ∈ Bu. The weight matrix H is generated in the

same way as in Example 5.2.1. A correlation matrix G is first generated by using

MATLAB’s built-in function ”randcorr”. Then we set G as

G := 0.9G+ 0.1C ,

where C is s randomly generated symmetric matrix with entries in [−1, 1]. The

matlab code is x = 10.̂ [-4:4/(n-1):0]; G = gallery(’randcorr’,n*x/sum(x)); C =

2*rand(n)-1; C = (C + C’)/2; G = 0.9*G + 0.1*C; G = G - diag(diag(G)) +

eye(n).

Example 5.2.3 We set n = [500, 1000] and the ratio probe = [0.001, 0.01, 0.1],

probl = 0.1 and probu = 0.1 respectively. We take lij = −0.3 for (i, j) ∈ Bl and

uij = 0.3 for (i, j) ∈ Bu. eij is randomly generated with all entries uniformly

distributed in [-0.3, 0.3]. The weight matrix H is generated in the same way as in

Example 5.2.1. G is a randomly generated symmetric matrix with Gij ∈ [−1, 1]

and Gii = 1.0, i, j = 1, 2, · · · , n. The matlab code is G = 2* rand(n) -1; G = (G

+ G’)/2 - diag(diag(G)) + eye(n).

Example 5.2.4 All the data are the same as in Example 5.2.1 except that we

set eij = Gij and probe = [0.001, 0.01, 0.1].
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Example 5.2.5 All the data are the same as in Example 5.2.2 except that

eij is randomly generated with all entries uniformly distributed in [-0.3, 0.3] and

probe = [0.001, 0.01, 0.1].

Example 5.2.6 All the data are the same as in Example 5.2.3 except that we

set eij = Gij.

Our numerical results are reported in Tables 5.1–5.6. ”Ratio” stands for the

ratio of the constraints which the solution satisfies. ”Time” stands for the total

computing time measured in seconds. ”Hard.inf” stands for the hard infeasibility

measured by ∥diag(I) − diag(X)∥∞. ”Soft.fix” stands for the soft infeasibility od

rij, (i, j) ∈ Be measured by ∥r∥∞. ”Soft.low” stands for the soft infeasibility of

vij, (i, j) ∈ Bl measured by min(−vij), for (i, j) ∈ Bl. ”Soft.upp” stands for the

soft infeasibility of wij, (i, j) ∈ Bu measured by max(wij), for (i, j) ∈ Bu.

From the numerical results reported in Tables 5.1–5.6, we can see that our algo-

rithm achieves a decent accuracy on hard infeasibility and soft infeasibility simulta-

neously if the problem is feasible. The soft infeasibility decreases and the ”Ratio”

increases along with the increase of ρ. If the problem is infeasible, our algorithm

also achieves a decent accuracy on the hard infeasibility. To some degree, our al-

gorithm adjusts the value of ”Ratio” and the soft infeasibility by increasing the

value of ρ. In another word, we achieve a relatively approximate solution after our

algorithm terminates. All the tested examples show that our algorithm is efficient

and robust.
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Table 5.1: Testing results for Example 5.2.1

probe (ρ,Ratio) Time Hard.inf Soft.fix Soft.low Soft.upp

0.001 (10,99.98%) 104.9 5.326e-07 4.040e-02 -1.454e-07 1.919e-07

(50,100%) 18.79 7.163e-07 1.876e-06 -1.076e-07 5.701e-07

0.01 (10,99.94%) 116.4 3.341e-07 2.286e-01 -7.608e-08 1.418e-07

(50,100%) 53.66 9.497e-07 1.066e-06 -1.392e-07 3.708e-07

0.1 (10,99.94%) 105.2 2.123e-07 1.398e-01 -3.874e-08 3.982e-08

(50,100%) 40.00 4.640e-07 3.972e-07 -6.028e-08 7.677e-08

0.3 (10,72.07%) 188.4 2.784e-09 4.261e-01 -5.340e-10 4.194e-10

(50,72.31%) 268.7 4.879e-08 4.308e-01 -6.333e-10 1.296e-08

(250,72.40%) 446.8 1.558e-07 4.309e-01 2.684e-08 -3.004e-09

(1250,72.41%) 1943 7.084e-09 4.309e-01 -1.230e-09 9.272e-10

Table 5.2: Testing results for Example 5.2.2

(probe,n) (ρ,Ratio) Time Hard.inf Soft.fix Soft.low Soft.upp

(0.001,500) (10,100%) 76.88 5.949e-08 5.207e-08 4.483e-02 -4.156e-02

(0.01,500) (10,100%) 72.19 1.774e-08 1.006e-08 -2.297e-09 -3.397e-03

(0.1,500) (10,100%) 88.96 5.355e-08 5.909e-08 3.831e-02 -3.232e-02

(0.3,500) (10,100%) 152.3 3.594e-07 1.024e-07 2.397e-03 -4.426e-02

(0.001,1000) (10,100%) 539.6 6.110e-08 2.949e-08 8.180e-02 -9.463e-02

(0.01,1000) (10,100%) 498.5 3.212e-08 1.361e-08 9.773e-02 -8.888e-02

(0.1,1000) (10,100%) 669.1 4.520e-08 1.405e-08 1.034e-01 -8.734e-02

(0.3,1000) (10,100%) 1163 4.790e-07 1.032e-07 1.136e-01 -1.267e-01
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Table 5.3: Testing results for Example 5.2.3

(probe,n) (ρ,Ratio) Time Hard.inf Soft.fix Soft.low Soft.upp

(0.001,500) (10,100%) 90.92 9.630e-08 7.107e-08 -3.881e-08 5.852e-08

(0.01,500) (10,100%) 84.26 1.235e-07 7.446e-08 -2.373e-08 2.357e-08

(0.1,500) (10,99.99%) 189.0 2.464e-07 3.999e-03 -4.996e-08 6.210e-09

(50,100%) 195.2 1.293e-07 5.159e-08 -7.585e-09 1.179e-08

(0.001,1000) (10,100%) 546.0 8.380e-08 1.037e-07 -2.036e-08 2.386e-08

(0.01,1000) (10,100%) 826.1 3.090e-07 1.163e-07 -3.806e-08 2.451e-08

Table 5.4: Testing results for Example 5.2.4

probe (ρ,Ratio) Time Hard.inf Soft.fix Soft.low Soft.upp

0.001 (10, 100%) 117.0 5.413e-07 3.961e-07 -8.907e-08 2.072e-07

0.01 (10, 99.95%) 126.9 4.449e-07 1.191e-01 -7.024e-08 3.125e-07

(50, 99.99%) 96.15 7.759e-07 4.701e-02 -1.771e-07 3.253e-07

(250, 99.99%) 121.4 5.847e-07 4.268e-02 -1.179e-07 2.636e-07

0.1 (10, 94.67%) 212.9 3.793e-07 4.798e-01 -2.358e-02 3.403e-01

(50, 95.34%) 294.2 8.316e-09 4.731e-01 -9.080e-03 3.232e-01

(250, 95.45%) 517.0 5.706e-09 4.757e-01 -8.788e-05 3.155e-01

(1250, 95.45%) 1614 7.551e-09 4.783e-01 -3.034e-09 3.144e-01
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Table 5.5: Testing results for Example 5.2.5

(probe,n) (ρ,Ratio) Time Hard.inf Soft.fix Soft.low Soft.upp

(0.001,500) (10,100%) 83.92 7.470e-08 5.425e-08 3.067e-09 -8.153e-03

(0.01,500) (10,100%) 108.8 4.354e-08 4.943e-08 5.048e-02 4.025e-09

(0.1,500) (10,100%) 191.6 4.533e-07 7.801e-08 7.374e-02 -5.836e-02

(0.001,1000) (10,100%) 486.0 8.210e-08 4.330e-08 8.723e-02 -8.577e-02

(0.01,1000) (10,100%) 631.7 1.312e-07 1.149e-07 9.354e-02 -1.063e-01

Table 5.6: Testing results for Example 5.2.6

(probe,n) (ρ,Ratio) Time Hard.inf Soft.fix Soft.low Soft.upp

(0.001,500) (10,100%) 149.6 5.654e-07 3.369e-07 -1.426e-07 1.792e-07

(0.01,500) (10,99.85%) 208.5 2.884e-07 2.754e-01 -5.863e-08 5.941e-08

(50,99.97%) 440.0 6.152e-07 2.176e-01 -2.373e-07 1.167e-07

(250,99.97%) 731.4 9.454e-07 2.152e-01 -2.393e-07 1.448e-07

(0.1,500) (10,80.91%) 122.8 3.297e-07 9.502e-01 -8.738e-08 7.569e-08

(50,81.40%) 227.3 5.097e-09 9.617e-01 -1.505e-09 1.231e-09

(250,81.52%) 349.5 3.705e-09 9.811e-01 -1.759e-09 1.315e-09

(1250,81.52%) 1054 4.748e-09 9.852e-01 -1.831e-09 1.694e-09

(0.001,1000) (10,99.99%) 1438 5.209e-07 1.011e-01 -1.734e-07 1.859e-07

(50,100%) 713.0 1.017e-06 1.665e-06 -8.501e-08 4.042e-08



Chapter 6
Conclusions

In this thesis, we applied the essential idea of the exact penalty method to solve

the problem (1.2), i.e., we consider the following penalized problem:

min Fρ(X, r, v, w)

s.t. Xii = 1 , i = 1, 2, . . . , n ,

Xij − eij = rij , (i, j) ∈ Be ,

lij −Xij = vij , (i, j) ∈ Bl ,

Xij − uij = wij , (i, j) ∈ Bu ,

X ∈ Sn
+ ,

(6.1)

where

Fρ(X, r, v, w) :=
1

2
∥H ◦ (X −G)∥2F + ρ

( ∑
(i,j)∈Be

|rij|+
∑

(i,j)∈Bl

max(vij, 0)

+
∑

(i,j)∈Bu

max(wij, 0)
)

and ρ > 0 is a given penalty parameter that decides the allocated weight to the

prescribed constraints in the objective function.

Initially, we applied the idea of majorization method to deal with (6.1) by solving

a sequence of unconstrained inner problems iteratively. Moreover, we analyzed the
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convergence to ensure the efficiency of our majorization method. Secondly, based

on the metric projection and the Moreau-Yosida regularization, we derived out the

inner problem by the Lagrangian dual approach. Furthermore, we took advantage

of the strongly semismooth to overcome the difficulty that the objective function

in inner problem was not twice continuously differentiable. Then we proposed a

semismooth Newton-CG method to solve the inner problem. Finally, we analyzed

the convergence properties of our semismooth Newton-CG method by the using

constraint nondegeneracy. The numerical results were reported and showed that

our method was efficient and robust.

Our method opens up a way to deal with the problem (1.2) even if it may

become infeasible. Some interesting questions in this aspect are worth further

study. For example, how do the practitioners identify the constraints which are

hard to satisfy and further deal with them according to the different practical need?

These questions are left for future research.
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[20] K. Löwner, Über monotone matrixfunktionen, Mathematische Zeitschrift, 38

(1934) 177–216.

[21] F.W. Meng, D.F. Sun and G.Y. Zhao, Semismoothness of solutions to gener-

alized equations and the Moreau-Yosida regularization, Mathematical Pro-

gramming, 104 (2005) 561–581.

[22] R. Mifflin, Semismooth and semiconvex functions in constrained optimiza-

tion, SIAM Journal on Control and Optimization, 15 (1977) 959–972.

[23] J.M. Otega and W.C. Rheinboldt, Iterative Solutions of Nonlinear Equations

in Several Variables, Academic Press, New York, 1970.

[24] J.S. Pang, D.F. Sun and J. Sun, Semismooth homeomorphisms and strong

stability of semidefinite and Lorentz complementarity problems, Mathemat-

ics of Operations Research, 28 (2003) 39–63.



Bibliography 57

[25] H.D. Qi and D.F. Sun, A quadratically convergent Newton method for com-

puting the nearest correlation matrix, SIAM Journal on Matrix Analysis and

Applications, 28 (2006) 360–385.

[26] H.D. Qi and D.F. Sun, Correlation stress testing for value-at-risk: an un-

constrained convex optimization approach, Computational Optimization and

Applications, 45 (2010) 427–462.

[27] H.D. Qi and D.F. Sun, An augmented Lagrangian dual approach for the

H-weighted nearest correlation matrix problem, IMA Journal of Numerical

Analysis, 31(2) (2011) 491–511.

[28] L.Q. Qi and D.F. Sun, Nonsmooth and smoothing methods for NCP and VI,

Encyclopedia of Optimization, C. Floudas and P. Pardalos (editors), Kluwer

Academic Publisher, USA, (2001) 100–104.

[29] L.Q. Qi and J. Sun, A nonsmooth version of Newton’s method, Mathematical

Programming, 58 (1993) 353–367.

[30] R.T. Rockafellar, Convex Analyis, Princeton University Press, Princeton,

1970.

[31] R.T. Rockafellar, Conjugate Duality and Optimization, SIAM, Philadelphia,

1974.

[32] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer, Berlin,

1998.

[33] D.F. Sun, Convex functions and the Moreau-Yosida regularization, Lecture

Notes, Department of Mathematics, National University of Singapore, March

2011.



Bibliography 58

[34] D.F. Sun and J. Sun, Semismooth matrix valued functions, Mathematics of

Operations Research, 27 (2002) 150–169.

[35] D.F. Sun and J. Sun, Löwners operator and spectral functions in Euclidean

Jordan algebras, Mathematics of Operations Research, 33 (2008) 421–445.

[36] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones, Optimization Methods and Software, 11/12 (1999) 625–

653.
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