
Kernel Engineering on Parse Trees

SUN Jun

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in School of Computing

NATIONAL UNIVERSITY OF SINGAPORE

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48649231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c©2011

SUN Jun

All Rights Reserved

Acknowledgments

I would like to express my sincere gratitude to my advisors, Professor Tan

Chew Lim and Dr. Zhang Min for their guidance and support.

More than being the adviser on my research work, Prof. Tan also provides a

lot of help on my life here in Singapore. Prof. Tan is always so considerate that

he even cares us more than ourselves. With the support from Prof. Tan, I gain a

lot of freedom in my research work so that I can have a chance to develop a broad

background according to my interest.

As my co-supervisor, Dr. Zhang made a lot of effort in guiding my research

capability from the scratch to being able to carry out research work independently.

I feel so lucky to work with such an experienced and enthusiastic researcher. Every

time I talked with him and asked for an advice, he could never ever let me down.

I would also like to thank my thesis examination committee including Prof. Ng

Hwee Tou and Dr. Sim Khe Chai from the local university and Dr. Moschitti from

University of Trento for their acceptance of reviewing my thesis and their valuable

suggestions on refining this manuscript.

I specially dedicated this thesis to my family for their support over these years.

Other than pursuing a Ph.D, almost whatever choices I have made during my life,

they would always be there on my side as the strongest supporters. Words just

amount to too little to express the full measure of my gratitude.

Finally I would like to thank everybody that has helped and inspired me esp.

but not limited to people in CHIME lab (NUS) and members in MT group (I2R).

i

ii

List of Publications during Candidature

Sun J., M. Zhang, and C.L. Tan. 2011. Tree sequence kernel for natural lan-

guage. In Proceedings of the 25th AAAI Conference on Artificial Intelligence.

(AAAI-2011)

Sun J., M. Zhang, and C.L. Tan. 2010. Exploring syntactic structural features

for sub-tree alignment using bilingual tree kernels. In Proceedings of the

48th Annual Meeting of the Association for Computational Linguistics, pages

306-315. (ACL-2010)

Sun J., M. Zhang, and C.L. Tan. 2010. Discriminative induction of sub-tree

alignment using limited labeled data. In Proceedings of the 23rd International

Conference on Computational Linguistics, pages 1047-1055. (COLING-2010)

Sun J., M. Zhang, and C.L. Tan. 2009. A noncontiguous tree sequence alignment-

based model for statistical machine translation. In Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing of the AFNLP, pages 914-

922. (ACL-2009)

Chen, B., Sun J., H. Jiang, M. Zhang and A.T. Aw. 2007. I2R Chinese-English

Translation System for IWSLT 2007. In Proceeding of the 4th International

Workshop on Spoken Language Translation. (IWSLT-2007)

Zhang, M., H. Jiang, A.T. Aw., Sun J., S. Li and C.L. Tan. 2007. A tree-to-tree

alignment-based model for statistical machine translation. In Proceeding of

the Machine Translation Summit XI. (MT-summit-2007)

i

ii

Contents

Abstract vii

List of Figures xi

List of Tables xiii

Chapter 1 Introduction 1

1.1 Aims and Contributions of the study 4

1.2 Outline of this Thesis . 6

Chapter 2 Background 9

2.1 Kernel Methods . 9

2.2 Support Vector Machines . 18

2.3 Preliminary Concepts on Tree Structures 23

2.4 Summary . 26

Chapter 3 Kernels on Discrete Structures 27

3.1 Representative Kernels . 28

3.1.1 Haussler’s Convolution Kernel 29

3.1.2 Mapping Kernel . 30

3.1.3 Sequence Kernel . 35

3.1.4 Collins and Duffy’s Tree Kernel 37

iii

3.2 Previous Work . 39

3.3 Summary . 43

Chapter 4 Tree Sequence based Kernels 45

4.1 From Tree Kernel to Tree Sequence Kernel – Some Motivating Ex-

amples . 46

4.2 Contiguous Tree Sequence Kernel 50

4.2.1 Kernel Evaluation via Pseudo Roots 50

4.2.2 Algorithm 2: Fast Evaluation 52

4.3 Set Sequence Kernels . 54

4.3.1 Penalizing Length of Spans (γ) 57

4.3.2 Penalizing Count of Matched Elements (µ) 58

4.3.3 Penalizing Count of Gaps (τ) 59

4.4 Tree Sequence Kernels . 60

4.4.1 The Generalized Tree Sequence Kernel 60

4.4.2 Adapting Set Sequence Kernel to Tree Sequence Kernel . . . 62

4.4.3 Penalizing Length of Spans (γ) 64

4.4.4 Penalizing Count of Matched Subtrees (µ) 65

4.4.5 Penalizing Count of Gaps (τ) 65

4.5 Anchored Tree Sequence Kernel . 66

4.5.1 Feature Space Construction 67

4.5.2 Penalizing Length of spans (γ) 71

4.5.3 Penalizing Count of Matched Subtrees (µ) 73

4.5.4 Penalizing Count of Gaps (τ) 74

4.5.5 Mapping Kernels with Anchored Structures 76

4.6 Kernels over Multiple Parse Trees 79

4.6.1 Independent Bilingual Tree Kernel (iBTK) 80

4.6.2 Dependent Bilingual Tree Kernel (dBTK) 81

iv

4.6.3 Generalized Kernels over Multiple Trees 83

4.7 Summary . 84

Chapter 5 Tree Sequence Kernels for Single Parse Tree 85

5.1 Background and Related Work . 86

5.2 Experiments . 90

5.2.1 Question Classification . 91

5.2.2 Relation Extraction . 94

5.3 Discussion . 101

5.4 Summary . 102

Chapter 6 A Kernel based Statistical Model for Bilingual Subtree

Alignment 105

6.1 Task Definition . 106

6.2 Background and Related Work . 107

6.3 Structure Space for BT(S)Ks . 109

6.4 Heuristic Feature Functions . 113

6.4.1 Lexical and Word Alignment Features 113

6.4.2 Online Structural Features 115

6.5 The Alignment Model . 115

6.6 Experiments on Bilingual Subtree Alignment 116

6.6.1 Data Preparation . 117

6.6.2 Baseline approaches . 119

6.6.3 Experimental Settings . 120

6.6.4 Experimental Results . 121

6.7 Experiments on Machine Translation 125

6.7.1 Experimental Settings . 125

6.7.2 Experimental Results . 126

v

6.8 Summary . 129

Chapter 7 Conclusion 131

7.1 Summary of Achievements . 131

7.2 Future Directions . 134

Reference 135

vi

Abstract

Recently, Natural Language Processing (NLP) has been greatly benefiting from

the progress of machine learning methods in large data driven applications. Some

NLP tasks require complex data representation to deeply analyze the syntactic and

semantic features. In many cases the input data is represented as sequences, trees

and even graphs. Traditional feature based methods transform these structured

input data into vectorial representation by sophisticated feature engineering, which

is argued infeasible to fully explore the structure features. Alternatively, kernel

methods can explore a very high dimensional feature space for these complex input

structures without explicitly representing the input data as a feature vector. In

terms of tree structures, tree kernels can explore the subtree features in the parse

trees, without explicitly enumerating each type of subtree.

However, previous tree kernels explore the structure features with respect to

the single subtree representation. The structure of the large single subtree may

be sparse in the data set, which prevents large structures from being effectively

utilized. Sometimes, only certain parts of a large subtree are beneficial instead of

the entire subtree. In this case, using the entire structure may introduce noisy

information.

To address the above deficiency, this dissertation systematically investigates

the phrase parse tree and attempts to design more sophisticated kernels to deeply

explore the structure features embedded in the phrase parse trees other than the

single subtree representation.

In order to achieve this goal, this dissertation proposes tree sequence based

kernels to explore the structure features in the phrase parse trees for various NLP

applications.

vii

Specifically, this thesis achieves to propose contiguous Tree Sequence Kernel

(cTSK) which is able to capture the structure features of a contiguous subtree

sequence, and to propose an efficient algorithm to evaluate the kernel function.

In addition, this thesis proposes Tree Sequence Kernels (TSKs) which are able to

capture the structure features of a subtree sequence, both contiguous and non-

contiguous. Particularly, the generalized TSK is verified to be a valid positive

semidefinite kernel by being constructed on the mapping kernel paradigm. Addi-

tionally, the generalized TSK is instantiated by weighting the structure features

through a variety of schemes. Efficient algorithms are proposed to evaluate the

kernel functions based on these different structure weighting schemes. Based on

TSKs, this thesis proposes Anchored Tree Sequence Kernels (aTSKs) to match the

subtree sequence structures according to their relative spatial relation with certain

anchored structures. From this perspective, aTSKs are able to facilitate the appli-

cations, which deal with the instances with multiple relational target constituents,

i.e. relation extraction.

To test the effectiveness of the proposed tree sequence based kernels, this thesis

applies the proposed kernels to two NLP applications, i.e. Question Classification

and Relation Extraction, and conducts comparative experiments to demonstrate

the characteristics of the proposed kernels. Experimental results show that the

tree sequence based kernels outperform the tree based kernels on both tasks, which

suggests that the structure features expressed as a sequence of subtrees are very

effective for those tasks.

This thesis additionally extends the tree (sequence) based kernels from the

single parse tree to multiple parse trees. This is achieved by exploiting the structure

features across multiple trees both dependently and independently. The proposed

kernels on multiple parse trees are instantiated on the bilingual task, i.e. Bilingual

Subtree Alignment. Experimental results suggest that the corresponding Bilingual

viii

Tree (Sequence) Kernels can effectively explore the structure features for this task.

Another contribution of this thesis is to propose a generic framework for the

task of Bilingual Subtree Alignment by means of a kernel based statistical model.

In addition, this thesis integrates the tree (sequence) based kernels on bilingual

parallel parse trees in this framework along with various heuristic feature functions.

Experimental results reveal that the aligned subtrees obtained from the proposed

framework can be well utilized as translation rules by a variety of the state-of-the-

art statistical machine translation systems.

In all, this dissertation adopts the subtree sequence structure as the basic fea-

ture type for kernels on phrase parse tree. A variety of kernels are built up based on

the subtree sequence structure. The advantages of the subtree sequence structures

are demonstrated on various NLP applications. By means of the tree (sequence)

kernels over multiple parse trees, a kernel based alignment model is proposed for

the task of bilingual subtree alignment, with which the translation performance

can be effectively improved. On a more general perspective, this dissertation sys-

tematically explores the disconnected structure features in parse trees by means

of kernels. On this point, this dissertation may provide novel views of structure

features for NLP applications.

ix

x

List of Figures

2.1 The linearly separable case for SVM 19

2.2 The linearly nonseparable case for SVM 22

2.3 Tree Structure Illustration . 25

3.1 Collins and Duffy’s Tree Kernel feature space. 37

3.2 Illustration of feature space of Partial Tree Kernel (PTK) 40

4.1 Illustration of Tree Sequence Structures. 47

4.2 Illustration of Pseudo Root construction 51

4.3 Construction of Node Set Sequence 63

4.4 Tree Structure Partition. 69

5.1 Parse tree instance for relation extraction 94

5.2 Illustration of Tree Sequence Structures. 95

5.3 Non-contiguous tree sequence features 101

6.1 Subtree alignment as referred to Node alignment 107

6.2 Illustration of SST, RdSST and RgSST 111

6.3 Alignment results comparison . 128

xi

xii

List of Tables

5.1 Accuracy of Question Classification 92

5.2 Performance for Relation Extraction on MCT 97

5.3 Performance for Relation Extraction on PT 97

5.4 Constraint PTKs on MCT . 100

5.5 Constraint PTKs on PT . 100

6.1 Corpus Statistics for HIT corpus . 118

6.2 Statistics of FBIS selected Corpus 118

6.3 Structure feature contribution for HIT test set 121

6.4 Structure feature contribution for FBIS test set 122

6.5 MT evaluation on various systems 127

xiii

xiv

1

Chapter 1

Introduction

Recently, enormous applications on the Internet have been developed, which are

extensively guiding and shaping people’s life. Among them, the text based ap-

plications are particularly popular such as Search Engines, Blogs, Micro-Blogs as

well as other web social mining applications. Along with the development of these

text based web applications, language processing techniques have become more

and more important, since they can help these web applications provide better user

experience with more accurate results. This requirement strongly stimulates the

research in Natural Language Processing (NLP) which has made quick progress in

developing data driven applications. The NLP research domain also benefits from

the availability of a large amount of natural language data and the improvement of

the large scale statistical machine learning methods.

In the field of NLP, the most familiar data representation is the sequence

(string), since a document on the web can be considered as a sequence of words

or a sequence of alphabets. There are a lot of applications that are built on the

sequence representation. In document classification, a given document represented

as a sequence of words is classified into categories such as “Politics”, “Sports”,

“Business”, etc. In sentiment analysis, the sentiment preference (like or dislike,

2

recommend or not recommend) is required to be detected for a given text which is

also represented as a sequence of words.

These applications actually rely on many fundamental text analysis techniques

which have been developed for the sequential data. In addition, these techniques can

be built on more complex data representations. Part-of-speech tagging annotates

a tag to each word in a sentence, which denotes its grammatical function in the

sentence. In this application, the original sequence of words is attached in parallel

with the other sequence of part-of-speech tags. Syntactic parsing creates a tree

structure over a sentence with each of the node in the tree to denote the grammatical

function of the span of text it covers. Thus, the sequence of words is enriched with

a tree structure as the grammatical analysis. By means of these augmentations of

the input data, the input data can be represented by more complex structures such

as multiple sequences, trees and even graphs other than a sequence of plain words.

Traditionally, statistical machine learning methods adopt the vectorial repre-

sentation to express the features embedded in those complex structures. Generally,

a preprocessing step is required to transform those structured data into the cor-

responding feature vector. Then the obtained feature vector is used as the input

of certain machine learning algorithms employed to solve the task. Since this pre-

processing step is task related, it often requires an expert to appropriately design

and extract the features, which is obviously non-trivial. In addition, this feature

engineering process may lead to the loss of information of the input data.

To better perform these structural data driven tasks, kernel methods are intro-

duced, which can directly take these structures as the input for kernel machines1

instead of explicitly representing the input data as a feature vector. By appropri-

ately designing a kernel function, high dimensional feature space can be implicitly

explored. Thus, the similarity between two data objects represented by the dot

1A kernel machine refers to a machine learning algorithm built on kernel methods

3

product of the high dimensional feature vectors can be efficiently evaluated. Ker-

nel methods have been integrated into many learning machines, such as Percep-

tron (Rosenblatt, 1962) and Support Vector Machines (SVM) (Cortes and Vapnik,

1995).

As previously introduced, the input data structures in NLP applications often

consist of sequences, trees and graphs. Consequently, kernel methods can be applied

in these structures, i.e. sequence kernel (Lodhi et al., 2002), tree kernel (Collins and

Duffy, 2002) and graph kernel (Suzuki, Sasaki, and Maeda, 2006). Among these,

tree kernel (Collins and Duffy, 2002) explores the syntactic substructure space of

all subtree types. To evaluate the kernel function means to count the number of

common subtrees in each type as the similarity between two syntactic parse trees.

Tree kernel has been successfully applied in many NLP tasks such as syntactic

parsing (Collins and Duffy, 2002), question classification (Zhang and Lee, 2003;

Moschitti, 2006), semantic parsing (Moschitti, 2004; Zhang et al., 2008a), textual

entailment (Zanzotto and Moschitti, 2006), relation extraction (Zelenko, Aone, and

Richardella, 2003; Zhang, Zhou, and Aw, 2008) as well as pronoun resolution (Yang,

Su, and Tan, 2006).

Based on the standard Collins and Duffy’s tree kernel which explores all the

subtree structures, recent work attempts to deeply explore the substructure fea-

tures beyond the subtree structure in the original parse tree. Partial tree ker-

nel (Moschitti, 2006) allows partial production rule matching within a syntactic

structure, which extensively enlarges the feature space. However, the partial match-

ing between subtrees also introduces many non-grammatical substructures which

violate the original production rules (Moschitti, 2006). In order to extend the fea-

ture space with more meaningful substructures, grammar driven tree kernel (Zhang

et al., 2008a) constructs a larger substructure feature space by modifying the orig-

inal subtrees and generalizing certain grammar tags. However, the modification of

4

the subtrees is based on certain grammars, which requires human effort to create

a set of beneficial grammar representations and is difficult to be extended to other

languages and grammars.

Basically, these works differ in the subtree feature space explored by the ker-

nels. However, it is worthwhile to point out that most of these studies explore the

structure features with respect to the single subtree based features. Therefore, it

is very likely that when covering a large context, the structure of a single subtree

may be fairly large so that the data sparseness problem may prevent large struc-

tures from being effectively utilized (Collins and Duffy, 2002). In addition, it is also

possible that a large single subtree is not entirely beneficial, but only certain parts

are useful for the task. Therefore, using the entire subtree may introduce noisy

information.

1.1 Aims and Contributions of the study

To address the deficiency of the single subtree structures, the main aim of this

study is to investigate the phrase parse tree structure and attempt to design more

sophisticated kernels to deeply explore the substructures embedded in the phrase

parse trees other than the single subtree representation.

The proposed kernels are expected to preserve the production rule as it is

in the original parse tree, since the production rule is the minimum informative

structure to express the grammatical function of the span it covers. The proposed

kernels should explore the feature space other than the single subtree structures.

Specifically, the feature space is extended from the structure of a single subtree to

the structure of multiple subtrees. The structure of multiple subtrees can be either a

sequence of subtrees from one parse tree or multiple subtree sequences from multiple

parse trees. In addition, the proposed kernels should be grammar independent and

language independent, which allows the kernels to be easily extended to various

5

NLP applications across different languages.

The specific aims and contributions of this research are:

• to propose Tree Sequence Kernels (TSKs) to explore the structure space of a

sequence of subtrees, both contiguous and non-contiguous. When the subtree

sequence is restricted to be contiguous, TSKs2 are simplified into a special

case, namely contiguous Tree Sequence Kernel (cTSK). TSKs can effectively

capture the syntactic features over a large context or a non-contiguous con-

text, since TSKs enlarge the feature space by capturing not only the connected

substructures of a single subtree, but also the disconnected substructures of

a sequence of subtrees. cTSK/TSKs can effectively utilize the large struc-

tures by decomposing and matching them in parts, which may alleviate the

sparseness of large structures. (Sun, Zhang, and Tan, 2011)

• to propose Anchored Tree Sequence Kernel (aTSKs) to further adapt TSKs

to tasks with relational target constituents in the parse trees. Constructed

under the paradigm of Mapping kernel (Shin and Kuboyama, 2008), aTSKs

are able to preserve the position of the subtree sequence structures relative

to the anchored structures that cover the target constituents. This makes

the structure features more differentiable, especially for tasks modeling the

relationship for target constituents, such as relation extraction.

• to propose a series of efficient algorithms to adapt the generalized form of

TSKs/aTSK to different realization of weighting the substructures. The sub-

structures can be weighted by the span length covered by the subtree se-

quence. In addition, the substructures can be weighted by the number of

subtrees or the number of gaps in the subtree sequence.

2We refer TSKs to the kernels which allow both contiguous and non-contiguous subtree se-

quence structures.

6

• to extend the kernels from the single parse tree to multiple parse trees. The

substructures across multiple parse trees are explored both dependently and

independently. These extensions can be applied with the tree (sequence)

based kernels, i.e. tree kernel, cTSK, TSKs, aTSKs, to tasks requiring multi-

ple parse trees, such as multilingual applications using parallel parse trees on

multilingual text. (Sun, Zhang, and Tan, 2010b)

• to propose a kernel based statistical alignment model for the task of Bilingual

Subtree Alignment. Tree (sequence) based kernels on bilingual parse trees are

integrated in this framework to explore the structure features along with a

variety of heuristic features. The aligned subtrees are adopted as translation

rules which are verified to be able to improve both phrase and syntax based

statistical machine translation systems (Sun, Zhang, and Tan, 2010b; Sun,

Zhang, and Tan, 2010a)

The kernels proposed in this study leverage on the ability of sequence ker-

nel to capture the horizontal sequence structure and the ability of the single sub-

tree based kernel to capture the vertical parse tree structure. The tree sequence

structure explored by the proposed kernels is motivated by the decent effectiveness

of non-syntactic phrases in tree sequence based syntax translation (Zhang et al.,

2008b; Sun, Zhang, and Tan, 2009), which suggests that the disconnected structures

beyond the syntactic constraint are very useful in translational equivalence model-

ing. Compared with the single tree based kernels, the additional subtree sequence

structures enhance the modeling of the large structures and discrete structures.

The proposed kernels tend to bring novel views of structure features in NLP.

1.2 Outline of this Thesis

This thesis is organized as follows:

7

In Chapter 2, the background and preliminary knowledge of this thesis are

introduced. Basically, a brief introduction of kernel methods and Support Vector

Machines (SVM) is given in this chapter. Two prevalent definitions of kernels are

presented and are unified by being proved equivalent in this chapter. In addition,

some preliminary concepts and definitions on tree structures which will appear later

in this thesis are presented.

In Chapter 3, some literature studying kernels on discrete structures are re-

viewed. Two approaches to construct kernels on discrete structures are introduced,

i.e. the convolution kernel paradigm (Haussler, 1999) and the mapping kernel

paradigm (Shin and Kuboyama, 2008). The sequence kernel (Lodhi et al., 2002)

and the tree kernel (Collins and Duffy, 2002) are also introduced since they serve

as the basis for the construction of tree sequence based kernels in the following

chapters.

In Chapter 4, a series of tree sequence based kernels are proposed. The elab-

oration starts with the most simple case, i.e. contiguous Tree Sequence Kernel

(cTSK), which explores the feature space of a contiguous subtree sequence. cTSK

is then generalized to the more general case, i.e. Tree Sequence Kernels (TSKs),

which allows the subtree sequence to be non-contiguous. In order to efficiently

evaluate TSKs, Set Sequence Kernel (SSKs) are proposed to evaluate the similarity

between the sequence of node sets. Three weighting schemes are proposed for the

generalized SSK and TSK. In addition, we propose the anchored Tree Sequence

Kernel (aTSKs) to accommodate the anchored substructures in the parse trees.

The chapter is concluded after showing that those proposed kernels can be further

extended from the single parse tree to multiple parse trees, which are expected to

facilitate multilingual applications in NLP.

In Chapter 5, the proposed tree sequence based kernels are applied on two

monolingual NLP tasks, i.e. question classification and relation extraction, since

8

kernel methods on these tasks are well studied and are shown to achieve the state-

of-the-art performance against the feature based methods. Specially, cTSK and

TSKs are applied in both tasks while aTSK is only applied in relation extraction

due to its characteristics in modeling the entity pairs, which can be considered as

the anchored structures in the parse trees.

In Chapter 6, the tree (sequence) based kernels are applied in a bilingual task,

i.e. Bilingual Subtree Alignment, to explore the structure features in the bilingual

parse tree pair. A statistical subtree alignment model is proposed to integrate

the bilingual tree (sequence) kernels. Besides the tree (sequence) based kernels

to explore the structure features, some heuristic feature functions are proposed to

explore the lexical features as well. The aligned subtrees obtained from the subtree

aligner are then used as additional translation rules in various statistical machine

translation systems. Evaluations are carried out in both subtree alignment and

machine translation.

In Chapter 7, this thesis is concluded with the major accomplishments and

findings. Some research directions are discussed to facilitate the research work in

the future.

9

Chapter 2

Background

In this chapter, some background knowledge of this thesis will be given. Specially,

the basis of kernel methods will be presented. Two prevalent definitions of the pos-

itive semidefinite kernel will be discussed and proved to be equivalent. The widely

used kernel machine, i.e. Support Vector Machines (SVM), will be introduced,

since the proposed kernels in this thesis will be applied by means of SVM. At last,

some preliminary concepts on tree structures will be given to facilitate the further

understanding of this thesis.

2.1 Kernel Methods

In pattern recognition, patterns are learned from the training data and are expected

to generalize to the unseen data. A direct approach of achieving this is to com-

pare the similarity between an unseen instance and the annotated instances in the

training data. The similarity between data instances can be evaluated as:

K : X × X → R

Sim(x, x′) = K (x, x′)
(2.1)

10

where given two data points x and x′, the similarity between them is a real number

denoted asK (x, x′). In addition, K can be assumed to be symmetric, i.e. K (x, x′) =

K (x′, x) for all x and x′.

To evaluate the function K , it is necessary to design a similarity measure-

ment between data points. If all data points x ∈ X can be represented as an

N -dimensional feature vector ~x ∈ R
N , with each component to be xi, 1 ≤ i ≤ N .

A simple method of similarity computation is to use the dot product between the

two vectors ~x, ~x′ ∈ R
N , which can be defined as follows:

K (x, x′) = 〈~x, ~x′〉 =
N∑

i=1

xi · x′i (2.2)

In the Euclidean space, dot product between two normalized vectors ~x and ~x′

can be geometrically interpreted as the cosine of the angle θ between the vectors.

cos(θ) =
〈~x, ~x′〉

‖~x‖ · ‖~x′‖ (2.3)

To measure the similarity between data points using the dot product, it requires

the data point to be represented as a vector. However, in real life applications, data

points may be complex structures such as sequences, trees, graphs etc., which are

not explicitly expressed as a feature vector. As a result, these input data with non-

vectorial representation are required to be projected to a dot product space H with

M dimensions. In some cases, even the input data is represented as a vector, a more

expressive vectorial representation is still needed to encode more useful information

of the input data. Both cases can be dealt with by creating a mapping function

Φ : X → H, satisfying

Φ(x) = (Φ1(x),Φ2(x), . . . ,ΦM(x))T (2.4)

By projecting the data point into a dot product spaceH, the similarity function

can be computed as follows:

K (x, x′) = 〈Φ(x),Φ(x′)〉 =
M∑

m=1

Φm(x)Φm(x
′) (2.5)

11

By far, we have introduced a symmetric function 2.5 to measure the similarity

between data points using dot product. The dot product can be evaluated by

projecting the original data point to a new space. This indicates that to evaluate

this kind of similarity, it requires to design a mapping function to create the image

of the data point in the dot product space. The following example is given to

elaborate how such mapping can be achieved.

Given the data point x represented by ~x = (x1, x2)
T in the two dimensional

space R
2, the mapping function Φ is able to project ~x in X = R

2 to an image in

H = R
6 as follows:

Φ : X = R
2 → H = R

6

(x1, x2)
T → (1, x21, x

2
2,
√
2x1x2,

√
2x1,

√
2x2)

T
(2.6)

For this case, it is convenient to list all the components in the projected vector,

since it is only with six dimensions. However, when the dimension of the projected

space is high or even infinite, explicitly enumerating the features will be infeasible.

Therefore, in order to project the data point to the high dimensional dot product

space, it is better to avoid the explicit mapping. In fact, the dot product between

the projected data images can be evaluated by means of the dot product of the

data points in the input space. For the previous example, given x, x′ ∈ R
2,

K (x, x′) = 〈Φ(~x),Φ(~x′)〉

= 1 + x21x
′2
1 + x22x

′2
2 + 2(x1x2)(x

′
1x

′
2) + 2x1x

′
1 + 2x2x

′
2

= (1 + 〈~x, ~x′〉)2
(2.7)

As shown in Eq. 2.7, the kernel function K can be evaluated by the square of

the dot product of the vectors in the original space X .

Given this example, it is easy to see how the similarity function K (x, x′) can be

implicitly evaluated. This is equivalent to the explicit evaluation by first mapping

the data into the dot product space and then evaluating the dot product between the

12

projected data images. In fact, this similarity is the so called kernel function. Based

on the above introduction, we give the definition of kernel presented in Shawe-Taylor

and Cristianini (2004) and Herbrich (2002).

Definition 2.1 [Kernel (Shawe-Taylor and Cristianini, 2004; Herbrich,

2002)] The function K : X × X → R is a kernel for all x, x′ ∈ X if and only if

(1) There exists a mapping from the input space to the dot product space, i.e.

Φ : X → H (2.8)

(2) K evaluates the dot product of the projected data image in H, i.e.

K (x, x′) = 〈Φ(x),Φ(x′)〉 (2.9)

Based on this definition, the input data points evaluated by the kernel function

can be represented beyond the vectors and can be composed of complex structures.

This definition directly corresponds to the process of the construction of a ker-

nel function. In addition, some literature offer an alternative definition of kernel

function (Schölkopf and Smola, 2002).

Definition 2.2 [(Positive Semidefinite) Kernel (Schölkopf and Smola, 2002)]

The function K : X ×X → R is a kernel for any N data points x1, x2, . . . , xN ∈ X
if and only if

(1) K is symmetric, i.e.

K (xi, xj) = K (xj, xi) (2.10)

(2) the matrix, namely Gram Matrix, defined by Kij = K (xi, xj) is positive semidef-

inite, i.e.
N∑

i=1

N∑

j=1

cicjKij ≥ 0 (2.11)

for all c1, c2, . . . , cN ∈ R

13

It can be found that Definition 2.1 interprets kernels for individual paired data

points, while Definition 2.2 focuses on the characteristics demonstrated by a set

of data points, i.e. data points are paired to form a Gram Matrix. In fact, the

two definitions are equivalent to each other. When one serves as the definition, the

other can be considered as the necessary and sufficient condition for K to be a valid

kernel. To prove the equivalence of the two definitions, we will need

Lemma 2.1 [Cauchy-Schwarz Inequality] If K is a kernel based on Defini-

tion 2.2, for all x, x′ ∈ X , there exists

|K (x, x′)|2 ≤ K (x, x) ·K (x′, x′) (2.12)

Proof. See Schölkopf and Smola (2002).

Next we present the proof of the equivalence of the two definitions.

Theorem 2.2 [Equivalence of Kernel Definitions] Definition 2.1 and Defini-

tion 2.2 are equivalent.

Proof. Def. 1 ⇒ Def. 2

First, we prove that given that kernel is defined in Definition 2.1, the two

conditions presented in Definition 2.2 are satisfied.

Let Φ : X → H be a mapping function, such that for all xi ∈ X , Φ(xi) =

{Φm(x
i)}, where 1 ≤ m ≤ M . For any N data points x1, x2, . . . , xN ∈ X , kernel is

a function, K : X × X → R, i.e. K (xi, xj) = 〈Φ(xi),Φ(xj)〉. Def. 2.1 defines K as

a dot product, which is symmetric by definition. Alternatively, we have

K (xi, xj) = 〈Φ(xi),Φ(xj)〉

=
M∑

m=1

Φm(x
i)Φm(x

j)

=
M∑

m=1

Φm(x
j)Φm(x

i)

= 〈Φ(xj),Φ(xi)〉 = K (xj, xi)

14

which also shows that K is symmetric. In addition, for all c1, c2, . . . , cN ∈ R, there

exists

N∑

i=1

N∑

j=1

cicjK (xi, xj) =
N∑

i=1

N∑

j=1

cicj〈Φ(xi),Φ(xj)〉

= 〈
N∑

i=1

ciΦ(xi),
N∑

j=1

cjΦ(xj)〉

= 〈
N∑

i=1

ciΦ(xi),
N∑

i=1

ciΦ(xi)〉 ≥ 0

which proves that the Gram Matrix defined by Kij = K (xi, xj) is positive semidef-

inite. Hence, Definition 2.1 implies the properties defined in Definition 2.2.

Def .2 ⇒ Def .1

Second, we will prove provided that kernel is defined by Definition 2.2, the two

conditions presented in Definition 2.1 are satisfied. To achieve this,

• we first construct a mapping function, which maps the input data point into

a new space.

• we then need to define the dot product on the new space so that the dot

product between the projected images equals to the kernel of the input data

points.

Suppose K is a kernel which satisfies the conditions in Definition 2.2. We define a

map from X to a function space H = {f : X → R}, i.e.

Φ : X → H

x→ K (·, x)
(2.13)

where given an input point x, the map will return a function K (·, x). The first

argument of the kernel is the variable of the function.

15

Thus, the next step is to define a dot product 〈·, ·〉 in H by means of the two

conditions in Definition 2.1 and then to prove that

K (x, x′) = 〈Φ(x),Φ(x′)〉 (2.14)

However, instead of directly endowing a dot product in H, we first turn H into

a linear space H0, where

H0 =

{
f |f(·) =

n∑

i=1

αiK (·, xi), αi ∈ R, xi ∈ X , 1 ≤ i ≤ n

}
(2.15)

and then endow a dot product 〈·, ·〉 in H0. In Eq. 2.15, when we let αi = 1 and

n = 1, we will have f(·) = K (·, x1). Since x1, x2, . . . , xn ∈ X are arbitrary, all

functions in H are included in H0. In fact, the space H0 is comprised of all the

linear combinations of functions in H. Consequently, a well-defined dot product in

H0 is also valid for space H.

Next we define a dot product in the space H0. Given f, g ∈ H0, i.e. f(·) =
∑n

i=1 αiK (·, xi) and g(·) = ∑m

j=1 βjK (·, xj), where αi, βj ∈ R, xi, xj ∈ X for 1 ≤
i ≤ n and 1 ≤ j ≤ m, the dot product is defined as

〈f, g〉 =
n∑

i=1

m∑

j=1

αiβjK (xi, xj) (2.16a)

=
m∑

j=1

βjf(x
j) (2.16b)

=
n∑

i=1

αig(x
i) (2.16c)

Note that Eq. 2.16b suggests that the dot product does not depend on xi and αi,

while Eq. 2.16c suggests that it does not depend on xj and βj . As a result, the

defined dot product does not depend on the way of choosing the parameters and

base kernel functions. In other words, the defined dot product is a property of the

space H0 rather than a particular expansion of the functions f and g.

16

In addition, it can be proved that 〈·, ·〉 obtains the following properties.

〈f, g〉 = 〈g, f〉 for f, g ∈ H0 (2.17)

〈cf + g, h〉 = c〈f, h〉+ 〈g, h〉 for f, g, h ∈ H0 and c ∈ R (2.18)

〈f, f〉 =
N∑

i=1

N∑

j=1

αiαjK (xi, xj) ≥ 0 (2.19)

〈f, f〉 = 0 only if for all x ∈ X , f(x) = 0 (2.20)

From Eq. 2.16, it is seen to be proved that 〈·, ·〉 is symmetric (Eq. 2.17) and

bilinear (Eq. 2.18). In addition, Inequality 2.19 holds, since K is a positive definite

kernel.

Next, we prove the property 2.20.

Before proving this property, we show that 〈·, ·〉 is actually a valid kernel.

Since we define kernel based on Definition 2.2 and the symmetric property satisfies

as shown in Eq. 2.17. We need to prove the Gram Matrix defined for this kernel is

positive semidefinite. Therefore, given γ1, γ2, . . . , γn ∈ R and f1, f2, . . . , fN ∈ H0,

we have

N∑

i=1

N∑

j=1

γiγj〈fi, fj〉 = 〈
N∑

i=1

γifi,
N∑

j=1

γjfj〉 (2.21a)

= 〈
N∑

i=1

γifi,

N∑

i=1

γifi〉 (2.21b)

= 〈f, f〉 ≥ 0 (2.21c)

where Eq. 2.21a satisfies due to the bilinear property of 〈·, ·〉 (Property 2.18), while

Inequality 2.21c satisfies due to Property 2.19. As a result, 〈·, ·〉 is a valid kernel

based on Definition 2.2.

Based on Eq. 2.16, we have additional properties, namely reproducing proper-

17

ties,

〈f,K (·, x)〉 = f(x) (2.22a)

〈K (·, x),K (·, x′)〉 = K (x, x′) (2.22b)

Then, based on Property 2.22 and Lemma 2.1 which is applied under the just

proved condition that 〈·, ·〉 is a valid kernel, we have

|f(x)|2 = |〈f,K (·, x)〉|2 ≤ K (x, x) · 〈f, f〉 (2.23)

Therefore, 〈f, f〉 = 0 if and only if for all x ∈ X , f(x) = 0. Hence, Eq. 2.20

holds.

Given that 〈·, ·〉 obtains the properties of 2.17,2.18,2.19 and 2.20, we can claim

that 〈·, ·〉 is a well-defined dot product. In consequence, H0 is a well-defined dot

product space.

By far, we have achieved constructing a well-defined dot product space H0

and obtaining the reproducing property 2.22 of the kernel K . Nevertheless, the

original goal is to prove Eq. 2.14 in the space H. Thus, for all K (·, x),K (·, x′) ∈ H,

the condition H ⊆ H0 implies K (·, x),K (·, x′) ∈ H0. Based on the reproducing

properties,

〈Φ(x),Φ(x′)〉 = 〈K (·, x) ·K (·, x′)〉 = K (x, x′) (2.24)

Hence, we have proved that Definition 2.2 implies the properties defined in

Definition 2.1.

In all, the two kernel definitions are equivalent.

Proof ends.

Another theorem, namely Mercer’s theorem, correlates these two definitions

on the perspective of function analysis. This introduction does not go into details

of Mercer’s theorem. The elaboration of how Mercer’s theorem is used to define

kernels can be found in Schölkopf and Smola (2002) and Herbrich (2002).

18

Now that we have formally presented the definitions of kernel, we will present

some more properties of kernel, which may benefit the construction of novel ker-

nels in later chapters. To propose novel positive semidefinite kernel functions is

not straightforward. Alternatively, some properties of the kernel functions can be

employed to design new kernels.

Proposition 2.3 Given that K1,K2 : X × X → R and K3 : Y × Y → R are valid

kernels, for all x, x′ ∈ X and y, y′ ∈ Y, the following satisfies:

1.K (x, x′) = K1(x, x
′) +K2(x, x

′) is a valid kernel. (2.25)

2.K (x, x′) = K1(x, x
′)K2(x, x

′) is a valid kernel. (2.26)

3.K1

⊕
K2 ((x, y), (x

′, y′)) = K1(x, x
′) +K2(y, y

′) is a valid kernel defined on

(X × Y)× (X × Y) → R. (2.27)

4.K1

⊗
K2 ((x, y), (x

′, y′)) = K1(x, x
′)K2(y, y

′) is a valid kernel defined on

(X × Y)× (X × Y) → R. (2.28)

(Proof.) See Shawe-Taylor and Cristianini (2004) for details.

The properties introduced by Proposition 2.3 are able to facilitate the con-

struction of novel kernels based on the predefined valid kernels. These operations

may preserve the original characteristics of the predefined kernels and endow the

new kernels with more sense.

2.2 Support Vector Machines

Support Vector Machines (SVM) are well known kernel based learning machines

(Vapnik, 1998). The key idea of SVM is to find a hyperplane as the decision bound-

ary so that the margin of separation between the positive instances and the negative

ones is maximized. The data points with the minimal distance to this hyperplane

are called support vectors, with each data point to be represented as a vector from

19

x-

x+ g(x)=0

g(x)=-1

g(x)=1

Figure 2.1: Linearly separable
Empty dots refer to positive instances.
Solid dots refer to negative instances.

the origin to this point. Hence, to find the hyperplane can be considered as the

problem of finding the support vectors for both positive and negative instances.

Vapnik (1998) recognized SVM as an instantiation of the Structural Risk Mini-

mization theory. This theory attributes the classification error on testing data to

be bounded by two factors. One is the sum of the training error and the other is

complexity of the model, namely Vapnik-Chervonenkis dimensions. In this section,

we will give a brief introduction of SVM and see how SVM is related to kernels.

We start this section with the simple case that the positive and negative instances

are linearly separable.

Linearly separable

Given n training samples {(~x1, y1), (~x2, y2), . . . , (~xn, yn)}, where ~xi ∈ R
N is the

feature vector of the i-th input data point and yi ∈ {+1,−1} is the correspond-

ing prediction. It is assumed that the subset of {~xi, yi = +1} and the subset of

{~xi, yi = −1} are linearly separable. As shown in Fig. 2.1, it is possible to con-

struct a separating hyperplane so that all the positive instances are on the one

side while all the negative ones are on the other side. In consequence, there exist

20

~w ∈ R
N and c ∈ R satisfying

~wT~xi + c ≥ 0 for yi = +1

~wT~xi + c < 0 for yi = −1
(2.29)

Then, the hyperplane to separate the positive and negative instances is

~wT~xi + c = 0 (2.30)

Note that (~w, c) can be rescaled. For the convenience of solving SVMs, we can

define the functional margin of the data set to 1. Therefore, by defining g(~x) =

~wT~xi + c, the data point (~xi, yi) satisfy

yig(~xi) = yi(~w
T~xi + c) ≥ 1 (2.31)

As shown in Fig. 2.1, the positive and negative data points are separated by

the margin between g(~x) = 1 and g(~x) = −1. This margin can be evaluated by

summing up the distance between the hyperplane of g(~x) = 0 and g(~x) = 1 as well

as the distance between g(~x) = 0 and g(~x) = −1:

ρ =
|g(~x+)|
‖~w‖ +

|g(~x−)|
‖~w‖ (2.32)

where g(~x+) = 1 and g(~x−) = −1. Hence,

ρ =
1

‖~w‖ +
1

‖~w‖ =
2

‖~w‖ (2.33)

To maximize the margin is equivalent to minimize the Euclidean norm ‖~w‖.
As a result, the problem of finding the optimal hyperplane is transformed to an op-

timization problem with convex quadratic objective function and linear constraints.

min
~w,c

1

2
~wT ~w

s.t. yi(~w
T~xi + c) ≥ 1 i = 1, 2, . . . , n

(2.34)

21

This problem can be solved by introducing n Lagrange multipliers αi ≥ 0,

where 1 ≤ i ≤ n. The corresponding Lagrange function is

L(~w, c, ~α) =
1

2
~wT ~w −

n∑

i=1

αi(yi(~w
T~xi + c)− 1) (2.35)

where ~α = (α1, α2, . . . , αn)
T . By differentiating L(~w, c, ~α) with respect to ~w and c

and assigning the results to zero, it yields

~w =
∑n

i=1 αiyi~xi (2.36)

0 =
∑n

i=1 αiyi (2.37)

By applying the above Equations back to the Lagrange function Eq. 2.35, the

dual problem of the original primal problem Eq. 2.34 can be formulated as

max L̃(~α) =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj~x
T
i ~xj

s.t.
n∑

i=1

αiyi = 0

αi ≥ 0

(2.38)

The dual problem 2.38 is a standard quadratic optimization problem subjected

to linear constraints and can be solved with certain standard quadratic program-

ming libraries, which we do not present in detail. Having determined the optimal

~α, the (~w, c) for the corresponding optimal hyperplane are

~w =
∑n

i=1 αiyi~xi (2.39)

c = 1− ~wT~x+ (2.40)

The prediction for an unseen data point ~x is determined by

f(~x) = sign(
n∑

i=1

αiyi~x
T
i ~x+ c) (2.41)

Note that for both formula 2.38 and function 2.41, dot product is evaluated.

In the training process, dot product is evaluated between each pair of training

22

Figure 2.2: Linearly nonseparable

instances in formula 2.38. While testing, dot product is evaluated between the

unseen data point and the training instances in function 2.41. From this perspective,

kernel methods can be integrated with SVM by replacing the dot product between

data points with the kernel function

max L̃(~α) =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjK (~xi, ~xj) (2.42)

f(~x) = sign(
n∑

i=1

αiyiK (~xi, ~x) + c) (2.43)

where formula 2.38 is rewritten as formula 2.42 and function 2.41 is rewritten as

function 2.43.

Linearly nonseparable

By far, we are able to find the optimal hyperplane for the linearly separable

data. However, in real application, the training data is quite likely to be linearly

nonseparable and it is hard to find a hyperplane to perfectly separate the data in

such case. For some cases, even if there is a hyperplane to separate the data, the

maximized geometric margin is so small that the model may not generalize well

to the unseen data points. In these cases, it is necessary to enlarge the margin to

certain extent to make the model tolerant of some classification errors. As shown

in Fig. 2.2, some data points are allowed to violate the constraint. This can be

23

achieved by introducing the slack variables ξi for 1 ≤ i ≤ n

min
~w,c,ξi

1

2
~wT ~w + C

n∑

i=1

ξi

s.t. yi(~w
T~xi + c) ≥ 1− ξi i = 1, 2, . . . , n

ξi ≥ 0 i = 1, 2, . . . , n

(2.44)

where ξi is used to penalize the nonseparable data points. C is the regularization

parameter, which is used to balance the training error and the complexity of the

model. As C grows larger, the training error rate will decrease. This may lead to

a worse generalization to the unseen data. On the contrary, as C grows smaller,

the nonseparable data points are less penalized. It may render the model better

generalized to the unseen testing data, but less fit to the training data. Therefore,

in real application, C should be appropriately selected.

The dual problem of the nonlinear separable case can be formalized as follows:

max L̃(~α) =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj~x
T
i ~xj

s.t.
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C

(2.45)

By using the similar approaches to the linearly separable case, the dual problem

in Eq. 2.45 can be solved.

2.3 Preliminary Concepts on Tree Structures

In this section, we will present some basic definitions on parse tree structures. These

structures will be adopted throughout the later chapters.

Rooted Labeled Ordered Trees A rooted labeled ordered tree T is a

directed acyclic graph, with V as the set of nodes, E = {(x, y)|x, y ∈ V } as the

24

set of edges. There is a distinguished node r ∈ V designated as root that has no

entering edges. Every other node has exactly one entering edge. For all x ∈ V ,

there is a unique path from r to x. There is a mapping function Φ : V → Σ to

assign every node a label, where Σ = {σ1, σ2, . . . } is a set of labels. The sibling

nodes of the same parent node are ordered, i.e., if a node has p children, we can

identify them as 1st child, 2nd child, . . ., p-th child.

The syntactic parse tree is an instantiation of rooted labeled ordered trees.

Hereafter, we are dealing with rooted labeled ordered tree, which we may refer as

“tree” for short.

Additionally, for a subtree t with its root node n embedded in T , let l be the

number of leaf nodes of T . By indexing the leaf node from 0, the span covered by

the root node of T is [0, l − 1]. Furthermore, let δ = [tb, te] be the span covered by

t, with tb denoting the span index of the leftmost leaf node of t and te denoting the

span index of the rightmost leaf node of t. In addition, we relate the root node n

to δ by denoting nb = tb and ne = te. Thus, the span covered by n can be written

as δ = [nb, ne] as well.

In Fig. 2.3, we give an example of the rooted labeled ordered tree with some

structures highlighted. To simplify the illustration, we avoid unimportant nodes

and edges in the given tree. The dotted line denotes the path from the node at one

end of the line to the node at the other end of the line, where the corresponding

nodes and edges on the line are not shown in the figure.

Overlap/Non-Overlap conditions A pair of nodes n and n′ is called non-

overlap if and only if

a. nb 6= n′
b;

b. ne 6= n′
e;

c. if nb < n′
b then ne < n′

b, while n and n′ are interchangeable in this condition.

25

0 nb ne n'b n'e l-1

n n't1

t3

t2

Figure 2.3: Tree Structure Illustration

In addition, a pair of subtrees is called non-overlap if and only if the root

nodes of the subtrees are non-overlapped. For both node pair and subtree pair, if

any one of the above conditions does not hold, we call the pair to be overlapped.

As shown in Fig. 2.3, the nodes n and n′ are non-overlapped. Correspondingly, the

two subtrees t1, t2 highlighted with dashed squares are non-overlapped as well.

Anchored Subtree Structure An anchored subtree structure is a subtree

embedded in a rooted labeled ordered tree. An anchored subtree structure can be

manually defined by heuristics according to corresponding tasks. Given a rooted

labeled ordered tree, multiple anchored subtrees can be defined in this tree. How-

ever, we restrict the anchored subtrees embedded in a rooted labeled ordered tree

to be mutually non-overlapped. As shown in Fig. 2.3, the subtrees t1, t2 can be

identified as two anchored subtrees in T .

Subtree Sequence Structure A subtree sequence structure is a sequence

of non-overlapped subtrees in a rooted labeled ordered tree. A subtree sequence is

called contiguous, i.e. for all adjacent subtrees t, t′ in the sequence, tb = t′e + 1 or

t′b = te + 1, or is called noncontiguous, i.e. otherwise.

As shown in Fig. 2.3, we can identify {t1, t2} as a contiguous subtree sequence;

{t1, t3} as a noncontiguous subtree sequence; {t2, t3} as a noncontiguous subtree

26

sequence. The above three subtree sequences all consist of two subtrees.1 In addi-

tion, {t1, t2, t3} can be identified as a noncontiguous subtree sequence. Furthermore,

{t1}, {t2} and {t3} can be identified as contiguous subtree sequences respectively,

although each of the sequences only consists of one subtree. Hereafter, we may

refer “subtree sequence” to “tree sequence” for simplification.

2.4 Summary

In this chapter, some preliminary knowledge of this thesis is introduced. Specially,

positive semidefinite kernels are defined by two prevalent definitions. We present

that the two widely used definitions are actually equivalent. Hence, when a kernel

is constructed by one definition, the conditions in the other definitions can be

used as properties for the kernel. In addition, Support Vector Machines (SVM)

are introduced as well. SVM is a kernel machine, in which the proposed kernels in

Chapter 4 will be integrated. We also include some definitions for special structures

on the rooted labeled ordered trees, since these structures will recur throughout the

whole thesis.

1When we mention the subtree in a subtree sequence, we refer to the subtree structure which

is not a part of other subtrees in the given tree sequence, i.e. not connected to any other nodes in

the tree sequence. This note is used to distinguish the fact that small subtrees can be extracted

from large subtrees by ignoring certain edges and nodes.

27

Chapter 3

Kernels on Discrete Structures

In the last chapter, we have introduced some basis of kernel methods. Specially,

we have explained that kernels are able to conveniently employ the input data with

complex structures without explicit feature engineering to construct the vectorial

representation. The complex input structures in NLP can be sequences, trees and

graphs. In this chapter, we introduce some representative works which apply kernel

methods in these complex structures. On this perspective, feature vectors of the

input data are composed of the weights of these discrete elementary structures. By

applying kernel methods in these complex input structures, rich structure features

can be well captured. These features have been verified to be effective in various

applications in the literature of NLP, Bioinformatics and Web Mining.

This chapter mainly serves as a literature review. In Section 3.1, some repre-

sentative work are elaborated. Specifically, we review convolution kernels proposed

by Haussler (1999) in Section 3.1.1. Convolution kernel can be considered as the

fundamental theory for a variety of kernels on discrete structures. In Section 3.1.2,

we discuss a more general form of convolution kernel, namely mapping kernel (Shin

and Kuboyama, 2008). After that, we review two representative kernels on discrete

structures, i.e. sequence kernel (Section 3.1.3) and Collins and Duffy’s tree kernel

28

(Section 3.1.4) respectively. In the second part of this chapter, more related works

that apply kernels in NLP applications are reviewed.

3.1 Representative Kernels

Basically, in this section we will review Haussler’s convolution kernel as well as

its applications. Haussler (1999) presented a convenient paradigm to construct

novel kernels based on the predetermined kernels on the substructures. This can

save the effort of constructing kernels from scratch, which requires to prove the

positive semidefinite property of the new kernels. Later, Shin and Kuboyama (2008)

proposed another paradigm to construct new kernels, namely mapping kernel, which

can be considered as the generalization of convolution kernels. Mapping kernel can

be used to construct additional novel kernels by applying certain constraints on the

substructure space inherited from the corresponding convolution kernel through

a mapping system. Shin and Kuboyama (2008) also provided a necessary and

sufficient condition to equip mapping kernel with the positive semidefinite property.

In real applications, convolution kernel can be applied in various structures,

such as sequences, trees and graphs. If a symmetric function evaluated on such

discrete structures is constructed by the paradigms of convolution kernel or map-

ping kernel, the function is guaranteed to be a valid positive semidefinite kernel.

Alternatively, the validity of a positive semidefinite kernel can be proved by using

Definition 2.1 as a necessary and sufficient condition. By using this property, it is

necessary to construct a mapping function to project the input data to a feature

vector that is composed of the concerned substructures in the dot product space.

If such a map is found, the function is a valid kernel as well.

In addition to the paradigms to construct valid kernels, we also elaborate two

representative kernels that will facilitate the understanding of Chapter 4.

29

3.1.1 Haussler’s Convolution Kernel

As previously stated, to verify the positive semidefinite property for a kernel func-

tion is not straightforward in certain cases. Therefore, it may be difficult to build

up a kernel from scratch due to this requirement. Haussler (1999) proposed a gen-

eral framework to construct new positive semidefinite kernels on discrete structures.

The key idea of this approach is to employ the already verified positive semidefinite

kernels defined on the feature space of which elements share certain relationship

with the original structures of the input data. First, it is required to decompose an

original input structure into substructures based on the given relationship. Second,

the predefined valid kernels are evaluated on the corresponding substructure space

respectively. Finally, kernels defined on the original input structure can be eval-

uated in a convolution manner by summing up the underlying predefined kernels

over all the different decompositions.

Definition 3.1 [Convolution Kernel] Let x, x′ ∈ X be the structure of the input

data. Let X1,X2, . . . ,XD be the nonempty separable metric spaces. For an input

structure x, let ~x = (x1, x2, . . . , xD) be “parts” of x, where xd ∈ Xd for 1 ≤ d ≤ D.

Let kd : Xd ×Xd → R be a valid underlying kernel for the d-th metric space. Given

a relation R ⊆ (X1 ×X2 × · · · ×XD)×X and the set S = {x : ∃ ~x, (~x, x) ∈ R}, the
function K ′ : S × S → R defined in Eq. 3.1 is a valid kernel.

K ′(x, x′) =
∑

(~x,x)∈R

∑

(~x′,x′)∈R

D∏

d=1

kd(xd, x
′
d) (3.1)

The validity of this kernel is proved in Theorem 1 in Haussler (1999). K ′ can

be further extended from the set S to the entire input structure space X . Since

S ⊆ X , the extension of kernel K ′ can be achieved by defining the kernel to be

0 if x /∈ S or x′ /∈ S. It is easy to verify that the extended kernel is also a valid

positive semidefinite kernel. As a result, we can obtain the convolution kernel

30

K : X × X → R based on this extension:

K (x, x′) =
∑

x∈S
(~x,x)∈R

∑

x′∈S
(~x′,x′)∈R

D∏

d=1

kd(xd, xd
′) (3.2)

To construct a kernel by the convolution paradigm, it requires to appropriately

define a relation R by setting up a scheme that how an input structure can be

decomposed. In addition, we also need to employ the underlying valid kernels

kd : Xd×Xd → R for each of the metric space. Based on the definition of relation R

and the underlying kernels kd for 1 ≤ d ≤ D, we may design various kernels without

being bothered by the proof of the positive semidefinite property. Some examples

of relation R are provided in Section 2.2 of Haussler (1999). Additionally, we will

give an illustration on how sequence kernel (Section 3.1.3) and Collins and Duffy’s

tree kernel (Section 3.1.4) can be constructed based on this convolution paradigm

later in this chapter.

3.1.2 Mapping Kernel

From Eq. 3.2, we can observe that the convolution kernel paradigm constructs

novel kernels by traversing the entire cross product of the possible decompositions

of the original structures. It is possible that some decompositions yield ineffective

substructures for the concerned task. Therefore, discarding these substructures may

facilitate other effective substructures to play a more important role in the model.

Consequently, Shin and Kuboyama (2008) proposed mapping kernel by restricting

the explored space to be a subset of the cross product of the entire substructure

space.

31

Definition 3.2 [Mapping Kernel] Let x, x′ ∈ X be the input data. Let k :

X × X → R be a valid kernel. Then Eq. 3.3 is a valid positive semidefinite kernel

K (x, x′) =
∑

(u,u′)∈Mx,x′

k(u, u′) (3.3)

when the following two conditions satisfy

(1) M is a finite and symmetric set, which is defined by a mapping system M

M = (X , {Ux|x ∈ X}, {Mx,x′ ⊆ Ux × Ux′ |(x, x′) ∈ X × X}) (3.4)

(2) M is transitive, such that for all x1, x2, x3 ∈ X

(u1, u2) ∈ Mx1,x2 ∧ (u2, u3) ∈ Mx2,x3 ⇒ (u1, u3) ∈ Mx1,x3 (3.5)

Specifically, the second component of the triplet M, i.e. Ux, is the substructure

space of the input data, while the third component can be considered as the model

related feature space which is the subset of cross product of the entire substructure

space. Given the mapping system in Eq. 3.4, the property of M to be transitive is

the necessary and sufficient condition for Eq. 3.3 to be a valid kernel.

Mapping kernel is a generalization of convolution kernel, since the former turns

out to be the latter if Mx,x′ = Ux × Ux′ satisfies. In addition, mapping kernel

provides a more flexible and convenient paradigm to construct novel kernels. We

will demonstrate the advantage of mapping kernel by comparing mapping kernel

and convolution kernel with some examples.

Given x, x′ ∈ R
N , where x can be written with a vector ~x = (x1, x2, . . . , xN)

T ,

we define two symmetric functions k1, k2 : (R × N) × (R × N) → {0, 1} and prove

k1 and k2 are both kernels.

k1
(
(xi, i), (x

′
j , j)

)
=




1 if xi = x′j and i = j

0 otherwise

(3.6)

32

k2
(
(xi, i), (x

′
j, j)

)
=




1 if xi = x′j

0 otherwise

(3.7)

Proposition 3.1 k1 and k2 are positive semidefinite kernels.

Proof. We first prove k2 is a valid kernel.

Given that k2 : (R×N)× (R×N) → {0, 1} is a symmetric function, we define

a map Φ : (R× N) → {0, 1}∞ such that for all (xi, i) ∈ R× N

Φ(xi, i) = (Φ1((xi, i)),Φ2((xi, i)), . . .)
T

where Φm((xi, i)) =




1 if xi = m

0 otherwise

(3.8)

Based on this map, k2 can be rewritten as

k2
(
(xi, i), (x

′
j , j)

)
= 〈Φ(xi, i),Φ(x′j , j)〉

=
∞∑

m=1

Φm(xi, i)Φm(x
′
j, j)

=




1 if xi = x′j

0 otherwise

(3.9)

Hence, we have proved that k2 is a valid kernel by Definition 2.1.

To prove k1 is a valid kernel, we need another underlying kernel k3 : R× R →
{0, 1}, such that given y, y′ ∈ R

k3(y, y
′) =




1 if y = y′

0 otherwise

(3.10)

which can be easily proved to be a valid kernel using the same method as k2. Then,

based on Property 2.28 in Proposition 2.3, k1 can be rewritten as the tensor product

33

of two valid kernels

k1
(
(xi, i), (x

′
j , j)

)
= k3(xi, x

′
j)k3(i, j)

=




1 if xi = x′j and i = j

0 otherwise

(3.11)

Therefore, we have proved k2 is a valid kernel as well.

Proof ends.

By means of the underlying kernels k1 and k2, we can construct a novel kernel

to compute the similarity of the vectorial representation of x and x′. This kernel

compares each pair of component xi, x
′
i for all 0 ≤ i ≤ N and returns 1 if xi =

x′i, while 0 otherwise. Then the kernel value is just the sum of all the pairwise

component similarity scores.

To construct this kernel based on the convolution kernel paradigm, we first

define a relation R = ((xi, i), x) for all x ∈ R
N and 1 ≤ i ≤ N . Hence, K1 :

R
N × R

N → R is a kernel such that

K1(x, x
′) =

∑

((xi,i),x)∈R

∑

((x′
j ,j),x

′)∈R

k1((xi, i), (x
′
j , j))

=
N∑

i=1

N∑

j=1

k1((xi, i), (x
′
j , j))

(3.12)

Alternatively, based on the mapping kernel paradigm, the same kernel can be

written as Eq. 3.13 using k2 as the underlying kernel

K2(x, x
′) =

N∑

i=1
i=j

k2((xi, i), (x
′
j , j)) (3.13)

From Eq. 3.12, we can observe that K1 sums up the entire cross product R×R
based on the underlying kernel k1. By contrast, Eq. 3.13 restricts the set of elements

summed up by the constraint i = j based on the underlying kernel k2. By applying

34

the relation R defined in Eq. 3.12 together with the constraint i = j, K2 corresponds

to the convolution kernel paradigm in such a manner that

K2(x, x
′) =

∑

((xi,i),x)∈R

∑

((x′
j ,j),x

′)∈R

i=j

k2((xi, i), (x
′
j , j)) (3.14)

It is clear to see from Eq. 3.14 that K2 only considers a subset structures of

the entire cross product space covered by convolution kernel. This is also the key

advantages of the mapping kernel paradigm over the convolution kernel paradigm.

When constructing a novel kernel with such constraints, mapping kernel is able to

leave the constraint to be incurred outside the underlying kernel at the summation

phase. On the contrary, the convolution kernel paradigm has to integrate the

constraint in the underlying kernels. This may lead to more complex underlying

kernels, whose positive semidefinite property is difficult to be verified.

In addition, some constraints can only be dealt with outside the underlying

kernels so that the proposed kernels cannot be constructed using the convolution

paradigm. Consider the following example constructed under the mapping kernel

paradigm,

K ′
2(x, x

′) =
N∑

i=1
i≤j

k2((xi, i), (x
′
j , j)) (3.15)

By the transitive condition 3.5 in Definition 3.2, it is easy to prove Eq. 3.15 is a

valid kernel, since the operator ≤ is transitive. However, when attempting to con-

struct this kernel under the convolution kernel paradigm, it is not straightforward

to integrate the constraint into any underlying kernel. In fact, it seems infeasible

to find a mapping function that can obtain a projected image for x without consid-

ering x′ under this constraint. Instead, the mapping kernel paradigm applies the

constraint outside the underlying kernel so that the proposed kernels with complex

constraints can be easily constructed.

35

In conclusion, mapping kernel is advantageous over convolution kernel in its

flexibility to handle the constraints. Generally, convolution kernel can be considered

as a special case of mapping kernel. In case no constraint is applied so that mapping

kernel needs to go over the entire cross product of substructures, mapping kernel

turns out to be equivalent to convolution kernel.

3.1.3 Sequence Kernel

Sequence kernel applied in document classification explores the feature space with

respect to bag of characters (Lodhi et al., 2002) and bag of words (Cancedda et

al. 2003). Given two sequences s and s′, sequence kernel match all identical subse-

quences shared by s and s′. The kernel function is then evaluated by the number

of matched subsequences (both contiguous and non-contiguous).

Let Σ be a finite symbol set. Let s = s0s1 · · · s|s|−1 be a sequence with each

item si to be a symbol, i.e. si ∈ Σ, 0 ≤ i ≤ |s| − 1. Let i = [i1, i2, . . . , im], where

0 ≤ i1 < i2 < · · · < im ≤ |s| − 1, be a subset of indices in s. Let s[i] ∈ Σm refer to

the subsequence of si1si2 · · · sim .

Given the m-length subsequence space Sm =
{
u1, . . . , ui, . . . , u|S|

}
, where ui ∈

Σm for all 1 ≤ i ≤ |S|, it requires to construct a feature vector for the given

sequence s, using the integer counts of the corresponding m-length subsequences.

Hence, the m-length subsequence vector of s can be expressed as follows:

Φm(s) =
(
#(u1), . . . ,#(ui), . . . ,#(u|S|)

)T
(3.16)

where #(ui) is the number of occurrences of the subsequence type ui.

In addition, for a subsequence u and a subset of indices i for a given sequence

s, let I(u, i) refers to the indicator function which equals to 1 if and only if u = s[i]

and 0 otherwise. Then for a certain subsequence length of m, the kernel function

36

is defined in Eq. 3.17.

K̃m(s, s
′) = 〈Φm(s),Φm(s

′)〉 (3.17a)

=
∑

u∈Σm

u′∈Σm

u=u′


 ∑

i:u=s[i]

I(u, i) ·
∑

j:u′=s′[j]

I(u′, j)


 (3.17b)

=
∑

i:u=s[i]

∑

j:u′=s′[j]

∑

u∈Σm

u′∈Σm

u=u′

(I(u, i) · I(u′, j)) (3.17c)

From Eq. 3.17c, we can detect that
∑

u∈Σm

u′∈Σm

u=u′

(I(u, i) · I(u′, j)) is a valid under-

lying kernel, since it is actually a dot product of vectors defined in Eq. 3.16. As a

result, K̃m(s, s
′) can be considered as an instantiation of convolution kernel.

The standard sequence kernel (Lodhi et al., 2002; Cancedda et al., 2003) in-

troduces a weighting function to weight the subsequence structures as follows:

K̃m(s, s
′) =

∑

u∈Σm

u′∈Σm

u=u′


 ∑

i:u=s[i]

p(u, i) ·
∑

j:u′=s′[j]

p(u′, j)


 (3.18)

where p(u, i) and p(u′, j) are the respective weights contributed to the kernel value

when u and u′ are matched.

Specially, Lodhi et al. (2002) and Cancedda et al. (2003) employ a weighting

function which penalizes both the number of matching symbols and the length of

gaps using the same decay factor ρ ∈ [0, 1]. In other words, the penalty covers the

whole span of a given subsequence from the very beginning symbol to the ending

symbol.

p(u, i) = ρ(im−i1+1)

p(u′, j) = ρ(jm−j1+1)
(3.19)

37

3.1.4 Collins and Duffy’s Tree Kernel

Collins and Duffy’s Tree kernel (Collins and Duffy, 2002) is a special instantiation

of convolution kernel for discrete structures (Haussler, 1999). Given a parse tree,

the syntactic features are defined as all types of subtrees and each feature value is

the number of the occurrences of the corresponding subtree. As shown in Fig 3.1,

the feature space of the parse tree structure over “last year ’s” is a set of 11 subtree

types with each type of subtree appeared once.

NN POSJJ

last 'syear

NP

NN POSJJ

last 's

NP

NN POSJJ

'syear

NP

NN POSJJ

last 'syear

NP

NN POSJJ

last year

NP

NN POSJJ

's

NP

NN POSJJ

year

NP

NN POSJJ

last

NP

NN POSJJ

NP

NN

POS

JJ

last

's

year

Figure 3.1: Collins and Duffy’s Tree Kernel feature space.

Traditional feature based methods explicitly represent the features with a fea-

ture vector. Given the substructure space T =
{
t1, . . . , ti, . . . , t|T |

}
, feature based

methods construct a feature vector for the given parse tree T , using the integer

counts of the corresponding subtrees. Hence, T can be expressed as follows:

Φ(T) =
(
#(t1), . . . ,#(ti), . . . ,#(t|T |)

)T
(3.20)

where #(ti) is the number of occurrences of the subtree type ti.

However, it may be computationally infeasible to explicitly construct such a

feature vector, since the number of subtree types is exponential with the tree size.

Alternatively, convolution tree kernel computes the number of common subtrees

between two parse trees by implicitly evaluating the dot product in the high di-

mensional feature space without explicitly enumerating the features.

38

The kernel function is evaluated in Eq. 3.21. T and T ′ refer to the parse tree

pair to be evaluated. NT and NT ′ refer to the node sets of T and T ′ respectively.

Ii(n) refers to an indicator function which equals to 1 if and only if the sub-structure

ti is rooted at the node n and 0 otherwise. Λ(n, n′) =
∑|T |

i=1 (Ii(n) · Ii(n′)) is the

total number of identical subtrees rooted at n and n′.

Kt(T, T
′) = 〈Φ(T),Φ(T ′)〉 (3.21a)

=

|T |∑

i=1


∑

n∈NT

Ii(n) ·
∑

n′∈NT ′

Ii(n
′)


 (3.21b)

=
∑

n∈NT

∑

n′∈N ′
T

|T |∑

i=1

(Ii(n) · Ii(n′)) (3.21c)

=
∑

n∈NT

∑

n′∈N ′
T

Λ(n, n′) (3.21d)

From Eq. 3.21d, we can observe that Kt(T, T
′) is constructed by the convolution

kernel paradigm since Λ(n, n′) is a valid underlying kernel. For Λ(n, n′) to be a valid

kernel, it can be directly shown to be the dot product of vectors defined in Eq. 3.20

as presented in 3.21c.

Then convolution tree kernel follows the dynamic programming scheme to cal-

culate Λ(n, n′) as follows:

Algorithm. Evaluation of Λ(n, n′) function

• if the production rule at n and n′ are different,

Λ(n, n′) = 0, (3.22a)

• else if both n and n′ are pre-terminal nodes

Λ(n, n′) = λ, (3.22b)

39

• else

Λ(n, n′) = λ

nc(n)∏

j=1

(1 + Λ(c(n, j), c(n′, j))), (3.22c)

where nc(n) is the number of child nodes of n; c(n, j) is the j-th child of n; λ is

the decay factor for the depth of the subtree, which penalizes the large structures

with respect to the size of the subtree. By implementing the kernel using the above

algorithm, the evaluation of convolution tree kernel requires a simultaneous post-

order traverse of T and T ′, which can be simulated by incrementally filling in an

|NT | · |NT ′ | matrix. Therefore, the computational complexity of convolution tree

kernel is O(|NT | · |NT ′ |).

3.2 Previous Work

Kernels over tree structures have been widely exploited and been verified to improve

the performance in various NLP applications.

For phrase based trees, efforts are endeavored to deeply explore the syntactic

features and extend the feature space beyond the subtree representation exploited

by Collins and Duffy’s tree kernel. One of the pioneer work in the parse tree

domain is Partial Tree Kernel (PTK) (Moschitti, 2006). PTK allows partial pro-

duction rule matching within a syntactic structure, which can extensively enlarge

the feature space. An example is given in Fig. 3.2 to illustrate the partially matched

tree structures. Nevertheless, the idea of partial rule matching is to ignore some

child nodes and not rely on the original production rules as a hard constraint. Ex-

perimental results suggest that PTK may compromise the performance compared

with Collins and Duffy’s tree kernel for the task of question classification in phrase

parse tree. In addition, their experimental results also reveal that PTK can be

more effective on dependency structures.

To overcome the non-grammatical issue in PTK, Zhang et al. (2008a) proposed

40

NN POSJJ

last 'syear

NP

JJ NN

yearlast

NP

NN POS

'syear

NP

JJ POS

'slast

NP

JJ

last

NP

NN

year

NP

POS

's

NP

JJ NN

year

NP

NN POS

's

NP

JJ POS

's

NP

JJ

NP

NN

NP

POS

NP

JJ NN

last

NP

NN POS

year

NP

JJ POS

last

NP

JJ

last

NN

year

POS

's

Figure 3.2: Illustration of feature space of Partial Tree Kernel (PTK)

grammar driven tree kernel to explore a larger substructure space by modifying the

original subtree structure and generalizing certain grammar tags. Unlike PTK,

which still requires exact rule matching, this kernel allows fuzzy matching between

grammatically similar rules. However, the modification of the tree structure is based

on certain grammar rules. This may require human effort to analyze and select the

beneficial set of grammatical representations and may make the method difficult to

extend to other languages and grammars. Zhang, Zhang, and Li (2010) proposed

Forest Kernel to address the parsing error problem, which explores a larger feature

space from the perspective of capturing more accurate tree structures. Since most

tree kernels explore the substructure on the single 1-best parse tree generated by the

automatic parser, the parsing errors and data sparseness may largely compromise

the performance of the kernels. Therefore, introducing more parse tree candidates

may alleviate those problems. By exploring the substructures on the packed forest,

which is a compact representation to encode exponentially large number of trees

using a hypergraph, substructures embedded in the n-best parse trees can be ef-

ficiently mined and weighted. The effectiveness of these additional substructures

from the non-1-best parse tree is verified by relation extraction and semantic role

41

labeling.

For kernels on dependency structures, Zelenko, Aone, and Richardella (2003)

proposed a recursively matching kernel on shallow parse trees for relation extrac-

tion. The kernel recursively conducts the structure matching layer by layer in a

top down manner. For each node, it matches the subsequences of its child nodes,

either contiguous or non-contiguous. Culotta and Sorensen (2004) further applied

this kernel on the augmented dependency parse trees. More semantic and syntac-

tic information is integrated into each node of the dependency tree other than the

words. As a result, this kernel not only matches the subsequence of the child nodes

for a given node pair, it also matches the feature vectors embedded in the node

pair and computes a soft matching score for them. Unlike Collins and Duffy’s tree

kernel and PTK, which equally consider the substructures in a parse tree, the pre-

vious two kernels would rather require the hierarchical structures of the parse trees

to be consistent, since the matchable nodes are required to be in the same layer.

Bunescu and Mooney (2005) proposed another dependency tree kernel to count the

number of common word classes at each position in the shortest paths between two

entities. It is required that the length of the matched paths should be the same.

Otherwise the two paths are considered as unmatchable. These two dependency

kernels are further modified by Reichartz, Korte, and Paass (2009), who extended

the first dependency kernel (Culotta and Sorensen, 2004) by allowing the match-

ing of every combination of nodes in the given tree pair and extended the second

one (Bunescu and Mooney, 2005) by allowing all possible subsequences of nodes

along the shortest paths to be matched. The relaxation of the hard constraints

of the previous kernels benefits the task of relation extraction, especially improves

the recall. Similar with Bunescu and Mooney (2005), Kate (2008) proposed kernels

to evaluate the common dependency paths. However, unlike the former work to

evaluate the common paths between a pair of predefined nodes (entities), the latter

42

work finds all the common paths between two parse trees. This extension makes

the common paths based dependency kernels more attractive for tasks other then

relation extraction.

For other tree structures, Shen, Sarkar, and Joshi (2003) applied kernel meth-

ods on LTAG based tree structure for parse tree reranking. The kernel requires

to obtain a LTAG derivation tree for each parse tree before evaluating the kernel.

Kashima and Koyanagi (2002) presented kernels on labeled ordered trees and em-

bedding trees. The labeled ordered tree kernel allows the mutation of the child

nodes given a root node. In addition, embedding trees across multiple layers are

also matched. The proposed kernel well facilitates HTML document analysis. How-

ever, similar with PTK, the labeled order tree kernel is not grammar driven. Thus,

when applied in NLP applications, it may over-generate the non-grammatical sub-

structures.

The above discussions suggest that effective tree kernels are often proposed by

extending the feature space of previous kernels with mineaningful substructures.

For example, PTK (Moschitti, 2006) is developed based on Collins and Duffy’s

tree kernel by allowing non-grammatical rule matching. Grammar driven tree ker-

nel (Zhang et al., 2008a) extending Collins and Duffy’s tree kernel by allowing

fuzzing matching of grammatical rules. The dependency paths kernel is extended

from the paths between entity pairs (Bunescu and Mooney, 2005) to all the paths

on the parse trees (Kate, 2008) and from contiguous paths (Bunescu and Mooney,

2005) to the non-contiguous node sequences along the path (Reichartz, Korte, and

Paass, 2009). Based on the above observation, this thesis attempts to extend the

general subtree feature space of Collins and Duffy’s tree kernel in a innovative

perspective by grouping multiple non-overlapping subtrees as a single feature rep-

resentation. The additional substructure features, namely subtree sequences, are

expected to overcome certain limitations of the single tree representation and bring

43

meaningful substructures to benefit NLP tasks. The details of the motivation, defi-

nition and implementation of the subtree sequence based kernels will be elaborated

in Chapter 4.

3.3 Summary

In this chapter, we have reviewed some related work, from which we observe that

new kernels can be designed by introducing more meaningful substructures to the

current feature space. In addition, two paradigms to construct kernels on discrete

structures have been discussed. Specially, mapping kernel is the generalization

of convolution kernel and is more flexible with constraints on the substructure

space. Two instantiations of convolution kernel, i.e. sequence kernel and Collins

and Duffy’s tree kernel are elaborated, which will be referred to in the later chapters.

44

45

Chapter 4

Tree Sequence based Kernels

The previous chapters have provided the reader with the basic notions of kernel

methods and the approaches of constructing kernels on discrete structures such as

the convolution kernel paradigm (Section 3.1.1) and the mapping kernel paradigm

(Section 3.1.2). For the discrete input structures in NLP, such as trees and se-

quences, kernels can be constructed by both approaches on the corresponding

structures, i.e. tree kernels (Section 3.1.4) and sequence kernels (Section 3.1.3).

The advantages of these structure features have been demonstrated on many NLP

applications.

In view of the success of tree kernels and sequence kernels, we attempt to

combine the advantages of both kernels by exploring the substructure space of tree

sequences. The tree sequence structure may provide more meaningful structure fea-

tures and alleviate certain weakness of the single tree based features. Furthermore,

we attempt to apply the tree sequence based kernels on multiple parse trees. It is

expected that these extensions can further benefit certain NLP applications.

Accordingly, this chapter is organized as follows. In Section 4.1, we introduce

the motivation of the tree sequence kernels. Then, we propose contiguous Tree

Sequence Kernel (cTSK) in Section 4.2, which is considered as a special case of the

46

generalized Tree Sequence Kernel (TSK). Before proposing Tree Sequence Kernels

(TSKs) (Section 4.4), we propose Set Sequence Kernels (SSKs) in Section 4.3 to

faciliate the evaluation of TSKs. In Section 4.5, the extensions of TSKs are pro-

posed, namely Anchored Tree Sequence Kernels (aTSKs), which may facilitate the

tasks of modeling the target constituents in the parse trees. In the end, we propose

approaches to apply the tree (sequence) based kernels on multiple parse trees.

4.1 From Tree Kernel to Tree Sequence Kernel –

Some Motivating Examples

Witnessing the effectiveness of tree kernels in many applications, we propose a series

of kernels which employ a sequence of subtrees as features. In the tree sequence

based kernels, the number of common subtree sequences is counted as the feature

value for each subtree sequence type. Before proposing the kernel functions, we

illustrate the motivations of the proposed kernels in this section to facilitate an

intuitive understanding.

Tree kernel requires the matched substructure to be exactly one single subtree.

This constraint may be too strict to sufficiently explore the structure features.

First, the single subtree constraint cannot capture certain useful patterns that

are not covered by a single subtree. For example, in the parse tree shown in

Fig. 4.1(a), it is very likely that the pattern of “results of the fast crackdown” is

an informative pattern. However, the context is not covered by a single subtree.

Therefore, this pattern cannot be captured by the single tree based kernels. Second,

to match a pattern covering a rich context with lexical leaf nodes, tree kernel

generally requires a large structure equipped with many nodes and much height.

However, matching such a large structure may suffer from the data sparseness issue

so that tree kernel may not effectively capture large structures. Third, parse trees

47

NNDT

PP

NP

PPNP
IN

NNIN

of the smugglingoncrackdown

NNS

results

NP

NP

JJ

fast

(a) Parse Tree Exp. 1

NNDT

PP

NP

PPNPIN

NNIN

of the smugglingoncrackdown

NNS

results

NP

NP

JJ

fast

(b) Parse Tree Exp. 2

JJ NNDT

crackdown

NP

JJ NNDT

crackdwonfast

NP

JJ NNDT

the crackdownfast

NP

JJ NNDT

NP

JJ NNDT

crackdown

NP

JJ NNDT

the

NP

JJ NNDT

the

NP

JJ NNDT

NP

JJ

NN

DT

the

crackdown

fast

fast

fast the

JJ NNDT

the crackdownfast

NP

(c) Single subtree features for a simple structure

NN

PP

NNIN

smugglingoncrack-

down

, NN

PP

NNIN

smuggling

, NN

PP

NNIN

on

, NN

PP

NNIN , NN NNIN

smugglingoncrack-

down

crack-

down

crack-

down

crack-

down

(d) Contiguous tree sequence features on span [4, 6] of Exp.1

JJ NNDT

the

JJDT

thefast
JJ NNDT

the crack-

down
fast

NP ,

fast

JJ NN

fast

,
NNDT

the

,
crack-

down

crack-

down
crack-

down

...

(e) Tree sequence features for a simple structure, ex-
cluding single subtree features

NN

IN

of crackdown

NNS

results

...

(f) Non-contiguous subtree
sequence features on span
([0, 1],[4, 4])

Figure 4.1: Illustration of Tree Sequence Structures.

48

are usually generated by automatic syntactic parsers. Therefore, parsing errors are

inevitable so that the performance of the kernels evaluating the error prone parse

trees will compromise. For example, two parse trees for the context of “results of the

fast crackdown on smuggling” are presented in Fig. 4.1(a) (correct) and Fig. 4.1(b)

(with parsing errors). It is easy to see that the syntactic structure over the context

of “the fast crackdown on smuggling” in Fig. 4.1(b) is not correctly parsed as a

single subtree. Therefore, it is infeasible to capture the syntactic features covering

this span as a whole from the incorrect parse tree.

The structure of a subtree sequence embedded in a parse tree is an arbitrary

number of non-overlapping subtrees. We present in Fig. 4.1(c-f) some examples of

the subtree sequence structures obtained from the parse tree in Fig. 4.1(a). On

the one hand, when the number of subtrees in the subtree sequence is limited to

1, the subtree sequence structure is equivalent to the single subtree structure. In

other words, the single subtree structure is a special case of the subtree sequence

structure. As shown in Fig. 4.1(c), eleven single subtree features can be captured

by Collins and Duffy’s tree kernel for the tree over “the fast crackdown”. On the

other hand, when the number of subtrees in the subtree sequence is unlimited,

the additional features of multiple subtrees as a single structure can be captured

by subtree sequence based kernels in Fig. 4.1(e). The subtree sequence can either

be contiguous, i.e. covering a contiguous context as shown in Fig. 4.1(d) or non-

contiguous, i.e. with gaps between the adjacent subtrees (Fig. 4.1(f)).

In Fig. 4.1, it can be observed that the subtree sequence based kernels may be

advantageous over the single subtree based kernels from the following aspects.

First, the subtree sequence based kernels can capture additional useful patterns

other than the single subtree structure. As discussed above, the context of “results

of” in Fig. 4.1(a) is not covered by a single tree. Alternatively, the span is covered by

a subtree sequence with two subtrees so that the syntactic structures over “results

49

of” can be captured by the subtree sequence based kernels.

Second, the subtree sequence based kernels alleviate the data sparseness is-

sue of matching large structures by decomposing a large structure into multiple

disconnected parts and matching certain parts as a single structure. For exam-

ple, to capture the pattern covering the context “results of” and “crackdown” in

Fig. 4.1(a), tree kernel needs to consult to the entire tree structure, which may be

too sparse to be matched in the training data. By contrast, the subtree sequence

based kernels can capture the pattern by a non-contiguous subtree sequence which

consists of three subtrees in Fig. 4.1(f).

Third, the subtree sequence based kernels may reduce the negative effects

brought by parsing errors in higher layers of parse trees. For common bottom

up parsing algorithms, e.g. CKY algorithm (Hopcroft and Ullman, 1979), parsing

errors tend to be more severe for larger structures with more height. To alleviate

this problem, for an arbitrary span, the subtree sequence based kernels can match

the lower layer subtree sequence structures while ignoring the higher structures.

For example, when enumerating the structures in Fig. 4.1(b), the structure over

the context “the fast crackdown on smuggling” (in dash line) cannot be captured

by tree kernels due to parsing errors. Compared with the correct parse tree in

Fig. 4.1(a), most structures over span [2, 6] in Fig. 4.1(b) are correctly obtained

except the rule covering the span [2, 6]. Alternatively, the subtree sequence based

kernels can capture the correctly parsed structures (in dash line) using multiple

subtrees. This may facilitate the matching and recovering of the correct structures

corresponding to Fig. 4.1(a) (in dash line).

The tree sequence structure has been found to be effective in syntactic intensive

applications, such as syntax based machine translation. Sun, Zhang, and Tan (2009)

proposed the non-contiguous tree sequence based translation model which employs

tree sequence as translation equivalences. In this model, the tree sequence structure

50

relaxes the structural constraint caused by the single tree based models without

sacrificing the grammatical information embedded in each subtree. Hence, the tree

sequence structure is beneficial in capturing the structural divergence beyond the

syntactic constraints across languages. Witnessing their success, we attempt to

apply the tree sequence structure to construct new kernels on parse trees.

4.2 Contiguous Tree Sequence Kernel

In this section, we propose contiguous Tree Sequence Kernel (cTSK) to explore the

feature space of a sequence of subtrees in the contiguous context. We first attempt

to evaluate the kernel by adapting the algorithm of Collins and Duffy’s tree kernel,

which is accomplished by modifying the tree structures. Alternatively, we propose

a more efficient algorithm achieving the same time complexity with Collins and

Duffy’s tree kernel.

4.2.1 Kernel Evaluation via Pseudo Roots

Inspired by Collins and Duffy’s tree kernel, we initially attempt to evaluate cTSK

using the same idea. To inherit the algorithm of tree kernel, we transform a subtree

sequence structure to a pseudo root directed subtree. As shown in Fig 4.2 1 , we first

create a universally identical pseudo root node for each subtree sequence denoted as

a solid dot. Then edges are created to connect the pseudo root to the root of each

subtree. This helps to transform a subtree sequence to a single tree structure. Since

all pseudo roots are identical, it guarantees the pseudo root directed subtrees to be

matched from the beginning at the pseudo roots. Based on the algorithm of tree

1In fact, the pseudo nodes are created for subtree sequence with arbitrary number of subtrees.

However, we only illustrate the tree sequence with subtree number larger than 1 for clear illustra-

tion. Obviously, the structure over one single subtree can be constructed by linking the pseudo

root to the root of the subtree.

51

NN POS

NNS

JJ

last results'syear

NP

NP
NNJJ

last year

NN POS

'syear

NN POSJJ

last 'syear

NN POS

NNS

JJ

last results'syear

NN POS

NNS

JJ

last results'syear

NP

NN POS

NNS

results'syear

POS

NNS

results's

Figure 4.2: Illustration of Pseudo Root construction

kernel in Eq. 3.22, which iterates over all combinations of nodes in the given two

parse trees, the cTSK function Kcts(T, T
′) can be similarly evaluated by iterating

over all pairs of pseudo roots as follows:

Kcts(T, T
′) =

|Tprds|∑

j=1


∑

p∈PT

Ij(p) ·
∑

p′∈PT ′

Ij(p
′)




=
∑

p∈PT

∑

p′∈PT ′

Ψ(p, p′)

(4.1)

where PT and PT ′ refer to the pseudo root sets of T and T ′ respectively. Tprds refers

to the original feature space of pseudo root directed subtrees. To evaluate Ψ(p, p′),

we define a matching function ϕ(p, p′) ∈ {0, 1} for each pair of pseudo roots as a

prerequisite for structure matching. In the matching function, p.child# refers to

the number of the child nodes of the pseudo root p, which is also the number of

subtrees in the original subtree sequence. Therefore, ϕ(p, p′) equals to 1 if p and p′

have identical number of child nodes, otherwise 0.

ϕ(p, p′) =




1 if p.child# = p′.child#

0 otherwise

(4.2)

Then Ψ(p, p′) can be calculated as:

Ψ(p, p′) = µp.child# · ϕ(p, p′) · Λ(p, p′) (4.3)

52

where µ ∈ [0, 1] is a decay factor for the number of subtrees in a given tree sequence.

Consequently, cTSK can be evaluated over all pairs of pseudo roots p and p′, by

means of Λ(p, p′) defined in Eq. 3.22.

Compared with tree kernel, the number of node pairs traversed is enlarged from

the original tree node sets to the pseudo root sets. Therefore, the computational

complexity is O(|PT | · |PT ′ |). Although we can achieve the kernel evaluation in poly-

nomial time with respect to the number of pseudo roots, the actual computational

cost may be high. The construction of the pseudo roots requires enumerating all

the tree node sets that cover a contiguous span. Hence, the worst time cost for this

algorithm could be exponential with respective to the sentence length.

4.2.2 Algorithm 2: Fast Evaluation

Alternatively, we propose an efficient algorithm to evaluate cTSK. The general goal

of this algorithm is to match the subtrees in a subtree sequence from left to right.

The key issue to achieve this goal is the production rules rooted at each subtree.

Suppose the production rule at the root node N of a subtree is matched. On the

one hand, we can proceed vertically from the child nodes of N to match the subtrees

in the lower layers. This can be achieved by the tree kernel function Λ(n, n′) in

Eq. 3.22. On the other hand, we can horizontally move to the next subtree which

is adjacent to the subtree rooted at N . Therefore, the subtree sequence matching

problem can be simplified into a subtree matching problem. Since the kernel value of

the matched subtrees can be reused, it is straightforward to perform the algorithm

by dynamic programming as follows:

Initially, we define a matching function Ω(n, n′) ∈ {0, 1} to compare the pro-

duction rules whose left hand side nonterminals are n ∈ NT and n′ ∈ NT ′ respec-

53

tively. Ω(n, n′) returns 1 if the productions are identical, otherwise 0.

Ω(n, n′) =




1 if n.production = n′.production

0 otherwise

(4.4)

We further define ∆(i, j) to evaluate all the matched subtree sequences that

ended at indices i of T and j of T ′.

∆(i, j) =





∑
n∈NT , ne=i
n′∈NT ′ , n′

e=j

(
µ·Ω(n,n′)Λ(n,n′)·

(1+∆(nb−1,n′
b
−1))

)
if nb ≥ 1, n′

b ≥ 1

∑
n∈NT , ne=i
n′∈NT ′ , n′

e=j

µ · Ω(n, n′)Λ(n, n′) otherwise

(4.5)

where l and l′ refer to the number of leaf nodes of T and T ′. Therefore, we have

0 ≤ i < l, 0 ≤ j < l′. We explain the recursive function ∆(i, j) as follows:

(1) In each evaluation of ∆(i, j), it traverses all the node pairs (n, n′) with

ne = i and n′
e = j. For any node n, nb refers to the beginning index of the span

covered by n, while ne refers to the end index of the span.

(2) When evaluating the node pair (n, n′), Ω(n, n′) is firstly evaluated. If

Ω(n, n′) equals to 1, which means the production rules rooted at n and n′ are

identical, it will continue to measure the structure similarity by computing the tree

kernel function Λ(n, n′). As defined in Eq. 3.22, Λ(n, n′) returns the number of

common subtrees rooted at (n, n′).

(3) The value Λ(n, n′) is then utilized in two folds. For the case that the

subtree sequence consists of one single subtree, the value is just Λ(n, n′). For

the case that the subtree sequence consists of multiple subtrees, with the subtrees

rooted at (n, n′) to be the last subtree in the sequence, the value is conveyed by

Λ(n, n′)∆(nb − 1, n′
b − 1).

To achieve the complete kernel evaluation of Kcts(T, T
′), we sum up all index

combinations of (i, j) for ∆(i, j) as follows:

Kcts(T, T
′) =

∑

0≤i<l
0≤j<l′

∆(i, j) (4.6)

54

Inspired by tree kernel, which employs λ to penalize structures with much

height, we introduce another decay factor µ to penalize the number of subtrees in

a subtree sequence. The factor µ is incurred at each time a subtree is matched. By

means of µ, a subtree sequence consisting of multiple subtrees is discounted.

As shown above, the evaluation of ∆(i, j) can be accomplished by dynamic

programming. For the ease of understanding, we analyze the time complexity in a

naive way. We can evaluate the tree kernel function Kt(T, T
′) before the evaluation

of Kcts(T, T
′) to ensure a complete realization of Λ(., .), which costs O(|NT | · |NT ′ |).

Hence, when we evaluate the matching function ∆(i, j) for Kcts(T, T
′), the tree

kernel function Λ(., .) is already available and unnecessary to compute. Note that

although the evaluation of all ∆(i, j), 0 ≤ i < l, 0 ≤ j < l′ traverses all indices

(i, j), in fact, all (n, n′) for each (i, j) with ne = i and n′
e = j will be traversed.

Therefore, the time complexity incurred by the evaluation in this step is O(|NT | ·
|NT ′ |) instead of O(|l| · |l′|). Finally, the sum of all ∆(i, j) for Kcts(T, T

′) needs

to traverse all indices (i, j), costing O(|l| · |l′|). Consequently, the overall time

complexity is incurred sequentially by the three elements, accomplished in O(|NT | ·
|NT ′ | + |NT | · |NT ′| + |l| · |l′|). For normal labeled ordered rooted trees, NT > l.

Therefore, the final computational complexity is O(|NT | · |NT ′|), the same with

Collins and Duffy’s tree kernel.

In real implementation, the matching functions Λ(., .) and ∆(., .) should be

evaluated simultaneously, so that the computation of Λ(., .) will be incurred only

when it is necessary. The sum of all (i, j) for Kcts(T, T
′) can be performed with the

incremental evaluation of ∆(i, j).

4.3 Set Sequence Kernels

From the last section, we can find that cTSK can be evaluated by simultaneously

performing the matching of subtree root nodes from left to right and the matching

55

of the structures covered by a root node from top to bottom. The latter match-

ing problem can be achieved by using the Λ(., .) function defined in Collins and

Duffy’s tree kernel (Eq. 3.22). The former matching problem is actually not a tree

structure matching problem but a sequence matching problem. In terms of cTSK,

the sequence of subtree roots covering a contiguous span is matched across the

tree pair. In order to generalize the problem of matching the sequence of subtree

root nodes, we extend the sequence kernel (Section 3.1.3) to propose Set Sequence

Kernel (SSK), which allows multiple choices of node symbols in any position of a

sequence. SSKs are then combined with tree kernel to accomplish the evaluation

of TSKs in Section 4.4, which allow the subtree sequence to be non-contiguous.

SSK is defined in the same style with sequence kernel in Section 3.1.3. Let Σ be

a finite symbol set. Let S = S0S1 · · ·S|S|−1 be a Set Sequence with each item Si to

be a set, where each element2 in the set is uniquely indexed from 0 to |Si|−1 and is

labeled with a symbol s ∈ Σ. Let s(i, î) ∈ Si, 0 ≤ î < |Si| be the î-th element in set

Si. Let (i, î) = [(i1, î1), (i2, î2), . . . , (im, îm)], where 0 ≤ i1 < i2 < · · · < im ≤ |S| − 1

and 0 ≤ îk < |Sk|, be a subset of index pairs in S. In each index pair, the first

element denotes the index of the set in a given Set Sequence and the second element

denotes a specific element in this set. Then let s[(i, î)] refer to a sequence of elements

s(i1, î1)s(i2, î2) · · · s(im, îm).

For all sequences of elements u = s[(i, î)] and u′ = s′[(i, î)], we write u
.
= u′

in case the number of elements in u and u′ are identical and the corresponding

symbols in the same position are identical. We say u and u′ are matched in this

case. In addition, for a sequence of symbols w, we write u
.
= w to refer to the case

that the symbol sequence labeled for u is w.3

2An element is uniquely identified by the index pair (i, î). The symbol labeled on the element

is only considered as a feature for this element.
3u is a sequence of elements, while w is a sequence of symbols. Since each element is labeled

by a symbol, an element sequence can be considered to be labeled by a symbol sequence.

56

Finally, let K̃m(S, S
′) be the number of matched sequences of elements for S

and S ′, with the number of elements in the sequence no more than m. Then for all

m, the kernel is defined as

K̃m(S, S
′) =

∑

w=Σm




∑

(i,̂i):

u=s[(i,̂i)]
u
.
=w

p(u, i) ·
∑

(j,̂j):

u′=s′[(j,̂j)]
u′ .=w

p(u′, j)




(4.7)

According to sequence kernel, the penalizing function p(u, i) can be the lexical

span length. Although this may work well for character based sequence with each

item covering exactly length of 1, it is very likely that the method would not adapt

well on tree sequence, since the size of subtrees varies a lot. In addition, penalty

on spans may violate the purpose of matching syntactic tree structures, that tree

structures covering different length of spans are identically considered. As a result,

instead of adapting the standard sequence kernel function, we propose new kernel

functions for Set Sequence using two alternative penalizing approaches. One is to

penalize the count of matched elements. The other is to penalize the number of

gaps ignoring the span length i.e. each gap between two matched elements only

incurs the decay factor once, no matter how large span the gap covers.

To facilitate the illustration of TSK in later sections, we define Km(i, j) to be

the kernel value that matches all the subsequences up to i and j with length no

more than m. Therefore, SSK that matches all the subsequences with length no

more than m can be defined as Km(|S| − 1, |S ′| − 1) = K̃m(S, S
′), which evaluates

elements from the 0-th set to the last set of S and S ′. Hence we transform the

kernel function from K̃m(S, S
′) to Km(i, j), where 0 ≤ i < |S| and 0 ≤ j < |S ′| and

evaluate Km(i, j) using dynamic programming.

Later, we propose SSKs with different structure weighting schemes. These

weighting schemes are based on three basic approaches to penalize structures. γ is

57

used to penalize the length of spans, which is similar to sequence kernels. µ is used

to penalize the count of matched elements. τ is used to penalize the count of gaps.

4.3.1 Penalizing Length of Spans (γ)

The standard sequence kernel (Lodhi et al., 2002; Cancedda et al., 2003) devises the

weighting function Eq. 3.19 to penalize the subsequence. The number of matched

elements and the length of gaps are penalized using the same decay factor. In other

words, it penalizes the length of span covered by the given matched subsequences.

By adapting from sequence kernel, the kernel function Km(i, j), which penalizes the

length of spans can be evaluated as follows.

K (l)
m (i, j) = 0 if min(i, j) < m− 1 or i, j < 0 for all l ∈ {1, 2, 3}

Km(i, j) = 0 if min(i, j) < m− 1 or i, j < 0

K (2)
m (i, j) = 1 if m = 0

K (3)
m (i, j) = γK (3)

m (i, j − 1) +
∑

si∈Si

∑

s′j∈S
′
j

si
.
=s′j

(
γ2K

(2)
m−1(i− 1, j − 1)

)
(4.8)

K (2)
m (i, j) = γK (2)

m (i− 1, j) +K (3)
m (i, j) (4.9)

K (1)
m (i, j) = K (1)

m (i, j − 1) +
∑

si∈Si

∑

s′j∈S
′
j

si
.
=s′j

(
γ2K

(2)
m−1(i− 1, j − 1)

)
(4.10)

Km(i, j) = Km(i− 1, j) +K (1)
m (i, j) (4.11)

In order to evaluate Km(i, j), we introduce some intermediate matching func-

tions i.e. K
(1)
m (i, j), K

(2)
m (i, j) and K

(3)
m (i, j). In Eq. 4.11, Km(i, j) is evaluated by

summing up the kernel value which does not match the elements in the i-th set Si,

i.e. Km(i− 1, j) and the kernel value which matches the elements in the i-th set Si,

i.e. K
(1)
m (i, j). In Eq. 4.10, given that the i-th set Si is matched, K

(1)
m (i, j) is evalu-

ated by summing up the kernel value which does not match the elements in the j-th

58

set S ′
j, i.e. K

(1)
m (i, j−1) and the kernel value which matches the elements in the i-th

set Si and the elements in the j-th set S ′
j, i.e.

∑
si∈Si

∑
s′j∈S

′
j

si
.
=s′j

(
γ2K

(2)
m−1(i− 1, j − 1)

)
.

Let K
(2)
m (i, j) count the number of matches of sequences discounted by γ from

the set indices of the first matched elements to the indices of i of S and j of S ′

respectively, no matter whether the elements in the i-th set Si and j-th set S ′
j are

matched. Let K
(3)
m (i, j) count the number of matches of subsequences discounted

by γ from the set indices of the first matched elements to the indices of i of S and

j of S ′ respectively, which requires the element in the i-th set Si to be matched.

Therefore, in Eq. 4.9, K
(2)
m (i, j) can be evaluated by summing up the kernel value

which does not match the elements in the i-th set Si, i.e. γK
(2)
m (i − 1, j) and the

kernel value which matches the elements in the i-th set Si, i.e. K
(3)
m (i, j). Similarly,

in Eq. 4.8, given that the i-th set Si is matched, K
(3)
m (i, j) is evaluated by summing

up the kernel value which does not match the elements in the j-th set S ′
j, i.e.

γK
(3)
m (i, j − 1) and the kernel value which matches the elements in the i-th set Si

and the elements in the j-th set S ′
j, i.e.

∑
si∈Si

∑
s′j∈S

′
j

si
.
=s′j

(
γ2K

(2)
m−1(i− 1, j − 1)

)
.

4.3.2 Penalizing Count of Matched Elements (µ)

In this section, we propose the kernel function Km(i, j), which penalizes the count

of matched elements as follows.

K (l)
m (i, j) = 0 if min(i, j) < m− 1 or i, j < 0 for all l ∈ {1, 2}

K (1)
m (i, j) = 1 if m = 0

K (2)
m (i, j) = K (2)

m (i, j − 1) +
∑

si∈Si

∑

s′j∈S
′
j

si
.
=s′j

K
(1)
m−1(i− 1, j − 1) (4.12)

K (1)
m (i, j) = K (1)

m (i− 1, j) +K (2)
m (i, j) (4.13)

Km(i, j) = µm ·K (1)
m (i, j) (4.14)

59

To evaluate Km(i, j), we use two intermediate matching functions K
(1)
m (i, j) and

K
(2)
m (i, j). Let K

(1)
m (i, j) refer to the kernel values when the penalty factor µ is not

taken into account. In other words, each pair of matched subsequence contributes

exactly 1 to the kernel K
(1)
m (i, j). In Eq. 4.13, K

(1)
m (i, j) is evaluated by the kernel

value which does not match the elements in the i-th set Si, i.e. K
(1)
m (i − 1, j) and

the value which matches the elements in the i-th set Si, i.e. K
(2)
m (i, j). In Eq. 4.12,

given that the i-th set Si is matched, K
(2)
m (i, j) is evaluated by the kernel value

which does not match the elements in the j-th set S ′
j, i.e. K

(2)
m (i, j − 1) and the

kernel value which matches elements in the i-th set Si and the elements in the

j-th set S ′
j, i.e.

∑
si∈Si

∑
s′j∈S

′
j

si
.
=s′j

K
(1)
m−1(i− 1, j − 1). Finally, Km(i, j) is evaluated by

K
(1)
m (i, j) multiplied by the penalty to the power of the number of elements allowed

in the matched subsequences in Eq. 4.14.

4.3.3 Penalizing Count of Gaps (τ)

The kernel to penalize the count of gaps in the sequence can be evaluated as follows.

K (l)
m (i, j) = 0 if min(i, j) < m− 1 or i, j < 0 for all l ∈ {1, 2, 3, 4}

K (l)
m (i, j) = 0 if m = 0 for all l ∈ {1, 2, 3}

K (4)
m (i, j) = 1 if m = 0

K (1)
m (i, j) = Km(i− 1, j − 1) (4.15)

K (2)
m (i, j) = K (2)

m (i, j − 1) +K (4)
m (i, j − 1) (4.16)

K (3)
m (i, j) = K (3)

m (i− 1, j) +K (4)
m (i− 1, j) (4.17)

K (4)
m (i, j) =

∑

si∈Si

∑

s′j∈S
′
j

si
.
=s′j

(
τ 2K

(1)
m−1(i− 1, j − 1) + τK

(2)
m−1(i− 1, j − 1)

+τK
(3)
m−1(i− 1, j − 1) +K

(4)
m−1(i− 1, j − 1)

)
(4.18)

Km(i, j) =
4∑

l=1

K (l)
m (i, j) (4.19)

60

Similar to the previous two SSKs, we also propose certain intermediate match-

ing functions, i.e. K
(l)
m (i, j), l ∈ {1, 2, 3, 4}, to accomplish efficient evaluation of

Km(i, j). Let K
(1)
m (i, j) refer to the case where neither the elements in set Si or

the elements in set S ′
j are matched in the subsequence. Let K

(2)
m (i, j) refer to the

case where an element in set Si is matched but none of the elements in set S ′
j are

matched in the subsequence. Let K
(3)
m (i, j) refer to the case where none of the

elements in set Si are matched but an element in set S ′
j is matched in the subse-

quence. Let K
(4)
m (i, j) refer to the case where an element in set Si and an element

in set S ′
j match to each other in the subsequence. In Eq. 4.18, the decay factor τ is

incurred in computing K
(4)
m (i, j), when both elements are matched. The evaluation

of Km(i, j) can be achieved by the sum of all the four cases.

Generally, the evaluation of all the three SSKs can be accomplished in time

complexity of O(m|Σ|S|
i=0Si| · |Σ|S′|

j=0S
′
j|), which refers to the product of the element

numbers in the two node sets.

4.4 Tree Sequence Kernels

In this section, we propose Tree Sequence Kernels (TSKs). Leveraging SSK and

Collins and Duffy’s tree kernel, we first present the generalized form for TSK. In

addition, we verify that the generalized TSK is a valid kernel by showing that TSK

can be constructed by the mapping kernel paradigm. After that three instantiations

of TSK are proposed with different structure weighting schemes, corresponding to

SSKs.

4.4.1 The Generalized Tree Sequence Kernel

We start this section with the generalized Tree Sequence Kernel. Let T refer to a

tree with span length l. Let Σ refer to a finite label set. For all nodes n ∈ NT ,

61

where NT refers to the node set consisting of all the nodes in T , n is labeled with

s ∈ Σ. Let N0, N1, . . . , N|l−1| refer to l ordered node sets. The node set Ni for all

the indices 0 ≤ i < l is constructed by delivering all the nodes n ∈ NT to set Ni, if

and only if n ∈ N|ne|, where ne refers to the end index of the span covered by n.

Based on the definition in Section 4.3, the object of N0N1 · · ·N|l−1| can be con-

sidered as a Set Sequence. Therefore, let n(i, î) be a node, i.e. n(i, î) ∈ Ni, 0 ≤ î <

|Ni|. Let (i, î) = [(i1, î1), (i2, î2), . . . , (im, îm)], where 0 ≤ i1 < i2 < · · · < im ≤ l − 1

and 0 ≤ îk < |Nk|, be a subset of index pairs. In each index pair, the first element

denotes the index of a node set and the second element denotes a specific node in

this node set. Let n[(i, î)] refer to a sequence of nodes n(i1, î1)n(i2, î2) · · ·n(im, îm),
where for every adjacent node pair n(ip, îp) and n(ip+1, îp+1) in the node sequence

with 1 ≤ p < m, the non-overlap condition holds (Section 2.3). It’s easy to see

that if adjacent nodes in this node sequence satisfy the non-overlap condition, all

the pair of nodes in this node sequence satisfy the condition.

Finally, let K̃m(T, T
′) be the number of common subtree sequence structures

for T and T ′, where the number of subtrees in a matched subtree sequence is no

more than m. Let u refer to the non-overlapped root node sequence with each node

sequentially corresponding to a subtree in a subtree sequence. Additionally, let

u[k] denote the kth node in u. Therefore, based on the Λ(., .) function defined in

Eq. 3.22, the generalized TSK is

K̃m(T, T
′) =

∑

w∈Σm




∑

(i,̂i):

u=n[(i,̂i)]
u
.
=w

∑

(j,̂j):

u′=n′[(j,̂j)]
u′ .=w

m∏

k=1

Λ(u[k], u′[k])




(4.20)

Next we verify the positive semidefinite property of the above kernel by con-

structing it through the mapping kernel paradigm. It is clear from the closure of

62

kernels under tensor product (Eq. 2.28) that

k̃m(u, u
′) =

m∏

k=1

Λ(u[k], u′[k]) (4.21)

is a kernel on Σm × Σm. Therefore, the general tree sequence kernel can be con-

structed through the mapping kernel paradigm with k̃m(u, u
′) to be the underlying

kernel. Consequently, the generalized TSK can be rewritten in the form that

K̃m(T, T
′) =

∑

(u,u′)∈MT,T ′

k̃m(u, u
′) (4.22)

where MT,T ′ is a finite and symmetric set satisfying that

M = ({T |T, T ′ ∈ T },Um
T , {MT,T ′ ⊆ Um

T × Um
T ′ |∀(u, u′) ∈ MT,T ′ , u

.
= u′}) (4.23)

where Um
T refers to the set of non-overlapped node sequences with m nodes in T .

It is easy to verify that M is transitive under the u
.
= u′ constraint. As a result,

the generalized TSK is a valid positive semidefinite kernel.

4.4.2 Adapting Set Sequence Kernel to Tree Sequence Ker-

nel

In order to evaluate TSK, we integrate the Λ(., .) function in Collins and Duffy’s

tree kernel into the algorithms of SSK by means of certain modifications.

To apply the SSK algorithm, we first transform the parse tree structure into

a valid Set Sequence structure. In Fig. 4.3, we construct the Set Sequence for a

parse tree with span [0, 4] by sending the internal nodes to the set N0, . . . , N4. For

example, since NN1 is ended with index 1, we put NN1 in N1.

The general idea of the TSK evaluation is to match the subtrees in a subtree

sequence from left to right and from top to bottom. Given a subtree sequence to

be matched, the key issue is to match the root node of each subtree. When the

root node n of a subtree t is matched, we need to vertically move downwards and

63

NN
2

DT
2

NP
2

PP

NP
3

IN

the theonbook desk

NN
1

DT
1

NP
1

NP
1

NN
1

DT
1

IN DT
2

NN
2

NP
2

NP
3

PP

N0 N1 N2 N3 N4

Figure 4.3: Construction of Node Set Sequence

match the entire subtree structure t. In addition, we also need to horizontally move

to the right side of t and match the root node n′ of the subtree t′ that is adjacent

to t. A gap is allowed between the subtree t and the subtree t′. Consequently,

the subtree sequence matching problem is transformed into a problem of matching

the root node sequences and the single tree structures. To implement this idea in

dynamic programming, the horizontal evaluation is achieved by incurring SSK on

the node sequence set of the given parse tree pair. In other words, any matched

node in the node set will be considered as the root of the subtree to be matched. At

the same time, the vertical evaluation is achieved by using the tree kernel function

Λ(., .) within the root-matched subtrees.

Before presenting the algorithms, we define certain notations. For any node n

let l(n) = ne − nb + 1, where nb and ne refer to the beginning and end index of the

span covered by n. The evaluation of TSKs require certain modifications of SSKs.

Briefly, the adaptation of SSKs to TSKs is achieved by three major modifications:

First, TSKs incur the tree kernel computation of Λ(n, n′) when the nodes n

and n′ are matched and the conditions of ne = i and n′
e = j are satisfied.

Second, when the nodes n and n′ are matched, it reuses the kernel values before

64

the indices of (nb, n
′
b). This avoids the matching of other nodes in the span covered

by (n, n′), since any two subtrees in a given subtree sequence do not overlap. This

requires changing the indices of (i− 1, j − 1) to (nb − 1, n′
b − 1).

Third, for the factor of γ to penalize the count of matched subtrees, the power

of γ incurred when matching a node pair is (l(n) + l(n′)) instead of 2.

Therefore, with other equations being the same, we only need to modify certain

kernel functions of SSKs to achieve the evaluation of TSKs.

4.4.3 Penalizing Length of Spans (γ)

According to the three modification schemes, TSK with penalty factor γ can be

evaluated by modifying Eq. 4.10 into Eq. 4.26 and Eq. 4.8 into Eq. 4.24.

K (l)
m (i, j) = 0 if min(i, j) < m− 1 or i, j < 0 for all l ∈ {1, 2, 3}

Km(i, j) = 0 if min(i, j) < m− 1 or i, j < 0

K (2)
m (i, j) = 1 if m = 0

K (3)
m (i, j) = γK (3)

m (i, j − 1) +
∑

ne=i

∑

n′
e=j

n
.
=n′

(
γl(n)+l(n′)K

(2)
m−1(nb − 1, n′

b − 1)Λ(n, n′)
)

(4.24)

K (2)
m (i, j) = γK (2)

m (i− 1, j) +K (3)
m (i, j) (4.25)

K (1)
m (i, j) = K (1)

m (i, j − 1) +
∑

ne=i

∑

n′
e=j

n
.
=n′

(
γl(n)+l(n′)K

(2)
m−1(nb − 1, n′

b − 1)Λ(n, n′)
)

(4.26)

Km(i, j) = Km(i− 1, j) +K (1)
m (i, j) (4.27)

65

4.4.4 Penalizing Count of Matched Subtrees (µ)

TSK with penalty factor µ can be evaluated by modifying Eq. 4.12 into Eq. 4.28.

K (l)
m (i, j) = 0 if min(i, j) < m− 1 or i, j < 0 for all l ∈ {1, 2}

K (1)
m (i, j) = 1 if m = 0

K (2)
m (i, j) = K (2)

m (i, j − 1) +
∑

ne=i

∑

n′
e=j

n
.
=n′

K
(1)
m−1(nb − 1, n′

b − 1) · Λ(n, n′) (4.28)

K (1)
m (i, j) = K (1)

m (i− 1, j) +K (2)
m (i, j) (4.29)

Km(i, j) = µm ·K (1)
m (i, j) (4.30)

4.4.5 Penalizing Count of Gaps (τ)

In addition, TSK with the factor τ to penalize the count of gaps can be evaluated

by modifying Eq. 4.18 into Eq. 4.34.

K (l)
m (i, j) = 0 if min(i, j) < m− 1 or i, j < 0 for all l ∈ {1, 2, 3, 4}

K (l)
m (i, j) = 0 if m = 0 for all l ∈ {1, 2, 3}

K (4)
m (i, j) = 1 if m = 0

K (1)
m (i, j) = Km(i− 1, j − 1) (4.31)

K (2)
m (i, j) = K (2)

m (i, j − 1) +K (4)
m (i, j − 1) (4.32)

K (3)
m (i, j) = K (3)

m (i− 1, j) +K (4)
m (i− 1, j) (4.33)

K (4)
m (i, j) =

∑

ne=i

∑

n′
e=j

n
.
=n′




τ 2K
(1)
m−1(nb − 1, n′

b − 1)

+τK
(2)
m−1(nb − 1, n′

b − 1)

+τK
(3)
m−1(nb − 1, n′

b − 1)

+K
(4)
m−1(nb − 1, n′

b − 1)


 · Λ(n, n′) (4.34)

Km(i, j) =
4∑

l=1

K (l)
m (i, j) (4.35)

In fact, if the minimum matched structure is restricted to a CFG rule with

the height of 2, the set sequence can be constructed by the set of production rules,

66

instead of simple nodes. In real implementation, we also rank the elements by their

labels in the alphabetical order for each node set (as shown in Fig. 4.3) to achieve

fast node matching (Moschitti, 2006). The time complexity of TSKs is incurred by

the time cost of SSKs and the computation of the Λ(., .) function. If we consider

that tree kernel is evaluated before SSK to make the Λ(., .) function available before

evaluating SSKs. The cost is the sum of both kernels to be O(m|NT | · |NT ′|+ |NT | ·
|NT ′ |), where m is the maximum number of subtrees allowed to be matched. In

fact, we evaluate TSKs by incurring SSKs and Collins and Duffy’s tree kernel

simultaneously, since partial results of both kernels can be reused. Briefly, the

overall cost is O(m|NT | · |NT ′ |).

4.5 Anchored Tree Sequence Kernel

In NLP, many tasks deal with the instances with multiple relational target con-

stituents, e.g. relation extraction, coreference resolution and semantic role analy-

sis. The concerned text units that the corresponding tasks may aim to evaluate

(e.g. entity pairs in relation extraction, NP and pronouns in coreference resolu-

tion, predicate and argument in semantic role analysis) can be recognized as the

target constituents. Generally, there is a certain relationship among these target

constituents. It is often required to analyze the role of the target constituents and

identify the relationship among these constituents.

Leveraging TSKs, we present Anchored Tree Sequence Kernel (aTSK) to better

facilitate these target constituents oriented tasks. aTSK identifies the target con-

stituents using the anchored subtrees structures(Section 2.3) in parse trees. When

exploring the tree sequence features in the parse trees with anchored subtrees, aTSK

requires the structure features to be matched according to their relative positions

to the anchored subtrees. In other words, structure features can be matched only

if they are at the similar position relative to the anchored structures. This char-

67

acteristic may avoid the over-generation of noise features and may enhance the

correspondence of the structure features to the target constituents. Besides aTSK,

we also propose additional constraints to extend aTSK under the Mapping Kernel

paradigm.

4.5.1 Feature Space Construction

We first design the feature space explored by aTSK. Let t1, t2, . . . , tr and t
′
1, t

′
2, . . . , t

′
r

be the anchored subtrees for T and T ′ respectively.4 Since aTSK aims to encapsulate

the structure feature with its relative position to the anchored subtrees, we design

the feature space explored by aTSK according to the following criterion. For all

corresponding subtrees t in T and t′ in T ′ in a matched subtree sequence structure,

a. for every 1 ≤ k ≤ r, if tk and t are non-overlapped, then t′k and t′ are non-

overlapped;

b. for every 1 ≤ k ≤ r, if tk and t are overlapped, then t′k and t′ are overlapped,

specifically

(1) if the root of t is the ancestor of the root of tk, then the root of t′ is the

ancestor of the root of t′k;

(2) if the root of t is the descendant of the root of tk, then the root of t′ is

the descendant of the root of t′k;

(3) if the root of t is the root of tk, then the root of t′ is the root of t′k.

Condition (a) indicates that the corresponding subtrees maintains the left/right

position relative to the anchored subtree counterparts across the tree pair. Con-

dition (b) indicates that the corresponding subtrees maintains the hierarchical po-

4the number of anchored subtrees in the parse tree is restricted to be the same across all parse

trees

68

sition relative to the anchored subtree counterparts. In addition, it’s not allowed

that t is overlapped with tk, while t
′ is non-overlapped with t′k.

In order to realize the above constraints, trees are partitioned into multiple

parts and each part is individually matched with the corresponding part in the

other parse tree. According to Eq. 4.20, the essential issue of matching the subtree

sequence structures is to match the non-overlapped node sequences. In Section 4.4.2,

the generalized TSK is adapted to SSK by delivering each node of the original tree

to one of the node sets N0, N1, . . . , N|l−1|. The node set each node is delivered to

is identified according to the end index of span covered by the node. As a result,

the task of partitioning the tree structure can be transfered to the problem of

partitioning the node sets N0, N1, . . . , N|l−1|. In consequence, the partition of the

original tree structure can be further addressed by partitioning the span [0, l − 1]

of the tree.

Thus, given that tree T with anchored subtrees t1, t2, . . . , tr covers the span

[0, l−1], we define Span Partition of T , denoted as ~ϑ(T, {t1, t2, . . . , tr}). ~ϑ is a vec-

tor of subspans, where ~ϑ(T, {t1, t2, . . . , tr}) = ([0, t1b), [t1b , t1e], [t1e+1, t2b), . . . , [tre+

1, l − 1])T , with 2r + 1 dimensions.

~ϑ can be constructed as follows:

• For each anchored subtree tk, 1 ≤ k ≤ r, the span [tkb , tke] forms a non-empty

subspan;

• For each pair of adjacent anchored subtrees tk and tk+1, 1 ≤ k < r, the span

[tke + 1, tk+1b) forms a subspan, which is possible to be empty;

• The span [0, t1b) forms a subspan, which is possible to be empty;

• The span [tre + 1, l − 1] forms a subspan, which is possible to be empty.

With respect to ~ϑ(T, {t1, t2, . . . , tr}), we define Node Set Partition for T

with anchored subtrees t1, t2, . . . , tr, denoted as ~̺(T, {t1, t2, . . . , tr}). The Partition

69

0 t1b t1e t2b t2e l-1

I

II

III

IV

V

Figure 4.4: Tree Structure Partition.

~̺(T, {t1, t2, . . . , tr}) is:

• A 2r + 1 dimensional vector of disjoint subsets of NT whose union is NT ;

• ̺i = {n|∀k, ϑib ≤ k ≤ ϑie , n ∈ Nk}, for 0 ≤ k ≤ l − 1;

where ϑi refers to the i-th subspan of ~ϑ, which starts at index ϑib and ends at ϑie .

From the second condition, it is easy to find that ~̺(T, {t1, t2, . . . , tr}) can be

constructed by partitioning the node sets of N0, N1, . . . , N|l−1| of ~N into 2r + 1

sets of node sets. For example in Fig. 4.4, the nodes in T are partitioned into

five subsets. The nodes in the sets N0, . . . , Nt1b−1 forms the first subset ̺0. The

nodes in the sets Nt1b
, . . . , Nt1e

forms the second subset ̺1. The nodes in the sets

Nt1e+1, . . . , Nt2b−1 forms the third subset ̺2. The nodes in the sets Nt2b
, . . . , Nt2e

forms the fourth subset ̺3. The nodes in the sets Nt2e+1, . . . , Nl−1 forms the fifth

subset ̺4.

All TSKs proposed in Section 4.4 can be extended to corresponding aTSKs by

evaluating the kernels on each node subset obtained from the partition ̺. Therefore,

the algorithms in Section 4.4 can be modified respectively to achieve the evaluation

of corresponding aTSKs.

Before proposing aTSKs, we introduce some notations to facilitate the elabo-

ration of the following sections. To avoid complex notations, given T with its corre-

70

sponding span partition ~ϑ(T, {t1, t2, . . . , tr}), we rewrite all the starting index of the

subspans in ~ϑ using a 2r+1 dimensional vector ~I, 5 where I0 = ϑ0b = 0, I1 = ϑ1b =

t1b , I2 = ϑ2b = t1e + 1, . . . , I2r = ϑ2rb = tre + 1. In consequence, ~ϑ can be rewritten

with ~ϑ(T, {t1, t2, . . . , tr}) = ([I0, I1), [I1, I2), [I2, I3), . . . , [I2r, l))
T . Similarly, given

T ′ with its corresponding span partition ~ϑ′(T ′, {t′1, t′2, . . . , t′r}), ~ϑ′ can be rewritten

using a vector ~J as ~ϑ′(T ′, {t1, t2, . . . , tr}) = ([J0, J1), [J1, J2), [J2, J3), . . . , [J2r, l
′))T ,

where J0 = ϑ′
0b
= 0, J1 = ϑ′

1b
= t′1b , J2 = ϑ′

2b
= t′1e + 1, . . . , J2r = ϑ′

2rb
= t′re + 1.

Next we will present the recursive functions for aTSKs. Note that we only

present the functions to evaluate the kernels within the same subspan, i.e. to eval-

uate Km(i, j) for all (i, j) ∈ {(i, j)|∀p, 0 ≤ p ≤ 2r, i ∈ [Ip, Ip+1) and j ∈ [Jp, Jp+1)}.
The kernel function covering the whole spans of T and T ′ can be evaluated by

conducting the subspan kernel evaluation sequentially from the 0-th subspan to the

2r-th subspan. Note that directly evaluating the kernel functions over the whole

spans of T and T ′ will incur l × l′ computational cost. Instead, by means of the

characteristic of the subspan correspondence of aTSKs, we evaluate the kernel on

each pair of corresponded subspans sequentially, which will help reduce the compu-

tational load especially when the number of anchored structures r is large.

Generally, we adapt the algorithms of TSKs to aTSKs by constraining the

indices of the kernel functions to a subspan. However, there are two special cases

we need to carefully deal with.

First, when the node pair n and n′ are matched, in TSKs we need to roll

back to (nb − 1, n′
b − 1) and consult the kernel value evaluated at (nb − 1, n′

b − 1).

However, in aTSKs, this can be only rational when nb − 1 and n′
b − 1 are in the

corresponded subspans, i.e. (nb − 1) ∈ [Ip, Ip+1) and (n′
b − 1) ∈ [Jp, Jp+1). When

nb− 1 and n′
b− 1 are not in the corresponded subspans, i.e. (nb− 1) ∈ [Ip, Ip+1) and

5Note that ~I should be related to a given tree T with specified anchored subtrees {t1, t2, . . . , tr},
we do not explicitly integrate these parameters into ~I to simplify the presentation.

71

(n′
b − 1) ∈ [Jq, Jq+1) while p 6= q, it is infeasible to evaluate the kernel functions at

(nb − 1, n′
b − 1).

Second, when the kernel functions are evaluated at the beginning of a subspan

in either tree, for some functions, it may require to consult the previous index by

decrement the current index. However, decrementing the index at the boundary

leaves one of the consulted index in the previous span and the other index still

in the current span. Again, we have to face the problem of evaluating the kernel

values in noncorresponded subspans, which is disallowed in aTSKs.

To solve the above issue of the inconsistency of subspans, we need to appropri-

ately design the kernels to allow the subspans to correctly communicate. This can

be achieved by rolling back a little farther from the spot of the noncorresponded

subspans to the corresponded subspans and use the previously evaluated kernel

values in the corresponded subspans.

Before further elaboration, we define certain notations. Let ψi,j refer to the

set of nonempty subspan indices, where ψi,j = {p|∀0 ≤ u < i, 0 ≤ v < j, u ∈
[Ip, Ip+1) and v ∈ [Jp, Jp+1)}. Briefly, ψi,j is the set of indices for all the corresponded

nonempty subspans bounded by indice i and j. In addition, let p̂(i, j) refer to the

maximum value in the set ψi,j.

In fact, p̂(i, j) is the index of the corresponded subspans we are rolling back to,

if i and j are in the noncorresponded subspans.

Based on the above discussion, we modify TSKs as follows:

4.5.2 Penalizing Length of spans (γ)

By adapting the algorithms from TSKγ, aTSK with penalty factor γ can be eval-

uated as follows. For all (i, j) ∈ {(i, j)|∀p, 0 ≤ p ≤ 2r, i ∈ [Ip, Ip+1) and j ∈
[Jp, Jp+1)}:

K (l)
m (i, j) = 0 if min(i, j) < m− 1 for all l ∈ {1, 2, 3}

72

Km(i, j) = 0 if min(i, j) < m− 1

K (2)
m (i, j) = 1 if m = 0

Υ(i, j, nb, n
′
b) =





γl(n)+l(n′)K
(2)
m−1(nb − 1, n′

b − 1) if
∃q ∈ ψ(i, j),
nb ∈ (Iq, Iq+1),
n′
b ∈ (Jq, Jq+1)

γ
i−Ip̂(nb,n

′
b
)+1+j−Jp̂(nb,n

′
b
)+1+2·

K
(2)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

elsif

∃q ∈ ψ(i, j),
nb = Iq, n

′
b ∈ (Jq, Jq+1)

or nb ∈ (Iq, Iq+1), n
′
b = Jq

or nb = Iq, n
′
b = Jq

(4.36)

K (3)
m (i, j) =





∑
ne=i

∑
n′
e=j

n
.
=n′

Υ(i, j, nb, n
′
b) · Λ(n, n′) if j = Jp

γK
(3)
m (i, j − 1) +

∑
ne=i

∑
n′
e=j

n
.
=n′

Υ(i, j, nb, n
′
b) · Λ(n, n′) otherwise

(4.37)

K (2)
m (i, j) =





(
γi−Ip̂(i,j)+j−Jp̂(i,j)+2·

K (2)
m (Ip̂(i,j)+1 − 1, Jp̂(i,j)+1 − 1)

)
+K

(3)
m (i, j) if i = Ip

γK
(2)
m (i− 1, j) +K

(3)
m (i, j) otherwise

(4.38)

K (1)
m (i, j) =





∑
ne=i

∑
n′
e=j

n
.
=n′

Υ(i, j, nb, n
′
b) · Λ(n, n′) if j = Jp

K
(1)
m (i, j − 1) +

∑
ne=i

∑
n′
e=j

n
.
=n′

Υ(i, j, nb, n
′
b) · Λ(n, n′) otherwise

(4.39)

Km(i, j) =




Km(Ip̂(i,j)+1 − 1, Jp̂(i,j)+1 − 1) +K

(1)
m (i, j) if i = Ip

Km(i− 1, j) +K
(1)
m (i, j) otherwise

(4.40)

First, we propose Eq. 4.36 to consult previous kernel values. The if condition

is the case when nb − 1 and n′
b − 1 are in the corresponded subspans. The elsif

condition denotes the case when they belong to noncorresponded subspans. Note

that in the condition nb = Iq, n
′
b = Jq of the second case, nb − 1 and n′

b − 1 may be

73

in the corresponded subspans, i.e. the subspans just ahead of the current subspans

accommodating nb and n′
b. However, when the previous subspan is empty6, it

has to roll back one more subspan. This can happen to either nb or n′
b, or even

both. The indices it finally rolls back to is (Ip̂(nb,n
′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1), where

p̂(nb, n
′
b) refers to the index of the corresponded subspans it finally finds. In fact,

(Ip̂(nb,n
′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1) refers to the pair of the ending index of this finalized

corresponded subspans.

For other kernel functions, besides the component adapted from TSKγ, we

need to consider the boundary case, which may incur a communication between

subspans. In Eq. 4.37 and Eq. 4.39, we modify Eq. 4.24 and Eq. 4.26 in TSKγ

by specializing the case of j = Jp. In Eq. 4.38 and Eq. 4.40, we modify the

corresponding kernel functions by specializing the case of i = Ip.

4.5.3 Penalizing Count of Matched Subtrees (µ)

By adapting the algorithms from TSKµ, aTSK with penalty factor µ can be eval-

uated as follows. For all (i, j) ∈ {(i, j)|∀p, 0 ≤ p ≤ 2r, i ∈ [Ip, Ip+1) and j ∈
[Jp, Jp+1)}:

K (l)
m (i, j) = 0 if min(i, j) < m− 1 for all l ∈ {1, 2}

K (1)
m (i, j) = 1 if m = 0

Υ(i, j, nb, n
′
b) =





K
(1)
m−1(nb − 1, n′

b − 1) if
∃q ∈ ψ(i, j),
nb ∈ (Iq, Iq+1),
n′
b ∈ (Jq, Jq+1)

K
(1)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1) elsif

∃q ∈ ψ(i, j),
nb = Iq, n

′
b ∈ (Jq, Jq+1)

or nb ∈ (Iq, Iq+1), n
′
b = Jq

or nb = Iq, n
′
b = Jq

(4.41)

6Remember we allow the subspan between anchored structures to be possibly empty.

74

K (2)
m (i, j) =





∑
ne=i

∑
n′
e=j

n
.
=n′

Υ(i, j, nb, n
′
b) · Λ(n, n′) if j = Jp

K
(2)
m (i, j − 1) +

∑
ne=i

∑
n′
e=j

n
.
=n′

Υ(i, j, nb, n
′
b) · Λ(n, n′) otherwise

(4.42)

K (1)
m (i, j) =




K

(1)
m (Ip̂(i,j)+1 − 1, Jp̂(i,j)+1 − 1) +K

(2)
m (i, j) if i = Ip

K
(1)
m (i− 1, j) +K

(2)
m (i, j) otherwise

(4.43)

Similar to aTSKγ, we introduce Eq. 4.41 to consult previous kernel values

according to different conditions. The if condition is the case when nb − 1 and

n′
b − 1 are in the corresponded subspans. The elsif condition denotes the case when

they belong to noncorresponded subspans.

For other kernel functions, we need to consider the boundary case, which may

incur a communication between subspans. In Eq. 4.42, we modify Eq. 4.28 by

specializing the case of j = Jp. In Eq. 4.43, we modify Eq. 4.29 by specializing the

case of i = Ip.

Note that Eq. 4.30 is unnecessary to be computed for subspans, since it is not

used by other kernel functions. This function can be evaluated after traversing all

subspans as

Km(l − 1, l′ − 1) = µm ·K (1)
m (l − 1, l′ − 1) (4.44)

4.5.4 Penalizing Count of Gaps (τ)

By adapting the algorithms from TSKτ , aTSK with penalty factor τ can be eval-

uated as follows. For all (i, j) ∈ {(i, j)|∀p, 0 ≤ p ≤ 2r, i ∈ [Ip, Ip+1) and j ∈
[Jp, Jp+1)}:

K (l)
m (i, j) = 0 if min(i, j) < m− 1 for all l ∈ {1, 2, 3, 4}

K (l)
m (i, j) = 0 if m = 0 for all l ∈ {1, 2, 3}

K (4)
m (i, j) = 1 if m = 0

75

K (1)
m (i, j) =




Km(Ip̂(i,j)+1 − 1, Jp̂(i,j)+1 − 1) if i = Ipor j = Jp

Km(i− 1, j − 1) otherwise

(4.45)

K (2)
m (i, j) =




0 if j = Jp

K
(2)
m (i, j − 1) +K

(4)
m (i, j − 1) otherwise

(4.46)

K (3)
m (i, j) =




0 if i = Ip

K
(3)
m (i− 1, j) +K

(4)
m (i− 1, j) otherwise

(4.47)

Υ(i, j, nb, n
′
b) =





τ 2K
(1)
m−1(nb − 1, n′

b − 1)

+τK
(2)
m−1(nb − 1, n′

b − 1)

+τK
(3)
m−1(nb − 1, n′

b − 1)

+K
(4)
m−1(nb − 1, n′

b − 1)

if
∃q ∈ ψ(i, j),
nb ∈ (Iq, Iq+1),
n′
b ∈ (Jq, Jq+1)

τ 2K
(1)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τK
(2)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τ 2K
(3)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τK
(4)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

elsif
Ip̂(nb,n

′
b
)+1 < nb,

Jp̂(nb,n
′
b
)+1 = n′

b

τ 2K
(1)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τ 2K
(2)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τK
(3)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τK
(4)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

elsif
Ip̂(nb,n

′
b
)+1 = nb,

Jp̂(nb,n
′
b
)+1 = n′

b

τ 2K
(1)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τK
(2)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τK
(3)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+K
(4)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

elsif
Ip̂(nb,n

′
b
)+1 < nb,

Jp̂(nb,n
′
b
)+1 < n′

b

τ 2K
(1)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τ 2K
(2)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τ 2K
(3)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

+τ 2K
(4)
m−1(Ip̂(nb,n

′
b
)+1 − 1, Jp̂(nb,n

′
b
)+1 − 1)

elsif
Ip̂(nb,n

′
b
)+1 = nb,

Jp̂(nb,n
′
b
)+1 < n′

b

(4.48)

76

K (4)
m (i, j) =

∑

ne=i

∑

n′
e=j

n
.
=n′

Υ(i, j, nb, n
′
b) · Λ(n, n′) (4.49)

Km(i, j) =
4∑

l=1

K (l)
m (i, j) (4.50)

Similarly, we propose Eq. 4.48 to consult previous kernel values. However,

things get a little complicated when we penalize the count of gaps. In this case,

we need to make sure whether there is a gap between the current index and the

consulted index in the subspan rolled back to. In the first condition of Eq. 4.48, we

evaluate the normal case when nb and n
′
b are not at the boundary of the subspans.

In the second condition, there is a gap between the index nb and the index it rolls

back to, i.e. Ip̂(nb,n
′
b
)+1 − 1, but there is no gap between n′

b and Jp̂(nb,n
′
b
)+1 − 1. In

the third condition, there is no gap between nb and Ip̂(nb,n
′
b
)+1 − 1, and there is no

gap between n′
b and Jp̂(nb,n

′
b
)+1 − 1 either. In the fourth condition, there is a gap

between nb and Ip̂(nb,n
′
b
)+1 − 1, and there is a gap between n′

b and Jp̂(nb,n
′
b
)+1 − 1 as

well. In the last condition, there is no gap between nb and Ip̂(nb,n
′
b
)+1 − 1, but there

is a gap between n′
b and Jp̂(nb,n

′
b
)+1− 1. These conditions are specialized so that the

penalizing factor τ can be appropriately incurred.

For other kernel functions, we need to consider the boundary case to allow the

subspans correctly communicate. In Eq. 4.46, the condition of j = Jp is specialized.

In Eq. 4.47, the condition of i = Ip is specialized. In Eq. 4.45, both the conditions

of i = Ip and j = Jp are specialized.

4.5.5 Mapping Kernels with Anchored Structures

In Section 3.1.2, we introduced the mapping kernel paradigm, which provides a

simple necessary and sufficient condition to verify the positive semidefinite property

for kernels (Shin and Kuboyama, 2008). The mapping kernel paradigm constructs

a mapping system M (Eq. 3.4), which constrains the feature space of the kernel

77

to be a subspace of some original feature space. The mapping kernel constructed

on the mapping subspace is a valid kernel if and only if M is transitive (Eq. 3.5).

In this section, we first show that aTSK is a valid positive semidefinite kernel by

means of the mapping kernel paradigm. In addition, we also propose some other

mapping systems based on aTSK.

We follow the similar technique as shown in Section 4.4.1 to construct aTSK

through the mapping kernel paradigm. The kernel function of aTSK can be written

in the form that

K̃m(T, T
′) =

∑

(u,u′)∈MT,T ′

k̃m(u, u
′) (4.51)

where k̃m(u, u
′) is the underlying kernel stated in Eq. 4.21, whose input domain

is the non-overlapped node sequences. In addition, MT,T ′ refers to a finite and

symmetric set satisfying that

M = ({T |T, T ′ ∈ T },Um
T , {MT,T ′ ⊆ Um

T ×Um
T ′ |∀(u, u′) ∈ MT,T ′ , u

.
= u′and u ∽ u′})

(4.52)

where u ∽ u′ denotes that the corresponding nodes in u and u′ are in the corre-

sponded subspans according to the tree structure partition of T and T ′. Since the

partition is universally defined for all trees, it is easy to see that u ∽ u′ is transitive.

Therefore, MaTSK is transitive under the constraints of u
.
= u′ and u ∽ u′. As a

result, aTSK is a valid positive semidefinite kernel.

Basically, aTSK can be considered as applying additional constraints on the

original subtree sequence feature space with respective to the mapping kernel

paradigm. The constraints often come from the kernel designer’s prior knowledge

on the related tasks. In order to accomplish a valid kernel, the proposed con-

straints should satisfy the definition of mapping kernel that the mapping system is

transitive.

Now we attempt to extend aTSK and propose additional mapping systems.

78

The key characteristic of these mapping systems is that they are able to highlight

meaningful structure features in the original tree sequence feature space. Therefore,

these constraints may offer additional meaningful features for certain tasks.

First, we propose the mapping system MaTSK1 , which applies the constraint

that all the anchored structures should be embedded in the subtree sequence fea-

tures. It’s straightforward that MaTSK1 is transitive, since the strict matching of all

the anchored subtrees corresponds across different tree pairs. Therefore, the kernel

aTSK1 under this mapping system is a valid positive semidefinite kernel.

Second, we propose the mapping system MaTSK2 , which applies the constraint

that at least one of the anchored structures is embedded in the subtree sequence

features. However, MaTSK2 is not transitive. This can be verified by a negative

example. Given three tree instances, i.e. T with anchored subtrees t1, t2, T
′ with

anchored subtrees t′1, t
′
2, T

′′ with anchored subtrees t′′1, t
′′
2, it is assumed that t1 and

t′1 are matched, while t2 and t′2 are not matched; t′2 and t′′2 are matched, while t′1

and t′′1 are not matched. In addition, for any subtree sequences v from T , v′ from

T ′ and v′′ from T ′′, under MaTSK2 , suppose we have

(v, v′) ∈ MT,T ′

(v′, v′′) ∈ MT ′,T ′′

However, (v, v′′) /∈ MT,T ′′ , since neither of the two anchored subtrees for T

and T ′′ are matched. As a result, aTSK2 is not a valid positive semidefinite kernel.

Although, in this case the data can be separated in the pseudo Euclidean space in

this case, the solution may be only a local optimum (Haasdonk, 2005).

In literature, engineering novel parse tree kernels often corresponds to the ne-

cessity of certain tasks. In order to appropriately constrain the feature space to

achieve the optimal performance for a given task, the original tree structures are

often modified to highlight the most differential features. For example, in seman-

tic relation extraction, Zhang, Zhou, and Aw (2008) tailored the original parse

79

tree structure into several variants and showed that the path enclosed tree(PT)

achieves the best performance. In shallow semantic parsing, not only the tailor-

ing approach is employed (Moschitti, 2004; Moschitti, Pighin, and Basili, 2006a;

Moschitti, Pighin, and Basili, 2008), nodes in the parse tree can also be marked

in order to differentiate the structures over arguments between positive and nega-

tive instances (Moschitti, Pighin, and Basili, 2006b; Moschitti, Pighin, and Basili,

2008).

Unlike the previous works to design new kernels by explicitly modifying the

parse trees, the proposed TSKs introduce novel feature representations of subtree

sequence and can be employed in any tailored tree structures other than the original

parse trees. Perhaps the objective of aTSKs, i.e. to constrain the original feature

space into a refined space by localizing the features, is much more close to that of

previous works. Previous works achieve this objective by the node marking method,

i.e. when applying to the objective of aTSK, nodes in different segmentations can be

marked with different tags and the standard algorithms for tree (sequence) kernel

are used for computation. However, we claim that aTSK is more efficient since

it can match the nodes by segmentation, therefore, avoiding traversing the entire

NT×NT ′ node space. This improvement is especially beneficial for localizing subtree

sequence based features, since it may heavily reuse the kernel values evaluated in

previous segmentations.

4.6 Kernels over Multiple Parse Trees

In this section, we propose kernels over multiple parse trees. Previously, kernels

are designed over a single tree and structure features explored by the kernels are

adopted to compute the similarity between a pair of single trees. In this section,

we extend the kernels from one single tree to multiple trees. In other words, the

input instance is no longer a single parse tree, but multiple parse trees. This could

80

be very helpful to NLP tasks over multilingual applications, of which the input

domain consists of multilingual parallel parse trees with each tree corresponds to a

different language.

We first illustrate the kernel for the most simple case, i.e. Collins and Duffy’s

tree kernel over two parse trees, namely Bilingual Tree Kernels (BTKs). After

that, we will generalize the kernel to the normal case with multiple parse trees and

subtree sequence features.

Before elaborating the concepts of BTKs, we first illustrate some notations

to facilitate further understanding. Given a pair of trees S and T , we refer S as

the source tree and T as the target tree. Each tree pair (S · T) can be explicitly

decomposed into multiple substructures which belong to the given substructure

spaces. S = {s1, . . . , si, . . . , s|S|} refers to the source substructure space; while T =

{t1, . . . , tj , . . . , t|T |} refers to the target substructure space. A substructure pair

(si, tj) refers to an element in the set of the cross product of the two substructure

spaces: (si, tj) ∈ S×T . Other notations follow the same definitions in Section 3.1.3.

4.6.1 Independent Bilingual Tree Kernel (iBTK)

Given the substructure spaces S and T , we construct two vectors using the integer

counts of the source and target substructures:

Φ(S) =
(
#(s1), . . . ,#(si), . . . ,#(s|S|)

)T
(4.53a)

Φ(T) =
(
#(t1), . . . ,#(tj), . . . ,#(t|T |)

)T
(4.53b)

Φ(S · T) = {Φ(S),Φ(T)} =
(
#(s1), . . . ,#(s|S|),#(t1), . . . ,#(t|T |)

)T
(4.53c)

where #(si) and #(tj) are the numbers of occurrences of the substructures si and

tj. The feature space of iBTK is designed to be the concatenation of the source

feature vector and target feature vector as shown in Eq. 4.53c. In order to compute

the dot product of the feature vectors in the exponentially high dimensional feature

81

space, we introduce the tree kernel functions as follows:

KiBTK(S · T, S ′ · T ′) = Kt(S, S
′) +Kt(T, T

′) (4.54)

The iBTK is defined as a composite kernel consisting of a source tree kernel and

a target tree kernel which measures the source and the target structural similarity

respectively. KiBTK is a valid kernel due to the property that kernels are closed

under the operation of direct sum (Eq.2.27). Therefore, the composite kernel can be

evaluated using Collins and Duffy’s tree kernel (Eq.3.21) for Kt(S, S
′) and Kt(T, T

′)

respectively.

4.6.2 Dependent Bilingual Tree Kernel (dBTK)

The iBTK explores the structural similarity of the source and the target trees

respectively. The disadvantage of the iBTK may be the fact that it fails to capture

the correspondence across the substructure pairs. As an alternative, we further

define a kernel to capture the relationship across the source and target counterparts.

As a result, we propose the dependent Bilingual Tree kernel (dBTK) to jointly

evaluate the similarity across tree pairs by enlarging the feature space to the cross

product of the two substructure sets.

The dBTK takes the source and the target substructure pair as a single feature

and recursively calculate over the joint substructures of the given tree pair. We

define the dBTK as follows:

Given the substructure space S × T , we construct a vector using the integer

counts of the substructure pairs to represent a tree pair.

Φ(S · T) =
(
#(s1, t1), . . . ,#(s1, t|T |),#(s2, t1), . . . ,#(s|S|, t1), . . . ,#(s|S|, t|T |)

)T

(4.55)

where #(si, tj) is the number of occurrences of the substructure pair (si, tj).

82

It is infeasible to explicitly compute the kernel function by expressing the sub-

trees as feature vectors. In order to achieve convenient computation, we deduce the

kernel function as follows.

KdBTK(S · T, S ′ · T ′) = 〈Φ(S · T),Φ(S ′ · T ′)〉

=

|S×T |∑

k=1


 ∑

ns∈NS

∑

nt∈NT

Ik(ns, nt) ·
∑

n′
s∈NS′

∑

n′
t∈NT ′

Ik(n
′
s, n

′
t)




=
∑

ns∈NS

∑

nt∈NT

∑

n′
s∈NS′

∑

n′
t∈NT ′

Λ ((ns, nt), (n
′
s, n

′
t)) (4.56)

=
∑

ns∈NS

∑

nt∈NT

∑

n′
s∈NS′

∑

n′
t∈NT ′

(Λ(ns, n
′
s) · Λ(nt, n

′
t)) (4.57)

=
∑

ns∈NS

∑

n′
s∈NS′

Λ(ns, n
′
s)
∑

nt∈NT

∑

n′
t∈NT ′

Λ(nt, n
′
t)

= Kt(S, S
′) ·Kt(T, T

′) (4.58)

The notations follow what have been defined in Section 3.1.3. The deduction

from expression 4.56 to expression 4.57 is derived according to the fact that the

number of identical substructure pairs rooted in the node pairs (ns, nt) and (n′
s, n

′
t)

equals to the product of the respective counts. As a result, the dBTK can be

evaluated as a product of two single tree kernels. Here we verify the validity of

the kernel by directly constructing the feature space for the inner product. A

similar proof is given in (Moschitti and Zanzotto, 2008). Alternatively, this could

be proved by the positive semidefinite characteristic of the tensor product of two

kernels (Eq.2.28). The decomposition benefits the efficient computation to use the

algorithm of Collins and Duffy’s tree kernel (Eq.3.21).

The computational complexity of the both iBTK and dBTK is O(|NS| · |NS′|+
|NT | · |NT ′|).

83

4.6.3 Generalized Kernels over Multiple Trees

Previously, we extend Collins and Duffy’s tree kernel from one single tree to the

case of two trees. Basically, the extensions come from the construction of the

feature space by means of the source feature space and the target feature space

independently or jointly. When constructing the feature space independently, i.e.

iBTK, the resulting kernel is the direct sum of the source tree kernel and the target

tree kernel. When constructing the feature space jointly, i.e. dBTK, the resulting

kernel is the tensor product of the two single tree kernels. Based on these results,

it is obvious to further extend the kernel to multiple trees as follows:

Given an input instance with k trees {T1, . . . , Tk}, the independent tree kernel
(iTK) over the k-tree space can be evaluated as follows:

KiTK({T1, . . . , Tk}, {T ′
1, . . . , T

′
k}) = Kt(T1, T

′
1) + · · ·+Kt(Tk, T

′
k) (4.59)

On the other hand, the dependent tree kernel (dTK) is evaluated by

KdTK({T1, . . . , Tk}, {T ′
1, . . . , T

′
k}) = Kt(T1, T

′
1) · · ·Kt(Tk, T

′
k) (4.60)

Likewise, when extending the kernels over multiple trees by utilizing the subtree

sequence features. The independent tree sequence kernel (iTSK) over the k-tree

space can be evaluated as follows:

KiTSK({T1, . . . , Tk}, {T ′
1, . . . , T

′
k}) = Kts(T1, T

′
1) + · · ·+Kts(Tk, T

′
k) (4.61)

Similarly, the dependent tree sequence kernel (dTSK) is evaluated by

KdTSK({T1, . . . , Tk}, {T ′
1, . . . , T

′
k}) = Kts(T1, T

′
1) · · ·Kts(Tk, T

′
k) (4.62)

where Kts(Ti, T
′
i) is the kernel function for the tree sequence based kernels evaluated

on the i-th feature space.

Tree kernels over multiple parse trees have been attempt in certain tasks such

as textual entailment (Zanzotto and Moschitti, 2006; Moschitti and Zanzotto, 2007;

84

Zanzotto, Pennacchiotti, and Moschitti, 2009), which employs a variant of depen-

dent kernels and question/answer classification (Moschitti, 2008), which employ a

variant of independent kernels.

4.7 Summary

In this section, we propose a series of kernels constructed on the different tree se-

quence feature spaces. Specially, cTSK evaluates the structure space of contiguous

subtree sequences. TSKs allow additional features of non-contiguous subtree se-

quences. In addition, we verify the positive semidefinite property of the generalized

TSK by showing that it can be constructed based on the mapping kernel paradigm.

SSKs are proposed to facilitate the evaluation of TSKs, which help capture the root

node sequence of the subtree sequence. Based on the mapping kernel paradigm,

we further constrain the feature space of TSKs to more accommodate the anchored

structures, which achieves aTSKs. aTSKs are expected to well facilitate the appli-

cations built on target relational constituents. By more aggressively constraining

the feature spaces, we propose aTSK1 and aTSK2 and verify that aTSK1 is a valid

kernel while aTSK2 is not. Three weighting schemes are proposed for TSK, SSK

and aTSK. Based on these weighting schemes, we propose efficient algorithms to

evaluate the corresponding kernels. The proposed kernels are then shown able to

be extended to multiple parse trees.

85

Chapter 5

Tree Sequence Kernels for Single

Parse Tree

In the following two chapters, the proposed series of kernels over parse trees will

be applied in NLP applications. This chapter will target applications in mono-

lingual tasks, while the next chapter will focus on multilingual tasks, i.e. tasks

making use of multiple parse trees from different languages. Generally, tree kernels

have been successfully applied in many monolingual NLP tasks such as syntactic

parsing (Collins and Duffy, 2002), question classification (Zhang and Lee, 2003;

Moschitti, 2006), relation extraction (Zhang, Zhou, and Aw, 2008), pronoun res-

olution (Yang, Su, and Tan, 2006), textual entailment (Zanzotto and Moschitti,

2006) and semantic parsing (Zhang et al., 2008a; Moschitti, 2004). Among them,

two of the well studied tasks are Question Classification and Relation Extraction,

for which various extensions of tree kernels on different tree structures, i.e. phrase

based and dependency based, have been developed. As a result, we select these two

tasks to verify the effectiveness of the tree sequence based kernels proposed in the

last Chapter.

This chapter is organized as follows: The related work for both tasks will

86

be discussed in the following section. In Section 5.2, the detailed experimental

results are presented, where the proposed tree sequence based kernels are compared

with Duffy and Collin’s tree kernel as well as the partial tree kernel (Moschitti,

2006). This chapter is concluded after a discussion of the experimental results

across different applications.

5.1 Background and Related Work

Question Classification is a crucial subtask for implementing question answering

systems. Basically, given a question sentence, it is necessary to identify what specific

issues the question concerns. For example, given a question “Who is Google’s

founding CEO?”, an ideal question classifier should identify that this question is

asking for a person’s name rather than a date or a location. An accurate and

complete analysis of the question may effectively help a question answering system

achieve a good answer extraction and selection, as well as generating more precise

answers.

By considering question classification as a multi-classification task, many ma-

chine learning techniques have been applied in this problem. Radev et al. (2005)

applied decision rule learning with set-valued features in this task. The features

employed in this approach are augmented to have a set of values instead of a sin-

gle value as in the traditional decision tree. Li and Roth (2002) used the Sparse

Network of Winnows (SNoW) to classify questions. They adopted words, part-of-

speech tags, chunks, name entities, head chunks and related words as their features.

Their taxonomy of questions is under 6 coarse types and 50 fine classes. They also

released their 5, 500 training questions and 500 testing questions, which have ben-

efited a lot of later research on this topic.

Kernel based methods have also been applied in this task and been verified

to outperform the above feature based methods. Zhang and Lee (2003) employed

87

Collins and Duffy’s tree kernel with SVM as the kernel machine for question clas-

sification. The slight difference in between is that their kernel allows to match the

single terminal (leaf) node as valid tree structures. Experimental results suggest

that the tree kernel based method with SVM not only outperforms other machine

learning techniques such as Nearest Neighbors, Naive Bayes, Decision Trees and

SnoW, but also outperforms the linear kernels constructed by bag-of-words and

bag-of-ngrams with SVM. Suzuki et al. (2003) adopted the hierarchical directed

acyclic graph kernel (Suzuki, Sasaki, and Maeda, 2006) with SVM as the kernel

machine for this task. They used a much larger taxonomy consisting of 150 ques-

tion classes for the Japanese questions. They designed four feature sets by means

of words, name entities and lexical information. The graph kernel on each feature

set outperforms the bag-of-words kernel and SNoW for a large margin, which sug-

gests the structure information plays an essential role for this task. Bloehdorn and

Moschitti (2007) modified Collins and Duffy’s tree kernel by incorporating semantic

knowledge of term similarities. This kernel allows flexible matching between tree

fragments with lexical nodes. Experimental results suggest that by combining both

syntactic and semantic information, this kernel achieves better performance than

traditional syntactic tree kernels.

Relation Extraction is a task to find various semantic relations between en-

tity pairs in the document. For example, the sentence “Larry Page was Google’s

founding CEO” conveys a semantic relation of “EMPLOYMENT.executive” be-

tween the entity pairs “Larry Page” (entity type: person) and “Google” (entity

type: company). Relation extraction is a challenging task in information extrac-

tion and essential for deep information understanding and management. Similar to

question classification, both feature based methods and kernel based methods have

been applied in this task.

For the feature based methods, Miller et al. (2000) incorporated the semantic

88

knowledge corresponding to entity pairs and relations into syntactic parse trees by

the tree augmentation algorithm. Then a statistical generative model similar to the

generative parsing algorithms (Collins, 1997) was employed to perform both entity

and relation recognition. Kambhatla (2004) proposed various syntactic features

and integrate those features into a Maximum Entropy (ME) model. Based on this

work, Zhou and Zhang (2007) further introduced syntactic features from phrase

chunking and semantic features using WordNet and name list. Instead of the ME

model, they adopted SVM as the classifier. Experimental results suggest that these

additional features are very effective. Zhao and Grishman (2005) also employed

diverse linguistic features, both syntactic and semantic. However, instead of using

the features as a single feature vector, they formalized each class of features as a

single kernel and combined these kernels as a composite kernel. The composite

kernel allows more flexibility to weight different types of features.

Tree kernel based methods have also been well studied for relation extraction.

Zelenko, Aone, and Richardella (2003) integrated sequence kernel in a minimum

shallow parse tree that covers the two entities. The kernel matches the subsequence

child nodes of a given node. Their experiments focus on detecting person-affiliation

and organization-location relations. This kernel was further extended and applied

on dependency trees by Culotta and Sorensen (2004). In this work, more syntactic

and semantic knowledge is introduced, i.e. part-of-speech tags, chunking tags,

entity types, entity levels, WordNet hypernyms and relation-argument tags. This

information is formed as a feature vector for each node in the dependency tree. Since

the parse trees are matched recursively from root down to the leaf nodes, it requires

the tree structure of the relation instances to be similar. Otherwise the recall may

be low. Bunescu and Mooney (2005) propose a shortest path kernel on dependency

structures based on the argument that the key information deciding the relations is

mainly collected by the path between the entities in the dependency structure. The

89

kernel is evaluated by counting the number of common word classes at each node

along the paths. However, they limited the two paths to be strictly the same length.

Therefore, although it achieves better performance than the kernel proposed by

Culotta and Sorensen (2004), it still suffers from the low recall. Reichartz, Korte,

and Paass (2009) addressed the restriction of the above two dependency kernels

by allowing the matching of every combination of nodes in the given tree pair as

well as allowing all possible subsequences of nodes along the shortest paths to be

matched. Experimental results on ACE corpora (Doddington et al., 2004) suggest

the relaxation of the constraints benefit both precision and recall. However, the

above reported kernels on dependency trees showed lower performance than the

feature based methods (Zhou and Zhang, 2007) on ACE corpora.

In order to better utilize the structure features embedded in the parse trees,

Zhang, Zhou, and Aw (2008) applied Collins and Duffy’s tree kernel on the phrase

parse trees. Their experiments reveal that by appropriately designing the feature

space explored by the tree kernels, the performance significantly improves against

the dependency tree kernels and the feature based methods on ACE 2003 and 2004

corpora. They also showed that the Shortest Path-enclosed Tree (PT) performed

best among the different tree structures. Nevertheless, one of the problems for PT

is that it is unable to capture the context information outside the shortest paths,

which may be useful for relation extraction. To verify this point, Zhou et al. (2007)

gathered some statistics on a small sample of ACE 2003 corpus. By categorizing

the relation instances into five types, they showed that the context information is

quite important for certain types of instances. In order to better use the context

information outside the PT structure, they also proposed a context sensitive tree

kernel to match the context around a subtree. The ancestor node path of a subtree

is considered as their context.

Based on previous tree based kernels, Nguyen, Moschitti, and Riccardi (2009)

90

proposed various composite kernels to combine the advantages of the different con-

volution kernels on different tree structures (phrase tree and dependency tree),

along with sequence kernels to capture semantic information. The composite kernels

can well excel the advantages of individual kernels and achieve the state-of-the-art

performance for relation extraction on ACE corpora.

The above discussion suggests that for both tasks the parse tree kernels can

outperform the feature based methods as long as the substructure spaces explored

by the kernels are appropriately designed. On the other hand, the parse tree may

not have been fully explored in the previous work, regardless of the approaches they

adopted, either feature based or kernel based. Although this deficiency has been

implicitly overcome by relaxing certain strict matching constraints or conducting

composite kernels from previous well designed kernels, it is still more attractive to

explore more meaningful substructures to benefit NLP applications. It is expected

that the tree sequence structures, both contiguous and non-contiguous, may provide

more information for recognizing the semantics behind the plain text. As a result,

the effectiveness of tree sequence based kernels will be verified on both tasks in the

following sections.

5.2 Experiments

To assess the effectiveness of the tree sequence based kernels proposed in Chap-

ter 4, we apply the TSKs in two NLP applications, i.e. Question Classification and

Relation Extraction.

Both tasks are addressed as a multi-class classification problem. For the multi-

class applications, we use the one vs. others strategy to select the optimal class with

the largest margin. To be consistent with previous works, the experimental results

of Question Classification is reported with Accuracy, while for Relation Extraction,

evaluations are conducted based on three metrics, i.e. Precision (P), Recall (R)

91

and F-measure (F). In our implementation, tree sequence kernels are integrated

into the tree kernel tool1 (Moschitti, 2006) based on the SVM classifier (Joachims,

1999).

For both tasks, we present the results of the tree kernel (Collins and Duffy,

2002) and Partial Tree Kernel (PTK) (Moschitti, 2006) on the phrase parse trees

as the two baselines. Along with the TSKs, all the kernels are normalized to remove

the bias caused by different sizes as follows:

K̂t(s)(T, T
′) =

Kt(s)(T, T
′)√

Kt(s)(T, T) ·Kt(s)(T ′, T ′)
(5.1)

5.2.1 Question Classification

In the experiment of question classification, we follow the standard experimen-

tal setup in the previous work (Moschitti, 2006) as follows: (1) we conduct the

classification task on coarse grained question taxonomy with six major categories:

Abbreviations, Descriptions, Entity, Human, Location and Number; (2) we also use

the same data (Li and Roth, 2002). The corpus consists of 5500 labeled instances

for training and 500 instances for testing. (3) Stanford parser is adopted to generate

the phrase parse tree structures (Klein and Manning, 2003).

We conduct experiments by using TSKµ, TSKτ and cTSK to compare the

effectiveness of different structure representations. The experimental results are

also compared with the two baselines of Collins and Duffy’s tree kernel and PTK.

Additionally, since cTSK can be considered as syntactic structures over lexical

sequences with arbitrary length, we also compare the proposed tree sequence based

kernels with the polynomial kernels (d = 2) on Bag-of-Ngrams (BoN) and Bag-

of-words respectively. This may reveal the effectiveness of TSKs in capturing the

structure features over lexical sequences.

1http://disi.unitn.it/moschitti/Tree-Kernel.htm

92

1k 2k 3k 4k 5.5k

BoW 78.0 84.0 85.8 86.6 87.2
BoN 74.8 81.6 82.8 86.4 88.0

TK(Collins and Duffy, 2002) 83.8 87.8 90.2 89.4 91.0
PTK(Moschitti, 2006) 81.4 86.8 89.4 89.4 90.8

cTSK 84.6 88.4 89.6 90.8 92.2
TSKµ 83.6 87.4 90.0 89.6 91.4
TSKτ 84.6 88.4 90.0 91.2 92.4

Table 5.1: Accuracy of Question Classification

All the experiments are conducted on various sizes of training data from 1k to

the whole set with the same division in the original data set. We empirically set

C = 10 for the SVM classifier. The penalizing factors for TK, PTK, TSKµ, TSKτ

and cTSK are optimized by the 5-fold cross validation on the 5.5k training corpus.

Finally, we choose the parameters λ = 0.2 for TK; µ̂ = 0.72 and λ = 0.1 for PTK;

µ = 0.6 and λ = 0.2 for cTSK; λ = 0.25 and µ = 0.05 for TSKµ; λ = 0.15 and

τ = 0.25 for TSKτ .

The experimental results are presented in Table 5.1. We analyze the results

from two perspectives:

Using the whole training data:

• It can be observed that cTSK and the TSKs outperform TK and PTK

when using the entire training corpus. Specially, TSKτ achieves the

optimal performance. It outperforms TK by 1.4 point of accuracy and

outperforms PTK by 1.6 point. This indicates the advantage of the

additional tree sequence features in question classification. Addition-

ally, cTSK outperforms TK and PTK by 1.2 point and 1.4 point of

accuracy respectively. This verifies the additional benefit brought by

2Besides the factor λ to penalize the number of production rules, PTK also employs the decay

factor µ̂ to penalize the length of the child sequence. Readers may refer to Moschitti (2006) for

more details of this parameter.

93

the tree sequence structure features mostly comes from the contiguous

tree sequences and the improvement from the non-contiguous tree se-

quences could be very limited. However, TSKµ outperforms TK and

PTK by only a little amount of accuracy when using larger training

data (4k & 5.5k), which suggest that penalizing the number of gaps for

the non-contiguous tree sequences is better than penalizing the number

of subtrees for question classification.

• In addition, PTK achieves slightly lower performance than TK. This

finding is consistent with the previous results in Moschitti (2006), which

suggests that PTK is slightly less accurate than TK on phrase parse

trees.

• Furthermore, both TK and the cTSK/TSKs achieve better performance

than the polynomial kernel only using lexical information (BoN/BoW).

This indicates the syntactic features in phrase parse tree are very useful

for detecting question types.

Using small training data:

• By using only a part of the training data, we find that most of the results

are consistent with the above findings by using the entire training data,

except when the data volume increases from 2k to 3k. When using 3k

data, cTSK outperforms PTK but underperforms TK. At the same time,

we find that when using 3k data, the result of BoN is also unusual. The

improvement of 3k against 2k is rather lower (+1.2) than using other

amount (2k/1k+6.8; 4k/3k+3.6; 5k/4k+3.6). It seems the contiguous

lexical features in the additional 1k of the 3k data are not very effective.

This may also account for the lower performance of cTSK in 3k data.

• In addition, when using small training data (1k & 2k), TSKµ underper-

94

forms TK. It’s easy to attribute this result to the fact that the additional

large structures matched by TSKs tend to be very sparse in small data.

However, we also notice that TSKτ outperforms TK in small data. The

inconsistency between the performance of TSKµ and TSKτ in small data

when compared with TK indicates that the tree sequence with many gaps

may not well contribute to the classification accuracy and the penalty of

τ is essential for penalizing those structures.

5.2.2 Relation Extraction

The experimental settings of relation extraction follow Zhang, Zhou, and Aw (2008),

since it reports the stat-of-the-art performance using tree kernels. (1) We use the

same corpus (ACE 2004, LDC2005T09) with 348 documents and 4400 relation

instances. The corpus consists of 7 types of entities, 7 major relation types and

23 relation subtypes. (2) We also employ Charniak parser (Charniak, 2001) to

generate the parse tree. (3) We extract all entity mentions appearing in the same

sentences as relation candidate pairs.

NNVBD

VP

NP

NPNP

NNPOS

Page founding
,
sGoogle

NN

Larry

NP

S

JJ

was CEO

NN

Figure 5.1: Parse tree instance for relation extraction

Zhang, Zhou, and Aw (2008) reported that using Collins and Duffy’s tree

kernel on the shortest path-enclosed tree (PT, the dashed line area in Fig. 5.1,

given “Larry Page” and “Google” are identified as entities.) outperforms using it

95

on the complete constituent tree (MCT3, the entire subtree shown in Fig. 5.1) by

a large margin. They attributed this observation to the possibility that the left

and right context information of MCT may bring noisy features. However, Zhou

et al. (2007) verified that the context information benefited certain relation types

by analyzing a sample in ACE 2003 corpus. Therefore, it is quite possible that

the poor performance of MCT stems from the lack of capability of tree kernel to

capture the context information provided by MCT rather than the ineffectiveness

of the context. On the other hand, TSKs are designed to capture more meaningful

structure information, especially the structure features over large context.

NNVBD

VP

NP

NPNP

NNPOS

Page founding
,
sGoogle

NN

Larry

NP

S

JJ

was CEO

NN

E1-N-PER

E2-N-ORG E-P-PER

(a) Flat integration

NNVBD

VP
NP

NPNP

NNPOS

Page founding
,
sGoogle

NN

Larry

NP

S

JJ

was CEO

NN

PER

NAM

E1

ORG

NAM

E2

PER

PRE

E

(b) Multiple layer integration

Figure 5.2: Illustration of Tree Sequence Structures.

Originally, the candidate entities are encapsulated with five entity types (i.e.

person, organization, location, facility and geo-political entity) and three entity

mentions (i.e. names, nomial expressions and pronouns). We propose two methods

to integrate the entity information by augmenting the parse trees with the entity

annotations. One is to use the combination of the two levels of annotation as a

flat grammar tag (flat). The other is to interpret it as a multi-layer tree structure

(multi). As shown in Fig. 5.2(a), the flat representation of “E1-N-PER” denotes

that the current phrase is the 1st entity, its entity type is “PERSON” and its

3MCT is the minimal constituent rooted by the nearest common ancestor of the two entities

under consideration while PT is the minimal portion of the parse tree (may not be a complete

subtree) containing the two entities and their internal lexical words.

96

mention level is “NAME”, and likewise for the second entity. On the contrary, the

multi-layer representation integrate the same information in the same parse tree as

multiple levels as shown in Fig. 5.2(b).

In addition, the anchored tree sequence kernels (aTSKs) are designed to capture

the context information around the anchored structures, which is expected to better

facilitate relation extraction on the utilization of context features. Therefore, the

experiments in this section will not only include the results on the PT structures,

but also include the results on the MCT structures. The results are then compared

between the proposed kernels and the baseline kernels on MCT and PT respectively.

For aTSKs, we only verify their effectiveness in the multi-layer style for inte-

grating the entity information. Thus, the anchored structures are defined as the

three-layer entity annotations excluding the structures below the entity types. For

instance, the anchored structure of the previous example is the three-level subtree

“(Entity (NAME ORG))” in the original tree structure. For the additional map-

ping system MaTSK1 and MaTSK2 , the strict matching is conducted on the first two

levels. In this case, the matching of “(Entity NAME)” is compulsory for aTSK1

and aTSK2.

In the experiment, we empirically set C = 7 for SVM. A small amount of data

is used as the development set to tune the kernel parameters with respect to the

F-score. In addition, all the experiments are done with a 10-folds cross validation

on the remaining corpus. In each experiment, the corpus is divided into 10 equal

sized portions. In each fold, one of the portions is selected to be the testing data

and the remaining to be the training data. In case of the statistical significance

test is required, a paired Student’s t-test is carried out at 0.05 level of significance.

The results on MCT and PT are presented in Table 5.2 and Table 5.3 respec-

tively. We analyze the results from the following aspects:

• In both tables, we find that all TSKs (TSKγ,TSKµ,TSKτ) significantly out-

97

P R F

flat

TK 66.64 58.76 62.42
PTK 64.63 63.32 63.94
cTSK 64.20 64.55 64.35
TSKγ 66.44 63.87 65.11
TSKµ 66.68 63.50 65.03
TSKτ 66.57 64.13 65.31

mul

TK 65.82 62.85 64.27
PTK 49.15 52.28 50.65
cTSK 65.85 66.27 66.03
TSKγ 66.75 66.64 66.67
TSKµ 67.44 67.06 67.22
TSKτ 66.77 66.71 66.71

mul

aTK 67.70 68.50 68.08
aTSKγ 70.43 68.50 69.43
aTSKµ 73.50 67.50 70.35
aTSKτ 73.91 67.71 70.65
aTSK1γ 68.14 67.50 67.80
aTSK1µ 68.37 64.22 66.21
aTSK1τ 69.31 63.90 66.48
aTSK2γ 70.60 71.31 70.94
aTSK2µ 68.70 69.36 69.01
aTSK2τ 71.28 69.22 70.22

Table 5.2: Performance for Relation Ex-
traction on MCT

P R F

flat

TK 69.54 66.34 67.88
PTK 67.93 65.66 66.76
cTSK 68.89 68.36 68.60
TSKγ
TSKµ 71.85 67.59 69.634

TSKτ

mul

TK 67.11 69.70 68.36
PTK 45.81 59.69 51.73
cTSK 70.99 68.85 69.88
TSKγ 71.95 68.45 70.13
TSKµ 73.56 68.19 70.76
TSKτ 73.11 68.33 70.62

mul

aTK 67.59 71.19 69.32
aTSKγ 73.34 69.89 71.55
aTSKµ 72.61 70.87 71.70
aTSKτ 72.55 71.56 72.03
aTSK1γ 70.99 65.27 67.99
aTSK1µ 70.61 65.48 67.93
aTSK1τ 70.97 65.27 67.98
aTSK2γ 69.15 72.10 70.57
aTSK2µ 69.62 71.38 70.47
aTSK2τ 69.24 71.66 70.41

Table 5.3: Performance for Relation Ex-
traction on PT

perform TK and PTK in F-score for all configurations (flat/multi and MCT/

PT). Specifically, in the multi-layer style, TSK achieves the best F-score when

penalizing the number of subtrees with factor µ for both MCT (67.22) and

PT (70.76) structures. TSKµ achieves the improvement in F-score of +2.95

for MCT and +2.40 on PT against TK. In addition, cTSK in the multi-layer

style significantly outperforms TK and PTK in F-score for both MCT and

PT structures as well. Specifically, cTSK in the multi-layer style achieves the

improvement in F-score of +1.76 for MCT and +1.52 for PT against TK.

However, the improvement of TSKs against cTSK is not statistically signifi-

98

cant in all configurations.

• In addition, we also observe that the multi-layer representation is more ef-

fective to integrate the entity information for TSKs/cTSK/TK than the flat

representation. Furthermore, compared with the flat integration, TSKs/cTSK

gain more improvement against TK when using the multi-layer representation

since it can introduce more structure information to benefit TSKs/cTSK.

• Due to the effectiveness of the multi-layer representation demonstrated by

TSK, we further conduct experiments for the anchored tree sequence kernels

(aTSKs) using the multi-layer style. From both tables, it can be observed

that all aTSKs (aTSKγ,aTSKµ,aTSKτ) significantly outperform the corre-

sponding TSKs in F-score for both MCT and PT structures. Therefore, to

capture the tree sequence features with their relative positions against the

entity structures can further benefit the identification of the entity relations.

This observation suggests that the spatial relationship against the anchored

entity pairs is very important to differentiate the structure features. How-

ever, the additional mapping systems of MaTSK1 and MaTSK2 do not show any

advantages against the mapping system MaTSK. This result reveals that the

additional constraints of matching the entity structures are so strict that the

corresponding kernels may lose certain meaningful features across instances

with different entity types.

• In addition, we also apply the similar mapping system ofMaTSK on the Collins

and Duffy’s tree kernel, which requires the single subtree structures to be

4By tuning the kernel parameters in the development set, we obtained the best values of γ,µ

and τ for the respective kernels with flat-layer style on the PT structure all equal to 1. Therefore,

no additional penalty is incurred for all the three kernels except the original λ factor. As a result,

TSKγ,TSKµ,TSKτ achieves the same scores for this setting.

99

matched within the corresponding segment between the parse tree pair.5 This

kernel is denoted as “aTK” in both tables. For both MCT and PT, we can

observe that aTK outperforms TK in the multi-layer representation, which

further verifies the effectiveness of the constraint to match the structures

according to their positions. At the same time, we can also detect the im-

provement of aTSKs against aTK for both MCT and PT. This also reinforces

the advantage of the tree sequence structures over the single tree structures

in relation extraction.

• Although cTSK and TSKs are able to capture more meaningful structure

features by using the multi-layer integration of entity structures, it is not the

case for PTK. When using the multi-layer representation, PTK suffers from

a huge drop in performance. We may address this issue by comparing with

TK, since both PTK and TK explore the single tree structures. Generally,

PTK explores a much larger feature space. Therefore, the number of noisy

features in PTK is much more than TK. By matching the entity information

using multiple layers instead of a single tag, the number of noisy features

is further enlarged, i.e. when the noisy structure and the multi-layer entity

structure are concatenated to form a single tree. Therefore, the noisy features

may gain more weight to play an essential role, which will limit the impact of

the good features. In order to verify the above observation and explanation,

we further constrain the feature space explored by PTK. Three variants of

PTK (PTKc1, PTKc2, PTKc3) with constraint feature spaces are proposed.

5Note that the additional mapping systems of MaTSK1
and MaTSK2

are inappropriate to be

applied in the single tree based kernels for relation extraction. That is because these two extensions

require the anchored entities to be matched and the entities are possible to be non-contiguous.

Therefore, the feature space of covering the two entities at the same time could be very sparse,

which fails to achieve the goal of these extended kernels. As a result we do not apply the extended

mapping systems on Collins and Duffy’s tree kernel.

100

P R F

PTK 49.15 52.28 50.65
PTKc1 60.66 55.12 57.73
PTKc2 61.89 57.95 59.84
PTKc3 63.72 57.58 60.47
TK 65.82 62.85 64.27

Table 5.4: Constraint PTKs on MCT

P R F

PTK 45.81 59.69 51.73
PTKc1 61.09 57.78 59.35
PTKc2 68.40 57.78 62.37
PTKc3 55.83 61.48 58.49
TK 67.11 69.70 68.36

Table 5.5: Constraint PTKs on PT

PTKc1 constrains the feature space by allowing the child sequences to be

match iff their parents have same number of child nodes. Based on PTKc1,

PTKc2 further requires the matched child nodes have the same ordinal rank

in the child sequences of their parents. PTKc3 matches the child sequences

iff the production rules rooted at their parents are identical. As a result, the

feature spaces of the variants are more constrained compared with original

PTK while less constraint compared with TK. In other words, the structure

spaces explored are the subsets of the original PTK, while are the supersets of

TK. As shown in Table 5.4 and Table 5.5, the variants of PTK achieves better

performance on both MCT and PT compared with PTK but less than TK,

which suggests that the multiple level representation exemplifies the influence

of the large amount of noisy features in PTK.

• Furthermore, by comparing Table 5.2 and Table 5.3, we find MCT suffers from

a large performance drop against PT, which is also found in the experiments

of Zhang, Zhou, and Aw (2008). Although this deficiency of MCT is still found

in TSKs and aTSKs, the actual gap between MCT and PT is narrowing. This

observation suggests that the tree sequence features are more differentiable

so that the noisy features in the context of MCT are overwhelmed by those

useful features.

• The best F-score (72.03) is achieved by using aTSKτ in themulti-layer style on

PT. aTSKτ significantly improves the performance against the two baselines

101

TK (+3.67) with multi style and PTK (+5.27) with flat style, which reveals

the advantages of the kernels which can highlight the anchored structures in

tree sequences.

5.3 Discussion

Compared with the task of question classification, relation extraction gains more

improvement by using TSKs/aTSKs. The effectiveness of TSKs/aTSKs on Relation

extraction can be attributed to the fact that TSKs/aTSKs can capture multiple

items in a non-contiguous tree sequence simultaneously. Relation Extraction is

a task focusing on paired relational constituents, which are highly likely to be

disjointed. Therefore, it will be useful to capture patterns consisting of information

over both entities as a single structure, which cannot be captured by single tree

based kernels. As shown in Fig 5.3, the entity pair in the given context may be

separated by a large gap. To match both entities using a single tree structure is

hard to achieve, since large structure is sparse in the data set. TSKs/aTSKs may

address this issue by extracting features of non-contiguous subtree sequence. As

a result, TSKs/aTSKs, which captures patterns across both entities may benefit

those tasks with anchored text such as relation extraction.

Unlike relation extraction, question classification may consider non-contiguous

NPNP

Entity 1 Entity 2

S

... NPNP

Entity 1 Entity 2

...

Figure 5.3: Non-contiguous tree sequence features

102

patterns to be less important, since it is sometimes unnecessary to deeply explore

the non-contiguous patterns for certain question sentences. For example, the ques-

tion sentences beginning with single inquiry words “where” and “when” are easy

to be correctly categorized. On the other hand, the improvement on classification

accuracy still suggests that some question sentences indeed receive benefit from the

non-contiguous tree sequence features obtained from TSKs.

In addition, one of the goals to design aTSKs is to employ the structure fea-

tures over the context around the anchored structures. Unfortunately, we cannot

detect any improvement of MCT against PT for the corresponding TSKs/aTSKs in

relation extraction. This finding seemingly suggests that the context information

in MCT still may not be well utilized by the proposed TSKs/aTSKs. On the other

hand, Zhou et al. (2007) studied the necessary tree spans on a small sample of

ACE 2003 corpus and classified the relation instances into five categories. They

showed that only the “predicate-linked and others” type may benefit from the con-

text information and this type only takes a small amount of relation instances (19

out of 100). Therefore, it is quite understandable that kernels on MCT underper-

form kernels on PT. It only benefits a few instances to use the context information,

while possibly bringing noisy features for most of other instances. Consequently,

a universal model for different types of relation instances may not well facilitate

those small amount of instances. In addition, the MCT structure may still contain

some noisy structures, which may compromise the performance.

5.4 Summary

In this chapter, we applied the proposed tree sequence kernels (cTSK/TSKs/aTSKs)

on two NLP applications, i.e. question classification and relation extraction. The

key characteristic of the proposed cTSK and TSKs is that the captured structure

features are enlarged from the structure of a single tree to the structure of multiple

103

trees (tree sequence). Experimental results on question classification and relation

extraction suggest that the proposed cTSK/TSKs outperform the single tree based

kernels (TK/PTK) in both applications, which verifies the advantages of the ad-

ditional tree sequence features. Specifically, the structure of tree sequence more

facilitates the task that focuses on disconnected constituents modeling, i.e. relation

extraction. Leveraging TSKs, the proposed aTSKs are applied in relation extraction

as well. By means of aTSKs, a further performance boosting is detected compared

with the corresponding TSKs, which suggests the constraint of preserving the rel-

ative positions to the anchored entities for the tree sequence features is beneficial

to relation extraction and it is effective of aTSKs to capture this kind of con-

straint. Experimental results also suggest that the extended constraints employed

by aTSK1s and aTSK2s are too strict to capture the various effective structure fea-

tures and the corresponding kernels cannot compete with aTSKs which have less

constraint in relation extraction.

104

105

Chapter 6

A Kernel based Statistical Model

for Bilingual Subtree Alignment

In this Chapter, the effectiveness of kernels over multiple trees will be verified

on bilingual applications, where the input data are bilingual parse trees. Con-

sequently, we name the corresponding kernel as Bilingual Tree (Sequence) Kernels

(BTKs/BTSKs). The specific application that the kernels are applied in is bilingual

subtree alignment. To apply BTKs/BTSKs in this task, we propose a kernel based

statistical alignment model. In this model, BTKs/BTSKs over a variety of feature

spaces are proposed to capture the structural similarities across a pair of syntactic

translational equivalences. Along with BTKs/BTSKs, various lexical and syntactic

structural features are proposed to capture the correspondence between bilingual

subtrees using a polynomial kernel. We then attempt to combine the polynomial

kernel and BTKs/BTSKs to construct a composite kernel. The bilingual subtree

alignment task is considered as a binary classification problem. We employ a ker-

nel based classifier with the composite kernel to classify each candidate of subtree

pair as aligned or unaligned. Then greedy search is performed according to the

definition of subtree alignment within the space of candidates classified as aligned.

106

This chapter is organized as follows: In Section 6.1, the task of bilingual sub-

tree alignment is formally defined, followed by an introduction of the background

and the related work of the task. In Section 6.3, we design several bilingual tree (se-

quence) kernel feature spaces. In Section 6.4, some heuristic features are proposed.

In Section 6.5, we propose the kernel based alignment model which combines the

feature based polynomial kernel and BTKs/BTSKs over parse trees as composite

kernels. Experiments are carried out in two folds. First, the subtree alignment

results are evaluated. Second, the aligned subtrees from the best aligner are em-

ployed as translation rules in the state-of-the-art machine translation systems and

the BLEU score (Papineni et al., 2002) (a translation metric) is measured for the

translation quality. These results are presented in Section 6.6 and Section 6.7 fol-

lowed by the summary of this chapter.

6.1 Task Definition

A subtree alignment process pairs up the subtrees across bilingual parse trees,

whose lexical leaf nodes covered are translational equivalent, i.e. sharing the same

semantics. Grammatically, the task conducts links between syntactic constituents

with the maximum tree structures generated over their word sequences in bilingual

tree pairs.

In general, subtree alignment can also be interpreted as conducting multiple

links across internal nodes between sentence-aligned tree pairs as shown in Fig. 6.1.

The aligned subtree pairs usually maintain a non-isomorphic relation with each

other especially for higher layers. We utilize the same criteria as Tinsley et al.

(2007) in our study of subtree alignment as follows:

• a node can only be linked once;

• descendants of a source linked node may only link to descendants of its target

107

S

VBA

(NULL) (me)(give)(pen) (.)

P WJRVGNG

VO

Give topenthe me .

VBP DT NN TO PRP PUNC.

NP PP

VP

S

Ts:

Tt:

Figure 6.1: Subtree alignment as referred to Node alignment

linked counterpart;

• ancestors of a source linked node may only link to ancestors of its target

linked counterpart.

where the term “node” refers to the root of a subtree, which can be used as a

representative of the subtree.

6.2 Background and Related Work

Recent research in Statistical Machine Translation (SMT) tends to incorporate

more linguistically grammatical information into the translation model known as

linguistically motivated syntax-based models. To develop such models, the phrasal

structure parse tree is usually adopted as the representation of bilingual sentence

pairs either on the source side (Huang, Knight, and Joshi, 2006; Liu, Liu, and Lin,

108

2006) or on the target side (Galley et al., 2006; Marcu et al., 2006), or even on both

sides (Graehl and Knight, 2004; Zhang et al., 2007). Most of the above models either

construct a pipeline to transform from/to tree structure, or synchronously generate

two trees in parallel (i.e., synchronous parsing). Both cases require syntactically

rich translational equivalences to handle non-local reordering. However, most cur-

rent works obtain the syntactic translational equivalences by initially conducting

alignment on the word level. To employ word alignment as a hard constraint for

rule extraction has difficulty in capturing such non-local phenomena and will fully

propagate the word alignment error to the later stage of rule extraction.

Alternatively, some initial attempts have been made to directly conduct syn-

tactic structure alignment. As mentioned in Tinsley et al. (2007), the earliest

work usually constructs the structure alignment by hand, which is time-consuming.

Recent research tries to automatically align the bilingual syntactic subtrees.

Early approaches pay much attention to conduct alignment for dependency

structures. Among them, Matsumoto, Ishimoto, and Utsuro (1993), Meyers, Yan-

garber, and Grishman (1996), Yamamoto and Matsumoto (2000) propose methods

mainly for obtaining bilingual lexical knowledge or producing translation templates

for EBMT by heuristically performing some similarity computation techniques.

Watanabe, Kurohashi, and Aramaki (2000) describe a method which initially en-

sures word correspondences and then confirms phrasal correspondences based on

word correspondences. Menezes and Richardson (2001) develop a “best-first” align-

ment method which iteratively applies the lexical alignment rules and transfers

mapping rules on a relation based tree structure. Eisner (2003) proposes a tree-

mapping (tree-to-tree) framework targeting the unique translation strategy named

Statistical Tree Substitution Grammar (STSG) in which the mapping items in

terms of elementary trees are not subtrees but subgraphs with frontier nodes to be

expanded.

109

As for the work in the phrase structure trees, Imamura (2001) presents a hi-

erarchical phrase alignment method with constituent based parsing. However, the

heuristics defined in this work are tightly dependent on word alignment and only

allow the spans with identical grammar node categories to be aligned regardless of

the translational structure divergence across languages. Gildea (2003) proposes a

method for word to word alignment by aligning non-isomorphic phrase-structure

trees using a stochastic clone operation which allows the modification of the tree

structure. Groves, Hearne, and Way (2004) present a rule-based aligner by means

of prior conducted word alignments. Their algorithm proceeds from the aligned

lexical terminal nodes in a bottom-up fashion, performing a best-first search with

heuristics.

However, most of these works suffer from the following problems. Firstly,

the alignment is conducted based on heuristic rules, which may lose extensibility

and generality in spite of accommodating some common cases. Secondly, various

similarity computation methods are used based merely on lexical translation prob-

abilities regardless of the structural features. This may be due to the fact that the

syntactic structures in a parse tree pair are hard to describe using plain features. In

addition, explicitly utilizing syntactic tree fragments results in exponentially high

dimensional feature vectors, which is hard to compute. We believe the structure

information is an important issue to capture the non-local structural divergence

of languages by modeling beyond the plain text. In order to utilize the structure

features embedded in the parse trees, we will apply BTKs/BTSKs on the subtree

alignment task to explore the syntactic structure features.

6.3 Structure Space for BT(S)Ks

The syntactic translational equivalences under BTKs/BTSKs are evaluated with

respect to the substructures factorized from the candidate subtree pairs. In this

110

section, we propose different substructures to facilitate the measurement of syn-

tactic similarity for subtree alignment and illustrate those substructures on BTKs.

Although the substructures are only illustrated for BTKs, some of the substruc-

tures can be explored by BTSKs as well and it is quite obvious to extend those

substructures from single tree (BTKs) to tree sequence (BTSKs). In addition,

since the proposed BTKs/BTSKs can be computed by individually evaluating the

source and target monolingual tree kernels, the definition of the substructure can

be simplified to base only on monolingual subtrees.

Subset Tree

Subset Tree (SST) is the substructure explored by Collins and Duffy’s tree

kernel. An SST is any subgraph, which includes more than one non-terminal node,

with the constraint that the entire rule productions are included. Fig. 6.2 shows

an example of the SSTs decomposed from the source subtree rooted at VP*.

Root directed Subset Tree

Collins and Duffy’s tree kernel achieves decent performance using the SSTs

due to the rich exploration of syntactic information. However, the bilingual subtree

alignment task requires strong capability of discriminating the subtrees with their

roots across adjacent generations, because those candidates share many identical

SSTs. As illustrated in Fig. 6.2, the source subtree rooted at VP*, which should be

aligned to the target subtree rooted at NP*, may be likely aligned to the subtree

rooted at PP*, which shares quite a similar context with NP*. It is also easy to

show that the latter shares all the SSTs that the former obtains. In consequence,

the values of the SST based kernel function are quite similar between the candidate

subtree pair rooted at (VP*,NP*) and (VP*,PP*).

In order to effectively differentiate the candidates like the above, we propose

the Root directed Subset Tree (RdSST) by encapsulating each SST with the root

of the given subtree. As shown in Fig. 6.2, a substructure is considered identical to

111

NNDT

NP

the crackdown

NNVV

VP

(smuggling)(crackdown)

NNVV

VP

(crackdown)

NNVV

VP

(smuggling)

NNVV

VP

VV

(crackdown)

NN

(smuggling)

NN

smuggling

NNDT

NP

NP

the crackdown

NN

smuggling

NP

...

SST

RdSST

RgSST

NNDT

NP

PPNP

NNIN

the smugglingoncrackdown

NNDT

NP

PPNP

NNIN

the oncrackdown

NP

PPNP

NP

PPNP

NNIN

...

NN

Ts:

Tt: NN

POS

DT

PP*

NP*

PPNP

INNNS

NNIN

JJ

NNVV

VP*NT

DCEVP

NNCP

NP

(last year) (of)(smuggling)(crackdown) (result)

last results'syear of the smugglingoncrackdown

NP

NP

NP

Figure 6.2: Illustration of SST, RdSST and RgSST

the given examples, when the SST is identical and the root tag of the given subtree

is NP. As a result, the kernel function (Eq. 3.21) can be redefined as:

Kt(T, T
′) =

∑

n∈NT

∑

n′∈N ′
T

Λ(n, n′)I(r, r′)

= I(r, r′)
∑

n∈NT

∑

n′∈N ′
T

Λ(n, n′)
(6.1)

where r and r′ are the root nodes of the subtree T and T ′ respectively. The indicator

function I(r, r′) equals to 1 if r and r′ are identical, and 0 otherwise. Although

112

defined for individual SST, the indicator function can be evaluated outside the

summation, without increasing the computational complexity of the kernel function.

Root generated Subset Tree

Some grammatical tags (NP/VP) may have identical tags as their parents

or children which may make RdSST less effective. Consequently, we step further

to propose the substructure of Root generated Subset Tree (RgSST). An RgSST

requires the root node of the given subtree to be part of the substructure. In other

words, all substructures should be generated from the root of the given subtree

as presented in Fig. 6.2. Therefore the kernel function can be simplified to only

capture the substructure rooted at the root of the subtree.

Kt(T, T
′) = Λ(r, r′) (6.2)

where r and r′ are the root nodes of the subtree T and T ′ respectively. The time

complexity is reduced to O(|NS|+ |NS′ |+ |NT |+ |NT ′ |).

Root only

More aggressively, we can simplify the kernel to only measure the common

root node without considering the complex tree structures. Therefore the kernel

function is simplified to be a binary function with time complexity O(1).

Kt(T, T
′) = I(r, r′) (6.3)

Although those substructures are exemplified for BTKs, in fact SST and RdSST

can be applied for BTSKs as well. When applying SST to BTSKs, the substructures

explored are just common tree sequence structures. When applying RdSST to BT-

SKs, the substructures are the common tree sequences as well as a hard constraint

to match the root nodes of the candidate subtree pairs.

113

6.4 Heuristic Feature Functions

Besides kernels over parse trees, we introduce various heuristic lexical and structural

feature functions. The lexical features with directions are defined as conditional fea-

ture functions based on the conditional lexical translation probabilities. The plain

syntactic structural features can deal with the structural divergence of bilingual

parse trees in a more general perspective.

6.4.1 Lexical and Word Alignment Features

In this section, we define seven lexical features to measure semantic similarity of a

given subtree pair.

Internal Lexical Features

We define two lexical features with respective to the internal span of the subtree

pair.

φ1(S|T) =


 ∏

v∈in(T)

∑

u∈in(S)

P (u|v)




1
|in(T)|

(6.4)

φ2(T |S) =


 ∏

u∈in(S)

∑

v∈in(T)

P (v|u)




1
|in(S)|

(6.5)

where P (v|u) refers to the lexical translation probability from the source word u to

the target word v within the subtree spans, while P (u|v) refers to that from target

to source; in(S) refers to the word set for the internal span of the source subtree

S, while in(T) refers to that of the target subtree T .

Internal-External Lexical Features

These features are motivated by the fact that lexical translation probabilities

within the translational equivalence tend to be high, and that of the non-equivalent

114

counterparts tend to be low.

φ3(S|T) =


 ∏

v∈in(T)

∑

u∈out(S)

P (u|v)




1
|in(T)|

(6.6)

φ4(T |S) =


 ∏

u∈in(S)

∑

v∈out(T)

P (v|u)




1
|in(S)|

(6.7)

where out(S) refers to the word set for the external span of the source subtree S,

while out(T) refers to that of the target subtree T .

Internal Word Alignment Features

The word alignment links account much for the co-occurrence of the aligned

terms. We define the internal word alignment features as follows:

φ5(S, T) =

∑
v∈in(T)

∑
u∈in(S) δ(u, v) · (P (u|v) · P (v|u))

1
2

(|in(S)| · |in(T)|)
1
2

(6.8)

where

δ(u, v) =




1 if (u, v) is aligned

0 otherwise

(6.9)

The binary function δ(u, v) is employed to trigger the computation only when

a word aligned link exists for the two words (u, v) within the subtree span.

Internal-External Word Alignment Features

Similar to the lexical features, we also introduce the internal-external word

alignment features as follows:

φ6(S, T) =

∑
v∈in(T)

∑
u∈out(S) δ(u, v) · (P (u|v) · P (v|u))

1
2

(|out(S)| · |in(T)|)
1
2

(6.10)

φ7(S, T) =

∑
v∈out(T)

∑
u∈in(S) δ(u, v) · (P (u|v) · P (v|u))

1
2

(|in(S)| · |out(T)|)
1
2

(6.11)

where

δ(u, v) =




1 if (u, v) is aligned

0 otherwise

(6.12)

115

6.4.2 Online Structural Features

In addition to the lexical correspondence, we also capture the structural divergence

by introducing the following tree structural features.

Span difference

Translational equivalent subtree pairs tend to share similar length of spans.

Thus the model will penalize the candidate subtree pairs with largely different

length of spans.

ϕ1(S, T) =

∣∣∣∣
|in(S)|
|in(S)| −

|in(T)|
|in(T)|

∣∣∣∣ (6.13)

S and T refer to the entire source and target parse trees respectively. There-

fore, |in(S)| and |in(T)| are the respective span length of the parse tree used for

normalization.

Number of Descendants

Similarly, the number of the root’s descendants of the aligned subtrees should

also correspond.

ϕ2(S, T) =

∣∣∣∣
|R(S)|
|R(S)| −

|R(T)|
R(|T)|

∣∣∣∣ (6.14)

where R(.) refers to the descendant set of the root to a subtree.

Tree Depth difference

Intuitively, translational equivalent subtree pairs tend to have similar depth

from the root of the parse tree. We allow the model to penalize the candidate

subtree pairs with quite different distance of path from the root of the parse tree

to the root of the subtree.

ϕ3(S, T) =

∣∣∣∣
Depth(S)

Height(S)
− Depth(T)

Height(T)

∣∣∣∣ (6.15)

6.5 The Alignment Model

Given feature spaces defined in the last two sections, we propose a two phase subtree

alignment model as follows:

116

In the first phase, a kernel based classifier, SVM in our study, is employed to

classify each candidate subtree pair as aligned or unaligned. The feature vector of

the classifier is computed using a composite kernel:

K (S · T, S ′ · T ′) = θ0K̂p(S · T, S ′ · T ′) +
K∑

i=1

θiK̂
i
BT (S)K(S · T, S ′ · T ′) (6.16)

K̂p(·, ·) is the normalized form of the polynomial kennel Kp(·, ·), which is a

polynomial kernel with the degree of 2, utilizing the plain features. K̂ i
BT (S)K(·, ·)

is the normalized form of K i
BT (S)K(·, ·), exploring the corresponding substructure

space. The composite kernel can be constructed using the polynomial kernel for

plain features and various BT(S)Ks for tree structure by linear combination with

coefficient θi, where
∑K

i=0 θi = 1.

In the second phase, we adopt a greedy search with respect to the alignment

probabilities. Since SVM is a large margin based discriminative classifier rather

than a probabilistic model, we introduce a sigmoid function to convert the distance

against the hyperplane to a posterior alignment probability as follows:

P (a+|S, T) =
1

1 + e−D+
(6.17)

P (a−|S, T) =
1

1 + e−D−
(6.18)

whereD+ is the distance for the instances classified as aligned andD− is that for the

unaligned. We use P (a+|S, T) as the confidence to conduct the sure links for those

classified as aligned. On this perspective, the alignment probability is suitable as a

searching metric. The search space is reduced to that of the candidates classified

as aligned after the first phase.

6.6 Experiments on Bilingual Subtree Alignment

In order to evaluate the effectiveness of the alignment model and its capability in

the applications requiring syntactic translational equivalences, we employ two cor-

117

pora to carry out the subtree alignment evaluation. The first is HIT gold standard

English Chinese parallel tree bank referred as HIT corpus1. The other is the au-

tomatically parsed bilingual tree pairs selected from FBIS corpus (allowing minor

parsing errors) with human annotated subtree alignment.

6.6.1 Data Preparation

HIT corpus, which is collected from English learning text books in China as well as

example sentences in dictionaries, is used for the gold standard corpus evaluation.

The word segmentation, tokenization and parse tree in the corpus are manually

constructed or checked. The corpus is constructed with manually annotated sub-

tree alignment. The annotation strictly preserves the semantic equivalence of the

aligned subtree pair. Only sure links are conducted in the internal node level, with-

out considering possible links adopted in word alignment. A different annotation

criterion of the Chinese parse tree, designed by the annotator, is employed. Com-

pared with the widely used Penn TreeBank annotation, the new criterion utilizes

some different grammar tags and is able to effectively describe some rare language

phenomena in Chinese. The annotator still uses Penn TreeBank annotation on

the English side. The statistics of HIT corpus used in our experiment is shown in

Table 6.1. We use 5000 sentences for experiment and divide them into three parts,

with 3k for training, 1k for testing and 1k for tuning the parameters of kernels and

thresholds of pruning the negative instances.

Most linguistically motivated syntax based SMT systems require an automatic

parser to perform the rule induction. Thus, it is important to evaluate the subtree

alignment on the automatically parsed corpus with parsing errors. In addition,

HIT corpus is not applicable for MT experiment due to the problems of domain

1HIT corpus is designed and constructed by HIT-MITLAB.

http://mitlab.hit.edu.cn/index.php/resources.html

118

Chinese English

of Sentence pair 5000
Avg. Sentence Length 12.93 12.92

Avg. # of subtree 21.40 23.58
Avg. # of alignment 11.60

Table 6.1: Corpus Statistics for HIT corpus

Chinese English

of Sentence pair 300
Avg. Sentence Length 16.94 20.81

Avg. # of subtree 28.97 34.39
Avg. # of alignment 17.07

Table 6.2: Statistics of FBIS selected Corpus

divergence, annotation discrepancy (Chinese parse tree employs a different grammar

from Penn Treebank annotations) and degree of tolerance for parsing errors.

Due to the above issues, we annotate a new data set to apply the subtree

alignment in machine translation. We randomly select 300 bilingual sentence pairs

from the Chinese-English FBIS corpus with the length less or equal to 30 in both

the source and target sides. The selected plain sentence pairs are further parsed

by Stanford parser (Klein and Manning, 2003) on both the English and Chinese

sides. We manually annotate the subtree alignment for the automatically parsed

tree pairs according to the definition in Section 6.1. To be fully consistent with the

definition, we strictly preserve the semantic equivalence for the aligned subtrees to

keep a high precision. In other words, we do not conduct any doubtful links. The

corpus is further divided into 200 aligned tree pairs for training and 100 for testing

as shown in Table 6.2.

119

6.6.2 Baseline approaches

We implement two baselines for comparison. The first baseline is the heuristic

based method proposed in Tinsley et al. (2007). The second baseline is to apply

the proposed heuristic feature functions in a Maximum Entropy (ME) model instead

of a Kernel Machine like SVM (Sun, Zhang, and Tan, 2010a).

For the first baseline proposed by Tinsley et al. (2007), given a tree pair

< S,T >, the baseline approach first takes all the links between the subtree pairs

as alignment hypotheses, i.e., the Cartesian product of the two subtree sets:

{S1, . . . , Si, . . . , SI} × {T1, . . . , Tj , . . . , TJ}

By using the lexical translation probabilities, each hypothesis is assigned an

alignment score. All hypotheses with zero score are pruned out. Then the algorithm

iteratively selects the link of the subtree pairs with the maximum score as a sure

link, and blocks all hypotheses that contradict with this link and itself, until no

non-blocked hypotheses remain.

The baseline system uses many heuristics in searching the optimal solutions

with alternative score functions. Heuristic skip1 skips the tied hypotheses with the

same score, until it finds the highest scoring hypothesis with no competitors of the

same score. Heuristic skip2 deals with the same problem. Initially, it skips over the

tied hypotheses. When a hypothesis subtree pair (Si, Tj) without any competitor

of the same score is found, where neither Si nor Tj has been skipped over, the

hypothesis is chosen as a sure link. Heuristic span1 postpones the selection of the

hypotheses on the POS level. Since the highest scoring hypotheses tend to appear

on the leaf nodes, it may introduce ambiguity when conducting the alignment for

a POS node whose child word appears twice in a sentence.

The baseline method proposes two score functions based on the lexical trans-

lation probability. They also compute the score function by splitting the tree into

the internal and external components.

120

Tinsley et al. (2007) adopt the lexical translation probabilities dumped by

GIZA++ (Och and Ney, 2003) to compute the span based scores for each pair of

subtrees. Although all of their heuristics combinations are reimplemented in our

study, we only present the best result among them with the highest Recall and

F-value as our baseline, denoted as skip2 s1 span12.

As for the baseline using the ME model, we employ all the lexical φ1∼7 and

structural ϕ1∼3 feature functions. In addition, we adopt the combination of root

grammar tags of the subtree pairs as binary features. For more details of this model,

readers may refer to Sun, Zhang, and Tan (2010a).

6.6.3 Experimental Settings

We use SVM with binary classes as the classifier. In case of the implementation,

we modify the Tree Kernel tool (Moschitti, 2006) and SVMLight (Joachims, 1999).

The coefficient θi for the composite kernel are tuned with respect to F-measure (F)

on the development set of HIT corpus. We empirically set C = 2.4 for SVM and

and use the default parameter λ = 0.4 for BTKs.

As for the tree sequence kernel, we only employ the contiguous tree sequence

kernel (cTSK) for this task, namely Bilingual contiguous Tree Sequence Kernels

(BcTSKs). The experiments are carried out on the same HIT corpus as BTKs.

The parameters of λ, µ for cTSK and the coefficient θi for the composite kernel are

tuned on the development set of HIT corpus.

Since the negative training instances largely overwhelm the positive instances,

we prune the negative instances using the thresholds according to the lexical feature

functions φ1∼4 and online structural feature functions ϕ1∼3. Those thresholds are

also tuned on the development set of HIT corpus with respect to F-measure.

2s1 denotes score function 1 in (Tinsley et al., 2007), skip2 s1 span1 denotes the utilization of

heuristics skip2 and span1 while using score function 1

121

Feature Space P R F

Lex 61.62 58.33 59.93
Lex+Online Str 70.08 69.02 69.54

Plain3+dBTK-SST 80.36 78.08 79.20
Plain+dBTK-RdSST 87.52 74.13 80.27
Plain+dBTK-RgSST 88.54 70.18 78.30
Plain+dBTK-Root 81.05 84.38 82.68

Plain+dBcTSK-SST 84.59 75.62 79.86
Plain+dBcTSK-RdSST 84.14 79.13 81.56

Plain+iBTK-SST 81.57 73.51 77.33
Plain+iBTK-RdSST 82.27 77.58 80.00
Plain+iBTK-RgSST 82.92 78.77 80.80
Plain+iBTK-Root 76.37 76.81 76.59

Plain+iBcTSK-SST 81.44 78.80 80.10
Plain+iBcTSK-RdSST 82.21 79.81 80.99

Plain+dBTK-Root+iBTK-RgSST 85.53 85.21 85.32

Baseline (Tinsley et al., 2007) 64.14 66.99 65.53

Baseline(Plain)
(Sun, Zhang, and Tan, 2010a)

57.64 63.11 60.25

Baseline(Plain+Binary feature)
(Sun, Zhang, and Tan, 2010a)

73.14 85.11 78.67

Table 6.3: Structure feature contribution for HIT test set

To learn the lexical and word alignment features for both the proposed model

and the baseline method, we train GIZA++ on the entire FBIS bilingual corpus

with 240k sentence pairs. The evaluation is conducted by means of Precision (P),

Recall (R) and F-measure (F).

6.6.4 Experimental Results

In Tables 6.3 and 6.4, we incrementally enlarge the feature spaces in certain order

for both corpora and examine the feature contribution to the alignment results. In

detail, the iBTKs/iBcTSKs and dBTKs/dBcTSKs are firstly combined with the

polynomial kernel for plain features individually, then the best iBTK and dBTK

3Plain=Lex+Online Str

122

Feature Space P R F

Lex 73.48 71.66 72.56
Lex+Online Str 77.02 73.63 75.28

Plain+dBTK-SST 81.44 74.42 77.77
Plain+dBTK-RdSST 81.40 69.29 74.86
Plain+dBTK-RgSST 81.90 67.32 73.90
Plain+dBTK-Root 78.60 80.90 79.73

Plain+iBTK-SST 82.94 79.44 81.15
Plain+iBTK-RdSST 83.14 80.00 81.54
Plain+iBTK-RgSST 83.09 79.72 81.37
Plain+iBTK-Root 78.61 79.49 79.05

Plain+dBTK-Root+iBTK-RgSST 82.70 82.70 82.70

Baseline (Tinsley et al., 2007) 70.84 78.70 74.36

Baseline(Plain)
(Sun, Zhang, and Tan, 2010a)

72.03 80.95 76.23

Baseline(Plain+Binary feature)
(Sun, Zhang, and Tan, 2010a)

76.08 85.29 80.42

Table 6.4: Structure feature contribution for FBIS test set

are chosen to construct a more complex composite kernel along with the polynomial

kernel for both corpora. The experimental results show that:

• All the settings with structural features of the proposed approach achieve

better performance than the first baseline (Tinsley et al., 2007), since the

baseline method only assesses semantic similarity using the lexical features.

In addition, most proposed composite kernels also outperform the other base-

line (Sun, Zhang, and Tan, 2010a). The improvement suggests that the

proposed framework with syntactic structural features is more effective in

modeling the bilingual syntactic correspondence.

• By introducing BTKs to construct a composite kernel, the performance in

both corpora is significantly improved against only using the polynomial ker-

nel for plain features. This suggests that the structural features captured by

BTKs are quite useful for the subtree alignment task. We also try to use

123

BTKs alone without the polynomial kernel for plain features; however, the

performance is rather low. This suggests that the structure correspondence

cannot be used to measure the semantically equivalent tree structures alone,

since the same syntactic structure tends to be reused in the same parse tree

and lose the ability of disambiguation to some extent. In other words, to

capture the semantic similarity, structure features requires lexical features to

cooperate.

• After comparing iBTKs with the corresponding dBTKs, we find that for FBIS

corpus, iBTK greatly outperforms dBTK in any feature space except the

Root space. However, when it comes the HIT corpus, the gaps between the

corresponding iBTKs and dBTKs are much closer, while on the Root space,

dBTK outperforms iBTK to a large amount. This finding can be explained by

the relationship between the amount of training data and the high dimensional

feature space. Since dBTKs are constructed in a joint manner which obtains

a much larger high dimensional feature space than those of iBTKs, dBTKs

require more training data to excel its capability, otherwise it will suffer from

the data sparseness problem. The reason that dBTK outperforms iBTK in

the feature space of Root in FBIS corpus is that although it is a joint feature

space, the Root node pairs can be constructed from a close set of grammar

tags and to form a relatively low dimensional space.

As a result, when applying to FBIS corpus, which only contains limited

amount of training data, dBTKs will suffer more from the data sparseness

problem, and therefore, a relatively low performance. When enlarging the

amount of training corpus to the HIT corpus, the ability of dBTKs excels and

the benefit from data increasing of dBTKs is more significant than iBTKs.

124

• We also find that the introduction of BTKs gains more improvement in HIT

gold standard corpus than in FBIS corpus. Other than the factor of the

amount of training data, this is also because the plain features in Table 6.3

are not as effective as those in Table 6.4, since they are trained on FBIS corpus

which facilitates Table 6.4 more with respect to the domains. On the other

hand, the grammatical tags and syntactic tree structures are more accurate

in HIT corpus, which facilitates the performance of BTKs in Table 6.3.

• On the comparison across the different feature spaces of BTKs, we find that

SST, RdSST and RgSST are rather selective, since Recalls of those feature

spaces are relatively low, exp. for HIT corpus. However, the Root substruc-

ture obtains a satisfactory Recall for both corpora. That’s why we attempt

to construct a more complex composite kernel in adoption of the kernel of

dBTK-Root as below.

• As for the comparison of BTKs and BcTSKs, we detect improvement from

BcTSKs against the corresponding BTKs, but the improvement is incon-

sistent. For the dependent kernels, Fscore for dBcTSK-SST and dBcTSK-

RdSST improves by +0.66 and +1.29 against dBTK-SST and dBTK-RdSST

respectively. For the independent kernels, Fscore for iBcTSK-SST improves

by a large margin (+2.77) while for iBcTSK-RdSST, Fscore gains very little

(+0.19). The above results reveal that although we detect improvement from

introducing the contiguous subtree sequence features, the improvement is not

so attractive. In fact, the best dependent kernel, i.e. dBTK-Root, is still

single subtree based, while the best independent kernel, i.e. iBcTSK-RdSST,

only benefits from little gain (+0.19) against iBTK-RdSST.

• To gain an extra performance boosting, we further construct a composite

kernel which includes the best iBTK and the best dBTK for each corpus

125

along with the polynomial kernel for plain features. In the HIT corpus, we

use dBTK in the Root space and iBTK in the RgSST space; while for FBIS

corpus, we use dBTK in the Root space and iBTK in the RdSST space. The

experimental results suggest that by combining iBTK and dBTK together,

we can achieve more improvement.

6.7 Experiments on Machine Translation

In addition to the intrinsic alignment evaluation, we further conduct the extrinsic

MT evaluation. We explore the effectiveness of subtree alignment for both phrase

based and linguistically motivated syntax based SMT systems.

6.7.1 Experimental Settings

In the experiments, we train the translation model on FBIS corpus (7.2M (Chinese)

+ 9.2M (English) words in 240, 000 sentence pairs) and train a 4-gram language

model on the Xinhua portion of the English Gigaword corpus (181M words) using

the SRILM Toolkit (Stolcke, 2002). We use these sentences with less than 50

characters from the NIST MT-2002 test set as the development set (to speed up

tuning for syntax based system) and the NIST MT-2005 test set as our test set.

We use the Stanford parser (Klein and Manning, 2003) to parse bilingual sentences

on the training set and Chinese sentences on the development and test set. The

evaluation metric is case-sensitive BLEU-4.

For the phrase based system, we use Moses (Koehn et al., 2007) with its default

settings. For the syntax based system, since subtree alignment can directly benefit

Tree-to-Tree based systems, we apply the subtree alignment in a syntax system

based on Synchronous Tree Substitution Grammar (STSG) (Zhang et al., 2007).

126

The STSG based decoder uses a pair of elementary tree4 as a basic translation unit.

Recent research on tree based systems shows that relaxing the restriction from

tree structure to tree sequence structure (Synchronous Tree Sequence Substitution

Grammar: STSSG) significantly improves the translation performance (Zhang et

al., 2008b). We implement the STSG/STSSG based model in the Pisces decoder

with the identical features and settings in Sun, Zhang, and Tan (2009). In the Pisces

decoder, the STSSG based decoder translates each span iteratively in a bottom up

manner which guarantees that when translating a source span, any of its subspans

is already translated. The STSG based decoding can be easily performed with the

STSSG decoder by restricting the translation rule set to be elementary tree pairs

only.

As for the alignment setting, we use the word alignment trained on the entire

FBIS (240k) corpus by GIZA++ with heuristic grow-diag-final for both Moses and

the syntax system. For subtree alignment, we use the above word alignment to learn

lexical/word alignment feature, and train with the FBIS training corpus (200) using

the composite kernel of Plain+dBTK-Root+iBTK-RdSST.

6.7.2 Experimental Results

Compared with the adoption of word alignment, translational equivalences gener-

ated from structural alignment tend to be more grammatically aware and syntacti-

cally meaningful. However, utilizing syntactic translational equivalences alone for

machine translation loses the capability of modeling non-syntactic phrases to some

extent (Koehn, Och, and Marcu, 2003). Consequently, instead of using phrases

constraint by subtree alignment alone, we attempt to combine word alignment and

subtree alignment and deploy the capability of both with two methods.

4An elementary tree is a fragment whose leaf nodes can be either non-terminal symbols or

terminal symbols.

127

System Model BLEU

Moses
BP 23.86
DirC 23.98
EWoS 24.48

Syntax STSG
STSG 24.71
DirC 25.16
EWoS 25.38

Syntax STSSG
STSSG 25.92
DirC 25.95
EWoS 26.45

Table 6.5: MT evaluation on various systems

• Directly Concatenate (DirC) is operated by directly concatenating the rule

set generated from subtree alignment and the original rule set generated from

word alignment (Tinsley, Hearne, and Way, 2009). As shown in Table 6.5, we

gain minor improvement in the Bleu score for all configurations.

• Alternatively, we proposed a new approach to generate the rule set from

the scratch. We constrain the bilingual phrases to be consistent with Either

Word alignment or Subtree alignment (EWoS) instead of being originally con-

sistent with the word alignment only. The method helps tailoring the rule

set decently without redundant counts for syntactic rules. The performance

is further improved compared to DirC in all systems.

The findings suggest that with the modeling of non-syntactic phrases main-

tained, more emphasis on syntactic phrases can benefit both the phrase and syntax

based SMT systems.

To benefit intuitive understanding, we provide two alignment snippets in the

MT training corpus in Fig. 6.3, where the red lines across the non-terminal nodes

are the subtree aligned links conducted by our model, while the purple lines across

the terminal nodes are the word alignment links trained by GIZA++. In the

first example, “Israel” is wrongly aligned to two words in the source sentence by

128

S1:

T1:

VP
2

PP
3

TO

VP
3

P IP
2

CP VP

VP DEC AD VV

VV NR
1

(to) (oppose)(Israel) (`s) (illegal)(occupation)

NP

NNNP

VB

JJ

NNP
1

POS

To oppose Israel `s illegal occupation

(Israel)

...

NP VP

NR NN VV AS

(Barak)(government)(choose)(NULL)

NP

NNPDT NNP

the Barak Government

NNP

chose

S2:

T2:

Figure 6.3: Comparison between the subtree alignment results and the word
alignment results

GIZA++, where the wrong link is denoted by the dash line. This is common,

since in a compound sentence in English, the entities appeared more than once are

often replaced by pronouns at its later appearances. Therefore, the syntactic rules

constraint by NR1-NNP1, IP2-VP2 and PP3-VP3 respectively cannot be extracted

for syntax systems; while for phrase systems, context around the first “Israel” in

the source sentence cannot be fully explored.

In the second example, the empty word “NULL” is wrongly aligned, which

usually occurs in Chinese-English word alignment. As shown in Fig. 6.3, both

cases can be resolved by subtree alignment conducted by our model, indicating

that subtree alignment is a decent supplement to the word alignment rule set.

129

6.8 Summary

In this chapter, we explore syntactic structure features by means of Bilingual Tree

(Sequence) Kernels (BTKs/BTSKs) and apply them to bilingual subtree alignment

along with various lexical and plain structural features. We use both gold standard

tree bank and the automatically parsed corpus for the subtree alignment evalua-

tion. Experimental results show that our model significantly outperforms the two

baseline methods and the proposed Bilingual Tree (Sequence) Kernels over various

feature spaces are very effective in capturing the cross-lingual structural similarity.

However, we only detect little improvement by enlarging the feature space from

bilingual tree structures (BTK) to bilingual contiguous tree sequence structures

(BcTSK). Further experiment shows that the obtained subtree alignment from the

proposed subtree aligner benefits both phrase and syntax based MT systems by

delivering more weight on syntactic phrases.

130

131

Chapter 7

Conclusion

7.1 Summary of Achievements

In this dissertation, a series of tree sequence based kernels are proposed to explore

the structure features embedded in the phrase parse tree for NLP applications. In

addition to the traditionally exploited connected graph based features, i.e. subtree,

this dissertation systematically explores the disconnected structure features, i.e.

subtree sequence, by means of kernels. In terms of this, this dissertation success-

fully provides some novel perspectives of structure features for NLP applications.

Specifically, this dissertation achieves

• to propose contiguous Tree Sequence Kernel (cTSK) which is able to capture

the structure features of a contiguous subtree sequence, and to propose an

efficient algorithm to evaluate the kernel function.

• to propose Tree Sequence Kernels (TSKs) which are able to capture the struc-

ture of a subtree sequence, both contiguous and non-contiguous, and to pro-

pose various efficient algorithms to evaluate the kernel functions based on

different structure weighting schemes.

132

• to propose Anchored Tree Sequence Kernel (aTSK) which is able to capture

the spatial relationship between the subtree sequence features and the target

anchored structures.

• to extend the tree (sequence) based kernels from the single parse tree to

multiple parse trees and explore the structure features across multiple trees

both dependently and independently.

• to apply the proposed kernels to various NLP applications, i.e. Question Clas-

sification, Relation Extraction and Bilingual Subtree Alignment, and conduct

comparative experiments to demonstrate the effectiveness of these kernels.

• to propose a generic framework which employs a kernel based statistical align-

ment model for the task of Bilingual Subtree Alignment and integrate the tree

(sequence) based kernels on bilingual parse trees in this framework along with

various heuristic feature functions.

Specifically, Chapter 4 proposes a series of kernels constructed on the different

tree sequence feature spaces. Contiguous Tree Sequence Kernel (cTSK) can explore

the structure features of the contiguous subtree sequences. In order to evaluate

cTSK, this thesis proposes an efficient algorithm to limit the time complexity to

be the same as tree kernel of O(|N | · |N ′|), with respect to the number of nodes in

the parse trees. In addition, this thesis proposes Tree Sequence Kernels (TSKs).

Compared with cTSK, TSKs further extends the feature space by allowing non-

contiguous subtree sequence features. The generalized form of TSK is verified to

be a valid kernel by constructing it based on the mapping kernel paradigm. Three

approaches of penalizing the substructures are proposed. In order to efficiently

evaluate TSKs, Set Sequence Kernels (SSKs) are proposed, which help capture the

root node sequence of the subtree sequence. All TSKs can be evaluated within

O(m|N | · |N ′|), where m is the maximal subtrees allowed in a subtree sequence.

133

Based on the TSKs, this thesis further proposes Anchored Tree Sequence Kernels

(aTSKs) to model the relationship across the anchored structures embedded in the

parse tree. aTSKs can directly correspond the structure features to the anchored

structures. Efficient algorithms for aTSKs are derived based on TSKs. By more

aggressively constraining the feature space, this thesis proposes aTSK1 and aTSK2

and verify that aTSK1 is a valid kernel while aTSK2 is not. Finally, this thesis

proposes to extend the tree (sequence) based kernels from the single parse tree to

multiple parse trees to achieve multilingual tree (sequence) kernels.

In Chapter 5, to verify the effectiveness of the proposed kernels on the single

parse tree, this thesis applies the proposed kernels in two NLP applications, i.e.

Question Classification and Relation Extraction. Experimental results suggest that

TSKs significantly outperform Collins and Duffy’s tree kernel and Partial Tree

Kernel (PTK) for both tasks, which reveals that the structure features expressed

as a sequence of subtrees are effective and play a complementary role to the single

subtree. In addition, compared with the task of question classification, relation

extraction gains more improvement by using TSKs. It can be attributed to the

reason that relation extraction is a task constructed on multiple items, which are

highly likely to be disjointed. Therefore, TSKs that capture patterns across non-

contiguous context can perform decently on relation extraction. Moreover, aTSKs,

which restrict the syntactic features to directly cover the target entities, significantly

outperform TSKs in relation extraction. This indicates that noisy structure features

can be effectively pruned by relating the tree sequence features to the relational

candidate pairs. The above experimental results demonstrate that there is useful

syntactic and semantic information embedded in the tree sequence structures, which

can provide discriminative patterns for NLP tasks.

In chapter 6, the proposed tree (sequence) based kernels are applied in multi-

ple parse trees by means of Bilingual Subtree Alignment. A kernel based statistical

134

alignment model is proposed for this task. In this model, Bilingual Tree (Sequence)

Kernels (BTKs/BTSKs) are proposed and applied along with various lexical and

plain structural features. Experimental results show that the proposed model sig-

nificantly outperforms the two baseline methods and the proposed Bilingual Tree

(Sequence) Kernels over various feature spaces are very effective in capturing the

cross-lingual structural similarity. Further experiment shows that the obtained sub-

trees from the proposed subtree aligner benefit both phrase and syntax based SMT

systems by delivering larger weights on syntactic phrases.

7.2 Future Directions

In view of the success of the tree sequence based kernels, it is worthwhile ap-

plying the proposed kernels in more applications. For example, tree kernel has

been demonstrated to be able to improve parsing results by reranking the N-best

list (Collins and Duffy, 2002). Hence, it will be good to see parsing results can be

further improved by examining the tree sequence structures. In addition, aTSKs

may benefit the tasks that require deep syntactic and semantic analysis for target

candidates, such as Semantic Role Labeling (SRL). In SRL, argument classification

aims to identify the relation of an argument-predicate pair which can be considered

as the target constituents.

Additionally, it is worthwhile investigating what kinds of substructures con-

tribute most to a particular type of testing instances. Further study on this problem

will also inspire new approaches on the modification of parse tree structures.

Another promising direction is to extend the current well-designed single sub-

tree based kernels by accommodating the subtree sequence features. As introduced,

partial tree kernel (Moschitti, 2006) and grammar driven tree kernel (Zhang et al.,

2008a) both have demonstrated their goodness in certain tasks. Hence, it is worthy

of studying the effectiveness of the tree sequence features in these kernels.

135

References

[Bloehdorn and Moschitti2007] Bloehdorn, S. and A. Moschitti. 2007. Structure

and semantics for expressive text kernels. In Proceedings of the sixteenth ACM

conference on Conference on information and knowledge management, pages

861–864. ACM.

[Bunescu and Mooney2005] Bunescu, R.C. and R.J. Mooney. 2005. A shortest path

dependency kernel for relation extraction. In Proceedings of the conference

on Human Language Technology and Empirical Methods in Natural Language

Processing, pages 724–731. Association for Computational Linguistics.

[Cancedda et al.2003] Cancedda, N., E. Gaussier, C. Goutte, and J.M. Renders.

2003. Word sequence kernels. The Journal of Machine Learning Research,

3:1059–1082.

[Charniak2001] Charniak, E. 2001. Immediate-head parsing for language models.

In Proceedings of ACL, pages 124–131.

[Collins1997] Collins, M. 1997. Three generative, lexicalised models for statistical

parsing. In Proceedings of the 35th Annual Meeting of the Association for

Computational Linguistics and Eighth Conference of the European Chapter of

the Association for Computational Linguistics, pages 16–23. Association for

Computational Linguistics.

[Collins and Duffy2002] Collins, M. and N. Duffy. 2002. Convolution kernels for

natural language. Advances in neural information processing systems, 1:625–

632.

[Cortes and Vapnik1995] Cortes, C. and V. Vapnik. 1995. Support-vector networks.

Machine learning, 20(3):273–297.

[Culotta and Sorensen2004] Culotta, A. and J. Sorensen. 2004. Dependency tree

kernels for relation extraction. In Proceedings of the 42nd Annual Meeting

136

of Association for Computational Linguistics, pages 423–430. Association for

Computational Linguistics.

[Doddington et al.2004] Doddington, G., A. Mitchell, M. Przybocki, L. Ramshaw,

S. Strassel, and R. Weischedel. 2004. The automatic content extraction (ace)

program–tasks, data, and evaluation. In Proceedings of LREC, volume 4, pages

837–840. Citeseer.

[Eisner2003] Eisner, J. 2003. Learning non-isomorphic tree mappings for machine

translation. In Proceedings of the 41st Annual Meeting of Association for

Computational Linguistics-Volume 2, pages 205–208. Association for Compu-

tational Linguistics.

[Galley et al.2006] Galley, M., J. Graehl, K. Knight, D. Marcu, S. DeNeefe,

W. Wang, and I. Thayer. 2006. Scalable inference and training of context-rich

syntactic translation models. In Proceedings of the 21st International Confer-

ence on Computational Linguistics and the 44th annual meeting of the Asso-

ciation for Computational Linguistics, pages 961–968. Association for Compu-

tational Linguistics.

[Gildea2003] Gildea, D. 2003. Loosely tree-based alignment for machine translation.

In Proceedings of the 41st Annual Meeting of Association for Computational

Linguistics-Volume 1, pages 80–87. Association for Computational Linguistics.

[Graehl and Knight2004] Graehl, J. and K. Knight. 2004. Training tree transducers.

In Proc. HLT-NAACL, pages 105–112.

[Groves, Hearne, and Way2004] Groves, D., M. Hearne, and A. Way. 2004. Ro-

bust sub-sentential alignment of phrase-structure trees. In Proceedings of the

20th International Conference on Computational Linguistics, pages 1072–1079.

Association for Computational Linguistics.

[Haasdonk2005] Haasdonk, B. 2005. Feature space interpretation of svms with

137

indefinite kernels. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, pages 482–492.

[Haussler1999] Haussler, D. 1999. Convolution kernels on discrete structures. In

Technical Report UCSCRL9910 UC, 23(1):1–38.

[Herbrich2002] Herbrich, R. 2002. Learning kernel classifiers: theory and algo-

rithms. The MIT Press.

[Hopcroft and Ullman1979] Hopcroft, J.E. and J.D. Ullman. 1979. Introduction

to automata theory, languages, and computation, volume 3. Addison-wesley

Reading, MA.

[Huang, Knight, and Joshi2006] Huang, L., K. Knight, and A. Joshi. 2006. A

syntax-directed translator with extended domain of locality. In Proceedings

of the Workshop on Computationally Hard Problems and Joint Inference in

Speech and Language Processing, pages 1–8. Association for Computational

Linguistics.

[Imamura2001] Imamura, K. 2001. Hierarchical phrase alignment harmonized with

parsing. In Proceedings of the 6th Natural Language Processing Pacific Rim

Symposium (NLPRS 2001), pages 377–384. Citeseer.

[Joachims1999] Joachims, T. 1999. Making large scale svm learning practical.

[Kambhatla2004] Kambhatla, N. 2004. Combining lexical, syntactic, and semantic

features with maximum entropy models for extracting relations. In Proceedings

of the ACL 2004 on Interactive poster and demonstration sessions. Association

for Computational Linguistics.

[Kashima and Koyanagi2002] Kashima, H. and T. Koyanagi. 2002. Kernels for

semi-structured data. In Proceedings of the International Conference on Ma-

chine Learning, pages 291–298. Citeseer.

[Kate2008] Kate, R.J. 2008. A dependency-based word subsequence kernel. In

138

Proceedings of the Conference on Empirical Methods in Natural Language Pro-

cessing, pages 400–409. Association for Computational Linguistics.

[Klein and Manning2003] Klein, D. and C.D. Manning. 2003. Accurate unlexical-

ized parsing. In Proceedings of the 41st Annual Meeting of Association for

Computational Linguistics-Volume 1, pages 423–430. Association for Compu-

tational Linguistics.

[Koehn et al.2007] Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Federico,

N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, et al. 2007. Moses:

Open source toolkit for statistical machine translation. In Proceedings of the

45th Annual Meeting of the ACL on Interactive Poster and Demonstration

Sessions, pages 177–180. Association for Computational Linguistics.

[Koehn, Och, and Marcu2003] Koehn, P., F.J. Och, and D. Marcu. 2003. Statistical

phrase-based translation. In Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computational Linguistics on Human

Language Technology-Volume 1, pages 48–54. Association for Computational

Linguistics.

[Li and Roth2002] Li, X. and D. Roth. 2002. Learning question classifiers. In

Proceedings of the 19th international conference on Computational linguistics-

Volume 1, pages 1–7. Association for Computational Linguistics.

[Liu, Liu, and Lin2006] Liu, Y., Q. Liu, and S. Lin. 2006. Tree-to-string alignment

template for statistical machine translation. In Proceedings of the 21st Interna-

tional Conference on Computational Linguistics and the 44th annual meeting

of the Association for Computational Linguistics, pages 609–616. Association

for Computational Linguistics.

[Lodhi et al.2002] Lodhi, H., C. Saunders, J. Shawe-Taylor, N. Cristianini, and

C. Watkins. 2002. Text classification using string kernels. The Journal of

Machine Learning Research, 2:419–444.

139

[Marcu et al.2006] Marcu, D., W. Wang, A. Echihabi, and K. Knight. 2006. Spmt:

Statistical machine translation with syntactified target language phrases. In

Proceedings of the 2006 Conference on Empirical Methods in Natural Language

Processing, pages 44–52. Association for Computational Linguistics.

[Matsumoto, Ishimoto, and Utsuro1993] Matsumoto, Y., H. Ishimoto, and T. Ut-

suro. 1993. Structural matching of parallel texts. In Proceedings of the 31st

Annual Meeting of Association for Computational Linguistics, pages 23–30.

Association for Computational Linguistics.

[Menezes and Richardson2001] Menezes, A. and S.D. Richardson. 2001. A best-

first alignment algorithm for automatic extraction of transfer mappings from

bilingual corpora. In Proceedings of the workshop on Data-driven methods

in machine translation-Volume 14, pages 1–8. Association for Computational

Linguistics.

[Meyers, Yangarber, and Grishman1996] Meyers, A., R. Yangarber, and R. Grish-

man. 1996. Alignment of shared forests for bilingual corpora. In Proceedings

of the 16th conference on Computational linguistics-Volume 1, pages 460–465.

Association for Computational Linguistics.

[Miller et al.2000] Miller, S., H. Fox, L. Ramshaw, and R. Weischedel. 2000. A novel

use of statistical parsing to extract information from text. In Proceedings of the

1st North American chapter of the Association for Computational Linguistics

conference, pages 226–233. Morgan Kaufmann Publishers Inc.

[Moschitti2004] Moschitti, A. 2004. A study on convolution kernels for shallow

semantic parsing. In Proceedings of the 42nd Annual Meeting of Association

for Computational Linguistics, pages 335–342. Association for Computational

Linguistics.

[Moschitti2006] Moschitti, A. 2006. Efficient convolution kernels for dependency

140

and constituent syntactic trees. Machine Learning: ECML 2006, pages 318–

329.

[Moschitti2008] Moschitti, A. 2008. Kernel methods, syntax and semantics for

relational text categorization. In Proceeding of the 17th ACM conference on

Information and knowledge management, pages 253–262. ACM.

[Moschitti, Pighin, and Basili2006a] Moschitti, A., D. Pighin, and R. Basili. 2006a.

Semantic role labeling via tree kernel joint inference. In Proceedings of the

Tenth Conference on Computational Natural Language Learning, pages 61–68.

Association for Computational Linguistics.

[Moschitti, Pighin, and Basili2006b] Moschitti, A., D. Pighin, and R. Basili. 2006b.

Tree kernel engineering in semantic role labeling systems. In Proceedings of

the Workshop on Learning Structured Information in Natural Language Appli-

cations, EACL 2006, pages 49–56.

[Moschitti, Pighin, and Basili2008] Moschitti, A., D. Pighin, and R. Basili. 2008.

Tree kernels for semantic role labeling. Computational Linguistics, 34(2):193–

224.

[Moschitti and Zanzotto2007] Moschitti, A. and F.M. Zanzotto. 2007. Fast and

effective kernels for relational learning from texts. In Proceedings of the 24th

international conference on Machine learning, pages 649–656. ACM.

[Moschitti and Zanzotto2008] Moschitti, A. and F.M. Zanzotto. 2008. Encoding

tree pair-based graphs in learning algorithms: the textual entailment recog-

nition case. In 22nd International Conference on Computational Linguistics,

pages 25–32.

[Nguyen, Moschitti, and Riccardi2009] Nguyen, T.V.T., A. Moschitti, and G. Ric-

cardi. 2009. Convolution kernels on constituent, dependency and sequential

structures for relation extraction. In Proceedings of the 2009 Conference on

141

Empirical Methods in Natural Language Processing, pages 1378–1387. Associ-

ation for Computational Linguistics.

[Och and Ney2003] Och, F.J. and H. Ney. 2003. A systematic comparison of various

statistical alignment models. Computational linguistics, 29(1):19–51.

[Papineni et al.2002] Papineni, K., S. Roukos, T. Ward, and W.J. Zhu. 2002. Bleu:

a method for automatic evaluation of machine translation. In Proceedings of

the 40th Annual Meeting of Association for Computational Linguistics, pages

311–318. Association for Computational Linguistics.

[Radev et al.2005] Radev, D., W. Fan, H. Qi, H. Wu, and A. Grewal. 2005. Prob-

abilistic question answering on the web. Journal of the American Society for

Information Science and Technology, 56(6):571–583.

[Reichartz, Korte, and Paass2009] Reichartz, F., H. Korte, and G. Paass. 2009.

Dependency tree kernels for relation extraction from natural language text.

Machine Learning and Knowledge Discovery in Databases, pages 270–285.

[Rosenblatt1962] Rosenblatt, F. 1962. Principles of neurodynamics: Perceptrons

and the theory of brain mechanisms, volume 115. Spartan books Washington,

DC.

[Schölkopf and Smola2002] Schölkopf, B. and A.J. Smola. 2002. Learning with ker-

nels: Support vector machines, regularization, optimization, and beyond. the

MIT Press.

[Shawe-Taylor and Cristianini2004] Shawe-Taylor, J. and N. Cristianini. 2004. Ker-

nel methods for pattern analysis. Cambridge Univ Pr.

[Shen, Sarkar, and Joshi2003] Shen, L., A. Sarkar, and A.K. Joshi. 2003. Using

ltag based features in parse reranking. In Proceedings of the 2003 conference

on Empirical methods in natural language processing-Volume 10, pages 89–96.

Association for Computational Linguistics.

142

[Shin and Kuboyama2008] Shin, K. and T. Kuboyama. 2008. A generalization of

Haussler’s convolution kernel: mapping kernel. In Proceedings of the 25th

international conference on Machine learning, pages 944–951. ACM.

[Stolcke2002] Stolcke, A. 2002. Srilm-an extensible language modeling toolkit. In

Proceedings of the international conference on spoken language processing, vol-

ume 2, pages 901–904. Citeseer.

[Sun, Zhang, and Tan2009] Sun, J., M. Zhang, and C.L. Tan. 2009. A non-

contiguous tree sequence alignment-based model for statistical machine trans-

lation. In Proceedings of the Joint Conference of the 47th Annual Meeting

of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP: Volume 2-Volume 2, pages 914–922. Association for

Computational Linguistics.

[Sun, Zhang, and Tan2010a] Sun, J., M. Zhang, and C.L. Tan. 2010a. Discrimina-

tive induction of sub-tree alignment using limited labeled data. In Proceed-

ings of the 23rd International Conference on Computational Linguistics, pages

1047–1055. Association for Computational Linguistics.

[Sun, Zhang, and Tan2010b] Sun, J., M. Zhang, and C.L. Tan. 2010b. Exploring

syntactic structural features for sub-tree alignment using bilingual tree kernels.

In Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, pages 306–315. Association for Computational Linguistics.

[Sun, Zhang, and Tan2011] Sun, J., M. Zhang, and C.L. Tan. 2011. Tree sequence

kernel for natural language. In Proceedings of the 25th AAAI Conference on

Artificial Intelligence.

[Suzuki, Sasaki, and Maeda2006] Suzuki, J., Y. Sasaki, and E. Maeda. 2006. Hi-

erarchical directed acyclic graph kernel. Systems and Computers in Japan,

37(10):58–68.

[Suzuki et al.2003] Suzuki, J., H. Taira, Y. Sasaki, and E. Maeda. 2003. Question

143

classification using hdag kernel. In Proceedings of the ACL 2003 workshop on

Multilingual summarization and question answering-Volume 12, pages 61–68.

Association for Computational Linguistics.

[Tinsley, Hearne, and Way2009] Tinsley, J., M. Hearne, and A. Way. 2009. Paral-

lel treebanks in phrase-based statistical machine translation. Proceedings of

CICLING-09.

[Tinsley et al.2007] Tinsley, J., V. Zhechev, M. Hearne, and A. Way. 2007. Robust

language-pair independent sub-tree alignment. Machine Translation Summit

XI, pages 467–474.

[Vapnik1998] Vapnik, V.N. 1998. Statistical learning theory.

[Watanabe, Kurohashi, and Aramaki2000] Watanabe, H., S. Kurohashi, and E. Ara-

maki. 2000. Finding structural correspondences from bilingual parsed corpus

for corpus-based translation. In Proceedings of the 18th conference on Com-

putational linguistics-Volume 2, pages 906–912. Association for Computational

Linguistics.

[Yamamoto and Matsumoto2000] Yamamoto, K. and Y. Matsumoto. 2000. Ac-

quisition of phrase-level bilingual correspondence using dependency structure.

In Proceedings of the 18th conference on Computational linguistics-Volume 2,

pages 933–939. Association for Computational Linguistics.

[Yang, Su, and Tan2006] Yang, X., J. Su, and C.L. Tan. 2006. Kernel-based pro-

noun resolution with structured syntactic knowledge. In Proceedings of the

21st International Conference on Computational Linguistics and the 44th an-

nual meeting of the Association for Computational Linguistics, pages 41–48.

Association for Computational Linguistics.

[Zanzotto, Pennacchiotti, and Moschitti2009] Zanzotto, F., M. Pennacchiotti, and

A. Moschitti. 2009. A machine learning approach to textual entailment recog-

nition. Natural Language Engineering, 15(04):551–582.

144

[Zanzotto and Moschitti2006] Zanzotto, F.M. and A. Moschitti. 2006. Automatic

learning of textual entailments with cross-pair similarities. In Proceedings of

the 21st International Conference on Computational Linguistics and the 44th

annual meeting of the Association for Computational Linguistics, pages 401–

408. Association for Computational Linguistics.

[Zelenko, Aone, and Richardella2003] Zelenko, D., C. Aone, and A. Richardella.

2003. Kernel methods for relation extraction. The Journal of Machine Learn-

ing Research, 3:1083–1106.

[Zhang and Lee2003] Zhang, D. and W.S. Lee. 2003. Question classification using

support vector machines. In Proceedings of the 26th annual international ACM

SIGIR conference on Research and development in informaion retrieval, pages

26–32. ACM.

[Zhang et al.2008a] Zhang, M., W. Che, G.D. Zhou, A. Aw, C.L. Tan, T. Liu,

and S. Li. 2008a. Semantic role labeling using a grammar-driven convolu-

tion tree kernel. Audio, Speech, and Language Processing, IEEE Transactions

on, 16(7):1315–1329.

[Zhang et al.2008b] Zhang, M., H. Jiang, A. Aw, H. Li, C.L. Tan, and S. Li. 2008b.

A tree sequence alignment-based tree-to-tree translation model. Proc. ACL-08:

HLT, pages 559–567.

[Zhang et al.2007] Zhang, M., H. Jiang, A.T. Aw, J. Sun, S. Li, and C.L. Tan.

2007. A tree-to-tree alignment-based model for statistical machine translation.

MT-Summit-07, pages 535–542.

[Zhang, Zhang, and Li2010] Zhang, M., H. Zhang, and H. Li. 2010. Convolution

kernel over packed parse forest. In Proceedings of the 48th Annual Meeting of

the Association for Computational Linguistics, pages 875–885. Association for

Computational Linguistics.

[Zhang, Zhou, and Aw2008] Zhang, M., G.D. Zhou, and A. Aw. 2008. Exploring

145

syntactic structured features over parse trees for relation extraction using kernel

methods. Information Processing & Management, 44(2):687–701.

[Zhao and Grishman2005] Zhao, S. and R. Grishman. 2005. Extracting relations

with integrated information using kernel methods. In Proceedings of the 43rd

Annual Meeting of Association for Computational Linguistics, pages 419–426.

Association for Computational Linguistics.

[Zhou and Zhang2007] Zhou, G. and M. Zhang. 2007. Extracting relation informa-

tion from text documents by exploring various types of knowledge. Information

Processing & Management, 43(4):969–982.

[Zhou et al.2007] Zhou, G., M. Zhang, D. Hong, and J.Q. Zhu. 2007. Tree kernel-

based relation extraction with context-sensitive structured parse tree informa-

tion. In Proceedings of the 2007 conference on Empirical methods in natural

language processing. Association for Computational Linguistics.

146

	Abstract
	List of Figures
	List of Tables
	Chapter Introduction
	Aims and Contributions of the study
	Outline of this Thesis

	Chapter Background
	Kernel Methods
	Support Vector Machines
	Preliminary Concepts on Tree Structures
	Summary

	Chapter Kernels on Discrete Structures
	Representative Kernels
	Haussler's Convolution Kernel
	Mapping Kernel
	Sequence Kernel
	Collins and Duffy's Tree Kernel

	Previous Work
	Summary

	Chapter Tree Sequence based Kernels
	From Tree Kernel to Tree Sequence Kernel – Some Motivating Examples
	Contiguous Tree Sequence Kernel
	Kernel Evaluation via Pseudo Roots
	Algorithm 2: Fast Evaluation

	Set Sequence Kernels
	Penalizing Length of Spans
	Penalizing Count of Matched Elements
	Penalizing Count of Gaps

	Tree Sequence Kernels
	The Generalized Tree Sequence Kernel
	Adapting Set Sequence Kernel to Tree Sequence Kernel
	Penalizing Length of Spans
	Penalizing Count of Matched Subtrees
	Penalizing Count of Gaps

	Anchored Tree Sequence Kernel
	Feature Space Construction
	Penalizing Length of spans (gamma)
	Penalizing Count of Matched Subtrees (mu)
	Penalizing Count of Gaps (tau)
	Mapping Kernels with Anchored Structures

	Kernels over Multiple Parse Trees
	Independent Bilingual Tree Kernel (iBTK)
	Dependent Bilingual Tree Kernel (dBTK)
	Generalized Kernels over Multiple Trees

	Summary

	Chapter Tree Sequence Kernels for Single Parse Tree
	Background and Related Work
	Experiments
	Question Classification
	Relation Extraction

	Discussion
	Summary

	Chapter A Kernel based Statistical Model for Bilingual Subtree Alignment
	Task Definition
	Background and Related Work
	Structure Space for BT(S)Ks
	Heuristic Feature Functions
	Lexical and Word Alignment Features
	Online Structural Features

	The Alignment Model
	Experiments on Bilingual Subtree Alignment
	Data Preparation
	Baseline approaches
	Experimental Settings
	Experimental Results

	Experiments on Machine Translation
	Experimental Settings
	Experimental Results

	Summary

	Chapter Conclusion
	Summary of Achievements
	Future Directions

	Reference

