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Summary

An aqueous two-phase system (ATPS) composed of dextran and polyethylene gly-

col provides a reliable and biocompatible platform for purification of biomedical

products and cellular macromolecules. The incorporation of such an ATPS into

microfluidics would make automated on-chip purification of desirable proteins and

other products possible. In addition, microfluidic aqueous two-phase droplets could

potentially be used to better mimic intracellular fluid environment. In order to con-

trol the physical and topological behaviors, it is therefore crucial to understand both

the hydrodynamics and the thermodynamics of the aqueous two-phase microfluidic

droplets. This thesis aims to address some of the relevant issues on such complex

microfluidic droplets from hydrodynamic and thermodynamic point of view, which

will help in better control and monitoring of on-chip ATPS.

The first part of the project focuses on the creation and characterization of

microfluidic aqueous two-phase droplets. Continuous and uniform droplets can be

successfully produced at a Y-shaped junction. The microfluidic droplets exhibit

a continuum of morphologies for different flow speeds and compositions and they

have been well classified to facilitate subsequent discussions. Some other interest-

ing experimental phenomena have been observed, including the very fine reticulate

heterogeneous fluid structures, fractal emulsions and the creation of micron-sized

satellite ATPS droplets. They can potentially have great industrial applications.

In the second part, the underlying physics has been investigated. The rationales

for transitions between different droplet morphologies have been investigated in

analogy with the existing theory on droplet dynamics in an unconfined linear Stokes

flow. Then, the characteristic size of the fluid filaments under strong shear stress

has been determined by the technique of Fast Fourier Transform of the images. The
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interface thickness for compositions near the binodal line is calculated based on the

Cahn-Hilliard theory. Surprisingly, we find that the characteristic size of the fine

fluid filaments approaches the order of the interfacial thickness for compositions in

close vicinity of the binodal line. In addition, the possibility of homogenization by

applying very strong shear is also discussed based on existing scientific literature.

The effect of chaotic mixing on the droplet morphology induced by the presence of

a meandering section has also been studied.
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Chapter 1

Introduction

This chapter will briefly talk about the motivation for the microfluidic technology

and its current development. Its wide range of applications in the industry and

its advantages over the traditional chemical processes will also be discussed. The

second section will present the specific microfluidic system of interests in this project

- microfluidic aqueous two-phase system.

1.1 Introduction to Microfluidics

In the past few decades, nanotechnology has been the central spotlight of modern

research due to increasing public demand on more sophisticated and compact equip-

ment and devices. With an initial hope of building a biochemical laboratory on a

small chip, microfluidics emerged as a new discipline in nanotechnology which is

revolutionizing the existing chemical and biomolecular processes. Microfluidics is

the science of designing, manufacturing, and formulating devices and processes that

deal with fluid quantities of the order of nanoliters or even picoliters, which involves
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CHAPTER 1. INTRODUCTION

a wide range of scientific disciplines. Nowadays, it is not only used for chemical

and biomedical analysis [14], but also for chemical synthesis [33][30], kinetic studies

[57][58], screening for drug development [14][49], etc. Since the early 1990s, there

has been a rapid development in microfluidic domain which is facilitated by the

standardized technologies used in microelectromechanical systems (MEMS) such as

photolithography, reactive ion etching. The most recent soft lithographic techniques

[69] provide a well-standardized protocol for microfluidic devices.

The microfluidic chip is a small device which consists of microchannels, inlets

and outlets. The inlets of the device are connected to the fluid reservoirs. For a

typical microfluidic system, the fluid is introduced into the microchannels via the in-

lets and is transported along the microchannels until the outlet. The most common

means of driving fluids through microchannels is by use of either an applied pressure

difference (achieved by the use of pressurized cylinders and syringe pumps) or an ap-

plied electric field. With the use of special channel geometries such as the T- shaped

and Y-shaped junctions, immiscible fluids can be segmented into droplets of uni-

form size. Each droplet miniaturizes an isolated reactor with intensive mixing. The

microfluidic droplets can be clearly observed under a microscope. Various analytical

operations have been integrated on a microfluidic platform [14]. On chip chromatog-

raphy and capillary electrophoresis systems have been developed and widely used.

Optical spectroscopy methods like UV Vis, IR, Raman, Surface Enhanced Raman,

Surface Plasmon Resonance have been successfully incorporated into microfluidic

systems. Molecular emission detectors, flame emission and flame ionization detec-

tors have also been embedded into microfluidic devices and so have been various

chemiluminescence, electroluminescence and fluorescence detection systems.

The advantage of microfluidics over conventional chemical processes is its small
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CHAPTER 1. INTRODUCTION

characteristic size. The dimension of the channels is around 300 microns, which

ensures a laminar flow condition. Hence, in many occasions, molecular diffusion

dominates over convectional diffusion, which is desired for certain chemical processes.

Multiphasic chemical reactions can be very efficient due to its high surface-volume

ratio which facilitates the mass transfer from one phase to another. Due to the short

distances in the microchannels, mass and heat transfer is extremely fast. Hence,

the conditions of microfluidic processes such as temperature can be regulated and

maintained accurately. For protein crystallization, it is also much easier to achieve

a rapid quenching so that nucleation takes place within a short amount of time to

ensure a uniform size distribution of protein crystals. Working with smaller amount

of fluids also implies that there is reduced consumption of the chemical reagents.

The cost of chemicals and the dangers of working with hazardous materials are

also minimized. Microscale systems also allow the user to access newer reaction

pathways than those accessible while using a macroscale reactor. Scaling out to

increase production rather than scaling up as involved in macroscale reactor design

eliminates the high cost redesign step involved in moving from lab scale to pilot

plant scale. Ability to couple online sensors allows screening of reaction parameters

to optimize yields and to control product quality.
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CHAPTER 1. INTRODUCTION

1.2 Aqueous Two-Phase System

In the pharmaceutical industry, there are stringent regulations on the purity of the

products to make sure that other impurity chemicals do not have harmful effects

on human. However, most of the current industrial separation processes involve

organic solvents which might alter the chemical properties of the biomedical prod-

ucts. In addition, it is very difficult to completely isolate the desired products from

organic solvents which are mostly very toxic. Hence, the downstream processing

of biomedical products requires both biocompatible and efficient purification tech-

niques. Recently, aqueous two-phase systems (ATPS) have been extensively studied

due to the fact that they do not contain harmful chemicals. One typical example is

an aqueous two-phase system composed of poly(ethylene glycol) (PEG) and dextran

(DEX). It has been found this ATPS is able to separate a variety of macromolecules,

membranes, organelles and cells [3][68].

In addition, the biochemical reactions in living eukaryotic cells take place in

a heterogeneous environment containing a variety of macromolecules. Most of the

in-vitro studies in dilute aqueous solutions are not able to capture the influence of

heterogeneity on the chemical reaction. The microfluidic aqueous two-phase droplet

of volume of the order of picoliters that we are interested in can potentially mimic the

heterogeneous environment inside a cell. One of the particularities of such aqueous

two-phase systems is that their interfacial tension is extremely low. The typical

range is from 1 to a few hundred µN/m [56][18]. In the framework of this project,

microfluidic aqueous two-phase systems composed of PEG and DEX solutions have

been successfully created and carefully investigated.
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Chapter 2

Experiments and Observations

This chapter will firstly explain in details the procedures for the fabrication of the

microfluidic device used (Section 2.1). Many fascinating experimental observations

will be summarized in the next section (Section 2.2). These include the tunable

droplet morphologies depending on the compositions of the polymer solutions and

flow rate, very fine reticulate heterogeneous fluid structures, fractal emulsions and

the creation of micron-sized satellite ATPS droplets.

2.1 Fabrication of Microfluidic Devices

The microchannel is fabricated using standard soft lithography technique [69]. The

device is made of the Poly(dimethylsiloxane)(PDMS) which has over the past few

years been the universal material for the fabrication of microfluidic devices.

The micro-channel layout is firstly designed using special software - AutoCad.

The design is then printed out as a emulsion transparency (Infinite graphics). The

width of the micro-channels in our design is 300 micrometers with equal channel
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Figure 2.1: The detailed fabrication procedure of a master.

spacings. T-shaped or Y-shaped junctions are incorporated into the design to pro-

duce the segmented flow and ordered numbers are labeled along the channel to mark

different positions on the chip. The printing of the emulsion transparency could ac-

curately resolve features with characteristic dimensions as small as 20 micrometers

and hence is able to fabricate channels of precise dimensions.

The master is fabricated using Su-8 2050 (MicroChem), a negative photo resist,

with silicon wafer (4 inch, Syst Integration) as the substrate. The Silicon wafer is

first kept on a hot plate (Heidolph) set at 250◦C for 10 - 15 minutes to ensure that

the wafer was dry. The Su-8 2050 is then spin-coated onto the silicon wafer after the

wafer is allowed to cool down for a few minutes. The coated wafer is subsequently

heated at 65◦C for 10 minutes and subsequently at 95◦C for 45 minutes before

being slowly cooled down. The photolithography to define the micro-channels on

the Su-8 coated wafers was carried out using a mask aligner system (MA8/BA6,

6



CHAPTER 2. EXPERIMENTS AND OBSERVATIONS

Figure 2.2: The detailed fabrication procedure of a PDMS replica.

Suss MicroTech). It is then exposed to UV lamp of intensity 8 mW/m2 before being

immediately transferred to a hot plate at 65◦C for 5 minutes and then being baked at

95◦C for 18 minutes. The wafer is then developed using Su-8 developer (MicroChem)

by gentle agitation for approximately 40 minutes. Once all the unexposed Su-8 has

been dissolved, the master is cleaned with isopropyl alcohol and dried under a stream

of nitrogen. The master is then depth profiled using a Surface Profiler (P10,KLA-

Tencor).

To make PDMS, a precursor base and a curing agent are mixed with a weight

ratio of 10:1. The mixture is then degassed using a vacuum desiccator until no

bubble is present in the liquid. This mixture is then poured over the silanized

master placed in an aluminum foil dish before being baked at 70◦C for 2 hours. The

PDMS elastomer replica is subsequently peeled off the master carefully, cut into

required shape and cleaned using scotch tape. Holes are also punched for the inlets

and outlets in the PDMS replica. To seal the device, a glass slide(Corning Glass

Works - 75 mm x 50 mm x 1 mm) spin-coated with PDMS and the PDMS replica

are placed in a plasma cleaner for 45 seconds and are then brought into contact.

7
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The PDMS surfaces oxidized by plasma will rapidly stick to each other. The whole

device is then baked in a 100◦C oven for another 24 hours. PEEK tubes (Vici, 1/16

inch outer diameter, 1mm inner diameter) of approximately 5 cm length for the inlet

and 2.5 cm length for the outlet are fixed into the punched holes and glued using a

two component epoxy (5 Minute Epoxy,Devcon).

2.2 Experimental Details and Observations

2.2.1 Phase Morphology Diagram

In our experiments, the DEX (MW = 500,000) solution and the PEG (MW = 8,000)

solution are dispensed into the microfluidic channel via a Y-shaped junction and a

mixture of perfluorodecaline(PFD) and perfluorooctanol(PO) with a volume ratio

of 10:1 is injected as the continuous phase as shown in Figure 2.3. The DEX-PEG

mixture will be segmented to droplets of uniform size by the continuous phase and

is transported along the microfluidic channel. Above certain concentration, the

aqueous mixture of two polymers will separate into two phases inside the droplet:

one PEG-rich phase and one DEX-rich phase which stays inside the PEG-rich phase

(Figure 2.4(a)). Each droplet can be considered as an isolated cell or a microreactor

which can potentially be used to study the heterogeneous reactions in cells or for

separation of macromolecules. High-speed optical microscope is used to investigate

the dynamic phase behavior of such microsystem.

Due to the extremely low interfacial tension between the two aqueous phases,

different morphologies have been observed and classified into four categories depend-

ing on the flow rate: single-lobe, heterogeneously fragmented (transition), reticulate

and fine-reticulate. At extremely low flow rate, the droplet contains a single lobe

8
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Figure 2.3: Schematics of the experimental setup

which maintains its shape as the droplet flows down in the microchannel as shown

in Figure 2.4(a). As the flow rate increases, the interface starts to be torn apart and

droplets of various size and shape can be observed inside the microfluidic droplet

(Figure 2.4(b)). At high flow rate, the droplet exhibits a reticulated structure as

shown in (Figure 2.4(c)). At even higher flow rate, the droplet will become transpar-

ent at a low microscope resolution (Figure 2.4(d)). If the microscope is adjusted to

higher resolutions, uniform distribution of fine filaments can still be observed and we

classify this morphology as a fine-reticulated structure (Figure 2.4(e)). One would

naturally ask if a complete homogenization can be achieved by the shear stress in the

microchannel and this question will be discussed in details in subsequent Chapters.

In addition, a miscibility map for the PEG-DEX aqueous mixture was con-

structed by doing experiments in batch (Figure 2.5(b)). In order to study how the

flow rate and polymer composition influence the morphology of the droplet, a large

number of experiments have been conducted with a fixed flow rate ratio (DEX: PEG:

9



CHAPTER 2. EXPERIMENTS AND OBSERVATIONS

Figure 2.4: Typical images of the different morphologies of the aqueous two-phase

droplets

Oil = 1: 1: 3). In addition, the weight percentage of PEG in the PEG stream is

equal to that of DEX in the DEX stream. A morphology diagram was eventually

constructed as shown by the different morphological regions in Figure 2.5(a). How-

ever, the two streams of polymer solutions at the inlet will coflow instead of forming

emulsions and this specific region is named “Jet”.

One might argue that the reticulated structure may be influenced to a certain

extent by the dispensing of the polymer mixture at the Y-shaped junction and hence

we cannot conclude that the reticulated structure is completely due to the shear

effect inside the droplet. Additional experiments have been dedicated to addressing

this question. The flow was suddenly stopped and the droplets settled to a single-

lobed morphology in a few minutes. Then the flow was restarted and it was observed

that the single-lobed droplets became reticulated immediately as shown in Figure

2.6, which excluded the possibility that the dispensing at the inlet has influenced

the morphology of the droplets.

10
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Figure 2.5: (a) Morphology diagram at different concentrations and flow rates. The

flow rate ratio: PEG stream - DEX stream - Oil Stream = 1-1-3. The weight percentage

of PEG in PEG stream is equal to that of DEX in DEX stream (b) The miscibility line

Figure 2.6: Morphology change of a stationary droplet after the flow is restarted

2.2.2 Study of the Fine-Reticulated Phase

An additional experiment was conducted in order to find out what happens to the

homogenized droplets of DEX-PEG aqueous mixture after the flow is stopped. At

compositions near the coexistence line (Figure 2.5(b)), the droplets appear to be

transparent at relatively low resolution. After the pump was stopped, there was no

phase separation taking place within the first twenty minutes (Figure 2.7(a)). The

chip was left alone overnight and 15 hours later, all droplets inside the microchan-
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nel got back to the two-phase state with the DEX-rich phase surrounded by the

PEG-rich phase (Figure 2.7(b)(c)). Hence, we can conclude that phase separation is

actually a very slow process for the quasi-homogenized droplets induced by shear. In

other words, we are able to produce a quasi-stable binary mixture just by applying

shear in a microfluidic channel. This might have great applications in food industry

because quasi-stable emulsions are desired like milk, etc. In addition, this might

also be applied in protein separation because a quasi-homogenized phase maximizes

the contact between different chemicals and phase separation could eventually take

place off-chip. By drawing an analogy with the traditional process of separation,

stopping the flow is an equivalent form of “quenching” which induces a transition

from a homogeneous/quasi-homogeneous phase to phase separation.

Figure 2.7: The morphology of the droplets after the pump was stopped (a) for 20

minutes (b) for 15 hours (c) a zoomed-in view
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2.2.3 Fractal Emulsions

In the course of experiments, another fascinating phenomenon was observed. It was

found that under certain circumstances, mostly for compositions near the miscibility

line, nucleation and growth of a peculiar “third” aqueous phase develops along the

channel as shown by Figure 2.8. One would naturally ask if it is possible that the

third phase contains another phase, forming a fractal structure of multiple drop-in-

drop complex. In the experiments by my lab mates, Toldy Arpad Istvan and Reno

Antony Louis Leon, a fourth phase has been observed. Due to limitation of the

equipment at our disposal, it is difficult to tell what this third and fourth aqueous

phases contain. One plausible possibility is that the fluid rich in PEG is somehow

trapped in the inner DEX-rich phase. They are then circulated along the streamline

and cannot get contact to the outer PEG-rich bulk phase.

Figure 2.8: Nucleation and growth of a “third” phase inside the DEX-rich phase along

the channel (a) the beginning of the meandering section (b) the end of the meandering

section (c) the second lane (d) the third lane

2.2.4 Creation of Micron-sized Aqueous Two-Phase Droplets

The detachment of a water drop from the tap is in fact accompanied by the forma-

tion of a much smaller droplet of characteristic size of a few hundred microns that

we cannot observe by naked eyes in daily life (Figure 2.9(c)). The phenomenon has
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been extensively investigated by fluid physicists because it poses many challenges

to the printing technology. The suppression of such satellite droplets is crucial for

designing precise ink spray devices [71]. On the other hand, the satellite droplets

formed via such mechanism are of very uniform size and thus could be desirable for

certain industrial applications. The formation of satellite droplets of micron size

(∼ 20µm) is also observed in our experiments (Figure 2.9(a)(b)). If we are able to

separate the satellite droplets from the big ones by special designs of the microchan-

nels [62], it would be possible to produce micron-level aqueous two-phase emulsions

of uniform size 1. They can then be collected off-chip and be stabilized by adding

surfactants.

Figure 2.9: Formation of satellite droplets (a) the onset of the formation of an aqueous

two-phase satellite in the microchannel (b) a newly formed satellite droplet (c) during the

detachment of a water drop. The circles mark the location of the satellite droplets

1In fact, no evidence shows that the satellite droplets are aqueous two-phase ones. Further

investigation on the composition of the satellite droplets is needed. However, due to limitation of

our device and equipment at hands, it’s difficult to have a detailed study in the framework of the

thesis.
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Chapter 3

Thermodynamics

In this chapter, the Cahn-Hilliard theory [8] for the interfacial free energy of a

nonuniform binary mixture and its asymptotic dependence on temperature near

critical conditions will be derived in details. The application of Cahn-Hilliard’s

formulation to nonuniform regular solutions will also be discussed. The original

work by Cahn and Hilliard lacks detailed explanation and does not state the fact

that the analysis near critical conditions applies the Landau theory. The author of

this thesis gives a detailed flow of analysis from the Landau theory and also suggests

some improvement and corrections on some coefficients. In addition, the dependence

of the formation energy of a chemical bond between an i molecule and a j molecule

on temperature is taken into account for analysis by the author as an improvement

to the original paper by Cahn and Hilliard. The author also applies similar analysis

for a ternary system and arrives at the conclusion that the surface free energy

is minimized when the ∆g term is equal to the gradient term (3.86). Based on

these theoretical analysis, the interfacial thickness (l) of the PEG-dextran aqueous

two-phase system(ATPS) will be approximately calculated from the experimental
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measurement of interfacial tensions for different compositions in literature [56][26].

As ATPS is well known for its low interfacial tension and diffused interface [26][36],

this characteristic length (l) will give us a rough idea of the diffuseness of the PEG-

dextran interface and will also help in further understanding of the hydrodynamics

of the system, which will be discussed in the following chapters.

3.1 Landau Theory on Phase Transition

Phase transition happens everywhere in daily life and it has been one of the central

spotlight of modern sciences. For example, the phase transition between solid, liq-

uid and gas states, the transition between ferromagnetic and paramagnetic states

of magnetic materials and the transition to superconductive state for certain mate-

rials, etc. In the terminology of modern physics, they are classified into first-order

transition and second-order transition. First-order transitions are those that involve

latent heat, like melting, evaporation, etc. For example,when the temperature is

below the boiling point (Te), the dependence of the free energy on density would be

similar to (1) in Figure3.1(a2) and the free energy is minimized when the energy

state of the system lies in the well on the right, corresponding to a higher density

(ρ). As a result, the system would be liquid. When the temperature increases to

above the boiling point, the system prefers an energy state in the well on the left,

corresponding to a gas state of smaller density.

Examples of second-order transitions are the transition to superfluid, the tran-

sition between ferromagnetic and paramagnetic states, the spinodal decomposi-

tion of alloys upon cooling, and the transition to superconductive state. (Fig-

ure3.1(a1)(a2)). Lev Landau was the first to give a phenomenological explanation
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Figure 3.1: (a1)(a2) The profile change of the free energy of the first order transition

(Evaporation) (b1)(b2) The profile change of the free energy of the second order transition,

where Tm is the boiling point, G2 is the second coefficient in Laudau’s representation of

free energy and Tc is the critical temperature for second order transition. The dash line

traces the location changes of the two minima of the double-well profile as the temperature

increases from below the critical temperature to the critical temperature.

on second order transition. Since the order parameter grows continuously from zero

at critical point, Landau suggested a Taylor expansion of the free energy in the

order parameter around critical point [9]. The free energy of a system should be a

function of external variables and the order parameter φ, i.e.

G = G(T, P, φ,Ni) (3.1)

Since the order parameter is small near critical point. A Taylor expansion gives

G = G0 +G1φ+G2φ
2 +G3φ

3 +G4φ
4 + ... (3.2)

where Gi are all functions of T , P , and Ni. For binary alloy system, the odd terms

have to vanish in order to preserve the symmetry of the system. Hence, we have

G = G0 +G2φ
2 +G4φ

4 + ... (3.3)
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where G4 is always positive by an argument of large fluctuation. This means that

if the order parameter approaches the extreme values (either positive or negative),

the corresponding energy state must be very large as well. If G4 is negative, the

energy of the system is minimized either at φ = 0 or at extreme values (i.e., −1

or 1). It is the change of G2(T, P (T )) with T that is responsible for the second

order transition(Figure 3.1 (b1)(b2)). If T < Tc, G2 < 0 and hence the free energy

exhibits two minima which correspond to two states. If T ≥ Tc, G2 ≥ 0 and

the free energy has only one minimum. In this case, the system has homogenous

composition. In other words, the second order transition takes place at G2(T ) = 0.

A Taylor expansion of G2(T ) at critical temperature gives

G2 = G∗2(T − Tc) +O
(
(T − Tc)2

)
... (3.4)

Due to the tendency of nature to minimize the free energy of the system, it is always

thermodynamically preferred to be in states of minimum energy. At the minima of

free energy, we must have

∂G

∂φ
= 2(T − Tc)G∗2φ+ 4G4φ

3 = 0 (3.5)

For T < Tc,

φ = ±
√

G∗2
2G4

(Tc − T ) (3.6)

3.2 Cahn-Hilliard Theory

3.2.1 General Formulation of Free Energy

Cahn and Hillard [8] were the first to develop a comprehensive theory of phase

separation based on the Landau-Ginzburg functional. The essential idea is that
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the free energy of a mixture per mole of mixture, g depends not only on the local

composition but also on the local composition gradient. Therefore, they supposed

that

G = n

∫
R3

gd3r = n

∫
R3

g(c(r),∇c(r),∇∇c(r), ...)d3r (3.7)

where c(r) is the local mole fraction of one component, n is the number of moles

of the mixture per unit volume and r is the scaled spatial vector with respect to

the intermolecular distance, a0, i.e., r = rreal/a0. It is assumed that composition

variation (∼ O(1)) is small as compared with the scaled distance r(∼ O(1000)) over

which there exists composition variation. Hence, the free energy function can be

expanded into a Taylor series around the homogeneous composition field with zeros

composition gradients, g(c(r), 0, 0, ...) = g0(c)

g(c(r),∇c(r),∇∇c(r), ...) = g0(c) +

(
∂g

∂∇c(r)

)
(c,0,0,..)

· ∇c(r)+

(
∂g

∂∇∇c(r)

)
(c,0,0,..)

: ∇∇c(r) +
1

2

(
∂2g

∂(∇c(r))2

)
(c,0,0,.)

: (∇c(r)⊗∇c(r)) + ... (3.8)

Here, we denote (
∂g

∂∇c(r)

)
(c,0,0,..)

= L(c(r))(
∂g

∂∇∇c(r)

)
(c,0,0,..)

= K1(c(r))(
∂2g

∂(∇c(r))2

)
(c,0,0,.)

= K2(c(r)) (3.9)

It is important to note that the matrices L, K1 and K2 are functions of c(r) only.

Since the free energy is a scalar, it should be invariant with respect to reflection

(xi → −xi) and rotation (xi → xj), where xi stands for the spacial coordinates. The

invariance with respect to reflection requires the term L(c(r)) to vanish, whereas the

invariance with respect to rotation makes K1(c(r)) = κ1(c(r))I and K2 = κ2(c(r))I
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where κ1(c(r)) and κ2(c(r)) are scalars which depends on the composition field c(r)

and I denotes the identity matrix. As a result, the Taylor series up to the second

order is expressed as

g(c(r),∇c(r),∇∇c(r), ...) = g0(c) + κ1∇2c+
κ2

2
(∇c)2 + ... (3.10)

By applying the divergence theorem1, we arrive at

g = g(c,∇c) = g0(c) +
K

2
(∇c)2 (3.11)

where K/2 = [−dκ1/dc + κ2/2](c,0,...). Here, g0(c) is the free energy density for a

homogeneous binary solution (J/mol). For example, the g0(c) of a binary mixture

which obeys the regular solution model can be expressed as g0(c) = RT [clnc +

(1 − c)ln(1 − c) + χc(1 − c)] , with χ as the interaction parameter and c as the

mole fraction. In the original work of Cahn and Hilliard, the Landau-Ginzburg

approximation was employed, i.e., g0(φ) = −rφ2/2 + Uφ4/4, where r and U are

two constants and the order parameter φ is defined as the concentration difference

between the two components, i.e., φ = c1 − c2. It is important to note that for

small φ, the Landau-Ginzburg expression can be obtained by Taylor expansion of

the regular solution model.

clnc+ (1− c)ln(1− c) +χc(1− c) =
(
−ln2 +

χ

4

)
+

(
1

2
− χ

4

)
φ2 +

1

12
φ4 + ... (3.12)

1In fact, the system is supposed to be infinitely large in the formulism of Cahn and Hilliard.

Hence, the composition field c(r) can be chosen such that ∇c(r)·n̂ = 0. By applying the divergence

theorem, the surface integral term vanishes. However, in a more general setting, ∇c(r) · n̂ may not

be zero. H. I. Aaronson and W. C. Johnson have shown that κ1 has to be zero in order to have

a well-defined problem. Otherwise, an additional term 1/2κ3(r)(∇2c(r))2 has to be incorporated

into the expression of the free energy density g
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where φ = (1− c)− c. In this context, the chemical potential2 (J/mol) is defined as

the variational derivative of the total free energy with respect to a function c(r)

µ =
δ(G/n)

δc(r)
=
∂g

∂c
−∇ · ∂g

∂∇c
= −K∇2φ− rφ+ Uφ3 (3.13)

At equilibrium, the chemical potential should be zero for a concentration field with-

out constrains, i.e.,

−K∇2φ− rφ+ Uφ3 = 0 (3.14)

This differential equation has an analytical solution for a planar interface,

φ(x) =

√
r

U
tanh

x√
2ξ

(3.15)

with ±
√
r/U the equilibrium bulk concentrations and ξ (=

√
K/r) the character-

istic thickness of the interface.

3.2.2 Interfacial Tension Near Critical Condition

Under such a general setting, Cahn and Hilliard defined the specific interfacial energy

(interfacial tension) as the difference per unit area of interface between the actual

free energy of the system and that of a mixture of constant chemical potentials for

each species. In the one-dimensional case, the surface tension is

σ = n

∫ +∞

−∞

(
∆g(c) +

K

2

(
dc

dx

)2
)
dx (3.16)

where ∆g(c) = g0(c)− (cµA + (1− c)µB) and µA and µB are the chemical potentials

(J/mol) of the species A and B respectively at the equilibrium compositions cα (or

cβ)(Figure 3.2). n denotes the number of moles of the mixture per unit volume. From

2This definition by Cahn and Hilliard is actually equivalent to the chemical potential difference

between the two species, i.e., µA − µB
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the treatment of phase equilibria by Gibbs, µA = g0(cα) + (1− cα)g′0(cα) = g0(cβ) +

(1 − cβ)g′0(cβ) and µB = g0(cα) − cαg′0(cα) = g0(cβ) − cβg′0(cβ). According to this

expression, if the average composition of a small system is inside the spinodal region,

the system tends to phase separate in order to minimize the ∆g(c) term. However,

phase separation will generate a composition gradient and thereby increasing the

total free energy. If the system is too small, there would be a critical size below

which the (∇c)2 term becomes too dominant that the system prefers an uniform

composition. In order to minimize the specific surface tension, the Euler-Lagrange

equation has to be employed, i.e.

∂I

∂c
=

d

dx

(
∂I

∂(dc/dx)

)
(3.17)

where I represents the integrand of Eq 3.16. Since I does not explicitly depend on

x, the equation above can be written in another form (Beltrami Identity)

d

dx

(
I − ∂c

∂x

(
∂I

∂(dc/dx)

))
= 0 (3.18)

where

d

dx
=

∂

∂x
+
dc

dx

∂

∂c
+
d2c

dx2

∂

∂(dc/dx)

With the boundary condition that both ∆g(c) and dc/dx tend to zero as x tends to

infinity, the minimum condition for the free energy is obtained

∆g(c) =
K

2

(
dc

dx

)2

(3.19)

Hence, by applying Eq 3.19, the specific interfacial free energy is

σ = 2n

∫ +∞

−∞
∆g(c)dx = 2n

∫ cβ

cα

∆g(c)
dx

dc
dc =

2n

∫ cβ

cα

∆g(c)

(
K

2∆g(c)

)1/2

dc = 2n

∫ cβ

cα

(
K∆g(c)

2

)1/2

dc (3.20)
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Figure 3.2: (a)The free energy as a function of composition (b) Composition profile of

the interface and interfacial thickness, l.

In the following text, the composition profile near the critical temperature, Tc, and

composition, cc, is to be investigated based on the theory of Landau that has been

explained in Section 3.1. In general, the order parameter in the formulation of

Landau corresponds to the composition difference between the two species, i.e.,

φ = c− (1− c) = 2∆c ∈ [−1, 1] (3.21)

If we have a regular solution, it is certain that the free energy difference ∆g(c) is

symmetric with respect to c. Hence, c − cc = cc − (1 − c) = ∆c and cβ − cc =

cc − cα = ∆ce. According to Eq 3.3 and Eq 3.4, near the critical temperature

g0(c) = G0 +G∗2(T − Tc)(2∆c)2 +G4(2∆c)4

g0(cα) = G0 +G∗2(T − Tc)(2∆ce)
2 +G4(2∆ce)

4

g0(cβ) = G0 +G∗2(T − Tc)(2∆ce)
2 +G4(2∆ce)

4 (3.22)
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Since

∆g(c) = g0(c)− (cµA + (1− c)µB) = g0(c)− (cg0(cα) + (1− c)g0(cβ)) (3.23)

we have

(∆g(c))T∼Tc = G∗2(T − Tc)
(
(2∆c)2 − (2∆ce)

2
)

+G4

(
(2∆c)4 − (2∆ce)

4
)

= β(T − Tc)
(
(∆c)2 − (∆ce)

2
)

+ γ
(
(∆c)4 − (∆ce)

4
)

(3.24)

where

β =

(
1

2!

∂3g0

∂T∂c2

)
T=Tc

= 4G∗2 = 4

(
1

2!

∂3g0

∂T∂φ2

)
T=Tc

γ =

(
1

4!

∂4g0

∂c4

)
T=Tc

= 16G4 = 16

(
1

4!

∂4g0

∂φ4

)
T=Tc

(3.25)

By applying the Eq 3.6, (
φ2
)
T∼Tc

=
G∗2
2G4

(Tc − T ) (3.26)

This is equivalent to write

(∆ce)
2
T∼Tc =

β

2γ
(Tc − T ) (3.27)

Combining Eq 3.27 and Eq 3.24, we have

(∆g(c))T∼Tc = γ
(
(∆ce)

2 − (∆c)2
)2

(3.28)

From Eq 3.20 and Eq 3.28, the specific interfacial free energy at equilibrium near

critical condition is

(σ)T∼Tc = 2n

∫ +∆ce

−∆ce

(
Kγ

2

)1/2 (
(∆ce)

2 − (∆c)2
)
d(∆c) =

2n

∫ +∆ce

−∆ce

(
Kγ

2

)1/2(
4

3
(∆ce)

3

)
d(∆c) (3.29)

where the parameter K is assumed constant when it is sufficiently close to Tc. By

applying Eq 3.27,

(σ)T∼Tc =
2n

3γ
K

1
2β

3
2 (Tc − T )

3
2 (3.30)
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3.2.3 Interfacial Thickness Near Critical Condition

The composition profile must satisfy the minimum condition (Eq 3.19) and applying

Eq 3.28,

dc

dx
=
d∆c

dx
= (2∆g/K)1/2 =

(
2γ

K

)(
(∆ce)

2 − (∆c)2
)

(3.31)

Since
∫

1/(1 − x2)dx = arctanh(x), Eq 3.31 can be integrated with boundary con-

dition ∆c = 0 at x = 0:

∫ ∆c

0

d∆c

∆c2
e −∆c2

=
1

∆ce

∫ ∆c
∆ce

0

d
(

∆c
∆ce

)
1−

(
∆c
∆ce

)2 =
1

∆ce
arctanh

(
∆c

∆ce

)
=

(
2γ

K

)∫ x

0

dx

(3.32)

We arrive at the conclusion that(
∆c

∆ce

)
T∼Tc

= tanh

((
β(T − Tc)

K

)1/2

x

)
(3.33)

The interfacial thickness is estimated by l as shown in Fig 3.2(b). It is obtained by

taking the slope of the free energy curve at ∆c = 0 and determining the distance

between the two intersects with c = cα and c = cβ. Hence, by applying Eq 3.19

l =
cβ − cα

(dc/dx)cc
=

(
2∆ce

(2∆g/K)1/2

)
∆c=0

(3.34)

From Eq 3.28,

(∆g)∆c=0 = γ(∆ce)
4 (3.35)

Hence, Eq 3.34 becomes

l =

(
2K

γ

)1/2
1

∆ce
(3.36)

From Eq 3.27,

l = 2

(
K

β(Tc − T )

)1/2

(3.37)
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By combining Eq 3.30 and Eq 3.37, we find a relationship between the interfacial

tension and the interfacial thickness near critical condition

σl3 =
16nK2

3γ
(3.38)

3.2.4 Application to Regular Solution

In classical thermodynamics, an ideal solution is defined as a mixture of multiple

components which cannot be distinguished from one another and the free energy

of mixing per mole is simply gid0 = RT
∑
cilnci. A regular solution refers to a

mixture of multiple components with zero excess entropy and zero excess volume3,

i.e., sE = 0 and vE = 0. The free energy of mixing per mole of a binary regular

solution is

gR0 = RT (clnc+ (1− c)ln(1− c) + χc(1− c)) (3.39)

where χ = z(EAB − (EAA +EBB)/2)/(kBT ) with z as the coordination number and

Eij as the free energy of formation of a chemical bond between a i molecule and an

adjacent j molecule and c represents the mole fraction of species A.

As we see from Figure 3.3, the double-well potential changes to a parabola at

χ = 2 and the critical composition cc = 0.5. For a binary mixture, the chemical

potential of each species can be calculated from the averaged free energy of the

mixture by

µA(c) = g0 + (1− c)dg0

dc
µB(c) = g0 − c

dg0

dc
(3.40)

where c is the composition of species A. By using Eq 3.39, the chemical potential of

the two species (J/mol) are

µA(c) = RT
(
lnc+ χ(1− c)2

)
µB(c) = RT

(
ln(1− c) + χc2

)
(3.41)

3Excess property refers to the deviation from ideal solution model, i.e., ME = M −M id
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Figure 3.3: The scaled free energy for regular solution g0/RT = clnc + (1 − c)ln(1 −
c) + χc(1− c) with χ changing from 3 to 2.2. Bifurcation occurs at χ = 2

Note that µA(c) and µB(c) satisfy g0 = cµA(c) + (1 − c)µB(c). The equilibrium

compositions cα or cβ (Figure 3.2) satisfies g′0(c) = 0 4, which gives

ln

(
ce

1− ce

)
= χ(2ce − 1) (3.42)

where ce ∈ {cα, cβ}.

4The free energy of a regular solution is symmetric and hence the equilibrium compositions

correspond to g′0 = 0. Otherwise, they must satisfy g′0(cα) = g′0(cβ) = (g0(cα)− g0(cβ))/(cα − cβ)
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Free Energy of a Nonuniform Regular Solution

Enthalpy

In this section, we will consider the cubic lattice model of a binary regular solu-

tion, where each molecule occupies one lattice site. The possibilities of find a A

molecule at a particular lattice site R is denoted as P (R) and it is equal to the local

mole fraction of species A at R, i.e., P (R) = c(R). The probability of find a AB

bond with A at site R and B at site S (Figure 3.4):

PAB(RS) = c(R)(1− c(S)) (3.43)

By Taylor expansion around the site R,

c(S) = c(R) +∇c(R) · r +
1

2!
∇∇c(R) : (r⊗ r) +

1

3!
∇∇∇c(R)

...(r⊗ r⊗ r)... (3.44)

where the vector r = S−R, r = |r| and ri is the ith component of the vector r. In

Einstein notation, Eq 3.44 is written as

c(S) = c(R) +
∂c(R)

∂xi
ri +

1

2!

∂2c(R)

∂xi∂xj
rirj +

1

3!

∂3c(R)

∂xi∂xj∂xk
rirjrk... (3.45)

The number of lattice sites in the shell of radius from r to r + dr is nNAdV =

nNA(r2sinφdrdϕdφ), where n is the number of moles of the mixture per unit volume,

NA is the Avogadro number. The enthalpy of mixing for a molecule at the site R,

u(R), is calculated by fixing an A molecule at the site R. 5Hence,

u(R) =

∫ π

0

∫ 2π

0

∫ +∞

0

nNAr
2c(R)(1− c(S))ν(r)drdϕsinφdφ (3.46)

5One may argue that a B molecule can also occupy the site R. If we consider both cases (the

site R is occupied by an A or B), each AB bond would be counted twice and a factor of 1/2 has

to be added. It is equivalent to just consider the case where A is fixed at the site R.
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Figure 3.4: (a) The lattice site for a regular solution (b) The different equicomposition

layers indicated in different colors.

where ν(r) = EAB(r) − (EAA(r) + EBB(r))/2 with Eij(r) as the formation energy

of a chemical bond between an i molecule and a j molecule having a distance of r.

Substitute Eq 3.44 into Eq 3.46,

u(R) =

∫ π

0

∫ 2π

0

∫ +∞

0

nNAr
2c(R)×

(
1− c(R)−∇c(R) · r− 1

2!
∇∇c(R) : (r⊗ r)

)
ν(r)drdϕsinφdφ (3.47)

The enthalpy per mole of molecules at the site R

h(R) = NAu(R) = NAωc(R)(1− c(R))

−NAc(R)∇c(R) ·
∫ π

0

∫ 2π

0

∫ +∞

0

nNAr
2ν(r)rdrdϕsinφdφ

−1

2
NAc(R)

∑
i

∑
j 6=i

∂2c(R)

∂xi∂xj

∫ π

0

∫ 2π

0

∫ +∞

0

nNAr
2ν(r)rirjdrdϕsinφdφ

− 1

2
NAc(R)

∑
i

∂2c(R)

∂x2
i

∫ π

0

∫ 2π

0

∫ +∞

0

nNAr
2ν(r)r2

i drdϕsinφdφ (3.48)
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where ω is defined as

ω = 4πnNA

∫ +∞

0

r2ν(r)dr (3.49)

The second and the third terms of Eq 3.48 vanish. The enthalpy per mole of

molecules at the site R is

h(R) = NAωc(R)(1−c(R))−NA

2
c(R)

∑
i

(
∂2c(R)

∂x2
i

∫ π

0

∫ 2π

0

∫ +∞

0

nNAr
2ν(r)r2

i drdϕsinφdφ

)

= NAωc(R)(1−c(R))−NA

2

c(R)

3

(∑
i

∂2c(R)

∂x2
i

)∫ π

0

∫ 2π

0

∫ +∞

0

nNAr
2ν(r)

(∑
i

r2
i

)
drdϕsinφdφ

= NAωc(R)(1− c(R))− 2πNAc(R)
1

3
∇2c(R)

∫ +∞

0

nNAr
4ν(r)drdϕsinφdφ (3.50)

because of the relation∫ π

0

∫ 2π

0

∫ +∞

0

r2
1r

2ν(r)drdϕsinφdφ =

∫ π

0

∫ 2π

0

∫ +∞

0

r2
2r

2ν(r)drdϕsinφdφ

=

∫ π

0

∫ 2π

0

∫ +∞

0

r2
3r

2ν(r)drdϕsinφdφ (3.51)

If we define a root-mean-square interaction distance λ by

λ2 =

∫ +∞
0

r4ν(r)dr

3
∫ +∞

0
r2ν(r)dr

(3.52)

the enthalpy per mole of molecules (J/mol) at the site R follows from Eq 3.50

h(R) = RTχ

(
c(R)(1− c(R))− 1

2
λ2c(R)∇2c(R)

)
(3.53)

with

χ =
ω

kBT
(3.54)
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Entropy

In this section, we will carry out a discrete analysis of the lattice model. The

local composition c(r) a surjective map from the domain of lattice sites to a discrete

set of composition values {c1, ..., cP , ...| 0 ≤ cP ≤ 1 ∀cP}. The entire lattice can be

classified to a finite number of equicomposition layers of composition {cP}, contain-

ing NP molecules correspondingly (Figure 3.4). The number of ways of arranging

the molecules within the layer of composition cP :

WP =
NP !

(cPNP )!((1− cP )NP )!
(3.55)

The total number of ways of packing for the entire lattice is

W =
∏
P

WP (3.56)

By Boltzmann’s definition of entropy, the total entropy of the lattice

S = kBlnW = kBln

(∏
P

WP

)
= kB

∑
P

lnWP (3.57)

By Stirling’s formula, ln(n!) = nlnn− n+O(lnn),

S = −kB
∑
P

NP (cP lncP + (1− cP )ln(1− cP )) (3.58)

If we denote the entropy per molecules at a lattice site of composition cP as s(cP ),

the total entropy of the lattice should be

S = kB
∑
P

NP s(cP ) (3.59)

By comparing Eq 3.58 with Eq 3.59, the specific entropy of a molecule at a lattice

site of composition c is

s(c) = −kB (clnc+ (1− c)ln(1− c)) (3.60)
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which can be converted to the entropy per mole by multiplying a factor of NA =

R/kB. This is the same as the entropy of a uniform regular solution of composition c.

Free Energy

From the enthalpy and entropy expression of a non-uniform regular solution, Eq

3.53 and Eq 3.60, the free energy per mole at position r (Eq 3.7)

g(c(r),∇c(r)) = gR0 −
1

2
RTχλ2c(r)∇2c(r) (3.61)

where gR0 is defined by Eq 3.39. In the treatment of Cahn and Hilliard (Eq 3.10),

the parameter κ1, κ2 and K can be identified

κ1 = −1

2
RTχλ2c(r) κ2 = 0 (3.62)

K

2
= −dκ1

dc
+
κ2

2
=

1

2
RTχλ2 (3.63)

In conclusion, the free energy per mole of molecules of a nonuniform regular solution

(∇c(r) 6= 0) at a lattice position r is

g(c(r),∇c(r)) = gR0 (c(r)) +
1

2
RTχλ2(∇c(r))2 (3.64)

Interfacial Free Energy and Thickness for a Regular Solution

Using Eq 3.39 and Eq 3.41, the ∆g term in Eq 3.16 for a regular solution is calculated

∆gR = gR0 −(cµA+(1−c)µB) = RT

(
−χ(c− ce)2 + cln

(
c

ce

)
+ (1− c)ln

(
1− c
1− ce

))
(3.65)
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where ce ∈ {cα, cβ}. The derivatives of gR0 (Eq 3.39) are listed:

(
gR0
)′

=
∂gR0
∂c

= RT (χ(1− 2c) + lnc− ln(1− c))

(
gR0
)′′

=
∂2gR0
∂c2

= RT (−2χ+
1

c
+

1

1− c
) = −2NAω(T ) +RT (

1

c
+

1

1− c
)

(
gR0
)′′′

=
∂3gR0
∂c3

= RT (− 1

c2
+

1

(1− c)2
)

(
gR0
)′′′′

=
∂4gR0
∂c4

= RT (
1

c3
+

1

(1− c)3
) (3.66)

From the definitions Eq 3.25 and with the property of regular solutions cc = 1/2,

βR =
1

2!

(
∂
(
gR0
)′′

∂T

)
T=Tc

=
1

2
R

(
1

c
+

1

1− c

)
T=Tc

−NAω
′(T )T=Tc

∼= 2R (3.67)

with the last equality only valid for ω′(T )T=Tc � kB, where

ω′(T )T=Tc = 4πNA

(∫ +∞

0

r2 ∂

∂T
(n(T )ν(r, T )) dr

)
T=Tc

(3.68)

and

γR =
1

4!

((
gR0
)′′′′)

T=Tc
=

4

3
RTc (3.69)

At critical condition, χ = 2. From Eq 3.20, the interfacial free energy becomes

σR = 2n

∫ cβ

cα

(
K

2
∆gR(c)

)1/2

dc = 2n

∫ cβ

cα

(
1

2
RTχλ2∆gR(c)

)1/2

dc

=
√

2nλRT

∫ cβ

cα

(
χ

∆gR

RT

)1/2

dc (3.70)

For temperature in the vicinity of Tc, by Eq 3.30, the interfacial free energy is simply

(σR)T∼Tc = 2nRTcλ

(
1− NAω

′(T )T=Tc

2R

)3/2(
Tc − T
Tc

)3/2

(3.71)

The interfacial thickness can also be obtained by plugging the values of the param-

eters K and β (Eq 3.67, Eq 3.63) into the expression Eq 3.37.
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3.3 ATPS Interfacial Thickness

In this section, we would like to study how diffuse the interface between the DEX-rich

phase and PEG-rich phase is by approximately evaluating the interfacial thickness.

Firstly, the mathematical expression for the total free energy of a ternary mixture

[25] can be obtained by the same argument as what Cahn and Hillard did for a

binary system. In the following context, PEG, DEX and water are denoted by 1, 2

and 3 respectively. The free energy for a ternary mixture is:

G = n∆

∫
V

g0(c1, c2) +
K1

2
(∇c1)2 +K12(∇c1)(∇c2) +

K2

2
(∇c2)2dV (3.72)

where n∆ represents the molar density (mol/m3), g0(c1, c2) represents the free energy

per mole of a uniform mixture of volume fraction (c1, c2, 1− c1 − c2) and c1 and c2

represent the volume fraction of PEG and DEX6. One possible option is the Flory-

Huggins expression [5]:

g0(c1, c2) = RT (
c1

N1

lnc1 +
c2

N2

lnc2 + (1− c1 − c2)ln(1− c1 − c2)

+ χ12c1c2 + χ13c1(1− c1 − c2) + χ23c2(1− c1 − c2)) (3.73)

where N1 and N2 represents respectively the number of monomers of the two poly-

mers.

The physical data that are used for analysis is summarized in the following table:

The Flory-Huggins parameters [34] are

χ12 =
245

RT
χ13 =

100

RT
χ23 =

0

RT
(3.74)

6In the derivation of the Cahn Hilliard theory (Section 3.2), c represents the mole fraction. In

fact, if you define c to be the volume fraction, the derivation of Section 3.2 does not change. In

order to be consistent with the parameter definitions by Ariyapadi and Nauman [5], c will represent

volume fraction in the calculation of interfacial thickness that follows.

34



CHAPTER 3. THERMODYNAMICS

Properties PEG(1) DEX(2)

Molecular Weight 8000 500,000

Monomer Weight 44 162

Number of monomers 180 3086

Radius of Gyration RG1 = 3nm RG2 = 15nm

Table 3.1: Physical Data for PEG and DEX

Based on the density measure of PEG and DEX solutions [2][17], the volumes of the

PEG and DEX monomer are calculated to be around 64Å
3

and 164Å
3

respectively

(The corresponding densities are 1161kg/m3 and 1645kg/m3). The molecular vol-

ume of water is around 30Å
37. Therefore, the monomer volumes of DEX and PEG

are approximately five times and two times larger than that of a water molecule.

We can see that the monomer sizes of the two polymers are different from each other

and are different from the size of a water molecule. As a result, some theoretical

treatments are not able to accurately describe this nonuniform character, in partic-

ular the Flory-Huggins theory. However, this project aims to get an approximative

caculation of the interface thickness in order to get a rough idea of its length scale.

From the theoretical treatment of Ariyapadi and Nauman [5], the gradient energy

parameters can be expressed as follows:

K1 = RT
R2
G1

3

(
χ13 +

1

N1c1

+
1

1− c1 − c2

)
K2 = RT

R2
G2

3

(
χ23 +

1

N2c2

+
1

1− c1 − c2

)
K12 = RT

(
R2
G1

6

(
χ13 − χ12 +

1

N1(1− c1 − c2)

)
+
R2
G2

6

(
χ23 − χ12 +

1

N2(1− c1 − c2)

))
(3.75)

7Since the molar volume of water is v = 18 × 10−6m3/mol, the molecular volume is approxi-

mately v/NA = 18× 10−6/(6.02× 1023) = 30× 10−30m3. Hence, nDelta = 1/v = 5.6× 105
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According to the formulation of Cahn and Hilliard [8], the specific surface free

energy for an unconfined fluid domain is minimized when the ∆g term and the

concentration gradient term are equal (Eq 3.19). It can be proved that this condition

still holds true for a ternary polymer-polymer-solvent system. The specific interfacial

free energy for a planar interface is defined as

σ = n∆

∫ +∞

−∞

(
∆g(c1, c2) +

K1

2
(∇c1)2 +K12(∇c1)(∇c2) +

K2

2
(∇c2)2

)
dx (3.76)

where ∆g(c1, c2) = g0(c1, c2)− c1µ1− c2µ2− (1− c1− c2)µ3 with µ1, µ2 and µ3 as the

respective chemical potentials of the three species in a uniform mixture of volume

fractions (cα1 , c
α
2 , 1 − cα1 − cα2 ). For a planar interface, ∇ = d/dx. Eq 3.76 can be

written in an alternative form,

σ = n∆

∫ +∞

−∞

∆g(−→c ) +
1

2
∇−→c ⊗∇−→c :

K1 K12

K12 K2

 dx (3.77)

where

−→c =

(
c1

c2

)
(3.78)

At equilibrium, the Euler-Lagrange condition has to be satisfied, i.e.,

∂I

∂−→c
=

d

dx

(
∂I

∂∇−→c

)
(3.79)

with I represents the integrand of Eq 3.77. Since I does not explicitly depend on x,

the Euler-Lagrange condition can be written as (Beltrami Identity)

d

dx

(
I − (∇−→c ) ·

(
∂I

∂∇−→c

))
= 0 (3.80)

where

d

dx
=

∂

∂x
+
∂−→c
∂x

∂

∂−→c
+
∂2−→c
∂x2

∂

∂(d−→c /dx)
(3.81)

Hence,

I − (∇−→c ) ·
(

∂I

∂∇−→c

)
= constant (3.82)
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With the boundary condition that ∆g(−→c ) and d−→c /dx tend to zero as x tends to

infinity,

I − (∇−→c ) ·
(

∂I

∂∇−→c

)
= 0 (3.83)

Since I represents the integrand of Eq 3.77,

∂I

∂∇−→c
=

K1 K12

K12 K2

 · (−→c ) (3.84)

and therefore

(−→c ) · ∂I

∂∇−→c
= (−→c ) ·

K1 K12

K12 K2

 · (−→c ) (3.85)

Hence, Eq 3.83 would become

∆g(−→c ) =
1

2
∇−→c ⊗∇−→c :

K1 K12

K12 K2

 (3.86)

In other words,

σ = 2n∆

∫
K1

2

(
dc1

dx

)2

+K12

(
dc1

dx

)(
dc2

dx

)
+
K2

2

(
dc2

dx

)2

dx (3.87)

Diamond et al [13] (Table 1 (F )) have experimentally determined the partition of

the two macromolecules in the two phases. Their experimental data for PEG 8000

and DEX 500,000 are used here for a rough calculation. The partitioning of the two

molecules is summarized in the following table.

Ryden and Albertsson [56] have determined the interfacial tension between the two

phases by the method of rotating drops for an overall composition of 5.2% DEX

and 3.8% PEG to be around 2 µN/m 8. In addition, the composition profiles of the

8Although PEG of molecular weight of 6000-7500 is used in the experiment of Ryden, the

interfacial tension they obtained should not differ significantly from that for PEG 8000. The

difference should be within a factor of 2. This can be verified by the experiments of Forciniti et al

[18]
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Total Bottom(α) %wt Top(β) %wt Bottom(α) %vol Top(β) %vol

DEX 5.2 9.46 1.05 0.060 0.006

PEG 3.8 1.85 5.70 0.017 0.050

Water 91 88.64 93.32 0.924 0.944

Table 3.2: Partitioning of PEG and DEX in the aqueous two phases. %wt means weight

percentage and %vol means volume fraction.

two polymers are assumed to be the same and vary in space as a hyperbolic tangent

function, i.e.,

ci = cαi +
cβi − cαi

2

(
1 + tanh

(x
l

))
(3.88)

The interfacial thickness is defined as l according to Cahn and Hilliard [8]. In fact,

it would be better if the composition profiles of the two polymers are characterized

by two hyperbolic tangent functions with two characteristic lengths, l1 and l2. How-

ever, in the framework of this project, one single characteristic length is assumed

just to find out a rough value for the interfacial thickness. The numerical method is

trial-and-error by constantly changing the value of l until the calculated interfacial

tension is close to the experimental value with an error less than ±5% of the exper-

imental value. The interfacial thickness l is found to be around 3µm for an overall

composition of 5.2% DEX and 3.8% PEG (The corresponding interfacial tension

is around 2 µN/m). According to Ryden and Albertsson [56], interfacial tension

less than 0.5 µN/m is obtained for even lower polymer concentration. By a similar

argument, it is found that l can be as thick as 5µm. The detailed Matlab code for

calculation is in Table 3.3.

Remark:

By rough calculation above, we find that the interface can be as thick as 1 micron for

compositions near the coexistence line (Figure 2.5(b)). If the string-like filaments
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(Figure 2.4(e)) are further sheared to smaller scales, it is possible to have overlap

between two interfaces. In addition, under such circumstances, the fluctuation of

the interface can no longer be neglected and hence needs to be taken into account

for more detailed studies.

39



CHAPTER 3. THERMODYNAMICS

Table 3.3: Matlab Code for Interface Thickness Calculation

function f = interfacialthickness

% The two polymers are assumed to have the same composition profile.

% The profile is assumed to have a shape of tanh(x)

R = 8.314; T = 298;k B = 1.3806504e-23;

chi 12=245/(R*T); chi 13 = 100/(R*T); chi 23 = 0;

N1 = 180; N2 = 3086; R G1 = 3; R G2 = 15;

c dex1 = 0.046106; c peg1 = 0.022688; c h2o1 = 0.931205; c dex2 = 0.011095; c peg2

= 0.042869246; c h2o2 = 0.946036;

% c dex1 = 0.059877; c peg1 = 0.016586; c h2o1 = 0.923537; c dex2 = 0.006460;

c peg2 = 0.049673909; c h2o2 = 0.943866;

% Ryden et al

% c dex1 =0.061375; c peg1 = 0.014982; c h2o1 =0.923643; c dex2 = 0.004857;

c peg2 = 0.051290485; c h2o2 = 0.943853;

% Diamond et al

%%%%%%%%%%%%%%%%%%%%

% Change the value of l until the interfacial tension f matches the experimental

value.

%%%%%%%%%%%%%%%%%%%%

l = 5000; % interfacial thickness in nm.

l 1 = l;

l 2 = l;

syms c1 c2 x k1 k2 k12

% 1: PEG; 2: DEX
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c1 = c peg1 + (c peg2-c peg1)/2*(1+tanh(x./l 1));

c2 = c dex1 + (c dex2-c dex1)/2*(1+tanh(x./l 2));

k1 = R G12̂/3*(chi 13 + 1/N1/c1 + 1/(1-c1-c2));

k2 = R G22̂/3*(chi 23 + 1/N2/c2 + 1/(1-c1-c2));

k12 = R G12̂/6*(chi 13 - chi 12 + 1/N1/(1-c1-c2)) + R G22̂/6*(chi 23-chi 12 +

1/N2/(1-c1-c2));

c1 diff = diff(c1,x);

c2 diff = diff(c2,x);

grad erg = k1/2*(c1 diff)2̂ + k12*(c1 diff)*(c2 diff) + k2/2*(c2 diff)2̂;

surf ener = k B*T/(30e-30)*int(grad erg,x,-3*l,3*l)*10(̂-9);

f = eval(surf ener); % N/m
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Hydrodynamics

In this chapter, both the classical and thermodynamical approaches for the modelling

of multiphase flows will be summarized. The existing theoretical and experimental

studies on the breakup of drops in flows are to be discussed, which will help with

the understanding of the morphologies of our microfluidic ATPS. By drawing an

analogy with the previous experimental studies, we will determine the critical cap-

illary numbers for the transitions between different morphology regions. Moreover,

the application of Canny Edge Algorithm to the images of the droplets shows high

degree of anisotropy. To capture more quantitative information about the droplets,

Fast Fourier Transform is employed to find out the characteristic sizes of the elon-

gated fluid filaments at different flow speeds. We find that the sizes from FFT are

well larger than the Rcrit defined by Khakhar and Ottino [37], representing the crit-

ical filament radius at which the surface disturbance starts to grow and eventually

leads to breakup. From this point of view, the existing theory is consistent with

our experimental observations. At last, the effect of chaotic mixing enhanced by the

incorporation of the meandering section will be discussed.

42



CHAPTER 4. HYDRODYNAMICS

4.1 Classical Navier-Stokes Approach

4.1.1 Interface

The science of interfaces was born at the beginning of the 19th century, when Pierre

Simon de Laplace and Thomas Young started to investigate the interfacial energy

between two immiscible fluids [70][12]. The classical definition for an interface is a

definitive boundary of infinitely thin thickness that separates two fluids of different

chemical natures (Figure 4.1). They found the pressure difference across an interface,

∆P , called the Young-Laplace pressure

∆P = 2σC (4.1)

where σ is the interfacial energy (N/m) and C is the mean curvature at the interface.

For a spherical interface of radius R, C = 1/R. For a three-dimensional curve

r = r(z) with an axial symmetry, its mean curvature is given as follows [11].

2C = − r̈

(1 + ṙ2)
3
2

+
1

r(1 + ṙ2)
1
2

(4.2)

An alternative derivation is provided in Appendix D. If ṙ is very small, the mean

curvature can be approximated by 2C = −r̈ + 1/r.

From the point of view of continuum mechanics, when we deal with microfluidic

systems, the inertial term in the Navier-Stokes equation can be neglected, making the

system linear. However, it is the presence of interfaces that is account for the non-

linearity of the multiphase system we often encounter in microfluidics. Firstly, we

define some dimensionless parameters that will facilitate our following discussions.

Re =
ρUD

η

Bo =
ρgD2

σ
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Figure 4.1: Illustration of an interface of a binary system for a classical treatment and

a real one.

Ca =
ηU

σ
(4.3)

where ρ is density, U is the characteristic velocity of the fluid, D is the characteristic

size of the flow domain and η is the viscosity of the fluid. The Reynolds number (Re)

describes the weighting of inertial effect relative to viscous effect, whereas the cap-

illary number (Ca) reveals the weighting of viscous force relative to surface tension.

Similarly, the Bond number (Bo) compares gravity with interfacial force. For flows

in a microfluidic channel, the typical Re value is 10−2, which means viscous force

dominates as compared to inertia. For a normal multiphase microfluidic system, the

capillary number is around 10−6, which represents that the surface tension is much

more important than viscous force. However, Ca can be as big as 0.01 ∼ 1 for an

aqueous two-phase system with very low interfacial tension.
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4.1.2 Classical Modeling

The classical modeling for a multiphase flow is based on the theory of continuum

mechanics. Since the typical Reynolds number is small in microfluidic system, the

inertia term , ρv∇v, can be neglected. Hence, the linearized Navier-Stokes equation

for incompressible fluids is expressed as

ρ
∂v

∂t
= −∇pi + ηi∆vi

∇ · vi = 0 (4.4)

with boundary conditions

vi(∂Ωw) = 0

pi(∂ΩI)− pj(∂ΩI) = σ(ij)∇ · n(∂ΩI) (4.5)

where i represents the fluid i, ∂Ωw means at solid boundaries, ∂ΩI means at the

interface between two fluids, σ(ij) is the interfacial tension between the fluid i and

j, n is the normal vector of the interface, p is the hydrodynamic pressure, i.e.,

p = p′ − ρgz and p′ is the total pressure.
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4.1.3 Literature Review: Dynamics of Fluid Threads and

Drops

Thread Breakup at Rest: Plateau-Rayleigh Instability

Historically, Plateau [50] found from the experiments by Savart that a falling water

jet breaks up into drops with a fast-growing wavelength(∼ 4.38D), where D is the

diameter of the cylindrical jet (Figure 4.2).

Figure 4.2: Illustration of the Plateau-Rayleigh instability. (a) A cylindrical jet (b)

Undulation at the surface (c) Liquid jet breaks up into droplets (d) dispersion relation by

small perturbation analysis for inviscid fluid jet (Source: Professor Michiel T. Kreutzer),

where the I ′0(x) and I ′1(x) are the modified Bessel functions of the first kinds

Later in 1878, Lord Rayleigh [53] theoretically showed that the interfacial area

of a cylindrical jet increases when the surface undulates with a wavelength larger

than πD. Detailed perturbation analysis has been carried out by neglecting the

viscous and body forces of the liquid jet (Appendix B.1). This can only be valid if

the Ca and Bo are small with respect to unity. A dispersion relation (Figure 4.2(d))

can eventually be achieved

ω2(κ) =
σ

ρa3

(κ2a2 − 1)iκaI1(iκa)

I0(iκa)
(4.6)
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where σ is the surface tension, ω is the angular frequency of the undulatory dis-

turbance, κ is the wavenumber and the I0(x) and I1(x) are the Bessel functions of

the first kinds. This dispersion relation shows a maximum which corresponds to the

fastest growing wavelength.

Figure 4.3: (left) Dispersion relation by Rayleigh 1892(ω = f(κa)) for water jets of

different radii a at 25oC. (right) for various viscosities. The surface tension in both

graphs is 72mN/m and the density is 1g/cm3. The black thin line represents the fast

growing modes

In 1892, Rayleigh [54] theoretically found out the dispersion relation for viscous

fluids by neglecting the kinetic energy (∼ U2):

det

 Q(ω, κa) Z(ω, κa)

2κ2I ′0(iκa) (κ2
1 + κ2)I ′0(iκ1a)

 = 0 (4.7)

where Q(ω, κa) and Z(ω, κa) are defined by Eq B.74 and Eq B.75. The dispersion

relation is plotted in Figure 4.3 for water jets of different radii at 25oC and for
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various viscosities. We can see clearly that the fast growing mode κamax does not

depend on the radius of the liquid jet. However, this is just an artificial result of

the Rayleigh’s model and it is not true in reality. For large liquid jet, the Reynold’s

number can become so significant that the kinetic energy cannot be neglected and the

Laplace pressure cannot be approximated by Eq B.49 in Appendix B, which makes

the analysis of Rayleigh [54] less valid. In addition, we observe that as the viscosity

increases, the fast growing wave number κ tends to zero, which corresponds to an

infinitely large wavelength. This is to say that the liquid jet of very high viscosity

will not break up. If the viscous effect dominates (ρ → 0), the dispersion relation

becomes

iω =
σ(κ2a2 − 1)

2µaκ2a2
(
I2

0 (iκa)/I
′2
0 (iκa) + 1 + 1/(κ2a2)

) (4.8)

However, the analysis by Rayleigh [53][54] only consider liquid jets exposed to

vacuum (µ′/µ → ∞), where the superscript ′ represents the fluid jet. In 1935,

S. Tomotika proposed some improvement in two consecutive papers by considering

viscous liquid threads surrounded by another stationary viscous fluid [64] and by

another viscous fluid which is extending at a uniform rate [65]. The first paper by

Tomotika is very similar to the paper by Rayleigh in 1892 [54]. The only differences

are the boundary conditions. The boundary condition for viscous liquid jet immersed

in another viscous liquid:

The general dispersion relation obtained by Tomotika is

det


Ĩ1(κa) Ĩ1(κ′1a) K̃1(κa) K̃1(κ1a)

κaĨ0(κa) κ′1aĨ0(κ′1a) −κaK̃0(κa) −κ1aK̃0(κ1a)

2µ
′

µ
κ2Ĩ1(κa) µ′

µ
(κ2 + (κ′1)2)Ĩ1(κ′1a) 2κ2K̃1(κa) (κ2 + κ2

1)K̃1(κ1a)

F1 F2 F3 F4


= 0

(4.9)
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1 The difference in normal stress at the surface is equal to the Laplace pressure:

σrr(r = a)− σ′rr(r = a) = 2C(r = a)σ

2 There is no singularity at r = 0

3 The velocity of the surround fluid at infinity is zero: v(r = +∞) = 0

4 There is no slip at the surface: vr(a) = v′r(a)

5 The tangential stress at the surface is continuous: σ′zr(a) = σzr(a)

where the functions F1, F2, F3 and F4 are defined by Eq C.1 in Appendix C and

Ĩi and K̃i are the modified Bessel function (Figure B.1). If the inertial effect is

negligible, i.e., ρ→ 0 and ρ′ → 0, the general dispersion relation (Eq 4.9) simplifies

to

iω =
ω

2µa
(1− κ2a2)Φ(κa) (4.10)

where Φ(x) is defined by Eq C.2 in Appendix C.

In 1996, Howard A. Stone and Michael P. Brenner [59] directly included a jump

of normal stress to the Stokes equation1 to account for the Laplace pressure. Then,

they empolyed Hankel transform with appropriate boundary conditions and they

arrived at the same expression as Tomotika’s general result (Eq 4.9) with µ′/µ = 1

for the case of a capillary thread immersed in another viscous fluid of infinitely large

volume:

ω(κ) =
σ

µa
κ2
(
1− (κa)2

) (
Ĩ1(κa)K̃1(κa) +

κa

2

(
Ĩ1(κa)K̃0(κa)− Ĩ0(κa)K̃1(κa)

))
(4.11)

With a different set of boundary conditions, they also obtained the dispersion re-

lation for a thread immersed in another cylinder of viscous fluid, with 1 and 2

1Stokes equation is valid for fluid flows of negligible inertia
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representing the inner and outer cylinders respectively.(
ω − κ2σ1

a1µ

(
1− (κa1)2

)
Λ(a1, a1)

)(
ω − κ2σ2

a2µ

(
1− (κa2)2

)
Λ(a2, a2)

)

=
κ4σ1σ2

a1a2µ2

(
1− (κa1)2

) (
1− (κa2)2

)
Λ(a1, a2)2 (4.12)

with

Λ(b, c) =

∫ ∞
0

sI1(sb)I1(sc)

(s2 + κ2)2
ds (4.13)

Since the investigation of Rayleigh, there has been active research on the breakup of

liquid threads in another quiescent liquid. More recent publications include notably

[10][38][40][47].

Table 4.1: Summary of the Plateau-Rayleigh Instability

Assumption Paper Dispersion

Relation

General thread in another liquid U2 ∼= 0 [64] Eq 4.9

General thread in vacuum µ′/µ→∞, ρ→ 0 [54] Eq 4.7

Inviscid thread in vacuum µ, µ′ → 0, ρ→ 0 [53] Eq 4.6

Viscous thread in another liquid ρ, ρ′ → 0 [64] Eq 4.10

Viscous thread in vacuum ρ, ρ′ → 0,µ′/µ→∞ [54] Eq 4.8

Viscous thread in equally viscous liquid ρ, ρ′ → 0, µ′/µ = 1 [59] Eq 4.11

Viscous thread in equally viscous cylinder ρ, ρ′ → 0, µ′/µ = 1 [59] Eq 4.12

Note: Superscript ’ represents the inner liquid thread. Viscous thread means the viscous

effect dominates and inviscid thread means the inertial effect dominates
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Thread Breakup in Flow

Other than the previous investigations on thread breakup in a quiescent fluid matrix,

the breakup of liquid threads in flow has also been theoretically studied. The first

paper is by Tomotika in 1936 [65]. He studied the breakup of liquid thread in an

elongational flow, i.e.,

vr = −1

2
Gr vz = Gz (4.14)

The starting equations are Stokes equation in terms of stream function ψ and the

continuity equation for incompressible fluids. The boundary conditions used are

very similar to his paper on thread breakup at rest [64]. One additional condition is

imposed on top of the three boundary conditions specified in Appendix B.2.1: the

velocity is continuous at the surface of the thread.

However, Tomotika did not take into account the varicosity of the surface when

he specified the boundary conditions at the surface. In 1975, T. Mikami, R. G.

Cox and S. G. Mason [44] analyzed the problem by the theory of perturbation in

a systematic matter. They considered the varicosity of the thread surface as a

perturbation to the leading-order flow ∼ O(1), which is just an elongational flow of

a liquid thread without surface varicosity. The velocity profiles for the inner and

the surrounding liquids to the leading order are both

(v0)r = −1

2
Gr (v0)θ = 0 (v0)z = Gz (4.15)

where the subscript 0 refers to the case without perturbation on the thread surface.

Then, perturbation is introduced to the surface of the thread by

r = a+ εα0cosκz (4.16)

The velocity profiles for the inner liquid thread and the surround liquid are

v′ = v′0 + εv′1 (r < a+ εα0cosκz) (4.17)
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v = v0 + εv1 (r > a+ εα0cosκz)

where the superscript ’ represents the inner liquid thread and the subscript 1 refers

to the correction to the first order (∼ O(ε)). The Cauchy stress tensor

σij = (σ0)ij + ε(σ1)ij (4.18)

The boundary conditions are subsequently linearized and only the correction to

the first order (∼ O(ε)) is considered. The only difference between the analysis of

Mikami et al [44] and Tomotika [65] is the boundary condition for the continuity of

the tangential stress. By perturbation analysis to the first order, Mikami et al found

that the continuity of the tangential stress to the first order should be expressed as

(σ′1)rz + 3η′Gα0κsinκz = (σ1)rz + 3ηGα0κsinκz (4.19)

at r = a and they arrived at a growth relation a bit different from that from Tomotika

(See Eq 65 in Mikami et al [44]). They also identified four dimensionless parameters

(η′/η, σ/(ηa0G), Gt, x = κa) and studied the asymptotic values for various extreme

cases.

In 1986, D. V. Khakhar and J. M. Ottino [37] extended the previous works to

general linear flows with asymmetric varicosity at the surface. A general linear flow

is characterized by the following relation

dx

dt
= ∇v · x (4.20)

∇v can be diagonalized except for α = 0 (See Eq F.1). For α 6= 0, the deformation

gradient tensor (F̃ = ∂x̃/∂X) is a diagonal matrix in the eigen-frame2. In this

eigen-frame, the analysis would become similar to the previous works by Tomotika

[65] and by Mikami et al [44]. Then, they introduced two perturbations: one for

2In other words, the axis of the eigen-frame are the eigenvectors of ∇v
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the varicosity of the surface (ε1) and the other to account for the asymmetry of the

disturbance (ε2)

r = a+ ε1α0cos(κz + ε2κaβ) (4.21)

where β specifies the non-axisymmetric phase shift of the disturbance. Perturbation

analysis up to the first order (∼ O(ε1, ε2)) is then performed (similar to [44]). A

general growth relation was obtained (Eq 9 by Khakhar and Ottino [37]).

Drop Breakup in Flow

The breakup of drops in flows is a very difficult problem in fluid mechanics and it

is of great industrial interests. To date, it has been extensively studied by a large

number of mathematicians, experimental and theoretical fluid physicists. The first

investigation dated back to the pioneer experimental work by G. I. Taylor, who is

the first one to used a four-roll mill (α = 1) and a parallel band (α = 0) apparatus to

experimentally study the effect of flow parameters and flow types on the deformation

and breakup of liquid drops [63], where the definition of α is in Appendix F. He found

that there is a critical capillary number, Cac above which the drop breaks up.

Since then, there has been many theoretical works on the deformation and

breakup of drops in linear flows. Two comprehensive review papers by A. Acrivos

[1] and by Rallison [52] have summarized the majority of them. Many experimental

works have also been done [55][35][20][67]. But, most of them are only limited to

simple shear flows (α = 0) and 2D elongational flows (α = 1).

Later in 1986, B. J. Bentley and L. G. Leal experimentally studied the breakup

of drops in other types of linear flows (α = 0.2, 0.4, 0.6, 0.8, 1.0) for different viscosity

ratios using a computer-controlled four-roll mill [6]. He found that the prediction

from existing theories agreed well with his experimental results.
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4.2 Thermodynamic Navier-Stokes-Cahn-Hilliard

Approach

4.2.1 Modelling Equations

Now, we are able to write the governing equation for a binary fluid system. In

the framework of this thesis, the concentration and momentum fluctuation due to

thermal noise are neglected. We assume that the fluids are incompressible and

Newtonian. The Navier-Stokes Equation is written as

ρ
Dv

Dt
= −∇p+ η∇2v + f (4.22)

∇ · v = 0 (4.23)

where p is the hydrodynamic pressure and f represents the additional force due to

the presence of composition gradient

f = µ∇c(r) (4.24)

where µ represents the chemical potential (See Equation 3.13). This coupled Navier-

Stoke-Cahn-Hilliard(NSCH) equation is referred as the model H in the theory of

dynamic critical phenomena by P. C. Hohenberg and B. I. Halperin [28]. Alternative

approaches for the derivation of the NSCH equation are available, notably by M.

E. Gurtin [21][22] and by J. Lowengrub and L. Truskinovsky [39]. In addition, the

local mass balance equation is

∂c

∂t
+ v · ∇c+∇ · J = 0 (4.25)

By the general Fick’s Law, the flux

J = −D∇µ (4.26)
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where D is a mobility term and depends on local composition.

Boundary conditions have to be imposed in order to solve the three partial dif-

ferential equations above. Firstly, the boundary is nonslip,

v(∂Ω) = 0 (4.27)

Since none of the mixture can penetrate through the boundary, we have

∇c · n = 0 (4.28)

In addition, we must have

∇µ · n = 0 (4.29)

where ∂Ω represents the boundary and n is the normal vector to the boundary. This

condition guarentees that the flux across the boundary is not possible. The system

has to minimize its total free energy inside the boundary.

4.2.2 Theoretical Solution

Since we are dealing with microfluidic systems, the Reynolds number is typical

much smaller than unity. Therefore, the system is over-damped and it’s legitimate

to ignore the inertial term ρv∇v [7]. The Navier-Stokes equations for steady incom-

pressible flow becomes

∇ · v = 0 (4.30)

0 = −∇p+ η∇2v + f (4.31)

In Fourier Space, they are expressed as

k · v̂(k) = 0 (4.32)
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0 = ikp̂(k)− ηk2v̂(k) + f̂(k) (4.33)

By multiplying Equation 4.33 by k and using Equation 4.32, we have

p̂(k) =
ik̂f(k)

k2
(4.34)

Therefore, from Equation 4.33, we have

v̂(k) = T̂ (k)̂f(k) (4.35)

where

T̂ (k) =
1

ηk2
(I − k⊗ k

k2
) (4.36)

is the Oseen-Burgers Tensor in Fourier space. In real space, it is expressed as

(Appendix A)

T (r) =
1

8πηr
(I +

r⊗ r

r2
) (4.37)

Hence, the velocity field is

v(r) = T ∗ f(r) =

∫
R3

T (r− r′)f(r′)dr′ =

∫
R3

T (r− r′)µ(r′)∇′c(r′)dr′ (4.38)

where ∗ represents an operation of convolution. By substituting this expression into

the local mass balance equation, we have a partial differential equation with only

c(r) as the variable:

∂c

∂t
= D∇2µ(c(r))−

∫
R3

∇c(r) · T (r− r′) · µ(r′)∇′c(r′)dr′ (4.39)
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4.3 Investigation on Phase Morphologies

4.3.1 Physical Properties

In order to investigate how the transition between different morphologies occurs,

we have to measure the relevant physical properties, such as viscosities and sur-

face tensions for different compositions. Mixtures of PEG and dextran solutions

of different initial compositions are allowed to phase separate in batch. The bot-

tom phase(equilibrium dextran-rich phase) and the top phase(equilibrium PEG-rich

phase) are separately taken out for viscosity measurements using AR-G2 Rheome-

ter. They are summarized in Table 4.2 and are interpolated in Figure 4.4(a)(b). The

surface tensions for different compositions are obtained from the experimental data

by Ryden et al [56] and Helfrich et al [26]. These data are interpolated in Figure

4.4(c)(d) for subsequent analysis of morphology transition.

Composition ηPEG ηDEX ηc ηd

%w/w (Pa-s) (Pa-s) (Pa-s) (Pa-s)

4.0 0.0038 0.0136 0.0035 0.0194

5.5 0.0057 0.0250 0.0035 0.0772

6.5 0.0074 0.0346 0.0044 0.1412

7.0 0.0085 0.0402 0.0049 0.1787

7.5 0.0096 0.0473 0.0055 0.2297

8.0 0.0138 0.0732 0.0074 0.4479

Table 4.2: The viscosities of the PEG (ηPEG) and DEX (ηDEX) solutions before mixing

and the viscosities of the top (ηc) and bottom phases (ηd) at equilibrium for different

initial compositions. Temperature: 25 oC.
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Figure 4.4: Equilibrium viscosities at (a) DEX-rich phase, ηd (b) PEG-rich phase, ηc. (c)

viscosity ratio, p(= ηd/ηc). (d) Interfacial tension, σ, between PEG and DEX at various

compositions.

4.3.2 Investigation on Phase Morphologies

Physical Interpretation

In this project, different phase morphologies at different flow rates and compositions

have been classified in Section 2.2.1. The underlying physics is simply a competition

between the interfacial tension and shear stress in the aqueous droplets. At very

low flow rates, the interfacial tension dominates over the shear stress and its natural

tendency to minimize the surface area results in a single-lobed morphology as the

static case (Figure 4.5). As the flow rate increases until the shear stress becomes
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comparable to the interfacial tension, the interface will be destabilized and torn apart

by the shear. At high flow rates, the inner phase will be deformed to a great extent,

forming reticulated phase morphology and string-like morphology for relatively low

compositions as reported by Hashimoto [24]. At compositions near the critical points

and at the maximum flow rate possible in our device, the aqueous two-phase droplets

can become transparent at low resolutions of the microscope, forming a very stable

quasi-homogenized phase as explained in Section 2.2.2. However, high anisotropic

string-like filaments can still be observed at high resolutions (Figure 2.4(e)).
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Figure 4.5: Stereomicroscopic images of ATPS droplet structures (C = 5%w/w) captured

at various locations of the microchannels with increasing flow speeds (b) 0.64mm/s (c)

4.3mm/s (d) 7.5mm/s. Scale bar: 100µm
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Transition Analysis

The deformation and breakup of drops in flows has been studied by many prominent

researchers [63][20][6] (Section 4.13). They found that for different viscosity ratios

and flow types, there is a critical capillary number above which the drop will break

up. In analogy with their arguments, we also define a capillary number for the

microfluidic aqueous two-phase droplet as

Ca =
Uηc
σ

(4.40)

Figure 4.6: Morphology phase map. The dark gray region marks the occurrence of

coflow instead of forming ATPS droplets. The light gray area is the miscible region of the

two polymer solutions. Inset shows morphology variation of the ATPS droplets at a flow

speed of 3.2 mm/s. The binodal line are obtained from Diamond and Hsu (1989) [13].
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where ηc is the equilibrium viscosity of the outer PEG-rich phase and U is the

flow speed. We also determined that the critical capillary number for the transition

from the single-lobed morphology to the heterogeneously fragmented morphology,

Cac = 0.2 (Dashed line I in Figure 4.6). We also found that the capillary number

that characterizes the transition from the heterogeneously fragmented morphology

to the reticulated morphology (Dashed line II in Figure 4.6) is 4Cac = 0.8.

4.3.3 Digital Image Processing

Canny Edge Detector

In order to investigate the reticulated structure further, it is greatly desired to

find out how the interface is distributed inside the aqueous droplet. Therefore, the

original images from digital microscope have been analyzed by the Canny Edge De-

tector algorithm (Figure 4.7). From the image by post hysteresis, highly anisotropic

string-like edges along the direct of the flow can be observed. Unfortunately, it is

difficult to quantify the degree of randomness or orderedness in term of string-like

patterns by image processing. One possible solution might be to use phase contrast

microscope or to carefully measure the refractive index at different locations in the

aqueous droplet since the refractive index is proportional to the concentration of the

polymers [48].
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Figure 4.7: Image processed by the algorithm of Canny Edge Detector

Fast Fourier Transform

Although the treatment by Canny Edge algorithm shows the anisotropic feature of

the droplet morphology, it does not give any quantitative data about the degree

of anisotropy or the characteristic size of the anisotropic string-like fluid domains.

Hence, 2-dimensional Fast Fourier Transform (FFT) is employed in order to find

out the characteristic size of those elongated filaments, which will give us a clearer

picture about the degree of anisotropy and the extent of elongation.
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Figure 4.8: (i) Stereomicroscopic images of reticulate structures of ATPS compound drop

(C = 4% w/w) captured at L ∼= 110 mm with total flow speeds (a) 2.1 mm/s (b) 4.3 mm/s

(c) 6.4 mm/s (d) 10.7 mm/s (e) 15.0 mm/s. Scale bars represent 100 µm. The dashed

squares in the original images represent the region selected for FFT. (ii) corresponding

FFT results. Black scale bars represent 100 µm and white scale bars represent a frequency

of 20.
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Figure 4.8 shows the 2D FFT of stereomicroscopic images of ATPS droplet struc-

tures for a composition near the binodal line (4%w/w PEG and 4%w/w DEX) at

different flow speeds (2.1 mm/s, 4.3 mm/s, 6.4 mm/s, 10.7 mm/s and 15.0 mm/s).

The characteristic sizes of the fluid filaments at different flow speeds are extracted

from the FFT results and are plotted against the flow speed (Figure 4.9). We do see

a general trend of decreasing filament size with increasing flow speed. More inter-

estingly, we also find that the characteristic size approaches to order of interfacial

thickness, l ∼ 1µm(Section 3.3). This gives us a general idea about the scale of the

elongated fluid filaments. One would naturally ask what if we infinitely increase the

flow speed. In other words, is shear stress able to homogenize the otherwise aque-

ous two-phase droplets at static equilibrium? This question will be investigated in

details in Chapter 5.
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Figure 4.9: Characteristic width of reticulate filaments, Lc (C = 4% w/w and 5% w/w),

obtained from FFT with varying total flow speeds, U. Lcalc represents calculated critical

size, Rcrit defined in Khakhar and Ottino 1987 [37]

In the following, we will investigate the connection of our results from image

processing with existing literature. From Grace 1971 [20] (Figure 4.10(right)) and

Bentley and Leal 1986 [6], we know that 2D elongational flow is the most efficient

among all types of linear flows for the deformation and breakup of drops. We esti-

mate the elongation rate ε̇ by U/H (despite overestimation), where the elongation

rate is defined as ε̇ = Γ : (m⊗m)3, U is the flow speed of the droplets and H is the

channel depth (100µm).

3For 2D elongational flow, ε̇ = G where G is defined in Appendix F. m: orientation vector.
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Figure 4.10: (left) Scaled critical thread radius versus scaled stretching rate ε̇. Adopted

from Janssen [31]. (right) Critical capillary number versus the viscosity ratio p in simple

shear and 2D elongational flows. Adopted from Janssen and Meijer 1993 [32](Reproduced

from Grace 1971 [20])

Then, we apply the theoretical analysis by Khakhar and Ottino [37] for the

breakup of drops in general linear flows to find out the Rcrit, representing the

starting point for the growth of disturbance that finally leads to breakup (Fig-

ure 4.11). The theoretical results by Khakhar and Ottino are summarized to a

figure by Janssen (Figure 4.10(left)), from which we obtain the two Rcrit curves at

different flow speeds (Figure 4.9 Lcalc). Knowing that 2D elongational flow is the

most efficient for drop breakup and that ε̇ = U/H is an overestimation, Rcrit should

characterize the finest possible filament size in the droplets. From Figure 4.10, we

do observe that Lcalc = Rcrit is well below the characteristic sizes of the filaments

obtained by FFT of the stereomicroscopic images of the droplets. From this point

of view, the existing theory is consistent with our experimental observations.
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Figure 4.11: Evolution of the undisturbed radius R of a thread that is extending at a

constant rate ε̇ (dashed line) and evolution of disturbances with difference amplitude α

and with different initial wave numbers (solid curve). Taken from Janssen’s Ph.D thesis

[31].

4.4 Effect of Chaotic Mixing

According to Ottino [46], chaos refers to a situation where a slightly perturbation

in the initial condition leads to a completely different trajectory. In mathematical

language, |dx| = eσt|dX|, with a positive σ called the Liapunov exponential. The

necessary and sufficient condition for chaos is that the flow has homoclinic or het-

eroclinic points. If a system is two dimensional, it has only one degree of freedom,

the stream function, ψ(x, y). A steady two-dimensional flow is always an integrable

Hamiltonian system and as a result, convective mixing is rather poor. However, if

the stream function ψ(z, r, t) is time-periodic, the system becomes a Hamiltonian

system with one and a half degrees of freedom and it produces chaotic mixing in

most cases. One example would be the alternating vortices in a circular domain [4].
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If we investigate the streamline inside the microchannel (Figure 4.12), there are two

Figure 4.12: The circulation pattern of a droplet in a circular microchannel. Hyperbolic

points in white. Adapted from Hodges et al [27]

hyperbolic points in the dispersed droplet represented by the white spots, indicat-

ing the presence of chaotic mixing due to the nonlinearity induced by the interface.

However, the fluid particles in the middle part of the dispersed droplet are trapped

by the circular streamlines. In order to find out what will happen to our system if

we increase the degree of chaotic mixing, a meandering section is incorporated in the

device, which introduces time-periodic twists of the dispersed droplet and thereby

promoting the interchange of materials across streamlines.

As for our experiment, the DEX phase inside the droplet got much more dis-

persed after flowing through the meandering section (Figure 4.13). We can conclude

that the meandering section can introduce more degree of chaotic mixing, enhancing

the dispersion of the DEX-rich phase in the aqueous droplet.

In order to study the pattern of mixing inside a fluid domain, it is always diffi-

cult to distinguish the convective mixing from molecular diffusion if a dye is added

into the fluid. With an aqueous two-phase system of ultra-low interfacial tension,

molecular diffusion is prohibited due to its tendency to minimize the interfacial area.

Hence, this ATPS of low interfacial tension can potentially be used to determine the

existence of chaotic mixing as well as the efficiency of convective mixing.
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Figure 4.13: Stereomicroscopic images of ATPS droplet structures (C = 5%w/w)

obtained along the meandering portion of the microchannel with increasing flow speeds

(a)0.64 mm/s (b)4.3 mm/s (c)7.5 mm/s. Scale bars represent 100 µm.
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Shear-Induced Homogenization

In this chapter, Nauman’s studies on the thermodynamics of ternary systems will

be briefly summarized and the possibility of shear-induced homogenization in the

microfluidic ATPS will be discussed from both classical and thermodynamical points

of view.

5.1 Nauman Theory for Ternary Systems

Different from the formulation of Cahn and Hilliard which is for an unconfined

binary fluid domain, Nauman and Balsara [41] generalized it to a multi-component

system of confined fluid domain. For illustrative purpose, a ternary system is taken

for detailed analysis and derivation and the theory in this section can easily be

generalized to multi-component systems. Essentially, it is a classical minimization

problem with constrains. The functional that has to be minimized is the total free

energy of the system expressed as

Gtotal =

∫
V

g(a, b, c,∇a,∇b,∇c)dV
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=

∫
V

g0(a, b, c) +
K1

2
(∇a)2 +K12(∇a)(∇b) +

K2

2
(∇b)2dV (5.1)

with the following constrains

a =
1

V

∫
V

adV b =
1

V

∫
V

bdV c =
1

V

∫
V

cdV (5.2)

The minimum condition must satisfy the Euler-Lagrange equations(
δGtotal

δa

)
b,c

= γA

(
δGtotal

δb

)
a,c

= γB

(
δGtotal

δc

)
a,b

= γC (5.3)

where γA, γB and γC are the Lagrange multipliers for the three constrains. It is

important to note that a, b and c are all considered as independent variables first

before imposing the relation a + b + c = 1 at the end of the theoretical analysis,

which has no difference to if this relation is imposed at the very beginning. Nauman

and Balsara introduced a new thermodynamic property, the variational free energy,

Υ, defined by the following relationship:(
∂Υ

∂a

)
b,c

=

(
δGtotal

δa

)
b,c

(5.4)

This variational free energy, Υ is equivalent to the average molar property of a

mixture in the context of classical thermodynamics. According to Van Ness and

Abbott [66], the partial molar property can be expressed as

M i = M +

(
∂M

∂xi

)
T,P,xj 6=i

−
∑
k

xk

(
∂M

∂xk

)
T,P,xj 6=k

(5.5)

Hence, the generalized chemical potential for each species is defined as

µA = Υ + (b+ c)

(
∂Υ

∂a

)
b,c

− b
(
∂Υ

∂b

)
a,c

− c
(
∂Υ

∂a

)
b,c

(5.6)

with µB and µC defined in similar manner. It is important to note that this vari-

ational free energy is a thermodynamically consistent variable because it satisfies

both the Euler’s relation

Υ = aµA + bµB + cµC (5.7)
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and the Gibbs-Duhem equation

a∇µA + b∇µB + c∇µC = 0 (5.8)

From the definition of the variational free energy (Eq 5.4), we have(
∂Υ

∂a

)
b,c

= γA

(
∂Υ

∂b

)
a,c

= γB

(
∂Υ

∂c

)
a,b

= γC (5.9)

By integration,

Υ = aγA + bγB + cγC (5.10)

By comparison with the Euler’s relation (Eq 5.7), we find that Lagrange multipliers

are actually the chemical potentials for each species, γi = µi. According to the

generalized Fick’s law,

jA = −Da∇µA (5.11)

The equation above can be written in another form (Appendix D)

jA = −Da (b∇(µA − µB) + c∇(µA − µC)) (5.12)

The same form of expressions applies to µB and µC . With the conservation equation

for each species,

∂ci
∂t

= −∇ · ji (5.13)

we will be able to model the phase separation and the hydrodynamics of the ternary

mixture.

With the theoretical analysis developped above, He et al [25] linearized the

Euler-Lagrange equations by Taylor expansion to the first order around the critical

condition. They found that the minimum size that can possibly exist inside a ternary

polymer blend is to the order of the radius of gyration of the polymers, RG (typical

between 3RG and 10RG).
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5.2 Possibility of Shear-induced Homogenization

Dated back to the 1930s, Taylor had investigated the stability of a droplet under

uniform shear stress in an unconfined domain [63]. The essential idea is that the in-

terface will be destabilized once the shear stress becomes comparable to the Laplace

pressure of the droplet. It was shown that in an unconfined shear field, droplets with

Ca = ηγ̇R/σ less than a critical value Cac remain stable, while those with Ca larger

than Cac will be stretched and break up. Here, η is the viscosity of the bulk fluid,

γ̇ is the shear rate of the bulk fluid, R is the size of the droplet and σ is the interfa-

cial tension between the bulk phase and the dispersed phase. Most of the previous

studies mainly concentrated on an unconfined uniform shear field. T. Hashimoto

reported in a series of papers ([23][60][61][19][24]) that polymer blends exhibited

highly anisotropic string-like morphology near a thermodynamic phase-transition

point. When the shear rate is greater than a critical value, a shear-induced ho-

mogenization is achieved (Figure 5.1). Later on, Migler [43] investigated the phase

behavior of polymer blends between two rotating disks with a gap d = 36 ± 5µm

comparable to the breakup size RB = Cacσ/ηγ̇. A transition from a dispersed

phase to a stable string phase upon decreasing shear rate was reported. In our ex-

periments, blending of two polymers within a microfluidic droplet of the order of a

few picolitres has been studied.

Classical Approach

Our system differs from the previous studies in literature as the fluid domain is

confined and the shear stress is not uniform. As a result, it is only possible for

analysis based on the order of magnitude. Next, we will analyze the velocity required

for the characteristic size of the dextran-rich phase to reach the order of the radius
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Figure 5.1: Transmission light micrographs for PS/PB (80:20)/DOP 3.3 w% at ∆T =

14oC. Taken from Hashimoto et al [24]. They claimed that further increase in flow rate

would lead to homogenization.

of gyration (< 100nm), which is the necessary condition for homogenization [25].

The physical properties of the fluids at ambient temperature are:

PEG 10 wt% DEX 10 wt% Water

Surface Tension with 8.2 17.6 5.4

PFD/PO(mN/m)

Viscosity(mPa-s) 5.4 19.7 0.8

Table 5.1: Viscosity and Surface Tension with the oil

If the classical concept of interface of infinitesimal thickness is assumed to be valid,

similar argument as Taylor applies

η
U

L
∼ σ

R
(5.14)

where U is the average velocity of the fluid, L is the characteristic size of the mi-

crochannel ( ∼ 100µm), σ is the interfacial tension (∼ 1µN/m for compositions near

the miscibility line [56]) and R is the characteristic size of the DEX-rich structure.

Therefore,

10−3 U

10−4
∼ 10−6

R
(5.15)
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In order to tear the DEX-rich phase to structures of the order of 100nm, an average

velocity of 106µm/s ∼ 104L/s must be imposed and in practice, this is far out of

the operating range1. From this classical point of view, it is not possible to achieve

complete homogenization just by the shear caused by the flow in the microchannel

of the current design.

Thermodynamic Exploration

For large systems where the energy of the interface is negligible as compared to the

free energy of the entire system, phase separation is preferred to have a significant

decrease in total free energy [42]. However, for small systems, the second term in

the free energy (∇c)2 scales as (c/d)2 starts to dominate as d tends to zeros, where

d represents the characteristic size of the system. Since this gradient term, (∇c)2, is

always positive, the system would prefer a zero-gradient state, i.e., a state of uniform

composition, if the decrease in the first term of the free energy by phase separation

can no longer compensate for the increase in the second term.

Nauman and He [41][42][25] have theoretically studied such a pitchfork-type

bifurcation for both binary systems and ternary systems by imposing zero concen-

tration gradient at the boundaries and resorting to Taylor expansion around the

average composition, ci. They found that if the characteristic size of the fluid do-

1The possible velocity that can be achieved is within 50 times the width of the channel per

second. This limitation of our design is due to the fact that at high flow rates, the two polymer

streams at the inlet will coflow instead of forming emulsions. The operating range can be improved

by an alternative design in which the two polymer stream form emulsion at low flow rate and an

additional stream of oil is injected downstream to speed up the flow. However, the PDMS device

will delaminate if the internal pressure exceeds a certain limit and this limitation is insurmountable
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main is smaller than a critical value, Lc , the system will be homogeneous. For a

binary system,

Lc = π

(
K

−g′′(a)

)1/2

(5.16)

with K defined as in Eq 3.11. For a ternary system, the expression is given by Eq

14 in He et al [25]. However, direct substitution of the physical parameters for our

ATPS into the expression by He et al gives an imaginary number. This might be due

to the fact that the expression by He et al is obtained from Taylor expansion near

critical conditions and as a result, it is only valid for compositions in extremely close

vicinity of the binodal line. Moreover, the accuracy of the interaction parameters

provided by H. Johansson [34] is questionable.

Although many current literatures have reported shear-induced homogenization

by techniques of light scattering or confocal microscopes (Figure 5.1), their definition

of such homogenization is that the dispersed fluid droplets cannot be detected by

light. In our case, we do observe apparently homogeneous droplets at low resolutions

of the microscope. At higher resolutions, very fine and elongated fluid domains

with very poor contrast with the matrix fluid can still be observed. Moreover,

homogenization might be induced by augmentation of temperature resulting from

large viscous dissipation (2ηΓ : Γ) at high shear rates. Hence, it’s difficult to tell

whether a complete homogenization up to the level of radii of gyration (RG) can be

induced by applying shear. Another possibility is to study this problem from the

point of view of the energy of the system, which for sure will be part of research

focus in the future.

77



Chapter 6

Future Work

In the framework of this thesis, the hydrodynamics and the thermodynamics of the

aqueous two-phase microfluidic droplets have been studied in details both by exper-

iments and by theoretical analysis. Microfluidic aqueous two-phase droplets were

created in a continuous and uniform fashion by injecting two polymer solutions at

a Y-shaped junction into the continuous phase. It was found that the microfluidic

droplets exhibited a continuum of morphologies for different flow speeds and com-

positions and a morphology phase map was constructed in order to facilitate the

control of the morphology of such compound droplets.

In order to understand the underlying physics, the author derived the Cahn-

Hilliard theory from the Landau theory and the author applied similar analysis

for a ternary system and arrived at the conclusion that the surface free energy is

minimized when the ∆g term is equal to the gradient term (3.86) even for ternary

systems. Based on these theoretical analysis, the interfacial thickness (l) of the

PEG-dextran aqueous two-phase system(ATPS) was approximately calculated to

be a few microns near critical concentrations from the experimental measurement
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of interfacial tensions for different compositions in literature [56][26]. Fast Fourier

Transform (FFT) was employed to find out the characteristic sizes of the elongated

fluid filaments at different flow speeds and it was found the elongated fluid filaments

resulting from great shear rate can reach the order of interfacial thickness.

The existing theoretical and experimental studies on the breakup of drops in

flows were summarized, which helped with the understanding of the morphologies

of our microfluidic ATPS. By drawing an analogy with the previous experimental

studies, we will determine the critical capillary numbers for the transitions between

different morphology regions on the morphology phase map that was constructed.

It was also found that the sizes from FFT are well larger than the Rcrit defined

by Khakhar and Ottino [37], representing the critical filament radius at which the

surface disturbance starts to grow and eventually leads to breakup. From this point

of view, the existing theory is consistent with our experimental observations

Our current device has a small operating range of flow rate. It should be possible

to enlarge it by better design of the process. For example, the formation of aqueous

two-phase droplets takes place upstream at low flow rate and an additional stream

of continuous phase is injected downstream to increase the flow rate and hence the

shear. By doing so, coflow of the two polymer solution streams can be suppressed

and we will be able to study the morphology of the droplet and the possibility of

microfluidic-based homogenization at much higher flow rates that cannot be achieved

by the current device. More creative microfluidic designs are desired to separate the

satellite droplets from the large ones on-chip and collect the micro-sized aqueous two-

phase droplets off-chip. Our system should also be analyzed by more sophisticated

equipment like confocal microscope or fluorescence microscope to better understand

the partitioning of the two polymers. If the characteristic sizes of the elongated
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filaments in both the longitudinal and the transverse directions can be quantitatively

captured, we could compare the degree of deformation with the experiments done

by Bentley and Leal [6] and we will be able to have a better understanding of the

fluid mixing inside the droplets.

In addition, some of the theoretical analyses are still based on some approxi-

mative arguments and assumptions. A more comprehensive formulation for multi-

component polymer solutions with different length of molecular chains should be

explored to better describe the current PEG-DEX-water ternary system. Moreover,

it would be of great industrial interests if an automated on-chip extraction and pu-

rification process of biomedical products based on the current microfluidic aqueous

two-phase system is successfully achieved. Furthermore, the exact causes for the

formation of the “third” inner phase have to be studied in greater details.

With detailed studies on the hydrodynamics and thermodynamics of the mi-

crofluidic aqueous two-phase droplets, we will be able to better control the hydro-

dynamic and topological behaviors of the droplets. Hopefully, these will contribute

to the development of more sophisticated on-chip molecular separation and reaction

process by tuning the morphological state of the ATPS droplets.
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Oseen Burgers Tensor

Dirac Distribution

Definition: Ω is an open set of RN . If we have a linear form defined as < δ0, φ >=

φ(0) for all compactly supported test functions φ ∈ Cc∞(Ω), δ0 is the Dirac distri-

bution at the origin.

Properties: The Fourier transform of Dirac function is 1, i.e.

F(δ0(r)) = 1 (A.1)

Hence, the inverse Fourier transform of 1 is a Dirac function, i.e.

δ0(r) = F−1(1) =
1

(2π)3

∫
R3

eikrdk (A.2)

Theorem: −∇4( r
8π

) and −∇2( 1
4πr

) are all Dirac distributions at the origin. In

other words, the fundamental solutions in three dimensions for Laplace equation

and biharmonic equation are respectively − 1
4πr

and − r
8π

[29].
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Derivation from Fourier Space to Real Space

In Fourier space, the Oseen-Burgers tensor (Eq 4.36) is expressed as [72]

T̂ (k) =
1

ηk2
(I − k⊗ k

k2
) (A.3)

In real space, it should be

T (r) = F−1(T̂ (k)) =
1

(2π)3

∫
R3

1

ηk2
(1− k⊗ k

k2
)eikrdk (A.4)

From the precedent paragraph A.1, we have

∇2(− 1

4πr
) = δ0(r) =

1

(2π)3

∫
R3

eikrdk (A.5)

Hence,

∇(
1

4πr
) =

1

(2π)3

∫
R3

ik

k2
eikrdk (A.6)

1

4πr
=

1

(2π)3

∫
R3

1

k2
eikrdk (A.7)

In addition,−∇4(r/8π) is also a Dirac function, i.e.

∇4(
r

8π
) = −δ0(r) = − 1

(2π)3

∫
R3

eikrdk (A.8)

Hence,

r

8π
= − 1

(2π)3

∫
R3

1

k4
eikrdk (A.9)

∇∇(
r

8π
) =

1

(2π)3

∫
R3

k⊗ k

k4
eikrdk (A.10)

By Equation A.4, A.7 and A.10, we can easily identify that

T (r) =
1

4πηr
I − 1

η
∇∇(

r

8π
) =

1

4πηr
I − 1

η
(− 1

8π

r⊗ r

r3
+

I

8πr
)

=
1

8πηr
(I +

r⊗ r

r2
) (A.11)
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Rayleigh Instability

B.1 Inviscid Fluid Jet

B.1.1 Navier-Stokes Point of View

The assumptions made in this section are that the fluid is incompressible1 and

perfect2. The flow is laminar and hence the quadratic terms (∼ U2) are neglected.

In addition, the liquid thread is axisymmetric. With the assumptions above, the

Navier-Stokes equation simplifies to

ρ
∂vr
∂t

= −∂p
∂r

ρ
∂vz
∂t

= −∂p
∂z

(B.1)

and the continuity equation becomes

1

r

∂(rvr)

∂r
+
∂vz
∂z

= 0 (B.2)

A perturbation is then introduced by Fourier transform with respect to z and pseudo-

Laplace transform with respect to t for all variables [16], i.e.,

r = a+ εeωt+iκz

1This is equivalent to Dρ/Dt = 0 or ∇ · v = 0.
2Inviscid and there is no heat flux, i.e., η = 0 and q = −k∇T = 0
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vr = R(r)eωt+iκz (B.3)

vz = Z(r)eωt+iκz

p = p0 + P (r)eωt+iκz

The Navier-Stokes equations and the continuity equation become

ρ
∂Reωt+iκz

∂t
= − ∂

∂r

(
Peωt+iκz + p0

)
ρ
∂Zeωt+iκz

∂t
= − ∂

∂r

(
Peωt+iκz + p0

)
(B.4)

∂Reωt+iκz

∂r
+
R

r
eωt+iκz +

∂

∂z

(
Zeωt+iκz

)
= 0

After simplification,

ρωR = −∂P
∂r

ρωZ = −iκP
ρ

(B.5)

∂R

∂r
+
R

r
+ iκZ = 0

The three equations above (Eq B.5) can be combined by eliminating P and Z and

we arrive at

r2d
2R

dr2
+ r

dR

dr
−
(
1 + (κr)2

)
R = 0 (B.6)

This is the modified Bessel equation and its solution is in the form of

R(r) = C1Ĩ1(κr) + C2K̃1(κr) (B.7)

where Ĩ1 and K̃1 are the modified Bessel function of the first and the second kind

respectively3. The boundary conditions are

R(r = 0) = 0 (B.8)

3The general solution can also be written in the form of the Bessel function as we will see in
the next two sections.
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At r ∼= a :
∂r

∂t
= v · n ∼= vr (B.9)

At ∂Ω : p = σC = σ∇ · n (B.10)

From the first boundary condition (Eq B.8), the second term in the general solution

(Eq B.7) has to vanish because the modified Bessel function of the second kind

diverges at the origin (Figure B.1), i.e., C2 = 0 and the solution becomes

R(r) = C1Ĩ1(κr) (B.11)

From the Eqs B.5, we have

Figure B.1: The modified Bessel function (left) of the first kinds Ĩi and (right) of the

second kinds K̃i.(Source: Wikipedia)

P (r) = −ωρC1Ĩ0(κr)

κ
(B.12)

Z(r) = iC1Ĩ0(κr)

where Ĩ1(x) = Ĩ ′0(x). From the second boundary condition (Eq B.9), we have

∂

∂t

(
a+ εeωt+iκz

)
= C1Ĩ1(κa)eωt+iκz (B.13)
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It simplifies to

C1 =
εω

Ĩ1(κa)
(B.14)

By Eq B.12, the pressure is expressed as

p = p0 +
εω2ρ

κ

Ĩ0(κr)

Ĩ1(κa)
eωt+iκz (B.15)

where p0 = σ/a.From the third boundary condition (Eq B.10) and with the approx-

imated expression of curvature (Eq 4.2), we have

p = σC = σ

(
−d

2r

dz2
+

1

r

)
= σ

(
−d

2 (a+ εeωt+iκz)

dz2
+

1

a+ εeωt+iκz

)
∼= σ

(
εκ2eωt+iκz +

1

a
− ε

a2
eωt+iκz

)
(B.16)

By comparing the two expressions for pressure (Eq B.15 and Eq B.16), we obtain

the dispersion relation

ω2 =
σ

ρa3

κaĨ1(κa)

Ĩ0(κa)

(
1− (κa)2

)
(B.17)

The maximum ωmax is found when λ = 2π/κ = 4.51× 2a = 4.51D.

B.1.2 Energetic Point of View

The assumptions made in this section are that the fluid is irrotational4, incompress-

ible and perfect. In addition, the liquid thread is axisymmetric. This section is the

original work by Rayleigh in 1878 [53]. Suppose that the surface of the liquid jet at

time t is

r = a+ αcos(κz) (B.18)

The surface area per unit length is

A =
1

λ

∫ λ

0

2πr

√
1 +

(
dr

dz

)2

dz =
1

λ

∫ λ

0

2π(a+ αcosκz)

√
1 + (καsinκz)2dz (B.19)

4The curl of the velocity is zero, i.e., ∇× v = 0.
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Since α� 1 and by Taylor’s expansion
√

1 + x ∼= 1 + x/2 for x� 1,

A =
1

λ

∫ λ

0

2π(a+ αcosκz)

(
1 +

1

2
κ2α2sin2κz

)
dz = 2πa+

1

2
πaκ2α2 (B.20)

The volume per unit length is

S =
V

λ
=

1

λ

∫ λ

0

πr2dz =
1

λ

∫ λ

0

π(a+ αcosκz)2dz = πa2 +
1

2
πα2 (B.21)

From the equation B.21 above, we have a2 = S
π
− 1/2α2. Using the same Taylor’s

expansion,

a =

√
S

π
− 1

2
α2 =

√
S

π

√
1− 1

2

πα2

S
=

√
S

π

(
1− 1

4

πα2

S

)
=

√
S

π
− 1

4

√
π

S
α2 (B.22)

Hence, from Eq B.20 and Eq B.22, we have

A = 2π

(√
S

π
− 1

4

√
π

S
α2

)
+

1

2
πaκ2α2 (B.23)

From Eq B.22and as α is small, we have√
π

S
=

1

a+ 1
4

√
π
S
α2
∼=

1

a
+O(α2) (B.24)

From Eq B.23, we have

A = 2
√
πS − 2π

4

(
1

a
+O(α2)

)
α2 +

1

2
πaκ2α2 = 2

√
πS +

πα2

2a
(a2κ2 − 1) +O(α2)

(B.25)

For a perfect cylinder without perturbation, S = πr2 and A0 = 2πr. Hence, we have

A0 = 2
√
πS (B.26)

By Eq B.25 and Eq B.26,the potential energy due to perturbation of the surface is

V = σ(A− A0) = −σπα
2

2a

(
1− κ2a2

)
(B.27)
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Since the fluid jet is assumed to be irrotational, there must be a velocity potential

φ such that

v = ∇φ (B.28)

In explicit form,

vr =
∂φ

∂r
vz =

∂φ

∂z
(B.29)

We also assumed that the fluid is incompressible,

∇ · v = 4φ = 0 (B.30)

Due its axisymmetry, the laplacian 4φ becomes

∂2φ

∂r2
+

1

r

∂φ

∂r
+
∂2φ

∂z2
= 0 (B.31)

If an undulation is introduced in the z direction, φ = ϕcosκz. The laplace equation

above becomes

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
− κ2ϕ = 0 (B.32)

It has a general solution

ϕ = C1I0(iκr) + C2K0(iκr) (B.33)

where I0 and K0 are the Bessel functions of the first and second kind respectively.

Since there is no singularity at r = 0, the second term has to vanish (Figure B.1).

The velocity potential is

φ = C1I0(iκr)cosκz (B.34)

Another boundary condition for the outwards normal velocity at the surface gives

dr

dt
= α̇cosκz = vr =

∂φ

∂r
= iκAI ′0(iκa) (B.35)

The differential kinetic energy is

d(KE) =
1

2
ρ dV v2 =

1

2
ρv2(2πrdr) (B.36)
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The kinetic energy per unit length is

KE =
1

λ

(
1

2
ρ

∫ λ

0

∫ a

0

2πrv2drdz

)
=

1

2λ
ρ

∫ λ

0

∫ a

0

2πr

((
∂φ

∂r

)2

+

(
∂φ

∂z

)2
)
drdz

(B.37)

By integration by part and we have

KE =
1

2λ
ρ

∫ λ

0

2π

(
φr
∂φ

∂r

)a
0

dz − 1

2λ
ρ

∫ λ

0

∫ a

0

2πφr

(
∂2φ

∂r2
+

1

r

∂φ

∂r
− κ2φ

)
drdz

(B.38)

The last term vanishes because of Eq B.32 and we arrive at

KE =
1

2λ
ρ

∫ λ

0

2πaφ(a)

(
∂φ

∂r

)
a

dz =
1

2λ
ρ

∫ λ

0

2πa(AI0(iκa)cosκz)(iκAI ′0(iκa)cosκz)dz

(B.39)

From Eq B.35, A2 = α̇2/(iκ)2(I ′0(iκa))2

KE =
1

2
ρπa2 I0(iκa)α̇2

iκaI ′0(iκa)

In order to study the temporal evolution of the system, we set α = α′eωt and

substitute it into the expression for kinetic energy above

KE =
1

2
ρπa2 I0(iκa)ω2α2

iκaI ′0(iκa)
(B.40)

By energy balance, the kinetic energy has to be equal to the potential energy

KE = V (B.41)

from which we obtain the dispersion relation

ω2(κ) =
σ

ρa3

(1− κ2a2)iκaI ′0(iκa)

I0(iκa)
= − σ

ρa3

(1− κ2a2)iκaI1(iκa)

I0(iκa)
(B.42)

as I ′0(x) = −I1(x). This is the same expression as the result (Eq B.17) from Navier-

Stokes point of view (Section B.1.1). They are interchangeable by the relation

between the Bessel functions and the modified Bessel functions: Ĩn(x) = i−nIn(ix).
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B.1.3 Bernoulli Point of View

This section summarizes the work by Rayleigh in 1892 [54]. The assumptions made

in this section are that the fluid is irrotational, barotropic5, incompressible and

perfect. Since the flow is laminar and the velocity is small, the quadratic terms

(∼ U2) are neglected. In addition, the liquid thread is axisymmetric. The Bernoulli’s

equation for irrotational, barotropic, incompressible and perfect fluid is [51]

∂φ

∂t
+
U2

2
+
p

ρ
= c(t) (B.43)

where φ is the velocity potential (Eq B.28) and it follows Eq B.31, p is the hy-

drodynamic pressure and c(t) is a function of time. If we define a parameter µt

by

µt = −ρc(t)
φ

(B.44)

By introducing a perturbation in the solution of B.31, we have

φ = Aeint+ikzI0(iκr) (B.45)

From the Bernoulli’s equation (B.43) and by neglecting the quadratic velocity term,

p = −(µt + inρ)φ (B.46)

Next, we are going to find another expression for p. The displacement ξ at the

surface is expressed as

ξ =

∫
vrdt =

∫
∂φ

∂r
dt =

1

in

∂φ

∂r
(B.47)

By Eq 4.2, the mean curvature of the interface C follows

2C ∼= −
d2ξ

dz2
+

1

a+ ξ
∼= κ2ξ +

1

a
− ξ

a2
(B.48)

5The pressure is a function of density only, i.e., p = f(ρ).
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where a is the initial radius of the fluid jet. After subtracting the initial Laplace

pressure σ/a, the hydrodynamic pressure should be

p = 2Cσ ∼= κ2σξ − σξ

a2
=
σξ(κ2a2 − 1)

a2
(B.49)

By equating the two expressions for the hydrodynamic pressure (Eq B.46 and Eq

B.49) and using Eq B.47,

σ(κ2a2 − 1)

ina2

∂φ

∂r
= −(µt + inρ)φ (B.50)

By Eq B.45, the dispersion relation is

σ

ρa3

(κ2a2 − 1)iκaI ′0(iκa)

I0(iκa)
+ in(in+

µt
ρ

) = 0 (B.51)

This dispersion relation is equivalent to that of Section B.1.2 (Eq B.42) if µt = 0.

B.2 Viscous Fluid Jet

B.2.1 Stream Function Point of View

This section summarizes the treatment by Rayleigh in 1892 [54]. We assume the

fluid is incompressible and the system of interests is axisymmetric. If we neglect the

quadratic terms (∼ U2), the Navier-Stokes can be written as

∂vr
∂t

= −1

ρ

∂p

∂r
+ ν

(
∂2vr
∂r2

+
1

r

∂vr
∂r
− vr
r2

+
∂2vr
∂z2

)
(B.52)

in the er direction and

∂vz
∂t

= −1

ρ

∂p

∂z
+ ν

(
∂2vz
∂r2

+
1

r

∂vz
∂r

+
∂2vz
∂z2

)
(B.53)

in the ez direction.The continuity equation is

∂vr
∂r

+
vr
r

+
∂vz
∂z

= 0 (B.54)
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1 The normal stress at the surface equals to the Laplace pressure: σrr(r = a) = 2C(r = a)σ
2 There is no singularity at r = 0
3 The tangential stress at the surface is zero: σzr(r = a) = 0

The boundary conditions: Due to its axisymmetric feature, a 3D problem now

becomes a 2D problem which can be described by a single parameter - the stream

function ψ, which automatically satisfies the continuity equation

vr =
1

r

∂ψ

∂z
vz = −1

r

∂ψ

∂r
(B.55)

Combine the two Navier-Stokes equations by ∂z(Eq B.52) − ∂r(Eq B.53), and we

arrive at (
D − 1

ν

∂

∂t

)
Dψ = 0 (B.56)

where

D =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
(B.57)

Since the operator D − 1
ν
∂
∂r

and D are commutative, ψ can be decomposed to two

parts

ψ = ψ1 + ψ2 (B.58)

where ψ1 and ψ2 satisfy(
D − 1

ν

∂

∂t

)
ψ1 = 0 Dψ2 = 0 (B.59)

By the similar technique as the previous sections, we impose

ψ1 = φ1(r)ei(ωt+κz), ψ2 = φ2(r)ei(ωt+κz) (B.60)

Eq B.59 becomes

d2φ1

dr2
− 1

r

dφ1

dr
− κ2φ1 = 0

d2φ2

dr2
− 1

r

dφ2

dr
− κ2

1φ2 = 0 (B.61)
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where κ2
1 = κ2 + iω/ν. The general solutions of Eq B.61 are

φ1 = ArI ′0(iκr) φ2 = BrI ′0(iκr) (B.62)

because the fluid jet does not have singularity at r = 0 (Boundary Condition 2) and

the solution should not have the Bessel function of the second kinds (Figure B.1).

Boundary Condition 3 requires that at r = a:

σzr(a) = 0 (B.63)

where σij is the ij-th entry of the Cauchy’s stress tensor for incompressible Newtonian

fluids σij = −pδij + 2µΓij and

Γ =
1

2

(
∇v +∇Tv

)
=

1

2


2∂vr
∂r

1
r

(
∂vr
∂θ

)
+ vθ

r
∂vz
∂r

+ ∂vr
∂z

1
r

(
∂vr
∂θ

)
+ vθ

r
2
r

(
∂vθ
∂θ

+ vr
)

1
r
∂vz
∂θ

+ ∂vθ
∂z

∂vz
∂r

+ ∂vr
∂z

1
r
∂vz
∂θ

+ ∂vθ
∂z

2∂vz
∂z

 (B.64)

Hence,

σzr(a)

µ
=
∂vz
∂r

+
∂vr
∂z

= 0 (B.65)

From Eq B.62 and Eq B.55,

2κ2AI ′0(iκa) + (κ2
1 + κ2)BI ′0(iκ1a) = 0 (B.66)

Since p can also be decomposed to P (r)ei(ωt+κz), the Navier-Stokes equation in the

ez direction (Eq B.53) becomes

iωvz = −iκ
ρ
p+ ν

(
∂2vz
∂r2

+
1

r

∂vz
∂r
− κ2vz

)
(B.67)

from which

p = −ρω
κ
vz +

νρ

iκ

(
∂2vz
∂r2

+
1

r

∂vz
∂r
− κ2vz

)
(B.68)

93



APPENDIX B. RAYLEIGH INSTABILITY

By apply Eq B.55,

p = µ

(
ω

κνr

dψ2

dr
+ 2iκ

d

dr

(
ψ

r

))
(B.69)

With the expression for Laplace pressure Eq B.49, Boundary condition 1 requires

that at r = a

σrr(a) = −p+ 2µ
dvr
dr

=
σξ(κ2a2 − 1)

a2
(B.70)

By Eq B.69, Eq B.55 and the expression for the stream function Eq B.62, we have

0 =

(
σ(1− κ2a2)

ρa3

κa

ω
I ′0(iκa) + 2νκ2I ′′0 (iκa)− iωI0(iκa)

)
A +

(
σ(1− κ2a2)

ρa3

κa

ω
I ′0(iκ1a) + ν

(
κ1(κ2

1 − κ2)

κ
I0(iκ1a) + 2κκ1I

′′
0 (iκ1a)

)
− iκ1ω

κ
I0(iκ1a)

)
B

(B.71)

for which we used the relation

I ′′0 (x) +
I ′0(x)

x
+ I0(x) = 0 I ′0(x) = −I1(x) (B.72)

To simultaneously satisfy the Boundary Condition 1 (Eq B.66) and the Boundary

Condition 3 (Eq B.71), we must have the dispersion relation

det

 Q(ω, κa) Z(ω, κa)

2κ2I ′0(iκa) (κ2
1 + κ2)I ′0(iκ1a)

 = 0 (B.73)

where we define

Q(ω, κa) =
σ(1− κ2a2)

ρa3

κa

ω
I ′0(iκa) + 2νκ2I ′′0 (iκa)− iωI0(iκa) (B.74)

Z(ω, κa) =
σ(1− κ2a2)

ρa3

κa

ω
I ′0(iκ1a)+ν

(
κ1(κ2

1 − κ2)

κ
I0(iκ1a) + 2κκ1I

′′
0 (iκ1a)

)
−iκ1ω

κ
I0(iκ1a)

(B.75)
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Figure B.2: (a) Schematic illustration for a layer of liquid of thickness e0 stuck onto a

thread of radius r. (b) Schematic illustration of undulation of wavelength λ on the surface

B.2.2 Poiseuille Point of View

We consider a cylindrical jet of liquid of radius R. This cylinder can be a free jet or

a liquid film deposited onto a thread as shown in B.2. We denote r as the radius of

the thread, R = e0 + r as the total radius of the cylinder, e0 as the thickness of the

liquid. First, we consider an axisymmetric undulation written in the form

e = e∗ + εcos(kx) (B.76)

Since the volume of the liquid has to be conserved, we have

λπ
(
(r + e0)2 − r2

)
=

∫ λ

0

π
(
(r + e∗ + εcos(kx))2 − r2

)
dx (B.77)

Then, we will get an expression for e∗:

e∗ = e0 −
ε2

4(r + e0)
(B.78)

If R < κ−1 =
√
σ/ρg, the gravity can be neglected and we only need to consider the

surface energy. Next, we are going to investigate how the surface area varies with

the wavelength of undulation. The change in surface area is

∆Σ =

∫ λ

0

2π(r + e)

√
1 +

(
de

dx

)2

dx− 2πλ(r + e0) (B.79)
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By Taylor’s expansion and neglecting the 3rd and higher orders,

∆Σ = −πε
2λ

2

(
1

r + e0

− k2(r + e0)

)
+ o(ε2) (B.80)

The surface area decreases only if 1/(r + e0)− k2(r + e0) ≥ 0, i.e.,

λ ≥ 2π(r + e0) (B.81)

In the following, we are going to find out the fastest growing mode of undulation.

The pressure inside the liquid, p can be expressed as

p = p0 +
σ

R
− σë

(1 + ė2)
3
2

∼= p0 +
σ

R
− σë (B.82)

By Taylor’s expansion up to the first order, we have

p = p0 + εk2σcos(kx) +
σ

(r + e0)
(

1 + εcos(kx)
r+e0

)
p = p0 +

σ

r + e0

+ εσcos(kx)

(
k2 − 1

(r + e0)2

)
(B.83)

By the Poiseuille’s law, the flow rate is proportional to the pressure gradient

Q = C1

(
−∂p
∂x

)
(B.84)

By conservation of mass, we have

∂Q

∂x
=
∂e

∂t
(B.85)

Finally, we arrive at the dynamic equation for liquid jet

∂ε

∂t
=

ε

τ(k)
(B.86)

where

1

τ(k)
= C1 k

2

(
k2 − 1

(r + e0)2

)
(B.87)
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Hence, it is obvious that τ(k) is minimized when k = 1/
√

2(r + e0), i.e.,

λ = 2
√

2πR = 4.44D (B.88)

Remark:

In this simple analysis, we decoupled the Navier-Stokes equation into Poiseuille’s

Law (for steady-state unidirectional flow) and a transient mass balance equation.

This decoupling is valid only when the Reynold’s number Re is small (the convective

time scale τc ∼ L/U is much larger than the viscous time scale τv ∼ ρL2/µ ). In

addition, Poiseuille’s law will not be valid for non-unidirectional flows. Therefore,

the analysis above can only be valid for the onset of the breakup of liquid jets when

then surface is relatively flat. However, unfortunately, this simply analysis cannot

capture the evolution of the undulatory motion of the liquid jets. Although the

fast growing wavelength obtained from the analysis above is closed to the result for

inviscid liquid jet, the result in this section does not have much realistic physical

meaning.
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Tomotika Functions

In the theoretical treatment by Tomotika [64], he defined some functions that are

involved in the dispersion relation for the breakup of liquid threads immersed in

another viscous fluid at rest. They are listed in the following, where superscript ′

represents the fluid jet inside.

F1 = 2i
µ′

µ
κ2Ĩ ′1(κa)− ωρ

µ
Ĩ0(κa) +

σ(κ2a2 − 1)

a2

κ

ωµ
Ĩ1(κa)

F2 = 2i
µ′

µ
κκ′1Ĩ

′
1(κ′1a) +

σκ(κ2a2 − 1)

ωµa2
Ĩ1(κ′1a) (C.1)

F3 = 2iκ2K̃ ′1(κa) +
ωρ

µ
K̃0(κa)

F4 = 2iκκ1K̃
′
1(κ1a)

where

κ2
1 = κ2 +

iω

ν
(κ′1)

2
= κ2 +

iω

ν ′

Φ(x) =
N(x)

D(x)
(C.2)

with

N(x) = Ĩ1(x)∆1 −
(
xĨ0(x)− Ĩ1(x)

)
∆2

D(x) =
µ′

µ

(
xĨ0(x)− Ĩ1(x)

)
∆1 −

µ′

µ

(
(x2 + 1)Ĩ1(x)− xĨ0(x)

)
∆2

98



APPENDIX C. TOMOTIKA FUNCTIONS

−
(
xK̃0(x) + K̃1(x)

)
∆3 −

(
(x2 + 1)K̃1(x) + xK̃0(x)

)
∆4

∆1 = det


xĨ0(x)− Ĩ1(x) K̃1(x) −xK̃0(x)− K̃1(x)

Ĩ0(x) + xĨ1(x) −K̃0(x) −K̃0(x) + xK̃1(x)

(µ′/µ)xĨ0(x) K̃1(x) −xK̃0(x)



∆2 = det


Ĩ1(x) K̃1(x) −xK̃0(x)− K̃1(x)

Ĩ0(x) −K̃0(x) −K̃0(x) + xK̃1(x)

(µ′/µ)Ĩ1(x) K̃1(x) −xK̃0(x)



∆3 = det


Ĩ1(x) xĨ0(x)− Ĩ1(x) −xK̃0(x)− K̃1(x)

Ĩ0(x) Ĩ0(x) + xĨ1(x) −K̃0(x) + xK̃1(x)

(µ′/µ)Ĩ1(x) (µ′/µ)xĨ0(x) −xK̃0(x)



∆4 = det


Ĩ1(x) xĨ0(x)− Ĩ1(x) K̃1(x)

Ĩ0(x) Ĩ0(x) + xĨ1(x) −K̃0(x)

(µ′/µ)Ĩ1(x) (µ′/µ)xĨ0(x) K̃1(x)
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Appendix D

Chemical Potential Gradient

In this chapter, the alternative formula of the chemical potential gradient for multi-

component system is derived. For a multi-component system, the chemical potential

gradient can be alternatively written as

∇µi =
∑
j 6=i

cj∇(µi − µj) (D.1)

where ci is the concentration for species i. The expression for ternary system is

simplified as Eq 5.12. The detailed derivation of the relation above is as follows.

According to the expression for partial molar property (Eq 5.5), the generalized

chemical potential by Nauman and Balsara [41] is

µi = Υ +

(
∂Υ

∂ci

)
T,P,cm6=i

−
∑
k

ck

(
∂Υ

∂ck

)
T,P,cm 6=k

(D.2)

Hence,

µi − µj =

(
∂Υ

∂ci

)
T,P,cm 6=i

−
(
∂Υ

∂cj

)
T,P,cm 6=j

(D.3)

Since

∇Υ =
∑
k

∇ck
(
∂Υ

∂ck

)
T,P,cm 6=k

(D.4)

the chemical potential gradient of species i can be simplified

∇µi = ∇Υ +∇
(
∂Υ

∂ci

)
T,P,cm 6=i

−
∑
k

∇ck
(
∂Υ

∂ck

)
T,P,cm 6=k

−
∑
k

ck∇
(
∂Υ

∂ck

)
T,P,cm 6=k
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= ∇
(
∂Υ

∂ci

)
T,P,cm 6=i

−
∑
k

ck∇
(
∂Υ

∂ck

)
T,P,cm 6=k

(D.5)

From Eq D.3, we have

∑
j 6=i

cj∇(µi − µj) =

(∑
j 6=i

cj

)
∇
(
∂Υ

∂ci

)
T,P,cm 6=i

−
∑
j 6=i

cj∇
(
∂Υ

∂cj

)
T,P,cm 6=j

= (1− ci)∇
(
∂Υ

∂ci

)
T,P,cm 6=i

−

(∑
k

ck∇
(
∂Υ

∂ck

)
T,P,cm 6=k

− ci∇
(
∂Υ

∂ci

)
T,P,cm 6=i

)
= ∇µi

(D.6)
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Appendix E

Curvature

The following provides a general derivation of the mean curvature of an axisymmetric

surface (4.2). The mean curvature of a surface C is defined as half of the divergence

of the normal vector n, i.e.,

2C = ∇ · n (E.1)

An axisymmetric surface can be represented by f(r, z) = r− S(z) = 0. The normal

vector is

n =
∇f
|∇f |

2C = ∇ · ∇f
|∇f |

(E.2)

where the gradient and divergence in cylindrical coordinate are defined as

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez (E.3)

∇ · v =
∂vr
∂r

+
vr
r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

(E.4)

Hence,

∇f = 1er + 0eθ − S ′(z)ez (E.5)

n =
∇f
|∇f |

=
1√

1 + S ′(z)2
(1er + 0eθ − S ′(z)ez) (E.6)

2C = ∇ · n = − r(z)′′(√
1 + r′(z)2

)3 +
1

r
√

1 + r′(z)2
(E.7)
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Appendix F

Affine Deformation

The deformation and breakup of drops in two-dimensional linear flows has been

extensively studied [63][20][1][52]. A 2D linear flows can be described by a constant

velocity gradient, i.e.,

dx

dt
= v = (∇v) · x (F.1)

where

∇v =
G

2

 1 + α 1− α

−1 + α −1− α


with −1 ≤ α ≤ 1. For α = −1, it’s purely rotational flow. For α = 0, it’s a simple

shear flow. For α = 1, it’s a plane hyperbolic flow (also named as 2D elongational

flow). The rate of strain tensor is

Γ =
1

2

(
∇v +∇Tv

)
=
G

2

1 + α 0

0 −1− α

 (F.2)

The vorticity tensor is

Ω =
1

2

(
∇v−∇Tv

)
=
G

2

 0 1− α

−1 + α 0

 (F.3)

and the shear rate is defined as

γ̇ =
√

2Γ : Γ = G(1 + α) (F.4)
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APPENDIX F. AFFINE DEFORMATION

Figure F.1: The streamlines for different types of linear flows. Adopted from Bentley

and Leal [6].

In the following, we are interested in the affine deformation of a sphere (like a

liquid drop) in simple shear flow by neglecting the presence of interface. In order to

Figure F.2: The affine deformation of a sphere domain in a simple shear flow. Adopted

from Janssen[31].

characterize the degree of deformation, we define a geometric parameter D as

D =
L−B
L+B

(F.5)
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The general idea of calculating the D values for different types of linear flow is as

follows:

1 Find the deformation gradient tensor F = ∂x(t)/∂X by solving the sys-
tem of ODEs for x (Eq F.1)

2 Find the Cauchy-Green tensor: C = F TF
3 Find the eigenvectors which correspond to the principle stretching direc-

tions (in the initial coordinates) and find the corresponding eigenvalues
of C: λ1 and λ2

4
√
λ1 and

√
λ2 are the stretch factors, i.e., L/(2R0) = max{

√
λ1,
√
λ2}

and B/(2R0) = min{
√
λ1,
√
λ2}

where X represents the position vector at t = 0, i.e., X = x(t = 0). The

rationale for Step 3 above is that the stretching factor for an eigenvector Xi of the

Cauchy-Green tensor (with an eigenvalue λi) is calculated as follows

|xi|
|Xi|

=

√
xi · xi
|Xi|2

=

√
(FXi)T (FXi)

|Xi|2
=

√
Xi · C ·Xi

|Xi|2
=
√
λi (F.6)

However, the procedure above is not applicable to simple shear flows because the

determinant of ∇v is zero. We have to write the expression for the deformation in

another coordinate

x = X + (Gt)X2e1 (F.7)

and the deformation gradient tensor is

F =
∂x

∂X
=

1 Gt

0 1

 (F.8)

and the Cauchy-Green tensor is

C = F TF =

 1 Gt

Gt (Gt)2 + 1

 (F.9)
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APPENDIX F. AFFINE DEFORMATION

from which we can find the eigenvalues and eigenvectors of C.

In summary, for a 2D simple shear flow,

L

2R0

=
1

2
Gt+

1

2

√
4 + (Gt)2

B

2R0

= −1

2
Gt+

1

2

√
4 + (Gt)2 (F.10)

D =
Gt√

(Gt)2 + 4

For a 2D plane hyperbolic flow,

L

2R0

= eGt
B

2R0

= e−Gt D = tanh(Gt) (F.11)
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