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ABSTRACT 

 

 The intrinsic electrical activity (slow waves) and mechanical activity of the gastric 

musculature is a coordinated sequence of events influenced by interstitial cells of Cajal, 

smooth muscle cells and the enteric nervous system. These complex control mechanisms 

have been developed by the gastric musculature to perform the basic physiological functions 

of synchronized contraction and relaxation which is known as gastric motility. Disturbances 

at any level of the control mechanisms can result in number of GI motility disorders such as 

gastroparesis. Following the success of cardiac pacemakers, it was thought that injecting an 

electrical stimulus into the stomach’s wall (gastric electrical stimulation) may restore its 

motility. Gastric electrical stimulation (GES) is an alterative strategy attempting to alleviate 

gastroparetic and other gastric dysmotility symptoms by improving overall gastric motility. 

In this research project we have developed an electrophysiological model for gastric 

electrical stimulation based on realistic description of the interstitial cells of Cajal and 

smooth muscle cells. The physiological significance of single and multi channel GES along 

with their energy efficiency has been examined.  Electrical parameter selection for different 

types of stimulus protocols that are currently employed in experimental GES have also been 

examined to achieve efficient and effective slow wave entrainment. This model allows the 

demonstration of normal gastric electrical activity as well as gastric dysrhythmia based on 

the underlying mechanisms and also provides a framework for predicting the energy 

requirements of the applied pacing parameters. We have integrated a large quantity of 

information from experimental GES ranging from various stimulus protocols to the number 

of channels used for delivering stimulus and have packed it succinctly into the developed 

GES model. This model allows us to manipulate the stimulus parameters for different types 

of gastric dysrhythmia and pave the way for the development of an effective and energy 

efficient gastric pacemaker. 
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Chapter 1 

Introduction 

 

 The functional role of gastrointestinal tract (GI) is to digest and absorb nutrients. These 

processes are facilitated by the coordinated movement of the food from mouth to the anus. 

This movement is referred to as motility. Impairment of gastric motility is the cause of a 

number of GI motility disorders. These GI motility disorders are associated with various 

complications including vomiting, nausea, stomach obstruction, abdominal pain, 

malnutrition, food hardening into bezoars and early satiety [1]. People suffering from GI 

motility disorders experience a significant loss in quality of life to the extent of some 

being housebound. They can strike anyone, at any time in their lives. GI motility disorders 

affect 35 million people in USA alone. Next to the common cold, gastrointestinal motility 

disorders cause the highest percentage of absenteeism from the workplace. The economic 

burden for digestive disorders is $123 billion per year [2]. Gastroparesis is a motility 

disorder of the stomach affects more than 1.5 million Americans, with almost 1 million 

patients in an advanced stage of gastroparesis. 20% of type 1 diabetic patients also 

develop gastroparesis [3]. The number of hospitalizations for gastroparesis increased by 

close to 158% from 1995 to 2004 [4]. These stats are in austere contrast with the 

inadequate cognizance of the physiological mechanisms underlying GI motility disorders 

leading to limitations in the available treatment options.  

 

Following the cardiac stimulation field, it was initially thought that injecting an electrical 

stimulus into the wall of the stomach (gastric electrical stimulation) may be able to restore 

its motility. However, this idea turned out to be more complicated than expected and has 

remained an enigma for decades [5]. This is because gastric electrical activity is more 

complex than that of the heart. As a consequence computational modeling of gastric 

electrical stimulation and the development of a gastric pacemaker also lies far behind its 
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cardiac counterpart. Gastric electrical stimulation (GES) has also been suggested as a 

potential therapy for the treatment of morbid obesity [6]. 

 

Computational electrophysiology represents a unique way to understand the mechanism 

behind gastric electrical stimulation. Computational models can compile the results from a 

large number of experiments and prove to be a valuable tool for understanding and 

optimizing GES. The electrophysiological model for GES developed in this research 

project aims at providing a realistic mathematical description of GES and to employ a 

computational approach to determine the most efficient type of stimulus along with its 

parameters for GES pacing for the treatment of gastric motility disorders and obesity. It 

can also be used for simulating retrograde entrainment of slow wave. The model presented 

here is directed at providing a realistic description of the mechanism behind GES, to aid in 

the development of a gastric pacemaker to be used in the treatment of drug refractory 

gastroparesis, associated motility disorders and morbid obesity. 

1.1   Gastrointestinal tract in humans  

The gastrointestinal tract (GI tract), also called the digestive tract, alimentary canal or gut, 

is the system of organs that produces energy and nutrients from food, and expels the 

remaining waste [7]. In humans, the gastrointestinal tract is a long tube with muscular 

walls comprising four different layers: the inner mucosa, submucosa, muscularis externa, 

and the serosa. It is the contraction of the various types of muscles in the tract that propel 

the food. In a normal human adult male, the GI tract is approximately 6.5 meters (20 feet) 

long. The GI tract may also be divided into foregut, midgut and hindgut based on their 

embryological origin [8]. 

Alternatively, the GI tract can be divided into the upper and lower tract (Table 1.1). The 

upper GI tract consists of the mouth, pharynx, esophagus, and stomach. The lower GI tract 

is made up of the intestines and the anus [8]. 

 

http://www.newworldencyclopedia.org/entry/Organ_%28anatomy%29
http://www.newworldencyclopedia.org/entry/Human_being
http://www.newworldencyclopedia.org/entry/Stomach
http://www.newworldencyclopedia.org/entry/Intestine
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Table 1.1: Organs of the gastrointestinal tract 

Gastrointestinal Tract Organs 

Upper GI Tract Mouth, Pharynx, Esophagus, Stomach 

Lower GI tract Small Intestine Duodenum 

Jejunum 

Ileum 

Large Intestine Cecum 

Colon 

Rectum 

Anus 

 

 1.2   Stomach 

The stomach is a hollow muscular organ located below the esophagus in the GI tract. It has 

the ability to expand or contract depending on the amount of food contained within it. It 

serves as a storage reservoir where the initial mechanical and chemical breakdown of 

ingested food occurs. When the stomach contracts, the interior walls fold to form rugae; the 

rugae disappear when the walls relax. The surface along the lateral side of the stomach is 

called the greater curvature where as the surface on the medial side is referred to as lesser 

curvature [9]. 

1.2.1   Anatomy of the stomach 

The stomach is commonly divided into three parts namely the fundus, corpus and antrum 

(Figure 1.1). The fundus is dome-shaped and is located below the diaphragm. The corpus 

is the largest part and is referred to as the body of the stomach. It can be further 

subdivided into orad corpus, mid-corpus and caudad corpus. Finally the antrum is 

connected to the small intestine through the pyloric sphincter [9]. 
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The stomach wall can be divided into four layers: the mucosa, submucosa, muscularis 

externa and serosa (Figure 1.1). The mucosa is the innermost layer and its surface is 

coated with an epithelial layer composed entirely of goblet cells. The smoothness of this 

surface is interrupted by the presence of large number of gastric pits. The second layer is 

the highly vascular submucosa that helps to absorb nutrients. The muscularis externa 

possesses smooth muscle layers and is responsible for gastric motility. In the muscularis 

externa the smooth muscle cells are present in layers with different orientations. The 

circular layer, whose fibers are oriented circumferentially, plays an important role in 

formation of peristaltic waves to push the ingested food. The longitudinal layer, with 

fibers oriented in the longitudinal direction, hold responsibility for changes in the 

stomach’s length. The oblique layer is scarcely distributed in the gastric wall and may 

have a small role in gastric motility [9]. Interstitial cells of Cajal (ICC) are believed to be 

the pacemaker cells of the gastric musculature. ICC variants have been found in several 

locations along the stomach’s musculature [10]. In between circular and longitudinal 

muscle layer ICC-MY are present lying in the plane of myentric plexus.  ICC-MY 

(myentric plexus) posses a greater share in the generation and propagation of slow waves. 

ICC–IM (intra muscular), placed between the circular muscle layers, plays an important 

role in the propagation of slow waves [11]. ICC–SEP, lying between the septa of smooth 

muscle bundles, is believed to conduct stimuli to surrounding muscle layers [12]. The 

outermost layer, the serosa, is a vascularised connective tissue covering the entire stomach 

[9]. 
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Figure 1.1: A Schematic diagram of anatomy of the stomach and the microstructure of a 

section of stomach wall (adapted from Britannica encyclopedia (2003)). 

 

1.2.2   Motility in the stomach 

Electrical excitability of cells and tissues is a basic function of life. It is the ability of cells 

to respond to stimuli. The excitability of cells depends on many factors such as the ion 

distribution and transport mechanisms (ion channels) associated with their plasma 

membrane structure. The stomach possesses complex motor patterns to aid in the 

digestion of food which includes mixing and grinding followed by the emptying of 

ingested food from the stomach into the small intestine when the food particle size has 

been reduced.  The stomach exhibits rhythmic, 3 per minute, coordinated contractions 

which grind the food into small particles. Intrinsic mechanical activity of the gastric 

musculature primarily arises from smooth muscle cells (SMC) which possesses the 

property of contractile behavior to permit the synchronized contraction and relaxation 

activity on receiving sufficient electrical stimuli [10]. Gastric myoelectrical activity in 

humans consists of a sequence of electrical potential variations, called slow waves, that 

are generated at a frequency of about three per minute in proximal gastric corpus along the 
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greater curvature and these propagate along the gastric wall toward the pylorus. Interstitial 

cells of cajal (ICC) are currently believed to be the pacemaker cells responsible for the 

omnipresent electrical activity of the stomach [13]. In the gastric musculature ICCs are 

electrically coupled to the neighboring ICCs and to SMCs through electrical connections 

referred to as gap junctions. ICCs are self exciting and are believed to be the origin of 

slow waves which propagate within the ICC network via gap junctions [14]. The ICC 

network is extensively ramified, spanning the entire greater curvature sending activation 

signals in both the circumferential and longitudinal directions.  

 

The existence of gap junctions between SMCs has been an issue of controversy and no 

specific functional role for such a connection has been proposed [15]. Electrical activity of 

the SMCs depends on the electrical stimuli supplied by the ICC. When the depolarization 

reaches a pre determined threshold, the smooth muscle cell membrane depolarizes. This 

depolarization is followed by contraction [10].  

 

Further to this level of control, the enteric nervous system (ENS), hormonal and paracrine 

factors (to a small extent) also influence the contractile activity of SMCs. The enteric 

nervous system regulates the amplitude of depolarization and force of contraction 

corresponding to the depolarization to a considerable extent. Finally the SMCs compile 

the input from all the above mentioned sources and produce a corresponding mechanical 

response.  So the intrinsic electrical and mechanical activity of the gastric musculature is 

generated from the interplay among smooth muscle cells, interstitial cells of Cajal and the 

enteric nervous system [10]. Figure 1.2 shows the progression of slow wave along 

different regions of a guinea pig’s stomach [16]. 
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Figure 1.2: Electrical activity recorded from the guinea pig stomach. The trace A shows a 

electrical activity in fundus. Trace B shows slow waves recorded from corpus. The 

following set of superimposed traces show simultaneous recordings from an ICC-MY ( 

blue trace) and a nearby smooth muscle cell in the circular layer ( red trace). Trace D 

shows slow waves recorded in the antrum [16]. 

In the absence of food gastric myoelectrical activity and hence the synchronized 

contractions still exist. However, the percentage of 3cpm slow waves will be reduced 

during pre prandial or fasting state. The maximum membrane potential (amplitude) 

attained by the slow waves will also be reduced in comparison to the post prandial slow 

waves [Figure 1.3] [17]. In addition to this the regulation for amplitude of depolarization 

contributed by the enteric nervous system also decreases. So the smooth muscle cell 

complies the resulting weak input from ICC and enteric nervous system to produce 

contractions that are not as strong as in post prandial state, but still exists. Hunger or the 

feeling to consume food is aroused due the rhythmic contraction of the stomach walls. 

Gastric contractions are omnipresent but it is felt when the stomach is empty. It should 

also be noted that the duration of fasting also influences the strength of slow waves and 

hence the gastric contractions, longer duration of fasting (more than 24 hours) may 

decrease the contractile activity. This may be the reason for a person not feeling hungry 

after very long periods of fasting [18]. 
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Figure 1.3: Electrogastrogram recorded during  A) pre prandial state and B) post prandial 

state [17]. 

1.3   Motility disorders of the stomach 

A complex level of interacting control mechanisms regulates the stomach’s intrinsic 

electrical and mechanical activity thereby providing an ample opportunity for things to go 

wrong.  Impairment in the stomach’s myoelectrical activity are the cause of several known 

motility disorders (Table 2) like delayed gastric emptying (gastroparesis), rapid gastric 

emptying (dumping syndrome), and functional dyspepsia, and are associated with clinical 

symptoms like early satiety, nausea, vomiting and delayed gastric emptying [19]. The 

causes may include disturbances in the functioning of ICCs, smooth muscle cells, vagus 

nerve, enteric neurons, or humoral factors. Genetic factors may also contribute since 

gastric dysmotilities occur predominantly in females. A loss of ICCs is associated with a 

disruption of the generation and propagation of electrical slow waves, resulting in gastric 

dysrhythmias and abnormal gastric emptying. Motility disorders are chronic in nature and 

may lead to a situation of the patient being a societal burden due to decreased 

productivity.  
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Table 1.2:   Motility disorders in the stomach and their symptoms 

Motility Disorder Symptoms 

Gastroparesis Nausea, vomiting, Poor emptying of the stomach, 

bloating, abdominal pain 

Cyclic Vomiting Syndrome Recurrent episodes of severe nausea and vomiting 

Dumping syndrome Rapid gastric emptying(jejunum fills too quickly with 

undigested food from the stomach) 

Functional dyspepsia  

 

Pain or discomfort that is felt in the center of the 

abdomen above the belly button, early satiety (feeling 

full soon after starting to eat), bloating, or nausea. 

 

 

1.4   Underlying mechanisms 
 

1.4.1   Gastroparesis 

Gastroparesis means stomach paralysis (gastro = stomach and paresis = paralysis). The 

term refers to a variety of disorders characterized by clinical symptoms like nausea, 

vomiting, poor emptying of the stomach, bloating and abdominal pain. Many different 

mechanisms have been identified to be the underlying cause for gastroparesis.  

 

Any disorder that affects even a single constituent of the complex control mechanisms 

responsible for generation of slow wave can result in gastroparesis. However, the two 

most established causes for gastroparesis are diabetes and surgery. Postsurgical 

gastroparesis can result from surgery with or without a vagotomy (surgical procedure for 

resection of the vagus nerve).  The vagus nerve controls the movement of food through the 

stomach. Gastroparesis occurs when the vagus nerve is damaged and the muscles of the 

stomach are partially or totally paralyzed. People with diabetes have high blood glucose 

thereby leading to chemical changes in nerves and damaging the blood vessels that carry 

oxygen and nutrients to the nerves. As this condition prevails over a period of time high 

blood glucose can damage the vagus nerve [20]. 

 

http://en.wikipedia.org/wiki/Surgery
http://en.wikipedia.org/wiki/Segmental_resection
http://en.wikipedia.org/wiki/Vagus_nerve
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Apart from demyelination of the vagus nerve, loss of parasympathetic and sympathetic 

fibers, and severe injury or degeneration of the interstitial cells of Cajal may also be 

responsible for the pathology of gastroparesis. On the other hand, no underlying etiology 

can be found in about 40% of gastroparetic patients, a condition called idiopathic 

gastroparesis [21]. Viral infection has been suspected in some patients with idiopathic 

gastroparesis, but the association has been based on a history of acute viral-like illness, not 

by identifying the virus [22]. Hypomotility of the stomach, a condition specific for 

diabetic gastroparetic patients results in bezoars of indigestible solids and may also attract 

bacterial growth. Antral hypomotility, pylorospasms, bradygastria (decrease in slow wave 

frequency) and tachygastria (increase in slow wave frequency) have been described in 

patients with diabetic and idiopathic gastroparesis [20]. Both tachygastria and bradygastria 

may result from ICC loss. A patchy disruption of ICC networks may lead to tachygastria 

or loss of generation of the slow waves, resulting in bradygastria [23]. 

 

1.4.2   Functional dyspepsia 

Functional dyspepsia is a medical condition characterized by recurrent pain in the upper 

abdomen, upper abdominal fullness followed by early satiety. Impaired fundic 

accommodation, visceral hypersensitivity, delayed gastric emptying and Helicobacter 

pylori infection have been postulated to be the underlying cause giving rise to various 

clinical symptoms of functional dyspepsia. Approximately 30% of patients with functional 

dyspepsia exhibit gastric hypersensitivity to distension in the fundus and antrum [24]. 

Even though delayed gastric emptying is present in 23% to 32% of patients with 

functional dyspepsia it still remains as an object of controversy whether delayed gastric 

emptying is the underlying cause of dyspeptic symptoms [25]. There exists a poor 

correlation between H. pylori and functional dyspepsia. However it is not known how H. 

pylori can cause symptoms in the absence of a peptic ulcer and gastritis. The presence of 

H. pylori does not appear to correlate with the gastric motor or sensory disturbance 

associated with functional dyspepsia [26]. 

 

 

http://en.wikipedia.org/wiki/Pain
http://en.wikipedia.org/wiki/Abdomen
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1.4.3   Dumping syndrome:  

Dumping syndrome is characterized by totally unregulated or chaotic and rapid movement 

of food and gastric juices from the stomach to the small intestine. This accelerated 

emptying of food is usually associated with postsurgical changes in the stomach. Dumping 

syndrome may occur at least mildly in one-quarter to one-half of people who have had 

gastric bypass surgery. It develops most commonly within weeks after surgery, once the 

patient returns to the normal diet. The severity of this disorder is directly proportional to 

the extent of stomach removed or bypass. When the opening junction between pylorus and 

the duodenum has been severely injured or removed during an operation, dumping 

syndrome may develop. It at times becomes a chronic disorder. Gastrointestinal hormones 

also are believed to play a role in this rapid dumping process [20].  

 

1.5   Treatment options 

1.5.1   Dietary modifications  

Dietary recommendations mainly revolve around adjusting meal content and frequency. 

Dietary treatments include advising the patient to take 5 to 6 small meals each day instead 

of 3 large meals. Small proportioned meals are suggested ensuring that the meals are 

spread throughout the day [27]. The best choices for gastroparetic patients include liquid 

diet comprising higher quantities of nutrients, such as soups, stews, milk, liquid 

supplements, fruit juices or smoothies. Solid foods are often better tolerated earlier in the 

day and the patient is suggested to eat and drink all foods and beverages while sitting up. 

Fatty foods tend to aggravate the release of hormones to slow down the emptying of the 

stomach. Therefore, low fat foods are preferred and in severe cases fatty foods are 

completely avoided [28]. But it is generally observed that these dietary changes are not 

highly effective in alleviating the chronic symptoms of gastric motility disorders [5]. 

 

1.5.2   Prokinetic agents 

Prokinetic agents used in the attempt to treat motility disorders have a dismal record of 

doing harm with little or sometimes no benefit. Most of the gastroparetic patients are 

refractory to treatment with prokinetic drugs due to the occurrence of severe adverse 
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effects. For example metoclopramide induces anxiety, tremors, dystonia, Parkinson's like 

symptoms, and depression. Erythromycin disrupts the bacterial flora in the stomach, 

promotes antimicrobial resistance. Cisapride has been severely restricted due to risk for 

prolongation of the cardiac QT interval. Tegaserod has recently been withdrawn from the 

United States market due to cardiovascular side effects. Domperidone is a prokinetic agent 

that shows some promise. Domperidone improves gastrointestinal transit with the side 

effect being it minimally crosses the blood-brain barrier and may be responsible for few 

central nervous system disorders [29].  However, In addition, tachyphylaxis may occur 

sooner or later with some drugs, such as domperidone and erythromycin, and 

refractoriness to prokinetic agents is observed in a significant number of patients [5].  

 

1.5.3   Gastrectomy and enteral nutrition 

If dietary and pharmacological treatments fail surgery is considered as a treatment for 

gastroparesis. Surgery is used to create a larger opening between the stomach and the 

intestine in order to aid the process of emptying the stomach's contents. Alternatively, the 

entire stomach may be removed [30]. A jejunostomy tube is a specially designed tube 

through nutrition can be supplemented to a gastroparetic patient. It is inserted through the 

skin, directed to the jejunum (a part of the intestines which lies a little way after the 

stomach).If gastric resection is risky or refused or does not resolve the nutritional 

problems, the patients must undergo enteral nutrition with a jejunostomy tube [31], 

provided that there are no motor disturbances of the intestine, such as pseudo obstruction. 

In the latter case, the patient must undergo permanent parenteral nutrition. Gastrectomy 

may give rise to potential complications after the surgery. 

 

1.5.4   Gastric electrical stimulation (GES) 

From the above sections it becomes clear that in spite of the fact that stomach motility 

disorders have been tremendous burden to the patient in terms of both the symptoms and 

an overall decreased quality of life, no reliable treatment option is available there by 

darkening the future for severe gastroparetic patients. Due to the limited efficacy of all the 
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above mentioned conventional therapeutic options for gastroparesis treatment, there was a 

strong need to develop a comparatively efficient alternative treatment option. 

 

No alternative to surgery and chronic parenteral nutrition seems to have been available 

until 1963, when the concept gastric electrical stimulation was thought as a new approach 

to cure refractory gastroparesis. Gastric electrical stimulation (GES) is a strategy that aims 

to modulate GI electrophysiology to ameliorate motility and symptoms in gastroparesis as 

well as other motility disorders [32]. Electrical stimulation by means of a pacemaker has 

made a recognized therapeutic contribution in the field of cardiology. However, gastric 

electrical stimulation remains as an object of controversy and conflicting results have been 

reported [33]. The principle behind GES is similar and borrowed from cardiac stimulation. 

But our understanding and the advancement in the development of gastric pacemakers lies 

far behind its cardiac counterpart. 

 

Gastric electrical stimulation is an approach that aims to restore recurring myoelectrical 

activity. It has been shown to be effective in normalizing gastric dysrhythmia, accelerating 

gastric emptying and improving nausea and vomiting [34]. During the past decade, a 

considerable amount progress has been made on the effects, mechanisms and clinical 

applications of gastric electrical stimulation (GES). This research project focuses on 

gastric electrical stimulation of stomach. Even if the solution is focused on curing the 

gastric dysrhythmia in the stomach the concepts behind GES are general and can be 

extended to other organs of the GI tract such as the small intestine. 

 

1.6   Gastric electrical stimulation: effects and mechanism 

Gastric electrical stimulation is usually carried out by injecting series of rectangular pulses 

with a constant current into the outer most layer, (serosa) that wraps the entire stomach. 

Methodologies of electrical stimulation depend on a number of factors including patterns 

of stimuli, placement of electrodes and delivery time of stimuli. Frequency, pulse width 

and amplitude are the three most important stimulation parameters involved in electrical 

stimulation. Various methods of electrical stimulation are derived from the variations of 



Introduction   
 

14 
 

these three parameters [34].  In this section, various methods published in the literature are 

summarized and critically discussed. 

 

1.6.1   Long-pulse stimulation 

Long–pulse stimulus is characterized by of repetitive electrical pulses with a pulse width 

in the order of milliseconds (10–600 ms), and a stimulation frequency near the 

physiological frequency of the gastric slow wave (0.05 Hz) (Figure 1.4). Long pulse 

stimulus is able to entrain slow waves at the stimulated frequency and hence improves 

gastric motility [35]. However, currently implantable devices available in not capable of 

generating electrical pulses with a width longer than 2 ms [34].  

Figure 1.4: Long pulse stimulus adapted from [34]. 

 

1.6.2   Short-pulse stimulation 

In contrast to long-pulse stimulation, the pulse width in this method is comparatively 

shorter and is in the order of a few hundred microseconds. The stimulation frequency is 

usually a 3 - 4 times higher than the physiological frequency of the gastric slow wave 

(Figure 1.5). GES with short pulses is known to improve symptoms of nausea and 

vomiting in patients with gastroparesis [36]. However it does not affect the intrinsic slow 

wave activity. Commercially available gastric pacemakers are able to generate short 

pulses [34].  

 

Figure 1.5: Short pulse stimulus adapted from [34] 
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1.6.3   Trains of short-pulses 

In this method, the stimulus is composed of repetitive trains of short pulses with a control 

signal. It posses continuous short pulses with a high frequency (in the order of 5–100 Hz) 

and a control signal to turn the pulses on and off. The control signal determines the 

frequency of the pulse train (Figure 1.6). Trains of short pulses were designed to mimic 

long – pulse stimulus and obtain its effects on gastric myoelectric activity through short 

pulses. Commercially available stimulators are capable of generating trains of short pulse 

stimuli [34]. 

Figure 1.6: Trains of short pulses [34] 

 

1.6.4   Dual pulse stimulus 

Dual pulse GES is a combination of short pulses and long pulses. Usually a dual pulse 

stimulus is composed of a short pulse (in the order of a few hundred microseconds) 

followed by a long pulse (in the order of a few hundred milliseconds) (Figure 1.7). Dual 

pulse GES was designed to obtain the combined effects of long as well as short pulse 

stimulus, i.e., both normalizing gastric dysrhythmia and improving symptoms suggestive 

of nausea and vomiting. As a result, the proposed method of dual pulse GES is more 

efficient and attractive than the conventional single duration method of electrical 

stimulation [34]. 

 

Figure 1.7: Dual pulse stimulus adapted from [34] 
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1.6.5   Synchronized stimulus 

Each gastric slow wave represents the depolarization of gastric smooth muscles, hence it 

was expected that the electrical stimulation injected on detecting the occurrence of the 

already existing slow waves (Figure 1.8) was to enhance the depolarization process and 

apparently improve the existing gastric contractions. It requires the implantation of two 

pairs of electrodes, one for the detecting intrinsic slow waves and the other for stimulation 

[34]. Synchronized gastric electrical stimulation was able to normalize gastric emptying in 

diabetic mice with gastroparesis [37]. 

 

Figure1.8: Synchronized stimulus adapted from [31] 

 

1.6.6    Enterra therapy 

The Enterra system (frequency: 14Hz, 0.1seconds on and 5 seconds off, duration: 0.3ms, 

amplitude: 60µA), a low energy high frequency gastric electric stimulation, was approved 

by the FDA under the humanitarian use device designation in 2000 for treatment of 

patients with refractory nausea and vomiting due to gastroparesis. The symptoms of 

nausea and vomiting improve considerably with application of Enterra therapy, as do 

quality of life and nutritional status in gastroparetic human volunteers. The mechanism of 

action of Enterra therapy is still not known; the data suggest that afferent neural 

mechanisms and perhaps modulation of gastric biomechanical activity may play a role 

[38]. 
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1.6.7    Implantable device 

Any of the above mentioned stimuli can be delivered to the outer most layer of the 

stomach wall with an implantable, pacemaker-like device which is similar in size and 

function to a cardiac pacemaker with electrodes at one end. However, currently the device 

is used to deliver only Enterra Therapy parameters. The device implantation is carried out 

under general anesthesia. The stimulation electrodes are sutured to the outer lining of the 

stomach wall and connected to the device, which is implanted just under the skin on the 

abdomen. The connector of each lead is attached to a device, placed in the abdominal wall 

under the patient’s skin [39]. 

 

Figure 1.9: Implantable device Enterra adapted from [40]. 

 

1.6.8   Single channel vs multi channel GES 

Single channel GES, as the name implies, is the technique of injecting electrical impulses 

through a single set of electrodes usually placed in the proximal corpus to deliver one 

channel of stimuli (Figure 1.10a). In a healthy stomach a slow wave originates in the 

proximal corpus and propagates circumferentially and distally towards the pylorus. The 

principle behind single channel GES is that an electrical stimulus applied through the 

proximal stomach would propagate distally and normalize abnormalities in the stomach. 

The proximal to distal propagation of slow waves is referred to antegrade propagation 

whereas the reverse propagation of slow waves (distal to proximal) is called retrograde 

propagation.  
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The distal stomach plays a crucial role in the emptying of food particles from the stomach 

to the duodenum. It was thought that stimulating the distal stomach may be more effective 

in alleviating the symptoms of gastroparesis. However, a single electrode stimulating the 

distal stomach has a higher probability of triggering retrograde pacing of gastric slow 

waves. This would result in a further delay of emptying rather than acceleration. Multi-

channel GES (Figure 1.10b) delivers electrical pulses to multiple locations along the 

greater curvature of the stomach. It can be used to mimic the natural propagation and 

characteristics of the slow wave. Two- to four-channel GES has been proposed in a 

number of studies [41], [42], [43], and [44].  

a)                                                                                       b) 

 

 

a) Single channel GES                                                         b) Multi channel GES 

Figure 1.10: Blue arrow indicate the position of the electrodes 

 

1.7   Morbid obesity and GES  

Obesity is a growing worldwide epidemic. In the United States, nearly one-third of adults 

are obese (body mass index, BMI >30%). Morbid obesity or clinically severe obesity 

affects more than 15 million Americans and causes an estimated 300 000 deaths per year 

[6]. Obesity creates major health problems because of its co-morbidities, such as type 2 

diabetes and cardiovascular diseases. Treatment of obesity and its primary comorbidities 

costs the US healthcare system more than $100 billion each year. GES has proposed as an 

innovative method to reduce weight in morbidly obese individuals [45]. While various 
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methods of GES have been under investigation for the treatment of obesity, clinical 

studies have been confined to the use of GES with trains of short pulses. GES has been 

proposed to increase the feeling of satiety with subsequent reduced food intake and weight 

loss [35]. 

 

1.7.1   Retrograde gastric pacing (RGP) 

The principle of RGP in treatment of obesity is to impair the intrinsic electrical activity 

resulting in satiety and a reduction of food intake. RGP is delivered at a tachygastrial 

frequency in the distal stomach to set up an artificial ectopic pacemaker. This artificial 

ectopic pacemaker may result in retrograde propagation of electrical waves. Consequently, 

gastric dysrhythmia is induced and the regular propagation of gastric electrical waves is 

impaired. This hypothesis was tested in a number of animal studies [46]. RGP was shown 

to impair normal gastric slow waves, induce tachygastria, delay gastric emptying, and 

reduce food intake due to early satiety in dogs, and resulted in weight loss in obese rats 

[47] [48]. 

 

1.8   Thesis overview 

This thesis focuses on the development of a realistic computational model for gastric 

electrical stimulation and is directed to performing an investigation of its potential as a 

medium for exploring the efficiency of different types of GES as well as to examine the 

physiological significance of various stimulus protocols. A general overview of the gastric 

musculature, physiology, motility disorders and the need for gastric electrical stimulation 

is discussed in Chapter 1. Experimental work carried out in GES will be covered in the 

first section of Chapter 2. Following this, in the second section of Chapter 2 a critical 

literature review of previous modeling work in this area is presented. In Chapter 3, 

detailed descriptions of previously developed single cell models of ICC and SMC and 

extended bidomain framework for gastric musculature will by explained. Following this, 

light will be thrown on the development of the GES model from the extended bidomain 

framework. Chapter 4 highlights the results obtained with single channel GES. Different 

stimuli protocols that are currently practiced in experimental GES are modeled and their 
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efficiency as single channel GES is demonstrated. In Chapter 5, detailed descriptions of 

various stimuli protocols when delivered as multi channel GES are presented. In Chapter 6 

capability of the GES model to trigger retrograde propagation of slow waves for obesity 

treatment has been discussed. Chapter 7 presents the concluding remarks and outlines the 

potential future work. Figure 1.11 presents schematic of the GES modeling framework 

developed in this research project. 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: Schematic of the GES modeling framework developed in this research 

project. Blue arrows indicate position of electrodes. 

Extended bidomain framework 
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Single Channel GES with 
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Chapter 2  

GES Review 

The therapeutic potential of GES has gained importance in the last few decades. A number 

of experimental studies have been carried out to explore the feasibility of different types 

of stimuli, as mentioned in the previous chapter, and their efficiency in treating 

gastroparesis and obesity.  In Section 2.1 the experimental work on GES will be 

discussed. Following this in Section 2.2 computational models in the area of GES that 

have been developed in the past few decades are described in detail. For each model an 

assessment of its strengths and weaknesses is provided. 

 

2.1   Review of experimental work on GES 

GES for the treatment of gastroparesis 

Experimental studies for gastroparesis are usually carried out in dogs, diabetic mice and 

sometimes in human volunteers. The patient is operated on, under anesthesia and 

electrodes are affixed on to the serosal layer of the stomach by means of non absorbable 

sutures. The electrode wires are brought out through the anterior abdominal wall 

percutaneously and placed under a sterile dressing. Sometimes, in the case of human 

gastroparetic volunteers instead of bringing out the wires they are fixed to the implantable 

Enterra device which is placed beneath the abdominal wall. The electrodes are arranged in 

an arching line along the greater curvature (for treating gastroparesis) and along the lesser 

curvature (for treating obesity) from the corpus to the pylorus. Generally, electrodes are 

placed in pairs with a distance of 1 – 0.5 cm between them, the former electrode for 

injecting the stimulus and the latter for recording the resulting myoelectrical activity. The 

most proximal electrode pair is at least 14 – 20 cm from the pylorus with an inter 

electrode pair distance of 2 - 4cm. For single channel GES, the stimulus is applied through 

the most proximal electrode set alone. In the case of two channel GES; the stimulus is 
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applied via the first and the third pairs of electrode. For multi channel GES (usually 4 

channels) the stimulus is applied through 4 electrode pairs, covering entire length of the 

corpus and antrum. 

 

2.1.1   Long pulse stimulus 

 Chen et al (2005) has shown that multi channel GES in dogs with stimulus parameters of 

amplitude 6 mA, width 550ms and at a frequency 10% higher than the intrinsic frequency 

was more efficient in terms of entrainment and consumed less energy in comparison to 

single channel GES with the same stimulus parameters [42]. McCallum et al (1998) have 

reported that in humans GES with stimulus parameters of amplitude 4 mA, width 300ms 

and at a frequency 10% higher than the intrinsic frequency was effective for entrainment 

of the gastric slow wave. Further they have reported that gastric pacing with this stimulus 

substantially reduced the gastric emptying time and alleviated other symptoms of 

gastroparesis (nausea, vomiting, bloating and abdominal pain) at the end of the outpatient 

treatment [49]. Lin et al (2010) also confirmed the efficiency of the stimulus reported by 

McCallum et al and with a reduction in the width of the stimulus to 3 ms or stimulus 

amplitude to 2 ms entrainment of slow waves ceased [50]. Xing et al (2003) based on the 

experimental studies conducted on dogs have concluded that maximal driven frequency 

for GES with long pulse stimulus was 6 cpm (compared to intrinsic frequency of 5 cpm in 

dogs). Duration of the stimulus was varied between 0-650 ms with a range of amplitude 

from 1 - 6 mA [51]. Conclusions reported by Xing and Chen (2006) suggest that long 

pulse GES in dogs induces gastric relaxation irrespective of the location of the electrode 

pair along the grater curvature along with a reduction in gastric volume and 

accommodation [35]. Song et al (2005) has shown that two channel GES in dogs with 

stimulus parameters 1 mA and 0.6 mA for first and second electrode respectively, a pulse 

width of 200 ms and with a frequency 1.1 times the intrinsic frequency entrained gastric 

slow waves as well as improved delayed gastric emptying induced by vasopressin in 

comparison to single channel GES with the same frequency (stimulus and width 5 mA and 

amplitude 550 ms) [41]. 
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2.1.2   Short pulse stimulus 

Abell et al (2002) has reported that short-pulse stimulation is effective against nausea and 

vomiting with no or little effect on gastric dysrhythmia, slow waves, or gastric emptying. 

The authors have employed a stimulus with amplitude 5mA, at a frequency of 12 cycles 

per minute, injecting 2 discrete pulses of duration 330µS with an inter pulse interval of 

70ms [52]. Song et al (2006) have concluded that short-pulse GES with a pulse width of 

0.3 ms and frequency of 14 Hz is most effective in preventing vasopressin induced emetic 

responses in dogs [53]. 

 

2.1.3   Pulse train stimulus 

Mason et al (2005) has reported that delivering a pulse train stimulus (width : 330 µs, 

amplitude 5 mA, frequency 14 Hz, cycle on for 0.1 sec and off for 5.0 sec) by means of an 

implantable device to humans volunteers ameliorated gastroparetic symptoms and 

improved gastric emptying rates [54]. Yang et al (2009) showed that application of pulse 

train stimulus through two channel GES with stimulus parameters of pulse frequency 30 

Hz, amplitude 5 mA, duration of 8 ms train on time of 3 sec and off time of 8 sec 

accelerated gastric emptying in healthy dogs. They have also reported that pulse train 

stimulus below a duration of 4 ms could not produce the desired effect [55]. Lei and Chen 

(2009) based on experimental results on dogs has suggested that effect of GES varies with 

stimulus injection site and stimulation conditions. Stimulus (40 Hz, 5 mA, 0.3 ms, 0.1s on, 

5 s off) injected into lesser curvature increased gastric volume. On the other hand, 

changing the stimulation site to greater curvature decreased the gastric volume [56]. 

McCallum et al (2010), based on his experimental results in human volunteers, concluded 

that in patients with diabetic gastroparesis 6 weeks of GES therapy with Enterra 

significantly reduced vomiting and gastroparetic symptoms. Patients had improvements 

with chronic stimulation after 12 months of GES, compared with baseline [38]. 

 

2.1.4   Dual pulse stimulus 

Song et al (2007) introduced dual pulse stimulus where a combination of short pulse and 

long pulse is delivered. They have reported that 2 channel dual pulse GES is able to 
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accelerate gastric emptying, improve dysrhythmia and emetic responses induced by 

vasopressin in dogs. The stimulus parameters employed were 1 mA for a duration of 0.3 

ms (short pulse) followed be 200 ms (long pulse) separated by 1 sec gap at a frequency of 

6 cpm [57]. 

 

2.1.5   Synchronized stimulus 

Song et al (2007) have reported that synchronized gastric stimulation (SGES) with pulse 

width 4 ms and amplitude 2 mA was capable of increasing  the gastric emptying time in 

diabetic gastroparetic mice without producing any significant effect on gastric slow waves 

[37]. Chen et al (2008) have shown that SGES normalized impaired gastric 

accommodation induced by vagotomy. Application of SGES enhanced rhythmicity and 

amplitude of gastric slow waves in the antrum [58]. 

 

2.1.6   GES for obesity treatment 

Yao et al (2005) has observed that retrograde pacing of the stomach with long pulse 

stimulus (5 mA for 500 ms) at tachygastrial frequency of 9 cpm resulted in a significant 

reduction of food and water intake with a delay in gastric emptying in human volunteers 

[59]. Zhang et al (2009) employed two different pulse trains stimulus (A: 6 mA, 0.3 ms, 

40 Hz, 2 s on, 3 s off, B: same as A except duration increased to 3 ms) and observed that 

GES with wider pulses (B) was more potent in reducing the body weight and reducing 

body weight [60]. 

 

2.2   Review of GES models 

2.2.1   Relaxation oscillator model: Sarna et al (1972) [61] 

Sarna et al used an array of bidirectionally coupled relaxation oscillators as the origin of 

gastric slow wave activity (Figure 2.1). The term “control potential” used by the authors in 

the paper can be assumed to be synonymous with the term “depolarization of ICC” that is 

in usage currently.  The authors called any control potential before the predicted time of 

occurrence of a normal control potential as a premature control potential (PCP). A 
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Premature control potential in an oscillator was produced by applying electrical pulses of 

amplitude 60V at the input of the oscillator. The earliest that a PCP could be produced 

was 75% of the period control wave cycle. Application of an input pulse at 50% of period 

of wave cycle could be carried out but with no effect on the control waves. The term 

propagation was used to imply to the phenomenon in which the occurrence of a control 

potential (normal or premature) causes the control potentials to be initiated in the 

neighboring oscillators. The propagation of PCP in the proximal and distal directions 

depended on the time of their occurrence and based on the refractoriness and threshold 

properties of the neighboring oscillators (Figure 2.2). The refractoriness of an oscillator 

depended to a great extent on its coupling to the neighboring oscillators. Coupling an 

oscillator to increasing number of oscillators not only increased it threshold values but 

also lengthened its absolute refractory period. The results of the model were tested in 

dogs.  

 

This publication should be credited for having given a start for mathematical modeling of 

GES. The premature control potential used by the authors here is synonymous with gastric 

electric stimulation, making the oscillators respond to an external stimulus to produce 

control wave activity, keeping in mind the refractoriness and threshold property of the 

oscillators.   
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Figure 2.1: Arrangement of oscillators in gastric ECA model developed by Sarna et al 

(1972). 

 

Figure 2.2: Results obtained by Sarna et al (1972). A) input pulse applied to 4
th

 oscillator 

after 9 seconds of beginning of control wave cycle. B) input pulse applied to 4
th

 oscillator 

after 7 seconds of beginning of control wave cycle. 
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Unfortunately, due to lack of understanding concerning the electrophysiological role of 

the ICC at that time, the relaxation oscillator approach was quiet elementary. Also the 

model did not take into account the multiple cell types involved gastric myoelectric 

activity. The concept of refractoriness has not been explained in terms of ion permeability 

changes. A comparison of the lengths of proximal and distal propagations in the model to 

the dog’s stomach was limited due to smaller number of oscillators present in the model 

compared to the stomach. Overall this model paved the way with an idea for modeling 

gastric electric stimulation of the stomach. 

 

2.2.2   Conoidal Dipole Model: Mintchev et al (1997) [62] 

Mintchev et al developed a model based on the assumption that local non propagated 

contractions can be produced circumferentially using four rings of stimulating electrodes. 

The temporal and propagation organization of gastric electric activity were used to derive 

the geometry of stimulating electrodes and the time shifts for phase locking of the 

electrical stimuli applied to the circumferential electrode set. The authors were of the 

opinion that the conical dipole approach stimulates the cholinergic nerves directly hence 

producing artificially propagated circumferential contractions. The charge distribution on 

each side of a given polarized cells in the ring is considered to be approximately equal and 

the number of polarized cell in the ring remains the same but the density of the cells 

increases in the distal direction with a decrement of S where S is the area S of a δ wide 

ring of depolarized cells represented as dipoles pointing towards the center was given by 

Equation 2.1. 

 

      δ                                                                                                                (2.1) 

 

Here,      is the radii of dipoles that circles that built up the ring of dipoles. The 

relationship between vector of dipole density D and vector of equivalent dipole moment P 

is given by Equation 2.2. 

 

                                                                                                                                (2.2) 
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A net of circumferential stimulating electrodes was built up on the truncated conoid 

representing the stomach. All active electrodes and all reference electrodes in a given 

circumferential setup were separately short-circuited. Four separate circumferential setups 

each having 6, 5, 4, and 3 electrodes respectively were used. The inter electrode distance 

in each set of circumferential electrode was also calculated. 

 

The model takes into account the phase shift that is to be present between the stimuli 

injected through set of circumferential electrode. Each subsequent set of stimulating 

electrodes was located at a position corresponding to the maximal allowed duration of the 

stimulation train, in this case 4 seconds. The model predicts the position and geometry of 

the stimulating electrodes along with the actual pace locking of the stimulus. The major 

assumptions and results of the model were tested on two unconscious dogs.  Propagation 

of electric activity along the length of the stomach is not considered as the scope of the 

model is restricted with producing local non propagated contractions. The mathematical 

model does not consider the electrophysiology of ICC and SMC in gastric electric activity. 

Ultimately, the model lacks a sound electrophysiological foundation on which any GES 

model should be built upon. 

 

2.2.3 Model of nonlinear coupling mechanisms of gastric slow wave 

propagation: Wang et al (2000) [63] 

Wang et al have constructed a mathematical model implemented with a SIMULINK 

circuit to simulate normal and dysrythmic gastric slow waves.  The effect of GES is 

applied to the model by means of the SIMULINK circuit. Even though the authors have 

stated two mechanisms that may be responsible for generation of gastric dysrhythmia i.e., 

impairment in the pacemaker cells or abnormal coupling in between the pacemaker cells 

the mathematical model has been developed on the hypothesis that non linear coupling 

between the pacemaker cells generates gastric dysrhythmia. Nonlinear Van der Pol’s 

equation has been used to model gastric electric activity of the pacemaker cells as follows: 
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                                                                                                                              (2.3) 

   

  
         

                                                                                                   (2.4)                                                

 

Where,   is the extracellular potential,   is the membrane current,       
  

 
  is the 

frequency parameter and   is a parameter determining the waveform. The authors have 

highlighted the importance of the following four characteristics of the coupling 

mechanism i.e., electrical capacity coupling (gap junctions), electric filed coupling, non 

linear characteristics and resistance. A value of 20s and 2.2 has been adopted by the 

authors for T and   respectively in order to simulate gastric slow waves close to the real 

wave form at a frequency of 3 cpm. Gastric dysrhythmia has been simulated by altering 

the parameters associated with the coupling mechanisms. The simulated gastric 

dysrhythmia was normalized when an external stimulus of appropriate amplitude was 

delivered at intrinsic frequency as well as 5% above the intrinsic frequency. The authors 

have reported an increase in amplitude to normalize gastric dysrhythmia when the 

stimulus is delivered at frequency higher than the intrinsic one. The model should be 

appreciated for simulating gastric dysrhythmia based on an underlying mechanism and 

thereby attempting to normalize it using GES. However it should be noted that in most 

cases damaged or severely injured pacemaker cells are responsible for gastric 

dysrhythmia. The model is a pure electrical model and hence does not highlight the 

importance of the electrophysiological background of the pacemaker cells. Moreover the 

model is constructed using Van der Pol’s equation which may not generate the accurate 

gastric slow wave profile. The coupling mechanisms that the authors have adopted have 

not been clearly explained. Inspite of including the coupling mechanism the propagation 

of the stimulated gastric electric activity has not been established. So, the major limitation 

of the model is that more stress is laid on the electrical concepts hence completely 

ignoring the biological background of the gastric dysrhythmia. As a result no conclusive 

results can be drawn from an electrical model to solve the biological problem of gastric 

dysrhythmia. 
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2.2.4   Three dimensional object oriented model: Rashev et al (2002) [64] 

A 3-D object oriented electromechanical model of the stomach was constructed for the 

purpose of microprocessor controlled functional stimulation. Anatomical modeling of the 

stomach was carried out using generalized cylindrical surfaces. The stomach was modeled 

using generalized cylindrical objects, fitting them axially to produce a continuous and 

monotonous surface. Distal antrum was represented by toroid, proximal antrum, proximal 

and distal corpus and fundus by a conoid. Utilizing a predefined set of initial and boundary 

conditions gastric electric stimulation was modeled with different values of stimulating 

voltage by numerically solving Laplace’s equation for electric potential in a 2-D, linear, 

homogenous and isotropic medium. 

        

   
 

        

   
                                                                                                   (2.5)   

The coordinate variables x and y were defined in the intervals x [0; l] and y [0; h] where l 

and h are horizontal and vertical dimensions of a patch respectively. The field strength was 

calculated from the gradient of the potential distribution 

                                                                                                                         (2.6) 

The Laplace’s equation was solved with a MATLAB stimulator implemented with 

standard finite difference expansion methods for solving linear partial difference equations. 

Stimulating electrodes are viewed as linear voltage sources of equal and opposite 

magnitude (V+ and V-) located on the grid surfaces of the stomach. Considering the 

electrophysiology of smooth muscle contraction it was assumed that voltage fluctuations 

can be artificially induced by a) electrical stimulation of cholinergic nerves to release 

acetylcholine b) direct stimulation of SMC via an externally generated electric field that 

dominates the spontaneous intrinsic gastric electric activity. The problem of 

electromechanical coupling was addressed by describing an elementary stress distribution 

followed by calculation of elementary deflection after quantification of stimulating electric 

filed. Video clippings from canine experiments were used to obtain contraction shapes to 

aid in electromechanical coupling process. The model should be commended for 
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theoretically explaining the production, synchronization and propagation of invoked 

circumferential contractions with an advantage of electromechanical coupling. Also this 

model is the first attempt to develop a 3-D model of the stomach for GES. The model has 

used parametric modeling approach with an edge for producing patient specific 

configuration of patient specific electrodes and voltage sequences. On the other hand the 

model aims at directly producing artificial contractions by direct stimulation of SMC 

thereby completely ignoring the electrophysiological role of ICC in gastric myoelectric 

activity. As the main focus is to develop a 3-D model of the stomach with 

electromechanical coupling less stress is laid upon pure electrical activities in the stomach. 

The authors are of the view that GES is different from gastric pacemaking, while the latter 

assumes the underlying cause for gastric motility disorders when the former aims at 

directly producing artificial contractions (neglecting the role of ICC).  

The field problem of high frequency GES was modeled using 2-D Laplace’s equation (as it 

was assumed that electric field was homogenous in a direction perpendicular to the gastric 

plane) which may not accurately replicate the physiological gastric electric activity. 

Succinctly the model can be considered as a very good and the first attempt for 3-D 

electromechanical coupling for GES ignoring the role of the gastric pacemaker cells. 

 

2.2.5   Rule based computer model of GEA: Familoni et al (2005) [65] 

Familoni et al have developed a Matlab-based analytic model of gastric electrical 

stimulation considering the interaction between tissue electrical refractoriness and the onset 

of tissue activation. The model was used to analyze the results of GES in dogs as well as in 

predicting what configuration of stimulation may be required to regularize a given 

abnormality. Intrinsic gastric electrical activity (slow waves) is considered to be a recurring 

cycle of cellular depolarization and repolarization and has been referred to as electrical 

control activity by the authors. Fluctuations in the concentrations of sodium, calcium and 

potassium ions around the cell are assumed to be the reason for potential oscillations. 

Hodgkin Huxley approach has been adopted to model the potential oscillations (fluctuations) 

in ionic concentrations around the cell. The resulting electric control activity [ei(t)] was 

periodic with a period (T0) of 20 seconds in humans.  The stimuli threshold value was 
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modeled as an exponentially decreasing function of time in the relative refractory period as 

mentioned below (Figure 2.3). The stimulation code was writtern in MATLAB with the 

major assumptions contained in a rule–based algorithm. 

 

                                                                                                                      (2.7) 

             
                                                                                      (2.8) 

                                                                                                                   (2.9) 

 

Here,     is the absolute refractory period,     is the relative refractory period and   is  

a constant chosen by the authors. 

 

Fig 2.3: Temporal characteristics of the threshold stimulus adapted by Familoni et al 

(2005). 

 

Entrainment of native electrical activity by the pacing signal results in a dominant 

frequency. For the purpose of quantifying the stability of the model when stimulated at a 

frequency higher than the intrinsic one, a wobble factor was defined. It was calculated as 

the ratio of sum of changes in the dominant fundamental frequency to the duration. This 

factor mirrors the efficiency of the stimulated response. The strength of model is that it 

comes with an advantage of user ascribing the values for   ,   ,   . The authors have 

preferred the usage of a general term “cell” rather than specifying gastric pacemaker cells 
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or the ICC’s. The paper does not throw light on electrophysiology of the “cell” considered 

on which the model of GES is based. The fluctuations of only three ions, namely sodium, 

potassium and calcium have been taken into account which may not be sufficient to 

describe the complete electrophysiology of the “cell” considered. The model ignores the 

fact that chloride channel have also been functionally characterized in gastric pacemaker 

cells, taking part in generation of gastric electric activity. Further the authors have not 

made an attempt to incorporate the electrophysiological role of SMC and hence its 

electrical activity. The problem of entrainment across oscillating regions that would be 

responsible for the propagation of the response to simulation has not been examined. 

Local entrainment will result in a contractile response but will not result in transportation 

of chyme. The question of whether electrical entrainment translates into motility is not 

handled by this model. So, these discrepancies would prevent the user from depending on 

this model for reliable conclusions for optimizing the parameters for gastric electric 

stimulation. 

 

2.2.6   Tissue framework for GES: Du et al (2009) [66] 

The model is based on the concept of multi-scale modeling providing an integrated 

description of electrophysiological events from the cellular level to tissue level (by using 

cell models). The mathematical model was developed by taking into account the 

electrophysiology of ICC and SMC there by treating them as two interconnected tissue 

domains. Each layer was represented as a 2-D continuum tissue, into which mathematical 

descriptions of the ICC (Corrias and Buist, 2008) and SMC (Corrias and Buist, 2007) 

were implanted. A cellular automata algorithm was used to simulate the entrainment of 

single cell behavior in the ICC layer (Figure 2.4). The automata algorithm also checked 

whether entrainment occurred in advance of a pacemaker potential arising due to the 

intrinsic frequency in the resting ICC continuum cell. The counter of the resting ICC was 

then assigned “delay time” before the next pacemaker event occurred. The time delay (n) 

was calculated using the following equation: 
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                                                       (2.10) 

 

Here d and   are the distance and angle between the resting and depolarizing ICC, 

respectively, and       and       are the conduction velocities in the circular and 

longitudinal directions respectively.  A monodomain approach was adopted to model the 

conduction of electric activity in smooth muscle cells. 

 

     
      

        
      

      
   

  
      

                                                              (2.11) 

 

Where,   
    is the conductivity in the intracellular space,     

    is the SMC ionic current, 

  
    is the surface area of the membrane per unit volume,   

    is the membrane 

capacitance,   
    is the potential difference across the cell membrane i.e. the difference 

between the intracellular and extracellular potential. 

 

 

Figure 2.4: Outline for cellular automata algorithm of ICC-ICC entrainment. An ICC 

continuum cell in a non refractory state (Gray Square) is capable of either generating a 

new pacemaker potential due its own intrinsic frequency, or being entrained by one of the 

eight neighboring continuum cells.  
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On increasing the time between the intrinsic slow wave activity and the injection of 

stimuli the stable zone of entrainment (ZOE) progressively decreased. ZOE can be defined 

as the area of the tissue through which the injected stimulus travels. The maximum ZOE 

achieved was 78% of the tissue area. Experimental validation of the model results were 

conducted in porcine models. The authors have reported 100% correspondence between 

the developed model and their validation study carried out in dogs. The model should be 

credited for throwing light on the electrophysiological role of ICC in gastric electric 

activity. This can be considered as the first mathematical model for GES with an 

electrophysiological background. On the other hand the mechanism of ICC entrainment 

along the length of the tissue considered is not clearly established. Rather than modeling 

cell–to–cell entrainment mechanism, a cellular automata algorithm was chosen to simulate 

entrainment of single cell behavior in ICC. Further geometry of the tissue considered is 

substantially small (approximately 82 cm
2
) in comparison to the realistic stomach tissue 

size there by not replicating real GES of the stomach. So the question regarding the 

stability of the model and the accuracy of the results that would be produced on increasing 

the geometry of the tissue size to match the realistic scenario remains unanswered. As 

pointed out by the authors themselves, the model lacks a realistic mechanism of ICC 

entrainment. 

 

In conclusion, to date there is no mathematical model for gastric electric stimulation of the 

stomach available based solely on underlying electrophysiological principles. We therefore 

present in this research project an electrophysiological model for GES taking into account 

the results published by the experimental work on GES as well as giving room to the 

physiology of the multiple active cell types in the gastric musculature, which will 

overcome the major limitations highlighted in the previously published models. 
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Chapter 3 

GES Model Development 

The objective of this research project is to construct a biologically realistic tissue level 

model, thus offering a platform to optimize stimulation protocols by predicting whether 

effective entrainment is likely to be achieved in experiments. In Section 3.1 and Section 

3.2 a mathematical description of the of the main intracellular processes and membrane ion 

channels that are currently believed to mediate the electrical cellular response of gastric 

pacemaker cells (ICC), and the electrical response of SMC stimulated by ICC is presented.  

The extended bidomain framework (Buist and Poh, 2010) is a tissue level 

electrophysiology model that extends the classical bidomain framework to allow multiple 

cell types to be incorporated. Here we have adapted this framework to model the 

interaction between ICC and SMC. Through this it is possible to simulate GES, 

ascertaining the effects of pacing parameters on gastric slow wave entrainment. In Section 

3.3 detailed mathematical description of the extended bidomain model will be discussed. In 

Section 3.4 light will be thrown the development of tissue level GES model from extended 

bidomain framework. 

3.1   Single cell model of ICC 

The Corrias & Buist (2008) [67] ICC model can be considered as the first 

electrophysiological model of gastric ICC that highlights the importance of mitochondria 

in the generation and propagation gastric electric activity. It also provides an elaborate 

description of all ion transport mechanisms (ion channels) associated with the plasma 

membrane structure that have been identified. This ICC model derives its strong 

foundation from the classical Hodgkin Huxley methodology of modeling which considers 

cell membrane as an electrical circuit having a capacitance connected in parallel with 

variable conductances, where each conductance represents a specific transport mechanism 

for movement of charged ions. The time dependence of the membrane potential is  

governed by the following equation.
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                                                                                                            (3.1) 

 

Here, Vm (in mV) represents the transmembrane potential, Cm is the cell capacitance, and 

Iion (in pA) represents the sum of the ionic currents crossing the cell membrane.  

 
3.1.1   Pacemaker Unit of ICC 

 
ICC cells are of mesenchymal origin and were first described by Santiago Ramon y Cajal 

in 1893. But their role of pacemaker cell in the GI tract was established much later [13]. 

Currently ICCs are believed to the origin of the omnipresent electrical activity in the GI 

musculature. Even after establishment of ICCs as pacemaker cells, the intracellular ion 

transport mechanisms that gives raise to the pacemaker activity still remains controversial. 

Based on the review of several experimental papers it was established that calcium 

dynamics, as handled by mitochondria and endoplasmic reticulum (ER) are the key event 

in process of slow wave initiation. Taking into account the interplay between mitochondria 

and endoplasmic reticulum the following pacemaking theory was applied to the Corrias & 

Buist ICC model. The region in the cell enclosed by mitochondria, endoplasmic reticulum 

and plasma membrane is referred to as subspace (SS). Ca
2+

 is released from the IP3 

receptor operated stores of ER into the SS. As a consequence to the increasing 

concentration of Ca
2+

 ion in the subspace, Ca
2+

 uniporter of mitochondria opens thereby 

facilitating the movement of Ca
2+

 ions due to the existing electrochemical gradient. The 

gradient is steep to an extent that an excess of Ca
2+

 ion is evacuated from the SS in 

comparison to the Ca
2+

 ions that entered the SS. As a response to this event a non selective 

cation conducting channel (NSCC) opens to allow the inflow of cationic ions hence 

depolarizing the plasma membrane. These small depolarizations are referred to as unitary 

potentials, which in turn activate the entire voltage–gated ion channels in the plasma 

membrane thereby triggering slow wave activity. 
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All the important ion transport mechanisms (Figure 3.1) that were experimentally accepted 

to be responsible for the observed slow wave profile were included in the Iion term of 

Equation 3.1, as follows 

                                                                          

                                                                                                                             (3.2) 

 

Details of the currents are given in Table 3.1. 

 

Figure 3.1: Schematic view of the Corrias & Buist ICC model (2008).  

 

The calculation of the Nernst potential for each of the ion channels was based on the ionic 

concentrations. All the ion channels have been modeled based on the classical based on a 

classical Hodgkin- Huxley approach. A generalized explanation for the classic HH 

approach for modeling ion channels as adapted by the authors is provided below. 

For an ion channel x having activation and inactivation gates, current Ix may be given by 

 

                                                                                                               (3.3)    

                                                                                              

For an ion channel x having activation gates, current Ix may be given by 

 

                                                                                                                     (3.4) 
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Where, Gx is the maximal conductance for the ion channel x,  dx represents the activation 

gating variable, fx represents the activation gating variable, Ex is the Nernst potential of the 

ion crossing through the channel x. 

 

Details of the currents are as follows: 

Table 3.1: Details of ICC ionic current and the corresponding ion channel 

Ionic Current Corresponding ion channel 

ICaL Current from L-type calcium channels. 

IVDDR Current from voltage dependant dihydropyridine 

resistant calcium channels. 

INa Current from sodium channels. 

IKv11 Current from voltage dependant potassium 

channels. 

IBK Current from calcium activated potassium 

channels 

IClCa Current from calcium activated chloride 

channels. 

INSCC Current from channels permeable to both sodium 

and potassium ions (non selective cationic 

conductance) 

IbK Current from potassium channels (background 

potassium conductance) 

JCa−EXT Calcium efflux; a phenomenological description 

of calcium extrusion mechanism was adopted to 

provide long term homeostasis (Section 3.1.2).  
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3.1.2   Calcium extrusion 

Ca
2+

 pump and Na/Ca
2+

 exchanger are known to play an important role in Ca
2+

 efflux 

kinetics from the cytoplasm. Due to lack of experimental data regarding their extrusion 

kinetics in ICC, a phenomenological model of Ca
2+

 extrusion (Equation 3.5) was modeled. 

The parameters were chosen such that long term homeostasis was achieved. 

 

                      
   

  
       

     

)                                                                  (3.5) 

 

Where,          is the Ca
2+

 efflux in mM/s,              is the maximal flux (0.0885 

mM/s),          is the half concentration (298 nM). 

 

3.1.3   Model validation 

The model has been validated by comparing the simulated profile of the slow waves with 

experimental recordings. For example magnitude of the mitochondrial membrane potential 

was reduced to simulate the condition of presence of mitochondrial uncouplers, the model 

showed termination of slow waves corresponding to the experimental results. Similarly the 

model exhibited a reversible cessation of slow waves   when the presence of 2-APB was 

simulated there by agreeing with the experimental results. Hence, the model has shown 

good agreement in terms of frequency, amplitude, and shape in both control and 

pharmacologically altered conditions. 
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Figure 3.2: Slow wave profile generated by Corrias and Buist ICC model (2008). 

 

3.2   Single cell model of SMC 

A complex level of control holds responsibility for the generation and propagation of slow 

waves and hence gastric motility. The primary level of control comes from the interstitial 

cells of Cajal. The enteric nervous system and the humoral factors constitute the secondary 

level of control. The SMC compile and integrate the stimuli from both the levels of control 

to produce synchronized contraction generating motility. The electrical activity of the 

smooth muscle cells in response to the pacemaking activity of the ICC has been referred by 

the authors as “smooth muscle depolarization”. 

 

The Corrias and Buist SMC model [68] provides a mathematical description of single cell 

gastric SM electrophysiology, constructed from the predominant aspects of the underlying 

physiology and fitted to experimental data. The classical Hodgkin–Huxley approach was 

adopted, the cell membrane being described by an equivalent circuit consisting of a 

capacitance connected in parallel with variable conductances representing the different 

pathways for ion movement. The time dependence on the membrane potential was 

described by Equation 3.6 
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                                                                                                        (3.6) 

 

Where    (in mV) is the membrane potential,    (in pF) is the cell capacitance,       (in 

pA) is a stimulus current supplied by the ICC network, and      (in pA) represents the sum 

of the ionic currents crossing the cell membrane. All the major membrane ionic currents of 

the smooth muscle cell (Figure 3.3) were included in the      term of Equation 3.8 

 

                                                                                 (3.8)                                                         

 

Descriptions of these ionic currents are explained in Table 3.2 

Table 3.2: Details of SMC ionic current and the corresponding ion channels 

Ionic currents Corresponding ion channel 

ICaL Current from L-type calcium channels. 

ILVA Current from low voltage activated calcium 

channels. 

INa Current from sodium channels. 

IBK Current from calcium activated potassium 

channels (large conductance). 

IK−DR Current from delayed rectifier potassium 

channels. 

IK−A−type Current from A-type potassium channels. 

IbK Current from potassium channels (background 

potassium conductance). 
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Fig 3.3: Schematic view of the Corrias and Buist SMC model (2007). 

 

3.2.1   Calcium homeostasis 

Sarcoplasmic reticulum and Na/Ca
2+

 exchanger are believed take part in Ca
2+

 extrusion 

kinetics. Plasma membrane calcium pumps and mitochondrial Ca
2+

 uptake also share the 

responsibility of calcium homeostasis. Due to lack of experimental data regarding their 

extrusion kinetics, a phenomenological model of Ca
2+

 uptake and extrusion was included 

(Equation 3.9). The parameters were chosen such that long term homeostasis was achieved. 

 

                       
 

 

    
                                                                                      (3.9) 

 

Where,         is the total rate of Ca
2+

 uptake by the SR, mitochondria and extrusion via 

plasma membrane calcium ATPase (PMCA) and NaCa exchanger (sodium calcium 

exchanger). 
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Figure 3.4: Smooth muscle depolarization profile generated by Corrias Buist SMC model 

(2007) 

 

3.2.2   Model validation: 

The model has been validated by comparing the simulated profile of the slow waves with 

experimental recordings. For example the presence of potassium channel blocker 4-

aminopyridine was simulated by setting the conductances of the respective ion channels to 

zero. The results obtained were in complete agreement with the experimental results with a 

raise in the resting membrane potential and plateau potential. The injection of a potassium 

channel blocker into the cell was simulated by reducing the background potassium 

conductance to zero. A rise in the plateau phase was observed corresponding with the 

experimental results. A small discrepancy was observed regarding the repolarization of the 

membrane as observed experimentally. This issue was addressed by indicating that ICC 

was not coupled to SMC as in gastric musculature but mimicked by injecting a stimulus 

from ICC. Overall, the model showed good agreement in terms of frequency, amplitude, 

and shape in both control and pharmacologically altered conditions. 
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3.3   Extended bidomain framework 

The bidomain model is a mathematical model of the electrical properties of cardiac muscle 

that takes into account the anisotropy of both the intracellular and extracellular spaces. It is 

a generalization of one-dimensional cable theory.  

 

Cardiac modeling posses an edge over gastric modeling as the modeling work in the 

cardiac field can be carried out by considering a single cell type. On the other hand the GI 

musculature is quiet complicated with the walls of the GI tract housing two considerably 

different cell types i.e. the ICC and SMC. The GI modelers have to consider the fact that 

the volume averaged properties of the bidomain framework should contain the parameters 

of ICC, SMC and the gap junctions that connect these two cell types. 

 

Keeping in mind the problem face by the gastric modeling field, the extended bidomain 

framework was constructed using the conventional bidomain set up as it foundation to 

handle the multiple active cell types present in the gastric musculature. The principle 

behind extended bidomain framework is quiet general with it key advantage of being 

exportable to model other tissues with more than a single type of cell.  

 

3.3.1 Conventional bidomain framework 

The bidomain equations have been conventionally applied in the field of cardiac modeling 

for a long time. In a bidomain set up of a cardiac tissue (or any tissue considered), it is 

represented by  intracellular and extracellular regions, each filling the space occupied by 

the actual tissue, the two domains being separated by a membrane at each point. The 

parameters of this continuum framework are derived by average of the actual structure over 

the tissue volume. The bidomain framework can be further extended by the addition of 

spatially varying parameters, for example the variation of ion channel densities with space 

can be included into the conventional framework. 

 

 

 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Cardiac_muscle
http://en.wikipedia.org/wiki/Anisotropy
http://en.wikipedia.org/wiki/Intracellular
http://en.wikipedia.org/wiki/Extracellular
http://en.wikipedia.org/wiki/Cable_theory
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The conventional bidomain framework can be written as 

 

               
   

  
                                                                                       (3.10) 

               
   

  
                                                                                      (3.11)    

                                                                                                        

Where,    is the conductivity in the intracellular space,    is the conductivity in the 

extracellular space,      is the ionic current,    is the intracellular potential,    is the 

extracellular potential,    is the surface area of the membrane per unit volume,    is the 

membrane capacitance,    is the potential difference across the cell membrane i.e. 

difference between intracellular and extracellular potential. 

 

 3.3.2   Extended bidomain framework [69] 

In the conventional bidomain equations, the surface to volume ration    depends only on 

the properties of single cell type. This concept has to be extended when applied to GI 

musculature. So, the extended bidomain framework modifies the parameter    by 

incorporating into it the properties of ICC, SMC and the gap junctions. The reason being 

attributed to the fact that total area available for ion transfer is a sum of membrane area 

available for ion transfer between ICC and extracellular space, membrane area available for 

ion transfer between SMC and extracellular space and finally the membrane area of gap 

junctions through which ions are exchanged between ICC and SMC. So surface to volume 

ratio in the extended bidomain framework was expressed as: 

 

       
        

        
   

                                                                                                 (3.12) 

 

The superscripts represent the parameters relating to the respective cell types. Interaction of 

ICC with extracellular space is given by Equation 3.13. 

 

     
      

        
       

       
   

  
      

                                                                    (3.13) 
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Similarly, the interaction between the SMC and the extracellular space will be governed by 

Equation 3.14 

 

     
      

        
       

       
   

  
      

                                                            (3.14) 

 

In the shared extracellular space, ionic currents will cross a total membrane area of   
    

and   
    hence giving Equation 3.15 

 

               
       

       
   

  
      

       
       

       
   

  
      

                      (3.15)                                                                                                                                  

 

With a membrane conductance per unit area (ggap), the current between ICCs and SMCs 

will be governed by a difference in their intracellular potentials as follows: 

 

            
       

                                                                                                (3.16) 

 

Provision to inject external stimuli was also included. Current can be introduced into ICC, 

SMC or into the extracellular space through       
    and      

    terms respectively. The 

stimulus injected into ICC and SMC will be similar to injecting a stimulus across the cell 

membrane and hence will behave like ionic currents (Figure 3.5). On the other hand 

stimulus injected into the extracellular space (     
   ) will act like an impressed current 

without directly crossing the cell membrane. Including these stimulation mechanisms and 

the charge transfer across the gap junctions the governing equations can be written as in 

Equation 3.17, 3.18 and 3.19. 

 

     
      

        
       

       
   

  
      

          
        

   
                                    (3.17) 
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                                   (3.19) 
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The ionic currents models were taken from single cell models discussed above (Sections 

3.1 & 3.2). The equations were discretized using forward-time, central space finite 

difference scheme and assembled into a single matrix system. The above system of 

equations was solved using stabilized biconjugate gradient method. A time step of 0.1 ms 

was used. As a constraint to system, the average extracellular potential was set to zero.  

The resulting slow wave profile is shown in Figure 3.6. 

 

  Figure 3.5: Schematic of Buist Poh extended bidomain framework (2010). 

 

3.3.3   Frequency gradient 

The myoelectric activity of the stomach results in coordinated contraction and relaxation 

and this contractile behavior proceeds in a distal direction starting from the corpus towards 

the antrum. This indicates the importance of a frequency gradient for the pacemaker cells 

when propagation of slow waves from one point of the stomach to another is considered. In 

the absence of a frequency gradient all pacing cells would activate as well as depolarize at 

the same time indicating that the entire stomach contracts and relaxes simultaneously. The 

frequency is higher in the corpus and lower in the antrum [1]. However, when the entire 

stomach is taken into consideration, higher frequency corporal slow waves entrain antral 

slow waves thereby giving rise to a dominant frequency throughout the stomach [10]. The 

intrinsic ICC frequency was therefore regulated by setting a decreasing gradient of the 
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intracellular IP3 concentration. The gradient was from 635 nM at the proximal corpus to 

615 nM at the pylorus. This concept was adapted from the previously published paper by 

Buist et al (2010) [70]. 

A decreasing gradient of the intracellular IP3 concentration was set by the following 

equation: 

                                          –                   
       

                      
   

(3.20) 

 

Figure 3.6: The resulting slow wave profile of ICC and SMC generated by Buist and Poh 

extended bidomain framework (2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Spatiotemporal plot of ICC’s electrical activity adapted from Buist and Poh 

extended bidomain framework (2010). 
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3.4   Development of GES model 

3.4.1   Extending the extended bidomain framework: Inclusion of a bath 

Similar to all electronic equipments, implantable devices also require a complete pathway 

i.e., a closed circuit for current to flow. The circuit is usually composed of stimulator, 

active electrode, patient and return electrode. The electric current flow from the stimulator 

to the active electrode, passes through the patient and finally to the return electrode thus 

completing the circuit. Bipolar and monopolar electrodes have been used to deliver 

stimulus in most of the experimental work carried out in GES. A bipolar pacing system 

possesses a lead with two electrodes i.e., both anode and cathode. So in a bipolar lead 

system both the active electrode and the return electrode are embedded in the same lead 

wire. In gastric pacing the current flows from the stimulator to the electrode located at the 

end of the lead wire, stimulates the stomach and finally returns through the electrode above 

the lead wire tip thus completing the circuit. A monopolar system possesses only one 

electrode usually the cathode. In this type of pacing system current flows from the 

stimulator to the active electrode, stimulates the stomach and returns through the body fluid 

or tissue. The monopolar pacing system resembles a set up of placing the organ to be 

stimulated in a bath that acts line the anode. In order to develop a GES model as a close 

approximation to the realistic GES it is necessary to simulate the presence of a return 

electrode. We have simulated the condition of monopolar pacing system where the current 

returns to the stimulator through the body tissue or fluid by addition of a domain called 

bath. The boundary conditions of the bath are set in such a way that it simulates the 

condition of the bath being grounded (Figure 3.8), hence facilitating the injection of an 

external stimulus through any syncytia of the extended bidomain framework in comparison 

with the realistic GES. The bath can be considered as an extension of the extracellular 

space which is grounded. 

 

The bath is represented by Equation 3.21 

 

                       
     = 0                                                                                      (3.21) 
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Where       represents the conductivity of the bath,       is the bath potential,      
     is the 

stimulus that can be injected into the bath. As the bath was considered as an extension of 

the extracellular space, conductivity of the bath (       was given a value equal to the 

conductivity of extracellular space (     . A value of 0.4 mS.mm
-1

 was assigned to       

and     . Equations 3.17, 3.18, 3.19 and 3.21 were assembled into a single matrix system. 

The resulting system of equations was solved using stabilized biconjugate gradient method.  

 

Fig 3.8: Schematic of the extended bidomain framework after inclusion of the bath 

 

3.4.2   Inclusion of intracellular IP3 dynamics 

 
In GES when a stimulus of appropriate strength is injected, it is expected to trigger the 

pacemaker cells and invoke an active slow wave response at stimulated frequency. The 

invoked slow wave should also be entrained along the length of corpus and antrum to 

ensure that the delivered stimulus reproduces the normal slow wave activity rather than 

producing local depolarization only at the point where stimuli is injected. In order for the 

injected stimulus to be passed from one pacemaker cell to the adjacent one the 

mathematical model should posses a sufficient level of voltage dependant communication 

between the pacemaker cells. The entrainment mechanism suggested by the Corrias and 

Buist ICC model (2008) was not adequate enough to propagate the delivered stimulus 

through the entire region of corpus and antrum. To enhance the voltage dependant 
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entrainment of slow waves in the extended bidomain framework, intracellular IP3 

dynamics, as suggested by Imtiaz et al (2002) [71] were introduced. 

 

Voltage dependent regulation of IP3 synthesis had been postulated as one of the key 

mechanisms in slow wave generation. Membrane potential has a positive feedback on IP3 

synthesis [72]. Based on this concept Imtiaz et al (2002) put forward a mathematical 

description of voltage dependant IP3  regulation based on the experimental observations 

from muscle preparation of the guinea pig stomach (Figure 3.9). Rather than having a 

constant value for the intracellular IP3 concentration a membrane potential dependant IP3 

synthesis was introduced. The IP3 value would be subject to changes at every time step 

depending the value of the membrane potential recorded at the previous time step. To 

achieve this feedback mechanism between the membrane potential and IP3 synthesis a 

voltage dependant IP3 synthesis was incorporated into the Corrias and Buist ICC model.  

 

 

 

 

 

 
 

 

 

Figure 3.9: Schematic of IP3 dynamics as suggested by Imtiaz et al (2002) 

 

The intrinsic frequency gradient that was set by introducing an IP3 gradient along the 

length of the cable in extended bidomain model was modified. A voltage-dependent, IP3-

related mechanism based on the equations previously published by Imtiaz et al (2002) was 

incorporated. The effect of this modification was to invoke an active slow wave in response 

to an appropriate current from another depolarizing ICC. The governing equation is given 

by Equation 3.22 and Equation 3.23 
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                                                                                                 (3.22) 

 
  

  
            

  

  
                                                                                       (3.23) 

 

Where,   is the modulator of sensitivity of IP3 to  ,    is the rate constant for linear IP3 

degradation, u is the hill coefficient,     is the maximal rate of voltage dependent IP3 

synthesis   
   is the half saturation constant for the nonlinear IP3 degradation,      is the 

maximal rate of voltage dependent IP3 synthesis,   
  is the half saturation constant for 

voltage dependent IP3 synthesis, r is the hill coefficient. P(V) describes the dependence of 

IP3 on voltage. All the parameters values were redimensionalized to be consistent with the 

units of Buist and Poh extended bidomain framework (2010).  

 

IP3 can be modulated by external stimuli, denoted by the term   (Figure 3.10). The intrinsic 

frequency of the slow waves is set by   with a higher value of   giving a higher intrinsic 

frequency. A value of            
  

  
  was assigned to   to set the intrinsic frequency to 

3cpm (i.e., the frequency of gastric slow waves in humans). Linear gradient of intrinsic 

frequency was maintained by varying (decreasing gradient) the parameter   over the cable 

length. Both linear and nonlinear mechanisms degrade IP3, as described by the second and 

third terms of the equation (3.27). The fourth term describes the dependence of IP3 on 

voltage. Equation (3.28) was solved by the forward Euler method and incorporated into the 

Corrias and Buist ICC model (2008). Hence the extended bidomain framework was 

modified to entrain the gastric electrical activity in a voltage dependant manner. 
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Figure 3.10: Relationship between slow wave frequency in cycles per minute and the 

parameter   

 

3.4.3 Decreasing the time constant for inactivation of IP3 receptors 

 
The mechanism of slow wave propagation (including stimulus propagation) has been an 

object of discussion. The question of how each ICC could be entrained to produce 

coordinated slow wave propagation was raised. In stomach tissue, being an electrically 

coupled system with each ICC being self exciting, a coordinated mechanism capable of 

entraining the injected stimulus and invoking slow wave activity is necessary. The Corrias 

and Buist ICC (2008) was adjusted to enhance the existing entrainment mechanism. The 

Corrias and Buist ICC (2008) uses on ODE (Equation 3.24) to represent IP3 receptor 

inactivation 

 
  

  
  

                  

  
                                                                                                (3.24)                                                                                                       
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Where h represents the fraction of IP3 channels not inactivated by Ca
2+

. The value of h 

varies between 0 and 1.      (0.014mM) is the calcium concentration needed for 

inhibition,      is the calcium concentration in the pacemaker unit and    (4 seconds) is 

the time constant for calcium dependant inactivation of IP3 receptors. The values of the 

parameters have been obtained from Fall and Keizer (2001) [73]. Changing    does not 

alter the steady state but may change the stability of the steady states of the IP3 receptors 

[74]. 

 

As an attempt to enhance the existing mechanism of entrainment along the cable length the 

value of   was decreased to 0.002 seconds. It should be noted that altering    will alter the 

balance between endoplasmic reticulum calcium release rate and endoplasmic reticulum 

calcium filling rate to a small extent. This change in the value of    is expected to make the 

pacemaker cells more responsive to the external stimulus thereby triggering the 

depolarization of the neighboring ICCs. This change would activate the pacemaker cells 

one by one like in a chain reaction when the stimulus is injected into a single ICC. 

 

3.4.3.1 Removing           

The original Corrias and Buist ICC model demonstrates insufficient voltage dependant 

coupling between the ICCs with an external stimulus stimulating a single ICC not able to 

propagate along the cable and provide stable entrainment of slow waves. In order to 

enhance voltage dependant entrainment of the ICCs Corrias and Buist ICC model was 

modified by introducing dihydropyridine-resistant Ca
2+

 channels into the pacemaker unit 

[70]. This is in line with experimental evidence that suggests Ca
2+

 entry through voltage 

dependent, dihydropyridine-resistant pathways into the cell is involved in the coordination 

of slow wave discharge in the stomach [75]. This concept was simulated by channeling 4% 

of dihydropyridine-resistant Ca
2+ 

entry into the submembrane space [70]. To prevent the 

accumulation Ca
2+

 ions entering the submembrane space through this current,         , a 

phenomenological model of Ca
2+

 extrusion was also included. Apart from non selective 

cationic channels on the plasma membrane of the submembrane space the addition of 

dihydropyridine-resistant Ca
2+ 

(        ) was expected to convert voltage signal from an 
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ICC into a Ca
2+

 signal for pacemaker unit of the neighboring ICC. Hodgkin Huxley 

approach was adopted to model          with a maximum conductance of           

where     is fraction of dihydropyridine-resistant Ca
2+

 channels directed into the 

submembrane space. The updated Corrias and Buist ICC model was incorporated into the 

extended bidomain framework and hence the GES model as well.  

 

The decrease in the value of    (Section 3.4.3) decreased the endoplasmic reticulum 

calcium release rate through the IP3 receptor channels directly, followed by a reduction in 

calcium ions circulating in the submembrane space. In addition to this reduction in the 

calcium concentration, extrusion by the phenomenological model would further decrease 

calcium concentration in the subspace preventing the active generation of slow waves in 

the absence of any external stimulus. However when an external stimulus is delivered 

balance between calcium concentration in the submembrane space and extrusion 

mechanism is maintained by increase in the calcium cycling rate due to increased stimulus 

frequency and voltage dependant calcium release due to inclusion of intracellular IP3 

dynamics (Section 3.4.2). In order to restore the stability of the GES model in the presence 

as well as in the absence of an external stimulus and to maintain long term homeostasis 

         and the associated phenomenological calcium extrusion mechanism were 

removed from the Corrias and Buist model. Deletion of          did not substantially 

weaken the voltage coupling (and entrainment mechanism) as a new form of voltage 

coupling had been introduced by the inclusion of intracellular IP3 dynamics (Section 3.4.2). 
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Chapter 4 

Single Channel GES 

 Introduction 

After the development of the GES model framework with the incorporation of ICC and 

SMC single cell models as in a real stomach, the study of the propagation of gastric 

electrical activity in response to a stimulus delivered along the greater curvature of 

stomach constitutes the next logical step towards the complete the understanding of the 

effects and mechanisms of GES on the stomach. Having presented the development of 

GES model from the extended bidomain frame work in Chapter 3, in this chapter we will 

throw light on single channel gastric electrical stimulation. 

 

4.1 Background 

As mentioned in Section 1.2.1, two types of ICC variants are distributed along the 

stomach’s musculature i.e., ICC-MY (ICC myentric plexus) and ICC-IM (ICC intra 

muscular). While the former is involved in generation and propagation of slow waves the 

latter takes part only in the propagation of slow waves. Many investigators have 

highlighted the diversity in slow wave profile in different regions of the stomach. For 

example the stomach fundus is referred to as electrically silent inspite of the fact that it 

displays a dense population of ICC, mostly ICC-IM [1]. The stomach fundus is the most 

depolarized region in comparison with the other parts of the stomach and its resting 

membrane potential is always above the mechanical threshold [76] [77]. Slow waves are 

believed to arise in the corpus region along the greater curvature of the stomach (Figure 

4.1) and propagate aborally towards the pylorus [78]. Gastric electric activity terminates at 

the pylorus, which is an electrical barrier for slow wave propagation, preventing the slow 

waves from propagating into the small intestine. An electrically quiescent muscle is 
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present between the pyloric sphincter and the duodenum preventing further propagation of 

slow waves [79]. The small intestine exhibits its own intrinsic pacemaker activity from the 

duodenum to the distal ileum [80]. 

 

It was conceived that injecting a stimulus through an electrode at the proximal corpus, 

which is believed to be the origin of slow waves, would dictate the stomach’s electrical 

activity and hence help in normalizing gastric dysrhythmia. It was expected that the 

degree of entrainment of the gastric myoelectrical activity in response to the externally 

injected stimulus should be associated with the improvement of gastroparetic symptoms 

like delayed gastric emptying, nausea and abdominal pain. 

 

 

 

 

 

 

 

 

. 

Figure 4.1: Origin and propagation of slow wave activity in the stomach. Blue arrow 

indicate the position for placement of electrode in single channel GES. 

In single channel gastric electrical stimulation the stimulus is injected only into proximal 

part of the corpus i.e., in the area of the physiologic gastric pacemaker. Many 

experimental investigators have reported the efficacy of single channel in normalizing 

gastric dysrhythmia as well as in alleviating the chronic symptoms of gastroparesis like 

reducing gastric emptying time, nausea, vomiting, bloating and abdominal pain [41] [49]. 

All stimulus types as mentioned in Chapter 1 can be delivered as single channel GES. The 

concept of GES was initially commenced with single channel GES following which dual 

and multi channel GES was introduced. The stimulus usually consists of a series of 

rectangular pulses with a constant current. The pertinent stimulus parameters involved in 

Stimulus 

Peristaltic 

contractions  

Slow sustained 

contractions 

Pylorus 
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GES are pulse width, amplitude and pacing frequency. To date researchers employed a 

variety of pacing frequencies ranging from 3 cpm (cycles per minute) to 12 cpm in 

humans. 

 

In this chapter we aim to investigate the effects and physiological significance of single 

channel GES using different stimuli parameters. We have simulated GES in a cable model 

representing the stretch along the greater curvature from the proximal corpus to the 

pylorus. Cable models have been used to simulate the electrophysiology of many tissues 

like neural [81] tissue, skeletal [82] and cardiac [83] muscle tissues. In comparison to the 

phenomenological GES models developed previously, a biophysical GES model based on 

the realistic computational descriptions of the electrophysiology of gastric ICC and SMC 

(Chapter 3) enables us to make predictions regarding different stimulation protocols.  

 

4.2 Modeling single channel GES 

Electrical parameter selection plays a fundamental role in achieving efficient and effective 

slow wave entrainment by GES. Slow wave activity in response to an external stimulus 

has been simulated in a cable model (GES model, Chapter 3) that runs from proximal 

corpus to the antrum. The distance between the proximal point of fundus and distal point 

of pylorus along the greater curvature of the stomach is around 337 mm [84]. In Figure 4.2 

the yellow line depicts the cable along the stomach’s greater curvature. A cable length of 

180mm was chosen for the GES model as the fundus was excluded due to the fact that it is 

electrically silent. All the experimental investigators have also suggested the placement of 

electrodes at proximal corpus for single channel GES. All the stimuli types that are 

currently in practice have been simulated.  
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Figure 4.2: The yellow line depicts the cable along the stomach’s greater curvature. A 

cable length of 180mm was chosen for the GES model as the fundus was excluded due to 

the fact that it is electrically silent (no slow wave activity). 

 

A stimulus is delivered to the GES model through       
    of Equation 3.19, hence 

simulating the condition of having an electrode sutured into the serosal layer of the 

stomach as adapted from the experimental work on GES. Alternatively the stimulus can 

also be injected through the      
    term of Equation 3.17 which would simulate the 

situation of directly stimulating the pacemaker cells, hence requiring lesser energy than 

the former technique. In both the methods ultimately the pacemaker cells are triggered, 

resulting in depolarization of the pacemaker cells. Following this event SMCs are 

triggered by means of the gap junction coupling.  But in real case scenario the electrodes 

are inserted into the serosal layer of the stomach which is a vascularised connective tissue. 

The serosal layer possesses neither the ICCs nor the SMCs [9]. The electrodes cannot be 

expected to directly pierce the pacemaker cells when they are sutured to the stomach 

walls. Hence, we have chosen to inject the stimulus through      
    to model GES which 

would be more close to the experimental GES. However the results obtained on using 

     
    to deliver the stimulus are also explained in this chapter.  

 

Fundus of the 

stomach: 

electrically silent 

Antegrade slow wave 

propagation 

Retrograde slow wave 

propagation 
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For single channel GES we have chosen to inject the stimulus at a distance of 2mm from 

the proximal corpus. The first stimulus was delivered at the proximal corpus after 6.5 

seconds of simulated time. Subsequent stimuli were delivered thereafter as dictated by the 

stimulus frequency that was set. The first stimulus time was decided based on the 

appearance of rising phase of slow waves at its intrinsic frequency. The GES models 

responded to the injection of subsequent stimuli and generated slow waves at the 

stimulated frequency. 

 

On the basis of published experimental data (Chapter 2) starting values for the above 

mentioned stimulus parameters i.e., pacing frequency, pulse width and amplitude were 

determined. The stimulus frequency was chosen such that it was higher than the intrinsic 

slow wave frequency, with a starting value of 1.1 times the intrinsic frequency (for low 

frequency stimuli types) and up to 1.25 times intrinsic frequency (for high frequency 

stimuli types). Pulse width was decided depending upon the type of stimuli employed. In 

most of the experimental work on GES, stimulus intensity of the order of mA was 

employed. However the cable model for GES required stimulus in the order of 
  

   . The 

current amplitude of the stimuli was started with a low value and was gradually increased 

until stable entrainment was achieved. The stimuli parameters for all types of stimulus 

were optimized on the basis of results obtained from GES model. Stability of entrained 

slow wave activity was ensured by observing ten minutes of stimulated slow wave 

activity. The parameters were optimized such that least amount of energy was consumed 

without compromising on the stability of slow wave entrainment. Emphasis was laid on 

different techniques employed in the experimental GES and also the data obtained from 

the published experimental work was used as a starting value for the simulations with the 

aim of arriving at optimized stimulus parameters and in developing a GES model that 

would be a close approximation of realistic gastric electrical stimulation.  

 

A parameter called percent entrainment was introduced to assess the efficiency of the 

pacing parameters [50]. Percent entrainment was defined as the ratio of the difference 

between the recorded slow wave frequency on application of stimulus and the intrinsic 
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frequency of the system to the difference between the pacing frequency and the intrinsic 

frequency. Entrainment can be considered to be 100% if the recorded frequency was 

exactly the same as the pacing frequency i.e., slow waves are entrained at the stimulated 

frequency.  

 

               
                                      

                                      
                                                  (4.1) 

 

The stimulation energy (E) for each run was calculated using the following formula [85] 

where frequency is in Hertz, pulse width is in milliseconds and amplitude in μA.  

 

For long pulse stimulus: 

 

 

   
             

                

   
                                                                    (4.2) 

 

For Pulse strain stimulus: 

 

 

   
                                           

      

   
                          (4.3)       

 

The energy requirements here are represented in units of ms*μA
2
. This can also be 

interpreted in terms of Joules. 

 

1KWh = 3.6*10^6 Joules                                                                                                (4.4)                                  

 

Watts = Volts*Amps                                                                                                       (4.5) 

 

On considering this example 

Stimulus amplitude used for single and multi channel GES = 5.0 μA (Section 4.3) 

Peak volt for enterra (gatric pacemaker) device = 10.5V [86] 

The energy requirements corresponding to 24750 ms* μA
2
 using Equations (4.4) and (4.5) 

would be            Wh or           5 Joules. 
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4.3 Simulation results 

4.3.1 Generating dysrhythmia 

A variety of mechanisms are involved in the generation of gastric dysrhythmia. For 

example, the pacemaker cells may be severely injured or damaged hence generating 

abnormal electrical activity like an increase (tachygastria) or decrease (bradygastria) in the 

frequency of slow wave activity. On the other hand slow wave impairment may also be 

attributed to abnormal coupling among cells. The key advantage of the GES model 

developed here is that it can be used to simulate normal gastric slow wave activity, 

conditions such as bradygastria and tachygastria and the impairment that arises due to 

abnormal coupling between the pacemaker cells as well. We have simulated bradygastria 

at a frequency of 2.4cpm (normal frequency: 3cpm in humans) with the GES model 

(Figure 4.2 and 4.3) and have shown that application of GES at a frequency higher than 

3cpm restored the slow wave activity at the stimulated frequency. Figure 4.3 displays the 

bradygastric slow wave activity recorded at a distance of 20mm from the proximal corpus. 

Bradygastric conditions have been simulated by reducing the value of   (the modulator of 

sensitivity of IP3 to membrane potential). The efficiency of various stimuli types in 

normalizing bradygastric slow waves has been demonstrated in this chapter. 

 

 

Figure 4.3: Slow waves generated by the GES model at bradygastric frequency of 2.4cpm 

recorded at a distance of 20mm from the proximal corpus. 
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Figure 4.4: Spatiotemporal plot of   
    at bradygastric frequency (4 minutes of slow wave 

activity) demonstrating propagation of slow waves along the greater curvature. 

 

4.3.2 Long pulse stimulus 

As mentioned in Section 1.6.1, the duration of the stimulus was taken to be in the order of 

milliseconds. For duration of 300ms stimulus amplitude of 5.0 
  

    was required for 

triggering the pacemaker activity. Results have indicated that reciprocal variation in pulse 

duration and amplitude can be used to entrain gastric electric activity. Entrainment of slow 

waves at stimulated frequency can be achieved with low current amplitude given an 

appropriate increase in pulse width. However, it was taken into consideration that either 

current amplitude or pulse width was not reduced to extremely low values. The frequency 

of the stimulus was chosen to be slightly above the intrinsic frequency. The most optimal 

frequency for stimulation was found to be 1.1 times the intrinsic gastric slow wave 

frequency. In humans as mentioned earlier (Section 1.2.2) the frequency of gastric slow 

waves is 3 per minute. Therefore, a stimulated frequency of 3.3 cpm was used (Figure 4.5 

and 4.6). Figure 4.5 displays the stimulated slow wave activity recorded at a distance of 

20mm from the proximal corpus. The energy required for entrainment was 24750     
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μ  . When the stimulus was injected into ICC, pulse amplitude of 0.04 
  

    was sufficient 

to stimulate pacemaker activity. However, there existed a maximum driven frequency that 

was about 126% (3.8 cpm) of intrinsic slow waves, beyond which stable entrainment of 

slow waves was not achieved. 100% entrainment was obtained for all frequency below the 

maximal driven frequency. 

 

 

Figure 4.5: Normalization of bradygastric slow waves with long pulse stimulus 

(parameters: pulse width 300ms, amplitude: 5.0
  

   , frequency 3.3 cpm). 
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Figure 4.6: Spatiotemporal plot of   
    stimulated with long pulse stimulus (parameters: 

pulse width 300ms, amplitude: 5.0
  

   , frequency 3.3 cpm) for 10 minutes demonstrating 

the stability stimulated slow wave activity. 

 

4.3.3 Short pulse stimulus 

In the case of short pulse stimulus the duration is in the order of microseconds. As 

concluded by the experimental investigators on GES, the GES model, when injected with 

short pulse GES, did not produce any effect on gastric slow wave activity i.e., it was not 

able to entrain the slow waves at the stimulated frequency. However if the stimulus 

amplitude was very high, 75
  

    (in comparison to 5.0
  

   ), active entrainment of slow 

waves was achieved. However, even if slow waves were entrained, 100% entrainment was 

not achieved as the short pulse stimulus is delivered at very high frequency. Short pulse 

stimulus may not be very important from the slow wave aspect of GES as it does not 

affect the slow wave activity of the stomach when the stimulus amplitude and pulse width 

were given in the physiologic range. 
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4.3.4 Pulse train stimulus 

Train of pulses when injected into the GES model entrained gastric slow waves only when 

the width of the pulses in the train was greater than 4ms. Reciprocal variation in current 

amplitude and pulse width was observed above pulse width duration of 4ms. The 

experimental studies on GES that have employed pulse strain stimulus have claimed that 

slow waves can be stimulated to a frequency that is 180% of the intrinsic frequency. The 

results obtained from GES model have shown that the most optimum frequency for GES 

with pulse train stimulus is 110% of the intrinsic frequency with a maximum driven 

frequency of around 126% (3.8cpm) of the intrinsic frequency. However, when the 

frequency of the supplied stimulus was increased beyond this upper limit stable 

entrainment of slow waves was not achieved. 100% entrainment was obtained for all 

frequency below the maximal driven frequency. GES with pulse train stimulus of 

parameters: amplitude: 5.5ms, amplitude: 5.5
  

     frequency 30 Hz, cycle on for 3 sec and 

off for 15 sec generated slow waves as in Figure 4.7 and 4.8. When the stimulus was 

injected into the ICC directly, pulse amplitude of 0.05 
  

    was sufficient to produce 

entrained slow wave activity. 
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Figure 4.7: Gastric electric stimulation with pulse train stimulus at a frequency higher than 

the intrinsic one normalizes bradygastric slow wave activity. The graph shows slow wave 

activity at the distance of 20mm from the proximal corpus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Spatiotemporal plot of   
    stimulated with pulse train stimulus (parameters: 

duration: 5.5 ms, amplitude: 5.5
  

   
  frequency 30 Hz, cycle on for 3 sec and off for 15 

sec, Energy utilized: 49413     μ  ) demonstrating slow wave propagation along the 

greater curvature. The long term stability is equivalent to that shown on Figure 4.6. 
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4.3.5 Dual pulse stimulus 

As the name indicates, a short pulse of the duration 300µs followed by a long pulse of 

duration 300ms was injected into the GES model hence comprising the dual pulse 

stimulus. Dual pulse stimulus was able to entrain slow waves with respect to time and 

space at an optimum frequency being 3.3 cpm (Figure 4.9 and 4.10). 100% entrainment 

was obtained for all frequency below the maximal driven frequency. An inverse variation 

of pulse width and amplitude was observed with dual pulse stimulus as well. From the 

observation of results in Sections 4.3.2 and 4.3.3 it has been concluded that the observed 

entrainment of slow waves with dual pulse stimulus was solely contributed by the long 

pulse stimulus of the dual pulse stimulus. However, in realistic GES scenario short pulse 

GES is expected to alleviate the chronic symptoms of gastroparesis. 

 

Figure 4.9: Gastric electric stimulation with dual pulse stimulus at a frequency higher than 

the intrinsic one normalizes bradygastric slow wave activity. The graph shows slow wave 

activity at the distance of 20mm from the proximal corpus.  
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Figure 4.10: Spatiotemporal plot of   
    stimulated with dual pulse stimulus (pulse width 

300ms for long pulse and 300µs for short pulse, amplitude: 5.0
  

   , frequency 3.3 cpm, 

Energy utilized: 24775   μ  ) demonstrating slow wave propagation along the greater 

curvature. The long term stability is equivalent to that shown in Figure 4.6. 

 

4.3.6 Synchronized stimulus 

A Synchronized stimulus was delivered when maximum depolarization of ICC was 

detected. The stimulus frequency was same as the intrinsic frequency. The GES model 

responded to single channel synchronized stimulus by producing a higher depolarization 

at the point of stimulus injection. The increase in depolarization was found to be directly 

proportional to the pulse width and amplitude of the stimulus. A stimulus of amplitude 

18
  

    was injected on detection of peak ICC membrane potential for 300 ms (Figure 

4.11). It was observed that the peak potential was increased form -21mV to -17mV. No 

other significant changes were noted. 
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Figure 4.11: Synchronized stimulus producing an increase in the ICC peak potential. 

Energy utilized:              μ  . 

 

4.3.7 Enterra Therapy 

Single channel Enterra Therapy as mentioned in the Chapter 1, was injected into the GES 

model with the parameters: frequency: 14Hz, 0.1seconds on and 5 seconds off, duration: 

0.3ms, amplitude: 60µA. Enterra therapy is a type of pulse train stimulus with very short 

pulse duration of 0.3ms. As expected, the Enterra therapy parameters could neither evoke 

nor propagate slow wave activity as the duration and amplitude of the stimulus was very 

small (Figure 4.12). So, the slow wave profile and its spatiotemporal plot before and after 

stimulation with Enterra therapy parameters were the same. This is in line with the current 

understanding behind Enterra therapy that it works on the enteric nervous system rather 

than perturbing the gastric myoelectrical activity to alleviate the chronic symptoms of 

gastroparesis. 



Single channel GES   
 

71 
 

 

Figure 4.12: Spatiotemporal plot of   
    when stimulated with Enterra therapy 

parameters. Due to small pulse duration and amplitude these parameters did not alter 

intrinsic slow waves. 

4.4 Discussion 

Gastric electric stimulation has been shown to significantly alleviate gastrointestinal 

symptoms and considerably improve quality of life from as little as 6 weeks of therapy. 

Over the long term, it has been observed that GES maintains symptomatic relief and 

recovery of nutritional status. The efficiency of GES greatly depends on the chosen 

stimuli parameters. We have presented here a robust GES model which provides a 

platform by predicting if active entrainment of gastric electric activity is possible for the 

stimulation protocols employed. The developed GES model based on electrophysiological 

details of gastric ICC and SMC is an advancement over the previously constructed GES 

models, providing a platform to simulate the effects of single channel GES at different 

values of most pertinent stimulus parameters and hence make conclusions regarding their 

physiological significance.  

Five different stimulus protocols, whose efficiency is currently being explored in 

experimental GES, were simulated. In order to reproduce impaired gastric slow waves and 
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normalize it by the application of GES, bradygastric conditions have been simulated. 

Single channel GES was modeled by injecting the stimulus in most proximal region of the 

cable (at a distance of 2mm along the 180mm long cable). On delivery of the stimulus at a 

more distal site (for example at a distance of 15mm along the 180 mm cable) the 

stimulated entrainment proceeded from the point of injection of the stimulus. As expected, 

retrograde entrainment of slow waves can be observed in region between start of the cable 

and the point of injection of the stimulus (Figure 4.13). It has been suggested that the 

resistance for retrograde slow wave propagation is higher than for antegrade propagation 

[59]. In addition, characteristics of retrograde slow wave propagation may be partly 

contributed by intrinsic activity and partly by stimulus entrained activity [66]. The 

occurrence of a bend observed in the spatiotemporal plot of   
    at the point of stimulus 

delivery can possibly be due to the intersection of antegrade and retrograde propagation 

and the difference in resistance offered by the gastric musculature for the two types of 

slow wave propagation. These results suggests that the point of injection of stimulus also 

plays a very important role in the determining the efficiency of GES. For single channel 

GES stimulus should always be injected in the proximal corpus to avoid retrograde 

propagation of slow waves. 
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 Figure 4.13: Stimulus injected at 15mm of 180mm cable give rise to a bend at the point of 

intersection of antegrade and retrograde propagation of slow waves. 

 

The first stimulus was applied after 6.5 seconds of simulated time. The first stimulus time 

instant was chosen such that the stimulus appeared in close proximity to the onset of a 

slow wave and not in the refractory period of the pacemaker cells. However if the first 

stimulus instant was in the refractory period, the GES model would not respond to it and 

active entrainment would commence only from a subsequent stimulus that occurred close 

to the onset of a slow wave. For example the first stimulus (long pulse stimulus: same 

stimulus parameters as in Section 4.3.2) was given at the zeroth second of the simulated 

time with stimulus frequency set to 3.3cpm. From Figure 4.14 we see that the first two 

stimuli pulses (squared in blue) are only able to produce local depolarization. This can be 

explained due to the appearance of the stimulus during the refractory period of the 

pacemaker cells. The third stimulus is not shown in Figure 4.14 as it appears during 

descending phase of the second slow wave. Its effect is completely suppressed by the 

ongoing slow wave activity. Active slow wave generation and propagation is possible 

only when the stimulus appears close to the onset of a slow wave. Entrainment due to the 
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stimulus occurs only from the fourth stimulus pulse (Figure 4.14). As a consequence to the 

appearance of the first stimulus during the refractory period, the recorded frequency is 3.0 

cpm yielding 66.66% entrainment in comparison to the same stimulus parameters, when 

delivered at a time instant approaching the commencement of a slow wave, producing a 

recorded frequency of 3.3 cpm giving 100% entrainment (Section 4.3.2). 

 

 

Figure 4.14: The region squared in blue highlights that the first two stimuli pulses 

generate local depolarization as their occurrence time is far from the onset of a slow wave. 

The third stimulus pulse appears during descending phase of the second slow wave and 

hence not portrayed in the graph. Entrainment starts from the fourth pulse. 

 

For all the five stimulus protocols applied the most efficient frequency for stable 

entrainment of slow waves was 3.3cpm. However maximum driven frequency which can 

still sustain stable entrainment was 3.8 cpm. The maximum driven frequency can be 

decided based on the extent to which the refractory period can be reduced. As the 

frequency of the stimulus is increased the refractory period of the pacemaker cells may be 

considerably reduced. Figure 4.15 shows what happens when a stimulus was delivered at a 

frequency of 4.3 cpm. In this case the stimulus is able to invoke the generation of slow 
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waves, but the efficiency of slow wave propagation decreases with respect to both, time 

and space due to stimulus induced disturbed homeostatic condition prevailing in the ICC 

network. An ICC with considerably shorter refractory period will not be able to produce 

sustained long term entrainment of slow waves, explaining the instability that arises when 

the frequency is increased above 3.8 cpm.  

 

Figure 4.15: Spatiotemporal plot of ICC portraying unstable slow wave entrainment due to 

high frequency of the injected stimulus.   

 

The results indicate that the pulse amplitude and pulse width are inversely related each 

other. Reciprocal variation in pulse duration and amplitude can be used to entrain gastric 

electric activity. Entrainment of slow waves can be still be achieved with a very short 

pulse duration (in the order of µA) but with a correspondingly high amplitude (greater 

than 75µA/mm
3
). It should be noted that in realistic GES very high stimulus cannot be 

delivered at a single point in the proximal corpus to compensate a short pulse width. 

Injection of high amplitude stimulus even for a short period of time may damage the 

gastric musculature at that point aggravating gastroparetic symptoms rather than 

alleviating them. In addition to this, experimental GES employs stimulus amplitude for 
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long and short pulse stimulus almost in the same range. A balance should be maintained 

between the pulse amplitude and pulse width for any stimulus applied. 

 

The developed GES model, which is a cable representation of the greater curvature of the 

stomach, has been discretized with a space step of 1mm. The extracellular space at each 

discrete point has been assumed to be a cube with each side measuring 1mm in length and 

hence a volume of 1mm
3
. The stimulus injected through      

    represents the stimulus 

injected per unit volume of the extracellular space. Therefore, the stimuli applied were 

multiplied with the volume term and then utilized for energy calculation by Equations 4.2 

and 4.3. 

 

The conduction velocity of slow waves depends on the conductivities of ICC (  
   ), 

extracellular space (  
 ) and SMC (  

   ) [70]. These conductivities also influence the 

stimulus amplitude required for triggering the pacemaker cells. Depending on the domain 

into which the stimulus is injected, the corresponding conductivity will have a greater 

effect on the stimulus amplitude. As the presented GES model simulates the condition of 

injecting stimulus into the extracellular space,   
  will have a greater impact on the 

stimulus amplitude compared to the other two conductivities. At a higher conductivity 

value the supplied stimulus decay quickly, requiring higher amplitude to trigger the 

pacemaker cells. So, it should be noted that the stimulus amplitude needed for activating 

the pacemaker cells mentioned in the Section 4.3 have been obtained with a   
  value of 

0.4 
  

  
. 

 

As mentioned earlier, injection of stimulus into the ICC directly was also simulated. The 

pulse amplitude required to generate stable entrainment of slow waves when delivered 

into the ICCs was much less in comparison to that of a stimulus injected into the 

extracellular space. A direct pacemaker stimulus can be considered similar to an ionic 

current and hence its effect would be largely pronounced even with smaller amplitude, 

whereas stimulus for extracellular space will act like an impressed current and hence 

would require greater amplitude to trigger gastric electric activity. 
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In general, GES with long pulses is capable of entraining gastric slow waves.  Short pulse 

GES has no effects on slow waves.  In some circumstances, GES with short pulses was 

able to alter slow waves if the stimulation amplitude or pulse width is very high. GES with 

train of pulses was able to rectify gastric dysrhythmia. When the time interval between 

two subsequent pulses is small then the two short pulses may be assumed as a single pulse 

and hence a train of short pulses may be effectively considered as a single long pulse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Single channel GES is not able to normalize slow waves impaired due to 

defective ICC coupling. Inspite of injecting a stimulus into the proximal corpus we see 

that retrograde entrainment has been triggered in the distal antrum. 

 

From the results and discussion we can conclude that single channel GES is efficient in 

normalizing the impaired gastric electric activity arising due to decreased frequency 

(bradygastric) of gastric slow waves generated by defective pacemaker cells. Gastric 

dysrhythmia in diabetic gastroparesis, which in most cases arises due damaged or 

dysfunctioning vagus nerve, can also be efficiently normalized by single channel GES. On 

the other hand gastric dysrhythmia that arises due to defective coupling between the 

pacemaker cells may not be efficiently normalized using single channel GES. Retrograde 
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entrainment of slow waves may be activated due defective coupling between a patch of 

ICC in the cable network as shown in Figure 4.16. Defective coupling between the 

pacemaker cells would restrict the voltage dependant communication between the 

pacemaker cells, preventing the active entrainment of slow waves arising due to the 

delivered stimulus. Multi channel GES, placement of 2 to 4 electrodes so as to supply 

stimulus to entire region of corpus and antrum would be advantageous in such a situation. 

As a solution for the problem of weakened communication between the pacemaker cells, 

multi channel GES can be adopted to inject stimulus into different regions of corpus and 

antrum. Chapter 5 will throw light on modeling of multi channel GES for different 

stimulus protocols. 
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Chapter 5 

Multi Channel GES 

Introduction 

Having presented a complete account of single channel GES with various stimulus 

protocols, a description of multi channel GES represents the next conceptual step towards 

the development of a fully integrated GES modeling framework. In this chapter, we will 

focus on gastric dysrhythmia arising due to defective coupling between the pacemaker 

cells and normalization of this gastric impairment through the application of multi channel 

GES with different stimulus protocols.   

 

5.1 Background 

Anatomically the stomach is divided into three functional segments: the fundus, corpus 

and antrum [9], with each segment participating in differing but complementary roles in 

the digestion process. General opinion is that the antrum is a greater contributor to the 

emptying of solids [87] [88]. During a meal, the fundus functions as a food reservoir and 

facilitates the chemical digestion of food by way of gastric acid and proteases. The antrum 

holds responsibility for grinding, mixing, and the process of reducing food into fine small 

particles [87]. The resulting chyme is cleared from the antrum into the proximal 

duodenum through peristaltic antral contractions [89]. In comparison to the proximal 

regions, the distal stomach plays a significant role in the process of gastric emptying. It is 

conceivable that direct stimulation of the distal stomach may be more efficient in 

alleviating the symptoms of gastroparesis rather that aiming at reduction of gastroparetic 

symptoms by giving a stimulus at the proximal corpus (conventional single channel GES). 

As mentioned in Section 4.4, when a single electrode delivers a stimulus at a distance 

further from the proximal corpus (start of the cable), there exists a greater
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 possibility for inducing retrograde slow wave propagation. Multi channel GES was 

suggested in order to directly stimulate the distal stomach without activating retrograde 

slow wave propagation.  

 

Abnormal coupling between a patch of ICCs in the pacemaker network along the greater 

curvature may result in impairment of gastric slow waves. Damage or destruction of a 

patchy network of ICC may also induce gastric dysrhythmia. Each of these mechanisms 

may result in a drastic reduction of voltage dependant communication of the ICC network 

as a whole. For example, on considering a patch of ICC with defective coupling to be 

present between corpus and antrum (in the middle of ICC network) the entrainment 

mechanism across the network would be affected with a reduction in the conduction 

velocity especially in the region of ICC patch having defective coupling. This defective 

patch of ICC would act as a barrier for the slow wave propagation from the corpus to the 

antrum along the greater curvature. Further to this, intrinsic frequency gradient of the IP3 

concentration, as set by the intracellular IP3 dynamics and self excitation property of 

pacemaking cells, should be taken into consideration. As a result the ICCs in distal antrum 

where normal coupling exists, would be activated ahead of the pacemaking cells with 

insufficient coupling. This would initiate antegrade slow wave propagation commencing 

from the proximal corpus followed by retrograde propagation commencing from the distal 

antrum resulting in gastric dysrhythmia.  As mentioned in Section 4.4, in such a situation 

single channel GES may not be effective in normalizing the gastric dysrhythmia as the 

propagation of a stimulus delivered at the proximal corpus along the greater curvature 

would also be hindered. As an attempt to address the problem of retrograde slow wave 

propagation arising from reduction of communication between the ICCs in a network, 

multi channel GES has been suggested as an alternative strategy to single channel GES. 
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In multi channel GES, stimuli are injected at multiple locations from the corpus to the 

antrum along the greater curvature (Figure 5.1). In experimental GES, dual channel GES 

is practiced by delivering stimulus via two electrodes with the electrode being placed at 

the proximal corpus and the second electrode placed at a distance of 100mm from the first 

electrode. In case of multi channel GES stimulus is applied through four electrodes. The 

inter electrode distance is around 40mm and the last electrode is placed atleast 20mm from 

the pylorus. 

 

Figure 5.1: Placement of electrodes in multi channel GES. P1, P2, P3 represent the first 

three proximal electrodes and D1 represents the most distal electrode. 

 

5.2 Modeling multi channel GES 

A cable length of 180mm, representing corpus and antrum, was chosen for modeling of 

multi channel GES. A gastric dysrhythmia, induced by abnormal coupling between the 

patch of pacemaker cell in the cable network, was simulated by reducing the value of    
    

(of Equation 3.17) only for a selected region of ICCs in the cable.   
    represents the ICC 

conductivity, in other words it can also be referred as the coupling factor between two 

neighboring ICCs. It controls the degree of communication between adjacent ICCs and 

was expressed in  
  

  
 . The value of   

    in normal coupling condition was set to be 

0.5 
  

  
  [69]. Abnormal coupling between the pacemaker cells was modeled by reducing 

Fundus: 

Electrically silent. 

Distal 

Proximal 

P1 
P2 P3 D1 



Multi channel GES   
 

82 
 

the value of   
    by 99%; the value was decreased to 0.005 

  

   
. The defective region of 

ICC was set to approximately in the center of the 180mm cable. The reduced value of   
    

was assigned to all the ICCs from 50mm to 85mm of the cable. The original value of 

  
    was ascribed to the rest of the cable. This strategy mimics the physiological situation 

of considering the greater curvature of a stomach having ICCs with defective coupling in 

the region of distal corpus extending for a length of 35mm (Figure 5.2). The rest of the 

region of cable can be assumed to have normal coupling. Reduction in the value of   
    is 

synonymous with the decreasing the number of gap junctions between the ICC thereby 

weakening communication between the ICCs. 

 

 

Figure 5.2: Greater curvature of the stomach with defective ICC-ICC coupling in a small 

region. Yellow cable indicates normal ICC-ICC coupling and blue cable indicates 

defective ICC-ICC coupling.  

Stimuli were injected at two points along the cable. The first point of stimulus injection 

was at a distance of 4mm from the proximal corpus. The second point of stimulus 

injection was at a distance of 45mm from the proximal corpus. The second point was 

chosen considering the fact that the ICC patch with defective coupling would commence 

from 50mm of the cable. At the former stimulus injection site, the first stimulus instant 

was set to be after 6.5 seconds of simulated time. At the latter stimulus injection site, the 

first stimulus instant was set to be after 12.25 seconds of simulated time. Subsequent 

ICC patch with 

defective coupling 
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stimuli were delivered thereafter as dictated by the stimulus frequency that was set. The 

first stimulus instant for both the locations was decided based on the appearance of rising 

phase of slow waves at its intrinsic frequency. The difference in the first stimulus instant 

time of the proximal and distal stimulus injection site corresponded to the phase shift that 

existed between these two points. 

 

As in single channel GES, stimuli were delivered to the GES model through       
    of 

Equation 3.19. On the basis of published experimental data (Chapter 2) starting values for 

the pertinent stimulus parameters i.e., pacing frequency, pulse width and amplitude, were 

determined. The stimulus frequency was chosen such that it was higher than the intrinsic 

slow wave frequency, with a value of 1.1 times the intrinsic frequency that was obtained 

as the optimum frequency for pacing (Section 4.3). It should be noted that gastric 

dysrhythmia has been induced by simulating the condition of defective coupling between 

the ICCs. So, the intrinsic frequency of the system was set to 3 cpm except in section 5.3.1 

where bradygastria was simulated. Pulse width was decided depending upon the type of 

stimuli employed. The current amplitude of the stimuli was started with a low value and 

was gradually increased until stable entrainment was achieved. The parameters were 

optimized such that least amount of energy was consumed without compromising on the 

stability of slow wave entrainment.  Percentage entrainment (Equation 4.1) was used to 

quantify the efficiency of pacing parameters and energy was calculated using Equations 

4.2 and 4.3. 

 

5.3 Simulation results 

5.3.1 Multi channel GES for treating bradygastria 

Gastric dysrhythmia (bradygastria) as mentioned in Section 4.2 was generated and the 

efficacy of multi channel GES in restoring gastric electric activity was analyzed. Long 

pulse stimuli with parameters pulse width 300ms, amplitude: 5.0
  

   , frequency 3.3 cpm 

were delivered at four points along the cable with a distance of 45mm between the points. 

The phase shift between the points was taken into consideration. The first point was at a 

distance of 2mm from the proximal corpus and the final point at a 137mm from the 
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proximal corpus. 100% entrainment was achieved at the stimulated frequency (Figure 

5.3). Different combinations of the stimuli amplitude delivered at the second, third and 

fourth point were varied keeping the amplitude of the stimulus delivered at the first point 

constant. No significant changes were observed from Figure 5.3. The same phenomenon 

was observed with pulse train stimulus and dual pulse stimulus as well. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Normalizing bradygastric slow waves using multi channel GES. No significant 

change from Figure 4.6 was observed. 

 

5.3.2 Generating dysrhythmia 

Gastric dysrhythmias arising due to abnormal ICC-ICC coupling have been simulated. 

Retrograde entrainment of slow waves was observed at the intrinsic frequency of the 

system as per Section 5.2. Figure 5.4 displays the abnormal gastric electric activity 

induced by reduction in the value of   
    for a patch of cells in the ICC cable network. 

The effectiveness of various stimuli types in normalizing the induced gastric dysrhythmia 

will be demonstrated in this chapter. Figure 4.16 shows that application of single channel 

GES is not sufficient to normalize this type of gastric dysrhythmia. 
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Figure 5.4: Gastric dysrhythmia due to defective ICC-ICC coupling. 

 

5.3.3 Long pulse stimulus 

For duration of 300ms stimulus amplitude of 2.0 
  

    at the proximal stimulus delivery 

site and 3.0 
  

    at the distal stimulus delivery site was required for triggering the 

pacemaker activity. Results have indicated that reciprocal variation in pulse duration and 

amplitude can be used to entrain gastric electric activity. The frequency of the stimulus 

was chosen to be slightly above the intrinsic frequency. The most optimal frequency for 

stimulation was found to be 1.1 times the intrinsic gastric slow wave frequency. So, a 

stimulated frequency of 3.3 cpm was used (Figure 5.5). The energy required for 

entrainment was 24750        . When the stimulus was injected into the ICC a pulse 

amplitude of 0.04 
  

    was sufficient to stimulate pacemaker activity. 100% entrainment 

was achieved at the optimal frequency. 
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Figure 5.5: Spatiotemporal plot of   
    stimulated with long pulse stimulus (parameters: 

pulse width 300ms, amplitude: 2.0
  

     (at site 1) and 3.0 
  

     (at site 2), frequency 3.3 

cpm demonstrating normalization of the slow wave activity. 

 

5.3.4 Short pulse stimulus 

The short pulse stimulus did not produce any effect on gastric slow wave activity i.e., it 

was not able to prevent retrograde entrainment of slow waves. As put forward by the 

experimental investigators short pulse GES, did not produce any effect on gastric slow 

wave activity. Even if the stimulus amplitude was very high, 75
  

   
 at both the stimuli 

injection sites, gastric dysrhythmia could not be normalized. From Section 4.3.4 and 

results observed on this section we can observe that electrical effects of short pulse 

stimulus may not be very prominent. 

 

5.3.5 Pulse train stimulus 

A train of pulses, when injected into the GES model, entrained gastric slow waves at the 

stimulated frequency and was also able to correct the retrograde entrainment of slow 
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waves. Reciprocal variation in current amplitude and pulse width was observed. Stimulus 

frequency was set to 3.3 cpm and 100% entrainment was achieved at this frequency. GES 

with pulse train stimulus of parameters: duration: 5.5, amplitude: 2.0 
  

    at site 1 and 3.0 

  

   
 at site 2, frequency 70 Hz, cycle on for 3 sec and off for 15 sec rectified the 

retrograde propagation of slow waves (Figure 5.6). 

                                                                                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Spatiotemporal plot of   
    stimulated with pulse train stimulus (parameters: 

pulse width 5.5 ms, amplitude: 2.0
  

     (at site 1) and 3.0 
  

     (at site 2), frequency 70 

Hz, cycle on for 3 sec and off for 15 sec, Energy utilized:                 ) 

demonstrating normalization of the slow wave activity. Long term stability is equivalent 

to that in Figure 5.5. 

 

5.3.6 Dual pulse stimulus 

A short pulse of the duration 300µs followed by a long pulse of duration 300ms was 

injected into the GES model. Dual pulse stimulus was able to entrain slow waves with 

respect to time and space at an optimum frequency being 3.3 cpm (Figure 5.7). 100% 
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entrainment was obtained at the optimal frequency. An inverse variation of pulse width 

and amplitude was observed with dual pulse stimulus as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Spatiotemporal plot of   
    stimulated with dual pulse stimulus (pulse width 

300ms for long pulse and 300µs for short pulse, amplitude: 2.0
  

    (at site 1) and 3.0 
  

    

(at site 2), frequency 3.3 cpm, Energy utilized: 24775       demonstrating slow wave 

propagation along the greater curvature. Long term stability is equivalent to that in Figure 

5.5 

 

5.3.7 Synchronized stimulus 

Synchronized stimulus was delivered when peak membrane potential of ICC was detected. 

The stimulus frequency was same as the intrinsic frequency. Synchronized stimulus was 

able to rectify retrograde entrainment of slow waves and thereby normalize gastric electric 

activity. Increase in depolarization at the point of stimulus injection was also observed at 

the point of stimulus injection. A stimulus of amplitude 2.0 
  

    and 3.0  
  

    was injected 

at the proximal and distal stimulus injection site on detection of peak ICC membrane 

potential for 300 ms. 
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Figure 5.8: Spatiotemporal plot of   
    stimulated with synchronized stimulus (pulse 

width 300ms, amplitude: 2.0
  

    (at site 1) and 3.0 
  

    (at site 2), frequency: 3 cpm 

Energy utilized: 22500       ) demonstrating normalization of retrograde slow wave 

propagation. 

 

5.3.8 Enterra Therapy 

Multi channel Enterra Therapy could not normalize gastric dysrhythmia Enterra due to 

very short pulse duration. As expected the Enterra therapy parameters could not rectify the 

retrograde entrainment of slow waves. 

 

5.4 Discussion 

Multi channel GES has been shown to significantly reduce gastroparetic symptoms by a 

number of experimental GES investigators [42], [55], [56], [57]. The efficacy of multi 

channel GES in normalizing bradygastric slow waves is similar to that of single channel 

GES (Figure 5.3). It can be observed that single channel GES posses an edge in terms of 
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consuming less energy and being less invasive over multi channel GES in a scenario 

where only bradygastric slow waves exist (without defective ICC patches).   

Impaired gastric slow waves were generated by simulating the presence of an ICC patch 

with reduced coupling along the stomach’s greater curvature. This chapter elucidates the 

efficiency of multi-channel GES with the available stimulus protocols in normalizing the 

simulated gastric dysrhythmia. Multi channel GES was modeled by injecting the stimulus 

at a proximal site (at a distance of 2mm from the corpus) and at a further distal site (at a 

distance of 45mm from the corpus). The site second stimulus injection was chosen such 

that it was in close proximity to the ICC patch with defective coupling. The first stimulus 

instant for both the stimulus injection sites was set such the pulses occurred close to the 

onset of a slow wave. 

Injection of a stimulus at the beginning of a corpus would activate the pacemaker cells and 

invoke slow wave activity at the stimulus frequency. Due to the existence of a group of 

ICC with reduced coupling at the center of the cable the ICCs at the distal end of the cable 

will be activated resulting in retrograde entrainment of slow waves. Delivering a stimulus 

adjacent to the defective patch of ICC (along stimulus at the proximal corpus) would 

improve the entrainment characteristics of the defective ICC patch and hence reduce the 

hindrance to active slow wave propagation provided by the defective ICC patch. This 

would help in normalizing the existing gastric dysrhythmia. However, even if the 

entrainment characteristics of the defective ICC is ameliorated, the conduction velocity of 

this region still remains low compared to the rest of the cable with normal coupling 

(Figure 5.5). The aim of multi channel GES is to prevent the retrograde propagation of 

slow waves. So, the stimulus frequency was set to 3.3 cpm, which was found out to be the 

optimum frequency from Section 4.3. Four channel GES was also able to normalize the 

gastric dysrhythmia arising due to reduced inter ICC coupling. Stimuli parameters 

employed as in Section 5.3.3 were used, stimuli amplitude of 2.0 
  

    were used for the 

third and fourth stimulation sites. No significant changes from Figure 5.5 (dual channel 

GES) were observed with four channel GES. It should be noted that two channel GES in 

this scenario would be more efficient in terms of energy consumption. 
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In the physiological situation, the group of defective ICCs may not be restricted to single 

region along the greater curvature. They may be dispersed in small patches or spread as 

lengthy patches at more than a single location along the greater curvature. The stability of 

the developed GES model reduces as the presences of multiple defective ICC patches are 

simulated. It should be noted that the model uses stabilized bi conjugate gradient method 

(an iterative technique) to solve the matrix system. The convergence accuracy and hence 

the stability of this iterative method would be affected as the ICC’s conductivities is 

varied randomly or as the presence of multiple defective ICC patches is simulated. Taking 

into consideration the stability of the GES model, we have chosen to simulate the presence 

of a single lengthy ICC patch with reduced number of gap junctions (reduced coupling) 

and normalize the arising gastric dysrhythmia by application of stimulus at two different 

sites along the greater curvature. As the ICC-ICC coupling is varied randomly, more than 

two electrodes may be needed to normalize the generated gastric dysrhythmia. However 

the concept behind the generation of gastric dysrhythmia due to reduced inter ICC 

coupling and the technique of introducing multiple stimulation sites to normalize it has 

been well elucidated by the strategy that we have adopted in multi channel modeling of 

GES. 

The protocol for multi channel gastric pacing has been developed by considering and 

evaluating different combination of the stimulus parameters for each individual channel 

with a focus for normalizing the generated gastric dysrhythmia in the GES model. From 

results and discussion we see that multi channel GES with long pulse stimulus would be 

quite efficient for the treatment of gastric motility disorders arising due to defective 

coupling between the pacemaker cells.  
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Chapter 6 

GES for obesity treatment 

Introduction 

Retrograde gastric pacing has been suggested as a potential therapy for the treatment of 

morbid obesity. In this chapter we have attempted to explore the capability of the 

developed GES model in the generation and propagation of slow waves in the retrograde 

direction in response to a stimulus delivered in the distal stomach. 

 

6.1 Background 

The principle behind retrograde gastric pacing is to simulate the presence of an artificial 

ectopic pacemaker in the distal stomach. Retrograde gastric pacing aims to decelerate the 

rate of propulsive contraction and thereby increase gastric emptying time without 

provoking intolerable symptoms. Consequently, this would result in early satiety and a 

reduced food intake. Slow waves propagating retrogradely, travelling against the 

antegrade slow waves that propagate from the proximal to the distal stomach induce 

gastric dysrhythmia. Many experimental investigators have demonstrated the efficiency of 

retrograde gastric pacing in disrupting normal gastric slow waves, generating 

dysrhythmia, inhibiting antral contractions, increasing gastric emptying time and reducing 

food intake hence resulting in weight loss.  

 

6.2 Modeling retrograde gastric pacing 

A cable length of 180mm representing the corpus and antrum was chosen for modeling 

retrograde gastric electric activity. The stimulus was injected at a distance of 60mm from 

the pylorus (Figure 6.1). The first stimulus instant was set to be after 10 seconds of
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simulated time. Subsequent stimuli were delivered thereafter as dictated by the stimulus 

frequency that was set. Considering the existence of an intrinsic frequency gradient along 

the stomach the first stimulus instant was chosen such that it was close to the onset a slow 

wave at the point of stimulus injection. Retrograde gastric pacing with long pulse stimulus 

and pulse train stimulus has been modeled. The other stimuli types are not of significant 

importance in obesity treatment, as GES in this scenario is not expected to alleviate 

symptoms such as nausea, abdominal pain and vomiting. Stimulus is delivered to the GES 

model through       
    of Equation 3.19. The intrinsic frequency of the system was set to 3 

cpm. The stimulus frequency was always higher than the intrinsic slow wave frequency. 

Percentage entrainment (Equation 4.1) was used to quantify the efficiency of pacing 

parameters and energy was calculated using Equations 4.2 and 4.3. 

 

 

Figure 6.1: Placement of electrode at the distal stomach to trigger retrograde slow wave 

propagation. Blue arrow indicates the position of electrode. 

6.3 Simulation results 

6.3.1 Long pulse stimulus 

For duration of 300ms stimulus amplitude of 7.0 
  

    was required for triggering 

retrograde propagation of slow waves (Figure 6.2). Inverse variation in pulse duration and 

amplitude was observed. The most optimal frequency for stimulation was found to be 1.1 

times (3.3 cpm) the intrinsic gastric slow wave frequency. However upper limit of 

Fundus: 

Electrically silent 
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frequency for stable entrainment was 1.25 times (3.75 cpm) the intrinsic frequency. The 

energy required for entrainment was 48510        . 100% entrainment was achieved at 

all frequencies below the upper limit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Spatiotemporal plot of   
    stimulated with long pulse stimulus at a distance 

of 60mm from the pylorus (parameters: pulse width 300ms, amplitude: 7.0
  

   , frequency 

3.3 cpm) for 10 minutes demonstrating the retrograde slow wave activity. 

 

6.3.2 Pulse train stimulus 
 

A train of pulses, when injected into the GES model, stimulated retrograde entrainment of 

gastric slow waves at the stimulated frequency. Reciprocal variation in current amplitude 

and pulse width was observed. Stimulus frequency was set to 3.3 cpm. However the upper 

limit for stable entrainment was 3.75 cpm and 100% entrainment was achieved at all 

frequency below the upper limit. Pulse train stimulus with parameters: duration: 5.5 ms, 

amplitude: 8.5 
  

   
, frequency 70 Hz, cycle on for 3 sec and off for 15 sec was employed 

to achieve retrograde propagation of slow waves (Figure 6.3). 
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Figure 6.3: Spatiotemporal plot of   
    stimulated with pulse train stimulus (parameters: 

pulse width 5.5 ms, amplitude: 7.0
  

    , frequency 70 Hz, cycle on for 3 sec and off for 15 

sec, Energy utilized:                 ) demonstrating retrograde propagation of slow 

wave. Long term stability is equivalent to that in Figure 6.2. 

 

6.3 Discussion 

Even though many experimental investigators have suggested the placement of electrodes 

along the lesser curvature for obesity treatment [60], the efficiency of stimulus injection at 

a distal site along the greater curvature, inducing retrograde slow wave for obesity 

treatment has also been demonstrated experimentally [59]. Based on the latter hypothesis 

we have extended the GES model and explored its efficiency in the generation of 

retrograde slow wave propagation. A higher stimulus amplitude was required to stimulate 

retrograde propagation than to stimulate antegrade propagation of slow waves. For 

duration of 300ms minimum stimulus amplitude of 7.0 
  

   
 is required to trigger 

retrograde propagation in comparison to stimulus amplitude of 2.0 
  

    to stimulate 

antegrade propagation. One possible explanation for this phenomenon is that the 

resistance offered by gastric musculature for retrograde propagation is higher and 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

0 50 100 150 200 

D
is

ta
n

ce
 a

lo
n

g 
th

e
 s

to
m

ac
h

 (
m

m
) 

 

Time (sec) 
 

-21mV 

  
    

-70mV 



 GES for obesity treatment    
 

96 
 

therefore requires higher stimulus amplitude for triggering retrograde propagation of slow 

waves. 

 

The developed GES model is ideally suited to the research task of offering a platform to 

analyze the efficiency of pacing parameters in the generation and propagation of slow 

waves in the retrograde direction. Therefore, the developed GES model provides the 

flexibility to be employed for evaluating the efficiency of pacing parameters for the 

treatment of gastric motility disorders and obesity, while preserving the underlying 

electrophysiological principles that describes the interaction between the multiple active 

cell types present in the gastric musculature. 
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Chapter 7 

Conclusions 

The aim of this research project was to develop a realistic computational model for gastric 

electrical stimulation directed to study the efficiency of various stimulus protocols for the 

treatment of gastric motility disorders and obesity.  

 

We have adapted the extended bidomain framework for gastric musculature as a 

foundation for the development of the GES model. An additional syncytium called the 

bath was integrated with the extended bidomain framework in order to simulate the 

presence of a closed circuit condition. Voltage coupling properties of the Corrias Buist 

ICC (2008) model had to be strengthened before incorporating it into the GES model. To 

achieve this the voltage coupling mechanism that was already present in the original 

Corrias and Buist ICC model was replaced by introducing intracellular IP3 dynamics, as 

suggested by Imtiaz et al (2002) [71] followed by reduction in the value of h (fraction of 

IP3 channel not inactivated by calcium). This updated Corrias Buist ICC model is more 

sensitive to voltage changes of adjacent ICC and can be effectively used to model the 

generation and propagation of gastric slow waves along the length of the stomach. It also 

possesses a robust mechanism of intracellular IP3 dynamics. Hence voltage coupling 

mechanism of Corrias and Buist ICC model has been strengthened by the author.  

 

The key advantage of this model is the flexibility that it offers to simulate normal gastric 

electric activity as well as different types of gastric dysrhythmia that may arise due to 

defective conditions in the gastric musculature. Two different types of gastric dysrhythmia 

have been simulated and the efficacy of different stimuli protocols (that are currently 

employed in experimental GES) in normalizing the generated gastric dysrhythmia are 

explored. The available stimuli protocols are modeled and their efficiency as single 

channel and multi channel GES has been demonstrated with an edge for analyzing their 

energy efficiency as well. Further, the developed GES model has also allowed us to 

investigate retrograde entrainment of slow waves which is considered to have therapeutic  

potential for obesity treatment.   
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7.1 Limitations and future work 

We have presented in this research project a new computational model for gastric 

electrical stimulation which offers a significant advancement over the previously 

published GES models thereby providing a tool for optimizing different stimulus 

protocols and tailoring them specifically to the type of gastric dysrhythmia to be treated. 

 

Construction of electrophysiological models usually follows a hierarchy of cell – tissue – 

and finally whole organ models. This model uses a cable representation of the greater 

curvature of the stomach and can be considered equivalent to a tissue level model of GES. 

Before construction of the presented tissue level GES model a cell level GES model was 

built using the single cell models of ICC and SMC to assess the feasibility and 

effectiveness of GES. Here a single ICC (updated version) was connected to a single SMC 

via gap junctions with an external stimulus been injected into the ICC. Once satisfying 

results were obtained we were able to move towards next higher level of modelling i.e. 

tissue model of GES (presented in the thesis). In the absence of a robust tissue level GES 

model it would not be appropriate to directly move on to whole stomach model. The most 

natural future development would be to construct a whole stomach model for GES. With 

the aid of a whole stomach model the possibility of stimulating the lesser curvature of the 

stomach, especially for evaluating the efficiency of pacing parameters for obesity 

treatment would be brighter. 

 

In addition to it, a 3 D stomach model for GES would be effective only if both electrical 

and mechanical properties of the gastric musculature is presented i.e. the whole stomach 

model would be robust if it posses electro – mechanical coupling properties. This GES 

model can be used as a starting point for the development of a coupled electro-mechanical 

modelling framework for GES. An electro-mechanical model will facilitate our better 

understanding about the effects of different stimulus protocols on gastric tone, gastric 

compliance and gastric accommodation when applied for the treatment for gastroparesis 

and obesity. Stimulus protocols such as short pulse stimulus and Enterra Therapy whose 

electrical effects are not very prominent can be better evaluated with an electro-



Conclusions   
 

99 
 

mechanical GES model. The attempt to construct an electro – mechanical model for the 

gastric musculature is an ongoing project in the computational bioengineering laboratory. 

Once an electro mechanical model of the whole stomach is constructed, it can be further 

extended to build a 3 D model for GES. 

 

The results obtained from the presented GES model has been compared with the 

experimental GES results. Good agreement with the experimental results has been 

observed. Most of the experimental work have achieved 100 % entrainment at the 

stimulated frequency (upto a maximal driven frequency). No significant 

electrophysiological changes were obtained with short pulse stimulus and enterra therapy. 

Similar results were also obtained with the GES model. This GES model can also be 

validated by testing the results on an animal model. In the near future there are plans to 

validate this model using an animal study. Experimental validation studies can be 

conducted in dogs, guinea pigs or in porcine models. 

 

In conclusion, the modeling framework presented here is well suited to allow the 

simulation of an external stimuli leading to optimization of stimulus parameters which is 

at present an issue of controversy among the clinicians. We hope that this thesis paves the 

way for the establishment of computational electrophysiology as an efficient medium for 

the development of an effective gastric pacemaker in the near future to benefit the patients 

with gastric motility disorders and morbid obesity. 

 

7.2 Publication and Seminar 

The research project contained in this thesis has been presented in the following 

conference publications 

 

 Kannan A, Buist ML “A Computational Investigation of Gastric Electrical 

Stimulation”, Proceedings of 4
th

 East asian pacific conference on nano biomedical 

engineering, Singapore, December 2010. 
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 Kannan A, Buist ML “A Computational Investigation of Gastric Electrical 

Stimulation”, Poster presentation at 4
th

 East asian pacific conference on nano 

biomedical engineering, Singapore, December 2010 and was awarded best poster 

presentation award for the same. 

 

 Kannan A “A Computational Investigation of Gastric Electrical Stimulation”. Oral 

presentation at the Graduate Students’ seminars, Division of bioengineering, NUS, 

Singapore. March, 11
th

, 2011. 
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