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ABSTRACT 

When compared to other user equilibrium principles for traffic assignment, the probit-

based stochastic user equilibrium (SUE) is known to have properties well suited for 

practical conditions. However, theoretical studies and practical implementations of 

probit-based SUE are largely limited due to the difficulties of solving such a problem. 

Thus, a primary objective of this dissertation is to inherently reduce the computational 

time of solving the probit-based SUE problem. To further improve its suitability to 

practical conditions, the following extensions are further taken into consideration for the 

traffic assignment problem (a) elastic demand, (b) asymmetric link travel time functions, 

termed as probit-based asymmetric SUE problem with elastic demand (PA-SUEED).  

 

Although it converges sub-linearly, the cost averaging (CA) method is the only known 

convergent algorithm for PA-SUEED in the literature. This dissertation accelerates the 

computation of PA-SUEED from two aspects: firstly, it proposes two projection-type 

prediction-correction (PC) algorithms with linear convergent speed. As validated by 

numerical experiments, the two PC algorithms can accelerate the computational speed for 

five to ten times, when compared with CA method; secondly, note that the solution 

algorithms for SUE problems need to calculate the stochastic network loading (SNL) 

problem in each iteration, and solution algorithm for the SNL in the context of PA-

SUEED is still an open question. A link-based two-stage Monte Carlo simulation method 

is proposed for the SNL problem, wherein each trial of this Monte Carlo simulation 

method is independent with identical tasks, thus it has a superior parallelism. Therefore, 

this dissertation further improves the computational speed of solving PA-SUEED by 
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proposing three distributed (parallel) computing approaches for its SNL problem. Based 

on a comprehensive numerical experiment, it shows that the distributed computing 

approaches can further improve the computational speed for over fifty times. 

 

Link capacity constraints are recognized to be a logical extension of standard traffic 

assignment problems. However, studies for SUE problem with link capacity constraints 

are fairly scarce, due to the difficulties in formulating and solving this problem. In the 

context of PA-SUEED, this problem becomes even more complicated and challenging. 

This dissertation thus investigates about formulating and solving the PA-SUEED with 

link capacity constraints, which is a highly mathematical topic with considerable 

theoretical contributions. A VI model is proposed and the monotonicity and Lipschitz-

continuity of this VI model are rigorously proven. Based on these properties of the VI 

model, convergence of a PC algorithm thus can be guaranteed to solve the VI model. The 

proposed methodology is finally validated by a numerical example. 

 

The un-cooperative travel behavior of drivers would usually lead to traffic congestions, 

especially in the dense urban areas. Thereby, the network authorities intend to encourage 

them to use uncongested road segments. Congesting pricing is one of the few instruments 

for this purpose, thus it is a good complement for the studies of traffic assignment. Note 

that the drivers’ value-of-time (VOT) is necessitated for the analysis of congestion 

pricing. In this study, VOT is assumed to be continuously distributed, to cover the vast 

diversity of drivers’ income levels. On the other hand, the drivers’ diversity of perception 

errors on travel times should also be considered, which gives rise to SUE principles. Thus, 

another objective of this dissertation is to investigate about the congestion pricing 



 

IX 
 

problem with PA-SUEED constraints. Originated from the current toll adjustment 

procedure used by the Electronic Road Pricing (ERP) system in Singapore, a practical-

oriented research topic, termed as speed-based toll design, for cordon-based congestion 

pricing scheme is discussed. Subsequently, in view that the ERP system intends to update 

its current entry-based charge to a distance-based charge, the distance-based toll design 

for cordon-based congestion pricing scheme is then formulated and solved. These two 

toll design topics are of considerable importance to the practical implementations of 

congestion pricing schemes. It should be noted that formulations and solution algorithms 

for congestion pricing problems with probit-based SUE constraints are also quite limited. 

Thus, the achievements in this dissertation not only contribute to the theoretical studies of 

congestion pricing problems, but also significantly facilitate to the practical operations 

and supervisions of congestion pricing schemes.  
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GLOSSARY OF NOTATION 

A  Set of links 

A  Cardinality of set A  

wkc  Travel time on path wk R ,     w
wk a ak

a A

c t


 v v  

wc  Column vector of travel time on all the paths associated with OD pair 

w W ,  T
,w wk wc k R c  

 D   
Demand function 

wf  Column vector of traffic flows on all the paths between OD pair w W , 

namely,  T
,w wk wf k R f  

f  Column vector of traffic flow on all the paths in the network, i.e., 

 T
,w w W f f  

ah  Capacity of link flow av  

aH  A threshold for link flow av , i.e., a aH h  

N  Set of nodes 

wkp  Choice probability of path wk R  

wq  Travel demand between OD pair w W  

q  Column vector of all the OD travel demands,  T
,wq w W q  

wq  Upper bound of wq  

wR  Set of all the paths between OD pair w W  

wR  Cardinality of set wR  
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wS  Satisfaction function, the expected minimal cost on paths between w W  

 at v  Travel time on link a A , and it is a function of link traffic flow vector 

v  

 t v  Column vector of all the link travel time functions,     T
,at a A t v v  

0
at  Free flow travel time of link a A  

av  Flow on link a A  

v  Column vector of all the link traffic flows,  T
,av a A v  

u  Column vector of all the Lagragian multipliers of the capacity constraints 

W  Set of OD pairs 

  Drivers’ value-of-time 

i  average speed of all the vehicles in cordon i  

i  ( i ) predetermined lower (upper) bound of i  

τ
 Column vector of toll charges,  T

,a a A  τ  

w  Link/path incidence matrix associated with OD pair w W , namely, 

 , ,w
w ak wa A k R      

  Link/path incidence matrix for the entire network,  ,w w W     

wk  Drivers’ perception error on wkc  

wζ  Column vector of perception errors on all the paths between OD pair 

w W , i.e.,  T
,w wk w W  ζ  

  OD pair/path incidence matrix,  , ,wk ww W k R     , where wk  
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equals to 1 if path wk R  and 0, otherwise 

  Symbol for feasible sets, for instance, v  is the feasible set for link flows 
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ACRONYMS 

CA Cost-averaging method 

CBD Central Business District 

CDF Cumulative Distribution Function 

DL Distributed Loading 

DRGA Distributed Revised Genetic Algorithm 

DSP Distributed Shortest-Path 

DUE Deterministic User Equilibrium 

ERP Electronic Road Pricing system in Singapore 

GA Genetic Algorithm 

IIA Independent and irrelevant alternatives 

IL Integrated Loading 

LTA Land Transport Authority 

MPEC Mathematical programming with equilibrium constraints 

MSA Method of Successive Average 

OD Origin-Destination 

PA-SUEED Probit-based Asymmetric SUE problem with Elastic Demand 

PC Prediction-correction algorithm 

PDF Probability density function 

SNL Stochastic network loading 

SO System Optimum 

SUE Stochastic User Equilibrium 

TAP Traffic assignment problem 
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TSB Total social benefit 

UE User Equilibrium 

VI Variational inequality 

VOT Value-of-time 
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivations 

Transportation planning for urban road networks aims to effectively and efficiently 

satisfy the citizens’ requirement for movement, which may influence economic vitality 

and affect the quality of life (Shiftan et al., 2007). Together with an enormous increase in 

demand, some other challenges have emerged for the transportation planning, which 

include environmental degradation and global warming, safety issue and increasing 

complexity of commuters’ travel behavior. To cope with these challenges, the studies for 

transportation planning have attracted much attention. 

 

The most well-known approach for urban transportation planning so far is the four-step 

method, including trip generation, trip distribution, mode split, and traffic assignment 

(Bell and Iida, 1977; Patriksson, 1994a; Ortuzar and Willumsen, 1995). Among these 

four steps, traffic assignment was the first and most-prevalent topic investigated by the 

professionals. Traffic assignment deals with allocating traffic demands to existing or 

hypothetical transportation networks. It can hence be utilized to assess the deficiencies in 

the existing network or the effects of some improvements (expansions of the road section 

or some newly built links), and to evaluate alternative transportation system plans. 

Furthermore, traffic assignment is also a preliminary for some research topics based on 

the transportation network, e.g. congestion pricing problems (Ferrari, 1995; Yang and 

Huang, 2005; Verhoef et al., 2008), signal control problems (Smith, 1987; Yang and 

Yagar, 1995; Wong and Yang, 1997), network design problems (Abdulaal and LeBlanc, 

1979; Ben-Ayed et al., 1988; Yang and Bell, 1998) and Origin-Destination (OD) matrix 
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estimation problems (Maher, 1983; Bell, 1991; Yang et al., 1992; Cascetta and Postorino, 

2001). 

 

The first approach used for traffic assignment is the all-or-nothing assignment; i.e. all the 

travel demand is allocated to the shortest path. No iterative updates are required for this 

approach and it is thus quite computationally economical. But this technique is unrealistic 

and it gives rise to improper results as per some early empirical studies (e.g. Campbell, 

1950; Carroll, 1959).  

 

Most well designed transportation systems rely on good understanding of human 

behaviors. A milestone of the studies in traffic assignment also results from an in-depth 

analysis of the commuters’ travel behaviors. Wardrop (1952) proposed two famous 

principles for the network flows: (a) the User Equilibrium (UE), when assuming that all 

the network users make their route choice by selecting the path with minimal travel time. 

This assumption would give rise to equilibrium of network flows, where no one can 

reduce his/her trip time by changing the trip route; (b) the System Optimum (SO), by 

assuming that the users would mutually cooperate to minimize the total travel time in the 

transportation system. In reality, the UE principle is more realistic, since the users are 

non-cooperative when making trip decisions.  

 

These two principles are vital foundations for the mathematical models and algorithms 

developed for the traffic assignment problems. A major breakthrough was put forward by 

Beckmann et al. (1956) via a convex nonlinear optimization model, whose solution is the 
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UE link flow. Note that Frank and Wolfe (1956) provided a convex combination 

algorithm for solving the nonlinear convex optimization problems, which is a method of 

feasible directions. When applying this method to solve Beckmann et al.’s model, it 

incorporates a series of sub-problems which are merely the all-or-nothing assignments, 

and this property is commonly known as the Cartesian product structure (Larsson and 

Patriksson, 1992). This structure inherently reduces computational demands for solving 

UE problems. However, Beckmann’s model relies on some oversimplified and unrealistic 

assumptions, including fixed demand, separable link travel time functions and no link 

capacity constraints. These assumptions were later relaxed by some studies (see the 

discussions in section 2.2 to 2.4). 

 

A pioneering work was made by Daganzo and Sheffi (1977): since the UE principle 

unrealistically assumes that the users have an accurate estimation of the on-trip travel 

time before their journey, Daganzo and Sheffi extended this assumption by defining the 

users’ perceived travel time as random variables. This new principle is commonly known 

as stochastic user equilibrium (SUE). It was formulated by Daganzo (1982) and Sheffi 

and Powell (1982) as an un-constrained optimization models, and these models can be 

solved by the famous method of successive average (MSA) introduced by Powell and 

Sheffi (1982). Many refer to UE as Deterministic User Equilibrium or DUE to distinguish 

it from SUE. 

 

In previous studies for SUE, the users’ perceived travel time is always assumed to follow 

Gumbel distribution (logit-based SUE) or normal distribution (probit-based SUE). 
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Formulations and algorithms for logit-based SUE have been fully studied (e.g. Dial, 1971; 

Fisk, 1980; Bell, 1995a&b). However, the logit model has an inherent drawback that it 

cannot differentiate the overlapping parts of path alternatives, which is known as 

Independent and Irrelevant Alternatives (IIA) (Chapter 10 of Sheffi, 1985). The probit-

based SUE, in nature, can avoid IIA problem and thus better represents realistic 

conditions. 

 

Regarding the studies of probit-based SUE problems, the major difficulty results from the 

fact that no closed-form expression can be provided for the choice probability on each 

path (see section 2.1 for further discussions). Thus, despite its better representativeness to 

practical conditions, the probit-based SUE has not been sufficiently investigated. 

Although the concept of probit-based SUE has been proposed as early as in 1977 by 

Daganzo and Sheffi, many significant extensions to this problem are still open questions, 

including probit-based SUE with elastic demand, asymmetric link flow interactions and 

link capacity constraints. Compared with the standard probit-based SUE, these extensions 

make the resulting models more realistic. This study thus intends to take an in-depth 

investigation about the mathematical models and computational methods for these 

problems. 

 

Congestion pricing is one of the most effective measures utilized in urban area to 

alleviating traffic congestions. It levies toll charges on vehicles driving at particular links 

or areas to encourage the drivers using uncongested road segments, in order to achieve a 

better network condition. Ever since Pigou (1920), the literature on congestion pricing 
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problems is extensive, see the monographs by Small, 1992; Yang and Huang, 2005; 

Lawphongpanich, et al., 2006; Verhoef, et al., 2008, among many others. There is a 

strong connection between traffic assignment and congestion pricing. Because, on one 

hand, congestion pricing is an effective economic lever to adjust the outcomes of traffic 

assignment, and on the other hand traffic assignment is a crucial foundation and 

preliminary for the analysis of congestion pricing. Therefore, congestion pricing is a 

perfect complement of the studies of traffic assignment, also taken as a target of this 

dissertation. 

1.2 Research Scope 

The aforementioned general model put forward by Daganzo and Sheffi (1977) is assumed 

to be in the framework of fixed demand, separable link travel time functions (no link flow 

interactions), and no capacity constraint. In contrast with the practical conditions, these 

assumptions are unrealistic: (a) for the travel demand, the whole transportation system is 

a service system for the total travel demand, and each travel mode involved acts as a 

competitor evaluated by the users. As the congestion in road network increases, the 

potential users would change to other travel modes (e.g. public transport systems) or even 

cancel their trip plans. Hence, travel demand on static road networks should be a function 

of the travel cost; (b) for the link flow interactions, in some road sections, the interactions 

between flows on different links could be quite significant and asymmetric, thus they 

should not be neglected, for instance, heavy traffic on two-way streets without separated 

road median, and un-signalized intersections; (c) for the capacity constraints, link flow in 

reality could not exceed its physical capacity, but traffic assignment problem with no 
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capacity constraint would generate unrealistically saturated link flows, which undermines 

the reasonability of traffic assignment results.  

 

Therefore, the unrealistic assumptions from these three aspects are relaxed, and this 

research targets at the probit-based asymmetric SUE problem with elastic demand, which 

is abbreviated as PA-SUEED. The mathematical models and efficient solution algorithms 

for PA-SUEED are first investigated, and then PA-SUEED with link capacity constraints 

is addressed. Further efforts are devoted to the congestion pricing problems in the context 

of PA-SUEED. 

1.3 Objectives 

The objectives of this research are as follow: 

1. To develop mathematical models and efficient computational algorithms for the 

probit-based asymmetric SUE problem with elastic demand (PA-SUEED); 

2. To develop mathematical models and computational algorithms for the capacity 

constrained PA-SUEED;  

3. To further accelerate the computational speed of proposed algorithms using 

Distributed Computing approaches, based on large-scale numerical experiments; 

4. Theoretical analysis of the practically implemented congestion pricing schemes as 

well as the second-generation distance-based pricing.  
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1.4 Organization of the Dissertation 

Chapter 1 provides a general introduction to the probit-based SUE problem and 

congestion pricing, where the significance and rationality for current research are 

discussed. Furthermore, the objectives and research scope of this study are highlighted.  

 

Chapter 2 presents a detailed literature review about the research topics involved in this 

dissertation, namely models and algorithms for (a) probit-based SUE problems, (b) traffic 

assignment with elastic demand, asymmetric link travel time functions and/or link 

capacity constraints, (c) congestion pricing problems.  

 

Chapters 3 to 5 focus on the theoretical analysis of the PA-SUEED problem itself, which 

are in the domain of traffic assignment. Then, Chapters 6 and 7 address two crucial 

congestion pricing schemes, taken as significant complement to facilitate urban 

transportation demand management. 

 

Chapter 3 aims to propose mathematical models and efficient computational approaches 

for the PA-SUEED problem. Two variational inequality (VI) models are first provided 

for this problem, and it is rigorously proved that these two models both possess unique 

solutions, which are equivalent to the PA-SUEED link flow. Subsequently, a link-based 

two-stage computational procedure is presented for the probit-based stochastic network 

loading procedure using Monte Carlo simulation. Then, it is proven that a projection-

based prediction-correction (PC) algorithm incorporating this Monte Carlo simulation 
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method is more efficient than the existing algorithms to solve the PA-SUEED problem. 

Superiority of the proposed algorithm is further validated by two numerical examples.  

 

Chapter 4 intends to add capacity constraints to the PA-SUEED problem. Likewise to the 

capacity constrained DUE problem, we first provide a set of equivalent conditions for this 

capacity constrained SUE problem, named as generalized SUE conditions. These 

conditions are thence formulated by a proposed monotone and Lipschitz-continuous VI 

model, and the existence and uniqueness property of its optimal solution are rigorously 

proven. Regarding the solution method, this problem is converted into solving a serial of 

un-capacity constrained traffic assignment problems which can be handled by the 

algorithms introduced in Chapter 3. The PC algorithm with adaptive step sizes is also 

utilized to solve the VI model proposed for the capacity constrained PA-SUEED problem, 

which can converge to the optimal solution. 

 

Chapter 5 investigates about the Distributed Computing approaches to further accelerate 

the algorithms discussed in Chapter 3 for PA-SUEED. The Monte Carlo simulation-based 

method for the stochastic network loading has satisfactory accuracy level, while it has 

largely increased the computational burdens, thus inhibits the research for probit-based 

SUE problems. However, the Monte Carlo simulation-based method has perfect 

parallelism, making it ideal for parallel computing. Thereby, in this chapter three 

approaches are proposed on the workload partition of the Monte Carlo simulation method 

for distributed (parallel) computing. Performances of the three approaches are 
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comprehensively tested by numerical experiments wherein a randomly generated network 

as well as a large-scale network is used. 

 

Inspired by the toll adjustment roles used by Electronic Road Pricing (ERP) system in 

Singapore, Chapter 6 addresses the speed-based toll design for cordon-based congestion 

pricing scheme, where the commuters’ route choice behavior is assumed to follow the 

PA-SUEED with continuously distributed value-of-time (VOT). In practice, to improve 

traffic conditions within the cordon area is a major concern of the cordon-based 

congestion pricing. However, this concern has seldom been considered in the theoretical 

studies. In this chapter, average travel speed of vehicles in the cordon area is first taken as 

an index of its traffic conditions, and then the toll charges on each entry of the cordon are 

designed such that the average travel speed can be maintained in a targeted range. 

Termed as speed-based toll design, this problem is formulated as a mathematical 

programming with equilibrium constraints (MPEC) model.  

 

Chapter 7 discusses about the distance-based toll design for cordon-based congestion 

pricing scheme in the context of PA-SUEED. Targeted as the next generation of ERP 

system (Ohno, 2007), distance-based toll charge is more equal/fair than the current pay-

per-entry or daily license basis toll charges. It is assumed that the toll charge is decided 

by a nonlinear function of the travel distance in the cordon. Termed as toll-charge 

function, such a function should be allowed to be generic to any positive and non-

decreasing functional form. Drivers’ travel behavior is still assumed to be PA-SUEED 

with continuously distributed value-of-time (VOT). A methodology is then introduced in 
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Chapter 7 to efficiently solve the distance-based toll design with the objective of 

maximizing total social benefit (TSB).  

 

Chapter 8 concludes this dissertation and discusses about future research advices.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Users’ Travel Behavior and Probit-based SUE 

2.1.1 User’s travel behavior and SUE  

An accurate understanding of human behavior would help to improve the service level of 

a system. Urban transportation is a crucial service system for the citizens’ travel 

requirements. A satisfying planning scheme of urban transportation system is thus highly 

relied on a rational recognition of the commuters’ travel behavior. Dating back to 1841, 

Kohl assumed that the travelers would individually choose the route perceived as the 

shortest/cheapest. This assumption of the travel behavior results in an equilibrium of the 

flows in the road network, which is summed up by Wardrop (1952):  

The journey times on all the routes actually used are equal, and less than those 

which would be experienced by a single vehicle on any unused route.  

This theory is usually referred to as Wardrop’s first principle or deterministic user 

equilibrium (DUE). The rationale underlying this principle is quite straightforward, since 

if travel times on used routes are not equal, network users would have an incentive to 

change to the shorter one. The users are regarded as “selfish”, since they only concerns 

about their own travel cost, and it may lead to traffic congestions. Therefore, DUE is not 

the most realistic equilibrium network condition. Wardrop also proposed another 

equilibrium representing the perfect network condition, which is called system optimum 

(SO) or Wardrop’s second principle: 

The average journey time is a minimum.  
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The SO can be achieved if all the users make their travel plans in terms of their marginal 

travel costs; namely, SO implies that the users’ marginal travel costs on all the used 

routes are equal. In reality, the users’ travel behavior can be adjusted in order to achieve 

SO in two cases: a centralize control over trip making decisions (in an industrial logistics 

system or computer controlled networks in rail system) or using first-best congestion 

pricing strategy, see section 2.3.1.  

 

Nonetheless, it should be pointed out that Kohl and Wardrop’s assumptions of users’ 

travel behavior presumed that all the travelers has complete and accurate information 

about the entire network before their trips. This assumption is unrealistic even if the users 

have a long-term experience about the network conditions, due to the daily variations of 

travel times and the diversity from users’ sense of time. A well known breakthrough on 

this issue was made by Daganzo and Sheffi (1977), where they extended this assumption 

by assuming users’ pre-trip perceived travel times on all the routes are random variables. 

Namely, users’ perceived travel times  T,w wk wC k R C  on paths connecting Origin-

Destination (OD) pair w W  equal to the actual travel times wc  plus a multivariate 

random variable w . Therefore, the users would choose the route with minimal perceived 

travel time. In accordance with this new assumption of users’ behavior, a new network-

equilibrium can be achieved based on the discrete choice model (Daganzo and Sheffi, 

1977). The new equilibrium principle, named stochastic user equilibrium (SUE), can be 

stated as: 

In a SUE network no user believes he can improve his travel time by unilaterally 

changing routes. 
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Despite that all the users intend to minimize their perceived travel times, the perceived 

travel times on all the used paths are not equal. Instead, each route is only personally 

perceived by the users on it to be the shortest one among all the alternatives. For a 

network with fixed travel demand, any flow pattern that can fulfill the following 

condition is regarded as a SUE link flow pattern: 

    , ,wk w wk w wf q p w W k R  c f . (2.1) 

where wq  is the OD demand and wkp  is the path choice probability, defined by 

        
   

1 2
1 1Pr , , ,

wk

w w w
wk w wk w wk

c

wk wl w R Rc c c c c
C C l R x x dx dx



  
       ζ   . (2.2) 

where wkC  is the users’ perceived path travel time, which is a random variable. 

 1, ,
w wRx xζ   is the probability density function of the multivariate random variable 

 T
,w wk wC k R C . 

 

Similarly to the DUE case, the researchers kept searching for a proper definition for the 

stochastic based social optimum. Only recently, Maher et al. (2005) provided an in-depth 

investigation about the stochastic social optimum (SSO), which is defined as: 

At the SSO solution, the total of the users’ perceived costs is minimized.  

Maher et al. also proved that “the marginal costs play the same role in the SSO as the 

standard costs play in SUE”. Namely the SSO solution can be achieved by using the 

algorithms for solving SUE, where the travel time functions should be replaced by the 

marginal costs. Similarly to SO, this theory provides a first-best benchmark for the 

network operations.  
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In the case the perception error w  is allowed to follow any kind of random distributions, 

it is called as General SUE problem. In particular, a serial of studies have also been 

conducted in the literature by assuming w  following any specific distribution, including 

uniform distribution (Williams, 1977), Gumbel distribution (logit-based SUE problem) 

and normal distribution (probit-based SUE problem), see, Sheffi (1985) and Patriksson 

(1994a). Among these SUE problems, the logit-based SUE and probit-based SUE have 

been mostly focused and comprehensively studied. 

 

The logit-based SUE has been well investigated since it can provide an explicit and 

concise expression for the path choice probability  wk wp c : 

    
 

exp

exp
w

wk
wk w

wk
k R

c
p

c






c  (2.3) 

where   is a positive parameter. The choice probability of logit-based SUE merely 

depends on the difference between each two path costs. In spite of its computational 

advantages, the logit-based SUE has an inherent drawback, which is known as 

Independent and Irrelevant Alternatives (IIA). That is, logit-based model is lack of 

sensitivity to network topology and only depends on the difference in travel time (Sheffi, 

1985). 

 

Probit-based SUE takes into account the correlation of the travel costs on different paths, 

thus overcomes the IIA problem. Therefore, probit-based model has better 

representativeness to the practical conditions and it is a superior representativeness of the 
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SUE problems. However, despite these robust characteristics, no closed form can be 

provided for the choice probability of probit-based problem, thus prohibits the 

investigation for this problem. Compared with logit-based SUE, the research for probit 

case is quite limited. Thereby, probit-based SUE problem is a timely research topic with 

significant theoretical contributions. This dissertation aims to contribute to this topic from 

two aspects: accurately estimate the choice probability and then provide an efficient 

solution technique for the probit-based SUE problem.  

2.1.2 Models and Algorithms for the SUE Problem 

The breakthrough work made by Daganzo and Sheffi (1977) provides a conceptual 

framework of General SUE problem as well as stochastic network loading (SNL) 

procedure. Herein, the SNL aims to load flows to the network in terms of fixed link travel 

costs (see comprehensive discussions in Section 2.1.3), and to solve the SNL is 

equivalent to solving the choice probability. Regarding the equivalent mathematical 

model for the General SUE problem, Daganzo (1982) provided an un-constrained convex 

optimization model as follows: 

      0

1min min |
a

aw

t

w wk w atk R
w W a A

z q E C t x dx


 

      t c , (2.4) 

where 0
at  represents the free flow travel time and  1

at v  is the inverse of link travel time 

function. This un-constrained model is proven to be convex, yet it requires calculating the 

inverse travel time functions, which are computationally demanding. Sheffi and Powell 

(1982) therefore transformed this model into the following one: 

        
0

min min |
a

w

v

w wk w a a a ak R
w W a A a A

z q E C v t v t x dx


  

        v c . (2.5) 
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This model is equivalent to the previous one and much easier in terms of computation. It 

can be seen that these two models both contain an implicit proportion  min |
w

wk wk R
E C



 
  

c  

in the objective function, thus it is difficult to conduct a line-search procedure in the 

solution algorithm for the optimal step sizes. Therefore, the conventional Frank-Wolfe 

Method used for solving DUE problem is no longer available for these two models. An 

convergent solution algorithm was put forward by Powell and Sheffi (1982) using the 

method of successive average (MSA). This algorithm has a brief recursive function: 

  1n n n n
n

   v v y v , (2.6) 

where the auxiliary link flow ny  can be obtained by performing a SNL procedure in 

terms of fixed link travel time pattern  t v , and n  is a predetermined step size, 

commonly taken as 
1

n
. This predetermined step size circumvents the difficulty in line-

search but also brings an inferior sub-linear convergent speed. Convergence of the MSA 

type algorithms are usually proven by virtue of the Blum’s theory (Blum, 1954; Daganzo, 

1983; Cantarella, 1997). Noted that some further efforts have been made recently to 

improve the efficiency of MSA (see, e.g., Liu et al., 2009). 

 

For solving model (2.5), another efficient solution algorithm called Stochastic 

Assignment Method (SAM) was developed by Maher and Hughes (1997b). SAM adopts 

the Clark’s approximation (see, Rosa and Maher, 2002) to calculate the objective 

function, and therefore a line-search can be conducted for the step size. 
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Another milestone of modeling for General SUE problem was made by Daganzo (1983) 

in studying SUE problem with asymmetric link travel time functions, where a fixed-point 

model is proposed: 

    , ,wk w wk w wf q p w W k R  c f . (2.7) 

It has been proven that when the link travel time functions are continuous and strictly 

monotone, the optimal solution of this model is unique. In addition, Daganzo proved that 

the MSA algorithm is still available to solve this problem. It should be pointed out that 

this model proposed is also effective for the case of joint DUE and SUE problems. 

 

The aforementioned models and algorithms for General SUE problem are all effective for 

logit-based and probit-based SUE problem. Apart from these models and algorithms, 

studies for probit-based SUE are quite limited. Yet, an extensive literature can be 

observed for investigations of logit-based SUE, because the logit model can be derived 

from entropy maximization functions, which overcomes the uncertainty issue of its 

objective function. A model with explicit objective function in terms of path flow was 

proposed by Fisk (1980), and ever since then various extensions have been developed for 

logit-based SUE problems (e.g. Dial, 1971; Chen and Alfa, 1991; Bell, 1995a&b; 

Prashker and Bekhor, 2004; Bekhor and Toledo, 2005, etc.). 

2.1.3 Stochastic Network Loading Procedure 

As claimed above, the solution algorithms for SUE problem incorporates a SNL 

procedure, which provides a set of SUE link flows in terms of fixed link travel times 

based on the theory of discrete choice model. This SNL procedure can be regarded as a 

mapping from the feasible set of link travel time to that of link flows, and it plays a 



Chapter 2  Literature Review 
 

 18

similar role as all-or-nothing assignment in solving DUE problem. The SNL problem in 

the context of SUE is usually analyzed by the well known discrete choice model (see, e.g., 

Ben-Akiva and Lerman, 1985). 

 

For logit-based SUE, a pioneer work was conducted by Dial (1971) for solving the SNL, 

where a heuristic algorithm named STOCH was provided. This algorithm only covers 

those “reasonable” routes, which would only take the drivers farther from the origin and 

closer to the destination. This algorithm is quite efficient in that it can avoid path 

enumeration and obviates the paths with cycles. The STOCH algorithm has been further 

extended by Gunarsson (1972), Tobin (1977); Bell (1995 a&b) and Leurent (1995), etc. 

 

For the probit case, its SNL has no close form, thus it is approximately solved by two 

types of methods: analytical approximation methods and Monte Carlo simulation-based 

methods. Regarding the analytical approximation methods, five different methods have 

been developed so far (Rosa and Maher, 2002), including the Improved Clark method, 

Simple Clark method, Mendell and Elston method (Mendell and Elston, 1974), Separated 

Split method (Langdon, 1984 a&b) as well as Tang and Melchers method (Tang and 

Melchers, 1987). Among all these methods, the Improved Clark method was first 

developed and most commonly used in the literature. It was originally put forward by 

Daganzo and Sheffi (1977) for solving the probit-based SUE problem, and later extended 

by Maher and Hughes (1997b) in the aforementioned SAM method. These approximation 

methods all possess certain drawbacks, e.g. since the approximation processes are 

conducted separately, the choice probability does not sum up to 1, and moreover they are 
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getting quite computational demanding and inaccurate when the number of alternative 

variables are getting larger. 

 

Thus, this study aims to use Monte Carlo simulation for solving the SNL of probit-based 

SUE problem. The Monte Carlo simulation method uses the choice frequency to estimate 

the choice probability, the rationality of which is ensured by the weak law of large 

numbers. It was first utilized to estimate the probit-based choice probabilities by Lerman 

and Manski (1978). The Monte Carlo simulation method can be adopted not only for 

probit-based SUE but also any other kind of distributions, by merely generating different 

random number series following different distributions. 

2.1.4 Parallel Computing for Monte Carlo simulation 

Monte Carlo method has been widely adopted in the areas of simulating physical and 

mathematical systems (see the monographs by, e.g., Rubinstein, 1981; Binder and 

Heermann, 1992; Gentile, 1998), and it refers to the reputed simulations using random 

numbers to approximate the answer to a stochastic problem. To achieve a higher accuracy 

level, the Monte Carlo method usually requires a larger sample size, and hence it is 

computationally prohibitive. However, when dealing with independent tasks, the 

repeatability of the sampling procedure of Monte Carlo method makes it ideal for parallel 

computation by different processors. Note that for solving the SNL problem, each trial of 

the proposed Monte Carlo simulation-based method is independent, thus it is ideal for 

parallel computing.  
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A brief survey is conducted here for the parallel Monte Carlo method in solving 

independent tasks. Moatti et al. (1987) has proposed a parallel approach for the high 

energy physics Monte Carlo simulations, and it is suitable for any Monte Carlo method 

with subtask treelike structure, where each subtask can be executed independently. Later, 

in the field of molecular systems, a parallel Monte Carlo method is introduced by 

Traynor and Anderson (1988) to determine energy differences among molecules, and the 

calculations are carried out independently with different scales of length and energy 

parameters for cancellations of random sampling error. Yet, as pointed out by Esselink et 

al. (1995), the parallelism in Traynor and Anderson (1988) is not used to speed up one 

single problem, since the simulations with different scale of length and energy parameters 

are complete and irrelevant. A more straightforward parallel approach was used by Zhao 

and Wood (1989) for the radiation transport analysis, in which each trial of the Monte 

Carlo method is independent and it thus has a natural parallelism. This parallel Monte 

Carlo method proposed by Zhao and Wood (1989) was subsequently extended by Wood 

et al. (1991) as well as Singleton et al. (1991) by analyzing its implementations on 

different types of parallel computer architectures. Note that in Singleton et al. (1991) the 

parallel Monte Carlo method for independent tasks is tested on a distributed-memory 

multiprocessor system, which coincides with the objective of this chapter. As a side note, 

various studies are also found in the literature for the parallel Monte Carlo method in 

solving dependent (sequential) tasks, e.g., the parallel hybrid Monte Carlo method 

(Kennedy, 1999). 
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The Monte Carlo simulation method used for solving SNL is similar to that addressed in 

Zhao and Wood (1989), and it therefore also possesses a superior parallelism. Thus, it is 

convenient to accelerate the computational speed of Monte Carlo simulation for solving 

SNL by using distributed (parallel) computing, which is presented at Chapter 5. 

2.2 Extensions of Conventional User Equilibrium Problem 

As claimed in Chapter 1, a major scope of this study focuses on the probit-based SUE 

problem with three extensions: elastic demand, asymmetric link travel time functions, 

and link capacity constraints, and such a problem is abbreviated as PA-SUEED 

with/without link capacity constraints. These three extensions have modified some 

unrealistic assumptions of the conventional SUE problem discussed above. Thus, an 

investigation about the literature of these three extensions for user equilibrium (both DUE 

and SUE) is first provided, which are preliminaries for research topics in the remaining 

chapters. 

2.2.1 Elastic Demand 

2.2.1.1 Models and Algorithms for DUE with Elastic Demand  

The aforementioned models at Section 2.1 all assume that the trip rate between each OD 

pair is fixed and known. However, from practical point of view, the total travel demand 

for a static road network would be inherently influenced by the level of service on road 

network. Rationality of the fluctuation in travel demand results from two aspects: (a) the 

potential users may switch to other travel modes if the congestion on road network gets 

worse (b) if their trips have lower emergency, some users may change their travel plan to 

other time spans or even drop their travel plan. This phenomenon should be taken into 
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account by assuming that the travel demand ,wq w W  is a function of the travel 

disutility between OD pair w W . For the DUE case, the travel disutility is defined as 

the minimum travel time between each OD pair, w , so demand function follows the 

following form: 

  w w wq D  , (2.8) 

where  wD   is the demand function, and for the fixed demand case, this function equals 

to a constant. Beckmann et al. (1956) proposed the following equivalent model for the 

DUE problem with elastic demand: 

    1

0 0
min

a wv q

a w
a A w W

t w dw D w dw

 

    (2.9) 

Subject to  

 
0, ,

w

wk w
k R

wk w

f q

f k R w W





  


 (2.10) 

 

Regarding the solution algorithm, the Frank-Wolfe method can also be adopted here, 

since the computational demand for solving its sub-problem is simply equals to that of an 

all-or-nothing assignment. A more efficient method for this problem is using network 

representation (Sheffi, 1985, Section 6.3) to transform it into a DUE problem with fixed 

demand, and thence solve a standard DUE traffic assignment problem (TAP).  

 

2.2.1.2 Models and Algorithms for SUE with Elastic Demand 
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Likewise to the DUE case, a demand function is defined for the total trip rate of each OD 

pair. The travel disutility for SUE problem is defined as the mean value of users’ minimal 

perceived travel time between OD pair,  w wS c , which equals to: 

    min | ,
w

w w wk wk R
S E C w W



    
c c . (2.11) 

 w wS c  is commonly recognized as satisfaction function in the literature. Accordingly, 

travel demand for SUE with elastic demand should follow this function (Cantarella, 1997; 

Maher and Zhang, 2000): 

   w w w wq D S c . (2.12) 

Note that for eqns. (2.8) and (2.12) the elastic demand wq  should be bounded from above: 

wq  0, wq , where the upper bound wq  would be influenced by the total population and 

car ownership of the origin zone. 

 

An equivalent model for General SUE problem with elastic demand was put forward by 

Cantarella (1997) by extending Daganzo (1983)’s fixed-point model into the elastic 

demand case: 

    , ,wk w wk w wf q p k R w W  c f  (2.13) 

     ,w w w wq D S w W c f  (2.14) 

Cantarella proved the existence and uniqueness of the solution. This model can 

generalize the fixed demand case and elastic demand case, since travel demand  wD   is 

only required to be non-increasing and it covers the constant case. Thus, this generic 

assumption of OD demand function is also made in this dissertation. As to the solution 
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method for this model, Cantarella (1997) has proposed a convergent Cost-Averaging 

method, which is a variation of the MSA.  

 

General SUE problem with elastic demand was conducted by the group of Maher et al., 

see Maher, 2001; Maher and Hughes, 1997a; Maher and Hughes, 1998; Maher et al. 1999; 

Maher and Zhang, 2000. In these studies, they extend Sheffi and Powell (1982)’s 

optimization model to the elastic demand case by providing the following model: 

 
          

        
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0

1 1

0

min
a

w

v

a a a a w w w w w
a A a A w W

q

w w w w w w w w w
w W w W w W

z v t v t x dx D q D S

S D S D d q D q



  

 

  

  

  

  

  

v,q c

c c  
 (2.15) 

 

Optimum of this equivalent model can fulfill the SUE link flow condition as well as 

elastic demand functions. A Balanced Demand Algorithm (BDA) is developed (Maher 

and Zhang, 2000) for solving this model, where quadratic equation is utilized to 

approximate the value of objective function, and thus a line-search can be conducted.  

 

Only recently, Connors et al. (2007) defined a new concept for elastic demand problem, 

based on a disaggregate point of view. Namely, each individual makes his/her travel 

decision separately: each user gains a fixed utility from his/her trip, so if the travel 

disutility is larger than this fixed utility value, he/she would drop this trip plan. Therefore, 

a demand function can be defined based on the average value of travel utility among all 

the users in corresponding origin zone. If the travel disutility is larger than this aggregate 

utility value, the travel demand would be zero, otherwise it would takes the upper bound 

value. The network representation methods mentioned above can be adopted to solve this 
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new elastic demand problem. However, it should be noted that this concept contains two 

major drawbacks: the demand function is not single-valued and continuously 

differentiable; the aggregate utility value over each origin zone is difficult to estimate.  

2.2.2 Asymmetric Link Travel Time Functions 

2.2.2.1 Models and Algorithms for DUE with Asymmetric Link Travel Time Functions 

Conventional studies of traffic assignment problems all assume that the link travel time 

functions are independent, namely, link travel time is merely a function of its own flow. 

This kind of link travel time function is termed separable, and the Jacobian matrix of link 

travel time vector wrt. link flow vector is symmetric and diagonal. Nonetheless, this 

assumption is not always valid in reality, because the link flow interactions may be quite 

severe in some road sections: two-way streets with heavy traffic; priority junctions; 

intersections with responsive traffic signals (Dafermos, 1980 & 1983; Watling, 1998, 

etc.). Therefore, it is rational to assume that link travel time is also influenced by flows 

on other links, and such an influence may be asymmetric. Thus, each link travel time is 

defined as a function of flows on all the links, denoted by   ,at a Av . For conciseness, 

DUE or SUE problem with symmetric/asymmetric link travel time functions is usually 

termed as symmetric/asymmetric DUE or SUE. 

 

Dafermos (1971) first investigated about the symmetric DUE problem. This work was 

later extended to the asymmetric case by Smith (1979) who developed a variational 

inequality (VI) formulation: 

   * * 0, v   t v v v v , (2.16) 
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where the feasible set for link flows denoted by v  is compact. It should be pointed out 

that a similar equivalent VI model in terms of path flow and path travel time can also be 

utilized: 

    0, f   * *c f f f f . (2.17) 

This path-based formulation is effective for the TAP with non-additive path travel time 

functions. Smith (1979) claimed that the existence and uniqueness of these two VI 

models can be guaranteed if the travel time functions are continuous and strictly 

monotone. However, Dafermos (1980) concurrently showed that Smith’s uniqueness 

condition was equivalent to the positive definite property of the Jacobian. For an 

asymmetric matrix, its positive definiteness can be ensured if it can fulfill the following 

two conditions: (a) diagonal values are all larger than zero; (b) the matrix and its 

transpose matrix are diagonally dominant. These two conditions imply that the influence 

on travel time from its own link flow is much larger than that of other link flows. 

 

The VI model (2.16) has then been further extended by Florian (1979), Dafermos (1980 

& 1982), Fisk and Nguyen (1982), Florian and Spiess (1982), Hearn and 

Lawphongpanich (1984), Lawphongpanich and Hearn (1984), and Panicucci et al. (2007), 

to name a few. An alternative formulation was put forward by Aashtiani (1979) and 

Aashtiani and Magnanti (1981), which showed that the asymmetric DUE problem could 

be formulated as a non-linear complementary problem. 

 

Regarding the solution algorithms, Asmuth (1978), Aashtiani (1979) and Aashtiani and 

Magnanti (1981) proposed applications of fixed-point, non-linear complementarity and 
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linear complementarity algorithms, respectively. Meanwhile, Dafermos (1980 & 1982) 

presented some projection methods and Nguyen and Dupuis (1982) utilized the cutting 

plane algorithm to solve the asymmetric DUE problem.  

2.2.2.2 Models and Algorithms for SUE with Asymmetric Link Travel Time Functions 

Few studies can be observed for the asymmetric SUE problem. An equivalent fixed-point 

model was developed by Daganzo (1983) as introduced above, at eqn. (2.7). Daganzo 

showed that the uniqueness of optimal solution can be assured if the link travel time 

functions are strictly monotone, while the positive definiteness of Jacobian matrix is not 

required. 

 

This fixed-point model was extended to the elastic demand case by Cantarella (1997), see, 

eqn. (2.13) and (2.14). For such an asymmetric SUE problem with elastic demand, only 

the CA method proposed by Cantarella (1997) is a convergent solution algorithm in the 

existing literature. 

2.2.3 Link Capacity Constraints  

In reality, when link flow approaches its physical capacity, this link would be over-

saturated and travel time is geometrically increased. Thus, link flow could never exceed 

its physical capacity. This phenomenon, however, is not taken into consideration in the 

standard TAPs. Thus, the resultant link flows would be many times larger than its 

physical capacity, which highly undermines the reliability and rationality of traffic 

assignment results (Larsson and Patriksson, 1995 & 1999). Studies for the TAP with link 

capacity constraints are thus of considerable significance. 
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In the existing literature, two approaches can be adopted to cope with the TAP with link 

capacity constraints. The first approach is to use the asymptotic link travel time function, 

where the link travel time would be infinity when flow approaches its capacity. The 

second approach is to put an additional term to the link travel time functions, and these 

new functions are called as generalized link travel time functions, denoted by 

    ,a a aT t u a A  v v . Regarding the additional term, au , in generalized link travel 

time functions, it has three interpretations: (a) link tolls on the saturated links that drives 

away some potential users (e.g., Beckmann and Golob, 1974; Ferrari, 1995 & 1997; Yang 

and Lam, 1996); (b) the additional waiting time caused by traffic signal (Smith, 1987; 

Yang and Yagar, 1995; Wong and Yang, 1997); (c) queuing delay on the entry of over-

saturated links (Miller et al., 1975; Thompson, 1976; Bell, 1995a). Boyce et al. (1981) 

indicated that the first approach would cause unrealistic high travel times, thus the second 

approach is commonly used in the literature.  

 

If the optimal toll/queuing-delay value, au , on each link is given, the capacity constrained 

problem is equivalent to a standard TAP. Therefore, to solve the TAP problem with link 

capacity constraints is, in general, equals to search for the optimal au . Any pattern of 

,au a A  would be regarded as optimal if and only if it can fulfill the following 

conditions: 
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where aH  denotes the capacity constraints on each link. These conditions imply that au  

may be larger than zero only when the link flow equals to its capacity. 

 

For the DUE problem with link capacity constraints, a suitable optimization model can be 

obtained by directly adding the link flow capacity constraints to Beckmann’s model 

(Larsson and Patriksson, 1995): 

    
0

min
av

a
a A

z t d 


  v  (2.19) 

Subject to 
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f k R w W
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 

 
  
     (2.20) 

However, when Frank Wolfe method is adopted for solving this model, its sub-problem 

contains the capacity constraints hence making it more computationally demanding than 

solving a shortest path problem. Thus, some methods are used to relax the capacity 

constraints and transform it into solving a series of un-capacity constrained DUE problem. 

These methods include penalty function methods (Hearn and Ribera, 1980; Inouye, 1987), 

the dual methods (Hearn and Lawphongpanich, 1990; Larsson and Patriksson, 1999) and 

the augmented Lagrangian multiplier methods (Larsson and Patriksson, 1995). It was 
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further verified by Nie et al. (2004) that the DUE problem with link capacity constraints 

is computationally tractable for large-scale networks.  

 

Studies for SUE problem with link capacity constraints are quite scarce. This is because, 

unlike the DUE case, directly adding capacity constraints to optimization model for un-

constrained SUE problem is not effective. For logit-based SUE, based on the explicit 

model proposed by Fisk (1980), Bell (1995a) developed an optimization model and a 

solution algorithm for capacity constrained problem. Only recently, Meng et al. (2008) 

gave a linearly constrained convex minimization model and a convergent Lagrangian 

dual method for the General SUE problem with link capacity constraints. However, both 

of these two studies assumed separate link travel times and fixed demand. To our best 

knowledge, no effective study so far has been conducted for the PA-SUEED problem 

with link flow capacity constraints. This problem is addressed in Chapter 4, which is a 

complicated topic with high theoretical contribution.  

2.3 Congestion Pricing with User Equilibrium Constraints 

Studies on traffic assignment are mainly based on the user equilibrium, which captures 

users’ travel behaviors at selecting their route plans. However, as claimed by Wardrop 

(1952), all the users are “selfish” who only take into account their own on-trip travel 

costs. Accordingly, some road sections would be extremely saturated, and the whole road 

network is operating with inferior efficiency. This anarchy traffic assignment results thus 

cannot satisfy the transport authorities’ requirements. The authorities attempt to get a tool 

that can guide the network users towards making more rational decisions and using the 

un-congested road segments. A straightforward strategy to adjust their behavior is to levy 
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additional travel costs on the congested road sections. The concept of congestion pricing 

thus comes out (see the monograph by Small, 1992; Lewis, 1993; Yang and Huang 2005; 

Lawphongpanich et al. 2006; Verhoef et al., 2008). Apart from mitigating congestions, 

the congestion pricing also internalizes the externalities (e.g., travel delays) into toll 

revenue, which can invest back to the transportation system. 

 

As claimed at Chapter 1, congestion pricing is an effective tool to manage the traffic 

assignment process, and on the other hand, the theories for traffic assignment problems 

are foundations for the studies in congestion pricing. It implies that the connection 

between traffic assignment and congestion pricing is quite significant and intrinsic. 

Congestion pricing is thus taken as an important scope of this study. A brief introduction 

and review are provided as follows for three pricing schemes, first-best, second-best and 

cordon-based. 

2.3.1 First-Best and Second-Best Congestion Pricing 

A remarkable benchmark for better traffic conditions should be the system optimum, 

where the total travel time (or total social benefit) on the whole network is optimized. 

First-best pricing is defined as a toll charge pattern that can achieve such a system-wide 

index. It has been well recognized that the marginal cost pricing is a solution to the first-

best pricing scheme (Walters, 1961; Yang and Huang, 1998; Verhoef et al., 2008). 

Validity of the marginal cost pricing on general transportation networks was proven by 

many studies with different assumptions; for instance, with elastic demand (Huang and 

Yang, 1996), with multi-user classes (Dafermos, 1973), with non-separable link costs 
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(Smith, 1979), with logit-based SUE constraints (Yang and Huang, 1998), with General 

SUE constraints (Maher et al., 2005), with stochastic demand (Sumalee and Xu, 2011).  

 

The optimal marginal cost pricing can be easily obtained by solving a traffic assignment 

problem. An practical-oriented efficient trial-and-error method was proposed by Yang et 

al. (2004) and Zhao and Kockelman (2006) with DUE constraints and logit-based SUE 

constraints respectively, where the values of travel demands are not required for the 

calculation. The work of Yang et al. (2004) was recently extended by Han and Yang 

(2009) using more efficient step sizes. An in-depth review was provided by Xu (2006) 

regarding the trial-and-error method on general transportation networks. 

 

The marginal cost pricing requires each link to be charged, thus it is not practically 

applicable. When assuming only a proportion of the network is charged, the second-best 

pricing was introduced by Marchand (1968). In the case of only partial links are charge, 

the marginal-cost, however, is unlikely to give an optimal total social benefit.  

 

A extensive literature can be observed for the second-best pricing problems, which are 

usually formulated as a Bi-level programming model (BLPM), where its upper-level is to 

optimize a system-wide index (total social benefit or total travel time) and its lower-level 

is a traffic assignment problem (Shimizu et al., 1997; Bard, 1998). This BLPM is a 

typical Stachelberg game in game theory. The lower-level problem of BLPM can be 

treated as a constraint of the upper-level, thus it gives the form of a mathematical 

programming with equilibrium constraints (MPEC) model; see, Luo et al., 1996; Verhoef 
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et al., 1996; Liu and McDonald, 1998 & 1999; Outrata et al., 1998; Bellei, et al., 2002; 

Verhoef, 2002; Chen and Bernstein, 2004, etc.  

 

A wide range of solution algorithms have been investigated to solve the BLPM or MPEC 

model, including iterative optimization-assignment algorithm (Allsop, 1974), 

linearization methods (Ben-Ayed et al., 1988); equilibrium decomposed optimization 

(Suwansirikeu et al., 1987; Verhoef and Rowendal, 2004), sensitivity-analysis based 

algorithm (Friesz et al., 1990; Yang, 1997; Patriksson, 2004); augmented Lagrangian 

algorithm (Meng et al., 2001); Karush-Kuhn-Tucker (KKT) based methods (Verhoef et 

al., 1996; Verhoef, 2002); stochastic search methods (Shepherd and Sumalee, 2004); 

gradient-based descent methods (Chiou, 2005); constraint cutting method 

(Lawphongpanich and Hearn, 2004; Koh et al, 2009). 

2.3.2 Cordon-based Congestion Pricing Schemes 

As a special second-best pricing scheme, the cordon-based congestion pricing scheme has 

been not only examined theoretically (e.g. Zhang and Yang 2004; Sumalee, et al. 2005; 

Sumalee, 2007), but also been implemented practically in some major cities in UK, 

Singapore and Scandinavia, etc. The cordon-based congestion pricing scheme is defined 

as: certain district in urban area is encircled by a pricing cordon and any vehicle passing 

through the cordon is charged. By affecting drivers’ route choice plans and subsequently 

restricting the total number of vehicles entering the encircled district, the cordon-based 

congestion pricing scheme is taken as an effective tool to mitigate traffic congestion, and 

it is also convenient for practical operations (May et al., 2002; Akiyama and Okushima, 

2006). Cordon-based pricing is thus taken as a target of this dissertation. Assuming the 



Chapter 2  Literature Review 
 

 34

framework of PA-SUEED for drivers’ route choice behavior, this study aims to 

contribute to the studies of cordon-based pricing by investigating some practical-oriented 

topics. In terms of practical implementations, these timely topics, including speed-based 

and distance-based toll design, are more attractive than the first-best and second-best 

pricing. Formulations and solution algorithms for speed-based and distance-based toll 

design problems are addressed in Chapters 6 and 7, respectively.  

 

The previous studies for cordon-based congestion pricing can be mainly classified into 

two categories: optimal cordon location and optimal toll design. The first category 

intends to find the optimal cordon locations and the second one aims to identify a proper 

toll fare solution that optimizes a system-wide objective function including the total 

social benefit based on given cordon locations.  

 

The optimal cordon location problem can be actually formulated as a nonlinear integer 

programming model with DUE or SUE constraints. The proposed models were 

approximately solved by the meta-heuristic methods such as genetic algorithm (GA) due 

to their NP-hardness (May et al., 2002; Shepherd and Sumalee, 2004; Sumalee, 2004; 

Zhang and Yang, 2004; Sumalee, 2007). The optimal toll design problem for the cordon-

based congestion pricing schemes can also be formulated as a BLPM or MPEC, and then 

solved by the algorithms mentioned at Section 2.3.1. 

 

Practical implementations of cordon-based congestion pricing are then discussed. 

Cordon-based congestion pricing is first adopted in Singapore in 1975, named as the Area 
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License Scheme (ALS) (Phang and Toh, 1997), where a daily license is required for any 

vehicle accessing a restricted zone in the downtown area of Singapore. The ALS scheme 

was then extended to the Electronic Road Pricing (ERP) system in 1998 (Foo, 2000). By 

virtue of the electronic devices, ERP uses a non-stop charging system, and its charging 

rates are differentiated in terms of time of day, location and vehicle type, thus making it 

more flexible to the congestion level. A “shoulder price” pricing scheme is adopted to 

ameliorate traffic congestions, i.e. set highest price for morning and evening peak hours, 

and then cut off this price in steps each half hour before and after these two peak hours 

(website of Singapore Land Transport Authority).  

 

The London Congestion Charging Scheme (LCCS) has attracted much attention. First 

established in February 2003 by the Transport for London, LCCS is an area-based 

(license-based) pricing scheme, where each vehicle driving in the charging zone is 

imposed by a charge of 8 pounds. Santos (2008) argued that LCCS had achieved the aim 

of reducing traffic congestion in and around the charging zone.  

 

In a more recent trial in Stockholm, between January and July of 2006, a time-

differentiated cordon-based pricing scheme is established. The scheme is related to an 

inner-city zone, where a toll charge is levied on 18 control points located at its entrances 

and exits. Eliasson et al. (2009) claimed the superiority of congestion pricing scheme in 

reducing congestions, compared with other traffic management measures (road 

investments and policies of free public transport, etc.). This trial was later complemented 
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with a public transport improvement scheme, since a well-functioning public transport 

system is a prerequisite for demand management.  

2.3.3 Continuously Distributed Value-of-Time 

Analysis of the congesting pricing problems relies on the theories of traffic assignment, 

which is the result of commuters’ route choice decisions. The commuters select their 

route plan based on the travel costs on each path. In the case of congestion pricing, travel 

costs on each path consist of two components: travel time and toll charge. These two 

components are not in the same units, thus a value-of-time (VOT) is required for the 

conversion here. It is well-known that the VOT varies among different drivers due to 

their different levels of income and trip emergency. To reflect this variation, it is thus 

more rational to take VOT as a continuously distributed random variable across the 

population (Verheof and Small, 2004; Small et al., 2005; Van den Berg and Verhoef, 

2011), instead of assuming homogeneous network users with constant VOT or multiple-

user classes with discrete VOTs (Han and Yang, 2008).  

 

Traffic assignment problem with continuously distributed VOT has been 

comprehensively examined on a hypothetical two-route example, e.g., Mayet and Hansen 

(2000); Verhoef and Small (2004); Xiao and Yang (2008); Nie and Liu (2010); to name a 

few. Some findings in these studies, however, may not be available when extended to a 

realistic network with more than two links.  

 

The traffic assignment problem on real-size networks with continuously distributed VOT 

was investigated by Leurent (1993), where the commuters’ route choice behavior is 
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assumed to follow DUE principle and travel demand elasticity is also considered. Dial 

(1996) further studied about the DUE problem with continuously distributed VOT based 

on a bi-criterion network, assuming that travel times as well as out-of-pocket costs are 

functions of the link flows. While, regarding the SUE problem with continuously 

distributed VOT, Cantarella and Binetti (1998) proposed a solution framework for the 

probit-based SUE problem with continuously distributed VOT. This framework assumed 

fixed OD demand and relies on a path-based simulation technique to cope with the 

probit-based SNL. Thus, in the case of PA-SUEED with continuously distributed VOT, it 

is still an open question. In the Chapter 6 and 7 of this dissertation, a more efficient link-

based solution technique is then proposed to solve this problem, which avoids path 

generation/enumeration.
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CHAPTER 3 TWO EFFICIENT PREDICTION-CORRECTION 

ALGORITHMS FOR PA-SUEED 

This chapter presents two variational inequality (VI) models for the probit-based 

asymmetric SUE problem with elastic demand (PA-SUEED). These two models then 

contribute to two projection-based prediction-correction (PC) algorithms, which are more 

efficient than the existing Cost-Averaging (CA) method. Superiority of the proposed 

algorithm is then numerically validated by two network examples. 

3.1 Background  

As claimed in Chapter 1, PA-SUEED has better representativeness to the practical 

conditions, compared with the DUE or standard SUE principles. Yet, the extensions from 

three aspects (probit-based model, elastic demand and asymmetric link travel time 

functions) have largely increased the challenges in formulating and solving PA-SUEED. 

In the existing literature, a fixed-point model proposed by Cantarella (1997) is a suitable 

formulation for this problem, and the only convergent algorithm was also found in 

Cantarella (1997), termed as cost-averaging (CA) method, which is a variation of the 

well-known method of successive average (MSA) (Powell and Sheffi, 1982; Daganzo, 

1983), where predetermined step sizes are adopted. Instead, CA method updates the value 

of link travel times, rather than link flows. 

 

Due to the existence of predetermined and suboptimal step sizes, the CA method only has 

a sub-linear convergent speed (Nagurney and Zhang, 1996). Thus, it is crucial to find a 

more efficient solution algorithm for PA-SUEED, in view its theoretical significance and 
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that it is a foundation for the analysis in the following Chapters. This chapter first 

proposes two equivalent VI models for the PA-SUEED. The existence and uniqueness 

conditions of these two models are proven. Furthermore, the Lipschitz-continuity of these 

two VI models is also demonstrated. Based on these properties, two projection-based 

prediction-correction (PC) algorithms with self-adaptive step sizes are adopted from the 

studies for VI (He and Liao, 2002) to solve PA-SUEED. In nature, these two algorithms 

possess a linear convergent speed, which is superior to the existing CA method. 

 

It should be pointed out that the stochastic network loading (SNL) plays an essential role 

in the algorithms for SUE problems, as discussed at Section 2.1.3. Monte Carlo 

simulation-based methods are regarded as an effective one to handle the probit-based 

SNL. However, in the context of PA-SUEED, it is still an open question for the Monte 

Carlo simulation-based SNL method. Thereby, before addressing the projection-based 

solution algorithm, a link-based two-stage Monte Carlo simulation-based SNL method is 

first put forward in this chapter, which is later taken as one subroutine of the CA method 

and two PC algorithms.  

 

This chapter is organized as follows. Section 3.2 reviews the two fixed-point models 

provided by Cantarella (1997) for PA-SUEED. Section 3.3 then proposes one link flow-

based and one link cost-based VI model, and some essential properties of these two 

models are rigorously proven. Section 3.4 presents the said link-based two-stage Monte 

Carlo simulation-based SNL method. Lower bound for the sample size of each stage of 

this simulation is theoretically estimated. Section 3.5 introduces the three solution 
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algorithms, the existing CA method and two PC algorithms. These three algorithms are 

validated in section 3.6 by the network examples, which numerically verify that two PC 

algorithms outperform the CA method. Section 3.7 then concludes this chapter.  

3.2 SUE Conditions and Two Fixed-point Models 

3.2.1 Notation and Definitions 

Consider a strongly connected network denoted by  ,G N A  where N  and A  are the 

sets of nodes and directed links, respectively. Let W  be the set of the OD pairs and wR  be 

the set of paths between OD pair w W . Travel demand between OD pair w W  is 

denoted by wq  and  T
,wq w W q  is a column vector for all these travel demands. Let 

wkf  be traffic flow on path wk R  between OD pair w W ,  ,
T

w wk wf k R f  be a 

column vector of all these path flows between OD pair w  and  TT ,w w W f f  be a 

column vector of all the path flows over the entire network. Let av  denote traffic flow on 

link a A  and  T
,av a A v  is a column vector of all these link flows. The following 

flow conservation equations should be fulfilled: 

  q f , (3.1) 

  v f , (3.2) 

0f . (3.3) 

where w
ak A K

      and w
k W K

      are the incidence link/path and OD pair/path 

matrices, where A , W  and K  are the number of links, OD pairs and paths, 
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respectively; 1w
ak   if link a  is on path wk R , and 0w

ak  , otherwise. 1w
k   if path 

k  connects OD pair w W , and 0w
k  , otherwise. 

 

The travel time on link a A  is assumed to be a function of link flow vector v , denoted 

by  at v , which is termed as asymmetric link travel time function. These link travel time 

functions are grouped into a column vector     T
,at a A t v v . It is assumed that 

vector function  t v  is non-negative, monotonically increasing and continuously 

differentiable. Travel time on path wk R  is the sum of travel times of all the links on 

this path, denoted by  wkc v , namely, 

     w
wk a ak

a A

c t


 v v . (3.4) 

These path travel times are grouped into vector     T
,w wk wc k R c v v . It is assumed 

that the travel time on path wk R  perceived by drivers, denoted by  wkC v , is a random 

variable with the expression: 

    wk wk wkC c  v v , (3.5) 

where wk  is a random perception error following normal distribution with zero mean 

and constant variance. Let  T
,w wk wk R  ζ  denote the column vector of the perception 

errors on all the paths associated with OD pair w W , and in the context of probit-based 

SUE, wζ  should follow a multivariate normal distribution with zero mean. Let 
w

ζ  denote 
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the probability density function of wζ , which is strictly positive and continuously 

differentiable (Daganzo, 1979).  

 

Let  w wS c  denote the expected value of the minimum perceived travel time among all 

the paths between OD pair w W , i.e.    min
w

w w wk
k R

S E C


    
c .  w wS c  is also known 

as satisfaction or satisfaction function in the literature (Sheffi 1985). 

 

Travel demand between OD pair w W  is assumed to be a function of the satisfaction:  

    ,w w w w wq D S q w W  c , (3.6) 

where parameter wq  is a given upper bound of travel demand between OD pair w W . 

The demand function  wD   is required to be continuously differentiable and non-

increasing. Note that for the fixed demand case,  wD   is constant. This assumption is 

previously made by Cantarella (1997) and Maher and Zhang (2000) for the conventional 

SUE problem with elastic demand. 

 

Remark 3.1: Link travel time function,  t v , in this study is assumed to be non-

separable with asymmetric Jacobian matrix,  vt v . It should be noted that the models 

and algorithms in this dissertation are also effective for the case of separable or 

symmetric link travel time functions. 
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3.2.2 Probit-based Asymmetric SUE Conditions with Elastic Demand  

Any link-flow vector that can satisfy the following eqn. (3.7) is a solution for the PA-

SUEED problem. Eqn. (3.7) is thus termed as probit-based asymmetric SUE conditions 

with elastic demand. 

                                           T
,a w w w wa

w W

v D S P a A


   t v t v , (3.7) 

where   waP t v  refers to the link usage probability and it equals to  

                                                  ,
w

w
wa wk ak

k R

P p w W


  t v v ,                       (3.8) 

where  wkp v  is probability that path wk R  is perceived as the shortest one, which is 

termed as path choice probability, i.e., 

                         
   

 
1 2

1 1

Pr ,

, ,
wk

w w w
wk w wk w wk

wk wk wl w

c

R Rc c c c c

p C C l R

x x dx dx


  

   

    ζ

v

  
 (3.9) 

 

It should be pointed out that the path choice probability for path wk R  equals to the 

first-order derivative of the satisfaction function  wS v  with respect to the path travel 

time  wkc v  (Sheffi, 1985), namely, 

 
 
    , ,w w

wk w
wk

S
p k R w W

c


  


c

v
v

. (3.10) 

3.2.4 A Stochastic Network Loading Map and Two Fixed-Point Formulations  

Let us define a set of feasible path flows as follows: 
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 
0

there is a travel demand  0, , 
0 such that ,

w

w w

wf
wk ak w

k R

q q

f q w W


 
      
  

f . (3.11) 

With the set of feasible path flows, the set of feasible link flows can be hence defined by 

  0 0| ,v f    v v f f . (3.12) 

Given any feasible link flow solution 0
vv , the link travel time vector 

    T
,at a A t v v  can be easily calculated using the link travel time functions. Let 

0
t  be the image set of set 0

v  though link cost function vector  t v , namely, 

   0 0
t v   t t v v . (3.13) 

Although the set 0
t  is bounded and non-empty, however, it may be non-closed and non-

convex. Thus, let 0 A
t     be the closed convex hull of set 0

t , and 0
t  is therefore a 

non-empty, convex and compact set. Cantarella (1997) defined a stochastic network 

loading (SNL) map from set 0
t  to 0

v : 

     T 0 0, :a t va A    ψ t t , (3.14) 

where  

        ,T

a w w w wa
w W

D S P a A


   t t t . (3.15) 

 

It can be seen that the SNL map is a probit-based SUE problem with a given/fixed link 

travel time pattern t . Based on SNL map and link travel time function, the probit-based 

asymmetric SUE problem with elastic demand can be formulated by two fixed-point 

models (Cantarella, 1997):  
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Find a link flow vector * 0
vv  such that 

   * *v ψ t v . (3.16) 

Find a feasible link travel time vector * 0
tt  such that 

   * *t t ψ t . (3.17) 

 

The SNL map  ψ t  is proven to be continuously differentiable and monotone decreasing 

with respect to vector t  (Lemma 3, Cantarella, 1997). In addition, sets 0
v  and 0

t  both 

are non-empty, convex and compact. Therefore, these two fixed-point models have 

unique solution (Theorems 1 and 2, Cantarella, 1997). 

3.3 Two Variational Inequality Models 

To build a variational inequality (VI) model for the probit-based SUE problem with 

elastic demand, a set of link flow is defined as follows: 

  max0, ,v a av v a A     v , (3.18) 

where max
av  is a predetermined upper bound of traffic flow on link a A . The upper 

bound does exist due to the assumption that the travel demand functions are uniformly 

bounded above; for example,  

 max ,a w
w W

v q a A


  . (3.19) 

In the link travel time space, a set of link travel times can also be defined: 

      max, ,t a a at t t a A     t 0 v , (3.20) 
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where 0  is the link flow vector with zero traffic flow and vector  Tmax max ,av a A v . 

The feasible set of link flows v  and the feasible set of link travel times t  are non-

empty, company and convex, and in addition: 

 0
v v   and 0

t t  . (3.21) 

 

By virtue of the SNL map and link travel time function, two vector functions are defined 

on the sets v  and t , respectively: 

        T

, , : A
v a v vF a A     F v v v ψ t v  (3.22) 

        T

, , : A
t a t tF a A     F t t t t ψ t  (3.23) 

 

Proposition 3.1: Two vector functions  tF t  and  vF v  are Lipschitz-continuous over 

sets t  and v , respectively. 

 

Proof. 

The link travel time function,  t v , and network loading map  ψ t  are continuous and 

continuously differentiable over the feasible set t  and v  respectively. Consequently, 

based on the property of compound functions, these two compound functions  tF t  and 

 vF v  are also continuous and continuously differentiable.  
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Thus, for function  tF t , its Jacobian matrix 
 t


F t

t
 is continuous over set t . Since 

t  is compact and convex, the 2-norm of the Jacobian matrix, 
 t


F t

t
, is bound from 

above, i.e. there exists a constant L , such that 
 

2

t L





F t

t
. Furthermore, according to 

the mean value theorem, there exists a vector  1 2 , ~ 0,1c c  t t  such that 

      
1 2 1 2 1 2

2

t
t t L


    


F

F t F t t t t t
t


, (3.24) 

where   denotes the Euclidean Norm for a vector. This shows that the vector function 

 tF t  is Lipschitz continuous, and similarly the Lipschitz-continuity of  vF v  can also 

be guaranteed. □ 

 

 

Based on the link flow-based vector function  vF v , a VI model in the link flow space is 

built as: find a link flow vector *
vv  such that 

    T * 0,v v   F v v v v . (3.25) 

In the link travel time space, the following VI model is proposed: find a link travel time 

vector *
tt  such that 

    * 0,
T

t t   F t t t t . (3.26) 
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The following two propositions show that these two VI models are suitable formulations 

for the PA-SUEED problem. For the sake of presentation, the two VI models are denoted 

by  ,v vVI F  and  ,t tVI F , respectively 

 

Proposition 3.2: *v  is a solution of  ,v vVI F  if and only if  *
v F v 0 . In other words, 

the feasible link flow solution *v  fulfils the probit-based asymmetric SUE conditions 

with elastic demand. 

 

Proposition 3.3: *t  is a solution of  ,t tVI F  if and only if  *
t F t 0 . In other words, 

the feasible link flow solution  *ψ t  satisfies the probit-based SUE conditions with 

elastic demand.  

 

Proof. 

First, the necessary and sufficient conditions for Proposition 3.2 are presented as follows: 

 

Necessary condition: 

Let SUEv  be a SUE link flow solution of the probit-based asymmetric SUE problems with 

elastic demand. Thus, 

   SUE SUEv ψ t v . (3.27) 

Eqn. (3.27) implies that    SUE SUEv ψ t v  is a null vector. It therefore follows that 

      
T

0,SUE SUE SUE v    v ψ t v v v v . (3.28) 
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In other words, SUEv  is a solution to VI model (3.25).  

 

 

Sufficient condition: 

Suppose that vector  T
* * * *

1 2, , , Av v vv   is a solution to  ,v vVI F . It is first proven that 

each element of the vector is positive, namely, * 0,av a A   . Without loss of generality, 

it is assumed that *
1 0v   and construct a particular feasible link flow vector: 

  T
* *
2ˆ 1, , , vAv v v  . (3.29) 

 Substituting v  in  ,v vVI F  with v̂  yields that  

   *
1 0 t v . (3.30) 

The value of SNL map   *
1 t v  is always positive for probit-based SUE problem, 

which contradicts eqn. (3.30). In other words, any solution to  ,v vVI F  is a positive 

vector. 

 

Another two feasible link flow vectors 1 *v v , and 2 *v v  are employed, which follow 

this rule: (i) choose any particular link b A  and then set 1 *
b bv v  , 2 *

b bv v   where 

  is a given very small positive number in the interval  *0, bv ; (ii) traffic flow on the 

other links of these two new vectors are identical to that of *v . Substituting v  in 

 ,v vVI F  with 1v  and 2v  yield that 

      * * * * 0b b b bv v v   t v , (3.31) 
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      * * * * 0b b b bv v v   t v . (3.32) 

Eqns. (3.31) and (3.32) imply that 

   * * ,b bv b A   t v . (3.33) 

Eqn. (3.33) implies that   * * 0,b bv b A   t v , i.e.  *
v F v 0  and it can be 

concluded that any solution of  ,v vVI F  fulfils the SUE conditions with elastic demand. 

 

Proposition 3 can be proven by using a similar procedure. □ 

 

 

The Lipschitz-continuity of two vector function  tF t  and  vF v  in conjunction with the 

nonempty, bounded, compact and convex properties of two sets t  and v  implies that 

 ,v vVI F  and  ,t tVI F  both have at least one solution (Corollary 2.2.5, Facchinei and 

Pang, 2003). Propositions 3.2 and 3.3 ensure that any solution of VI model (3.25) or 

(3.26) is a SUE link flow solution. According to Theorem 2 of Cantrarella (1997), this 

SUE link flow solution is unique, which is highlighted in Proposition 3.4. 

 

Proposition 3.4: VI models (3.25) and (3.26) both have unique solution.  

3.4 Link-based Two-stage Monte Carlo Simulation for SNL  

It can be seen that the SNL map plays a vital role in the fixed-point formulations and VI 

models developed for the PA-SUEED problem. Cantarella (1997) examined some 

fundamental mathematical properties of the SNL map. However, he did not provide a 
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computational method for the SNL map. Such a computational method is quite necessary 

when solving the PA-SUEED problem.  

 

This section aims to provide a link-based Monte Carlo simulation method to solve the 

SNL problem. However, directly using the Monte Carlo simulation method would require 

path enumeration/generation, since the users’ perception error on travel time wk  is 

defined on paths. Hence, an alternative representation of the perception error is first used, 

which enables a link-based procedure. 

3.4.1 An Alternative Representation of Perception Error  

Sheffi (1985) showed that perceived path travel time can be derived from the normally 

distributed link perceived travel times. He assumed that perceived travel time on link 

a A  , denoted by  aT v , has the following form: 

 
   

 0

, ,

0, ,

a a a

a a

T t a A

N t

   

 

v v


 (3.34) 

where error term a  is a normally distributed random variable with zero mean and flow-

independent variance equal to 0
at . Here, 0

at  is the free flow travel time and constant   is 

termed as variance parameter. Clearly, the perception errors on different links are 

independent. 

 

Thus, users’ perceived travel time on path wk R  can be given by:  
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   

    , ,

w
wk a ak

a A

w w w
a ak a ak wk a ak w

a A a A a A

C T

t c k R w W



  

 

          



  

v v

v v
 (3.35) 

Let , ,w
wk a ak w

a A

k R w W


      , and we can see that wk  obtained here is also normally 

distributed with zero mean and constant variance, and moreover the covariance between 

the perception errors on two different paths equals to the total value of variances on their 

overlapping proportions (see Section 11.2 of Sheffi, 1985). 

 

This link-based representation for the perceived path travel times enables link-based 

Monte Carlo simulation methods for solving the SNL map. In addition, sampling for each 

random variable a  is independent, thus simplified the generation of random numbers. 

Accordingly, a link-based Monte Carlo simulation method is proposed in the following 

section.  

3.4.1 Two-stage Monte Caro Simulation-based SNL Method 

For the probit-based SUE problem with fixed demand, a Monte Carlo simulation-based 

SNL method can be found in Page 301 of Sheffi (1985). However, in this method 

proposed by Sheffi (1985), the elastic demand has not been taken into consideration. 

Thus, in this section, a two-stage procedure for the Monte Carlo simulation is proposed, 

where the first stage aims to estimate OD demands and the second stage calculates the 

estimated link flows, and it is summarized as follows: 

Two-stage Monte Caro simulation based computational method  

Input: Link travel time vector  ,a tt a A  t  
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Output: Stochastic network loading map value  v ψ t  

Step 1.0: (Initialization). Let the number of simulations 1n   and the initial estimated 

satisfaction  0 0,wS w W  . 

Step 1.1: (Sampling). For each link a A , sample a link travel time denoted by  n
aT  

from the normal distributed population  0,a aN t t . 

Step 1.2: (Shortest path time calculation). With the link travel time pattern   ,n
aT a A , 

calculate travel time of the shortest path between each OD pair w W , 

denoted by  n
wC , namely, 

      min ,
w

n n n w
w wk a ak

k R
a A

C c T w W




 
    

 
  . (3.36) 

Step 1.3: (Satisfaction estimation). Estimate the satisfaction for each OD pair w W  by 

the average scheme: 

        11
,

n n
n w w

w

n S C
S w W

n

 
 


. (3.37) 

Step 1.4: (Accuracy checking). If the number of iterations 0n n , where 0n  is a 

predetermined sample size, go to Step 1.5; otherwise, set 1n n   and go to 

Step 1.1. 

Step 1.5: (OD demand calculation). Calculate OD travel demand pattern by the formulae: 

    ,n
w w wq D S w W  . (3.38) 

Go to Step 2.0 
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Step 2.0: (Initialization). Let the number of simulations 1m   and the initial estimated 

stochastic network loading map value  0 0,a a A     

Step 2.1: (Sampling). For each link a A , sample a link travel time denoted by  m
aT  

from the normal distributed population  0,a aN t t .  

Step 2.2: (All-or-nothing traffic assignment). 

(i) Define an initial OD pair based link flow solution: 

   0, ,m
awy a A w W   . (3.39) 

(ii) With the link travel time pattern   ,m
aT a A , find the shortest path for each 

OD pair w , then assign OD travel demand wq  calculated in Step 1.5 to each 

link of the shortest path, namely, 

                      ,  for any link  on the shortest path between OD pair m
aw wy q a w W   (3.40) 

(iii) Summing up traffic flow of each link yields the auxiliary link flow pattern 

    ,m m
a aw

w W

y y a A


   
 

 . 

Step 2.3: (Stochastic network loading map estimation). Calculate the stochastic network 

loading map value by the average scheme: 

        11
,

m m
m a a

a

m y
a A

m

  
   . (3.41) 

Step 2.4: (Stop criterion check). If the number of iterations 0m m , where 0m  is the 

predetermined sample size, then stop and output the stochastic network 
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loading map value     ,m
a a a A  t . Otherwise, let 1m m   and go to 

step 2.1. 

  

Both stages of the Monte Carlo simulation employ pseudo random numbers to sample the 

normally distributed link travel times. Note that the satisfaction estimator shown in eqn. 

(3.37) and the SNL map estimator expressed by (3.41) can be respectively rewritten as 

follows:  

  

 

1 ,

n
i

w
n i

w

C
S w W

n
 
 

, (3.42) 

  

 

1 ,

m
i

a
m i

a

y
a A

m
  


. (3.43) 

The two sample sizes 0n  and 0m  respectively used in Step 1.4 and Step 2.4 determines 

the accuracy of the computational algorithm, and their lower bounds with a given 

accuracy are elaborated in the following sub-section. 

3.4.2 Sample Size Estimation  

Firstly, the sample size 0n  for the first stage is addressed. Given a link travel time vector 

 ,a tt a A  t , the relevant minimum perceived path travel time for OD pair w W  

is a random variable, namely,  min
w

wk
k R

C


 is a random variable where 

  ,w
wk a a ak w

a A

C t k R


     . It can be seen that the satisfaction   T

w wS  t  is the 

expected value of the random variable  min
w

wk
k R

C


. Let 2
w  denote the variance of 
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 min
w

wk
k R

C


. When the sample size (i.e., the number of iterations n ) is large enough, say 

30n   (Johnson and Wichern 2002), according to the central limit theorem, the average 

satisfaction estimator,  n
wS  follows a normal distribution:  

     
2

T
~ , ,n w

w w wS N S w W
n

 
  

 
t


. (3.44) 

The confidence interval of  n
wS  at a significance level of 95% can be thus given by 

      1.96 ,    1.96
T Tw w

w w w wS S
n n

       
t t . (3.45) 

Let     T n
w w w wE S S  t  denote the error of the unbiased satisfaction estimator wS . 

Thus, 

 1.96 ,w
wE w N

n


  . (3.46) 

Let 1  be the maximum error allowed for the satisfaction estimation, namely,  

 1, for any wE w W  . (3.47) 

According to eqn. (3.46), the same the sample size can be taken as: 

 
2 2

2
1

1.96
max w

w W
n



 
   

, (3.48) 

where the population variance 2
w  can be estimated by the sample variance during the 

calculation, namely 

  

    2

1ˆ ,
1

n
k n

w w
n k

w

C S
w W

n



  



 
. (3.49) 

In other words, the following criterion in Step 1.4 can be used: 
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2 2

0 2
1

ˆ1.96
max w

w W
n n



 
    

. (3.50) 

 

The lower bound for sample size required in the second stage is then analyzed. As it 

shows in Step 2.2, if link a is on the shortest path between OD pair w  at iteration i, thus 

 i
wa wy q ; otherwise,   0i

way  . Eqn. (3.43) implies that  

  

     

1 1

1

,

m m
i i i

a wa wam
m i w W i w wa

a
i w W w W

y y y
q K

a A
m m m m

  

  

     
  

   , (3.51) 

where waK m  is the number of times that link a  is on the shortest path between OD 

pair w W  among all the m  samples.  

 

It can be seen that waK
m  in the right hand side of eqn. (3.51) is a point estimation of link 

usage probability  waP t . Interestingly, waK  is actually a binomial experiment with the 

number of trials m  and the success probability  waP t , abbreviated as waP  henceforward. 

When the sample size is large enough ( 10wamP  ), waK  can be approximated by a 

normal distribution (Johnson and Wichern, 2002), i.e. 

   , 1wa wa wa waK N mP mP P . (3.52) 

In light of eqn. (3.51),  m
a  is a linear combination of some normal distributed random 

variables. Hence, it also follows a normal distribution with the mean and variance as 

follows: 
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        ,m w wa w
a wa w wa a

w W w W w W

q K q
E E E K q P a A

m m  

        
 
   t , (3.53) 

 

    

 
1 2

1 2 1 2

2

, ,

var var var

cov , ,

m w wa w
a wa

w W w W

w a w a
w w W w w

q K q
K

m m

K K a A

 

 

           

 

 


. (3.54) 

Since each OD demand are loaded independently for each iteration, the covariance 

proportion in the right hand side of eqn. (3.61) equals to zero. Eqn. (3.61) thence 

becomes 

       2
2 1

var varm wa waw
a wa w

w W w W

p pq
K q

m n 

    
 

  . (3.55) 

It should be pointed out that the stochastic network loading map estimation shown in eqn. 

(3.41) is an unbiased estimation according to eqn. (3.53) 

 

Thereby, the confidence interval of the stochastic network loading map estimation  m
a  

at a significance level of 95% can be given by 

          2 21 1
1.96 ,    1.96 ,wa wa wa wa

a w a w
w W w W

P P P P
q q a A

n n 

  
     
  

 t t . (3.56) 

Let      m
a a aE    t  denote the error of the unbiased estimation  m

a . Eqn. (3.56) 

implies that  

 
 2 1

1.96 ,wa wa
a w

w W

P P
E q a A

m


  . (3.57) 

Let 2  be the maximum error allowed for the satisfaction estimation, namely,  

 2, aE a A    (3.58) 
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According to eqn. (3.57), a lower bound for the sample size, 0m , can be shown as follows.  

 
 2 2

0 2
2

1.96 1
max

w wa wa
w W

a A

q P P
m m 



  
    
  


. (3.59) 

3.5 Three Solution Algorithms 

3.5.1 Two Projection-type Self-adaptive Prediction-Contraction Algorithms 

The projection-type methods have been commonly used for solving VI models (see, 

Bertsekas, 1976; Bertsekas and Gafni, 1982; He, 1992 & 1994; Nagurney, 1993; 

Patriksson, 1994b; Chen et al., 2001; Bekhor and Toledo, 2005, etc.). Since the feasible 

sets of the two proposed models  ,v vVI F  and  ,t tVI F  are Cartesian products of 

intervals (Meng et al., 2008), the calculation of a projection on such type of feasible sets 

is largely simplified, thus it is convenient to adopt projection-type methods as solution 

algorithms. Two Prediction-Contraction (PC) algorithms, the conventional PC algorithm 

and the self-adaptive PC algorithm, are first introduced as follows.  

 

Let   be a nonempty closed convex subset of n , and let F  be a continuous vector 

mapping from   to itself. A general expression for VI models can be given by 

    T* * 0,   F x x x x . (3.60) 

Given a vector ny , its projection onto the set  , denoted by  P y , is defined by 

    arg minP 
 

x
y x y . (3.61) 
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Note that when set      1 1 2 2, , ,n na b a b a b      , which is Cartesian products of 

intervals, the calculation of projection    T
, 1, 2, ,iP y i n  y y   becomes 

straightforward: 

 

,     

,    ,    1, 2, ,

,     

i i i

i i i i i

i i

a y a

y y a y b i n

b y b


   
 

 . (3.62) 

 

The conventional PC algorithm, also referred as Korpelevich-Khobotov method 

(Korpelevich, 1976), works as follows: 

Conventional PC Method 

Step 0: (Initiation). Set the initial step size  0 1  , parameter  0,1 , an initial 

solution  0 x  

Step 1: (Prediction). Compute the projection: 

         1n n n nP

   x x F x . (3.63) 

Step 2: (Stop criterion). If                1n n n n n n n
KKe P 


        x x x F x x x , 

where KK  is a predetermined tolerance, stop; otherwise, go to Step 3. 

Step 3: (Step size adjustment). Perform the following loop to find a proper step size: 

Step 3.1: Calculate the ratio: 

              1 1n n n n n nr     F x F x x x . (3.64) 

Step 3.2: If  nr   , let    1n n    go to Step 4;otherwise go to Step 3.3. 

Step 3.3: Reduce the step size using the scheme: 
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    
 

2 1
min 1,

3
n n

nr

     
 

. (3.65) 

 Step 3.4: Update the prediction projection: 

         1n n n nP

   x x F x . (3.66) 

Go to Step 3.1 

Step 4: (Correction). Based on the feasible solution  1n x  and the step size  1n  

obtained in Step 3, calculate another projection: 

         1 1 1n n n nP  

   x x F x . (3.67) 

Set 1n n   and go to Step 1. 

 

If the vector function  F x  is Lipschitz continuous, a step size   0n   can be found 

such that  nr    in finite iterations (He and Liao, 2002). In other words, the step size 

reduction loop of Step 3 will be terminated within limited iterations. More importantly, 

with the Lipschitz-continuity, it is easy to show that 

    mininf 0n    . (3.68) 

The stop criterion in Step 2 comes from a fact that *x  is the solution of the VI model 

(3.60) if and only if the error bound 

    * * * * 0e P      x x x F x , (3.69) 

where   is an any positive number. 
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It can be seen that the step size sequence generated by Step 3 of the conventional PC 

method is monotonically decreasing due to the step size reduction scheme shown by eqn. 

(3.65). To improve the convergent speed of this conventional PC method, two 

modifications can be performed on the step size from two aspects (He and Liao, 2002): 

(a) For the step size of correction step: Instead of using the step size  1n  obtained from 

step 3, determine a more robust step size  1n   based on  1n  and  nx ; 

(b) For the step size of prediction step: enlarge  1n  if it is relatively too small. 

 

Firstly, to illustrate the improvement (a), the following function is defined in the first 

place: 

           22
1 1 1* *n n n n       x x x x , (3.70) 

where   2
*n x x  denotes the distance from  nx  to the optimum *x , and the mapping 

    1 1n n x  can be obtained from the correction step in terms of any step size value 

 1n  : 

            1 1 1 1:n n n n nP   

   x x F x  . (3.71) 

Korpelevich (1976) claimed that when    1 1n n     function   1n   would be 

positive at each step. Only recently, He and Liao (2002) proved that   1n   reaches 

its maximum when  1n   takes the following value: 
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    
                  

            

1 1 1 1

1 * 1

2
1 1 1

T
n n n n n n n

n n

n n n n n

   

 

  

   
  

  

x x x x F x F x

x x F x F x
. (3.72) 

This equation gives the ideal step size,  1 *n , in the correction step based on given  nx  

and  1n . According to He and Liao (2002), a relaxation factor  0,2  is usually 

taken for  1n  , i.e. 

   1 1 *n n     . 

Regarding improvement (b), since step size  n  is monotonically non-increasing, the 

convergent rate may inherently decelerate if  n  is too small. Therefore,  n  is slightly 

enlarged if it is relatively small enough. The self-adaptive PC algorithm developed by He 

and Liao (2002) incorporates the aforementioned two step size improvements, which is 

presented below. 

 

Self-adaptive Prediction-Correction Algorithm 

Step 0: (Initiation). Set initial step size  0 1  , parameter  0,1 , step size relation 

factor  0,2 and an initial solution  0 x . 

Step 1: (Prediction). Compute the projection: 

         1n n n nP

   x x F x . (3.73) 

Step 2: (Stop criterion). If                1n n n n n n ne P 

        x x x F x x x , 

where   is a predetermined tolerance, stop; Otherwise, go to Step 3. 

Step 3: (Step size adjustment). Perform the following loop to find a proper step size: 
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Step 3.1: Calculate the ratio: 

              1 1n n n n n nr     F x F x x x . (3.74) 

Step 3.2: If  nr   , let    1n n    go to Step 4;otherwise go to Step 3.3. 

Step 3.3: Reduce the step size using the scheme: 

    
 

2 1
min 1,

3
n n

nr

     
 

. (3.75) 

 Step 3.4: Update the prediction projection: 

                                                             1n n n nP

   x x F x .                            (3.76) 

and go to Step 3.1. 

 

Step 4: (Correction). (i) Estimate step size  1n : 

   1 1 *n n    . (3.77) 

          (ii) Based on the feasible solution  1n x  and the step size  1n , calculate 

another projection: 

         1 1 1n n n nP  

   x x F x . (3.78) 

 (iii) Enlarge the step size: 

   1 13

2
n n    , if  nr   ; and    1 1n n    , otherwise 

 where  0,   is a predetermined parameter.  

Set 1n n   and go to Step 1.  

 



Chapter 3  Two Efficient Prediction-Correction Algorithms for PA-SUEED 
 

 66

The difference between the conventional PC algorithm and the self-adaptive PC 

algorithm lies in Step 4. Step 4 of the latter algorithm reflects the two step size 

improvements (a) and (b). 

3.5.2 Cost-Averaging Algorithm  

Eqn. (3.79) shows the recursive function of the conventional MSA method, and when 

used for solving the PA-SUEED problem, its convergence cannot be guaranteed.  

           1 1n n n n

n
   v v ψ t v v .                               (3.79) 

 

Cost-averaging (CA) algorithm developed by Cantarella (1997) is the only convergent 

algorithm in the existing literature for solving the PA-SUEED problem. It is in fact a 

variation of the MSA. Recursive function of the CA method is given by: 

                                                            1 1n n n n

n
   t t t ψ t t .                          (3.80) 

where the SNL map   nψ t  can be calculated by the two-stage Mont Carlo simulation-

based method proposed by Section 3.4. 

3.5.3 Two Hybrid Prediction-Correction Algorithms 

The self-adaptive PC algorithm incorporating the two-stage Monte Carlo simulation 

based method can be employed for solving two VI models, shown by eqns. (3.25) and 

(3.26). As the former VI model is defined on the link flow space, the self-adaptive PC 

algorithm solving this VI model is named FPC algorithm. Similarly, CPC is the 

abbreviation of the self-adaptive PC algorithm solving the latter VI model defined on the 

link travel time (or cost) space.  
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It should be noted that the self-adaptive PC algorithm may encounter a dilemma in 

practical implementation: step size  n  calculated by Step 3.1 may be extremely small 

due to the step size reduction scheme shown in eqn. (3.75). In this case, projection 

operation  1n x        n n nP   x F x  of Step 3.4 makes  1nx  and  nx  very close, 

and they may be regarded as identical by the computer. This phenomenon undermines the 

step size adjustment, since in Step 3.1: 

             1 1n n n n n nr     F x F x x x . 

The denominator on the right hand side of this equation would be equal to zero, and the 

PC algorithm is thus disabled.  

 

With a view to overcome this problem, two hybrid PC-CA algorithms are proposed: 

when denominator of  nr  is small enough: 

    1
0

n n  x x , (3.81) 

where 0  is a predetermined trivial positive value, the FPC and CPC algorithm would be 

terminated, and then the iteration is continuously carried on by CA algorithm. These new 

procedures are named as hybrid FPC-CA and hybrid CPC-CA respectively, whose first 

part is the FPC or CPC algorithm with self-adaptive step size and second part is CA 

method with predetermined step sizes. Clearly, convergence of the hybrid FPC-CA and 

hybrid CPC-CA can be theoretically guaranteed. 
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An integrated procedure of the two hybrid PC-CA algorithms can be obtained by 

inserting the following Step 3.0 and Step 5 to the Self-adaptive PC Algorithm shown in 

Section 5.1: 

Step 3.0: If    1
0

n n  x x , then go to step 5; otherwise go to step 3.1 

Step 5   :           1 1n n n n

n
   t t t ψ t t . 

The recursive function in Step 5 would be iteratively calculated until the stop criterion 

could be fulfilled. In addition, on the end of Step 3.4, it should be “go to Step 3.0”. 

3.6 Numerical experiments 

Two examples with asymmetric link travel time functions are used to validate the 

proposed VI models and compare the performance between the two hybrid PC-CA 

algorithms and CA algorithm. The first example is from Yang (1995) and the second 

example is a modified Sioux-Fall network (Bar-Gera, 2011). 

 

The variance parameter   in eqn. (3.34) is set to be 0.1 and the tolerance value, 0 , in 

eqn. (3.81) is set to be 151 10 . As to the demand functions, it is assumed that demand 

between each OD pair w W  is determined by the following exponential function: 

   expw w w wq q S  c , (3.82) 

where   is a constant parameter. 

 

Propositions 3.2 and 3.3 imply that *v  or  *ψ t  is the probit-based SUE link flow 

solution if and only if the Euclidean norm of vector  *
vF v  or  *

tF t  is equal to zero, 
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namely,  * 0v F v  or  * 0t F t . To compare performance of the three solution 

algorithms, it is tested whether the Euclidean norm of vector function   n
vF v  or 

  n
tF t  is close to zero at iteration n , which is equivalent to the stop criterion defined by 

the error bound function shown in eqn. (3.69). Stop criteria for the three algorithms are 

thus defined based on the relative error of   n
vF v  or   n

tF t : 

For hybrid FPC-CA algorithm in the link flow space: 

 

      
  

2

2
Relative error value =

n n
a a

a A
f

n
a

a A

v

v






 





t v

. (3.83) 

For hybrid CPC-CA and CA algorithms in the link travel cost space: 

 

      
  

2

2
Relative error value =

n n
a a

a A
c

n
a

a A

t t

t






 





ψ t

. (3.84) 

where f  and c  are the positive tolerance values.  

 

It should be noted that most of the computational efforts of these three algorithms (hybrid 

FPC-CA, hybrid CPC-CA and CA) are devoted into calculating the SNL, so that CPU 

time used by each of the three algorithms depends on how many times they have invoked 

the two-stage Monte Carlo simulation based method. This number is called as the total 

number of SNLs, which can be used as an alternative index to reflect the CPU time. 
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3.6.1 Example 1 

Example 1 (Yang, 1995), shown in Figure 3.1, consists of 6 nodes, 7 links and 2 OD pairs: 

1 3  and 2 4 . It uses the link travel time functions: 

 
2 2
1 2

1 2 ,
100 200

v v
t   v  

2 2
2 1

2 3
100 200

v v
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2 2
3 6

3 10
100 200

v v
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2
4

4 4
400

v
t  v , 

 
2 2
5 7

5 9
100 200

v v
t   v ,  

2 2
6 3

6 2
100 200

v v
t   v ,  

2 2
7 5

7 4
100 200

v v
t   v . 

As for the OD demand function shown in eqn. (3.82), the following parameters are used: 

0.1  , 1 3 2 4 30q q   .  
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Figure 3.1 Network topology of Example 1 

 

3.6.1.1. Determination of sample sizes 

The estimate sample sizes required by the two-stage Monte Carlo simulation based 

method for calculating the SNL map are first estimated. For the first stage, eqn. (3.50) is 

taken as the stop criterion by assuming that the maximum error 1 0.5  . Since estimation 

of population variance 2ˆ w  , shown by eqn. (3.49), depends on the number of iterations 

used in the first stage, lower bound for sample size, 0n , of this stage thus cannot be 

determined in advance.  
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Lower bound for the sample size of the second stage, 0m , can be determined by eqn. 

(3.59) before computations. Since  1 0.25wa waP P  , it follows that  

 
 2 2 2 2

0 2 2
2 2

1.96 1 1.96 0.25
max

w wa wa w
w W w W

a A

q P P q
m  



    
    
  

 
. (3.85) 

Let the maximum error 2 0.5  , and it gives 0 768m  . Thus, 0 800m   is taken as 

sample size for the second stage of Monte Carlo simulation.  

 

3.6.1.2 Computational Results 

 

Figure 3.2 Convergent Trends of the Three Algorithms for Solving Example 1 

Figure 3.2 depicts the change of relative error values (in logarithmic values) for all three 

algorithms within 60 SNLs. It shows that (a) the relative error values for all three 

algorithms are decreasing when the total number of SNL increases and finally approach 
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to and fluctuate surround a trivial value; (b) the two hybrid PC-CA algorithms both 

outperform CA algorithm in terms of convergent speed. 

 

To further analyze characteristics of the two hybrid PC-CA algorithms, Figures 3.3 and 

3.4 intuitively illustrate their hybrid properties. According to Figure 3.3, it can be seen 

that after 26 SNLs the FPC part is terminated and CA part takes over the computation for 

hybrid FPC-CA algorithm. While, Figure 3.4 shows CPC part is stopped after 49 SNLs 

for hybrid FPC-CA algorithm. It is noted, in passing, that after termination of FPC and 

CPC, their CA part successively carry on the calculation with a step size equal to 

reciprocal of the cumulative total number of SNLs. Namely, for this example, step size of 

CA part, (
1

n
), of FPC-CA and CPC-CA begins with 

1

27
 and 

1

50
, respectively.  

 

Figure 3.3 Transformation between the FPC and CA Part of Hybrid FPC-CA 
Algorithm 
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Figure 3.4 Transformation between the CPC and CA Part  

of Hybrid CPC-CA Algorithm 

 

Table 3.1 gives the CPU time used by the three algorithms for solving Example 1 when 

different tolerance values are adopted ( f  for hybrid FPC-CA, while c  for CA and 

hybrid CPC-CA). According to Table 3.1, for any given accuracy level computational 

time used by the two hybrid PC-CA algorithms is significantly less than that used by the 

CA algorithm. In particular, for the highest accuracy level 0.20%f   or 0.20%c  , 

CPU time used by the FPC-CA (CPC-CA) is only 11% (45%) of the time consumed by 

conventional CA algorithm.  

 

It is worthy pointing out that conventional CA and CA parts of two hybrid algorithms 

both suffer an erratic fluctuation when the value of relative error achieves 3%. Two CA 

parts of hybrid algorithms perform better than conventional CA mainly because a 
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superior initial solution is provided. For this example, CA part can, on average, only 

slightly improve the accuracy level after termination of PC part, since values of relative 

error obtained by terminated FPC and CPC are 2.92% and 3.06%, while average value of 

the relative errors (100 loadings after termination step) obtained by their successive CA 

part is 1.77% and 2.55%.  

 

Table 3.1 CPU Time of Three Algorithms for Solving Example 1 

Tolerance 
Value 

f  or c  

CA 
(Seconds) 

Hybrid 
FPC-CA 
(Seconds) 

Hybrid 
CPC-CA 
(Seconds) 

10% 0.45 0.14 0.16 
5% 0.85 0.21 0.27 
1% 4.33 0.63 2.19 

0.50% 9.69 1.58 4.43 
0.20% 29.50 3.13 13.30 

 

3.6.1.3 Accuracy investigation of the solutions when the PC parts are terminated 

Figures 3.3 and 3.4 both show that the PC parts of two hybrid algorithms terminate after a 

number of SNLs. This sub-section intends to verify that the resultant solutions obtained 

by the terminated PC parts are already close enough to the solution of PA-SUEED 

problem. Tables 3.2 and 3.3 list link flow, link travel time and OD demand values 

obtained by the terminated PC parts (FPC after 26 SNLs and CPC after 49 SNLs.), 

respectively. The column entitled “SUE solution” of Tables 3.2 and 3.3 is the final results 

generated by the hybrid FPC-CA algorithm, which is regarded as a benchmark. 

 

Table 3.2 Link Flows/Times Generated by Two Terminated PC Parts 

and SUE Solutions for Example 1 
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Link 
sequence 

Terminated FPC Terminated CPC SUE solution 
Flow Time Flow Time Flow Time 

1 13.56 3.02 13.61 3.04 13.59 3.02 
2 8.65 3.25 8.71 3.26 8.63 3.25 
3 13.47 10.98 13.42 10.96 13.46 10.97 
4 22.21 4.91 22.31 4.92 22.23 4.92 
5 18.08 11.85 18.03 11.86 18.10 11.86 
6 13.56 3.02 13.61 3.04 13.59 3.02 
7 8.65 4.34 8.71 4.34 8.63 4.33 

 

Table 3.3 OD demands Generated by the Two Terminated PC Parts and  

SUE Solution for Example 1 

OD Pair Terminated FPC Terminated CPC SUE solution 
1 3  27.03 27.03 27.12 
2 4  26.73 26.74 26.81 

 

The relative errors between solutions from the two terminated PC parts and the SUE 

solution are used to measure the difference of these three sets of results, which are 

calculated as follows: 100%,
PC SUE

v a a
a SUE

a

v v
E a A

v


    for link flows; 

100%,
PC SUE

t a a
a SUE

a

t t
E a A

t


    for link travel time; 100%,

PC SUE
q w w
w SUE

w

q q
E w W

q


    for 

OD demand, where the superscript PC  stands for the two PC parts and SUE  represents 

the SUE solution. The maximal and average values of these relative errors among all the 

links/OD-pairs are calculated by 

 ˆ max ,v v
aE E a A  , 

v
a

v a A

E
E

A



;  ˆ max ,t t
aE E a A  , 

t
a

t a A

E
E

A



 

 ˆ max ,q q
wE E w W  , 

q
w

q w W

E
E

W



. 
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The maximum and average values are tabulated in Table 3.4. It shows that link 

flow/travel-time and OD demand values generated by the two terminated PC parts are 

quite close to the SUE solution. In other words, the results obtained by the terminated 

FPC and CPC parts are already accurate enough for practical applications.  

 

Table 3.4 Differences between the Results of Two Terminated PC Parts and the SUE 

Solution for Example 1 

 Link cost Link flow OD demand 
ˆ vE  vE  ˆ tE tE  ˆ qE  qE  

FPC 0.459% 0.249% 0.460% 0.349% 0.332% 0.315% 
CPC 0.248% 0.121% 0.666% 0.258% 0.332% 0.296% 

 

As shown in Figure 3.2, in the first 15 loadings, two hybrid algorithms possess a faster 

convergent rate than that of conventional CA. However, after 15 loadings and before the 

termination of PC parts (e.g. 15 to 49 loadings of CPC-CA) convergent rate of hybrid 

algorithms evidently slows down, this is because of the computational error of Monte 

Carlo simulation deteriorates the accuracy of self-adaptive step size mechanism of PC 

algorithm. Yet, it shows that the accuracy level (value of relative error) obtained at 15 

loadings are almost the same with that obtained at the termination of PC parts, thus 

indicates that when computational speed of PC parts is decelerated, the solution obtained 

is already accurate enough for practical applications. 

 

3.6.1.4 Sensitivity Test for the Sample Size of the Second-stage Monte Carlo Simulation 

Based on many numerical experiments, the estimator in first stage of Monte Carlo 

simulation all converge quite fast (in around 50 iteration), and the required sample size 
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for first stage thus is usually quite small (less than 100). However, the estimator in the 

second stage is in general not stable, and it usually takes hundreds of or even thousands 

of simulations to converge. Thus, in this sub-section, the estimator for lower bound of the 

sample size, 0m , for the second-stage is verified using the Example 1.  

 

 

Figure 3.5 Sensitivity Test for the Sample Size of Monte Carlo Simulation 

 

Based on the foregoing analysis, 0m  is determined to be 800 for Example 1. Two tests 

are conducted here to estimate the impact of this sample size on the accuracy of SUE 

solutions. Firstly, the sample size 0m  for different experiments is adjusted and the 

accuracy of corresponding computational results is tested. Without loss of generality, the 

hybrid CPC-CA algorithm is utilized for this test. Herein, the algorithm is run for 1000 
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iterations for each of 14 different experiments with simple sizes ranging from 100 to 

1400 in each iteration. The average of relative error values in the last 10 iterations is 

adopted to represent the numerical convergence of each experiment, which is depicted by 

Figure 3.5. Figure 3.5 indicates that (a) when sample size is less than 400, it largely 

influences the accuracy, and the accuracy is greatly improved as the sample size increases, 

which coheres with the study of Daganzo (1979, pp 49-51); (b) When sample size is 

larger than 600, the improvement in terms of the accuracy is quite modest. This result 

shows that sample size 0m  is a relatively loose bound, thus a sample size of 0 800m   is 

more than sufficient, and it allows some proper relaxations for practical implementations.  

 

Secondly, due to the size of this small-scale example (only 2 paths for each OD pair), a 

closed-form expression is available for the path choice probability. Thus, based on the 

OD demand obtained from the first-stage of Monte Carlo simulation method, the link 

flows can be theoretically calculated. Another test of this sub-section aims to contrast 

these theoretical link flows with the simulation results, to test the accuracy of the second-

stage of Monte Carlo simulation. The computational results of terminated FPC, which is 

the “SUE solution” in Table 3.2, are adopted for this test. It should be noted that the link 

flow values provided in the first column of Table 3.2 are calculated by Monte Carlo 

simulation based on the fixed link travel time values in the second column.  

 

Taking OD pair 1 3  as an example, there are 2 paths connecting this OD: path 1, link 3; 

path 2, link 146. Shown in Table 3.2, path flows simulated for these two paths are 

1 13.47f   and 2 13.56f  , respectively. Thus, the OD demand: 



Chapter 3  Two Efficient Prediction-Correction Algorithms for PA-SUEED 
 

 79

                                            1 3 1 2 27.03q f f    . 

Based on the link travel time value shown in Table 3.2, the perceived path travel times of 

these two paths follow this form: 

   1 3,1 10.98,1C N f   and    1 3,2 10.95,0.8C N f  . 

Thus, the theoretical flow on path 1, denoted by 1f , equals to: 

    1 1 3 1 3,1 1 3,1 1 3,2

10.95 10.98
27.03 Pr 27.03 13.27

1 0.8
f q p C C   

         
f f  

For traffic flow on path 1, difference between the theoretical solution and the solution 

obtained from Monte Carlo simulation is only 0.2 (13.47 13.27 0.2  ), which is less 

than maximal error 2 0.5  . It also supports the validity of sample size 0 800m  .  

3.6.2 Example 2 

The Sioux-Falls network has been widely used in transportation studies, which comprises 

24 nodes, 76 links and 528 OD pairs. Example 2 is a modified Sioux-Fall network, using 

the following asymmetric link travel time functions (Bar-Gera, 2011):  

    

4

0 ˆ
1 0.15

1
a a a

a a
a a

v k v
t t

k h

          
v , (3.86) 

where â  is the opposite link of a  on a two-way street, âv  is the link flow on link â , and 

 is the free-flow travel time of link a  and ah  is the traffic flow capacity of link a A . 

The data for free-flow travel times and traffic flow capacities of Sioux-Falls network can 

be found in Bar-Gera (2011). It is not difficult to check that Jacobian matrix of all these 

link-travel-time functions is asymmetric.  

 

0
at
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Regarding sample sizes of the two-stage Monte Carlo simulation based method, the same 

size for the first stage is estimated by eqn. (3.50) with the maximum error 1 0.5  . While 

for the second stage, the lower bound of sample size, 0m , is estimated by eqn. (3.85), and 

its tolerance value there is set to be  2 min , 5%ah a A    , where ah  is flow capacity 

on link a A . Accordingly, it gives that 0 8025m   for this example. 

 

The three algorithms are then utilized to solve the PA-SUEED problem on this example. 

PC parts of hybrid FPC-CA and hybrid CPC-CA algorithms terminate at 98 SNLs and 

151 SNLs, respectively. Figure 3.6 gives the convergent trend of the three algorithms 

within 200 SNLs. It can be observed that all these three algorithms can converge, and 

meanwhile before they approach an accurate solution the two hybrid algorithms have 

much higher convergent speed than that of CA. It should be noted that CA parts of hybrid 

algorithms, for this example, can only slightly improve the accuracy level of final results, 

in view that the values of relative error obtained by terminated FPC and CPC are 0.33% 

and 0.66%, while average value of relative errors obtained by their CA parts in the next 

100 loadings are 0.39% and 0.51%.  
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Figure 3.6 Convergent Trend of the Three Algorithms for Solving Example 2 

 

Similar to Table 3.1, Table 3.5 gives the CPU time for each of the three algorithms in 

terms of different accuracy levels. According to this table, it can be seen that the hybrid 

CPC-CA and hybrid FPC-CA are also superior to the CA algorithm at any accuracy level 

for solving this example. 

 

Table 3.5 CPU Time of Three Algorithms for Solving Example 2 

Tolerance 
Value 

f  or c  

CA 
(Seconds) 

Hybrid 
FPC-CA 
(Seconds) 

Hybrid 
CPC-CA 
(Seconds) 

20% 1235.47 164.23 172.64 
15% 1666.02 164.23 195.19 
10% 2479.89 209.19 262.83 
5% 4711.08 276.61 397.98 
1% N/A 523.97 724.61 

 

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120 140 160 180 200

L
o

g
ar

it
h

m
ic

 V
al

u
e 

o
f 

R
e

la
ti

ve
 E

rr
o

r 
V

a
lu

e

Total number of stochastic network loadings

hybrid FPC-
CA
hybrid CPC-
CA



Chapter 3  Two Efficient Prediction-Correction Algorithms for PA-SUEED 
 

 82

Analogous to the data pattern shown in Table 3.4, the maximum and average of the 

relative errors between link flows, link travel times and OD demands generated by the 

terminated PC parts and the SUE solution are tabulated in Table 3.6. It shows that when 

the PC parts are terminated, the resultant link flows, link travel times and OD demands 

are quite close to the SUE solution. For example 2, as shown in Figure 3.6, convergent 

rates of two PC parts are decelerated at around 70 SNLs, and the values of relative error 

obtained there are nearly the same with those obtained at the termination steps, thus 

similarly to example 1 the SUE solution outputted at those steps when convergent rate of 

PC are decelerated are already sufficiently accurate for use. 

 

Table 3.6 Differences between the Results of Two Terminated PC Parts and the SUE 

Solution for Example 2 

 Link cost Link flow OD demand 
ˆ vE  vE  ˆ tE tE  ˆ qE  qE  

FPC 0.483% 0.153% 0.839% 0.216% 0. 453% 0.105% 
CPC 0.925% 0.300% 1.71% 0.334% 0. 448% 0.112% 

 

3.7 Conclusions 

In this chapter, two VI models were developed for the probit-based asymmetric SUE 

problem with elastic demand. To solve these two VI models, two hybrid PC-CA 

algorithms were then put forward. Both the VI models and solution algorithms rely on a 

stochastic network loading (SNL) map. A link-based two-stage Monte Carlo simulation 

based method was proposed to calculate the SNL map, where its sample size for each 

stage was estimated by using statistical analysis techniques. The two-stage procedure 
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rather than an integrated one-stage procedure was utilized in this study, due to a better 

stability of the two-stage case. 

 

The CA method adopts predetermined step sizes. While, PC parts of the two hybrid 

algorithms use the self-adaptive steps sizes, thus they can provide a superior convergent 

speed. Superiority of hybrid algorithms was numerical demonstrated by two numerical 

examples. The computational results for these examples indicated that PC parts of the 

two hybrid algorithms possess much faster convergent speed than that of conventional 

CA until they approach a solution. Moreover, CA parts of hybrid algorithms also 

outperform conventional CA because of better initial solutions. 
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CHAPTER 4 PA-SUEED WITH LINK CAPACITY CONSTRAINTS 

This chapter addresses the PA-SUEED problem with link capacity constraints. Its 

mathematical definition, named as generalized SUE conditions, is first proposed. A 

variational inequality (VI) model is then developed whose solutions can fulfill the 

generalized SUE conditions. Solution existence, Lipschitz-continuous and monotone 

properties of this VI model are rigorously proven, which ensure the convergence of a 

projection-based prediction-correction (PC) algorithm to solve this model. 

4.1 Background 

As per Section 2.2.3, link capacity constraints are un-neglectable for the traffic 

assignment problem, since the link flow in practice would never exceed its physical 

capacity. Moreover, in some particular road segments, a threshold is usually added to the 

link flow by the network authorities to mitigate traffic congestions or to ameliorate its 

negative impacts on the environment (e.g., Yang and Bell, 1997; Yang and Huang, 2005).  

 

For decades, traffic assignment problem with link capacity constraints has been a 

sophisticated and complicated research topic, see Section 2.2.3 for a review of relevant 

studies. For the SUE problem with link capacity constraints, its formulation and 

computation becomes even more difficult and complicated, and till now only two studies 

can be observed, which are Bell (1995a) for logit-based SUE with link capacity 

constraints and Meng et al. (2008) in the case of General SUE. As mentioned at Section 

2.2.3, these two existing studies rely on the assumption of separate link travel time 

functions and fixed demand. Thereby, due to its complicated properties, the PA-SUEED 
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problem with link capacity constraints is still an open question, despite its superior fitness 

to the practical conditions.  

 

To solve the PA-SUEED with link capacity constraints, two questions are subsequently 

brought up: (a) is there a solution for the generalized SUE conditions? and (b) how to 

find a solution if it does exist. To answer these two questions, this chapter will develop a 

VI model defined on a non-empty, compact and convex set, and show that any solution of 

the VI model fulfils the generalized SUE conditions. It is rigorously demonstrated that 

the proposed VI model is monotone and Lipschitz continuous. These properties of the 

proposed VI model imply that it has at least one solution, which answers the question (a). 

More importantly, monotonicity and Lipschitz-continuity of the proposed VI model 

guarantee the convergence of self-adaptive prediction-correction (PC) algorithm 

proposed by He and Liao (2002) as a solution algorithm. 

 

Section 4.2 of this chapter gives mathematical definitions for the link flow solution of 

PA-SUEED with link capacity constraints. Section 4.3 develops a VI model and 

rigorously proves its monotone and continuous properties. Section 4.4 presents the 

convergent self-adaptive PC algorithm. Section 4.5 uses a numerical example to validate 

the proposed methodology. Conclusions are then provided in Section 4.6. 

4.2 Generalized SUE Conditions 

Based on the strongly connected network  ,G N A  defined at Section 3.2, it is further 

assumed that each link a  in set A  has the link capacity constraint: 
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 ,a av H a A  , (4.1) 

where aH  is a given positive threshold/capacity on link a A , and A  is a subset of A . 

Note that the capacity constrained links are allowed to be partial of or all of the links on 

the network. Other than using physical capacity of traffic flow on the link, this threshold 

is sometimes determined to be a relatively smaller value by network authorities so as to 

mitigate traffic congestion and/or vehicle emission (Yang and Huang, 2005). In this 

chapter, the link travel time function vector  t v  is assumed to have a positive definite 

Jacobian matrix  vt v , which is a sufficient condition of the strict monotonicity 

(Nagurney, 1993). This assumption of positive definite Jacobian matrix is usually made 

in previous studies for asymmetric traffic assignment problems (e.g., Dafermos, 1980). 

 

Recall that in Chapter 3, the OD demand is assumed to be a continuously differentiable, 

non-increasing and bounded function with respect to the satisfaction   w wS c v , denoted 

by  wD  , namely: 

     ,w w w w wq D S q w W  c v  (4.2) 

This function was assumed to be generic to the fixed and elastic demand cases in Chapter 

3. However, when dealing with the link capacity constrained traffic assignment problem, 

in the case of fixed demand, the solution may not exist; for instance, considering there is 

only one link connecting an OD pair, and the OD demand is much larger than the 

capacity constraint. Clearly, it is impossible to have any solution in such case. Therefore, 

to cope with the PA-SUEED with link capacity constraints in this chapter, it is reasonably 
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assumed that travel demand between an OD pair will vanish when the travel time 

between this OD pair approaches infinity, i.e., 

   lim 0,w
x

D x w W


   (4.3) 

Recall that the following equation is proposed in Section 3.2 as a mathematical definition 

for the link-flow solution of PA-SUEED: 

                                           T
,a w w w wa

w W

v D S P a A


   t v t v , (4.4) 

and in this section a mathematical definition is also addressed in the first place for the 

PA-SUEED with link capacity constraints, which is named as generalized SUE 

conditions. 

 

For the DUE problem with link capacity constraints, it has been widely recognized that it 

equals to a conventional DUE problem in terms of the generalized link travel time (e.g., 

Larsson and Patriksson, 1995). This generalized link travel time amounts to the 

summation of actual link travel time and the optimal Lagrangian multiplier of its link 

capacity constrain. To be consistent with the generalized DUE conditions, the generalized 

SUE conditions are defined as: a link flow pattern  is the solution for PA-

SUEED with link capacity constraints if and only if there exists a vector of Lagrangian 

multipliers corresponding to link capacity constraints, denoted by  T* * ,au a A u , such 

that 

               T T* * ,a w w w w wa w w
w W

v D S P a A


          t v λ u t v λ u  (4.5) 

 ,a av H a A   (4.6) 

 T
,av a A v



Chapter 4  PA-SUEED with Link Capacity Constraints 

 89

  * 0,a a au v H a A     (4.7) 

 * 0,au a A   (4.8) 

where vector  *
wλ u  is defined by 

    
T

* * * , ,w
w wk a ak w

a A

u k R w W


       
 

λ u u . (4.9) 

For the sake of presentation, the Lagrangian multipliers satisfying eqns. (4.5)-(4.8) are 

called as optimal Lagrangian multipliers. Note that eqns. (4.6)-(4.8) are the 

complementary slackness conditions between the SUE link flow solution and the optimal 

Lagrangian multipliers. If there is no link capacity constraint, it implies that * 0,au a A  . 

It should be noted that the flow conservation constraints should also be satisfied here.  

 

When the optimal Lagrangian multipliers are attained, the addressed capacity constrained 

problem is equivalent to a standard PA-SUEED problem in terms of the generalized link 

travel time functions: 

    
 

*

*
,

ˆ , ,
, \

a a

a

a

t u a A
t a A

t a A A

   


v
v u

v
, (4.10) 

which can be simply solved by the algorithms discussed in Chapter 3. To solve the PA-

SUEED problem with link capacity constraints thus becomes searching for the optimal 

Lagrangian multipliers. As aforementioned, the following two questions should be 

addressed: 

(a) Does the optimal Lagrangian multiplier solution exist? 

(b) How to find such a solution if it really exists. 
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To answer these two questions, Section 4.3 first gives a suitable VI model for the 

generalized SUE conditions and Section 4.4 then introduces a global convergent solution 

algorithm for solving this VI model. 

 

Remark 4.1: Formulation for the DUE problem with link capacity constraints can be 

easily handled by directly taking the link capacity constraints as side constraints into a 

model for DUE problem without link capacity constraint (e.g. Patriksson, 1994a; Larsson 

and Patriksson, 1999). However, for SUE problems with link capacity constraints, the 

challenges in formulation are considerably enlarged. For instance, directly adding link 

capacity constraints into the models for PA-SUEED problem is not effective. Even for 

the SUE problem with separable link travel time functions, adding link capacity 

constraints to the optimization model proposed by Daganzo (1982) or Maher and Zhang 

(2000) does not give us a suitable formulation. 

4.3 Mathematical Model 

The complementary slackness conditions, eqns. (4.6)-(4.8), can be regarded as a 

Nonlinear Complimentarity Problem (NCP) of the vector of Lagrangian multipliers 

 T
,au a A u . It is well known that when the feasible set of  T

,au a A u  is the 

whole non-negative orthant, this NCP model is equivalent to the following VI model, 

denoted by  ,
A

VI Φ : 

    * * 0,
A

   
T

Φ u u u u , (4.11) 
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where  0,
A

au a A   u  denotes the feasible set and  Φ u  is a A -dimensional 

vector function defined below.  

       , :
A A

a aA H v a A       
T

Φ u H v u u , (4.12) 

where  ,aH a A 
T

H  is the vector for all the link capacity constraints, and  Av u  is 

the sub-vector of vector   v u      T

\,A A Av u v u , where  v u  is a link flow solution 

for the PA-SUEED problem with the following generalized link travel time functions (no 

link capacity constraint):  

  
 
 

,
ˆ , ,    

, \

a a

a

a

t u a A
t a A

t a A A

   


v
v u

v
. (4.13) 

In other words, vector  v u  is a solution of the fixed-point model with Lagrangian 

multiplier vector u : 

         T Tˆ ˆ, , ,a w w w wa w
w W

v D S P a A


      u t v u t v u , (4.14) 

where     Tˆ ˆ, , ,at a A t v u v u denotes a vector of all the generalized link travel time 

functions.  v u  is referred to as parametric SUE link flow vector. In reality, sub-vector 

 Av u  is a collection of the parametric SUE link flows on those links with link capacity 

constraints. 

 

Parametric SUE link flow vector  v u  is an implicit mapping of Lagrangian multiplier 

vector u . It can be easily shown that the generalized link travel time function vector 

 ˆ ,t v u  is strictly monotone with respect to link flow vector v  for any given non-
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negative Lagrangian multiplier vector u .  is therefore unique for any given u  

(Cantarella, 1997). Thereby, 
 
can be solved by the solution algorithms discussed in 

Chapter 3.  

4.3.1 Monotone and Continuous Properties of the Vector Function 

The existence of solution to VI model  ,
A

VI Φ  as well as the global convergence of 

its solution algorithm depends on some fundamental properties of the vector function 

 Φ u . These properties mainly include monotonicity and continuity of vector function 

 Φ u  (e.g. Patriksson, 1994b). Thus, the following three important properties of vector 

function  Φ u  are highlighted in Propositions 4.1 to 4.3 with rigorous proofs. 

 

Proposition 4.1: Vector function  Φ u  is monotone on A

 , namely, 

       T
0, ,

A

         Φ u Φ u u u u u . (4.15) 

 

Proof. 

For any two distinct non-negative Lagrangian multiplier vectors u  and u , let  v u  and 

 v u  denote the corresponding SUE link flow solutions. Hence, there should be two 

SUE path solutions     T
,w w W  f u f u  and     T

,w w W  f u f u  such that 

      v u f u , (4.16) 

      v u f u , (4.17) 

 v u

 v u
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       ˆ ˆ ,w w w w w wD S w W    f u c p c , (4.18) 

       ˆ ˆ ,w w w w w wD S w W    f u c p c , (4.19) 

where four vectors:   Tˆˆ ,w w   c t v u u ,   Tˆˆ ,w w   c t v u u , 

    T
ˆ ˆ ,w wk w wp k R  p c c  and     T

ˆ ˆ ,w wk w wp k R  p c c . 

 

Since satisfaction function  ˆw wS c  is concave (Sheffi, 1985; Cantarella, 1997), it follows 

that  

         T
ˆ ˆ ˆ ˆ ˆ ,w w w w w w ww wS S w W       c c p c c c , (4.20) 

         T
ˆ ˆ ˆ ˆ ˆ ,w ww w w w w w wS S w W       c c p c c c . (4.21) 

After multiplying both sides of eqns. (4.20) and (4.21) by   ˆw w wwD S c  and   ˆw w wD S c , 

respectively, it gives 

             T
ˆ ˆ ˆ ˆ ˆ ,w w ww w w w ww w w wwD S S S w W         c c c f u c c , (4.22) 

             T
ˆ ˆ ˆ ˆ ˆ ,w w w w ww w w w ww wD S S S w W         c c c f u c c . (4.23) 

Adding up eqn. (4.22) and eqn. (4.23) yields that 

 
         

     T

ˆ ˆ ˆ ˆ

ˆ ˆ , .

w w w w w w w w w ww

w w w w

D S D S S S

w W

         

        

c c c c

f u f u c c
 (4.24) 

namely,  

 
         

     T

ˆ ˆ ˆ ˆ

ˆ ˆ , .

w w w w w w w w w w

w w w ww

D S D S S S

w W

         

        

c c c c

f u f u c c
 (4.25) 

The monotonicity of OD demand functions implies that   
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          ˆ ˆ ˆ ˆ 0,w w w w w w w w w wwD S D S S S w W           c c c c . (4.26) 

According to eqns. (4.25) and (4.26), it implies that:   

      T
ˆ ˆ 0,w w w w w W        f u f u c c . (4.27) 

Because   Tˆˆ ,w w   c t v u u  and   Tˆˆ ,w w   c t v u u , eqn. (4.27) can be rewritten by   

           T T Tˆ ˆ, , 0,w w w w w W            f u f u t v u u t v u u . (4.28) 

After rearranging the left hand side of eqn. (4.28), it follows that  

       
               

TT

, ,

0, .

w w A w A w

w W

                   
 

v u v u t v u t v u v u v u u u
 (4.29) 

where the four link flow vectors associated with OD pair w :     ,
T

w wav a A  v u u  , 

    ,
T

w wav a A  v u u ,     , ,
T

waw A v a A  v u u ,     , ,
T

waw A v a A  v u u  

with the elements: 

     ,
w

w
wa wk ak

k R

f a A


   v u u , (4.30) 

     ,
w

w
wa wk ak

k R

f a A


   v u u . (4.31) 

According to eqn. (4.29), it gives that 

   
               TT

, ,

0.

w w w A w A
w W

                   



 v u v u t v u t u v u v u u u
 (4.32) 

namely, 

                           T T

A A
                     v u v u u u v u v u t v u t v u . (4.33) 
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The right hand side of eqn. (4.33) is non-negative since link travel time function vector 

 t v  is strictly monotone. Thus, if    A A
 v u v u , it gives that  

      T
0A A

       v u v u u u . (4.34) 

Otherwise, if    A A
 v u v u , it follows that 

      T
0A A

       v u v u u u . (4.35) 

According to eqns. (4.34) and (4.35), it is straightforward to see that 

 
             

      

T T

T
                                          0.

A A

A A

H H             

       

Φ u Φ u u u v u v u u u

v u v u u u
 (4.36) 

In other words, vector function  Φ u  is monotone on A

 .    □ 

 

 

Proposition 4.2: Vector function  is continuously differentiable on A

 . 

 

Proof. 

The implicit function theorem is used to prove this proposition. A vector function  g v,u  

on A
  is first defined as follows: 

     T
,ag a A g v,u v,u , (4.37) 

where 

              T Tˆ ˆ, , , ,
w

w
a a w w w wk w ak

w W k R

g v D S p a A
 

         v u t v u t v u . (4.38) 

 Φ u
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Let  ,vg v u  and  ,ug v u  be Jacobian matrices of vector function  g v,u  with 

respect to vector v  and u , respectively. According to eqns. (4.37)-(4.38), these two 

Jacobian matrices have the explicit expressions: 

 
         

      

T

T

ˆ

, ˆ, ,

ˆ                       , , ,

w
w w w w

w W w

w w c w w
w W

D

S

D





            

        





v v

v

v u
g v u I p p t v u

v u p t v u

 (4.39) 

 
         

     

T

T

ˆ

, ˆ, ,

ˆ                   , , ,

w
w w w w

w W w

w w c w w
w W

D

S

D





            
          





u u

u

v u
g v u p p t v u

v u p t v u

 (4.40) 

where wp , wS , and  ,wD v u  are abbreviations of    T
ˆ , ,T

w wk w wp k R  p t v u , 

  ˆ ,T
w wS  t v u  and    ˆ ,T

w w wD S  t v u , respectively. It should be noted that the 

derivation of eqns. (4.39) and (4.40) uses the following property of satisfaction: 

 
  
     

ˆ
ˆ , ,

ˆ
w w

wk w w
wk

S
p k R w W

c


  



c f
c f

f
. (4.41) 

 

For any given 0

A

u , an unique  0 0v v u  can be obtained. Then, I proceed to prove 

that  0 0,vg v u  is non-singular. It is readily to verify that 

    0 0 0
ˆ , v vt v u t v . (4.42) 

As Jacobian matrix  0vt v  is positive definite,  0vt v  is thereby non-singular and its 

inverse   1

0


  vt v  is also positive definite. According to eqn. (4.39), Jacobian matrix 

 ,vg v u  at  0 0,v u can be rewritten as follows: 
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         

      

1 T0 0
0 0 0

T

ˆ0 0 0

,
,

                         , .

w
w w w w

w W w

w w c w w
w W

D

S

D







                   
         





v v

v

v u
g v u t v p p

v u p t v

 (4.43) 

There are three terms in the brace of the right-hand-side of eqn. (4.43). The first term 

  1

0


  vt v  is positive definite. The second term is positive semi-definite because 

 0 0,
0w

w

D

S





v u

 and    T

w w w w
    p p  is positive semi-definite. Since 

 T

ˆw c w w
     p  is a negative semi-definite matrix (Page 320, Sheffi, 1985) and 

 0 0, 0wD v u , the third term is thus also positive semi-definite. Hence, the whole part 

in the brace of the right hand side of eqn. (4.43) is a positive definite matrix. In other 

words,  0 0,vg v u  equals to a positive definite matrix multiplied by a non-singular 

matrix. Therefore,  is non-singular. 

 

According to eqns. (4.39)-(4.40), it can be seen that  and  both are 

continuous with respect to  ,v u . As  0v u  is the parametric SUE link flow vector, i.e., 

a solution to the fixed-point model (4.14), it follows that 

  0 0, g v u 0 . (4.44) 

Since  is a non-singular matrix,  v u  is continuously differentiable in a 

neighborhood of 0u  according to the implicit function theorem (Theorem 5.2.4, Ortega 

and Rheinboldt, 1970) and it has the gradient: 

 0 0,vg v u

 ,vg v u  ,ug v u

 0 0,vg v u
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      1
, ,


      u v uv u g v u g v u . (4.45) 

As  v u  is continuously differentiable on A

 ,  Φ u  is thus continuously differentiable 

on A

  according to its definition shown in eqn. (4.12).  □ 

Since vector function  v u  is continuously differentiable on A

 , its Jacobian matrix 

 uΦ u  is thus continuous on A

 . The 2-norm of  uv u  is therefore bounded from 

above over any non-empty and compact set in A

  (such a set is denoted by  ), namely, 

there is a positive constant L  such that 

  
2

,L   u v u u . (4.46) 

According to the mean-value theorem (Theorem 3.2.4 of Ortega and Rheinboldt, 1970), it 

can be seen that  

        
2 2

, ,L             Φ u Φ u v u v u u u u u . (4.47) 

In other words, the following proposition can be obtained. 

 

Proposition 4.3: Vector function  is uniform Lipschitz-continuous on any non-

empty and compact set in A

 . 

4.3.2 A Restricted Variational Inequality Model  

Though three importance properties of vector function  Φ u  are proven, it is still quite 

difficult to show the existence of a solution to VI model  ,
A

VI Φ  by means of some 

existing sufficient conditions, e.g., the coercivity condition (Facchinei and Pang, 2003). It 

 Φ u
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is well known that a VI model has at least one solution if it is continuous over a compact 

set (Corollary 2.25, Facchinei and Pang, 2003). However, VI model  ,
A

VI Φ  does not 

fulfill the compactness condition because A

  is an unbounded set. This section thus 

aims to build a new VI model using the vector function  Φ u  and a non-empty, compact 

and convex set. 

 

According to the assumptions on OD demand, eqns. (3.6) and (4.3), and also the fact that 

 min 0a
a A

H


 , it can be seen that there is a positive number 1M  such that for any number 

1K M , it gives 

    1 2 min ,w a
a A

D K H w W


      , (4.48) 

where  1 2, 0,1    are two given parameters, say 1 0.5   and 2 0.9  . Since 

multivariate error variable  T
,w wk wk R  ζ  for OD pair w W  has a strictly positive 

and continuously differentiable probability density function, a positive number 2M  can 

be attained such that for any number 2K M : 

       
 

 
2max

1

min
Pr 1 , ,

w

aa A
wk wl a w

k R a A w
k l

H
t K l R w W

W q


 


  
              

  v , (4.49) 

where W  is the number of OD pairs and vector 
T

max max ,a w
w W

v q a A


    
 

v . By 

taking  1 2max , 0M M M  , a non-empty and compact convex set A

   is built as 

follows: 
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   1 20 max , ,au M M M a A     u . (4.50) 

Accordingly, a restricted VI model is defined on set   using vector function  Φ u , 

denoted by  ,VI Φ : Find a vector * u  such that 

    * * 0,   
T

Φ u u u u . (4.51) 

As vector function  Φ u  is continuous and   is a non-empty, convex and compact set, 

thus the restricted model  ,VI Φ  has at least one solution according to Corollary 2.25 

of Facchinei and Pang (2003). 

 

However, equivalence between this new VI model  ,VI Φ  and the generalized SUE 

conditions is not clear. This equivalence condition is rigorously proven, which is 

concluded in Proposition 4.4. 

 

Proposition 4.4:  * * ,au a A u  is a solution of  ,VI Φ  if and only if *u  and  *v u  

fulfill the generalized SUE conditions (4.5)-(4.8). 

 

Proof. 

Necessary condition 

Suppose that  * * ,au a A u  is a solution of  ,VI Φ  and it is then shown that 

 * * ,au a A u  and  *v u  fulfills the generalized SUE conditions. 
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It is first proven that * ,au M a A    by using an apagogical approach as follows. 

Assume that there is at least one link b A  with *
bu M . Then, define a specific feasible 

vector u : 

  T* , \ , 0.5a a bu u a A b u M     u . 

After substituting u  in the VI model  ,VI Φ  with vector u , it follows that  

     * 0.5 0b bH v M M   u . (4.52) 

namely,  

  *
b bv Hu . (4.53) 

Then, it is shown that  *
b bv Hu  by analyzing the following two cases: 

Case 1: Suppose there is at least one path between O-D pair w W  not passing through 

the particular link b , say 0 wk R , with 

  
0

* *
1

w
wk a ak

a A

u M


    u . (4.54) 

Let wb wR R  be the set of all paths between OD pair w W  using link b and  *
wbv u  be 

the sum of traffic flow of all the paths between OD w W pair passing though the 

particular link b, namely: 

             * T * * * *ˆ ,
wb

wb w w w wk w w
k R

v D S p


      u t v u u c f u λ u . (4.55) 

Thus, 

    * *
b wb

w W

v v


 u u . (4.56) 
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According the assumption that OD demand function for OD pair w W  has the upper 

bound wq  and eqn. (4.55), it follows that 

 
            

     

* T * * * *

* *

ˆ ,

                 .

wb

wb

wb w w w wk w w
k R

w wk w w
k R

v D S p

q p





      

 





u t v u u c f u λ u

c f u λ u
 (4.57) 

As the path choice probability 

          
     

* * * *

* *

Pr  

                                            ,  and , .

wk w w wk wk wk

wl wl wl w wb

p c

c l R l k k R

      

        

c f u λ u f u u

f u u
(4.58) 

In the right hand side of eqn. (4.58), in the bracket, the perceived travel time on path 

wk R  must be less than or equal to that on each of all the other paths between OD 

w W , including the particular path 0 wk R . Therefore, 

     
         

0 0 0

* *

* * * * Pr , .

wk w w

w w
wk wk a ak wk a ak wk wb

a A a A

p

t t k R
 

 

 
             
 

 

c f u λ u

v u u v u u
(4.59) 

For any path wbk R , it can seen that 

 

         

     

   

   

   

0 0

0

0

0

* * * *

max * *

max * * *

\{ }

max * *

\{ }

max
11 .

w w
a ak wk a ak wk

a A a A

a wk wk
a A

w
a wk b a ak

a A a A b

w
a wk a ak

a A a A b

a
a A

t t

t

t u u

t M u

t M

 



 

 



 
        

  

 
     

 
 

     
 

   

 



 

 



v u u v u u

v u u

v u

v u

v

 (4.60) 

According to eqns. (4.57), (4.59) and (4.60), it shows that 
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      
0

* max
1Pr 1

wb

wb w wk wk a
k R a A

v q t M
 

         
 

 u v , (4.61) 

As per eqn. (4.49), eqn. (4.61) implies that 

  
 2*

min a
a A b

wb

H H
v

W W


 
 u . (4.62) 

Case 2: Assume  *
wk u  for each path wk R  is larger than 1M , i.e., 

  * *
1 ,w

wk a ak w
a A

u M k R


      u . (4.63) 

Therefore, the satisfaction      * *
w w wS c f u λ u  fulfills the condition:  

      * *
1w w wS M  c f u λ u . (4.64) 

According to the assumption that the OD demand function is non-increasing and eqn. 

(4.48), it can be seen that 

           * * 2
1 min b

w w w w w a
a A

H
D S D M H

W W


    c f u λ u . (4.65) 

In other words,  

           * * * *

w

w b
wb wk bk w w w w

k R

H
v f D S

W

    u u c f u λ u . (4.66) 

Based on eqns. (4.62) and (4.66), it can be concluded that  

    * *
b wb b

w W

v v H


 u u . (4.67) 

However, eqn. (4.67) contradicts eqn. (4.53), thus the hypothesis  is incorrect. In 

other words,   

 * ,au M a A   . (4.68) 

*
bu M
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To further prove the necessary conditions, the following two specific vectors for any link 

a A  are developed: 

       T* *
1 1, \ , 1 ,b b a aa u u b A a u u M a A          u , (4.69) 

     T* *
1, \ , ,b b b aa u u b A a u u a A       u . (4.70) 

Since these two vectors are in set  , substituting vector u  of VI model  ,VI Φ  with 

these two particular vectors, respectively, yields that  

    * * *
1 0a a aH v M u          u , (4.71) 

    * * *
1 1 0a a aH v u         u . (4.72) 

Since * 0aM u  , eqn. (4.71) implies that  

  * * ,a av H a A  u . (4.73) 

In accordance with the fact that * 0au  , it gives that 

   * * * 0,a a aH v u a A   u . (4.74) 

Hence, eqn. (4.72) in conjunction with eqn. (4.74) imply that  

   * * * 0,a a aH v u a A   u . (4.75) 

In other words, *u  and  *v u  fulfill the generalized SUE conditions. 

 

Sufficient condition 
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Suppose that *u  and  *v u  satisfy the generalized SUE conditions expressed by eqns. 

(4.5)-(4.8). And using the similar tactic to eqns. (4.52) to (4.68), it can be shown that 

*0 ,au M a A    . In addition, eqns. (4.5) to (4.8) imply that 

  *
A H v u 0 , (4.76) 

   T
* * 0A H v u u . (4.77) 

For any u , it shows that 0u . Thus, according to eqns. (4.76)-(4.77), it follows that 

      T T
* * *

A A  H v u u H v u u . (4.78) 

Rearranging eqn. (4.78) yields that 

     T
* * 0A  H v u u u . (4.79) 

That is, 

    T* * 0 Φ u u u . (4.80) 

It then proves the sufficient condition.   □     

 

 

Since  ,VI Φ  has at least one solution, Proposition 4.4 therefore confirms the 

existence property of solution for the PA-SUEED problem with link capacity constraints. 

Moreover, since the first VI model  ,
A

VI Φ  is equivalent to the generalized SUE 

conditions, thus  ,
A

VI Φ  also has at least one solution, with the aid of  ,VI Φ . As 

vector function  Φ u  is only monotone rather than strictly or strongly monotone, 
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solution to the restricted VI model  ,VI Φ  may not be unique. In other words, the 

optimal Lagrangian multipliers involved in generalized SUE conditions are not unique. 

While, it should be pointed out the SUE link flow solution is unique for any given 

optimal Lagrangian multiplier solutions. 

 

The three important properties of vector function  Φ u  are all available for  ,VI Φ . 

Its monotone and uniform Lipschitz-continuous properties are prerequisites for the global 

convergence of many solution algorithms. To sum up, the new VI model  ,VI Φ  not 

only helps in demonstrating the existence of solution to PA-SUEED with link capacity 

constraint, but also inherits the three important properties proved in Section 4.3.1. These 

properties can guarantee the global convergence of some algorithms for solving the VI 

models. 

4.4 Solution Algorithm 

The projection operation on set   of VI model  ,VI Φ  is also effortless, which is 

solving a PA-SUEED problem with generalized link travel time functions. Thus, it is 

convenient to choose the convergent self-adaptive Prediction-Correction (PC) algorithm 

proposed by He and Liao (2002) for solving  ,VI Φ , which was previously used in 

Chapter 3. For completeness, procedures of self-adaptive PC for solving  ,VI Φ  are 

summarized as follows: 
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Step 0: (Initialization). Choose an initial vector     T
1 1 0,au a A  u , three constants 

2 10 1    ,  0,2 , and initial step size  1 0  . Let the number of 

iterations 1n  . 

Step 1: (Projection with step size adjustment). Find vector  nu  with a proper step size 

 n  through the following procedure: 

Step 1.1: For vector  nu , first calculate the parametric SUE link flow vector 

      T

,n n
av a A v u u , which is a PA-SUEED problem with 

generalized link travel time functions. Then compute 

      T

,n n
a aH v a A  Φ u u . 

Step 1.2: Find vector  by the projection: 

         n n n nP    u u Φ u . (4.81) 

Step 1.3: For the vector  obtained in Step 1.2, calculate parametric SUE link 

flow solution       T

,n n
av a A v u u  and then calculate 

      T

,n n
a aH v a A  Φ u u . 

Step 1.4: Calculate ratio  nr : 

              

2 2

n n n n n nr    Φ u Φ u u u . (4.82) 

  If  
1

nr   , go to Step 2;otherwise go to Step 1.5 

Step 1.5: Reduce the step size according to  

 nu

 nu
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    
 

2 1
min 1,

3
n n

nr

     
 

, (4.83) 

and go to Step 1.1 

Step 2: (Stop check). If the following condition is fulfilled, then stop; otherwise, go to 

Step 3. 

    
2

n n  u u , (4.84) 

 where 2  is a predetermined positive tolerance.  

Step 3: (Correction with self-adaptive step size adjustment). Based on ,  and 

, calculate a proper step size  n  for correction and then get an updated 

vector  1nu : 

Step 3.1: Calculate another step size  as per the formula: 

              2
n n n n n n

a a a a
a A a A

u u h h
 

         . (4.85) 

                where 

                 ,n n n n n n
a a a a ah u u a A     u u . (4.86) 

Step 3.2: Update the vector  by this projection: 

         1n n n nP

   u u Φ u . (4.87) 

Step 3.3: Enlarge step size  n  according to the following scheme:  

   1 3

2
n n     if             

2
22

n n n n n    Φ u Φ u u u . (4.88) 

 Let 1n n   and go to Step 1. 

 

 nu  nu

 n

 n

 1nu
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The uniform Lipschitz-continuity of function vector  Φ u  ensures that condition 

 
1

nr    in Step 1.4 can be fulfilled in the finite iterations, and moreover 

   mininf 0n     (He and Liao, 2002). The stop criterion utilized in Step 2 comes from 

the fact that *u  is a solution of VI model  ,VI Φ  if and only if (Nagurney, 1993): 

  P    
* * *u u Φ u  (4.89) 

where   is an arbitrary positive parameter. In reality,  

            
2 2

ηn n n n nP      
*u u u u Φ u  (4.90) 

is an error bound value of  nu  and it would equal to zero only if  is a solution of VI 

model  ,VI Φ . 

4.5 Numerical Experiment 

To numerically verify the effectiveness of the proposed VI model and PC algorithm, the 

Sioux-Falls network is adopted in this section. The parameters involved in the PA-

SUEED problem take the same value as those in Section 3.6, if they are not further 

emphasized here. The asymmetric link travel time functions and demand functions also 

follow eqn. (3.82) and (3.86), respectively. Data for the OD demands and link attributes 

of Sioux-Falls network are identical to those in Section 3.6.2.  

 

It is further assumed that only the links in set  3,10,15,30,50,70A   are restricted by 

capacity constraints. Let ah  denote the physical capacity constraint on these links, and 

each link in set A  is restricted by another threshold constraint, denoted by s
a aH h . 

 nu
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Three scenarios of the threshold constraints are adopted to test their impact on the 

solutions, in each scenario it is required that: 

 , , 1,2,3s
a av H a A s    (4.91) 

where threshold s
aH  of link a  for Scenario s  ( 1, 2,3s  ) as well as its physical capacity 

ah  are given in Table 4.1. 

 

Table 4.1 Three Scenarios of Link Capacity Constraints  

Link 
( a A ) 

Scenario 1 Scenario 2 Scenario 3 Physical Capacity 
( ah ) Threshold ( 1

aH ) Threshold ( 2
aH ) Threshold ( 3

aH ) 

3 15000 5000 3000 25900 
10 4000 3500 3000 4908 
15 4500 4000 3000 4948 
30 4500 4000 3000 4993 
50 12000 9000 8000 19679 
70 4500 4000 3000 5000 

 

As shown in Table 4.1, these three scenarios are all strictly less than the physical capacity 

of each constrained link. From scenario 1 to scenario 3, the values of threshold are 

getting smaller implying a more restricted network management. Note that the values 

listed here are all assumed by the author, while in practice they should be predetermined 

by the network authorities.  

 

As suggested by He and Liao (2002), the parameters in the self-adaptive PC algorithm 

are set as: 0.1  , 0.9  , 1.8  ,  0 1.0  . The tolerance value in its stop criterion is 

taken as 2
2 10 . In order to see the convergent trend of the self-adaptive PC algorithm 
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incorporating CA method more precisely and apparently, the following logarithmic value 

of the error bound shown in eqn. (4.90) is taken as a performance index: 

     10
2

Logarithmic value of the error bound log n n u u  (4.92) 

Figure 4.1 depicts the logarithmic value of the error bound versus the CPU times used for 

solving each scenario. It clearly shows that the self-adaptive PC algorithm can 

monotonically converge to a solution of VI model  ,VI Φ . 

 

Figure 4.1 Performance of the Self-adaptive PC Algorithm  

for Solving the Three Scenarios  

 

Table 4.2 gives the resultant Lagrangian multiplier vector *u  and corresponding flow-

threshold ration,  * / ,s
a av H a Au , for each scenario 1, 2,3s  . Table 4.2 indicates that 

the flow-threshold ratio does not exceed 1.0 and the generalized Lagrangian multiplier 

takes positive value only on the links with a flow-threshold ratio close to 1.0. These two 
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phenomena tally with eqns. (4.6)-(4.8), which numerically verify the effectiveness of VI 

model  ,VI Φ  and self-adaptive PC algorithm. In addition, it can be seen that as the 

values of threshold are getting larger from Scenario 1 to Scenario 3, the relevant optimal 

Lagrangian multipliers in general become larger. This implies that it would be more 

costly to restrict the link flow to a much lower level. 

 

Table 4.2 SUE Link Flows and Optimal Lagrangian Multipliers  

Link 
( a A ) 

Scenario 1 Scenario 2 Scenario 3 

 * 1/a av Hu  *
au   * 2/a av Hu *

au   * 3/a av Hu   

3 0.31 0.00 0.96 0.00 1.01 4.37 
10 1.00 2.95 1.00 1.87 1.00 2.76 
15 1.01 4.81 1.00 5.56 1.01 7.84 
30 1.00 2.79 1.00 3.36 1.01 4.37 
50 1.00 0.93 1.00 1.82 1.00 2.57 
70 1.01 4.40 1.01 3.49 1.00 4.48 

 

4.6 Conclusions  

This chapter dealt with the PA-SUEED problem with link capacity constraints, which is 

an open question with considerable theoretical contributions. After defining the 

generalized SUE conditions in terms of the generalized link travel times, a VI model was 

defined for the generalized SUE conditions by using the parametric SUE link flow 

solution. It was rigorously proven that the VI model is equivalent to the generalized SUE 

conditions. More importantly, this VI model is monotone and uniform Lipschitz-

continuous. The convergent self-adaptive PC algorithm was then employed for solving 

the VI model, which was further validated by a numerical example. 

 

*
au
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Further efforts are required to extend the methodology proposed in this chapter to some 

other link capacity constrained problems, including the dynamic SUE problems with link 

capacity constraints and transit assignment in terms of probit-based SUE with link 

capacity constraints.  
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CHAPTER 5 DISTRIBUTED COMPUTING APPROACHES FOR 

SOLVING PA-SUEED 

This chapter aims to further improve the computational speed of solving PA-SUEED by 

virtue of distributed computing. As shown by Tables 3.1 and 3.5, the two proposed 

hybrid PC-CA algorithms can reduce the execution time for around 10 times, compared 

with the existing CA method. Although such an improvement is already impressive, the 

distributed computing approach can further accelerate the computational speed for over 

50 times, as verified by the numerical experiments in this chapter. 

5.1 Background 

As discussed in Section 3.4, the stochastic network loading (SNL) plays a vital role in the 

solution algorithms for probit-based SUE problems, which is similar to the all-or-nothing 

assignment in solution algorithms for DUE problems. A link-based two-stage Monte 

Carlo simulation-based method has been proposed for the SNL problem in this study. 

With a sufficient sample size (usually larger than 1000), the accuracy of this method can 

be guaranteed, yet it has also significantly prolonged the execution time, especially for 

large-scale networks. Based on some many numerical experiments, it shows that the 

cumulative computational time of Monte Carlo simulation is at least 95% of the total 

CPU time used for solving the PA-SUEED problem. Hence, computational time would 

be largely reduced if the calculation of Monte Carlo simulation could be accelerated.  

 

As claimed in Section 2.1.4, each trial of the Monte Carlo simulation method for solving 

SNL is independent, and it thus possess a perfect parallelism. Moreover, in each trial of 
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the Monte Carlo simulation, the computational efforts are in general allocated on solving 

a shortest path problem between each OD pair, see Steps 1.2 and 2.2 in Section 3.4.1. The 

shortest path problem is also a popular topic for distributed computing. Thus, calculation 

for various components of the Monte Carlo simulation can also be executed 

independently and simultaneously, based on a distributed computing system. All the 

processors in the distributed computing system would perform the simulation 

concurrently based on different random numbers. Three approaches are thus proposed in 

this chapter regarding partitioning workload of the Monte Carlo simulation method for 

distributed computing. All of these three distributed computing approaches are Single-

Program Multiple Data (SPMD) paradigm, where each processor runs the same program 

based on different subset of data. 

 

It should be noted that this chapter concentrates on the algorithmic issues of the three 

distributed computing approach in accelerating the computational speed of SNL of PA-

SUEED, rather than the implementation issues including: (a) sampling techniques and 

distribution of random numbers on different processors, (b) hardware architecture of the 

distributed computing system, (c) and the software aspects for data communication (Ma, 

1994). Although these issues can further improve the computational speed of Monte 

Carlo method, they have similar impacts to the three approaches.  

 

The outline of this chapter is shown as follows. Section 5.2 presents three distributed 

computing approaches. The computation platform as well as performance measures of the 

distributed computing approaches are provided in Section 5.3. Three network examples 
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are employed in Section 5.4 to numerically test the performance of the distributed 

computing approaches. Conclusions of this chapter are presented in Section 5.5.  

5.2 Three Distributed Computing Approaches  

Definitions and notation of the transportation network are similar to those in Chapter 3, 

which are thus not repeated in this section. For conciseness, the three distributed 

computing approaches are directly introduced as follows, based on the transportation 

network  ,G N A . 

5.2.1 Distributed Loading Approach 

As discussed in Section 5.1, a parallel-processing procedure on distributed computing 

system is an ideal and straightforward solution for the two-stage Monte Carlo simulation 

based SNL method. This is because each individual sampling and trial of the Monte 

Carlo simulation is independent, per se, and follows identical procedures. Moreover, 

during the calculation of each trial, no data communication is required, and therefore the 

impact of communication time would be quite marginal. Thus, based on a distributed 

computing system with k  processors, we can partition the 0n  (or 0m ) trials of the first (or 

second) stage of Monte Carlo simulation to each processor equably, and execute the 

calculation in parallel. For the sake of presentation, this approach for the workload 

partition of the Monte Carlo simulation based on the distributed computing system is 

called as Distributed Loading (DL).  

 

For this DL approach, two stages of the Monte Carlo simulation are still calculated 

sequentially. This is because results of all the trials in the first stage are utilized to 
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calculate the value of travel demand and then taken as an input for all the simulations in 

the second stage. Suppose k  processors in the distributed computing system are available 

for the calculation, and then all the 0n  ( 0m ) trials for the first (second) stage Monte Carlo 

simulation are equally partitioned into k  groups. Sample sizes of the simulation, 0n  and 

0m , are usually much greater than the number of processors, k . Thus, if k  is a sub-

multiple number of 0n  and 0m , the Monte Carlo simulation would have a perfect 

parallelism, in that each processor will conduct the same number of trials and their 

workloads are identical.  

5.2.2 Distributed Shortest-Path Approach 

As shown by Steps 1.2 and 2.2 in Section 3.4.1, in each trial of the Monte Carlo 

simulation, most of the computational efforts are used to calculate many shortest path 

problems. Calculation of the shortest path problem is also a popular topic for distributed 

computing in the literature. Hence, the distributed computing system can also be utilized 

to solve the shortest path problem in parallel, and then sequentially execute each trial of 

the Monte Carlo simulation. And this second approach for workload partition of the 

Monte Carlo simulation is referred to as Distributed Shortest-Path (DSP). 

 

Note that calculation of shortest path problems would be largely influenced by the 

solution algorithm. Thus, it is of considerable significance to find an efficient algorithm 

for shortest path problems on transportation network. Discussions of shortest path 

algorithms mainly focus on Dijkstra’s Label-setting algorithm (Dijkstra, 1959), with a 

time complexity of  2
NO , and Moore’s Label-correcting algorithm (Moore, 1957) 
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whose time complexity is  A NO  . Herein, N  and A  are, respectively, the total 

numbers of nodes and links on the network. The time complexity provided here is the 

worst case execution time. Thus, although A N  is larger than 
2

N  for most of the 

transportation networks, many previous studies based on numerous experimental tests 

conclude that Label-correcting algorithm is more efficient than Label-setting algorithm 

(Pape, 1974; Hribar et al., 2001). Calculation of these two algorithms can be further 

accelerated by plenty of extensions that use more advanced data structure; for example 

using balanced binary tree to store the list of labels in Label-setting algorithm. For 

particular type of network sizes and configurations, some extensions of Dijkstra’s Label-

setting algorithm are validated to be more preferable. While, the numerical tests 

conducted by Van Vliet (1978) showed that for both small- and large- scale networks, the 

D’Esopo algorithm is, in general, more efficient. D’Esopo algorithm is an extension of 

Moore’s Label-correcting algorithm by using two-ended lose-end table (Pollack and 

Wiebenson, 1960), and each time it can provide shortest paths from one source to all the 

others nodes on the network, usually referred to as building trees. Accordingly, in this 

chapter, the D’Esopo algorithm is taken for the calculation of shortest path algorithms. 

 

Two strategies are commonly used for solving the shortest path algorithms in parallel on 

a distributed computing system: (1) network decomposition (Habbal et al., 1994; Traff, 

1995; Hribar et al., 2001) and (2) network replication (Kumar and Singh, 1991; 

O’Cearbhaill and O’Mahony, 2005). The first strategy, network decomposition, partitions 

the network into small pieces and then assigns each processor to solve the shortest path 

problem on each sub-network. Shortest paths of one sub-network are updated if labels of 
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nodes on a nearby sub-network change. While, the second strategy, network replication, 

aims to assign the entire network to each processor and each processor then solve the 

shortest path problems for different sources (origins). Although network decomposition 

can make use of the cumulative memory of all the processors and its degree of 

concurrency is not limited by the number of origins, there are high communication 

overheads for checking node labels and termination detection. Therefore, when the 

number of processors is not evidently larger than the number of origins, the network 

replication is found to be superior to the network decomposition strategy (Florian and 

Gendreau, 2001). 

 

Thereby, in this chapter, the network replication strategy in conjunction with D’Esopo 

algorithm is selected for the DSP distributed computing approach. Note that the network 

replication strategy with D’Esopo algorithm was originally used by O’Cearbhaill and 

O’Mahony (2005) for solving the shortest path problems in the well-known network 

analysis model SATURN. However, it should be highlighted that when the number of 

processors is larger than the number of sources, the redundant processors would keep in 

idle. In addition, since the number of sources is usually much less than the sample size of 

Monte Carlo simulation, the concurrency level of DSP is thus lower than that of DL. 

5.2.3 Integrated Loading Approach 

A third approach is proposed, named as Integrated Loading (IL), for workload partition 

of the Monte Carlo simulation. IL is a mixture of DL and DSP, i.e., both the Monte Carlo 

trials and shortest path problems in each trial are calculated simultaneously by different 

processors. Firstly, all the k  processors are divided into i  groups and let , 1,2, ,xj x i   



Chapter 5  Distributed Computing Approaches for Solving PA-SUEED 

 121

denote the size of group x . Thus, 
1

i

x
x

j k


 . Then, only i  trials of Monte Carlo 

simulation are conducted in parallel by each group of processors. Meanwhile, all the xj  

processors in group x  simultaneously calculate the shortest paths problems for the Monte 

Carlo simulation assigned to this group by virtue of the DSP approach. The calculation 

then will be conducted in turns until all the 0n  ( 0m ) trials for the first (second) stage of 

the Monte Carlo simulation are accomplished.  

 

Evidently, level of parallelism of this approach is largely influenced by the number of 

processors in each group, , 1,2, ,xj x i  . If this number xj  is equal for all the groups, 

then workload for each processor is identical. Thus, xj  is decided to be a constant for 

each group, denoted by j . In principle, the number of processors in each group j  

should also not exceed the number of origins (sources) in the network. When adopted to 

calculate the Monte Carlo simulation method for stochastic network loading map, the IL 

approach contains a better parallelism than DL and DSP, since its concurrency level is a 

product of that of DL and DSP. Thus, if the number of available processors is greater that 

the sample size of Monte Carlo simulation as well as number of sources of the 

transportation network, the proposed IL approach would inherently outperform the other 

two. 

 

As aforementioned, implementation of PA-SUEED problem on large-scale network is 

quite restricted, due to the hurdle in solving its stochastic network loading map. All the 

three approaches discussed in this section can inherently accelerate computing speed of 
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the Monte Carlo simulation method, in contrast with the sequential procedure. Thus, the 

three solution algorithms introduced in Chapter 3 incorporating any of these three 

approaches should be quite efficient for solving the PA-SUEED problem. This chapter 

aims to search for the most efficient one among these three approaches, which would 

then be recommended for the calculation of PA-SUEED problem on large-scale networks. 

However, other than the endogenetic concurrency level, their performance might be also 

quite sensitive to the number of processors as well as network structure. Thus, an in-

depth numerical test is necessary for these three approaches. In the remainder two 

sections we first discuss about the computing platform as well as performance measures 

adopted, and then show about the numerical tests of the distributed computing 

approaches.  

 

Remark 5.1: These three approaches are differentiated by its workload partition strategies. 

Before the workload partition, the values of random link travel times are sampled by 

pseudo random numbers from the whole population space. Such a sampling technique is 

called as Simple Random sampling (Cochran, 1977). Note that accuracy of the Monte 

Carlo simulation can be further improved, if some advanced sampling techniques are 

used, for instance, stratified sampling, importance sampling, antithetic sampling (e.g., 

Fishman and Shaw, 1989; Liu and Meng, 2011). Therefore, if an accuracy level is 

predetermined, these sampling techniques would reduce the sample size required and 

hence further reduce the execution time. However, these sampling techniques have 

identical impacts on the three distributed computing approaches, and it would not change 

the superiority of any distributed computing approach over the rest. Therefore, for 
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conciseness and without loss of generality, only the Simple Random sampling is used in 

this study. 

5.3 Computing Platform and Performance Measures 

5.3.1 Computing Platform 

The computing platform used in this study is a Distributed Computing PC Cluster system 

in Civil Engineering department at National University of Singapore. This system has 60 

computer nodes, and each of which uses Intel® Core i7 940 (Quad Core) processor, with 

a clock speed of 2.93GHz, 256kB L2 cache per core and 8MB L3 cache and 12GB of 

1333MHz DDR3 RAM. The 10G Myrinet technology and corresponding products are 

utilized to build the Local Area Network, where a convergence at 10-Gigabit/s data rates 

is available. This network follows IEEE 802.3 10G Ethernet protocol. A 10G Myrinet 

spine switch is taken as the main network communication channel, which inherently 

improved the velocity of data communication. All the computer nodes are then connected 

to this spine switch. The data for inter-node communication are first compressed and then 

broadcast to the other nodes via the connecting cable and the spine switch. 

 

Operating system on all the computer nodes is Windows High Performance Computing 

(HPC) Server 2008, which is developed on the x64-based version of the Windows 

Server 2008 operating system. A HPC Cluster Manager installed on every node is taken 

as the central tool for configuring, deploying, and administering of the cluster. The 

distributed computing programs are then submitted to the distributed computing cluster 

through the HPC Cluster Manger.  
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For the single program multiple data (SPMD) distributed computing approaches, they can 

be simply implemented on the HPC cluster. Each node would operate the program 

synchronously based on its own part of data and communicate with each other by virtue 

of the well-known Message Passing Interface (MPI) (Gropp et al., 1999). MPI is a 

message-passing application programmer interface, together with a protocol and semantic 

specifications for how its features behave in any implementation. Both point-to-point and 

collective communication are supported. Goals of MPI are high performance, scalability, 

and portability, and it remains the dominant model used in high-performance computing 

today. On the HPC PC cluster, a full-featured implementation of the MPI specification 

called Microsoft MPI is adopted. Microsoft MPI acts as a function library for 

programming language C, FORTRAN 77, and FORTRAN 90. Without loss of generality, 

the programs in this chapter are all coded in FORTRAN 90. 

5.3.2 Three Performance Measures 

Several performance measures are used in the literature to evaluate the performance of 

parallel (distributed) computing implementations, among which the most commonly used 

one is called Speed-Up that is a criterion for the execution time. The value of Speed-Up 

for k  processors can be defined as (see, e.g., Nagel and Rickert, 2001; Wong et al., 2001) 

   1

k

T
S k

T
  (5.1) 

where 1T  is the execution time used by only one processor for solving the algorithm, and 

kT  is the execution time when k  processors involve the calculation. Note that as the 

number of processors increases, the efforts spent in data communication would keep 

increasing. Thus, Speed-Up should be a sub-linear function of the number of processor.  
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Another performance measure employed is the Efficiency of processors, which is 

calculated by: 

    S k
E k

k
  (5.2) 

Ideally,  E k  should be equal to 1. But due to the additional overhead caused by the 

communication and synchronization mechanisms,  E k  is less than 1 in practice. When 

the number of processors exceeds the concurrency level, some processors would be idle. 

Due to these reasons, value of  E k  usually decreases as the number of processors 

increases.  

 

The third performance measure used in this chapter is called Relative Burden (Tremblay 

and Florian, 2001), and it can be expressed by 

    1

1 1 1kT
B k

T k S k k
     (5.3) 

The burden of distributed computing refers to all the time overhead spent by the 

processors; for instance, the inter-node communication time, total idle time of the 

processors, time spent on calculating the non-parallel parts of the algorithm, etc. In the 

ideal case,  S k  equals to 
1

k
, and the Relative Burden then becomes zero.  

 

Execution time in conjunction with these three performance measures are taken as 

criterions for the efficiency of the CA method incorporating each of the three distributed 
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computing approaches respectively for calculating the numerical network examples in 

Section 5.4.  

5.4 Numerical Examples 

Although the three distributed computing approaches have different concurrency level, 

their performance is unpredicted and might be sensitive to the number of processors used. 

Thus, this section aims to comprehensively test the three approaches using two middle-

scale network examples and then select the most efficient approach to accelerate the 

calculation of a large-scale example. The Sioux-Falls network is first utilized for the test, 

which has 24 nodes, 76 links and 528 OD pairs. Note that performance of the distributed 

computing approaches may be influenced by the particular structure of Sioux-Falls 

network. Thereby, a randomly generated network example is further utilized for the test, 

which is generic to any network structure.  

 

The most efficient approach is then chosen to calculate the PA-SUEED problem on a 

large-scale network, called as Anaheim network, which contains 416 nodes, 914 links 

and 1406 OD pairs. Detailed data for the network attributed of Sioux-Falls network and 

Anaheim network can be found in the website of transportation network test problems 

built by Bar-Gera (2011), which are not elaborated here due to the space limit. 

 

It should be noted that the three distributed computing approaches has accelerate the 

computation of SNL problem, which is taken as a subroutine by any of the three 

algorithms introduced in Chapter 3. Thus, these distributed computing approaches have 

identical impacts on the three algorithms for solving PA-SUEED problem. Without loss 
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of generality, the Cost-Averaging (CA) method is taken for the numerical test in this 

section due to its concise procedures, while all the conclusions are also effective to the 

two hybrid PC-CA algorithms.  

 

For the first example, CA method incorporating the three proposed distributed computing 

approaches will be tested in turns to calculate the probit-based SUE problem. Then, the 

most efficient approach is selected for the calculation of a large-scale example, Anaheim 

network. In order to conduct an unbiased comparison, workload for these three 

approaches should be equivalent. Thus, the number of iterations for the CA method is 

fixed to be 200, and based on a trial-and-error test, 200 iterations would give rise to a 

satisfactory convergence level for both of the two examples. Sample sizes of the two-

stage Monte Carlo simulations for stochastic network loading are decided based on the 

estimator proposed in Section 3.4.2. The maximal values for estimation error, 1  and 2 , 

involved are taken as 5 percent of total demand wq  or link-flow capacity ah , respectively. 

Then, based on some empirical tests, a sufficient sample size for the first stage of Monte 

Carlo simulation when solving each numerical example is found to be 100. While, for the 

second stage in terms of Sioux-Falls network, random graph example and Anaheim 

network, the sample size is decided to be 8050, 3100 and 1050, respectively. 

 

The asymmetric link travel time functions and OD demand functions still follow those 

introduced in Section 3.6, and all the parameters involved are also unchanged if they are 

not further emphasized.  
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5.4.1 Sioux-Falls Network 

In each iteration of CA method, the three different distributed computing approaches are 

utilized respectively to solve the two-stage Monte Carlo simulation in parallel. In this 

case, the Distributed Loading (DL) approach will take all the processors involved to 

simultaneously calculate the 100 and 8050 trials of the two stages of Monte Carlo 

simulation. The Number of origins for Sioux-Falls network amounts to 24. Thus, within 

one trial of the simulation, 24 one-to-all shortest-path problems must be handled. The 

second distributed computing approach, Distributed Shortest-Path (DSP), thus allocates 

all the processors to synchronously calculate these 24 shortest-path problems. Apparently, 

concurrency level of DSP approach is inherently restricted by the number of origins, 

since the number of processors in use cannot exceed 24. While, for the Integrated 

Loading (IL) approach, all the processors are equally divided into different groups. Each 

group takes charge of one trial out of 100 or 8050 simulations, and the processors within 

one group are required to solve the 24 shortest-path problems in parallel. With the 

purpose of a better concurrency level, group size is determined to be 8, in that it is a sub-

multiple of 24 and workload for each processor within one group is thus identical.  

 

Tables 5.1 to 5.3 here illustrate the CPU (execution) time used by the CA method 

incorporating different distributed computing approaches. Different numbers of 

processors are sequentially tested for each distributed computing approach. For the test of 

IL approach, number of processors cannot be less than the group size, i.e., 8. Thus, the 

value of execution time used by only one processor, 1T , is taken as that used by the DL 

approach, which is 3307.2 seconds. Based on the CPU time, values of the other three 
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performance measures (see Section 5.3.2) are calculated for each test. It is worthwhile 

pointing out that the output link flows for each test of the calculations are identical, which 

supports the preciseness for the results of each test.  

Table 5.1 Test of DL Approach for Solving Sioux-Falls Network Example 

No. of 
processors 

CPU time 
(Seconds) 

Speed-Up Efficiency Relative 
Burden  

1 3307.200 1.000 1.000 0.000 
2 2922.034 1.134 0.567 0.382 
4 1461.395 2.267 0.567 0.191 
8 731.920 4.526 0.566 0.096 

16 367.745 9.007 0.563 0.049 
32 184.323 17.970 0.562 0.024 
64 93.109 35.575 0.556 0.012 
120 50.736 65.286 0.544 0.007 
128 47.423 69.847 0.546 0.007 

 

Table 5.2 Test of DSP Approach for Solving Sioux-Falls Network Example 

No. of 
processors 

CPU time 
(Seconds) 

Speed-Up Efficiency Relative 
Burden  

1 3312.330 1.000 1.000 0.000 
2 2915.699 1.136 0.568 0.380 
4 1482.071 2.235 0.559 0.197 
8 761.178 4.352 0.544 0.105 

16 513.781 6.447 0.403 0.093 
32 268.218 12.349 0.386 0.050 
64 266.518 12.428 0.194 0.065 
120 270.499 12.245 0.102 0.073 
128 268.045 12.357 0.097 0.073 

 

Table 5.3 Test of IL Approach for Solving Sioux-Falls Network Example 

No. of 
processors 

CPU time 
(Seconds) 

Speed-Up Efficiency Relative 
Burden 

1 3307.200 1.000 1.000 0.000 
16 384.629 8.598 0.537 0.054 
32 193.055 17.131 0.535 0.027 
64 97.269 34.001 0.531 0.014 

120 52.584 62.894 0.524 0.008 
128 52.334 63.194 0.494 0.008 
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We note that due to a large sample size for the second stage of Monte Carlo simulation 

(8050), even for this small size network, CPU time is around 3300 seconds when only 

one processor is used for the calculation. This CPU time is hardly acceptable, and it 

would geometrically increase as the network size expands. 

 

To get a better view for the acceleration of CA method incorporating three distributed 

computing approaches when using different number of processors, values of Speed-Up in 

Tables 5.1 to 5.3 are used to chart the trend of Speed-Up over different number of 

processors, as shown in Figure 5.1. Based on the data shown in Tables 5.1 to 5.3 as well 

as Figure 5.1, we can see the following phenomena:  

(a) compared with 1T , execution time is inherently reduced when multiple processors 

are used for the calculation;  

(b) for each test with the same number of processors, execution time of DL is slightly 

less than that of IL, while when the number of processors is larger than 24, 

performance of DL and IL are much superior to that of DSP;  

(c) as the number of processors increases, values of Speed-Up for DL and IL 

approach linearly increase, while Speed-Up value of DSP keeps still when more 

than 24 processors are used;  

(d) Efficiency of DL and IL are, in general, unchangeable, yet efficiency of DSP 

keeps decreasing especially when the number of processors is larger than 24;  
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(e) Relative Burden of DL and IL keep decreasing, while value of Relative Burden 

for DSP first decreases and then goes up. 
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Figure 5.1 Trend of Speed-Up for the Three Distributed Computing Approaches 

 

The explanations and analysis of these five phenomena are then discussed. Phenomenon 

(a) ensures the validity of three distributed computing approaches, and it implies that 

these approaches have sound parallelism, e.g., time elapsed in data communication is 

much less than time used in executing the calculation and the overall idle time is quite 

trivial.  

 

As to phenomenon (b) and (c), at most 24 processors can be taken in use for DSP 

approach, thus when the number of processors exceeds 24, CPU time in conjunction with 

Speed-Up of DSP become quite stable. While, DL and IL approach can further improve 
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the acceleration with a linearly increasing value of Speed-Up. It can be speculated that if 

the number of processors reaches the sample size of Monte Carlo simulation, which is 

8050, value of Speed-Up for DL would come to an upper bound. Yet, in this case, the IL 

approach can, in nature, further improve the calculation.  

 

Regarding the execution time of the three approaches, a more important issue should be 

addressed here is that the performance of DL is always superior to that of IL, albeit they 

both have a quite high concurrency level. The reasons for this superiority of DL focus on 

two aspects: firstly, the IL approach needs to define more variables than DL, in that IL 

requires the grouping of processors in the first place. In addition, during the computation, 

it is also requires more time to distinguish each group; secondly, a more important reason 

attributes to the fact that DL has a better job-assignment mechanism, which inherently 

limited the total idle time. Note that for the IL approach, each 8 processors are grouped 

together to calculate the shortest path problems for 24 origins in each trial of the Monte 

Carlo simulation. It implies that for one particular processor, it will keep solving the 

shortest path problems for the same origins. Computational time of different origins 

should be slightly different, and this slight difference thus is calculated in each trial, 

which would be quite considerable after the 8050 simulations. This un-even workload 

causes idle time to the earlier finished processors. While, for the DL approach, one 

processor would calculate all the 24 shortest-path problems in each trial, thus the 

workload for different processors is identical, which gives rise to a perfect job-

assignment plan and thence less idle time. It should be noted that the level of superiority 

of DL is unpredicted and it may be sensitive to the network structure. 
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Regarding phenomena (d) and (e), the value of Efficiency,  E k , amounts to the slope of 

a straight line connecting the origin point  0,0  and the value of Speed-Up  S k . Thus 

since trend of Speed-Up is, in general, a straight line for DL and IL, their values of 

efficiency should keep still. In terms of Efficiency and Relative Burden, performance of 

DSP is getting worse when the number of processors is greater than 24. This is because at 

most 24 processors can be taken in use for DSP, and the redundant processors would 

remain in idle, yet they also occupied the resources in inter-node communication or data 

broadcasting.  

 

It should be noted that increase of processors used will also prolong the total 

communication cost, and the value of Speed-Up shown in Figure 5.1 can properly 

estimate the trade-off between the communication cost and the computational efforts 

caused by additional processor added to the calculation. If the Marginal Burden caused 

by additional communication cost is larger than the Marginal Benefit that one processor 

can contributed to the speedup of calculation, then no more processor should be added to 

the computation. Due to the large communication capacity of the distributed computing 

system, the Marginal Burden for each calculation is quite marginal. Recall that the 

concurrency level for DL, DSP and IL approach is 8050, 24 and 193200 for the second 

stage of Monte Carlo simulation. Thus, for DL and IL approaches, all the processors 

involved in each test can contribute to the Marginal Benefit of the computation, thus their 

values of Speed-Up keep increasing. Yet, for the DSP approach, when the number of 

processors is larger than 24 (from 32 to 128), its value of Marginal Benefit is exactly zero, 
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and in such case even though the Marginal Burden is low the performance of DSP 

continuous to deteriorate.  

 

In conclusion, the three CA incorporating the three distributed computing approaches can 

all evidently accelerate the calculation of probit-based SUE problem. The DL approach is 

demonstrated to be the most efficient one, and it should be recommended for solving the 

PA-SUEED problem on large-scale network example. Before taking DL approach for the 

calculation of PA-SUEED on large-scale network, another test is conducted for the 

stability of the HPC cluster. In this test, the calculation of one test is first conducted for 

multiple times and then the values of CPU time are recorded. Note that the conclusions 

made above would be rather suspicious, if an erratic oscillation is observed for the CPU 

time. Without loss of generality, two calculations of DSP with the number of processors 

equal to 2 and 8, respectively, are selected for this test, and for the sake of presentation 

they are referred to as Calculation 1 and Calculation 2. Calculation 1 is examined on the 

same group of processors, while Calculation 2 is tested on different processors each time. 

Each calculation is performed for four times, and the CPU times used by these tests are 

tabulated in Table 5.4.  

Table 5.4 Test for the Stability of Calculations in the HPC Cluster 

Sequence 
of tests 

CPU time (Seconds) 
Calculation 1 Calculation 2 

1 2915.699 761.178 
2 2915.651 760.648 
3 2915.628 760.435 
4 2915.444 763.440 
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Evidently, CPU times used for the tests of these two calculations are quite steady, which 

validates the conclusions made above.  

5.4.2 Random Graph Example 

As claimed in Section 5.1, the DL and IL considerably outperform the DSP approach. In 

addition, DL is slightly superior to IL due to its better job-assignment mechanism. 

Nevertheless, the level of this superiority is obscure, and it might be caused by some 

particularities of the Sioux-Falls network, thus a randomly generated network that is 

generic to any network structure would be more suitable for the numerical test.  

 

Demeulemeester et al. (1993) has proposed two well-known random graph generators, 

named as Deletion Method and Addition Method. These two generators, coupled with 

some other existing random graph generators, are not available for the transportation 

network examples in this study. This is because the transportation network examples are 

required to be strongly connected by directed links, namely, there exists at least one path 

connecting any two nodes on the network. In addition, some links on the network should 

be accompanied by their opposite links, to guarantee the asymmetric property of link 

travel times. Let N  and A  denote the number of nodes and links on the network, 

where operator   gives the cardinality of any set. When assuming 2 2A N  , a 

random graph generator, shown as follow, can be designed based on the theory of 

minimum spanning tree.  

 



Chapter 5  Distributed Computing Approaches for Solving PA-SUEED 

 136

Step 0: (Initialization) Define an area with length X  and width Y  for the network 

example. Let a link set A  be empty. 

Step 1: (Random node location) For each node n N , randomly generate its coordinates 

in the defined area, where    0,nx X  and    0,ny Y . This gives the location 

of each node.  

Step 2: (Random Minimum Spinning Tree) Randomly build a minimum spinning tree 

that connects all the N  nodes yielded in Step 1 (see the Addition Method in 

Demeulemeester et al. (1993) for an algorithm of the random minimum 

spinning tree). Add all the links on the minimum spinning tree to the link set A .  

Step 3: (Stop test) If A A , then go to Step 4, otherwise go to Step 5.  

Step 4: (Additional links) Randomly select two nodes in  and jn  in set N , and build a 

link that connects in  to jn . If this newly built link is not in link set A , then add it 

to A  and go to Step 3; otherwise, redo Step 4. 

Step 5: (Network attributes) For each link a A , let in  and jn  denote the two ends of 

this link, then the Euclidean distance between in  and jn  is defined as the free-

flow travel time on this link. Capacity for link a A  is randomly attained from 

the interval  ,a ah h  , where h  and h  are predetermined to be the lower bound 

and upper bound of the capacity, respectively.  

 

A random graph then can be build following these procedures, and the random OD 

demand can also be easily obtained based on network. A network example is then 
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generated, with 100 nodes, 300 links, 16 zones (origins) and 16 OD pairs. Due to the 

space limit, detailed data for the network attributes are not listed here. This example is 

subsequently used to test the CA method incorporating DL and IL approaches, 

respectively. Different scenarios with varying number of processors are tested, and the 

execution times are tabulated in Table 5.5. It can be seen that in this test the superiority of 

DL approach is more evident. The randomly generated network can be a good 

representative of various network structures, and it thus further supports the DL approach, 

which should be selected for the computation of PA-SUEED problem upon large-scale 

networks. 

 

Table 5.5 Comparison of DL and IL for the Random Graph Example 

No. of 
processors 

CPU time of 
DL (seconds) 

CPU time of 
IL (seconds) 

16 633.773 709.814 
32 319.865 361.228 
64 163.205 183.824 

120 87.824 101.406 
128 87.097 93.904 

5.4.3 Anaheim Network 

As discussed above, the CA method incorporating DL approach is utilized to calculate 

the PA-SUEED problem on a large-scale network example, called Anaheim network. 

This network has 416 nodes, 914 links and 1406 OD pairs, which is much larger than 

Sioux-Falls network. CPU time used by CA method for solving the PA-SUEED problem 

on this network is indicated by Table 5.6, where different number of processors is 

adopted the DL approach.  
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Table 5.6 Test of DL Approach for Solving Anaheim Network Example 

No. of 
processors 

CPU time 
(Hours) 

Speed-Up Efficiency Relative 
Burden  

1 77.403 1.000 1.000 0.000 
2 70.710 1.095 0.547 0.414 
4 35.380 2.188 0.547 0.207 
8 17.932 4.317 0.540 0.107 

16 8.952 8.647 0.540 0.053 
32 4.560 16.976 0.530 0.028 
64 2.321 33.353 0.521 0.014 
128 1.209 64.015 0.500 0.008 

 

As shown in Table 5.6, when only one processor is used, CPU time is as large as 77.4 

hours. This execution time is beyond the acceptance, while it can be reduced to 1.2 hours 

when 128 processors are used. This improvement is highly desirable and of utmost 

importance to the practical implementations of the algorithm proposed for solving the 

PA-SUEED problem. The variations of the three performance measures for Anaheim 

network are quite similar to those for Sioux-Falls network: as the number of processors 

increases, Speed-Up is linearly increasing; Efficiency is, in general, unchangeable, and 

Relative Burden goes down to a trivial value. These phenomena therefore support the 

validity of DL distributed computing approaches for accelerating the convergent speed of 

CA method.  

5.5 Conclusions 

This chapter introduced three distributed computing approaches that can largely reduce 

the execution time of solution algorithms for PA-SUEED problem. A two-stage Monte 

Carlo simulation method was adopted for solving the stochastic network loading of PA-

SUEED problem. The three distributed computing approaches thus all focus on 

decomposing the workload of Monte Carlo simulation and then conducting the 
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calculation concurrently. Computational results of the Sioux-Falls network example and a 

randomly generated network indicated that all these three approaches can inherently 

accelerate the convergent speed of the solution algorithm, compared with the sequential 

case. Additionally, when the number of processors employed was larger than the 

concurrency level of each approach, an evident deterioration can be observed. Based on 

the numerical tests, the Cost Averaging method incorporating Distributed Loading 

approach was discovered to be the most efficient solution algorithm for solving the PA-

SUEED problem, and it was then employed to solve a large-scale network example, 

which also showed a sound efficiency. 

 

Regarding its implicit values for future work, this chapter is in general research-oriented. 

For long, the probit-based SUE problem has been well-recognized as a perfect 

representative of the SUE principle, yet the computational cost and inaccuracy caused by 

solving its stochastic network loading have largely prohibits the further investigations 

about probit-based SUE problem. With the reduced travel time, it becomes possible to 

analyze some important research topics based on a network with probit-based SUE 

constraints, for instance, the capacity constrained probit-based SUE problem, road 

pricing toll design and transportation network design problem, etc. Furthermore, it is also 

of considerable interest and un-negligible significance to devote some efforts into the 

implementation issues, including more advanced skills for data communication and 

generation of random numbers.  
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As discussed in the Remark in Section 5.2, computational speed of each distributed 

computing approaches can be further accelerated by virtue of more sophisticated 

sampling skills, e.g., stratified sampling or importance sampling. Investigations of their 

usage in the context of PA-SUEED problem are also worthwhile for future research.  

 

The computing platform of tests in current study is described in Section 5.3.1. It would 

not be burdensome to test the distributed computing approaches on any other computing 

platform addressed in relevant studies, for example, the platform introduced in Tremblay 

and Florian (2001), Wong et al. (2001), among many others. Thanks to the development 

of computer hardware, many personal PC or workstations now have multiple or even tens 

of processors. Thus, the computation of probit-based SUE can be conducted in parallel in 

such a shared-memory machine. In view of the prefect parallelism of the DL and IL 

approach, it would be more straightforward to be tested on any commercial cloud 

computing system. In such case, the IL may outperform DL since a large number of 

processors are available and IL has a larger concurrency level. 
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CHAPTER 6 SPEED-BASED TOLL DESIGN FOR CORDON-BASED 

CONGESTION PRICING SCHEME 

The first part of this dissertation, Chapters 3 to 5, focuses on the mathematical 

formulations and solution algorithms for the PA-SUEED problem, which is a sound 

extension of the probit-based SUE traffic assignment problem. The PA-SUEED problem 

possesses a better fitness to the practical conditions, and such a framework is generic to 

(a) fixed and elastic demand cases; (b) separable, symmetric or asymmetric link travel 

time functions; (c) probit-based or logit-based SUE principles (in terms of formulation). 

Moreover, the efficient PC-CA algorithms as well as distributed computing approaches 

proposed in Chapters 3 and 5 have significantly reduced the computational burden of 

solving PA-SUEED problem, making it available for practical implementations.  

 

Traffic congestion is undoubtedly the most focused problem in urban transportation 

networks. A superior equilibrium framework, like PA-SUEED, could help to predict the 

traffic congestions, but urban traffic demand management requires to further influence 

the travel behavior of drivers and to encourage them to make route choices wisely to 

inhibit congestions. Congestion pricing is an effective tool in terms of adjusting drivers’ 

route choices. Thereby, congestion pricing has attracted numerous attentions from the 

researchers. As mentioned in Section 2.3.1, existing studies for congestion pricing mainly 

focus on the first-best and second-best pricing schemes. The first-best pricing is usually 

realized by the marginal cost pricing. Nevertheless, despite a better theoretical property, 

the marginal cost pricing has inferior practicality in that it requires charging facilities on 

every link, thus only second-best pricing schemes is implemented in reality. Regarding as 
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a special case of second-best pricing, cordon-based congestion pricing scheme is widely 

adopted in practice. The second part of this dissertation, Chapters 6 and 7, thus works on 

two practical-oriented pricing tropics, speed-based and distance-based, for cordon-based 

congestion pricing. Note that the speed-based toll design is originated from the Electronic 

Road Pricing (ERP) system in Singapore, while the distance-based toll design is taken as 

the future generation of ERP system. Thus, these two topics are both of considerable 

practical significance. 

 

This chapter discusses about the speed-based toll design problem, where drivers’ travel 

behavior is assumed to follow the PA-SUEED. It is further assumed that the drivers’ 

value-of-time (VOT) is continuously distributed. Thus, the formulation and algorithm for 

PA-SUEED with continuously distributed VOT are first addressed. Then, the speed-

based toll design problem is formulated as a mathematical programming with equilibrium 

constraints (MPEC) model, with the objective of maximizing total social benefit (TSB). 

A Distributed Revised Genetic Algorithm (DRGA) is finally proposed for solving the 

speed-based toll design problem, which is numerically validated by a network example. 

6.1 Background and Relevant Studies 

The toll design problem of congestion pricing schemes refers to determination of optimal 

toll charges according to one or more objectives, based on given charging locations. 

Some system-wide objectives are usually adopted, for instance, the total social benefit, 

total travel time and toll revenue. However, compared with these system-wide objectives, 

the government and network authorities have more concerns about the traffic conditions 

in the Central Business District (CBD), which is the commercial heart of each city and 
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traffic congestions in the CBD would cause greater economic losses and worse impacts to 

the city images. Thus, regarding the practical implementations of congestion pricing 

schemes, to mitigate the traffic congestions in CBD area is usually taken as a primary 

target. 

 

Average travel speed is an ideal measure for the traffic conditions within the pricing 

cordon, in that it is much easier to be observed than traffic column and density (Li, 2002) 

and moreover travel speed is a better representative of the commuters’ driving experience. 

In view of the cordon-based ERP system in Singapore, its objective is determined as 

keeping the average speed of vehicles in cordon area within a targeted range, [20, 30] 

km/hour. The toll charges are adjusted to maintain the average speed in such a range 

(Olszewski and Xie, 2005). The lower-bound of this range guarantees an expedite traffic 

condition, while the upper-bounds avoids a waste of the road resources. Herein, to search 

for a toll charge pattern that can maintain average travel speed of vehicles in the cordon 

area within a predetermined targeted range is named as speed-based toll design problem. 

Despite its practical significance, theoretical study for the speed-based toll design 

problem is still an open question, since few of the existing researches for toll design 

problems have taken the traffic conditions in CBD as an objective or using travel speed 

as a criterion for the network performance. 

 

When analyzing the congestion pricing problems, a value-of-time (VOT) is necessitated 

to convert the toll charges into time unit. The VOT is inherently influenced by the wage 

rate as well as trip emergency of each commuter/driver (Li, 2002), which is quite diverse 
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amidst the commuters. As claimed in literature review at Section 2.3.3, it is thus more 

rational to take VOT as a continuously distributed random variable. The continuous 

distributed VOT results in another random term in the generalized path travel time, 

besides the perception error. A computational model is necessitated to describe the PA-

SUEED with the continuously distributed VOT due to the inapplicability of the existing 

models developed for the SUE problems. As mentioned in Section 2.3.3, this chapter 

aims to propose a link-based solution technique for the PA-SUEED with the continuously 

distributed VOT, which avoids path generation/enumeration. 

 

A toll-charge pattern that can maintain average travel speed in the cordon area within a 

predetermined targeted range is regarded as “acceptable”. However, for a particular 

transportation network, there would be more than one acceptable toll-charge patterns. 

Thus, the optimum among these acceptable patterns that can give rise to a higher total 

social benefit (TSB) value is regarded as the solution of speed-based toll design problem. 

A MPEC model is first proposed for the speed-based toll design problem, wherein the 

equilibrium constraints representing a probit-based SUE problem with continuously 

distributed VOT. Note that due to the existence of continuously distributed VOT, existing 

algorithms for solving MPEC model is not available. Thus, a Genetic Algorithm type 

method is taken as a heuristic for solving the speed-based toll design problem.  

 

Note that the adjustment for toll charges of the ERP system in Singapore is performed in 

this way (Olszewski and Xie, 2005): a review is launched every three months for the 

average travel speed in each cordon area, and then toll charges on all the entries to each 
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cordon are increased (deducted) by a certain amount, if average travel speed is less than 

lower-bound (greater than upper-bound) of its targeted range. This trial-and-error type 

toll adjustment approach is quite convenient for practical use, and it is thus combined to 

the solution algorithm, named as Revised Genetic Algorithm. 

 

Most computational efforts for the Revised Genetic Algorithm are spent on the evaluation 

of every newly generated chromosome. Yet, due to the complete independency of each 

evaluation process, it is inspiring to accelerate the Revised Genetic Algorithm by means 

of distributed computing, and the whole computational procedure is thus called as 

Distributed Revised Genetic Algorithm (DRGA). 

 

Remainder sections of this chapter are organized as follows. Section 6.2 presents a 

MPEC model for the speed-based toll design problem. Section 6.3 discusses the DRGA 

for solving the speed-based toll design problem, which is numerically tested by a network 

example in Section 6.4. This chapter is then concluded in Section 6.5.  

6.2 Problem Statement and MPEC Model for Speed-Based Toll Design  

6.2.1 Notation and Definitions 

Based on the strongly connected transportation network  ,G N A  defined at Chapter 3, 

it is assumed that there are several pricing cordons on the network, toll charges are 

implemented on each entry of the pricing cordons. Let A  be the set of all the charged 

links, thus A A . Toll fare on each link a A  is denoted by a , and for the sake of 

presentation, all the toll fares are grouped into column vector  T
,a a A  τ . Assuming 
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that total number of the pricing cordons is I , and each cordon is sequentially numbered 

by an integer from 1 to I . Any toll fare pattern is regarded as “acceptable” if the average 

travel speed of vehicles in each pricing cordon can retain in a targeted range. Namely, for 

the i th pricing cordon (called as cordon i  hereafter), 1 i I  , if the average speed of all 

the vehicles in this cordon during the morning peak hours is denoted by i , we have that 

i i i     , where constant i  ( i ) is a predetermined lower (upper) bound of the 

targeted range for average speed i .  

 

i  would be inherently influenced by the toll charges  T
,a a A  τ  that affect 

commuters’ route choice plans and eventually change the flows and travel speed on each 

link in the cordon area. For any variation on the toll fares, the commuters would adjust 

their route choice plans, and the link flows are assumed to converge to a new equilibrium 

after a short span of time. Thus, when let  av τ  denote the equilibrium flow on link 

a A , it should be a function of the toll-charge pattern τ . All the link flows are grouped 

into a column vector     T
,av a A v τ τ . Likewise, some other attributes on the 

network should also be functions of the toll-charge pattern τ , including OD demand 

 q τ  and path flows  f τ . In this case, the flow conservation conditions should also be 

fulfilled. 

 

The cumulative toll charges, denoted by wk , on path wk R  can be calculated by: 

 w
wk a ak

a A

  


  . (6.1) 
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To analyze the impacts of these toll fares on commuters’ route choice behaviors, wk  

should be converted into time-units by using the commuters’ value-of-time (VOT). As 

aforementioned, the VOT, denoted by  , is regarded as a continuously distributed 

random variable across the whole population.   is assumed to have constant mean and 

variance, and its probability density function (PDF) is continuously differentiable. The 

cumulative distribution function (CDF) of   can be obtained by the empirical curve 

plotting method if the VOT values of all the drivers are known. In the literature,   is 

usually assumed to follow uniform distribution, exponential distribution, or log-normal 

distribution. 

 

The commuters make their per-trip route plans based on their perceived value of the costs 

on each path, and this perceived cost on path wk R  should be expressed as:  

    , wk
wk wk wkC c


   


v τ v , (6.2) 

where wk  denotes the commuters’ perception error on path travel time, which is a 

random variable with zero mean and constant variance. wk  is assumed to be normally 

distributed in the context of PA-SUEED. Note that due to the existence of continuously 

distributed VOT, the models and algorithms proposed in Chapters 6 and 7 are also 

suitable to DUE or logit-based SUE cases.  
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As shown by eqn. (6.2), the continuously distributed VOT brought another random term 

wk


 to the cost. Let wkE
 

  
 be the mean of wk


, and for the sake of presentation, eqn. 

(6.2) is rewritten as: 

    , wk
wk wk wkC c E

     
v τ v , (6.3) 

where wk  is termed as generalized perception error, which has the expression: 

 wk wk
wk wkE

         
. (6.4) 

Evidently, the PDF of wk  is continuously differentiable, and wk  also has zero mean and 

constant variance. The generalized perception error on all the paths associated with OD 

pair w W  are grouped into column vector  T
,w wk wk R  λ .  ,wkC v τ  in eqn. (6.3) 

is then referred to as generalized path travel time function. Analysis of the equilibrium 

network flows based on the generalized path travel time function is in nature a PA-

SUEED problem with continuously distributed VOT. 

 

Let  ,wS v τ  denote the satisfaction function (Sheffi, 1985) in such case, namely: 

     , min ,
w

w wk
k R

S E C


    
v τ v τ . (6.5) 

 ,wS v τ  here can be used to measure the impedance of traveling between OD pair 

w W . Thus, travel demand between any OD pair w W  is also assumed to be a non-

increasing function of  ,wS v τ , with the expression: 

   , ,w w w wq D S q w W  v τ . (6.6) 
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6.2.2 MPEC Model for the Speed-Based Toll Design Problem 

With a predetermined targeted range for the average speed of vehicles in each pricing 

cordon, i i i     , there would be more than one “acceptable” toll fare pattern that 

generates desirable average travel speed in all the cordons. While, the toll design problem, 

as shown in Section 6.1, aims to search for the “optimal” toll fare pattern, among all the 

acceptable solutions, that gives rise to maximal value of total social benefit (TSB). An 

expression of TSB in the framework of PA-SUEED is thus of intrinsic interests. 

Assuming constant VOT, a widely used expression for TSB of a transportation network 

in terms of DUE with elastic demand comes from the Marshallian rule (see, e.g. 

Maruyama and Sumalee, 2007): 

 1 1

0 0
( ) ( )

w wq q
a a

w a a a w a a
a A a A a A

D w dw v t v D w dw v t 

  

         
    , (6.7) 

where a  denotes the toll charge on link a A . On the left hand side of eqn. (6.7): the 

first term is the overall benefit gained by the drivers from their journey, the second term 

represents the overall cost borne by them, and the last term is the total toll revenue, which 

would be re-invested in the construction and maintenance of infrastructures in 

transportation network. Note that the first proportion is constant if travel demand is fixed, 

thus eliminating the first proportion of eqn. (6.7) an index for TSB of DUE with fixed 

demand can be obtained, which is the Wardrop’s second principle, System Optimum. 

 

While, for a pricing scheme in terms of SUE with fixed demand, Bellei et al. (2002) 

defined TSB as follows: 
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   , a
w w w a

w W a A

q S v
 


 

 c v τ . (6.8) 

Based on eqns. (6.7) and (6.8), an expression for the TSB of cordon-based congesting 

pricing scheme in terms of PA-SUEED principle can be given by:  

          1
1 0

( ) ,
wq

a
w w w a

w W w W a A

Z D x dx q S E v

  

      
  

τ
τ τ v τ τ , (6.9) 

where the first term in right-hand-side of eqn. (6.9) is the overall benefits obtained by the 

commuters from their trips, and the second proportion represents the overall travel costs 

borne by the commuters. The last proportion is the total toll revenue, and it should be 

noted that in the last term the mean value is used due to the existence of randomly 

distributed VOT,  .  

 

Based on eqn. (6.9), the speed-based toll design problem can then be formulated by the 

following MPEC model:  

  1max Z
τ

τ  (6.10) 

Subject to  

   , 1,2, ,i i i i I     τ   (6.11) 

      , and fulfil the equilibrium conditionsv τ f τ q τ  (6.12) 

In eqn. (6.10),   denotes the feasible set for toll fare patterns, i.e., 

 | ,a a A    τ    , where   ( ) is a predetermined lower (upper) bound for the 

toll charges. In eqn. (6.12),  v τ ,  f τ  and  q τ  denote the vector for link flows, path 

flows and OD demands, which can be attained by solving a PA-SUEED problem with 
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continuously distributed VOT. Mathematical model and solution algorithm for the PA-

SUEED problem with continuously distributed VOT are briefly introduced in the 

following sub-section. 

6.2.3 PA-SUEED Problem with Continuously Distributed VOT 

For any given toll charge pattern τ  , its corresponding equilibrium link flows 

    T
,av a A v τ τ  is in nature the solution of a PA-SUEED problem with 

continuously distributed VOT. 

 

It is straightforward to show that the probability density function (PDF) of the 

generalized perception error wk  is continuously differentiable and strictly positive. 

Meanwhile, following the proof of Lemma 4.1 in Daganzo (1979), it gives that the 

conditions shown by Proposition 6.1 is still effective when the continuously distributed 

VOT is assumed.  

 

Proposition 6.1: Satisfaction function  ,wS v τ  is concave with respect to path travel 

times  wc v , and moreover 
  
   

,
,w

wk
wk

S
p

c






v τ
v τ

v
, thus 

                              T
, , , , ,w w w w wS S          vv τ v τ p v τ c v c v v v , (6.13) 

where     T
, , ,w wk wp k R  p v τ v τ  is a column vector of choice probability of all 

the paths associated with OD pair w W . 
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These properties guarantees that the path choice probability in the case of PA-SUEED 

with continuously distributed VOT is still regular (see Section 2.4 of Cantarella, 1997), 

thus the solution framework addressed in Chapter 3 is still effective for such a problem. 

Namely, it can be formulated as the following fixed-point model over the feasible set of 

link flows: 

       , , ,
w

w
a w w wk ak

w W k R

v D S p a A
 

      τ v τ v τ . (6.14) 

The equilibrium conditions in eqn. (6.12) thus can be replaced by this fixed-point model 

(6.14). As per Theorems 1 and 2 of Cantarella (1997), this fixed-point model has one 

unique solution in terms of PA-SUEED with continuously distributed VOT. Thus, the 

solution algorithms discussed in Chapter 3 are all effective for solving this problem. Note 

that the procedures of the link-based two-stage Monte Carlo simulation method for 

solving SNL should be modified in this case, since the value of VOT should also be 

sample in each run. Yet, such a change is straightforward, thus the detailed procedures of 

the modified Monte Carlo simulation method are not provided here.  

6.3 Solution Algorithm for the Speed-based Toll Design 

In view that the proposed MPEC model is not convex and also considering the 

continuously distributed VOT, existing algorithms (see Section 2.3.1) are not available 

for solving this MPEC model. Note that a theoretically effectual method is to enumerate 

all the feasible toll patterns, assess their corresponding value of total social benefit (TSB) 

and average speed  i τ , and then choose the optimum with maximal TSB value, among 

those toll patterns that can fulfill the desired speed interval, eqn. (6.11). This brute force 

method is extremely time-consuming, per se, and would be unacceptable even for a 
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middle size example. Consequently, in this chapter a genetic algorithm type method is 

adopted to solve the proposed model, which is an approximation of the brute force 

method. 

  

GA is one of the most well-known search heuristics for solving optimization problems 

(e.g., Goldberg, 1989; Gen and Cheng, 1997). Chromosomes of the genetic algorithm are 

designed in this way: all the tolled links on the network are successively numbered, and 

each gene in one chromosome represents the toll charge on the corresponding tolled link. 

For the chromosomes in the initial generation, all their genes are randomly generated 

between   and  .  

 

To cope with the speed constraint (6.11), a penalty cost is added to the objective function, 

thus the model (6.10) is approximated by the following model: 

                     
2 2

2 1
1 1

max max 0, max 0,
I I

i i i i
i i

Z Z c c


 

              
   
 

τ
τ τ     (6.15) 

Subject to: 

       , , ,
w

w
a w w wk ak

w W k R

v D S p a A
 

      τ v τ v τ  (6.16) 

where penalty parameter c  is a large positive number. 

6.3.1 Revised Genetic Algorithm 

As shown in Section 6.1, the Land Transport Authority in Singapore adjusts the toll 

charges based on a regular survey on the travel speed. In accordance with this strategy for 

toll adjustment, for any chromosome in a particular generation of the genetic algorithm, if 
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its corresponding average speed is not in the targeted range, a similar adjustment would 

be conducted on the chromosomes. This toll adjustment strategy would subsequently 

produce a new chromosome. Together with those from the crossover and mutation 

processes, all the newly generated chromosomes will be considered for the selection of 

next generation. Such a solution algorithm for the speed-based toll design problem is 

called as Revised Genetic Algorithm, shown as follows: 

Step 1: (Initial population). Set the size of population to be n . Randomly generate initial 

population of the chromosomes, which contains toll fares on each tolled link. Let 

number of generation 1m  . 

Step 2: (Crossover). Randomly choose some parents from the survivors, and conduct 

pairing between each parent, which yields some new chromosomes.  

Step 3: (Mutation). With a lower probability, randomly choose some genes from all the 

chromosomes in current generation, and then modify value of these genes by a 

pseudo random number between   and  . This process also generates some new 

chromosomes. 

Step 4: (Evaluation). For each newly generated chromosome, solve a corresponding PA-

SUEED problem, and then record its corresponding TSB value in terms of the 

objective function (6.15).  

Step 5: (Toll Adjustment). Based on the existing individuals in current generation, 

perform a one-off adjustment on their toll fares in turns: for a chromosome with 

the toll fares equal to  T
,a a A  τ , check the corresponding average speed of 

vehicles in pricing cordon i , denoted by  i τ , and if  i τ  is less than the 

predetermined lower bound i , then increase toll fares on all the entry links to 
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this cordon by  ; otherwise if  i τ  is greater than its upper bound i , deduct 

the toll fares on its entry links by  . Here, the increment   is predetermined and 

fixed. This adjustment produces some new chromosomes, and then the TSB 

values of these new chromosomes are evaluated.  

Step 6: (Selection). Among all the existing individuals, choose the top n  individuals 

with larger TSB value, and then set these n  individuals as survivors for next 

generation.  

Step 7: (Stop Test). If a stop criterion is fulfilled, stop; otherwise, set 1m m   and go to 

Step 2.  

6.3.2 Decomposition of Revised Genetic Algorithm for Distributed Computing 

It can be seen from the procedures above for Revised Genetic Algorithm that evaluation 

process of each chromosome mainly requires solving a PA-SUEED problem with 

continuously distributed VOT based on given toll pattern τ . 

 

In each generation of the Revised Genetic Algorithm, there would be tens of newly 

generated chromosomes. Most of the computational efforts are devoted onto the 

evaluation process. Evaluation of each chromosome is totally independent and follows 

identical procedure, thus it also has a perfect parallelism. Therefore, it is quite 

straightforward to inherently accelerate the computation of the Revised Genetic 

Algorithm by virtue of distributed computing, and such a computational procedure is 

named as Distributed Revised Genetic Algorithm (DRGA). Regarding the parallel 

(distributed) GA type methods used in transportation studies, Wong et al. (2001) 
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proposed a parallel GA for the calibration of Lowry model, and only recently Cipriani et 

al. (2010) has used a parallel GA on a personal computer with dual-core processor for 

solving the transit network design problem.  

 

Figure 6.1 Flowchart of Distributed Revised Genetic Algorithm 

 

Figure 6.1 shows the procedures of DRGA. It can be seen that in each iteration new 

chromosomes are yield by three processes: crossover, mutation and toll adjustment. Then, 

all the newly generated chromosomes are taken for evaluation, which possesses more 
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than 90% of the total CPU time. As mentioned earlier, the evaluation process for each 

chromosome is conducted by different processors in the distributed computing system 

synchronously. Suppose the total number of processors equal to k , and all the newly 

generated chromosomes are evenly assigned to these k  processors. Then, all the 

processors would work in parallel, which largely reduced the total execution time. After 

the evaluation, computational results for each newly generated chromosome are sent to 

the main processor for selection and stop test. 

6.4 Numerical Example 

To numerically validate the proposed model and algorithm for the speed-based toll design 

problem, a network example is build based on the cordon-based Electronic Road Pricing 

(ERP) system in downtown Orchard Road of Singapore.  

 

Figure 6.2 Locations of ERP System on the Orchard Road of Singapore 

 



Chapter 6  Speed-based Toll Design for Cordon-based Congestion Pricing Scheme 

 158

Figure 6.2 downloaded from the website of Singapore Land Transport Authority (2011) 

shows the charging locations on Orchard Road, and clearly each entry to the cordon is 

charging. Based on the map shown by Figure 6.2, a grid network example with 33 nodes 

and 104 links is built in Figure 6.3. The pricing cordon is highlighted by a dotted ellipse, 

and all the 12 entries are indicated by bold lines. All the entries are grouped into set A , 

which are: 

  24,25,27,29,34,47,79,82,84,86,88,90A   (6.17) 

It is noted, in passing, that the entries shown in eqn. (6.17) are sequentially used to build 

the chromosomes in the DRGA. The targeted range for average speed of vehicles in 

Orchard Road cordon is decided by Singapore Land Transport Authority to be [20, 30] 

km/hour. In light of the speed-based toll design problem, toll charges on each entry 

should be adjusted to keep the average travel speed in this range and meanwhile achieve 

a better total social benefit. The increment   of the toll adjustment procedure (see Step 5 

of the Revised Genetic Algorithm) is currently taken as 1.0 Singapore Dollar (S$).  

 

Figure 6.3 Topological Structure of the Orchard Road Network 
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It is assumed that 12 OD pairs exist on this network. Table 1 shows the origin and 

destination node of each OD pair as well as the upper bound of its travel demand. The 

actual travel demand between OD pair w W  is assumed to be determined by the eqn. 

(3.82) with the parameter   equal to 0.001 for this example. 

Table 6.1 Parameters in the Travel Demand Function  

OD pair w  Upper bound of 
 travel demand 

wq  

(vehicles/hours)
1 33 5000 
9 1  4000 

3 27 5000 
27 9 5000 
2 29 6000 

18 28 6000 
4 24 3000 
32 14 5000 
33 3 5000 
25 4 5000 
28 6 8000 
7 23 8000 

 

The asymmetric link travel time function still follows eqn. (3.86). Data for the relevant 

link attributes are tabulated in Table 6.2.  

 

Table 6.2 Data for the Link Attributes 

Link No. Start node End node Free-flow 
travel time 

0
at  

(Seconds)

Capacity  

ah  

(vehicles 
/hours) 

1 2 1 60 5400 
2 1 2 60 5400 
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Link No. Start node End node Free-flow 
travel time 

0
at  

(Seconds)

Capacity  

ah  

(vehicles 
/hours) 

4 2 3 100 5400 
5 1 4 40 5400 
6 4 1 40 5400 
7 5 4 90 3600 
8 4 5 90 3600 
9 6 5 42 3600 
10 5 6 42 3600 
11 2 6 80 7200 
12 6 2 80 7200 
13 3 8 72 3600 
14 8 3 72 3600 
15 7 6 160 1800 
16 6 7 160 1800 
17 8 7 120 1800 
18 7 8 120 1800 
19 9 8 60 3600 
20 8 9 60 3600 
21 4 10 80 5400 
22 10 4 80 5400 
23 12 5 55 3600 
24 5 13 55 3600 
25 6 14 80 7200 
26 14 6 80 7200 
27 7 15 120 1800 
28 15 7 120 1800 
29 8 17 60 3600 
30 17 8 60 3600 
31 9 18 90 3600 
32 18 9 90 3600 
33 11 10 16 5400 
34 10 11 16 5400 
35 12 11 40 5400 
36 11 12 40 5400 
37 13 12 24 5400 
38 12 13 24 5400 
39 14 13 48 5400 
40 13 14 48 5400 
41 14 15 40 5400 
42 15 14 40 5400 
43 16 15 12 5400 
44 15 16 12 5400 
45 17 16 60 5400 
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Link No. Start node End node Free-flow 
travel time 

0
at  

(Seconds)

Capacity  

ah  

(vehicles 
/hours) 

47 18 17 60 5400 
48 17 18 60 5400 
49 10 27 20 5400 
50 27 10 20 5400 
51 11 19 24 1800 
52 19 11 24 1800 
53 12 20 20 5400 
54 20 12 20 5400 
55 13 21 30 3600 
56 21 13 30 3600 
57 14 22 12 7200 
58 22 14 12 7200 
59 23 15 12 3600 
60 15 23 12 3600 
61 16 24 12 3600 
62 24 16 12 3600 
63 17 25 14 3600 
64 25 17 14 3600 
65 18 26 20 5400 
66 26 18 20 5400 
67 20 19 80 1800 
68 19 20 80 1800 
69 20 21 20 5400 
70 21 20 20 5400 
71 22 21 48 5400 
72 21 22 48 5400 
73 23 22 20 5400 
74 22 23 20 5400 
75 24 23 28 5400 
76 23 24 28 5400 
77 25 24 60 5400 
78 24 25 60 5400 
79 26 25 60 5400 
80 25 26 60 5400 
81 19 28 24 1800 
82 28 19 24 1800 
83 20 29 12 5400 
84 29 20 12 5400 
85 22 30 18 7200 
86 30 22 18 7200 
87 23 31 16 3600 
88 31 23 16 3600 
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Link No. Start node End node Free-flow 
travel time 

0
at  

(Seconds)

Capacity  

ah  

(vehicles 
/hours) 

90 32 24 18 5400 
91 26 33 60 5400 
92 33 26 60 5400 
93 28 27 20 5400 
94 27 28 20 5400 
95 29 28 40 5400 
96 28 29 40 5400 
97 30 29 90 3600 
98 29 30 90 3600 
99 31 30 30 3600 

100 30 31 30 3600 
101 32 31 60 3600 
102 31 32 60 3600 
103 33 32 96 5400 
104 32 33 96 5400 

 

As mentioned earlier that commuters’ VOT is assumed to be continuously distributed, it 

is assumed that the VOT is uniformly distributed, ranging from 18.0 to 72.0 S$ per hour. 

6.4.1 Simulation Method for the Average Travel Speed in Each Cordon 

As per the speed-based toll design method, toll charges on each entry of pricing cordon i  

should be adjusted in terms of the average journey speed of all the vehicles in this cordon 

during the decision period. Herein, the decision period is defined as one hour in the 

morning peak. In reality, after the implementation of any toll-charge pattern the average 

journey speed of vehicles in the cordon can be obtained by a survey using the probe 

vehicles. While, in this numerical example, the corresponding average speed i  of 

cordon i  is approximated by an area-wide speed-flow model proposed by Olszeski et al. 

(1995) for the downtown area of Singapore: 

  1.563
80.645 44.9 12.0 ln 2121.8, 1, 2,i i iQ i I        (6.18) 
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where iQ  denotes the total in-bound and out-bound volume to cordon i , which equals to 

the summation of flows on all the entries and exits. With any given toll-charge pattern 

 T
,a a A  τ , the equilibrium link flows on all the entries and exits of cordon i  can be 

obtained by solving a PA-SUEED problem with continuously distributed VOT, and 

consequently its total in-bound and out-bound volume   , 1,2, ,iQ i Iτ   equals to the 

flow on all the entries and exits of the pricing cordon. Taking   , 1,2, ,iQ i Iτ   into 

eqn. (6.18) gives an estimation of the average travel speed  i τ , and it is then used to 

adjust the toll charges on each entry of cordon i .  

6.4.2 Computational Results of Distributed Revised Genetic Algorithm 

The Distributed Revised Genetic Algorithm (DRGA) is then used to solve the speed-

based toll design problem. The computing platform of this distributed computing 

approach is identical to that described at Section 5.3, thus is not repeated here.  

 

The DRGA is tested in different scenarios, wherein different numbers of processors in the 

distributed computing system are used. The execution time as well as the value of Speed-

Up (Nagel and Rickert, 2001; Wong et al., 2001), are used to evaluate its performance in 

each scenario. Recall that the value of Speed-Up can be calculated as follows:  

   1

k

T
S k

T
  (6.19) 

where 1T  denotes the execution time used by only one processor, and kT  is the execution 

time when k  processors are used. 
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For the DRGA, its values for population and generation are both decided to be 50. The 

computation will be terminated after 50 generations, which is taken as a stop criterion. 

Whilst, the mutation and crossover rates are set to be 0.01 and 0.25, respectively. Sample 

size of each stage of the two-stage Monte Carlo simulation is determined to be 100 and 

1000 for this example. In addition, the penalty parameter c  in eqn. (6.15) is set to be 

61.0 10 . 

 

Upper-bound   and lower-bound   for the positive toll charges on each entry are taken 

as 10.0 S$ and 0.5 S$, respectively. Initial generation of the DRGA is then produced by 

independently setting a random number between [0.5, 10.0] to each gene of the 

chromosomes. It should be pointed out that due to the toll adjustment process (Step 5 in 

Section 6.3.1), toll charges may overstep the range of [0.5, 10.0] S$. 

  

Table 6.3 Resultant Toll Charges on Each Entry 

Entry No. 24 25 27 29 34 47 
Optimal Toll 
Charge (S$)

1.1 0.5 2.1 1.0 3.1 5.0 

Entry No. 79 82 84 86 88 90 
Optimal Toll 
Charge (S$)

1.8 6.1 1.5 2.5 3.7 2.5 

 

Table 6.3 indicates the resultant optimal toll charges on each entry to the Orchard Road 

Cordon, denoted by *τ . The corresponding total social benefit (TSB) (in terms of eqn. 

(6.15)) and the average travel speed  *
i τ  in Orchard Road cordon are 74.79 10  and 



Chapter 6  Speed-based Toll Design for Cordon-based Congestion Pricing Scheme 

 165

24.4 km/hour, respectively. It can be seen that  *
i τ  locates in the targeted range [20, 

30] km/h decided by the Singapore Land Transport Authority. 

 

Table 6.4 Execution Time and Speed-Up with Different Number of Processors 

No. of Processors Execution Time 
(Seconds)

Speed-Up 

1 107580 1.00 
2 56736 1.90 
3 41330 2.60 
4 37116 2.90 
5 28836 3.73 
6 27427 3.92 
7 26458 4.07 
8 22950 4.69 
9 20399 5.27 

10 19106 5.63 
15 14501 7.42 
20 11156 9.64 
25 10080 10.67 
30 9826 10.95 

 

To comprehensively see the impact of toll charges on the network conditions, two 

additional tests are conducted for the cases with null toll (toll charges all equal to zero) 

and highest toll (the upper-bound 10.0 S$ is levied on each entry). It gives that for the un-

tolled case: the TSB value is 75.17 10   and average speed in the cordon is 10.1 

km/hour; for the case with highest toll: the TSB value is 72.56 10  and the average speed 

is 34.2 km/hour. Computational results of these two extreme cases verified that the 

cordon-based toll charges would inherently influence the network users’ route choice 

behavior to mitigate traffic congestions within the cordon area. For the un-tolled case, an 

average speed of 10.1 km/hour implies a congested road condition, which is much worse 

than the expectation of the network authorities. While, in the case of highest toll charges, 
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a fast average speed of 34.2 km/hour implies that the quite few vehicles are traveling in 

the area, which is a waste of the road resources. The TSB value for the un-tolled case is 

negative due to its high penalty cost for the unacceptable average travel speed. 

Performance of the DRGA would be affected by the number of processors used. Hence, a 

sensitivity test is conducted for its impact on the total execution time as well as the value 

of Speed-Up, shown in Table 6.4. It can be seen that when only one processor is used for 

the calculation 1T , the execution time is as large as 107580 seconds, approximately 30 

hours, which is beyond the acceptance. The execution time, however, is sharply 

shortened when more processors are used. In the optimal case, when 30 processors are 

used, the computation can be accelerated for nearly 11 times, with an execution time of 

around 2.7 hours. 
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Figure 6.4 Value of Speed-Up in terms of Different Number of Processors 
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To get a better view of the trend of this sensitivity test, the values of Speed-Up in terms 

of different processors are indicated by Figure 6.4. An interesting phenomenon shown by 

Figure 6.4 is that when the number of processors used is less than 10, the value of Speed-

Up is linearly increasing, while this increase is decelerated when more than 10 processors 

are used. This phenomenon can be ascribed to two reasons: (a) when a new processor is 

added, there should be a trade-off between its marginal computation effort and the 

marginal cost resulting from additional data communication load. Yet, thanks to the 

advanced 10G Myrinet technology adopted in the distributed computing system, the total 

data communication time is quite trivial, thus each additional processor can fully 

contributed to the speedup of computation, and this results to an approximately linear 

Speed-Up increase; (b) in each generation of the DRGA, the number of newly generated 

chromosomes varies from 10 to 40. If this number is less than the number of processors 

used, the redundant processors would be in idle, which can not contribute to the speedup 

of the calculation. Thereby, where the number of processors is larger than 10, the total 

idle time would dramatically increase, and performance of the distributed computation 

would be deteriorated. 

6.5 Conclusions  

This chapter dealt with the speed-based toll design problem for cordon-based congestion 

pricing scheme, where improving the traffic conditions in the cordon area was taken as an 

objective. Average travel speed was taken as an index of the traffic conditions, and a 

targeted range should be predefined for the average travel speed. Any toll-charge pattern 

that can maintain the travel speed in this targeted range is regarded as acceptable. A 
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MPEC model was proposed for optimal toll-charge pattern, among the acceptable ones, 

with maximal total social benefit value. The MPEC model takes a fixed-point model, 

formulated for the PA-SUEED problem with continuously distributed VOT.  

 

A Distributed Revised Genetic Algorithm (DRGA) was then proposed for solving this 

speed-based toll design problem. It showed that DRGA can successfully achieve a toll-

charge pattern that maintains the corresponding average travel speed in the targeted range 

and also attain a higher total social benefit. The numerical example further indicated that 

the computation can be speeded up for more than ten times. 

 

This study is an initial step of combining the traffic conditions in CBD area as well as the 

issue of average travel speed into congestion pricing toll design problem. A promising 

research topic would be an in-depth investigation about the effect of any toll-charge 

pattern on the average travel speed in the cordon area. Further efforts are also required to 

investigate the impacts of different distribution types of the VOT on the optimal toll-

charge pattern. Calibration of the VOT distribution based on practical survey data is also 

of considerable significance to this research topic. 
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CHAPTER 7 DISTANCE-BASED TOLL DESIGN FOR CORDON-

BASED CONGESTION PRICING SCHEME 

This chapter investigates about the distance-based toll design, which is an extension of 

the pay-per-entry basis charge, e.g., the toll charge pattern in Chapter 6. In reality, Land 

Transport Authority of Singapore intends to upgrade its Electronic Road Pricing (ERP) 

system from the current pay-per-entry charge to a distance-based charge, which is 

believed to perform better in terms of equity measures for commuters. Thus, toll design 

for the distance-based charge is a timely research topic with practical significance. The 

distance-based charges on each path within the cordon are uniquely decided by a charge 

function. Thus, toll design for the distance-based charge aims to find the optimal charge 

function that gives rise to maximal total social benefit (TSB), which is also formulated as 

a MPEC model. The charge function is assumed to be generic to any functional form. 

This property in conjunction with the non-additivity of distance-based charge has 

enlarged the challenges of solving the toll design problem. 

7.1 Background and Relevant Studies 

As claimed in Section 6.1, cordon-based pricing is apparently dominant in the practical 

implementations of congestion pricing schemes. All the implemented cordon-based 

congestion pricing schemes currently use a flat toll-charge method including the daily 

licensing basis charge (Santos, 2008) and the pay-per-entry basis charge, regardless of the 

travel distance or time in the pricing cordons. This flat toll-charge method, however, is 

inequitable because it undercharges the longer journeys and over-restrains the shorter 

ones (May et al., 2008).  
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To cope with this inequity issue, May and Milne (2000) examined three possible 

alternative toll-charge methods: (a) time-based method according to the time consumed 

in traversing a cordon; (b) congestion-based method in accordance with the additional 

travel time spent in congestion; and (c) distance-based method relied on the distance 

travelled. May and Milne (2000) concluded that these three methods outperformed the 

flat toll-charge method in terms of traffic congestion mitigation. The first two toll-charge 

methods, to some extent, encourage aggressive driving behaviors and may cause more 

traffic safety issues. They are hence not adopted in practical trials (Richards et al., 1996). 

The technology for distance-based toll-charge method is already available, and it can be 

efficiently implemented with the aid of the global positioning system (GPS) and an in-

vehicle unit integrating a GPS receiver, a digital map and a general packet radio service 

(GPRS) communication device. It is more preferable for the next generation of 

congestion pricing schemes taking into account the inequity issue. Note that toll charges 

for the distance-based toll-charge method should be a function of the travel distance in 

each pricing cordon, which is termed distance-based toll-charge function. It thus makes 

the toll charges, in most cases, non-additive. 

 

Land Transport Authority (LTA) of Singapore has updated the bus fares for public 

transport system to be distance-based. The bus fares are determined by a universal fare 

structure table, and as shown by Figure 7.1 the bus fare in such case is a nonlinear 

function of travel distance. Likewise, LTA intends to update its Electronic Road Pricing 

(ERP) system from the current pay-per-entry charge to the distance-based charge termed 
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as second generation ERP system (Ohno, 2007). Despite the communication technology 

challenges, it is essential for the LTA of Singapore to determine a proper distance-based 

toll-charge function for the second generation ERP. It is therefore a new research issue 

with practical importance to estimate a distance-based toll-charge function that 

maximizes the total social benefit (TSB). To better reflect the commuters’ travel behavior, 

PA-SUEED with continuously distributed VOT is also assumed as a framework for the 

analysis of network equilibrium in this chapter.  
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Figure 7.1 Bus Fare Structure for Public Transport System in Singapore 

 

In addition to the second generation ERP system in Singapore, the importance and 

significance of the optimal distanced-based toll design addressed in this study can be 

further demonstrated by the experiments of a kilometer (KM)-based toll-charge method 

conducted in several European regions including Leeds, UK (Mitchell et al., 2005; 

Namdeo and Mitchell, 2008), Scotland (O’Mahony et al., 2000), Netherlands (Ubbels et 



Chapter 7  Distance-based Toll Design for Cordon-based Congestion Pricing Scheme 

 172

al., 2002) and Germany (Hensher and Puckett, 2007; Link, 2008). As a special distance-

based toll-charge method, the KM-based toll-charge method assumed that toll charge for 

each vehicle was linearly proportional to its travel distance in the pricing area (May and 

Milne, 2000), making the toll charge additive. Yet, previous studies and trials for KM 

charge all arbitrarily set a charging rate per kilometer, which is unlikely to achieve the 

maximal TSB. Therefore, this chapter also takes the toll design problem for KM-based 

toll-charge method into analysis, which can be briefly solved by a brute-force method. 

 

In spite of its simplicity in modeling and calculation, KM-based toll-charge function is 

unlikely to be the optimal for all the transportation networks. Yet, no practical data is 

available for the analysis of a proper functional form of the toll-charge function or to 

calibrate such a function. It is therefore more reasonable to assume that the toll-charge 

function is generic to any positive and non-decreasing function, which includes the KM-

based toll-charge function, linear function, and nonlinear functions. 

 

Thereby, this chapter aims to propose a methodology that is able to estimate a positive 

and non-decreasing toll-charge function with maximal TSB, which is formulated as a 

MPEC model. Likewise to the speed-based toll design, the fixed-point model, proposed 

for the PA-SUEED problem with continuously distributed VOT, is also taken as a 

constraint to the MPEC model. Since the distance-based toll-charge function is allowed 

to be any functional form, it is prohibitive to solve this MPEC model. Thus, a piecewise-

linear function is proposed to approximate any form of the toll-charge function, which 

gives another mixed-integer MPEC model for the convenience of calculation. 
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For solving the mixed-integer MPEC model, due to the random VOT, existing algorithms 

for the MPEC model, see Section 2.3.1, are not available. On the other hand, considering 

the integer property of the piecewise-linear approximation function, it is convenient to 

adopt the Genetic Algorithm (GA) as a solution method. 

 

For each given toll-charge function, its impacts on the network equilibrium flows are 

analyzed by solving a PA-SUEED problem with continuously distributed VOT. However, 

the non-additivity of distance-based toll charge requires path enumeration/generation, 

thus increases the computational costs and also prohibits the link-based Monte Carlo 

simulation method to solve the SNL problem. To cope with this hurdle, a network 

transformation technique is proposed, which enumerates the cycle-free paths in the 

cordon, and therefore enables the link-based solution algorithm. 

 

The remaining sections are organized as follows. Section 7.2 defines the optimal 

distance-based toll design problem and Section 7.3 put forward the network 

transformation technique that enables a link-based Monte Carlo simulation for solving 

the SNL. Section 7.4 first develops a MPEC model for the toll design problem, and then 

introduces a mixed-integer MPEC model based on the piecewise-linear approximation 

function. Solution algorithms and numerical experiments are presented in Sections 7.5 

and 7.6. Conclusions are finally provided in Section 7.7. 

7.2 Toll-Charge Function and Optimal Distance-based Toll Design  

Similarly to the previous chapters, PA-SUEED problem is also assumed to depict the 
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commuters’ travel behavior on the strongly connected network  ,G N A . Let I  be the 

number of congestion pricing cordons in network G . Network  ,G N A  is then 

divided into one external network, denoted by  ˆ ˆˆ ,G N A , and several cordon networks, 

denoted by  ,i i iG N A  1,2, ,i I  . The links (nodes) in any cordon network are 

termed as internal links (nodes), while the other links (nodes) in external network 

 ˆ ˆˆ ,G N A  are termed as external links (nodes). Note that the boundary nodes of any 

cordon i  exist both in its cordon node set iN N  and the external node set N̂ N . Let 

iE  be the set of all the entry-exit pairs of cordon i I , and ,w i
kd  denote the length of the 

portion of path wk R  in the congestion pricing cordon i  and it can be expressed as 

follows: 

 , , ,
i

w i w w
k a ak ek w

e E a A

d l k R w W
 

     , (7.1) 

 where al  is the length of link a A  and w
ek  is entry-exit pair/path incidence indicator, 

i.e., 1w
ek   if path wk R  between OD pair w W  passes through entry-exit pair ie E  

of cordon i  and 0w
ek  , otherwise. 

 

A distance-based toll-charge method for the cordon-based congestion pricing scheme can 

be expressed by a distance-based toll-charge function  d  where d  is the distance 

traveled in a pricing cordon. It is assumed that the generic function  d  is positive and 

non-decreasing but may not be continuous. As shown by Figure 7.1, the toll-charge 
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function for distance-based bus fare in Singapore is not continuous.  d  is also allowed 

to follow any function form, including, linear function, quadratic function, exponential 

function, power function, etc. The kilometer (KM) based toll-charge function is a special 

case of  d , where only the slope is a decision variable, shown as follows: 

  d d   , (7.2) 

where   is the slope of KM based toll-charge function, which is the charging rate per 

kilometer.  

For any given toll-charge function  d , the toll charge imposed on path wk R  

between OD pair w W can be calculated as follows: 

    ,

1

I
w i

wk k
i

d


    . (7.3) 

Toll charge  wk   shown in eqn. (7.3) can be converted into time-units by virtue of the 

drivers’ value of time (VOT), denoted by  .   is assumed to be continuously distributed 

with a continuously differentiable probability density function. The generalized path 

travel time in this case can be defined as follows, which is similar to that defined in 

Chapter 6 at eqn. (6.2). 

       
, wk

wk w wk wkC c
 

   


v τ v , (7.4) 

And the generalized perception error can also be defined as: 

 
   wk wk

wk wkE
    

       
. (7.5) 

All the toll charges on the network are determined by the toll-charge function shown in 

eqn. (7.3). Different toll-charge functions will result in different network equilibrium 
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flows and consequently different total social benefit (TSB) values on the entire network. 

Let   be the set of all these positive and non-decreasing toll-charge functions. Assuming 

the PA-SUEED for drivers’ route choice behavior, the distance-based toll design problem 

aims to identify or estimate a proper toll-charge function with the maximal TSB from the 

set  . 

 

The number of feasible toll charge function in   is infinity. For each individual toll 

charge function  , it would influence the drivers’ route choice plans, and thus its 

impacts on the network are usually analyzed by solving a route choice problem, which in 

this case is solving a PA-SUEED problem. Equilibrium flows of the PA-SUEED problem 

then can be used to calculate the corresponding TSB value of this  . Since the 

distance-based toll charge is not additive to the links, it is more challenging to solve such 

a PA-SUEED problem, for which the mathematical models and solution algorithms are 

discussed in the following sub-section.  

7.3 PA-SUEED Problem with Non-additive Distance-based Charge  

As discussed in Section 6.2.3, the PA-SUEED problem with continuously distributed 

VOT can be also formulated by means of the following fixed-point model:  

             , , ,
w

w
a w w w w wk w w ak

w W k R

v D S p a A
 

          c v τ c v τ . (7.6) 

Wherein, the fixed-point model in this case also has a unique solution. Solution 

algorithms, see Chapter 3, require the calculation of SNL in each iteration, which can be 

solved by the link-based two-stage Monte Carlo simulation method proposed in Section 

3.4. Nevertheless, in this chapter, due to the existence of non-additive distance-based 
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charge, the link-based Monte Carlo simulation method is not available. Thus, to tackle 

this problem, a network transformation technique is first proposed as follows. 

7.3.1 Network Transformation for Non-additive Path Toll Charges 

A pricing cordon usually has limited size, and in such cases it is effortless to enumerate 

all the simple paths (acyclic paths) between any entry-exit pair ie E , which are termed 

as internal paths. Thus, a network transformation can be efficiently conducted to convert 

the non-additive path-based toll charges into link-based: firstly, each internal path 

between entry-exit pair ie E  is represented by a dummy link connecting its entry and 

exit node; secondly, replace all the cordon networks  ,i i iG N A  1,2, ,i I   by 

corresponding dummy links. Hereby, external network  ˆ ˆˆ ,G N A  and all the dummy 

links constitute a new composite network, denoted by  ,G N A   . We can see that this 

network transformation converts the “path-based” toll charges to be “link-based” on each 

dummy link. 

 

An illustrative example. A small example shown in the upper part of Figure 7.2 is used 

to illustrate the network transformation procedure. Links 1 to 6 and Nodes 1 to 5 

constitute the external network,  ˆ ˆˆ ,G N A , of this example. The area surrounded by a 

dotted ellipse is a pricing cordon, and therefore Links 7 to 12 and Nodes 2, 4, 6 compose 

the cordon network,  ,G N A . Entry-exit pairs of the pricing cordon comprise 2 4  

and 4 2 , and any trip traversing this cordon is imposed by a distance-based toll charge. 
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Figure 7.2 Illustrative Example for Network Transformation 

 

A new network,  ,G N A   , modified by the network transformation procedure is 

shown in the lower part of Figure 7.2. It can be seen that the pricing cordon is replaced by 

four dummy links (dotted arcs), and as shown in Table 7.1 each of these dummy links 

represents a simple path.  

Table 7.1 List of Simple Paths and Corresponding Dummy Links 

Entry-exit pairs Simple paths Represented by dummy link 

2 4  
2 4  [2 4 1]   

2 6 4   [2 4 2]   

4 2  
4 2  [4 2 1]   

4 6 2   [4 2 2]   

 

All the internal paths between entry-exit pair, ie E  are grouped in set eR . Evidently, 

based on a given toll-charge function,  , toll charge on each dummy link of composite 
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network  ,G N A    is a flow-independent constant, and generalized travel time on any 

path is additive to the links.  

 

Remark 7.1: In the case of a realistic network with large pricing cordons, there could be 

quite a number of simple paths between one entry-exit pair, thus considerably increasing 

the computational burden. Previous studies for path-based traffic assignment problems 

are confronted by this hurdle, see, e.g., Lo and Chen (2000), Bekhor and Toledo (2005). 

Instead of enumerating all the simple paths, these studies only examine partial paths (a) 

explicitly in a pre-generated path choice set or (b) implicitly based on the column 

generation method during iterative computations. These techniques of using partial paths 

are also recommended to cope with the internal paths on a realistic network. 

7.3.2 A Monte Carlo Simulation Method on the Composite Network 

Based on the composite network  ,G N A   , the link-based two-stage Monte Carlo 

simulation method then can be used for solving the SNL of PA-SUEED. Procedures of 

this Monte Carlo simulation method are more or less different from the procedures 

introduced in Section 3.4.2, thus they are also summarized as follows, for the sake of 

completeness. 

Stage 1: Monte-Carlo simulation for travel demand estimation  

Step 1.0: (Initialization) Let the number of simulations be 1n   and the initial estimated 

satisfaction be  0 0,wS w W  . 
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Step 1.1: (Sampling of link travel time) For each link a A , sample a value for the 

perception error  n
a  from the normally distributed population 

 00, ,aN t a A  . And then calculate the link travel time    n n
a a aT t   . 

Step 1.2: (Generalized travel time of dummy links) Sample a value for VOT  n  from 

its distribution function and calculate the generalized travel time on all the 

internal paths ,el R e E   by 

      
 

n n ele
el a al n

a A

d
T T




  


  , (7.7) 

where e
al  equals to 1 if internal path el R  contains internal link a A , and 

0, otherwise. eld  is the length of internal path el R .  n
elT  is recorded as the 

travel time on the corresponding dummy link of composite network 

 ,G N A   . 

Step 1.3: (Shortest path time calculation). With link travel time pattern   ,n
aT a A  on 

the composite network  ,G N A   , find the shortest path between each OD 

pair w W , and record the total travel time on this path as  n
wC . 

Step 1.4: (Satisfaction estimation). Estimate the satisfaction for each OD pair w W  by 

the following average scheme: 

        11
,

n n
n w w

w

n S C
S w W

n

 
 


. (7.8) 
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Step 1.5: (Accuracy checking). If the number of iterations 0n n , where 0n  is a 

predetermined sample size, go to Step 1.6; otherwise, set 1n n   and go to 

Step 1.1. 

Step 1.6: (OD demand calculation). Calculate OD travel demand pattern by the formulae: 

    ,n
w w wq D S w W  . (7.9) 

Stage 2: Monte-Carlo simulation for calculating the generalized probit-based SUE link 

flow  

Step 2.0: (Initialization). Set the initial link travel flow vector be  0 0,av a A   and 

1m   

Step 2.1: (Sampling). Sample the perception error  m
a  from  00, ,aN t a A   based on 

normally distributed random number series, and then calculate the link travel 

time     ,m m
a a aT t a A    . 

Step 2.2: (Sampling of VOT). Sample a value for VOT  m  from its distribution 

function and calculate the travel time on all the internal paths ,el R e E   by 

      
 

m m ele
el a al m

a A

d
T T




  


  . (7.10) 

Then, record  m
elT  as the travel time on corresponding dummy link of the 

composite network  ,G N A   . 

Step 2.3: (All-or-nothing assignment). Based on link travel time pattern   ,m
aT a A  on 

the composite network  ,G N A   , find the shortest path for each OD pair 

w , then assign wq  to the shortest path. Flow on link a A  is therefore a 
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summation of the travel demands of all the OD pairs whose shortest path uses 

link a A . Then assign flows on all the dummy links to the links on their 

corresponding internal paths ,el R e E  . This would generate an auxiliary 

flow pattern on all the links   ,m
aY a A . Calculate the simulated link flow 

by 

        11
,

m m
m a a

a

m v Y
v a A

m

 
  . (7.11) 

Step 2.4: (Convergence test). If the number of iterations 0m m , where 0m  is also a 

predetermined sample size, stop; otherwise, set 1m m   and go to step 2.1. 

 

Accordingly, the three solution algorithms, CA method and two hybrid PC-CA 

algorithms, discussed in Chapter 3 incorporating this Monte Carlo simulation-based SNL 

method can be adopted to solve the PA-SUEED problem with continuously distributed 

VOT, based on any given toll-charge function  . 

7.4 Two MPEC Models for the Optimal Distance-Based Toll Design  

7.4.1 Total Social Benefit and the Exact MPEC Model 

The distance-based toll design problem is also formulated as a MPEC model with the 

objective of maximizing total social benefit (TSB). In the framework of PA-SUEED with 

continuously distributed VOT, the TSB is defined as follows: 

 

           
   

1

0
( ) ,

,

w

e

q

w w w w w
w W w W

el el

e E l R

Z D x dx q S

f
E



 

 

   

  
  

 

 



τ
τ c v τ τ

τ
 (7.12) 
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where  E  is the expectation operator, and   T
,w w W  τ τ . 

    ,
T

wq w W q τ τ ,     ,
T

av a A v τ τ , and     , ,
T

el ef e E l R  f τ τ  

denote the column vectors for the equilibrium OD demands, link flows, and internal path 

flows, associated with a given toll-charge function  . Value of these vectors can be 

obtained by solving the PA-SUEED problem addressed in Section 7.3. 

 

Hence, A MPEC model is built to find a toll-charge function maximizing the TSB: 

  max Z


  (7.13) 

subject to  

         , , ,
w

w
a w w w wk w ak

w W k R

v D S p a A
 

        c v τ c v τ  (7.14) 

Constraint (7.14) is the fixed-point model proposed for the PA-SUEED problem with 

continuously distributed VOT. 

 

As aforementioned, the toll-charge function is merely required to be positive and non-

decreasing, and it is generic to any linear or nonlinear functional forms. This type of toll-

charge function has a sound rationality, thus model (7.13)-(7.14) is termed as exact 

MPEC model. Yet, it is quite challenging to solve this model, since the toll-charge 

function has no specific functional form. In view of this, an approximation method is 

proposed in the following section, where a piecewise-linear function is used to 

approximate any positive and non-decreasing function. This approximation method then 

gives a mixed-integer MPEC model that can be simply solved. 
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7.4.2 A Mixed-integer MPEC Model with a Piecewise-linear Approximation Function  

A piecewise-linear approximation function is indicated by Figure 7.3. Suppose the 

nonlinear function in the left-hand-side of Figure 7.3 is a feasible toll-charge function, it 

then can be approximated by a piecewise-linear function as shown in the right-hand-side 

of Figure 7.3. The shape of a piecewise-linear function in each interval is uniquely 

determined by its two boundary values.  

 

Figure 7.3 An Illustrative Example for the Piecewise-linear Approximation Function 

 

Theoretical definition of the piecewise-linear approximation function is then discussed. 

Let mind  and maxd  be the minimum and maximum lengths of all the internal paths. The 

range  min max,d d  can be uniformly dividend into n  intervals, where n  is a positive 

integer number,  

        min 2 2 3 1 max, , , , , , , ,i i nd d d d d d d d  . (7.15) 
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The piecewise-linear approximation function contains 1n  boundary values over these 

n  intervals, and these boundary values are defined as  1 miny d  , 

  , 2,3 ,i iy d i n     and  1 maxny d   . The piecewise-linear approximation function 

is defined accordingly as follows: 

    1
1

1

, , , 1,2,i i
n i i i i

i i

y y
d y d d d d d i n

d d






      


y  , (7.16) 

where 1 mind d  and 1 maxnd d  . The column vector y  is defined as  T

1 2 1, , ny y y y  . 

 

The number of intervals, , can influence the fitness of  ,n d y  to the original toll-

charge function  d . It is reasonable to assume that: 

  min max, ,and  is an integern n n n . (7.17) 

Herein, the lower bound minn  is defined, because it will deteriorate the equity of distance-

based toll-charge method if the value of n  is fairly small. And on the other hand, if the 

number of intervals is too large, computational cost of solving the optimal piecewise-

linear function *
n  would geometrically increase, thus an upper bound maxn  is also 

defined for n .  

 

Based on the piecewise-linear function (7.16), the MPEC model (7.13)-(7.14) can be 

approximated by the following mixed-integer MPEC model with the decision variables 

y  and n : 

   
,

max ,n
n

Z d
y

y  (7.18) 

n



Chapter 7  Distance-based Toll Design for Cordon-based Congestion Pricing Scheme 

 186

subject to  

          , , , ,
w

w
a n w w w wk w ak

w W k R

v d D S p a A
 

       y c v τ c v τ  (7.19) 

 min 1y y  (7.20) 

 1 1, 2,3, , 1i i iy y y i n       (7.21) 

 maxny y  (7.22) 

 min max and  is an integern n n n   (7.23) 

where miny  ( maxy ) is a predetermined lower (upper) bound of the toll charge. Eqns. (7.20)

-(7.22) ensure that the piecewise-linear function is positive and non-decreasing. This 

mixed-integer MPEC model is then used to solve optimal distance-based toll design 

problem, solution algorithm of which is provided in the following section. 

7.5 Solution Algorithm  

As claimed in Section 7.1, due to the complicated properties of the PA-SUEED problem, 

existing algorithms for MPEC models are not available in this case. However, for any 

given function type of toll-charge function with limited number of un-known variables, it 

would be an accurate and un-expensive way to enumerate and assess all the feasible 

variables with a small gap. For instance, considering the KM-based toll-charge function, 

shown in eqn. (7.2), only the slope   is a variable, and a reasonable range for   is 

usually not quite large, thus it is pleasant to test all the values of   in this range with a 

small increment.  
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The brute-force enumeration method is unacceptable for the piecewise-linear 

approximation function  ,n d y . While, considering the discrete property of  ,n d y , 

when the value of n  is given, it would be more straightforward to adopt Genetic 

Algorithm (GA) as a heuristic for solving the mixed-integer MPEC model (7.18)-(7.23). 

Thereby, all the feasible n  are first enumerated and for any particular n , the optimal 

piecewise-linear function that yields maximal TSB can be solved by GA, and this method 

is named as Hybrid GA. Note that a feasible chromosome for the piecewise-linear toll-

charge function  ,n d y  is given below: 

1y  2y   iy 1iy 


1ny  ny

and iy  here is defined as a gene of one chromosome. Each chromosome will give rise to 

different toll charges on the network, which therefore leads to different values of total 

social benefit (TSB). Detailed procedures of the Hybrid GA are summarized as follows: 

Step 1: (Initialization). Set initial value for the number of intervals be  1
minn n . And 

initialize the optimal TSB value be *TSB 0  and the optimal number of intervals 

be  1*n n . Set the number of iteration be 1p  . 

Step 2: With the number of intervals equal to  pn , calculate the optimal piecewise-linear 

function  
*

pn
  with maximal TSB value, denoted by  TSB p , by the following GA: 

Step 2.0: (Initial population). Randomly generate initial population of the 

piecewise-linear function, and each individual carries a feasible 

chromosome. Then, set the number of generation 1k  . 

Step 2.1: (Evaluation). Based on the toll-charge function shown by one 

chromosome, calculate the value of toll charge on each internal path of the 
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composite network  ,G N A   . Then, calculate the corresponding PA-

SUEED problem with continuously distributed VOT, results of which are 

used to evaluate the TSB for this toll-charge function. Conduct such 

evaluations for all the new generated chromosomes.  

Step 2.2: (Selection). Select the chromosomes with higher TSB values as 

survivors for current generation and discard the rest. 

Step 2.3: (Crossover). Conduct pairing among survivors, where for each two 

chosen survivors, denoted by 1Y  and 2Y , two new chromosomes are 

generated by the following function: 

 
 
 

1 1 2

2 2 1

ˆ 1

ˆ 1

Y Y Y

Y Y Y

  

  

 

 
  0,1 . (7.24) 

Step 2.4: (Mutation). To guarantee the monotonicity of the toll-charge map, a 

mutation is conducted in this way: first, randomly choose some genes 

from existing chromosomes; second, for each chosen gene iy , update its 

value by sampling a uniformly distributed random variable in  min max,y y , 

then proportionally change the value of other genes of this chromosome in 

the interval  min , iy y  and  max,iy y . 

Step 2.5: (Stop test). If a stop criterion is achieved, let the value of  TSB p  equal 

to the maximal TSB among the survivors in current generation and record 

the corresponding chromosome, and then go to Step 3; otherwise, set 

1k k   and go to step 2.1. 

Step 3: If   *TSB TSBp  , then let  
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 

 

*

*

TSB TSB

,

p

pn n




 (7.25) 

 and record the corresponding chromosome as the optimal toll-charge function.  

Step 4: If  
max

pn n , then stop and output the optimal toll-charge function, *TSB  and *n ; 

otherwise, let    1 1p pn n   , 1p p   and go to Step 2. 

7.6 Numerical Experiment 

To numerical validate the proposed methodology, a numerical example, named as 

Network C, is adopted. This example was used by Meng et al. (2004) as well as Yang et 

al. (2004) for the non-additive entry-exit highway charge schemes. It contains 13 nodes, 

46 links and 8 OD pairs. As shown in Figure 7.4, the Network C has one pricing cordon, 

encircled by the dotted rectangular. Links in the cordon are grouped in the set: 

  33,34,35,36,37,38,39,40,41,42,43,44,45,46A  . 

Nodes 4, 5, 6 and 7 are entries as well as exits to this pricing cordon. 

 

Figure 7.4 Structure of Network C 
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Demand functions and asymmetric link travel time functions are identical to those in eqns. 

(3.82) and (3.86). Some parameters for the network attributes, including the upper bound 

of OD demand wq  and values of the 0
at  and ah  on each link, are identical to those in 

Yang et al. (2004), which are not included here. The parameter   in eqn. (3.82) is 

properly taken as 0.01 for this example. Length of each link is given in Table 7.2, which 

is used to measure drivers’ travel distance in the pricing cordon. Based on the link lengths, 

it is detected that the maximum and minimum path length, mind  and maxd , for this 

example is 405 and 2453 meters, respectively. 

 

Table 7.2 Length of the Links in the Pricing Cordon of Network C 

Link No. 33 34 35 36 37 38 39 
Length(meters) 790 1050 250 400 850 892 85 

Link No. 40 41 42 43 44 45 46 
Length(meters) 38 35 78 82 66 85 26 

 

The value-of-time (VOT) is assumed to be continuously distributed across the whole 

population. It is assumed that the VOT is uniformly distributed in the range from 18.0 to 

72.0 Singapore-Dollars (S$) per hour. Sample sizes for the two stages of Monte Carlo 

simulation are taken as 180 and 1000, respectively, to achieve an acceptable accuracy 

level.  

 

As described in Section 7.5, optimal toll design problem for the KM charge is solved by a 

brute-force enumeration method and for the general nonlinear distance-based charge is 

solved by the Hybrid GA. Both of these two methods possess a good parallelism, thus it 

is quite convenient to use distributed computing to accelerate the computational speed in 
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each case. For the enumeration method for KM charge, the range of slope   can be 

partitioned into many intervals and then evaluated by different processors in the 

distributed computing system. For the Hybrid GA, evaluation of each newly generated 

chromosome is independent and it thus can be conducted concurrently by different 

processors, which is discussed at Section 6.3.2. With sufficient processors, computational 

speed of these two methods can be accelerated for tens of times. For conciseness, the 

sensitivity test for the number of processors is not conducted again for this example, and 

the number of processors is fixed to be 50. 

7.6.1 KM Charge 

The optimal KM-based toll-charge function is first coped with, since it can be efficiently 

solved by the brute-force enumeration method and in addition it can be taken as a 

benchmark to evaluate the performance of optimal nonlinear distance-based charge. As 

shown by eqn. (7.2), only the slope   is an unknown parameter for the KM toll-charge 

function. It is assumed that   ranges from 0.5 to 10.0 S$ per km. Thus, 951 successive 

values of   in this range with an increment of 0.01 are tested, and the corresponding 

values of total social benefit (TSB) are shown in Figure 7.5. 

 

Figure 7.5 indicates that the value of TSB achieves its maximum at around 0.92  , and 

the optimal TSB value is 65.204 10 . While, the smallest TSB value obtained during this 

enumeration is only 64.094 10 . As shown in Figure 7.5, when the value of   exceeds 

2.10, the value of TSB stays at this smallest level. This is because when the toll charge of 

traveling in a pricing cordon is getting considerably high, no flow (in the Monte Carlo 
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simulation) would be loaded to any link there. Hence, the pricing cordon is blocked from 

the transportation network. In such a case, the value for TSB is lower, due to the fact that: 

(a) there is no toll revenue; and (b) the drivers lost some options for route choice, such 

that their travel disutility increases. 

 

 

Figure 7.5 Sensitivity Test for the Slope of KM-based Toll-charge function  

 

Another test is conducted for the case when there is no toll charge on the network, which 

equals to solving a PA-SUEED problem. It shows that the value of TSB in this case is 

65.145 10 . However, Figure 7.5 indicates that the values of TSB obtained by most of the 

KM-based toll-charge functions are even lower than 65.145 10 . This comparison 

confirms that when an arbitrary toll pattern is initially introduced to the transportation 

network, it may cause a deduction in total benefit/utility of the network. This 
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phenomenon is consistent with the previous study of Wilson (1988) on the cordon-based 

congestion pricing scheme in Singapore.  

7.6.2 Nonlinear Distance-based Charge 

The Hybrid GA can be used to calculate the optimal piecewise-linear approximation 

function for general nonlinear distance-based charge. Then, the network transformation is 

first performed, where links in the pricing cordon are replaced by some dummy links that 

connect each entry-exit pair. The resultant composite network is shown in Figure 7.6. 

 

Figure 7.6 Composite Network for Network C 

 

Since mind  and maxd  for this example are found to be 405 and 2453 meters, the gap for 

the length-variety of all the internal paths is 2048 meters. As aforementioned, a range 

should be decided for the number of intervals, n , which is quite essential for the 

piecewise-linear approximation function. If n  is too small, it would deteriorate the equity 

of nonlinear distance-based charge, while when n  is too large, it is computationally 

inhibitive to solve the optimal toll design problem. Thus, the upper and lower bound for 
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n  is properly decided to be 10 and 6, respectively. Namely, there are 5 scenarios with the 

value of integer n  changing from 6 to 10. Computational burden is in general increasing 

as the value of n  increases, since larger n  implies more genes in each chromosome and 

it subsequently increases the total number of mutations. 

 

The Hybrid GA is then adopted for solving the optimal *
n  of this numerical example. 

The stop criterion of GA, see Step 2.5 in Section 5, is taken as fixed number of 

generations, 50k  . Moreover, the total number of chromosomes (population) of one 

generation is chosen to be 200, and lower and upper bound of the toll charges, shown in 

eqns. (7.20) and (7.22), are set to be min 0.5y   and max 10.0y   S$.  

 

Table 7.3 Computational Profile of Different Scenarios to Network C 

Scenarios  6n   7n   8n   9n   10n   
Max TSB 5541560 5789184 5728330 5802743 5877805 

T1* 6916080 6949056 6939036 7019860 6964026 
T2* -2700789 -2681664 -2687571 -2637017 -2672666 
T3* 1326270 1521791 1476864 1419900 1586445 

Increase 6.48% 11.24% 10.07% 11.50% 12.94% 
CPU Time 
(seconds) 

826 868 890 906 930 

No. of Total 
Chromosomes 

3369 3521 3628 3777 3961 

*T1, T2, T3 are terms 1, 2, 3 in the right-hand-side of eqn. (7.12) 

 

Eventually, computational results of each scenario with different n  is tabulated in Table 

7.3. In table 7.3, the first column of data is the maximal TSB value obtained by each 

scenario, and the second to fourth column is the value of each term in the expression for 
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TSB, as in the right-hand-side of eqn. (7.12), namely, 
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τ
. The fifth 

column entitled “Increase” is the improvement of nonlinear toll charge over KM charge 

in terms of the TSB obtained, recalling that the maximal TSB obtained by KM charge is 

65.204 10 . The sixth column shows the execution time for each scenario, yet this 

execution time may not be strictly proportional to the computational burden of each 

scenario. This is because the computation is performed on the distributed computing 

system, and each scenario with different n  has different concurrency level affecting their 

parallelism. Most of the computational efforts are devoted onto evaluation of newly 

generated chromosome, thus the total number of chromosomes evaluated throughout the 

entire computation process could better reflect the total computational burden of each 

scenario, which is provided in the last column of Table 7.3.  

 

As per the data in Table 7.3, the optimum TSB value among all the scenarios is 

65.877 10  when 10n  . Compared with the maximal TSB obtained by optimal KM 

charge, 65.204 10 , the optimal nonlinear distance-based charge has a significant 

improvement, which is 12.94% as shown in Table 7.3. The optimal chromosome output 

from this scenario is depicted by Figure 7.7, which has 10 intervals and 11 boundary 

values. Clearly, the optimal distance-based toll-charge function is a highly nonlinear one. 
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Figure 7.7 Optimal Toll-charge Function for Network C 

As shown by Figure 7.7, the optimal nonlinear toll-charge function is a continuous non-

decreasing function. Longer journeys in the cordon are charged up to eight times higher 

than the shorter journeys, which is more equal than the commonly adopted pay-per-entry 

and licensing basis charge. When implemented in practice, the equity property of 

distance-based charge makes it prone to be accepted by the public users. However, the 

nonlinear distance-based toll-charge function is comparatively more complicated in view 

that it has many different intervals. This complexity may cause some difficulties to the 

drivers in precisely perceiving the toll charge on each path and then in wisely making 

their route plan. To cope with this problem, some empirical policies executed in the 

initialization stage of many congestion pricing schemes can be followed. For instance, as 

used for the ERP system in Singapore (Foo, 2000), the authorities can (a) establish the 

nonlinear distance-based charge on partial pricing cordons and/or selected time of day as 
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a trial and (b) frequently launch some publicity campaign for propagation. Such policies 

would help the drivers/users to be aware of and familiar with the updated charging rules, 

which is quite positive for the user acceptance of nonlinear distance-based toll charge. 

7.7 Conclusions 

This chapter solved the optimal toll design problem for the distance-based toll-charge 

method of cordon-based congestion pricing scheme. A MPEC model was developed for 

the toll-charge function with maximal TSB, taking the fixed-point model for PA-SUEED 

problem with continuously distributed VOT as a constraint. The toll-charge function is 

assumed to be generic to any positive and non-decreasing functional form. To solve the 

MPEC model, a piecewise-linear approximation function was first utilized to 

approximate any feasible toll-charge function, which gives a mixed-integer MPEC model. 

Then a Hybrid GA was adopted to solve the mixed-integer MPEC model. The proposed 

methodology was numerically validated by a numerical example. The output optimal 

piecewise-linear toll-charge function is highly nonlinear and it can considerably improve 

the TSB compared with the un-tolled case and KM charge. 

 

This study is taken on a static transportation network, while the congestion pricing 

schemes/trials in some cities (e.g. Singapore and Stockholm) are temporally dynamic and 

varying constantly at different time of day. It is thus necessary to extend the methodology 

proposed in this chapter for the time-differentiable toll charges using dynamic or multi-

period traffic assignment approaches. 
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CHAPTER 8 CONCLUSIONS 

8.1 Outcomes and Research Contributions 

The research work in this dissertation firstly focused on theoretical studies of traffic 

assignment problem in the context of probit-based asymmetric stochastic user 

equilibrium with elastic demand (PA-SUEED). PA-SUEED was proven to possess better 

representativeness to the practical conditions, and meanwhile it is also generic to the 

cases of fixed demand or symmetric link travel time functions. Such a framework for 

traffic assignment thus has sound fitness to the practical conditions. Nevertheless, due to 

the complicated properties of PA-SUEED, it is computationally burdensome, in view that 

the only existing convergent solution algorithm (Cost-Averaging method) only has a sub-

linear speed. It thereby prohibits the research as well as practical implementations of PA-

SUEED. To improve the computational speed of solving PA-SUEED thus became the 

first objective of this dissertation.  

 

Chapter 3 first reviewed about the existing formulations and solution algorithms for PA-

SUEED problem. Then, two variational inequality (VI) models were proposed, which can 

be solved by two prediction-correction (PC) algorithms, named as FPC and CPC. These 

two PC algorithms, in nature, have linear convergent speed, thus can outperform the 

existing CA method. Yet, numerical experiments detected that when it approaches the 

optimal solution, the step search technique of the two PC algorithms was undermined. 

Therefore, two composite computational methods named as hybrid FPC-CA and hybrid 

CPC-CA were proposed. The numerical experiments showed that these two hybrid PC-
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CA algorithms can improve the computational speed for six to ten times in different 

scenarios, in contrast with CA method.  

 

Chapter 4 addressed the PA-SUEED with link capacity constraints, which is the most 

mathematical topic in this dissertation. Link capacity constraint is a rational and 

necessary extension to the conventional traffic assignment problems. Due to the 

complexities of PA-SUEED, the link capacity constraint problem addressed in this 

chapter is quite challenging to be solved. Based on a mathematical definition for this 

problem, a VI model was first proposed. Then, the monotonicity and Lipschitz-continuity 

of this VI model were rigorously proven. These properties of the VI model ensure the 

existence of solution to the VI model and also the convergence of a PC algorithm as a 

solution method. A numerical example was finally employed to test the proposed 

methodology. 

 

Chapter 5 employed the distributed computing technique to accelerate the computational 

speed of solution algorithms for PA-SUEED. Solution algorithms for the PA-SUEED 

require solving the stochastic network loading (SNL) in each iteration, and a link-based 

two-stage Monte Carlo simulation method was proposed for the SNL. Despite a 

satisfactory accuracy level, the Monte Carlo simulation method is computational 

demanding. Yet, this method as well as its subroutines possesses a perfect parallelism. 

Thus, three distributed computing approaches were proposed for the workload partition 

of the SNL. A comprehensive numerical experiment indicated that the computational 
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speed of solution algorithms for PA-SUEED can be further accelerated for more than 50 

times, by means of distributed computing.  

 

The theoretical studies in Chapters 3 to 5 have provided a solid foundation for the 

formulations and algorithms for PA-SUEED problem. The efficient hybrid PC-CA 

algorithms as well as distributed computing approaches have inherently reduced its 

computational burden, making it suitable for practical implementations.  

 

Based on the theory of user equilibrium, network flows come from the commuters’ un-

cooperative travel behavior. It is unlikely to achieve a rational and acceptable traffic 

condition, especially in the dense urban areas. Congestion pricing is one of the few 

instruments that can be used by network authorities to facilitate traffic demand 

management. It can adjust commuters’ route choice behavior by changing their travel 

costs on different routes. Thus, congestion pricing is a good complement for the studies 

of traffic assignment. Notwithstanding a extensive literature for the studies of congestion 

pricing, the theoretical achievements have seldom been implemented in practice. In 

reality, nearly all the practical pricing schemes adopt the cordon-based congestion pricing, 

due to its convenience in construction, operation and supervision. Cordon-based 

congestion pricing scheme thus was taken as another target of this dissertation. Two 

timely topics with practical significance were accordingly addressed respectively in 

Chapter 6 and Chapter 7, named as speed-based and distance-based toll design. 

Continuously distributed value-of-time (VOT) was taken as another dimension for the 

contributions of the studies here.  
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The speed-based and distance-based toll design problems are both formulated as a 

mathematical programming with equilibrium constraints (MPEC), with the objective of 

maximizing total social benefit (TSB). The non-convexity of proposed MPEC model in 

conjunction with the random VOT makes it not available to apply any existing solution 

algorithm. Thus, a genetic algorithm-type method was taken to solve the toll design 

problem, computational speed of which is further accelerated by virtue of distributed 

computing. The proposed methodology for each toll design problem was then tested by 

the numerical experiment. It showed that when an arbitrary toll charge pattern is used, it 

would even reduce the value of TSB, compared with the un-tolled case.  

8.2 Recommendations for Future Work 

The theoretical achievements in this dissertation for the PA-SUEED problem as well as 

its application for the two congestion pricing topics are merely an initial step for the 

studies in this area. Future efforts are necessary and worthwhile to further extend these 

studies or to implement them in practice. Apart from those future research topics 

mentioned in the end of each chapter, some recommendations are provided here for a 

proportional of the most valuable research topics.  

 

The two efficient hybrid PC-CA algorithms in Chapter 3 as well as the PC algorithm in 

Chapter 4 mostly rely on the achievements of He and Liao (2002) in view of its 

effectiveness and conciseness. However, some more sophisticated findings in the field of 

VI studies are detected (e.g., He et al., 2008), which can further improve the 

computational speed, compared with the method of He and Liao (2002). It is of 
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considerable interest to check the implementations of these finding for solving PA-

SUEED problem, and numerically test the level of improvements. 

 

Based on the achievements in Chapter 4, some other extensions to PA-SUEED with link 

capacity constraints are also reasonable and well known to the researchers, for instance, 

the multi-user-class problem, multi-vehicle-type problem (Daganzo, 1983), multi-modal 

transportation systems (Hamdouch et al., 2007), Park and Ride problem (Lam et al., 

2006), etc. 

 

Regarding the distributed computing, all the tests in this dissertation are performed in a 

local area network. Thus, even if the proposed distributed computing approaches are 

included in any commercial software, it may be difficult to run it on a personal computer. 

Although the algorithms can be solved in parallel on personal computers with dual or 

quad cores, superiority of the distributed computing approaches would be largely weaken, 

since they requires tens of processors. Thereby, it would be a promising topic to discuss 

about the implementations of the proposed approaches on some internet-based computing 

platform, e.g., the cloud computing. 

 

The second half of this dissertation, Chapters 6 and 7, mainly targets at the practical-

oriented congestion pricing schemes, which have certain advantages and conveniences 

for practical implementations. Some policy issues regarding the practical acceptance are 

also briefly discussed. From this angle, some other topics, helpful to the acceptance of 

congestion pricing by the public, are also necessary to be further investigated in the 
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context of PA-SUEED with continuously distributed VOT, including the assessing 

system for the fairness of pricing schemes, Pareto-improving schemes, etc.  

 

Regarding the continuously distributed VOT, in the numerical tests of this study is 

assumed to be uniformly distributed. It is necessary to further test these examples in 

terms of a VOT following normal, exponential or lognormal distributions. More 

importantly, an in-depth research for the distribution of random VOT resorting to real 

survey data is considerably valuable. 
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