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SUMMARY 

 

Optical measurement techniques are very important in industry for their widely 

varying applications such as nondestructive testing and phase retrieval. In this thesis, 

time-frequency analysis based algorithms for optical phase retrieval in digital speckle 

interference measurement were studied. To improve the noise reduction capability of 

the phase retrieval techniques, two-dimensional (2D) Gabor continuous wavelet 

transform (CWT) and advanced windowed Fourier transform (WFT) were developed 

for phase retrieval and noise reduction for noisy fringe patterns.  

A new algorithm of 2D Gabor CWT for speckle noise reduction and phase 

retrieval was developed for speckle fringe pattern demodulation with carriers. 

Experiment using electronic speckle pattern interferometry (ESPI) was conducted to 

measure the deformation on an object surface with sub-wavelength sensitivity. 

Compared with other time-frequency analysis based algorithms, such as Fourier 

transform, one-dimensional (1D) CWT and 2D fan CWT, the proposed 2D Gabor 

CWT has better noise immunity for speckle fringe demodulation. In addition, the 

proposed 2D Gabor CWT overcomes the problem of previous 2D fan CWT which 

fails to reduce speckle noise or show correct phase values in some speckle fringe 

patterns due to the narrow bandwidth of 2D fan wavelet. The experimental results 

obtained have validated the proposed algorithm. 



 SUMMARY 

 vi 

Another new algorithm of improved WFT for phase retrieval from speckle 

fringe patterns was also proposed in this thesis. Windowed Fourier transform is an 

important time-frequency analysis algorithm based on Fourier transform in fringe 

analysis. Unlike CWT which has a variable resolution, WFT has a fixed time and 

frequency resolution in the processing of fringe patterns. The appropriate window size 

in both space and frequency domain is favorable in noise reduction and phase 

retrieval. Windowed Fourier transform has promising potential in fringe analysis and 

the highly efficient algorithm of WFT can reduce computation time. The proposed 

advanced WFT which employs fast Fourier transform reduces the computation time 

significantly compared with the previous WFT with convolution method. The 

experimental results obtained on out-of-plane displacement derivative measurement 

using digital speckle-shearing interferometry (DSSI) have also shown a good noise 

reduction capability of the proposed method. It is observed that the proposed CWT 

and WFT have a good noise reduction capability in phase retrieval and subsequently 

better phase fringe patterns can be obtained. 

A two-wavelength DSSI using simultaneous red and green lights illumination 

was also proposed. Windowed Fourier transform was employed for phase retrieval of 

the speckle phase fringe patterns obtained by phase shifting method and it shows 

better results than the sine-cosine average filtering method. Furthermore, a phase error 

correction algorithm was also proposed to improve the sensitivity of the proposed 

technique.  

A list of publications arising from this research is shown in Appendix C. 
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CHAPTER ONE 

INTRODUCTION 

 

Optical measurement techniques are among the most sensitive known today apart 

from being noncontact, noninvasive, and fast. In recent years, the use of optical 

measurement techniques has dramatically increased, and applications range from 

determining the topography of landscapes to checking the roughness of polished 

surfaces. Further, they have been widely used in the industry, such as manufacturing, 

aircraft industry and biomedical engineering. 

1.1 Optical measurement techniques 

Any of the characteristics of a light wave, such as amplitude, phase, length, frequency, 

polarization, and direction of propagation, can be modulated by the measurand. On 

demodulation, the value of the measurand at a spatial point and at a particular time 

instant can be obtained. Optical measurement techniques can effect measurement at 

discrete points or over the whole field with extremely fine spatial resolution. These 

techniques have been greatly developed with the development of electronic and 

software technology. The fundamental system of optical measurement techniques 

currently includes advanced computer, analysis software, optical source, optical 

components and high resolution charge coupled device (CCD) camera. In general, 

optical measurement techniques can be categorized into two types, namely coherent 
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light measurement and incoherent light measurement. Both measurements have some 

similarities and differences. The main similarity is that the light intensity recorded by 

CCD camera is utilized to retrieve the measurand in both measurements. The 

difference is that for the former the recorded intensity is generated by interference 

light, while for the latter it is generated by non-interference light. The commonly used 

methods of coherent light measurement include heterodyne interferometry (Massie et 

al, 1979), speckle interferometry (Dainty, 1975; Ennos, 1975; Goodman, 1976), 

holographic interferometry (Vest, 1979; Kreis, 2005) and white light interferometry 

(Sandoz, 1997), while for incoherent light measurement there are fringe projection 

profilometry (Huang et al, 2003), moiré fringe interferometry (Jin et al, 2000; Jin et al, 

2001; Yokozeki et al, 1975) and digital image correlation techniques (Chu et al, 1985; 

Bruck et al, 1989). 

Optical measurement techniques have received a great deal of attention 

nowadays and been widely applied in semiconductor manufacturing industry, 

automotive industry, medical industry and bioengineering. With the applications of 

computer and CCD camera instead of the traditional photographic film, the digital 

image processing techniques (Funnell, 1981) of the optical interference images have 

played a dominant role in optical measurement. To extract the phase information 

directly from the intensity distribution recorded has become an important technique in 

optical measurement called the phase retrieval (Robinson and Reid, 1993; Dorrío and 

Fernández, 1999; Malacara et al, 1998). The commonly used methods of quantitative 

phase evaluation include temporal phase shifting method, spatial phase shifting 
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method and Fourier transform method. In the methods, the principal value of the 

optical phase is computed by an arctan function whose argument is related to intensity 

values.  

Optical interference measurement such as holography interferometry, can 

produce special fringe patterns recording the amplitude and phase information of a 

detected object. After reconstruction of the object wavefront, a three-dimensional (3D) 

image of the object can be obtained. With the development of digital holography, 

holographic interferometry technology has been used for high-precision measurement 

due to its quantitative measurement. Similar to holographic interferometry, ESPI, also 

known as TV holography, is a development of two-beam speckle interference for 

deformation measurement. Unlike holographic interferometry, ESPI uses correlation 

fringe patterns obtained from speckle interference to detect phase change of an object 

wavefront. Electronic speckle pattern interferometry can be used for deformation 

measurements with high accuracy, non-contact and real-time display. As a 

development from single wavelength interferometry, two-wavelength interferometry 

was also proposed for profile and deformation measurement of relatively large 

dimension. Two wavelengths are used to generate two different interferograms of the 

single wavelength and the phase maps of the two interferograms are then extracted 

using phase shifting techniques. The subtraction of two phase maps generates a phase 

map of a synthetic wavelength representing the profile of the object. This technique is 

able to extend the measurement range due to the longer synthetic wavelength. 

Advanced 3D topography measurement methods also include moiré (Takasaki, 1973) 
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and fringe projection techniques (Takeda et al, 1982). Moiré and fringe projection 

techniques used as tools for measuring object profile and displacement have had a 

history of several decades because of the advantages of simplicity, low costs and non-

contact and non-destructive measurement.  

Nowadays, the main focuses in the phase evaluation technology are mostly on 

the improvement of accuracy of phase retrieval and phase unwrapping. Since the 

principal phase values retrieved by the phase retrieval techniques range from   to 

 , phase unwrapping is required to remove the discontinuity of the wrapped phase 

map in order to obtain correct phase values. Spatial phase unwrapping becomes a 

complex issue when a wrapped phase map is corrupted by heavy speckle noise. 

Besides, breakpoints in a wrapped phase map may appear due to noise or physical 

breakpoints on the surface of a test object and the correct integral multiples of 2  at 

these locations will be lost. It is a challenge for spatial phase unwrapping techniques 

to automatically distinguish and unwrap this type of wrapped phase maps without 

human intervention. Other important issues are noise reduction and improvement in 

accuracy and computational speed for phase retrieval in optical measurement. 

1.2 Challenges in optical measurement 

There are still many challenges in optical measurement, such as improvements in 

accuracy and stability. However, two issues are of fundamental importance, namely 

phase retrieval and unwrapping. 
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1.2.1 Phase retrieval 

Phase retrieval is an improvement from fringe tracking (Judge and Bryanston-Cross, 

1994) to determine phase values of an interferogram. The accuracy of optical 

measurement based on fringe tracking has been greatly improved since phase retrieval 

technique was developed. Furthermore, phase retrieval is normally a simple 

processing technique. There are several commonly used phase retrieval techniques, 

such as Fourier transform method (Takeda and Mutoh, 1983; Su and Chen, 2001), 

phase shifting technique (Creath, 1985; Kong and Kim, 1995; Yamaguchi and Zhang, 

1997), CWT method (Watkins et al, 1997; Durson et al, 2004; Gdeisat et al, 2006) 

and WFT method (Qian, 2004; Qian, 2007a; Qian, 2007b). Among these phase 

retrieval methods, phase shifting technique has a relatively higher accuracy. It 

requires at least three image patterns for phase retrieval, overcoming phase-ambiguity 

problem. Phase shifting technique is basically used in static measurements. However, 

dynamic measurements can be also achieved by using the phase shifting technique 

when a special phase mask polarizer and sensor array are employed (Wyant, 2003). 

Unlike phase shifting technique, Fourier transform method requires only one fringe 

pattern with carriers introduced for phase extraction, and therefore, this technique can 

be easily applied to dynamic measurement. Wavelet transform method is one of the 

most important time-frequency analysis methods in signal processing and can be 

applied to extract phase information from an optical fringe pattern. It also has a better 

noise reduction capability than the Fourier transform method. Another important 

time-frequency analysis method is called WFT method. It can be considered as a local 
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Fourier transform of the fringe patterns, and therefore it has a better noise reduction 

capability than the Fourier transform method in optical measurement. Since the WFT 

method can produce better accuracy than the CWT method, it has received much 

attention in recent years. 

1.2.2 Phase unwrapping 

Phase unwrapping technique is a necessary post-processing technique after phase 

retrieval technique has been applied to retrieve a wrapped phase pattern. Speckle 

noise and breakpoints in a wrapped phase map are two major factors affecting the 

unwrapping process. It is necessary to overcome these problems. Phase unwrapping 

techniques can be categorized as spatial phase unwrapping (Macy, 1983; Ghiglia et al, 

1987; Xu and Cumming, 1996; Ghiglia and Pritt, 1998) and temporal phase 

unwrapping (Huntley and Saldner, 1993; Saldner and Huntley, 1997a; Saldner and 

Huntley, 1997b; Huntley and Saldner, 1997a; Huntley and Saldner, 1997b). Spatial 

phase unwrapping is simple and requires only one wrapped phase map, while 

temporal phase unwrapping which was proposed to measure the surface profile of a 

discontinuous object requires a series of wrapped phase maps with different fringe 

periods. There are several commonly used spatial phase unwrapping techniques, such 

as branch cut algorithm (Goldstein et al, 1988; Xiao et al, 2007), quality-guided path 

following algorithm (Bone, 1991; Quiroga et al, 1995; Lim et al, 1995), mask cut 

algorithm (Flynn, 1996), Flynn’s minimum discontinuity approach (Flynn, 1997), 

unweighted least-squares phase unwrapping algorithm (Ghiglia and Romero, 1994), 
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weighted least-squares phase unwrapping algorithm (Lu et al, 2007) and minimum Lp-

Norm algorithm (Ghiglia and Romero, 1996). The first four algorithms perform the 

path-following method for phase unwrapping while the last three perform the path-

independent method. Obviously, spatial phase unwrapping methods are based on 2D 

phase unwrapping and temporal phase unwrapping method is based on 1D phase 

unwrapping along the temporal axis. Therefore, temporal phase unwrapping method is 

employed to unwrap the wrapped phase maps pixel by pixel and the adjacent pixels 

will not affect each other. One advantage of the temporal phase unwrapping method is 

that it has a good noise immune capability than the spatial phase unwrapping. 

However, it requires more wrapped phase maps with different fringe periods. 

1.3 Work scope 

The work scope of the study is focused on developing advanced phase retrieval 

techniques to reduce speckle noise in optical measurement. In this thesis, the time-

frequency analysis algorithms for phase retrieval are studied. The applications of 1D 

CWT and 2D CWT in optical techniques are studied. Two-dimensional Gabor CWT 

for speckle noise reduction and phase retrieval is developed for deformation 

measurement using ESPI. Furthermore, another important time-frequency analysis 

algorithm, namely 2D WFT is studied in detail due to its better noise reduction 

capability for phase retrieval. An improved algorithm of WFT is proposed to reduce 

the computation time significantly compared with the conventional convolution 

algorithm of WFT. The same is applied to retrieve phase of the fringe patterns from 
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DSSI for displacement derivative measurement. Meanwhile, two-wavelength DSSI 

with simultaneous illumination is also proposed for displacement derivative 

measurement. A phase error correction algorithm is also proposed to improve the 

sensitivity of the two-wavelength DSSI.  

1.4 Outline of thesis 

The thesis is organized into six chapters. 

In Chapter 1, various optical measurement techniques and the importance of 

phase retrieval are briefly introduced. The work scope is also included. 

In Chapter 2, a literature review on optical measurement is presented. Optical 

measurement techniques including fringe projection, shadow moiré interferometry, 

ESPI and DSSI, as well as phase retrieval techniques are reviewed. In addition, the 

application of CWT to optical measurement for phase retrieval is reviewed. The 

important time-frequency analysis technique, WFT in optical measurement for phase 

retrieval is reviewed. 

In Chapter 3, the theory of 2D Gabor CWT for phase retrieval is presented. 

The limitation of 2D fan CWT is also shown and the selection of wavelet functions is 

discussed. Furthermore, an improved WFT to reduce the computation time for fringe 

demodulation is also proposed and a theoretical derivation is presented. Windowed 

Fourier filtering (WFF) method in DSSI for noise reduction of phase fringe patterns is 

proposed. A theory of two-wavelength DSSI using WFT and a phase error correction 

algorithm for noise reduction is presented. 
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In Chapter 4, experimental work based on ESPI and DSSI with carriers, ESPI 

with temporal phase shifting and two-wavelength DSSI system is presented.  

In Chapter 5, simulation and experimental results are presented. The 

limitations and accuracy of the proposed methods are discussed. The novelties of the 

proposed methods are stressed. 

In Chapter 6, conclusions of this study are made and the recommendations for 

future research works are discussed. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Review of optical techniques for measurement 

Modern optical measurement techniques have two important parts, optical theory of 

measurement and image processing. This section provides a review on the principle of 

optical methods and the applications of time-frequency analysis for phase retrieval. 

2.1.1 Incoherent optical measurement techniques 

The commonly used incoherent optical measurement techniques include shadow 

moiré interferometry and fringe projection technique, which provide structured light 

pattern for quantitative measurement. 

2.1.1.1 Shadow moiré interferometry 

Shadow moiré interferometry is a commonly used method for 3D profile 

measurement in the early period, as proposed by Takasaki (1970, 1973) and Meadows 

et al (1970). The principle of this technique is to use the mechanical interference of a 

grating and its shadow projected on the surface of a test object to measure the surface 

profile. The so called mechanical interference can produce a fringe pattern with lower 

frequency than the grating used. As shown in Fig. 2.1 is a moiré fringe pattern on a 

coin’s surface. The wide fringe pattern is moiré fringe pattern representing the surface 
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information of the coin and the dense fringe pattern is generated by the grating which 

needs to be filtered out. Moiré fringe pattern can be represented by cosine function 

which is similar to the fringe pattern generated in laser interferometry and therefore, 

phase retrieval techniques can be employed to extract the phase information 

representing the measurand for the measurement. In addition, Choi and Kim (1998) 

proposed a phase shifting projection moiré method to measure 3D fine objects at a 

high measurement speed. This method is capable of removing undesirable high-

frequency original grating patterns using a time-integral fringe capturing scheme. Jin 

et al (2001) implemented a frequency-sweeping technique to measure the spatially 

separated surfaces of objects with rotation of a grating. This technique utilizes 

Fourier-transform technique to analyze the intensity signal of moiré fringe patterns in 

temporal domain using the temporal carrier frequency. Therefore, moiré effect has an 

important impact in optical measurement. 

 

Fig. 2.1 Shadow moiré fringe pattern on a coin’s surface 
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The schematic diagram of shadow moiré technique is shown in Fig. 2.2. 

According to the principle of moiré technique, the intensity of a moiré fringe pattern 

recorded by the CCD camera is given by (Robinson and Reid, 1993) 

( , ) cos[ ( , )]I x y a b x y   (2.1) 

where a is background intensity, b  is the modulation factor. The relation between the 

measured height ( , )h x y  and the phase ( , )x y  is given as 

1 2
1 2

( , )
( , ) 2 2 (tan tan )

u u h x y
x y

p p
    

    (2.2) 

where 1  and 2  are the illumination angle and view angle respectively, p  is the 

grating period. 

 

Fig. 2.2 Schematic diagram of shadow moiré technique 
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1M  
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2.1.1.2 Fringe projection technique 

Fringe projection technique has an important application in 3D surface contouring. 

Takeda et al (1982) first employed a fast Fourier transform method to a noncontour 

type of fringe pattern, which showed a better accuracy than the previous methods and 

had an advantage of simpleness over fringe-scanning techniques (Bruning, 1978). 

This study proposed an automatic fringe analysis technique using time-frequency 

algorithm, Fourier transform method, for phase retrieval. Furthermore, Takeda and 

Mutoh (1983) applied this technique to the automatic 3D shape measurement and 

verified it by experiments. The projected fringe pattern of a grating was processed in 

both spatial frequency domain and space-signal domain. A much higher sensitivity 

than the conventional moiré technique can be obtained and this technique is capable 

of application to dynamic deformation measurement. Huang et al (1999) proposed a 

special fringe projection technique using a color fringe pattern with RGB three colors 

for high-speed 3D surface profile measurement. Phase shifting method was employed 

and therefore, it had the potential for dynamic deformation measurement. Later, 

Huang et al (2003) proposed a high-speed 3D shape measurement technique using 

phase shifting of a color fringe pattern which had a potential measurement speed up to 

100 Hz. In addition, Guo et al (2004) proposed a Gamma correction algorithm to 

reduce the gamma nonlinearity of the video projector for digital fringe projection 

profilometry, which can improve the accuracy and resolution of the measurement. 

Later, Guo et al (2005) applied a least-squares calibration method in fringe projection 

profilometry to retrieve the related parameters. Zhang and Yau (2007) proposed a 
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generic nonsinusoidal phase error correction algorithm using a digital video projector 

for 3D shape measurement. A small look-up table was utilized to reduce the phase 

error for a three-step phase shifting algorithm. Because of the advantages of accuracy 

and portability using fringe projection technique, it has been applied to reverse 

engineering as well. Burke et al (2002) employed a calibrated LCD matrix for fringe-

pattern generation in the reverse engineering for profile retrieval. 

2.1.2 Coherent optical measurement techniques 

Coherent optical measurement techniques for high precision measurement normally 

utilize light interference of two beams, one for the object beam and the other for the 

reference beam. This section provides a review on the various coherent optical 

measurement techniques, viz ESPI, DSSI and multiple-wavelength interferometry. 

2.1.2.1 Electronic speckle pattern interferometry (ESPI) 

Electronic speckle pattern interferometry has been widely used to nondestructive 

evaluation (NDE) since 1970’s. Due to its versatility, ESPI has replaced many of the 

film-based methods. Løkberg and Høgmoen (1976) proposed a simple approach using 

phase modulation with time-average ESPI for vibration measurement. This technique 

is able to produce a phase contour map of a vibrating object for the measurement. In 

1977, Høgmoen and Løkberg (1977) employed phase modulation in time-average 

ESPI for real-time detection and measurement of small vibrations. Slettemoen (1980) 

proposed an ESPI system based on a reference beam which would not be affected by 
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dust and scratches on optical components. Later, Løkberg and Malmo (1988) 

employed ESPI for the detection of defects in composite materials. This technique is 

able to reveal extremely small abnormal surface behavior of composite materials.  

The phase shifting method is normally incorporated in ESPI due to its high 

inherent accuracy. A computerized phase shifting speckle interferometer (PSSI) was 

developed by Johansson and Predko (1989) for deformation measurement. 

Furthermore, Joenathan and Khorana (1992) also introduced a phase stepping method 

by stretching a fiber wrapped around a piezoelectric transducer in PSSI. Minimization 

methods of a phase drift caused by temperature fluctuation were also studied. In 1993, 

Kato et al (1993) proposed a phase shifting method in ESPI using the frequency 

modulation capability of a laser diode for automatic deformation measurement and 

achieved an accuracy of better than / 30 . In addition, Wang et al (1996) compared 

three different image-processing methods using ESPI technique for vibration 

measurement. In 2003 Trillo et al (2003) also employed a spatial Fourier transform 

method to measure the complex amplitude of a transient surface acoustic wave using 

ESPI. 

Unlike digital holography, ESPI does not require an image reconstruction. It 

only requires a CCD camera with a relatively lower resolution for deformation 

measurement (Yamaguchi and Zhang, 1997; Cuche et al, 1999; Yamaguchi, 2006). A 

commonly used phase shifting ESPI setup is shown in Fig. 2.3. In this setup, a laser 

beam from a He-Ne laser is expanded by a beam expender for illumination. A beam 

splitter is employed to separate the illumination beam into an object and a reference 



CHAPTER TWO LITERATURE REVIEW 

 16 

beam. The object beam illuminates the test object and is reflected back through the 

beam splitter to the CCD camera, while the reference beam illuminates a reference 

plane and is reflected back through the beam splitter to the CCD camera. Both object 

and reference beams interfere at the CCD plane. The object beam is given by 

( , ) ( , ) exp[ ( , )]O O OU x y a x y i x y  (2.3) 

where ( , )Oa x y  represents the amplitude and ( , )O x y  represents the phase of the 

object beam and 1i   . Similarly, the reference beam is given by  

( , ) ( , ) exp[ ( , )]R R RU x y a x y i x y  (2.4) 

where ( , )Ra x y  and ( , )R x y  represent amplitude and phase of the reference beam, 

respectively. The intensity of an interferogram is given by 

*

2 2

[ ] [ ]

2 cos( )

O R O R

O R O R O R

I U U U U

a a a a  

   

   
 (2.5) 

where ( , )x y  is omitted for simplicity and symbol   represents a conjugate operation. 

The interferogram appears as a speckle pattern due to the diffused reflection of the 

object and reference beams. Intensity of the interferogram captured after the object 

deformation is given by 
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' 2 2 2 cos( )O R O R O RI a a a a          (2.6) 

where   represents the phase difference introduced by the object deformation. By 

subtraction of the intensities recorded before and after the deformation, the resultant 

speckle fringe pattern is given by 

' 4 sin( )sin( )
2 2S O R O RI I I a a
    

      (2.7) 

When the illumination angle between the illumination direction of the object beam 

and the normal line perpendicular to the object surface is approximately zero, the 

relationship between the phase difference and out-of-plane deformation is given by  

4 w


   (2.8) 

where w  and   represent the out-of-plane deformation of the object surface and the 

wavelength of the illuminating beam, respectively.  
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In addition, ESPI can also be applied to measure in-plane displacement. In 

1990, Moore and Tyrer (1990) devised an ESPI setup to measure in-plane 

displacement which can measure two in-plane interferograms at the same time. Later, 

Fan et al (1997) presented a work on whole field in-plane displacement measurement 

using ESPI with optical fiber phase shifting technique. Electronic speckle pattern 

interferometry can also be applied to profile measurement. Ford et al (1993) 

conducted surface profile measurement using ESPI with a sinusoidal frequency 

modulation and Ettemeyer (2000) applied ESPI to measure the shape and 3D 

deformation of an object for quantitative 3D strain analysis. 

Computer 

Diffused Reference 
Plane Mounted on a 

PZT 
Mirror Beam Splitter

CCD Camera 

Beam 
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PZT Controller  

Object
Loading

He-Ne 
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Fig. 2.3 Phase shifting ESPI setup
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2.1.2.2 Digital speckle shearing interferometry (DSSI)  

As in ESPI, DSSI is a technique for the measurement of displacement derivative on 

the surface of deformed object (Rastogi, 2001). In 1973, Hung and Taylor (1973) 

introduced digital speckle-pattern shearing interferometry as a tool to measure 

derivative of surface-displacement. This technique can reduce the stringent 

requirement for environmental stability during testing. It is not that sensitive to 

vibration and has been applied to various in-situ inspections, such as aircraft tire 

inspection. In 1979, Hung and Durelli (1979) developed a setup using a multiple 

image-shearing camera to simultaneously measure the derivatives of surface 

displacement in three directions. Since shearography has an advantage over 

holography of less requirement for vibration isolation, it has an important application 

in the factory environment. Nakadate et al (1980) applied a digital image processing 

technique to measurement of surface strain and slope during vibration using 

shearography. Iwahashi et al (1985) introduced a single- and double-aperture method 

in speckle shearing interferometry for in-plane displacement measurement. Mohan 

and Sirohi (1996) also introduced a three-aperture configuration with various 

locations in speckle shearing interferometry to measure in-plane displacement. 

Furthermore, Pedrini et al (1996) also applied spatial carrier fringes to DSSI to extract 

phase information for gradient measurement. In addition, Shang et al (2000a) 

proposed a method to measure the profile of a 3D object using shearography 

technique. Shang et al (2000b) also conducted research work on the formation of 

shearographic carrier fringes. Hung (1982, 1998) also introduced some applications 
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for cracks detection using shearography.  

Although DSSI is similar to ESPI, the optical setups and the measurands of 

both techniques are different in principle. A common schematic drawing of DSSI is 

shown in Fig. 2.4. As can been seen, a prism which covers half of a convex lens is 

used for generating a sheared image of the object at the CCD plane while the other 

uncovered half of the lens generates an image of the object without shearing. An 

interferogram is generated by the two sheared images of the object surface. The 

wavefront of a non-sheared image is given by 

( , ) exp[ ( , )]z OU x y a i x y  (2.9) 

where Oa  denotes the amplitude and ( , )x y  represents the phase information. The 

wavefront of a sheared image (in the x  direction with a shearing distance x ) is 

given by 

( , ) exp[ ( , )]z x O xU x y a i x y      (2.10) 

Therefore, the wavefront from a point ( , )Q x y  on the object surface will interfere with 

the wavefront from a neighbouring point ( , )xQ x y   in the image plane, and thus 

the intensity captured by the CCD camera is given by 
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 22 1 cos[ ( , ) ( , )]O xI a x y x y       (2.11) 

After the object is deformed, another speckle pattern captured by the CCD camera is 

given by 

 ' 22 1 cos[ ( , ) ( , ) ]O xI a x y x y          (2.12) 

where   represents the phase difference introduced by the object deformation. Two 

speckle patterns captured before and after deformation are subtracted to produce a real 

time speckle fringe pattern, which is given by 

' 24 sin[ ( , ) ( , ) ]sin( )
2 2S O xI I I a x y x y
    

        (2.13) 

The relationship between the phase difference   and the displacement derivatives 

can be given by (Robinson and Reid, 1993) 

3 3

2
(1 cos ) sin x

w u

x x

  


         
 (2.14) 

where 
w

x




 and 
u

x




 represents the displacement derivatives of w  and u  along the x -

axis, respectively. w  and u  represents the displacement along the z -axis and x -axis, 

respectively. 3  represents the angle between the illumination and view direction to 
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the object. When 3  is very small, Eq. (2.14) becomes 

4
x

w

x





  


 (2.15) 

Therefore, the out-of-plane displacement derivative can be obtained. 

 

2.1.2.3 Multiple-wavelength interferometry 

Multiple-wavelength interferometry is useful for large scale measurement due to its 

lower sensitivity for a longer synthetic wavelength. Multiple-wavelength 

interferometry includes two- and three-wavelength technique. Wyant (1971) has 

studied two-wavelength holography using both single and double exposure. Using the 

two-wavelength technique, an interferogram identical to that of a longer invisible 

wavelength can be obtained, and hence disadvantages of invisibility and limitations of 

ordinary refractive elements in using a longer wavelength in the interferometer can be 

Object View direction 
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x 

Fig. 2.4 A schematic drawing of DSSI
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overcome. Polhemus (1973) reviewed a simplified two-wavelength technique for 

interferometry under static conditions and extended it to real-time dynamic testing. 

The phase shifting method is useful for two-wavelength interferometry and has been 

used to extend the phase measurement range of the single wavelength method (Cheng 

and Wyant, 1984). Cheng and Wyant (1985) proposed to use a three-wavelength 

imterferometry to enhance the capability of the two-wavelength technique for surface 

height measurement. A better repeatability can be obtained using their method. In 

1987, Creath (1987) proposed to use the two-wavelength technique for step height 

measurement. The variable measurement sensitivity can be obtained by changing the 

wavelengths. A correction of 2  ambiguities for a single wavelength phase map 

using a two-wavelength phase map was realized to increase the precision of the two-

wavelength measurement. Furthermore, the three-wavelength technique (Wang et al, 

1993) can be applied to white-light interferometry to simplify the central fringe 

identification, and hence the minimum requirement of signal-to-noise ratio can be 

reduced. In 2003, Decker et al (2003) developed a multiple-wavelength technique to 

perform step height measurement unambiguously with only one measurement 

sequence. 

Multi-wavelength interferometry, also known as synthetic wavelength 

technique, has recently been studied since it has advantages over the single 

wavelength interferometry in ambiguity-free measurement (Kumar et al, 2009a; 

Kumar et al, 2009b). A synthetic wavelength longer than the individual wavelengths 

can be obtained in multi-wavelength interferometry and hence, the measurement 
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range is extended. The synthetic wavelength technique which has important 

applications in surface profile and slope measurements (Huang et al, 1997; Hack et al, 

1998), does not require the conventional spatial phase unwrapping if the optical path 

difference of the measurands is less than the synthetic wavelength (Warnasooriya and 

Kim, 2009). However, a disadvantage of the synthetic wavelength technique is that 

the phase noise is amplified. 

In two-wavelength interferometry, the phase difference of a synthetic 

wavelength is given by 

4 4 4
s g r

g r s

w w w
    
  

        (2.16) 

where g , r , s  and g , r , s  represent phase difference and wavelength of 

the green, red, and effective wavelength, respectively, while s  is given by 

r g
s

r g

 


 



 (2.17) 

In multi-wavelength interferometry, the optical path for each wavelength must be the 

same, which means the light beams with different wavelengths should propagate in 

the same path. 
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2.1.3 Phase retrieval techniques 

Phase retrieval techniques are an improvement of the fringe tracking technique. The 

techniques do not require tracking the intensity maxima and minima in a fringe 

pattern and are able to avoid the disadvantages of the fringe tracking technique (Judge 

and Bryanston-Cross, 1994). Phase retrieval techniques include phase shifting, 

Fourier transform, CWT and WFT methods. 

2.1.3.1 Phase shifting techniques 

Phase shifting techniques have been widely applied in many kinds of optical 

interferometers due to their high accuracy in phase evaluation and different phase 

shifting techniques have been proposed. Phase retrieval using a phase shifting 

algorithm normally requires at least three interferograms with different phase shifted 

values. The commonly used algorithms are three-step phase shifting (Huang and 

Zhang, 2006) and four-step phase shifting algorithm (Robinson and Reid, 1993). In 

1966, Carré (1966) presented a four-step phase shifting method with a constant phase 

shifted value. Multiple-step phase shifting algorithms have also been reported for 

phase retrieval and phase shifting error reduction. In a phase shifting algorithm, the 

intensity 
1mI  of an interferogram is expressed as 

1 1 1cos[ ( 1) ]mI a b m      (2.18) 

where a  and b  are the background intensity and modulation factor of the 
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interferogram, respectively,   is an unknown phase for retrieval, 1m  is the number of 

phase shifted frame and 1  is a phase shift which is achieved by moving a 

piezoelectric transducer (PZT). In Carré phase shifting algorithm, 1 (1, 2,3,4)m   and 

the phase value   is given by (Robinson and Reid, 1993) 

1 2 3 1 4
1

2 3 1 4

tan( / 2) ( ) 3

( ) 2

I I I I
arctan

I I I I

 
    

     
 (2.19) 

where arctan  represents an arc tangent operation. The phase values retrieved from Eq. 

(2.19) are in the range from   to   and need to be unwrapped to obtain a 

continuous phase map. 

2.1.3.2 Fourier transform method 

Unlike the phase shifting technique, Fourier transform method is another important 

technique for phase retrieval. Takeda et al (1982) first applied Fourier transform to 

retrieve phase values in fringe patterns for computer-based topography. The main 

difference between the phase shifting and the Fourier transform method is that, for the 

former, at least three interferograms are needed for phase retrieval, while for the latter 

only one interferogram is needed. Therefore, Fourier transform method can be applied 

to dynamic measurement. The Fourier transform method has received more and more 

attention for fringe pattern analysis and Fourier transformation profilometry has also 

been developed for 3D non-contact profile measurement (Su and Chen, 2001). 
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Furthermore, not only been applied to the spatial fringe analysis, Fourier transform 

has also been applied to temporal phase retrieval for out-of-plane displacement 

measurement (Kaufmann and Galizzi, 2002; Kaufmann, 2003). Unlike the processing 

in the spatial domain, temporal Fourier transform is applied to process a temporal 

intensity signal with a cosine variation in the time domain. This technique has an 

advantage in avoiding the propagation of spatial unwrapping errors in dynamic 

displacement measurement. The principle of Fourier transform method involves 

transforming the fringe pattern to a frequency domain and the positive first order 

spectrum is used in an inverse Fourier transform for phase retrieval. This technique 

requires the positive first order spectrum which must be separable from the zero order 

and negative first order spectrum. The Fourier transform is defined as 

-i
1-

( ) ( ) x
dF f x e dx




   (2.20) 

where   represents an angular frequency coordinate in the x  direction, while 1 ( )df x  

is a periodic signal and ( )F   is its spectrum. An Inverse Fourier transform is used to 

reconstruct the original signal and is defined as 

1 -

1
( ) ( )

2
i x

df x F e d 





   (2.21) 

To make Fourier transform applicable in fringe analysis, a carrier is generally 

required in a fringe pattern (Takeda et al, 1982). The intensity of a fringe pattern with 
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a carrier is given by 

( , ) ( , ) ( , ) exp( 2 ) ( , ) exp( 2 )I x y a x y c x y i fx c x y i fx      (2.22) 

where  

1
( , ) ( , ) exp[ ( , )]

2
c x y b x y i x y  (2.23) 

where f  is the carrier frequency introduced in the x  direction. ( , )a x y , ( , )b x y  and 

( , )x y  are the background intensity, modulation factor and phase of the fringe 

pattern, respectively, and they vary slowly compared with the variation introduced by 

the spatial carrier frequency. Generally, ( , )a x y  and ( , )b x y  can be assumed as 

constants. A Fourier transform with respect to x  is perform on Eq. (2.22), which 

gives 

ˆ( , ) ( , ) ( 2 , ) ( 2 , )I y A y C f y C f y           (2.24) 

where Î , A , C  and C  represent a 1D Fourier transform of the corresponding terms 

in Eq. (2.22). The carrier frequency must be able to separate the spectrum of the three 

terms in Eq. (2.24) and the second term ( 2 , )C f y   is selected using a filtering 

technique. An inverse Fourier transform is applied on the selected spectrum, which 

gives ( , ) exp( 2 )c x y i fx . The phase information is given by 
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 

 

2 ( , ) ( , ) exp( 2 )

1
( , ) exp [2 ( , )]

2

fx x y angle c x y i fx

angle b x y i fx x y

  

 

 

   
 

 (2.25) 

where angle  indicates taking the argument of the complex function. 

Figure 2.5 shows the process of phase retrieval of a 1D signal fringe pattern 

using Fourier transform method. Figure 2.5(a) shows a simulated cosine signal with a 

normally distributed random noise whose variance is 0.2. Figure 2.5(b) shows its 

Fourier spectrum and Fig. 2.5(c) shows a selected positive first order spectrum. Figure 

2.5(d) shows the phase information of the selected positive first order spectrum 

retrieved using an inverse Fourier transform. The wrapped phase values need to be 

unwrapped since they are in modulus of 2 . Figure 2.5(e) shows the unwrapped 

phase values which have been shifted by a specific value and the theoretical phase 

values. Due to the poor noise filtering capability, fluctuations in the wrapped and 

unwrapped phase values are observed in Figs. 2.5(d) and 2.5(e), respectively. In 

addition, the Fourier transform is unable to provide the instantaneous frequency of a 

signal, and hence more advanced methods are required to reduce the errors caused by 

noise. Time-frequency analysis techniques such as CWT and WFT, which are based 

on Fourier transform, with a better noise reduction capability for phase retrieval are 

discussed in the following sections. 
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Fig. 2.5 (a) A simulated intensity signal with a normally distributed random 
noise; (b) Fourier spectrum of the signal; (c) selected positive first order 

spectrum from (b); (d) retrieved wrapped phase; (e) unwrapped phase 
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2.2 Continuous wavelet transform (CWT) in optical measurement 

The Fourier transform has the advantage that only one fringe pattern is required for 

phase retrieval so that it has the potential for dynamic deformation measurement. 

However, The Fourier transform is a global transform of a signal and therefore, signal 

values at different points will affect each other in the processing and thus is non-

robust in noise reduction.  

Unlike the Fourier transform method, CWT is a local transform with different 

resolution for a signal. Therefore, CWT acts as a filter during processing and has a 

better noise reduction capability than Fourier transform method (Zhong and Weng, 

2005; Huang et al, 2010). Continuous wavelet transform can provide space-frequency 

information synchronously while Fourier transform does not. One-dimensional 

continuous wavelet transform has been widely applied to fringe analysis in optical 

measurement. In 1997, Watkins et al (1997) first used CWT to accurately reconstruct 

surface profiles from interferograms and compared CWT to the standard phase-

stepping method. Later, Watkins et al (1999) applied CWT to directly extract phase 

gradients from a fringe pattern. Continuous wavelet transform of a fringe pattern is 

able to produce the maximum modulus of wavelet transform when a daughter wavelet 

is most similar to a signal in a local area. Using this method, the phase gradient of a 

fringe pattern can be found and integration of the gradient will produce the phase 

information. This will avoid the need for phase unwrapping. Federico and Kaufmann 

(2002) applied 1D CWT method to the fringe patterns of ESPI. However this method 

produces noisy phase maps if the signal to noise ratio is low and the method is not 
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suitable for analyzing fringe patterns with horizontal and vertical spatial carriers. 

Dursun et al (2004) applied Morlet wavelet to determine the phase distribution of 

fringes for 3D profile measurement using a fringe projection technique. Zhong and 

Weng (2004a) used CWT to retrieve the phase of the spatial carrier-fringe pattern for 

3D shape measurement and overcome the limitation of Fourier transform. Watkins 

(2007) also proposed a theory of the maximum modulus of a wavelet ridge for the 

retrieval of an instantaneous fringe frequency, while Afifi et al (2002) employed 

another wavelet, Paul wavelet, for phase retrieval from a single fringe pattern without 

using phase unwrapping. The theoretical analysis of Paul wavelet algorithm was also 

presented. 

In addition to 1D CWT, 2D CWT has also received much attention for phase 

retrieval. Compared to 1D CWT, 2D CWT has a rotation parameter in addition to the 

scale parameter. The 1D CWT is able to retrieve phase values correctly from a fringe 

pattern with high signal to noise ratio. For a noisy fringe pattern (for example, a fringe 

pattern with speckle noise), 1D CWT will produce a noisy wrapped phase map which 

will affect the success rate of the phase unwrapping algorithms and may fail to 

produce a continuous phase map. It is unable to obtain the correct integral multiples 

of 2  for the wrapped phase map in this case. Furthermore, 1D CWT is not suitable 

for analyzing a fringe pattern with spatial frequencies in the vertical and horizontal 

directions, while the 2D CWT is suitable since processing is in two dimensions. 

Kadooka et al (2003) first employed 2D CWT for analyzing a moiré interference 

fringe pattern. This technique overcame the difficulty of phase retrieval encountered 
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by the Fourier transform method. In 2006, Gdeisat et al (2006) proposed to use a 2D 

fan CWT algorithm to demodulate phase values from a noisy fringe pattern. 

Compared to the 1D CWT, the 2D fan CWT algorithm showed an improvement of 

noise reduction. However, there were still fluctuations affected by noise in the phase 

map and the method failed to show correct phase values from some speckle fringe 

patterns due to the narrow bandwidth of the 2D fan wavelet. In 2006, Wang and Ma 

(2006) also proposed an advanced CWT algorithm for phase retrieval from a fringe 

pattern using microscopic moiré interferometry. This method produces better results 

than the 1D CWT.  

Two approaches, namely phase estimation from wavelet coefficients and 

frequency estimation from the ridge of wavelet transform are used for phase retrieval. 

In the former case, the CWT is used to calculate the correlation between the fringe 

pattern and the wavelet functions with different scale parameters. When the wavelet 

function is most similar to the signal in a local area of the fringe pattern, the modulus 

of the wavelet transform coefficient will reach a maximum value. The phase 

information can thus be retrieved from the real and imaginary part of the wavelet 

transform coefficient when its modulus reaches a maximum value. Phase retrieval 

from the former approach is more accurate, but phase unwrapping is required to 

remove 2  jumps in a wrapped phase map. For the latter approach, since phase is 

retrieved from integration of an instantaneous frequency of the fringe pattern, phase 

unwrapping is avoided. However, the accuracy of this technique depends on the scale 

resolution. A high scale resolution will increase the computation time. Furthermore, 
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integration of the instantaneous frequency will propagate phase error from one pixel 

to its adjacent pixel. Therefore, the former approach is more commonly used. 

Complex wavelet such as Morlet wavelet is commonly used in optical 

measurement for phase retrieval. Figure 2.6(a) shows a plot of a 1D Morlet wavelet 

and its spectrum. The scale of the Morlet wavelet is 1 and 0  is 2 . The upper half 

of Fig. 2.6(a) shows the real and imaginary parts of the Morlet wavelet which are 

represented by the solid and dash lines, respectively. The lower half shows its Fourier 

spectrum. Since a complex Morlet wavelet contains the phase information in its real 

and imaginary parts, it is used for phase retrieval of the signal from their similarity. 

The 1D CWT of a signal is defined as (Mallat, 2001; Zhong and Weng, 2005; 

Watkins, 2007) 

1

2
1( , ) ( ) ( )d

x m
Wf q m q f x dx

q


 




   (2.26) 

where 1 ( )df x  represents a signal and the symbol   represents complex conjugation. 

( )
x m

q
 

 denotes a wavelet function with translation on the x -axis by m  and 

dilation by scale q  ( 0q  ) of the mother wavelet ( )x , which is usually a complex 

Morlet wavelet function given by  

1 2
4

0( ) exp( )exp( )
2

x
x i x  


   (2.27) 
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where 0  is a fixed frequency and can be set as 2  to meet the admissibility 

condition. As can been seen, the coefficients ( , )Wf q m  of wavelet transform is able to 

provide spatial and frequency information simultaneously. A wavelet ridge is a path 

that follows the maximum values of ( , )Wf q m  from which the phase and 

instantaneous frequency can be obtained. To use a 1D CWT for phase retrieval from a 

fringe pattern, the 1D signal of a fringe pattern described by Eq. (2.22) is given by 

   1 1
( ) exp [ ( ) 2 ] exp [ ( ) 2 ]

2 2
I x a b i x fx b i x fx          (2.28) 

where the background intensity a  and the modulation factor b are considered as 

constants. Assuming that the 1D intensity signal has a linear phase change, which can 

be easily achieved in the experiment, the phase term may be expanded using Taylor 

series of the first order and given by 

( ) ( ) '( )( )x m m x m      (2.29) 

hence the 1D CWT of Eq. (2.28) is given by 

1

2

1 2 3

( , ) ( ) ( )

( , ) ( , ) ( , )

x m
Wf q m q I x dx

q

Wf q m Wf q m Wf q m


 






  

  (2.30) 

where  
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 (2.31) 

From Eq. (2.31) it can be seen that when the scale parameter q  of the CWT satisfies 

the following equation 

0

2 '( )
q

f m


 




 (2.32) 

the modulus of CWT becomes 

2( , ) ( , )Wf q m Wf q m  (2.33) 

since 1( , ) 0Wf q m   and 3( , ) 0Wf q m  . The normalized scalogram represented by 

2
( , )Wf q m

q
 will yield a maximum value. For phase retrieval, the maximum value of 

( , )Wf q m  is used to determine the wavelet ridge. Therefore, instantaneous frequency 

of the fringe pattern can be retrieved from Eq. (2.32). Furthermore, phase information 

can be retrieved from 2 ( , )Wf q m  which is given by 
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 
 

( , )
( ) 2

( , )

Im Wf q m
m fm arctan

Re Wf q m
 

 
    

 
 (2.34) 

where Im  represents the imaginary part of ( , )Wf q m , Re  represents the real part of 

( , )Wf q m . As can be seen from Fig. 2.6(b), a scalogram of ( , )Wf q m  for the signal 

shown in Fig. 2.5(a) can be obtained. The dash line represents the ridge of CWT. As 

can be seen from this scalogram, both spatial and frequency information of the signal 

can be obtained from CWT. Therefore, CWT has the advantage over Fourier 

transform which can only provide the frequency information of the signal. Figure 

2.6(c) shows the unwrapped phase using CWT. The top line shows the theoretical 

phase values and the bottom line shows the phase values obtained from Eq. (2.34) 

after unwrapping. For clarity, the calculated phase values are shifted by a certain 

offset. As can be seen, the retrieved phase values closely approximates to the 

theoretical values. The noise of an intensity signal is suppressed using the 1D CWT 

and the result obtained is smoother than that of the Fourier transform. The reason is 

that the modulus of the wavelet transform coefficient of the noise is less than that of 

the signal and can be suppressed during the processing. 

Two-dimensional wavelet transform has also been proposed for phase retrieval 

from a fringe pattern in 3D profile measurement. The processing is in two dimensions 

and the theory is presented in detail in Chapter three. 
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2.3 Windowed Fourier transform (WFT) in optical measurement 

Unlike CWT, which has a variable resolution for time-frequency analysis, WFT has a 

fixed resolution in both time and frequency domain during processing once a window 

size is selected, according to the uncertainty principle. Figure 2.7 shows different 

basis for different time-frequency transform. As can be seen, for different frequencies, 

the Fourier basis is always continuous which means it is a transform for a global 

signal, while the wavelet basis is dilated or compressed with different resolutions in 

both time and frequency domain and the transform is applied on a local signal within 

a window. As for the WFT, the transform has a fixed resolution for all the frequency 

components and it is also a transform of a local signal within a window.  

 

Fig. 2.7 Basis of transform for time-frequency analysis 

Wavelet basis 

Fourier basis 

Windowed Fourier basis 
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In 2002, Wang and Asundi (2002) applied the Gabor filter for strain 

contouring and employed the theory of WFT for phase retrieval. In addition, Qian 

(2004, 2007b) proposed WFT and 2D WFT as an alternative method for phase 

retrieval and fringe demodulation and obtained satisfactory results. However, the 

algorithm was employed using the convolution theory which resulted in a long 

computational time. Other researchers such as Zhong and Weng (2004b) have 

proposed a dilating Gabor transform for 3D shape measurement. Multi-scale WFT for 

phase extraction was also proposed by Zhong and Zeng (2007). An adaptive WFT for 

3D shape measurement was also proposed by Zheng et al (2006). Gao et al (2009) 

employed a real-time 2D parallel system for WFT to show the potential of WFT for 

real-time phase retrieval. 

Similar to CWT, phase can also be retrieved from either coefficient or 

instantaneous frequency of WFT. However, phase retrieved from the integration of 

instantaneous frequency, namely phase derivative, normally results in a larger error 

compared with the phase retrieved from the coefficient of WFT. In WFT, there are 

two most frequently used methods called WFF method and windowed Fourier ridges 

method (Qian, 2004; Qian, 2007b). Both methods can be applied to a fringe pattern 

with speckle noise for noise reduction and phase retrieval. Using WFT for fringe 

demodulation, both spatial and frequency information can be simultaneously obtained 

and the parameters of WFT should also be correctly selected. 

The 1D WFT and 1D inverse WFT of Eq. (2.28) are given by 
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( , ) ( ) ( ) exp( )Sf m I x g x m i x dx 



    (2.35) 
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( ) ( , ) ( ) exp( )
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I x Sf m g x m i x d dm  


 

 
    (2.36) 

where ( , )Sf m   represents WFT of the 1D signal and ( )g x m  denotes a shifted 

window function ( )g x  in the x -axis, which is given by 

2

2
( ) exp( )

2

x
g x


   (2.37) 

where   is a parameter of the Gaussian window size. Substitute the second term of 

Eq. (2.28) into Eq. (2.35) gives 

2 ( , ) exp( [ ( ) 2 ]) ( )exp( [ '( ) 2 ] )
2

b
Sf m i m fm m g x i m f x dx      




       (2.38) 

Since the Fourier spectrum of a Gaussian function is still a Gaussian function, Eq. 

(2.38) can be rewritten as  

2
ˆ( , ) exp( [ ( ) 2 ]) ( '( ) 2 )

2

b
Sf m i m fm m G m f            (2.39) 

where ˆ ( )G   represents the Fourier spectrum of ( )g x . When the following condition 

is satisfied 
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'( ) 2m f     (2.40) 

the WFT modulus ( , )Sf m   of Eq. (2.28) can be approximated as 2 ( , )Sf m  , since 

the WFT modulus of the first and third term of Eq. (2.28) are approximate to zero. 

The WFT modulus ( , )Sf m   will reach the maximum value when Eq. (2.40) is 

satisfied. Therefore, the filtered phase information is retrieved as 

 2( ) 2 exp( ) ( , )m fm angle i m Sf m      (2.41) 

where symbol ‘  ’ represents a filtering operation. This method is the windowed 

Fourier ridges method for phase retrieval. Another method, WFF can also be used for 

phase retrieval and is given by 

1
( ) [ ( ) ( , )] ( , )

2

h

l
I x I x D x D x d




  


    (2.42) 

where  

( , ) ( ) exp( )D x g x i x   (2.43) 

Symbol   represents a convolution operation and [ ( ) ( , )]I x D x   denotes the 

filtered value of ( ) ( , )I x D x   using a threshold value, while ( )I x  denotes the 

filtered value of ( )I x  with integration limits from l  to h . The filtered phase value 
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can be retrieved using 

 ( ) 2 ( )x fx angle I x    (2.44) 

Similar to CWT, the windowed Fourier ridges method is able to retrieve the 

instantaneous frequencies of a fringe pattern and provide phase information without 

phase unwrapping by integration of the instantaneous frequencies. However, this 

approach also has a limitation as the accuracy of the retrieved phase is restricted by 

the integration step and phase values retrieved from instantaneous frequencies 

normally incur a large error. In addition, the phase values can be directly retrieved 

from the coefficients of the windowed Fourier ridges and this approach is more 

accurate than the integration of the instantaneous frequencies. Besides, the WFF 

method is also an important method of WFT for phase retrieval. The principle of WFF 

is similar to the filtering using Fourier transform. The intensity of a fringe pattern is 

transform to a windowed Fourier domain and a threshold is used to filter the 

windowed Fourier spectrum. Then the filtered spectrum is transformed back using an 

inverse WFT and the filtered phase information can be retrieved by taking the 

argument of the result.  

Two-dimensional windowed Fourier transform which has the advantages over 

1D CWT and 1D WFT for fringe demodulation because the processing is in both the 

x  and y  directions of a fringe pattern has received more attention recently. It is 

suitable for phase retrieval since fringe patterns normally have variations in both the 
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x  and y  directions. Since WFT is a local transform of a signal, the advantage is that 

signals within the window will not be affected by other signals outside the window. 

Therefore, WFT has been widely applied in fringe demodulation obtained from 

interferometry. Moreover, unlike CWT, the temporal and frequency resolution of 

WFT is always the same during processing once the window size is selected and the 

resolution can be selected according to the spectrum of a fringe pattern even at very 

low frequencies. In CWT, the resolution at very low frequencies is very high which 

means the wavelet window in frequency domain is very narrow around that frequency, 

it will not be possible to acquire enough information for phase retrieval at the low 

frequency and may result in failure for phase retrieval. Moreover, a large wavelet 

scale is required for low frequency and this will incur a large amount of processing 

time for a wide scale range. Therefore, CWT is not suitable for demodulation of low 

frequency fringe patterns. Previous WFT method using convolution algorithm 

requires a large amount of computation time due to the integration step and window 

size. This is a limitation of the WFT and therefore, the present study is focused on 

improving its computation efficiency. 
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CHAPTER THREE 

DEVELOPMENT OF THEORY 

 

This chapter focuses on the theoretical development of the proposed optical phase 

retrieval algorithms. The first section covers theoretical development of 2D Gabor 

CWT. Limitations of previous 2D CWT are discussed. Previous 2D fan CWT is 

compared and the advantage of the proposed wavelet transform algorithm is discussed. 

In the second section, an improved WFT algorithm is proposed for phase retrieval and 

noise reduction of a speckle fringe pattern. Limitations of the WFT with convolution 

algorithm are emphasized. The Gerchberg extrapolation method is used to suppress 

the boundary effect. The last section is devoted to phase fringe denoising using the 

WFF method. A single wavelength DSSI based on WFF and a two-wavelength DSSI 

based on sine-cosine filtering are compared. A two-wavelength technique with a 

combined filtering method for phase retrieval in DSSI is also proposed. The method 

exploits the advantages of a two-wavelength technique as an alternative to phase 

unwrapping.  

3.1 Two-dimensional (2D) CWT for phase retrieval 

Two-dimensional continuous wavelet transform has been applied to digital image 

analysis (Antoine et al, 1993). Since an interference pattern can be presented in a 

digital format, digital image processing techniques, such as 2D CWT, can be 
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employed for fringe demodulation. The 2D CWT of a fringe pattern ( )I X  with 

respect to a 2D wavelet ( ) X  is given by (Wang and Ma, 2006; Antoine et al, 1993) 

2 2 1( , , ) [ ( )] ( )WT q q d q r I   
 t tb X X b X  (3.1) 

where the symbol “  ” represents an operation of complex conjugate, ( , )x yX  

represents the spatial coordinates of the fringe pattern, ( , )x yb btb  denotes a 

translation parameter along two coordinate axes, q  is a scale dilation parameter, r  

is a rotation matrix of size 22 and   is a rotation angle. The rotation matrix r  

which acts on ( , )x yX  is given by 

( cos sin , sin cos )r x y x y        X  (3.2) 

In addition, the 2D CWT can also be defined in the frequency domain as  

 2 ˆˆ( , , ) exp( ) ( )WT q d i qr I  
 t tb K b K K K  (3.3) 

where ( , )x y K  denotes the frequency coordinates, x x y yb b   tb K  is an 

Euclidean scalar product, and “ ^ ” denotes a Fourier spectrum. Using Eq. (3.3), the 

computation efficiency can be improved significantly since fast Fourier transform is 

introduced. 
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3.1.1 Limitations of previous 2D CWT 

In fringe pattern analysis, a commonly used mother wavelet for phase retrieval and 

fringe filtering is a complex Morlet wavelet. In fact, the complex Morlet wavelet is a 

special case of a complex Gabor wavelet. Figure 3.1 shows a 2D complex Morlet 

wavelet. The real part, imaginary part and Fourier spectrum of the 2D complex Morlet 

wavelet with a rotation angle 
2

    are shown in Figs. 3.1(a), 3.1(b) and 3.1(c), 

respectively. 

 

The mathematical expression of 2D Morlet wavelet is given by 

21
( ) exp( )exp

2M i     
 

0X K X X  (3.4) 

where 0( ,0)k0K  is the central frequency of a 2D Morlet wavelet, and therefore 

0k x 0K X . As can be seen, the complex Morlet wavelet has a Gaussian envelop. 

Fig. 3.1 (a) Real part of a 2D Morlet wavelet; (b) imaginary part of a 2D Morlet 
wavelet; (c) Fourier spectrum of a 2D Morlet wavelet 

(a) (b) (c) 
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The real and imaginary parts vary in the form of a cosine and sine function, 

respectively. Therefore, the complex Morlet wavelet can be used to analyze the fringe 

variation for phase retrieval. However, in CWT, the frequency resolution for a low 

frequency component is very high and would result in a narrow frequency window, 

while for a high frequency component it would result in a wide frequency window. 

Therefore, the 2D complex Morlet wavelet has a narrow spectrum for a low frequency 

component (Gdeisat et al, 2006; Kadooka et al, 2003). It is only suitable for phase 

retrieval from a fringe pattern with a narrow bandwidth and will fail to demodulate 

fringe patterns with wide bandwidths in the spectrum.  

Besides the 2D complex Morlet wavelet, 2D fan CWT has also been used for 

fringe analysis (Gdeisat et al, 2006). A 2D fan wavelet is constructed by superposing 

a number of complex Morlet wavelets. Similar to the 2D complex Morlet wavelet, it 

fails to demodulate fringe patterns with a wide bandwidth and high speckle noise. To 

overcome this problem, one possible solution is to introduce a window extension 

parameter   in a 2D fan wavelet. An advanced 2D fan wavelet with a rotation angle 

  is given by 

 
1

2 2
02

0

1
exp ( ) [ cos( ) sin( )]

2

N

Fan t t
t

r x y ik x y    







        
 

X  (3.5) 

The Fourier transform of  Fan r   X  is given by 
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where  tt , 30  and N=6 is the number of superposed Morlet wavelets (Kirby, 

2005). Figure 3.2 shows a 2D fan wavelet. The real part, imaginary part and Fourier 

spectrum of the 2D fan wavelet with a rotation angle 
3

    are shown in Figs. 

3.2(a), 3.2(b) and 3.2(c), respectively. As can be seen from the spectrum, there are six 

bumps which represent six Morlet wavelets.  

 

With an advanced 2D fan wavelet, the frequency window for processing the 

low frequency components can be enlarged, however, because of the superposition of 

several complex Morlet wavelets, the spectrum in the frequency domain is wider and 

thus results in more spatial noise which will degrade the retrieved phase. 

Fig. 3.2 (a) Real part of a 2D fan wavelet; (b) imaginary part of a 2D fan wavelet; 
(c) Fourier spectrum of a 2D fan wavelet 

(a) (b) (c) 
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3.1.2 Advanced 2D Gabor CWT 

To overcome this problem, a suitable wavelet function should be selected. A 2D 

complex Gabor wavelet can be used since it has a controllable Gaussian window in 

both the spatial and frequency domains. This character makes its frequency resolution 

for the low frequency components adjustable using a parameter for window size 

control. A 2D complex Gabor wavelet is given by 

2

2

1
( ) exp( )exp

2G i


    
 

0X K X X  (3.7) 

where   is a parameter for controlling the window size.   is 0.5 (Wang and Ma, 

2006) and 0k  is 5.336 (Gdeisat et al, 2006) in this study. 0k  and   are able to control 

the window size in both the spatial and frequency domain. The parameter 0k  controls 

the central frequency and   determines the window size at that frequency. The 

Fourier transform of 2D Gabor wavelet is given by 

2
2ˆ ( ) exp

2G


 

   
 

0K K K  (3.8) 

The 2D Gabor wavelet shows similar images with those of the 2D Morlet wavelet 

shown in Fig. 3.1. Unlike the 2D Morlet wavelet, the 2D Gabor wavelet is suitable for 

analyzing a fringe pattern with a narrow or wide bandwidth in the frequency domain. 

This is because the window size of a 2D Gabor wavelet for a low frequency 
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component can be extended using the parameter  . Thus more useful information 

can be obtained since the low frequency region contains most of the energy of the 

signal. A suitable value of   should be selected to obtain useful information and 

reduce the spatial noise in a noisy fringe pattern. The 2D Gabor wavelet 

1[ ( )]G q r   
  tX b  with a translation parameter tb , a dilation parameter q (q > 0) and 

a rotation angle   is given by 

2 2
1

2 2

0

[( ) ( ) ]1
[ ( )] exp

2

[( ) cos ( )sin ]

x y
G

x y

x b y b
q r

q

x b y b
ik

q




 

 


     


   
 



tX b

 (3.9) 

hence  ˆ
G qr  

 K  is given as 

  2 2 2
0 0

1
ˆ exp [( cos ) ( sin ) ]

2G x yqr q k q k     


      
 

K  (3.10) 

The following section discusses the use of 2D Gabor CWT for phase retrieval from a 

speckle fringe pattern with a spatial carrier. A local speckle fringe pattern with a 

spatial carrier is given by (Wang and Ma, 2006) 

0 1

( ) cos ( )sin
( ) cos 2 x yl

l l

x b y b
I I I

P

 
 

   
   

 
X  (3.11) 
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where xb  and yb  denote translation parameters of tb  in the fringe pattern, P is a local 

fringe period,   is a local fringe direction,   is an unknown phase to be retrieved, 0lI  

and 1lI  considered as constants are background intensity and modulation factor, 

respectively. The Fourier spectrum of Eq. (3.11) is given by 

2
0

2
1

2
1

[ ( )] 4 ( , )

2
2 exp( )exp ( cos sin )

2 2
cos , sin

2
2 exp( )exp ( cos sin )

2 2
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l
l x y

l x y

x y

l x y

x y

F I I

I i i b b
P

P P

I i i b b
P

P P

   

   

     

   

     



     
    
 

     
    
 

X

 (3.12) 

where F denotes the Fourier transform,   is the Dirac function. In Eq. (3.12) the 

direct current term (zero-frequency term) and two side-frequency components are 

separated by the carrier. Therefore, the direct current term and the left side-frequency 

component in the frequency domain are first removed for phase extraction to remove 

their interference. Eq. (3.12) then becomes 

2
1

2
[ ( )] 2 exp( )exp ( cos sin )

2 2
cos , sin

l
removed l x y

x y

F I I i i b b
P

P P

   

     

     
    
 

X

 (3.13) 

The 2D Gabor CWT is then employed to process the right side-frequency component. 



CHAPTER THREE DEVELOPMENT OF THEORY 

 53 

Substitute Eq. (3.10) and Eq. (3.13) into Eq. (3.3), the 2D Gabor CWT becomes 

2
1

2 2
2

0 0

( , , ) 2 exp( )

1 2 2
exp cos cos sin sin

2

l
lWT q I i

q k q k
P P

  

     



               
       

tb

 (3.14) 

where ( , , ) ( , , )lWT q WT q t tb b  denotes the wavelet transform of the whole fringe 

pattern for a translation tb . This is equivalent to the wavelet transform of the local 

fringe pattern for a translation tb . In Eq. (3.12), a rectangular window is employed to 

select the second term from the spectrum of the fringe pattern and an inverse Fourier 

transform is performed. The phase value can then be obtained by removing the spatial 

noise outside the rectangular window. However, this method is only suitable for a 

fringe pattern with less noise. In addition, the rectangular window used is not optimal 

for a circular spectrum and it is not easy to determine the window size automatically. 

Using a maximum modulus algorithm of the 2D Gabor CWT, Eq. (3.14) becomes 

2
1max

2 2 2
0 0

( , , ) max 2 exp( )

1 2 2
exp ( cos cos ) ( sin sin )

2

l
lWT q I i

q k q k
P P

  

     



          

tb

 (3.15) 

In Eq. (3.15), when the local fringe direction and period are respectively equal to the 

wavelet direction and period multiplied by a constant, i.e.    and 0( / 2 )q k P , 

the modulus in Eq. (3.15) will reach its maximum value and is much greater than the 
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modulus of the wavelet transform of the noise, hence the phase value   can be 

retrieved from Eq. (3.14) using the maximum modulus method of the wavelet 

transform. In the 2D Gabor CWT, the integration in Eq. (3.1) analyzes the local 

similarity between the 2D Gabor wavelets and the fringe pattern. The wavelets are 

dilated and rotated during processing. Wavelet transform is a local transform to 

measure the similarity between a daughter wavelet and the fringe pattern in a local 

region. When the wavelet and the fringe pattern are locally most similar, the modulus 

of the 2D CWT reaches its maximum value for a particular value of translation along 

the horizontal and vertical axis in the fringe pattern. Using the complex wavelet, 

phase information of the fringe pattern can be obtained from the real and imaginary 

parts of the wavelet transform. 

Therefore, the 2D Gabor CWT algorithm shows a better speckle noise 

reduction capability than the 2D Fourier transform with a rectangular window filter. 

In this study, Eq. (3.14) is multiplied by the scale dilation parameter q  and then the 

maximum modulus algorithm is employed to retrieve the phase. The parameter q  

does not affect the maximum modulus algorithm due to the exponential function of 

Eq. (3.14). This approximation shows a better noise reduction capability in the 2D 

Gabor CWT.  

It should be noted that in the 2D Gabor CWT, the frequency window of the 

wavelet transform for a high frequency component is larger than that for a low 

frequency component, hence more noise will be introduced for a large frequency 
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window even though it is able to obtain more useful signals. A suitable window 

extension parameter   should be selected to provide an optimal window. Normally, 

  is recommended as an initial value of 0.5 (Wang and Ma, 2006). 

3.2 Improved WFT for fringe demodulation 

Unlike CWT, WFT has a fixed resolution for signal processing once a window size is 

selected. Therefore, the frequency window of a windowed Fourier element remains 

constant for either a high or low frequency component. It is a suitable method for 

demodulating a fringe pattern with either a wide or narrow spectrum due to the 

controllable time-frequency resolution.  

3.2.1 Limitations of WFT with convolution algorithm 

Windowed Fourier transform applied to phase retrieval has shown a good noise 

reduction capability. However, the WFT with convolution algorithm which is affected 

by the window size, image size and interval of the integration is time consuming. The 

intensity ),( yxI  of an interference fringe pattern can be expressed by Eq. (2.1). 

Similar to the 1D WFT, the 2D WFT and 2D inverse WFT of a fringe pattern using a 

convolution operation are given by 

,( , , , ) [ ( , ) ( , )]exp( )Sf m n I m n D m n i m i n         (3.16) 

, ,2

1
( , ) [ ( , ) ( , )] ( , )

4
I x y I x y D x y D x y d d     


 

 
     (3.17) 
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where  

 
2 2

, 2
( , ) exp exp

2

x y
D x y i x i y   


 

   
 

 (3.18) 

and , ( , )D x y   represents the window element of the WFT. A filtered phase value can 

be retrieved using 2D windowed Fourier ridges or 2D WFF method (Qian, 2007b). 

Using the WFF with convolution algorithm, the computation time for phase retrieval 

from a fringe pattern of 512 512  pixels will be a few minutes and hence, the 

computation efficiency should be enhanced. 

3.2.2 Phase retrieval using improved WFT 

To reduce the computation time for phase retrieval, an improved algorithm of WFT is 

proposed. The algorithm is based on the introduction of a fast Fourier transform in 

WFT and able to avoid the window size effect on computation time. Windowed 

Fourier transform method includes windowed Fourier ridges method and WFF 

method. Theoretical analysis of the improved windowed Fourier ridges method and 

WFF method is proposed. 

In Eq. (3.18), the window element of the WFT shows a Gaussian envelop and 

the Fourier spectrum of Eq. (3.18) is given by  
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2 2 2
2

,

[( ) ( ) ]ˆ ( , ) 2 exp
2

x y
x yD 

    
  

   
   

 
 (3.19) 

where “ ^ ” denotes the Fourier spectrum. x  and y  are frequencies along the x - and 

y -axis, respectively. The constant factor 22  can be ignored for the given factor   

since it only affects the amplitude of the WFT except the phase. According to the 

convolution theorem (Mallat, 2001), convolution can easily be performed using 

frequency-domain multiplication by the fast Fourier transform, hence Eq. (3.16) can 

be written as 

1
,

ˆ ˆ( , , , ) exp( ) [ ( , ) ( , )]x y x ySf m n i m i n F I D            (3.20) 

where ),(ˆ yxI   is the Fourier transform of ),( yxI  and 1F  denotes an inverse 

Fourier transform operation. Thus, Eq. (3.17) can be re-written as 

 1 1
, ,2

1 ˆ ˆ ˆ( , ) { [ ( , ) ( , )]} ( , )
4 x y x y x yI x y F F F I D D d d          


   

 
    (3.21) 

where F  denotes a Fourier transform operation. Furthermore, the phase ( , )x y  can 

be expressed as 

1 2( , ) ( , ) ( , )( ) ( , )( )x y m n m n x m m n y n         (3.22) 



CHAPTER THREE DEVELOPMENT OF THEORY 

 58 

where ( , )m n , ),(1 nm  and ),(2 nm  are respectively the phase value, frequency 

along the x - and y -axis at a point 0 ( , )M m n . The coordinate ( , )m n  is omitted for 

simplification. Thus ),(ˆ yxI   is given as 

2

2
1 2 1 2

2
1 2 1 2

ˆ( , ) 4 ( , )

                2 exp[ ( )] ( , )

                2 exp[ ( )] ( , )

x y x y

x y

x y

I a

b i m n

b i m n

     

        

        



    

     

 (3.23) 

where   is a Dirac function. In Eq. (3.23) the direct current term and two side-

frequency components are separated by the carrier. The direct current and the left 

side-frequency components in the frequency domain are first removed to reduce their 

effect on phase retrieval from the right side-frequency component, and hence Eq. 

(3.23) becomes 

2
1 2 1 2

ˆ ( , ) 2 exp[ ( )] ( , )r x y x yI b i m n                (3.24) 

Substituting Eq. (3.24) into Eq. (3.20), we have 

2
, 1 2

ˆ( , , , ) exp[ ( )]2 exp( ) ( , )Sf m n i m n b i D            (3.25) 

The phase values   are contained in Eq. (3.25) and can be retrieved from the 

following equation 
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 
1 2,

exp[ ( )] ( , , , )angle i m n Sf m n
   

    
 

   (3.26) 

The modulus of ),,,( nmSf  would reach a maximum value when 21,    is 

satisfied. The phase value for the coefficient of ),,,( nmSf  with a maximum 

modulus is equal to the phase of the fringe pattern. Phase retrieval from the ridges of 

the ),,,( nmSf  is termed windowed Fourier ridges method. In Eq. (3.20), the fast 

Fourier transform is employed and the computation efficiency is improved for the 

windowed Fourier ridges method. In the WFF method, the phase   can be obtained 

by substituting Eq. (3.24) into Eq. (3.21). The filtered values of ),( yxI  using the 

WFF method is given by 

  1 1
, ,2
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
     (3.27) 

where l , h  and l , h  are the integration limits of   and  , respectively, and 
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 (3.28) 

where 1
,

ˆ ˆ[ ( , ) ( , )]r x y x yF I D      denotes the filtered values of 

1
,

ˆ ˆ[ ( , ) ( , )]r x y x yF I D      using a threshold value. Only the modulus of 

1
,

ˆ ˆ[ ( , ) ( , )]r x y x yF I D      which is greater than or equal to the threshold value is 
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retained, otherwise it is set as zero. Using this method, speckle noise can be 

suppressed. The phase values   are given by 

 ( , )angle I x y   (3.29) 

where ( , )I x y  denotes a filtered fringe pattern, hence with the fast Fourier transform 

employed, the computation time using the WFF method is reduced significantly. 

3.2.3 Suppression of boundary effect 

With the introduction of fast Fourier transform in the WFT, the computation time for 

fringe demodulation can be reduced significantly. However, the Fourier transform of 

the fringe pattern is influenced by the boundary effect. To overcome this problem, the 

Gerchberg extrapolation method (Gerchberg, 1974; Roddier C. and F. Roddier, 1987; 

Chen et al, 2007) is employed to extrapolate the fringe pattern at each boundary 

(using 20 pixels). After applying the proposed WFT to the extrapolated fringe pattern, 

the desired area on a retrieved phase map can be obtained by removing the boundary. 

Before the Gerchberg method is employed, a fringe pattern is pre-processed to retain 

its grey value in the range of [-v, +v], where v is the maximum grey value (chosen as 

127.5 in this study). Figure 3.3 shows a flow chart of the Gerchberg extrapolation 

method. The processed fringe pattern is padded with zeros at each boundary (with 20 

pixels) and the fast Fourier transform is then applied to obtain the Fourier spectrum. 

The zero frequency and two-side lobes are then selected. Frequencies outside the 
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selected areas in the Fourier spectrum are set to zeros. An inverse Fourier transform 

of this Fourier spectrum would produce a fringe pattern with the extrapolated fringes. 

The values within the extrapolated fringe pattern are replaced by the original values. 

Another fast Fourier transform is then performed on the newly generated fringe 

pattern and the whole procedure is repeated. After N  iterations, the desired 

extrapolated fringe pattern is obtained. In this study, ten iterations are required to 

obtain a satisfactory fringe pattern. 

 

An example of the fringe extrapolation using this technique is shown in Fig. 

3.4. After 10 iterations, an extrapolated speckle fringe pattern from the original 

speckle fringe pattern is obtained. It should be noted that the Gerchberg extrapolation 

method requires a proper selection of the Fourier spectrum. 

Extrapolated 
interferogram 

Interferogram (average value 
is removed and the 

interferogram is padded with 
zeros at the boundaries) 

Fast Fourier 
transform 

Values outside the 
selected areas in the 
Fourier spectrum are 

set to zeros 

Inverse fast 
Fourier transform

Original values 
are put back into 
the interferogram

After N 
iterations 

Fig. 3.3 Flow chart of the Gerchberg extrapolation method 
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3.3 Phase fringe denoising using windowed Fourier filtering 

Speckle noise reduction is an important aspect in the WFF method. Since speckle 

noise always appears in laser interferograms, it is necessary to suppress the speckle 

noise for accurate measurement. Moreover, speckle noise reduction in a phase fringe 

pattern is often necessary since the noise will affect the spatial phase unwrapping 

techniques to obtain a correct continuous phase map. For relatively large deformation 

measurement, wrapped phase maps are usually dense and conventional sine-cosine 

average filtering technique is difficult to reduce the noise in such a case. In this 

Fig. 3.4 An example of fringe extrapolation 

Fast Fourier transform 
Zero padding after 

subtracting average value  

Inverse fast Fourier transform 

Frequency selection 

Final extrapolated 
fringe pattern 

10 iterations 
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section, the WFF method is proposed to reduce speckle noise in wrapped phase maps 

for deformation measurement. 

3.3.1 Phase retrieval for relatively large deformation measurement 

Digital speckle shearing interferometry is widely employed to determine the 

deformation derivative. However, for relatively large deformation measurement using 

single wavelength illumination, the iterative sine-cosine average filtering (ISCAF) 

method, which is a commonly used filtering technique for noise reduction, is no 

longer suitable to filter the wrapped phase pattern correctly. The ISCAF technique 

only works well in phase fringe patterns which are relatively less dense, hence the 

measurement range is limited especially when a single wavelength is used. Since the 

WFF technique shows a good potential in noise reduction for phase retrieval from a 

noisy fringe pattern, it is proposed to reduce speckle noise of a dense phase fringe 

pattern for relatively large deformation measurement using single wavelength 

illumination in DSSI.  

3.3.1.1 Windowed Fourier filtering 

Using Carré algorithm, four interferograms are recorded with the phase between two 

consecutive interferograms shifted by a constant amount. The phase is retrieved using 

Eq. (2.19). The phase value at each point in the interferogram before and after the 

object deformation ( b  and a ) can be obtained and the phase difference   is given 

by  
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4 x
a b

w

x

  

 

   


 (3.30) 

where   is the wavelength used,  x  is a shear value in the x-direction, w  is the out-

of-plane deformation and xw  /  is the derivative of out-of-plane deformation. As 

  is in modulo of 2 , it needs to be unwrapped. However, speckle noise contained 

in the phase map of   requires to be suppressed before phase unwrapping. The 

phase deference obtained from Eq. (3.30) can be represented using the complex form 

by 

1( , ) exp[ ( , )]P x y i x y   (3.31) 

where 1( , )P x y  represents the unfiltered complex phase values. Applying the WFF 

method using Eqs. (3.27) and (3.28), the filtered phase difference is given by 

 1( , ) ( , )x y angle P x y   (3.32) 

while 1( , )P x y  indicates the filtered values of 1( , )P x y . The filtered phase fringe 

pattern ( , )x y  representing the measurand can then be unwrapped correctly using 

spatial phase unwrapping (Ghiglia and Pritt, 1998). 
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3.3.1.2 Iterative sine-cosine average filtering 

Since the WFF method requires correct parameters for noise reduction and phase 

retrieval, it is complicated to use compared with the ISCAF method. The ISCAF 

technique was employed by Aebischer and Waldner (1999) for speckle noise 

suppression in phase retrieval due to its simplicity. It is a suitable technique for 

filtering a phase fringe pattern with low fringe density when combined with the 

multiple-wavelength technique, which can provide a longer synthetic wavelength and 

less dense phase fringe pattern compared with the single wavelength technique for 

relatively large deformation measurement (Wagner et al, 2000; Patil and Rastogi, 

2007; Kumar et al, 2009a; Kumar et al, 2009c). In two-wavelength DSSI, the phase 

difference ( , )s x y  of the synthetic wavelength s  is given by 

4
( , ) ( , ) ( , ) x

s g r
s

w
x y x y x y

x

  

 

    


 (3.33) 

where ( , )g x y  and ( , )r x y  are the phase difference of a green and red lights, 

respectively, and the synthetic wavelength s  is given by Eq. (2.17). Since the phase 

can be represented as a complex datum using Eq. (3.31), ( , )s x y  is given by 

exp[ ( , )]si x y Re iIm    (3.34) 

where cos[ ( , )]sRe x y   and sin[ ( , )]sIm x y   are respectively the real and 
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imaginary parts of the complex phase. In the ISCAF technique, the real and imaginary 

parts are individually filtered iteratively by an average filtering with a rectangular 

window. The speckle noise is suppressed and the filtered phase map is retrieved by an 

arctangent operation as 

( , )s

Im
x y arctan

Re


 
   

 
 (3.35) 

where the symbol “ ” indicates a filtering operation. 

3.3.2 Combined filtering technique for noise reduction 

The multi-wavelength interferometry, also known as synthetic wavelength 

interferometry, has advantages over single wavelength interferometry for ambiguity-

free measurement (Cheng and Wyant, 1984; Kumar et al, 2009a; Kumar et al, 2009b; 

Kumar et al, 2009c). It has also been applied to surface profile and slope 

measurements (Huang et al, 1997; Hack et al, 1998). However, a disadvantage of the 

multi-wavelength technique is that the phase noise is amplified (Warnasooriya and 

Kim, 2009). A novel technique to suppress the noise in a two-wavelength 

interferometry using simultaneous red and green lights illumination for small 

displacement derivative measurement is proposed. The proposed method can also 

avoid the conventional spatial phase unwrapping if the optical path difference of the 

measurands is less than the synthetic wavelength. In addition, to achieve the same 
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level of sensitivity as the single wavelength method, the phase map obtained by the 

synthetic wavelength is used to guide the phase unwrapping for either of the 

individual wavelength. A combined filtering technique consisting of WFF and a phase 

error correction algorithm is proposed for noise reduction and phase retrieval.  

In DSSI using two-wavelength simultaneous illumination, the red ( 632.8r  

nm) and green ( 532g nm) lights are employed. The phase difference, which is 

obtained by subtraction of the phase values retrieved using Carré phase shifting 

method before and after the object deformation, indicates the slope of a test object for 

a particular wavelength. However, the resulting phase map is normally very noisy due 

to the speckles. For speckle noise reduction of a phase fringe pattern, the fast WFF 

algorithm is employed. Let r  and g  be the filtered phase values for the red and 

green lights, respectively, using the fast WFF technique. The difference between these 

two filtered phase values produces a phase value s  of the synthetic wavelength s  

given by Eq. (2.17) and is expressed as 

4 x
s g r

s

w

x

  

 

    


 (3.36) 

As the phase difference s  still contains noise, it is again filtered by fast WFF to 

obtain a noise reduced phase s  which is in principle an unwrapped phase as long 

as the optical path difference of the measurands is less than the synthetic wavelength. 

The phase s  can thus be used to evaluate the derivative xw  / . However, due to 
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error amplification, the derivatives obtained directly from s  contain relatively 

large error compared with those obtained from a spatially unwrapped phase map of 

the green light. To improve the accuracy and avoid the conventional spatial phase 

unwrapping, integral multiples of 2π obtained from s  are used to guide the 

unwrapping of g  (assuming s s gu g       where gu  is an unwrapped phase of 

the green light). However, spikes arise in some values of gu due to incorrect integral 

multiples of 2π. A phase error correction algorithm is introduced to remove the spikes 

in gu . It is worth mentioning that the WFF technique is first employed to suppress 

the speckle noise in the phase map which can not be removed by the proposed phase 

error correction algorithm. 

3.3.2.1 Phase error correction algorithm 

This section describes a phase error correction algorithm for removing incorrect 

integral multiples of 2π in gu . Figure 3.5 shows a flow chart of the phase error 

correction algorithm. Figures 3.6(a) and 3.6(b) show respectively subroutines 1 and 2 

in Fig. 3.5. In Fig. 3.5, ‘round()’ indicates rounding off of values to the nearest integer 

and ‘diff()’ indicates an operation to calculate the phase difference between adjacent 

pixels along the x -axis. There are five steps in the algorithm. In step 1, the values of 

Coef are first obtained from s and in step 2, the values of gu  are subsequently 

determined from g  and Coef, where gu  represents the filtered values of 

gu and is assigned the values of gu  before phase error correction is carried out. In 

step 3, the phase difference 1_ ( , )P diff i j  between adjacent pixels of gu  along the 
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x -axis is calculated as 

1 1 1 _ ( , ) ( , 1) ( , )gu guP diff i j i j i j      (3.37) 

where 1 1, 2,3...,i Row , 1, 2,3..., 1j Col  , Row  and Col  are respectively the row 

and column numbers of gu . In the flowchart, step 4 calculates the values of 

_Coef diff  to the nearest integer which are then used to remove any spike in gu . 

_Coef diff  can either be positive, zero or negative integers. In step 5, line scanning 

of _Coef diff  is performed to detect any errors shown as an upward or downward 

spike in the phase map gu . The errors in the phase values of gu  due to upward or 

downward spikes are corrected by subtracting (for upward spike) or adding (for 

downward spike) 2π. As shown in Figs. 3.6(a) and 3.6(b), Subroutine 1 and 

Subroutine 2 are applied to correct the phase values due to the downward and upward 

spikes, respectively. A pair of positive and negative numbers in each line of 

_Coef diff  indicates a spike in the same line of gu . A positive number followed 

by a negative number indicates an upward spike in the same line of gu  (zeros may 

appear in between), therefore, a 2π value would need to be subtracted to the phase 

values of gu  and vice versa. After the correction, if spikes still exist in the phase 

map, steps 3 to 5 would be repeated. The processed gu  is taken as the final 

unwrapped phase. 
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Fig. 3.5 A flow chart of the phase error correction algorithm 
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CHAPTER FOUR 

EXPERIMENTAL WORK 

 

This chapter details the experimental work carried out to verify the proposed methods. 

The experimental work consists of ESPI with carriers for deformation measurement, 

DSSI with carriers for deformation derivative measurement, ESPI with temporal 

phase shifting for deformation measurement, and two-wavelength DSSI with temporal 

phase shifting for deformation derivative measurement.  

4.1 ESPI with carriers 

Figure 4.1 shows a Michelson type ESPI setup for deformation measurement. The 

specimen used in this experiment is a circular aluminum plate fully clamped at the 

boundary and has a diffused surface. The diameter and thickness of the circular plate 

are respectively 65.4mm and 1.66mm. A load is applied to the center of the plate by a 

micrometer screw and a He–Ne laser (30mW,  = 632.8nm) is used for illumination. 

The expanded beam from the laser is divided into two beams by a beam splitter: one 

is an object beam and the other is a reference beam. The object beam illuminates the 

surface of the specimen and the reflected beam is imaged at a CCD camera (Pulnix 

TM-62EX) through the beam splitter. The reference beam illuminates a reference 

plate and the reflected beam is recorded at the image plane of the CCD camera after 

passing through the beam splitter. The object and reference beams interfere on the 
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image plane of the camera and produce a speckle interferogram. This interferogram is 

used to extract the phase information due to any change on the object surface. 

 

In the experiment, a speckle pattern is first captured before the object plate is 

deformed. A carrier is then introduced by tilting the reference plate by a small angle 

and the second speckle pattern is captured. The object plate is then deformed by 

applying a central load with a micrometer screw and the third speckle pattern is 

captured. Subtraction of the first and second images by Eq. (2.7) produces a speckle 

fringe pattern due to the carrier. Subtraction of the first and third images by Eq. (2.7) 

produces a speckle fringe pattern of the carrier modulated by the object deformation. 

Fig. 4.1 ESPI setup for deformation measurement 
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With the introduction of the carrier, the spectrum of the speckle fringe pattern can be 

separated. The Fourier transform and 2D wavelet transform methods are employed for 

phase retrieval from the noisy speckle fringe patterns and the object deformation is 

obtained using Eq. (2.8). The size of the image captured by the CCD camera is 

768576 pixels. 

4.2 DSSI with carriers 

Figure 4.2 shows a DSSI setup for out-of-plane displacement derivative measurement. 

The test specimen used is also a circular plate with a diffused surface and is fully 

clamped at the boundary. The plate, which has a diameter of 5cm, is loaded at the 

center by a micrometer head. A He–Ne laser (50 mW, 632.8 nm  ) beam is 

directed through an optical fiber and illuminates the specimen at a small illumination 

angle ( 3 ), which is less than 10 . The output connector of the optical fiber is 

mounted on a translation stage which is used to introduce carrier fringes by translation 

of the fiber along the direction of illumination. The distance between the plate and the 

beam splitter cube is 57 cm. The magnitude of the shear in the x  direction is 1 cm 

and the resulting speckle pattern is captured by a CCD camera (Pulnix TM-62EX 

CCD with a Nikon Micro-Nikkor 55 mm lens). The image size captured by the CCD 

camera is 768576 pixels.  

Similar to the ESPI system, three speckle interferograms are captured. One is 

before the object deformation, a second one is after introduction of the carrier and a 

third is captured after the object deformation. The carrier fringe pattern is obtained by 
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subtraction between the first and the second interferograms. Subtraction of the first 

and third interferograms produces a modulated carrier speckle fringe pattern due to 

the object deformation. The phase of the carrier fringe pattern and the modulated 

carrier fringe pattern are obtained by the fast WFF method as explained in Section 3.2. 

Subtraction of the two phase maps results in a phase map representing the 

deformation derivative of the object. 

 

4.3 ESPI with temporal phase shifting 

An experiment is carried out using the ESPI technique with temporal phase shifting to 

measure the deformation of a fully clamped circular plate. The resulting phase fringe 
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Fig. 4.2 DSSI for deformation derivative measurement with carriers 
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patterns are processed using the proposed WFF method. Figure 4.3 shows the 

experimental setup of ESPI with temporal phase shifting for deformation 

measurement. A diffused surface circular plate with a diameter of 6.54 cm is 

illuminated by a He-Ne laser (wavelength 632.8r   nm) and is loaded at the center 

by a micrometer head. A beam splitter is employed to separate the expanded beam 

into an object and a reference beams. The object beam illuminates the plate, while the 

reference beam illuminates a diffused reference plate. The reference plate is mounted 

on a PZT transducer, which moves the reference plate by a constant distance in order 

to introduce a phase shift before and after the object is deformed. A 3-CCD color 

camera (JAI CV-M9CL) is used to capture four phase shifted images each before and 
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Diffused Reference 
Plate Mounted on a PZT 

Mirror Beam 
Splitter 

3-CCD Color 
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Beam Expender

Object 

PZT Controller  
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Fig. 4.3 ESPI for deformation measurement with phase shifting 
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after the object is deformed. As the red light is used, the speckle interferograms are 

recorded by the red channel of the 3-CCD camera. The phase difference of the 

speckle interferograms are obtained by subtracting the phase maps obtained before 

and after the object deformation. The deformation of the object is then obtained from 

the phase difference. 

4.4 Two-wavelength DSSI system 

Figure 4.4 shows the experimental setup of a two-wavelength DSSI for deformation 

derivative measurement of a centrally loaded fully clamped circular plate of diameter 

6.54 cm with a diffused surface. The experiment is carried out on a vibration isolation 

table (MELLES GRIOT). Both single and two-wavelength techniques are investigated. 

Illumination is carried out using red and green beams generated by a He-Ne laser 

(wavelength 632.8r   nm) and a diode pumped solid state laser (wavelength 

532g   nm), respectively. The red and green beams are combined by a beam splitter 

and then expanded by a beam expander for simultaneously illuminating the test object 

at a small incident angle, as shown in Fig. 4.4. Shearing is carried out by a beam 

splitter and two mirrors. One of the mirrors is tilted to introduce a shear of 5 mm in 

the x -direction while another mirror is mounted on a computer controlled PZT to 

introduce a phase shift. A 3-CCD color camera (JAI CV-M9CL) is used to capture the 

interference patterns before and after the object is deformed. Two different speckle 

shearing interference patterns of red and green beams are captured separately at the 

red and green channels of the CCD camera in one single exposure. The constant but 
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different phase shifting values for red and green beams are achieved by moving the 

mirror mounted on the PZT by a constant distance. Four phase shifted images each 

before and after the object is deformed are recorded. The phase shift values for red 

and green beams are 1.1424r  rad and 1.3594g  rad, respectively. 

 

From the phase shifted images the phase values for the two wavelengths are 

retrieved using the Carré phase shifting algorithm. For each wavelength the phase 

difference due to the object deformation is obtained by subtraction of the phases 

before and after the object deformation. In this experiment, both the single and two-

wavelength technique can be used to measure a relatively large deformation and the 

proposed WFF can be employed to retrieve the phase values using the single 

Fig. 4.4 Two-wavelength DSSI for deformation derivative measurement 
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wavelength technique. As a comparison, the ISCAF method is used on a noisy sparse 

phase fringe pattern obtained by the two-wavelength technique. The measurements 

are also verified using strain gauge measurement. The proposed combined filtering 

method is also verified using this experimental setup. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.1 Two-dimensional CWT for phase retrieval in ESPI 

The novel 2D Gabor CWT for phase retrieval and fringe filtering of a speckle fringe 

pattern with a spatial carrier is employed. Both the computer simulation and 

experimental results are shown. The computer program of the 2D Gabor CWT is also 

shown in Appendix A. 

5.1.1 Simulation results 

The phase values of a speckle fringe pattern of 512512 pixels can be simulated by  

2 2 1/2( ) 0.15[( 256) ( 256) ]x y    X  (5.1) 

The intensity of a point on the speckle fringe pattern is given by 

 ( ) cos 2 ( )xI f x WGN   X X  (5.2) 

where WGN  represents white Gauss noise and xf  is the carrier in the x direction (set 

to 1/16). The white Gauss noise is set to a zero mean with a variance of 0.3. Figure 

5.1(a) shows the phase values ( ) X . Figure 5.1(b) shows the simulated phase values 
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Fig. 5.1 (a) Original phase values ( ) X ; (b) simulated phase values with 

a carrier; (c) simulated fringe pattern with WGN  

(a)

(b)

(c)
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with a carrier added and Fig. 5.1(c) shows a simulated fringe pattern with WGN . 

Before applying the 2D Gabor CWT, the Gerchberg method which can reduce the 

boundary effect is employed to extrapolate the fringe pattern at each boundary. The 

zero-frequency term and left side-frequency component are subsequently removed 

from the spectrum of the extrapolated fringe pattern and the 2D CWT method is used 

to extract the CWT coefficients with maximum modulus, and the phase values of the 

fringe pattern are obtained from the coefficients. Figures 5.2(a) and 5.2(b) show 

wrapped phase maps retrieved using 2D Gabor CWT and advanced 2D fan CWT, 

respectively. The wrapped phase map retrieved by the advanced 2D fan CWT is more 

susceptible to the noise than that retrieved by the 2D Gabor CWT. Figures 5.3(a) and 

5.3(b) show the error maps of the retrieved phase maps. The root mean square error 

Fig. 5.2 (a) Wrapped phase map retrieved using 2D Gabor CWT; 
(b) wrapped phase map retrieved using advanced 2D fan CWT 

(a) (b) 
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(RMSE) for the 2D Gabor CWT is 0.1013 (Fig. 5.3a) and the RMSE for the advanced 

2D fan CWT is 0.1695 (Fig. 5.3b). 

 

Figure 5.4 shows the errors on the 256th row of the phase maps obtained using 

the two methods: the solid line denotes the 2D Gabor CWT errors and the dash line 

Fig. 5.3 (a) Error map by 2D Gabor CWT; (b) error map by advanced 2D 
fan CWT 

(a) 

(b) 
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denotes the advanced 2D fan CWT errors. As can been seen from Fig. 5.4, there is 

larger fluctuation in the errors of the advanced 2D fan CWT due to the wider 

spectrum of the advanced 2D fan wavelet. The wider spectrum of a wavelet is helpful 

for obtaining the useful signal simultaneously with more noise introduced. However, 

if the wavelet spectrum width is narrow, insufficient signal may be obtained and 

phase demodulation may be unsuccessful. Since wavelet transform acts as a filter in 

the frequency domain of a fringe pattern, there is a tradeoff in the spectrum size of the 

wavelet between obtaining useful signal and a noise reduction. As can be seen from 

the simulated results, the 2D Gabor CWT has a better noise immunity than the 

advanced 2D fan CWT.  

 

Fig. 5.4 Error on the 256th row of phase maps obtained using the two methods: the 
solid line denotes the 2D Gabor CWT errors and the dash line denotes the 

advanced 2D fan CWT errors 
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5.1.2 Experimental results 

The speckle fringe patterns are obtained from the ESPI with carriers for deformation 

measurement. The image size of the speckle fringe pattern used for processing is 

571576 pixels. Figure 5.5 shows a speckle fringe pattern with spatial carriers on a 

deformed plate. The carriers require to be introduced by the reference plate for phase 

retrieval using the proposed 2D CWT method. The speckle fringe pattern appears 

more noise than the simulated speckle fringe pattern. The Gerchberg method is first 

employed to extrapolate the fringe pattern at the boundary. The zero-frequency term 

and the left side-frequency component of the speckle fringe pattern are then removed 

in the frequency domain for further processing. The advanced 2D fan CWT, 2D 

Fourier transform with a small rectangular filtering window and 2D Gabor CWT are 

subsequently employed to the spectrum of the fringe pattern after the pre-processing. 

Figures 5.6(a), 5.6(b) and 5.6(c) show respectively wrapped phase obtained using the 

advanced 2D fan CWT, 2D Fourier transform and 2D Gabor CWT. As can be seen, 

Fig. 5.5 Speckle fringe pattern with spatial carriers 
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(c) 

(b) 

(a) 

Fig. 5.6 (a) Wrapped phase map by advanced 2D fan CWT; (b) wrapped phase 
map by 2D Fourier transform; (c) wrapped phase map by 2D Gabor CWT 
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the proposed 2D Gabor CWT produces better results than the other two methods in 

terms of speckle noise reduction. Although the 2D Fourier transform method can be 

used to directly retrieve the phase values, the noise in the window would still affect 

the results and thus the window size should be selected carefully. In contrast, the 

proposed 2D Gabor CWT has removed most of the speckle noise using the maximum 

modulus algorithm. When the local fringe direction angle is equal to the rotation angle 

of the 2D Gabor wavelet and the local fringe period satisfies the condition 

0( / 2 )q k P , the modulus of the 2D CWT coefficient reaches a maximum value. 

Using the maximum modulus algorithm the phase values can be extracted with the 

speckle noise suppression effectively. Figure 5.7 shows an unwrapped phase map 

with carriers removed using the 2D Gabor CWT and Fig. 5.8 shows the 3D phase 

maps obtained using the advanced 2D fan CWT, 2D Fourier transform and 2D Gabor 

CWT, respectively. As can be seen, the speckle noise is effectively suppressed using 

the proposed 2D Gabor CWT and the deformation of the plate can be obtained. 

 

Fig. 5.7 Unwrapped phase map with carriers removed using 2D Gabor CWT 
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(a) 

(b) 

Fig. 5.8 (a) 3D phase map using advanced 2D fan CWT; (b) 3D phase map using 
2D Fourier transform; (c) 3D phase map using 2D Gabor CWT 

(c) 
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5.2 Improved WFT for fringe demodulation in DSSI 

An improved algorithm of WFT for fringe demodulation in DSSI has been proposed. 

The algorithm is able to reduce the computation time efficiently. The program of the 

proposed algorithm is made using the Matlab platform and shown in Appendix B. 

5.2.1 Simulated analysis 

The phase value of a simulated speckle fringe pattern of 512512 pixels is given by 

2 2

( 257, 257) 50 exp
96 96 96

x x y
x y

              
     

 (5.3) 

where the values of x  and y  range from -256 to 255 with an interval of 1, and 

50 / 96  is a coefficient of the simulated phase values and should be suitably selected 

for the modulation by a carrier. A simulated phase map using the above equation is 

shown in Fig. 5.9(a). The speckle fringe pattern with a carrier and white Gaussian 

noise is given by 

( 257, 257) cos ( 257, 257)
10

x
I x y x y WGN           

 (5.4) 

where ( ) /10x  represents a carrier phase in the x  direction and WGN  denotes white 

Gaussian noise with a zero mean value and a variance of 0.6. A simulated speckle-

shearing fringe pattern using Eq. (5.4) is shown in Fig. 5.9(b). Before applying the 
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proposed WFF algorithm to demodulate the simulated fringe pattern, extrapolation of 

the fringe pattern at each boundary (with 20 pixels) is carried out using the Gerchberg 

method to remove the boundary effect. Figure 5.10 shows an extrapolated fringe 

pattern. The proposed WFF method is subsequently applied to the extrapolated fringe 

pattern to retrieve the phase values. Excess extrapolated pixels at the boundary are 

removed to obtain the original size. Figure 5.11(a) shows a retrieved phase map using 

the proposed WFF method from Fig. 5.10 after removing the extrapolated boundary 

pixels. For comparison, Fig. 5.11(b) shows a retrieved phase map using the WFF with 

convolution method (Qian, 2007b). Figures 5.12(a) and 5.12(b) show the error maps 

using the proposed WFF and the WFF with convolution method resulting from the 

retrieved phase values minus the simulated phase values, respectively. The 

corresponding error values of each method in Fig. 5.12(a) and Fig. 5.12(b) are shown 

in Table 5.1. As can be seen, both methods show similar error values. However, the 

computation time of the proposed WFF method for phase retrieval is 65.94 seconds 

(including 3.62 seconds for fringe extrapolation), while the computation time by the 

WFF with convolution method for phase retrieval from Fig. 5.9(b) is 563.41 seconds, 

as shown in Table 5.1. The computer used is a Dell Optiplex GX620 PC with a 

windows XP operating system and a Matlab 7.1 software. The window size   in both 

methods is 16, l  and h  are 0 and 1 respectively with an interval of 0.1, l  and h  

are -0.3 and 0.3 respectively with an interval of 0.1. The threshold set for the 

proposed WFF method is 7 and for the WFF with convolution method is 450. It is 

noteworthy that the computation time is not affected by the window size in the 
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proposed WFF method. Although the proposed WFF method shows an improvement 

in the computation time, the WFF with convolution method has the advantage of not 

requiring a complex boundary extension algorithm. The importance of the proposed 

WFF method in speed will be shown especially in real-time dynamic measurement or 

for processing a large amount of fringe patterns. 

In addition, the proposed WFF method is also able to process complex fringe 

patterns with speckle noise and produce less error for some interferograms with both 

dense and sparse fringes. Figure 5.13(a) shows a simulated speckle fringe pattern with 

both dense and sparse fringes and Fig. 5.13(b) shows an error map using the proposed 

WFF method without using boundary extension. As can be seen from Fig. 5.13(b), 

without using any boundary extension method the phase error will affect the boundary 

pixels as much as fourteen pixels. Therefore, the fringe pattern is extended with 

twenty pixels at each boundary to reduce the error. Table 5.2 shows the comparison of 

RMSE between the Fourier transform, 2D Gabor CWT and proposed WFF method 

for phase retrieval of Fig. 5.13(a). As can be seen, the Gerchberg method is suitable to 

reduce the boundary effect and the proposed WFF method is able to retrieve the phase 

with less RMSE compared with the other methods. 
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Fig. 5.9 (a) Simulated phase map; (b) simulated speckle-shearing fringe pattern 

(b)

(a)
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Fig. 5.10 Extrapolated fringe pattern 

(a) (b) 

Fig. 5.11 (a) Retrieved phase map using the proposed WFF method; 
(b) retrieved phase map using the WFF with convolution method 
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Table 5.1 Comparison between the proposed method and the WFF with convolution 

method 

Methods Maximum 
error (rad)

Minimum 
error (rad)

RMSE 
(rad) 

Time for 
simulated 

fringes 
(seconds) 

Time for 
experimental 

fringes 
(seconds) 

Proposed 
WFF 

algorithm 
0.4133 -0.4230 0.1028 65.94 44.05 

WFF with 
convolution 

method 
0.4483 -0.4603 0.1053 563.41 337.87 

Fig. 5.12 (a) Error map by the proposed WFF method; (b) error map by the 
WFF with convolution method 

(a) 

(b) 
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Fig. 5.13 (a) A simulated speckle fringe pattern with both dense and sparse fringe 
patterns; (b) error map using the proposed WFF method without using boundary 

extension 

Methods No boundary extension Zero-padded Gerchberg

Fourier transform 0.1095 0.1049 0.0935 

2D Gabor CWT 0.1253 0.0890 0.0857 

Proposed WFF 0.0853 0.0875 0.0752 

Table 5.2 Comparison of RMSE between the Fourier transform, 2D Gabor CWT 
and proposed WFF method 

(b) 

(a) 
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5.2.2 Experimental results 

The speckle fringe patterns are obtained from the DSSI with carriers for out-of-plane 

displacement derivative measurement. The image size of the speckle fringe pattern 

used for processing is 465481 pixels. Figure 5.14(a) shows a speckle fringe pattern 

representing the displacement derivative of a deformed flat plate fully clamped at the 

boundary and Fig. 5.14(b) shows the carriers introduced. Figure 5.14(c) shows the 

extrapolated speckle fringe pattern based on Fig. 5.14(a) by the Gerchberg method. 

Figure 5.15(a) shows a phase map retrieved from Fig. 5.14(a) using fast Fourier 

transform and Fig. 5.15(b) shows a phase map retrieved from Fig. 5.14(c) using the 

proposed WFF method after the removal of excessive extrapolated pixels. Figure 

5.15(c) shows a phase map retrieved from Fig. 5.14(a) using the WFF with 

convolution method. As can be seen from Fig. 5.15(b), it contains less noise than that 

of the fast Fourier transform method shown in Fig. 5.15(a) and is comparable with 

that obtained by the WFF with convolution method. The benefit between noise 

reduction and signal retention has to be weighed for the WFF method. Figures 5.16(a) 

and 5.16(b) show respectively the unwrapped phase maps after carrier removal using 

the proposed WFF and the WFF with convolution method. As can be seen, there are 

still some noises in the phase map retrieved using the convolution method. This is due 

to the difference in the threshold values and the extrapolation method used. Figure 

5.16(c) shows a plot of the unwrapped phase values along central line CC in Figs. 

5.16(a) and 5.16(b). As can be seen, both methods show similar results with a RMSE 

of 0.49 rad. In both methods, the window size   is 16, l  and h  are 0.1 and 0.7 
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respectively with an interval of 0.1, l  and h  are -0.3 and 0.3 respectively with an 

interval of 0.1. The thresholds used in the proposed WFF and the WFF with 

convolution method are 2.55 and 140, respectively. As shown in Table 5.1, the total 

computation time using the proposed WFF method for phase retrieved from Fig. 

5.14(c) is 44.05 seconds while that by the WFF with convolution method for phase 

Fig. 5.14 (a) Speckle fringe pattern indicating displacement derivative;  
(b) carrier fringe pattern; (c) extrapolated speckle fringe pattern based on (a) 

(c) 

(a) (b) 
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retrieval from Fig. 5.14(a) is 337.87 seconds. Here the proposed WFF method has an 

advantage in computation time and is not affected by the window size  . It is 

noteworthy that the boundary effect for phase retrieval is suppressed using the WFF 

with convolution method since a zero padded algorithm is employed in the 

convolution method. 

 

Fig. 5.15 (a) Retrieved phase map using fast Fourier transform method;  
(b) retrieved phase map using proposed WFF method; (c) retrieved phase 

map using WFF with convolution method

(c) 

(a) (b) 
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Fig. 5.16 (a) Unwrapped phase map after carrier removal using proposed 
WFF method; (b) unwrapped phase map after carrier removal using WFF 

with convolution method; (c) unwrapped phase values along central line CC 
in (a) and (b) 

C 

C 

C 

C 

(a) 

(b) 

(c) 
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5.3 Relatively large deformation measurement 

In a dense phase fringe pattern, denoising is an important issue in optical 

measurement since it determines the measurement range. The ISCAF technique which 

uses low-pass filtering is no longer suitable in this case. The WFF technique is 

proposed for phase retrieval from noisy and dense phase fringe patterns obtained 

using ESPI and DSSI. 

5.3.1 Phase fringe denoising in ESPI 

For a relatively large deformation measurement in ESPI, phase shifting method has to 

be employed and would produce a noisy and dense phase fringe pattern. The Carré 

phase shifting algorithm is used in the experiment since it only requires capturing four 

phase shifted speckle patterns. To retrieve the correct phase values from a noisy and 

dense phase fringe pattern obtained using the Carré phase shifting method, denoising 

is required. Numerical simulation work has been carried out to show the effects of the 

phase fringe density and speckle size on the results.  

5.3.1.1 Simulated results 

Figure 5.17 shows a simulated dense wrapped phase map with speckle noise normally 

encountered when ESPI is used for large deformation measurement. The simulated 

image size of Fig. 5.17 is 513513 pixels which has the same pixel number around 

the image center. The wrapped phase map is simulated using five pixels per period 

and the phase difference between adjacent pixels in the horizontal direction is / 2  
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rad. The added noise is Gaussian noise with a zero mean value and a variance of 

0.7896. Figure 5.18(a) shows the phase values along the first row of the pixels in Fig. 

5.17. As can be seen, the noises introduce errors and difficulties for phase unwrapping 

of Fig. 5.17 when filtering is not employed. For speckle noise reduction, the fast WFF 

method is employed. Figure 5.18(b) shows a filtered phase fringe pattern using the 

fast WFF technique. As can be seen, the noise is effectively suppressed and the 

RMSE compared with the theoretical phase values is 0.28 rad. A conventional sine-

cosine average filter using a 3-by-3 window is also used for comparison and the 

RMSE is 0.65 rad which is about twice of the fast WFF technique. As can be seen, the 

fast WFF technique produces a better result than that of the conventional sine-cosine 

Fig. 5.17 Simulated wrapped phase map with speckle noise 
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average filter. It is noteworthy that when the density of the phase fringe pattern 

reduces, the RMSE of the proposed fast WFF technique also reduces. For example, 

the RMSE using the proposed technique is 0.07 rad for a phase fringe pattern of 30 

Fig. 5.18 (a) Phase values along the first row of pixels in Fig. 5.17; 
(b) filtered phase fringe pattern using fast WFF technique 

(b)
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pixels per period. It shows that the dense phase fringe pattern is more difficult for 

filtering than the sparse phase fringe pattern. In addition, speckle size will also affect 

the RMSE using the fast WFF technique. Figure 5.19 shows a plot of speckle size 

versus the RMSE. Four sets of noisy phase fringe patterns with different speckle sizes 

are simulated and the results are marked as the triangles in the plot. The trend is 

shown by a dashed line. As can been seen, with increasing speckle size, the RMSE 

using the fast WFF technique increases. This suggests that a smaller speckle size 

would produce more accurate results.  

 

5.3.1.2 Experimental results 

An ESPI system used is shown in Fig. 4.3. Figure 5.20 shows a phase difference map 

retrieved using the Carré phase shifting method. The speckle noise in the phase 

difference map will introduce errors in phase unwrapping if filtering is not employed. 

Fig. 5.19 A plot of speckle size versus the RMSE 
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Hence the proposed fast WFF technique is employed for denoising. Figure 5.21(a) 

shows a filtered phase fringe pattern using the fast WFF technique and Fig. 5.21(b) 

shows a filtered phase fringe pattern using the conventional sine-cosine average 

filtering technique. Figures 5.22(a) and 5.22(b) show the corresponding unwrapped 

phase maps using quality guided phase derivative variance method (Ghiglia and Pritt, 

1998). As can been seen, the proposed technique provides a phase fringe pattern with 

noise suppressed even in areas with a high fringe density which is suitable for phase 

unwrapping to proceed. The unwrapped phase map can further be employed to obtain 

the deformation of the object.  

Fig. 5.20 Phase difference map retrieved using Carré phase shifting method 
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Fig. 5.21 (a) Filtered phase fringe pattern by fast WFF technique; (b) filtered phase 
fringe pattern by conventional sine-cosine average filtering technique 

(b) 

(a) 
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5.3.2 Phase fringe denoising in DSSI 

Figures 5.23 shows the phase difference maps obtained using a two-wavelength DSSI 

system shown in Fig. 4.4. Figures 5.23(a) and 5.23(b) show respectively the phase 

difference maps for the red and green lights. Figure 5.24(a) shows a filtered phase 

map of Fig. 5.23(a) obtained using the ISCAF technique with a 3 by 3 (smallest 

(b) 

(a) 

Fig. 5.22 (a) Unwrapped phase map by fast WFF technique; (b) unwrapped phase 
map by conventional sine-cosine average filtering technique 



CHAPTER FIVE RESULTS AND DISCUSSION 

 107 

possible) window and with 10 iterations. As can be seen, the phase fringe pattern is 

distorted at the central region where the fringe density is high even though the noise at 

the region with sparse fringes is filtered. The ISCAF technique is not able to produce 

a satisfied result in this case. Figure 5.24(b) shows a phase difference map of the 

synthetic wavelength obtained by subtracting the phase difference maps between the 

red and green lights without filtering. Figure 5.25(a) shows the filtered phase 

difference obtained using the ISCAF (with a 7 by 5 window and 30 iterations) and the 

contour of the phase fringes is retrieved. Figure 5.25(b) shows filtered phase values of 

Fig. 5.23(a) by the fast WFF technique with filtering parameters 2.1l    and 

2.1h   with a step of 0.2; 0.7l    and 0.7h   with a step of 0.1; 10   and a 

threshold value of 0.07. As can be seen from Fig. 5.25(b), effective filtering is 

achieved even in areas of high fringe density. Figures 5.26 and 5.27 show the 

Fig. 5.23 (a) Phase difference retrieved for red light; (b) phase difference retrieved 
for green light 

(a) (b) 
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unwrapped phase maps of Figs. 5.25(a) and 5.25(b), respectively. The phase values of 

the synthetic wavelength in Fig. 5.26 is converted to the phase values of the red light 

by multiplying a value of /s   . Figure 5.28 shows the phase values along cross-

section A-A in Figs 5.26 and 5.27. The dash line is obtained from the converted phase 

values of Fig. 5.26 whereas the solid line is from Fig. 5.27. As can been seen, both 

techniques produce similar results. 

 

To validate the results, the slope values obtained from cross-section A-A in 

Figs 5.26 and 5.27 are compared with those obtained using the strain gauge method. 

The strain gauge mounted with two gauges in tension and two gauges in compression 

employs a full-bridge circuit. The load at the center point of the fully clamped circular 

plate is measured and the displacement derivative for the plate can be estimated from 

(a) (b) 

Fig. 5.24 (a) Filtered phase of Fig. 5.23(a) obtained with ISCAF; (b) raw phase 
difference of the synthetic wavelength obtained by subtracting the phase 

difference maps between the red and green lights 
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the measured load. The RMSE between the two-wavelength and the strain gauge 

method is 53.95 10 , while the RMSE between the single wavelength and the strain 

gauge method is 53.86 10 . As can be seen, the two-wavelength method with ISCAF 

shows similar results as the single wavelength method with WFF. However, Fig. 5.28 

shows a slight difference in phase values representing the maximum slope. This is due 

to an amplification of the error in the two-wavelength method. 

 

It is noteworthy that even though the fast WFF algorithm requires more 

manual intervention than the ISCAF technique, it has a good potential for noise 

suppression where the fringe density is high. Since the ISCAF technique is a simple 

filtering technique with the advantage of less manual intervention, it is employed for 

(a) (b) 

Fig. 5.25 (a) Filtered phase difference of the synthetic wavelength obtained 
with ISCAF; (b) filtered phase of Fig. 5.23(a) using fast WFF 
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noise suppression where the fringe density is relatively low as with two-wavelength 

simultaneous illumination. 

 

 

Fig. 5.27 Unwrapped phase map of Fig. 5.25(b) 

A

A

Fig. 5.26 Unwrapped phase map of Fig. 5.25(a) 

A

A
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5.4 Two-wavelength DSSI using combined filter 

The experimental results are obtained for small deformation derivative measurement 

in two-wavelength DSSI system shown in Fig. 4.4. Figures 5.29(a) and 5.29(b) show 

wrapped phase maps of r  (for r 632.8  nm) and g  (for g 532  nm) 

retrieved by the Carré phase shifting algorithm, respectively. The wrapped phase 

maps r  and g  filtered using the fast WFF technique are shown in Figs. 5.29(c) 

and 5.29(d), respectively. Figure 5.30(a) shows a phase map of s  for a synthetic 

wavelength 3.3398 s µm obtained by subtraction of phase maps shown in Figs. 

5.29(c) and 5.29(d) whereas Fig. 5.30(b) shows a filtered phase map s  obtained 

using the fast WFF technique. The parameters of the fast WFF algorithm used for 

obtaining Figs. 5.29(c), 5.29(d) and 5.30(b) are shown in Table 5.3. The phase map 

shown in Fig. 5.30(b) is already an unwrapped phase map though no unwrapping 

Fig. 5.28 Phase values along cross-section A-A from the unwrapped phase 
maps using two filtering techniques 

Along cross-section  
A-A of Fig. 5.26 

Along cross-section  
A-A of Fig. 5.27 
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procedure has been carried out. To improve the sensitivity of the two-wavelength 

technique, integral multiples of 2π obtained from s  are utilized for unwrapping of 

g , the filtered phase map for the green light.  

 

(d) (c) 

Fig. 5.29 (a) Wrapped phase r  for red light; (b) wrapped phase g  for green 

light; (c) filtered wrapped phase r ; (d) filtered wrapped phase g  

(a) (b) 
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Table 5.3 Parameters used for the fast WFF algorithm 

 Window 
size 

Integration in 
x-direction 

: :l step h   

Integration in 
y-direction 

: :l step h   

Threshold 
values 

Fig. 5.29(c) 10 -1:0.1:1 -0.3:0.1:0.3 0.15 

Fig. 5.29(d) 10 -1:0.1:1 -0.3:0.1:0.3 0.15 

Fig. 5.30(b) 18 -0.6:0.1:0.6 -0.6:0.1:0.6 0.6 

 

Fig. 5.30 (a) Phase s  for synthetic wavelength 3.3398 s µm; (b) filtered 

phase s  

(a) 

(b) 
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Figure 5.31(a) shows an unwrapped phase map gu  obtained using g  and 

Coef (as explained in Sec. 3.3.2.1) without phase error correction and Fig. 5.31(b) 

shows a corresponding 3D plot of the phase values. It can be seen from Fig. 5.31(b) 

that there are noticeable errors in the form of spikes which are caused by incorrect 2π 

integral multiples obtained from s . gu  represents the filtered values of gu and 

is assigned the values of gu . Phase error correction algorithm is then applied to 

remove the spikes. Figure 5.32(a) shows the phase gu (Line 1) along cross-section 

A-A in Fig. 5.31(a) and the corresponding values of _Coef diff  (Line 2). Figure 

5.32(b) shows the initial distribution of Fig. 5.32(a) from 1 to 120 pixels. As can be 

seen, each spike in Line 1 corresponds to a pair of positive and negative numbers in 

Line 2. Hence, with the line scanning of the values of _Coef diff , spikes in each line 

of gu  can be detected and the phase values of gu  within the upward and 

downward spikes can be corrected by subtracting or adding a value of 2π, respectively. 

The corrected phase map gu  is shown in Fig. 5.32(c). As can be seen, the spikes 

have been removed completely and the derivative of deformation can be evaluated 

from gu . The phase values shown in Fig. 5.32(c) have also been compared with the 

unwrapped phase obtained by spatially unwrapping g using quality guided phase 

derivative variance method and it is found that the RMSE between them is negligible. 

Thus the proposed technique using a two-wavelength interferometry has a novelty 

that the same level of sensitivity as the single wavelength for phase retrieval is 

achieved. 



CHAPTER FIVE RESULTS AND DISCUSSION 

 115 

It should be noted that the phase error correction algorithm can be applied 

only to continuous surface deformation where the optical path difference between the 

adjacent pixels is smaller than the wavelength of the light source used. However, with 

the boundary detection algorithm it could be employed for phase retrieval on 

discontinuous surface deformation. 

 

Fig. 5.31 (a) Unwrapped phase gu  without combined filter; 

(b) corresponding 3D plot

A A 

(b) 

(a) 
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Fig. 5.32 (a) Phase values (Line 1) and corresponding values of _Coef diff  

(Line 2) on cross-section A-A in Fig. 5.31(a); (b) initial values of Fig. 5.32(a) 

(from 1 to 120 pixels); (c) phase map gu  with combined filter 

(c) 

(b) 

Line 1: Phase values 

Line 2: Corresponding values of 

            _Coef diff  
Line 1

Line 2

Line 1

Line 2

Line 1: Phase values 

Line 2: Corresponding values of _Coef diff  

(a) 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Concluding remarks 

In this thesis challenging issues in optical measurement techniques like phase retrieval 

and phase unwrapping are discussed in detail. The time-frequency analysis based 

techniques for phase retrieval in optical measurement using speckle interferometry 

and speckle shearing interferometry are discussed. The 2D Gabor CWT is proposed 

for phase retrieval in speckle interferometry with spatial carriers. The advantages of 

2D Gabor CWT over 1D wavelet transform in phase retrieval from fringe patterns are 

addressed. The proposed 2D Gabor CWT utilized the maximum modulus method to 

retrieve phase information from the coefficients of a wavelet transform. The proposed 

method is able to reduce the speckle noise effectively. The 2D Gabor wavelet is 

employed to demodulate fringe patterns with wide bandwidths which could not be 

correctly demodulated by the 2D fan wavelet transform. Simulated and experimental 

results show that the proposed 2D Gabor CWT method has a better noise suppression 

capability. 

A time-frequency analysis based technique, namely the WFT, is also 

employed for phase retrieval from speckle fringe patterns. The proposed WFT utilizes 

a fast Fourier transform algorithm and reduces computation time significantly 

compared with the WFT with convolution method. The proposed WFT method has an 
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advantage over the Fourier transform method for phase retrieval since the WFT is a 

local transform and simultaneously provides time and frequency information of a 

signal, while the Fourier transform is a global transform and the signal in different 

region will affect each other so that the noise reduction capability of the Fourier 

transform is not satisfied. The proposed WFT method also has an advantage that the 

resolution of WFT in both time and frequency domain can be selected according to 

the spectrum of a fringe pattern for phase retrieval since a suitable resolution can 

retain useful signals and restrict the speckle noise. Simulated and experimental results 

have shown the validity of the proposed WFT method. 

The WFT method is also employed for noise reduction of dense phase fringe 

patterns obtained using the ESPI and DSSI systems. In ESPI, the effect of phase 

fringe density and speckle size on the WFF technique is studied and it is shown that a 

smaller speckle size would improve the noise suppression capability in the WFF. The 

WFF technique is also employed for dense phase fringe denoising using single 

wavelength illumination in DSSI for relatively large deformation measurement. 

Experimental results show that the WFF technique has a better denoising capability 

than the ISCAF technique and is able to extend the measurement range. 

Phase retrieval in two-wavelength DSSI using a combined filtering method is 

also studied for small deformation derivative measurement. The proposed method 

exploits the advantages of a two-wavelength technique and is shown to be an 

alternative to phase unwrapping. It also has the potential for measurement of 

discontinuous surface profile and deformation when combined with a boundary 
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detection algorithm. 

In conclusion, the novelties of the proposed 2D Gabor CWT method are that 

the proposed 2D Gabor CWT method is able to overcome the narrow spectrum 

limitation of the previous 2D CWT and it is also an improvement from the 1D CWT. 

The novelties of the improved WFT method are that the improved WFT method has a 

significant improvement in reduction of computation time for fringe pattern 

demodulation and it is expected in real-time dynamic measurement or for processing a 

large amount of fringe patterns. It is a new application to phase retrieval and noise 

reduction in DSSI. It is also a suitable method for noise reduction of a dense phase 

fringe pattern in relatively large deformation measurement. 

6.2 Recommendations 

It is recommended that future work could be carried out in the following areas. 

Demodulation of a closed fringe pattern is still a challenging problem in 

optical measurement. Since the Fourier spectrum of a close fringe pattern overlaps 

each other, the phase values of the fringe pattern can not be correctly retrieved. Many 

methods have been proposed for phase retrieval on this type of fringe patterns, but 

there are still limitations, such as low accuracy and complications. Therefore, suitable 

algorithms need to be developed for demodulation of this kind of fringe patterns. One 

possible solution is to cut the closed fringe pattern into several regions and perform 

phase retrieval for each region before combining them to obtain a final phase map.  
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Dynamic interferometry technique can reduce effects of vibration using the 

phase shifting interferometry. Since a four-step phase shifting technique was 

employed for phase retrieval, the accuracy of phase retrieval may be improved if an 

eight-step phase shifting technique is employed. This would require improvement in a 

pixelated mask. Thus improvement in phase retrieval technique for the dynamic 

interferometry can be further studied. 

Fringe projection technique is also widely employed in surface profile 

measurement. However, most of the applications are for static measurement. Accurate 

color fringe projection using phase shifting method has a potential and can be further 

studied for dynamic measurement.  
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APPENDICES 

Appendix A. Code for 2D Gabor and 2D fan CWT 

This program is for 2D Gabor and 2D fan CWT in fringe demodulation using Matlab 

software. The algorithm is programmed with the aid of the Yet Another Wavelet 

Toolbox (YAWTB). 

 

function [cwtcoef scalex anglex] = cwt2d(fimg, waveletname, scales, angles) 

% Two-dimensional continuous wavelet transform for phase retrieval from fringe 

patterns with carriers 

% fimg: Fourier transform of the fringe pattern  

% waveletname: Name of the wavelet to use 

% scales, angles : Scales and angles of the wavelet transform to use  

% cwtcoef : Coefficients of the wavelet transform by maximum modulus method 

% scalex, anglex : Scales and angles obtained by maximum modulus method 

% The algorithm of 2D wavelet transform is composed with the aid of YAW Toolbox 

(Yet Another Wavelet Toolbox) 

% YAW Toolbox : http://rhea.tele.ucl.ac.be/yawtb/ 

% Obtain the wavelet name 

waveletname = lower([waveletname '2d']); 

% Obtain the image size 
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[Hgth,Wdth] = size(fimg); 

% Warning if the scales contain nonpositive numbers 

for i = 1:length(scales) 

    if (scales(i) <= 0) 

        error('''scales'' must be positive'); 

    end 

end 

% Construct x and y coordinates in Fourier spectrum 

num_half = floor((Wdth-1)/2); 

freqlx = 2*pi/Wdth*[ 0:num_half  (num_half-Wdth+1):-1 ]; 

num_half = floor((Hgth-1)/2); 

freqly = 2*pi/Hgth*[ 0:num_half  (num_half-Hgth+1):-1 ]; 

[fx,fy] = meshgrid(freqlx,freqly); 

% Obtain the number of scales and angles 

nsc = length(scales); 

nang = length(angles); 

h = waitbar(0,'Please wait...'); % Create the progress bar 

% Define the parameters for the wavelet transform 

cwtcoef = fimg; cwtcoef = 0; scalex = cwtcoef; anglex = cwtcoef; 

% Wavelet transform of the maximum modulus method 

for scnum = 1:nsc, 

    for angnum = 1:nang, 
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        sc = scales(scnum); % Take a scale from the scale vector 

        ang = angles(angnum); % Take an angle from the angle vector 

        % Perform the dilation and rotation of the wavelet in the frequency domain 

        nfx = sc * ( cos(ang).*fx - sin(ang).*fy ); 

        nfy = sc * ( sin(ang).*fx + cos(ang).*fy ); 

        % Generate a wavelet function in the frequency domain 

        wavf = sc * feval(waveletname,nfx,nfy); 

        % Perform wavelet transform 

        out = ifft2(fimg.* conj(wavf)); 

        % Obtain coefficients of the wavelet transform with maximum modulus method  

        coef = abs(out)>abs(cwtcoef); 

        cwtcoef = coef.*out+~coef.*cwtcoef; 

        scalex = coef*sc+~coef.*scalex; % Obtain scale parameters of the wavelet 

transform with maximum modulus method 

        anglex = coef*ang+~coef.*anglex; % Obtain angle parameters of the wavelet 

transform with maximum modulus method 

        waitbar(scnum/nsc) % Display of the progress bar  

    end 

end 
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function [out] = morlet2d(kx,ky) 

% Generate a 2D Gabor wavelet using 2D Morlet wavelet function  

% kx, ky : x and y coordinates in the frequency domain 

% out : Output of the 2D Gabor wavelet in the frequency domain 

% Define wavelet parameters 

k_0 = 5.336;  

sigma = 1/2; % Resolution control 

% Fourier spectrum of the wavelet function 

out = exp( - sigma^2 * ((kx - k_0).^2 + ky.^2)/2 ); 

 

function [out] = fan2d(kx,ky) 

% 2D fan wavelet  

% kx, ky : x and y coordinates in the frequency domain 

% out : Output of the 2D fan wavelet in the frequency domain 

% Define wavelet parameters 

k_0 = 5.336; 

sigma = 1/2; % Resolution control 

% Superposition of 6 Morlet wavelets 

out = 0; 

for count = 1:6 

    sita = (count-1)*pi/6; 

    % Fourier spectrum of the wavelet function 
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    outtemp = exp( - sigma^2 * ((ky - k_0*cos(sita)).^2 + (kx- k_0*sin(sita)).^2)/2 ); 

    out = out+outtemp; 

end 
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Appendix B. Code for improved WFT 

This program includes the improved WFF and windowed Fourier ridges algorithms 

for phase retrieval from fringe patterns. 

 

function [temp] = winfff(fimg,wx,wy,sigma,thr) 

% Windowed Fourier filtering function 

% fimg : Fourier transform of the input fringe pattern, which is better with negative 

and zero frequencies removed firstly 

% wx, wy : Selected frequency vectors in x and y direction, respectively 

% sigma : Window size 

% thr : Threshold 

% temp : Coefficients of WFF method 

% Example: wffcoef = winfff(fimg,0:0.1:1,-0.3:0.1:0.3,16,7); 

% Obtain image size 

[Hgth,Wdth] = size(fimg); 

% Construct x and y coordinates in Fourier spectrum 

[kx,ky] = freqcord2(Wdth, Hgth); 

% Initiate coefficients of WFF 

temp = fimg; temp = 0; 

h = waitbar(0,'Please wait...'); % Create the progress bar 

% Obtain the number of the elements in the selected frequency vector 
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nwx = length(wx); 

nwy = length(wy); 

% Compute the WFF coefficients by fast Fourier transform 

for cx = 1:nwx 

    for cy = 1:nwy 

        % Take an element from the selected frequency vector 

        wx1 = wx(cx); 

        wy1 = wy(cy); 

        % Compute windowed Fourier basis in frequency domain 

        mask = win(kx,ky,wx1,wy1,sigma); 

        % Perform WFT 

        out = ifft2(fimg.*mask); 

        % Filter the coefficients of the transform by a threshold 

        out = out.*(abs(out)>=thr); 

        % Perform inverse WFT 

        out = fft2(out); 

        temp = temp+ifft2(out.*mask); 

    end 

    waitbar(cx/nwx) % Display of the progress bar  

end 
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function [temp scalex scaley] = winffr(fimg,wx,wy,sigma) 

% Windowed Fourier ridges method 

% fimg : Fourier transform of the input fringe pattern, which is better with negative 

and zero frequencies removed firstly 

% wx, wy : Selected frequency vectors in x and y direction, respectively 

% sigma : Window size 

% temp : Coefficients of windowed Fourier ridges method 

% scalex, scaley : Obtained frequency parameters in x and y direction of the 

transform with the maximum modulus method 

% Example : wfrcoef = winffr(fimg,0:0.1:1,-0.3:0.1:0.3,12); 

% Obtain image size 

[Hgth,Wdth] = size(fimg); 

% Construct x and y coordinates in the Fourier spectrum 

[kx,ky] = freqcord2(Wdth, Hgth); 

% Initiate coefficients of windowed Fourier ridges method 

temp = fimg; temp = 0; scalex = temp; scaley = temp; 

h = waitbar(0,'Please wait...'); % Create the progress bar 

% Obtain the number of the elements in the selected frequency vector 

nwx = length(wx); 

nwy = length(wy); 

% Compute coefficients of windowed Fourier ridges method by fast Fourier transform 

for cx = 1:nwx 
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    for cy = 1:nwy 

        % Take an element from the selected frequency vector 

        wx1 = wx(cx); 

        wy1 = wy(cy); 

        % Compute the windowed Fourier basis in the frequency domain 

        mask = win(kx,ky,wx1,wy1,sigma); 

        % Perform WFT 

        out = ifft2(fimg.* conj(mask)); 

        % Peroform the maximum modulus mehtod 

        coef = abs(out)>abs(temp); 

        % Obtain the coefficients of the transform with the maximum modulus   

        temp = coef.*out+~coef.*temp; 

        % Obtain the frequency parameters of the transform with the maximum modulus 

        scalex = coef*wx1+~coef.*scalex; 

        scaley = coef*wy1+~coef.*scaley; 

    end 

    waitbar(cx/nwx) % Display of the progress bar 

end 
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function [freqx,freqy] = freqcord2(Wdthx, Hgthy) 

% Construct x and y coordinates in the Fourier spectrum 

% freqx, freqy : Matrixs of x and y coordinates of the Fourier spectrum 

% Wdthx, Hgthy : Width and height of the image 

[freqx,freqy] = meshgrid(freqcord1(Wdthx),freqcord1(Hgthy)); 

 

function dout = freqcord1(vars) 

% Construct the coordinates in the Fourier spectrum 

vars_2 = floor((vars-1)/2); 

dout = 2*pi/vars*[ 0:vars_2  (vars_2-vars+1):-1 ]; 

 

function [out] = win(kx,ky,wx,wy,sigma) 

% Compute window function in frequency domain 

out = exp( - sigma^2 * ((kx - wx).^2 + (ky-wy).^2)/2 ); 
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