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Abstract 

Hubel Wiesel models, successful in visual processing algorithms, have only recently been used 

in conceptual representation. Despite the biological plausibility of a Hubel-Wiesel like 

architecture for conceptual memory and encouraging preliminary results, there is no 

implementation of how inputs at each layer of the hierarchy should be integrated for processing 

by a given module, based on the correlation of the features. If we assume that the brain uses a 

unique Hubel Wiesel like architecture to represent the input information of any modality, it is 

important to account for the local correlation of conceptual inputs as an equivalent to the existing 

local correlation of visual inputs in the visual counterpart models. However, there is no intuitive 

local correlation among the conceptual inputs. The key contribution of this thesis is the proposal 

of an input integration framework that accounts for the local correlation of the conceptual inputs 

in a Hubel Wiesel like architecture to facilitate the achievement of broad and coherent concept 

categories at the top of the hierarchy. The building blocks of our model are two algorithms: 1) 

Bottom-up hierarchical learning algorithm, and 2) Input integration framework. The first 
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algorithm handles the process of categorization in a modular and hierarchical manner that 

benefits from competitive unsupervised learning in its modules. The second algorithm consists of 

a set of operations over the input features or modules to weigh them as general or specific to 

specify how they should be locally correlated within the modules of the hierarchy. Furthermore, 

the input integration framework interferes with the process of similarity measurement applied by 

the first algorithm such that, high-weighted features would count more than the low-weighted 

features towards the similarity of conceptual patterns.  Simulation results on benchmark data 

admit that implementing the proposed input integration framework facilitates the achievement of 

the broadest coherent distinctions of conceptual patterns. Achieving such categorizations is a 

quality that our model shares with the process of early concept generalization. Finally, we 

applied our proposed model of early concept generalization iteratively over two sets of data, 

which resulted in the generation of finer grained categorizations, similar to progressive 

differentiation. Based on our results, we conclude that the model can be used to explain how 

humans intuitively fit a hierarchical representation for any kind of data. 

Keywords: Early Concept Generalization, Hubel Wiesel Model, Local Correlation of Inputs, 

Categorization, General Features, Specific Features. 
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Chapter 1 

Introduction 

 

1.1 On Concepts and Generalization  

Concepts are the most fundamental constructs in theories of the mind. In 

psychology, a wide variety of questionable definitions of concepts exist such as 

“should concepts be thought of as bundles of features, or do they embody mental 

theories?” or “are concepts mental representations, or might they be abstract 

entities?” [1]. In our thesis, we define a concept as a mental representation which 

partially corresponds to the words of the language. We further assume that a 

concept can be defined as a set of typical features [2]. 

 

We adopt the following definitions. 

1. Concept categorization is the process by which the concepts are 

differentiated. 

2. Concept generalization is the categorization of concepts into less specific and 

broader categories.   

3. Early concept generalization is the early stage of progressive differentiation 

of concepts [3], in which children acquire broad semantic distinctions.  



2 
 

Concept generalization is one of the primary tasks of human cognition. 

Generalization of new concepts (conceptual patterns) based on prior features 

(conceptual features) leads to categorization judgments that can be used for 

induction. For example, given that an entity has certain features including:  four 

legs, two eyes, two ears, skin, and ability to move, one may generalize that the 

entity (specific concept) is an animal instance (general concept). Therefore, the 

process of generalization leads to the category judgments (being an animal 

instance) about the object. Based on the category to which the object belongs, we 

can induce some hidden properties of the concept. For example, given that a 

conceptual entity belongs to the category of animals, we can induce that the entity 

eats, drinks and sleeps.  

In recent years, research in computational cognitive science has served to reveal 

much about the process of concept generalization [3-5].  

 

1.2 Background and Related Studies 

This section is divided into two sub-sections. The first part discusses the state of 

art in the field of concept acquisition and generalization, and the second part 

describes research in the field of Hubel Wiesel models of memory. 

 

1.2.1 Concept acquisition and generalization 

The idea of feature based concept acquisition and generalization has been well 

studied in the psychological literature. Vygotsky [6], Inhelder and Piaget [7] first 
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proposed that the representation of categories develop from immature 

representations that are based on accidental features (appearance similarities). 

Recent theoretical and practical developments in the study of mature 

categorization indicate that generalization is grounded on perceptual mechanisms 

capable of detecting multiple similarities [3, 8-10].  

Tests such as the trial task [11] show the role of feature similarity in the 

generation of categorization. Further to this, works by McClelland and Rogers [3], 

Rumelhart [9, 12] etc. show evidence for bottom up acquisition of concepts in 

memory. Sloutsky [13-15]  discuss how children group concepts based on, not 

just one, but multiple similarities and how such multiple similarities tap the fact 

that basic level categories have correlated structures (or features). The correlation 

of features is also discussed in McClelland and Rogers [3] where they refute 

Quillian‟s classic model [16] of a semantic hierarchy where concepts are stored in 

a hierarchy progressing from specific to general categories. They argue that 

general properties of objects should be more strongly bound to more specific 

properties than to the object itself. Furthermore, McClelland and Rogers argue 

that information should be stored at the individual concept level rather than at the 

super ordinate category level. Only under this condition, properties can be shared 

by many items. They cite the following example: Many plants have leaves, but 

not all do – pine trees have needles. If we store „has leaves‟ with all plants, then 

we must somehow ensure that it is negated for those plants that do not have 

leaves. If instead we store it only with plants that have leaves, we cannot exploit 

the generalization. McClelland and Rogers counter propose a parallel distributed 
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processing (PDP) model, which is based on back propagation, and test it using 21 

concepts, including trees, flowers, fish, birds and animals. Their network showed 

progressive differentiation. Progressive differentiation phenomenon refers to the 

fact that children acquire broader semantic distinctions earlier than more fine-

grained distinctions [5]. Our model falls under the umbrella of bottom-up 

architectures, but is bio-inspired (within a Hubel Wiesel architecture) and 

explains categorization and progressive differentiation, accounting for local 

correlation of input features.  

 

1.2.2 Hubel Wiesel models of memory 

It is well known that the cortical system is organized in a hierarchy and that some 

regions are hierarchically above others. Further to this, Mountcastle [17, 18] 

showed that the brain is a modular structure and the cortical column is its 

fundamental unit. A hierarchical architecture has been found in various parts of 

the neocortex including the visual cortex [19-23], auditory cortex [24, 25] and the 

somato-sensory cortex [26, 27]. In addition to this, neurons in the higher levels of 

the visual cortex represent more complex features with neurons in the IT 

representing objects or object parts [28, 29]. 

On the spectrum of cognitively inspired architectures, Hubel Wiesel models are 

designed for object recognition.  Beginning from the Neocognitron [30, 31] to 

HMAX [19, 20, 32, 33], SEEMORE [34], various bio inspired hierarchical 

models has been used for object recognition and categorization. The primary idea 

of these models is a hierarchy of simple (S) and complex (C) cells, inspired by 
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visual cortex cells. For example, in visual cortex each S cell responds selectively 

to particular features in the receptive field. Therefore, the S cell is a feature 

extractor which, at the lower levels, extracts local features and, at the higher 

layers, extracts global features. C cells allow for positional errors in the features. 

Therefore, a C cell is more invariant to shift in position of the input pattern. The 

combination of S cells and C cells, whose signals propagate up the hierarchy 

allows for scale and position invariant object recognition.  

The Neocognitron [30, 31] applies the principles of hierarchical S and C cells to 

achieve deformation resistant character recognition. Neocognitron uses a 

competitive network to implement the S and C cells, following a winner-take all 

update mechanism. HMAX is a related model based on a quantitative theory of 

the ventral stream of the visual cortex. Similar to Neocognitron, HMAX uses a 

combination of supervised and unsupervised learning to perform object 

categorization, but uses Gabor filers to extract primitive features. HMAX has 

been tested on benchmark image sets such as the Caltech 101 and the Streetscenes 

database. Lecun et al [35] have implemented object categorization using multi 

layered convoluted networks.  All these mentioned models are deep hierarchical 

networks that are trained using back propagation. Wallis and Rolls [36-38] 

showed that increasing the number of hierarchical levels leads to an increase in 

invariance and object selectivity. Wersing and Koener [39] discuss the effects of 

different transfer functions over the sparseness of the data distribution in an 

unsupervised hierarchical network. Wolf et al [40] discuss alternative hierarchical 
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architectures for visual models and test their strategies on the Caltech 101 

database. 

 

1.2.3 Hubel Wiesel models of concept representation 

In a recent work Ramanathan et al [41] have extended Hubel Wiesel models of 

the visual cortex [20, 32] to model concept representation. The resulting 

architecture, trained using competitive learning units arranged in a modular, 

hierarchical fashion, shares some properties with the Parallel Distributed 

Processing (PDP) model of semantic cognition [3]. To our knowledge, this is the 

first implementation of a Hubel Wiesel approach to non- natural medium such as 

text, and has attempted to model hierarchical representation of keywords to form 

concepts. 

Their model exploits the S and C cell configuration of Hubel Wiesel models by 

implementing a bottom up, modular, hierarchical structure of concept acquisition 

and representation, which lays a possible framework for how concepts are 

represented in the cortex.  

However the architecture of this model is similar to that of visual Hubel Wiesel 

models, there‟s still a gap between the process of feature extraction and 

integration in their model and the one in its counterpart visual models. In the 

existing visual models, small patches of the picture are input to the S cells where 

neighboring S cells extract neighboring patches of the picture. Then, C cells 

integrate several neighboring S cells. The neighborhood of the visual inputs 
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within small patches extracted by S cells and the neighborhood of the small 

patches integrated in C cells explain a coherent a local correlation of inputs 

preserved all over the hierarchy. On the other hand, in the conceptual Hubel 

Wiesel model proposed by Ramanathan et al [41], there is no provision to account 

for the local correlation of inputs and how it should be preserved through the 

hierarchy.  

 

1.3 Objectives of the Thesis 

The objective of this dissertation is to capture the quality of early concept 

generalization and progressive differentiation of concepts within a Hubel Wiesel 

architecture that accounts for local correlation of inputs and category coherence.  

Category coherence [42] refers to the quality of a category being natural, intuitive 

and useful for inductive inferences. We assume that preserving the natural 

correlation of inputs through the hierarchy is the necessary condition for the 

achievement of coherent categories at the top level of the hierarchy. Definition of 

such correlations in visual models is intuitive - spatial neighborhood -, while 

being a challenge in conceptual models. If we assume that the brain uses a 

hierarchical Hubel Wiesel like architecture to represent concepts, it is important to 

account for this local correlation factor. Moreover, it is likely that the 

categorization results at the top level of the hierarchy are dependent on the input 

integration framework of the hierarchy. Hence, we argue one possible metric 

based on which a local correlation model among conceptual features can be 
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achieved. Then, we propose an input integration framework to maintain such 

correlation through hierarchy.  

Interestingly, it was observed that the proposed correlation model along with its 

corresponding input integration framework succeed to facilitate the achievement 

of coherent categorization - which admits our prior assumption in this regard. The 

proposed model not only effectively captures coherent categorization but also 

ensures revealing of the broadest differentiation of its conceptual inputs. Based on 

our literature survey, revealing the broadest differentiation is one of the qualities 

of early concept generalization. Therefore, our model shares this quality with 

early concept generalization. The flow chart of our model of early concept 

generalization is presented in Figure 1.1. Based on our knowledge about concept 

generalization, first it facilitates acquiring of broad distinctions and only as a 

matter of time leads to acquiring of the finer distinctions. This flow is called 

progressive differentiation of concepts which can also be captured by our model.  

The top-down iterative use of the proposed model over a data set and its 

corresponding subsets (broad categories generated by the model) results in 

creation of finer categories, similar to progressive differentiation. The flow chart 

of this top-down algorithm is presented in Figure 1.2. 

 

1.4 Summary of the Model 

Figure 1.1 illustrates the flow chart of the bottom-up algorithm for Hubel Wiesel 

model of early concept generalization proposed in this work. The details of the 
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model are presented in chapter 2. Figure 1.2 demonstrates the top-down algorithm 

which uses the bottom-up model iteratively to achieve finer categories similar to 

progressive differentiation. The details of this procedure are explained in section 

3.4. 
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Figure 1.1: The flow chart of the bottom-up algorithm - Hubel Wiesel model of early 

concept generalization. The highlighted rectangles demonstrate local correlations 

operations. 
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Figure 1.2: The flow chart of the top-down algorithm – to model progressive 

differentiation. 

 

1.5 Organization of the Thesis 

The rest of the thesis is organized as follows: 

 Chapter 2 presents the methodology to enable Hubel Wiesel model to 

obtain coherent broad categorization of concepts. 

  Chapter 3 illustrates the impacts of applying the proposed input 

integration framework to a Hubel Wiesel conceptual model. It presents the 
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results over various datasets while counting for the effect of related 

computational parameters on the strength of the impacts. 

 Chapter 4 presents concluding remarks and the future recommendations to 

improvise the proposed bottom-up model and simulate the next stages of 

the progressive differentiation of concepts within the bottom-up pass. 
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Chapter 2 

Methodology 

 

This Chapter presents the detailed description of the approach by which we 

captured the quality of early concept generalization within a Hubel Wiesel like 

architecture equipped with our proposed input integration framework. The 

building blocks of our model are two algorithms: 1) Hierarchical learning 

algorithm, and 2) Input integration algorithm corresponding to the proposed local 

correlation model – we may use „local correlation algorithm/model‟ or „input 

integration algorithm‟ interchangeably to refer to this algorithm. Local correlation 

algorithm extracts the correlated input features (at the bottom layer) and the 

correlated input child modules (at the intermediate layers) and groups them in 

batches. Each module will receive one of these batches as its inputs. 

This chapter is divided into three broad sections: 1) System Architecture, 2) 

Hypothesis, and 3) Local Correlation Algorithm. Section 1 presents the details of 

the architecture and hierarchical learning algorithm. Sections 2 and 3 detail the 

proposed local correlation model along with the hypothesis behind that. 
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2.1. System Architecture 

2.1.1 Architecture 

The system that we describe here is organized in a bottom up hierarchy. This 

means that the conceptual features are represented before the representation of 

conceptual patterns. Our learning algorithm exploits the property of this 

hierarchical structure. Each level in the hierarchy has several modules. These 

modules model cortical regions of concept memory. The modules are arranged in 

a tree structure, having several children and one parent. In this dissertation, we 

call the bottom most level of the hierarchy level 1, and the level number increases 

from bottom to top of the hierarchy. Each conceptual pattern is defined as a 

binary vector of conceptual features, where 1 encodes relevance and 0 encodes 

irrelevance of the corresponding feature to the target pattern. A matrix of all the 

pattern vectors is directly fed to level 1 as the input. Level 1 modules resemble 

simple cells of the cortex, in the sense that they receive their inputs from a small 

patch of the input space. In our model, the input features are distributed amongst 

the modules at Level 1. Several level 1 modules tile the feature space. A module 

at level 2 covers more of the feature space when compared to a level 1 module. It 

represents the union of the feature space of all its child modules from level 1. A 

level 2 module obtains its inputs only through its level 1 children. This pattern is 

repeated in the hierarchy. Thus, the module at the tree root (the top most level) 

covers the entire feature space, but it does so by pooling the inputs from its child 
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modules. In our model, level 1 can be considered analogous to the area V1 of the 

visual cortex, level 2 to the area V2 and so on. 

The below pseudo code illustrates how the hierarchical levels and their modules 

are created in this work. The modules are not interconnected within a level k. The 

connections between the modules in the level k to the modules in level (k+1) and 

level (k-1) would be specified by local correlation algorithm. nFeature encodes 

the number of features allowed in each module – module capacity. M encodes the 

total number of features in the input data. nChild encodes the number of children 

allowed for the parent modules – though it is not a constraint and some modules 

might receive (nChild+1) child modules. nModule(i) represents the number of 

modules created at level i and nLevel represent the level number. 

_____________________________________________________________________ 

Build hierarchy() 

1. nLevel = 1 

2. nModule(nLevel) = ceiling(M/nFeatures)   

3. n = nModule(nLevel) 

2. while (n>1) 

   a. nLevel = nLevel +1  

   b. nModule(nLevel) = floor(nModule(nLevel-1)/nChild) 

  c. n = nModule(nLevel) 

 

Figure 2.1 demonstrates the inputs of the learning modules and the propagation of 

their outputs within the hierarchy through an example. In this figure, rectangles 
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demonstrate learning modules and the circles demonstrate the generated neurons 

inside them after their training is finished. Some modules and neurons are 

numbered to be referred in the explanation of the following example.  

The input data to this hierarchical structure would be a matrix of   conceptual 

patterns each of which being defined as a binary vector of   features. Therefore, 

the input data is a     binary matrix, where each column encodes a pattern. 

The element       in such matrix corresponds to the correlation of the feature    

and the pattern   . The value of this element is encoded by      and is equal to one 

if the feature    is correlated with the pattern   , otherwise it equals to zero. The 

modules at the bottom of the hierarchy extract subsets of such input matrix and 

apply them as their input matrixes. Suppose that the input data includes 4 patterns 

and 12 features. Furthermore, assume that the number of features allowed per 

module as a user defined parameter is set to 3.  
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Figure 2.1: Hierarchical structure of the learning algorithm when the data includes 

12 features. 

 

               

         
         
         

 ,                 

         
         
         

          (2.1)                                           

    

Equation 2.1 shows the corresponding input matrixes to modules 1 and 2 as 

exemplar input matrixes for the modules from the bottom layer. A number of 

neurons would be generated in each module after it finishes training using its 

input matrix. In our hierarchical system training will be carried out layer by layer, 

starting from the bottom most layer. When all the modules from layer 1 finish 

training, the training for the layer 2 will start. In order to train the modules from 

layer 2 we need to generate the input matrixes for the modules at this layer. In this 

endeavor, once again all the bottom modules would be exposed to the input 

patterns. After exposure to each of these input patterns, one neuron will be fired 

inside each of the modules. Therefore, the exposure to each pattern generates a 
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specific pattern of activations across the bottom modules. Such generated 

activation patterns would be used as the corresponding input to level 2 modules. 

They represent the original input pattern seen at level 1 for the modules at level 2. 

To illustrate how the outputs of child modules function as the inputs for the parent 

modules, let us consider the child modules 1 and 2 and the parent module 3. 

Equation 2.1 shows the input matrixes for modules 1 and 2. Module 1 has 2 

neurons inside and module 2 has 3 neurons inside. The corresponding activation 

values of all these 5 neurons belonging to the children of module 3 function as the 

inputs to this module. Equation 2.2 illustrates such input matrix for module 3. The 

activation value of the neuron number  , inside module number  , in response to 

pattern number   is encoded by                . 

               

 
 
 
 
 
 
                               

                

                

                

                

               

               

               

                
 
 
 
 
 

                      (2.2) 

 

2.1.2 Bottom up hierarchical learning  

In our model, learning is managed in an unsupervised manner by the learning 

modules throughout the hierarchy. A variation of Self Organizing Map (SOM) is 

used to implement the learning modules. SOM is an unsupervised neural network 

which traditionally is used to map high dimensional data to low (2 or 3) 

dimensional data. The number of neurons in a SOM is fixed and predetermined. 

Therefore, often it is needed to run the learning algorithm several times for a 
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particular data to find out the appropriate number of neurons to present the data. 

To avoid this problem and provide more flexibility in our learning modules, we 

use Growing Self Organizing map (GSOM) [43] as the learning modules in our 

model. GSOM explained in [43] is a variation of SOM which allows the neurons 

inside the module to grow. It starts with a very small grid of neurons and 

generates the new neurons only on the basis of need. GSOM applies a user 

defined parameter “growth threshold” to control the growth of the neurons inside 

the module. When the distance between a new input pattern and all the existing 

spatial centers of data - neurons‟ weights - in the module is more than the growth 

threshold, a new neuron would be generated. In our implementations, the initial 

number of neurons in each GSOM is two. 

To understand how the model learns, let us consider the inputs and outputs of a 

single module mk,i in level k of the system as shown in Figure 2.2(a). Let x, 

representing connections {xj} be the input pattern to the module mk,i. x is the 

output of the child modules of mk,i from the level k-1, and a represent the weights 

of the competitive network. The vector a is used to represent the connections {aj} 

between x and the neurons in the module mk,i.- neuron weight. The output of a 

neuron in mk,i in response to an input {aj} is, 1 if the Euclidean distance between 

its weight vector and the input is the least compared with other neurons in the 

module. Otherwise, the output would be zero. The outputs of the neurons being 0 

or 1 are called activation values. 

During learning, each neuron in mk,i competes with other neurons in the vicinity. 

Of the large number of inputs to a given module, a neuron is activated by a subset 
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of them using a winner takes all mechanism. The neuron then becomes the spatial 

center of these patterns. 

  

Figure 2.2: (a) Inputs and outputs to a single module mk,i (b) the concatenation of 

information from the child modules of the hierarchy to generate inputs for the 

parent module. 

 

When all the modules at level k finish training, the subsequent stage of learning 

occurs. This comprises the process by which the parent modules learn from the 

outputs of the child modules. Here, consider the case shown in Figure 2.2(b) 

where the module 3 is the parent of modules 1 and 2. Let x(1) be the output vector 

of module 1 and x(2) be the output vector of module 2. x(i) represents a vector of 

activation values being the outputs of the neurons in the child modules. The input 

to module 3,                , is the concatenation of the outputs of modules 1 

and 2. A particular concatenation represents a simultaneous occurrence of a 

combination of concepts in the child module. Depending on the statistics of the 

input data, some combinations will occur more frequently, while others will not. 

During this stage of learning, the parent module learns the most frequent 

(a) (b)
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combinations of concepts in the levels below it. A GSOM is again used in the 

clustering of such combinations. The learning process thus defined can be 

repeated in a hierarchical manner.  

 

2.2. Hypothesis 

This section presents the hypothesis based on which the local correlation model of 

input features is proposed. It further explains all the assumptions, key-facts and 

empirical psychological evidences based on which we hypothesized this model.  

As it was discussed in chapter 1, there is no intuitive correlation among the 

conceptual features. There are too many contexts with respect to which a 

correlation model among concepts can be captured. In this work, we focus on the 

concept correlations in the context of the concept categories. 

Representative features of a category can be qualitatively regarded as general or 

specific [3]. General features are more commonly perceived among the members 

of the category. On the other hand, specific features are only associated with 

specific members of the category. Therefore, general features are better 

representatives of a category compared with specific ones. Subsequently, In the 

process of generalization, general features are weighed over specific features.  
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Figure 2.3: General features versus specific features. 

 

In order to generalize a pattern, the similarity of the pattern and existing 

categories will be compared and the pattern will be assigned to the most similar 

category. To measure the similarity of a pattern and a category we compare the 

features of the category and the pattern while giving more weight to the similarity 

of general features in comparison with specific features. Consequently, the 

process of generalization needs prior knowledge about the existing categories and 

their corresponding general and specific features. However in early 

generalization, no prior knowledge about the categories and their general and 

specific features is available. Our hypothesis describes how prior knowledge 

about general and specific features (in early generalization) is built up. It further 



24 
 

explains the mechanism by which this prior knowledge is used to build up early 

categories.  

Sloutsky et al [15] examined the underlying mechanism of early induction in light 

of comparing the role of appearance similarity
1
 and kind information

2
 – labeling 

rules. Figure 2.4 demonstrates the four bug-like patterns which they used to pit 

appearance similarity against labeling rules in the process of early induction. As 

can be seen in Figure 2.4, from the appearance point of view (the shape and color 

of the antennas, hands, fingers, bodies, and tails), the given patterns can be 

categorized into two pairs of patterns: (a,b) and (c,d). On the other hand, based on 

kind information provided in Figure 2.4, patterns are categorized differently 

resulting in a different set of pairs: (a,c) and (b,d). Based on the findings reported 

in this work, children of four or five years of age ignored the provided labeling 

rules in the course of induction, relying instead on the appearance similarities. 

Hence, they concluded that early induction is more biased towards the appearance 

features rather than kind information features. 

                                                           
1
 Visual similarities. 

2
 Hand coded labeling rules to be used for categorization and induction of hidden attributes of a 

set of bug like patterns designed by the authors. Use of these labeling rules needed the children 
to compare the number of fingers with the number of buttons in each pattern. Use of labeling 
rules were designed to devise a different categorization from the one devised by appearance 
similarity. 
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Figure 2.4: Bug-like patterns used in [15], and the corresponding labeling rules for 

the categorization task.   

 

Since the process of induction uses the natural categorization judgments resulted 

by the process of generalization, we can conclude that early generalization is 

more governed on the basis of appearance similarities versus kind information.  In 

below, this conclusion with regard to the details of experiments done by Sloutsky 

et al [15] is justified from two different points of view. Then, the justifications are 

used and generalized to present a hypothesis about the process of early 

generalization.  

 Based on our assumption stated above, generalization is governed on the 

basis of general features of the categories. General features are the features 

which are more frequently perceived with the corresponding categories. 

Therefore, it is important to note that the children of four or five years of 

age are more frequently exposed to visual features rather than abstract 

knowledge and consequently the amount of their prior abstract knowledge 
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(abstract features) is considerably smaller than the amount of their prior 

visual knowledge (visual features). Hence, visual features being regarded 

as general in comparison with abstract features (like labeling rules) are 

more effective in the process of generalizations – natural and coherent 

categorizations that can be used for induction – made by the subjects of 

the study.  

 In the set of patterns presented to the subjects of the study, the number of 

visual features leading to the categorization of {(a,b),(c,d)} is more than 

the number of labeling rules leading to the categorization of {(a,c),(b,d)}. 

Therefore, the first categorization is consistently supported by more 

number of input features rather than the second categorization. 

Based on all above, we hypothesize that,  

1. In early generalization, the more frequently perceived prior features are 

regarded as general.  

2. Weighting general features over specific ones (less frequently perceived 

features) leads to the detection of the broad distinctions of the observed 

patterns in the domain of the subject‟s prior knowledge (known features).  

A parallel can be drawn between these hypotheses and Sloutsky‟s work [15] in 

that the frequently perceived appearance inputs being regarded as general features 

are weighted over kind information being regarded as specific features, making 

categorization biased towards appearance similarity. 
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2.3. Local Correlation Algorithm 

We propose a model of local correlation of features which implements our 

hypothesis in the context of the Hubel Wiesel conceptual memory proposed in 

Ramanathan et al [41]. This model defines the correlation of input features based 

on the quality of features being general or specific. The proposed model 

accomplishes two tasks through the bottom-up hierarchy. (a) It marks the inputs 

of each layer of the hierarchy as general or specific and (b) It biases the 

categorization of each module on the basis of its general inputs. 

The inputs of the model at the bottom most layer are vectors of conceptual 

features and at the intermediate layers are vectors of activation values generated 

by the neurons of the child modules. In order to mark the inputs as general or 

specific, we first need to weight the generality of each input. In this endeavor, we 

define two parameters: a) feature weight: to weight the generality of the 

conceptual features at the bottom layer, and b) module weight: computed for each 

child module in the hierarchy to weight the generality of its output activation 

values input to a parent module. In this case all the activation values output from a 

module would be equally weighted by the computed weight value for the module 

when being input to the parent module.  

In each module, the input vectors and the weight vectors of the neurons are of the 

same dimension. For each element (feature/activation value) being a member of 

input vector, there is a weight value which will be incorporated to the model as a 

coefficient magnifying or trivializing the similarity of the given element in the 
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input vector and the corresponding element in the neuron weight. Therefore 

feature/module weights are different from the neuron weights that are used for 

training. However they determine what are the most important elements of the 

neuron weight vector, which need to be similar to the elements in the input vector 

for the neuron to be activated. 

Let                          where           ,    represents an input 

pattern such that,                       and          ,      is 1 if the feature 

is present in    and 0 otherwise. The Presence Number Nj for each feature    is 

        
 
              (2.3) 

The feature weight    for each input feature and module weight wm for each 

module within the hierarchy is defined as follows. 

   
  

 
                                                                                                               (2.4) 

We compute wm for a module as a function of its input weights. Two different 

operations for computing wm are presented and compared in our paper – sum-

weights and max-weight. 

Where M represents the modules at level p-1 of the hierarchy, the sum-weights 

operation defines wm at level p as 

    
                  

      
                                                                                      (2.5) 

Whereas the max-weight operation evaluates    as   
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                                                                             (2.6) 

The max-weight operation is expected to have a greater bias of the results towards 

general features and broader categorizations than the sum-weights operation.  

In the context of this thesis we refer to local correlation algorithm as max-weight 

algorithm, if max-weight operation is used and we refer to it as sum-weights 

algorithm if sum-weights operation is used.  

 Each bottom or intermediate level module feeds to a higher level module (parent) 

and correspondingly each of its outputs (categories) functions as an input feature 

to the parent module. The    values of such inputs to the parent module are equal 

to the    values of the child modules originating them. In order to illustrate how 

   values are computed for the inputs at different layers of the hierarchy in the 

context of the two proposed operations - sum-weights and max-weight operations 

-, an example is provided in below.  

Suppose that         and         are located at the bottom of the hierarchy. 

Let   be the number of patterns in the database.  
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Figure 2.5: Inputs and outputs of the child modules. The outputs of child modules 

are the inputs to the parent module.  

 

►              
  

 
                              (Bottom layer)                            (2.7) 

►                                                    (Layers other than the bottom layer) 

&  

                                       (2.8) 

 

●                                            (max-weight algorithm) 

 & 

                                            (2.9) 

 

●             
 
                                     (sum-weights algorithm)   

& 

             
 
            (2.10) 
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2.3.1. Marking features/modules as general or specific 

The weight value of each feature or module represents its generality or specificity 

as seen by the system. In short, the higher the weight value, the more general the 

feature/module.   

User defined parameters τ (for feature marking), and   (for module marking) are 

applied to control the population of general set relative to the population of 

specific set. It is desired to keep the number of general features always higher 

than the number of specific features. At the bottom layer of the hierarchy, the 

number of general features will be set to be τ times the number of specific features 

and at the intermediate layers the number of general modules will be set to  be   

times the number of specific modules. It is desired for the values of τ and   to be 

greater than or equal to one, since they encode the ratio of the number of general 

to specific inputs (features/modules) of each layer of the hierarchy. For example, 

suppose the total number of features is equal to   and    . So, it is desired to 

keep the number of general features twice as many as the number of specific 

features (since    ). Therefore, we assign the first         
 

   
    3 number 

of the most high weighted features to the set of general features and the rest of the 

features to the set of specific features. Figure 2.6 illustrates one such example. 

The pseudo code below is used to label a set of features/modules as being general 

or specific, depending on the user defined parameters τ (for feature marking) and 

  (for module marking), where τ and    are greater than or equal to 1. 

                                                           
3
         maps a real number to its smallest following integer 
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_________________________________________________________________ 

Mark features/modules as general_specific() 

1. Sort the features/modules in a decreasing order on the basis of their weights and push 

them into the queue Q 

2. while ~(isEmpty(Q)) 

   a. Pop τ/  features/modules from the front of Q and push them into the queue G 

(general features/modules)  

   b. pop one feature/module  from the rear of Q and push it into the queue S (specific 

features/modules) 

 

Figure 2.6 illustrates the process of marking features at the bottom layer of the 

hierarchy through an example. 

 

Figure 2.6: (a) A set of patterns and their corresponding features, (b) features sorted 

in non-increasing order on the basis of their    values, (c) features are marked 

according to the value of  . 
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2.3.2. Generalization 

In the process of generalization across the hierarchy, our model weighs general 

features/modules over specific ones by performing two main operations – input 

management and prioritization. 

 

2.3.2.1. Input management  

Input management ensures that the number of general features/modules input to 

each module of the hierarchy is greater or at least equal to the number of specific 

features/modules. The following pseudo code explains input management at the 

most bottom layer of the hierarchy with τ=2. Let          represent the number 

of features per module.           encodes the number of available features in the 

queue S, including unused specific features. We desire to have a combination of 

general and specific features in each module so as to distribute the effect of 

general feature across the hierarchy. Hence, it is desired to input specific features 

into a module which shares a pattern with a general feature already added to the 

module.  This is performed by               which returns a Boolean 

indicating whether there is any pattern in which the values of the feature    and at 

least one of the previously added features of the module are one. The performance 

is dependent on the number of input features/children per module (user defined 

parameters) and the values of τ      . 
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Input features to the Module(nFeature) 

1. if (isOdd(nFeature)) 

            a. pop one feature from the rear of the queue G and push it into the Module 

2. for i=1:floor(nFeature/2) 

       a. pop one feature from the front of the queue G and push it into the Module 

      b.  if ~(isEmpty(S)) 

              i. feature = Pop specific(Module) 

              ii. push feature into the Module  

      c. else 

               i. pop one feature from the rear of the queue G and push it into the Module 

_______________________________________________________________________ 

Pop specific(Module) 

1.added = 0 

2. for i= nSpecific:-1:1 

      a. if (sharedPattern(Module,S(i))) 

 i. pop S(i) from the queue S and push it into the Module 

            ii.added = 1 

            iii. break 

3. if ~(added) 

      a. pop one feature from the rear of the queue S and push it into the Module  

 

Figure 2.7 illustrates the process of input management at the bottom layer of the 

hierarchy in the context of the example demonstrated in Figure 2.6. 
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Figure 2.7: (a) The use of general, specific and an intermediate features (low 

weighted general features) in each module when the number of features per module 

is odd, (b) the use of general and specific features when the number of features per 

module is even. 

 

2.3.2.2. Prioritization 

Prioritization is a weighted similarity measure that interferes in the process of 

similarity measurement of the conceptual patterns. In this work, we define the 

similarity of any two concepts as the Euclidean distance between the 

representative neurons
4
. The prioritization operation magnifies or trivializes the 

similarity values of the pair-wise inputs on the basis of their corresponding 

weights. From equation 2.11, we can observe that the similarity values of general 

features with high feature weights would be more significant in the process 

selection of similar concepts and generalization. In equation 2.11,      and 

sNum represent the number of general and specific features in the module 

                                                           
4
 As can be seen from equation 2.11, the effect of prioritization can be observed only when an 

integration of pair-wise feature similarity is used to measure concept similarity.   
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respectively, such that            The indices P and N refer to the pattern 

(input vector) and the neuron (weight vector). 

                         

            
 
   

    
              

 
   

    
                                       (2.11)  

 

2.3.3 The effect of local correlation model on the 

categorization of single modules 

Figure 2.7 illustrates an example of how effectively the inclusion of local 

correlation of input features leads to coherent - natural - categorizations in single 

modules. In the following example the value of   is equal to one and therefore: 

                                     & 
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Figure 2.8: (a) ‘canary’ as an animal is mistakenly grouped with ‘pine’ as a plant 

when prioritization and input management are not included, (b) substituting the 

specific feature ‘walk’ with the general feature ‘root’ fixes the categorization due to 

inclusion of input management, (c) canary’ as animal is mistakenly grouped with 

plants when prioritization and input management are not included, (d) applying 

prioritization, fixes categorization to be coherent. 
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Chapter 3 

Results and Discussions 

 

In this chapter, two different types of input data for the model are discussed. 

Then, the experimental results of applying the model - max-weight and sum-

weights operations - over three different sets of data, in the light of different 

computational parameters and different types of input data are presented. In the 

end, the model is applied for the discovery of the hierarchical structural form of 

data.  

 

3.1. Two Types of Input Data 

Every feature in a database can divide the pattern space of the data into two 

separate categories (Figure 3.1). The core of our model is to weight the 

corresponding categories of general features over specific features in the process 

of categorization. On this basis, two types of data structure namely „unique 

structured‟ and „multiple structured‟ can be discussed. 
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Figure 3.1: single features divide the pattern space into two groups. 

 

We call a data unique structured if, for every two general features    and    from 

the database, where       , one the following conditions hold. Under first 

condition, both features should categorize the pattern space similarly. Under 

second condition,    should not divide the pattern space of more than one of the 

categories created on the basis of   . In below, the definition of the unique 

structured data is illustrated through an example. Suppose that InputData is the 

input matrix including   features and 10 patterns. InputData is labeled as a 

unique structured data if for each feature    and    from the dataset, it holds one of 

the conditions (1) or (2) as illustrated in Figure 3.2. 
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                        & Categorization of patterns on the basis of   : 

 

Then, the categorization on the basis of    is similar to (1) or (2) 

1.       

2.   

          Or 

             

 

Figure 3.2: Unique structured data. (1) Categorization of the patterns on the basis of 

   must be similar to the categorization on the basis of   , or (2) only one of the 

previous categories built on the basis of    is divided on the basis of   .  
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In other words, unique structured data displays a binary hierarchical structure, 

since each feature divides the database into two groups and each new feature is 

only allowed to categorize one of the branches made by the last feature. In 

contrast, any data which does not fit a binary hierarchical structure or might 

possibly fit in multiple binary hierarchies fails to always hold one of the above 

conditions and is regarded as multiple structured data. An example is provided in 

below, to illustrate the structure of a unique structured data versus that of a 

multiple structured data. 

Figure 3.3 demonstrates a set of patterns and Table 3.1 lists their corresponding 

features along with their    values. Figure 3.4 illustrates the progressive top-down 

categorization of the patterns based on their    values. The categorization starts 

on the basis of highest weighted feature and it continues using lower weighted 

ones. It is of importance to note that the progressive top-down categorization 

explained here is just to explain the difference between the two types of data. This 

type of categorization is not intended to be assumed as equivalent to the bottom-

up generalization procedure explained in chapter 2. In fact, the iterative 

application of our model (bottom-up approach in chapter 2) over the entire pattern 

space and its newly emerged subsets (categories) should be assumed as equivalent 

to this top-down progressive categorization. As can be seen, using features: „Is 

square‟, „Is circle‟, „Is red‟, „Is triangle‟, and „Is purple‟ in a sequential order 

keeps the conditions of a unique structured data satisfied.  On the other hand, 

lower in the top-down hierarchy, using features with lower weights: „Is blue‟ and 

„Is orange‟ divide the pattern space of more than one previous categories built by 
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features of higher weights. This means that if for some reason our model selects 

features like „Is blue‟ prior to features like „Is triangle‟ (to bias the generalization 

on its basis) a different structure of data would emerge (not a unique structured 

data). For example, if the weights of such features (like „Is blue‟) are not 

sufficiently lower than the previous features (like „Is triangle‟), they might be 

weighted over higher weighted features – due to random initialization of neuron 

weights and the effect of weights on final categorization. Hence, in Figure 3.4 the 

structure of data stemming from the branch enclosed in a circle is not unique. 

Figure 3.5 and Figure 3.6 demonstrate the two possible hierarchical structures 

corresponding to this branch. Table 3.2 demonstrates the features corresponding 

to the patterns of this branch. 

 

Figure 3.3: Input patterns. 

 

Table 3.1: Features and their    values sorted in a decreasing order. 

Feature    

Is square 6/13 

Is circle 4/13 

Is red 4/13 

Is triangle 3/13 

Is orange 3/13 

Is blue 3/13 

Is purple 2/13 
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Figure 3.4: The hierarchical structure of data in Figure 3.3 when features: ‘Is blue’ 

and ‘Is orange’ are disregarded. 

 

Table 3.2: Features and their weights. 

Feature Weight 

circle 4/13 

triangle 3/13 

orange 3/13 

blue 3/13 
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Figure 3.5: The hierarchical structure of the right branch in Figure 3.4 when the 

categorization is biased on the basis of shape. 

 

  

Figure 3.6. The hierarchical structure of the right branch in Figure 3.4 when the 

categorization is biased on the basis of color. 

 

In the context of this article we call a data unique structured if the top most 

categorization - focusing on the broadest distinctions - of the patterns is unique in 

all different hierarchies corresponding to the data. Correspondingly, if different 

hierarchies of the data demonstrate contradicting categorizations at the top most 

level, we call the data multiple structured. 



46 
 

Table 3.3 illustrates three sets of data that have been applied in this thesis to 

verify the model. In all the experiments, the parameter τ is equal to 2 and the 

parameter   is equal to 1 (each parent module is fed with one general module and 

one specific module). 

Table 3.3. Datasets used in the simulations. 

Label Source Data type Details 

Set A [4] Unique structured 21 patterns  

26 features 

Set B [4] Multiple structured 13 patterns 

14 features 

Set C [44] Multiple structured 33 patterns 

102 features 

 

3.2. Generalization 

Figures 3.7 and 3.8 illustrate the contribution of local correlation to the 

categorization results of the Hubel Wiesel conceptual memory over Set A and Set 

C. We tested the model under different hierarchical structures, initialized by 

different number of modules and different number of features per module at the 

bottom of the hierarchy. As can be seen the local correlation operations, 

regardless of the structure of the hierarchy and the type of the dataset (unique 

structured or multiple structured), successfully biases the categorization on the 

basis of the high weighted general features in the context of input data. For 

example, in Figure 3.7, the highest weighted features within input data are „root‟, 
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and „move‟. „move‟ is the present feature in all animal instances and „root‟ is the 

present feature in all plant instances. As can be seen, the final categorization 

(generalization) replicates the differentiation of the patterns on the basis of these 

general features. Our generalization method if applied on the natural data
5
 assures 

the achievement of the broadest coherent categorization. The resulted 

categorization over both set A and set C corresponds to the broadest biological 

distinction of their patterns.  The categorization over set A reveals two basic 

kingdoms of patterns and the categorization over set C reveals two phylums of 

animals (Arthropods versus ~ Arthropods). Based on our results, when local 

correlation model is not included, the categorization of data is incoherent and also 

alternates per runtime. 

 

                                                           
5
 We adopt a definition for natural data. Natural data refers to a data wherein the relative 

frequency (generality) of its features in the context of a its limited patterns is proportional to the 
relative frequency of those features in the context of unlimited real world patterns. 
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Figure 3.7: (a) the most frequent/common outcome categorization of dataset A by 

local correlation model – successful categorization, (b) Illustrating the probability of 

successful categorization over set A, being obtained in a set of trials using sum-

weights, max-weight and no correlation model under different hierarchies of 

learning. Each probability demonstrates the ratio of the number successful 

categorizations obtained over 10 trials carried out using a specific correlation 

operation and under specific hierarchy of learning. 
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Figure 3.8: (a) The most frequent categorization of dataset C by local correlation 

model – successful categorization, (b) Illustrating the probability of successful 

categorization over set C, being obtained in a set of trials using sum-weights and 

max-weight operations under different hierarchies of learning. Each probability is 

computed in the same way as explained in (3.7 b).  

 

3.3. Local Correlation Operations and Computational 

Parameters 

In this section, we compare the categorization performance of the sum-weights 

and max-weight operations with respect to the effect of different computational 

parameters. Growth threshold [43] is a computational parameter used in the 

learning modules of our model. This parameter controls the growth of the neurons 

(categories) inside a module by applying a threshold on the distance values of the 

input patterns and the closest existing neuron weight in the module. If the 

corresponding distance value for an input pattern is larger than the threshold, a 

new neuron will be initialized in the modules. Therefore, lower values of growth 



50 
 

threshold facilitate the generation of more number of categories and consequently 

finer distinctions within the corresponding module. 

Figures 3.9 and 3.10 illustrate the effect of the growth threshold over set A and set 

C. The specific categories obtained by applying two different correlation 

operations and various thresholds to the multiple structured set B, is shown in 

Tables 3.4 and 3.5.   

According to Figure 3.7, Figure 3.9, Tables 3.4 and 3.5, regardless of the 

hierarchical structure, type of data and growth threshold values, the max-weight 

operation is always more significant than sum-weights in biasing the 

categorization. As can be seen, this conclusion is admitted by higher probability 

values reported for max-weight dominant categorizations in comparison with 

those reported for sum-weights. 
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Figure 3.9: The probability of categorization in Figure 3.7(a) over dataset A. A 

comparison of sum-weights and max-weight under different growth thresholds (8 

learning modules at the bottom layer) 

 

 

Figure 3.10: The probability of categorization in Figure 3.8(a) over dataset C. using 

max-weight operation under different growth thresholds in different hierarchical 

structures. 
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Table 3.4: The effect of growth threshold on the quality of categorization biasing, 

using max-weight operation over dataset B (7 modules at the bottom layer). 

Growth 

threshold 

The most probable categorization (dominant 

categorization) 

Probability of the 

dominant categorization 

0.5 

 

100% 

0.05 

 

60% 

0.005 

 

60% 

 

Table 3.5: The effect of growth threshold on the quality of categorization biasing, 

using sum-weights operation over dataset B (7 modules at the bottom layer). 

Growth 

threshold 

The most probable categorization (dominant 

categorization) 

Probability of the 

dominant categorization 

0.5 

 

50% 

0.05 

 

40% 

0.005 

 

40% 

 



53 
 

As can be seen in Figures 3.9, using sum-weights over a unique structured data, 

probability of getting broad distinctions decreases with the decrease of growth 

threshold. However, this probability stays robust when using max-weight 

operation. On the other hand, according to Figure 3.10, applying max-weight over 

a multiple structured data, probability of getting broad distinctions does not stay 

robust against changes in growth threshold. It is also important to notice that in 

this case, the probability of getting broad distinctions does not necessarily 

decrease with the decrease of the growth threshold (3.10, 51 modules). This 

evidence, suggests that the geometry of the hierarchy is another effective factor 

that along with growth threshold and the structure of data influences the 

broadness and possibly coherence of the resultant categorization. 

 According to Tables 3.4 and 3.5, using max-weight operation over a multiple 

structured data the dominant categorization gets finer and more coherent 

(naturally descriptive of data) with the decrease of growth threshold. It is also 

noticeable that the same effect is not observed using sum-weights.  

Table 3.6, summarizes the details and purpose of the experiments demonstrated in 

this section. 
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Table 3.6: Summary of the experiments. 

Experiment 1 2 3 4 5 6 

Purpose of experiment Comparison of the 

probability of broad 

and coherent 

categorizations 

using different 

models 

The effect of growth 

threshold on the 

probability of broad 

categorization 

The effect of growth 

threshold on the 

quality of 

categorization 

Illustration of results Figure 

3.7 

Figure 

3.8 

Figure 

3.9 

Figure 

3.10 

Table 

3.4 

Table 

3.5 

Hierarchical 

learning 

Number of 

learning 

modules 

1,2,3,4,6

,4,2,1 

1,2,51 8 1,2,51 7 7 

Number of 

input 

features 

allowed per 

module 

24,12,8,

6,4,2,1 

51,2,1 3 51,2,1 2 2 

Local 

correlation 

model 

Max-

weight 

algorithm 

√ √ √ √ √ --- 

Sum-

weights 

algorithm 

√ --- √ --- --- √ 

No local correlation model √ √ --- --- --- --- 

Data type Unique 

Structured 

data 

√ --- √ --- --- --- 

Multiple 

Structured 

data 

--- √ --- √ √ √ 

Growth threshold 0.5 0.5 0.5,0.05,

0.005 

1.25, 

0.75 

0.5,0.05,

0.005 

0.5,0.05,

0.005 
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3.4. Building Hierarchical Structures of Data 

In this section we use the max-weight (a bottom-up generalization algorithm) in a 

top-down hierarchical manner to build a hierarchical structure of the data. Given a 

database, we first apply the model over whole data (the root node of the 

hierarchy) which results in the creation of several categories. Each of these 

categories - containing only a portion of input patterns along with their 

corresponding features would be regarded as a new dataset (nodes branching from 

the root node). We apply the proposed concept generalization model over new 

datasets (subsets of patterns) iteratively until the desired depth and breadth of the 

hierarchy in different branches is reached.  The below pseudo code illustrates 

such top-down algorithm which uses the bottom-up algorithm to build a 

hierarchical structure of data. In this pseudo code, the function bottom-up() refers 

to our proposed Hubel Wiesel model of early concept generalization explained in 

chapter 2. Top-down function is a recursive function which uses the bottom-up 

function iteratively and results in finer categories similar to progressive 

differentiation. 

 

Top-down(Input Data)  

1. output = Bottom-up(Input Data) 

2. for i=1:size(output) 

       a.Top-down(output(i)) 

_______________________________________________________________________ 

{category1, category2, …}=Bottom-up(Input Data)   
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The results of applying this procedure over dataset A, and dataset C are provided 

in Figure 3.11 and Figure 3.12 It is important to note that changing the growth 

threshold of the model can change the number of resulted categories (the number 

of branches stemming from the corresponding node).   

We assume that humans are capable of performing categorization and 

subsequently labeling over any given set of patterns represented in the format of 

feature data [44]. Since, category labels can always be organized in to hierarchies 

[45], therefore regardless of the underlying structural form of the data [44] human 

mind is considered to be capable of fitting any given feature data into a 

hierarchical structure. For example, geographical places are naturally organized in 

a spherical structural form, while human mind is capable of projecting 

geographical data in hierarchical structure through developing and using concepts 

like continent, country, state, and city. In other words, we assume that one of the 

cognitive properties of human mind is the ability to build hierarchical structure for 

any given feature data which makes it able to develop abstract but not necessarily 

natural knowledge about its environment.  

Furthermore, it can be discussed that the same set of entities can be represented 

within different structural forms each of which capturing a different aspect of the 

relationship among the entities. For example, the temporal relationship among 

seasons, months, and weeks can be captured within cycles while their spatial 

relationship can be represented in hierarchies (Figure 3.13). Additionally, 

different spatial representations of the data within a given structural form reflect 

different levels of the abstraction of the patterns‟ relationship. For instance, a set 
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of animals including three different classes: mammals, birds, amphibians can be 

categorized in two different ways. As can be seen in Figure 3.14.b, animals can be 

categorized to two big groups of mammal and ~mammal at the top level of the 

hierarchy. ~ mammal can be subsequently categorized into two classes: birds and 

amphibians. According to Figure 3.14.b ~mammal is not a leaf in the hierarchical 

structure and it only provides more abstraction of data. As can be seen in Figure 

3.14.a, another way of categorization is to remove the middle abstract concept of 

~mammal. In any kind of categorization there might be non-leaf concepts 

functioning as more abstractions of the data. Based on the number of abstract 

groups that might be desired different spatial representation of the data can be 

emerged within a particular structural form.  

 

 

Figure 3.11: Hierarchical structure of dataset A. 
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Figure 3.12: Hierarchical structure of dataset C. 

 

 

Figure 3.13: Temporal (cycle) and spatial (hierarchy) relationships of seasons and 

months. 
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Figure 3.14: (a) Less abstraction in the categorization, (b) higher levels of 

abstraction in the categorization due to the use of the non-leaf concept ‘~ mammals’. 
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Chapter 4 

Conclusion 

 

4.1. Concluding Remarks 

In summary, our model is an input integration framework for a Hubel Wiesel 

conceptual memory to bias the generalization process such that it contributes to 

the categorization of concepts in two ways. First, it decreases the probability of 

multiple incoherent categorizations while facilitating the achievement of natural 

coherent categorizations over coherent datasets. Second, it increases the 

probability of achieving the broadest distinction - the quality of early concept 

differentiation due to progressive differentiation phenomena - of the data. 

Assuming that changes in input integration framework of a hierarchical memory 

is one of  the sources of the progressive differentiation of concepts, our local 

correlation model can be regarded as a basic input integration framework 

corresponding to early local correlations of input features leading to early concept 

differentiation.  

Furthermore, we designed two different algorithms to implement our model. The 

potential performance of these two algorithms have been studied and compared 
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under different situations including, different hierarchical structures, different 

growth thresholds, and different types of input data. These two operations are 

different in the way they handle the strength of biasing the categorization towards 

general features. The quality of features being general or specific is subject to 

continuous change upon receiving new inputs – new features and new patterns. 

Therefore, it is questionable whether or not max-weight operation which gives a 

very high weight to the detected general features within a single entry might be a 

brain-like operation. Though, our simulations show that the max-weight operation 

produces more coherent results which are also consistent with the expected broad 

distinctions perceived in early childhood. May be in early stages of learning, an 

operation like max-weight is used to perceive broad distinctions and build the 

basic wirings in the brain. While, later a more moderate operation like sum-

weights is used which does not bias the categorization as strongly as max-weight 

does.  

In general, max-weight algorithm is always more significant than sum-weights 

algorithm in biasing the categorization. The table below summarizes the effect of 

the decrease of the growth threshold on the probability and quality of the broad 

distinctions emerged by the local correlation model. 
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Table 4.1: The effect of decreasing growth threshold on the categorization of the 

local correlation model. 

Algorithm Data type Probability  

of broad 

distinctions 

Quality of  

broad 

distinctions 

Sum-weights Unique structured Decrease --- 

Max-weight Multiple structured Unchanged --- 

Sum-weights Unique structured Randomly 

changed 

(decrease/increase) 

--- 

Max-weight Multiple structured --- Grows finer and 

more coherent 

   

Our model can be also used to fit any given feature data into a hierarchical 

structure and provides a possible explanation on how human mind assigns a 

hierarchical structure to a given data. The Changes of the growth threshold over 

the input data at each node of the hierarchy is capable of changing the number of 

branches stemming from the corresponding node. Therefore, the output of 

iterative application of our model over input data should not be expected to be 

always a binary hierarchical structure. 

 

4.2. Future Works 

In the last section, the success of the model – specifically max-weight algorithm – 

to effectively bias the generalization towards the broadest coherent 
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differentiations of data is demonstrated. Assuming that changes in input 

integration framework of a hierarchical memory is one of  the sources of the 

progressive differentiation of concepts, two possible directions for future works 

can be discussed. 

1) Further study can be conducted to simulate the later developments (detection of 

finer distinctions) of the progressive concept differentiation - in the bottom-up 

pass - on the basis of prior broad distinctions and smooth changes in the input 

integration framework. The smooth changes to the input integration framework 

may include both operations of input management and prioritization. Based on the 

prior knowledge of broad categories, the model of local correlation should be 

evolved through further trainings. 

2) Another direction to continue this work is to find a consistent model of 

incremental learning with the progressive differentiation phenomena. It can be 

discussed that changes to the input integration framework are caused by two main 

sources. The first source is the change of the quantity and quality of the prior 

categorization judgments. The second source is the incremental learning 

procedure. In the course of incremental learning, new patterns and features might 

be input to the system and they shall be used to provide the system with more 

coherent categorization judgments. In this endeavor, further study needs to be 

conducted on the mechanism by which necessary changes to input management 

and prioritization operations should be made upon the entrance of new features 

and patterns. 
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Appendix A-1: Dataset A - List of 

Entities 

 

 

 

Following are the complete lists of patterns, features in Dataset A from Rogers 

and McClelland Corpus (2004). It includes 21 patterns and 26 features. 

 

List of Patterns 

 

Pine, Oak, Maple, Birch, Rose, Daisy, Tulip, Sunflower, Robin, Canary, Sparrow, 

Penguin, Sunfish, Salmon, Flounder, Cod, Cat, Dog, Mouse, Goat and Pig. 

 

List of Features 

 

Pretty, Big, Living, Green, Red Yellow, White, Twirly, Grow, Move, Swim, Fly, 

Walk, Sing, Leaves, Roots, Skin, Legs, Bark, Branches, Petals, Wings, Feathers, 

Scales, Gills and Fur. 
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Dataset A – Input Matrix, columns 1-12: 

pine oak maple birch rose daisy tulip sunflower robin canary sparrow penguin

Living 1 1 1 1 1 1 1 1 1 1 1 1

pretty 0 0 0 0 1 1 1 1 0 1 0 0

green 1 0 0 0 0 0 0 0 0 0 0 0

big 0 1 1 1 0 0 0 1 0 0 0 0

red 0 0 1 0 1 0 0 0 1 0 0 0

yellow 0 0 0 0 0 1 0 1 0 1 0 0

white 0 0 0 1 0 0 1 0 0 0 0 1

twirly 0 0 1 0 0 0 0 0 0 0 0 0

grow 1 1 1 1 1 1 1 1 1 1 1 1

move 0 0 0 0 0 0 0 0 1 1 1 1

swim 0 0 0 0 0 0 0 0 0 0 0 1

fly 0 0 0 0 0 0 0 0 1 1 1 0

walk 0 0 0 0 0 0 0 0 0 0 0 1

sing 0 0 0 0 0 0 0 0 0 1 0 0

bark 1 1 1 1 0 0 0 0 0 0 0 0

branches 1 1 1 1 0 0 0 0 0 0 0 0

petals 0 0 0 0 1 1 1 1 0 0 0 0

wings 0 0 0 0 0 0 0 0 1 1 1 1

feathers 0 0 0 0 0 0 0 0 1 1 1 1

scales 0 0 0 0 0 0 0 0 0 0 0 0

gills 0 0 0 0 0 0 0 0 0 0 0 0

leaves 0 1 1 1 1 1 1 1 0 0 0 0

roots 1 1 1 1 1 1 1 1 0 0 0 0

skin 0 0 0 0 0 0 0 0 1 1 1 1

legs 0 0 0 0 0 0 0 0 1 1 1 1

fur 0 0 0 0 0 0 0 0 0 0 0 0  

Dataset A – Input Matrix, columns 12-21: 

sunfish salmon flounder cod dog cat mouse goat pig

Living 1 1 1 1 1 1 1 1 1

pretty 0 0 0 0 0 1 0 0 0

green 0 0 0 0 0 0 0 0 0

big 0 1 0 0 1 0 0 1 1

red 0 1 0 0 0 0 0 0 0

yellow 1 0 0 0 0 0 0 0 0

white 0 0 0 1 0 0 0 0 0

twirly 0 0 0 0 0 0 0 0 0

grow 1 1 1 1 1 1 1 1 1

move 1 1 1 1 1 1 1 1 1

swim 1 1 1 1 0 0 0 0 0

fly 0 0 0 0 0 0 0 0 0

walk 0 0 0 0 1 1 1 1 1

sing 0 0 0 0 0 0 0 0 0

bark 0 0 0 0 0 0 0 0 0

branches 0 0 0 0 0 0 0 0 0

petals 0 0 0 0 0 0 0 0 0

wings 0 0 0 0 0 0 0 0 0

feathers 0 0 0 0 0 0 0 0 0

scales 1 1 1 1 0 0 0 0 0

gills 1 1 1 1 0 0 0 0 0

leaves 0 0 0 0 0 0 0 0 0

roots 0 0 0 0 0 0 0 0 0

skin 1 1 1 1 1 1 1 1 1

legs 0 0 0 0 1 1 1 1 1

fur 0 0 0 0 1 1 1 1 0  
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Appendix A-2: Dataset B - List of 

Entities 

 

 

 

Following are the complete lists of patterns, features in Dataset B from Rogers 

and McClelland Corpus (2004). It includes 13 patterns and 14 features. 

 

List of Patterns 

 

Robin, Canary, Sparrow, Penguin, Sunfish, Salmon, Flounder, Cod, Cat, Dog, 

Mouse, Goat and Pig. 

 

List of Features 

 

Pretty, Big, Red, Yellow, White, Swim, Fly, Walk, Sing, Wings, Feathers, Scales, 

Gills and Fur. 
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Dataset B – Input Matrix 

robin canary sparrow penguin sunfish salmon flounder cod dog cat mouse goat pig

pretty 0 1 0 0 0 0 0 0 0 1 0 0 0

big 0 0 0 0 0 1 0 0 1 0 0 1 1

red 1 0 0 0 0 1 0 0 0 0 0 0 0

yellow 0 1 0 0 1 0 0 0 0 0 0 0 0

white 0 0 0 1 0 0 0 1 0 0 0 0 0

swim 0 0 0 1 1 1 1 1 0 0 0 0 0

fly 1 1 1 0 0 0 0 0 0 0 0 0 0

walk 0 0 0 1 0 0 0 0 1 1 1 1 1

sing 0 1 0 0 0 0 0 0 0 0 0 0 0

wings 1 1 1 1 0 0 0 0 0 0 0 0 0

feathers 1 1 1 1 0 0 0 0 0 0 0 0 0

scales 0 0 0 0 1 1 1 1 0 0 0 0 0

gills 0 0 0 0 1 1 1 1 0 0 0 0 0

fur 0 0 0 0 0 0 0 0 1 1 1 1 0

 

 

 

 

 

 

 

 

 

 

 



77 
 

Appendix A-3: Dataset C - List of 

Entities 

 

 

 

Following are the complete lists of patterns, features in Dataset C from Kemp and 

Tenenbaum Corpus (2008). It includes 33 patterns and 102 features. 

 

List of Patterns 

 

Elephant, Rhino, Horse, Cow, Camel, Giraffe, Chimp, Gorilla, Mouse, Squirrel, 

Tiger, Lion, Cat, Dog, Wolf, Seal, Dolphin, Robin, Eagle, Chicken, Salmon, 

Trout, Bee, Iguana, Alligator, Butterfly, Ant, Finch, Penguin, Cockroach, Whale, 

Ostrich, and Dear. 

 

List of Features 

 

Lungs, Large brain, Spinal cord, Warm blooded, Teeth, Feet, 2 legs, 6 legs, 

Tongue, Visible ears, Nose, Paws, Lives in groups, Tough skin, Long neck, Fins, 

Long legs, Fish, Snout, Antennae, Eats rodents, Travels in groups, Long, Large, 

Roars, Claws, Wings, Green, Tusks, Carnivore, Slender, Dangerous, Eats grass, 

Tall, Beak, Slow, Fast, Lives in trees, eats leaves, Smooth, Lizard, Eats seeds, 

Poisonous, Soft, Bird, Black, Hunts, Howls, Gills, Feline, Stripes, Lives in the 

forest, 4 legs, Strong, Predator, Rodent, Lives in hot climates, Webbed feet, Eats 

mice, Lives in lakes, Squawks, Ferocious, Lives in cold climates, Yellow, Lives 

in the ocean, Hooves, Feathers, Makes loud noises, Eats bugs, Runs, Bites, 

Crawls, Swims, Flies, Insect, Lives in water, Sings, Horns, Eats nuts, Brown, Eats 

fish, Lays eggs, Scaly, Eats animals, Furry, Smart, Blue, Tail, Flippers, Reptile, 

Lives on land, Colorful, Lives in houses, Digs holes, Lives in grass, Mammal, 

White, Canine, Womb, Subcutaneous fat, red blood, and Bones. 
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Dataset C – Input Matrix, columns 1-12 

elephant rhino horse cow camel giraffe chimp gorilla mouse squirrel tiger lion

lungs 1 1 1 1 1 1 1 1 1 1 1 1

large brain 1 0 0 0 0 0 1 1 0 0 1 1

spinal cord 1 1 1 1 1 1 1 1 1 1 1 1

warm blooded 1 1 1 1 1 1 1 1 1 1 1 1

teeth 1 1 1 1 1 1 1 1 1 1 1 1

feet 0 0 0 0 0 0 1 1 1 1 1 1

2 legs 0 0 0 0 0 0 1 1 0 0 0 0

6 legs 0 0 0 0 0 0 0 0 0 0 0 0

tongue 1 1 1 1 1 1 1 1 1 1 1 1

visible ears 1 1 1 1 1 1 1 1 1 1 1 1

nose 0 1 1 1 1 1 1 1 1 1 1 1

paws 0 0 0 0 0 0 0 0 0 1 1 1

lives in groups 1 1 1 1 0 0 1 1 1 0 0 1

tough skin 0 0 0 0 0 0 0 0 0 0 0 0

long neck 0 0 0 0 0 1 0 0 0 0 0 0

fins 0 0 0 0 0 0 0 0 0 0 0 0

long legs 1 0 0 0 0 1 0 0 0 0 0 0

fish 0 0 0 0 0 0 0 0 0 0 0 0

snout 0 1 1 1 1 1 0 0 1 1 0 0

antennae 0 0 0 0 0 0 0 0 0 0 0 0

eats rodents 0 0 0 0 0 0 0 0 0 0 0 0

travels in groups 1 0 1 1 0 1 1 1 0 0 0 1

long 1 0 0 0 0 0 0 0 0 0 0 0

large 1 1 1 1 1 1 1 1 0 0 1 1

roars 0 0 0 0 0 0 0 0 0 0 1 1

claws 0 0 0 0 0 0 0 0 1 1 1 1

wings 0 0 0 0 0 0 0 0 0 0 0 0

green 0 0 0 0 0 0 0 0 0 0 0 0

tusks 1 1 0 0 0 0 0 0 0 0 0 0

carnivore 0 0 0 0 0 0 0 0 0 0 1 1

slender 0 0 0 0 0 1 0 0 0 1 0 0

dangerous 0 1 0 0 0 0 0 0 0 0 1 1

eats grass 1 1 1 1 1 1 1 1 0 0 0 0

tall 1 0 0 0 0 1 0 0 0 0 0 0

beak 0 0 0 0 0 0 0 0 0 0 0 0

slow 0 0 0 0 0 0 0 0 0 0 0 0

fast 1 1 1 0 1 1 0 0 0 0 1 1

lives in trees 0 0 0 0 0 0 1 0 0 1 0 0

eats leaves 1 1 1 1 1 1 1 1 0 0 0 0

smooth 0 0 0 0 0 0 0 0 0 0 0 0

lizard 0 0 0 0 0 0 0 0 0 0 0 0

eats seeds 0 0 0 0 0 0 1 1 1 1 0 0

poisonous 0 0 0 0 0 0 0 0 0 0 0 0

soft 0 0 1 1 1 1 1 1 1 1 1 1

bird 0 0 0 0 0 0 0 0 0 0 0 0

black 0 1 1 1 0 1 0 1 0 0 1 0

hunts 0 0 0 0 0 0 0 0 0 0 1 1

howls 0 0 0 0 0 0 0 0 0 0 0 0

gills 0 0 0 0 0 0 0 0 0 0 0 0

feline 0 0 0 0 0 0 0 0 0 0 1 1

stripes 0 0 0 0 0 0 0 0 0 0 1 0

lives in the forest 0 0 0 0 0 0 1 1 1 0 1 0

4 legs 1 1 1 1 1 1 1 1 1 1 1 1

strong 1 1 1 0 0 0 1 1 0 0 1 1

predator 0 0 0 0 0 0 0 0 0 0 1 1

rodent 0 0 0 0 0 0 0 0 1 1 0 0

lives in hot climates 1 1 0 0 1 1 1 1 1 0 1 1

webbed feet 0 0 0 0 0 0 0 0 0 0 0 0

eats mice 0 0 0 0 0 0 0 0 0 0 0 0

lives in lakes 0 0 0 0 0 0 0 0 0 0 0 0

squawks 0 0 0 0 0 0 0 0 0 0 0 0

ferocious 1 1 0 0 0 0 0 1 0 0 1 1

lives in old climates 0 0 0 0 0 0 0 0 1 0 1 0

yellow 0 0 0 0 1 1 0 0 0 0 0 1

lives in the ocean 0 0 0 0 0 0 0 0 0 0 0 0

hooves 1 1 1 1 1 1 0 0 0 0 0 0

feathers 0 0 0 0 0 0 0 0 0 0 0 0

makes loud noises 1 1 1 1 0 0 1 1 0 0 1 1

eats bugs 0 0 0 0 0 0 0 0 0 0 0 0

runs 1 1 1 0 1 1 1 1 0 1 1 1

bites 0 0 0 0 0 0 0 0 0 0 1 1

crawls 0 0 0 0 0 0 0 0 0 0 0 0

swims 0 1 0 0 0 0 0 0 0 0 0 0

flies 0 0 0 0 0 0 0 0 0 0 0 0

insect 0 0 0 0 0 0 0 0 0 0 0 0

lives in water 0 0 0 0 0 0 0 0 0 0 0 0

sings 0 0 0 0 0 0 0 0 0 0 0 0

horns 0 1 0 0 0 0 0 0 0 0 0 0

eats nuts 0 0 0 0 0 0 0 0 0 1 0 0

brown 0 0 1 1 0 1 1 0 1 1 0 0

eats fish 0 0 0 0 0 0 0 0 0 0 0 0

lays eggs 0 0 0 0 0 0 0 0 0 0 0 0

scaly 0 0 0 0 0 0 0 0 0 0 0 0

eats animals 0 0 0 0 0 0 0 0 0 0 1 1

furry 0 0 1 0 0 0 1 1 0 1 1 1

smart 1 0 1 1 0 0 1 1 0 0 1 1

blue 0 0 0 0 0 0 0 0 0 0 0 0

tail 1 1 1 1 1 1 0 0 1 1 1 1

flippers 0 0 0 0 0 0 0 0 0 0 0 0

reptile 0 0 0 0 0 0 0 0 0 0 0 0

lives on land 1 1 1 1 1 1 1 1 1 1 1 1

colorful 0 0 0 0 0 0 0 0 0 0 1 0

lives in houses 0 0 0 0 0 0 0 0 0 0 0 0

diges holes 0 0 0 0 0 0 0 0 1 0 1 1

lives in grass 1 1 1 1 0 1 0 0 1 0 0 1

mammal 1 1 1 1 1 1 1 1 1 1 1 1

white 0 0 1 1 0 0 0 0 1 0 0 0

canine 0 0 0 0 0 0 0 0 0 0 0 0

womb 1 1 1 1 1 1 1 1 1 1 1 1

subcutaneous fat 1 1 1 1 1 1 1 1 1 1 1 1

red blood 1 1 1 1 1 1 1 1 1 1 1 1

bones 1 1 1 1 1 1 1 1 1 1 1 1  
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Dataset C – Input Matrix, columns 12-24 

cat dog wolf seal dolphin robin eagle chicken salmon trout bee iguana

lungs 1 1 1 1 1 1 1 1 0 0 0 1

large brain 1 1 1 0 1 0 0 0 0 0 0 0

spinal cord 1 1 1 1 1 1 1 1 1 1 0 0

warm blooded 1 1 1 1 1 1 1 0 0 0 0 0

teeth 1 1 1 1 1 0 0 0 1 1 0 1

feet 1 1 1 0 0 1 1 1 0 0 0 1

2 legs 0 0 0 0 0 1 1 1 0 0 0 0

6 legs 0 0 0 0 0 0 0 0 0 0 0 0

tongue 1 1 1 1 1 1 1 1 1 1 0 1

visible ears 1 1 1 0 0 0 0 0 0 0 0 0

nose 1 1 1 1 0 0 0 0 0 0 0 0

paws 1 1 1 0 0 0 0 0 0 0 0 0

lives in groups 0 1 1 1 1 1 0 1 0 1 1 0

tough skin 0 0 0 0 0 0 0 0 0 0 1 1

long neck 0 0 0 0 0 0 0 0 0 0 0 0

fins 0 0 0 0 1 0 0 0 1 1 0 0

long legs 0 0 0 0 0 0 0 0 0 0 0 0

fish 0 0 0 0 0 0 0 0 1 1 0 0

snout 0 1 1 1 1 0 0 0 0 0 0 0

antennae 0 0 0 0 0 0 0 0 0 0 1 0

eats rodents 1 1 1 0 0 0 1 0 0 0 0 0

travels in groups 0 1 1 1 1 0 0 1 1 1 1 0

long 0 0 0 0 0 0 0 0 0 0 0 0

large 0 0 0 0 1 0 0 0 0 0 0 0

roars 0 0 0 1 0 0 0 0 0 0 0 0

claws 1 1 1 0 0 1 1 0 0 0 0 1

wings 0 0 0 0 0 1 1 1 0 0 1 0

green 0 0 0 0 0 0 0 0 0 0 0 1

tusks 0 0 0 0 0 0 0 0 0 0 0 0

carnivore 1 1 1 1 1 0 1 0 0 0 0 0

slender 0 0 0 0 0 1 1 0 1 1 0 1

dangerous 0 0 1 0 0 0 0 0 0 0 1 0

eats grass 0 1 0 0 0 0 0 0 0 1 0 1

tall 0 0 0 0 0 0 0 1 0 0 0 0

beak 0 0 0 0 0 1 1 1 0 0 0 0

slow 0 0 0 0 0 0 0 1 0 0 0 0

fast 1 1 1 1 1 1 1 0 1 0 0 0

lives in trees 0 0 0 0 0 1 0 0 0 0 1 0

eats leaves 0 0 0 0 0 0 0 0 0 1 0 1

smooth 0 0 0 0 1 0 0 0 0 0 0 0

lizard 0 0 0 0 0 0 0 0 0 0 0 1

eats seeds 0 0 0 0 0 1 0 1 0 0 0 0

poisonous 0 0 0 0 0 0 0 0 0 0 0 0

soft 1 1 1 1 0 1 1 1 0 0 1 0

bird 0 0 0 0 0 1 1 1 0 0 0 0

black 1 1 0 1 0 0 0 1 0 0 1 0

hunts 1 1 1 1 1 1 1 0 1 0 0 0

howls 0 1 1 0 0 0 0 0 0 0 0 0

gills 0 0 0 0 0 0 0 0 1 1 0 0

feline 1 0 0 0 0 0 0 0 0 0 0 0

stripes 1 1 0 0 0 0 0 0 0 0 1 0

lives in the forest 0 1 1 0 0 1 1 0 0 0 1 0

4 legs 1 1 1 0 0 0 0 0 0 0 0 1

strong 0 0 0 0 0 0 0 0 0 0 0 0

predator 1 1 1 1 1 1 1 1 1 1 0 1

rodent 0 0 0 0 0 0 0 0 0 0 0 0

lives in hot climates 1 1 1 0 0 0 0 0 0 0 1 1

webbed feet 0 0 0 0 0 0 0 0 0 0 0 1

eats mice 1 1 0 0 0 0 1 0 0 0 0 0

lives in lakes 0 0 0 0 0 0 0 0 0 1 0 0

squawks 0 0 0 0 0 1 1 1 0 0 0 0

ferocious 1 1 1 0 1 0 0 0 0 0 1 0

lives in old climates 0 1 1 1 0 0 0 0 1 0 0 0

yellow 0 1 0 0 0 0 0 1 0 0 1 0

lives in the ocean 0 0 0 1 1 0 0 0 1 1 0 0

hooves 0 0 0 0 0 0 0 0 0 0 0 0

feathers 0 0 0 0 0 1 1 1 0 0 0 0

makes loud noises 1 1 1 1 1 1 1 1 0 0 0 0

eats bugs 0 0 0 0 0 1 0 0 1 1 0 1

runs 1 1 1 0 0 0 0 1 0 0 0 0

bites 1 1 1 0 0 0 0 1 0 0 0 1

crawls 0 0 0 0 0 0 0 0 0 0 0 1

swims 0 0 0 1 1 0 0 0 1 1 0 0

flies 0 0 0 0 0 1 1 0 0 0 1 0

insect 0 0 0 0 0 0 0 0 0 0 1 0

lives in water 0 0 0 1 1 0 0 0 1 1 0 0

sings 0 0 0 0 0 1 0 0 0 0 0 0

horns 0 0 0 0 0 0 0 0 0 0 0 0

eats nuts 0 0 0 0 0 1 0 1 0 0 0 0

brown 1 1 1 1 0 1 1 1 0 0 0 1

eats fish 1 1 1 1 1 0 1 0 1 1 0 0

lays eggs 0 0 0 0 0 1 1 1 1 1 1 1

scaly 0 0 0 0 0 0 0 0 1 1 0 1

eats animals 1 1 1 1 1 1 1 0 1 1 0 1

furry 1 1 1 1 0 0 0 0 0 0 1 0

smart 1 1 1 1 1 0 1 0 0 0 0 0

blue 0 0 0 0 0 0 0 0 1 0 0 0

tail 1 1 1 1 1 1 1 1 1 1 0 1

flippers 0 0 0 1 1 0 0 0 0 0 0 0

reptile 0 0 0 0 0 0 0 0 0 0 0 1

lives on land 1 1 1 0 0 0 0 1 0 0 0 1

colorful 0 0 0 0 0 1 0 0 1 1 1 1

lives in houses 0 0 0 0 0 0 0 0 0 0 1 0

diges holes 1 1 1 0 0 0 0 0 0 0 0 0

lives in grass 1 1 1 0 0 0 0 0 0 0 0 0

mammal 1 1 1 1 1 0 0 0 0 0 0 0

white 0 0 0 0 0 0 1 0 0 0 0 0

canine 0 1 1 0 0 0 0 0 0 0 0 0

womb 1 1 1 1 1 0 0 0 0 0 0 0

subcutaneous fat 1 1 1 1 1 0 0 0 0 0 0 0

red blood 1 1 1 1 1 1 1 1 1 1 0 1

bones 1 1 1 1 1 1 1 1 1 1 0 1  
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Dataset C – Input Matrix, columns 24-33 

alligator butterfly ant finch penguin cockroach whale ostrich dear

lungs 1 0 0 1 1 0 1 1 1

large brain 0 0 0 0 0 0 1 0 0

spinal cord 1 0 0 1 1 0 1 1 1

warm blooded 0 0 0 1 1 0 1 1 1

teeth 1 0 0 0 1 0 1 0 1

feet 1 0 0 1 1 0 0 1 0

2 legs 0 0 0 1 0 0 0 1 0

6 legs 0 1 1 0 0 1 0 0 0

tongue 1 0 0 1 1 0 1 1 1

visible ears 0 0 0 0 0 0 0 0 1

nose 0 0 0 0 0 0 0 0 1

paws 0 0 0 0 0 0 0 0 0

lives in groups 0 1 1 1 1 1 1 0 0

tough skin 1 1 1 0 0 1 0 0 0

long neck 0 0 0 0 0 0 0 1 0

fins 0 0 0 0 0 0 1 0 0

long legs 0 0 0 0 0 0 0 1 0

fish 0 0 0 0 0 0 0 0 0

snout 1 0 0 0 0 0 1 0 1

antennae 0 1 1 0 0 1 0 0 0

eats rodents 0 0 0 0 0 0 0 0 0

travels in groups 0 1 1 1 1 0 1 0 0

long 1 0 0 0 0 0 1 0 0

large 1 0 0 0 0 0 1 1 1

roars 0 0 0 0 0 0 0 0 0

claws 0 0 0 1 0 0 0 1 0

wings 0 1 0 1 0 0 0 1 0

green 1 0 0 0 0 0 0 0 0

tusks 0 0 0 0 0 0 0 0 0

carnivore 1 0 0 0 1 0 1 0 0

slender 0 0 1 1 0 1 0 0 0

dangerous 1 0 0 0 0 0 0 0 0

eats grass 0 0 0 0 0 0 0 0 1

tall 0 0 0 0 0 0 0 0 0

beak 0 0 0 1 1 0 0 1 0

slow 0 0 1 0 0 0 0 0 0

fast 1 0 0 1 1 0 1 1 1

lives in trees 0 1 0 1 0 0 0 0 0

eats leaves 0 0 0 0 0 0 0 0 1

smooth 0 1 1 0 0 0 0 0 0

lizard 1 0 0 0 0 0 0 0 0

eats seeds 0 0 0 1 0 0 0 1 0

poisonous 0 0 1 0 0 0 0 0 0

soft 0 0 0 1 1 0 0 1 1

bird 0 0 0 1 1 0 0 1 0

black 0 1 1 1 1 1 1 0 0

hunts 1 0 0 1 1 0 1 0 0

howls 0 0 0 0 0 0 0 0 0

gills 0 0 0 0 0 0 0 0 0

feline 0 0 0 0 0 0 0 0 0

stripes 0 0 0 0 0 0 0 0 0

lives in the forest 0 1 1 1 0 0 0 0 1

4 legs 1 0 0 0 0 0 0 0 1

strong 1 0 1 0 0 0 1 0 0

predator 1 0 0 1 1 0 1 1 0

rodent 0 0 0 0 0 0 0 0 0

lives in hot climates 1 1 1 0 0 1 0 1 0

webbed feet 0 0 0 0 0 0 0 0 0

eats mice 0 0 0 0 0 0 0 0 0

lives in lakes 0 0 0 0 0 0 0 0 0

squawks 0 0 0 1 1 0 0 1 0

ferocious 1 0 0 0 0 0 1 0 0

lives in old climates 0 0 1 0 1 0 1 0 0

yellow 0 1 0 1 0 0 0 0 0

lives in the ocean 0 0 0 0 1 0 1 0 0

hooves 0 0 0 0 0 0 0 0 1

feathers 0 0 0 1 1 0 0 1 0

makes loud noises 1 0 0 1 1 0 1 1 0

eats bugs 0 0 0 1 0 0 1 1 0

runs 1 0 0 0 0 0 0 1 1

bites 1 0 1 0 0 0 0 0 0

crawls 1 0 1 0 0 1 0 0 0

swims 1 0 0 0 1 0 1 0 0

flies 0 1 1 1 0 0 0 0 0

insect 0 1 1 0 0 1 0 0 0

lives in water 0 0 0 0 1 0 1 0 0

sings 0 0 0 1 0 0 1 0 0

horns 0 0 0 0 0 0 0 0 0

eats nuts 0 0 0 1 0 0 0 0 0

brown 1 1 0 1 0 0 0 0 1

eats fish 0 0 0 0 1 0 1 0 0

lays eggs 1 1 1 1 1 1 0 1 0

scaly 0 0 0 0 0 0 0 0 0

eats animals 1 0 0 1 1 0 1 0 0

furry 0 0 0 0 0 0 0 0 0

smart 0 0 0 1 0 0 1 0 0

blue 0 1 0 0 0 0 1 0 0

tail 1 0 0 1 1 0 1 1 1

flippers 0 0 0 0 0 0 1 0 0

reptile 1 0 0 0 0 0 0 0 0

lives on land 1 0 1 0 0 1 0 1 1

colorful 0 1 0 0 1 0 0 0 0

lives in houses 0 0 0 0 0 0 0 0 0

diges holes 0 0 1 0 0 1 0 0 0

lives in grass 0 0 0 0 0 0 0 1 1

mammal 1 0 0 0 0 0 1 0 1

white 0 0 0 1 1 0 0 1 0

canine 0 0 0 0 0 0 0 0 0

womb 0 0 0 0 0 0 1 0 1

subcutaneous fat 0 0 0 0 1 0 1 0 1

red blood 1 0 0 1 1 0 1 1 1

bones 1 0 0 1 1 0 1 1 1  
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