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Summary

The mitochondrial free radical theory of aging (mFRTA) implicates reactive oxygen species

(ROS) as the causal agent of degeneration of mitochondrial genome integrity and subse-

quent cellular respiratory dysfunctions, leading to tissue degeneration and aging. While

several premises of mitochondrial theory of aging are intensely debated, there exist over-

whelming evidence supporting the importance of mtDNA mutations in aging. Significant

contests in the premises of mFRTA are associated with high uncertainty in the reported

age-dependent mitochondrial data such as the mtDNA mutation burden in cells. The

source of such variability may be multifaceted, including both intrinsic cellular stochas-

ticity and variability due to measurement protocols. In addition, while there exists ample

amount of experimental evidence hinting for the direct role of mitochondria and mtDNA

in cellular physiology and aging, there is still a large knowledge gap in understanding the

mechanisms of origin and accumulation dynamics of mtDNA mutations during aging.

Consequently, to better understand mtDNA mutation dynamics during aging, the focus

of the present thesis revolves around the following aspects:

? to develop parsimonious stochastic models of mtDNA mutation dynamics that en-

compass only the most relevant biological processes, in order to elucidate the origin,

mechanism and consequences of mutation accumulation,

? to design experiments that minimize variability associated with mtDNA mutation

measurements, i.e. maximize the signal-to-noise ratio, and
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? to develop practical kinetic parameter estimation methods for stochastic models

based on either single cell or cell population level data.

In order to capture the stochasticity associated with the inherent mtDNA turnover dy-

namics, a stochastic model of mouse heart tissue was developed based on chemical master

equation (CME). The first model captured the random drift of mtDNA mutations in heart

tissue during the embryonic development and post-natal life of mouse population. The

model specifically simulated the mtDNA point mutation accumulation in both wild-type

and mutator mice. The model was formulated as a Markov based framework of CME

and solved using a Monte Carlo approach known as the Stochastic Simulation Algorithm

(SSA). The simulation outcome signified the coupling between experimental variability

and intrinsic stochasticity of mtDNA mutation within the measurement data. The con-

tribution of measurement variability to the overall data uncertainty, arising due to the

statistically suboptimal sampling procedure, was observed to be substantial and thereby

causing significant uncertainty in determining the trend of mtDNA mutation accumula-

tion dynamics from the experimental data. Model simulations further indicated that de

novo mutations during embryonic development play a critical role in post-birth mutation

accumulation in postmitotic tissues like heart. This effect was found to be much more

prominent in the case of mutator mice, where much of the high mutation burden in the

heart tissue was already acquired at birth, as seen in the experiments as well.

One paradox associated with the role of mtDNA mutations in cellular aging is the ex-

tent of tissue level mutation burden found in homogenate studies. Although mutation

load have been found to increase with age, the overall mutation burden was found to be

below any functionally relevant level, considering cells contain several hundred copies

of mtDNA. Single cell studies have greatly contributed in resolving this mystery by in-

dicating focal accumulation of mtDNA mutations in some cells of a tissue. Such focal

accumulation resulted from a process know as clonal expansion, which has been found to

Suresh Kumar Poovathingal
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cause degeneration of post mitotic tissue like heart and brain. Since the exact mechanism

of clonal expansion is not known completely, a stochastic modeling framework of mtDNA

mutation dynamics was also developed to gain insights into the origin and dynamics of

this process. The first model described above was extended to include nuclear retrograde

signaling in rat cardiomyocytes. The model was further modified to test different hypoth-

esis commonly proffered to explain the clonal expansion process. Simulation results indi-

cated that random segregation of mtDNA copies during developmental cell lineage with

replicative advantage of mutant mtDNA in the presence of nuclear retrograde response

was required to best validate the experimental data. Similar to the results obtained from

the point mutation model, the expansion of de novo mtDNA mutations during embryogen-

esis was found to play an important role in mosaicity of mtDNA mutation burden in cells

of postmitotic tissue.

Further, the stochastic mtDNA mutation models developed above were integrated into

a multi-scale hybrid modeling (stochastic and deterministic) framework to gain under-

standing of the etiology and progression of sarcopenia, an important pathology associated

with aging. Turnover dynamics of mtDNA in muscle progenitor cells during embryogen-

esis was simulated using stochastic model, while the progression of mtDNA mutations in

muscle fibers after birth was modeled using a reaction-diffusion partial differential equa-

tion, describing the active transport of mtDNA and clonal expansion. Key attributes of rat

skeletal muscle, such as the extent of clonal expansion in muscle fiber at different ages were

validated against the experimental data. Simulation results further indicated that mtDNA

diffusivity parameter, which has been observed to be modulated by the mitochondrial

fusion-fission process, plays a very important role in the progression of sarcopenia and

the subsequent tissue degeneration. Particularly, parametric sensitivity analysis of the hy-

brid model provided insights on the development and progression of sarcopenia, thereby

providing important insights into the possible interventions to retard/prolong the severity

Suresh Kumar Poovathingal
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of sarcopenia. Specifically, using the hybrid model, different hypothesized mechanisms of

the beneficial effects of caloric restriction in retarding the progression of sarcopenia was

analyzed. Simulation results indicated that the ability of the post-mitotic cells to sustain

enhanced stress, in terms of withstanding higher cellular mtDNA mutation burden, might

be a potential mechanism to explain the intervention of CR in reducing the progression of

sarcopenia.

Model simulations pointed to a large uncertainty in the mutation estimation data,

which arise from the sampling protocol of single molecules into real-time PCR wells in the

Random Mutation Capture (RMC) assay. In this thesis, an alternative protocol was pro-

posed based on a statistical modeling of the protocol. The statistical design of experiment

was developed using linearized variance propagation analysis and Monte Carlo methods.

The design of experiment revealed an optimal dilution factor of about 1.6 mutant DNA

template per well quantifying unamplified wells, compared to 0.1 template per well of the

conventional RMC assay quantifying amplified wells. Experimental validation and simula-

tion results indicated that the optimized protocol produced a substantial improvement in

measurement accuracy (reduction in the measurement variability) and 10-times improve-

ment in the information offered per PCR well, i.e. the optimal protocol can achieve the

same coefficient of variation using one-tenth the number of wells in the original assay.

Finally, the determination of "kinetic" rate constants of stochastic models, like those

mentioned above, is non-trivial and is one of the most critical challenges faced in the de-

velopment of such models. While there exist methods for deterministic models (e.g. for

differential equations), the identification of kinetic parameters for stochastic models is not

yet routine. In this thesis, several parameter estimation methods for CME models have

been proposed that utilizes data from single cell measurements or cell population study

(e.g. flow cytometry). The methods were developed based on maximum likelihood and

probability density distance objective functions. Application to examples demonstrated
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that these methods can provide accurate and robust estimates of the kinetic rate constants.
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Chapter 1

Introduction

1.1 Theories of aging

Biological aging may be described as a process of intrinsic, progressive and generalized

physical deterioration that occurs over time, beginning at about the age of reproductive

maturity. Aging is therefore characterized by declining ability to respond to stress and by

increasing the homeostatic imbalance and incidence of pathology, and death remains the

ultimate consequence of aging [1, 2]. Organismal aging cannot be characterized as disease,

however, the incidence of several diseases increase exponentially with advancing age. Ex-

cept in the case of prokaryotes, some protists and some multi-cellular eukaryotes, the rate

of aging varies enormously among different species, with some species dying within days

and several others surviving for more than a century [3, 4]. To distinguish species that

age without undergoing physical deterioration, "senescence" is commonly preferred com-

pared to aging.

The prime motivation of gerontological research, like any other biological research is to

understand and appreciate the mechanisms that cause cellular pathology and eventually

result in organismal death and further possibly develop interventions that can reverse

the process of aging [2]. In recent decades, there has been enormous increase in aging

related research [2, 5, 6]. This can be primarily attributed to: (i) extraordinary lengthening

of average & maximum human life span, (ii) the consequent increase in the proportion of

elderly in the population and, (iii) the related increases in the proportion of national health

care expenditures.
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Biogerontology is a vast and diversified field, which is littered with large number of

aging theories. An attempt by Medvedev to rationalize the multiplicity of aging hypothe-

ses resulted in a listing of more than 300 theories of aging [7]. Advances in experimental

techniques to investigate the phenomenological complexities of the aging phenotypes, has

helped clear the path towards unraveling the mechanisms of aging process [2]. Also, with

recent development of different theoretical approaches, a significant simplification of the

theoretical underpinnings of aging research has resulted. Nevertheless, the intrinsic com-

plexity of aging remains a significant challenge in understanding how aging is caused.

Several studies have indicated that the search for a single cause of aging, such as a single

gene or the decline of the functionality of a key body system may be futile and aging may

be considered as a complex multi-factorial process [8, 9]. Several processes may interact

simultaneously and may operate at several levels of functional organization [10].

Some of the most widely used classification of aging theories are: programmed and error

theories. According to the programmed theories, aging depends on biological clocks reg-

ulating the timetable of lifespan through different stages of organism’s life. The regulation

depends on genes modulating the signals that control different tissue systems responsible

for cellular homeostasis. Greater details on the programmed and evolutionary theories of

aging can be found elsewhere [2, 4, 11]. The error theories however, identify environmen-

tal insults to cellular systems (like, mitochondrial DNA damage, oxygen radicals accumu-

lation, DNA cross linking, accumulation of other damaged macromolecules like proteins

and lipids) to cause cellular morbidity. Since the error theories have recently gained much

of the interest in the gerontological research domain [2, 6], the focus of the present dis-

sertation is on aging arising as a consequence of accumulation of cellular macromolecule

damage. Subsequent sections below discusses some of the important theories on molecu-

lar mechanisms of aging.
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1.2 Molecular mechanisms of aging

Several research findings indicate that one of the most important mechanisms associated

with aging are related to damage of cellular macromolecules. However, it should be noted

that by the virtue of the complexity of aging process, none of the mechanisms discussed

below may be sufficient to explain the process, independently. A close interplay between

different mechanisms may be manifesting the organism and cellular level aging. In the

text below, highlights of some of the major theories attributing the molecular mechanisms

to aging process are described:

Somatic Mutation Theory: Age-dependent accumulation of somatic mutations and other

types of damage to DNA cause an increase in cellular morbidity [2]. In this case, it

has been suggested that capacity of DNA repair and the associated accumulation of

the DNA mutations may be an important determinant of the aging rate at the cellular

and organismal level. However, it is not yet clear whether the age-related increase

in somatic mutations result from an increase in the damaging agents or decreased

ability of senescent cells to repair DNA [12].

Telomere Loss Theory: In mitotic tissue, a progressive decline in cellular division capac-

ity with age appears to be linked to the shortening of telomeres, which protects the

chromosome ends [13]. This is known as the "end-replication problem" - the inability

of normal DNA copy machinery to proceed copying to the end of the DNA strand.

This occurs due to the absence of the enzyme telomerase, which is normally expressed

only in germline cells (in testes and ovaries) and in certain adult stem cells. In the

case of somatic tissues, it has been suggested that the absence of telomerase activ-

ity acts as an intrinsic cellular division check, perhaps to protect the cells against

runaway cell divisions, as in cancers [14]. The telomere shortening in some cells

limit its proliferative life span. The telomere loss and the subsequent onset of the

replicative senescence have been proposed to contribute to cellular aging and other
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age-associated diseases [15]. Cellular stress and inflammatory responses have an

accelerated influence on the telomere shortening [16].

A significant challenge to the role of telomere shortening in the context of aging

comes from the studies related to yeast and rodent. A mutant strain of yeast, EST-1

exhibits ever increasing telomere shortening. However for this stain, it has been ob-

served that there is no immediate loss of viability [17]. Also, in the case of normal

aging in yeast, it has been seen that aging process is not accompanied with shorten-

ing of telomeres. In certain rodents, which are not specifically long lived, have been

found to have immensely long telomeres [17].

Altered Protein/Waste Accumulation Theory: Protein turnover is essential to preserve

the cellular functionality by removing the damaged or redundant proteins from the

cell. Accumulation of damaged proteins occur due to age-dependent impairment

of protein turnover mechanism, which results in range of age-related disorders, in-

cluding cataract, Alzheimer’s and Parkinson’s diseases [18]. Chaperones and Protea-

somes are main caretakers in the maintenance of protein integrity. It has been found

that their functionality also decreases with aging [19, 20].

Age related accumulation of lipofuscin in secondary lysosomes of postmitotic cells

have been implicated to cause cellular aging [21]. Lipofuscin is derived from nonen-

zymatic glycosylation of long lived proteins [22] and DNA [23]. Inhibition of lyso-

somal enzymes has been found to accelerate the accumulation of lypofuscin in brain

[24]. However, In the context of the relevance of lipofuscin accumulation in cellular

aging, what is still unclear is, whether the accumulation is itself damaging to cell or

simply the consequence of a more fundamental problem that is directly relevant to

cellular aging.

Network Theory of aging: Early proliferation in different aging theories have resulted

from the consideration of individual aspects of aging as discrete independent pro-
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cesses, and thus can only provide incomplete explanation for the complex aging pro-

cess. However, due to possibly large scale interactions and dependencies among dif-

ferent competing mechanisms, a reductionist approach may prove to be inefficient.

This led to an initiative of considering "network theories" of aging, in which the con-

tribution of various mechanisms are considered together in capturing the interac-

tions and potential synergisms among different aging processes [6, 9]. Development

of such model networks can provide significant insight into the difference between

"upstream" mechanisms that sets a process in train and "end stage" mechanisms that

dominate different cellular phenotypes at the end of its life [8]. For example, a grad-

ual accumulation of mtDNA mutations occurring over several years may result in

steady increase in production of ROS and a gradual decline in energy production.

Although the buildup of mtDNA mutations initiates the process, what ultimately

destroys the cell, is the threshold at which the homeostatic mechanism fails. Under-

standing these connections are likely to be important in developing effective inter-

ventions against age-related cellular deterioration.

Mitochondrial Theory of aging: An important connection between oxidative stress and

aging, is the accumulation of mtDNA mutations with age [25]. Age related increase

of different types of mutations have been found to be associated with different types

of tissues like skeletal muscle [26], brain [27], heart [28] and gut tissue [29]. Cells

in which the mtDNA mutations reach a certain critical threshold, are likely to suffer

from impaired ATP production resulting in a decline of tissue bioenergesis [25]. As

hypothesized by Harman, free radicals produced in the course of cellular energy

metabolism leads to oxidative damage of mitochondrial macromolecules [1, 30]. This

is one of the factors that is responsible for aging and degenerative diseases according

to Free Radical Theory of Aging (FRTA). Since the mitochondrial theory of aging is

the major focus of the present thesis, greater details on mitochondrial components
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and the consequence of mtDNA mutations on the mitochondrial respiratory process

and the cellular aging/morbidity will be outlined in the subsequent sections.

1.3 Mitochondria

Mitochondria are cellular organelles that are primarily responsible for cellular energy syn-

thesis (Figure 1.1). It is now generally accepted that mitochondria are endosymbionts

which originated from purple bacteria around 1.5 billion years ago [31]. Most of the initial

details of how the symbiotic process developed into the present day cellular system are

largely unknown. The eubacteria is believed to have evolved into mitochondria, which

are able to safely replicate within the bounds of its host cell [32]. As a remnant from this

time, the symbiont has transferred most of its genetic functionality to the eukaryotic host.

The remaining genetic information exists in the form of a circular DNA known as the mito-

chondrial DNA (mtDNA). The intricate compartmentalization of mitochondria is of great

advantage to the cell due to greater energy production resulting from the larger surface

area available for ATP production. Although cells retained their ability to produce en-

ergy independent of mitochondria (by means of glycolytic pathway), most of the cellular

energy requirement is provided by the mitochondrial respiratory functions.

Figure 1.1 shows the internal organization of a mitochondrion. Mitochondria occupy a

substantial portion of cellular cytoplasmic volume, as they are a significant contributor for

the cellular energy requirements via the Oxidative Phosphorylation process (OXPHOS).

Earlier description of mitochondria was stiff, elongated cylindrical organelles, resembling

their predecessor bacteria. However, recent research have indicated that mitochondria are

remarkably mobile and plastic organelles, constantly changing their shapes and frequently

undergoing fusion and fission process with their neighboring members [34].

Mitochondrial morphology comprises of outer membrane, inner membrane and inner

mitochondrial matrix (Figure 1.1). The Krebs cycle (or Tri carboxylic acid cycle (TCA))
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Figure 1.1: Mitochondrion: Energy producing organelle of Eukaryotic cells. The structure of a
mitochondrion comprises of inner and outer phospholipid membranes, with the inner membrane
having a complex convoluted structure known as the cristae. The space within the inner mito-
chondrial membrane is called matrix and the space in between the inner and outer mitochondrial
membrane is know as the inter-membrane space. (illustration adapted and modified from [33]).

involved in the Adenosine tri phosphate (ATP) synthesis takes place in the mitochon-

drial matrix, and the respiratory chain complexes or the electron transport chain (ETC)

rest within the inner mitochondrial membrane. The proteins that make up the ETC are

synthesized from both the mitochondrial and nuclear DNA. The large surface area of the

highly convoluted inner mitochondrial membrane provides a higher energy yield per unit

volume of the organelle [32].

1.3.1 Oxidative phosphorylation process

In Eukaryotic cells, mitochondria generate energy by means of the OXPHOS. As discussed

earlier, apart from the OXPHOS process, eukaryotic cells utilize anaerobic glycolysis for

some of its energy requirements. However, glycolysis process is inefficient and gener-

ates only 2 ATP molecules for every glucose molecule. On the other hand, OXPHOS

process generates about 36 ATP molecules for every glucose molecule that is consumed
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during the cellular respiration [32, 35]. The glycolysis process takes place in the cytosol

and yields reducing equivalents like NADH. During this process, pyruvate is produced

as the end product and both pyruvate and NAD+ are transported into the mitochondrial

matrix, where they participate in Krebs cycle. In the Kreb’s cycle, energy rich electrons are

made available for NAD+ to form NADH (during Kreb’s cycle 3 molecules of NADH are

produced per cycle). NADH then carry the electrons and passes them to the ETC or the

electron transport system (ETS) complexes (Figure 1.2). Electrons are then transferred from

donors to downstream acceptors such as oxygen by a series of redox reactions. During the

transfer of electrons through the ETC complexes, the protons are pumped across the inner

mitochondrial membrane to create membrane potential, thus resulting in the generation

of ATP.

Figure 1.2: Oxidative Phosphorylation process and the Electron Transport Chain in the inner
mitochondrial membrane. The respiratory chain complex that make the ETC are: I.) Complex I
(NADH: dehydrogenase), II.) ubiquinone/ubiquinol complex, III.) Complex II (Succinate dehydro-
genase), IV.) Complex III (ferricytochrome-c oxidoreductase), V.) cytochrome - c, VI.) Complex IV
(cytochrome - c oxidase), VII.) Complex V (ATP synthase), and VII.) Uncoupling protein. A.) Elec-
tron donation by NADH. B.) Quinone electron transport (illustration adapted and modified from
[33]).
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1.3.2 Generation of Reactive Oxygen Species

The movement of electrons along the ETC subunits results in the generation of reactive in-

termediates. These reactive intermediates can inadvertently donate electrons to an oxygen

atom resulting in the formation of free radicals or Reactive Oxygen Species (ROS) in the

form of superoxide radicals (O−
2 ). Measurable ROS productions have been reported in at

least nine mammalian mitochondrial enzymes. These mitochondrial sources are: complex

- I, complex - III, cytochrome b5 reductase, monoamine oxidases, dihydroorotate dehydro-

genase, dehydrogenase of α-glycerophosphate, complex - II, aconitase and α-ketoglutarate

dehydrogenase complex. Complex-I [36–38] and Complex-III [39–41] of the mitochondrial

electron transport chain have been widely reported as the main source of mitochondrial

ROS production and thus the mechanisms of ROS production in these two mitochondrial

sites are briefly discussed in the subsequent paragraphs (Figure 1.2). Specifically, the elec-

tron transfer between conenzyme Q and Complex III is the main producer of ROS (Figure

1.2B). The extent of ROS production from the OXPHOS process depends on following two

factors: a.) Steady state levels of reactive intermediates in the ETC, and b.) the amount

of free oxygen available in the inner mitochondrial matrix (also know as the "oxygen ten-

sion"). The steady state level of reactive ETC intermediates depends on the energetic states

of mitochondria and on the respiratory efficiency of the OXPHOS process. On the other

hand, the propensity for a greater free radical production occurs when there is abundance

of oxygen in the inner mitochondrial matrix and the extent to which ETC is reduced is

high.

ROS generation at Complex I: Earlier studies indicated that isolated complex I can

generate superoxide in the presence of NADH [42]. The reaction apparently requires

tightly bound ubiquinone because it was inhibited by rotenone, an inhibitor that blocks

electron transfer in close proximity to the ubiquinone binding site. Studies with both iso-

lated complex I and submitochondrial particles demonstrated that a ROS producing site
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is located between flavin and rotenone and flavin binding site [43–45]. There are also sug-

gestions that ROS is most likely produced by one of the iron-sulfur centers and that there

may be more than one superoxide producing in these regions [43, 46].

Three major experimental paradigms have been used for studying the ROS production

attributed at complex I: a.) reverse electron transfer (RET), b.) rotenone induced ROS

production, and c.) ROS production in normally functioning respiratory chain.

Reverse electron transfer experiments involving submitochondrial particles, became

one of the first reported mitochondrial reactions supporting ROS production [44]. RET

reactions in the respiratory chain allows electron to be transferred against the gradient

of redox potential, from reduced coenzyme Q to NAD+, instead of oxygen. To proceed

with this thermodynamically unfavorable process, it has to be coupled with utilization of

energy of membrane potential.

Rotenone induced ROS production is observed in mitochondria oxidizing NAD+-linked

substrates such as pyruvate and glutamate [47, 48]. In mitochondria, rotenone-induced

ROS production requires very high degree of reduction of redox carriers upstream of

rotenone binding site [49]. Rotenone induced ROS production can be mimicked by in-

hibiting the respiratory chain down stream of rotenone binding sites, e.g., by complex III

inhibitor or cytochrome c depletion. These treatments induce the highly reduced state that

is required for ROS production [49].

In the absence of complex I inhibitors, ROS production supported by NAD+-linked

substrate is stimulated by high membrane potential [50]. These conditions also favor high

degree of reduction of redox carriers proximal to the proton pump of complex I. The de-

pendence of ROS production rate on the amplitude of membrane potential is not as steep

as in the case of RET, consistent with a more thermodynamically favorable process [50].

ROS generation at Complex III: As discussed earlier, complex III oxidizes coenzyme

Q (QH2) using cytochrome c as an electron acceptor. The oxidation of QH2 proceeds in a
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set of reaction known as Q-cycle coupled with vectorial translocation of protons, thereby

generating transmembrane potential. Complex III is capable of robust production of su-

peroxide [39–41]. Generally, it is believed that an unstable semiquinone formed at the

Q0 site is largely responsible for the superoxide formation [39, 51, 52]. According to the

classical Q-cycle hypothesis, inhibitors acting at the quinine reducing site, e.g. antimycin

A, prevents the transfer of the second electron to Qi site thereby causing accumulation of

unstable semiquinone at Q0 site [53], and thus generation of free radicals.

An increase in superoxide radical production can result, if the flow of electrons in the

ETC is inhibited. For example, if one of the complexes in ETC becomes dysfunctional

or has its conformational structure altered, then the flow of electron through ETC can be

hindered and proportion of reactive intermediates in the ETC can increase [54]. The inhi-

bition of flow of electron through the ETC can be caused due to the presence of mutated

mtDNA. Damaged proteins encoded by mutant mtDNA may be dysfunctional and can

hinder the flow of electrons in the ETC, and subsequently increase the formation of super-

oxide radicals. Due to damaging effects of ROS, nature has evolved an efficient defense

system against their actions. Figure 1.3A, describes some of the mechanisms involved in

reducing free radicals.

Oxygen is an essential component of life, but in the form of ROS, they are damaging

factors to cellular components. There are several pathways by which oxygen can accept

electrons in vivo as illustrated in Figure 1.3A. Amongst the different molecular states of

oxygen radicals (Figure 1.3A), the hydroxyl radicals are most mutagenic and can readily

react with any cellular biomolecules. An age-related increase in ROS-induced oxidative

damage to DNA, lipids, and proteins have been well documented [55, 56]. Figure 1.3B

illustrates an instance of mutagenic interaction of hydroxyl radical with DNA nucleotide

resulting in oxidized DNA damage. Oxidized DNA damage can further result in base

substitution during DNA replication resulting in mtDNA point substitution mutations.
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Furthermore, progressive increase in oxidative damage in mtDNA, and the consequential

increase in the genetic repair process with age have been found to cause DNA strand break

and subsequent formation of somatic mtDNA rearrangements (like partial deletions and

partial duplications) [57–60].

Mitochondria contribute about 20-30% of the steady state level of H2O2 in the cellular

cytosol [54]. The superoxide radical that is produced in the mitochondria cannot cross

biological membrane except in the protonated form, which may constitute a very minor

fraction of the superoxide being generated during the cellular respiration [61]. The super-

oxide radical present in the inter membrane space can diffuse into the cytosol through the

pores in the OMM, notably through the voltage-dependent anion channel (VDAC) [54].

Since mitochondria forms the major ROS produce in the cell, there is constant need

for protection of cellular macromolecules from the toxic action of these species. Such de-

fense is provided by several low-molecular-weight antioxidants, as well as several enzy-

matic defense systems (Figure 1.3A). Particularly, ubiquinone and vitamin E have been

found to play a very important role in mitochondrial antioxidant defense system. Most

important of the mitochondrial antioxidant protection is the tri-peptide glutathione, GSH

(L-γ-glutamyl-L-cysteinylglycine), and multiple GSH-linked enzymatic defense systems

(Figure 1.3A). Among the GSH-linked enzymes involved with mitochondrial antioxidant

defense system are the Glutathione peroxidases (Gpx) 1 and 4. Glutathione peroxidases

catalyze the reduction of H2O2 and various hydroperoxidase, with GSH as the electron

donor. Gpx1 is the major isoform and is localized predominantly in the cytosol, but a small

fraction is also present in the mitochondrial matrix. In contrast, Gpx4 is membrane asso-

ciated, with a fraction present in the mitochondrial inter-membrane space [62]. Gpx4 re-

duces hydrogen peroxide groups on phospholipids, lipoproteins and cholostrestrol-esters.

Gpx4 is considered to be the primary enzymatic defense against oxidative damage to cel-

lular membranes [63]. A recent addition to the member of the family of GSH-linked mi-
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tochondrial redox enzymes is the glutaredoxin 2 (Grx2), which has been thought to be

present in both mitochondria and cytosol [64].

The mitochondrial thioredoxin system, which comprises of thioredoxin (Trx2) and

thioredoxin reductase 2 (TrxR2), is another potential source of disulfide reductase activity

required for maintenance of mitochondrial proteins in their reduced state. Thioredoxins

catalyze reduction of proteins at much higher rates compared to Grxs [65]. The thioredoxin

system can also interact with the peroxiredoxins (Prx), which constitute a novel family of

thiol-specific peroxidases that rely on Trx as hydrogen donor for the reduction of hydro-

gen peroxide and lipid hydroperoxides [66]. One of the Prx isoform, Prx III is exclusively

found in the mitochondrial matrix [67]. Upon interaction with H2O2, the redox-sensitive

site Cys residue of the Prx III homodimer is oxidized to cys-SOH, which then reacts with

the neighboring Cys-SH of the subunit to form the intermolecular disulfide. The disul-

fide is reduced specifically by Trx2, which is subsequently regenerated by TrxR2 at the

expense of NADPH [68]. Despite the presence of such cellular ROS defense system, some

quantity of ROS inevitably escape and cause mutagenic damages to important cellular

macromolecules such as DNA.

Free radical generation in mitochondria is also regulated by another process arising as

a consequence of proton conductance across inner-membrane of mitochondria. OXPHOS

process is thought to be incompletely coupled since the proton leak across the inner mi-

tochondrial membrane can occur independent of the ATP synthesis [70]. Two respiration

pathways exist: a.) consumption of oxygen in the presence of oxidizable substrate and in

the presence of ADP to allow ATP production (state 3 respiration) and, b.) slow respira-

tion in the absence of ADP (state 4 respiration) [70, 71]. The uncoupling protein of the ETC

facilitates the proton cycling process. State 4 respiration increases disproportionally as the

proton gradient increases, which can be entirely explained by the proton leak across the

mitochondrial inner membrane [71, 72].
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Figure 1.3: Free radical chemistry and cellular anti-oxidant defense system. A.) Cellular defense
system against the mutagenic ROS actions (illustration adapted and modified from [69]). Figure
also illustrates the radical chemistry associated with the interaction of oxygen with free electrons
from the ETC to form different free radical species (red triangles). B.) 8-hydroxy-deoxyguanosine
(8OHdG) lesion formation in the presence of hydroxyl radical. In event of DNA replication, ox-
idized DNA nucleotide can mispair, resulting in the formation of point mutation. Predominant
mispair that can occur is the GC to AT transitions.

Proton leak is relatively high in perfused rat muscle. It comprises of 35% [73] and 50%

[74] of the basal respiration rate and the "futile" proton leak comes at a tremendous ener-

getic cost: roughly about 20-25% of rat’s basal metabolic rate [73]. Its persistence through-

out evolution, therefore implies a conferred advantage significant enough to necessitate

mitochondrial inefficiency.

The physiological benefit of proton leak arises due to incompletely coupled OXPHOS,

thus permitting the adjustment of energy metabolism to regulate metabolic homeostasis

and maintain body functions. In certain specific cell types, the proton leak includes ther-

mogenesis, maintaining carbon flux despite low ATP demand [75]. A general theory ex-

plaining the ubiquity of the proton leak process is the "uncoupling to survive" hypothesis
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[70]. Since mitochondrial superoxide production is steeply dependent on the proton gra-

dient [76, 77], the uncoupling to survive hypothesis proposes that the existence of proton

leak pathway in the mitochondrial respiration process is to minimize the oxidative ROS

production by modulating the proton gradient across the mitochondrial inner membrane

[70]. Proton leaks can be broadly classified into: a.) constitutive, basal proton conductance

and b.) regulated, inducible proton conductance catalyzed by the uncoupling proteins

(UCPs).

The mechanism responsible for the basal proton leak is not fully understood, but it

is believed that majority of basal proton conductance, is attributed to the abundance of

the adenine nucleotide translocase (ANT) [78]. In the case of regulated proton conduc-

tance, three proteins in the mitochondrial respiratory chain have been found to modulate

the proton leak: UCP1, UCP2 and UCP3. Studies on bioenergetics and inner membrane

composition of brown adipose tissue mitochondria led to the discovery of UCP1 [71, 79],

which basically dissipates the proton gradient in mammals during non-shivering ther-

mogenesis [80]. Aside from the thermogensis regulation of the UCP1, it also possesses

additional physiological roles of controlling body weight [81] and modulating oxidative

damage [82, 83].

UCP2 mRNA expression is ubiquitous in vertebrates, and proteins can be detected

in spleen, kidney, thymus, pancreas, central nervous system and macrophages [84, 85].

Expression of UCP3 is confined to skeletal muscle, brown adipose tissue and heart [86, 87].

Plants [88, 89] and birds [90, 91] also express these UCP orthologs. It is well established

that UCP2 and UCP3 do not catalyze adaptive, non-shivering thermogenesis [78]. There is

evidence that UCP2 [92, 93] and UCP3 [94] are protective against oxidative damage. These

UCPs have been suggested to provide local feedback in response to ROS damage and thus

lowering the proton gradient across the inner mitochondrial membrane [70]."
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Figure 1.4: Mammalian mito-
chondrial genome. The mito-
chondrial genome contain genes
for encoding 12S and 16S rRNA,
the subunits of Complex I(ND1,
ND2, ND3, ND4, ND4L, ND5
and ND6), Complex III (Cyt b),
Complex IV (COX I, COX II
and COX III) and Complex V
(A6 and A8) (also refer the Fig-
ure 1.3), and 22 tRNAs (one
letter amino acid nomenclature
in the figure). The origin of
heavy-strand (OH ), the light-
strand (OL) and the promoters
for the initiation of transcription
from the heavy-strand (HSP)
and the light-strand (LSP), are
illustrated in the figure by us-
ing arrows (illustration adapted
and modified from [33]).

1.3.3 Mitochondrial genetics

Each mitochondrion in mammalian cells contains about 2-10 molecules of mtDNA. Sev-

eral mtDNA molecules are bound to each other and tethered to inner mitochondrial mem-

brane by means of a nucleo-protein complex referred to as neucleoids [95]. In the last

decade progress has been made in identifying the composition of nucleoids. Several stud-

ies showed that yeast nucleoids include proteins that bind DNA and contain replication

and transcription factors such as the mitochondrial transcription factor A (TFAM), helicase

TWINKLE, polymerase-γ and mitochondrial single stranded binding proteins (mtSSB)

[96, 97]. Other structural proteins are also found in nucleoids [98].

Different types of somatic and germ line cells contain about 103 to 105 mtDNA molecules

per cell [99]. In mammals, mtDNA are maternally inherited because the cells obtain their

mtDNA exclusively from oocytes [99]. Human mtDNA is a plasmid-like closed circular

double-stranded DNA molecule containing 16,569 nucleosides. Mitochondrial DNA en-

codes for 12S small and 16S larger rRNAs, 22 tRNAs and 13 polypeptides all of which are

involved in the mitochondrial protein synthesis [32].

Figure 1.4 illustrates the details of mammalian mtDNA. The mtDNA are very com-
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pact molecule with no introns and intragenic sequences (Table 1.1). The compactness of

mtDNA is evident from the overlap between some of the genetic locus and that some of

the gene sequence lack termination codons [100]. Most of the genes are encoded by heavy

strand of mtDNA (2 rRNAs, 14 tRNAs and 12 polypeptides), while light mitochondrial

strand contains genes for one polypeptide and 8 tRNAs. Other than these mitochondrially

synthesized components, most of the mitochondrial proteome necessary for the synthesis

of ETC complex are generated by the nuclear gene synthesis (≈ 100 proteins) [99]. Further-

more, nuclear gene synthesis also contributes other proteins (≈ 1500 polypeptides) which

are necessary for general functioning of mitochondria.

Table 1.1: Comparison between mammalian nuclear and mitochondrial genome. (Table adapted from
[101])

Characteristics Nuclear Genome Mitochondrial Genome

Size ≈ 3.3× 109 bps 16,569 bps
DNA copy number
per cell

23 in haploid; 46 in diploid Several thousand copies per cell

Number of encoded
genes

≈ 20,000 – 30,000 37 (13 polypeptide, 22 tRNAs and 2
rRNAs)

Gene density ≈ 1 per 40,000 bps ≈ 1 per 450 bps
Introns Frequently found in most genes Absent
Percentage of coding
DNA

≈ 3% ≈ 93%

Associated proteins Nucleosome-associated histone
proteins and non-histone proteins

No histones; but associated with
several proteins to form nucleoids

Mode of inheritance Mendelian inheritance Maternal inheritance

Mitochondrial DNA mutations are primarily generated during mtDNA replication

process [102]. A detailed knowledge of mtDNA replication process is lacking, but essential

to have a greater understanding of the accumulation and dynamics of mtDNA mutations.

Presently, there are two models of mtDNA replication process. In accordance to the widely

accepted asymmetric mtDNA replication model, it is generally believed that the mtDNA

replication is a bidirectional process, where the mtDNA replication occurring in both the

directions, from two different initiation sites of mtDNA (OH and OL in Figure 1.4) [97].

The replication initiates at the heavy stand origin (OH ) and proceeds in the clock-wise di-

rection to about two-third of the mtDNA length, where the light strand origin exists (OL).
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Then, the replication of the light strand starts and proceeds in the anti-clockwise direction,

until two copies of mtDNA are produced. An alternative mtDNA replication model based

on the findings from a two dimensional agarose gel electrophoresis of mtDNA replica-

tion intermediates, indicated a strand coupled uni-directional replication from the heavy

strand replication origin (OH ) [103]. In both these replication models, the transient single

stranded conformation of mtDNA molecule makes the molecule more prone to mutagenic

events [104, 105].

1.3.4 Mitochondrial DNA mutagenesis

Damages to mtDNA have been implicated in aging and other mitochondrial degenera-

tive diseases, especially in the energetically active post-mitotic cells [27, 106, 107]. Mam-

malian mtDNA comprises of about 1-3% of the overall genetic material in a cell (Table

1.1) [107]. Several lines of evidence indicate that the contribution of mtDNA mutations

towards cellular physiology is much more significant than what would be expected from

its size & content [25, 108]. This arises due to the following reasons: (i) presumably higher

mutations in mtDNA than nDNA [30], (ii) Functional compactness of mtDNA molecules

(mtDNA has high density of coding sequence; Table 1.1), (iii) mtDNA encodes for some

critical polypeptides that are important for cellular OXPHOS process, and (iv) the defects

in ETC complexes caused by proteins generated from mutated mtDNA can affect the per-

formance of cellular energetics [25, 107, 108]. Mitochondrial mutations can generally be

classified into two types: (a) point mutations and (b) large-scale mtDNA rearrangements.

The large scale mtDNA rearrangements can further be classified into partial deletions and

partial duplications. It is found that mtDNA deletions are more commonly associated with

aging and mtDNA associated disease phenotypes than point mutations [109–111].

Point mutations involve a single base nucleotide replacement. Commonly quantified

biomarker of oxidative damage is 8OHdG, which can further lead to a point substitution
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upon DNA replication process. Such point substitutions play an important role in the

DNA mutagenesis [112, 113], and has been observed to increase with age in tissues of

different organisms [114, 115]. Mitochondrial point mutations are predominantly of GC

to AT, which is consistent with the mutation spectrum observed with the oxidative lesions

[102, 116].

Deletion mutations occur when a portion of DNA template is truncated. A majority

of mitochondrial deletions are located between the origins of replication (OH and OL),

also known as the major arc. These deletions may be caused by polymerase slippage,

homologous recombination, double strand break or inefficient repair mechanisms [58].

One of the most commonly found deletions that is associated with human mitochondrial

myopathies is the nt4977 deletion, also known as the ’common deletion’. This deletion

specifically disrupts the functions of mitochondrial complexes such as Complex I, IV and

V [107, 117]. Other types of deletions have been found to be associated with aging skeletal,

cardiac and neural tissues [26, 118].

Mitochondrial DNA mutations affect several different tissue types and the clinical

manifestations of these diseases are variegated [25, 108]. In these mitochondrial disease

phenotypes, pathogenic mtDNA mutation can severely impair the function of post mi-

totic tissues, which have higher energy demands. The extent and onset of pathology in

these organs are variable, depending on the mutation load in the cells of the tissue. Most

of mtDNA pathology is generally congenital and several human mitochondrial disorders

are linked to different types of mtDNA mutations (point mutations, deletions and mtDNA

duplications) [119, 120]. Since the early discovery of the mitochondrial role in these syn-

dromes [25, 121], several pathogenic mtDNA mutations have been found to be associ-

ated with mitochondrial myopathies [122]. A mitomap database listing > 290 pathogenic

point mutations, deletions and insertions is available at http://mitomap.org/ [123, 124].

Mitochondrial DNA deletions have been associated with several degenerative diseases
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like chronic progressive external opthalmoplegia (cPEO), Pearson’s syndrome and Kearns-

Sayre syndrome, Alzheimer’s disease, Parkinson’s disease, Huntington disease and sev-

eral other neuro-muscular degenerative diseases [125].

Despite the medical advances in characterizing the mitochondria-associated genetic

defects that lead to mitochondrial myopathies, the pathogenic mechanisms for such dis-

eases are still not completely understood. In particular the relationship between the pres-

ence of pathogenic mtDNA mutation and the occurrence of specific clinical symptoms

of disease phenotypes are still largely unclear. Functional studies of mutant mtDNA as-

sociated with overt mitochondrial disease phenotypes have shown that the biochemical

defects arising from same respiratory chain complex can lead to very different clinical

manifestations [123]. The population of mutants in a cell can vary significantly between

different cells and between different tissues within the same individual. The intrinsic ge-

netic variability in the origin and progression of respiratory deficiency is one of the ex-

planations for the existence of such stochasticity. The variable segregation of mutant and

wild-type mtDNA between the dividing cells during embryogenesis can also be used to

argue for tissue specific pathologies.

1.4 Research motivation - accumulation of mtDNA mutations in

aging

1.4.1 Mitochondrial Free Radical Theory of Aging

The free radical theory of aging (FRTA) or the oxidative stress theory of aging was orig-

inally proposed by Denham Harman in 1956, which postulates that age-related loss of

physiological functions of tissues occur due to progressive accumulation of free radical

damage of different cellular macromolecules. The accumulation of such damage eventu-

ally determines the life span of an organism [1]. Shortly after the discovery of mtDNA,
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Harman modified his original theory to include the role of mitochondria in producing cel-

lular oxidative stress and proposed that the mitochondria are both the source and target

of ROS. In subsequent years, the mFRTA was further refined by Miquel and colleagues

[126], who suggested that the accumulation of somatic mutations in mtDNA induced by

oxidative damages is the main cause of aging and age-related mitochondrial degenerative

diseases. The present version of mFRTA is based on the following five premises [127]:

? Mitochondria produce ROS as by-product of OXPHOS.

? Mitochondrial DNA are attached to the inner mitochondrial membrane, where cel-

lular respiration takes place. Due to their proximity to the ROS production site,

mtDNA are subjected to an elevated level of free radical attack.

? Mitochondrial DNA, unlike nuclear DNA (nDNA), are not protected by structural

proteins like histones, which offers protection to genomic material from free radical

attacks.

? Although mitochondria possess some DNA repair capabilities, they are primitive

and less developed than nuclear DNA.

? Mitochondrial DNA mutations can further elevate ROS production. This assump-

tion suggests that a small amount of initial mtDNA functional damage can trigger

an exponential increase in the ROS production, which further aggravates the mito-

chondrial damage, constituting a positive feedback mechanism, know as the ROS

"vicious cycle" (Figure 1.5).

There exists several ongoing debates in this field, which relate to the issue of causality:

are mtDNA mutations merely markers of biological aging, or do they cause the observed

decline in physiological function that contribute to the aging process? Some of the as-

sumptions of mFRTA have been proven invalid, while others are still intensely debated

due to the contradicting experimental data. An extensive discussion of these debates and
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Figure 1.5: Mitochondrial ROS Vicious Cycle. A putative positive feedback mechanism between
mtDNA and ROS is based on the hypothesis that ROS-induced damaged mtDNA produce defec-
tive components of the ETC, thereby increasing electron leakage in the OXPHOS process and ROS
production. The vicious cycle is expected to give an exponential expansion of mtDNA mutations
over time, which eventually causes the loss of mitochondrial function in generating ATP.

the related experimental evidence are summarized in recent reviews [107, 127]. One of the

hypothesis which is important for the present dissertation is the existence of ROS vicious

cycle. Earlier support for the existence of ROS vicious cycle was provided by experiments

conducted in cultured human neurons, where the disruption of the ETC was done using

RNA interference (RNAi). This experiment showed a significant increase in the oxidative

DNA damage and ROS production [128]. A similar study done using in vivo chemical

inhibition of complex I using retonone also led to irreversible damage of mitochondria

and resulted in an increased ROS production [129]. However, to investigate the functional

relevance of in vivo point mutation accumulation, transgenic mouse models carrying er-

ror prone mtDNA polymerase (mutator mouse model) have been created [116, 130, 131].

These mice have been found to accumulate high mutation burden in most tissues even at

a very young age, but interestingly, did not show any evidence of increased protein car-

bonyl levels, a biomarker of oxidative protein damage resulting from ROS induced dam-
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age. Similarly, age dependent increase of mtDNA oxidative damage was not observed

in these transgenic mice [132]. Thus, studies involving transgenic mouse models, which

can be viewed as a direct test of mitochondrial theory of aging, has produced inconsistent

results, thus challenging the core premise of mFRTA.

1.4.2 Mouse models - human aging phenotypes

Several of the earlier studies connecting mtDNA mutations and aging have been predomi-

nantly correlative, with unclear causality. Consequently, this resulted in persistent debates

over the basic premises of mFRTA. Despite these controversies, the direct evidence of the

role of mitochondria as both source and target of ROS mediated pathology, leading to

mammalian aging has been provided by several transgenic mouse model studies [133].

One important progress in this direction is the generation of mutator mice with tis-

sue specific disruption of nuclear gene encoding mitochondrial TFAM, and thus having

reduced mtDNA expression. A TFAM knockout mice, specific to dopaminergic neurons

were developed, which showed Parkinsonism phenotype by age of 20 weeks [134]. In

another model, knock-in mouse were engineered to specifically express human catalase

in peroxisomes, nucleus and mitochondria. Significant increase in the maximum and

medium life-span (up-to 21%) was observed in the transgenic mice expressing catalase

specifically in their mitochondria (MCAT mice), but neither in the nucleus nor in peroxi-

somes [135]. Furthermore, the MCAT mice have been shown to accumulate less than 50%

of mtDNA point mutation in their heart cells compared to age-matched wild-type cohort,

supporting the idea that ROS affects mtDNA mutation dynamics and the ROS mediated

mtDNA damages affect murine life-span.

As mentioned earlier, mutator mouse models carrying proof-reading deficient version

of mtDNA polymerase-γ (POLG), have been used to investigate mtDNA causality in ag-

ing. The first study considered tissue-specific mutator mice which only expressed the
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proof-reading deficient form of POLG in heart [136, 137]. These mice had increased levels

of mtDNA point mutations and deletion, and developed clinical signs of congestive heart

failure as early as 4 weeks after birth. Following on this work, tissues of "whole body" mu-

tator mouse models had 3 to 5 fold increase in mtDNA point mutations and mtDNA dele-

tions [116, 130, 131]. The increased mtDNA mutation burden in tissues of POLG knock-out

mice are associated with a number of aging phenotypes like hair loss, kyphosis, osteoporo-

sis, reduced fertility and anemia. These mice had significantly reduced life-span compared

to wild-type cohorts.

Pathogenic mutations in nuclear DNA encoding TWINKLE helicase has been identi-

fied in some human mitochondrial myopathies [138]. Transgenic mice expressing mutant

TWINKLE isoforms modeled after these mutations displayed progressive localized mito-

chondrial respiratory deficiency, particularly in the musculature (skeletal and heart) and

brain tissues. A mild myopathic syndrome was observed in these mouse models at about

1 year of age [139].

Another mouse model carrying mtDNA deletions has been created via a gene target-

ing protocol in mouse embryonic stem cells. These mice, referred to as "mito-mouse" [140],

carry a 4,696 bps deletions in their mtDNA. This deletion removes six tRNA and seven

structural genes from the mitochondrial genome. Mito-mice exhibited COX deficiency in

muscle fibers when the deletion burden was higher than 85%. Mosaic respiratory deficits

were noted predominantly in heart and kidney. These mice were also anemic and eventu-

ally died from renal failure by 200 days of age.

1.4.3 Mutation accumulation dynamics - significance of stochasticity

An important perspective towards understanding the role of mtDNA mutagenesis in ag-

ing relates to the mtDNA mutation dynamics. The mechanism by which mtDNA muta-

tions accumulate over time is yet to be clearly elucidated. Comprehending the dynamics

Suresh Kumar Poovathingal



1.4. Research motivation - accumulation of mtDNA mutations in aging 25

of mtDNA mutation accumulation in somatic cells forms the primary thesis of the present

dissertation. Two important observations discussed below motivated the development of

a theoretical framework in this dissertation, for the better understanding of mtDNA mu-

tation dynamics and its role in the aging process.

Uncertainty in age-dependent mtDNA mutation accumulation dynamics

Two recent experiments on mtDNA point mutation burden in mouse heart tissue by inde-

pendent investigators have indicated contrasting dynamics of mitochondrial point muta-

tion accumulation. Using standard polymerase chain reaction (PCR), cloning and sequenc-

ing techniques, Larsson’s group demonstrated that the accumulation of somatic mtDNA

point mutation in both wild-type and POLG mutator mouse heart tissue, to be approx-

imately a linear function of age (Figure 1.6A). However, using a highly sensitive muta-

tion quantification method, known as the Random Mutation Capture (RMC) assay, Loeb’s

group obtained point mutation burden data shown in Figure 1.6B. The authors subse-

quently suggested that the accumulation of mtDNA point mutations increase exponen-

tially with age, consistent with the ROS vicious cycle theory.

The RMC assay developed by Bielas and Loeb provided a sensitive estimation of the

mtDNA point mutation frequency [141]. However, as observed from the Figure 1.6B, pro-

tocol produces data that has significant amount of variability associated with them. The

presence of such high variability in the measurement data, introduces a significant chal-

lenge in understanding the underlying mtDNA mutation accumulation dynamics. Thus,

understanding the dynamics of mtDNA mutation accumulation from such noisy data re-

quires a careful interpretation of different sources of noise, which can arise from both the

intrinsic cellular stochasticity associated with the underlying mtDNA mutation process

and stochasticity arising from the measurement protocol. The inherent stochastic nature

of mtDNA point mutation process and challenges faced due to the quantification of ex-

tremely low mutation burden makes it imperative to optimize the experimental protocol
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Figure 1.6: Technological challenges in quantifying somatic mtDNA point mutations. (A) Lin-
ear age-dependent accumulation of mtDNA point mutation as measured using the conventional
PCR cloning method [132]. The plot shows mtDNA point mutation accumulation in mouse heart
tissue. The data has been sampled from mouse at embryonic day of 13.5 days, and 25 weeks and 40
weeks post natal. B.) Age-dependent accumulation of mtDNA point mutation as measured by the
RMC method [116], appears to be exponential. This plot illustrates the age-dependent (in weeks)
accumulation of mtDNA point mutation accumulation in heart and brain tissue of mice. These
plots are adapted from Trifunovic et al., 2005 [132] (Panel A) and Vermulst et al., 2007 [116] (Panel
B), respectively.

and to perform critical analysis of experimental data.

The search for mtDNA mutations that accumulate with aging was initially inspired by

the fact that certain type of mtDNA rearrangements and point mutations are profoundly

deleterious, when present in proportions that is at appreciable levels compared to the wild-

type mtDNA, and are commonly associated with overt diseases [25]. Interestingly, similar

mutations are also present in healthy individuals, albeit at much lower levels than those

seen in patients with mitochondrial diseases [27, 110, 142]. Existence of such low mutation

burden in tissue of normal aging individuals presents an important challenge in under-

standing the role of these mtDNA mutations in cellular aging. Despite the low abundance

of pathogenic mutations in aging tissue (the overall mutation burden is generally below

any functionally relevant level), the mutation load in tissues were found to be consistently

increasing with age. Another intriguing aspect was how such low abundance of mtDNA

mutations ever becomes relevant in the context of tissue aging, considering cells contain

several hundred to thousands of copies of mtDNA.
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Clonal expansion of mtDNA mutation — role of cellular stochasticity

Single cell analyses have demonstrated the mosaicity of mtDNA mutation burden in dif-

ferent cells of the same tissue, indicating that mutant mtDNA often coexists with the nor-

mal mtDNA, a condition referred to as heteroplasmy, and that the level of mtDNA muta-

tions and their functional significance often varied dramatically among different cells and

consequently among different tissues [143, 144]. It was also discovered that pathogenic

mtDNA mutations can only cause respiratory chain dysfunction, when they are present

above a certain threshold level referred to as ’phenotypic threshold’ [145], which is > 60%

for single large mtDNA deletion [146], and >90% for certain point mutation in tRNA genes

[147] (also see Figure 1.7). In these cells, once pathological mutation(s) has occurred, it

initially has low functional importance due to inherent redundancy of mtDNA in a cell.

However, the same mutation(s) can subsequently reach functionally relevant levels due to

still poorly understood mechanism known as the "clonal expansion process", where the

progenies of a single mutant mtDNA molecule out-populate wild-type mtDNA and even-

tually comprise a large portion of cellular mtDNA pool, as shown in Figure 1.7. Different

types of tissue analysis demonstrated mosaic respiratory chain deficiency due to clonal

expansion process, in heart [111], hippocampal neuron [148], choroids plexus [149], mid-

brain dopaminergic neurons [27], and colon [29].

Studies on skeletal muscle of rats, rhesus monkeys, and human have shown that focal

accumulation of mtDNA deletions colocalize not only with respiratory deficient regions

[150, 151], but also with areas of fiber atrophy and splitting, suggesting the importance of

stochasticity of mtDNA mutagenesis in age-associate progression of muscular sarcopenia

[152]. Such focal accumulation resulting from clonal expansion of few mutant mtDNA in

a population, has been found to cause degeneration of post mitotic tissue like heart, brain

and skeletal muscle tissue [27, 110, 153, 154], and this aspect is especially important in

post-mitotic tissues, since the connectivity is of high relevance and the presence of only
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a few non-functional cells can potentially disturb the performance of the entire organ.

It is therefore unequivocally important to comprehend the origin and role of stochastic

factors in de novo mtDNA mutagenesis as well as understand the exact dynamics of clonal

expansion process.

Figure 1.7: Stochastic origin and clonal expansion dynamics of mtDNA mutation. Mitochon-
drial DNA mutations occur infrequently within cells due to presumably mutagenic interaction of
mtDNA with ROS. Presence of single functional mtDNA mutation in a cell is likely to have no
influence of the cellular energy deficit. The mtDNA replication occurs in both mitotic cells (like
epithelial cells, blood cells, etc) and post-mitotic cells (like neuron cells, muscle cells). The respira-
tory dysfunction can arises due to clonal expansion of a single or few mtDNA templates in the cell.
A heteroplasmic mtDNA mutations only causes respiratory chain dysfunction if they are present
above a certain minimal threshold level [145] (illustration adapted and modified from [33]).

Aside from the mouse models of aging, which is considered to be a significant evidence

for the role of mtDNA mutagenesis in aging, there exists ample amount of evidence indi-

cating mtDNA deletions to have functional consequence in aging process, as is reflected
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from the correlation that exist between the deletions and the cellular biochemical parame-

ters. For example, studies of neurons in the substantia nigra region of human brain, have

demonstrated a loss of mitochondrial respiration and demise of cells with high levels of

mtDNA deletion (levels much greater than functional wild-type mtDNA), whose num-

bers increases with age and in diseases phenotypes like Parkinson’s diseases [27, 154].

Other studies involving single muscle fiber samples from rats, rhesus monkey and hu-

mans support a strong correlation between deletions, ETC abnormality and age associ-

ated sarcopenia [150]. Studies involving histochemical analysis followed by laser capture

micro dissection (LCM) and PCR analysis of single cells/fibers have revealed that large

scale deletions are confined to individual cells or fibers, while the neighboring cells do not

harbor any deletions [26], leading to the conclusion that mitochondrial deletions originate

from discrete stochastic events and reach to high mutation burden levels due to the clonal

expansion of one or few mtDNA templates expanded over the passage of time.

1.5 Thesis scope & organization

While there exists abundant support in literature regarding the direct role of mitochon-

dria and mtDNA in cellular physiology and aging, there is still a large knowledge gap

on the mechanistic perspective of the origin and accumulation dynamics of mtDNA mu-

tations during aging. Based on this impetus and considering that the cellular processes,

especially the genetic processes are essentially non-deterministic in nature, and due to the

large amount of mosaicity observed with mtDNA mutation burden in different cells of the

same tissue, a stochastic modeling framework will be developed in this work to elucidate

the mutation dynamics of mtDNA in aging cells. In particular, this dissertation focuses on

the development of stochastic models to capture the role of different sources of variability,

arising from the random processes of mtDNA turnover (replication and degradation) and

the associated de novo mtDNA mutagenesis and due to the randomness involved with the
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mutation quantification assays, for understanding the dynamics of mtDNA mutation ac-

cumulation, and to further elucidate the consequence of cellular heterogeneity of mtDNA

mutation burden to aging tissues.

In this dissertation, different in silico models of mtDNA maintenance processes will be

developed to capture the age-dependent dynamics of different types of mtDNA mutations

like point mutations and deletions, that are relevant in the context of cellular aging. The

construction of these models is intended to encompass only the most relevant features of

biological processes, with minimal number of modeling assumptions, i.e. they are mini-

mal models. Further, different statistical modeling techniques will be used to capture the

variability associated with mtDNA mutation measurement protocols and based on this

analysis, experiments are designed to minimize the measurement variability and subse-

quently improve the measurement accuracy.

The organization of the present thesis is as follows: Chapter 2 provides a overview

of the importance of mathematical modeling in unraveling the complexities of biological

system and further provides a brief outline of past mathematical modeling in the context

of aging, with specific emphasis on the models with mtDNA mutation dynamics. Further,

this chapter provides details on the significance and relevance of cellular stochasticity in

capturing the dynamics of cellular systems. Chapter 3, provides an overview of modeling

and analysis framework developed for capturing the stochastic origin and accumulation of

mtDNA mutation burden in mouse heart tissue. In Chapter 4, different hypotheses related

to the clonal expansion process of mtDNA mutations are analyzed. In addition, parametric

sensitivity analyses are performed, to obtain insights on the dynamics of mtDNA mutation

accumulation in clonal expansion process.

One important age-related condition, which is directly correlated to the focal accu-

mulation of mtDNA mutations in skeletal muscle tissue, is sarcopenia. Chapter 5 outlines

the development and analysis of a multi-scale modeling framework (Stochastic and Deter-
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ministic models), developed for understanding the stochastic origin and subsequent clonal

expansion of mtDNA mutations in sarcopenic skeletal muscle tissue. In this chapter, para-

metric sensitivity analysis affecting the development and progression of sarcopenia is also

studied.

Statistical modeling framework to estimate the measurement variability associated

with the Random Mutation Capture assay necessitating low DNA template dilution will

be discussed in Chapter 6. This chapter also outlines the development of an optimization

protocol for reducing the measurement data uncertainty.

Finally, one of the most critical challenges experienced in the development of the present

stochastic modeling framework relates to obtaining sensitive and robust estimates of model

parameters. Thus, Chapter 7 outlines some of the novel methods of parameter estimation

framework for inferring rate constants associated with stochastic biochemical systems. Fi-

nally, Chapter 8 presents an overview of the findings from this thesis and summarizes the

major contributions. Future research directions are also discussed here.
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Chapter 2

Systems biology of aging — an overview

2.1 Mathematical modeling in biology

2.1.1 Historical perspective

Molecular biology has been instrumental in uncovering multitudes of biological informa-

tion, like genome sequence and properties of other biological macromolecules such as

RNA and proteins. Advances in quantitative experimental approaches will without doubt

continue to provide significant insights into the functionality of different biological com-

ponents. However, insights into the functioning of biological systems, based on these ex-

perimental data and based on purely intuitive understanding might not be practical [155].

Understanding the functionality of complete biological system requires the unraveling of

complex network of biological interactions, and human intuition may be incapable of do-

ing this. Cells, tissues, organs and organisms are parts of bigger system, whose specific

functionality is screened by evolution and thus a system-level understanding is an im-

portant component of the biological research [156]. Computational biology and systems

theory through systems biology presents an avenue towards this end, by which a com-

prehensive, quantitative understanding of biological systems can be obtained by studying

how different components of biological systems interact with each other.

The usage of systems theory or computational modeling in biology is arcane; notably

in the 1960’s a number of researchers took modeling approach to search for general bi-

ological principles governing the behavior and evolution of biological systems in a way

similar to that associated with the physical laws of non-living systems [157]. It was dur-
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ing this transfer of ideas from physics to biology and with the perception that biologi-

cal systems are special cases of physical systems, that the criticism culminated in most

comprehensive debate related to the limitations of adapting modeling approach in un-

derstanding the behavior of complex biological systems [158]. The founding element of

the present day systems biology dates back to Nobert Weiner, who pointed out the im-

portance of systems perspective in understanding complex biological systems in his book

’Cybernetics, on Control and Communication in the Animal and the Machine’, published

in 1948 [159]. The first noteworthy numerical simulation in biology was published in

1952 by British neurophysiologists and Nobel laureates, Hodgkin, A. L. and Huxley, A.

F., who constructed a mathematical model that explained the action potential propagating

along the neuronal axes [160]. Their model described cellular function emerging from the

interaction between two different molecular components, potassium and sodium chan-

nels, which can further be seen as the inception of computational systems biology [161].

In 1960, Denis Noble developed the first computer model of the heart pacemaker [162].

Another notable advance is in 1970, when Jacob and Monod proposed a feedback regula-

tory mechanism on a molecular level (Monod kinetics) [163], to investigate the regulatory

mechanisms of protein interaction of allosteric enzymes.

Other prominent attempts that were made during this time, which are still classified

under the umbrella of cybernetics are the Biochemical Systems Theory (BST) [164], devel-

oped in the late 1960s, and a related approach, Metabolic Control Theory (MCT), proposed

in the mid 1970s [165]. BST and MCT are two ways to create simplified mathematical

models of biological systems. Such models represent systems at and around a steady state

functional levels. Although they were conceived as modeling approaches, both BST and

MCT have resulted in large number of tools and theories for analyzing biological sys-

tems. In subsequent decades, researchers have been increasingly using different model-

ing/systems approach to elucidate different mechanisms of complex biological systems.
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2.1.2 Characteristics of modeling

Observation of natural processes, especially biological processes, is frequently confronted

with many complex processes, which cannot be explained with elementary principles, and

the outcome of these processes cannot be predicated reliably based on experience. Math-

ematical modeling and computer simulations can aid in understanding the internal struc-

ture and dynamics of these complex processes. Engineering sciences are good instances

of how mathematics has been effectively used in resolving the physical laws that govern

different natural processes. Presently, it could be argued that the biologists are finding

themselves in a similar situation to engineers, many decades ago, when they faced the

need to use mathematical analyses to analyze and resolve complex dynamic systems for

which empirical perception was inappropriate [166]. In modeling, the underlying strategy

is to represent the natural systems by a set of state variables governing different processes

and then investigate the relationship among these variables within a model (Figure 2.1).

The development of any mathematical models in science has two main aims, (i) un-

derstanding; and (ii) prediction. A key question in the mind of any modeler is, what

are the minimal ingredients needed to make the results of a model match with experi-

Figure 2.1: Synergism between the natural system and formal system. If the modeling rela-
tion brings both systems (Natural and Formal) into congruence by suitable modes of prediction
and measurement cycles, the resulting outcome would describe the natural principle (illustration
adapted and modified from [166]).
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ments? Which are the dominant effects, which are secondary, and which are negligible?

Generally in many aspects, the simpler the model, the greater the understanding would

be. For example, if one were to incorporate all the currently available data on the heart,

from physical geometry down to genetic pathways, into a mathematical model, then the

resulting complexity would be such that one has simply replaced one complex biological

system with another complex model that one cannot still understand. Simple mathemati-

cal model formulations have also other benefits e.g., they tend to have only few unknown

parameters, and thus are easier to fit to data, and there is less issue of "overfitting".

A model only represents certain specific aspects of reality. The purpose of modeling

study is only to answer specific questions. For example, if the purpose of modeling study

is to predict system output, it is sufficient to obtain precise input-output relations, while

neglecting the internal structure of the system (black box modeling). However, if the mod-

eling intention is to elucidate the function of an object, then its structure and the relations

between its parts must be described realistically. One way to do this is to formulate a

model that is generally applicable to all the systems (like, Michaelis-Menten kinetics for

enzymes), the other way is to conceive special formulations specific to objects in study

(like, 3D structure of protein, specific sequence of genes). The mathematical models can be

kept as simple as possible to allow easy implementation and comprehensible results, or it

can be modeled realistically, to include finer details of the process being modeled. Again,

the choice of the modeling approach (black box vs. detailed) depends on the final use of

the model and there are generally more than one model that can serve the purpose.

2.1.3 Advantages of modeling

Mathematical representation of biological processes drives conceptual clarification. Mod-

els gain their reference from comparison with the experimental data. Therefore, their ben-

efits are highly dependent on the experimental performance. Nevertheless, there are sev-
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eral advantages of adopting modeling approaches for understanding biological processes

[155, 156]:

? A well-validated mathematical model can aid in characterizing different underly-

ing mechanisms of complex biological processes and further provide useful predic-

tions to highlight different insights and knowledge gaps existing in understanding

of the functionality of these systems. With the development of such predictive mod-

els, mathematical models can be significantly beneficial in identification of novel

drug targets or assist with dosing assessment of drug compounds. Highly focused,

problem-directed modeling approaches have been shown to have a significant im-

pact on drug-target validation and clinical development decisions [155].

? Performing simulations are relatively cheap compared to the experimental counter-

parts and simulations can assist in experimentation. Since, model simulations can be

repeated any number of time, under many different experimental conditions, simu-

lations can be used for sorting out only those conditions which produces interesting

system behavior, subsequently these conditions can be tried out using experimental

methods.

? With development of an adequate model, one can generate data that is beyond the

present-day experimental capabilities. Also, perturbations can be imposed, that is

beyond the feasible regime of real systems and can be imposed in such a manner

that other components of the system is undisturbed, which is usually not feasible in

real systems.

? Modeling results can be presented in precise mathematical form that would allow

generalization and greater understanding of the process (e.g. enzyme-substrate in-

teraction using Michaelis Menten kinetics).

? Modeling works exerts no harm to the experimental subjects, like animals or plants.
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2.1.4 Different kinds of models

Modeling in computational systems biology can be broadly categorized into two distinct

branches: (a) data driven modeling, which extracts the hidden pattern from experimental

data and presents different hypotheses and, (b) first-principle modeling, which tests differ-

ent hypotheses with in silico experiments, providing further predictions to be validated by

in vitro and in vivo studies. In this dissertation, the second approach is used for addressing

some of the intriguing biological questions related to mammalian aging.

A finer classification of the taxonomy of biological modeling methods, indicates a wide

spectrum of mathematical abstraction with different resolution or accuracy. As seen in

Figure 2.2, at the highest level of abstraction, models are built to represent the interaction

scaffold describing cellular components and their connectivity. At the next level of cellu-

lar modeling, the connectivity contains information on how biological information flows

from one component to another. In low level models, the reaction kinetics of molecular

interaction, affinities of network components, dynamics of the change in concentration of

network components can be studied. At this level, the dynamics of the change in concen-

tration of the states can be studied using Ordinary Differential Equations (ODE). However

for modeling biochemical reactions at the level of cellular genetics, where the state con-

centration usually exists at nano molar level, the intrinsic cellular stochasticity cannot be

neglected and as shall be described in the subsequent section, the assumption of mass ac-

tion kinetics for modeling the system dynamics breaks down and has to be modeled using

stochastic chemical kinetics. At the lowest levels of resolution, atomistic interaction and

its consequence on the system behavior can be studied using atomic scale modeling.
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Figure 2.2: Taxonomy of biological modeling in systems biology. Different modeling techniques
used in systems biology has been arranged in the increasing level of granularity or resolution.

2.2 Origin of cellular stochasticity

2.2.1 Stochasticity in biology

The importance of stochastic fluctuations in gene regulation have been known for more

than three decades [167]. But the ability to measure gene expression profiles at single cell

resolution have recently renewed the interest in stochastic modeling of biochemical reac-

tions that underlie the genetic networks [168]. There is compelling evidence in the litera-

ture that the outcomes of cellular events in both the prokaryotic and eukaryotic organisms

are non-deterministic in nature [169–171]. A good example demonstrating biochemical

stochasticity comes from the genetic transcription process in Escherichia coli (E. coli) [172].

In the experiment by Elowitz and Leibler, the expression levels of green fluorescent pro-

tein (gfp) in E. coli were measured in single cells by flow cytometry and the study showed

that cells in a clonal population (isogenetic population), grown in uniform environmen-

tal condition can express vastly different protein levels. Furthermore, the synthesis and

degradation of different biological macromolecules like proteins and RNAs are also sub-
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jected to similar type of stochastic dynamics [173].

Kinetics of conventional macroscopic reaction system is modeled using system of ODE,

with an implicit assumption that chemical concentration varies continuously with time.

Two important characteristics associated with such systems are: a.) number of molecules

of states in the reaction system is much larger than the thermal fluctuations in concen-

tration, and b.) for the different reactions in the system, the number of reactions is large

within each observational interval. At low concentrations of reacting species and at slow

reaction rates (such as the eukaryotic genetic regulatory processes), the conventional de-

terministic chemical kinetics (mass action kinetics) may not describe the dynamics of the

system of coupled reactions accurately [174, 175]. For such systems, it has to be recognized

that individual chemical reactions occur discretely and are separated by time intervals of

random length and both the characteristics described above fails for smaller reaction sys-

tems like the genetic circuit. Thus, in small, low-rate chemical systems, it is necessary to

pay close attention to the fact that changes in the chemical population levels occur as in-

tegral number of molecules, and are occasioned by essentially random distinct reaction

events.

Cellular noise can be categorized into two sources: intrinsic noise and extrinsic noise

[176]. As discussed above, the intrinsic noise arises from the low copy number of biomolecules

associated with the intra-cellular processes, while the extrinsic noise arises due to the fluc-

tuations in extra-cellular milieu of the cell (environmental changes) [176]. It has been ob-

served that a simple transcriptional regulation depends heavily on transcriptional rates

and the concentration of the promoter and repressor molecules, and a combination of these

opposing processes determine the stability of the biochemical network [172, 177]. Thus,

noise in cellular processes of living cells are characterized by a complex web of genetic

networks and the execution of this web depends on the faithful signal propagation along

the genetic pathways. The presence of noise and fluctuations in the genetic pool can quiet
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often determine the fate of an organism within a given population [178, 179].

2.2.2 Stochasticity in aging process

Similar to other biological systems/processes, one of the critical challenges associated with

understanding of the underlying mechanisms in aging process, relates to the heterogene-

ity associated with the aging process, where longevity can be achieved by different com-

binations of genetic, epigenetic, environmental and stochastic elements. It is increasingly

evident that the multi-factorial process of aging does not occur only at the cellular level,

but it also occurs in the level of tissue-, organ- and or at organism-level at different rates.

Thus, an aging body can be considered as mosaic of tissue and organs and within tissue,

mosaic cells displaying different levels of cellular morbidity [180].

Thus, even in the same organism, the aging process appears to follow different tra-

jectories in different organs, tissues and even in cells, which are believed to arise from

the accumulation of unrepaired damages at different rates [181–183]. A typical example

is brain, where different regions of brain, such as cortex, hippocampus and cerebellum,

have shown different levels of neuro-degeneration and inflammation in the same subject

[109, 184]. Similarly, analysis of substantia nigra region of human brain of normal aged

subjects and patient’s with Parkinson’s disease revealed a high degree of mosaicity of dys-

functional neuron cells [27, 154]. This mosaicity is also highly dynamic, which can change

significantly with time and this is due to complex non linear interactions among differ-

ent components of the system, resulting in phenotypes that are not easily predictable by

considering individual components [185].

Stochasticity may be an explanation for the marked variability observed in the life

spans of organisms chosen from an iso-genetic population, reared under uniform envi-

ronmental conditions, and the cell to cell variability of the mtDNA mutation burden in a

tissue. Analysis of the life span distribution in different short-lived species such as Cerati-
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tis capitata, fruit flies Drosphila melanogaster and Anstrepha species, indicated that, despite

the population being isogenic, their life span distribution exhibited a typical bell-shaped

distribution. Each of the individuals from such a population is intrinsically different in

their susceptibility to death. This suggests that some individuals are more frail because of

intrinsic and extrinsic variations, and consequently may have higher mortality compared

to its age-matched cohorts.

One striking aspect in which stochasticity have been found to have a significant role in

the biology of aging is the wide variability in both the time of onset and rate of apparent

deterioration within an isogenic population of Caenorhabditis elegans (C. elegans) reared un-

der uniform environmental condition. In a recent work characterizing the stochastic and

genetic factors influencing the tissue specific decline with aging, Herndon et al. demon-

strated the prevalent variability of cellular and organ level functionalities with age, using

GFP tracking method in isoclonal C. elegans population [185]. This study indicated that dif-

ferent cell types exhibited different rates of aging, and the cellular stochasticity is largely

responsible for age related decline of multiple tissues. A similar scenario has also been

reported in the case of human centenarian study, in which a wide dispersion in the fre-

quencies of human mortality was observed [186].

2.3 Systems Biology & aging research

Aging of an organism is both a manifestation and a consequence of complex changes in the

structure and function across all the levels of biological organization from simple biologi-

cal macromolecules to the whole body systems [6, 9]. Like any other complex systems, the

behavior of aging systems cannot be predicted completely by discrete analysis of its indi-

vidual components. This reductionist approach has traditionally been the norm in biolog-

ical and biomedical research. Although this traditional methodology has unquestionably

yielded significant and insightful progress in understanding the fundamental mechanisms
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of aging, it is nevertheless becoming clear that a more integrated approach is required

[9, 11, 187].

Given that the process of aging is manifested across the entire spectrum of life, from cel-

lular level to the entire ecosystem, it is natural and compelling that many of the ideas, tech-

niques and the way of thinking that fall under the domain of systems biology or computa-

tional modeling should be used in addressing important challenges of aging [9]. With such

integrated framework, it will then be possible to develop viable strategies for addressing

multiple challenges of human aging. However, a critical roadblock in using this frame-

work in aging research is the development of multi- and trans-disciplinary approaches,

where ideas and concepts derived from other disciplines like mathematics, physics and

engineering can be convoluted in generating significant insights.

One of the areas where modeling of aging processes will be beneficial, is in building

integrative models that is well suited to take into account the comprehensive view of dif-

ferent interactions involved in a system. This is particularly important since many of the

key processes involved in cell maintenance and metabolism do not act in isolation, but

act in a coordinated manner. When the activity of one enzyme changes, all the other con-

nected metabolites and enzyme activities may be affected [11]. In some cases, there may

be redundancy in system pathways, which may provide buffering capacity against dam-

ages, whereas in other cases, the effect of damage may also be propagated. Quantitative

modeling can also be beneficial in understanding the actions of genes that affect the rate

of aging. Over the past decades, several genes have been identified that affects aging in

yeast, nematodes, fruit flies, and mice, and there is a growing interest in genes affecting

human longevity [188, 189]. Experimental data are revealing that the interaction of sev-

eral of these genes within pathways that control the rate of aging, and there is increasing

evidence that the most important gene locus corresponds to those that affects basic cel-

lular processes, such as insulin and insulin-like growth factor (IGF) signaling, which are
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strongly conserved across the species [188, 190]. Nevertheless, the understanding of dif-

ferent interactions and their effects are still largely sparse. Upon that, these studies should

also take into account the intrinsic stochastic nature of gene regulatory networks.

Another important area where the quantitative modeling of aging process can play

a significant role, which also forms the central theme of the present work, is the under-

standing of the role of unrepaired biomolecular faults in aging process. According to the

disposable soma theory [5, 6], aging is caused due to gradual accumulation of unrepaired

random molecular faults, resulting in increasing fraction of damaged cells and eventually

leading to functional impairment of tissue and organs. The idea of aging as a result of

macromolecular damage is straightforward and is supported by sufficient amount of ex-

perimental evidences. However, its understanding presents a number of significant chal-

lenges since [2]: a.) it predicts that there are multiple mechanisms that may cause aging,

b.) it also predicts that the process of aging is inherently stochastic, and c.) since aging is

an outcome of multiple mechanisms, a high level of complexity is expected. Therefore, the

current challenge for aging research is to integrate knowledge from fundamental physio-

logical properties of different species as they age with data from molecular and cellular in-

vestigations, and to provide a more comprehensive framework that accommodates these

approaches to study the complex process of aging [187]. For all the above said reasons,

there is an exceptional need of computational approach in aging research to be integrated

with different experimental approaches to elucidate the underlying aging mechanisms.

2.4 Models of cellular aging - an overview

Similar to the plethora of theories explaining the mechanisms of aging, there also exists

a wide range of computational models in aging research. These models range from de-

tailed modeling of individual intra-cellular mechanisms to higher level systems modeling

required for elucidating aging mechanisms. Since the motivation of present work is in un-
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derstanding the role of molecular mechanisms in cellular aging, this section outlines past

models of intracellular mechanisms and their impact on enhancing the understanding of

different mechanisms involved in aging.

2.4.1 Models of intra-cellular mechanisms

Several models are currently available that focus on individual intra-cellular mechanisms.

Largely, these models are concerned with telomere shortening, accumulation of somatic

mutations, and accumulation of defective mitochondria.

Telomere shortening

Early models attempting to explain the replicative senescence of human fibroblast was

based on the end-replication problem [191]. Later models, included more specific fea-

tures of telomere shortening process, like, Rubelj and Vondracek modeled abrupt telom-

ere shortening due to DNA recombination or nuclease digestion [192]. Most recent models

have included features like acceleration of telomere shortening due to increase in oxida-

tive stress [193, 194]. These simulations indicated that increasing the level of ROS in cells

led to fewer cell divisions.

Somatic mutations

The role of somatic mutations in aging was proposed several decades ago, when the exper-

iments indicated that irradiation shortened life span in animal models and induced aging

phenotypes [195]. Due to the advances in methodologies for quantifying DNA modifi-

cation and repair, the research in understanding the role of somatic mutations in aging

has become particularly active. Szilard proposed a model [196], which assumed that in a

diploid organism, pair of genes had to receive a mutational hit simultaneously, in order to

render a cell dysfunctional. A deterministic model was developed to account for the ac-

cumulation of recessive mutation in human fibroblast and its effect on life span of diploid
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fibroblast population [197]. Further, a stochastic model based on the same processes was

developed to consider the possibility of a synergistic interaction between mutations [198].

These simulations results indicated that models used for simulating somatic mutation the-

ory did not well characterize the experimental data on the life span attributes of the human

fibroblast population, and based on these results authors further questioned the suitability

of somatic mutation theory in explaining the cellular aging process.

Chaperone models

Cellular chaperones have a significant role in maintaining protein homeostasis. It is ob-

served that an important class of chaperones known as the heat shock proteins (HSPs)

is impaired with age also the functions of several other chaperone declined with age.

Aberrant/damaged proteins accumulate with age and are implicated in several important

age-related conditions (e.g. Alzheimer disease, Parkinson’s disease, cataract). Therefore,

the balance between damaged proteins and available free chaperones may be greatly dis-

turbed during ageing. There have been several models focusing on different roles of HSPs

on cellular physiology. However, to date, there is only one model that has looked at role of

HSPs in aging process [193]. This model addressed how the HSPs are upregulated after an

increase in intra-cellular stress and can be used to investigate the role of stress on protein

homeostasis.

2.4.2 Role of mitochondria in aging

Deterministic modeling

Early models on the role of mtDNA somatic mutations in aging and degenerative diseases

were primarily deterministic. These early deterministic models were developed to study

the role of mtDNA ’vicious cycle’ in the origin and accumulation of mtDNA mutations

in cells. Kowald and Kirkwood developed a mitochondrial population dynamics model
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to simulate the mtDNA mutation dynamics caused due to free radical attacks [199]. The

population dynamics model tracked for the mutation dynamics and its influence on the

mtDNA content in individual mitochondrion. The model developed in this work, consid-

ered mitochondria as isolated independent units, with fixed count of mtDNA and without

the existence of mitochondrial fusion-fission process. Such method of modeling produces

some physiological in-consistency in the model predictions such as: local enhanced mi-

tochondrial biogenesis and the associated enhancement of the mtDNA mutations. The

model developed specifically included features of ROS induced ’vicious cycle’ and the de-

crease in the cellular bioenergesis due to the accumulation of mtDNA mutations. Nuclear

retrograde response for the mitochondrial biogenesis was modeled as a linear function

of mtDNA mutation burden in each mitochondrion and the ROS production rate arising

from the damaged mitochondria was modeled as a non-linear function of damage. An

ODE formulation is used to describe the mitochondrial population dynamics of mtDNA

mutation burden, where the evolution of different mutation levels (mitochondria with

different damage extent) was captured. The model comprised of 7 ODEs with 13 model

parameters tracking the evolution of mitochondria with different mutant load, and two al-

gebraic equations representing the radical generation and the associated mitogenesis. Due

to the unavailability of the basal mtDNA mutation rate, different mtDNA mutation rates

were considered to study the effect of its magnitude on the cellular mtDNA mutagenesis.

Model prediction indicated increasing accumulation of mtDNA mutations with increasing

mutation rate. Unlike what is observed in the experimental data [26, 28], in which only

few cells ever get to very high mutation burden, the simulation results in this work indi-

cated that all cells had high mutation burden and eventually underwent apoptosis. Most

of the results predicted from this model, only have qualitative resemblance with the ex-

perimental data. The authors did not show any explicit quantitative comparison of their

simulation results with the experimental data.
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In different models describing the network theory of aging [8, 200], the same authors

further integrated the details related to several of their earlier models into one compre-

hensive modeling framework. Specifically, they attempted to integrate the Free radical

theory and the Protein Error theories into one modeling framework [200]. In this work,

the authors attempted to model the interaction of several mitochondrial network mech-

anisms that may be responsible for aging process. The model included the homeostatic

maintenance of error propagation in different mitochondrial macromolecules as a conse-

quence of opposing and competing reactions of free radical attack and the consequent ROS

scavenging reactions. On a global perspective, model specifically simulated the accumu-

lation dynamics of mtDNA mutations with age, by including most of the processes related

to the OXPHOS machinery, like protein synthesis, turnover process related to proteolytic

degradation and recycle of aberrant mitochondrial proteins, RNA synthesis, Free radical

generation, ATP synthesis, and ROS scavenging dynamics. This model again used an ODE

formulation, predominantly the Michelis-Menten (MM) kinetics, to obtain the dynamical

evolution of various mitochondrial metabolites (e.g. the MM kinetics was used to specifi-

cally model the DNA transcription and translation machineries related to mtDNA). Such

comprehensive detailing makes the model quite exhaustive with around 31 ODE equa-

tions having approximately 42 parameters. Most of the results predicted from this work

were shown to only have qualitative resemblance to the experimental data. Like their

previous works, what is mainly lacking in this work also is a quantitative comparison of

simulation results with the experimental findings.

In Kowald and Kirkwood; 2000 [201], the same authors further discussed different

hypotheses available in the literature to explain the mtDNA mutation clonal expansion

process. They pointed out different limitations associated with several of these hypotheses

and proposed the delayed degradation of defective mitochondria as a possible mechanism

to explain the clonal expansion process. This hypothesis is also referred to as survival of
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the slowest hypothesis [202]. The central idea of this hypothesis is that the mitochondria

harboring mutant mtDNA has lower OXPHOS activity and thus these organelles are rela-

tively immune of further oxidative damage arising as a consequence ROS generated dur-

ing energy synthesis. Thus, since the mitochondria having mutant mtDNA harbor lesser

membrane damage compared to wild-type mitochondria, the mutant mitochondria are

spared from the mitophagic degradation and they accumulate to result in clonal expansion

[201]. In other words, the frequency of functional mitochondrion getting removed from the

population is much higher than the organelle having mutant mtDNA, thus resulting in its

clonal expansion. An implicit modeling assumption related to this hypothesis was that

the mitochondria are disconnected from each other and existed as independent members

in the population. In addition to the original hypothesis, authors of this work also in-

cluded an additional assumption of damaged mitochondria growing and dividing slower

compared to functional organelles, due to the deficit of energy. Based on the original

hypothesis, authors developed the mitochondrial model as discrete independent entities.

However, this assumption is inconsistent with what is observed in vivo. There is abun-

dant evidence indicating the existence of frequent fusion-fission process, providing an ef-

ficient complementation of the internal metabolites of mitochondria, including mtDNA

nucleoids [34, 140, 203–205]. Consistent with their earlier model [199], the ODE model de-

veloped in this work tracked for the population of mitochondria with no damage and with

different degrees of damage (number of mutated mtDNA copies in mitochondria). The

model developed here specifically included features of ROS induced ’vicious cycle’ and

the consequent decrease in the cellular bioenergesis. The model highlighted an extensive

framework of mitochondrial maintenance processes involving: mtDNA synthesis, ATP

synthesis, free radical generation during the OXPHOS, damage arising to mtDNA and the

mitochondrial membrane damage and subsequent degradation of mitochondria. Different

kinetic models including the Michelis-Menten and Hill type kinetics have been adapted in
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this work. Most of the mathematical constructs used in this work was borrowed from their

earlier works [8, 199, 200]. Similarly, to validate the hypothesis, authors borrowed the mi-

tochondrial population dynamics model, which was basically 7 ODE equations having 20

parameters associated with them. Using this model, authors tested several hypotheses

like the influence of mitochondrial turnover rate, influence of growth difference factor in

damaged mitochondria and the influence of cell division rate on the clonal expansion dy-

namics related to different mitochondrial population. Although the authors demonstrated

many qualitative comparisons with the observations related to mtDNA clonal expansion

dynamics related to post mitotic cells of normal aging and disease phenotypes with ex-

perimental observation, this work also produced very little quantitative validation to the

actual experimental data.

In a recent work by Mao et al., the authors used proteomic analysis to quantify the load

of oxidized nuclear encoded proteins in mitochondrial membrane, to determine the in-

stantaneous mutation load prevailing in the mitochondria [206]. Quantification of protein

contents in different mouse organs was obtained using 2D-gel electrophoresis and subse-

quent mass spectrometry measurements. These measurements were used to estimate the

over-expression levels of nuclear encoded respiratory chain subunits. The model used in

this work was a simplification of the earlier model using the hypothesis of the survival

of the slowest (SOS). The ODE model developed in this work tracked for the changes in

the concentration of mutant, wild type mtDNA and free radical produced during the OX-

PHOS process. The model consisted of 3 ODE equations for tracking the dynamics of each

of the species in consideration and the model consisted of 9 modeling parameters. The

replication rate of the mtDNA templates was modeled as a linear function of the change

in molecular count of mtDNA (both wild-type and mutant) below a homeostatic mtDNA

template level in somatic cells. Combined with differential protein expression level data

obtained from the proteomic analysis, the model was further used for estimating the un-
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derlying mutation rate of mtDNA mutation process using least square parameter estima-

tion. This model however presents a considerable flaw in its prediction, where all cells in

the tissue became homoplasmic with mutant mtDNA in 3 years (average natural life span

of mouse). However, it is generally appreciated that in a tissue there exists substantial

amount of mosaicity in mtDNA mutation load among cells and only a few cells ever have

high mutation burden [111, 207].

Capps et al. [208] developed a deterministic model based on Chinnery and Samuels

earlier stochastic model (details in the next section) [209], to characterize the regulation

of nuclear retrograde response to different levels of heteroplasmy observed in post mi-

totic cells. Like the Chinnery and Samuels’s stochastic model [209], in this work also au-

thors have attempted to characterize the role of mtDNA relaxed replication in influencing

the levels of wild-type and mutant mtDNA population found in post mitotic cells. The

outcome obtained from the deterministic work was compared with the earlier simulation

results [209, 210]. The deterministic model developed in this work was subjected to exten-

sive analysis for understanding the behavior of mtDNA replication to different scenarios

such as steady state dynamics (asymptotic behavior of the mtDNA states) and the role of

cellular stochasticity in the mtDNA mutation dynamics. Also, the influence of the presence

of pathogenic mutations on the development of mtDNA homoplasmy was studied. The

following three cases were considered for the study using the deterministic framework: a.)

the maintenance of mtDNA copy number in the presence of nuclear retrograde signaling,

b.) the maintenance of wild type mtDNA in presence of mutant mtDNA and, c.) the con-

tribution of pathogenic mtDNA mutations towards the retrograde signaling and further

manifestation in the mitochondrial homoplasmy. The authors further proposed possible

experiments that could be designed to test different hypotheses.
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Stochastic modeling

Kowald et al. have developed a stochastic model mtDNA deletion accumulation in post-

mitotic tissue based on a different hypothesis, the survival of tiny (SOT) [211]. The moti-

vation for developing a stochastic model for studying the mutation dynamics in a tissue

was attributed to the non-uniform accumulation of mtDNA mutations observed in the tis-

sue of normal aging and mitochondrial disease phenotypes [212]. The model comprised

of basic mitochondrial maintenance processes of mtDNA replication, degradation and de

novo mtDNA mutation generation. In this work, the replication rate of mtDNA was mod-

eled as a negative feedback function, such that the replication rate of mtDNA declines

with increasing respiratory-functional mtDNA copy number. The feedback response was

modeled as Hill type kinetic function. The replication propensities of mutants were mod-

eled such that the shorter mutant mtDNA replicates faster. The degradation propensity

of different mtDNA templates were modeled with uniform probability, i.e. the removal of

mtDNA templates from the population was assumed to be independent of the type (wild-

type or mutant). Similar to the earlier model on the mitochondrial population dynamics

[199], in this work the dynamics of deletion generation of different size was also mod-

eled as a progressive process, i.e. the larger deletions was considered to either arise from

normal mtDNA templates or from templates having smaller deletions. Such assumption

is problematic as, the creation of deletions of different sizes are independent from each

other and directly arise from the normal wild-type mtDNA templates [58, 103, 121, 213].

However, unlike their earlier works [8, 199–201], the authors have assumed a well mixed

population of mtDNA arising from the frequent fusion-fission process. The stochastic sim-

ulation of the mitochondrial turnover process was simulated using the Gillespie’s Monte

Carlo sampling method [175, 214]. Like the results from their earlier deterministic for-

mulation, the simulation results of the stochastic model also indicated that most the cells

harbor mutant at the end of 400 days of mouse life span, despite the model using con-
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servative estimate of mtDNA deletion rate [212, 215]. The results of the stochastic model

also indicated a high sensitivity of the model predictions to mtDNA turnover rates. The

model also specifically incorporated the increase in the oxidative burden of mtDNA in the

presence of functional mtDNA mutations (assumption of the existence of ROS ’vicious cy-

cle’). The simulation results related to the spectrum of mtDNA deletions were compared

with the experimental data on mtDNA deletion spectrum obtained from the mouse heart

tissues of different age.

Instead of building large, complex models, Chinnery and Samuels developed a min-

imal stochastic model of mtDNA turnover process to understand how mtDNA relaxed

replication (a process in which mtDNA turns over independently from the cellular divi-

sion, such that the mtDNA molecules replicate at random making one or more copies of

mtDNA, while still conserving the total number of mtDNA population in the cell) leads

to a random intra-cellular drift of mtDNA mutants [209]. They assumed a well mixed

mtDNA population with two different mtDNA alleles with a fixed proportion in each cell

simulations (one was wild-type mtDNA and the other allele was mutant mtDNA, harbor-

ing neutral mutations, i.e. mutations which do not affect cellular respiration) [209]. The

dynamics of the intra-cellular heteroplasmy of these alleles was tracked using the stochas-

tic model. In this work, a Langevin type kinetic formulation [209] was adapted to model

the processes involved in mtDNA turnover: mtDNA degradation and replication. The

evolution of the mtDNA alleles were tracked at constant time interval, assuming that no

de novo mutations occurs during the mtDNA replication process. The simulation results

indicated a significant fluctuation in the population levels of different alleles (or the het-

eroplasmy level), hinting the predominant role of stochasticity in deciding the fate of cells

with regards to the mtDNA mutation burden. The authors further studied the fixation

dynamics of different mtDNA alleles, to understand the role of cellular stochasticity in

mtDNA mutagenesis and subsequent accumulation of mtDNA mutations. In this work,
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the authors also modified their stochastic model of mtDNA turnover process, to study the

role of pathogenic mtDNA mutations. In this model, only the rate governing the mtDNA

replication process was modified to include a piece-wise linear function of optimal count

of wild-type mtDNA template in the cell, to simulate the nuclear retrograde response in

the presence of pathogenic mtDNA mutations. The modeling results showed that, mutant

mtDNA proportion increases significantly compared to the wild-type mtDNA genome,

but the levels of mtDNA copy number are much below (several orders of magnitude) the

levels observed in the experimental data [26].

Based on the above model of mtDNA turnover process [209], Elson et al.’s proposed a

mechanism for the clonal expansion of mtDNA mutation in post-mitotic human tissues,

in the absence of any replicative advantage of mtDNA and since the mutation considered

in this work was non functional (does not effect the OXPHOS conditions of the cells), the

authors also proposed that the clonal expansion dynamics may occur in the absence of

nuclear retrograde feedback [210]. The authors proposed several arguments to challenge

some of the commonly used hypotheses for explaining clonal expansion process, such as

the SOT and SOS hypotheses. The same Langevin type kinetic formulation was again

adapted to model the processes involved in mtDNA turnover processes. However in this

work, the replication of wild-type mtDNA copy was assigned with certain probability cor-

responding to the basal mutation rate, to give rise to mutant mtDNA. The evolution of the

mtDNA alleles (wild-type and mutant mtDNA) were tracked at constant time interval.

Simulation results indicated that in some of the cells, the proportion of mtDNA mutants

increased to very large levels, similar to what is seen with clonal expansion process. Fur-

ther, the results hinted that during the simulations of first decade of human life almost

every cell had pure wild-type mtDNA population. This prediction presented a significant

challenge with Elson et al.’s model in predicting the mtDNA mutation dynamics associ-

ated with short lived organisms like mice (average life span ≈3 years) [210]. Elson et al.’s
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model may not be able to predict the COX deficiency observed in post-natal somatic tis-

sues of mice [26, 216, 217]. The authors further studied the influence of changing the basal

mutation rate on mtDNA mutation. The results indicated that, changing the mtDNA mu-

tation rate had a marked effect on the number of cells becoming COX deficient. Further, the

influence of mtDNA copy number on the mtDNA mutation burden was studied. Simula-

tion results indicated that cells having higher mtDNA copy number harbor lesser mtDNA

mutations. In contrary to this finding, experimental evidence suggest that tissue with

higher oxidative capacity (larger mtDNA count per cell) has higher mutation load associ-

ated with them [139]. The stochastic model developed by Elson et al. is highly sensitive to

the mtDNA turnover rate. In this model the authors have used a turnover rate of 10 days

[209, 210, 218]. It would be interesting to see the behavior of their model for lower value

of mtDNA turnover rate. The simulation predictions are likely to be significantly different

compared to their original work (will be further discussed in the subsequent chapters of

this dissertation). Elson et al. further characterized the seeding mutations for the clonal

expansion process. Their analysis indicated that the earliest de novo mutations occur dur-

ing the late childhood or during the early adulthood. Subsequently, the mutations start to

expand clonally. Despite being a hypothesis work, very little experimental validation is

provided. However, authors determined optimum values of some of the parameters (like

mutation rate) to match the experimental data on the fraction of COX deficient cells in

human muscle. Although the model addresses aspects related to mtDNA mutation clonal

expansion process, the authors did not discuss anything about the mtDNA hyperprolif-

eration process, which is generally found to be associated with mtDNA clonal expansion

process [26, 29, 140, 205]. The short comings of the random drift hypothesis proposed by

Chinnery and Samuels groups in explaining the mtDNA clonal expansion process will be

dealt in more details in Chapter 4.

Similar to the Elson et al.’s model on random intra-cellular drift of mtDNA mutations
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in post mitotic tissues [210], Coller et al. [219], demonstrated that pure stochastic drift of

mtDNA mutations and segregation of mutant mtDNA between the dividing cells of mi-

totic tissue is sufficient to produce mutant homoplasmy observed in mitotic tissues [29].

The stochastic model developed in this work simulates the simple mitochondrial mainte-

nance process such as mtDNA replication, degradation and mutation arising during cel-

lular division. The tissue was assumed to contain approximately 50 mtDNA undergoing

1000 generations of cell division. Similar to the Elson et al’s work on the mtDNA turnover

dynamics in post-mitotic tissue [210], the model developed in this work was also based

on Langevin formulation. The mtDNA replication was simulated to increase the mtDNA

count to twice the nominal mtDNA count in the cell at the end of cell cycle. Further, the

mtDNA were partitioned randomly between the dividing cells and the number of mutants

generated during a single generation of cell division was simulated by sampling from a

Poisson distribution having a mean corresponding to the basal mutation rate. Using this

model, simulations were performed to analyze the dynamics and accumulation of mtDNA

mutations in both normal aging epithelial cells and with tumor cells in human, which was

further validated with the experimental data. Although the model addressed different as-

pects related to mtDNA mutation clonal expansion process, the authors did not discuss

anything about the mtDNA hyperproliferation process, which is generally found to be

associated with mtDNA clonal expansion process [26, 29, 140, 205]. Another interesting

results associated with this work also is the mutation load in cells with different mtDNA

counts. Unlike the experimental observation [139], simulation of cells with higher mtDNA

count were observed to have lower mutant burden in them.

Modeling perspectives

There are several shortcomings in the previous modeling works, which the present disser-

tation will attempt to address. Most of the above deterministic modeling framework were

constructed based on several modeling assumptions and based on large number of ODE
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equations and associated modeling parameter space. As discussed earlier, with increas-

ing complexity of the mathematical model, there are several challenges associated with

its usage, such as: a.) the understanding of the underlying biological processes based on

such complex models becomes significantly difficult, b.) with increasing model complex-

ity, the number of unknown model parameters also increases and consequently several

of the associated parameters may be unknown and the parameter estimation based on

such complex model is highly likely to over fit the experimental data. In fact, one of the

potential criticisms related to the usage of such complex models, is that most of the pa-

rameters used in these models are chosen ad hoc, without having sufficient physiological

significance. In many of these cases, few model equations and the associated modeling

parameters are chosen to serve as tuning variables to obtain desired output profiles.

In most of the earlier modeling works developed for addressing the mtDNA mutation

accumulation dynamics, one of the important aspect which is sparingly considered is the

sensitivity analysis of different parameters associated with the mtDNA turnover process.

One of the parameters which was observed to be very sensitive to the mtDNA mutation

accumulation dynamics is the turnover rate, as the mtDNA de novo mutations are directly

tied to the replication process. Thus an accurate estimation and understanding of the

mitochondrial turnover rate is essential for reliable modeling of the mitochondrial muta-

tion dynamics. In this dissertation, different parametric sensitivities related to mtDNA

turnover process will be analyzed, to get a better understanding of different sensitive pa-

rameters which requires to be estimated more critically for getting more reliable model

predictions. Also, in most of the earlier modeling works, effort in validating the model

outcome with the experimental data have been relatively sparse. In this work, sensitive

validation of the simulation results will be prioritized. Additionally, in all of the previ-

ous simulations, the origin and accumulation of mtDNA mutations is primarily modeled

only during the post natal stage of an organism. The consequence of developmental cell
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lineage on the mtDNA mutation accumulation is rarely studied. The enormous quanta of

developmental cell divisions and the associated mtDNA replication is likely to contribute

significantly to the post natal mtDNA mutation burden, and thus in the present model-

ing framework the mtDNA turnover process and the segregation of mtDNA between the

dividing embryonic cells during animal development will be considered.
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Chapter 3

Stochastic drift in mitochondrial DNA point
mutations: a novel perspective ex silico

3.1 Introduction

Although there are reasonable evidence for an age-dependent increase in mtDNA muta-

tions, the dynamics by which these mutations accumulate is still largely unclear. Inferring

dynamics and more importantly, the mechanism by which mtDNA mutations accumulate

critically depends on accurate quantification of oxidative and mutational burden, which

poses significant experimental challenges [127]. Many of these challenges stem from the

limitations associated with experimental protocols in measuring oxidative damages and

mutational frequency [220, 221], which typically exist at extremely low magnitude. Also,

another requirement for addressing these uncertainties is a better understanding of the

inherent stochasticity of cellular processes [178]. The accumulation of mtDNA mutations

likely involves complex stochastic factors, such as the inherent random nature of muta-

tions and related cellular processes in the context of aging.

As discussed in Chapter 1, published reports show conflicting results regarding the

levels of oxidative damages and mutation dynamics of mtDNA during aging [116, 132,

222, 223]. Earlier estimation of mtDNA mutation quantification was obtained using PCR

amplification of short fragments of DNA. However, recently it has been shown that due to

the underlying intrinsic error rate of polymerase enzyme, these PCR methods introduces

significant amount of spurious mutations [224, 225], thus over estimating the mtDNA mu-

tation frequencies [224, 226]. A highly sensitive method based on the random mutation

capture (RMC) assay has been developed for the quantification of mtDNA mutation fre-
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quency [141]. This method is based on restriction enzyme digestion and amplification of

mtDNA molecules carrying mutations at the corresponding recognition site [116]. Appli-

cation of the assay to wild-type mice revealed mtDNA mutation burdens that were two or-

ders of magnitude lower than previously determined using PCR-cloning and sequencing

protocols [130, 131]. This indicates that PCR artifacts may have been a major contributor of

errors in the past reports. Furthermore, quantification of age-dependent accumulation of

point mutation burdens using the RMC assay in wild-type mice suggested an exponential

increase, apparently supporting the existence of a ’vicious cycle’ in the mutation accumu-

lation [222, 227]. However, the low levels of burden suggest that point mutations may not

be a major determinant of lifespan [116] and it is difficult to see how a positive feedback

mechanism could set in at such a minuscule level of point mutation burden.

In this chapter, the aim is to address these challenges using a systems approach by

the way of constructing mathematical models that encompass the most relevant biological

processes and also features related to experimental protocols to comprehend the origin and

consequence of mutation variability that arises in individuals of a mouse population. Ad-

ditionally, this chapter attempts to better understand the influence of intrinsic stochasticity

of the mutation process on the variability observed in the experimental data. Such un-

derstanding may reveal possible causes of disagreements amongst published reports and

further facilitate optimization of experimental design. In this study, an in silico stochastic

mouse model is constructed using the Chemical Master Equation (CME) [228]. Here, the

accumulation of point mutations in mtDNA is simulated to arise as a consequence of what

is believed to be a minimal process required for the maintenance of mtDNA integrity.
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3.2 Methods

3.2.1 Chemical Master Equation

Consider a well-stirred constant volume Ω, which is in thermal equilibrium at some con-

stant temperature T , with N chemical species {S1, . . . , SN} interacting with each other

throughM reaction paths {R1, . . . , RM}. Let the vector x (t) denote the number of molecules

of each chemical species in the system, where x (t) = {x1 (t) , x2 (t) , . . . , xN (t)}, given

that the system was in state x (t0), at some initial time t0. The changes in the molec-

ular content of different species in a systems as consequence of a chemical reaction, is

characterized mathematically by two quantities. The first is the change in state vector

ν (t) = {ν1j , . . . , νNj (t)}, where ν1j is the change in the molecular population of Si caused

by any one Rj reaction fires. The other entity characterizes the propensity function of a

reaction such that,

aj (x) · dt = probability, given x that one reaction Rj

happens in infinitesimal time interval [t, t+ dt) .

(3.1)

Equation 3.1, forms the fundamental premise of the stochastic chemical kinetics, since

everything else in this theory follows from it via the laws of probability [175]. The physical

rationale of Equation 3.1 can be obtained for the interaction mechanisms of unimolecular

and bimolecular reactions. Higher order interactions can be considered as subsets of dif-

ferent unimolecular and bimolecular interactions [214, 229]. If a unimolecular reaction

S1 → products is considered, there exists a specific reaction probability rate constant, cj , such

that cjdt gives the probability that the reaction will occur in the next infinitesimal time

dt. Thus, it follows that if a system currently has x1 molecules of component S1, then the

probability that one of the molecule will undergo a reaction Rj in next dt is x1 · cjdt. Thus,

the propensity function for the unimolecular reaction is aj (x) = cjx1. Similarly, for a bi-
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molecular interaction of the form S1 + S2 → products, the propensity of the bimolecular

reaction Rj will occur in the time interval dt is aj (x) = cjx1x2. However, for a bimolecular

reaction of type S1 + S1 → products, the propensity is aj (x) = cj
1
2x1 (x1 − 1).

Evaluation of the specific reaction probability rate constant, cj , from the first principles is

significantly challenging, requiring specific assumptions about how reactionRj physically

occurs [175, 214]. It has been found that for a unimolecular reaction, cj , is numerically

equal to the reaction-rate constant kj of the conventional deterministic chemical kinetics.

However, for a bimolecular reaction cj is equal to kj/Ω, if the reactions involve reactant of

different species, and 2kj/Ω, if they are of same species.

Due to the probabilistic nature of Equation 3.1, the exact estimation of the x (t) is not

possible and one has to infer the probability of states as P (x, t| x0, t0), referred to as the

Chemical Master Equation (CME) [175, 228]:

∂P (x, t| x0, t0)

∂t
=
∑
j

aj (x− νj)P (x− νj , t| x0, t0)− aj (x)P (x, t| x0, t0) (3.2)

The density function P (x, t| x0, t0), denotes the probability that the system assumes the

state configuration xj at time t, given the initial condition x0 at time t0. A close inspection

of Equation 3.2 reveals that the CME is actually a set of coupled ODEs, with each ODE

characterizing the dynamics of every possible combination of reactant molecules. It is

therefore not surprising that the CME can only be solved analytically for limited simple

cases [174, 175].

3.2.2 Gillespie’s algorithm

Since the CME (Equation 3.2) can rarely be solved analytically, the rationale behind stochas-

tic simulations is to generate several independent realizations of the system dynamics and

study the resulting statistics. The key is to generate simulated trajectories of x (t) is a joint

probability distribution function p (τ, j| x, t) [214, 229], of two random variables of time to
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next reaction (τ), and the index of next reaction (j), given that the system is currently in

state x (t). The formulation of this joint probability density function in terms of different

reaction propensities can be obtained as [229]:

p (τ, j| x, t) = aj (x) exp (−a0 (x) · τ) (3.3)

where, the total propensity a0 (x) is defined as,

a0 (x) =
M∑
j=1

aj (x) (3.4)

Equation 3.3 forms the basis of the stochastic simulation algorithm (SSA) [175, 229]. Most

commonly used Monte Carlo approach for generating samples of τ and j, according to the

joint distribution p (τ, j| x, t), is the Gillespie’s direct approach [175, 229]. This approach is

based on the standard inversion method obtained using the Monte Carlo Theory [175].

In the Gillespie’s Direct method, two random numbers r1 and r2 are drawn from the

uniform random number distribution and the following transformation are done to obtain

the two counters τ and j:

τ =
1

a0 (x)
· ln

(
1

r1

)
(3.5)

and,

j = the smallest integer satisfying;
j∑

j′=1

aj′ (x) > r2 · a0 (x) (3.6)

Thus, the Gillespie’s SSA can be summarized as:

1. Initialize the systems at t = 0 with rate constants c1, . . . , cM and initial molecular

population of each species, x1, . . . , xN .

2. For each reactions, j = 1, . . . ,M , calculate the propensity functions (aj (x)) based on

the current state of the system x (t).

3. Calculate the total propensity function a0 (x) =
∑M

j=1 aj (x).
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4. Sample time to next reaction, τ according to Equation 3.5.

5. Increment the simulation time as, t = t+ τ .

6. Sample the next reaction index, j as a discrete random quantity with point probabil-

ity estimated according to Equation 3.6.

7. Update the current state, according to reaction j, i.e. update x⇒ x + νj .

8. If t < Tmax, return to step 2.

3.2.3 In silico mouse model

The in silico mouse model accounts for the accumulation of mtDNA point mutations across

two stages of mouse life: development and postnatal (Figure 3.1). In this study, the number

of wild-type mtDNA (W ) and mutant mtDNA (M ) molecules were tracked for each cell in

whole mouse heart (∼ 2.5×107 cells) and liver tissues (∼ 4×108 cells) [230]. Each mutant

mtDNA molecule was assumed to contain only a single mutation in the TaqI recognition

site (TCGA), following the RMC experimental design [116]. The probability of finding

two or more mutations at the same site was assumed to be negligible [141]. Similar the

earlier minimal stochastic models [209, 210], the model simulated two mtDNA-related

maintenance processes: mitochondrial turnover, comprising of relaxed replication and

degradation of mitochondria, and de novo point mutation arising during mtDNA repli-

cation, based on a minimal conservative assumptions. First, the mtDNA population of

each cell was assumed to exist as a well-mixed pool due to fast fusion and fission dynam-

ics of mitochondria [34]. Second, due to the low overall mutation burden, point mutation

burden was assumed to remain below the level of functional significance (i.e. no nuclear

retrograde signaling [209, 231]). While the latter assumption is conservative, simulations

indicate that the incorporation of functional effects of mutations into the model, by assum-

ing that mutant mtDNA are functional and cells respond to a decrease in the number of
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Figure 3.1: Stochastic mouse mtDNA turnover model. (A) The in silico mouse model simulates
the point mutation load of mtDNA in cells of a tissue such as heart and liver during development
and postnatal stages. (B) Stochastic drift of point mutations in cells results as a consequence of
mtDNA maintenance processes. Three sources of randomness are captured: (I) a random selection
of a mitochondrion with ten mtDNA molecules from a well-mixed population, (II) a random repli-
cation or degradation of a mitochondrion, and (III) random occurrences of de novo mtDNA point
mutation during replication.

wild-type (WT) mtDNA by increasing replication, did not result in any significant changes

to the mutation burden (see Section 3.2.7).

Following experimental evidence, each mitochondrion was assumed to carry 10 mtDNA

molecules and these mtDNA were assumed to undergo replication and degradation due

to mitochondrial turnover [232]. In a single turnover event (Figure 3.1B), ten molecules

of mtDNA were chosen randomly from a well mixed population of mtDNA in a cell and
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are either degraded or replicated according to the CME described below. The selection

of ten wild-type and mutant mtDNA molecules from the population was described as a

hypergeometric random sampling following the probability distribution: [233]

f (x) =

(
W
x

)(
M

10− x

)
(
W +M

10

) (3.7)

where x represents the number of wild type mtDNA chosen for replication or degrada-

tion.

De novo point mutation can occur during replication of mtDNA due to mis-pairing

associated with ROS-induced mutagenic lesions such as 8OHdG [102] or as random errors

arising due to finite POLG fidelity [234]. Consequently, each replication of a wild-type

mtDNA had a finite probability, given by the mutation rate constant (km), to produce a

mutant. Here, the number of de novo mutant mtDNA among x mtDNA was randomly

chosen from a Binomial distribution: [233]

g (y) =

(
x
y

)
· kym · (1− km)x−y (3.8)

where y denotes the number of de novo mutations resulting from replication of xwild-type

mtDNA.

Based on these probabilities, the in silico mouse model was formulated as a CME in

which each mtDNA-related process: replication without mutation, replication with de novo

mutations and degradation, was described as a jump Markov process with the following

state transitions:

W
(1−km)·kR−−−−−−−→ 2W (3.9a)

M
kR−−−−−−−→ 2M (3.9b)

W
km·kR−−−−−−−→W +M (3.9c)

W
kd−−−−−−−→ ∅ (3.9d)

M
kd−−−−−−−→ ∅ (3.9e)

The first two transitions reflect regular replication, the third represents a de novo mutation,
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and the last pair represent degradation.

A modified version of the SSA was used in this work for simulating in silico mice tissues

based on CME in (Equation 3.10). The density function P (W,M ; t) denotes the probability
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(3.10)

of a cell to containW andM number of wild-type and mutant mtDNA, respectively, given

the initial conditions of the states (not explicitly stated here for brevity, refer to Equation

3.2). The parameters kR, kd and km represent the specific probability rate constants for

mtDNA replication, degradation and de novo point mutations, respectively. The terms in

the curly braces describe the hypergeometric sampling of mtDNA from the population.
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Particularly, the first two terms of the CME above represent mtDNA replication without

mutations, the second pair of terms corresponds to replication with de novo mutations, and

the last two terms represent the degradation of mtDNA. The CME can be solved numeri-

cally using a Monte Carlo approach following the SSA. Consistent with the above section

on SSA algorithm, the implementation of the modified SSA is described below:

1. Compute the propensities of replication and degradation processes as a function of

W and M at time t.

2. Based on the propensities, generate random samples of (τ , j) as in the SSA algorithm

[214].

3. Select ten mtDNA molecules randomly from the population (hypergeometric sam-

pling) for either replication or degradation. Each replication of a wild type mtDNA

can result in a mutant mtDNA with a probability given by the mutation rate constant

(km).

4. Update W and M based on events in steps 2 and 3 and increment the time t by τ .

5. Repeat steps 1 through 4 until the desired end time.

To predict mtDNA mutation burden in a single organ or tissue, millions of such simula-

tions were performed to capture the mtDNA dynamics of all cells in a tissue.

Simulations were performed using an IBM high performance computing cluster with

112 Intel 1.6 GHz processors. The simulation code was compiled using GNU FORTRAN

compiler G77 (v4.1.1) and ran on a CentOS Linux platform. On average, a single simu-

lation of a heart tissue (∼25 million cells) from development to 3 years of age required

approximately 3 hours.
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3.2.4 Simulations of mouse development

The embryonic cell divisions begin after fertilization of an oocyte. Mouse oocytes harbor

a large number of mitochondria (∼ 1.5 × 105 mtDNA) [235], which allow the zygote to

multiply initially without the need to replicate mtDNA [236, 237]. Mouse embryos with

dysfunctional mitochondrial replication are able to proceed through the implantation and

gastrulation stages, but eventually die, presumably when the mtDNA synthesis becomes

necessary to maintain ATP level [238, 239]. Furthermore, the total mtDNA number in

mouse embryo does not increase until the late stage of blastocyst, which is roughly the

7th to 8th cell divisions in development (i.e., 4.7 to 5.5 days post coitum (d.p.c)) [236–238].

During these stages, mtDNA are segregated among the dividing progenitor cells (Figure

3.1A). Consequently, each progenitor cell of the developing embryo has only few copies of

mtDNA at the early egg-cylinder stage [236, 237].

Table 3.1: Model parameters used in the simulations of the in silico wild-type mice.

Parameters Units Values Comments References

W0 molecules 580 Initial value of wild type
mtDNA during start of
development

[236, 237]

M0 molecules 0 Initial value of mutant
mtDNA during start of
development

kd d−1 2.3377× 10−3 Degradation rate of
mtDNA

[240]

kdevR molecules d−1 465 Maximum replication
rate of mtDNA during
development

kdevm rep−1 d−1 1.0× 10−7 Mutation rate of mtDNA
during development
(POLG fidelity)

[137, 234,
241]

Ncyc — 22 Number of developmen-
tal cycles

[237, 242–
244]

(W +M)ss molecules 3500 Homeostatic set-point of
the mtDNA population
(Heart cells)

[230, 245]

kPM
R molecules d−1 0.8182 Maximum replication

rate of mtDNA during
post natal stage

kPM
m rep−1 d−1 1.6× 10−6 Mutation rate of mtDNA

during post natal stage
(POLG fidelity and Ox-
idative burden)

[137, 221,
234, 241,
246, 247]

Ncell — 2.2443× 107 Number of cells (Heart) [230, 248]
αPOLG — 200 POLG allele fidelity fac-

tor
[137, 234,
241]
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In order to account for the mtDNA segregation without replication during the initial

cell divisions, the developmental simulations started from the end of the 8th stage (5 d.p.c)

with an initial wild-type mtDNA count of roughly 580 molecules per cell (W = 580, M = 0)

[236]. Mitochondrial DNA replication is tied to the cellular division to maintain a steady

state number of total mtDNA after each division [97]. Mouse development lasts until 20

d.p.c [244] with a doubling time of roughly 15.5 hours [243]. The mtDNA replication rate

was estimated assuming that mtDNA doubles its population every 15 hours, while still un-

dergoing degradation. Here, a cell division was simulated to occur when the total number

of mtDNA count reached twice the steady state homeostatic count (Table 3.1). The segre-

gation of wild-type and mutant mtDNA between the daughter cells was assumed to occur

at random, without any selective advantage according to a hypergeometric distribution:

[233]

f (x) =

(
W
x

)(
M

n− x

)
(
W +M

n

) (3.11)

where x in Equation 3.11 denotes the number of wild-type mtDNA in one of the daugh-

ter cells after segregation, and n is the total number of mtDNA in a single daughter cell

(i.e., n = (W + M)/2). During development, polymerase-γ, the care taker of the mtDNA

replication fidelity, is the main contributor for point mutations in mtDNA, with negligible

oxidative activity and damage [234, 241].

3.2.5 Simulation of postnatal stage

After birth, many tissues like heart do not undergo further cellular division. However,

mtDNA in these tissues are still continuously turned over independent of cellular divi-

sion, a process called "relaxed replication" [232]. The functional significance of relaxed

replication in postmitotic tissues like heart and brain is to maintain a healthy population

of mtDNA to satisfy the cellular energy requirements [105, 232]. The postmitotic simula-
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tions continue from cells produced at the last stage of development (Figure 3.1A), in which

each cell maintains mitochondrial biogenesis to balance degradation. The mutation rate

in this stage was a summation of contributions from oxidative damage and POLG-related

error.

3.2.6 Simulation of POLG mutator mouse models

The in silico mouse model is also used to simulate POLG mutator heterozygous (POLG+/mut)

and homozygous (POLGmut/mut) mice by changing the rate of de novo point mutations.

Mutator mice carry a proofreading-deficient allele of POLG which has 200 times the error

rate of the wild-type enzyme [137, 234]. Thus, in the simulations of POLG mutator mice,

the model formulation remains the same in all aspects with the exception that the POLG

error rate corresponding to the mutant allele was assumed to be 200 times higher (Table

3.2, 3.3). In heterozygous POLG mutator mouse, the replication of mtDNA molecules is

carried out by either wild-type or mutant allele with equal probability.

3.2.7 Model parameters

Model parameters are compiled from published data for mice and it was ensured that they

are consistent with the current literature and the state of the art measurement techniques.

The basic model parameters for wild-type mice are listed in Table 3.1, while more detailed

information on the rest of parameters of the POLG mutator mice is given in Tables 3.2 and

3.3.

Mitochondrial DNA turnover: Defective mitochondria are believed to be eliminated to

maintain cellular homeostasis [250, 251]. Autophagy has been suggested to be the main

pathway for the mitochondrial turnover; this process is also termed as mitophagy. Au-

tophagy is the process of catabolism of cellular components such as cytosol organelles

and protein aggregates by a double-membrane structure know as the autophagosomes

[252]. In mammalian cells, it is believed that autophagosomes develop from a special-
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Table 3.2: Model parameters used in the simulations of the in silico POLG heterozygous
(POLG+/mut) mice.

Parameters Units Values Comments References

kd d−1 2.3377 × 10−3

(Heart)
Degradation rate of
mtDNA

[240]

4.0706 × 10−3

(Liver)
[249]

kdevR molecules d−1 465 (Heart) Maximum replication
rate of mtDNA during
development

530 (Liver)
kdevm,WT rep−1 d−1 1.0× 10−7 Mutation rate of wild-

type mtDNA allele dur-
ing development (POLG
fidelity)

[137, 234,
241]

kdevm,mut rep−1 d−1 1.0 × 10−7 ×
200

Mutation rate of POLG
mutant mtDNA allele
during development
(POLG fidelity)

[137, 234,
241]

Ncyc — 22 Number of developmen-
tal cycles

[237, 242–
244]

(W +M)ss molecules 3500 (Heart) Homeostatic set-point of
the mtDNA population
(Heart cells)

[230, 245]

4000 (Liver)
kPM
R molecules d−1 0.8182 (Heart) Maximum replication

rate of mtDNA during
post natal stage

1.6262 (Liver)
kPM
m,WT rep−1 d−1 1.6× 10−6 Mutation rate of wild-

type mtDNA allele with
oxidative error

[137, 221,
234, 241,
246, 247]

kPM
m,mut rep−1 d−1 2.17× 10−5 Mutation rate of POLG

mutant mtDNA allele
with oxidative error

Ncell — 2.2443× 107 Number of cells (Heart) [230, 248]
— 4.1871× 108 Number of cells (Liver)

ized double-membrane extension of the endo-plasmic reticulum (ER), know as the omega-

somes [253]. The double membrane, also known as the isolation membrane, surrounds the

cytosolic cargo and its edges seal to sequester the contents into the autophagosomes. This

then fuses with a lysosome, allowing the degradation of both the cargo an inner bilayer of

the double autophagosomal membrane, which can then be reused or catabolized for the

energy synthesis.

Two types of macro-autophagic process have been identified. A.) Non-selective au-

tophagy, which occurs on nutrient deprivation to supply cells with essential metabolic

components and energy until nutrient source is restored to cellular milieu. B.) By con-
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trast, cargo-specific autophagy occurs when the cell is prevailing under the nutrient-rich

environment. In such conditions, cell triggers the autophagic response, only to mediate

the removal of superfluous of damaged organelle and protein aggregates in the cells. It is

believed that the damaged mitochondrial is removed from the mitochondrial population

by a cargo-specific autophagic process known as mitophagy [251].

In yeast [254] and mammalian cells [255] mitophagy is preceded by mitochondrial fis-

sion [256], which divides the elongated mitochondria into pieces of manageable size for

encapsulation and subsequent mitophagic process. Beyond quality control, mitophagy is

also believed to be required for steady turnover of mitochondrial population, for adjust-

ment of mitochondrial number to account for the changing cellular metabolic requirement

[257, 258]. Mitophagy process requires specific labeling of the mitochondria and their

subsequent recruitment for the isolation membrane. For example, in a well-studied case

of yeast mitophagy, it is believed that this process occurs when the outer mitochondrial

protein autophagy-related 32 (Atg32), binds with the isolation membrane protein Atg8

[259, 260]. Given this understanding of basic mechanism of label induced targeting of mi-

tophagy process, it is still largely unclear of how mitochondria are specified for removal to

calibrate the mitochondrial population density according to the cell’s metabolic demand.

Mitochondrial biogenesis in conjunction with elimination of mitochondria by autophagy

is necessary to regulate the changes in steady-state mitochondria number that are required

to meet cellular metabolic demand. Since the present dissertation is primarily concerned

with maintenance and replication of mitochondrial DNA, replication mechanisms associ-

ated with the mtDNA is delineated in the subsequent sections.

Past studies have demonstrated that the mtDNA synthesis can occur independent of

the cell cycle process [261, 262]. The mtDNA are replicated more than once or not at all

during the cells life, yet, mtDNA copy number is maintained roughly constant throughout

the generations of cell growth and divisions [97, 99]. Mitochondrial DNA replication re-
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quires a large number of factors for maintenance of genetic replication process. The exact

mechanisms involved in the mtDNA replication process are still largely unknown. How-

ever, it is widely believed that there are about six nuclear encoded proteins involved in

the mtDNA replication process. Transcription process is essential for the mtDNA repli-

cation process, and thus a RNA primer is necessary to initiate the mtDNA replication

process. The mitochondrial transcription factor A (mtTFA) and RNA polymerase are pri-

mary elements involved in the mtDNA maintenance and replication. The processing of the

RNA primer is carried out by the RNA processing complex (RNase MRP). Endonuclease

G also participates in the RNA primer processing. Finally, the replication of mtDNA by

polymerase-γ (POLG) is assisted by mitochondrial single stranded DNA binding protein

(mtSSB). The presence of all these factors are believed to be essential for the maintenance

of mtDNA replication process, and the deficiency in any of the aforementioned factors

could essentially disrupt the mtDNA replication process [97, 99].

Experimental evidence indicates that some of the aforementioned factors are critically

regulated in response of mtDNA copy number. For instance, POLG-B is altered in re-

sponse to changing mtDNA copy number, suggesting the potential role of POLG-B in

mtDNA copy number regulation [97]. Furthermore, it has also been widely thought that

the level of mtDNA is maintained based on the ATP deficit in the cell [97, 105]. An increase

in the mitochondrial biogenesis is induced as a consequence of adaptation to impaired

metabolism or oxidative stress, such as those associated with aging and degenerative dis-

eases [97]. Partial depletion of mtDNA or impairment of mitochondrial metabolism have

indicated an enhanced expression of factors of both the mitochondrial and nuclear origin

[263].

The proteins associated with the mtDNA replication process are packed tightly in

structures known as nucleoids, which are also associated with the inner mitochondrial

membrane. In the last few years significant progress has been made in identifying the
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composition of these structures. Several studies have indicated that yeast nucleoids in-

cludes proteins that bind DNA and are associated with replication and transcription such

as mtTFA, helicase TWINKLE, POLG and mtSSB and several other proteins associated

with the mitochondrial metabolism [98]. mtDNA POLG and mtTFA are abundantly and

uniformly distributed throughout the cellular cytoplasm. The mtDNA replication is be-

lieved to preferentially synthesize in the peri-nuclear region of the cell, due to immediate

recruitment of nuclear encoded mtDNA replication machinery. Alternatively, there may

exist a nuclear tethering mechanism, in which some of the structural entity inherent to

the nuclear membrane may be present for maximizing the transport efficiency of newly

synthesized mitochondrial transcripts [99, 262].

Mitochondrial DNA degradation rate (kd): Cellular organelles like mitochondria are nor-

mally degraded by the autophagy process, where an entire organelle is engulfed by a lyso-

some and undergoes lytic degradation [264]. The half-life of mouse mtDNA molecules can

be studied in vivo using isotopic deuterated water 2H20 [240]. The decrease of isotopic de-

oxyadenosine in mtDNA after discontinuation of 2H20 treatment can be used to determine

the turnover of mtDNA [218, 240], providing a highly sensitive measurement of mtDNA

degradation rate constant for the model, kd.

Hepatocytes of liver are mitotically quiescent and stop differentiating at the end of the

postnatal growth period (∼60 days in the rats) [249, 265]. While under normal conditions

these cells have a very long life span (∼ 400 days) [249], they can become mitotic in re-

sponse to hepatic stress or injury [249, 265]. Thus, in simulating the liver tissue, the slow

cellular turnover was approximated using an elevated mtDNA turnover (Tables 3.2, 3.3).

Mitochondrial DNA replication rate (kR): The mtDNA copy number is maintained dur-

ing cell growth and divisions [99]. The mtDNA replication should occur to balance the

degradation. There exist evidence supporting the existence of a retrograde signaling be-

tween mitochondria and nucleus to regulate the mtDNA content based on cellular bioen-
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ergetics [231]. This suggests that mitochondrial biogenesis may be initiated as soon as the

mtDNA copy numbers in a cell falls below a certain homeostatic set-point value. In the

point mutation model, we have used a constant biogenesis (i.e. without retrograde signal-

ing), but the main conclusions of the work remain the same even with retrograde signaling

(see Figure 3.2).

The constant mtDNA replication rate was deduced based on the homeostatic mtDNA

copy number in a cell and the degradation rate of mtDNA. Thus, the replication constant

kR is given by:

kR = kd · (W +M)ss (3.12)

where (W +M)ss represents the homeostatic level of mtDNA population in the cell (Table

3.1).

In the second model of mtDNA biogenesis, a Hill-type cooperative equation was used

to simulate the retrograde signaling. The Hill-type equation has been widely used in the

modeling of biological system involving switch-like behavior arising from cooperativity

of enzymes [245]. The functional effect of mutations was simulated as a retrograde sig-

naling by means of a Hill-type kinetics, insofar as the Hill-feedback responds to a drop in

the number of wild-type (and hence functional) mtDNA (Equation 3.13 below). In other

words, a mutant mtDNA was considered to be entirely dysfunctional. Notice that the

maximum rate of replication by the Hill-type kinetics is twice that of the constant biogen-

esis parameter. Using the Hill-feedback, our simulations showed that wild-type mtDNA

population in a cell rarely drops large enough to trigger an increased replication by this

feedback and the simulations of the two model assumptions were in agreement as shown

in the Figure 3.2. The parameters of the Hill-type equation, KH and n can be used as a

set point level of mtDNA numbers and the sharpness of the switch response, respectively.

The replication propensity is then a composite of: a.) a maximum replication rate, balanc-

ing the degradation rate of mtDNA, and b.) a negative Hill term capturing the retrograde
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response of the nucleus. Hence, the replication propensity for replication of mtDNA is

given by:

kR = νmax ·
(

1−
{

Wn

Kn
H +Wn

})
(3.13)

where νmax is the maximum replication rate computed by,

νmax =
kd ·KH

0.5
(3.14)

Due to the low frequency of the point mutation, the difference between the two replication

models is negligible (Figure 3.2). The constant biogenesis replication model was used in

the present point mutation model, as this minimizes the number of model parameters and

assumptions.

Mitochondrial DNA point mutation rate (km): In vivo, 8OHdG level ranges from 0.3 to

4.2 lesions per 106 bases in nuclear DNA [221, 246, 247]. However, such lesions make only

about 10 to 20% of the complete damage spectra [116, 266]. Therefore, the actual frequency

of point mutation rate may be as low as 1.5 and as high as 42 lesions per 106 DNA bases

per replication. In this work, we have made a conservative assumption that the oxidative

Figure 3.2: Results of choice of
mtDNA replication model. Effect
of different choices of point muta-
tion model on the average muta-
tion burden. The average muta-
tion frequency reported in the plot
represents the mutation burden in
the heart tissues of wild-type mice
and was recorded at the end of 36
months. Comparison of the aver-
age mutation burden obtained us-
ing two different replication mod-
els: (i) constant biogenesis, and
(ii) biogenesis with the Hill-type
kinetics.
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Table 3.3: Model parameters used in the simulations of the in silico POLG heterozygous
(POLG+/mut) mice.

Parameters Units Values Comments References

kd d−1 2.3377 × 10−3

(Heart)
Degradation rate of
mtDNA

[240]

4.0706 × 10−3

(Liver)
[249]

kdevR molecules d−1 465 (Heart) Maximum replication
rate of mtDNA during
development

530 (Liver)
kdevm rep−1 d−1 1.0 × 10−7 ×

200
Mutation rate of mtDNA
during development
(POLG fidelity)

[137, 234,
241]

Ncyc — 22 Number of developmen-
tal cycles

[237, 242–
244]

(W +M)ss molecules 3500 (Heart) Homeostatic set-point of
the mtDNA population
(Heart cells)

[230, 245]

4000 (Liver)
kPM
R molecules d−1 0.8182(Heart) Maximum replication

rate of mtDNA during
post natal stage

0.9351 (Liver)
kPM
m rep−1 d−1 2.17× 10−5 Mutation rate of wild-

type POLG allele with
oxidative error

[137, 221,
234, 241,
246, 247]

Ncell — 2.2443× 107 Number of cells (Heart) [230, 248]
— 4.1871× 108 Number of cells (Liver)

damage to mtDNA was of similar magnitude to nuclear DNA, consistent with our earlier

observations [267]. While some reported values of 8OHdG adducts are determined to be

an order of magnitude higher than what is found in nuclear DNA [220], our simulations

indicate that such a high damage level was unlikely as this will lead to mtDNA mutation

burden much in excess of those quantified by RMC assay (Figure 3.12) [116].

In addition to the oxidative damage, the fidelity of polymerase-γ also contributes to de

novo point mutations during replication. The polymerase is responsible for the replication

and proof reading of newly synthesized strands with a reported error rate between 1×10−7

and 1 × 10−6 bp−1 replication−1 for the wild-type enzyme [234]. Therefore, the overall

mutation rate was considered as a sum of oxidative damage and POLG-related errors,

giving a range of mutation rate between 1.6× 10−6 and 4.3× 10−5 mutations per base pair

per mtDNA replication. A conservative value (lowest) of 1.6 × 10−6 bp−1 replication−1

was chosen for wild-type mouse simulations.
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3.2.8 Computation of mtDNA mutation frequency

The point mutation burden (mutation frequency) per base pair is determined using,

∆sim =
Mtot

(Wtot +Mtot) · 4bp
(3.15)

where Wtot and Mtot are the total number of wild-type and mutant mtDNA molecules in

the tissue, respectively. The length of TaqI recognition site used in the RMC assay is 4 bp

[116]. Consistent with the original work [116], the probability of a molecule harbouring

two or more mutations in the same TaqI site was considered to be negligible.

3.3 Results & Discussion

3.3.1 Statistical features of the RMC assay.

In silico wild-type (WT) mouse population of 1100 individuals was generated starting from

embryo up to three years of age, the approximate life span of mice (Figure 3.1). The overall

point mutation frequency in∼ 2.5×107 cells of whole heart tissues was recorded at the end

of each cell division during development and every fortnight during the postnatal stage.

Figure 3.3 illustrates the percentile and distribution function of the mutation frequency

arising from two important sources of variability related to the quantification of mtDNA

point mutations. The probability density functions indicate the distribution of mutation

frequencies in the population as a function of time. Each contour on the percentile plot

represents the maximum mutation frequency of a given percentage of the population har-

bors (e.g. 99% of mice harbor mutation frequencies up to and including the level indicated

by the 99th percentile curve).

The main source of randomness is the intrinsic stochastic nature of the aging process,

which arises from the mtDNA maintenance processes (Figure 3.1B). Note that the intrinsic

stochasticity prevailing in the in silico population has a long tailed non-Gaussian density
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Figure 3.3: Stochastic determinants of age-dependent dynamics in the observed mtDNA point
mutation frequency. Heart tissue simulations provided the distribution of mutation frequency
among 1,100 in-silico wild type mice. (A, B) The percentiles and probability distribution functions
of the mutation frequency arising from the intrinsic stochasticity of cellular processes alone. The
dotted line indicates the evolution of the average mutation frequency of 1,100 mice, which grows
linearly with time. (C, D) The percentiles and probability distribution functions of the mutation
frequency in the RMC assay of in silico wild-type mouse population. The apparent variability arises
from the combined effect of intrinsic stochasticity and the (hypergeometric) sampling variability in
the RMC protocol (details in the main text).

function (Figure 3.3), indicating that a small fraction of the population harbors a signif-

icantly higher mutation burden. Cell-to-cell variability of mtDNA mutation load is also

observed as a result of the random processes (Figure 3.4). Figure 3.5 illustrates the evolu-

tion of mtDNA states (W and M ) in two cardiomyocytes during the postnatal stage of a

mouse. Random fluctuation of wild-type mtDNA can be seen in the population with reg-

ular bursts and decay of mutant mtDNA. Furthermore, it is interesting to observe that de-

spite the significant cell-to-cell variability of mutation load being large (Figure 3.4), the av-

erage accumulation of mtDNA mutation in tissue remains linear after birth (Figure 3.3A).

Also, the variance remains roughly constant during the mouse life span, indicating that
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Figure 3.4: Point mutation distribution in cells of heart tissue from different in silico mice.
Stacked distribution plots of the normal and mutant mtDNA counts (W ,M ) in an in silico mouse
heart. Each plot represents the simulation outcome of a single heart tissue. Subplots on the left
pane represent the complete distribution of all states in the cells and those on the right pane il-
lustrate the states distribution for all the cells having at least one mutant mtDNA (M>0) (Note,
the frequency of the cells having mutant mtDNA in a wild-type tissue is two orders of magnitude
lower than the cells from the tissue of POLG mutator mice). Dispersion of mutation load in the
cells has an increasing trend amongst the three different mouse models with the POLGmut/mut

mouse having the highest dispersion of mutant mtDNA states in the cells. The stochastic nature of
mtDNA turnover has a significant contribution in the mutation load dispersion. (A, B) Distribution
of mtDNA states in the tissue of wild-type mouse. (C, D) Distribution of the mtDNA states in the
tissue of POLG+/mut (heterozygous) mouse. (E, F) Distribution of the mtDNA states in the tissue
of POLGmut/mut (homozygous) mouse.

the mtDNA mutation variability among individuals is acquired in the tissue before birth.

However, for comparison with data derived from the RMC assay, a second source of

variability has to be considered due to the intrinsic statistical properties of the assay pro-

tocol. This is because the determination of point mutation burden by the RMC assay in-
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Figure 3.5: Stochastic evolution of
mtDNA states. (A) represents the
stochastic evolution of the wild-type
mtDNA, while (B) illustrates the stochas-
tic changes in the mutant mtDNA popula-
tion. Red and blue curves indicate the out-
comes of two independent realizations.

volves drawing a random sample of mtDNA copies (∼840,000) from tissue homogenates

[116]. This sampling procedure introduces additional variability that becomes significant

due to the low overall count of total mtDNA mutations. This statistical feature of the RMC

protocol can be described as sampling from a hypergeometric distribution [233]:

f (m|Wtot,Mtot) =

(
Mtot

m

)(
Wtot

n−m

)
(
Wtot +Mtot

n

) (3.16)

where m denotes the number of mutant mtDNA molecules present in a random sample

of mtDNA of size n (n = 840, 000 mtDNA molecules in this case). Thus, for low mu-

tation frequencies and sample sizes, the RMC protocol introduces significant additional

variability in the data. For example, in heart tissue homogenate containing 1010 molecules

of mtDNA with a mutation frequency of 10−6/bp (a total of 4× 105 mutant mtDNA), sam-

ples of 840,000 mtDNA drawn from the same homogenate will have a mean value of 3.36

mutants with a standard deviation of 1.83 molecules or 54.6% coefficient of variance from
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the RMC sampling alone.

The compounded effect of the two sources of variabilities (intrinsic aging related and

RMC assay) can be expressed by,

φ (m) =
∑

Wtot,Mtot

f (m|Wtot,Mtot)× h (Wtot,Mtot) (3.17)

where h (Wtot,Mtot) denotes the underlying probability distribution of mtDNA mutations

predicted by the mouse model simulations and φ (m) is the overall probability function

of measured mtDNA mutations. Importantly, the additional variability associated with

the sampling of mtDNA in the RMC protocol causes the mutation frequency variance to

increase as a function of the average mutation frequency (Figure 3.3C), a result expected

from a hypergeometric distribution [233]. This is particularly relevant here because of

the age-dependent increase in mean mutation burden and the fact that the distribution

describing the mutation process is long-tailed (Figure 3.3A, 3.3B). When this underlying

mutation dynamics is sampled using the RMC assay, the resulting data will exhibit an age-

dependent increase in variance. Due to low number of samples (typically n < 5 per age

group), it is highly probable to choose a sample for which the data is best approximated

by a non-linear, possibly exponential model (Figure 3.3C). However, this apparent expo-

nential increase is not actually a feature of the underlying mutation dynamics, which may

in fact be linear (Figure 3.3A). This has important implications for the interpretation of the

available experimental data.

In accordance with the interpretation reached in the original experimental work [116],

the variance in the in silico data as well as the experimental data for low n-values appears

to suggest an exponential dynamics supporting the ’vicious cycle’ theory [222, 227]. How-

ever, on more careful consideration (Figure 3.3), the apparent exponential increase of the

mutational burden could actually be an artifact of: (a) intrinsic stochasticity of aging pro-

cess (Figure 3.3A, 3.3B), coupled with (b) the random sampling variability introduced by
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the statistical properties of the RMC protocol (Figure 3.3C, 3.3D). Experimentally, it is not

possible to carry out 100s or 1000s of repeats and it is therefore difficult to distinguish be-

tween a truly exponential and a linear increase of age dependent point mutation burden.

In summary, while the RMC assay is able to quantify extremely low levels of mutations,

its discrete nature (in terms of mutant mtDNA count) introduces significant challenges

in data analysis and interpretation. The interpretation of the data can be flawed if the

statistical properties of the RMC assay are not considered. Taking both processes into con-

sideration, the fundamental mtDNA maintenance processes modeled by the in silico mice

were in excellent agreement with the published data (Figure 3.3C). However, the last data

point of mutation burden from an old mouse (980 days) deviated from the mean of in silico

mouse population (p-value = 0.064), suggesting that other processes not predicted by the

present model may be involved during the last months of life (e.g., inflammation or other

disorders that can accelerate oxidative DNA damage [268]).

3.3.2 Transgenic mouse studies.

Transgenic mouse studies on POLG mutator mouse have recently shed some light on the

role of mtDNA in aging [116, 130, 131]. However with these mutator models, many open

questions still remain about the role of mtDNA mutation in aging. For example, only

the homozygous mutator mice exhibited accelerated human-aging-like phenotypes (e.g.,

anemia, alopecia, kyphosis) and shortened lifespan, while the heterozygous mice have no

obvious aging phenotypes, despite significantly elevated mutation burdens [131].

After successfully validating the in silico mouse model against wild-type mouse data,

further simulation of 1,100 hetero- and homozygous POLG mouse heart and liver tissues

were performed by elevating the baseline POLG error rate to 200 times that of wild-type

[137, 234]. In this case also, an excellent agreement of the in silico results were found with

the reported mutation burdens from two different laboratories [116, 131] (Figure 3.6 and

Suresh Kumar Poovathingal



3.3. Results & Discussion 84

Figure 3.7). As with the wild-type mice, the point mutation increase was linear with age

(Figure 3.7). Again, mitochondrial turnover and de novo point mutations alone were suffi-

cient to explain the accumulation of mtDNA point mutations. These results indicate that

even at the elevated levels of point mutations ROS-mediated acceleration of point mu-

tations with age was not necessary to explain the data presented in [130, 131]. This is

consistent with additional experimental observation suggesting that the levels of ROS in

POLG mice are not significantly elevated in the mutator mice [130]. Crucially, no modifi-

cation of mtDNA maintenance rate constants was required to reproduce the experimental

data [130, 131]. That is, one does not have to resort to assumptions such as the existence of

a vicious cycle or other possible feedback mechanism [199, 201].

Figure 3.6: Average mtDNA
point mutation frequencies in
WT and POLG mutator mice.
The variances in the in silico
mouse data represent the intrin-
sic stochasticity only (without
the RMC sampling variability).
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(Vermulst et al. 2007)

Experiment Data
(Trifunovic et al. 2004)

3.3.3 Rate of mitochondrial turnover

Since mutations predominantly occur during mtDNA replication as a consequence of ei-

ther oxidative lesions or intrinsic polymerase errors [133], mitochondrial turnover rate is a

critical parameter determining de novo mtDNA mutation rate [269]. The mtDNA turnover

Suresh Kumar Poovathingal



3.3. Results & Discussion 85

126 252 378 504 630 756 882

500 

1000

1500

2000

2500

3000

3500

4000

4500

5000

1%

95%

99%

75%

25%

70 140 210 280 350 420

700 

1400

2100

2800

3500

4200

4900

5600

6300

7000

1%

25%

50%

75%

95%

99%

M
u

ta
ti

o
n

 F
re

q
u

e
n

cy
  

×
 1

0
-7

 b
p

-1
  

M
u

ta
ti

o
n

 F
re

q
u

e
n

cy
  

×
 1

0
-7

 b
p

-1
  

A B

Experimental data (Trifunovic et al. 2004)

Experimental data (Vermulst et al. 2007)

Experimental data (Vermulst et al. 2007)

Age after birth (days) Age after birth (days)

Figure 3.7: Stochastic determinants of age-dependent point mutation dynamics in mutator
mice. Comparison of the observed mtDNA point mutation frequency in a population of 1,100
in-silico POLG mouse heart tissues (Heterozygous and Homozygous). The mutation frequencies
were recorded every fortnight up to 36 months (heterozygous) and 14 months (homozygous). (A)
The percentile curves of the mutation frequency in the RMC assay of in silico POLG+/mut mouse
(heterozygous) population. The apparent variability arises from the genetic variations intrinsic to
the aging process and the hypergeometric sampling variability in the RMC protocol (details in the
Methods section). (B) The percentile curves of the mutation frequency in the RMC assay of in sil-
ico POLGmut/mut mouse (homozygous) population. Unlike the wild-type, the uncertainty arising
due to the combined effect of the two sources of variability does not increase with time. The vari-
ance remains roughly constant with age and this is primarily due to the high point mutation load
prevailing in the cells at birth, which only increases relatively marginally with age.

rate may also impacts clonal expansion dynamics of mtDNA mutations [269, 270]. Mi-

tochondria do not generally exist as disconnected organelles but undergo rapid fusion

and fission, forming large, complex reticular structures [34]. Therefore, it is not trivial

to define what constitutes "turnover of a mitochondrion". Definitions are possible based

on turnover rates of its constituents like proteins [271–273], mtDNA [218, 240, 274] or

lipids (cardiolipin) [218, 275, 276]. Experimental data on mitochondrial turnover are lim-

ited and divergent. Reported half-lives range from 2 to 350 days depending on refer-

ence molecules and measurement techniques [218, 240, 273, 274, 276]. Half-life values of

about 2-17 days, derived from bulk protein turnover data, are often cited [271, 273, 275].

If these short half-life values are assumed to be indicative of the mtDNA turnover rates,

they would have dramatic impact on age-dependent mtDNA mutation accumulation dy-

namics [201, 209, 210, 212, 269]. Using the modeling analysis, it can be argued that mtDNA

turnover cannot be as rapid as is often envisaged based on the protein turnover data.

Mitochondrial protein turnover rates are usually measured using pulse chase experi-
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ments [271, 273, 275]. Isotope-labeled protein precursor molecules are administered, fol-

lowed by tracking labeled mitochondrial protein. The first-order decay rate for the loss of

isotope-label yields mitochondrial protein half-lives. However, such data must be inter-

preted with caution. For one, mitochondria contain approximately 1200 different polypep-

tides [277], with half-lives ranging from little over an hour to more than 10 days (Table 3.4).

The presence of intra-mitochondrial proteolytic systems [278] indicates that mitochondrial

proteins are also degraded independent of organelle turnover resulting in protein-specific

half-lives [279]. In contrast to proteomics approaches, pulse chase experiments utilizing

bulk protein will result in half-lives that reflect the average turnover of the population of

proteins in mitochondria [273]. Therefore, protein turnover data from such experiments

may be dominated by the turnover rate of few abundant proteins. This suggests that even

with the best experimental practices and even when artifacts, such as precursor reutiliza-

tion [272, 273, 280], are carefully controlled, bulk protein turnover might still overestimate

organelle turnover and, in particular, may not be a useful indicator of mtDNA turnover.

The turnover rate of the whole organelle cannot be faster than that of the most persis-

tent macromolecules that the organelle contains. Individual mitochondrial protein half-

lives of more than 10 days have been reported (Table 3.4). If these data are accepted, mito-

chondrial half-life cannot be shorter than 10 days. However, more data from mitochondrial

proteomics studies using modern methods would be desirable (e.g.: [281]). Long half-lives

have also been reported for other macromolecules in mitochondria. For instance, a half-

life of 40 days has been reported for the mitochondrial lipid cardiolipin [276]. Importantly,

attempts at direct measurement of mtDNA turnover have yielded half-live values ranging

from 10 days up to as low as 300 days, again depending on tissue types and experimental

techniques [218, 240, 274]. However, even the highest value of mtDNA turnover (10 days)

[218] is significantly longer than the two-day mitochondrial turnover rate estimated based

on the bulk protein measurements [273].
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Table 3.4: Turnover rates of some mammalian mitochondrial proteins.

Protein Half life Organism/Tissue Reference

Ornithine
Aminotrans-
ferase

1.9 days Rat Liver [282]

Cytochrome
Oxidase

5.7 days Rat Liver [282]

Carbamyl
Phosphate
synthetase

7.7 days Rat [283]

Malate Dehy-
drogenase

2.6 days Rat [283]

Aminolevulinate
synthetase

70 mins Rat Liver [284]

Cytochrome c 10.3 days Rat Liver [275]
Ornithine
transcar-
bamylase

7.7 days Rat Liver [285]

Cytochrome c 11.8 days Rabbit Heart [286]
66 Different
Mitochon-
drial Proteins

2 days - 8.5 days Rat Skeletal Muscle [279]

The turnover rate of mtDNA determines how fast mtDNA mutations accumulate with

age, as each replication event has a finite probability of introducing a new mutation. The

mtDNA point mutation burden in postmitotic tissues like mouse heart and brain have re-

cently been reported to be extremely low [116, 131]. If these low levels of mtDNA mutation

burden are considered to be true, then these data provide a constraint on the magnitude

of the mtDNA turnover rate, because ultimately mtDNA turnover determines the under-

lying de novo mtDNA point mutation rate.

The higher accumulation of mtDNA mutations due to faster mtDNA turnover can be

clearly demonstrated using the in silico stochastic model of mtDNA maintenance in mouse

heart, described above. In these simulations, the mtDNA mutations were assumed to

arise as a consequence of the finite fidelity of the mitochondrial DNA polymerase-γ [137,

234] alone, while neglecting the mutations arising from the oxidative DNA damage. This

assumption is conservative in the context of this work because it means that the model

underestimates actual mutation rates. This model was used to investigate the impact of

different mtDNA turnover rates on age-dependent mtDNA point mutation burden in both
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wild-type and POLG mutator mice, for which experimental data are previously reported

[116, 131]. Simulation results are presented in Figure 3.8.

The model results shows clearly that, as long as neither mutant nor WT mtDNA are

preferentially degraded, higher turnover rates always resulted in increased mtDNA mu-

tation burden, since de novo mtDNA mutations are tied to mtDNA replication (Figure 3.8).

In particular, it was found that the mtDNA mutation burden obtained using short mito-

chondrial half-life (∼ 2 days [273]) was inconsistent with the experimental data [116, 131]

(Figure 3.8D). These simulations were repeated using other reported half-lives, ranging

from 10 to 300 days [218, 240, 271, 274] and it was further found that a mtDNA turnover
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Figure 3.8: Comparison of mutation frequency (experimental and simulation data) for different
mtDNA turnover rates. Comparison of experimental data and simulation results of point mutation
frequency in wild-type and POLG mice (n = 10) [116, 131] for different values of mtDNA turnover
rates. The frequencies of the accumulated point mutations in mouse heart at the end of 29 months
(wild-type mouse) and at the end of 6 months of age for (POLG+/mut and POLGmut/mut mice).
Results of point mutation frequencies obtained using mtDNA turnover rates of: A.) t1/2 = 300
days [240], B.) t1/2 = 30 days [218], C.) t1/2 = 10 days [218], and D.) t1/2 = 2 days [273].
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process with a half-life of more than a month is required for having the consistency with

the experimentally observed mtDNA point mutation levels.

3.3.4 Significance of animal development.

The stage in an organism’s life from which the accumulation of mtDNA mutations starts to

become functionally significant (if at all) is unclear. During development, mtDNA repli-

cation is tied to the cellular division, and as a consequence, initial mutations may arise

as soon as mtDNA replication begins. In fact, the total number of replications during

development is comparable to that during the entire adult life. In mice, the heart tissue

develops in about 20 days [244]. Considering the degradation rate described in Table 3.1

and the mouse heart to contain ∼ 2.5 × 107 cardiomyocytes [230, 248] arising from 22 cell

divisions (6 progenitor cells), the total number of mtDNA replications needed to maintain

homeostatic value of mtDNA (Table 3.1) [230] per cell should exceed 9×1010 times during

the development. On the other hand, from the degradation rate of mtDNA in postnatal

stages (Table 3.1) [240], the number of mtDNA replications events over the three years

lifespan of mice is about 1.3 × 1011. Thus depending on their source (ROS, POLG errors),

the development period may carry comparable contributions in de novo mtDNA muta-

tions as does the entire adult life. POLG errors have been postulated to be the main cause

of de novo point mutations in murine embryonic fibroblast [234, 241]. Therefore, the POLG

baseline error rate was used as mutation rate during development. Generally, the in silico

mouse data highlights that mutations occurring in the early embryonic cells have a strong

impact on the mutation load at birth (Figure 3.9) and that the variability among individ-

uals is set during development (Figure 3.3, 3.7 and 3.10). Since the mtDNA replication is

several folds higher than the degradation during development, de novo point mutations

generated during the early cell divisions can accumulate very quickly, resulting in a high

mutation load at birth in some individuals (Figure 3.9). These results highlight that the
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stochastic drift of mutation dynamics during the early developmental cell divisions may

be a deciding factor of the organism’s mutation trajectory, and also a major contributor of

the mutation variability in a population, including isogenetic individuals [185]. The vari-

ability generated during development is conserved throughout the organism’s life (see

Figure 3.3A, 3.7).
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Figure 3.9: Mitochondrial DNA point mutation accumulation during mouse development. Ex-
pansion of mtDNA point mutations during heart tissue development from in silico wild-type (A),
POLG+/mut (B) and POLGmut/mut mice (C) population (n = 1,100). (A) The square symbols show
examples of point mutation trajectory from two different mice, one of which suffers from a rare
point mutation early in the development, resulting in the amplification of the mutation frequency
in subsequent cell divisions. Since replication frequency is several folds higher than degradation
during development, de novo point mutations generated at early development can accumulate very
quickly, resulting in a high mutation load in the tissue at birth. (B) Like in the wild-type cohort, de
novo point mutations generated in the POLG+/mut mice during the early cell divisions can accu-
mulate very quickly, resulting in a high mutation load in the cells at birth. (C) Since the error rate
of mtDNA replication in POLGmut/mut is much higher than the wild-type mtDNA replication,
a significant proportion of the population (>75%) harbors mtDNA mutations at an early stage of
development (before the 10th cell division). As a consequence, the resulting mutation load in the
tissue is significantly higher than that in the wild-type tissues at birth.

In postmitotic tissues, like heart, mtDNA are continuously turned over independent

of cellular division [232]. Although the turnover rate of mtDNA is lower during the post-

Suresh Kumar Poovathingal



3.3. Results & Discussion 91

natal stage than during development, the higher mutation rate due to oxidative damage

(Table 3.1) can lead to 2-3 fold increase in the mutation load between birth and old age

in wild-type mice (see (Figure 3.11)). The in silico POLG mice however differ from the
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Figure 3.10: Simulations with exclusion of developmental phase. Sources of variability in the
observed mtDNA point mutation frequency of 1,100 in silico wild-type mice heart tissues without
developmental de novo point mutations. The mutation frequencies were recorded every fortnight
up to 36 months. (A) The percentile curve of mutation frequency due to the intrinsic stochasticity
of aging process in the mouse population. The mtDNA maintenance during life did not cause
any observable variability among the mice population, as indicated by the overlapping percentile
curves and the sharp distribution. This is in agreement with the previous observation that the
genetic variability is inherited from the development and conserved during the adult life. (B)
The percentile curve of the mutation frequency in the RMC assay of in silico wild-type mouse
population. The variability again increases with age due to the increase of the mutation frequency.
The model excluding the development was in worse agreement with the experimental data than
the trials that included the development. (C) Comparison of the average mutation frequency in
mouse heart tissues with and without developmental contribution. Two types of simulations were
performed, in which one type included de novo mutations during development while the other did
not (i.e. no mutations at birth). Although the influence of development in the wild-type mice is
rather insignificant at older ages, the exclusion of the developmental stage in the simulations of the
POLG mutator mice causes a significant difference in the resulting mutation burden. The variance
in the in silico mice data represents the intrinsic genetic variability only, without the RMC sampling
variability.
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wild-type because in these mice, the POLG error is the dominant contributor of de novo

point mutations, both during embryonic and postmitotic stages (Figure 3.11). Due to

faster mtDNA replication (tied to cell division), most of the mutations in mutator mice

therefore arise during development (Figure 3.9 B, 3.9 C and Figure 3.11). This is con-

sistent with the experimental data which shows clearly that mutator mice are born with

significantly elevated mutation burden [131, 132]. However, during their adult life, the

accumulation is relatively lower compared to their development, due to the slow turnover

of mtDNA [240]. This further leads to an interesting insight, largely unappreciated in the

original work [130, 131, 287], regarding the point mutation load in tissues that remain

mitotic (epidermal, stem cells, spleen). Since in POLG mice the point mutation burden

of mtDNA is dominated by POLG errors, mutation accumulation in fast dividing cells is

expected to be several fold faster than in postmitotic tissues such as heart. This is consis-

tent with the experimental observation in POLG mutator mice, where some of the most

prominent pathologies are associated with the fast dividing tissues manifest in the form of

alopecia, spleen enlargement and anemia. However it should be appreciated that the later

mechanistic hypothesis regarding the mitotic tissue is speculative, because the simulation

considered here does not model any fast dividing tissues. Treatment of cell division and

selection pressure for mitochondrial turnover might be a promising area of investigation

for the future work.

3.4 Conclusions

By thinking carefully about the different sources of stochasticity in each process from early

development all the way to experimental sampling, it can be seen that the RMC assay is a

major contributor to the overall data uncertainty. In contrast to the original interpretation

of the data, the present analysis indicates that the existence of an exponential dynamics

in point mutations cannot be inferred with certainty, and thus no contradiction between
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the observed point mutation dynamics and the apparent absence of evidence for elevated

oxidative stress exists. A detailed, quantitative understanding of the relevant sources of

noise also allows optimization of experimental designs, thereby opening avenues for max-

imizing information return and minimizing cost, time and animal use.

The fact that the reproduction of the POLG mouse data requires no modifications to

the wild type model, other than the obvious decrease of the polymerase fidelity, suggests

that elevation of the point mutation burden does not trigger fundamentally new processes.

In particular, neither mutant replicative advantage nor the elevation of the ROS dynamics

resulting from the increase of the point mutation burden is required to explain the POLG

data. This is consistent with our current view on the mFRTA [127], showing little evidence

for the existence of ’vicious cycle’ mechanism. Two further observations related to the

POLG mice that have originally been seen as somewhat surprising, can also be explained.

The first is the observation that dividing tissues seem to be more severely affected in POLG

mice than postmitotic tissues [130, 131, 287]. The second is the fact that most mtDNA mu-

tations in the POLG mice are already present at birth with comparatively little further

accumulation during adult life, when compared to its development [131, 132]. Quantita-

tive analysis shows both of these observations to be consequences of the low turnover of

mtDNA in postmitotic tissues of adult mice.

Measurements of mitochondrial turnover based on any of its individual components

require strong justification and given the dynamical characteristics of mitochondria, the

very concept of "whole organelle" turnover may be questionable. Simulation results above

indicate that mtDNA half-lives are in the order of months. That is, if (whole) mitochon-

dria organelle turnover parameter is to be at all meaningful, the rate should be much

slower than commonly believed (2-10 days) [218, 273]. In this regard there are several

studies reporting longer half-lives (>30 days) using cardiolipin, mtDNA and some indi-

vidual proteins. Additional support for lower mitochondrial turnover rate comes from the
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quantification of age-related mtDNA mutations. Using a stochastic computational based

on conservative assumptions regarding the mtDNA turnover process and the associated

de novo mutagenesis, it was found that simulations using a short mtDNA half-life of 2

days grossly overestimated mtDNA point mutations accumulation in murine heart tissue

as compared to published values [116, 131]. These experimental data were consistent only

with a mtDNA half-life of 30 days or longer. Given the importance of mitochondrial DNA

turnover for understanding various aging mechanisms [107, 127, 269], it is an important

area worthy of further careful experimental study, preferably by a direct and sensitive ex-

perimental estimation of mtDNA turnover. While individual components of mitochondria

might turnover rapidly, global mitochondrial turnover rates, if meaningful at all, cannot

be faster than mtDNA turnover or turnover of the most persistent macromolecules. Cer-

tainly, bulk protein turnover rate should not be used as a surrogate for mtDNA turnover.

Finally, the in silico analysis performed in this work reveals the importance of under-

standing the mtDNA turnover dynamics and the relevance of early development in deter-

mining the trajectory of mtDNA mutation burden. This is in sharp contrast to the common

assumption that health and diseases are determined predominantly by the genome inter-

acting with the environment. In this work, it has been further demonstrated that in silico

modeling can contribute significantly to analysis and understanding of experimental data

as well as potentially help to design more effective methodology. Furthermore, this ap-

proach of "Computer Aided Thought" can contribute towards a fundamentally improved

understanding of intrinsically challenging biological problems such as aging.

This chapter highlights the work done in:

? S. K. Poovathingal, J. Gruber, B. Halliwell & R. Gunawan. Stochastic drift in
mitochondrial DNA point mutations: a novel perspective ex silico. PLoS Comp.
Biol., 5(11): e1000572, 2009.

? S. K. Poovathingal, J. Gruber, L. N. Lakshmanan, B. Halliwell, R. Gunawan. Is
mitochondrial DNA turnover slower than commonly assumed? Aging Cell, In
review.
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Chapter 4

Elucidating mechanisms of age-dependent clonal
accumulation of mitochondrial DNA mutations — an

in silico approach

4.1 Introduction

Analyses of post mitotic tissues from both normal aging and individuals with mitochon-

drial diseases have revealed that a subset of post-mitotic cells in a tissue harbor pathogenic

mtDNA mutations in them and the majority of these respiratory deficient cells harbor high

levels of clonal mtDNA mutations [27, 154, 288–290], suggesting a clonal expansion of sin-

gle or few mutational events. In this context an obvious question that arises is: does the

mosaic genotype of mutations have to do anything with the aging process? There are ex-

tensive evidence available in literature; indicating the association of clonal expansion of

mtDNA mutations with the respiratory deficiency of mitochondria and with cellular mor-

bidity, suggesting that some mtDNA mutations play a significant role in the aging process.

Mosaicity of mtDNA mutation burden in tissue can arise from factors such as stochastic

drift [209, 210]. Once a pathological mutation has occurred, it initially has low functional

importance due to the inherent redundancy of mtDNA copy number in a cell. Subse-

quently, mutations can reach functionally significant levels (phenotypic threshold; [145]),

due to yet poorly understood clonal expansion mechanisms, resulting in a rapid expan-

sion of the mutant mtDNA. Eventually, mutant mtDNA greatly exceed wild type mtDNA

population [26]. Characterizing both the etiology of the initial mutation event as well as

the stochasticity in the expansion of mtDNA mutation accumulation is critical for under-

standing the underlying dynamics of mutation accumulation. Understanding these can
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provide significant insight towards devising treatment strategies to treat mitochondria re-

lated degenerative diseases or retard the progression of aging phenotypes like sarcopenia.

Clonal expansion of mtDNA mutations have been intensely studied in past decades,

when it was observed that certain type of mutations out-replicated wild type mtDNA and

other types of mutations in a cell [25, 108]. Several mechanistic explanations have been

proposed over past decades and some of the frequently cited mechanisms [25, 202, 210,

211] are listed in Table 4.2. Nevertheless, the precise mechanism of mutation expansion is

still largely debated and many of these hypotheses have not been tested against the actual

experimental data on mtDNA mutations. Since mtDNA deletions are more commonly as-

sociated with aging phenotypes, deletion burden data will be mainly used in this work for

model validation. The importance of mutation expansion in aging and age-associated mi-

tochondrial diseases calls for more careful study on mutation abundance and mechanisms.

Unfortunately, with the existing measurement technologies, it is significantly challenging

to obtain relevant measurement indicators for inferring the underlying mechanisms of

mtDNA mutant clonal expansion process. In this chapter, different hypotheses are tested

using a computational approach, to better understand the mechanisms of the origin and

dynamics of clonal expansion of mtDNA mutations. Based on the work in Chapter 3,

mtDNA mutation models developed in this chapter is again based on CME and includes

specific features of cellular energy logistics in mouse cardiomyocytes and considers only

the most relevant biological features of mitochondrial genetic maintenance.

4.2 Methods

Following the stochastic mtDNA point mutation model (Chapter 3; [269]), the in silico

mouse model developed in this work tracks for mtDNA mutation accumulation in murine

cardiomyocytes during two stages of mouse life: developmental and postnatal. The model

tracked for wild-type mtDNA (W ) and mutant mtDNA (M ) in each cardiomyocytes. In
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this section, additional modifications of the stochastic model of the mtDNA point mutation

accumulation will be discussed.

4.2.1 Cell-level modeling details

Consistent with the stochastic model of mtDNA point mutation model (see Section 3.2 in

Chapter 3), the mtDNA turnover process is illustrated in Figure 4.1 and the associated

modeling parameters are listed in (Table 4.1).

The CME formulation [175] of mitochondrial turnover process (Figure 4.1) described

by the following jump Markov process:

Table 4.1: Model parameters of the stochastic mtDNA turnover process in the cardiomyocytes of in silico
mouse model.

Parameters Units Values Comments References

W0 molecules 1000 Initial value of wild type
mtDNA during start of
development.

[236, 237,
291]

M0 molecules 0 Initial value of mutant
mtDNA during start of
development.

kd d−1 2.3377× 10−3 Degradation rate of
mtDNA

[240]

νmax
R |dev molecules d−1 72293.34 Maximum replication

rate of mtDNA during
development, obtained
using Equation 4.4, con-
sidering FM = 0 and
kR = kd · (W +M)ss

[245]

Ncyc — 22 Number of developmen-
tal cycles

[237, 242–
244]

(W +M)ss molecules 3500 Homeostatic set-point of
the mtDNA population
(Heart cells)

[230]

νmax
R |PN molecules d−1 371.82 Maximum replication

rate of mtDNA during
post natal stage, ob-
tained using Equation
4.4, considering FM = 0
and kR = kd ·(W+M)ss.

[245]

km rep−1 3.5× 10−7 de novo mutation rate of
mtDNA

[215]

Ncell — 2.2443× 107 Number of cells (Heart) [230, 248]
β — 2.25 Replicative gain factor of

mutant mtDNA.
KH — 0.15 Hill constant represent-

ing the mtDNA pheno-
typic threshold.

[205, 245]

n — 2 Hill coefficient. [205, 245]

Suresh Kumar Poovathingal



4.2. Methods 99

W
kd−−−−−−−→ ∅ (4.1a)

M
kd−−−−−−−→ ∅ (4.1b)

W
(1−km)·kR−−−−−−−→W +W (4.1c)

W
km·kR−−−−−−−→W +M (4.1d)

M
β·kR−−−−−−−→M +M (4.1e)

can be represented as:
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(4.2)

As discussed in the earlier chapters, the probability density function P (W,M ; t) de-

notes the probability of a cell in a tissue to contain W and M copy numbers of wild-type

and mutated mtDNA, respectively, given an initial condition of the mtDNA population

in the cell (not explicitly stated here for brevity). The parameters kd, km and kR are the

specific probability rate constants of mtDNA degradation, de novo mutations and replica-

tion rates, respectively (Table 4.1). The terms in the curly braces of Equation 4.2 represent

the hypergeometric sampling of mtDNA from the mitochondrial population. The first two

terms in Equation 4.2 represents degradation of mtDNA in a single mitochondrion. The

third line in the Equation 4.2 represents the replication of wild-type mtDNA template in
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the absence of de novo mutations. Forth term in Equation 4.2 represents the de novo mu-

tations generated during the replication of a wild-type mtDNA molecule. The last term

in Equation 4.2 corresponds to replication of mutant mtDNA. The solution of CME was

obtained numerically using a Monte Carlo approach following modified Stochastic Sim-

ulation Algorithm (SSA) developed in the earlier chapter on the stochastic dynamics of

mtDNA point mutations in mouse heart tissue (Chapter 3; [269]).

Figure 4.1: Stochastic model of
mtDNA turnover dynamics in a
mouse cardiomyocytes. Stochastic
drift in mtDNA mutation dynam-
ics results from following random
processes. (I) The mitochondrion
that undergoes a turnover event is
randomly selected from the popu-
lation. The autophagy of mito-
chondrion is simulated by removing
all the mtDNA molecules associated
with the mitochondrion. (II) Replica-
tion of a single mtDNA molecule oc-
curs by random selection of mtDNA
from the mitochondrial DNA pop-
ulation. (III) During the wild-type
mtDNA replication, there exists a fi-
nite probability equal to the de novo
mutation rate (km) for the replication
process to give a mutant mtDNA.
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4.2.2 Tissue-level modeling details

The number of mtDNA copy number in the embryonic cells during the mouse embryo-

genesis is roughly 1000 mtDNA copies [291]. During the 21 days of mouse gestation,

binary cell division of mouse embryonic cell occurs at roughly every 15.5 hours [236, 243].

The developmental simulation not only captured the rapid increase in cell number and

the associated increase in the mtDNA copy number in the developmental embryonic cells

during this time, but also accounted for the normal turnover of mtDNA and cell death and
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replacement of respiratory deficient cells generated during the gestation period (mutant

burden; (M/(W + M) = FM ) > 90%). After birth, the mtDNA population in cardiomy-

ocytes is simulated to undergo hypertrophic growth. The mtDNA population in the mouse

cardiomyocytes increases from 1000 molecules to about 3500 copies per cell in a span of

6 months [230, 292, 293]. After reaching the nominal count of mtDNA in adult cardiomy-

ocytes [230], the mtDNA copy number of cardiomyocytes was held at constant level (Table

4.1), by relaxed replication [107, 183, 232]. The other implementation details related to the

mtDNA deletion model, for example simulation of developmental binary cell divisions

and mtDNA relaxed replication in the somatic non-dividing cardiomyocytes, is the same

as that in the point mutation model in Chapter 3 (see also [269]).

Simulations were performed using an IBM high performance computing cluster with

112 Intel 1.6 GHz processors. The Monte Carlo algorithms were implemented in C++ on a

Linux Platform (CentOS; GNU C++ compiler (v4.1.1)). On average a complete simulation

of a heart tissue (∼25 million cells) from the development to the end of 3 years of mouse’s

life span required approximately 7 hours.

4.2.3 Model parameters

In the present work, the mtDNA point mutation model was modified to include the mito-

chondrial biogenesis in the presence of retrograde signaling, to model the functional effects

of de novo mutations. The abundance of functionally deficient mutant mtDNA is a crucial

factor in determining the existence of a biochemical defect [122]. Due to the abundance

of wild-type mtDNA in a cell and due to efficient complementation arising from frequent

mitochondrial fusion-fission [140], mtDNA mutations are functionally recessive and usu-

ally > 60% of mtDNA molecules must contain mtDNA deletions before respiratory defect

is manifested [140, 294]. Cybrid cell studies with varying fractions of pathogenic deletions

(∆ mtDNA4696), have indicated that the functionality of cybrids maintained at almost
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100% until the abundance of deletions reached to about 60% [140]. Beyond this level,

there was a sharp decrease of the COX activity with increasing proportions of deletions

(resembling a switch behaviour). Therefore in this modeling framework, a Hill-type coop-

erative kinetics [245] was adopted to simulate retrograde signaling process, insofar as the

mitogenesis increased in response to a drop in the proportion of wild-type mtDNA. The

parameters of the Hill-type kinetics, KH and nH can be used as set point levels of mtDNA

copy number and the sharpness of the switch response, respectively [245]. Consistent with

the experimental observations [205], a Hill constant of KH = 85% and a Hill coefficient of

nH = 2 was used in this model.

It’s a well known fact that the mitochondrial metabolites are efficiently complemented

in the mitochondrial network, due to presence of mitochondrial fusion-fission process.

The metabolites synthesized by both the wild-type and mutant mtDNA are equally se-

questered into the mitochondrial network due to the efficient complementation resulting

from mitochondrial fusion-fission process [140]. The data shown in this work hints of no

preferential protein expression capacity for or against the mutant mtDNA molecules. COX

deficient cells having a large fraction of mutant mtDNA population [26] will also produce

significant fraction of dysfunctional respiratory proteins in the cells. With the abundance

of the respiratory dysfunctional proteins in the mitochondrial mass, protein content avail-

able for the OXPHOS machinery will be mostly dysfunctional. Thus, it is most likely

possible that the deficiency status in the cell is better characterized by the abundance of

mutant mtDNA in the mtDNA population, which is also explicitly shown in one of the

experimental data [26, 140]. Thus, the respiratory deficiency of the cells in the model de-

veloped in this work is tracked using the abundance of mtDNA mutation or the mtDNA

mutation burden in the cell (FM ).

In simulations, cardiomyocytes were considered COX deficient when the mutation

burden in the cell is 0.6 < FM ≤ 0.9 and cardiomyocytes were considered completely
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respiratory deficient when the mutation burden is FM > 0.9. In other words, the cells

with mtDNA mutation burden > 60% were characterized into two classes: COX deficient

cells for those having 0.6 ≤ FM < 0.9 and completely respiratory deficient cells for those

having FM ≥ 0.9. The latter cells are treated as dead cells in the simulations.

The propensity of replication process comprises of: a.) maximum replication rate νmax

and, b.) negative Hill term capturing the retrograde response of the nucleus.

kR = νmax ·
(

1−
FnH
W

KnH
H + FnH

W

)
(4.3)

where νmax is computed based on the basal level of mtDNA turnover rate in cells, consid-

ering no mtDNA mutations (M = 0; Table 4.1), and FW is the ratio W/ (W +M).

Different experimental evidence hints for the presence of replicative advantage of dif-

ferent types of pathogenic mutant mtDNA involved in the clonal expansion process. In the

case of mtDNA deletions, the smaller size of the mtDNA deletions have been suggested to

result in a replicative advantage of deleted mtDNA [25, 295, 296]. Repopulation dynamics

of deletions in heteroplasmic population of mtDNA, showed that the mtDNA with large

deletions had the ability to repopulate the organelles much faster than the smaller length

deletions or full length wild-type genome, within the same cell, under the relaxed repli-

cation regime [296]. However, in the case of mtDNA point mutations, the modification of

DNA nucleoside, resulting from the point substitution has been suggested to alter specific

control sequences (e.g. destruction of cis-inhibitory sequences) and rendering the mutated

mtDNA template with replicative advantage [211]. Similarly, mtDNA with partial dupli-

cation have also been found to accumulate with age. In this case, it has been proposed that

partial duplications have additional replication origin, which might enhance the replica-

tive propensity associated with the partially duplicated mtDNA [297]. Considering these

data, a replicative gain factor (β) is used to calculate the replication propensity of the mu-
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tant mtDNA as:

kR = β · νmax ·
(

1−
FnH
W

KnH
H + FnH

W

)
(4.4)

In stochastic modeling of mitochondrial DNA turnover in rat cardiomyocytes there are

two uncertain parameters (i) the experimental data on the estimate of de novo mtDNA

deletion rate (km) spans an order magnitude [215], and (ii) the value of replicative gain

factor (β), for which the experimental data is unavailable. As discussed in previous para-

graph, the replicative advantage of the mutations such as partial deletions/duplication

or point mutation are attributed to some characteristics that arise from the modification

of the mtDNA templates resulting from these mutations. Also, considering that mtDNA

are generally localized in the form of nucleoids, and depending on the availability of lo-

calized replication factors, the quanta of mtDNA mutant replication arising due to short

length of the mtDNA deletion, would be much higher than that of wild-type in some

cells, and this would eventually lead to clonal expansion process. Since the present model

only considers a conservative assumption of well mixed mtDNA population, an average

replicative gain factor arising from such replication "burst" has been assumed in this work.

The mechanism of clonal expansion of one or few mutant mtDNA in the cells is still at best

hypothesized. The simulations presented in this chapter and in the next chapter strongly

indicates the necessity for the presence of replicative advantage of mutants in explaining

the mutation accumulation data in mouse heart tissue. Due to this uncertainty, we have

instead rely on the data on mutation burden to infer the advantage factor using experi-

mentally determined de novo mutation rate between 5 × 10−8 to 5 × 10−7 per replication

event [215].

In a recent work [296], Fukui and Moraes quantified the relative abundance of mtDNA

deletions in mice tissue at different ages. Figure 5 in their work describes the abundance

of different mtDNA deletions [296]. The mtDNA deletion content was normalized with

respect to the total mtDNA content (FM ). In order to understand at what values of β such
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fold difference appear, ODE simulations were performed assuming no de novo mutations.

The following equations were used:

dW

dt
= kR · FW − kd ·W

dM

dt
= β · kR · FM − kd ·M (4.5)

where, W and M stands for wild-type and mutant mtDNA, respectively. kR, kd rep-

resents the mtDNA replication and degradation rates, respectively, FW = W/ (W +M)

and FM = M/ (W +M). Using this model, the normalized values of mtDNA mutations

was obtained for different values of β and for different initial burden of mutant mtDNA.

As shown in Figure 4.2, boost factor values of greater than or equal to 2 is required for

explaining the experimental data. Given the uncertainty in the mechanism of replicative

advantage of mutant mtDNA and since the determination of this parameter is significantly

challenging, different replicative gain factor ranging from (β ≈ 2 − 5) was considered for

the simulations.

The influence of different selections of β and km on the model predictions are illus-

trated in Figure 4.3. Based on the number of COX deficient cells observed in experimental

data [28], optimization indicates values of: β = 2.25 and km = 3.5× 10−7 rep−1 (Table 4.1).

For all the simulations performed in Chapter 4 and Chapter 5, a replicative gain factor of

β = 2.25 is chosen. For the analysis considering the influence of different replicative gain

factor on the mtDNA mutation dynamics, β range from 2-5 is chosen based on the results

obtained in Figure 4.2. All the other model parameters are adapted from the Chapter 3

(also see [269]) and are listed in Table 4.1.

4.2.4 Modeling details of different hypotheses

Several hypotheses have been proposed over past decades in explaining the mechanism

for clonal expansion process. Commonly proposed hypotheses are broadly classified into
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Figure 4.2: Simulation results of the fold increase at different replicative advantage factors and
at different initial load. Experimental data were obtained from [296].

following categories:

Hypothesis A: Structural hypothesis

Earlier hypotheses based on purely structural accounts [25] proposed that clonal expan-

sion of mtDNA mutations result from the replicative advantage of any mtDNA template

alone. However, this did not explain the mitochondrial hyperproliferation seen in COX

deficient regions of muscle fiber [26, 140]. The primary effect of functional mutations is to

cause a nuclear metabolic feedback, which initiates mtDNA proliferation. A great deal of

evidence hint for the existence of such mitochondrial proliferation in response to oxidative
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Figure 4.3: Parametric perturbation analysis on mouse heart (n = 3). Plots indicated a compari-
son of simulation results at three different values of km for different values of mtDNA replicative
gain factors (β), with the experimental data [28]. The simulation trials were performed to obtain
the optimum value of these parameters. A.) simulation results with km = 5×10−8 rep−1 with vary-
ing β, B.) simulation results with km = 1 × 10−7 rep−1 with varying β, and C.) simulation results
with km = 5 × 10−7 rep−1 with varying β. Based on the optimization and consistent with the ex-
perimental data on the conservative estimates of the mtDNA replicative gain factor, the following
parameter values were chosen for the simulation: β = 2.25 and km = 3.5× 10−7 rep−1.

demand [140, 298]. In the structural hypothesis, the mutant mtDNA molecules are pro-

posed to have certain replicative advantage due to changes in the mitochondrial genetic

structure. As discussed above, different structural modification to the mitochondrial DNA

such as, shorter replication length of deleted mtDNA [25, 295, 296] and structural changes

caused due to mtDNA point mutations [211], have been proposed to give replicative ad-

vantage to mutated mtDNA. This hypothesis however makes no reference to functional

consequence of proteins that are generated by mutated mtDNA (e.g. influence of altered

proteins on the mitochondrial respiratory process). In modeling the structural hypothesis,
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only the replication propensity of the wild-type and mutant mitochondrial genome were

modified as:

kR = νmax (4.6)

kR = β · νmax, (4.7)

respectively (i.e. no nuclear retrograde signaling). Consistent with our point mutation

model [269], the value of νmax was computed based on the basal level of mtDNA turnover

rate in cells (Table 4.1). The other modeling details and parameters related to the stochastic

turnover process of mtDNA and the tissue level modeling details, including the develop-

mental binary cell lineage, used for this hypothesis is consistent with the modeling details

used for the present work.

Hypothesis B: Random drift hypothesis; "Basic" model

As detailed in Chapter 2, this hypothesis proposes that random drift in mitochondrial ge-

netics, resulting from either mitotic segregation in the proliferative tissue [219, 299], or due

to constant mitochondrial turnover in non proliferating tissues [210], could eventually re-

sult in its clonal expansion. In the Basic model, Chinnery and Samuels groups proposed

random intra-cellular drift resulting from relaxed replication of mtDNA alone could cause

clonal expansion of mtDNA mutations in human post-mitotic cells [209, 210]. The model

was based on neutral alleles, causing no functional deficiency to cellular respiration. The

original works by Chinnery and Samuel’s group did not specifically model for the ori-

gin and accumulation dynamics of mtDNA mutations during the animal development

[209, 210]. Consistent with these works, relaxed replication of mtDNA population under-

going nominal population turnover in a post-mitotic cells was simulated [210], where the

replication propensity of mtDNA (both W and M ) is described by Equation 4.6 and the

value of mitochondrial degradation, kd was based on the turnover rate of 10 days [218].

The value of νmax was computed based on the basal level of mtDNA turnover rate in cells
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and is computed to be 69.31 mtDNA molecules per day. In accordance with the "Basic

model" of relaxed mtDNA replication [210], the de novo mutation rate of km = 1 × 10−5

rep−1 was used for simulations.

Hypothesis C: Random drift hypothesis; "Disease" model

In the "Disease model", Chinnery and Samuels proposed [209] that in the presence of

pathogenic mutant mitochondrial allele, which causes functional deficiency in the OX-

PHOS process [209] and subsequent nuclear retrograde response results in clonal expan-

sion of mutant mtDNA. For simulating this model, same parameter values used for the Ba-

sic model were used. However for this hypothesis, replication propensity of the mtDNA

population was modeled as a piece-wise linear function [209]:

kR = νmax ·
[
α+ (1− α) ·

(
W

Wopt

)]
(4.8)

where, α = 5 is a growth factor for the clonal expansion process [209] and Wopt is the

optimal level wild type mtDNA templates in a cell; Table 4.1.

Hypothesis E: Functional hypothesis

Another commonly hypothesized mechanism for explaining the mutant mtDNA clonal

expansion process is the "Survival of the slowest" (SOS) [202]. Several recent experimen-

tal data have challenged the appropriateness of this hypothesis, as it indicates that the

selective mitophagy by the autophagosomes, specifically targets the dysfunctional mito-

chondria rather than the functional members [251, 255, 300]. It is also proposed that the

mitochondrial membrane potential which is modulated by the OXPHOS status of mito-

chondria is a key factor in controlling mitophagy [251]. In light of these evidences, the

feasibility of SOS hypothesis to explain the mtDNA mutation clonal expansion mecha-

nism was not tested in this work.
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Table 4.2, summarizes different assumptions that have been used to explain the clonal

expansion dynamics of mutant mtDNA.

Table 4.2: Details of different hypotheses proposed to explain the clonal expansion of mtDNA
mutations.

Hypothesis Associated mitochondrial genome processes
Replicative
advantage of
genome

Nuclear
retrograde
response

Random
intra-cellular
drift of
mtDNA
template

Degradation
advantage
of mutant
mtDNA

A Structural hypothesis (Sur-
vival of Tiny)

yes no no no

B Random drift of mtDNA
mutations; "Basic" model

no no yes no

C Random drift of mtDNA
mutations; "Disease" model

no yes yes no

D Present Model yes yes yes no
E Functional Hypothesis

(Survival of Slowest)
no yes no yes

4.3 Results & Discussion

4.3.1 Clonal expansion mechanism

Figure 4.4, illustrates the mtDNA mutation burden in rat cardiomyocytes modeled using

different clonal expansion hypotheses presented in Table 4.2. Simulation results of the

Figure 4.4: Comparison of the re-
sults from different hypothesis test-
ing on the mechanisms of mtDNA
mutant clonal expansion process.
Comparison of temporal dynamics of
COX deficient cells accumulating in
heart tissue with age, using differ-
ent clonal expansion hypotheses (Ta-
ble 4.2). Clearly, both replicative ad-
vantage of mtDNA mutations with
mitochondrial hyper-proliferation is
required to match the experimental
data [28].
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Hypothesis

frequency of COX deficient cardiomyocytes in mouse heart tissue indicated that both the

nuclear feedback and replicative advantage of mtDNA mutations was required to explain
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Figure 4.5: Parametric perturbation analysis on mouse heart (n = 3), considering model used
for hypothesis D. A.) State space probability density function of Total mtDNA count (W +M)
and mutation burden (FM ) in mouse cardiomyocytes of the complete heart tissue in the absence
of both nuclear retrograde signaling for mtDNA biogenesis and replicative advantage of mutated
mtDNA (parametric sensitivity analysis of the model used in the present work). Evidently, the
results indicated that the mtDNA copy number did not deviate significantly from the nominal
mtDNA count in the cells. Similarly the mutation burden in all the cardiomyocytes remained at
the minimal level and all the cardiomyocytes were COX sufficient at the end of life. B.) State space
probability density function of Total mtDNA count (W +M) and mutation burden FM in mouse
cardiomyocytes of the complete heart tissue in the absence of only the nuclear retrograde signaling
for mtDNA biogenesis (i.e. in the presence of mutant mtDNA replicative advantage; parametric
sensitivity analysis of the model used in the present work). There was a large fluctuation of copy
number distribution and the COX deficient cells were found to have total mtDNA copy number
of ∼ 10, 000, which on an average was an order of magnitude lower than the experimental data
[28] and with the simulation results obtained using the present model. C.) State space probability
density function of Total mtDNA count (W +M) and mutation burden FM in mouse cardiomy-
ocytes of the complete heart tissue in the absence of only the mitochondrial replicative advantage
(i.e. in the presence of nucleo-mitochondrial retrograde feedback; parametric sensitivity analysis
of the model used in the present work).

the mouse cardiomyocytes data (Figure 4.4 and 4.5).

All the colored state space plots presented in this chapter, like the ones in Figure

4.5, represents the distribution of total mtDNA copy numbers (both W and M ) and the

mtDNA mutation fraction (FM ) in all the cells that have at least a single copy of muta-

tions (M > 0). Figure 4.6A indicates that at the end of development, the majority of cells

have low fractions of mtDNA mutations. Due to mitochondrial hyperproliferation and
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replicative advantage, a minor fraction of cells drifted to higher copy numbers (both W

and M ) and some of them became completely respiratory deficient. Mostly, the mutated

cells in development formed seeds for clonal expansion of COX deficient cells. By neglect-

ing developmental stage, Figure 4.6C shows that all cells remain COX positive (mtDNA

mutation load FM ≤ 60%) at the end of mouse life span. Consistent with the modeling

results obtained in the earlier work on point mutation dynamics in mouse cardiomyocytes

(Chapter 3), Figure 4.6C clearly highlights the importance of developmental contribution

and the important role of de novo mutagenesis during development, in mtDNA mutation

clonal expansion process.
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Figure 4.6: Mitochondrial DNA deletion accumulation in mouse heart tissue (n = 3), Influence
of animal development in the mtDNA mutation heterogeneity observed in the mouse heart
tissue. Simulations were performed using the model and parameters of hypothesis D. A.) State
space probability density function of Total mtDNA count ((W +M)) and mutation burden FM in
mouse cardiomyocytes of the complete heart tissue at birth. B.) State space probability density
function of Total mtDNA count ((W +M)) and mutation burden FM in mouse cardiomyocytes of
the complete heart tissue at the end of 38 months. C.) State space probability density function of
Total mtDNA count ((W +M)) and mutation burden FM in mouse cardiomyocytes of the complete
heart tissue at the end of 38 months, with the exclusion of development.

Figure 4.6B indicates that at the end of mouse’s life span, there are two major factions
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of cardiomyocytes, one containing the cells that are COX positive and the other being com-

pletely respiratory deficient. Although the transition between the two groups appears to

be instantaneous (low frequency of cells having intermediate mutation burden), the entire

process of clonal expansion, from the initial de novo mutation to becoming respiratory defi-

cient, takes a long time (starts early in the developmental stage; see also [270]). Consistent

with experimental data [217, 301], at birth approximately 0.3% cells harbored mutations.

However at the end of 38 months, approximately 0.5% of cardiomyocytes have mtDNA

mutations (i.e. FM > 0).

Figure 4.7 and 4.8 compares the simulation results of the spectrum of mtDNA mutation

burden in mouse cardiomyocytes, considering different clonal expansion hypotheses (Ta-

ble 4.2). Clearly, the pure intra-cellular genetic drift model, without the replicative advan-

tage of mtDNA mutations was insufficient in explaining the mtDNA deletion dynamics

data observed in mouse heart cells (Figure 4.5, 4.7 and 4.8). Both the random intra-cellular

drift models ("Basic" and "Disease models") produced no COX deficient cardiomyocytes

during the mouse life span (Figure 4.5 and 4.7). Also, it can be seen that the Random

intra-cellular drift model produced relatively narrow spectrum of mtDNA states (Figure

4.8A and Figure 4.8C), unlike what is generally observed with in vivo studies related to

mouse and human tissues [26, 296]. Most of the cells in these simulations have a very low

mutation load (FM is usually < 10%), and a very negligible fraction of cells have mutation

fraction FM > 10%. In the case of Disease model of random intra-cellular mtDNA drift,

the spread of the mtDNA states was very similar to that of the "Basic model" (Figure 4.7

and 4.8C).

Another interesting aspect related to the Random intra-cellular genetic drift model (hy-

pothesis B) was the spread of distribution of the mtDNA states. Comparing Figure 4.8A

and 4.8B, indicates that for tissue having lower population or count of mtDNA (tissue with

lower oxidative capacity; Figure 4.8B), the fraction of cells having higher mutation burden
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Figure 4.7: Comparison of simulation outcome of using different clonal expansion hypothesis
for capturing the dynamics of mtDNA mutation accumulation in mouse heart (n=3). Color plots
illustrating the results of modeling hypothesis D (1, 5 and 6 in the above plot), represents different
parametric sensitivity analyses related to the model used in this work.
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Figure 4.8: Comparison of simulation outcome on the state space distribution of mtDNA, ob-
tained using different clonal expansion hypothesis for capturing the dynamics of mtDNA mu-
tation accumulation in mouse heart (n=3). A.) State space probability density function of total
mtDNA count (W +M) and mutation burden FM in mouse cardiomyocytes of the complete heart
tissue at the end of 38 months, obtained using Random intra-cellular drift "Basic" model (hypoth-
esis B) including the animal development. B.) State space probability density function of Total
mtDNA count (W +M) and mutation burden FM in mouse cardiomyocytes containing mtDNA
count of 1000, at the end of 38 months, obtained using Random intra-cellular drift "Basic" model
(hypothesis B) including the animal development. C.) State space probability density function of
Total mtDNA count (W +M) and mutation burden FM in mouse cardiomyocytes of the complete
heart tissue at the end of 38 months, obtained using Random intra-cellular drift "Disease" model
(hypothesis C).
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is higher compared to tissue having larger mtDNA copy number (tissue with higher oxida-

tive capacity; Figure 4.8B). This demonstrated a high sensitivity of random intra-cellular

drift model to the initial population of mtDNA in cells. However, it is generally seen

that metabolically active tissues with higher oxidative capacity (mitochondria-rich) have

larger mutation burdens [139], which is consistent with the predictions obtained form the

present stochastic model (hypothesis D; Figure 4.4). Furthermore, as observed in Figure

4.8C, the results of mtDNA mutation dynamics with only the presence of nuclear retro-

grade response is similar to the "Disease model" (Figure 4.5C).

As predicted in the earlier chapter (Chapter 3; [269]), the most sensitive parameter

in modeling stochastic mtDNA mutation dynamics is the turnover rate (Figure 3.8 and

4.9). Chinnery and Samuels groups used a turnover rate of ∼10 days [209] for model-

ing mtDNA turnover dynamics (hypothesis B and C). However, studies on mtDNA repli-

cation in post-mitotic cells have indicated that the replication frequency in post mitotic

tissues like brain [302], skeletal muscle [240] and heart [240, 274] may be fairly low. A

low frequency of mtDNA turnover with random intra-cellular drift model gave at most

no COX deficient cardiomyocytes. However, even in the case of higher mtDNA turnover

rate, simulation results did not produce enough clonal expansion of mtDNA mutations in

mouse cardiomyocytes (Figure 4.4, 4.7 and 4.8). While random intra-cellular drift can can

give clonal expansion in some cells, it fails to explain how a substantial fraction of cells (∼

50%) in substantia nigra region of human brain have clonally expanded mtDNA deletions

[27, 154]. Therefore a critical challenge to accurately identify the frequency of mtDNA

turnover in the post mitotic cells is warranted for better understanding of mtDNA muta-

tion clonal expansion mechanism.

4.3.2 Influence of mtDNA replicative advantage

in vivo analyses have indicated a marked replicative advantage of deleted mtDNA [296].
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Figure 4.9: Parametric perturbation analysis on mouse heart (n = 3). State space probabil-
ity density function of Total mtDNA count (W +M) and mutation burden (FM ) in mouse car-
diomyocytes of the complete heart tissue simulations performed using the model and param-
eters of hypothesis D. A.) results of present modeling work, with parameters presented in Table
4.1, B.) with de novo mutation rate 10× the normal rate. All the other parameters were kept at the
same level as used for the present work. c.) with mtDNA turnover rate of 10 days [218]. All the
other parameters were kept at the same level as used for the present work. Results representing the
effect of increased de novo mutation rate indicated a low sensitivity of changing this rate on copy
number distribution of mtDNA. Due to increased quanta of replication, the mtDNA turnover has a
significant effect on mtDNA copy number distribution. With increasing turnover many of the cells
with mtDNA deletion at birth becomes COX deficient at the end of life span.

As discussed earlier, this phenomenon has an important implication on the mechanisms

of mtDNA deletions accumulation in aging and disease processes. For instance, dele-

tions formed in transgenic mouse neurons due to a double strand break formed by the

action of PstI, generated a wide range of mtDNA deletions in the neuron cells [296]. Using

this mouse model, age-dependent accumulation of different deletion lengths was moni-

tored. Mitochondrial DNA sequence analysis of deletion products identified that major-

ity of clonally expanded deletions spanned > 5kb, indicating that larger deletions have

greater potential to clonally expand [296]. This observation is also consistent with other

analysis considering variety of normal aging tissues from mice, rats, rhesus monkeys and
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human [152]. To analyze the influence of replicative advantage of mutated mtDNA on

the clonal expansion dynamics, simulation of mtDNA mutation accumulation with differ-

ent replicative gain factor (β) were performed, assuming the basal frequency of different

de novo mtDNA mutation to be the same (considering the model developed in this work;

hypothesis D).

Two different replicative gain factors (β) were simulated in mouse cardiac tissues,

starting with development until the end of mouse’s life span. State space distribution

of mtDNA in rat cardiomyocytes harboring mtDNA mutations of replicative gain factor

of β = 1.5, indicates a very minor fraction of cells that are COX deficient (Figure 4.10A).

However, at lower level of replicative gain factor, the simulation results indicated no cells

becoming completely respiratory deficient (FM > 0.9). However, in the case of mutations

having a larger replicative gain factor (β = 4.5), the clonal expansion dynamics was much

swifter (Figure 4.10B). Comparatively, a large fraction of cells became completely COX

deficient at such high replicative gain factors (comparing Figure 4.6B and Figure 4.10B).

In accordance with the experimental data [296], the above analysis also indicated a phe-

nomenal propensity of mutations with higher replicative gain factor to clonally expand.

Another interesting aspect is the amount of COX deficient cells formed during post-

natal life, considering deletions with different β. The clonal expansion simulations without

developmental seeds (i.e., both the de novo mutation and the subsequent clonal expansion

occurs in the post-natal stage) was a rare phenomenon in post-mitotic cells with mutations

having lower replicative gain factor (two cell were found to clonally expand in heart tis-

sue having mutations with β = 2.25). However, a higher fraction of cardiomyocytes hav-

ing no developmental contribution were estimated to become completely COX deficient

(FM > 0.9) with mutations having higher values of β = 4.5. For instance, 0.104± 0.0012%

of cardiomyocytes having mutations with β = 4.5 were estimated to become clonally ex-
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Figure 4.10: Influence of mutant mtDNA replicative advantage on mtDNA mutation clonal
expansion dynamics. Simulations performed using the model and parameters of hypothesis
D. State space probability density function of Total mtDNA count (W +M) and mutation burden
(FM ) in mouse cardiomyocytes of the complete heart tissue at the end of 38 months, obtained using
different replicative gain factors A.) β = 1.5 and B.) β = 4.5, respectively. C.) Distribution of time
required for mtDNA template fixation. Temporal distributions were obtained by tracking time
taken by post-natal cardiomyocytes to become completely respiratory deficient (FM > 90%). In
each of these simulations, the time taken by heart cells containing mtDNA mutation load between
20 to 25% at the end of development, to become completely respiratory deficient at the end of 38
months was tracked.

panded in the absence of developmental contribution (against 0.138± 0.0121%, in case of

normal simulations). In accordance with the experimental data [296], the above analysis

also indicated a phenomenal propensity of mutations with larger replicative advantage, in

clonally expanding.

Considering the swiftness of clonal expansion dynamics of mtDNA mutations with

larger replicative gain factor, subsequent simulation were performed to estimate the dis-

tribution function of time at which cells having fixed proportion of mutated mtDNA at the

end of development with a fixed value of β, became completely COX deficient (FM > 90%)

at the end of life span. Figure 4.10C indicates that template fixation time of mtDNA (time

required for cells to become completely COX deficient) decreases with increasing β value
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of the mtDNA mutations and the variability in fixation time decreases exponentially with

increasing β value.

4.3.3 Cluster size distribution of clonally expanded cells

Several works quantifying mtDNA somatic mutations at individual cell level have re-

vealed the presence of mutant cells/skeletal fiber clusters having same single clonally ex-

panded mutations [303, 304]. Such cluster formations of mutant cells, have been observed

in human brain [305], heart [288] and murine liver [115].

Mutant cloning is an attractive hypothesis, which explains the formation of mutant

clusters. In this interpretation, the clonal mutations in a cluster are proposed to have orig-

inated from a single mutational event in a precursor cell, which generates the mutant cells

belonging to that cluster in the subsequent cell lineage. Interestingly, the time of such

mutational events play a significant role in determining the size of mutant cluster cells.

For example, a precursor cell of late origin, like satellite cells of skeletal muscle or colonic

crypt cells [29] or bronchial epithelium turnover units [299], is likely to produce local clus-

ters. In contrast, early mutant precursors generated during developmental cell lineage is

likely to have enormous cluster size, spanning from a part to an entire tissue, depending

on how early in development the mutation was acquired [270]. At multi-cellular level

several studies have reported mutant cluster sizes varying from few tens to hundreds of

cells [306, 307]. Consistent with the experimental evidence, simulation results in Figure

4.11, considering the model developed in this work (hypothesis D), indicates that the dis-

tribution of clonally expanded mutant cluster cells in the normal aging heart tissue of rats

ranges from a single cell to few hundreds of cells.

One of the most intriguing questions pertains to the time at which clonally expanding

mutations get seeded. Clonal expansion may take a long time to get phenotypically rel-

evant [270]. This implies that mutation events that seeded clonal expansion might have
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Figure 4.11: in silico perturbation analysis to understand the influence of different parametric
variation on the origin and dynamics of mtDNA mutation clusters in the murine tissue. Simula-
tions were performed using the model and parameters of hypothesis D. Influence of parametric
variation of mtDNA turnover process on the cluster size distribution of heart cells harboring clonal
mtDNA mutations. Progenitor cells with different mtDNA count refer to the mtDNA copy number
in the early progenitor cells at the start of development. Influence of different mtDNA turnover
rate on the cluster size distribution was also studied. A.) simulation results with progenitor cells
having initial mtDNA copy number of 200 (W0|dev = 200), B.) simulation results with progenitor
cells having initial mtDNA copy number of 1000 (W0|dev = 1000), C.) simulation results with pro-
genitor cells having initial mtDNA copy number of 1000 (W0|dev = 1000), simulated with a de novo
mtDNA mutation rate of km = 10× the rate used in the present work (Table 4.1), D.) simulation
results with progenitor cells having initial mtDNA copy number of 1000 (W0|dev = 1000), simu-
lated with an mtDNA turnover rate of 10 days [218], and E.) simulation results with progenitor
cells having initial mtDNA copy number of 3500 (W0|dev = 3500).

happened long before the expansion is complete, potentially during development. Mas-

sive replication bursts of mtDNA during embryonic development can potentially provide
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excellent opportunity for de novo mutations. To characterize the underlying distribution of

the embryonic cell division stages, at which the earliest de novo mutations arise, 104 inde-

pendent simulations of binary cell divisions during development were performed using

the model developed in this work (hypothesis D). The simulation here was slightly modi-

fied such that the cells having only single de novo mutations that end up becoming clonally

expanded in the post natal stage was considered. The cells that harbor more than single

de novo mutation during the animal life was excluded from the analysis, as this forms a

very insignificant portion of the tissue (as can be seen from the panel B of Figure 4.12, the

fraction of such cells only form less than 10−4 %). In each simulation, the earliest stage

at which the first de novo mutation that resulted in clonal expansion was tracked. Figure

4.12A illustrates the underlying distribution of the first occurrence of the de novo corre-

sponding to the respective developmental stages. Figure 4.12A, illustrates that the density

function has a long tailed distribution and seeding mutation can arise as early as the first

stages of the embryonic division. It also indicated that most of the first de novo mutations

occurred between the 9th and the 13th stage of cell division (first quartile).

To understand whether the clonal expansion was a result of multiple mtDNA muta-

tions or a consequence of single clonal expansion, the number of de novo mutations arising

per cell was tracked. Figure 4.12B, illustrates that most of the cell contains at most single

de novo mutations per cell at the end of life. A minor fraction cells contained more than a

single de novo mutations being generated during mouse’s life span (< 1% of the simulated

cells). This implies that the repeated occurrence of a particular mutation in a given cell

is not due to the independence in generation of the mutation (like in hotspots, mutations

that frequently occur), but rather clonal expansion of one/few seeding mutations. If the

mutational events in mtDNA population were triggered by the ongoing oxidative assault,

as postulated by the mFRTA, one would expect a large spectrum of mtDNA mutations in

individual cells. On the contrary, biochemical analyses of mutated cells have indicated a
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predominance of a single type of mutations [270, 289, 290]. This is further confirmed by

simulations results in Figure 4.13, where the mutation rate (km) was set three orders of

magnitude higher than the normal value, to simulate mutation hotspot (mutations that

frequently occur). These mutations were simulated such that they caused functional defi-

ciency in the OXPHOS process (sets in the nuclear-retrograde response), but did not pos-

sess any replicative advantage. Results indicated an elevation in overall deletion load in

the tissue. However, even at such high mutation rate no cells in the tissue ever became

COX deficient.

Since the mtDNA de novo mutation rate is very low (km 5 × 10−7 per replication), the

number of de novo mutation arising per cell is close to one, in majority of cell popula-

tion, immaterial of the mtDNA turnover rate. For example considering a higher mtDNA

turnover rate of 10 days (Figure 4.12B), the spectrum of number of de novo mutation aris-

ing per cell, is very similar to results obtained considering the long turnover rate of one

Figure 4.12: Results on the origin and accumulation of de novo mutation in clonally expanded
mutant cells during mouse life span. Simulations were performed using the model and parame-
ters of hypothesis D. A.) Distribution of developmental cell division stages at which the earliest de
novo mutations, fated to clonally expand. B.) Influence of parameteric variation of mtDNA turnover
process on the number of de novo mutations arising in single cells of mouse heart tissue at the end
of 38 months of age. Simulation results presented in 4. represents post mitotic tissue simulation
with the post natal cardiomyocytes having mtDNA copy number of 9000. In this simulation, it
was assumed that the developmental progenitor cells start with 1000 wild-type mtDNA templates
(W0 = 1000;M0 = 0) and following the birth, the mtDNA population in the skeletal progenitor
cells (stem or satellite cells) underwent hypertrophic growth such that the mtDNA count in the
cells increased to 9000 [292, 293].

Suresh Kumar Poovathingal



4.4. Conclusions 123

103 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Total mtDNA count (W+M)
105

100

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

   
  

  
  

   
  

  
M

u
ta

n
t 

B
u

rd
e

n
 (
F
M

)

       F
ractio

n
 o

f C
ard

io
m

y
o

cy
te

s

Figure 4.13: Parametric perturba-
tion analysis on mouse heart (n =
3). Simulations were performed us-
ing the model and parameters of
hypothesis D. State space probabil-
ity density function of Total mtDNA
count (W +M) and mutation bur-
den FM in mouse cardiomyocytes
of the complete heart tissue in
the absence of only the mitochon-
drial replicative advantage (i.e. in
the presence of nucleo-mitochondrial
retrograde feedback). Simulation re-
sults obtained with de novo mutation
rate (km) 1000× the normal mutation
rate Table 4.1. All the other parame-
ters are kept at the same level as used
for the present work.

year used the present dissertation. This highlights the importance of developmental stage

in the mtDNA mutation accumulation dynamics in somatic tissue. This can be further un-

derstood by considering the quanta of replication during the animal developmental and

post natal stages. The total number of replications during development is comparable to

that during the entire adult life. In mice, the heart tissue develops in about 20 days [244].

Considering the degradation rate described in Table 4.1 and the mouse heart to contain

2.5 × 107 cardiomyocytes [230, 248] arising from 22 cell divisions (6 progenitor cells), the

total number of mtDNA replications needed to maintain homeostatic value of mtDNA (Ta-

ble 4.1) [230] per cell should exceed 9 × 1010 times during the development. On the other

hand, from the degradation rate of mtDNA in postnatal stages (Table 4.1) [240], the num-

ber of mtDNA replications events over the three years lifespan of mice is about 1.3× 1011.

Thus, it is evident that the developmental period may carry comparable contributions in

de novo mtDNA mutations as does the entire adult life.

4.4 Conclusions

Mitochondrial DNA mutations, especially deletions, are commonly associated with cellu-

lar aging and mitochondria-associated degenerative diseases. Recent progress in the de-
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velopment of protocols for estimating mutation burden at single cell-level has highlighted

the influence of random mitochondrial genetic drift at the cellular level on tissue/organ -

level morbidity. Biochemical analyses of respiratory deficient cells have indicated abun-

dance of single type functional mtDNA mutations, strongly hinting of the existence of a

replicative mechanism favoring one type of mtDNA template. However, the understand-

ing of functionality of such mechanism is still incomplete. Several hypotheses have been

proposed to explain the underlying clonal expansion mechanism. Considering the dis-

creteness of mtDNA mutation dynamics (mutation mosaicity) in post mitotic tissues, a

stochastic model of mtDNA turnover dynamics in mouse cardiomyocytes have been de-

veloped in this work based on CME, to test different clonal expansion hypotheses and to

elucidate underlying mechanisms which best explains the experimental data.

Simulation results indicated that the mosaicity seen in cellular mtDNA mutation bur-

den in post-mitotic tissue arises due to stochasticity in mitochondrial turnover process,

predominantly during developmental cell lineage. However, for explaining the mtDNA

mutation expansion observed in post-mitotic tissue, both the replicative advantage of mu-

tant mtDNA and the nuclear retrograde response, which is modulated by the cellular en-

ergy deficit, were required. Replicative advantage of mtDNA mutations, which is ex-

pressed as a replicative gain factor (β) in this work, was found to play a significant role

in the dynamics and severity of clonal expansion process. Consistent with experimental

observation, simulation results indicated that, mtDNA mutations with larger replicative

gain factor (β) has a higher propensity to clonally expand. An accurate understanding

of the underlying mechanisms which render these mutations, the replicative advantage

compared to the wild-type mtDNA and other types of mtDNA mutations, and the quan-

tification of these replicative gain factors (β) is an important area, which requires further

investigation.

Accumulations of mtDNA mutations in the post-mitotic cells arise either due to mutant
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cloning or because of persistent de novo mutant generation. Model predications indicated

that the mutant cloning due to replicative advantage of mutant mtDNA is the most likely

mechanism for explaining the clonal expansion process observed in non-replicative, post

mitotic tissues. Also, de novo mtDNA mutations during developmental cell division are

critical in determining the mutant cell cluster sizes. Simulation results of mtDNA mu-

tation accumulation in normal aging tissue, indicated that the size and distribution of

mtDNA mutant cell clusters in normal aging tissue are consistent with the late origin of

the seeding precursor cells during development or in early post-natal life. The stochastic

model of mtDNA turnover dynamics developed in this work (model developed consider-

ing hypothesis D) is based on minimal number of conservative assumptions, and closely

resembles the actual biological process. Due to which, the present model can be used as

a work-bench to analyze the influence of different parametric perturbations on the origin

and severity of clonal expansion process, thereby providing useful insight into the possi-

ble interventions to retard its severity and possibly provide a hypothesis-driven design of

experiments to gain a better understanding of the role of mtDNA mutations in aging or

mitochondrial related degenerative diseases.
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Chapter 5

Sarcopenia in silico — a multiscale
stochastic-deterministic modeling approach

5.1 Introduction

In this chapter, different aspects of mitochondrial genetics like the stochastic origin of

mtDNA mutagenesis and its subsequent clonal expansion are integrated into a tissue-level

multiscale modeling framework to study the origin and accumulation of mtDNA muta-

tions and its consequence in the progression of an important age related condition known

as sarcopenia. Sarcopenia refers to the progressive loss of muscle mass and strength with

age, which contributes to frailty in aged individuals. In 2000, the health care cost related

to sarcopenia in the United States alone was estimated to be US$18.5 billion, or roughly

1.5% of the total healthcare expenditures [308]. The muscle loss causes a negative effect on

muscle strength, metabolic rate and respiratory function; in short, the mobility of elderly

subjects is severely compromised. As the proportion of elderlies is increasing world-wide,

their health problems and medical costs associated with old age, such as sarcopenia, are

are also expected to increase warranting further epidemiological and clinical research is

warranted.

In general, there are two factors at play in the progression of sarcopenia: the initial

muscle mass and its rate of decline with age. Although there are significant changes in

body composition with age, the muscle mass is relatively stable between the age of 25-

and 55-year in men. However, there is an average decline of 25% between 50 and 75-year

old age [309]. In active individuals, exercises can delay the onset of sarcopenic symptoms,

but once started, the rates of decline are similar to their sedentary peers [310]. This loss is
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generally attributed to the reduced cross section of the muscle fiber, subsequently leading

to loss of muscle fiber or fiber atrophy [311, 312]. Similarly, in rat quadriceps muscles, fiber

number decreased by 58% between 18 and 36 months [151].

The aetiology of sarcopenia is not clearly understood, but several mechanisms have

been proposed in explaining sarcopenia including: (i) irreversible fiber damage or per-

manent denervation resulting from a loss of contact between nerve and muscle fiber [313,

314], (ii) Contraction-induced injuries to the muscle fiber [315], (iii) changes in tissue re-

sponse to nutrients and/or malnutrition on protein metabolism [316, 317], (iv) deficiency

arising due to the alterations in protein turnover [316], (v) alterations in the endocrine

system (for example, variations in the growth hormone and testosterone, increase in cor-

tisol and cytokines) or due to impaired tissue response to hormonal stimuli [318, 319], (vi)

changes in satellite cell recruitment [320], (vii) apoptosis, and (viii) increase of free radicals

mediated oxidative stress [151, 321] and age associated accumulation of mitochondrial ab-

normalities (e.g., mtDNA deletion mutations and other ETC abnormalities) [322, 323]. This

work relates to the last hypothesis in which death of muscle fibers occur progressively due

to the gradual dysfunction of mitochondria.

Evidence for mitochondrial aspect in development of muscular sarcopenia is observed

in several histochemical tissue analyses showing focal accumulation of mtDNA deletion

mutations in human and rat skeletal and cardiac tissue (e.g. [150, 216, 217, 324, 325]).

In these studies, a defined number of muscle fibers were analyzed for the presence of

mtDNA deletions. These analyses indicated that the deletion amplification product de-

creased with increase in the quantity of fiber analyzed [326]. Thus, these trials demon-

strated that mtDNA deletions are not distributed evenly throughout muscle, but rather

focally accumulated to high levels in a subset of fibers.

The accumulation of mtDNA mutations in these cells, likely involves stochastic fac-

tors such as the inherent random nature of mtDNA mutation accumulation. Stochasticity
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of somatic mutation loads manifest in the form of large heterogeneity amongst individu-

als of same population [185, 269]. Deletions have also been found to be distributed non-

uniformly between other tissues [153] and between individual cells of the same tissue

[185]. Particularly a fraction of neuron cells in brain (substantia nigra) harbor a few orders

of magnitude higher deletions than others [27, 154].

Devising treatment methods for sarcopenia thus requires a critical understanding of

these stochastic factors and dynamics of mtDNA mutation accumulation in the muscle

fibers. Limited data are available on the stochastic origin and dynamics of sarcopenia and

the possible interventions to reduce its progression in vertebrate animal models [327]. This

is due to significant challenges in obtaining such data for long-lived mammalian animal

model, such as high cost and invasive nature of harvesting tissue sample for clinical trials.

To characterize the influence of stochastic dynamics of mtDNA mutation accumulation

on the mosaicity observed in the muscle fabric, a hybrid multiscale mathematical models

is developed which describes: (1) the expansion of mtDNA mutation in a myo-nuclear

region, (2) the spread of mtDNA mutations across a muscle fiber, and (3) the associated

progressive loss of muscle strength. The hybrid model developed in this work uses both

deterministic and stochastic algorithms and can be further developed as a work-bench to

analyze the influence of different parametric perturbations on the development and pro-

gression of sarcopenia. This approach can further provide useful insights into the possible

interventions strategies to retard its severity.

5.2 Methods

Skeletal muscle is made up of several individual components called as the muscle fiber.

The muscle fiber is long, cylindrical in shape consisting of multinucleated fused cells. The

muscle fiber is composed of repeated units of actin and myosin and mitochondria reside

in the region between these repeating units. Each unit is referred to as sarcomere, which
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forms the basic functional unit of muscle fiber and is responsible for striated appearance

of the skeletal muscle fiber and is the basic machinery necessary for muscle contraction.

The muscle fibers are bundled together in a plasma membrane called as sarcolemma.

In mice, it has been found that during development, skeletal muscle mass increase by

50-fold and this causes almost 50% increase in total mass of the organism at birth [328].

This arises due to the action of a population of muscle stem cells known as satellite cells,

which come from the embryonic somatic progenitor cells or the muscle myoblast cells

[328, 329]. During myogenesis, the primitive cells are arranged in clusters and they fur-

ther undergo fusion to form small multinucleated cells known as the myotubes. Elonga-

tion of the myotubes occurs by end-to-end fusion of the adjacent tubes [330, 331]. Finally,

these earliest differentiated myotubes are bundled together forming the muscle fibers. The

multiscale model, developed in this work was simulated to mimic the basic shape and at-

tributes of the muscle fiber and included the multiscale nature of the reaction-diffusion

processes of mtDNA in the fused myonuclear regions. At this level of modeling, a hy-

brid stochastic-differential formalism was used. Following the earlier models (Chapter 3

and 4; [269]), the sarcopenia model comprised of tracking mtDNA mutations in mouse

skeletal muscle tissue (Vastus lateralis) during two stages of life: developmental and post-

natal stage (Figure 5.1). Sections below provide details of the hybrid stochastic-differential

framework developed in this work.

5.2.1 Stochastic model

During development, the simulation of the origin and accumulation of mtDNA muta-

tions were modeled, in the muscle progenitor cells or the myoblasts, considering these

cells as independent entities. Consistent with the stochastic model described in the previ-

ous chapter (Chapter 4), the mtDNA turnover process (Figure 5.2), in each of these cells

was modeled using stochastic chemical kinetics based on CME and solved using the SSA
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Figure 5.1: Details of the hybrid (Stochastic-Deterministic) model of mtDNA turnover process
in mouse skeletal muscle tissue. During the mouse development the mtDNA turnover was sim-
ulated in the individual muscle progenitor cells or the myoblast cells as discrete stochastic process
as illustrated in Figure 5.2. The stochastic in silico model tracked for the mtDNA mutation burden
in the muscle myoblast cells during the skeletal tissue development. The modeling details of the
stochastic mtDNA turnover process are consistent with earlier chapters (Chapter 3 and 4; [269]). In
the Post-natal stage, the process of fusion of myoblast cells to form skeletal muscle fiber was sim-
ulated by fusing the muscle progenitor cells obtained at the end of development and the sampling
of the muscle progenitor cells was done using the hypergeometric sampling method (discussed in
Methods section). The dynamics of mtDNA mutation burden in the post natal skeletal muscle fiber
was simulated using a deterministic reaction-diffusion process.

(Chapter 4; [269]). The model details related to the stochastic mtDNA turnover process is

detailed in Chapter 4.
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5.2.2 Reaction-diffusion model

In post-development simulations, the individual developmental myoblast cells were se-

lected randomly and subjected to fusion to form the muscle fiber in Figure 5.1. The prob-

ability of choosing a cells containing mtDNA mutation is obtained by hypergeometric

distribution function [233],

f (x) =

(
n∆mtDNA

x

)(
Ntot

nFib − x

)
(
Ntot

nFib

) (5.1)
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Figure 5.2: Stochastic model of mtDNA turnover dynamics in a mouse skeletal muscle pro-
genitor cells (myoblast cells). The stochastic drift in mtDNA mutation dynamics results from
following random processes. (I) The mitochondrion that undergoes a turnover event is randomly
selected from the population. The autophagy of mitochondrion was simulated by removing all the
mtDNA molecules associated with the selected mitochondrion. (II) Replication of a single mtDNA
molecule simulated by random selection of mtDNA from the mtDNA population. (III) During the
wild-type mtDNA replication, a finite probability equal to the de novo mutation rate (km) is as-
signed for the replication process to give rise to a mutant mtDNA. Since the mutations modeled
in this work was assumed to have functional consequence to the cellular OXPHOS activity, the
presence of mtDNA mutant was assumed to initiate the nucleo-mitochondrial retrograde response
[231], which, similar to the previous chapter (Chapter 4), is modeled using Hill-type kinetics.
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where n∆mtDNA is the number of cells with mtDNA mutations in them, Ntot is the to-

tal number of satellite/stem cells at the end of development and NFib is the number of

satellite/stem cells fused to form a single muscle fiber.

A morphometric analysis of murine skeletal muscle has been performed to understand

the changes that occur in the population dynamics of muscle cell nuclei and satellite cell

nuclei in rat skeletal muscle fiber [332]. In this analysis, an empirical relation was deduced

to obtain the average number of nuclei per muscle fiber:

Nnuc =
fnucCS · Lfib

d
(5.2)

where, fnucCS is the frequency of average nuclei per fiber cross section [332], Lfib is the

average length of the muscle fiber, and d is the average length of the myonuclear regions

[332]. In this work, this empirical relation described in this equation was used to determine

the average number of myoblast nuclei required to create a given length of muscle fiber.

The corresponding muscle characteristics and the muscle fiber dimensions used for the

simulations are described in Table 5.1.

The multiscale fiber model developed in this work tracked the mtDNA population

(W and M ), in the myonuclear domains along the length of muscle fibers with age. The

governing mass transport equation that describes the dynamics of reaction-diffusion of

Table 5.1: Morphometric details of the Vastus lateralis murine skeletal muscle tissue, used for
hybrid stochastic-deterministic modeling.

Muscle Type Vastus lateralis
Muscle Characteristics

Average total fiber count Ntot 10870 [217, 325, 333]
Average length of muscle fibers Lfib 4 cm [217, 325, 333]
Frequency of average nuclei per fiber cross
section fnuc

CS

0.64 [332]

Average length of the myonuclear region d 12.75 µm [332]
Muscle dimensions

Average length of single myo-nuclear do-
main

25 µm [332]

Average diameter of the fiber 63 µm [217]
Number of myo-nuclear domain per fiber 1929
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mtDNA in the fiber is:

∂

∂t
ci (z, t) +∇ · (−Di∇ci (z, t) + ci (z, t) u) = Ri (5.3)

where i = W,M , z is the spatial coordinates along the length of a fiber. Due to the sym-

metry of fiber, axi-symmetry spatial coordinated system was used for modeling, ci (z, t)

denotes the concentration of mtDNA (W and M ) and D is the effective diffusivity con-

stant of mtDNA. The reaction term Ri represents the mtDNA transformation arising due

to the mitochondrial turnover process. Assuming the mtDNA turnover dynamics to be a

pure diffusion process (negligible convection), Equation 5.3 becomes:

∂

∂t
ci (z, t) = Di∇2ci (z, t) +Ri (5.4)

Mitochondria move in a complex way in a living cell, transported by the actin/myosin

and dynein/kinesin based motor along the microfilament and microtubule networks [334].

Experimental data indicated that mtDNA nucleoid foci are tethered through mitochon-

drial membrane to the microtubule networks. Recently, an analysis using fluorescent dyes

was performed to understand the movement of mtDNA in living human fibroblast cells.

A mean square displacement (MSD) analysis and subsequent autocorrelation analysis be-

tween the displacement distance and the time span difference between these displace-

ments indicated that the movement pattern of mtDNA nucleoids typified a random walk

[204]. Furthermore, based on the MSD observations, an apparent diffusion constant for the

mtDNA foci displacements was estimated to be 1.1 × 10−3 µm2/s, which was also com-

parable to the mtDNA foci diffusion observed in Drosophila cells [335]. For the reaction-

diffusion model developed in this work this apparent diffusion constant of the mtDNA

was used. In accordance with the reactions in Equation 4.1, the evolution of mtDNA states

was updated (Ri in Equation 5.4) by tracking the rate of change mtDNA concentration as:
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RW = kR · FW · (1− km)− kd ·W (5.5a)
RM = β · kR · FM + km · kR · FW − kd ·M (5.5b)

The parameters used for the simulation, have their usual interpretation and the rate con-

stants used for the ODE simulations above are the same as the parameters used for the

stochastic model (see Table 4.1). One instance of the multiscale simulation result related to

the progression of sarcopenia in a single fiber is illustrated in Figure 5.3. All simulations

were performed using an IBM high performance computing cluster with 110 Intel 1.6 GHz

processors. The stochastic code was compiled using GNU C++ compiler G++ (v4.1.1) and

run on CentOS (RHEL) Linux platform. The PDE model was solved using COMSOL Mul-

tiphysics 3.5a. The model report of the PDE formulation used in COMSOL is presented in

Appendix B.

Figure 5.3: Progression of the COX
deficiency in the skeletal muscle
fiber with age, from the onset to
the complete dysfunction of mus-
cle fiber. The COX deficiency is rep-
resented by the mutant burden FM

in the muscle fiber. The simulations
were performed with a fiber segment
having a mutant progenitor with ini-
tial condition of W0 = 1717 and M0 =
3800.
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5.3 Results & Discussion

5.3.1 Simulation & validation Results

The role of mtDNA mutation accumulation in the phenotypic manifestation of sarcope-

nia in mammalian skeletal muscles is ascribed by the following mechanisms: a.) de novo
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mutations occur in a segment of muscle fiber due to some, as yet unknown mechanism,

b.) these mutations then begin to expand and the expansion generally occurs along the

length of the skeletal muscle fiber, c.) the accumulation of mtDNA mutations in the mus-

cle segment causes the disruption of mitochondrial encoded ETS complexes. The loss of

OXPHOS activity in the presence of wild-type genome suggest that the dysfunctional tran-

scripts generated from the deleted mtDNA genome may compete with the functional tran-

scripts generated from normal wild-type mtDNA, resulting in the eventual breakdown of

the OXPHOS system; d.) the cellular respiratory deficit caused due to the accumulation

of dysfunctional mitochondrial transcripts sets in nuclear retrograde signaling, which en-

hances mitogenesis. e.) The enhanced mitogenesis results in clonal expansion of mtDNA

mutation, presumably due to replicative advantage of mtDNA mutations. This increased

mitochondrial biogenesis and the associated increase in the mitochondrial content in the

affected area gives the muscle fiber a red ragged appearance (red ragged fiber, RRF). f.)

Both the energy deficiency and the oxidative damage would continue to accrue and this

would eventually result in fiber atrophy and breakage [333].

The in situ hybridization techniques harness the effect of mtDNA mutations on the ETS

respiratory complexes to indicate the respiratory deficiency in the cells [207, 336]. Using

this technique, absence of partial mitochondrially encoded cytochrome c oxidase activities

(COX) is commonly measured to indicate the presence of ETS phenotypes [333]. This is

normally accompanied with an increase in the expression of entirely nuclear encoded suc-

cinate dehydrogenase (SDH) activity, which is an outcome of the elevated mitochondrial

biogenesis. The combination of reduction in COX activity and elevation of the SDH pheno-

types in the skeletal muscle represents the red ragged phenotype observed in the Gomori

trichrome staining of the skeletal muscle [151]. In these histochemical analyses the com-

plete muscle biopsy samples are prepared in a section length of 8-10 µm and 100-200 such

sections are dissected and subjected to the COX-SDH analysis [333]. These histochemical
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analyses are used to estimate different attributes of sarcopenic skeletal muscle tissue such

as: the total number of fiber lost with age, the number of COX deficient regions in the

skeletal fiber and the statistics of length of the COX deficiency in individual muscle fibers.

In the present study, different experimental data related to the skeletal muscle histochem-

ical analyses were used for the purpose of model validation (Figure 5.4).

Recently, by performing a longitudinal single fiber analysis, it was shown that the ETS

abnormality due to mtDNA deletion accumulation resulted in fiber atrophy and breakage.

This fiber breakage forms an important contributor to the muscular sarcopenia [26]. Based

on this information, the number of fibers lost in the whole muscle tissue was estimated

using the complete fiber simulations. The fiber count having mutant load FM > 0.9 were

tracked for estimating the number of fibers lost during the time of consideration. Figure

5.4A illustrates the number of muscle fibers lost in two different time points during the

life span of rats and indicates a very good agreement with the experimental data. The

progression of the muscle fiber loss in single heart tissue, with age is illustrated in the

Figure 5.5 and it is interesting to see that the rate of fiber loss decreases with age.

Serial longitudinal cross section analysis of muscle fibers using histochemical analysis

has indicated an average length of COX deficiency ranging from 450 µm to about 760

µm [324, 325, 333]. To determine the average length, complete muscle simulations were

performed, and for each of the fiber being simulated the length of COX deficient regions

having mutation burden of 0.6 < FM ≤ 0.9 were tracked at the end of life span (t = 1140

d). Average of this data is presented in Figure 5.4B, indicating a good agreement with the

experimental data.

In another histochemical analysis, the number of COX deficient regions in the complete

cross section of the skeletal muscle was estimated for a fiber length of 2 mm [324, 333].

Simulations of this data were performed by hypergeometric samples of equivalent number

of myocytes that constitute a single fiber of 2 mm muscle fiber (obtained using Equation
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Figure 5.4: Validation of the simulation results with the data from the histochemical studies on
rat skeletal muscle tissue (simulation statistics is based on five mouse tissue(n = 5)). A.) Com-
parison of the simulation results of number of fibers lost as a function of age, with the experimental
data [151, 333], respectively. B.) Comparison of the simulation results of average length of the COX
deficient regions, with the experimental data [217, 325, 333]. In each of these trials, the average
statistics of the length of COX deficient regions in the skeletal muscle fiber was tracked until the
age of 1140 days. C.) Comparison of the simulation results of the number of COX deficient region in
a 2 mm fiber section of the complete muscle tissue with different experimental data [151, 217, 324],
respectively. As shown in the figure, the analysis was carried out for three different age length.
D.) Comparison of the simulation results of the variation of mtDNA count (both W and M ) as a
function of the fiber length with the experimental data [26]. The simulation results are illustrated
in the bottom frame of the figure and the experimental data is illustrated in the top frame.
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Figure 5.5: Simulation results on
the number of fibers lost as a func-
tion of age. Fiber loss is tracked in
a single mouse heart tissue as a func-
tion of age.
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5.2) from the myoblast pool at the end of development and the number of red-ragged

phenotypic regions (0.6 < FM ≤ 0.9) was estimated by simulating the reaction-diffusion

process for a desired length of time. This was repeated for total fiber count in the tissue in

Table 5.1. Figure 5.4C indicates that simulated COX deficient regions in the 2mm section

of muscle is again in excellent agreement with the experimental data.

The absolute quantification of the abundance of deleted and wild-type mtDNA has

been performed in the COX deficient and normal regions of fiber using breakpoint-specific

quantitative PCR assays in laser-captured cell sections along the length of the muscle fibers

[26]. The COX deficient regions in the analyzed fibers were flanked by ETS normal re-

gions that contained detectable levels of deletion, albeit at lower levels. In fiber regions

distant from the COX deficient regions, only wild-type mtDNA were present and mtDNA

deletions were undetectable (top half of Figure 5.4D). The SDH hyperreactive phenotype

mostly occurred in regions that contained greater than 90% of mtDNA deletions, and the

wild-type mtDNA was consistently detected in both the ETS normal and abnormal re-

gions [26]. This indicates that the accumulation of mtDNA deletion and not the selective

depletion of wild type mtDNA is responsible for the mitochondrial COX deficiendy [26].

Such characteristic has also been demonstrated in the earlier in situ hybridization studies

from patients with mitochondrial myopathies [211] as well as aged muscle fibers [26, 337].

Simulation results also closely matched the profile of mtDNA states along the length of

the fiber, with the experimental data. In accordance with the experimental observations

[26], the level of wild-type mtDNA count was maintained in the COX deficient region at a

similar level as in the ETS normal region.
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5.3.2 Parametric perturbation analysis

Effect of mtDNA nucleoid diffusivity

Mitochondria are highly dynamic organelle and are able to adapt different shapes, local-

ization and motility depending on the cell-type and the extent of metabolic demand of

the cells. Strenuous physical activity like endurent/resistance exercise significantly al-

ters the energy demand in skeletal muscle and is therefore expected to influence the mi-

tochondrial dynamics. A recent experimental evidence indicated that the fusion-fission

proteins like Mfn-1/2 and Fis 1, were significantly upregulated in human vastus later-

alis muscle 24 hours post acute bout of exercise [338]. These findings indicate that mito-

chondrial fusion-fission protein expression could be rapidly altered in response to chang-

ing energy demand of the tissue. In mitochondrial fusion, it has been postulated that

the elongation of mitochondrion enables rapid transmission of membrane potential and

other mitochondrial metabolites across a great distance [339]. Inter-mitochondrial fusion

and intra-mitochondrial mobility of endogenous nucleiods and mitochondrial respira-

tory complexes ensures functional complementation. Further, observations indicated that

mtDNA nucleoid dynamics was closely tied to the mitochondrial fusion-fission process

[95, 204]. After mitochondrial fusion, the mtDNA nucleoids have been found to be motile

and interact with each other for genetic complementation [340]. Trials involving fusion of

ρ+ (cybrid cells with mitochondrial population) and ρ0 (cybrid cells lacking mitochondrial

population) cells have demonstrated that the mtDNA nucleoids had swift diffusion into

the ρ0 cells.

Based on these evidences, simulations were performed to understand the role of mtDNA

diffusion on the dynamics and progression of sarcopenia in murine skeletal muscle. Simu-

lations were performed using different effective mtDNA diffusion coefficient (Deff ) [204].

Results indicated that, faster diffusion of mtDNA, though intuitively not desirable as it en-

hances the spread of mtDNA mutation load along the skeletal muscle fiber, it is in fact ben-
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eficial, as the overall mutation burden in the fiber is lower compared to the fibers having

lower mtDNA diffusivity (Figure 5.6A). The fibers having faster mtDNA diffusivity, thus

remain functional in mitochondrial respiration. In experiments, higher counts of respira-

tory functional muscle fibers have been seen in mitochondrial myopathic mice subjected

to extensive endurance exercise [341]. Also, enhancement of mitochondrial nucleoid diffu-

sion might explain the general beneficial effects of exercise observed in normal mammalian

aging phenotypes [310, 341]. To estimate the number of fiber lost at the end of 38 months,

complete fiber simulations were done using two different effective mtDNA diffusion co-

efficients. In this case, runs having higher mtDNA diffusivity resulted in lower number of

atrophied fibers compared to the simulations considering lower mtDNA diffusivity (Fig-

ure 5.6B).
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Figure 5.6: Effect of changes in effective mitochondrial diffusivity on the development and pro-
gression of COX deficient regions in muscle fiber (simulation statistics is based on five mouse
tissue(n = 5)). A.) Single fiber simulation results illustrating the mutant burden (FM ) in fibers sim-
ulated with different effective mtDNA nucleoid diffusion constants (Deff ). The simulations for
this part were performed with fiber segments having a mutant progenitor cell with initial condi-
tion of W0 = 1717 and M0 = 3800 and were performed for a time span of 1140 days. B.) Statistics
(simulation statistics is based on five mouse tissue(n = 5)) illustrating the complete skeletal mus-
cle simulation results of the number of fibers getting atrophied and the number of fibers having
red ragged segments at the end of 1140 days, using different effective mtDNA diffusion constants
(Deff ). The figure illustrates the number of fibers having COX deficient phenotypic regions in
them (orange bar), and number of fibers that undergoes atrophy (red bars).
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Significance of animal development

In Chapter 3 and Chapter 4, it was shown that organism’s development play an impor-

tant role in determining the stochasticity of mtDNA mutation burden between cells and

tissues [269]. During the developmental binary cell divisions, mtDNA of embryonic cells

undergo tremendous quanta of replication. Since the mutations are generally believed to

result from errors arising during mtDNA replication [58], there is a high propensity for

de novo mutations during development. Further, the de novo mutations arising during the

developmental cell divisions may contribute in forming the seeds for the post-natal clonal

expansion process. In order to elucidate the role of de novo mtDNA mutations acquired

during the organism’s development in progression of sarcopenia, single fiber simulation

were performed using progenitor cells having only one mtDNA mutant molecule. Simu-

lation results indicated that at such low burden in the early progenitor cells, the mutation

burden in the post-natal fiber remained low at the end of life span (Figure 5.7).
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Figure 5.7: Progression of the COX
deficiency in the skeletal muscle
fiber with age, from the onset to
the complete dysfunction of mus-
cle fiber — Significance of animal
development. The COX deficiency
is represented by the mutant burden
FM in the muscle fiber. The simu-
lations were performed with a fiber
segment having a mutant progenitor
with initial condition ofW0 = 989 and
M0 = 1.

Since the mtDNA de novo mutation rate is very low (km 5 × 10−7 per replication), the

number of de novo mutation arising per cell is close to one, in majority of cell population,

immaterial of the mtDNA turnover rate (Figure 4.12B). Figure 5.7 highlights the impor-

tance of developmental stage in the mtDNA mutation accumulation dynamics in somatic

tissue. This can be further understood by considering the quanta of replication during
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the animal developmental and post natal stages. The total number of replications during

development is comparable to that during the entire adult life. In mice, the heart tissue

develops in about 20 days [244]. Considering the degradation rate described in Table 4.1

and the mouse heart to contain 2.5 × 107 cardiomyocytes [230, 248] arising from 22 cell

divisions (6 progenitor cells), the total number of mtDNA replications needed to maintain

homeostatic value of mtDNA (Table 4.1) [230] per cell should exceed 9×1010 times during

the development. On the other hand, from the degradation rate of mtDNA in postnatal

stages (Table 4.1) [240], the number of mtDNA replications events over the three years

lifespan of mice is about 1.3× 1011. Thus, it is evident that the developmental period may

carry comparable contributions in de novo mtDNA mutations as does the entire adult life.

Effect of mtDNA copy number regulation in cells

Embryonic cells committed for the somatic cell lineage demonstrate a large variation in

the mtDNA content prior to 7.5-dpc [291]. The typical value of the mtDNA count at this

stage ranges from 57–3345 mtDNA copies per cell. However, from 8.5 dpc onwards, both

mtDNA copy number and variation of mtDNA content was observed to decrease sharply

[291]. Mitochondrial DNA content was found to be vastly down-regulated in somatic cell

lineage from the 7.5 dpc stage onwards. To understand if the down-regulation of mtDNA

copy number in the embryonic cells committed to somatic cell lineage has any influence

on the resulting mtDNA mutation burden in the post-natal somatic tissues, simulations

were performed with different value of mtDNA copy number in the embryonic cells dur-

ing developmental stage. In this work, it was hypothesized that the down-regulation of

mtDNA copy number during the development may exist to moderate the overall mtDNA

mutation load resulting in the post mitotic tissue. Since cells with higher mtDNA content

has a greater quanta of replication, there is an associated increase in mtDNA de novo mu-

tations, during development. All the other parameters associated with mouse heart tissue

simulation, including the de novo mutation rate, were maintained at the original values. A
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comparison of tissues formed from embryonic cells having an initial mtDNA copy num-

ber of W0 = 200;M0 = 0 copies per cell (Figure 5.8II) and W0 = 1000;M0 = 0 copies per

cell (Figure 5.8I), indicates a 49% decrease in the number of fibers undergoing atrophy.

Mitochondrial DNA of post mitotic cells range from a few hundreds (e.g., in the typi-

cal epithelial cells) to several thousands (e.g., cardiomyocytes) per cell. The mtDNA copy

number per cell is an indicator of the oxidative capacity of the tissue [342]. In other words,

the higher the respiratory requirement of a tissue, the higher mtDNA copy number is

likely to be associated with cells of that tissue. In vivo dynamics of mtDNA mutations in

somatic cells have only been studied sparsely. Earlier studies on morphometric analysis of

the mitochondrial density in different tissues from several mammalian species indicated

a significant negative correlation between the mitochondrial density and the maximum

longevity in mammalian species [342]. In contrast to the common belief that cells con-

taining larger amount of mtDNA has lesser mutation burden associated with them [210],

the morphometric analysis indicated that tissues with higher mtDNA content have higher

mutation burden associated with them [342]. This is also consistent with the observation

that metabolically active tissues with higher oxidative capacity (mitochondria-rich) have

larger mutation burdens [139]. To conform this, simulations were performed with different

hypertrophic growth of mtDNA in the skeletal muscle fiber, subsequent to development,

keeping all the other parameter at the same level. Comparison of Figure 5.8I and 5.8III

indicate that, at the same mtDNA turnover rate, a higher mitochondrial DNA contents

correspond to higher fraction of fiber atrophy.

Effect of mtDNA mutant replicative advantage

ex vivo analyses of mtDNA deletions have indicated a marked replicative advantage of

mutant mtDNA [99]. This phenomenon has important implications on the mechanisms

of mtDNA deletions accumulation in aging and disease processes. For instance, dele-

tions formed in transgenic mouse neurons due to a double strand break formed by the
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Figure 5.8: Results of different parametric perturbation analysis on COX deficient attributes of
skeletal muscle (simulation statistics is based on five mouse tissue(n = 5)). Figure illustrates the
simulation results of the complete skeletal muscle tissue simulation results in terms of the statistics
of the number of fibers having COX deficient phenotypic regions (orange bar), and number of
fibers that undergo atrophy (red bars) at the end of 1140 days. (I-III) Influence of mtDNA copy
number variations on the overall mtDNA mutation burden and fiber statistics in the skeletal muscle
tissue. Several hypothetic cases have been considered for the simulations: I.) results of the present
simulation, II.) in this trial, it was assumed that the developmental progenitor cells have 200 wild-
type mtDNA templates (W0 = 200;M0 = 0) and following the birth, the mtDNA population in
the skeletal progenitor cells (stem or satellite cells) underwent hypertrophic growth such that the
mtDNA count in the cells increased to 1000 [292, 293], and III.) in this trial, it was assumed that
the developmental progenitor cells have normal count of mtDNA templates (W0 = 1000;M0 = 0)
and following birth, the mtDNA population in the skeletal progenitor cells (stem or satellite cells)
underwent hypertrophic growth such that the mtDNA count in the cells increased to 3500, and
subsequently the elevated mtDNA count was used for simulating the post-natal reaction-diffusion
dynamics of mtDNA in skeletal muscle fibers. IV-VI.) Influence of mtDNA mutation replicative
gain factor (β) on mtDNA mutation dynamics and progression of COX deficient regions in muscle
fibers. Plots indicate the simulation results obtained by considering different gain factors: IV.)β =
0, V.)β = 1.5, and VI.) β = 4.5.
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action of PstI, generated a wide range of mtDNA deletions in neuron cells [296]. Using

this mouse model, age-dependent accumulation of different deletion lengths was stud-

ied. Mitochondrial DNA sequence analysis of deletion products identified that majority of

clonally expanded deletion products spanned > 5kb, and further investigation using dele-

tions of different length indicated that larger deletions had greater potential to clonally

expand [296]. This observation is also consistent with other analyses considering variety

of normal aging tissues from mice, rats, rhesus monkeys and human [152]. To analyze the

influence of replicative advantage of mutant mtDNA on the clonal expansion dynamics in

sarcopenic muscles, simulations were performed to determine mtDNA mutation accumu-

lation dynamics with different replicative gain factor (β), assuming the basal frequency of

different de novo mtDNA mutation to be the same.

In these trials, the hybrid stochastic model were simulated using different replica-

tive gain factors. Complete fiber simulations indicated that at a replicative gain factor

of β = 1.5, there was no fiber which either underwent atrophy or demonstrates the RRF

phenotypes (Figure 5.8V). Thus, mutations with lower value of β were found to confer

minimal replicative advantage, compared to the wild-type mtDNA genome (Figure 5.8IV,

V). However, in the case of mutations having larger replicative gain factor (β = 4.5), the

clonal expansion dynamics of such mutations was much swifter (Figure 5.8VI). In accor-

dance with the experimental data [296], and consistent with the predictions from Chapter

4, the above analysis indicated a phenomenal propensity of mutations with higher replica-

tive gain factor to clonally expand.

5.3.3 Perturbation analysis related to Caloric Restriction

Several research works have indicated that caloric restriction is the most effective method

of extending the median and maximum life span and further have a positive effect on

health in different organisms [343]. Observational studies also indicate that the CR nu-
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tritional regimen have beneficial effect on human longevity [343]. Studies of Okinawa

centenarians supported the idea that low-caloric food regime can increase the prospects of

good health and longevity in humans [344]. The mechanism by which CR enhances the

maximum life span is not completely understood. Several hypotheses have been proposed

to explain the cellular mechanisms responsible for the anti-aging action of the caloric re-

striction, such as the growth and developmental retardation, reduced body fat content

and reduced metabolic rate, delayed neuroendocrine or immunological changes, increased

DNA repair capacities, reduced body temperatures [345]. However, most of these hy-

potheses still lack sufficient proof. Some of the parametric sensitivity analyses related to

the different mechanisms, commonly proffered in explaining the beneficial effects of CR

are discussed below.

Reduced mutation rate

One of the most commonly proposed hypotheses relates to the reduction of total amount

of oxidative stress in tissues [345–347]. Mitochondria harvested from the brain and kidney

of mice undergoing CR indicated reduced levels of hydrogen peroxide and superoxide

radicals [346]. Further support to this hypothesis include the increase in transcript levels

of many genes involved in ROS scavenging function (antioxidant enzymes) in CR fed an-

imals [348, 349]. It was further seen that the mitochondrial free radical production was

lowered by calorie restriction as measured from the biomarkers such as protein and lipid

peroxidation products, in number of tissues such as liver, heart, brain and muscle [345].

Despite the wide prevalence of the evidence of reduced mutation burden resulting from

reduced ROS production in animals subjected to CR dietary regime, a recent investigation

involving rat hepatocytes subjected to CR have shown no significant changes in the cel-

lular ROS production levels or with the expression of proteins involved in the synthesis

of ROS scavengers. Similarly they found no changes in the cellular bioenergetics level of

the hepatocytes subjected to CR regime [350]. Thus, the influence of reduced mutation
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rate on progression of sarcopenia was evaluated by simulating lower mtDNA mutation

rate (km). Result of the complete fiber simulations in the post-natal skeletal muscle tissue

is presented in Figure 5.9II. Comparison of Figure 5.9I and Figure 5.9II indicates that the

post-natal reduction in the mutation rate caused due to the CR intervention, might not be

a major contributor for the reduction in mutation burden in the sarcopenic skeletal muscle

fibers, since most of the damage is already occurred during developmental cell lineage.

The mutation burden results indicated by the total number of fibers atrophied and the

number of fiber having RRF phenotypic regions are of similar magnitude compared to the

normal simulations.

Enhanced mtDNA biogenesis

Another commonly proposed mechanism by which CR is able to extend the lifespan of

various species, has been linked to increased mitochondrial biogenesis [351–353]. Resver-

atrol, a sirtuin activator, has also been proposed to result in an increase of mitochondrial

biogenesis and thus result in the extension of life span. Analysis of human tissue sub-

jected to caloric restriction indicated an elevation in the gene expression involved in mito-

chondrial biogenesis. Similarly, eNOS gene expression, which enhances the mitochondrial

biogenesis in mammalian tissues, was also found to be significantly elevated in different

mouse tissues [353]. A rather intriguing question that arises from these observations is;

why would cells synthesize larger quanta of mitochondrial metabolites when the nutrient

availability is relatively sparse? In a recent re-evaluation study on the effects of caloric re-

striction on the mitochondrial biogenesis in 30% calorie restricted rats, indicated that none

of the proteins/mRNAs involved with mitochondrial biogenesis showed any elevation in

expression level, in several rat tissues like heart, brain, liver and adipose tissue [354].

There is also an indication in yeast and mammal cells, that increased mitochondrial bio-

genesis might simply be a mechanism to compensate for damaged mitochondrial genome

[355]. Further, there is also evidence that uncontrolled mitochondrial biogenesis, for exam-
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Figure 5.9: Results of different parametric analysis related to beneficial effects of caloric re-
striction (CR) (simulation statistics is based on five mouse tissue(n = 5)). The effects of different
commonly hypothesized mtDNA processes that are set-in due to the induction of caloric restriction
are tested and the result of the statistics related to COX deficiency in skeletal muscle fiber is com-
pared. The figure illustrates the statistics of the number of fibers having COX deficient phenotypic
regions (orange bar), and the total number of fibers that undergo atrophy (red bars) at the end of
1140 days. I.) Simulation results of the present work. II.) Simulation results of the hypothesis re-
lating reduced mutation burden arising from the lower levels of mutation rate in caloric restricted
tissues. In this trial, the basal mutation rate (km) for the post-natal mtDNA turnover process was
set 10× lower than the value used in the present work (Table 4.1). III. Simulation results of the
hypothesis relating the lower mutation burden in tissue arising from the enhanced mitogenesis
of mtDNA. In these simulations, the basal value of maximum post-natal mtDNA replication rate
(νmax) was chosen to be 1.5× the value of νmax used in the present modeling framework (Table
4.1). IV. Simulation results of the hypothesis relating the lower mutation burden in tissue arising
from the enhanced mtDNA turnover process. In these simulations, the basal value of the mtDNA
turnover rate of kd = 10 days [218] was used.

ple through cardiac-specific over-expression of PGC-1α in transgenic mice, resulted in in-

creased mutation burden and subsequent cardiomyopathy and death [356] or can induce

senescence in human fibroblast [357]. Overall, it is clear that mitochondrial biogenesis

plays an important role in the aging process, with the extent of damage in the pre-existing

mitochondria likely to be an important factor. Proliferation of mitochondria from dam-
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aged precursors is likely to result in aggravation of damaged mitochondrial population in

the cells. Similarly, increase in mitochondrial biogenesis will probably result in elevated

mutation burden as de novo mtDNA mutagenesis is tied to mtDNA replication.

In order to evaluate if the enhanced mitochondrial biogenesis affects the mutation bur-

den observed in the sarcopenic skeletal tissue, the post-natal complete fiber simulation

were performed using higher mtDNA replication rate (νmax). Results indicate that the total

number of fibers undergoing atrophy is about 16% higher compared to normal simulations

(Figure 5.9I and Figure 5.9III). Consistent with the Hancock et al.’s work, the simulation

results indicated that the enhanced mitogenesis was not beneficial for reducing mtDNA

mutation burden in skeletal muscle tissue. In fact, the simulation results predicted the

reverse scenario, that the enhanced mitogenesis caused an increase in the mtDNA mu-

tation burden. Thus, the enhanced mitochondrial biogenesis also might not be useful in

explaining the beneficial effects of CR.

Enhanced mtDNA turnover

On similar accounts, increased mitochondrial turnover process has been hypothesized to

lower the mtDNA mutation burden in post-mitotic tissues like heart and skeletal muscles

[273]. The post-natal complete fiber simulations at higher mtDNA turnover rate [218], is

presented in Figure 5.9IV. Similar to the enhanced mitochondrial biogenesis hypothesis,

simulation results at increased mitochondrial turnover indicated a 171% increase in total

number of muscle fibers undergoing atrophy, compared to the normal simulations (Figure

5.9I). The simulation results further indicated that the enhanced mitochondrial turnover

might also not be a valid hypothesis for explaining the beneficial effects of CR, in the

absence of any preferential degradation of mutated mtDNA.
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Enhanced stress resistance

In caloric restriction regime, the availability of metabolic resources are limited and it has

been observed that the animals subjected to CR regimen appeared to reset their energy

utilization machinery for higher efficiency and channel these resources for more critical

cellular processes [358]. It has further been observed that the animals subjected to CR

undergoes certain allometric adjustments like: reduced growth, retarded reproduction, re-

duced thermal tolerance, reduced proliferative activity and delayed wound healing [359].

CR dietary regime enhances the ability of cells to be more stress tolerant [359, 360]. The

anti-aging effect of dietary restriction provides a "nutritional stress", which results in stim-

ulatory metabolic response for organism’s survivability.

Based on these observations, in this work it was hypothesized that the somatic cells un-

der caloric restrained condition becomes more tolerant to higher mitochondrial DNA mu-

tation load. In other words, under CR regime, the phenotypic threshold limits associated

with the mtDNA mutation burden is enhanced and correspondingly, the mitochondrial

biogenesis resulting from the nuclear retrograde response is reduced. In order to simu-

late this condition, the Hill constant (KH ), which modulates the set point of the nuclear

retrograde signaling in response to the mutation burden was adjusted to tolerate a higher

mutation burden. A closer look at the Equation 4.4 reveal that this adjustment causes

the effective mtDNA replication rate to drop and correspondingly increase the effective

mtDNA autophagy rate, which is consistent with the experimental observations [361].

Post-natal complete fiber simulation results indicated that both the total number of

fiber lost due to the fiber atrophy and the number of RRF phenotypic regions in 2 mm sec-

tion of the complete muscle fiber, were in excellent agreement with the experimental data

(Figure 5.10). Thus, we propose that the nutritional stress induced by CR dietary regime,

causing retarded mitochondrial proliferation, to be an important process involved in the

reduction of cellular mtDNA mutation burden and the consequential beneficial effects of
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Figure 5.10: Simulation and validation results of muscle fiber subjected to caloric restriction
(simulation statistics is based on five mouse tissue(n = 5)). The validation is done with exper-
imental results obtained from the histochemical studies on rat skeletal muscle tissue [217, 325].
These simulation were performed with a constant of Hill-type kinetics (KH ) chosen to correspond
to 93% of mutant burden, compared to 85% mutant burden in the case of normal simulations (Table
4.1). A.) Comparison of the number of fibers lost as a function of age, with the experimental data
[325]. As shown in the figure, the analysis was carried out for two different age length. B.) Com-
parison of the simulation results of the number of COX deficient region in a 2 mm fiber section of
the complete muscle tissue with experimental data [217]. As shown in the figure, the analysis was
carried out for three different age length.

CR dietary regime in the life span extension.

Effects of partial CR intervention

Further simulations were performed to understand the effects of partial CR intervention

on the progression and severity of sarcopenia in skeletal muscles. The duration and level

of CR have important effect on the anti-aging benefits [362]. In rodents, CR regime was

found to be highly effective when initiated in young ages and progressively deteriorated

with age [362]. In this experimental trial, the effect of feeding regimen transfer between the

ad libitum (AL) and CR groups were studied. Experimental data indicated that switching of

old mice under AL (26 mo) to a CR regimen (AL→CR) tended to decrease their probability

of survival relative to AL maintained cohorts. Similarly, transfer of CR mice to the AL

regimen (CR→AL) had little or no effect on the survival when compared to the CR regimen

cohorts. Thus, these trials indicated that the life span extension by CR was neither quickly

reversible nor inducible, but instead required a long-term reduction in calorie intake.

Simulation results of such dietary regimen transfer are illustrated in Figure 5.11. Simi-
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lar to the experimental data, the post-natal complete fiber simulation results also indicated

that a short term dietary regimen transfer did not cause any significant change in the total

number of fibers atrophied (which could be considered as an important indicator of tissue

dysfunction). However, it is interesting to note that there was significant difference in the

number of fibers having RRF phenotypic regions between different dietary regimen trans-

fers. Thus, similar to the experimental observations, simulation data also indicated that the

beneficial effect of CR accrues gradually and that they are not rapidly inducible/reversible

upon dietary regimen transfer.

5.4 Conclusions

Sarcopenia refers to an age related condition in which decline in skeletal muscle mass and

strength occurs with age and causes frailty in aged organisms. Due to the increasing aging

population, and the associated increase in the health care expenses related to sarcopenia,

the need for better understanding of the molecular etiology and progression of sarcope-

nia is warranted. Multiple molecular hypotheses for the etiology of sarcopenia have been

proposed, and one of the mechanisms that has recently gained much interest is the mito-

chondrial etiology of sarcopenia, which proposed that the age-associated focal accumula-

tion of mitochondrial genome abnormality is the main cause of skeletal muscle sarcope-

nia. But, the molecular mechanisms of the origin and accumulation of mtDNA mutations

are not completely understood. Similarly, limited knowledge exists on the possible ge-

netic/pharmacological interventions to reduce or retard the progression of sarcopenia. In

this work, we have developed a hybrid multiscale model of mitochondrial DNA turnover

process in rat skeletal muscle fibers to understand the role of stochastic origin and dy-

namics of pathogenic mtDNA mutations in skeletal muscle sarcopenia. Specifically, the

model simulates: a.) the origin and expansion dynamics of mtDNA mutations in single

cell muscle progenitor cells (myoblasts) during the animal development, using a Chemical
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Figure 5.11: Results of tissue mutant burden arising from different short-term dietary regimen
transfer (simulation statistics is based on five mouse tissue(n = 5)). The effects of different dietary
regimen transfers were simulated and the results of different statistics related to COX deficiency
in skeletal muscle fiber was compared. The dietary regimen transfer was carried out such that the
simulations were carried at the prevailing dietary condition for an age length of 26 months and
subsequently the dietary regime was transfered for a short span of 11 weeks. The figure illustrates
the statistics of the number of fibers having COX deficient phenotypic regions (orange bar), and
the total number of fibers that undergo atrophy (red bars) at the end of 1140 days. I.) Simulation
results related to the mutant burden in skeletal tissue of rats subjected to only ad libitum dietary
condition for the entire simulation period. II.) Simulation results related to the mutant burden in
skeletal tissue of rats subjected to ad libitum dietary condition for the initial period of 26 months
and subsequently subjected to caloric restriction for time span of 11 weeks. III. Simulation results
related to the mutant burden in skeletal tissue of rats subjected to caloric restriction dietary regime
for the entire simulation period. IV. Simulation results related to the mutant burden in skeletal
tissue of rats subjected to caloric restriction dietary regime for the initial period of 26 months and
subsequently subjected to AL dietary condition for time span of 11 weeks.

Master Equation (CME) model and, b.) the expansion of mtDNA mutations in post-mitotic

skeletal muscle fiber using deterministic reaction-diffusion formulation.

In rat muscle fiber simulations, different statistics, e.g., the average count of fibers lost

during murine lifespan, the total number of red-ragged phenotypic regions and the aver-

age length of the spread of the COX deficient regions in a given section of muscle fiber, are
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estimated and validated against the experimental data on histo-chemical staining and the

related in situ hybridization analysis. The simulation results indicated an excellent agree-

ment with the experimental data. Consistent with works in Chapter 3 and 4, the simula-

tion results of skeletal muscle tissue also indicated that the mosaicity observed in cellular

mtDNA mutation burden in post-mitotic tissue arises due to stochasticity in mitochon-

drial turnover process, predominantly during developmental cell lineage. The myoblast

cells having significant mutation burden at birth, form the seed of COX deficient regions

in a sarcopenic muscle fiber. The muscle progenitors having lower mutation burden at

birth or the skeletal muscle fiber acquiring de novo mutations during the early post-natal

stages rarely expand to form COX deficient regions in skeletal muscle fiber.

Strenuous physical activity like the different exercise regimes have been shown to sig-

nificantly affect the mitochondrial motility and the associated mtDNA nucleoid dynamics.

Simulation results indicate that the faster diffusion of mtDNA in the skeletal muscle fiber

is beneficial, as it enhances the spread of mtDNA mutation load along the fiber length and

thus reducing the overall local mutation burden in the fiber. Further, this resulted in re-

duction of nuclear retrograde response, which modulates mitogenesis in response to the

cellular respiratory demands. The enhanced mtDNA diffusivity manifested by the exer-

cise regime is thus beneficial in reducing the mutation burden associated with sarcopenic

muscle fibers.

A different parametric perturbation analysis encompassing some of the commonly pro-

posed mechanisms to explain the beneficial effects of CR, was performed using skeletal

muscle model. Different hypotheses such as reduced mutation rate, enhanced mitochon-

drial biogenesis/turnover were tested. In this work, it was further hypothesized that the

beneficial effects of caloric restriction dietary regime, results from the enhanced stress re-

sistance of the post-mitotic cells to withstand higher mtDNA mutation burden. Simulation

results indicated that only the stress resistance hypothesis produced an excellent agree-
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ment with the histochemical analysis data associated with the rat skeletal tissue. The du-

ration of CR has been found to have important implication on the anti-aging effect of CR.

Consistent with the experimental evidence, simulation results indicated that a short-term

feeding regimen transfer does not lead to any significant change in the mutation burden

in skeletal muscle tissue. Further, the results indicated that the beneficial effects of CR ac-

crue gradually and it is neither rapidly inducible nor reversible upon the dietary regime

transfer.

The present model can be further developed as a work-bench to analyze the influence

of different parametric perturbations associated with the mitochondrial DNA turnover

process, on the origin and progression of sarcopenia with age, thereby providing impor-

tant insight into the possible interventions to retard its severity and possibly provide a

hypothesis-driven design of experiments to gain a better understanding of the role of

mtDNA mutations in aging or mitochondrial related degenerative diseases.
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Chapter 6

Maximizing signal-to-noise ratio in the Random
Mutation Capture assay

6.1 Introduction

As discussed in the previous chapter (Chapter 3), an accurate estimation of tissue level

DNA mutation abundance is challenging, but critical for understanding the impact of

these mutations on cellular and tissue physiology [141, 363, 364]. The ability to sensitively

detect the frequency of random spontaneous mutations of DNA is necessary to define

critical parameters like the mutation rate, which is essential for understanding the role of

genomic mutagenesis in human diseases and aging. In Chapter 3, it was shown that the

quantification assays used for measuring low-levels of mtDNA mutation burden requires

high end point dilution to single molecular content. Such high dilution factors makes the

measurement estimates obtained from these protocols highly noisy and thus causing sig-

nificant uncertainty in predicting the age-dependent mtDNA mutation accumulation dy-

namics. In this chapter, statistical modeling techniques are used to investigate the impact

of high dilution in RMC assay [116, 141] and to propose an alternate, statistically-optimal

assay sampling procedure to reduce the extent of measurement variability and to increase

the amount of information returned per sampling trial.

Many procedures have been developed previously based on quantification of point

mutation frequency by PCR amplification of short fragments of DNA. However these

methods have recently come under criticism, since mis-incorporation rate of spurious mu-

tations during PCR, arising due to the intrinsic error rate of polymerase enzymes, can

exceed the actual mutation frequencies, especially when measuring low-level DNA mu-
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tation level (∼ 10−6 bp−1). Upon cloning these mutations become indistinguishable from

the true mutations and may provide an overestimation of the mutation load.

In 2005, Bielas and Loeb developed a novel assay for quantifying low levels of spon-

taneous random mutations in DNA [141].The RMC assay is based on PCR detection of

mutations that render the mutation target sequence resistant to restriction enzyme diges-

tion [141, 363]. Mutations are subsequently quantified by real-time PCR amplification after

dilution of the restriction enzyme digested template to single-molecule level [226], avoid-

ing artifactual mutations due to polymerase error that has confounded previous methods

[226, 363]. Application of the RMC assay in determining the mutation frequency of mouse

mitochondrial DNA (mtDNA) [226] gave values about two orders of magnitude lower

than the previous estimates [130, 131].

In the RMC assay, mutation burdens are quantified by real-time PCR after dilution to

single-molecule level (Figure 6.1), such that each PCR-amplified well contains mostly sin-

gle mutant molecule and the likelihood of finding more than a single mutant in a well is

negligible [116, 141, 226]. While at the population level, low sample size has been shown to

negatively affect the conclusion drawn from DNA mutation studies [365], in this chapter

it is shown that the statistical aspects related to protocols necessitating such high dilu-

tion (down to single molecule level) can also introduce significant noise in the mutation

frequency estimates. Unfortunately, the statistics associated with the discrete molecular

nature of such assays can become non-trivial and was overlooked in the original protocol

and subsequent applications.

6.2 Methods

6.2.1 Statistical optimization of the RMC assay

The conventional RMC assay [116, 141, 226] is based on PCR amplification of a single mu-

tant molecule (restriction enzyme digest resistant) in the presence of excess copy numbers
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Figure 6.1: Statistical aspects associated with the RMC assay. Different sources of variability
in the RMC assay. There are primarily four sources of variability that are important for the sen-
sitive estimation of DNA mutation load using the RMC assay: the number of PCR (un)amplified
wells among independent RMC trials (inter-plate variability), assuming that each PCR well re-
ceives same number of mtDNA templates, the molecular count of mutant DNA in different wells
of a single plate (inter-well variability), i.e., randomness in mtDNA copy number during the sam-
pling of mtDNA samples into PCR wells, false amplification (type-I error) and mis-amplification
(type-II errors).

of wild-type sequences (digest sensitive). Here, the mutation frequency is calculated by

dividing the fraction of PCR wells that are amplified (in a 96-well plate) by the amount of

DNA per well [116, 141, 226]. In the RMC assay, intrinsic variability arises due to the well-

to-well and plate-to-plate variability that can arise from non-uniform sampling of DNA

content to a single PCR well (Poisson distribution) and random number of amplified/non-

amplified wells in a plate (Binomial distribution), respectively (Figure 6.1). The other

sources of error (bias) in this protocol are associated with (1) the assumption that each

amplified well only contains a single mutant molecule, (2) false PCR amplification due to

contamination or incomplete digestion (Type I), and (3) failed PCR amplification (Type II).

Each of these factors contributes in a non-trivial manner to the statistics of the mutation

frequency data, and has not been carefully addressed previously.

To arrive at the optimal protocol, two types of statistical analyses were performed. The

first involved a linearized variance propagation of functions of random variables, while

the second used a Monte Carlo approach that simulated the protocol a large number of
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times (n = 10,000). The optimization was then performed to minimize the coefficient of

variation, by changing the amount of DNA molecules that are sampled into each well.

The details of each analysis are outlined below.

First order uncertainty propagation analysis

Assuming that the DNA homogenate for which mutation frequency is to be determined

is well mixed, the probability of sampling x number of mutant molecules into a PCR well

can be described using the Poisson distribution [233]:

PPoisson (x) =
e−λ · λx

x!
(6.1)

where λ is the mean number of mutant molecules per well. The parameter λ is of interest

in this assay as the mutation frequency (per bp) can be calculated by dividing λ with the

total amount of DNA present in the well. Using the Poisson distribution, the probability

of sampling zero mutant template into an PCR well, denoted by p0, is given by:

p0 = PPoisson (x = 0) = e−λ (6.2)

Furthermore, assuming that p0 is constant and ignoring Type I and II errors as de-

scribed above, the probability of observing n0 wells that are not PCR-amplified among a

total of nwells wells is described by a Binomial distribution:

P (n0) =

(
nwells
n0

)
· pn0

0 · (1− p0)nwells−n0 (6.3)

While the expected value of n0 is equal to nwells · p0, the outcome in a random experiment

may not be so. Thus, one can only obtain an estimate of p0, which is calculated as p̂0.

Consequently, an estimate of λ can be calculated from p̂0 by rearranging Equation 6.2,

such that:

λ̂ = −log p̂0 (6.4)
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Since p̂0 is an unbiased estimator of p0 (i.e. the expected value of p̂0 is equal to p0), the

variance of λ̂ can approximated by using a Taylor series expansion of Equation 6.4. The

uncertainty analysis of λ̂ relies on a first order linear approximation, in which the vari-

ance of any function of random variables, y = g(x) is approximated from a Taylor Series

Expansion (TSE) about the estimator for the mean of the random variables x, given by:

V (y) ≈
∑
x

(
∂g

∂x

∣∣∣∣
x=x̂

)2

· V (x) (6.5)

where x̂ is an unbiased estimator of the mean of x. Since p̂0 is an unbiased estimate for p0,

the uncertainty in the estimate λ̂ or V
(
λ̂
)

can be obtained as a function of the uncertainty

in p̂0 according to:

V
(
λ̂
)
≈

(
∂ (−log p0)

∂p0

∣∣∣∣
p0=p̂0

)2

· p̂0 · (1− p̂0)

nwells
(6.6a)

V
(
λ̂
)
≈
(

1

p̂0

)2

· p̂0 · (1− p̂0)

nwells
(6.6b)

V
(
λ̂
)
≈ 1− p̂0

nwells · p̂0
(6.6c)

Consequently, the coefficient of variation (CV) of λ̂ is approximately:

CV
(
λ̂
)
≈ 1

−log (p̂0)
·

√
1− p̂0

nwells · p̂0
(6.7)

The variation of the above CV as a function of different DNA template dilution (λ) was

approximated using the above Equation 6.7 and the minimum CV was obtained at p̂∗0 ≈

0.2.

Monte Carlo analysis

The analytical treatment above did not consider false positives and false negatives (Type-I

or Type-II errors) as described in Figure 6.1. To better understand the influence of these
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errors on the mutation frequency estimates, Monte Carlo (MC) simulations of the conven-

tional RMC assay and the proposed alternative protocol (i.e. counting non-amplified PCR

wells) with and without Type-I and -II errors, were also performed. Briefly, a single MC

simulation emulates the statistical random sampling of DNA material into each PCR well

on a plate and the PCR amplification experiment. The lower bounds of the frequencies of

false positive and false negative errors were estimated from experimental data described

in Table 6.1. False amplification can be avoided by sequencing in the conventional RMC

assay and thus was not taken into account in the corresponding MC simulations. Such

simulation was then performed for a large number of times to obtain the statistics of the

mutation frequency estimates, such as mean and CV. The pseudo-codes for the MC algo-

rithms implemented are given in Table 6.2 and Table 6.3 for original and optimized RMC

protocols, respectively.

The Monte Carlo algorithms were implemented in C++ on a Linux Platform (CentOS;

GNU C++ compiler (v4.1.1)), using a combination of a long period random number gener-

ator [366] and a multiple independent streams generator [367]. In addition, non-uniform

random numbers were generated using algorithms described elsewhere [368, 369].

6.2.2 Validation of RMC optimization

The performance of the proposed optimized protocol was validated by a mock RMC assay.

Briefly, a plasmid containing the target sequence and a matching TaqMan probe/primer

set based on the TaqMan MGB Probe with 5’-6FAM and 3’-MGBNFQ dye technology was

prepared (Applied Biosystems, Calif.). The plasmids were serially diluted to approxi-

mately either 0.1 or 1.6 molecules per µl. The former corresponds to the dilution used in

the single molecule amplification of the original RMC assay [141], while the latter repre-

sents the suggested dilution of the optimized assay (λ̂∗ = −logp̂∗0 = 1.6). A 1µl sample of

either the high or the low copy number dilutions were added to a 19µl of standard Taq-
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Table 6.1: Estimation of the false positives and false negatives frequencies. Frequencies of false positives
and false negatives encountered during the RMC trials. Data are based on the quality control experiments
of the RMC assay conducted using the no template control (NTC) and mtDNA templates. Trials used for
obtaining the false positive error frequencies were conducted with PCR amplification of the wells having
pure buffer (NTC’s). Whereas, the trails used for determining the false negative error frequencies were based
on amplification of the PCR wells with an average of 10 mtDNA templates in each of the PCR wells.

Stage Repetitions Temperature Time Ramp
Rate

1 1 50◦C 2:00 100
2 1 95◦C 10:00 100
3 70 95◦C 0:45 100

55◦C 0:45 100
72◦C 1:30 100

Standard 7500 Mode
Data Collection: Stage 3 & Step 3
PCR Volume: 20 µl

Type - I error Data
Number of wells used for the trial 100
Number of wells amplified 6
Error frequency 6%

Type - II error Data
Number of wells used for the trial 100
Number of wells amplified 96
Error frequency 4%

Man UDP master-mix (TaqMan Universal PCR Master Mix, Applied Biosystems, Calif.) to

each well of a 96 well plate PCR plate (Applied Biosystems). The wells were subsequently

subjected to PCR amplification and detected using an Applied Biosystems 7500 real-time

PCR system running 60 cycles of PCR of a modified universal amplification profile (50°C

for 2 min, 95°C for 10 min followed by 60 cycles of: 95°C for 45 s, 55°C for 45 s and 72°C

for 90s). Amplification was monitored at 520nm (FAM Dye) and under these conditions

single molecules were found to be reliably amplified (data not shown).

6.3 Results & Discussion

Following the derivation in the Method section, the optimal protocol involves (1) prepa-

ration of DNA sample such that about 1 − p̂∗0 ≈ 0.8 fraction of the wells will be amplified
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Table 6.2: Pseudo-code for simulating the sampling protocol used in the original RMC assay.

Steps Algorithm details

1 Initialization
set the number of PCR wells nwells.
set frequencies of false positive (α) and false negatives (β) errors.
seed random number generators (both uniform and non-uniform).
set template copy number nmtDNA.
set the iteration counter to k ⇒ 0.

2 Iterations
while k ≤ 10000 (Itot).

initialize the counter for amplified wells iA ⇒ 0.
set counter for number of wells per PCR plate n⇒ 1.
while n ≤ nwells.

generate a Uniform random number U (0, 1) : r.
generate a Poisson random number P (λ) : R.
if R 6= 0, then:

if r ≥ β, then:
iA = iA + 1

else
if r < α, then:
iA = iA + 1

increment n+ 1.
calculate the estimate of mutation frequency θ̂ = iA/ (nd · nwells).
increment k + 1.

by adjusting the dilution factor and (2) the mutation frequency estimate θ̂ (mutations per

base pairs) can be computed according to:

θ̂ =
λ̂

nbp · nDNA
(6.8)

where nDNA is the total number of DNA molecules in a single PCR well and nbp is the

length restriction site (nbp = 4 for TaqI recognition site [116, 226]). Figure 6.2 shows that

the results of statistical optimization using the linearized analysis and MC approach, and

from the RMC validation experiments. In particular, Figure 6.2A and Figure 6.3 suggests

that the minimum CV can be achieved by diluting DNA sample such that 1 − p̂∗0 of the

wells are PCR amplified, which corresponds to an average of λ̂ = 1.6 mutant molecules

per well. This is in contrast to the original RMC assay that prescribes end-point dilution

down to λ̂ = 0.1 mutant molecules per well.
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Table 6.3: Pseudo-code for simulating the sampling protocol used in the optimized RMC assay, devel-
oped in this work.

Steps Algorithm details

1 Initialization
set the number of PCR wells nwells.
set frequencies of false positive (α) and false negatives (β) errors.
seed random number generators (both uniform and non-uniform).
set mean fraction of unamplified well(p0).
set the iteration counter to k ⇒ 0.

2 Iterations
while k ≤ 10000 (Itot).

set the counter for unamplified wells iUA ⇒ 0.
set counter for number of wells per PCR plate n⇒ 1.
while n ≤ nwells.

generate a Uniform random number U (0, 1) : r.
generate a Poisson random number P (λ) : R.
if R = 0, then:

if r ≥ α, then:
iUA = iUA + 1

else
if r < β, then:
iUA = iUA + 1

increment n+ 1.
calculate the fraction of unamplified wells p̂0 = iUA/nwells.
calculate the estimate of mutation frequency θ̂.
increment k + 1.

Importantly, the optimized protocol offers a significant improvement of the accuracy in

mutation estimates compared to the conventional RMC assay. For example, Monte Carlo

(MC) simulations of RMC assays (n = 10, 000) on 48 PCR wells (nwells = 48) predicted a

53% reduction in coefficient of variation (CV) (from 40% to 19% CV) by using the optimal

protocol in place of the original (Figure 6.2B). Furthermore, this protocol provides a more

robust estimate of λ than the traditional RMC assay, where the CV is approximately con-

stant for the values of p0 between 0.1 and 0.4, even in the presence of experimental artifacts

(false positive and false negative errors) (Figure 6.2, Figure 6.3 and Figure 6.4).

The theoretical predictions were tested experimentally by conducting a mock RMC

assay using plasmid DNA (see Section 6.2.2). As expected, at the optimal dilution factor

of p∗0 = 0.2, this protocol provides a substantial reduction of variability with an actual CV
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Figure 6.2: Results of Optimized RMC assay considering the approximation of sampling pro-
cess to the Poisson process. A.) Coefficient of variation (CV) of DNA mutant frequency as a func-
tion of p0 (the mean fraction of unamplified wells) as predicted by MC simulations and statistical
analysis using assay with 48 wells (nwells). The parameter p0 relates to the DNA template dilution
factor, where higher dilution increases p0 (less DNA templates per PCR well). The CV has a mini-
mum value around p0 = 0.20, as opposed to the conventional RMC assay of p0 ≈ 0.91. The lower
CV in simulations with type-I and type-II errors comes at the cost of lower accuracy. B. Comparison
of the relative errors between optimized and conventional RMC assays in (i and ii) simulation and
(iii) experiment; (nwells = 48; Table 6.4). MC simulations (n = 10, 000 realizations) were performed
(i) with and (ii) without type-I and type-II errors. The type-I and type-II errors were determined
based mock RMC repeats (n = 100 PCR wells, Table 6.1). Type-I error in the original RMC assay is
set to zero, since existence of mutant DNA in amplified wells is confirmed by sequencing. Both MC
simulations and experimental data confirmed the superiority of the optimized protocol in terms of
CV reduction and accuracy improvement.
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Figure 6.3: Variation of the
Coefficient of variation (CV)
obtained using Monte Carlo
analysis. Data obtained using
Poisson statistics as a function
of the fractions of unamplified
wells (p0) and the total num-
ber of PCR wells (nwells). These
contours are determined using
Monte Carlo simulations. The
arrows indicate the minimum
value of CVs. The optimal value
of p0 mostly ranged between 0.2
and 0.3.

reduction of 68% (from 57% to 18% CV) (Figure 6.2B and Table 6.4). In other words, the

optimal RMC protocol offers the same information as the original protocol using only 1/10

the number of wells. These findings highlighted that in the quantification of low-level

DNA mutations, the manner in which samples are prepared for analysis can contribute

non-trivially to the statistics of the measurement data.
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Figure 6.4: Influence of the experimental errors (type - I and II errors) on the performance
of both the optimized and original RMC protocol assuming Poisson random sampling. The
box plots of the relative difference between λ̂ and the true value λ were obtained from 104 MC
independent realizations with a true λ = 1.6 molecules per well (p0 = 0.2) for the optimized assay
and λ = 0.1 molecules per well for the conventional RMC assay (p0 = 0.91). The frequencies of
type-I and II errors are shown in the titles and their selection were done using data shown in Table
6.1. The original RMC protocol is generally more sensitive to these experimental errors than the
optimized assay developed in this work.

Table 6.4: Mock RMC experimental results using the optimized and original protocols.

Optimized Protocol λ = 1.6 Original Protocol λ = 0.1

Run
num-
ber

Fraction of
amplified
wells 1− p̂0

Average
mutant
molecules
per well
λ = −log (p̂0)

Run
num-
ber

Fraction of
amplified
wells 1− p̂0

Average
mutant
molecules
per well 1− p̂0

Run 1 36/48 1.39 Run 1 1/48 0.02
Run 2 39/48 1.67 Run 2 6/48 0.13
Run 3 38/48 1.57 Run 3 10/48 0.23
Run 4 35/48 1.31 Run 4 7/48 0.16
Run 5 36/48 1.39 Run 5 6/48 0.13
Run 6 42/48 2.08 Run 6 3/48 0.06
Average 1.5668 Average 0.1146
(molecule per well) (molecule per well)
Standard Deviation 0.2854 Standard Deviation 0.0565
(molecule per well) (molecule per well)
CV 0.1822 CV 0.5721
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Thus, despite the high sensitivity of the RMC assay, the high variability due to the

discrete molecular nature of the original assay can lead to a significant uncertainty in mea-

surement estimates. Nevertheless, the subsequent applications of this assay (Appendix

A), many of which were concerned with age-dependent mutations in mitochondrial DNA,

have predominantly used the naïve form. To illustrate the significance of the optimal pro-

tocol, based on the earlier work on the mtDNA point mutation accumulation in murine

heart tissue (Chapter 3 or [269]), Monte Carlo simulations of low-level accumulation of

mtDNA point mutations during aging and their measurements using the RMC assay with

the original and the optimal protocol were performed. Figure 6.5A shows the intrinsic

variability in the levels of mtDNA point mutations among heart tissues from a population

of mice that may arise from random drift of mtDNA point mutations during the develop-

mental and post-natal stages. When using the original RMC assay, the additional variabil-

ity (noise) from suboptimal sampling of the original RMC assay, while able to explain the

range of experimental data, prevents any definitive conclusion regarding the dynamics

of mtDNA mutation accumulation, as shown Figure 6.5B. On the other hand, the reduc-

tion in the sampling variability offered by the optimal protocol can provide a much more

definitive trend on dynamics (see Figure 6.5C, variability is much more closer to the actual

underlying mtDNA point mutation distribution function), which is important in deducing

mechanisms of age-related mtDNA mutations.

6.4 Conclusions

Methods for quantifying extremely low levels of mutation frequency (∼ 10−6 bp−1), like

RMC assay [141], represent an important technological advance, the findings above re-

veal that the statistics associated with the sample preparation in these assays are of great

importance, but often an overlooked aspect. Consequently, sampling protocols need to

be carefully designed to maximize signal-to-noise ratio. A sensitive and more robust esti-
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Figure 6.5: Variability in the point mutation frequency measurement data in mouse heart tis-
sues. Point mutation burden in wild type mouse population (n = 1000 mice) as predicted by
a random drift model Chapter 3; [269]. Actual experimental RMC data are shown in red circles
[116]. The simulated percentile curves in the plots give the maximum mutation frequency that a
given percentage of the mouse population harbors. The percentiles of point mutation frequency
distribution in mouse heart tissues as a result of A.) random drift of mtDNA mutation; B.) random
drift and sampling variability from the original RMC assay; and C.) random drift and sampling
variability from the optimized RMC protocol. The comparison of overall data variability indi-
cates that the optimized protocol developed in this work, provides a substantial reduction in the
measurement variability and provides a better estimate of the underlying age-dependent mtDNA
mutation accumulation dynamics.

mate of mutation frequency can be obtained by a simple modification of the original assays

[116, 141, 226] based on statistical analysis. While the original procedure prescribes a di-

lution factor of about 0.1 molecules of mutant per well and the counting of amplified wells,

the maximum signal-to-noise ratio however corresponds to a lesser dilution factor of 1.6

molecules per well and quantifying the fraction of unamplified wells. The optimized assay

is predicted and confirmed by experimental data, to substantially reduce the measurement

variability, and thus provide a more sensible estimate of the age-dependent mtDNA mu-

tation dynamics. While this work pertains to optimization of the RMC assay, the statistics

related to sample preparation and sampling protocol maybe more generally applicable to
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other DNA quantification techniques requiring high dilution to obtain single molecule end

point dilutions.

This chapter highlights the work done in S. K. Poovathingal, J. Gruber, N. Li Fang, B.
Halliwell & R. Gunawan. Maximizing Signal-to-Noise Ratio in the Random Mutation
Capture Assay. Nuc. Acids. Res., Accepted.
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Chapter 7

Global parameter estimation methods for stochastic
biochemical systems

7.1 Introduction

One of the most critical challenges experienced during the development of different stochas-

tic modeling framework proposed in this dissertation (Chapter 3 and 4), relates to the

availability of accurate estimates of critical parameters of mitochondrial turnover param-

eters like the mtDNA turnover rate, de novo mtDNA mutation rate, etc. Obtaining accu-

rate estimates of several of these parameters are technically challenging using the existing

measurement technologies. Also, obtaining parameters estimates using different measur-

ing techniques can give vastly diverging values (for example mtDNA turnover rate dis-

cussed in (Chapter 3). Furthermore, unlike differential equation models, the identification

of stochastic models from experimental data of single cell or cell population data are not

yet routine. Thus in this chapter, details of a stochastic parameter estimation framework

that has been developed to estimate parameters of stochastic biochemical reaction systems

will be discussed.

Despite the availability of high-throughput cell biology, the estimation of unknown

(kinetic) model parameters from experimental data is still considered as the bottleneck in

biological model identification, especially for dynamical models [370, 371]. The difficulty

is generally attributed to the informativeness of the data, or the lack thereof, a property

that is proportional to not only the quantity, but also the quality of data. Furthermore, in

dynamical models, the time resolution of data is naturally of great importance. In recent

years, advances in bio-imaging allow for real time measurements of cellular components
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such as mRNAs and proteins in individual cells through the use of fluorescent proteins

[172, 372–375]. Such measurements provide more in-depth and informative data about

the states of a cell and variability in a cell population, than the traditional lumped mea-

surements from cell culture lysate or tissue homogenate. The purpose of this chapter is

to present the development of practical methods that can efficiently use these data in the

parameter estimation framework for stochastic biochemical systems.

Chemical master equation (CME) is the most commonly adopted modeling framework

to describe stochastic cellular dynamics [172, 178, 374] and thus is used as a benchmark ap-

plication in this work. The estimation of unknown kinetic parameters from data in CME

and other stochastic models has not been adequately addressed in the literature. Many of

the published CME models use rate constants that are scaled from deterministic parameter

values or selected ad-hoc to replicate desired behavior. Since the low-copy-number random

events can generate dynamics that are characteristically different from those in thermody-

namic or deterministic limit [376, 377], deterministic model parameters identified from

data collected under this limit or averaged over cell populations can be misleading. Fur-

thermore, fitting deterministic models (e.g. ODE) to stochastic data has been shown to

give poor parameter estimates and model prediction [378]. Among the existing parame-

ter estimation methods for stochastic biological models, some rely on Bayesian inference

based on the stochastic differential equation [379, 380], while others are based on maxi-

mum likelihood (ML) methods. One ML method obtains parameter estimates by fitting

transition density functions of stochastic differential equations in biochemical pathways

[378]. A similar approach based on the ML of transitional probabilities requires measure-

ments of the state trajectories at very fast sampling rate, whereby reactions are assumed

to occur at most twice in a sampling time interval [381]. The fast sampling requirement

makes this approach impractical, since biological data are typically sparse.

In this work, three kinetic parameter estimation methods for stochastic models were de-
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veloped based on two criteria: maximum likelihood (ML) and density function distance

(DFD). Two scenarios of practical application were considered involving both sparsely and

densely populated datasets (i.e. low and high replicates). Since the distribution density

functions are commonly constructed using histograms, an important aspect related to the

binning strategy and the noise associated with finite sampling, has been incorporated in

the parameter estimation framework. The efficacy of each method was evaluated and com-

pared based on applications to four CME based case studies: RNA dynamics in Escherichia

coli, gene expression network of galactose uptake model in Saccharomyces cerevisiae, and to

two bimodal system a.) Schlögl model and b.) a genetic toggle switch in E. coli. Despite the

use of CME models here, the methods are generally applicable to other stochastic models

in which the system behavior or output can be characterized by a PDF of the states.

7.2 Methods

7.2.1 Estimation of state density function

In this work, Stochastic Simulation Algorithm (SSA) [214] was used to generate in silico

experimental data for the purpose of parameter estimation and to solve for the PDF of the

CME model. The histogram should reflect the true state PDF in the limit of the number of

realizations tending to infinity. Since only a finite number of data samples are computa-

tionally feasible and experimentally practical, the error associated with histogram binning

strategy is important, but this is not often discussed in existing literature of the CME. The

shape of the resulting density function is known to be sensitive to the number and size of

the bins, and the optimal binning distribution need not be of uniform sizes [382]. Charac-

teristic features of a distribution such as bimodality may not be apparent when using bins

that are too wide, while histograms can be significantly affected by random fluctuations

associated with a small number of data points in bins that are too narrow. Although there

is no hard and fast rule on the selection of bin sizes, the minimum number of realizations
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in each bin should typically range between 5 and 20 [233]. Unless stated otherwise, the his-

tograms here are constructed such that each bin contains no fewer than ten occurrences.

The noise due to the histogram construction using finite size random sample will be taken

into account in the parameter estimation below.

In practice, the choice of numerical solvers for model equations determines the per-

formance of any parameter estimation methods. For CME, there has been a tremendous

development of numerical algorithms for computing the PDF solution, directly [383–385]

or indirectly [175, 214, 386]. The SSA was selected in this work because this algorithm

is equivalent to the CME [175, 214], motivating its use to generate in silico data. Conse-

quently, the CME model was also solved using SSA, such that the efficacy of the proposed

methods can be evaluated independently from the solvers. In this case, deficiencies of SSA

will appear equally in both in silico data and the model solution.

7.2.2 Parameter estimation methods

The methods developed here are formulated as a minimization of distance measures be-

tween model predictions and experimental data. The first method makes use of the com-

mon likelihood function and the second involves a distance metric between density func-

tions as predicted by the CME and the data. When experimental error is known or can

be determined from data, this noise should be accounted for in the PDF solution. In this

work, the error is assumed to be independent and identically distributed (i.i.d.) random

samples from a normal distribution with zero mean and variance σ2;
(
N
(
0, σ2

))
, which

are then explicitly added to the SSA realizations.
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Maximum Likelihood (ML) method

The first estimation criterion is the likelihood function given by:

L (k) =

m∏
j=1

n∏
i=1

f
(

oji , ti; k
)
, (7.1)

where the j-th experimental replicate
{

oj1,o
j
2, . . . ,o

j
n

}
are taken at time points {t1, t2, . . . , tn}

for j = 1, 2, . . . ,m (i.e. the experiments are done in m replicates). The likelihood function

f
(

oji , ti; k
)

is given by the CME model, which in this case is evaluated from the density

function histogram of SSA realizations. The parameter estimation is then formulated as

maximization of the likelihood function given by:

k∗ = arg max
k

L (k) (7.2a)

= arg max
k

m∏
j=1

n∏
i=1

f
(

oji , ti; k
)

(7.2b)

= arg max
k

m∏
j=1

n∏
i=1

P
(

oji , ti| x0, t0

)
(7.2c)

where P
(

oji , ti| x0, t0

)
is the state PDF reconstructed from SSA simulations, with added

Gaussian i.i.d. noise ε ∈ N
(
0, σ2

)
when appropriate, i.e. the state trajectory is simulated

as o = x+ε rounded to the nearest integer. For brevity, from hereon P
(

oji , ti| x0, t0

)
will be

denoted by P (o, ti). Specific details of the accounting of experimental errors can be found

in the description of the case studies in the results section. To avoid numerical underflows,

the log-likelihood formulation of the objective function Equation 7.2 is used in this work,

giving:

k∗ = arg min
k
−logL (k) (7.3a)

= arg min
k

m∑
j=1

n∑
i=1

−logP
(

oji , ti
)

(7.3b)
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Density Function Distance (DFD) method

The next two estimation methods are based on the minimization of state density function

distance, similar to a divergence measure between two distribution functions, such as the

Kullback-Leibler distance [387]. In particular, two estimation criteria are considered using

the probability density function (DFD-PDF) and cumulative density function (DFD-CDF).

In the PDF distance method, the objective of the parameter estimation is to minimize the

difference between the PDF of the experimental data and SSA simulations, as follows:

k∗ = arg min
k

n∑
i=1

L−1∑
l=1

(Pe (ol, ti)− P (ol, ti))
2

s2
l,i

, (7.4)

where Pe (ol, ti) denotes the experimental PDF constructed using a histogram with L bins

and ol is arbitrarily taken to be the center of each bin. Unless stated otherwise, the binning

strategy is referenced to the experimental data and the same binning distribution is used

for the SSA simulations. The last bin represents an extra degree of freedom due to nor-

malization of the sum (integral) of the PDF to 1, and thus not included in the optimization

procedure. The weighting factor s2
l,i is an estimate of the variance of the l-th bin probabil-

ity at time ti arising due to finite random sampling. The process of classifying N elements

from either the experimental data or SSA realizations into bins of a histogram can be as-

sumed as a Binomial process and thereby the variance of the bin frequency is computed

according to:

s2
l,i =

Pe (ol, ti) (1− Pe (ol, ti))
N

. (7.5)

As a reliable construction of a PDF typically requires a large number of replicates, the PDF

distance may not be appropriate when only few replicates of data are available. On the

other hand, the ML method above can be applied to datasets with low replicates, as it does

not require the construction of a density function from the experimental data.

The second criterion considers the minimization of the differences between the CDF
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constructed using the experimental data and the SSA realizations, given by:

k∗ = arg min
k

n∑
i=1

L−1∑
l=1

(Fe (ol, ti)− F (ol, ti))
2

S2
l,i

, (7.6)

where the CDF Fe (ol, ti) gives the probability to obtain an experimental observation o <

ol, and Fe (ol, ti) and F (ol, ti) denote the CDF constructed from the cumulative sums of

the PDF,
∑l

k=1 Pe (ok, ti) and
∑l

k=1 P (ok, ti), respectively. Similar to the PDF criteria, the

weighting factor S2
l,i is estimated using a binomial assumption to give:

S2
l,i =

Fe (ol, ti) (1− Fe (ol, ti))
N

. (7.7)

The binning distribution can be kept the same as the PDF, but this need not be necessarily

so. Unlike PDF, the shape of CDF is less sensitive to noise from finite sampling, with

the exception of the tail ends of the CDF near the minimum and maximum values of the

states. The lesser sensitivity to noise also makes the CDF distance method applicable to

sparse datasets (low replicates), in which case the binning strategy is done based on the

SSA realizations.

7.2.3 Global optimization algorithm

Aside from model solvers, the effectiveness of any parameter estimation methods also de-

pends on the ability to find the global optima to the minimization problems. In the case

of stochastic models, the error landscape is anticipated to be highly stochastic due to noise

from finite experimental data points, which prevents the use of any optimization algo-

rithms involving gradient search. Here, a variant of evolutionary algorithms, called Dif-

ferential Evolution (DE), is used as a general purpose global optimization algorithm. This

method can effectively handle diversified objective function planes [388], and like other

evolutionary algorithms such as genetic algorithm (GA), DE starts with a random popu-
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lation member and looks for the global optima by generating new population members

using successive recombination and mutations based on the original parent population.

However, unlike GA, DE uses floating point instead of bit string encoding, and arithmetic

operations instead of logical rules, thereby providing a greater flexibility in the parameter

search. Among the settings of DE, the population size and total number of generations are

tuned in the case studies below based on the dimensionality of the problem (i.e. number

of parameters) and the choice of parameter estimation method, respectively. The remain-

ing parameters are maintained at previously suggested values [388]. The convergence and

termination of the optimization can be based on the improvement of the best objective

function in the population, standard deviation of the population vector, or maximum dif-

ference between the best and worst population member. A combination of several of these

criteria can provide an efficient and robust termination criterion [389]. Since the case stud-

ies considered in this work involve in silico data with known true parameters, a maximum

iteration number is used as a termination criteria and the efficacy of each method is judged

based on the accuracy of the respective estimates.

The SSA and DE algorithms were implemented using Message Passing Interface (MPI)

in C++ and run on a Linux IBM computing cluster (CentOS; GNU C++ compiler (v4.1.1)).

A combination of a long period random number generator [366] and multiple indepen-

dent streams generator [367] were used to guarantee statistically independent streams of

random numbers required for both the SSA and DE.

7.3 Results

7.3.1 Case Study 1: RNA dynamics in E. coli

The significance of intra-cellular noise arises from the low copy number of genetic materi-

als and gene transcriptional machinery. Thus, the quantification of mRNA would experi-

ence a greater influence of such noise than that of proteins, which may have thousands of
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copies. A high resolution fluorescence microscopy method has been developed to quantify

the molecular count of mRNAs in individual E. coli cells [372]. This method is based on the

amplification of MS2d-fused fluorescence protein signal by binding to a reporter RNA that

has multiple MS2d receptor sites (Figure 7.1A). The transcriptional response was shown

to rise and plateau after 70-80 minutes post induction [372]. The molecular counts of the

transcripts were obtained by normalizing the fluorescence flux with that generated by a

single tagged RNA molecule. A mass-action kinetic model of the average mRNA level

was used to fit the experimental data to obtain the kinetic parameter values [372].

Figure 7.1: mRNA Dynamics
Model in E. coli. (A) The
mRNA detection system com-
prises two genetic elements; a
fluorescence protein fused with
bacteriophage protein (MS2d)
and a reporter mRNA contain-
ing tandem repeats of MS2-
binding sites. The GFP bind-
ing site repeats facilitate imag-
ing and quantification of cellu-
lar mRNA to single molecular
level. (B) The transcriptional
model constitutes 3 reactions
with 3 rate constants. DNAS

represents the silent form, while
DNAA represents the activated
form.

Genetic construct of RNA expression in E. Coli 

Reaction Scheme

The first case study uses the CME model corresponding to the reactions and kinetic

parameters proposed in the original work, as shown in Figure 7.1B and detailed in Table

7.1 [372]. Considering this model to be the true system, four experimental datasets of

mRNA copy numbers with different replicates (m = 10, 20, 100, and 10,000) were simulated

using the SSA. The simulated data were contaminated with measurement errors arising

due to the normalization of the fluorescence flux, were taken to be discrete rounded values
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of normal random samples (N (0, 0.25)), consistent with the actual wet-lab experiments

[372]. The mRNA transcripts per cell generation were recorded every 0.5 minutes until 75

minutes, mimicking the original experimental protocol.

Table 7.1: SSA formulation of the RNA dynamics model.

SSA implementation
Reactions Propensities Stoichiometric change

1 k1 ×DNAS DNAS = 0;DNAA = 1
2 k2 ×DNAA DNAS = 1;DNAA = 0
3 k3 ×DNAA mRNA = mRNA+ 1

The parameter search was constrained to a space bounded by k ∈ [0, 5]. The den-

sity functions predicted by the CME were constructed using 10,000 SSA realizations with

added i.i.d and (N (0, 0.25)) noise. In the case of low replicate datasets (m = 10, 20, and

100), only the DFD-CDF method was applied, in which the CDF of the experimental data

was constructed according to: [233]

Fe (ol, ti) =
l − 0.5

m
. (7.8)

where l now denotes the index of the state in replicate vector after arranging the data in

ascending order (i.e., o1 ≤ o2 ≤ . . . ≤ om). This construction implicitly uses the differ-

ences between sorted data values as the bin sizes. As stated earlier, since the DFD-PDF

method requires the histograms of experimental data, which in the case of low replicate

datasets, are highly inaccurate, this method was only performed for cell population data

(m = 10,000). The DE optimization was implemented with a population size of 30 (10× the

number of parameters) for 4,000 generations and the optimization routine took about 1.5

hours for completion.

Table 7.2 presents the parameter values estimated using the ML and DFD methods

for all datasets. In general, the parameter estimates were closer to the true values with

increasing number of replicates, as expected from the increase of information with higher
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replicates. The DFD(-CDF) method generally performed better than the ML. Amongst the

parameters, k1 is the most accurately determined parameter by all methods. At higher

replicates, the DFD-CDF method converged to the true solution faster than the PDF and

ML methods, in this order, which could be attributed to the difference in the shape of

the objective function surface. As seen in Figure 7.2A and 7.2C, the DFD-CDF criterion

produced a higher surface curvature (second derivatives) than those of ML and DFD-PDF

(Figure 7.2B, 7.2D, 7.2E). Using a larger population size and higher number of iterations

(100 population members and 20,000 generations), the ML method was able to match the

accuracy of the CDF estimates (see Table 7.2, m = 10).

Table 7.2: Parameter estimation of E.coli RNA dynamics model. Parameter estimates in the
mRNA dynamics model in E. coli. The true parameter values are k = [0.0277; 0.1667; 0.4] . The
search bound for the optimization algorithm was [0, 5].
‡ DE optimization performed with 100 population members and 20,000 generations.

Replicates ML DFD-CDF DFD-PDF
k1 k2 k3 k1 k2 k3 k1 k2 k3

10 0.0235 1.304 3.2201 0.02 0.1029 0.3643 — — —
(0.02333)‡ (0.3231)‡ (0.7232)‡ — — — — — —

20 0.0227 0.1095 0.2858 0.0371 0.2124 0.5263 — — —
100 0.0362 0.2930 0.5533 0.0273 0.1702 0.4121 — — —
10000 0.0279 0.2354 0.4872 0.0276 0.1659 0.4102 0.0273 0.1532 0.3837

7.3.2 Case Study 2: Galactose uptake model in S. cerevisiae

The inherent stochastic nature of gene expression can lead to diversified responses in a

(clonal) cell population, even when subjected to uniform external conditions. This di-

versity has been demonstrated in a cell population using fluorescence techniques such as

flow cytometery (FACS). The second case study used in this work looks at the problem

of estimating CME parameters from a cell population data. The model describes an arti-

ficial genetic construct with the green fluorescence protein (GFP) gene downstream of a

galactose activated promoter UASG and a TetR repressor binding element 2xtetO2 (Figure

7.3A). In the presence of galactose, the GFP expression can be modulated rheostatically by

varying the level of inducer ATc [177]. The original publication utilized a clonal population
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Figure 7.2: Normalized objective function contours of the ML and DFD methods in the E. coli
RNA dynamics model. The parameter values k2 and k3 were varied between 0.1 and 1 while
keeping the value of k1 at its original value. The normalization was done with respect to the
optimal solution from each parameter estimation method, where the white circles represent the
extrema on the normalized objective function plane. (A-B) Normalized objective function contours
of the DFD-CDF and ML methods using sparse datasets (m = 10), respectively. (C-E) Normalized
objective functions of the DFD-CDF, -PDF and ML methods using population datasets (m = 10,000).

of S. cerevisiae (yeast) to investigate the inherent cellular noise in the GFP gene expression,

which is measured as the heterogeneity of fluorescence among the cells.

The CME model adapted from this work captures the random transitions among all

possible promoter states as shown in Figure 7.3B. The states PC1, PC2 and PC3 represent

free/silent, intermediate complex, and pre-initiation complex promoter configurations,
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respectively, while the states RC1 and RC2 describe different forms of repressed promoter

configurations. The transcriptional (RNA synthesis) and translational (protein synthesis)

processes are modeled as single-step irreversible reactions (Figure 7.3B).

In the simplified model, the different promoter configurations are assumed to be in

equilibrium, which reduces the model to a set of 8 irreversible reactions, 4 states, and 8

kinetic parameters, as shown in Figure 7.3B (dashed boxes) [177]. As in the first case study,

this model was considered to be the true system and the molecular data of yEGFP and TetR

were generated using SSA, giving 104 realizations at every 5 dimensionless time units up

to 50 (or about 18 times the half life of yEGFP [390]). This condition corresponds to 440

minutes of post induction by 2% galactose and 40 ng ml−1 ATc. To study the scalability

of the proposed methods, the parameter estimation of the full network with 18 reactions,

9 states, and 15 kinetic parameters was also done using a second in silico dataset with 104

SSA realizations from the complete model. The details on the CME formulation for both

the reduced and the complete model of the yEGFP gene expression pathway have been

described in Table 7.3 and Table 7.4.

Both ML and DFD methods were first applied to the reduced model, in which the

DE optimization was done with 80 population members for 4000 generations, which took

about 50 hours for convergence. The bounds on the parameter search space are given

in Table 7.5. As mentioned above, the binning strategy in the DFD methods was based

Table 7.3: SSA formulation for the reduced model of the reduced - yEGFP galactose utilization
pathway.

SSA implementation
Reactions Propensities Stoichiometric change

1 κR 〈PC3〉 mRNAG = mRNAG + 1
2 γR×mRNAG mRNAG = mRNAG - 1
3 κP×mRNAG yEGFP = yEGFP + 1
4 γP×yEGFP yEGFP = yEGFP - 1
5 κt

R mRNAR = mRNAR + 1
6 γt

R×mRNAR mRNAR = mRNAR - 1
7 κt

P×mRNAR TetR = TetR + 1
8 γt

R×TetR TetR = TetR - 1
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Figure 7.3: Gene Expression Model for the Preferential Galactose Uptake in Yeast Cells. (A)
Genetic construct of the transcriptional control of the yeast-enhanced green florescent protein ex-
pression in the galactose utilization pathway of yeast. (B) The complete gene expression path-
way includes (fast) reversible transformations among different promoter configurations and sub-
sequent irreversible RNA and protein synthesis pathways. The reduced model assumes pseudo-
equilibrium among the promoter configurations, and thus only describes dynamics of processes in
the dashed boxes.

on the simulated experimental data, while the likelihood function in the ML method was

constructed based on the histogram of SSA simulations. Table 7.5 presents the parameter

estimates from the ML and the two DFD methods along with the true parameter values.
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Table 7.4: SSA formulation for the complete model of the full yEGFP galactose utilization path-
way.

Transcriptional reversible processes Irreversible process
Rxns Propensities Stoichiometric

change
Rxns Propensities Stoichiometric change

1 k1f×PC1 PC1=0; PC2=1 1 κ 〈PC3〉 mRNAG = mRNAG + 1
2 k1b×PC2 PC1=1; PC2=0 2 γR×mRNAG mRNAG = mRNAG - 1
3 k2f×PC2 PC2=0; PC3=1 3 κP×mRNAG yEGFP = yEGFP + 1
4 k2b×PC3 PC2=1; PC3=0 4 γP×yEGFP yEGFP = yEGFP - 1
5 k3f×PC1 PC1=0; RC1=1 5 κt

R mRNAR = mRNAR + 1
6 k3b×RC1 PC1=1; RC1=0 6 γt

R×mRNAR mRNAR = mRNAR - 1
7 α · k1f×RC1 RC1=0; RC2=1 7 κt

P×mRNAR TetR = TetR + 1
8 k1b×RC2 RC1=1; RC2=0 8 γt

P×TetR TetR = TetR - 1
9 α · k3f×PC2 PC2=0; RC2=1
10 k3b×RC2 PC2=1; RC2=0

As in the first example, the DFD-CDF method gave the most accurate estimates, followed

by the DFD-PDF and ML methods, respectively. As illustrated in Figure 7.2C, 7.2D & 7.2E,

the differences in the performance of these methods again arises from the steepness of the

objective function plane. However, the lesser performing methods can potentially match

the accuracy of the CDF method if population size and number of iterations in the DE

optimization are increased.

The scalability of the methods discussed in this work was evaluated by performing the

estimation of the complete yEGFP Galactose uptake model (ref. Table 7.6). In this case,

the DE optimization was performed using 150 population members for 4000 generations

and took approximately 60 hours for convergence. In this case also, the CDF method

again generally outperformed the PDF and ML (Table 7.6). The parameter estimates from

DFD-CDF gave yEGFP-PDF that is in agreement with wet-lab data (Figure 7.4)[177]. But

Table 7.5: Parameter estimation of S. cerevisiae reduced yEGFP model.

Parameters ML DFD-CDF DFD-PDF Bounds True values

κR 1.1443 1 1.0478 [0, 5] 1
κP 1.0382 1.005 1.2174 [0, 5] 1
γR 4.5036 5.0306 5.7355 [0, 10] 5
γP 0.0128 0.0126 0.012 [0, 5] 0.0125
κt
R 0.428 0.432 0.431 [0, 5] 0.417
κt
P 2.1254 1.0542 1.24 [0, 5] 1
γt
R 6.2433 2.9966 3.4982 [0, 10] 3
γt
P 0.0102 0.0114 0.0115 [0, 5] 0.0125
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some of the parameters, especially those involving fast reversible processes, cannot be

accurately identified from data. The lack of complete parameter identifiability is perhaps

not surprising, when one considers that measurements of only few states are available and

that the time scale of these measurements better reflects the slow kinetics of the irreversible

processes.

Table 7.6: Parameter estimation results of S. cerevisiae full yEGFP model.

Parameters ML DFD-CDF DFD-PDF Bounds True
value

Transcriptional processes
k1f 0.4061 0.4082 0.4292 [0, 5] 0.42
k1b 0.211 0.1171 0.8296 [0, 5] 0.2485
k2f 74.1848 25.9882 99.7701 [0, 100] 50
k2b 4.1423 18.8779 2.0815 [0, 20] 10
k3f 3.2×10−3 3.87×10−3 0.0166 [0, 5] 3.023×10−3

k3b 17.2405 19.9408 19.7665 [0, 20] 10
α 0.1 0.0183 0.0211 [0, 5] 0.025

Irreversible processes
κR 0.8939 0.9296 0.8078 [0, 5] 1
κP 2.0345 1.1103 1.0995 [0, 5] 1
γR 7.3543 5.2431 5.4116 [0, 10] 5
γP 0.0116 0.0124 0.012 [0, 5] 0.0125
κt
R 0.4376 0.4157 0.4152 [0, 5] 0.417
κt
P 1.7641 0.9755 1.3732 [0, 5] 1
γt
R 4.3235 2.9034 3.9315 [0, 10] 3
γt
P 0.0107 0.0116 0.0103 [0, 5] 0.0125
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Figure 7.4:
Validation of the
parameter estimates
obtained from the
optimization of the
complete yEGFP
model. Comparison
of actual experimental
data and CME model
prediction using SSA
and parameters esti-
mated in case study
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model in S. cerevisieae)
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Two other estimation criteria based on the maximum density function distance, were

performed using PDF and CDF:

k∗ = arg min
k

m∑
i=1

max
L−1

|Pe (ol, ti)− P (ol, ti)|√
s2
l,i

(7.9)

and

k∗ = arg min
k

m∑
i=1

max
L−1

|Fe (ol, ti)− F (ol, ti)|√
S2
l,i

(7.10)

The outcome of the application of these criteria to the reduced and complete yEGFP gene

expression pathway is summarized in Table 7.7 and 7.8. A comparison of optimization

results in these tables indicates that the estimation criteria based on the maximum density

distance can provide similar performance as those in the previous case.

Table 7.7: Parameter estimation of S. cerevisiae reduced yEGFP model using maximum proba-
bility distance measure. Estimated kinetic rate constants of the reduced yEGFP genetic transcrip-
tional process using the DFD method with maximum distance measure.

Parameters DFD-CDF DFD-PDF Bounds True values

κR 1.0196 1.0311 [0, 5] 1
κP 0.9997 1.0735 [0, 5] 1
γR 4.92 5.1962 [0, 10] 5
γP 0.0127 0.0127 [0, 5] 0.0125
κt
R 0.4373 0.4285 [0, 5] 0.417
κt
P 1.1713 1.1122 [0, 5] 1
γt
R 3.276 3.1543 [0, 10] 3
γt
P 0.0115 0.01103 [0, 5] 0.0125

7.3.3 Case Study 3: Stochastic model of a synthetic toggle switch

Multi-stability is often seen in biological networks, such as in λ-phage decision circuit

[391], MAPK cascade [173], and cell cycle regulation [392]. In particular, bistability is a

common motif encountered in cellular signaling pathways [393]. Motivated by this, a

genetic toggle switch had previously been engineered in E. coli to show the ability to syn-

thesize such motif. The synthetic switch consisted of two repressor-promoter pairs, with

(i) PLs1con− lacI repressing Ptrc− 2 promoter and (ii) vice versa Ptrc− 2− cIts (thermal
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Table 7.8: Parameter estimation results of S. cerevisiae full yEGFP model using maximum prob-
ability distance measure. Estimated kinetic rate constants of the complete yEGFP genetic tran-
scriptional process using the DFD method with maximum distance measure.

Parameters DFD-CDF DFD-PDF Bounds True
value

Transcriptional processes
k1f 0.4428 0.4192 [0, 5] 0.42
k1b 0.1468 1.0296 [0, 5] 0.2485
k2f 98.2117 45.7701 [0, 100] 50
k2b 19.9595 1.0834 [0, 20] 10
k3f 9.4113×10−3 0.0232 [0, 5] 3.023×10−3

k3b 15.042 12.3425 [0, 20] 10
α 0.0707 0.0834 [0, 5] 0.025

Irreversible processes
κR 0.9296 1.1078 [0, 5] 1
κP 1.1451 2.2095 [0, 5] 1
γR 5.6745 6.4432 [0, 10] 5
γP 0.0106 0.0222 [0, 5] 0.0125
κt
R 0.4062 0.5323 [0, 5] 0.417
κt
P 1.1087 2.3425 [0, 5] 1
γt
R 3.4129 4.1232 [0, 10] 3
γt
P 0.013 0.0324 [0, 5] 0.0125

sensitive) repressing PLs1con promoter [375], such that they are mutually inhibitory (see

Figure 7.5A). The switching behavior was visualized by means of green fluorescence pro-

tein (GFP), inserted downstream of cIts. The ON switch was accomplished by an inducer,

isopropyl β-D-thiogalactosepyronoside (IPTG), that represses the activity of lacI (Figure

7.5A). By modulating the concentrations of the IPTG, the genetic toggle system could ex-

hibit bistability with hysteresis [375].

A simple deterministic model was proposed to examine the behavior of the toggle

switch and to analyze different conditions of bistability [375].The corresponding CME for-

mulation is described in the Figure 7.5B and 7.5C [394]. Here, the propensity functions are

taken directly from the deterministic model and they give effective rates of reaction follow-

ing a canonical Hill equation. Taking this model to be the true system, in silico data of GFP

fluorescence at IPTG concentration of 6 × 10−5 M were simulated using 104 independent

SSA realizations, emulating flow cytometry data.

As the ML performed consistently poorer than the DFD methods in the previous case

studies, the stochastic rate constants here (α1, α2, β, γ, η,K) were estimated using the DFD-
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Figure 7.5: Stochastic dynamics of synthetic gene toggle switch engineered in E. coli. (A) Syn-
thetic circuit of the genetic toggle switch of E.coli [375]. (B) The genetic model of the toggle switch
comprising of 4 reactions and (C) the corresponding propensity functions.

CDF and -PDF methods, with DE parameters: 150 population members and 4000 gener-

ations. Both CDF and PDF criteria took about 48 hours for completion. The parameter

bounds and estimates are given in Table 7.9. Comparing to the true values, this case study,

like the previous case studies, again showed that the DFD-CDF method performed better

than DFD-PDF with more accurate and robust estimates of the kinetic rate constants.

Table 7.9: Parameter estimation of synthetic toggle switch in E. coli.

Parameters DFD-CDF DFD-PDF Bounds True values

α1 137.716 99.456 [0, 200] 156.25
α2 15.644 15.391 [0, 20] 15.6
β 2.309 2.543 [0, 10] 2.5
γ 1.071 1.015 [0, 10] 1.0
η 2.065 8.434 [0, 10] 2.0015
K 7.331× 10−5 5.831× 10−4 [0, 1] 6.0× 10−5
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7.3.4 Case Study 4: The Schlögl Model

The Schlögl reaction has commonly been used as a typical example of a bistable system

[395–397]

A
k1
�
k2
X (7.11a)

3X
k3
�
k4

2X +B (7.11b)

The concentrations of A and B are typically assumed constant (buffered). The propensity

functions for the above reaction can be formulated as:

a1 = k1 [A] Ω (7.12a)

a2 = k2X (7.12b)

a3 = k3X
X − 1

Ω

X − 2

Ω
(7.12c)

a4 = k4 [B]X
X − 1

Ω
(7.12d)

where Ω (Ω = 10 units is chosen here) is called the extensivity, a parameter that is propor-

tional to the system volume. The actual values of the kinetic rate constants used for the

SSA realizations are presented in Table 7.10.

The molecular data of component X is formed as a density function constructed using

104 independent realizations of SSA, simulated for a time period of 20 units and recorded

for every 4 time units. Parameter estimation was performed using the DFD method with

both CDF and PDF criteria. The DE optimization was implemented with a population

size of 40 and for 4000 generations and the estimation took about 72 hours for completion.

Table 7.10 shows the results of the parameters estimation, which again indicates a better

performance of the DFD-CDF method compared to the DFD-PDF method.
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Table 7.10: Parameter estimation of Schlögl model.

Parameters DFD-CDF DFD-PDF Bounds True values

k1 [A] 0.4563 0.3125 [0, 1] 0.5
k2 3.04418 3.0123 [0, 5] 3.0
k3 0.9148 1.1362 [0, 5] 1.0
k4 1.1083 1.4563 [0, 5] 1.0

7.4 Discussion

In this chapter, three practical methods are proposed for the estimation of the parameters

from (noisy) single cell datasets with low and high replicates. As the methods rely on a

histogram construction of density functions from a finite sample of experimental data and

Monte Carlo simulations, the objective function evaluation has a trade-off between low

accuracy when using bins that are too wide, and high sensitivity to noise when bins are too

small. In order to balance this trade-off, the binning was done such that the narrowest bin

has at least ten occurrences. The noise associated with this binning strategy is also taken

into account in the objective function in the DFD methods, which is modeled according to

a Binomial distribution.

The proposed methods are developed while considering a few practical issues when

dealing with real biological datasets, such as data sparsity (low replicates), data noise and

relatively coarse sampling intervals. The methods developed here do not require fast time-

sampling like in [381], which might pose a restrictive constraint in practice. When pop-

ulation data are available, the DFD methods can fully exploit the additional information

and rigorously handle the noise associated with the finite sample construction of a density

function through the weighting factors. Although the examples considered in this work

are represented by the CME, the methodologies developed in this work are generally ap-

plicable to parameter estimation of other stochastic models (e.g. Langevin), as long as

the distribution density function can be constructed. Furthermore, the different methods

developed in this work can be used to robustly estimate the rate constants of large scale
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gene expression networks as well as systems with multistability and general nonlinear

propensity equations.

The case studies above showed that methods based on matching density function

shapes between model and data generally performed better than maximizing likelihood

function. Furthermore, the DFD-CDF distance is more sensitive to parameters than both

the DFD-PDF and ML, and thus is the most effective method developed in this work. The

higher sensitivity of the CDF with respect to parameter variations is expected as a result of

the cumulative sum of the PDF sensitivity. This is evident from comparing the normalized

objective function surfaces as shown in Figure 7.2, in which the CDF objective functions

have the steepest curvature. The increased curvature leads to a faster convergence to the

minima in the DE optimization of the CDF than the PDF, though both methods eventually

converge to optimal parameter estimates with similar accuracy. In addition, the CDF is

generally less sensitive to noise from finite sampling as can be seen from the noise weight-

ing factor Sl,i when normalized with the respective probability, i.e. the coefficient of varia-

tion (CoV) Sl,i/Fe (ol, ti) =
√

1− Fe (ol, ti)/n ·
√
Fe (ol, ti). The monotonically decreasing

CoV as a function of Fe (ol, ti) indicates that the CDF construction becomes less affected

by finite sampling noise with increasing Fe (ol, ti).

Similar to the parameter estimation in deterministic models, parameter identifiability

is a key issue in the estimation of the CME parameters. Such problem is commonly en-

countered in the parameter estimation of deterministic ODE models [398]. Following the

same arguments from the deterministic estimation, the identifiability problem is caused

by the limited information contained in the data about the parameters governing the fast

transformations among the different promoter configurations. Such problem can be al-

leviated by getting additional measurements with a faster sampling rate and if possible,

measuring the variables that are directly affected by the parameters, e.g. the fractions of

promoters in each configuration of the second case study. An analogue of deterministic
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parameter identifiability analysis can be performed using the parametric sensitivity of the

density function and experiments can be designed to maximize the degree of information

in the data [394, 399, 400].

Another aspect which is worth discussing the context of this work relates to the pre-

cision of the estimated parameters. Using identical experimental conditions, it is possible

to generate several independent datasets. These different datasets can be potentially used

to generate different parameter estimates using different, independent parameter estima-

tion runs. Based on these independent parameter estimates, precision of the parameters in

terms of confidence interval/region on the parameter estimates can be obtained. However

using the stochastic parameter estimation framework developed in this work for estimat-

ing the parameter precision presents one of the significant challenges related to the com-

putational burden. It would be computationally very expensive to run several, separate

and independent runs of parameter estimation routine to obtain the parameter precision.

Future work in extending this algorithm to determine the parameter precision has to look

into avenues where these values can be obtained without having to resort to expensive

Monte Carlo simulations.

Having said that, most of the computational cost of the parameter estimation related

to CME is due to the large number of SSA realizations needed to construct the solution

of the CME. Furthermore, every generation of DE requires multiple computations of the

objective function according to the population size setting and each of population mem-

bers in turn requires the SSA solution as mentioned previously. One way to alleviate the

computational burden would be to lower the SSA realizations in constructing the density

function. This would however increase the binning noise, and could possibly reduce the

speed of convergence to the optimal solution and the accuracy of parameter estimates (see

Figure 7.6A-C). Nevertheless, there is a diminishing return with increasing number of SSA

realizations, since noise variance generally scales with the inverse of the number of sam-
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ples (i.e. the standard deviation is only halved for every 4 times increase in the number of

data). Alternatively, efficient approximation methods for simulating the CME can be used

in place of the exact SSA [384, 386, 401–404], again at the cost of reduced estimation accu-

racy. In addition, the optimization parameters, namely population size and generations,

can be further tuned for the proposed methods. Unfortunately, the relationship between

these two parameters is most likely nonlinear and problem specific, which may require

trial and error methods to find the best setting for a particular problem.
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Figure 7.6: Effect of the finite sampling noise on the parameter estimation of E. coli RNA dy-
namics model. Normalized objective function contours of the DFD-PDF method for SSA realiza-
tions of 10,000 (A), 5000 (B), and 1000 (C). The parameter values k2 and k3 were varied between
0.1 and 1 while keeping the value of k1 at its original value. The normalization was done with
respect to the optimal solution from each case, where the white circles represent the extrema on the
normalized objective function plane.
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7.5 Conclusions

The inherent stochasticity associated with low copy number processes in the cellular ge-

netic milieu can introduce significant noise in gene expression profiles. The modeling of

such noisy system requires a careful consideration of random processes and the param-

eters governing the probability of random events [178, 179]. Three parameter estimation

methods for stochastic models have been proposed based on the maximum likelihood

criterion and density function distances of PDF and CDF. Since state density functions

of stochastic systems are often constructed from a finite number of experimental data

points or Monte Carlo realizations, a careful consideration has been taken to characterize

the influence of noise arising from the histogram binning. Specifically, the effects of his-

togram noise are directly incorporated into the parameter estimation objective function as

weighting functions. Applications to different case studies have shown that the proposed

methods are both effective and practical. Amongst the proposed methods, the CDF-DFD

method has been found to be the most efficient in estimating the kinetic rate constant than

the others (i.e., the ML and DFD-PDF methods) due to the higher sensitivity of CDF to the

parameters.

This chapter highlights the work done in S. K. Poovathingal & R. Gunawan. Global
parameter estimation methods for stochastic biochemical systems. BMC Bioinfo.,
11:414, 2010.
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Chapter 8

Conclusions & future directions

8.1 Conclusions

The mFRTA proposes that ROS produced during cellular respiratory process (OXPHOS)

in mitochondria causes degeneration of mitochondrial genome integrity resulting in cellu-

lar dysfunction and aging [1, 30, 227]. Several premises of mFRTA are intensely debated;

however the direct role of mtDNA mutations in aging has been recently demonstrated

in several single cell studies and in studies involving transgenic mitochondrial mutator

mice. Thus, an understanding of the mitochondrial genetic integrity and its breakdown

with time represents an important and active area of gerontological research. Many of

the debates related to the fundamental premises of mitochondrial theory of aging relate

to the uncertainty in the age-dependent mtDNA mutation accumulation data. The un-

certainty associated with measurement data is a resultant of the inherent complexity of

biological processes, especially related to the inherent stochasticity in the mtDNA main-

tenance process and variability arising from the measurement protocols. With the avail-

ability of efficient computational tools, it will be possible to develop and apply novel nu-

merical algorithms to complement the state-of-the-art experimental techniques to have a

greater comprehension of these complexities. Thus, the focus of the present dissertation

is to develop a stochastic modeling framework, to capture the roles of different sources

of stochasticity, like the intrinsic stochasticity associated with different mitochondrial ge-

netic processes and randomness involved with the mutation quantification assays, in un-

derstanding the underlying dynamics of mtDNA mutation accumulation. The following
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paragraphs summarize specific contributions of the present dissertation in addressing the

knowledge gap in understanding the mechanisms of origin and accumulation dynamics

of mtDNA mutations during aging.

To capture the stochasticity associated with the inherent mtDNA turnover dynamics, a

stochastic model of mouse heart tissue was developed based on CME. The point mutation

model captured the random drift of mtDNA mutations in heart tissue of mouse population

during the embryonic development and post-natal life for wild-type mice and POLG mu-

tator mice. The model was simulated using a Monte Carlo approach based on the Stochas-

tic Simulation Algorithm (Chapter 3) [175, 229, 405]. The model constituted two main

processes of mtDNA maintenance: mtDNA turnover and the associated de novo mtDNA

mutations. The simulation outcome highlighted the importance of the coupling between

experimental variability and intrinsic stochasticity of mtDNA mutation dynamics within

the measurement data. The intrinsic stochasticity of mtDNA point mutation burden of the

in silico mouse population was found to have a long tailed non-Gaussian density function,

with a small fraction of the population harboring significantly higher mutation burden.

The contribution of measurement variability to the overall data uncertainty was observed

to be substantial, causing significant uncertainty in determining the underlying mtDNA

mutation accumulation dynamics. Simulation results further indicated that the interpreta-

tion of the data can be significantly flawed if the statistical properties of mtDNA mutation

quantification protocol are not considered critically. Unlike the experimental predictions

[116], simulations of both the mouse models strongly indicated that the assumption of

ROS mediated acceleration of mtDNA point mutation with age is not necessary to explain

the measurement data. Model simulations indicated that de novo mutations arising during

the cell lineage of embryonic development play a critical role in post-birth mutation accu-

mulation in post mitotic tissues like heart. This effect is much more prominent in the case

of error prone POLG mutator mouse models, where much of the high mutation burden in
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the heart tissue of the transgenic mice is already acquired at birth.

Single cell biochemical analyses of respiratory deficient cells have indicated abundance

of single type of mtDNA mutations, strongly hinting of the existence of a replicative mech-

anism favoring one type of mtDNA template, a process referred to as clonal expansion.

However, the understanding of the functionality and the mechanism of this process is still

incomplete. Several hypotheses have been proposed to explain the underlying clonal ex-

pansion mechanism. Considering the discreteness of mtDNA mutations dynamics, the

stochastic model of mtDNA turnover process (Chapter 3) was modified to include specific

features of cellular energy logistics in rat cardiomyocytes, to test different clonal expansion

hypotheses and to elucidate the underlying mechanisms, which best explains the experi-

mental data (Chapter 4). Consistent with our earlier model predictions (Chapter 3), sim-

ulation results in this work strongly indicated that the mosaicity seen in cellular mtDNA

mutation burden in a tissue arise due to the stochasticity in mitochondrial turnover pro-

cess, predominantly during developmental cell divisions. However, for explaining the

clonal expansion dynamics of functional mtDNA mutations observed in post-mitotic tis-

sues, both replicative advantage of mutant mtDNA and the up-regulation of nuclear retro-

grade response, which is modulated by the cellular energy deficit, are required. Simulation

results also indicated that the extent of replicative advantage of mtDNA mutations plays

a very important role in the progression of clonal expansion dynamics.

The stochastic mtDNA mutation models developed in this work were further extended

into a multi-scale hybrid modeling (stochastic and deterministic model) framework to gain

understanding of the etiology and progression of sarcopenia, an important pathology as-

sociated with aging (Chapter 5). Sarcopenia refers to an age related condition in which

decline in skeletal muscle mass and strength occurs with age and causes frailty in aged

organisms. The multi-scale mathematical model describes the following process: a.) de-

velopmental occurrences and expansion of mtDNA mutations in myo-nuclear regions of
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skeletal muscle, b.) age-dependent spread and expansion of mtDNA along the muscle

fiber, and c.) the associated progressive loss of muscle strength. The turnover of mtDNA in

progenitor cells during embryogenesis was simulated using stochastic model. A reaction-

diffusion model approximating the active transport of mtDNA nucleoids along with the

mtDNA turnover dynamics in fused skeletal muscle fiber were formulated as partial dif-

ferential equations. Observations of sarcopenic skeletal muscle fiber, such as the extent of

clonal expansion in muscle fibers, and the number of fibers becoming respiratory deficient

were validated with experimental data. It was observed that mtDNA diffusivity, which is

a parameter that may be modulated by mitochondrial fusion-fission, plays a crucial role in

determining the mtDNA mutation spread and thus in the progression of sarcopenia. Here,

faster diffusion, though intuitively not desirable as it enhances the spread of mtDNA mu-

tations, in fact led to fewer focal accumulations of respiratory deficient regions in skeletal

muscle tissue. This arises predominantly due to the reduction of the nuclear retrograde

response at diluted mtDNA mutation burden. The hybrid model was further used to per-

form parametric sensitivity analysis to determine the effect of different mtDNA turnover

parameters on the severity and progression of sarcopenia, thereby providing important

insights into the possible interventions to retard severity of sarcopenia. Specifically, using

the hybrid model, different commonly hypothesized mechanisms for the beneficial effects

of caloric restriction in retarding the progression of sarcopenia were analyzed. Simula-

tion results indicated that somatic cells ability to sustain enhanced stress, i.e. to withstand

higher cellular mtDNA mutation burden, might be a potential mechanism to explain the

intervention of CR in reducing the progression of sarcopenia. Further, simulation results

also indicated that the beneficial effects of CR accrue gradually and are neither rapidly

inducible nor reversible upon the dietary regime transfer.

As the simulation results of mtDNA point mutation model pointed to large uncertainty

in the mutation measurement data, especially when using mutation quantification proto-

Suresh Kumar Poovathingal



8.1. Conclusions 199

col necessitating extremely high levels of molecular dilutions (∼ 10−6 bp−1) like the RMC

assay [116, 141, 226]. While the RMC assay, represent an important technological advance,

our findings in this thesis indicated that the statistics associated with the sample prepara-

tion in these assays is of great importance, but often an overlooked aspect. Consequently,

sampling protocols need to be carefully designed to maximize signal-to-noise ratio. A

statistical design of experiment to optimize the RMC protocol was developed using lin-

earized variance propagation analysis and Monte Carlo methods (Chapter 6). The DOE

revealed that the optimized RMC protocol is based on optimal dilution factor of about 1.6

mutant DNA template per well and counting unamplified wells, compared to 0.1 template

per well of the conventional RMC assay and quantifying the fraction of amplified wells. Ex-

perimental validation was carried out using a mock RMC assay based on a plasmid sys-

tem. Both the simulation results and experimental validation indicated that the optimized

protocol can provide a substantial improvement in measurement accuracy and reduction

in variability, with 10-times improvement in the information offered per PCR well, i.e. the

optimal protocol can achieve the same coefficient of variation using one-tenth the number

of wells as in the original assay. The reduction of the measurement variability obtained by

the RMC optimization further provided more sensible estimate of the age-dependent mu-

tation dynamics by reducing the noise related to mtDNA mutation burden data. While this

work pertains to the optimization of RMC assay, the statistics related to sample prepara-

tion and sampling protocol maybe more generally applicable to other DNA quantification

techniques requiring high dilution to obtain single molecule end point dilutions.

One of the most critical challenges experienced during the development of the present

modeling framework relates to the availability of "kinetic" rate constants of stochastic bio-

chemical systems. Three parameter estimation methods for stochastic models have been

proposed in this dissertation based on the maximum likelihood (ML) criterion and density

function distances of DFD-PDF and DFD-CDF (Chapter 7). Since state density functions of

Suresh Kumar Poovathingal



8.2. Recommendations 200

stochastic systems are often constructed from a finite number of experimental data points

or Monte Carlo realizations, a careful consideration has been taken to characterize the in-

fluence of noise arising from the histogram binning. Specifically, in this work, the effect

of histogram noise are directly incorporated into the parameter estimation objective func-

tion as weightage functions. Applications to different case studies of gene transcription

models had shown that the proposed methods are both effective and practical. Amongst

the proposed methods, the DFD-CDF method has been found to be the most efficient and

robust in estimating the kinetic rate constants than the others (i.e., the ML and DFD-PDF

methods) due to the higher sensitivity of CDF to noise.

8.2 Recommendations

The stochastic mtDNA mutation models developed in this work are based on the mtDNA

turnover process in murine tissues (primarily heart tissue). This model can be further

developed to study the origin and accumulation dynamics of mtDNA mutations in differ-

ent murine tissues and tissues of other commonly used animal models in gerontological

research (like Caenorhabditis elegans, Drosophila melanogaster, Rhesus monkey, Human and

Bats). One of the motivations in developing such in silico models of different organisms

is to understand the importance of mtDNA turnover process during different stages of

an organism life. For example, in this dissertation it was observed that mouse develop-

ment plays a critical role in determining the tissue level mtDNA mutation burden. Devel-

opmental programs and the associated cell lineage differ significantly between different

organisms. Similarly, the organism’s life span also varies considerably between different

species, and it is significantly challenging/expensive to estimate the tissue level mutation

burden data using experimental techniques. By developing accurate models that captures

the mtDNA turnover process, it would be relatively straightforward to estimate the tissue

level mtDNA mutation burden at different stages of organism’s lifespan. Another inter-
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esting aspect that can be studied with this kind of modeling framework is to estimate the

tissue level mtDNA mutation burden in different organisms at the end of life span and

to understand the existence of the correlation between mtDNA mutation burden and its

effect on the cellular/organismal aging, if any.

One interesting aspect that could be studied as an extension of the present thesis is

the mtDNA mutation burden in the mitotic tissues like (blood cells, epithelial cells, spleen

etc). Quantification of the mtDNA mutations in the context of gerontological research

has largely been with somatic cells having only relaxed replication of mtDNA. In mitotic

cells, aside from the normal mtDNA turnover, the mtDNA population undergoes enor-

mous quanta of replication due to mitotic cell division. Also, unlike the post mitotic cells,

the mitotic cells are turned over on a regular basis (removed and replaced from the tissue

with new cells). Since very limited experimental data are available on the mtDNA muta-

tion load in the mitotic tissues, it would be interesting to estimate the mtDNA mutation

burden in these tissues, by modifying the simulation framework developed in this work

to include specific features related to the cell division. Additionally, one of the interest-

ing insights which is largely neglected in the original works [130–133, 287], relates to the

mtDNA mutation frequency in fast dividing tissues of POLG mutator mice. Experimen-

tal observations indicated that one of the most prominent pathologies associated with the

fast dividing tissue of POLG mutator mouse models manifest in the form of alopecia (skin

epithelial follicles), spleen enlargement and anemia [130, 131, 287]. These data indicate

that the mtDNA mutation burden associated with these tissues might be much higher and

much more significant than the mtDNA mutation burden found in post mitotic tissues.

Treatment of cell division and selection pressure for mitochondrial turnover in the mitotic

tissues of POLG mutator/normal mouse models might be a promising area of investiga-

tion for the future work.

Since the discovery of mtDNA degenerative diseases, several remarkable features of
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different syndromes were identified. For instance, these conditions are often inherited,

though not in the same way as the disorder arising from mutation in nuclear genes [25,

108, 123]. Similarly, the resulting symptoms are more unpredictable than those caused

by nuclear genetic mutations. In the cellular proliferation during animal development,

the cells approximately double the mtDNA population before undergoing division and

thus provide roughly equal amount of mtDNA contents to the dividing daughter cells.

However, the cell does not regulate the distribution of the mtDNA content to the divid-

ing daughter cells. Consequently, one daughter cell may inherit large fraction of mutant

mtDNA and the other may inherit a large fraction of normal mtDNA. Thus the level of het-

eroplasmy in different organs that arise from these early developmental progenitor cells

may be markedly different. The laws of probability that governs the segregation of the

different mtDNA templates between the dividing cells are not clearly known. In the sim-

ulation framework developed in this dissertation, equi-partition of the different mtDNA

templates are assumed between the dividing daughter cells based on a well mixed as-

sumption. However, in reality this assumption might not be suitable, and it would be

interesting to extend this work to study the underlying random process that governs the

distribution of different mtDNA templates during the embryonic cell division and its con-

sequence on the tissue-level heteroplasmy.

Another aspect that deserves further investigation relates to the mitochondrial fusion-

fission process. Due to constant fusion-fission process, mitochondria are considered to be

a highly dynamic organelle. However, given that the mtDNA are bound to each other in

nucleoids and since nucleoid are tethered to cellular structures, it is non-trivial to intu-

itively understand the dynamics of mtDNA mutations arising from the mtDNA turnover

process in the presence of mitochondrial fusion-fission process. A well mixed assumption

of mtDNA population was used in the stochastic models developed in this thesis. An ex-

tension of the present model to include the specific feature of mitochondrial fusion-fission
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process might provide a greater understanding of the dispersion of different mitochondrial

templates (both normal and mutant mtDNA) across the cellular mitochondrial population

[406]. Asymmetric segregation of the mtDNA between the mitochondria undergoing fis-

sion could result in stochastically giving rise to one of the daughter mitochondria that has

significantly higher mutation burden. Such asymmetric segregation can give rise to mu-

tational hot spots within a cell which could potentially result in clonal expansion process.

Our group is presently investigating the role of mitochondrial fusion-fission process in the

mtDNA mutation accumulation dynamics.

As discussed in the earlier chapters, accurate estimation of rate constants associated

with mitochondrial turnover process are significantly difficult with the existing techno-

logical advances in measurement technology. Extension of the stochastic parameter es-

timation framework (Chapter 7) based on CME, could be an attractive alternate to esti-

mate parameters which are difficult to estimate. For example, in studying the tissue level

mtDNA mutation burden, generally the aggregate level or the mtDNA mutation burden

in the complete tissue homogenate is quantified. Using such dynamical data and using

distribution function of mtDNA mutation frequency compounded with the uncertainty

arising from the mtDNA mutation quantification protocol, the maximum likelihood pa-

rameter estimation framework proposed in Chapter 7 can be exploited to estimate the rate

constants of mtDNA turnover process.

In the context of mtDNA mutation clonal expansion dynamics, there are two aspects

that are intricately related to each other and are involved in the mtDNA mutagenesis pro-

cess: a.) initial formation and b.) subsequent mutation accumulation. While the present

dissertation focuses on the accumulation dynamics related to single type of mutation

(Chapter 3 and Chapter 4), understanding the mechanisms of mtDNA mutation formation

and its subsequent role in mtDNA mutation accumulation and clonal expansion dynam-

ics is important, especially since obtaining the experimental data of the complete mtDNA
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deletion spectrum is technically challenging. In the context of mtDNA deletions, the for-

mation of deletions have been hypothesized to be influenced by sequence motifs. Study

of mtDNA sequence motifs in the context of distribution of direct repeats, stemloops and

tRNA structures, which may be directly involved in mtDNA deletion formation can pro-

vide data on the frequency of occurrence of different types of mtDNA deletions, some of

which are currently under investigation in our group. With this information, the de novo

mtDNA deletions arising during the mtDNA turnover process (Chapter 4) can be sam-

pled from the predicted in silico mtDNA deletion spectrum. The in silico mouse model

simulated this way will provide information about the intra-cellular heteroplasmy and

tissue distribution of different mtDNA deletions in the cells. As additional model valida-

tion measure, the in silico mtDNA deletion frequencies in post-mitotic cells obtained from

the stochastic simulation of mtDNA turnover process, using the initial distribution func-

tion of deletion breakpoint can be compared with the experimental data on distribution

frequencies of different deletions found in post mitotic tissues.

Based on the beneficial effects of aerobic exercise on the general muscle mass devel-

opment and function, it has been suggested as a therapeutic intervention for sarcopenia

and mitochondrial myopathies. There are two types of exercise training based on the

initiating stimulus: i.) Endurance and, ii.) Resistance training [407]. Endurance train-

ing involves low intensity physical endurance for longer time. Endurance training has

generally been associated with enhanced mitochondrial biogenesis, ATP production and

oxygen consumption. Beneficial effects of endurance training on sarcopenia and mito-

chondrial disorders is not clearly understood and the extension of the multi-scale hy-

brid model of sarcopenic skeletal muscle fiber developed in this thesis (Chapter 7) can be

adapted to determine the influence of endurance training on the mitochondrial mutation

heteroplasmy and associated progression of sarcopenia. Resistance training involves high

intensity physical bouts of stimulus for shorter duration. Resistance training has been
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suggested to cause muscle hypertrophy by recruiting muscle satellite cells [408]. These

satellite cells are generally devoid of mtDNA mutations, and their fusion with the existing

myofibers results in shift in mtDNA mutation heteroplasmy levels. This shift of mtDNA

mutation heteroplasmy is termed as gene shifting [408, 409]. Gene shift is considered as

a promising intervention strategy to treat myopathies [409], and may also be possible in-

tervention for sarcopenia. The multi-scale hybrid model developed in this thesis can be

modified to include specific features of gene shifting process by modeling the satellite cell

recruitment. By developing these models and subjecting them to parametric perturbation

analysis can provide insights about possible clinical or pharmacological interventions to

treat sarcopenia/mitochondrial myopathies.

Spatial aspects of biochemical reactions are important in modeling the intra-cellular

processes [410]. Diffusion process is important, because the interacting components do not

diffuse sufficiently fast to make the system well-stirred between the individual reactions

or interactions. Stochasticity arises because the number of reacting components within

the diffusion range is often small and this gives rise to probabilistic and nonlinear nature

of molecular interactions of the reacting components in the system. The hybrid model of

skeletal muscle fiber (Chapter 7), considers a deterministic framework for simulating the

mtDNA turnover process in skeletal muscle fibers, during the organism’s postnatal life.

However, in the case mtDNA diffusion in the skeletal muscle fiber, mtDNA diffusivity

is very low (Deff = 1.1 × 10−15 m2/s) and thus the stochastic origin and accumulation

dynamics of mtDNA mutations during the post natal stage is likely to play important

role in the development and progression of mtDNA clonal expansion process. The spatial

heterogeneity is generally handled using a spatially-discretized reaction-diffusion models

[228]. The reaction-diffusion master equation (RDME) is generally used to obtain exact

solution of biochemical reaction systems where diffusion cannot be neglected and con-

ventionally the method averages out the kinetics at microscopic lengths and time scales
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[228, 411, 412]. However, the computational complexity associated with the simulation

related to RDME is enormous for even very simple systems [376, 413]. Thus, a direct ex-

tension of this method for simulating the reaction-diffusion physics in skeletal muscle fiber

might not be computationally feasible and reliance on hybrid method might be warranted,

where approximation like Poisson process and Langevin formulation can be used instead

of the exact method.
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Appendix A

Citations of Random Mutation
Capture Assay

A.1 Citations related to the direct application of RMC assay, since
its inception. (source: Pubmed)
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Appendix B

COMSOL report — sarcopenic model

B.1 COMSOL report on the reaction-diffusion multiphysics model
of sarcopenic skeletal muscle
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2011�02�22system:/home/CPPCodes/MiceCodes/Compre...CRE_Sarcopenia_Module_New_working.html #1
COMSOLModelReport
1.TableofContentsTitleBCOMSOLModelReportTableofContentsModelPropertiesConstantsGlobalExpressionsGeometryGeom1SolverSettingsPostprocessingVariables2.ModelPropertiesPropertyValueModelnameAuthorCompanyDepartmentReferenceURLSaveddateNov17,20101:03:29AMCreationdateFeb13,201011:31:46AMCOMSOLversionCOMSOL3.5.0.603Filename:/data/home/suresh/CPPCodes/MiceCodes/Comprehensive/Working/Sarcopenia_Study/COMSOLTrials/NonCRE_Sarcopenia_Module_New_working.mphApplicationmodesandmodulesusedinthismodel:Geom1(Axialsymmetry(2D))Diffusion(ChemicalEngineeringModule)3.ConstantsNameExpressionValueDescriptionk_d12.705671296eB82.705671eB8DegradationrateofwildBtypemtDNAk_d22.705671296eB82.705671eB8DegradationrateofmutantmtDNAv_max2.460856939eB142.460857eB14MaximumreplicationrateofmtDNAk_m5.5eB75.5eB7MutationrateofmtDNAHill_Coeff22Hillcoefficent(n)Hill_Const0.150.15HillConstant(K)b_F33ReplicativeadvantagefactorNo_React_Rate00Diff_Const7eB167eB16Ave_No6.023e236.023e23Cell_Volpi*(32.5eB6̂2)*25eB68.295768eB14MolW13451345MolM11231123c_W02.00138451eB82.001385eB84.GlobalExpressionsNameExpression UnitDescriptionRatio1c_W/(c_W+c_M) 1Ratio21BRatio1 1WMRatioRatio1 1HillTerm1B((WMRatiôHill_Coeff)/((Hill_Const̂Hill_Coeff)+(WMRatiôHill_Coeff)))1k_Rv_max*HillTerm 1MTRatio1BWMRatio 1K_1k_d1K_2k_d2K_3k_R 1K_4b_F*k_R 1K_5k_m*k_R 1DiffConst_ValueDiff_ConstConc_W(MolW/Ave_No)/Cell_VolConc_M(MolM/Ave_No)/Cell_Vol5.GeometryNumberofgeometries:1
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B.1. COMSOL report 235

2011�02�22system:/home/CPPCodes/MiceCodes/Compre...CRE_Sarcopenia_Module_New_working.html #2

5.1.1.Pointmode
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B.1. COMSOL report 236

2011�02�22system:/home/CPPCodes/MiceCodes/Compre...CRE_Sarcopenia_Module_New_working.html #3

5.1.3.Subdomainmode

6.Geom1Spacedimensions:Axialsymmetry(2D)Independentvariables:r,phi,z6.1.Mesh6.1.1.MeshStatisticsNumberofdegreesoffreedom1942Numberofmeshpoints295Numberofelements382Triangular 382Quadrilateral 0Numberofboundaryelements220Numberofvertexelements8Minimumelementquality0.812Elementarearatio0.007
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B.1. COMSOL report 237

2011�02�22system:/home/CPPCodes/MiceCodes/Compre...CRE_Sarcopenia_Module_New_working.html #4

6.2.ApplicationMode:Diffusion(chdi)Applicationmodetype:Diffusion(ChemicalEngineeringModule)Applicationmodename:chdi6.2.1.ApplicationModePropertiesPropertyValueDefaultelementtypeLagrangeBQuadraticAnalysistypeTransientEquilibriumassumptionOffFrameFrame(ref)WeakconstraintsOffConstrainttypeIdeal6.2.2.VariablesDependentvariables:c_W,c_MShapefunctions:shlag(2,'c_W'),shlag(2,'c_M')Interiorboundariesnotactive6.2.3.BoundarySettingsBoundary1B3,5,7B10TypeInsulation/Symmetry6.2.4.SubdomainSettingsSubdomain1,3 2Diffusioncoefficient(D)m2/s{DiffConst_Value;DiffConst_Value} {DiffConst_Value;DiffConst_Value}Reactionrate(R)mol/(m3⋅s){¼(K_1*c_W)+(K_3*Ratio1)¼(K_5*Ratio1);¼(K_2*c_M)+(K_4*Ratio2)+(K_5*Ratio1)}{¼(K_1*c_W)+(K_3*Ratio1)¼(K_5*Ratio1);¼(K_2*c_M)+(K_4*Ratio2)+(K_5*Ratio1)}Subdomaininitialvalue1,32Concentration,c_W(c_W)mol/m3c_W0Conc_WConcentration,c_M(c_M)mol/m30Conc_M7.SolverSettingsSolveusingascript:offAnalysistypeTransientAutoselectsolverOnSolverTimedependentSolutionformAutomaticSymmetricautoAdaptivemeshrefinementOffOptimization/SensitivityOffPlotwhilesolvingOff7.1.Direct(UMFPACK)Solvertype:LinearsystemsolverParameterValuePivotthreshold0.1Memoryallocationfactor0.7
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B.1. COMSOL report 238

2011�02�22system:/home/CPPCodes/MiceCodes/Compre...CRE_Sarcopenia_Module_New_working.html #5Parameter ValueTimes range(0,100000,99000000)Relativetolerance1eB6Absolutetolerance1eB8TimestostoreinoutputSpecifiedtimesTimestepstakenbysolverFreeMaximumBDForder5SingularmassmatrixMaybeConsistentinitializationofDAEsystemsBackwardEulerErrorestimationstrategyIncludealgebraicAllowcomplexnumbersOff7.3.AdvancedParameter ValueConstrainthandlingmethod EliminationNullBspacefunction AutomaticAutomaticassemblyblocksize OnAssemblyblocksize 1000UseHermitiantransposeofconstraintmatrixandinsymmetrydetectionOffUsecomplexfunctionswithrealinput OffStopiferrorduetoundefinedoperation OnStoresolutiononfile OffTypeofscaling AutomaticManualscalingRowequilibration OnManualcontrolofreassembly OffLoadconstant OnConstraintconstant OnMassconstant OnDamping(mass)constant OnJacobianconstant OnConstraintJacobianconstant On8.Postprocessing

9.Variables9.1.BoundaryNameDescriptionUnitExpressionndflux_c_W_chdiNormaldiffusiveflux,c_Wmol/(m̂2*s)nr_chdi*dflux_c_W_r_chdi+nz_chdi*dflux_c_W_z_chdindflux_c_M_chdiNormaldiffusiveflux,c_Mmol/(m̂2*s)nr_chdi*dflux_c_M_r_chdi+nz_chdi*dflux_c_M_z_chdi9.2.SubdomainNameDescriptionUnitExpressiongrad_c_W_r_chdiConcentrationgradient,c_W,rcomponentmol/m̂4c_Wrdflux_c_W_r_chdiDiffusiveflux,c_W,rcomponentmol/(m̂2*s)BDrr_c_W_chdi*c_WrBDrz_c_W_chdi*c_Wzgrad_c_W_z_chdiConcentrationgradient,c_W,zcomponentmol/m̂4c_Wzdflux_c_W_z_chdiDiffusiveflux,c_W,zcomponentmol/(m̂2*s)BDzr_c_W_chdi*c_WrBDzz_c_W_chdi*c_Wzgrad_c_W_chdiConcentrationgradient,c_Wmol/m̂4sqrt(grad_c_W_r_chdî2+grad_c_W_z_chdî2)dflux_c_W_chdiDiffusiveflux,c_Wmol/(m̂2*s)sqrt(dflux_c_W_r_chdî2+dflux_c_W_z_chdî2)grad_c_M_r_chdiConcentrationgradient,c_M,rcomponentmol/m̂4c_Mrdflux_c_M_r_chdiDiffusiveflux,c_M,rcomponentmol/(m̂2*s)BDrr_c_M_chdi*c_MrBDrz_c_M_chdi*c_Mzgrad_c_M_z_chdiConcentrationgradient,c_M,zcomponentmol/m̂4c_Mzdflux_c_M_z_chdiDiffusiveflux,c_M,zcomponentmol/(m̂2*s)BDzr_c_M_chdi*c_MrBDzz_c_M_chdi*c_Mzgrad_c_M_chdiConcentrationgradient,c_Mmol/m̂4sqrt(grad_c_M_r_chdî2+grad_c_M_z_chdî2)dflux_c_M_chdiDiffusiveflux,c_Mmol/(m̂2*s)sqrt(dflux_c_M_r_chdî2+dflux_c_M_z_chdî2)
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