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Abstract 

This thesis work was centered on detecting cervical precancer using near-infrared (NIR) 

Raman spectroscopy. A rapid and portable NIR Raman spectroscopy system coupled 

with a specially designed ball lens fiber-optic Raman probe was successfully 

developed for in vivo tissue diagnosis and characterization. Firstly, Raman 

measurement was conducted on biopsied cervical tissues to test the feasibility of NIR 

Raman spectroscopy for the detection of cervical precancer. A good classification with 

an accuracy of 92.5% between benign and dysplasia (i.e., LGSILs and HGSILs) tissues 

was achieved ex vivo, encouraging the extension of our ex vivo work to in vivo study. 

Monte Carlo simulation method was employed to evaluate the performance (i.e., 

collection efficiency and depth-selectivity) of the ball lens fiber-optic Raman probe 

designs with various configurations (i.e., the diameter and refractive index of the ball 

lens). We demonstrated that the ball-lens NIR Raman spectroscopy developed is able 

to acquire good-quality Raman spectra of cervix in vivo. We demonstrated for the first 

time that NIR Raman spectroscopy in the high wavenumber (HW) region has the 

potential for the diagnosis of cervical precancer using our in-house developed Raman 

system and exhibits comparable diagnostic performance as Raman spectroscopy in 

fingerprint region. We also demonstrated that combining NIR autofluorescence and 

Raman spectroscopy can further improve the diagnosis of cervical precancer. We also 

evaluated the performance of ultraviolet/visible autofluorescence and diffuse 

reflectance spectroscopy in the characterization of cervical dysplasia and finally 

combined them with NIR Raman spectroscopy. It was found that optimal diagnosis of 

cervical precancer could be achieved by combining all these three different 

spectroscopic techniques together. The work completed in this thesis promotes some 

future directions to further optimize the diagnosis and detection of cervical precancer 
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in vivo using Raman spectroscopy. One of the major directions is to develop robust 

software integrated with Raman spectral data preprocessing, statistical modeling for 

real-time in vivo tissue diagnosis and characterization. Another major direction is to 

develop fluorescence image-guided Raman spectroscopic diagnosis system to further 

facilitate and improve early diagnosis and detection of cervical precancer in clinical 

settings.  
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Chapter 1 Introduction 

1.1 Overview 

Cancer is a major cause of human death. As the introduction of various prevention 

programs, the incidence and mortality rates declined in recent decades. However, the 

number of cancer and cancer-induced deaths is still increasing, which may be 

explained by the increased size of worldwide population and the population ageing. In 

particular for cervical cancer, it is the second most frequent cancer among women and 

it is estimated that there are 493,243 new cervical cancer cases in 2010 [1]. Meanwhile, 

there are 273,505 women dying from cervical cancer, which are the third most frequent 

cancer-induced deaths following breast (410,712) and lung (330,786) among women 

[1]. Therefore, great efforts are desired to prevent cervical cancer. 

The prevention of cervical cancer usually comprises three procedures, including 

screening, diagnosis and treatment. The correct screening and diagnosis play a key role 

in the prevention of cervical cancer. At present, papanicolaou (pap) smear screening 

coupled with colposcopic diagnosis is the most common method for the prevention of 

cervical cancer. Pap smear can yield a sensitivity and specificity of around 60% in the 

detection of cervical precancer [2]. Colposcopic examination can improve the 

sensitivity to be above 90%; however, its specificity is even worse (~40%) [3]. 

Moreover, histopathology remains the gold standard for precancer and cancer 

diagnosis, which requires invasive biopsy, lengthens the diagnostic period and 

increases the cost. In this situation, optical spectroscopic technique has recently 

emerged as a promising technique to aid in the prevention of cancer by showing 

advantages of noninvasive, real-time and high-accuracy screening/diagnosis. Till now, 

the common spectroscopy used for screening/diagnosing precancer and cancer in the 
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cervix includes fluorescence, reflectance, infrared and Raman spectroscopy. They 

characterize various tissue pathologies by probing the changes in morphology, 

biochemical composition of tissue associated with tissue maligancy. In particular for 

Raman spectroscopy, it is a vibrational spectroscopic technique and molecular 

fingerprint probe, and has been applied for the detection of cancer and precancer in 

various human organs.  

In this study, we aimed to explore the potential of NIR Raman spectroscopy in both 

fingerprint and high wavenumber (HW) regions for the ex vivo and in vivo detection of 

cervical precancer. To further enhance the acquisition of Raman signal originating 

from the epithelium of cervical tissues, a fiber-optic Raman probe coupled with a ball 

lens was designed and evaluated by using Monte Carlo (MC) simulation method. We 

also investigated the feasibility of combining NIR autofluorescence (AF) and Raman 

to improve the diagnosis of cervical precancer. In addition, we evaluated the 

performance of different optical spectroscopic techniques (i.e., NIR Raman, 

ultraviolet/visible (UV/VIS) autofluorescence and reflectance spectroscopy) in the 

detection of cervical precancer ex vivo; meanwhile, we studied if the diagnosis can be 

improved through combining the three methods as compared to either of them alone.  

In this chapter, firstly, we will introduce the Raman effect and Raman spectroscopy 

instrumentation. Then, we will review the work on Raman spectroscopic diagnosis of 

various human cancers. Subsequently, we will present the background knowledge 

about cervical precancer and cancer. Next, we will review the work on the use of 

Raman spectroscopy and other alternative optical spectroscopic techniques (i.e., 

fluorescence, reflectance and infrared spectroscopy) for the detection of cervical 

precancer and cancer. Finally, we will present the motivations, objectives and 

organization of this thesis.  
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1.2 Raman Spectroscopy 

1.2.1 The Raman Effect 

The Raman effect was discovered by Chandrasekhara Venkata Raman in 1928, who 

was awarded the Nobel Prize in physics in 1930 for his work on discovering Raman 

scattering. The Raman scattering phenomenon was observed as an additional radiation 

to Rayleigh scattering (elastic scattering) and fluorescence emission when C. V. Raman 

was verifying the Rayleigh scattering. When light interacts with a molecule, a majority 

of photons are elastically scattered without frequency changes relative to the incident 

photons. This process is called Rayleigh scattering which is a classical theory of light 

scattering formulated by Lord Rayleigh in 1871. Meanwhile, a small fraction of light 

photons (approximately 1 in 108 incident photons) undergoes energy exchange with the 

molecule and consequently shows a frequency-shift against the incident photons. The 

process is defined as inelastic scattering and is also termed Raman scattering. In theory, 

the light interaction with a molecule leads to a polarization of the molecule and then 

the polarized molecule exhibits an induced dipole moment caused by the external field. 

The induced dipole moment P is proportional to the electric field E and to a property 

of the molecule called the polarizability α as shown in the following equation [4]: 

;P E  0 0cos 2E E v t ; 0 0cos 2P E v t          (1.1)   

where 0E  and 0  are the vibrational amplitude and frequency of the incident light, 

respectively. The polarizability   is dependent upon the position of the nuclei in the 

molecule. For a molecule containing N atoms, there are 3N degrees of freedom 

available to the nuclei. Of there, 3N-6 (3N-5 for a linear molecule) results in the 

vibrations of the molecule. Considering a diatomic molecule with the single normal 

coordinate 1Q , the induced dipole moment is as below [4]: 
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where 0  is the inherent polarizability of the molecule, 0
1Q  and 1  are the 

vibrational amplitude and frequency of the molecule, respectively. The first term 

represents Rayleigh scattering, and if 1Q is nonzero, Raman scattering occurs. 

The second and third terms represent anti-stokes and stokes Raman scattering, 

respectively, as shown in Fig. 1.1.  

Figure 1.1 Energy transition diagram of vibrational spectroscopy. V is the vibrational quantum 
number. 

For stokes Raman scattering, the scattered photon has a lower energy (longer 

wavelength) than the exciting photon. On the contrary, for anti-stokes Raman 

scattering, the scattered photon is located at shorter wavelength compared to the 

exciting photon. Conventional Raman spectroscopy is based on stokes Raman 

scattering. A Raman spectrum is created by determining the Raman intensity as a 

function of frequency shift (1/λexcitation-1/λRaman), so called Raman shift which is 

quantified in wavenumber (cm-1). Raman spectrum is characterized by a few distinct 

bands attributed to specific group of vibrational bonds in the molecules of the sample. 

Raman spectroscopy has proved to have the potential for diagnosing cancer and 

precancer through measuring Raman spectral changes representing the structural and 
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conformational changes of biomolecules associated with the cancerous transformation. 

In addition, it is noticed in Fig. 1.1 that there exists another vibration spectroscopy (i.e., 

infrared (IR) or near-infrared (NIR) absorption spectroscopy). The extent of energy 

exchange during Raman scattering is identical to the energy absorbed during IR 

absorption. This implies that the frequency shift for certain vibration band of the same 

molecule remains the same for Raman scattering and IR absorption. However, the 

selection rule of Raman scattering differs from that of IR absorption. A molecule 

absorbs IR light only when the dipole moment changes during the molecular vibration. 

Whereas, the Raman effect is caused by an oscillation-induced dipole moment, which 

means that the molecular interaction with light is through the polarizability of the 

molecule. Therefore, not all the molecules are both Raman-active and IR-active, which 

makes Raman spectroscopy and IR spectroscopy complementary to each other.  

1.2.2 Raman Instrumentation 

Raman spectroscopy mainly consists of four parts, including excitation light source, 

spectrograph, detector, and sampling module. In principle, the light is delivered to the 

sample by the sampling module and then interrogates the sample. The Raman scattered 

photons in the sample undergo multi-scattering and absorption, and subsequently are 

collected by the sampling module. Then, the collected Raman photons are fed into the 

spectrograph and collected by the detector. Finally, spectrum is created with the output 

of the detector. 

It is noted that the Raman shift of specific molecular vibration is independent of 

excitation light and Raman scattering is very weak. Therefore, high power 

monochromatic excitation light is required for Raman spectroscopy. As the invention 

and advance of laser technology, laser light from near-ultraviolet to near-infrared 



  6

regions (e.g., 488-, 515-, 785-, 830-, and 1064-nm) dominates the light source for 

Raman spectroscopy [4]. As for Raman spectrograph, it can be categorized into two 

types, including dispersive and non-dispersive. Dispersive spectrograph separates 

Raman photons spatially and then disperses them onto a multichannel detector using 

grating. In contrast, non-dispersive Raman spectrograph does not require spatial 

separation of Raman photons. At present, Fourier Transform (FT) Raman spectroscopy 

is one of the common non-dispersive Raman spectrograph forms. It is a multiplexing 

technique based on Michelson interferometer which modulates all the different 

wavelengths to produce a complex “interferogram”. The interferogram is detected by a 

single-channel detector and eventually converted to spectrum by Fourier Transform. In 

the early time of Raman spectroscopy, FT Raman spectroscopy is the most prevalent. 

As the invention and advance of charge-coupled device (CCD), dispersive Raman 

spectroscopy based on CCD has become the major form of Raman spectroscopy. 

In addition to light source, spectrograph, and detector, sampling module is also a key 

part of Raman spectroscopy and exerts a big impact on the sensitivity and application 

scope. For example, prior to the introduction of fibers to Raman spectroscopy, it is 

hard to achieve a remote control of Raman spectroscopic measurement. Till now, 

Raman sampling module has the following forms: (1) 90° or 180° scattering mode 

based on normal lens; (2) back-scattering or forward-scattering microscopic mode; (3) 

fiber-optic sampling using various fiber-optic probes. 

1.2.3 Cancer Diagnosis by Raman Spectroscopy 

1.2.3.1 Raman-active Biomolecules 

Raman spectroscopic diagnosis of precancer and cancer is based on the fact that a big 

amount of molecules in biological tissues are Raman-active and meanwhile show 
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significant changes accompanying tissue premalignant and malignant transformation. 

Tissue Raman spectrum is a mixture of Raman signals from various molecules in 

tissue and consequently can represent the changes of those molecules. The spectrum 

variation among different tissue pathologies due to the molecular changes enables 

Raman spectroscopy to differentiate tissues under different histopathological statuses. 

It has been recognized that the major Raman-active biomolecules which are sensitive 

to tissue premalignant and malignant changes are proteins, lipids, nucleic acids and 

carbohydrates [5].  

Proteins take up about 20% of total body weight, provide structural support and are 

also involved in all metabolic processes. Proteins and synthetic polypeptides consist of 

amino acids joined together by peptide bond (-CONH-). Peptide bond gives rise to 

many different types of vibrational modes such as amide A and B bands, amide I, II, III, 

IV, and VII bands. Among these, amide I and III bands correlated with structural 

properties of protein molecules yield very prominent Raman bands at 1645~1657 cm-1 

and 1264~1300 cm-1, respectively, for protein with α-helix structure. The counterpart 

in protein with β-sheet structure is 1650~1680 cm-1 and 1230~1245 cm-1.  

Lipids, covering about 12% of total body weight, serve as structural component and 

energy storage in living organisms. Raman spectroscopy is able to probe biological 

membrane structure and function without perturbing the sample through probing the 

major lipids (fatty acids) and its derivatives (phospholipids). They show a lot of 

vibrational bands in Raman spectra in the region of 100~3000 cm-1, which are 

structurally sensitive and may be assigned to C-C stretching vibration modes and C-H 

stretching vibration modes. 

Nucleic acids are complex and high-molecular-weight biochemical macromolecules 
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composed of nucleotide chains that convey genetic information. The most common 

nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Nucleic 

acids are found in all living cells and viruses. Raman spectroscopy is extensively used 

to study the conformation of nucleic acids and mechanism of interaction with other 

compounds. Nucleic acids show many structurally sensitive Raman bands which can 

be used to follow the progress of conformational changes or interactions. 

Carbohydrates are the most abundant biological molecules and play an important role 

in living organisms. It stores and transports energy, and also serves as structural 

components. The vibration modes of carbohydrates are very complex and usually 

include OH, C-H, C-C, C-C-O, C-O, C-O-C and C-O-H vibrations. This leads the 

interpretation of Raman spectra to be difficult. For example, C-H stretching vibration 

of carbohydrates gives a complex pattern in the region of 2800~3050 cm-1. The 

complexity arises from the presence of different types of CH-containing groups such 

as -CH3, -CH2, and C-H.  

1.2.3.2 Raman Spectroscopic Diagnosis of Human Cancer and Precancer 

1. Brain: The early Raman study on human brain tumor tissues was conducted by 

Mizuno et al with the use of FT Raman spectroscopy in 1994 [6]. Distinctive Raman 

spectra differences were observed among normal and different types of tumor tissues 

(i.e., glioma grade II and III, acoustic neurinoma and neurocytoma). Raman band at 

960 cm-1 due to hydroxyapatite was suggested as a biomarker indicative of tumor 

pathologies. 

Koljenović and co-workers (2002) investigated the feasibility of Raman spectroscopy 

for grading glioblastoma [7]. They succeeded in delineating cross-sectioned vital and 

necrotic tissues by using Raman-mapping and K-means cluster analysis (KCA). A 
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perfect differentiation between necrotic and vital tissues was made by diagnostic 

model produced by principal component analysis (PCA) and linear discriminant 

analysis (LDA). In their later work, they demonstrated that HW Raman spectra 

(2700~3100 cm-1) can provide essentially equivalent diagnostic information as Raman 

spectra in fingerprint region (400~1900 cm-1) and consequently can be used for tissue 

characterization [8].  

Krafft et al (2005) elucidated the biochemical composition variation among normal 

and different intracranial tumors (i.e., astrocytoma, glioblastoma multiforme and 

meningeoma) by modeling tissue spectrum with reference spectra (i.e., protein, lipid, 

water and cholesterol) [9]. Normal tissue showed higher level of lipid while 

intracranial tumor tissue showed larger content of hemoglobin and lower ratio of lipid 

to protein. Recently (2009), they found an increase in water content and a decrease in 

lipid content in brain tumor as compared to normal brain tissue in a separate study 

[10].  

2. Breast: Redd et al (1993) examined normal and cancerous breast tissues by using 

Raman spectroscopy with the excitation light at 406.7-, 457.9-, and 514.5-nm [11]. The 

results showed that Raman signal of normal tissue was mainly attributed to carotenoids 

(i.e., 1004, 1156, and 1525 cm-1) and lipids (i.e., 1082, 1302, 1444, and 1652 cm-1), 

which diminished obviously in benign and cancerous breast tissues. Frank and 

co-workers (1994) optimized the wavelength of excitation light for Raman 

spectroscopic measurement on human breast tissues [12]. Subsequently, Frank et al 

(1995) used 784-nm light as the excitation source to study Raman spectral differences 

between normal and cancerous breast tissues [13].  

In the later years, Michael Feld’s group did extensive Raman studies on breast cancer. 
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Manoharan et al (1998) and Chowdary et al (2006) demonstrated that NIR Raman 

spectroscopy coupled with multivariate statistical techniques was capable of 

differentiating breast cancer from normal tissue with a fairly good accuracy [14, 15]. 

To further elucidate the biochemical composition changes associated with tissue 

malignant transformation, Shafer-Peltier et al (2002) developed a biochemical and 

morphological model of breast tissue with the component spectra derived from spectra 

of cell cytoplasm, cell nucleus, fat, β-carotene, collagen, calcium hydroxyapatite, 

calcium oxalate dehydrate, cholesterol-like lipid deposits and water [16]. Haka et al 

(2005) extended this study on a larger women population (58 patients) and achieved a 

sensitivity of 94% and specificity of 96% in discriminating cancer tissues from normal, 

fibrocystic and fibroadenoma tissues by performing logistic regression analysis on the 

fitting coefficients [17]. In 2006, Haka et al reported an in vivo study on using Raman 

spectroscopy to delineate the malignancy margin during partial mastectomy and their 

success in real-time Raman spectroscopic diagnosis [18]. Three years later, with the 

use of the same system, they did the first trial on the prospective diagnosis of breast 

cancer using Raman spectroscopy [19]. In the same year (2009), Chowdary et al 

employed nonlinear peak fitting, known as Lavenberg-Marquardt method, to 

deconvolve tissue spectrum into 17 individual Raman bands to elucidate the 

biochemical changes induced by tissue cancerous changes [20].  

Besides cancer detection, calcification also received some research efforts. Haka et al 

(2002) investigated the feasibility of identifying micro-calcification in benign and 

malignant breast lesions using a NIR Raman microscope [21]. A sensitivity of 88% and 

specificity of 87% were achieved in differentiating micro-calcification between benign 

and malignant breast tissues. Matousek et al (2007) demonstrated that transmission 

Raman spectroscopy has the potential to aid conventional screening methods (e.g., 
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mammography and ultrasound) in improving the early diagnosis of breast cancer by 

probing the calcification in breast tissues [22].  

3. Colon and Esophagus: Keller and co-workers (1994) measured Raman spectra 

from a pair of normal and haemorrhagic intestines using FT Raman spectroscopy with 

1064-nm light excitation [23]. Haemorrhage-induced Raman spectral differences were 

observed between these two tissue types. Feld et al (1995) reported another 

preliminary study on Raman spectroscopic examination of normal and cancer colon 

tissues [24]. Obvious spectral difference between normal and adenocarcinoma colonic 

tissues occurred near 1000, 1300 and 1500 cm-1. Shim et al (2000) succeeded in 

acquiring Raman spectrum from gastro intestine (GI) in vivo for the first time using a 

flexible fiber-optic Raman probe through the conventional endoscope [25]. Prominent 

Raman peaks were seen in the vicinities of 1003 (phenyl ring breathing mode), 1260 

(amid III), 1310 (CH2 twisting mode), 1450 (CH2 bending mode), and 1657 cm-1 

(amide I). By using the same Raman system, Molckovsky (2003) demonstrated the 

capacity of Raman spectroscopy for identifying hyperplastic and adenomatous polyps 

both ex vivo and in vivo [26]. Andrade et al (2007) demonstrated the existence of 

intrinsic spectral variation and suggested that this variation should be taken into 

consideration when building spectral database [27]. Widjaja et al (2008) investigated 

the multi-type diagnostic ability of NIR Raman spectroscopy for colon tissues on a 

large dataset [28]. Diagnostic accuracy of 99.9% was yielded by a diagnostic algorithm 

based on PCA and support vector machine (SVM).   

Shim et al (2000) demonstrated the feasibility of measuring Raman spectra from 

esophagus tissues in vivo with the use of fiber-optic probe via conventional endoscope 

[25]. Then, Song et al (2005) proved the in vivo diagnostic potential of NIR Raman 

spectroscopy on a large population of 65 patients, showing an accuracy of about 85% 
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in diagnosing dysplasia [29]. Kendall et al (2003) employed a NIR micro-Raman 

system to test if Raman spectroscopy can identify neoplasia in Barrett’s esophagus [30]. 

Shetty and co-workers (2006) further elucidated the biochemical changes in 

carcinogenesis of esophagus through Raman spectroscopic mapping [31]. The major 

finding was the reduced content of glycogen and elevated content of DNA in abnormal 

area.   

Recently, micro-Raman probe was proposed for acquiring the Raman signal 

originating from the subsurface of esophagus by Hattori et al (2007) [32]. Day and 

co-workers (2009) optimized a confocal Raman probe design for in vivo Raman 

measurement on esophagus via the auxiliary channel of conventional endoscope [33]. 

The probe has been validated ex vivo, showing the ability of acquiring Raman 

spectrum from esophagus with 2 seconds. 

4. Bladder and Prostate: Nie and co-workers (1992) demonstrated for the first time 

that Raman spectroscopy can be used to discriminate bladder cancer from normal 

tissue [34]. Raman spectra of rat bladder tissues measured with NIR FT Raman 

spectroscopy exhibited prominent bands at 1004 (phenylalanine), 1240 and 1268 

(amide III), 1449 (lipid) and 1664 cm-1 (amide I). Jong et al (2002) proved that Raman 

spectroscopy in combination with cluster analysis can characterize bladder wall layers, 

including urothelium, muscle and lamina [35]. Subsequently, they (2003) extended 

their study to investigate the effect of outlet obstruction on the molecular composition 

of bladder muscle tissue by using Raman spectroscopy [36]. They observed collagen 

infiltration and an accumulation of glycogen in obstructed bladder tissues. Crow et al 

conducted a lot of work on applying Raman spectroscopy for the detection of both 

bladder and prostate cancer and elucidating the biochemical changes, such as 

multi-classification among benign, and three grades of prostatic adenocarcinoma 
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tissues [37] and among normal bladder, cystitis and carcinoma in situ 

(CIS)/translational cell carcinoma (TCC) [38]. Later, a fiber-optic Raman system was 

developed for in vivo Raman measurement on bladder and prostatic tissue and has 

been evaluated in vitro [39]. In addition to the study on gross tissues, Crow and 

co-workers (2005) investigated the feasibility of Raman spectroscopy coupled with 

PCA-LDA to characterize various prostatic cancer cell lines [40]. Shortly after their 

study, Taleb et al (2006) employed partial least square discriminant analysis and 

adjacent band ratios to successfully classify Raman spectra of all malignant prostatic 

cells from that of normal cells [41].  

Jong and co-workers (2006) tried to delineate the normal and tumor part of bladder 

tissues with PCA and hierarchical cluster analysis (HCA) [42]. Furthermore, the 

biochemical difference between non-tumor and tumor tissues was elucidated by 

modeling tissue spectra with 18 reference spectra of biochemical representatives. Stone 

et al (2007) used similar chemical fitting method to study the biochemical composition 

variation related to malignant transformation of bladder and prostatic tissues with 8 

reference spectra of actin, collagen I/III, choline, triolein, oleic acid, DNA and 

cholesterol [43]. 

5. Larynx and Nasopharynx: An early study on Raman spectroscopic diagnosis of 

malignant changes in larynx was conducted by Stone and co-workers (2000) [44]. 

Seven normal, four dysplastic and four malignant larynx tissues were examined using 

Raman microscope with 830-nm light and discriminated with an accuracy of more than 

85% by PCA-LDA diagnostic algorithm. Five years later, in another study, Lau et al 

(2005) demonstrated again that Raman spectroscopy can be used for identifying larynx 

tissues [45]. Teh et al (2009) proposed random forest method to develop diagnostic 

algorithm for laryngeal cancer [46]. Random forest method can also provide insight 
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into the biochemical changes associated with tissue malignant transformation. 

As for nasopharynx, two studies were reported in literature. Lau et al (2003) firstly 

reported their preliminary findings on Raman spectroscopic characterization of 

nasopharynx cancer. In recent year, Feng et al (2009) studied the Raman features of 

cancerous and normal nasopharynx tissues by using surface-enhanced Raman 

scattering (SERS) technique [47]. The Raman images created with the Raman bands at 

725, 962 and 1336 cm-1 showed an increased, reduced and increased intensities, 

respectively, in cancerous nasopharyngeal tissues as compared to normal tissues.  

6. Lung: Raman spectroscopy was firstly used to study lung tissue changes other than 

cancer, such as inclusions identification by Buiteyeld et al (1984) [48]. In a later study, 

Schut and co-workers (1997) demonstrated that Raman spectroscopy can probe the 

change of carotenoid content level in lung tissue [49]. The first direct comparison of 

Raman spectra between normal and cancerous lung tissues was performed by 

Kaminaka et al (2001) and showed an increased intensity of Raman peaks at 1448 and 

1666 cm-1 due to collagen in cancer tissue [50].  

Huang et al (2003) examined bronchial tissues (12 normal, 10 squamous cell 

carcinoma (SCC) and 6 adenocarcinoma) from 10 patients using Raman spectroscopy 

[51]. Raman peak intensity ratio of 1445/1655 cm-1 (CH2 scissoring/collagen) was 

found to be an effective diagnostic marker with a sensitivity of 92% and specificity of 

94%. In the same year, they (2003) reported that formalin-fix process had effect on 

tissue Raman spectra and hence suggested the use of fresh tissue for Raman study [52]. 

Following Huang’s ex vivo work, Short et al (2008) successfully designed a flexible 

fiber-optic endoscope Raman probe for in vivo Raman measurement on bronchial 

tissue [53].  
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In addition to Raman spectra classification, Koljenović and co-workers (2004) made 

efforts to gain the understanding of biochemical and morphological composition of 

bronchial tissue using Raman microscopy [54]. Raman map of cross-sectioned 

bronchial tissues was created by implementing PCA and KCA on Raman spectra. The 

Raman map showed a good agreement with the corresponding histology. Krafft et al 

(2008) used similar method to make a pair-wise comparison of Fourier transform 

infrared spectroscopy (FTIR) and Raman imaging between normal and congenital 

cystic adenomatoid malformation (CCAM) lung tissues [55]. It was found that CCAM 

tissues contained an increased lipid and glycogen content and reduced red blood cell 

content as compared to normal tissues. 

The recent studies on Raman spectroscopic diagnosis of lung precancer and cancer 

were performed at cellular levels. Jess and co-workers (2009) measured Raman spectra 

from normal, neoplastic lung cell lines (mild and severe neoplasia) successfully using 

Raman microspectroscopy [56]. Neoplastic cell lines were discriminated from normal 

cell lines with a sensitivity of 91% and specificity of 75%. Moreover, neoplastic cell 

lines were further graded into two stages (i.e., mild and severe) with an accuracy of 

79% and 87%, respectively. Similar study on separating lung cancer cells from normal 

cells with Raman spectroscopy was reported by Oshima et al (2010) [57]. Eighty 

percent of the cell lines were characterized correctly with PCA.  

7. Skin: Basal cell carcinoma (BCC) is the most common form of skin cancer and 

therefore has received most of Raman research efforts. Gniadecka and co-workers 

(1997) carried out Raman measurements on both normal and BCC tissues by using 

NIR FT Raman spectroscopy [58]. Raman spectral features in the regions of 830~900 

cm-1, 900~990 cm-1, and 1220~1300 cm-1 allowed a complete separation between BCC 

and normal tissues, which was confirmed by neural networks analysis. Nijssen et al 
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(2002) obtained a sensitivity of 100% and specificity of 93% in discriminating BCC 

from its surrounding non-cancerous tissues using PCA and logistic regression analysis 

[59]. In their following work, they (2007) demonstrated that NIR Raman spectroscopy 

in HW region (2800~3125 cm-1) was also capable of characterizing BCC [60]. Tissue 

spectral modeling with reference spectra of collagen, oleic acid, palmitic acid and 

albumin revealed a reduced collagen content and increased albumin content in BCC 

tissues as compared to normal tissues. With the similar method, Short et al (2006) 

found that the nucleoli from tumor cells contained less RNA, histone, and actin than 

that from normal cells while more DNA, histone, and actin for the remaining nucleus 

[61]. Ly and co-workers (2008) demonstrated that polarized Raman spectroscopy can 

improve the differentiation between normal and peritumoral dermis as compared to 

conventional non-polarized Raman spectroscopy [62]. In a recent study, Larraona-Puy 

et al (2009) used Raman spectroscopy not only to distinguish BCC from normal tissues 

but also to delineate the tumor margin [63].  

Besides BCC, Raman spectroscopy has also been applied to detect other forms of skin 

cancer, especially melanoma which is the most aggressive skin cancer. At the early 

time, Gniadecka and co-workers (1997, 2004) explored the Raman spectral variation 

among a big variety of skin pathologies and employed neural networks technique to 

distinguish the Raman spectra of different tissue types [64, 65]. Melanoma was 

separated from pigmented nevi, BCC, seborrheic keratoses and normal skin with a 

sensitivity of 85% and specificity of 99%. A perfect prediction of normal, BCC, SCC 

and melanoma by Raman spectroscopy was reported by Lieber et al (2008) [66].  

Meanwhile, several in vivo Raman studies on skin have been reported. Huang et al 

(2001) developed a rapid NIR Raman spectroscopy coupled with a fiber-optic probe 

for in vivo Raman measurement on skin and acquired good-quality cutaneous Raman 
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spectra within 1 second [67]. More recently, Lieber et al (2007) developed a handheld 

in vivo Raman microspectrometer [68]. In a subsequent study, this system was used for 

clinical measurement by the same group [69]. Maximum representation and 

discrimination feature were used to reduce data dimension and sparse multinomial 

logistic regression was used to develop diagnostic algorithm. All abnormal skin tissues 

were predicted correctly and only two normal tissues were misdiagnosed.   

8. Stomach: Teh and co-workers have conducted extensive studies on applying Raman 

spectroscopy for the ex vivo detection of precancer and cancer in stomach from 2008 

till now. Their first report (2008) was made on differentiating dysplasia from normal 

tissue using NIR Raman spectroscopy [70]. PCA-LDA analysis yielded a sensitivity 

and specificity of 95.2% and 90.9%, respectively. In 2009, they extensively 

investigated the potential of empirical method (i.e., intensity ratio) for distinguishing 

stomach dysplasia [71]. The combination of I875/I1450 and I1208/I1655 proved optimal for 

the diagnosis of dysplasia with a sensitivity of 90.5% and specificity of 90.9%. 

They (2008) also attempted to identify stomach cancer using Raman spectroscopy and 

classification and regression tree (CART) technique instead of PCA-LDA [72]. The 

CART algorithm yielded a sensitivity of 90.2% and specificity of 95.7%, and moreover 

found that Raman bands at 875 and 1745 cm-1 were the most significant Raman 

features for cancer discrimination. In their latest work, they (2010) tested the 

possibility of further typing stomach cancer (i.e., intestinal and diffuse 

adenocarcinomas) using Raman spectroscopy [73]. The correct prediction rates are 

88%, 92% and 94% for normal, intestinal type and diffuse type tissues, respectively. In 

addition to precancer and cancer, they (2010) also did a pilot study to characterize 

nonneoplastic stomach lesions (i.e., Helicobacter-pylori (Hp) infection and intestinal 

metaplasia (IM)), which are highly associated with stomach cancer [74]. Good 
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differentiation among normal, IM and Hp-infection tissues was achieved, showing 

accuracies of 91.7%, 80.0%, and 80.0%, respectively. Besides Teh and co-workers, 

several other groups were also involved in applying Raman spectroscopy for stomach 

cancer diagnosis [75-77].  

Recently, Huang et al (2009) reported their success in measuring Raman spectrum 

from stomach in vivo [78]. A fiber-optic endoscopic Raman probe was designed, which 

was flexible and compatible with conventional endoscopy, and consequently allowed 

in vivo Raman measurement on stomach. Moreover, white, autofluorescence and 

narrow band imaging was used to guide the Raman measurement in vivo.  

1.3 Cervical Cancer 

1.3.1 Cervical Cancer Facts and Risk Factors 

1.3.1.1 Cervical Cancer Facts 

Cervical cancer is the 2nd most frequent cancer among women worldwide in 2002 and 

shows an incident rate of 16%. It is ranked 7th, 2nd and 4th in developed countries, 

developing countries and Singapore, respectively [1]. The corresponding incidence rate 

is 13.6%, 16.6% and 15.7%, respectively. More importantly, the incidence rate is still 

growing [1]. Estimated based on the rate in 2002, the incidence rate in 2010 is 17.2%, 

14.1%, 18.3% and 19.4% worldwide, in developed and developing countries, and 

Singapore, respectively. The number of new cervical cases in 2010 is 585,278, 88,702, 

505,592 and 441, respectively, while just 493,243, 83,437, 409,404 and 323 in 2002, 

respectively [1].  

Meanwhile, the mortality rate of cervical cancer is in the 3rd place following breast and 

lung worldwide. In particular for developing countries, it is the highest [1]. In 
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Singapore, it is the 5th highest. In 2002 and 2010, the specific mortality rate of cervical 

cancer is 8.9% and 9.7% in the world, 6.4% and 6.9% in developed countries, 9.5% 

and 10.5% in developing countries, and 9.9% and 13.3% in Singapore, respectively. 

Simultaneously, the number of deaths due to cervical cancer grows from 273,505 to 

327,899 in the world, 39,512 to 43,043 in the developed countries, 233,776 to 291,872 

in developing countries, and 205 to 302 in Singapore [1]. Even given that the incidence 

and mortality rates remain unchanged, the absolute number of new cancer cases and 

cancer-induced deaths still keeps increasing. This may be accounted for by the 

increased population size and population aging [79]. Therefore, prevention and early 

diagnosis of precancer and cancer in the cervix are becoming even more desired, 

especially in developing countries where 80% of the cervical cancers occurs [80]. 

1.3.1.2 Risk Factors 

A variety of factors have been found to separately or jointly lead to cervical cancer, 

such as human papillomavirus (HPV) infection, smoking, oral contraceptive, the 

number of sex partners, the number of full pregnancies, genetic and immunological 

factors. Among the factors above, HPV infection has been recognized as the main 

cause of cervical cancer during the past twenty five years. The eight most common 

HPVs (i.e., HPV-16, -18, -33, -45, -31, -58, -52 and -35 in order of decreasing 

prevalence) account for ~90% of cervical cancer worldwide and HPV-16 and -18 

account for 70% of cervical cancer [81]. Consequently, HPA DNA testing and HPV 

vaccine have emerged as the choice of method for preventing cervical cancer.  

Smoking is another major factor of cervical cancer, leading to a 2-fold increase in the 

risk of cervical cancer [82]. Moreover, the risk also shows a trend of increase with the 

increase in the number of cigarette smoked and years of smoking [82]. Besides, a long 
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term use of oral contraceptive (i.e., >5 years) and the number of full pregnancies 

(i.e., >=7) induce a significant increase up to 4-fold in the risk of cervical cancer of 

HPV-infected patients [83, 84]. Genetic predisposition, the host response and 

immune-suppression are also found to contribute in part to the development of 

precancer and cancer [85, 86]. Diet, education and social class are found not to be 

significantly associated with cervical precancer and cancer [87, 88]. 

1.3.2 Anatomy of Cervix 

The cervix is the lower narrow part of the uterus and protrudes through the upper wall 

of the vagina. It serves to transport the menstrual blood from uterus to vagina and 

direct sperm into uterus during intercourse. The cervix is further divided into 

ectocervix and endocervix. Ectocervix is the portion of the cervix which projects into 

the vagina. It is covered by stratified non-keratinizing squamous epithelium which is 

centered in the external orifice of the uterus (os). The ectocervix is around 3 cm long 

and 2.5 cm wide on average and usually visible under colposcopy [89]. In comparison, 

the endocervix is the part of the cervix connecting external os and uterine cavity. It is 

covered by columnar epithelium. The joint point between ectocervix and endocervix is 

called squamo-columnar junction. The portion of the columnar epithelium that is 

ultimately replaced by squamous epithelium is termed the transformation zone, where 

neoplasia and malignancy arise from [89]. 

The cervix shows a two-layer structure, comprising the superficial epithelium layer 

and the underlying stroma layer. The stroma layer is composed predominantly of 

elastic tissue (i.e., collagen and elastin) forming extracellular matrix. The epithelium is 

separated from the stroma by basement membrane. It differs between ectocervix and 

endocervix. The epithelium of ectocervix shows architecture of multiple cell layers, 



  21

including superficial layer, intermediate layer, parabasal layer and basal layer from the 

epithelium surface towards the stroma. In contrast, the endocervical canal is covered 

by columnar epithelium, which is composed of a single layer of tall cells. 

1.3.3 Histology of Cervix 

1.3.3.1 Normal Cervix 

The squamous epithelium of normal cervix shows a clear multi-layer structure, 

consisting of basal layer, parabasal layer, intermediate layer, superficial layer [90]. The 

basal layer consists of cells in cylindrical shape with relatively large nuclei. The 

parasal layer is formed by a couple of cell layers with fairly large nuclei and distinct 

intercellular bridges. Mitotic figures are rarely seen in these two layers. The 

intermediate layer on top of parabasal layer is formed by flatten cells with a high level 

of glycogen and frequent vacuolation in cytoplasm. The superficial layer is composed 

of elongated, flattened cells with small pyknotic nucleolus and a large amount of 

cytoplasm. 

1.3.3.2 Cervical Dysplasia 

Cervical dysplasia refers to the cervical intraepithelial changes which show malignant 

potential. It was termed as cervical intraepithelial neoplasia (CIN) by Richard in 1967 

[91], and is the premalignant stage of cervical cancer. Histological features of CIN 

mainly include the absence of cytoplasmic differentiation and orderly stratification, the 

lack of clearly defined boundaries, and large nuclei-cytoplasm ratio in epithelium cells. 

CIN can be graded into three stages (i.e., 1, 2 and 3) according to the spread of 

neoplastic changes in the epithelium. CIN 1 shows neoplastic changes within the lower 

one-third of the epithelium while lower two-thirds and whole epithelium for CIN 2 and 

3, respectively. Besides, CIN 3 also shows undifferentiated, non-stratified, basaloid 
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cells with nuclear crowding and greater nuclear pleomorphism as compared to CIN 1 

and 2. However, CIN does not show any invasion into the underlying stroma, which 

serves as an important criterion for distinguishing CIN from invasive carcinoma.  

Detection of CIN at mild stage followed by effective treatment can reduce incidence 

rate of cervical cancer. However, the diagnostic inconsistency, especially on CIN 1 and 

2 still exists [92]. Therefore, a modified two-tier system (the Bethesda system [93]) 

was proposed, which divided cervical epithelial neoplastic changes into two groups 

including low grade and high grade squamous intraepithelial lesions (LGSILs and 

HGSILs). LGSILs refer to HPV infection and CIN 1, and HGSILs refer to CIN 2 and 3, 

and carcinoma in situ (CIS). However, the discrimination between CIN 1 and 2 is not 

improved under the two-tier system. Consequently, a robust and objective diagnostic 

method is desirable to prevent the aforementioned diagnostic inconsistency among 

pathologists. Optical methods have proven to be a potential candidate.  

1.3.3.3 Cervical Cancer 

Cervical cancer can be usually differentiated from precancer by the invasion of the 

neoplastic changes into the stroma. Cervical cancer mainly has two forms. One is 

squamous carcinoma, constituting 70~78% of cervical cancer. Squamous carcinoma 

shows some of the following characteristics, including relatively large cells, bands, 

discrete islands, infiltrative pattern and/or solid sheets [94]. The other is 

adenocarcinoma, constituting 12~18.6% of cervical cancer [94]. Little or no cytologic 

atypia is observed in adenocarcinoma and the cells are like that of normal counterpart. 

Glandular crypts are often sharply angulated and extend towards a big depth of the 

stroma. In addition, the surrounding stroma shows a loose edematous or desmoplastic 

response.  
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1.3.4 Conventional Screening/Diagnosis and Treatment of Cervical Cancer 

Cervical cancer has a defined premalignant phase for many years. This allows a long 

time for screening or diagnosis of premalignant changes or malignancy at early stage. 

Then, cervical cancer can be prevented and the corresponding mortality rate can be 

reduced significantly. Therefore, various cervical cancer screening methods are 

developed. To date, cervical cytology testing (i.e., pap smear) is widely used as an 

effective screening method for cervical cancer, especially in developed countries. The 

procedures of pap smear include collecting cells from cervix and then examining those 

collected cells under microscopy. However, the use of pap smear in developing 

countries is limited and shows a deteriorated efficacy. Consequently, visual inspection 

techniques, such as visual inspection after applying acetic acid (VIA), visual 

inspection after applying Lugol’s iodine (VILI), are proposed for routine cervical 

cancer screening method as an alternative to pap smear in the developing countries. 

Recently, HPV DNA testing is emerging as another alternative method due to the high 

correlation of HPV with cervical cancer. Moreover, HPV DNA testing can be done on 

site and yield the results immediately. As the advance of HPV DNA testing assay, it is 

growing as a cost-effective, efficient and suitable cervical cancer screening technique, 

especially in developing countries. More recently, HPV vaccine is developed for 

preventing cervical cancer. However, most of the HPV vaccines can only be targeted at 

limited types of HPVs.  

For the diagnosis of cervical precancer and cancer, colposcopic examination and 

colposcopy-directed biopsy remain as the most reliable method. Colposcopy is like a 

telescope which can magnify the cervix for examination. In clinic procedures, 3~5% 

acetic acid will be applied on the cervix for a few minutes prior to checking the 

colposcopic appearance of cervix. Suspicious lesions found under colposcopy will be 
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biopsied for histopathological examination. Histopathology results serve as the gold 

standard for cervical precancer or cancer diagnosis.  

At present, almost all the precancers in the cervix are curable. The treatment strategy 

varies with the severity and size of the lesion. The common treatment methods for 

cervical precancer include loop electrosurgical excision procedure, large loop excision 

of the transformation zone, hysterectomy, laser therapy (vaporizing cervical epithelium 

with laser) and cryotherapy [95, 96].  

The treatment of invasive cancer depends on the stage of invasive cancer. For stage I, 

radical hysterectomy is preferred and minimally invasive surgery recently emerges as 

an alternative for small tumors. For stage II to IV, radiotherapy is usually used. In 

addition, chemotherapy is proposed as an adjunct to radiotherapy to improve 

progression-free survival [95]. 

1.4 Raman Spectroscopic Diagnosis of Cervical Cancer 

Liu and co-workers pioneered Raman measurement on cervical tissues in 1992, 

including malignant and non-malignant (i.e., normal and benign) tissues with NIR FT 

Raman spectroscopy [97]. Their most significant finding was that Raman peak at 1657 

cm-1 (amide I) showed a higher intensity than Raman peak at 1445 cm-1 (C-H bending 

of proteins/lipids) in normal tissue while it showed otherwise in malignant tissue. 

Mahadevan-Jansen et al (1998) demonstrated the capacity of Raman spectroscopy for 

the detection of cervical precancer using both intensity ratio method and multivariate 

statistic technique (i.e., PCA and fisher discriminant analysis (FDA)) [98]. The Raman 

peak intensity and intensity-ratio, including I1070, I1656, I1656/I1330 and I1656/I1454 were 

found to be diagnostically significant for differentiating squamous intraepithelial 

lesions (SILs) from non-SILs as well as HGSILs from LGSILs. In their following 
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work, they proceeded to the in vivo Raman spectroscopic diagnosis of cervical 

dysplasia with the design of a fiber-optic Raman probe [99]. Raman spectra with 

acceptable signal to noise ratio (SNR) can be acquired from cervix in vivo within 90 

seconds. Subsequently, clinical trials were conducted on 13 patients, including normal, 

inflammation, squamous metaplasia, LGSILs and HGSILs [100]. A diagnostic 

algorithm of I1454/I1656 versus I1330/I1454 yielded a good differentiation of HGSILs from 

other tissues.  

Robichaux-Viehoever (2007) employed an improved Raman system for in vivo Raman 

measurement on cervix with integration time reduced to a few seconds [101]. Logistic 

regression analysis was employed to utilize the intensity of the primary peaks (i.e., 

1006, 1055, 1244, 1305, 1324, 1450, 1550 and 1657 cm-1) to develop diagnostic 

algorithm, showing a better performance than colposcopic diagnosis. In a later report, 

Kanter et al (2009) developed a novel statistical method for multi-group classification 

[102]. Maximum representation and discrimination feature were used to extract 

diagnostic information and sparse multinomial logistic regression was used to make 

differentiation. With this method, fairly high correct prediction rate was achieved for 

HGSILs (24/29), LGSILs (18/21), metaplasia (19/29) and normal (208/226). Using the 

same technique, they (2009) investigated the effect of hormonal variation on Raman 

spectra for tissue characterization [103]. The results showed that the accuracy of 

discriminating LGSILs from normal ectocervix could be improved by stratifying the 

tissues according to the menopausal status. 

Besides Anita’s group, several other groups also contributed to applying Raman 

spectroscopy for the detection of cervical precancer and cancer. Jess et al (2007) 

demonstrated that Raman spectra of various cervical cell lines (i.e., normal and 

malignant cell lines, and cell lines expressing HPV16 E7) can be separated well by 
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PCA-based algorithm [104]. They also found that cell fixation resulted in a large 

reduction in peak intensities at 936 and 1090 cm-1 and moreover can increase the 

sensitivity of cell characterization compared to live cell lines. Martinho et al (2008) 

demonstrated that cervicitis may deteriorate the performance of Raman spectroscopy 

for the diagnosis of cervical precancer [105].  

For cervical cancer diagnosis, Krishna and co-workers (2006-2007) explored the 

potential of Raman spectroscopy for cervical cancer detection [106, 107]. The major 

spectral variation associated with tissue malignancy included narrowed amide I and III 

bands, a minor red shift of Raman band at 1450 cm-1, and the vanishing of Raman 

bands at 854, 939, 1269 and 1384 cm-1. Diagnosis with the inclusion of the parameters 

(factor scores, Mahalanobis distance and spectral residual) produced by PCA achieved 

a very high sensitivity and specificity of 99.5% in distinguishing cancer from normal 

tissues. Moreover, they also proved that Raman spectroscopy can be used to evaluate 

the efficacy of radiotherapy [107] 

Lyng et al (2007) elucidated the biochemical changes associated with tissue malignant 

transformation with reference spectra of proteins, nucleic acids, lipids and 

carbohydrates [108]. An absence of glycogen band and an increased intensity of 

nucleic acids and amide I bands were observed in cancer tissue as compared to normal 

tissue. About 99% of normal, dysplasia and cancer tissues can be characterized 

correctly by PCA-LDA diagnostic algorithm. A similar study was reported by 

Kamemoto et al (2010) [109]. They observed that normal squamous cells exhibited a 

more intense Raman scattering than malignant squamous cells. The spectra in the 

region of 775~975 cm-1 exhibited a good correlation with the spectra in the region of 

2800~3100 cm-1.  
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1.5 Other Optical Spectroscopic Techniques for Cervical Cancer 

Diagnosis 

1.5.1 Fluorescence Spectroscopy 

Lohmann and co-workers (1989) measured fluorescence spectra from normal, 

dysplasia, and invasive carcinoma cervical tissues with 365-nm excitation light [110]. 

Tissue fluorescence spectra showed a primary band peaked at 475 nm, which was 

attributed to reduced form of nicotinamide adenine dinucleotide (NADH). The 

intensity of NADH band increased with the progression of tissue from normal to 

severe dysplasia and was very low in tumor tissue. This was confirmed by the 

fluorescence image of cervical tissue cryo-section [111]. The feasibility of using 

fluorescence spectroscopy for discriminating cervical malignancy was explored for the 

first time by Glassman et al (1992, 1994) [112, 113]. The results indicated that the 

excitation band ratio (I335/I380) and emission band ratio (I340/I440) can be a biomarker of 

cervical cancer. Mahadevan et al (1993) recorded fluorescence excitation-emission 

matrices (EEMs) in vitro on 18 biopsied tissues of 10 patients [114]. Fluorescence 

intensity at 380 nm under 330-nm light excitation can distinguish dysplasia with a 

comparable accuracy as compared to colposcopic diagnosis. Koumantakis et al (1997) 

found other fluorescence spectral bands at various wavelengths (i.e., 558-, 583-, 600-, 

630- and 697-nm) under 420-nm excitation as cervical malignancy predictors [115]. 

In the following years, Ramanujam and co-worker conducted an extensive work on 

applying fluorescence spectroscopy for the in vivo detection of cervical dysplasia with 

337-nm excitation light [116-119]. In their first in vivo clinical trial, fluorescence 

spectra were acquired from the cervical tissues of 28 patients, including 66 

colposcopically normal and 49 histologically abnormal (i.e., inflammation, HPV 
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infection, and CIN) using a bifurcate fiber probe [116, 117]. Dysplasia tissue can be 

distinguished with an accuracy of ~90% using overall fluorescence intensity and the 

slope of the spectra in the region of 420~440 nm. Biochemical composition changes 

were elucidated by fitting tissue spectra with reference spectra of pure biochemicals 

[117]. Reduced collagen content occurred in dysplasia while oxyhemoglobin 

attenuation and NADH content were increased. In a later study, they developed 

multivariate statistical algorithm for the diagnosis of cervical dysplasia using PCA and 

logistic discriminant analysis, showing a sensitivity of 88%±1.4 and specificity of 

70%±1 [118]. This multivariate statistic method was further used to evaluate the 

performance of 380- and 460-nm light excited fluorescence in diagnosing cervical 

precancer [119]. Fluorescence spectroscopic diagnosis with 460-nm excitation 

outperformed over that with 380-nm excitation. 

Subsequently, several groups were involved in investigating the various variables 

associated with in vivo clinical trial on fluorescence spectroscopic diagnosis of cervical 

precancer. Utzinger et al (1999) studied whether tissue type, sample size, population 

and SNR affected the fluorescence spectroscopic diagnosis of cervical precancer [120]. 

In the same year, Agrawal et al (1999) investigated the effect of acetic acid, cervical 

mucus and vaginal medication [121]. Chang et al (2002) found that menstrual cycle 

did not result in a significant inter-patient variation and hence menstrual cycle did not 

need to be considered during fluorescence measurement [122]. However, Cox et al 

(2003) observed a reduction in the fluorescence emission in the first several days of 

one cycle and suggested no fluorescence measurement during those days [123]. Gill et 

al (2003) pointed out that menopausal status had a significant effect on the 

fluorescence spectra of cervical tissues, such as a significantly higher stroma 

fluorescence for postmenopausal women [124]. Atkinson et  al (2005) found that 
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overall fluorescence spectral intensity increased with the increase of patient age and 

Follicle Stimulating Hormone [125]. Meanwhile, Brookner et al thought that 

fluorescence spectral difference between the normal areas of cervix of patients with 

and without dysplasia history was statistically significant [126]. Nath et al (2004) and 

Rivoire et al (2004) reported that fiber probe pressure did not cause significant effect 

on the fluorescence intensity and line-shape [127, 128]. Freeberg et al (2007) described 

the device variability of fluorescence and reflectance spectroscopy and the induced 

effect on the spectral measurement [129]. The spectral data analysis should be 

performed on the stratified data as the spectral intensity varied with devices. This is in 

agreement with the findings reported by Pikkula et al (2007) [130]. 

Fluorescence imaging has been widely used to study tissue fluorescence properties 

associated with malignancy. Brookner et al (2000) observed that fluorescence intensity 

decreased in epithelium but increased in stroma of normal cervix with the increase of 

patient age [131]. Subsequently, fluorescence image pattern was correlated with tissue 

premalignancy and malignancy. Ramanujam et al (2001) recorded the fluorescence 

image of cross-sectioned cervical tissues with 365- and 440-nm light excitation [132]. 

The severe dysplasia exhibited the lowest intensity of the epithelium fluorescence, 

intensity ratio of epithelium/stroma and redox ratio. Drezek and co-workers (2001) 

reported an increase in NADH fluorescence and a reduction in collagen fluorescence 

with tissue malignant transformation [133, 134]. Similar studies and findings were also 

reported by other groups [135-138]. Besides NADH and collagen, Chang et al (2006) 

found that flavin adenine dinucleotide (FAD) fluorescence increased and keratin 

fluorescence decreased in the epithelium of dysplasia tissue relative to normal tissue 

through quantitative analysis of tissue fluorescence [139].  

Chang et al (2002) optimized the excitation light wavelength (i.e., 330~340, 350~380 
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and 400~450 nm) for fluorescence spectroscopic diagnosis of cervical precancer [140]. 

In the following year (2003), Benavides et al reported their development of a 

multispectral digital colposcopy (MDC) for in vivo detection of cervical cancer [141]. 

Dysplasia area can be identified with automated diagnostic algorithm. An extensive 

use of MDC was conducted on 46 patients by Milbourne et al (2005) [142]. The MDC 

images can be matched to histopathologic and algorithmic (non-parametric K-nearest 

neighbor classifier) maps, indicating the diagnostic potential of MDC.  

Apart from the literature above, there are some other works reported on fluorescence 

spectroscopic diagnosis of cervical precancer and cancer. Heintzelman et al (2000) 

attempted to explore the fluorescence difference between inflammation and cancer in 

cervix by using EEMs [143]. Nordstrom et al (2001) achieved a differentiation of SILs 

from normal squamous tissues with an accuracy of higher than 85% [144]. Weingandt 

et al (2002) reported that fluorescence intensity under 375- and 440-nm excitation 

decreased with tissue premalignant transformation [145]. Rodero et al (2008) proposed 

a simple intensity-based algorithm to differentiate fluorescence spectra under 488-nm 

light excitation from chronic inflammation, LGSILs and HGSILs [146]. Chidananda et 

al (2006) achieved an accuracy of higher than 95% in differentiating cervical 

malignancy from normal tissue using fluorescence spectroscopy and PCA [147]. The 

ratio of collagen/NADH showed a potential in predicting malignant tissue. 

1.5.2 Reflectance Spectroscopy 

Much less work has been done to use reflectance spectroscopy for cervical precancer 

and cancer detection as compared to fluorescence spectroscopy. Nordstrom et al (2001) 

attempted to characterize cervical precancer and benign changes using diffuse 

reflectance spectroscopy coupled with Mahalanobis distance [144]. Reflectance 



  31

spectroscopy showed an inferior diagnostic performance to fluorescence spectroscopy. 

Georgakoudi and co-workers (2002) measured in vivo reflectance spectra on cervix 

and extracted the scattering coefficient using a diffuse-model [148]. A sensitivity of 

62% and specificity of 82% in discriminating SILs from non-SILs was produced by 

logistic regression algorithm calculated from the slope and intercept of the reduced 

scattering coefficient function curve. Moreover, the diagnosis was improved by 

combining reflectance with fluorescence and light scattering spectra. Chang et al (2005) 

agreed on the superiority of fluorescence spectroscopy to reflectance; however, they 

did not see any improvement in the diagnosis by combining reflectance and 

fluorescence [149]. Mirabal et al (2002) combined the reflectance spectra of cervix 

measured at four different illumination-collection separations as the input of statistical 

analysis (i.e., PCA) [150]. The differentiation of normal squamous from HGSILs and 

normal columnar from HGSILs was found to be comparable to that based on 

fluorescence spectra. Marín et al (2005) extended Mirabal’s work to further explore the 

reflectance spectral pattern related to precancer on a larger patient population [151]. 

Precancer tissues showed weaker reflectance intensity as compared to normal tissues. 

They also suggested that Soret absorption of hemoglobin and the 

wavelength-dependent slope of spectra should be the most significant diagnostic 

markers.  

To better understand the in vivo reflectance spectra of cervix, Arifler et al (2006) 

proposed MC simulation method to model the in vivo spectra [152]. The effect of 

optical properties (i.e., scattering and absorption coefficients) on the reflectance 

spectra and the depth-selectivity of the probe were revealed. In a later report, Weber et 

al (2008) described an adjoint reflectance and fluorescence model to fit the in vivo 

measured spectra of cervix [153]. Volume fraction of blood, hemoglobin oxygen 
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saturation, concentration of structural protein, the strength and shape of the scattering 

in the stroma represented almost all the diagnostic information in reflectance spectra. 

Chang and co-workers (2009) also used MC method to extract the physiological 

parameters from diffuse reflectance spectra [154]. It was found that total hemoglobin 

concentration was significantly higher in HGSILs than in LGSILs and normal while 

reduced scattering coefficient was reduced in SILs compared to normal tissues. 

1.5.3 Infrared Spectroscopy 

Wong and co-workers (1991) pioneered the use of IR spectroscopy for investigating 

the structural changes of dysplastic and malignant cervical cells and tissues [155, 156]. 

The significant molecular structural changes associated with tissue malignant 

transformation included: (1) reduction in glycogen; (2) extensive hydrogen bonding of 

the phosphodiester groups of nucleic acids; (3) red-shift of IR band at 1082 cm-1; (4) 

reduction in hydrogen bonding of C-OH groups of carbohydrates and proteins; (5) 

increased degree of disorder of methylene chains of membrane lipids; (6) an additional 

band at 970 cm-1; (7) decreased methyl-to-methylene ratio; (8) hydrogen-bond strength 

amide groups decreased in α-helical segments but increased in β-sheet segments. Wood 

et al (1996) employed PCA to discriminate the IR spectra of exfoliated cells from 272 

patients [157]. Eighty-six percent of the IR-predicted normal cells showed normal pap 

smear and seventy-one percent of the IR-predicted malignancies were confirmed by 

biopsies. Similar study was conducted on a larger population of 436 patients by 

Cohenford et al (1997) and achieved a sensitivity of 79% and specificity of 77% in the 

diagnosis of cervical cancer [158]. In the same year, a sensitivity of 98.6% and 

specificity of 98.8% in detecting cervical dysplasia was reported by Fung et al (1997) 

[159]. 
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Subsequently, Chiriboga and co-workers (1997, 1998) conducted a series of studies to 

comprehensively understand the IR spectral features of cervical tissues and exfoliated 

cells [160-162]. In their first study, they collected IR spectra from cervical tissue slices 

using FTIR microscope [160]. CIN tissues showed unique glycogen bands at 1028 and 

1151 cm-1 as compared to normal squamous tissues. Then, to better interpret the 

spectra of exfoliated cells, IR spectra were acquired from various layers of normal 

squamous tissues, including superficial layer, intermediate layer, parabasal layer, basal 

layer and stroma [161]. Lastly, they reported that IR spectra of exfoliated cells can be 

fitted by the spectra of mucus and various layers so that the contribution of different 

layers can be estimated [162].  

Wood and et al (1998) took endeavor to reveal the potential confounding variables 

which may interfere or deteriorate the discrimination of neoplastic or malignant cells 

based on IR band intensity [163]. The results showed that saline, Leukocytes, severe 

infestations of C. albicans, fibroblast, endocervical mucins, sperm contamination and 

thrombocytes may affect IR measurement. Consequently, multivariate statistic 

technique was proposed for developing diagnostic algorithm. Cohenford et al (1998) 

found that normal-appearing cells from patients with dysplasia or malignancy are IR 

spectroscopically differentiable from normal cells of healthy patients [164]. Romeo et 

al (2005) suggested that benign changes and endocervical cells also influence the 

diagnosis of cervical cancer and therefore should be removed prior to PCA-based 

diagnosis [165]. They also mentioned that hormonal status led to a variation in spectral 

features of cervical cells; however, it did not confound the diagnosis of cervical 

dysplasia by PCA [166]. They also attempted to remove the blood component from 

cervical smear [167]. However, the discrimination of dysplasia from normal cells 

became even worse after removing leukocytes, which raised the question on the true 
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origins of spectral difference between normal and malignant cells. 

Apart from the spectral analysis above, mapping and imaging were proposed to 

analyze cervical tissue cryo-section. Chang and colleagues (2003) created the images 

of tissue sections with the ratio of the integrated intensities under IR bands of 

1130~1180 cm-1 and 1180~1260 cm-1, allowing a discrimination of cervical dysplasia 

from normal tissue [168]. In the following year, cluster analysis was used to build the 

image of tissue sections so as to extract IR spectral features of different cell types and 

differentiate among different tissue pathologies. Bambery et al (2004) mapped tissue 

cryo-section with both IR band intensity and clusters generated by unsupervised HCA 

[169]. The results showed that the spectra from the same layer were almost resembled 

into the same cluster. In a separate report, Wood and co-workers (2004) distinguished 

successfully the layer structures of normal, LGSILs and HGSILs tissues with the same 

method and differentiated dysplasia from normal tissue [170]. IR bands at 1470~1740 

cm-1 (amide I and II) showed a good correlation with tissue anatomy and histology. 

Steller et al (2006) suggested that IR spectroscopy coupled with Fuzzy C-means 

clustering for data reduction and HCA for classification have the ability to distinguish 

different tissue types as well as tissue pathologies [171].  

To optimize the performance of IR spectra for screening cervical dysplasia and cancer, 

neural networks was introduced for developing diagnostic algorithms. Mark et al (2004) 

reported their success in grading cervical neoplasia (i.e., CIN 1, 2 and 3) with the use 

of probabilistic neural networks (PNN) with an accuracy rate of ~85% [172]. 

Podshyvalov et al (2005) differentiated cancer from normal tissues with an accuracy 

(>95%) [173].  
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1.6 Thesis Motivations, Objectives and Organization 

1.6.1 Motivations and Objectives 

NIR Raman spectroscopy exhibites advantages for the detection of cervical precancer 

and cancer, such as non-invasive, real-time and higher accuracy, as compared to those 

conventional screening/diagnosis methods (i.e., pap smear and colposcopy). On the 

other hand, it also holds advantages over other optical spectroscopic techniques (i.e., 

UV/VIS fluorescence and reflectance spectroscopy). For instance, it can yield higher 

specificity as it is a molecular fingerprint technique. Moreover, the use of NIR 

excitation light allows a longer penetration depth in tissue and consequently the 

acquisition of Raman signal originating in deeper layer of tissues [51]. In addition, 

NIR light is noncarcinogenetic. However, most of Raman studies in characterizing 

cervical tissues are limited in fingerprint region [98, 100, 102]. Note that the 

fiber-optics materials can produce Raman and fluorescence signal in fingerprint region 

which may interference the tissue Raman signal. Consequently, optical filtering 

modules are used to eliminate the interference from fiber-optics materials and as a 

result complicate the design of Raman probe. Recently, HW Raman spectroscopy has 

been proposed for tissue characterization [8]. HW Raman probe design can be 

simplified with the use of single fiber for both excitation and collection but no optical 

filtering module as fiber-optics materials do not produce Raman scattering in HW 

region [174]. Till now, HW Raman spectroscopy for cervical tissue discrimination has 

not been reported. Meanwhile, most of Raman studies for cancer diagnosis in various 

organs, including cervix, are conducted alone and separated from other optical 

techniques. Note that different optical techniques may provide insights into different 

aspects of tissue premalignant or malignant changes [175, 176]. In particular, for 

cervix, only limited studies were conducted to combine UV/VIS fluorescence and 
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reflectance for the diagnosis of cervical dysplasia [148]. Therefore, this thesis work is 

conducted towards two aims. The first one is to explore the potential of HW NIR 

Raman spectroscopy for the detection of cervical precancer in vivo. The second one is 

to investigate the feasibility of combining different optical spectroscopic techniques to 

further improve the diagnosis of cervical precancer as compared to the diagnosis by 

individual spectroscopic method alone. The specific aims are as following:  

(1) To verify the capacity of NIR Raman spectroscopy in fingerprint region (800~1800 

cm-1) for discriminating cervical dysplasia ex vivo; 

(2) To develop a rapid and portable NIR Raman spectroscopy system for in vivo 

Raman measurements on cervix. An in vivo fiber-optic Raman probe design with 

the use of ball lens is proposed to enhance the depth-selective Raman measurement 

on the cervix;  

(3) To explore the feasibility of NIR Raman spectroscopy in HW region (2800~3700 

cm-1) for the in vivo diagnosis of cervical dysplasia with the use of the in vivo 

Raman system developed; 

(4) To combine Raman and NIR autofluorescence background signal to improve the 

detection of cervical dysplasia as compared to the diagnosis by Raman 

spectroscopy alone; 

(5) To optimize the optical diagnosis of cervical dysplasia through combining NIR 

Raman, UV/VIS fluorescence and diffuse reflectance spectroscopy. 

1.6.2 Thesis Organization 

This chapter has provided the background knowledge relevant to this thesis work, the 

objectives and motivations of this thesis work. The remaining thesis is organized as 



  37

following. Chapter 2 presents an ex vivo study on verifying the ability of Raman 

spectroscopy for differentiating benign, LGSILs and HGSILs of cervix. It describes a 

new Raman spectrum acquisition program integrated with an online-processing 

function developed for Raman spectral acquisition, spectral analysis and multivariate 

statistical analysis. Chapter 3 describes the development of a rapid portable NIR 

Raman spectroscopy for in vivo Raman measurement on cervix. It describes the design 

of a ball lens Raman probe for enhancing in vivo depth-selective Raman measurement 

on cervix in detail. MC simulation method was used to comprehensively evaluate the 

performance of this ball-lens Raman probe configured with a variety of ball lens’ 

diameter and refractive index, and probe-tissue distance. Chapter 4 reviews our work 

on investigating the feasibility of HW Raman spectroscopy for the in vivo diagnosis of 

cervical precancer using the system depicted in Chapter 3. The results demonstrated 

the efficacy of the in-house developed Raman system and the potential of HW Raman 

for discriminating cervical precancer from normal tissues. Chapter 5 depicts our work 

on exploring the possibility of combining Raman and NIR autofluorescence to 

improve the diagnosis of cervical precancer. Chapter 6 reports our attempt to combine 

Raman spectroscopy with UV/VIS fluorescence and diffuse reflectance spectroscopic 

techniques for optimizing the optical diagnosis of cervical precancer. Chapter 7 

summarizes the whole thesis and also gives the future directions. 
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Chapter 2 NIR Raman Spectroscopy for Ex Vivo Detection of 

Cervical Precancer: Multivariate Statistical Analysis and 

Spectral Modeling 

Raman spectroscopy is a unique analytic probe for molecular vibrations and can 

provide molecular fingerprint information of biochemical compositions in tissues. It 

has proven to have the potential for diagnosing precancer and cancer in various human 

organs through probing the biochemical changes associated with tissue cancerous 

transformation. In this chapter, we presented our work on verifying the capabilities of 

Raman spectroscopy in fingerprint region (800~1800 cm-1) for the ex vivo detection of 

cervical dysplasia. A rapid NIR Raman spectroscopy system combined with a bifurcate 

fiber-optic Raman probe was employed for the Raman spectroscopic measurements on 

cervical tissues. A novel data acquisition program was developed using LabVIEW and 

Matlab. In total, 80 spectra were acquired from 30 samples, including 24 spectra from 

9 benign tissues, 34 spectra from 12 LGSILs tissues and 22 spectra from 9 HGSILs 

tissues. Empirical analysis method (i.e., intensity ratio) was used to differentiate 

precancer from benign tissues. PCA and LDA were employed to develop diagnostic 

algorithms. Moreover, tissue spectrum was fitted with reference spectra of pure 

biochemicals using linear least-squares fitting method to elucidate the biochemical 

changes behind Raman spectral variation associated with tissue dysplastic changes. 

The results demonstrated that NIR Raman spectroscopy has the potential to diagnose 

cervical precancer. 
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2.1 Materials and Methods 

2.1.1 Cervical Tissue Samples 

A total of 30 cervical biopsied tissue specimens were obtained from patients who 

underwent colposcopy-guided biopsy or surgical resection for clinically suspicious 

lesions or histologically proven premalignancies. All the patients preoperatively signed 

an informed consent permitting our Raman study on the tissues and this study was also 

approved by the Ethics Committee of the National Healthcare Group of Singapore. 

After biopsy or surgical resection, tissue specimens were immediately stored in 

physiologic saline solution (pH=7.4) and delivered to our laboratory for Raman 

spectroscopic measurement without any pretreatment on the tissue specimens. After 

Raman spectroscopic measurement, tissue specimens were fixed in 10% formalin 

solution and then submitted to the pathology laboratory for histopathological 

examination. The histology results showed that 9 specimens are benign, 12 specimens 

are LGSILs and 9 specimens are HGSILs as shown in table 2.1. Benign tissues 

comprise chronic cervicitis, squamous metaplasia, inflammation and koilocytic atypia. 

Table 2.1 Statistics of tissue samples and Raman measurements. 

Histology 
Race Age 

(mean) 
Number 

of Biopsies 
Number 

of Spectra Chinese Indian Malay others 

Benign 9 0 0 0 
29~56 
(42.2) 

9 24 

LGSILs 7 0 2 1 
27~64 
(43.5) 

12 34 

HGSILs 6 1 1 1 
22~48 
(37.7) 

9 22 

2.1.2 Reference Spectra of Biochemicals 

Five biochemicals were selected to fit Raman spectra of cervix. The five biochemicals 

are: collagen type I, glycogen, DNA, oleic acid and cholesterol (Sigma-Aldrich, St. 
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Louis, MO).  

2.1.3 Raman Instrumentation 

A rapid NIR Raman spectroscopy system was employed for the tissue Raman 

measurement in optical bioimaging laboratory at National University of Singapore. 

Figure 2.1 shows the schematic diagram of the Raman system [78]. The whole system 

mainly consists of a spectrum stabilized 785-nm diode laser (maximum output, 300 

mW; B&W Tek, Newark, DE), a transmissive imaging spectrograph (Holospec f/2.2, 

Kaiser Optical Systems, Ann Arbor, MI), a NIR-optimized, back-illuminated, and 

deep-depletion CCD camera (1340×400 pixels at 20×20 μm/pixel; Spec-10: 

400BR/LN, Princeton Instruments, Trenton, NJ), and a specially developed bifurcated 

fiber-optic Raman probe. The probe is 1.8 mm in outer diameter and 2.5 m in length, 

and comprises 33 ultralow-OH fused-silica fibers (NA=0.22) in which one 200-μm 

central fiber is used for laser light delivery while thirty-two 200-μm surrounding fibers 

are for Raman signal collection. The excitation light is exported out from the diode 

laser by a 200-µm core diameter fiber and then coupled into the central excitation fiber 

of the fiber-optic probe through an in-line filter module integrated with a narrow 

band-pass filter (LL01-785, Semrock, Rochester, NY) for suppressing laser noise, 

fluorescence, and Raman emission from the exporting fiber. Another narrow band-pass 

filter (centered at 785 nm, FWHM = ±2.5 mm) is coated on top of the distal end of the 

excitation fiber to reduce most of the fused-silica noise generated in the excitation 

fiber before the excitation light hits the tissue. The back-scattered Raman photons are 

filtered by an edge long-pass filter (cut off at 800 nm) coated on top of the distal end of 

the collection fibers to block the elastically scattered excitation light prior to being 

collected by the surrounding fibers. Subsequently, the Raman photons are coupled into 

the fiber bundle adapter via an in-line filter module integrated with an edge long-pass 
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filter (LP02-785RU, Semrock, Rochester, NY) for further reduction of the scattered 

laser light while permitting the scattered-tissue Raman photons to pass through toward 

the Raman spectrograph. Eventually, the fiber bundle feeds the Raman photons into the 

Raman spectrograph. The fiber bundle comprises sixty-four 100-μm ultralow-OH 

fibers (NA=0.22; length=1.5 m) and is packed in a round geometry at the long-pass 

in-line filter module. At the entrance slit of the Raman spectrograph, the fiber bundle is 

arranged as a parabolic linear array in an orientation opposite to the image aberration 

of the transmissive spectrograph, which effectively corrects spectrograph image 

aberrations, thereby enables the hardware binning of the entire CCD chip to improve 

the SNR up to 20-fold (400/√400) compared to the complete software binning. The 

spectral resolution of our system is approximately 9 cm-1 (a 100-μm core diameter 

fiber covers 6 pixels with a 1.25×magnification of the spectrograph; each pixel covers 

1.5 cm-1).   
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Figure 2.1 Schematic of the NIR Raman spectroscopy system. BPF: Band Pass Filter; 
LPF: Long Pass Filter.  

2.1.4 Raman Data Acquisition Program Development 

The commercial software for hardware controlling and data acquisition is WinSpec 

(Princeton Instruments, Trenton, NJ). In addition to data acquisition, it is also 

integrated with correction and math functions (i.e., background subtraction and 

smoothing). However, it cannot extract the true tissue Raman spectrum from the raw 

spectrum by eliminating the tissue autofluorescence background. Therefore, we 

developed our own Raman data acquisition program using LabVIEW (National 

Instruments, Austin, TX) and Matlab (The MathWorks, Natick, MA). The most 

significant function provided by our program is to fit the autofluorescence background 

with a polynomial and then subtract it from raw tissue spectrum to yield the true tissue 

Raman spectrum alone in real-time. The program interface is shown in Fig. 2.2. The 

left two spectral windows are a mixture of raw spectrum and fitted autofluorescence 

background (top) and Raman spectrum after autofluorescence background subtraction 

(bottom). The right two spectral windows show the counterpart after smoothing. The 
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complete functions integrated into this program include: (1) set detector temperature; 

(2) set integration time; (3) wavelength-dependent system response function 

calibration; (4) dark subtraction; (5) smoothing; (6) autofluorescence background 

fitting and subtraction; (7) data save. 

 

Figure 2.2 The interface of Raman data acquisition program developed using LabVIEW and 
Matlab. 

2.1.5 Raman Measurement 

All the tissue Raman measurements were done in a light-tight box which can eliminate 

most of the interference from the environmental lights (e.g., computer monitor, light 

indicators). Tissue specimens were mounted onto aluminum foil which does not 

produce Raman signal interference. The laser light irradiance on tissue is 1.56 W/cm2 

which is less than the American National Standards Institute (ANSI) maximum 

permissible skin exposure limit for a 785-nm laser light beam [177]. All the Raman 

spectra were acquired over the range of 781.1~934.1 nm. The spectrum acquisition 
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time was adjusted from 1 to 3 seconds according to the overall intensity and SNR. 

Raman frequencies were calibrated with the spectra of cyclohexane, acetone and 

barium sulfate to an accuracy of ±2cm-1 (the digital data resolution of the CCD 

detector). All spectra were corrected for the wavelength-dependent intensity response 

function of the system using a standard lamp (RS-10, EG&G Gamma Scientific, San 

Diego, CA). 

2.1.6 Data Preprocessing 

The raw spectra acquired from tissue were truncated in the range of 800~1800 cm-1 for 

preprocessing and analysis. The Raw spectra were composed of intense 

autofluorescence, noise and very weak tissue Raman scattering signal. Firstly, the raw 

spectra were preprocessed by a first order Savitzky-Golay filter (window size: 5 pixels) 

to reduce noise [178]. Secondly, a fifth order polynomial was found to optimally fit the 

autofluorescence background signal of all the noise-reduced spectra [51]. The fitted 

polynomial was subtracted from the noise-reduced spectrum to yield the Raman 

spectrum alone. Finally, each background-subtracted tissue Raman spectrum was 

normalized to the integration area under the spectrum to correct the inter- and/or 

intra-patient variation in absolute spectral intensity so as to enable a better comparison 

on the spectral line-shape and relative Raman band intensity. Prior to the statistical 

analysis, empirical analysis method (i.e., intensity ratio of different Raman bands) was 

employed to explore the diagnostic potential of Raman spectroscopy for cervical 

precancer. The histology results serve as the gold standard for us to evaluate the 

sensitivity and specificity of the diagnostic algorithm. 

2.1.7 Multivariate Statistical Analysis 

PCA was firstly performed on the tissue spectral dataset to reduce the data dimension 
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while retaining the most diagnostically significant information for effective tissue 

classification. To eliminate the influence of inter- and/or intra-subject spectral 

variability on PCA, the entire spectra were standardized so that the mean of the spectra 

was zero, and the standard deviation (SD) of all the spectral intensities was one. Mean 

centering ensures that the principal components (PCs) form an orthogonal basis [179, 

180]. The standardized dataset was assembled into data matrices with wavenumber 

columns and individual case rows. Thus, PCA was conducted on the standardized 

spectral data matrices to generate PCs comprising a reduced number of orthogonal 

variables that accounted for most of the total variance in original spectra. Each loading 

vector is related to the original spectrum by a variable called the PC score, which 

represents the weight of that particular component against the basis spectrum. PC 

scores reflected the differences between different classes. One-way analysis of 

variance (ANOVA) was used to identify the most diagnostically significant PCs (p<0.1) 

among benign, LGSILs and HGSILs. These significant PC scores were lastly selected 

as the input of LDA for developing trichotomous classification algorithms. LDA 

determines the discriminant function that maximizes the variances in the data among 

different groups while minimizing the variances among the members within the same 

group. The performance of the diagnostic algorithms rendered by the PCA-LDA 

models for correctly predicting the tissue groups was estimated in an unbiased manner 

using the leave-one spectrum-out, cross-validation method on all model spectra [179, 

181].  

To evaluate the overall trichotomous classification accuracy, a Mossman’s three-way 

Receiver Operating Characteristic (ROC) testing was performed [182]. A ROC surface 

was created by utilizing the posterior probabilities belonging to each of the three tissue 

groups (i.e., benign, LGSILs and HGSILs) produced by PCA-LDA diagnostic model. 
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Each case has three probabilities P1, P2 and P3 (P1+P2+P3=1) belonging to group 1, 2 

and 3, respectively. A threshold value (e.g., T-value 1 = 0:0.1:1) is chosen for judging 

whether a case is from group 1 or not. If P1>T-value 1, then this case is clustered into 

group1; If P1<T-value 1, another threshold (e.g., T-value 2 = −1: 0.2:1) is chosen for 

deciding whether this case is from group 2 or group3. If (P2−P3)>T-value 2, then this 

case is classified into group 2; otherwise, it is classified into group 3. As a result, with 

11×11 different combinations of T-value 1 and 2, 121×3 matrices of correct 

classification rates will be yielded, of which each column is the correct classification 

rate for one group. Then, this matrix can be plotted in three-dimension to create the 

ROC surface. The volume under the three-way ROC surface (VUS) equals the 

probability that the tissue is identified correctly. Thus, VUS represents the overall 

three-group classification accuracy as the area under ROC curve for a two-group 

classification.  

2.1.8 Spectral Modeling 

Linear least-squares fitting with nonnegativity constraints was employed to fit tissue 

spectrum with reference spectra of biochemicals (i.e., collagen, glycogen, DNA, 

cholesterol and oleic acid) [17]. The contribution of each reference spectrum to tissue 

spectrum was calculated by normalizing the fit coefficients such that they sum to one. 

The normalized coefficients represent the percentage of each component’s contribution 

to the target tissue spectrum. LDA was used to evaluate the diagnostic value of the 

normalized fitting coefficients for all the five reference spectra.  

2.2 Results 

2.2.1 Spectral Feature Analysis 

Figure 2.3 shows the averaged Raman spectra yielded by subtracting the 
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autofluorescence background from the raw spectra. It was apparent that the tissue 

Raman spectrum was dominated by a few prominent Raman peaks located in the 

vicinities of 849, 932, 1004, 1039, 1063, 1085, 1125, 1178, 1206, 1254, 1285, 1317, 

1339, 1449, 1580 and 1658 cm-1. However, the tissue Raman spectrum was subject to a 

significant inter- and/or intra- patient intensity variation illustrated by SD as shown in 

the Fig. 2.3. Moreover, it is also challenging in clinical practice to standardize the 

absolute intensities of spectral measurements. Therefore, in this study, we precluded 

tissue diagnosis based on absolute intensities alone; instead, we focused on the 

analysis of the spectral line shape and relative Raman band intensity by normalizing 

the Raman spectrum to the integrated area under the spectrum. 
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Figure 2.3 The averaged Raman spectra±1SD of: (a) benign=24, (b) LGSILs=34, and (c) 
HGSILs=22. Line: averaged spectrum; Grey band: ±1SD. 

Figure 2.4 depicts the average intensity-normalized Raman spectra: (a) benign and 

LGSILs, (c) benign and HGSILs, (e) LGSILs and HGSILs. Significant spectral 

differences were observed among different types of tissues (i.e., benign, LGSILs and 

HGSILs). To better visualize the spectral difference, the difference spectra were 

produced, including LGSILs−benign, HGSILs−benign and HGSILs−LGSILs as shown 
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in Figs. 2.4((b), (d) and (f)), respectively. The spectral intensity was found to increase 

or decrease progressively from benign to LGSILs to HGSILs in the spectral region 

filled with grey color. For instance, Raman peaks at 1004, 1339 and 1449 cm-1 showed 

a continuous increase in intensity with the progression of tissue changes from benign 

to HGSILs while Raman peaks at 849 and 1658 cm-1 showed otherwise. It was noted 

that those prominent Raman peaks can be tentatively assigned to chemical bonds in 

tissues according to the literature report [5, 51]. Hence, those Raman spectral changes 

can represent the biochemical composition and molecular structural changes and 

therefore be related to the tissue precancerous changes. Eventually, they may provide 

useful information at molecular level for tissue characterization.  
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Figure 2.4 The averaged normalized Raman spectra of: (a) benign and LGSILs, (c) benign 
and HGSILs and (e) LGSILs and HGSILs. The corresponding difference spectra are: (b) 
LGSILs−benign, (d) HGSILs−benign, and (f) HGSILs−LGSILs. 

2.2.2 Empirical Analysis  

To verify the potential of Raman spectroscopy for tissue classification, empirical 

method (i.e., intensity ratio of Raman peaks) was firstly employed to develop 

diagnostic functions for characterizing the dysplastic cervical tissues by utilizing those 



  49

prominent Raman peaks. Figure 2.5 shows several scatter plotting examples of the 

intensity ratios of Raman peaks for the differentiation among benign, LGSILs and 

HGSILs with high accuracies. For example, single ratio of I849/I1004 can achieve a 

sensitivity of 73.5% (25/34) and specificity of 79.2% (19/24) in differentiating LGSILs 

from benign tissues with the diagnostic function of ratio (2.56). For the discrimination 

of HGSILs from benign tissues, the combinations of I932/I1449 vs I1339/I1658 and I932/I1449 

vs I1449/I1658 were found to be optimal, showing a sensitivity of 100.0% and specificity 

of 66.7% (16/24) and 70.8% (17/24), respectively. For the separation of HGSILs from 

LGSILs, the combinations of I932/I1254 vs I932/I1658 and I932/I1449 vs I1004/I1658 achieved 

the best diagnostic performance, showing a sensitivity of 68.2% (15/22) and 63.6% 

(14/22), and specificity of 97.1% (33/34) and 100.0% (34/34), respectively.  
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Figure 2.5 Scatter plots of the intensity ratio of Raman bands: (a) benign vs LGSILs, 
I849/I1004; (b) benign vs HGSILs, I932/I1449 vs I1339/I1658; (c) benign vs HGSILs, I932/I1449 vs 
I1449/I1658; (d) LGSILs vs HGSILs, I932/I1254 vs I932/I1658; (e) LGSILs vs HGSILs, I932/I1449 vs 
I1004/I1658; Simple straight-line diagnostic function can achieve sensitivities and specificities 
of: (a) 73.5% (25/34) and 79.2% (19/24); (b) 100.0% (22/22) and 66.7% (16/24); (c) 
100.0% (22/22) and 70.8% (17/24); (d) 68.2% (15/22) and 97.1% (33/34); (e) 63.6% (14/22) 
and 100.0% (34/34), respectively. Key: (○ in black) benign; (Δ in blue) LGSILs; (☆ in red) 
HGSILs. 
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2.2.3 PCA-LDA and ROC Analysis  

It was noticed that the diagnostic accuracy achieved by intensity ratio method is 

limited. This may be explained by the use of only limited spectral variables, indicating 

a limited use of the Raman spectral features. Therefore, a comprehensive use of all the 

Raman spectral variables was desired to further improve the diagnostic performance. 

Hence, multivariate statistical techniques (i.e., PCA and LDA) were proposed to 

develop the diagnostic algorithms with the utilization of the spectral features in the 

whole spectral range (800~1800 cm-1). 

Figure 2.6 displays the first six diagnostically significant PC loadings yielded by PCA 

on the tissue Raman spectral data: (a) PC1, (b) PC2, (c) PC4, (d) PC5, (e) PC6 and (f) 

PC11. It was found that all the six PCs appeared to contain many narrow bands and 

some of the PC features can roughly be related to the Raman spectra with peaks and 

troughs positions similar to those of tissue Raman spectra. Table 2.2 lists those six 

PCs’ mean scores±1SD for benign, LGSILs and HGSILs tissue groups, p-value and 

percent of total variance. The total variance covered by PC1, PC2, PC4, PC5, PC6 and 

PC11 is 27.2%, 15.3%, 11.5%, 8.0%, 4.4% and 1.3%, respectively. The first three PCs 

(PC1, PC2 and PC5) can represent more than 50% of the total variance. These results 

indicate the amount of the diagnostic information contained in the Raman spectra for 

differentiating among benign, LGSILs and HGSILs tissues. 
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Figure 2.6 Examples of the first six diagnostically significant PCs with p-value<0.1: 
(a) PC1, (b) PC2, (c) PC4, (d) PC5, (e) PC6 and (f) PC11. 

Table 2.2 The mean scores±1SD for benign, LGSILs and HGSILs tissue groups, p-value, 
percent of total variance of the first six diagnostically significant PCs. 

 
PC 

Mean Score ±SD  
p-value 

Percent of  
Total Variance 

Benign LGSILs HGSILs 

PC1 -0.187±0.908 -0.146±1.150 0.429±0.718 0.05876 27.2 

PC2 0.077±0.759 -0.411±0.936 0.552±1.075 0.00125 15.3 

PC4 -0.223±1.045 -0.119±1.066 0.428±0.712 0.05603 11.5 

PC5 0.566±0.779 -0.530±0.942 0.203±0.916 0.00004 8.0 

PC6 -0.122±0.998 -0.167±0.991 0.391±0.952 0.09574 4.4 

PC11 0.095±0.972 0.253±0.889 -0.495±1.056 0.01859 1.3 

To illustrate the ability of PC scores for tissue characterization, the first six 

diagnostically significant PC scores were scatter-plotted as shown in Figs. 2.7 to 2.9. 

Figure 2.7 describes the scatter plots of PC2, PC4, PC5 and PC11 for the separation 

between benign and LGSILs: (a) PC2 vs PC5, (b) PC2 vs PC11 (c) PC4 vs PC5, (d) 

PC5 vs PC11. It was noticed that LGSILs can be discriminated from benign tissues by 

straight-line diagnostic functions. Almost 75% of the tissues can be characterized 

correctly, indicating that PC2, PC4, PC5 and PC11 contained a wealth of diagnostic 
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information for discriminating LGSILs from benign. Similarly, Fig. 2.8 depicts the 

scatter plots of PC1, PC2, PC4, PC5 and PC11 for distinguishing HGSILs from benign 

tissues: (a) PC1 vs PC11, (b) PC2 vs PC4 (c) PC2 vs PC11, (d) PC4 vs PC5. The 

straight-line can roughly represent the diagnostic function which can distinguish 

around 76% of the tissues, indicating the diagnostic information provided by the PCs. 

Figure 2.9 shows the scatter plots of PC2, PC4, PC5 and PC11, which can separate 

HGSILs from LGSILs with an accuracy of about 80%, demonstrating the diagnostic 

ability of those PCs.  
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Figure 2.7 Scatter plots of the diagnostically significant PC scores for benign and LGSILs 
tissues: (a) PC2 vs PC5, (b) PC2 vs PC11 (c) PC4 vs PC5, (d) PC5 vs PC11. LGSILs can be 
discriminated from benign tissues by straight-line diagnostic functions: (a) PC5 = 
−0.61×PC2+0.2, (b) PC11 = 2.1×PC2+0.41, (c) PC5 = 0.76×PC4+0.95 and (d) PC11 = 
−1.68×PC5+0.29. The corresponding sensitivities and specificities are: (a) 79.4% (27/34) 
and 75.0% (18/24), (b) 76.5% (26/34) and 70.8% (17/24), (c) 85.3% (29/34) and 70.8% 
(17/24), and (d) 79.4 % (27/34) and 75.0 % (18/24), respectively. Key: (○ in black) benign; 
(Δ in blue) LGSILs. 



  53

-2 -1 0 1 2
-3

-2

-1

0

1

2

3

-2 -1 0 1 2 3

-2

-1

0

1

2

-2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-2 -1 0 1 2

-1

0

1

2

 Benign
 HGSILs

P
C

1
1

PC1

(a) (b)

P
C

4

PC2
(c)

P
C

11

PC2

(d)

P
C

5

PC4  

Figure 2.8 Scatter plots of the diagnostically significant PC scores for benign and HGSILs 
tissues: (a) PC1 vs PC11, (b) PC2 vs PC4 (c) PC2 vs PC11, (d) PC4 vs PC5. HGSILs can be 
discriminated from benign tissues by straight-line diagnostic functions: (a) PC11 = 
1.39×PC1+0.31, (b) PC4 = −0.19×PC2+0.14, (c) PC11 = 1.11×PC2−0.34 and (d) PC5 = 
1.03×PC4+0.6. The corresponding sensitivities and specificities are: (a) 81.8% (18/22) and 
70.8% (17/24), (b) 72.7% (16/22) and 79.2% (19/24), (c) 86.4% (19/22) and 70.8% (17/24), 
and (d) 81.8% (18/22) and 66.7% (16/24), respectively. Key: (○ in black) benign; (☆ in red) 
HGSILs. 
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Figure 2.9 Scatter plots of the diagnostically significant PC scores for LGSILs and HGSILs 
tissues: (a) PC2 vs PC5, (b) PC2 vs PC11 (c) PC4 vs PC5, (d) PC4 vs PC11. HGSILs can be 
discriminated from LGSILs by straight-line diagnostic functions: (a) PC5 = −2.5×PC2−0.08, 
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(b) PC11 = 1.09×PC2−0.14, (c) PC5 = −0.78×PC4+0.53 and (d) PC11 = 1.24×PC4−0.21. 
The corresponding sensitivities and specificities are: (a) 86.4% (19/22) and 79.4% (27/34), 
(b) 86.4% (19/22) and 79.4% (27/34), (c) 63.6% (14/22) and % 85.3(29/34), and (d) 86.4% 
(19/22) and 79.4% (27/34), respectively. Key: (Δ in blue) LGSILs; (☆ in red) HGSILs. 

To further improve the diagnosis, LDA was used to incorporate all the significant PCs 

for developing diagnostic algorithms. For the three-group classification, two linear 

discrimination (LD) functions were generated. Figure 2.10 shows the scatter plot of 

two LD weights for the classification of benign, LGSILs and HGSILs. It was seen that 

most of the tissues can be clustered into the three histopathological groups (i.e., benign, 

LGSILs and HGSILs). The posterior probabilities of each tissue site belonging to 

benign, LGSILs and HGSILs were plotted in a ternary plate (Fig. 2.11). It was found 

that all HGSILs had posterior probabilities higher than 80% to be HGSILs except two 

HGSILs with posterior probabilities between 50% and 80%. In comparison, posterior 

probabilities of LGSILs and benign distributed more diversely. Seven benigns 

exhibited posterior probabilities below 75% (i.e., 0~25% (2), 25~50% (2) and 50~75% 

(3)) belonging to benign. Five LGSILs’ posterior probability was located in 0~25% (1), 

25~50% (2) and 50~75% (2) belonging to LGSILs. This distribution also indicates the 

efficacy of the PCA-LDA model for characterizing benign, LGSILs and HGSILs. 

Table 2.3 summarizes the classification results achieved by the PCA-LDA diagnostic 

algorithms with leave-one-out cross-validation methods. Overall, 92.5% of the tissues 

were predicted correctly, among which 83.1% of benign, 94.1% of LGSILs and 

100.0% of HGSILs (sensitivity) were discriminated correctly. Four benigns were 

misclassified, of which two as LGSILs and two as HGSILs. Meanwhile, two LGSILs 

were misclassified as benign and HGSILs, respectively. The corresponding specificity 

and accuracy were 98.2% and 93.8% for benign, 96.6% and 95.0% for LGSILs, 94.8% 

and 96.3% for HGSILs. Figure 2.12 depicts the three-way ROC surface for this 

three-group classification with the ROC-VUS of 0.815.  
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Figure 2.10 Scatter plot of two LD function weights for benign, LGSILs and 
HGSILs tissues tested with leave-one-out cross-validation. Key: (○ in black) 
benign; (Δ in blue) LGSILs; (☆ in red) HGSILs. 
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Figure 2.11 Two-dimensional ternary plot of the posterior probabilities 
belonging to benign, LGSILs and HGSILs, respectively, using the 
PCA-LDA-based spectral classification with leave-one spectrum-out, 
cross-validation method. Each vertex of the triangle represents a 100% 
confidence that the tissue is benign, LGSILs or HGSILs. Key: (○ in black) 
benign; (Δ in blue) LGSILs; (☆ in red) HGSILs. 
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Table 2.3 Classification results of Raman-prediction for the three cervical tissue groups 
yielded by the PCA-LDA diagnostic algorithms tested with leave-one-out cross-validation 
method. 

 
 

Tissue Type 

Raman-predicted Tissue Type  
 

Total 
 

Benign 
Dysplasia 

LGSILs HGSILs 
Benign 20 2 2 24 

LGSILs 1 32 1 34 

HGSILs 0 0 22 22 

Outcome measure* benign LGSILs HGSILs  

Sensitivity (%) 83.3 94.1 100.0  

Specificity (%) 98.2 96.6 94.8  

Accuracy (%) 93.8 95.0 96.3 92.5 

*Outcome measure for each group is calculated against the remaining two tissue groups. 
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Figure 2.12 Three-dimensional view of the ROC surface calculated from the posterior 
probabilities belonging to benign, LGSILs and HGSILs with a VUS of 0.815. 

2.2.4 Biochemical Model of Tissue Spectrum 

To explore the biochemical origins accounting for the Raman spectral features, tissue 

spectrum was fitted with reference spectra of pure biochemicals using linear 

least-squares method with nonnegativity constraints. Figure 2.13 shows the Raman 

spectra of reference biochemicals, including cholesterol, DNA, oleic acid, collagen, 
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and glycogen which are considered as the major Raman scatterers in cervical tissues 

[173, 183-186]. It was obvious that each biochemical showed unique Raman spectral 

pattern composed of several Raman peaks. To estimate the similarity between each 

reference spectrum and tissue spectrum, correlation was calculated for all the 

biochemicals with tissue spectra. The correlation coefficients are yielded by dividing 

the covariance of biochemical spectrum and tissue spectrum by the standard deviations 

of biochemical spectrum and tissue spectrum. The yielded correlation coefficients were 

cholesterol-0.62, oleic acid-0.52, DNA-0.82, collagen-0.88 and glycogen-0.41. The 

correlation coefficients quantified the similarity between reference spectrum and tissue 

spectrum, indicating that collagen was the most alike with tissue spectrum. 
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Figure 2.13 Reference Raman spectra of glycogen, collagen, DNA, oleic acid and 
cholesterol. 

Figure 2.14 shows an example of tissue spectrum, fitted spectrum and the 

corresponding residue: (a) benign tissue, (b) dysplasia tissue. It was noticed that tissue 

spectrum was fitted well with the five reference spectra except the spectral regions of 

1000~1200 cm-1. Figure 2.15 shows the mean fitting contribution±1SD of each 
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reference biochemical to benign and dysplasia tissues. It was found that collagen made 

the largest contribution to Raman signal of both benign and dysplasia tissues. 

Moreover, the contribution of each reference biochemical was significantly different 

between benign and dysplasia tissues illustrated by unpaired two-sided Student’s t-test. 

For example, collagen and glycogen exhibited a significantly reduced contribution to 

Raman signal of dysplasia tissue as compared to benign tissue. In contrast, cholesterol, 

DNA and oleic acid showed a significantly higher contribution to Raman signal of 

dysplasia than benign tissue. The above results demonstrate that Raman spectroscopy 

is able to directly assess the biochemical changes associated with premalignant 

transformation in the cervix. To further evaluate the diagnostic value of the fitting 

coefficients, LDA was implemented on the fitting coefficients to develop diagnostic 

algorithm. It yielded a sensitivity, specificity and total accuracy of 69.6%, 75.0% and 

71.3%, respectively.   
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Figure 2.14 Comparison of tissue spectrum and fitted spectrum with reference spectra: (a) 
benign and (b) dysplasia. Residue is produced by subtracting fitted spectrum from tissue 
spectrum.  
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Figure 2.15 Mean normalized fitting coefficients with 1±SD for component biochemicals, 
including glycogen, collagen, oleic acid, DNA and cholesterol for benign and dysplasia 
tissues. 

2.3 Discussion 

In this study, we verified the capacity of NIR Raman spectroscopy for characterizing 

pre-dysplasia (benign changes: chronic cervicitis, squamous metaplasia, inflammation 

and koilocytic type atypia) and dysplasia (LGSILs and HGSILs) in the cervix. In the 

clinic diagnosis point of view, the discrimination between benign and dysplasia is not 

the whole colposcopic practice in clinic. The discrimination between LGSILs from 

HGSILs is also clinically desirable. The reason is that LGSILs have a high rate to 

regress to normal without any treatment and however the current colposcopic 

diagnosis is likely to overestimate LGSILs as HGSILs [187]. Meanwhile, 

discrimination between benign and LGSILs is even more challenging because some 

benign changes of cervix may also show some features of LGSILs [188]. For instance, 

inflammation may also exhibit vascular atypia which is the hallmark of high grade 

lesion, and metaplasia may exhibit acetowhite due to the cellular changes [187, 188]. 
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This may increase the false-negative rate for diagnosing dysplasia. Therefore, a 

three-class diagnostic model based on PCA-LDA was developed to discriminate either 

of benign, LGSILs and HGSILs from the remainder.  

Good quality Raman spectra were acquired successfully from benign, LGSILs and 

HGSILs tissues. A high spectral similarity occurred among Raman spectra of benign, 

LGSILs and HGSILs, of which all showed almost the same major Raman vibration 

bands in the vicinities of 849, 932, 1004, 1039, 1063, 1085, 1125, 1178, 1206, 1254, 

1285, 1317, 1339, 1449, 1580 and 1658 cm-1. This implies that the composition of the 

major biochemicals did not alter a lot with the presence of different pathologies. 

Consequently, only subtle spectral differences existed among benign, LGSILs and 

HGSILs, which were manifested clearly in the difference spectra as shown in Fig. 2.4 

((b, (d) and (f)). To elucidate the biochemical basis behind the spectral differences 

above, those major Raman bands were tentatively assigned to vibration bonds of a 

variety of biochemicals in tissues as shown in table 2.4 according to literature [5, 51, 

108, 189]. Consequently, the spectral variations among different types of tissues can be 

explained by the corresponding biochemical changes in tissue accompanying the tissue 

neoplastic changes. For example, Raman peak at 1658 cm-1 (Amide I, C=O stretching 

mode of collagen and elastin) appeared to decrease as tissue progresses from benign to 

LGSILs to HGSILs, which is consistent with the reported findings in literature [98, 

100, 190]. This may be due to a decrease in the relative concentration of collagen and 

elastin. This may also be attributed in part to the epithelium thickening and increased 

cellular density due to the enlarged nucleus-to-cytoplasm ratio associated with tissue 

malignant transformation. This induces a larger attenuation of both excitation light and 

Raman signal from the collagen in stroma since the underlying stroma is well 

recognized to be rich in collagen and elastin [70, 72, 191, 192]. In addition, the Raman 
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signal originating from the stroma of dysplastic cervix also suffers from larger 

hemoglobin absorption due to the neovascularization as compared to normal or benign 

cervix [193]. Meanwhile, another two peaks at 849 (C-C stretching of proline ring and 

ring breathing mode of tyrosine) and 1125 cm-1 (C-C stretching of lipid, C-N stretching 

of protein) followed the same variation trend. The intensity decrease in Raman peak at 

849 cm-1 suggests that the relative concentration of proline and tyrosine drop in 

neoplastic cervical tissues. For the Raman peak at 1125 cm-1, it may result from the 

epithelium thickening. In contrast, some other Raman peaks at 1004, 1339 and 1449 

cm-1 varied in the opposition way. Raman peak at 1004 cm-1 which is associated with 

phenylanaline showed a higher signal in precancer tissue, indicating an increase in the 

essential amino acid phenylanaline relative to the total Raman-active components in 

the precancer tissue due to the fact that cancer cells take up more essential amino acids 

[194]. Raman peak at 1339 cm-1 is mainly attributed to nucleic acid. Hence, its 

intensity elevation may be attributed to the increase in the concentration of nucleic 

acid relative to the total Raman-active scatterers, which gets in an agreement with the 

literature [5] as well as the well-accepted histopathological feature of increased 

nucleus-to-cytoplasm ratio in malignant tissue [195]. For the Raman peak at 1449 cm-1, 

the intensity increase is probably because the lipid content is elevated in neoplastic 

tissue due to the increases in metabolic activities [185, 186].  
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Table 2.4 Tentative assignments of major Raman vibration bands present in the Raman 
spectra of cervical tissues [5, 51, 108, 189]. 

Peak positions (cm-1) Biochemical assignments 

849 C−C stretching of proline ring, Ring breathing mode of  
tyrosine 

932 C−C stretching mode of proline and valine and protein 
backbone (α−helix conformation)/glycogen 

1004 Symmetric ring breathing mode of phenylalanine 

1039 C−H in-plane bending mode of phenylalanine 

1063 C−N stretching mode of protein 

1085 C−C/C−O stretching of phospholipids 

1125 C−C stretching of lipid, C−N stretching of protein 

1178 C−H in-plane bending mode of tyrosine 

1206 C−C6H5 stretching mode of tryptophan and 
phenylalanine 

1254 Amide III (C−N stretching mode of proteins, indicating 
mainly α−helix conformation) 

1285 Amide III 

1317 CH3CH2 twisting mode of collagen/lipids 

1339 CH3CH2 wagging mode of collagen/nucleic acid 

1449 CH2 and CH3 bending mode of collagen, CH2 bending, 
scissoring mode of phospholipids 

1580 C=C bending mode of phenylalanine, pyrimidine ring 

1658 Amide I (C=O stretching mode of collagen and elastin, 
α−helix conformation) 

The diagnostic potential of these prominent Raman bands were explored directly by 

intensity ratio method. For the differentiation between benign and LGSILs, ratio of 

Raman bands I849/I1004 achieved an accuracy of 75%, implying that the changes of 

proline ring and tyrosine (I849) and phenylanaline (I1004) is diagnostically valuable. As 

for separating HGSILs from benign, higher-than-80% accuracy achieved by ratios of 

Raman bands at 932, 1340, 1449 and 1658 cm-1 implies the diagnostic value of the 

changes of proline, DNA, lipid and protein. Among them, proline, lipid and protein 

combined with Amide III can also be used to discriminate HGSILs from LGSILs with 

an accuracy of higher than 85%. These results demonstrate that Raman spectral 

variation among different types of tissues can represent the biochemical composition 
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and molecular structure changes associated with tissue malignant transformation, and 

contain a wealth of information for tissue diagnosis.  

However, the diagnostic accuracy yielded by the intensity ratio method is limited due 

to the fact that only a few individual Raman bands are included for developing 

diagnostic algorithm while missing a lot of biochemical information contained in the 

spectra unused [5]. Therefore, multivariate statistical techniques (e.g., PCA) are 

desired to utilize all the subtle spectral changes to differentiate different types of 

tissues. PCA has been widely used to retrieve the Raman spectral features into the 

size-reduced dataset. Moreover, the PC scores have proven to have the potential for 

distinguishing tissues under different histopathological conditions by simple scatter 

plots of the PC scores. Teh et al achieved a good classification of gastric dysplasia 

from normal gastric tissue by using the scatter plot of a pair of PCs with a accuracy of 

about 90% [70]. This method has also been verified by Huang et al [175, 190]. 

Similarly, in this study, the scatter plots of the first six significant PCs prove again to 

be able to cluster the tissues into different histopathological categories (i.e., benign, 

LGSILs and HGSILs). 

However, scatter plot of PC scores only used two PC scores while missing the 

remaining diagnostic PC scores. Hence, in this study, LDA was further employed to 

utilize all the diagnostic features covered by all the significant PCs. ANOVA was used 

to find out those diagnostically significant PC scores as the input of LDA for 

developing diagnostic functions. The PCA-LDA diagnostic results show that all the 

HGSILs tissues can be differentiated from both benign and LGSILs. Only two of 

LGSILs were misclassified, of which one was classified as benign and the other as 

HGSILs. Four of benign tissue sites were misdiagnosed as LGSILs (2) and HGSILs (2), 

indicating a relatively low specificity.  
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Furthermore, to better understanding the biochemical alterations with tissue neoplastic 

transformation, we also modeled the tissue spectra with reference spectra of pure 

biochemicals, including lipids (i.e., cholesterol and oleic acid), nucleic acid (i.e., 

DNA), protein (i.e., collagen) and carbohydrates (i.e., glycogen). This tissue spectral 

modeling method has been used for uncovering the biochemical composition alteration 

with tissue malignancy behind Raman spectral variations [16, 60, 61, 196]. The results 

show that collagen made the largest contribution to tissue spectrum. This is attributed 

to the fact that collagen takes up a larger proportion of cervix as compared to the rest. 

Meanwhile, it was observed that both collagen and glycogen exhibited a reduced 

contribution to dysplastic tissue spectrum than benign tissue spectrum. The reduced 

contribution from collagen is confirmed by the decreased intensity of Raman peak at 

1658 cm-1 in precancer, which has been explained above. The reduced level of 

glycogen is probably due to the increased cell proliferation [173, 183]. In contrast, 

DNA, cholesterol and oleic acid showed an elevated contribution to dysplastic tissue 

spectrum. DNA is representative of the nucleic acids and one of the major DNA 

Raman peaks located at 1339 cm-1 also exhibited an increased intensity. The increased 

level of DNA is suggestive of an enlarged ratio of nuclei to cytoplasm [184]. The 

elevated level of oleic acid in precancer tissue may contribute to the continuous growth 

stimulus [185]. As for cholesterol, it is an essential element of cell membrane and 

plays a key role in the modulation of membrane fluidity. The increased level of 

cholesterol in dysplastic cervix may be related to the higher minimum surface tension 

of dysplastic cervical tissue [186]. From the discussions above, spectral modeling of 

tissue spectrum with reference spectra of pure biochemicals is an effective tool for 

identifying the origins of biochemical changes with tissue dysplastic transformation. 
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2.4 Conclusion 

In this study, we succeeded in measuring good quality NIR Raman spectra from 

excised human cervical tissues within a few seconds. Significant spectral differences 

were observed among benign, LGSILs and HGSILs tissues. Both empirical analysis 

and tissue characterization with PCA-LDA model demonstrated that NIR Raman 

spectroscopy has the ability to identify benign, LGSILs and HGSILs. Although the 

current dataset size is small, the results still make it promising to apply NIR Raman 

spectroscopy to in vivo clinic diagnosis so as to overcome the limitations of the 

conventional screen methods (i.e., pap smear and colposcopy). In addition, spectral 

modeling of tissue spectrum with reference spectra of pure biochemicals can be used 

to elucidate the origins of biochemical changes behind Raman spectral changes. 
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Chapter 3  In Vivo NIR Raman Spectroscopy Development 

for the Detection of Cervical Precancer 

NIR Raman spectroscopy has been extensively applied to probe the histopathological 

changes in a variety of human organs. In the early times, NIR Raman spectral 

measurement was mostly limited to be ex vivo due to the technical challenges. In 

recent years, the technical advances, especially in diode laser, CCD detector and fiber 

optics, paved the way for in vivo NIR Raman spectroscopic measurement on human 

tissues. However, there still exist some weaknesses, including large size, long 

integration time and interference from the materials of fiber optics. This chapter 

reviews my work on developing a rapid and portable NIR Raman spectroscopy system 

coupled with a ball lens fiber-optic Raman probe for the in vivo Raman measurement 

on epithelial tissues (i.e., cervix). Monte Carlo (MC) simulation was used to evaluate 

the Raman probe design with various configurations (i.e., diameter and refractive 

index of ball lens). Experimental evaluation of a ball lens Raman probe design on a 

two-layer tissue phantom confirms the potential of ball lens Raman probe design for 

efficient depth-selected measurement on epithelial tissue. 
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3.1 Introduction 

At the early time of Raman spectroscopy for biological application, NIR FT Raman 

spectroscopy was accepted as the main form of Raman spectroscopy. NIR FT Raman 

spectroscopy combined with fiber-optic assemblies has proven sensitive enough for 

Raman spectroscopic measurement on biological samples [197]. Subsequently, it was 

employed to study Raman scattering properties of human tissues in situ, such as lens 

[198, 199], artery [200], breast [201] and colon [27]. In principle, FT Raman 

spectroscopy is a multiplex technique, which modulates a series of wavelengths with 

an interferometer. The modulation generates a complex interferogram which is 

subsequently monitored by a single-channel detector. FT Raman spectroscopy shows 

several advantages compared to dispersive Raman spectroscopy. Firstly, it can avoid 

the fluorescence interference from the biological sample since it uses NIR light as 

excitation source while conventional dispersive Raman spectroscopy uses UV/VIS 

light. This is very beneficial especially for biological samples which emit strong 

fluorescence under the excitation of UV/VIS light, masking the weak tissue Raman 

signal. To date, 1064-nm laser light has become the most common excitation light for 

FT Raman spectroscopy. Secondly, it can achieve high spectral resolution stemming 

from the interferometric effect. In contrast, the spectral resolution of dispersive Raman 

spectroscopy is limited by the slit width. If reducing the slit width, the throughput will 

be reduced although the spectral resolution is increased. Lastly, it can acquire the 

spectrum in broad wavelength region than most of the dispersive Raman spectroscopy 

without sacrificing the high spectral resolution.  

However, FT Raman spectroscopy also subjects to some drawbacks, which lead it to 

be used in limited areas. The first one is long integration time. Note that Raman 

cross-section is inversely proportional to the excitation light wavelength. It means that 
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Raman signal will become weaker with the excitation light at longer wavelength. 

Moreover, FT Raman spectroscopy scans Raman signal at one by one wavenumber, 

which consequently lengthens the acquisition time. The long integration time impedes 

the application of FT Raman in those areas, which require rapid measurement. 

Secondly, it suffers from water absorption, especially when measuring samples in 

aqueous media. The overtone region of water absorbs not only the excitation light but 

also the Raman scattering due to C-H stretch modes of samples. Besides, the water 

absorption makes reproducible temperature measurement difficult [202]. In addition, 

FT Raman spectroscopy has large body size. All those weaknesses above hinder its 

application on human tissue in vivo.  

With the advance in CCD, diode laser and fiber optics, NIR dispersive Raman 

spectroscopy has undergone a rapid progress in the past two decades, exhibiting a great 

potential for the detection of cancer and precancer in various human organs ex vivo and 

in vivo. In this study, for in vivo Raman measurement on cervix in clinic, we aimed to 

develop a rapid dispersive Raman spectroscopy system with good SNR and compact 

body size. Figure 3.1 shows the schematic of the dispersive Raman spectroscopy. The 

whole system consists of: (1) laser source for Raman scattering excitation; (2) 

spectrometer for collecting Raman signal to create Raman spectrum; (3) Raman probe 

for excitation light delivery and Raman signal collection; and (4) computer for 

controlling spectrometer, Raman spectrum display and save. Hence, the development 

of this Raman spectroscopy system mainly includes the following procedures as 

below: 

(1) Determine the wavelength and select proper laser source; 

(2) Spectrometer selection; 

(3) Raman probe design; 
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In the following sections, the procedures above will be described and discussed in 

detail. 

Figure 3.1 Schematic of the developed dispersive Raman spectroscopy. 

3.2 Excitation Light Source 

To date, almost all the Raman spectroscopy employs laser light as excitation light. 

Thereby, laser light selection is one of the key parts of Raman spectroscopy 

development. The factors which should be considered in laser selection are wavelength, 

output power and cost. At the same time, laser light selection must be done together 

with the design of other parts of Raman spectroscopy. For example, laser light 

wavelength determines the wavelength range of Raman scattering and hence it 

determines the grating central wavelength. Meanwhile, it also requires the detector to 

have high quantum efficiency in the wavelength range of Raman scattering. In the 

current market, there are a big variety of lasers which have been used as excitation 

light source for Raman spectroscopy as below [4]: 

(1) Ar+ and Kr+ lasers are the two main forms of ion lasers. Ion laser can provide high 

power, and a variety of wavelengths from UV to NIR (Ar+: 244, 257, 457, 488 and 

514.5 nm; Kr+: 406, 647 and 752 nm), relatively long lifetime, and hence was widely 
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used as excitation light for Raman spectroscopy in the early period of Raman 

spectroscopy. The output wavelength is very stable and accurately known since it is 

dependent on the particular atomic transition. However, the routine use of ion laser 

with Raman spectroscopy is limited by the high cost, complexity and cooling 

requirement. 

(2) Nd:YAG is found to take the place of ion laser for its relatively high efficiency, 

compact size and no need of water-cooling. The Nd:YAG lasers at 532 and 1064 nm 

have been in very common use with Raman spectroscopy. Especially, 1064-nm 

Nd:YAG laser is almost the exclusive light source for FT Raman spectroscopy. 

However, the high cost prohibits its widespread use in Raman spectroscopy. 

(3) He-Ne laser receives great attractiveness as excitation light source of Raman 

spectroscopy for its advantages of accurate wavelength and narrow output spectral 

width. However, the output power is low (~10 mW) and as a result long integration 

time is required for Raman measurement on human tissue showing weak Raman 

scattering. On the other hand, high output power causes He-Ne laser to be too large to 

be used in routine. Meanwhile, the most common laser light by He-Ne is at 632.8 nm, 

under which the fluorescence emission of human tissue is relatively high so that the 

SNR is reduced by the strong fluorescence-determined short noise.  

(4) Ti:Sapphire lasers are advantaged by its robustness, tunability and high output 

power, and hence attractive for NIR Raman spectroscopy, especially for resonance 

Raman. However, it is subject to high cost.  

(5) Diode lasers have been widely used instead of various other lasers above, 

especially for NIR Raman measurement on human tissues. Inasmuch, it shows 

advantages of good stability, small spectral band width, high power, compact size and 
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low cost.  

Selection of excitation light wavelength is mainly dependent on several factors as 

below: 

 (1) Intensity of Raman scattering 

 (2) Fluorescence background  

 (3) Safety to human body 

 (4) Compatibility with other components of Raman system 

Firstly, Raman scattering of biological tissues is inherently very weak. Therefore, great 

effort should be taken to increase the intensity of Raman scattering. In theory, Raman 

scattering intensity is proportional to Raman cross-section, which is inversely 

proportional to the forth power of the excitation light wavelength [4]. As a result, to 

increase the Raman scattering intensity, short wavelength is desired. However, 

shortening the excitation light wavelength (e.g., UV/VIS light) will lead to an increase 

in the tissue autofluorescence emission. The reason is that most of endogenous 

fluorophores are highly fluorescent under UV/VIS light excitation. Moreover, 

fluorescence intensity is usually 6~8 orders higher than Raman intensity. As a result, 

the relatively intense fluorescence signal will obscure the weak Raman signal. To 

reduce fluorescence interference, longer wavelength is preferred. Figure 3.2 shows the 

Raman spectra of human tissues excited by the common lasers used for Raman 

spectroscopy [4]. It was found that Raman spectra under 784- and 830-nm light 

excitation exhibit obvious Raman peaks. This suggests the use of NIR excitation light. 

Besides, considering the safety to human body, the use of short wavelength (e.g., UV 

light) is limited in clinic due to the mutagenic effect. Whereas, NIR light is favored as 

it causes no photochemical effect [175, 203]. Note that the Raman intensity decreases 

as the excitation light wavelength becomes longer and consequently a long spectrum 
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acquisition time is necessitated to obtain Raman spectrum with high SNR. However, 

the advance in NIR diode laser with high power and the multichannel-detector (e.g., 

CCD detector) with high sensitivity in NIR region allows the use of NIR light as the 

excitation source for Raman spectroscopy on biological tissues.  

Figure 3.2 Raman spectra of human biopsied samples under different excitation lights 
(reprinted from Ref. [4]). 

Till now, NIR laser light, especially 785- and 830-nm diode lasers, has been widely 

used as the excitation light source for dispersive Raman spectroscopy. Stone and 

coworkers (2002, 2003) employed 830-nm diode laser as excitation light to explore the 

potential of NIR Raman spectroscopy for the detection of epithelial cancer and 

precancer ex vivo [189, 204]. Anita and coworkers (1998, 2001, 2007, 2009) succeeded 

in using both 785- and 789-nm diode lasers for acquiring Raman spectrum from cervix 

ex vivo and in vivo [98, 100-102]. Our group (2001, 2003~2006, 2008~2010) has also 

demonstrated that 785-nm diode laser light enables an acquisition of good-quality 

Raman spectrum without much intense fluorescence interference from various 

epithelial tissues ex vivo and in vivo, including stomach, colon, lung, skin and cervix 
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[46, 51, 52, 67, 70-73, 78, 175, 205-207]. Therefore, 785-nm diode laser (B&W TEK, 

Newark, DE) is chosen as the excitation source for its small full width at half 

maximum (FWHM), good stability and high output power. The spectral width of the 

excitation line has a large impact on the spectral resolution of tissue Raman spectrum 

as Raman scattering is not dependent on wavelength but Raman shift which is the 

frequency shift relative to excitation light. For the same reason, the wavelength 

stability of excitation light is also very important as it causes a shift of Raman 

vibration bands due to the same biochemical bonds and consequently results in spectral 

variation with the lapse of time. The specification of this diode laser is shown in Table 

3.1. 

Table 3.1 Specification of BTK 785-nm diode laser. 

Peak Wavelength 785±0.3 nm 

FWHM Typical<0.2 nm; Max<0.3 nm 

Power Output >100 mW 

Optical Power Stability <3%, p-p over 8 hours 

Noise <0.5% rms 

Output Fiber Multi-model fiber (100 µm, NA=0.22) 

Connector SMA 905 

Expected Lifetime >10,000 hours 

Input Power 240V-AC 

Control TTL modulation 0-100 kHz 

Cooling Internal thermoelectric cooled 

Warm-up Time <15 minutes 

Physical Dimension 265×155×100 mm 

Weight 2 kg 

Ambient Temperature 10-35 ºC 

Humidity 5-95%, non-condensing 
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3.3 Spectrometer 

Spectrometer is actually the core component of Raman spectroscopy system, which is 

an integration of spectrograph and detector. In particular, dispersive Raman 

spectroscopy mainly comprises a dispersive spectrograph and multi-channel detector. 

At present, dispersive spectrograph can be configured based on two different schemas, 

including Czerny-Turner structure and holographic transmission grating-based 

configurations as shown in Fig. 3.3. Czerny-Turner spectrograph (Fig. 3.3(a)) is the 

conventional form of dispersive spectrograph. In principle, the light is fed into the 

spectrograph via an entrance slit and subsequently is collimated by a curved 

collimating mirror. The collimated light is shed onto the diffraction grating and then 

reflected off at wavelength-dependent angle. Subsequently, the dispersed light is 

focused onto the detector. The light at different wavelengths is imaged on different 

columns of the array detector. Finally, the spectrum is created through binning the 

signal along each column. The spectral resolution is determined by the entrance slit 

width, groove density of the grating, column number and pixel size of the array 

detector. The other form of dispersive spectrograph is based on holographic 

transmission grating (Fig 3.3(b)). The light is focused onto the entrance slit and then 

collimated by lens. The collimated light is then dispersed by a transmission 

holographic grating. Subsequently, the dispersed light is focused onto the detector, and 

light at various wavelengths is imaged on the different columns of the detector. The 

spectrum is yielded through vertically binning the collected signal along each column. 

The major difference between Czerny-Turner and holographic transmission grating is 

the working mode which is off-axis and on-axis, respectively. On-axis working mode 

with optical axis normal to the lenses before and after grating allows an excellent 

optical aberration correction as well as good image quality. To date, low f number (i.e., 
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f/1.8) can be achieved with this holographic grating design, allowing large throughput 

[208]. In contrast, dispersive spectrograph in off-axis mode is subject to astigmatism 

and other aberration, including spherical aberration and coma. To eliminate the 

aberration, small aperture is usually used in Czerny-Turner, which consequently limits 

the throughput of the spectrograph. In this study, Czerny-Turner spectrograph defeats 

holographic transmission spectrograph by virtue of its compact size, portability and 

low cost. The relatively low throughput can be compensated by the high sensitivity of 

detector, especially the advent of high performance CCD.   

Figure 3.3 System schematic of dispersive spectrographs: (a) Czerny-Turner configuration; 
(b) Holographic transmission grating-based configuration. 

In 1980s, CCDs emerged as a promising multichannel detector to facilitate the 

development of Raman spectroscopy, especially dispersive Raman spectroscopy. The 

first CCD was invented by George Smith and Willard Boyle in 1969 [209]. The 

fundamental concept is to store charge in potential wells created on the surface of a 

semiconductor and move the charge (representing information) over the surface by 

moving the potential minimum. CCD is sort of electronic memory that can be charged 

by light. It can hold a charge corresponding to variable shades of light, which makes 

them useful as imaging devices for cameras, scanners, and fax machines. Currently, the 

most common types of CCD as multi-channel detector in dispersive Raman 
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spectroscopy are Front-illuminated CCD (FI-CCD) and Back-illuminated CCD 

(BI-CCD, also called Back-thinned CCD) as shown in Fig. 3.4. FI-CCD means that 

photons are shed on the side of CCD containing the circuit mask, so called front side, 

while the other side is called back side. However, its quantum efficiency is limited (i.e., 

40% for visible light) due to the big absorption of light by the gate oxide film, 

polysilicon electrodes, and surface protective film deposited on CCD front side. To 

improve the quantum efficiency, especially for the detection of low light, BI-CCD was 

developed, in which photons are shed on the back side of CCD and the generated 

electrons go through the CCD and are immobilized and stored in the potential well on 

the front side. Compared to FI-CCD, no film is needed on top of the back side of CCD 

so that the light loss in those films can be avoided. Consequently, BI-CCD has much 

higher quantum efficiency. As shown in Fig. 3.5, BI-CCD’s quantum efficiency is 

almost 2.5 times higher in NIR region than FT-CCD’s. However, BI-CCD suffers from 

etaloning effect due to the multi-reflections of the light between the front and back 

surfaces. This leads to constructive and destructive interference fringes which 

artificially modulate spectrum. This etaloning effect can be reduced or minimized by 

various ways: (1) NIR-optimized anti-reflection coating to reduce the light reflected 

back into CCD; (2) Increase the thickness of silicon; (3) The use of low f/# 

spectrometer; (4) Full-frame binning of CCD to create spectrum. 

Figure 3.4 Schema of: (a) FI-CCD and (b) BI-CCD 
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Figure 3.5 Spectral response function of front-illuminated CCD and 
Back-thinned CCD (back-illuminated) (reprinted from Ref. [210]). 

From the discussions above, a dispersive Czerny-Turner spectrograph coupled with a 

NIR-enhanced BI-CCD was selected. This selected spectrometer model is QE65000 

(Ocean Optics, Dunedin, FL) equipped with an NIR-enhanced charge-coupled device 

(CCD) detector (S7031-1006, 1024 × 58 with pixel sizes of 24.6 μm, QE > 90%, 

Hamamatsu). The CCD is cooled by thermoelectric (TE) cooling system to reduce the 

dark current. The reason is that CCD dark current, as one of the major noise sources 

for CCD based dispersive Raman spectroscopy, decreases as CCD working 

temperature decreases. Hence, CCD cooling can reduce the noise level and eventually 

improve the low detection limit of system and the SNR of Raman system. TE cooling 

can cool CCD efficiently down to be at -20 ºC by a heat sink and natural convection.  

3.4 Raman Probe Design 

3.4.1 History of Fiber-Optic Raman Probe 

Raman probe is to deliver the light to sample and collect the Raman photons from 

sample. The probe determines the sampling location and volume of tissue. The 
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collection efficiency of Raman probe has a huge impact on the sensitivity of Raman 

spectroscopy system and SNR. It is also recognized as the dominant factor for in vivo 

Raman measurement on human body as remote control, compact size and flexibility 

are required for in vivo measurements on most of the human organs. Therefore, great 

efforts have been taken to develop and improve Raman probe.  

In the past three decades, with the advance in fiber optics, fiber-optic Raman probe 

became prevailing and enabled in vivo Raman measurement on various human organs 

[67, 78, 99, 174, 211-216]. In the early 1980s, McCreery et al reported the first design 

of fiber-optic probe for remote Raman spectrum acquisition [217, 218]. However, the 

application of this probe on biological tissues is limited due to the interference from 

the fiber material. During the propagation of the excitation light in the excitation and 

collection fibers, the fiber materials will be induced to produce interfering spectral 

signal [219]. For example, fused-silica produces Raman signal which interferes with 

true tissue Raman signal; impurities and dopants emit intense fluorescence which adds 

short noise to the collected spectral signal; fiber jacket materials may make additional 

interference. Therefore, a variety of filtering designs were proposed to eliminate the 

interference from fiber materials. Myrick et al (1990) designed a fiber-optic probe 

coupled with a pair of band pass and long pass filters as shown in Fig. 3.6(a) [220]. 

Band pass filter serves to block the laser noise and optical signal from fiber material 

while transmitting excitation light; long pass filter is transparent to tissue signal while 

eliminating elastically scattered excitation laser light. However, the excitation and 

collection fibers are obliquely oriented, leading to non-compactness. Tanaka et al 

(1996) proposed a probe design to enhance the detection of tissue Raman signal by 

adding a compound parabolic concentrator (CPC) at the distal end of the probe (Fig. 

3.6(b)). It achieved a 7-fold increase in collection efficiency compared to the probe 
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without CPC [221]. Owen et al (1995) reported a similar probe design with 

holographic grating and notch filters as shown in Fig. 3.6(c) [222]. The excitation light 

is collimated and then diffracted into the bottom light path by a transmission grating. 

Subsequently, excitation light is selected from the diffracted light by a spatial filter and 

notch filter, and then focused onto tissue by an objective. The backscattered tissue 

signal is collected by the same objective and filtered by another notch filter and 

eventually coupled into collection fiber by another objective. 

Figure 3.6 Schematic of three different fiber-optic Raman probe designs. CPC: compound 
parabolic concentrator ((a): adapted from Ref. [220]; (b): adapted from Ref. [221]; (c): reprinted 
from Ref. [222]). 

Mahadevan-Jansen et al (1998) firstly designed a compact fiber-optic Raman probe 

which enables in vivo Raman measurement on human cervix as shown in Fig. 3.7(a) 

[99]. The excitation light from excitation fiber is focused by a 3-mm quartz lens and 

the focused light is directed onto the tissue surface by a golden mirror with oblique 

angle of 57°. The backscattered tissue signal is collected and focused into the 
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collection fiber by a pair of lens. A band pass filter and a long pass filter are inserted 

into the light delivery path and collection path, respectively. Raman spectra with clear 

Raman peaks can be acquired from cervix in vivo within 90 seconds. In the following 

year, Shim et al (1999) evaluated a bifurcate fiber-optic probe design with a central 

fiber for excitation light delivery and six surrounding fibers for tissue Raman signal 

collection as shown Fig. 3.7(b) [211]. Moreover, the collection fibers are beveled to 

increase the overlap of collection cone with excitation cone so as to improve the probe 

collection efficiency. This probe design also shows a good compatibility with 

endoscope for its compact size and flexibility and has proven to have the potential for 

acquiring Raman spectra in vivo from gastrointestinal tissues within 30 seconds [25]. 

Recently, it has been used for in vivo Raman measurement on cervix and only a short 

integration time of 5 seconds are required [101]. 

Figure 3.7 Schematic of two fiber-optic Raman probe designs. CF: collection fiber; EF: 
excitation fiber; BPF: band pass filter; LPF: long pass filter ((a): adapted from Ref. [99]; 
(b): reprinted from Ref. [211]). 

Motz et al (2004) introduced ball lens into fiber-optic Raman probe design (Fig. 3.8) to 

improve the collection efficiency [213]. This probe is constructed by attaching a ball 
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lens to a n-to-1 round bifurcate probe. A long pass filter tube and a short pass filter are 

incorporated between excitation/collection fibers and ball lens. With the use of this 

probe, high-quality Raman spectrum can be acquired within 1 second. Santos et al 

(2005) proposed a single fiber probe for measuring HW Raman spectrum since silica 

does not produce Raman and fluorescence interference with tissue Raman in HW 

region [174]. More recently, Matsuura et al (2007) developed a single fiber probe using 

hollow fiber with a ball lens installed at the distal end [216]. This single fiber probe 

allows tissue Raman measurement in both fingerprint and HW regions.  

 

Figure 3.8 Schematic of fiber-optic Raman probe with a ball lens (reprinted from Ref. [213]).  

In our early work, we developed a fiber-optic probe (Fig. 3.9) for in vivo rapid Raman 

measurement on skin [67]. A n-to-1 round fiber bundle adapter was specially designed 

and arrayed in parabolic line to correct the image aberration of spectrograph. This 

special design allows complete CCD vertical binning, leading to a 3.3- to 16-fold 

improvement in SNR. With this fiber-optic probe, good quality Raman spectrum can 

be acquired within 0.5 second. This probe has also proven its capability for ex vivo 

Raman measurement on human organs, including lung [51], larynx [45], nasopharynx 

[223], colon [28], stomach [70, 72]. In our recent work, we successfully developed an 
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endoscopic bifurcate fiber-optic Raman probe (32-to-1 round, outer diameter: 1.8 mm) 

which can be used to acquire Raman spectrum from stomach in vivo with 1 second or 

even shorter time through the biopsy channel of conventional endoscope under the 

guide of wide-field endoscopic imaging modalities.   

Figure 3.9 Schematic of a fiber-optic Raman probe (adapted from Ref. [67]). 

3.4.2 Raman Probe Design 

This thesis study is aimed at exploring the potential of NIR Raman spectroscopy for 

the in vivo diagnosis of cervical precancer. Note that cervix comprises two layers, 

including the superficial epithelium and the underlying stroma layer. Precancerous 

change usually arises in the basal layer and spreads towards the epithelium surface. 

The changes of tissue morphology or biochemical constituents associated with disease 

transformation may be depth-dependent [133]. For instance, the dysplasia-related 

changes (precancer) may be associated with the thickening of epithelial tissue (e.g., 

cervix), which results in an attenuation of the excitation light to penetrate into deeper 

areas of tissue and also the attenuation of Raman emission from deeper tissue regions 

(e.g., stroma) [190, 192]. On the other hand, the changes of other optical properties 

(e.g., absorption coefficient, scattering coefficient, anisotropic factor, refractive index) 

of tissue are also correlated with tissue physiologic/pathologic status, significantly 

affecting the overall Raman signal collection from biomedical tissue [224]. However, 
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the overall Raman signals acquired from the tissue surface are usually a mixture of 

Raman signal originating from different tissue depths, which consequently results in 

difficulties in analyzing Raman spectroscopic information emitted from tissue for 

tissue diagnosis and characterization [78, 211]. Hence, to better understand the origins 

of Raman signals collected from tissue surface for further improving the diagnosis of 

epithelial precancer (i.e., CIN), it is highly desirable to develop a depth-resolved 

Raman spectroscopic technique for facilitating the depth-selective Raman 

measurement of cervical epithelial tissues. 

A number of fiber-optic probe designs have been reported for depth-resolved optical 

spectroscopic measurements, but most work are centered on fluorescence and 

reflectance spectroscopy for tissue diagnosis [191, 225-229]. The depth-resolved fiber 

probe designs can mainly be classified into two types: (1) single-fiber probe in which 

the same fiber is used for both light excitation and reflectance/fluorescence/Raman 

collection, and (2) multiple-fiber probe in which separate fibers are used for light 

delivery and reflectance/fluorescence/Raman collection [190, 224-227]. Although the 

single-fiber probe with a smaller aperture (i.e., core diameter) shows a high sensitivity 

of detecting spectral signal particularly emitted from the superficial layer of epithelial 

tissue, its collection efficiency is much reduced when the fiber diameter decreases. 

With multiple-fiber probe designs, varying the excitation-collection fiber separations 

or the oblique angles between the excitation-collection fibers permit the 

depth-discrimination of fluorescence/Raman signals from tissue [226, 227]. Although 

the multi-fibers probe design has shown a better depth-selectivity for spectroscopic 

acquisitions, the bulky probe design is unsuited for endoscope-based biomedical 

applications. In this work, we proposed a fiber-optic Raman probe design coupled with 

a ball lens for improving the collection efficiency of depth-resolved Raman 
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measurements, particularly for probing subsurface regions of epithelial tissue (e.g. 

cervix). The use of a single ball lens as both illumination and collection optics of 

spectroscopic probes allows a complete overlap of illumination and collection cone 

and has proven to be efficient for epithelial tissue measurement [213]. Moreover, the 

use of a ball-lens probe also shows some advantages, such as compactness and short 

working distance (probe-tissue contact configuration), which are in favor of in vivo 

tissue measurement. 

Figure 3.10 depicts the schematic of ball lens Raman probe design. The Raman probe 

comprises two optical arms (one for laser light delivery; one for scattered tissue 

Raman collection) integrated with optical filtering modules. The 785-nm excitation 

light is coupled into the excitation arm of the Raman probe through a 200-m fiber 

(NA=0.22), and delivered into the filtering module incorporated with a NIR lens for 

excitation light collimation and a narrow band-pass (BP) filter (centered at 785 nm, 

FWHM= 2.5 nm) for removing fiber fluorescence and laser noise, and then focused 

onto the tissue through a NIR-coated sapphire ball lens (5 mm in diameter, refractive 

index n=1.76) mounted on the tip of the Raman probe. The backscattered tissue Raman 

photons are efficiently collected by the same ball lens and subsequently reflected back 

into the collection arm through a dichroic mirror and a reflection mirror. The 

backscattered light is further filtered by using an edge long-pass (LP) filter (cut off at 

800 nm) to block the Rayleigh scattered laser light while allowing the Raman scattered 

light to pass into the spectrometer through a specially designed round to line fiber 

bundle adapter (28×50 µm, NA=0.22) for maximizing tissue Raman signals detection 

through vertical binning of the entire CCD [67]. All the optics of the Raman probe is 

sealed into the stainless steel sleeve (outer diameter of 8 mm) with 

polytetrafluoroethylene gasket for in vivo cervical tissue measurements. Each spectrum 
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was acquired within 1 s with light irradiance of 1.6 W/cm2, which is less than the 

ANSI maximum permissible skin exposure limit for a 785-nm laser light [177]. The 

estimated temperature rise is about 0.3 ℃ after 1 minute of 785 nm laser irradiation 

with an incident power of 15 mW on a spot diameter of 0.2 mm during Raman 

measurement, which is far below the level to generate cytotoxicity in tissues and cells 

[230]. 

Figure 3.10 Schematic of the Raman probe design. CL: collimating Lens; FL: Focusing 
Lens; BPF: Band Pass Filter; LPF: Long Pass Filter; DM: Dichroic Mirror; RM: Reflection 
Mirror; BL: Ball Lens; EP: Epithelium; ST: Stroma. 

3.4.3 Evaluation of Raman Probe Design by Monte Carlo Simulation 

Monte Carlo (MC) simulations have been widely used to mimic light propagation in 

turbid media (e.g., biological tissue) [191, 229, 231], and also simulate the 

fluorescence generation and propagation in biological tissue [191, 229, 231-233]. With 

the development of MC simulation model to evaluate the fiber probe design coupled 

with a ball lens for depth-resolved fluorescence measurement on layered epithelial 

tissue [191, 229], we further modified the MC model to study Raman light generation 

and propagation in epithelial tissue as well as Raman signal collection with the use of 

ball lens fiber-optic Raman probe. The modified MC codes include the following 

modules: (1) excitation light propagation in ball lens and tissue; (2) Raman photons 
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BL 
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 To Laser Source 
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generation and propagation in tissue; (3) Raman photons collection by the ball lens and 

propagation in the ball lens; (4) Raman photons collection by the focusing lens and 

subsequently by the collection fibers of the Raman probe.  

In MC simulations, one hundred million excitation light photons are launched into the 

tissue through the ball lens. The photons are initialized as a uniform light beam with a 

beam diameter the same as the ball lens’ diameter. When the excitation light photons 

are incident into the ball lens or the Raman photons pass through the ball lens, the 

direction of the refracted light is calculated using Snell’s law. The photon weight is 

then updated as w←w(1-R), whereby the reflection coefficient, R, is calculated using 

Fresnel’s formula: 

2 2

2 2

sin ( ) tan ( )1

2 sin ( ) tan ( )
i t i t

i t i t

R
   
   

  
    

          (3.1)    

where αi and αt are the incident angle and the refracted angle, respectively. In this 

simulation, Raman generation is estimated with the probability (p) of the excitation 

light photons to be converted to Raman scattered light photons as follows [224, 234, 

235]: 

s

a s

p RY


 
 

   
              (3.2)   

where a  is the Raman scattering coefficient for generating Raman photons, s  is 

the scattering coefficient, RY (<<1) is the Raman quantum yield. To determine the 

Raman photon generation at a particular scattering position, a random number between 

0 and 1 is generated; if the probability yielded in Eq. (3.2) is larger than the random 

number, then Raman photon is produced; otherwise, no Raman photon is generated. In 

our MC programs, we presume that the radiation angle of Raman photons emitted from 

the Raman scatterers is isotropic [224, 236] and the emitted Raman photons will not be 

reabsorbed by the Raman scatterers for generating secondary emission of Raman 
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photons due to their extremely low intensity levels. The deflection angle (β) of each 

scattering in the medium is described by Henyey-Greenstein phase function as the 

following equation [231, 237]: 

22
21 1

1 0
cos 2 1 2

2 1 0

g
g if g

g g g

if g

 



                
 

      (3.3)    

where g is anisotropy factor and ξ is a random number between 0 and 1. The azimuthal 

angle ψ can be determined by 2πξ.  

After escaping from tissue surface, Raman photons are collected by the ball lens within 

the collection cone angle [238]: 

 1 2 1
sin b

b t

n

n n
   
  

 
          (3.4)    

where θ is half-angle of the collection cone of the ball lens; nb and nt are the refractive 

indices of the ball lens and tissue, respectively. Tissue Raman photons which pass 

through the ball lens will be coupled into the collection fibers by a focusing lens (focal 

length, f=12 mm) of the Raman probe. Tissue Raman photons after ball lens are 

imaged into the collection fiber side by the focusing lens according to the following 

equation [239]: 

1 1 1

L L f
 


          (3.5)    

where L, L’ and f are object distance, image distance, and focal length, respectively. 

The image position of Raman photons determines the light trace after focusing lens, 

which further determines the incident angle and position on the collection fiber surface 

plane. All those photons that reach the collection fibers within the collection cone 

angle of the collection fibers (NA=0.22) will be considered as the collected Raman 

photons by the Raman probe. The 2-D distributions of excitation light and the origins 

of the Raman photons collected from tissue will be given by MC simulations to 
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evaluate the performance of the fiber-optic Raman probe design for depth-resolved 

tissue Raman measurements. In addition, the collection efficiency of the Raman probe 

defined as the ratio of the collected tissue Raman photon numbers to the incident 

excitation light photon numbers is also estimated by using MC simulations. 

A two-layer tissue model which mimics the epithelial tissues is used for MC 

simulations of the excitation light and Raman photons propagation in tissue. Table 3.3 

gives the optical properties (Raman scattering coefficient, a ; scattering coefficient, 

s ; anisotropy factor, g; tissue refractive index, nt; and tissue thickness, d) of the 

modeled tissue [240]. The wavelengths of excitation light and Raman scattered photon 

light are selected at 785 and 820 nm, respectively, for MC simulations [51, 67].  

Table 3.2 Optical properties of the two-layer epithelial tissue model for MC simulations [191, 
229, 240]. 

Tissue 
Layer 

Wavelength 
(nm) a  (cm-1) s  (cm-1) g nt d (mm) 

Epithelium 785 
(excitation) 

0.9 25 0.9 1.4 0.3 
Stroma 0.45 165 0.9 1.4 3 

Epithelium 820 
(Raman) 

0.8 24 0.9 1.4 0.3 
Stroma 0.3 150 0.9 1.4 3 

3.4.3.1 Effect of the Refractive Index of the Ball Lens on Tissue Raman 

Measurements 

Figure 3.11 shows the MC simulation results of the 785-nm excitation light 

distribution in epithelial tissue for the fiber-optic Raman probe designs with different 

refractive indices of the ball lens and a fixed diameter of 3 mm. Note that the indices 

selected for simulation correspond to different optical materials (1.46-UV fused silica; 

1.51-Boro-crown glass; 1.63-Dense flint glass; 1.76-Sapphire; 1.83-Lanthanum flint 

glass). Overall, the excitation light exhibited higher intensity over the whole tissue 

when increasing the refractive index of the ball lens. A 1.1- to 1.5- fold increase in 
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excitation intensity distribution in tissue was found for the use of ball lens at refractive 

indices of 1.51, 1.63, 1.76 and 1.83 as compared to the refractive index of 1.46. The 

corresponding excitation light distribution in the epithelium was approximately 1.1- to 

2.7- fold stronger. This suggests that Raman probe with a larger refractive index of the 

ball lens achieve higher efficiency in focusing the excitation light photons into the 

tissue, especially in the epithelium layer of the tissue. 

Index=1.46

radial distance (um)

d
e

p
th

 (
u

m
)

 

 

-750 0 750

0

500

1000

1500

Index=1.51

radial distance (um)

d
e

p
th

 (
u

m
)

 

 

-750 0 750

0

500

1000

1500

Index=1.63

radial distance (um)

d
e

p
th

 (
u

m
)

 

 

-750 0 750

0

500

1000

1500

Index=1.76

radial distance (um)

d
e

p
th

 (
u

m
)

 

 

-750 0 750

0

500

1000

1500

Index=1.83

radial distance (um)

d
e

p
th

 (
u

m
)

 

 

-750 0 750

0

500

1000

1500
1
2
3
4
5

x 10
9

0

2

4
x 10

9

0

1

2

3

x 10
8

0

2

4

x 10
8

0

5

10
x 10

8

 

Figure 3.11 The 785-nm excitation light distributions along the tissue depth and radial directions 
in tissue using the Raman probe designs with different refractive indices of the ball lenses (n= 
1.46, 1.51, 1.63, 1.76 and 1.83). 

Figure 3.12 shows the 785-nm excitation light distributions along the tissue depth 

which are the sum of the excitation light distribution (Fig. 3.11) over the radial 

dimension at each tissue depth. Each depth profile was normalized to the integrated 

area under the profile for better comparison among different refractive indices of the 

ball lens in Raman probe. The excitation light underwent a shorter penetration into 

tissue when increasing the refractive index of the ball lens. For instance, an intensity 

maximum of the excitation light in epithelium layer was observed around the focal 

plane of the ball lens when using the refractive index of 1.76 or 1.83 of the ball lens 

(Fig. 3.12). This suggests that increasing the refractive index of the ball lens of the 
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Raman probe design make the excitation light to be more tightly focused in the 

shallower regions of tissue (i.e., the epithelium). The findings above can be explained 

by the enhanced focusing ability of the ball lens attributed to the increase of refractive 

index. The ball lens focal length can be estimated using the following equations [238]: 

 
;

2 4 1
b

b

n DD
BFL EFL EFL

n
  


       (3.6) 

where BFL is back focal length, representing the distance from the ball lens front tip to 

the focal point; EFL is effective focal length, representing the distance from the ball 

lens center to the focal point; D and nb is the diameter and the refractive index of the 

ball lens, respectively. According to Eq. (3.6), if keeping diameter D constant, EFL and 

BFL are inversely proportional to refractive index nb. That is why the ball lens with a 

larger refractive index leads to a shorter light penetration depth in tissue.  
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Figure 3.12 The 785-nm excitation light distributions along the tissue depth using 
the Raman probe designs with different refractive indices of the ball lenses (n=1.46, 
1.51, 1.63, 1.76 and 1.83). 

Figure 3.13 shows the calculated results of the origins of the Raman photons generated 

from different tissue locations of epithelial tissue. Similar to the excitation light 

distribution in tissue (Fig. 3.11), the Raman photons generated from different tissue 

depths were also dependent on the use of the refractive index of the ball lens in Raman 
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probe designs. With the increase of the refractive index of the ball lens, Raman 

photons radiation tended to be more strongly coming from the shallower regions of the 

epithelium layer (e.g., ~5 orders of magnitude stronger in Raman intensity using the 

ball lens’s refractive index of 1.83 as compared to that using the ball lens’s refractive 

index of 1.46) (Fig. 3.13). This is due to the fact that excitation light is more tightly 

focused in the shallower layer of the epithelium, and the ball lens with a larger 

refractive index has larger collection cone angle (Eq. (3.4)), leading to the significant 

improvements of Raman signal collections from the epithelium in tissue. The findings 

above imply that increasing the refractive index of the ball lens in Raman probe design 

can effectively improve the collection efficiency of tissue Raman photons from the 

tissue, especially from the subsurface regions of the epithelium layer in tissue.  
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Figure 3.13 Distributions of the Raman photons collected from different tissue depths using the 
Raman probe designs with different refractive indices of the ball lens (n=1.46, 1.51, 1.63, 1.76 
and 1.83). 

Figure 3.14 shows the depth distribution of the origins of Raman photons collected 

from tissue for the use of different refractive indices of the ball lens in Raman probe 

designs. The depth distribution was created by integrating the 2-D distribution (Fig. 

3.13) over the radial dimension at each tissue depth and was then normalized to the 

integrated area under the profile. It can be used to represent the relative contribution of 
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Raman photons from different tissue depths to the overall collected Raman photons. 

The relatively weak Raman photons were generated throughout different tissue depths 

when using the ball lens with refractive indices of less than 1.63 (Fig. 3.14); but 

stronger Raman photons generation tended to be arising from the epithelium layer in 

tissue when using the ball lens with larger refractive indices (e.g., n=1.76, 1.83). For 

instance, a maximum Raman radiation appeared in the shallower region (~80 m) of 

the epithelium layer in tissue for the use of ball lens with refractive index of 1.83 (Fig. 

3.14). This indicates that the Raman probe design with the use of high refractive index 

ball lens is in favor of detecting Raman signal emitted from subsurface layer of the 

epithelial tissue. 
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Figure 3.14 Depth-resolved Raman photons collected from different tissue depths using 
the Raman probe designs with different refractive indices of the ball lens (n=1.46, 1.51, 
1.63, 1.76 and 1.83). Note that for comparison purpose, the depth-resolved Raman 
intensity profiles with different refractive indices of the ball lens have been vertically 
shifted to different intensity levels. 

We also evaluated the collection efficiency of the Raman probe versus the refractive 

index of the ball lens (Fig. 3.15). The collection efficiency of the Raman probe 

increased monotonously when increasing the refractive index of 1.46 up to 1.83. All 
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the MC simulation results above confirm that Raman probe design with the use of a 

larger refractive index of the ball lens has the advantage of preferentially detecting the 

Raman signal from subsurface regions of the epithelium in tissue with high collection 

efficiency. 
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Figure 3.15 Collection efficiency of the Raman probe as a function of the refractive 
index of the ball lens.  

3.4.3.2 Effect of the Ball Lens Diameter on Tissue Raman Measurements 

Figure 3.16 shows the MC simulation results of the 785-nm excitation light 

distribution in epithelial tissue for the fiber-optic Raman probe designs with different 

diameters of the ball lens (refractive index of 1.83). With the use of smaller diameters 

of the ball lens in Raman probe design, the incident light was found to be more tightly 

focused into shallower regions of epithelial tissue with stronger incident light 

distribution as compared to the use of large diameters of the ball lens. This can be 

explained by the shortening of the ball lens focal length (Eq. (3.6)) [238] when using 

the ball lens with small diameters.  
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Figure 3.16 The 785-nm excitation light distributions in tissue using the Raman probe designs with 
different diameters of the ball lens (Φ=1, 2, 3, 5, 8 and 10 mm). 

Figure 3.17 presents the depth distribution of the 785-nm excitation light in tissue 

calculated by integrating the 2-D intensity distribution (Fig. 3.16) over the radial 

dimension at each tissue depth. The excitation light from the Raman probe appeared to 

have a shorter penetration depth in tissue when using a smaller diameter of the ball 

lens. For instance, an incident light intensity maximum occurred at the subsurface 

region (~40 μm) of the epithelial tissue when the Raman probe used the ball lens with 

a diameter of 1 mm. Whereas the incident light tended to penetrate into deeper regions 

of the epithelial tissue when using the ball lens with larger diameters (e.g., 10 mm) 

(Fig. 3.17). Again, this implies that the Raman probe design with the use of smaller 

diameters of the ball lens can be more efficiently focusing the excitation light into the 

shallower regions of the epithelium layer in tissue.  
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Figure 3.17 The 785-nm excitation light distribution along the tissue depth using the 
Raman probe designs with different diameters of the ball lens (Φ=1, 2, 3, 5, 8 and 
10 mm).  

Figure 3.18 depicts the 2-D distributions of the origins of the Raman photons collected 

from tissue using the Raman probes with different diameters of the ball lens. Similar to 

the corresponding excitation light distribution in tissue (Fig. 3.16), the tissue Raman 

photons collected with the use of a small diameter of the ball lens in Raman probe 

design appeared to be mostly originating from the shallower areas of the epithelium 

layer in tissue as compared to the Raman probe design with larger diameters of the ball 

lens. This can be more clearly displayed in the depth distribution of the origins of the 

Raman photons collected from tissue using the Raman probe designs with different 

diameters of the ball lens (Fig. 3.19). The relative contribution of the Raman photons 

from the epithelium became more dominant when reducing the ball lens’ diameter in 

Raman probe design. For example, the Raman probe design with the use of 1-mm ball 

lens enabled a detection of ~95% of Raman signal arising from the epithelium, while 

only about 50% of Raman signal originating from the epithelium can be detected if 

using the 10 mm ball lens. Hence, the Raman probe design with a smaller diameter of 

ball lens can efficiently improve the detection of the Raman signal originating from the 
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epithelium layer in tissue. 
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Figure 3.18 Distributions of the origins of the Raman photons collected from tissue using the 
Raman probe designs with different diameters of ball lenses (Φ=1, 2, 3, 5, 8 and 10 mm).  
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Figure 3.19 Depth distribution of the origins of the Raman photons collected from tissue 
using the Raman probe designs with different diameters of the ball lens (Φ=1, 2, 3, 5, 8 
and 10 mm). 

MC simulations were also carried out to exhaustedly search for all the possible 

combinations of the diameters and the refractive indices of the optimized Raman probe 

designs for improving depth-resolved Raman measurements. Figure 3.20 describes the 

depth-resolved measurement performance of the probe design as a function of the 
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combination of the ball lens’ diameter and refractive index. The results show that the 

ball lens with a refractive index of 1.83 and diameter of 3 mm achieved the highest 

collection efficiency (Fig. 3.20(a)). With the use of this probe design, Raman photons 

originating in the epithelium of tissue covered 90% of the overall Raman photons 

collected from the surface of epithelial tissue as shown in Fig. 3.20(b), indicating a 

good depth-selectivity to the epithelium. Although the depth-selectivity can be further 

improved by reducing the diameter of the ball lens down to 2 mm, the collection 

efficiency will drop by about 30%. This implies that the Raman probe design with the 

use of a ball lens with the diameter of 3 mm and the refractive index of 1.83 is optimal 

for selectively detecting the Raman signal from the epithelial tissue. The above results 

indicate that Raman probe designs with a proper selection of the refractive index and 

diameter of the ball lens can improve both the collection efficiency and the ability to 

preferentially acquire the Raman photons emitted from the epithelium layer of 

epithelial tissue. In our clinic Raman system, Raman probe is configured with a 

sapphire ball lens at refractive index of 1.76 and diameter of 5 mm other than the 

optimal configuration suggested by the simulation results above. This is due to the fact 

that sapphire produces low interference signal and therefore is chosen as the ball lens 

material. The refractive index of sapphire is about 1.76 at 785 nm. Meanwhile, the 

reason we chose diameter of 5 mm is to increase the probe’s sensitivity to the stroma 

layer which is rich in collagen, one of the major diagnostic biomarkers in cervix. 
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Figure 3.20 The simulated performance of the probe design based on various combinations of ball 
lens diameters (i.e., 1, 2, 3, 5, 8 and 10 mm) and refractive indices (i.e., 1.46, 1.51, 1.63, 1.76 and 
1.83): (a) collection efficiency; (b) proportion of the Raman photons from the epithelium to the 
total collected Raman photons from the tissue surface.  

3.4.3.3 Effect of the Probe-tissue Distance on Tissue Raman Measurements 

In practical tissue measurements, the probe-to-tissue distance may play a significant 

role in depth-resolved tissue spectroscopic measurement [191, 225, 226, 229]. We also 

comprehensively studied the relationship of the collection efficiency of the ball lens 

Raman probe designs versus probe-tissue distances. Fig. 3.21(a) shows an example of 

the collection efficiency versus probe-tissue distances using the Raman probe with the 

ball lens’ diameter of 3 mm and refractive index of 1.83. The maximum collection 

efficiency of the Raman probe occurred at the probe-to-tissue distance of ~300 µm. We 

also studied the effect of the probe-tissue distance on the ratio of the Raman signal 

collected from the epithelium layer to the overall Raman signal from the entire 

epithelial tissue in depth-resolved Raman measurements (Fig. 3.21(b)). It was found 

that when the probe-to-tissue distances were in the range of 275 to 660 µm, Raman 

photons arising from the tissue epithelium layer accounted for over 90% of the total 

Raman photons of the entire epithelial tissue. The above results suggest that the 

collection efficiency and the depth-selectivity of the Raman probe design can be 

optimized by setting a proper gap between the probe and the tissue.  
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Figure 3.21 (a) Collection efficiency of the Raman probe as a function of probe-tissue distances; 
(b) Percentage of the Raman signal collected from the epithelium layer to the overall Raman 
signal from the entire epithelial tissue. The refractive index and the diameter of the ball lens are 
1.83, and 3 mm, respectively, in Raman probe design. 

3.4.4 Experimental Evaluation of Raman Probe Design 

We also carried out tissue Raman measurements on a two-layer tissue phantom to 

evaluate the performance of a ball lens Raman probe design using a sapphire ball lens. 

The two-layer tissue phantom was constructed by overlaying different thicknesses of 

chicken muscle tissue on a chicken fat tissue: the thickness of fat tissue layer was fixed 

to be 5 mm, while the thickness of the muscle tissue layer varied from 0.3 to 3.9 mm. 

Figure 3.22 shows Raman spectra acquired from chicken muscle and fat tissue, as well 

as from the two-layer tissue phantoms with the muscle tissue thickness of 0.3, 1.2, 2.1, 

3 and 3.9 mm, respectively. It was observed that chicken muscle and fat tissue showed 

distinctively different Raman spectral features. For instance, the Raman spectrum of 

muscle tissue showed distinct Raman peaks at 936 (C-C stretching of proteins), 1004 

(C-C stretching of phenylalanine), 1209 (C-C6H5 stretching of tryptophan and 

phenylalanine), and 1339 cm-1 (CH3CH2 wagging of collagen). In contrast, the Raman 

spectrum of fat tissue exhibited four different unique peaks at 972 (Calcium-phosphate 

stretching of cholesterols/lipids), 1080 (C-C/C-O stretching of phospholipids), 1301 
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(CH2 twisting and wagging modes of lipids, triglycerides (fatty acids)) and 1745 cm-1 

(C=O stretching of ester (phospholipids)) [51, 190]. With the thickness of muscle 

tissue layer increasing from 0 to 3.9 mm in the two-layer tissue phantom, the Raman 

intensity at 1004 cm-1 for muscle tissue increased by 2.1- to 5.6-folds, whereas the 

Raman signal at 1745 cm-1 for fat tissue underwent a 28- to 1.6-fold reduction in 

intensity (Fig. 3.23). This implies that the Raman signal contribution of the surface 

muscle layer to the overall Raman signal increases as the muscle tissue thickness 

increases while the signal contribution of the deeper fat tissue layer reduces 

concomitantly. The results above indicate the potential of the ball lens Raman probe 

design for effective depth-selective Raman measurements in layered tissue. 
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Figure 3.22 Raman spectra acquired from chicken muscle and fat tissue, as well as from the 
two-layer tissue phantoms with the muscle tissue thickness of 0.3, 1.2, 2.1, 3 and 3.9 mm, 
respectively. Spectra: (a) fat tissue; (b)-(f): two-layer tissue phantoms with the muscle tissue 
layer of thickness of 0.3, 1.2, 2.1, 3.0 and 3.9 mm, respectively, overlaying on a fat tissue 
layer (thickness of 5 mm); (g) muscle tissue. Note that all tissue Raman spectra are acquired 
with an integration of 1 s under the 785-nm excitation power of 1.5 W/cm2. The dotted and 
solid vertical lines indicated in Raman spectra stand for the distinctive Raman peaks 
originating from the muscle and fat chicken tissue, respectively. 
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Figure 3.23 Raman peak intensities at 1004 and 1745 cm-1 as a function of thickness 
ratios of the muscle tissue layer to the fat tissue in a two-layer tissue phantom. 

3.5 Data Acquisition Program 

OOIBase32 (Ocean Optics, Dunedin, FL) is the official software for controlling Ocean 

Optics spectrometer and data acquisition. Besides, it also incorporates online 

dark-subtraction function as well as several basic spectral data process functions (e.g., 

smoothing by boxcar function, average consecutive spectra).  

3.6 Conclusion 

In summary, we successfully developed a rapid and portable Raman spectroscopy for 

in vivo Raman spectroscopic measurements on cervical tissues. A fiber-optic Raman 

probe was specially designed with the use of a ball lens for improving depth-resolved 

Raman measurements of epithelial tissue. We comprehensively evaluated the effects of 

optical configurations of the ball lens Raman probe design on depth-resolved Raman 

measurements using Monte Carlo simulations. The MC calculation results show that 

depth discriminations of Raman signals are achievable by changing either the 

refractive index or diameter of the ball lens, or the ball lens-tissue distances. The 
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Raman probe design by increasing the refractive index or reducing the diameter of the 

ball lens is in favor of probing Raman signals particularly arising from the shallower 

regions of the epithelium layer of tissue. Experimental evaluation of a ball lens probe 

design confirms its ability for efficient depth-resolved measurement on layered tissues. 

The efficacy of this Raman spectroscopy system for in vivo Raman measurement on 

cervical tissues will be discussed in chapter 4 and 5. 
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Chapter 4  High Wavenumber Raman Spectroscopy for In 

Vivo Detection of Cervical Dysplasia 

The chapter is to present our work on applying NIR Raman spectroscopy in the high 

wavenumber (HW) region (2800~3700 cm-1) for in vivo detection of cervical dysplasia. 

A rapid-acquisition NIR Raman spectroscopy system associated with a fiber-optic 

Raman probe was used for in vivo spectroscopic measurements at 785-nm light 

excitation. A total of 92 in vivo HW Raman spectra (46 normal, 46 dysplasia) were 

acquired from 46 patients with pap smear abnormalities in the cervix. Significant 

difference in Raman intensities of prominent Raman bands peaking at 2850 and 2885 

cm-1 (CH2 stretching of lipids), 2940 cm-1 (CH3 stretching of proteins), and the broad 

Raman band of water peaking at 3400 cm-1 in the 3100~3700 cm-1 range were 

observed in normal and dysplasia cervical tissues. The diagnostic algorithms based on 

PCA and LDA together with the leave-one patient-out, cross-validation method on in 

vivo HW Raman spectra yielded a diagnostic sensitivity of 93.5% and specificity of 

97.8% for dysplasia tissue identification. This study demonstrates for the first time that 

HW Raman spectroscopy has the potential for the noninvasive, rapid, in vivo diagnosis 

and detection of precancer in the cervix. 
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4.1 Introduction 

NIR Raman spectroscopy has been applied for optical diagnosis of cervical dysplasia 

and Raman spectral differences between normal and dysplasia cervical tissues have 

been observed [98, 100], demonstrating the diagnostic ability of NIR Raman 

spectroscopy. To date, most of cervical NIR Raman studies are centered on the 

fingerprint region (i.e., 800~1800 cm-1) owing to the great wealth of biochemical 

information contained in this spectral region for tissue characterization [51, 78, 100, 

189]. However, the strong autofluorescence background and silica Raman signal 

arising from fiber optic Raman probe also fall into the fingerprint region which 

severely interfere the detection of inherently weak tissue Raman signal [98, 175]. This 

makes the light filtering modules in Raman probe design to be complicated and bulky, 

and unsuitable for in vivo biomedical applications. To tackle this problem, Puppels and 

co-coworkers [8, 174] proposed to use Raman spectroscopy in the so-called high 

wavenumber (HW) region (i.e., 2400~3800 cm-1) for tissue diagnosis and 

characterization. The main advantages of using HW Raman spectroscopy are the 

significant reduction of fluorescence/Raman background from optical fibers [8], more 

intense tissue Raman signals generated compared to the fingerprint region [241], as 

well as the possibility of an unfiltered, simplified single fiber Raman probe design for 

facilitating in vivo Raman clinical procedures [242]. For instance, HW Raman studies 

[60] showed that basal cell carcinoma could be distinguished with a 100% prediction 

accuracy, suggesting that diagnostic information extracted from the HW Raman 

spectral region could compete with those extracted from the fingerprint region. To date, 

the clinical potential of HW Raman spectroscopy for identification of cervical 

dysplasia (i.e., precancer) has yet been reported in literature. Therefore, in this study, 

we aimed to evaluate the feasibility of utilizing HW Raman spectroscopy for in vivo 
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diagnosis of cervical precancer. Multivariate statistical techniques, including PCA and 

LDA, were employed to develop diagnostic algorithms for differentiation between 

normal and precancer cervical tissue. Receiver operating characteristic (ROC) testing 

was also conducted to further evaluate the performance of PCA-LDA algorithms on in 

vivo HW Raman spectroscopy for cervical precancer diagnosis.  

4.2 Materials and Methods 

4.2.1 Raman Instrumentation 

The Raman spectroscopy used in this study has been described in detail in Chapter 3.  

4.2.2 Patients  

A total of 46 women (mean age of 42.6 years old) who underwent colposcopic 

examinations for abnormal pap smears were recruited through colposcopy clinics at 

the National University Hospital (NUH) of Singapore. All patients preoperatively 

signed an informed consent permitting the in vivo spectroscopic measurements on the 

cervix. This study was approved by the Ethics Committee of the National Healthcare 

Group of Singapore. Prior to Raman spectroscopic measurements, a complete routine 

colposcopic examination was performed on the patients by experienced colposcopists. 

A 5% acetic acid was applied to the cervix for a couple of minutes to allow the 

inspection of acetic acid whitening changes of epithelium which was then graded 

according to the degree of acetic acid-whiteness, the shape and margin of lesion area 

and the vascular pattern. Evaluation of Raman spectra acquired before and after the 

application of acetic acid indicates that acetic acid does not lead to any significant 

change on the tissue Raman spectra. In vivo HW Raman spectra were acquired from 

the suspicious lesion sites and the surrounding normal sites for each patient through 
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gently placing the ball-lens Raman probe on the cervix. The measured abnormal sites 

were biopsied and then submitted to pathology laboratories of NUH for 

histopathologic examination to confirm the colposcopic diagnosis. The measured 

normal sites are normal mature squamous epithelium without showing acetowhite. A 

total of 92 in vivo HW Raman spectra were acquired from 46 patients with cervical 

abnormalities, in which 46 were from normal sites, while 46 from cervical dysplasia 

lesions, including 10 CIN 1, 9 CIN 2 and 27 CIN 3.  

4.2.3 Data Preprocessing 

The raw HW Raman spectra (2800~3700 cm-1) measured from in vivo cervical tissue 

represented a composition of Raman signal, autofluorescence background and noise. 

Thus, the raw spectra were preprocessed by a first-order Savitzky-Golay filter 

(window width of 3 pixels, which corresponded to the system spectral resolution) to 

reduce noise [178]. A first-order polynomial was found to be optimal for fitting the 

autofluorescence background in the noise-reduced spectrum, and this polynomial was 

then subtracted from the raw spectrum to yield the tissue HW Raman spectrum alone. 

Each of background-subtracted HW Raman spectra was also normalized to the 

integrated area under the curve from 2800 to 3700 cm-1, enabling a better comparison 

of the spectral shapes and relative band intensities among the different cervical tissues.  

4.2.4 Multivariate Statistical Analysis 

PCA-LDA was employed for developing diagnostic algorithms and has been described 

in detail in the section Multivariate Statistical Analysis in Chapter 2.  
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4.3 Results 

4.3.1 Spectral Feature Analysis  

Figure 4.1(a) shows the comparison of mean in vivo HW Raman spectra ± 1 standard 

deviation (SD) of normal (n=46) and dysplasia (n=46) cervical tissues. Prominent 

Raman bands, such as 2850 and 2885 cm-1 (CH2 stretching vibrations of lipids), 2940 

cm-1 (CH3 stretching vibrations of proteins), and the broad Raman band of water (OH 

stretching vibration band peaking at 3400 cm-1 in the 3100~3700 cm-1) [8, 174, 241], 

were clearly observed in both normal and dysplasia cervical tissues. Overall, precancer 

cervical tissue showed significantly lower intensities for the Raman bands in the 

2800~3000 cm-1 region (paired two-sided Student’s t-test, p<0.001, n=46), while being 

higher for OH bands in the 3100~3700 cm-1 (paired two-sided Student’s t-test, p<0.001, 

n=46) compared to normal tissue as shown in the difference spectrum in Fig. 4.1(b). 

Nevertheless, there were significant variations and overlapping in intensities of in vivo 

HW Raman spectra of normal and precancer tissue among inter-subjects (Fig. 4.1). 

Thus, tissue diagnosis simply based on spectral intensities alone was precluded. In 

addition, it is also difficult to standardize the absolute intensities of spectral 

measurements in clinical settings. Therefore, in this study we focused on analyzing 

spectral feature differences following a standardization/normalization data 

pre-processing procedure.  
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Figure 4.1 (a) Comparison of mean in vivo HW Raman spectra1SD of normal (n=46) 

and precancer (n=46) cervical tissue. (b) Difference spectrum1SD difference between 
precancer (n=46) and normal cervical tissue (n=46). Note that the mean in vivo HW 
Raman spectrum of normal tissue was shifted vertically for better visualization (Fig. 
4.1(a)); the shaded areas indicate the respective standard deviations.  

4.3.2 PCA-LDA and ROC Analysis  

We employed the multivariate statistical methods (e.g., PCA, LDA) together with 

paired two-sided Student’s t-test by incorporating the entire HW Raman spectra to 

determine the diagnostically significant Raman features for tissue diagnosis and 

classification. Figure 4.2 shows the first five PCs calculated from PCA on all HW 

Raman spectra. The first PC accounted for the largest variance (e.g. 49.6% of the total 

variance), whereas the successive PCs described the spectral features that contributed 

progressively smaller variances. Some PC features, such as peaks, troughs, spectral 

shapes, were similar to those of tissue HW Raman spectra (Fig. 4.1). The paired 

two-sided Student’s t-test on the obtained PCs showed that there were three 

diagnostically significant PCs (i.e., PC1, PC4, and PC9) (p<0.05) for discriminating 

dysplasia tissue from normal tissue.  
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Figure 4.2 The first five principal components (PCs) accounting for about 88% of the 
total variance calculated from in vivo HW Raman spectra of cervical tissue 
(PC1-49.6%, PC2-21.7%, PC3-10.9%, PC4-4.7%, and PC5-1.6%). 

Figure 4.3 shows the correlations between the diagnostically significant PC scores for 

normal and dysplastic cervical tissue, illustrating the utility of significant PCs for 

classification of Raman spectra between normal and precancer cervical tissues. Normal 

and dysplasia tissues can be largely clustered into two separate groups based on 

different combinations of significant PCs: (a) PC1 vs PC4, (b) PC1 vs PC9, and (c) 

PC4 vs PC9. The corresponding separation lines (i.e., diagnostic algorithms) classify 

dysplasia from normal tissue with the sensitivity of 63.0% (29/46), 89.1% (41/46) and 

73.9% (34/46); specificity of 87.0% (40/46), 84.8% (39/46) and 87.0% (40/46), 

respectively. These results show that selection of different combinations of significant 

PCs will lead to different levels of accuracy for tissue classification. 
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Figure 4.3 Scatter plots of the diagnostically significant PCs derived from in vivo HW Raman 
spectra of normal and precancer cervical tissue: (a) PC1 vs PC4; (b) PC1 vs PC9; (c) PC4 vs PC9. 
The dotted lines (PC4 = −0.57 PC1 + 0.19; PC9 = 0.96 PC1 + 0.12; PC9 = 0.62 PC4 − 0.08) as 
diagnostic algorithms classify precancer from normal with sensitivities of 63.0% (29/46), 89.1% 
(41/46) and 73.9% (34/46); specificities of 87.0% (40/46), 84.8% (39/46) and 87.0% (40/46), 
respectively. circle (○): Normal; triangle (▲): Precancer. 

To further improve tissue diagnosis, all the three diagnostically significant PCs were 

loaded into the LDA model for generating effective diagnostic algorithms for tissue 

classification. Figure 4.4 shows the posterior probability of classification results based 

on PCA-LDA technique together with leave-one patient-out, cross-validation method. 

The PCA-LDA diagnostic algorithms yielded the diagnostic sensitivity of 93.5% 

(43/46) and specificity 97.8% (45/46) for distinguishing dysplasia from normal 

cervical tissue. To evaluate the performance of the PCA-LDA-based diagnostic 

algorithms derived from all the significant PCs of tissue HW Raman dataset, the 

receiver operating characteristic (ROC) curve (Fig. 4.5) was generated from the scatter 

plot in Fig. 4.4 at different threshold levels to determine the correct or incorrect 

classification of cervical tissues. The integration area under the ROC curve is 0.98, 

demonstrating the efficacy of PCA-LDA diagnostic algorithms developed that utilize 
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the entire spectral features of HW Raman spectroscopy for in vivo diagnosis of cervical 

precancer.  
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Figure 4.4 Scatter plot of the posterior probability of belonging to the normal and 
precancer cervical tissues using the PCA-LDA technique together with leave-one 
patient-out, cross-validation method. The separate line yields a diagnostic sensitivity 
of 93.5% (43/46) and specificity 97.8% (45/46), for identifying precancer from 
normal cervical tissue. circle (○): Normal; triangle (▲): Precancer.  
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Figure 4.5 Receiver operating characteristic (ROC) curve of discrimination results 
for in vivo HW Raman spectra of cervical tissue using PCA-LDA algorithms 
together with leave-one patient-out, cross-validation method. The integration area 
under the ROC curve is 0.98, illustrating the efficacy of PCA-LDA algorithms for 
tissue classification.  
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4.4 Discussion 

Raman spectroscopy has proven to be capable of probing biochemical structures and 

compositions in tissues associated with tissue malignant transformation. Likewise, 

Fourier transform infrared spectroscopy (FTIR), as the other vibrational spectroscopy 

technique, can also been used for tissue differentiation. Particularly for human cervix, 

FTIR spectroscopy and imaging technique has been successfully applied to the 

identification of the malignant cervical cells and tissues [155, 157, 170]. In principle, 

Raman and FTIR spectroscopy are complementary to each other due to the different 

selection rules for molecular vibrational modes [4], and have been recently 

demonstrated as complementary techniques for tissue identification [243]. However, 

FTIR is limited to in vitro spectroscopic measurement on human tissue. In contrast, 

Raman spectroscopy has shown the potential to be a clinically useful tool for precancer 

and cancer diagnosis in humans; however, due to the weak signal, an efficient and 

quick detection of tissue Raman signals is important for in vivo Raman clinical 

applications. In this work, we developed a rapid and portable NIR Raman spectroscopy 

system coupled with a ball-lens fiber-optic Raman probe [191, 229] to provide a high 

degree of collection efficiency for real-time in vivo cervical tissue measurements. 

Compared to the conventional fiber-optic Raman probes with a relatively small 

collection angle (of ~13 degrees; NA=0.22) [25], our Raman probe coupled with an 

NIR-coated sapphire ball lens (diameter of 5 mm; refractive index of 1.77) offers a 

large collection angle (of up to 55 degrees) to maximize the collection of back 

scattered Raman photons from tissue. In addition, the unique round-to-line fiber 

bundle adapter connected to the Raman probe optimizes the coupling of Raman 

photons collected into the spectrometer for further improving tissue Raman 

acquisitions [67]. As a result, good quality (SNR of up to 30 at 1 s integration times) 
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HW Raman spectra in the range of 2800~3700 cm-1 can be acquired from cervical 

tissue in vivo using the rapid Raman spectroscopy system developed.  

We applied this rapid HW Raman spectroscopy for the first time for the in vivo 

diagnosis and detection of cervical precancer during clinical colposcopic examination. 

The overall intensity of Raman signals of cervical dysplasia in the region (2800~3050 

cm-1) involving proteins (e.g., 2940 cm-1) and lipids (e.g., 2850 and 2885 cm-1) were 

significantly lower than those in normal cervical tissue. Our MC simulations based on 

the two-layer (i.e., epithelium, stroma) tissue model according to the cervical tissue 

optical properties [192, 240] show that the 785-nm laser light from our ball-lens 

Raman probe can penetrate into the tissue depth of 690 m in normal cervical tissue, 

while 630 m in dysplastic tissue, thereby interrogating with cervical tissue volumes 

comprising both epithelium and stroma tissue in the cervix. Due to the changes of 

tissue optical properties (e.g., thickening of epithelium) and morphologies (e.g., higher 

cellular density resulting from the increased nucleus to cytoplasm ratios) associated 

with dysplastic transformation [72, 191], these effects significantly attenuate the 

excitation light penetration and also obscure the tissue Raman photons emitted from 

the underlying stroma in precancer tissue as compared to normal cervical tissue. 

Further MC simulations indicate that the overall Raman signals in the 2800~3050 cm-1 

emitted from normal tissue are 1.15-fold stronger than dysplastic cervical tissue, which 

is in good agreement with the observation in our HW Raman cervical tissue 

measurements (Fig. 4.1). We have also studied the differences of the two respective 

tissue layers (i.e., epithelium, and stroma) in contributions to the HW Raman signals 

between normal and dysplastic cervical tissues. The MC results show that the stroma 

tissue (i.e., collagen) in dysplasia cervical tissue contribute only about 10% to the 

overall HW Raman signal in the 2800~3050 cm-1 as compared to the 50% of 
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contributions from normal stroma tissue. This also explains the significant reduction of 

collagen Raman signal (at 2940 cm-1) observed in dysplasia tissue (Fig. 4.1). Similar 

results in the finding of much reduced collagen signals associated with cervical 

dysplastic changes have also been reported using fluorescence spectroscopy and 

Raman spectroscopy in the fingerprint region [100, 102, 134, 138]. On the other hand, 

we have also observed that the water vibrational signal in the 3100~3700 cm-1 is 

significant higher in dysplastic cervical tissue (Fig. 4.1), indicating the increase of 

water contents in percentage relative to all the Raman-active components in dysplastic 

cervical tissue. The increase of water concentrations associated with tumor alterations 

in other organs have also been reported using NIR spectroscopy techniques [244-246]. 

This phenomenon is probably due to the increase of certain types of aquaporins (AQPs) 

at dysplastic cervical cells which could increase the plasma membrane osmotic water 

permeability of up to 10-fold, thereby facilitating the influx of water molecules into the 

intracellular space in dysplasia tissue [247, 248]. Therefore, the distinctive spectral 

differences observed in the in vivo HW Raman spectra of normal and dysplastic 

cervical tissue in this study suggest the diagnostic potential of HW Raman 

spectroscopy for noninvasively distinguishing dysplastic tissue from normal cervical 

tissue. 

To develop the diagnostic algorithms, empirical method, intensity ratio of specific 

bands [51], was employed prior to PCA-LDA analysis. The Raman band ratio of 2850 

to 2940 cm-1, ascribed to lipid/protein, was significantly higher in precancer compared 

to normal tissue. The result is in an agreement with Raman bands ratio finding in 

fingerprint region, higher ratio of 1445/1657 cm-1 (lipid/protein) in precancer [5]. 

Besides the reason of less contribution of collagen as discussed above, the higher ratio 

may also be attributed to the increased content of lipid relative to the total Raman 
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scatterers in tissue. This ratio of lipid/protein achieved a sensitivity of 78.3%, 

specificity of 89.1% and accuracy of 83.7% in differentiating dysplasia from normal 

tissues, confirming the lipid/protein ratio as a biomarker for cervical dysplasia. 

However, the ratio method only utilized a limited number of band intensities while 

neglecting most of Raman spectral features [70]. Moreover, biological tissue is very 

complex, it is thereby likely that there are many biochemical species influencing 

diseases concurrently [70, 244]. Therefore, in this work, the multivariate statistical 

analysis (e.g., PCA and LDA) was implemented by utilizing the entire HW Raman 

spectrum (2800~3700 cm-1) to determine the diagnostically significant spectral 

features for dysplastic cervical tissue diagnosis and classification.  

With the limited HW Raman spectral datasets we acquired to date, PCA-LDA together 

with leave-one patient-out, cross-validation technique was applied to the HW Raman 

spectra for dysplastic tissue identification in an unbiased manner. The cross-validated 

diagnostic sensitivity of 93.5%, specificity 97.8% and accuracy of 95.7% achieved for 

distinguishing dysplasia from normal cervical tissue confirm the diagnostic potential of 

HW NIR Raman spectroscopy for cervical precancer diagnosis. To further verify if the 

utilization of the entire HW spectral region (i.e., 2800~3700 cm-1) is robust for 

providing good tissue classification accuracy, we have also evaluated the diagnostic 

abilities based on the two Raman sub-regions, i.e., 2800~3050 cm-1 (containing 

proteins and lipids biomolecular constituents), and 3100~3700 cm-1 (representing water 

molecule) for cervical precancer diagnosis. PCA-LDA analysis yielded a diagnostic 

sensitivity of 89.1%, specificity of 89.1% and accuracy of 89.1% in the spectral region 

of 2800~3050 cm-1; and sensitivity of 84.8%, specificity of 89.1% and accuracy of 

87% in the region of 3100~3700 cm-1, respectively, for cervix dysplasia identification. 

The highest diagnostic accuracy (~96%) achieved by employing the entire HW 
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spectral region from 2800~3700 cm-1 compared to the truncated HW Raman 

sub-regions (i.e., 2800~3050 cm-1 and 3100~3700 cm-1) further reinforces that the 

unique combination of different Raman biomolecular signals ranging from water, 

lipids to proteins (i.e., 2800~3700 cm-1) can provide good differentiation between 

normal and dysplastic cervical tissue. The overall diagnostic accuracy rate of 96% 

achieved in the 2800~3700 cm-1 in this study is, in fact, comparable with those 

achieved via Raman spectroscopy in the fingerprint spectral region (accuracy of 

90-100% in 800~1800 cm-1) for in vivo detection of cervical dysplasia [100, 102]. 

Hence, HW Raman spectroscopy (2800~3700 cm-1) together with PCA-LDA can be 

used to yield high diagnostic accuracy for in vivo detection of cervical precancer. 

However, this PCA-LDA model may be skewed to the detection of CIN 2 and 3 

because CIN 2 and 3 subjects are dominant in the total dysplasia subjects. Hence, this 

model needs to be further validated on the dataset including comparable amount of 

CIN 1 subjects. 

In addition, in the clinic diagnosis point of view, the discrimination between normal 

and dysplasia is not the whole colposcopic practice in clinic. The discrimination 

between LGSILs from HGSILs is also clinically desirable. The reason is that LGSILs 

have a high rate to regress to normal without any treatment [187] and however the 

current colposcopic diagnosis is likely to overestimate the LGSILs to be HGSILs. 

Meanwhile, discrimination between normal and LGSILs is even more challenging 

because some benign changes of cervix may also show some features of LGSILs [188]. 

For instance, HPV infection or inflammation may also exhibit vascular atypia which is 

the hallmark of higher grade lesion, and metaplasia may exhibit acetowhite due to the 

cellular changes [187, 188]. Therefore, we have also evaluated the performance of HW 

Raman spectroscopy in discriminating LGSILs from HGSILs, and LGSILs from 
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normal. For the former, 80.0% (8/10) of LGSILs and 97.2% (35/36) of HGSILs were 

distinguished correctly. For the latter, 80.0% (8/10) of LGSILs and 97.8% (45/46) of 

normal were distinguished correctly. These results show that HW Raman spectroscopy 

has the potential to differentiate LGSILs from both normal and HGSILs so as to 

eliminate the overassessment of colposcopic findings and protect LGSILs patients 

from unnecessary treatment. In addition, the results also encourage the use of HW 

Raman spectroscopy to resolve other challenges during colposcopic diagnosis, such as 

the low sensitivity to CIN 3, choice of biopsy site and inter-colposcopist variability 

[187, 188].  

4.5 Conclusion 

In conclusion, in vivo HW Raman spectra in the range of 2800~3700 cm-1 from normal 

and precancer cervical tissue can be acquired in 1 second using the rapid Raman 

system integrated with a ball lens fiber-optic Raman probe. Distinctive Raman spectral 

differences are observed for the first time between normal and dysplastic cervical 

tissue in vivo in the spectral range of 2800-3700 cm-1 which contains water, lipids and 

collagen signals. Good differentiation between normal and dysplastic cervical tissue 

can be achieved using HW Raman spectroscopy and PCA-LDA techniques. Due to the 

small data size, in vivo HW Raman measurements on a larger series of patients are 

currently in progress at NUH to further validate the clinical merits of HW Raman 

spectroscopy for the early diagnosis and detection of cervical precancer and cancer in 

vivo during clinical colposcopic examinations. In addition, clinical variables, such as 

subjects’ age, race, menopausal status, chronic disease history, deserve to be taken into 

consideration to optimize the diagnostic model. 
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Chapter 5  In Vivo Diagnosis of Cervical Precancer Using 

NIR-excited Autofluorescence and Raman Spectroscopy 

In this chapter, we investigated the feasibility of combining NIR autofluorescence (AF) 

and Raman spectroscopy for improving in vivo diagnosis and detection of cervical 

precancer. NIR Raman spectroscopy system coupled with a ball lens fiber-optic Raman 

probe was employed for in vivo Raman measurements on the cervix. A total of 92 in 

vivo Raman spectra (46 normal and 46 dysplasia) were acquired from the cervix of 46 

patients under the guidance of colposcopy. Multivariate statistical techniques including 

principal components analysis (PCA) and linear discriminant analysis (LDA) were 

employed to develop diagnostic algorithms for differentiating precancer from normal 

tissue based on their spectral features. Classification results obtained from the 

leave-one patient-out, cross-validation of the PCA-LDA model based on the three 

spectral datasets (i.e., Raman, NIR AF, and the combined NIR AF and Raman) yielded 

diagnostic sensitivities of 91.3%, 93.5%, 93.5%, specificities of 95.7%, 87.0%, 95.7%, 

and accuracies of 93.5%, 90.2%, 94.6%, respectively, for precancer identification. 

Receiver operating characteristic (ROC) curves confirm that the most effective 

diagnostic algorithm can be derived from the combined NIR AF and Raman technique. 

This work demonstrates that the integrated NIR autofluorescence and Raman 

spectroscopy has a potential to provide an effective and accurate diagnostic scheme for 

non-invasive, in vivo diagnosis and detection of precancer in the cervix.  
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5.1 Introduction  

Optical spectroscopic techniques, such as fluorescence spectroscopy, diffuse 

reflectance, infrared spectroscopy and Raman spectroscopy, have been 

comprehensively investigated for ex vivo and in vivo diagnosis of malignancies in 

various organs including the cervix [25, 46, 51, 72, 78, 98, 102, 138, 175, 189, 205, 

249-251]. Light-induced autofluorescence (AF) spectroscopy has shown great promise 

in differentiating precancer from normal tissues presumably due to the fact that 

neoplastic transformation leads to the changes in  tissue morphologic structures, 

optical properties (e.g., absorption and scattering coefficients), and the content and 

distribution of endogenous fluorophores in tissue [134, 138, 249, 250]. Raman 

spectroscopy is a molecular vibrational spectroscopic technique that is capable of 

probing biochemical and biomolecular changes of tissue associated with neoplastic 

transformation [51, 98, 189]. With the use of near-infrared (NIR) light as the excitation 

light source, NIR Raman spectroscopy holds significant advantages over other 

vibrational spectroscopy techniques (e.g., IR spectroscopy) in that water exhibits very 

low absorption at the working wavelength range, and tissues exhibit far less AF than 

that using visible light excitation, leading to an increased ratio of Raman signal to AF 

background [12]. Raman spectroscopy has revealed significant differences between 

normal and malignant tissues in various organs ex vivo and in vivo [25, 51, 78, 98, 100, 

189], indicating the ability of Raman technique for cancer diagnosis. However, most 

studies have evaluated tissue Raman spectroscopy in isolation without considering the 

concomitant intense AF background from tissue. We recently found that NIR AF 

background still contained useful diagnostic information and retained the diagnostic 

ability, and hence combining Raman spectroscopy with NIR AF can enhance the 

diagnostic accuracy in skin tumor models [175]. In this study, we further extended the 
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NIR-excited tissue AF and Raman spectroscopy into a clinical setting to evaluate its 

utility for in vivo diagnosis of cervical precancer. A rapid-acquisition NIR Raman 

system coupled with a ball lens Raman probe developed in house [190] was used to 

acquire in vivo NIR Raman spectra associated with AF background from cervical 

tissue during clinical colposcopic examination. Multivariate statistical techniques, such 

as principal components analysis (PCA) and linear discriminant analysis (LDA), were 

employed to compare the diagnostic performance of Raman, NIR AF, and the 

combined Raman and NIR AF spectroscopy for classification of cervical precancer in 

vivo.  

5.2 Materials and Methods  

5.2.1 NIR Autofluorescence and Raman Instrumentation 

The NIR AF and Raman instrumentation used in this study has been described in detail 

in Chapter 3.  

5.2.2 Patients 

The patient information has been given in the section Patients in Chapter 4. 

5.2.3 Data Preprocessing 

Under the 785-nm laser excitation, the raw Raman spectra acquired in vivo from cervix 

in the 800~1800 cm-1 range comprised prominent tissue NIR AF background, weak 

tissue Raman scattering signals, and noise. Hence, the raw Raman spectra were 

smoothed by a first-order, 5-pixel Savitzky Golay filter for noise reduction [178]. The 

broad NIR AF background was fit by a 5th order modified polynomial [28, 51]. This 

polynomial was then subtracted from the raw Raman spectrum to yield the tissue 

Raman spectrum alone. Hence, three datasets including the raw Raman spectra 
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(combined Raman and NIR AF), NIR AF spectra (i.e., polynomials), and Raman 

spectra (i.e., background-subtracted raw Raman spectra) were generated, and utilized 

for multivariate statistical analysis. 

5.2.4 Multivariate Statistical Analysis 

PCA-LDA was employed for developing diagnostic algorithms and has been described 

in detail in the section Multivariate Statistical Analysis in Chapter 2.  

5.3 Results  

5.3.1 Spectral Feature Analysis 

Figure 5.1 shows the mean in vivo spectra  1 standard deviation (SD) of (a) raw 

Raman spectra (i.e., combined NIR AF and Raman), (b) NIR AF spectra, and (c) 

Raman spectra acquired from normal (n=46) and precancer (n=46) tissues in the cervix. 

It was observed that both raw Raman spectra (Fig. 5.1(a)) and background NIR AF 

(Fig. 5.1(b)) exhibited significantly higher intensity in precancer tissue as compared to 

normal tissue (paired 2-sided Student’s t-test, p<0.00l). On the contrary, Raman spectra 

showed a reduction in the overall intensity in dysplasia tissue as compared to normal 

tissue. However, due to the large inter- and/or intra-subjects variation and overlapping 

in spectral intensities illustrated by SD of all in vivo tissue spectra acquired (Fig. 5.1), 

tissue diagnosis simply based on the spectral intensity alone was precluded. It is also 

challenging in clinical settings to standardize the absolute intensities of spectral 

measurements. Therefore, in this study, we focused on analyzing the spectral variation 

in line-shape and relative intensity of NIR AF and Raman spectra associated with 

tissue neoplastic changes through normalizing each spectrum to the integrated area 

under the spectrum.  
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Figure 5.1 (a) Mean in vivo raw Raman spectra (combined Raman and NIR AF 
spectra) ± 1SD; (b) Mean in vivo NIR AF spectra (5th-polynomials) ± 1SD; and 
(c) Mean in vivo Raman spectra (background-subtracted) ± 1SD from normal 
(n=46) and precancer (n=46) cervical tissue, respectively.  

It was observed that raw Raman was a superimposition of weak Raman signal on 

relatively intense autofluorescence signal. Raman spectra of both normal and precancer 

tissues showed primary Raman bands in the vicinities of 850, 943, 1087, 1269, 1337, 

1450, 1659 and 1765 cm-1 as shown in Fig. 5.1(c). The primary Raman peaks above 

can be tentatively assigned to different biochemical bonds as following: 850 to C-C 
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stretching of collagen, 943 to C-C stretching of protein, 1087 to phosphate ion 

stretching and C-N stretching of protein, 1269 to C-N stretching and N-H bending of 

amide III, 1337 to CH2CH3 wagging of proteins and nucleic acids, 1450 to CH2 

bending of proteins and lipids, 1659 to C=O stretching of Amide I and 1765 cm-1 to 

C=O stretching of phospholipids according to literature [51, 73, 102, 175, 189]. 

Therefore, Raman spectral variations in line shape and intensity associated with tissue 

premalignant transformation can be correlated to the changes in biochemical 

composition, accounting for the diagnostic potential of NIR Raman spectroscopy for 

cervical precancer. Although no distinctive shift in Raman peak position occurred 

between normal and precancer tissues, significant relative peak intensity variation can 

be observed in the intensity-normalized Raman spectra (data not shown).  

On the other hand, NIR AF showed apparent spectral line-shape variation between 

normal and precancer. For example, NIR AF intensity declined from 800 to 1800 cm-1 

more gently in dysplasia tissue than in normal tissue. More spectral variations were 

elucidated by the NIR AF spectra ratio of normal to precancer (data not shown), which 

declined steeply from 800 to 850 cm-1, then gently from 850 to 1350 cm-1, and 

eventually kept increasing until 1800 cm-1. The spectral features above were 

subsequently utilized by PCA-LDA for developing diagnostic algorithms for 

differentiating dysplasia from normal tissues.  

5.3.2 PCA-LDA and ROC Analysis  

Figure 5.2 shows the first three diagnostically significant PC loadings yielded by PCA 

on the three datasets of: (a) raw Raman spectra, (b) NIR AF spectra and (c) Raman 

spectra. PC loadings revealed the correlation of each PC with original spectral data. 

For instance, PC 2 calculated from Raman spectra were negatively correlated with 
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Raman peak at 1087 cm-1 and positively correlated with Raman peaks at 1269 and 

1450 cm-1 with loading value of 0.83, 0.78 and 0.6, respectively. This implies that PC 2 

contains the spectral features of these three peaks. Moreover, PC loadings showed 

different patterns between NIR AF and Raman spectra. In particular, PC loadings of 

Raman spectra were characterized by narrow peaks and troughs while PC loadings 

generated from NIR AF spectra were comprised by a few broad bands. Meanwhile, 

some of the PC loading features above can also be observed in the PC loadings of raw 

Raman spectra. For example, PC 3 of raw Raman spectra showed an overall line-shape 

similar to that of NIR AF and similar peaks and troughs (i.e., trough at 1069 and peak 

at 1308 cm-1) as that of Raman spectra. This suggests that PCA on raw Raman spectra 

can extract the diagnostic information originating from both NIR AF and Raman 

spectra. The total variance covered by the PCs above was 6.7%, 7.4%, and 12.3% for 

the combined NIR AF and Raman, NIR AF and Raman spectra, respectively, indicating 

the amount of the diagnostic information contained in the respective spectral datasets 

for differentiating between normal and precancer tissues. 
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Figure 5.2 Examples of the diagnostically significant principal components (PCs) 
calculated from (a) raw Raman spectra (PC3, 4.8%; PC6, 1.5%; PC7, 0.4%;), (b) 
NIR autofluorescence spectra (PC3, 3.2%; PC4, 2.5%; PC5, 1.7%;) and (c) 
Raman spectra (PC2, 7.5%; PC3, 4.5%; PC7, 0.3%), respectively.   

To illustrate the use of PC scores for the diagnostic classifications of the three 

spectroscopic techniques, Fig. 5.3 shows examples of scatter plots of the diagnostically 

significant PC scores for normal and precancer tissues: (a) raw Raman spectra (PC3 vs 

PC6), (b) NIR AF spectra (PC3 vs PC5), (c) Raman spectra (PC3 vs PC7). Simple 

straight lines can classify precancer from normal tissues with sensitivities of 84.8%, 
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80.4% and 87.0%;  specificities of 84.8%, 73.9% and 78.3% for the combined NIR 

AF and Raman, NIR AF and Raman spectra, respectively. This indicates the diagnostic 

potential of the significant PC scores yielded by the three spectral datasets. 
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Figure 5.3 Correlations between the diagnostically significant PCs scores for normal and 
precancer cervical tissue classification: (a) raw Raman spectra, PC3 vs PC6, (b) NIR AF 
spectra, PC3 vs PC5, (c) Raman spectra, PC3 vs PC7. The separation lines (PC6 = 
0.38×PC3+0.04; PC5 = 0.36×PC3+0.11; PC7 = −3.21×PC3−0.29) as diagnostic algorithms 
separate precancer from normal cervical tissue with sensitivities of 84.8% (39/46), 80.4% 
(37/46) and 87.0% (40/46); specificities of 84.8% (39/46), 73.9% (34/46) and 78.3% (36/46) 
using the three spectral datasets of raw Raman spectra (combined NIR AF and Raman spectra), 
NIR AF and Raman, respectively. 

To incorporate all significant spectral features, LDA was employed to develop tissue 

diagnostic algorithms by utilizing all the statistically significant PC scores. Then, the 

classification accuracies achieved by the PCA-LDA diagnostic algorithms were 

considered as the criterion for evaluating the performances of different spectral 

datasets in tissue diagnosis. Figure 5.4 shows the posterior probabilities of each 

spectrum belonging to normal and precancer tissue groups as calculated for (a) 

combined NIR AF and Raman spectra, (b) NIR AF spectra, and (c) Raman spectra, 

respectively. The diagnostic sensitivities of 93.5% (43/46), 93.5% (43/46) and 91.3% 
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(42/46); specificities of 95.7% (44/46), 87.0% (40/46), and 95.7% (44/46); and 

accuracies of 94.6% (87/92), 90.2% (83/92) and 93.5% (86/92), respectively, can be 

achieved by using the combined NIR AF and Raman, NIR AF, and Raman techniques. 

It was found that the combined NIR AF and Raman achieved the highest sensitivity as 

NIR AF, and the highest specificity as Raman and consequently the optimal overall 

accuracy. 
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Figure 5.4 Scatter plots of the posterior probability of belonging to normal and precancer 
categories calculated from the datasets of (a) combined NIR AF and Raman, (b) NIR AF, and 
(c) Raman spectra, respectively, using the PCA-LDA-based spectral classification with the 
leave-one patient-out, cross-validation method. The corresponding sensitivity, specificity and 
accuracy are: (a) 93.5% (43/46), 95.7% (44/46), and 94.6% (87/92); (b) 93.5% (43/46), 87.0% 
(40/46), and 90.2% (83/92); (c) 91.3% (42/46), 95.7% (44/46), and 93.5% (86/92), 
respectively, using the combined NIR AF and Raman, NIR AF, and Raman techniques. 

To further evaluate the performance of the PCA-LDA-based diagnostic algorithms on 

the three spectral datasets (i.e., combined NIR AF and Raman, NIR AF, and Raman), 

ROC curves were generated from the posterior probability distributions of different 

types of tissue (Fig. 5.4) as shown in Fig. 5.5. The areas under the ROC curves are 

0.996, 0.945 and 0.972 for the combined NIR AF and Raman, NIR AF, and Raman 
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techniques, respectively. This further confirms the improvement in the diagnosis 

achieved by the combined NIR AF and Raman which contains both NIR AF and 

Raman spectral signatures as compared to either of NIR AF and Raman spectra alone. 
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Figure 5.5 Receiver operating characteristic (ROC) curves of discrimination results for 
the combined NIR AF and Raman spectra, NIR AF, and Raman spectra, respectively. 
The integration areas under the ROC curves are 0.996, 0.945, and 0.972, respectively, for 
the combined NIR AF and Raman, NIR AF, and Raman techniques.  

5.4 Discussion   

Considerable research efforts have been made to develop advanced optical modalities 

for the noninvasive in vivo detection of cervical precancer during colposcopic 

examination. Optical spectroscopic techniques, such as fluorescence under the 

ultraviolet (UV) light or short-wavelength visible (VIS) light excitation, diffuse 

reflectance, light scattering and NIR Raman spectroscopy, have prevailed to date for 

cervical precancer and cancer diagnosis [102, 144, 148]. Among the different 

spectroscopic techniques, fluorescence, diffuse reflectance and light scattering are 

supposed to be complementary in detecting tissue neoplastic changes; therefore, they 

are combined for further improving the diagnosis of cervical precancer as compared to 
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the diagnosis by either of the three techniques alone [148]. Subsequently, Huang et al 

suggested that NIR AF and Raman also provide complementary information for cancer 

diagnosis in an in vitro study on mice skin model [175]. In this study, we attempted for 

the first time to combine NIR AF and Raman to improve and facilitate the in vivo 

diagnosis of cervical precancer. The diagnostic results produced by PCA-LDA 

diagnostic model calculated from the combined NIR AF and Raman, NIR AF and 

Raman demonstrate that although fairly good classification accuracy can be achieved 

by either of NIR AF and Raman alone, the diagnostic accuracy can be further 

improved by combining NIR AF with Raman.  

To date, limited work has been conducted to explore NIR AF technique for tissue 

discrimination, probably due to the fact that most of the recognized fluorophores in 

tissue are not highly fluorescent under NIR excitation as NIR light is located in the tail 

part of the fluorophores’ excitation spectrum [252]. Consequently, NIR AF spectrum is 

quite disparate from typical tissue fluorescence spectrum at the excitation of UV/VIS 

light. This also holds true for our study, showing that tissue NIR AF spectrum 

exhibited broad band almost like straight line instead of a composite of narrow spectral 

bands. Our study also showed that tissue NIR AF was more intense in precancer tissue 

as compared to normal tissue. This may be attributed to the elevated porphyrins in 

precancer tissue. The reason is probably that porphyrins exhibits an intense emission 

with significant absorption of NIR light [252]. Moreover, endogenous porphyrins is 

elevated in malignant or neoplastic tissues, due to its affinity with cancer cells [253] 

and hypervascularization which is more common in malignant tissues [254]. On the 

other hand, Raman spectra of cervix in our study showed similar prominent Raman 

peaks as reported in literature [102]. Except Raman band at 1337 cm-1, all the 

prominent Raman bands showed a decreased intensity in precancer tissue than in 
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normal tissue as reported in our previous study [175]. The intensity increase of Raman 

band at 1337 cm-1 may result from the increased nuclear content in precancerous tissue 

[51]. Besides the absolute intensity change, distinctive difference in relative band 

intensity was also found between normal and precancer tissue (data not shown). For 

instance, Raman bands at 1087 and 1659 cm-1 due to collagen exhibited lower intensity 

in precancer tissue than in normal tissue while Raman bands at 1450 and 1765 cm-1 

due to phospholipids showed otherwise [51, 98]. The relative peak intensity change 

can be related to biochemical changes (i.e., reduced collagen content and increased 

phospholipids content) associated with tissue neoplastic transformation [72, 98, 254], 

forming the base of NIR Raman spectroscopic diagnosis of cervical precancer. The 

diagnostic accuracy yielded by PCA-LDA model (i.e., 90.2% for NIR AF and 93.5% 

for Raman) further confirms the diagnostic ability of both NIR AF and Raman for 

cervical dysplasia.  

However, in most of the past and current NIR Raman studies for tissue diagnosis, the 

NIR AF background is usually discarded as non-diagnostic information. Our results 

show that Raman spectrum was superior to NIR AF background in terms of specificity 

(95.7% for Raman vs 87.0% for NIR AF). This may be explained by the fact that 

Raman spectrum shows a bigger amount of fingerprint spectral features representing 

molecular structure and composition of tissues [51, 255]. However, the diagnostic 

sensitivity (91.3%) by Raman technique was lower than that of NIR AF (93.5%). The 

relatively higher sensitivity of NIR AF to tissue dysplastic changes may be owed to the 

intense fluorescence emission from tissue, particularly compared to weak Raman 

scattering. Hence, one diagnostic technique with a sensitivity and specificity as high as 

that of fluorescence and Raman, respectively, is desirable for improving in vivo 

diagnosis of cervical dysplasia. The diagnostic results based on PCA-LDA model show 
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that the combined NIR AF and Raman achieved the highest sensitivity as NIR AF 

alone and the highest specificity as Raman alone, respectively. This indicates that 

combining NIR AF and Raman is an efficient choice of method to utilize the 

diagnostic features of both NIR AF and Raman for developing diagnostic algorithm so 

as to further improve or optimize the tissue diagnosis. The combination-induced 

improvement may be further explained as the following. It is known that tissue is 

composite of various fluorophores (e.g. keratin, collagen, lipids, etc.), of which each 

has a different autofluorescence spectral pattern under the excitation of specific 

wavelength. Meanwhile, most of the biomolecules (e.g. proteins, lipids, DNA, etc.) in 

tissue are Raman-active, showing fingerprint Raman spectral features. Consequently, 

the raw Raman spectral data (composite Raman and AF signatures) allows the 

examination of the endogenous fluorophores and morphological structures in tissue 

(autofluorescence) and the biomolecular structure and composition of tissue (Raman). 

Thereby, it can provide more diagnostic information for tissue diagnosis and 

characterization, resulting in an improvement in tissue diagnosis. Despite the small 

case number, the performances of the diagnostic algorithms derived from the combined 

NIR AF and Raman, NIR AF, and Raman spectra by using PCA-LDA with 

leave-one-out cross validation have formed a foundation and shown the potential for 

the in vivo diagnosis of cervical precancer. 

In addition, to better understand the spectroscopic diagnosis, we also evaluated the 

interaction of the NIR excitation light with cervical tissue by using Monte Carlo (MC) 

method. The propagation of 785-nm light in cervical tissue and the light interaction 

with cervical tissue were simulated based on a two-layer (i.e., epithelium and stroma) 

cervical tissue optical model [229]. The results show that more than 90% of collected 

NIR AF and Raman photons originated in the epithelium. This suggests that our 
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Raman probe coupled with a ball lens has a good depth-selectivity to the epithelium of 

cervical tissue and as a result can enhance the detection of NIR AF and Raman from 

the epithelium. Note that precancer changes are usually confined in the epithelium. 

Hence, the use of our ball lens Raman probe may improve the sensitivity for detecting 

cervical dysplasia by NIR AF and Raman. 

5.5 Conclusion 

In this study, we demonstrated that combining NIR AF and Raman can improve the 

diagnosis of cervical precancer as compared to either of NIR AF and Raman 

techniques alone. This implies that NIR AF and Raman are not necessarily competing 

approaches but could be complementary by providing informations about different 

aspects of cervical tissue under investigation. In addition to spectroscopy combination, 

these two techniques may be more expected to be combined in another form of NIR 

AF image-guided Raman spectroscopy in some clinic procedures. For example, in 

surgical resection of malignant tissue, it is desirable to delineate the tumor margin 

accurately. In this case, NIR fluorescence imaging can serve to rough the malignant 

tissue quickly and subsequently Raman spectroscopy can further confirm the tumor 

margin. Therefore, it can be concluded that Raman spectroscopy combined with NIR 

AF spectroscopy or imaging shows promise as an effective and clinically useful 

diagnostic schema for the detection of precancer and cancer as well as an aid for the 

cancer therapy. Further investigation on a larger series of patients in which the 

diagnostic algorithms are tested prospectively on new cases is ongoing to confirm 

these results. Meanwhile, the development of an in vivo NIR autofluorescence imaging 

system is also in progress for future imaging-guided Raman spectroscopic diagnosis.  
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Chapter 6 Combining NIR Raman, UV/VIS Autofluorescence 

and Diffuse Reflectance Spectroscopy for Improving Cervical 

Precancer Detection 

Optical spectroscopic techniques, such as near-infrared (NIR) Raman, 

ultraviolet/visible (UV/VIS) autofluorescence and reflectance spectroscopies, have 

shown a great potential for the detection of precancer and cancer in the cervix. 

However, these techniques are mostly employed separately and very little work has 

been done to combine these three different techniques for optimizing the diagnosis of 

pre-neoplastic (i.e., benign) and neoplastic changes (i.e., LGSILs and HGSILs) in 

cervical tissues. Therefore, in this study, we aimed at combining these three optical 

spectroscopic modalities to further improve the discrimination of cervical dysplasia. 

Eighty Raman (785-nm excitation), fluorescence (405-nm excitation) and reflectance 

spectra were acquired from the same batch of cervical biopsied tissues, including 24 

spectra from 9 benign, 34 spectra from 12 LGSILs and 22 spectra from 9 HGSILs 

tissues. Trinary classification results yielded by principal components analysis (PCA) 

and linear discriminant analysis (LDA) together with the leave-one-out, 

cross-validation method showed that Raman spectroscopy can predict benign, LGSILs 

and HGSILs cervical tissues correctly with accuracies of 83.3%, 94.1% and 100%, 

respectively, and the corresponding total accuracy is 92.5% which is higher than than 

that of fluorescence (81.3%) and reflectance (87.5%). Furthermore, the prediction was 

improved through combining NIR Raman with UV/VIS fluorescence and reflectance, 

showing accuracies of benign-100%, LGSILS-97.1% and HGSILs-100%, 

overall-98.8%. This demonstrated that NIR Raman, UV/VIS fluorescence and 

reflectance can provide complementary diagnostic information and hence be integrated 
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together for optimizing the optical spectroscopic diagnosis of cervical dysplasia as 

compared to the individual use of either of Raman, fluorescence and reflectance.  

6.1 Introduction 

Optical spectroscopic techniques, such as Raman, fluorescence and reflectance 

spectroscopy, have emerged as promising methods for ex vivo and in vivo diagnosis of 

malignancies in various organs [51, 78, 98, 100, 119, 131, 134, 138, 150, 151, 175, 189, 

190, 250, 251, 256]. In particular for cervix, Anita and coworkers succeeded in 

measuring Raman spectra in fingerprint region (1000~1800 cm-1) with 785-nm 

excitation light from cervix ex vivo and in vivo and achieved a fairly good 

differentiation among normal, and dysplastic tissues [98, 100-102]. Recently, we 

demonstrated the feasibility of using Raman spectra in HW region for discriminating 

cervical dysplasia in vivo with sensitivity of 93.5% and specificity of 97.8% [190]. 

Meanwhile, Rebecca and coworkers have done an extensive work on applying 

fluorescence spectroscopy for the detection of cervical precancer, such as optimizing 

excitation light wavelength as well as diagnostic algorithms [119, 127, 131, 134, 257]. 

Reflectance spectroscopy has also been developed for the in vivo diagnosis of cervical 

precancer [150, 151]. All the literature work above demonstrated that Raman, 

fluorescence and reflectance spectroscopies have the potential for the detection of 

cervical precancer with advantages, such as higher accuracy, noninvasive, fast and 

subjective as compared to conventional method (i.e., pap smear and colposcopy). 

Although these three different techniques can do similar diagnostic work, the 

biomarkers which are utilized by them for diagnosis are different. Specifically, Raman 

spectroscopy is a vibrational spectroscopic technique and can provide molecular 

fingerprint information about biological tissues. Therefore, it is capable of probing the 
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changes in tissue biochemical composition associated with malignant transformation 

[51, 98, 189]. The major biomarkers sensible for Raman spectroscopy include proteins, 

lipids, nucleic acids and carbohydrates [51, 98, 189]. In comparison, fluorescence 

spectroscopy is based on the transition of electronic state of atoms and molecules. It 

can mainly detect the changes in a limited number of fluorophores (i.e., tryptophan, 

flavin adenine dinucleotide (FAD), reduced form of Nicotinamide adenine dinucleotide 

(NADH), collagen and porphyrins) in tissues [258]. Reflectance spectrum is a measure 

of tissue scattering and absorption properties, which are associated with the 

morphology and architecture of tissues. From the introduction above, it can be 

concluded that Raman, fluorescence and reflectance make diagnosis through providing 

insights into different aspects of tissues. The diagnostic information (i.e., biochemical 

composition and morphology) characteristic of biological tissues could be 

complementary and thus used in combination for optimizing the optical spectroscopic 

diagnosis of pre-cancer and cancer. However, to date, most of optical spectroscopic 

diagnosis work was performed with an individual use of either of these three different 

techniques rather than in combination [259]. Therefore, in this study, we aimed to 

combine near-infrared (NIR) Raman, ultraviolet/visible (UV/VIS) fluorescence and 

reflectance spectroscopy together for the first time to improve the early diagnosis of 

cervical dysplasia. In addition, intrinsic fluorescence was retrieved for diagnostic 

algorithm development as measured fluorescence is inevitably distorted by tissue 

rescattering and reabsorption [260]. Multivariate statistical techniques, including 

principle component analysis (PCA) and linear discriminant analysis (LDA), were 

employed to develop diagnostic algorithms. The combination was implemented based 

on the strategies which produce the diagnostic decision with the use of the diagnostic 

results yielded by either of Raman, fluorescence and reflectance alone. 
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6.2 Materials and Methods 

6.2.1 Spectroscopy Instrumentation 

Figure 6.1 depicts the trimodal spectroscopic measurement setup. It comprises Raman, 

fluorescence and reflectance spectroscopy. Raman spectroscopy system has been 

described in the section Raman Instrumentation in Chapter 2. It mainly consists of a 

spectrum stabilized 785-nm diode laser (B&W TEK, Newark, DE), a transmissive 

imaging spectrograph, a NIR-optimized, back-illuminated, and deep-depletion 

charge-coupled device (CCD) detector (Holospec f/2.2, Kaiser Optical Systems, Trento, 

NJ), and a specially developed bifurcated fiber-optic Raman probe.  

Fluorescence spectroscopy mainly comprises a spectrometer (QE65000, Ocean Optics, 

Dunedin, FL), a 405-nm diode laser (LDCU12/7318, 50 mW, Power Technology, AR, 

USA) as the excitation light source and a bifurcate fiber-optic probe 

(QR400-7-VIS-NIR, working wavelength region: 400~2500 nm, Ocean Optics, 

Dunedin, FL). The probe is constructed with a single 400-µm fiber for excitation and 

six surrounding 400-µm fibers for collection. The excitation laser light is filtered by 

405-nm band pass filter (LD01-405/10-25, bandwidth=10 nm, Semrock, NY, USA) 

and then coupled into the central fiber of the probe via a SMA (SubMiniature version 

A) connector. The emitted fluorescence photons are collected by the surrounding 

collection fibers and then filtered by 405-nm long pass filter (BLP01-405R-25, cut off 

at 418 nm, Semrock, NY, USA) to block the back-scattered excitation light prior to 

being fed into spectrometer.  
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Diffuse reflectance spectroscopy is built by removing the band pass and long pass 

filters from fluorescence spectroscopy setup and replacing the laser with a tungsten 

halogen light source (LS-1, Ocean Optics, Dunedin, FL). The illumination light is 

directly coupled into the central fiber of the probe via a SMA connector. The 

back-scattered light photons are collected by the surrounding six collection fibers. The 

collected photons are eventually fed into the spectrometer to create the reflectance 

spectrum. 

Figure 6.1 Schematic of the trimodal spectroscopy system. BPF1: 785-nm band pass filter; 

BPF2: 405-nm band pass filter; LPF1: 800-nm long pass filter; LPF2: 405-nm long pass filter;  

6.2.2 Cervical Tissue Samples 

Tissue samples measured has been described in the section Cervical Tissue Samples 

in Chapter 2.  

6.2.3 Spectroscopic Measurement 

All the tissue spectroscopic measurements were done in a light-tight box which can 

eliminate most of the interference from the environmental lights (e.g., computer 
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monitor, light indicators). The tissue samples were mounted onto aluminum foil for the 

measurement. Raman, fluorescence and reflectance spectra were acquired from the 

same tissue sample in tandem. The acquisition times were 1 to 3 seconds for Raman 

and fluorescence measurement and 0.1 to 0.2 seconds for reflectance measurement 

depending on the signal to noise ratio. All Raman and fluorescence spectra were 

corrected for the wavelength-dependent intensity response function of the system using 

a standard lamp (RS-10, EG&G Gamma Scientific, San Diego, CA). Diffuse 

reflectance measurement includes the acquisition of reference spectrum from Diffuse 

Reflectance Standard (WS-1, Ocean Optics, Dunedin, FL), dark spectrum with the 

light off and tissue spectrum. The reflectance spectrum is created by the calculation 

based on the following equation: 

   DRDSREL          (6.1)    

where S is the light intensity from sample, D is the dark spectrum, and R is the 

reference spectrum.  

6.2.4 Data Preprocessing 

1) Raman: Raman spectral data preprocessing has been described in the section Data 

Preprocessing in Chapter 2. 

2) Fluorescence/Reflectance: Fluorescence spectra in the region of 430~700 nm and 

reflectance spectra in the region of 400~700 nm were truncated for analysis. The 

spectrum was noise-reduced and normalized in the same way as Raman spectrum. 

3) Retrieve intrinsic fluorescence: A simple model was used to retrieve the intrinsic 



  139

tissue fluorescence signal from the measured fluorescence signal by correcting the 

effect of tissue reabsorption and rescattering. This model is to divide the measured 

fluorescence spectrum by the reflectance spectrum acquired from the same tissue to a 

power of k as illustrated by the following equation [260]: 

k
m

i REL
FLFL           (6.2)   

where FLi is the retrieved intrinsic fluorescence, FLm is the measured fluorescence, 

and REL is the corresponding diffuse reflectance spectrum. The power k is the ratio 

between the path lengths of fluorescence and diffuse reflectance light which is the 

function of light wavelength due to the wavelength-dependent scattering properties of 

tissues. In this model, it is assumed to be independent of light wavelength to simplify 

the model. The power k is optimized by minimizing the hemoglobin-absorption effect 

on the fluorescence spectrum. It is noted that fluorescence and diffuse reflectance 

spectra appear to have two dips which are centered at the similar wavelength positions 

(i.e., 542 and 576 nm) for fluorescence and diffuse reflectance. With the assumption 

that the dip area represents the extent of the hemoglobin absorption, the power k is 

optimized by minimizing the dip area. The dip area is approximated by the triangle 

covering the dip. Two triangles are determined by two sets of three points (520, 542, 

560 nm) and (560, 576, 590 nm) for the two dips at 542 and 576 nm, respectively. 

Three different powers are generated by minimizing 542 nm dip area, 576 nm dip area 

and the sum of the areas of dips at both 542 and 576 nm. The corresponding 

fluorescence is denoted as intrinsic fluorescence 1, 2 and 3, respectively.  



  140

6.2.5 Multivariate Statistical Analysis 

The multivariate statistical methods have been described in the section Multivariate 

Statistical Analysis in Chapter 2. 

6.2.6 Strategies of Combining Raman, Fluorescence and Reflectance  

Four different strategies were employed to combine Raman, fluorescence and 

reflectance spectroscopy to explore the possibility of further improving the diagnosis 

compared to the diagnosis by either of Raman, fluorescence and reflectance alone. The 

first one is to make the final diagnosis with the majority of the predictions by different 

techniques, so called majority-determined prediction. The other three combination 

strategies were implemented by utilizing the posterior probabilities of each case 

belonging to benign, LGSILs and HGSILs, which were produced by these three 

techniques. These three strategies are to determine the combined posterior probability 

of each case belonging to benign, LGSILs and HGSILs with the product, maximum 

and mean of its posterior probabilities generated by Raman, fluorescence and 

reflectance diagnosis, which are also called product-determined, max-determined and 

mean-determined predictions, respectively. The final diagnosis was determined by the 

highest combined posterior probability of belonging to benign, LGSILs and HGSILs. 

Note that one of fluorescence datasets (i.e., measured and intrinsic fluorescence) with 

the highest accuracy, one of reflectance datasets (i.e., non-normalized and normalized 

reflectance) with higher accuracy and Raman are selected for the combination.  
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6.3 Results  

6.3.1 NIR Raman 

The results of NIR Raman have been presented in the section Results in Chapter 2. 

6.3.2 UV/VIS Fluorescence  

Figure 6.2 depicts the mean normalized fluorescence spectra of benign, LGSILs and 

HGSILs: (a) non-corrected fluorescence, (b) intrinsic fluorescence 1, (c) intrinsic 

fluorescence 2 and (d) intrinsic fluorescence 3. Non-corrected fluorescence spectra 

showed two obvious absorption dips, which however almost disappeared in intrinsic 

fluorescence 1, 2 and 3. Apart from this, non-corrected fluorescence spectra and 

intrinsic fluorescence spectra looked very alike. Obvious intensity difference among 

benign, LGSILs and HGSILs was observed, especially in the region of 475~530 nm, 

while relatively small difference in the regions of 430~475 nm and 600~700 nm. 

Moreover, the three different power k optimization criteria exhibited similar correction 

extent illustrated by almost the same spectral shape. The corresponding k values are 

0.518±0.217, 0.603±0.198 and 0.548±0.213 for intrinsic fluorescence 1, 2 and 3, 

respectively. 
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Figure 6.2 The mean normalized fluorescence spectra of benign (n=24), LGSILs (n=34) and 
HGSILs (n=22): (a) non-corrected fluorescence, (b) intrinsic fluorescence 1, (c) intrinsic 
fluorescence 2, and (d) intrinsic fluorescence 3. 

To test whether correcting the effect of tissue absorption and scattering can improve 

the tissue diagnosis and also find out the optimal correction criterion, PCA-LDA was 

employed to develop the diagnostic algorithms to evaluate the efficacy of the various 

correction methods. Figure 6.3 shows the correlation of the first five diagnostically 

significant (p<0.1) PCs with the wavelength variables: (a) PC1, PC3, PC4, PC5 and 

PC12 for non-corrected fluorescence, accounting for 69.5%, 5.68%, 1.05%, 0.8% and 

0.01% of the total variance, respectively; (b) PC1, PC2, PC5, PC11 and PC12 for 

intrinsic fluorescence 1, accounting for 71.3%, 14.1%, 1.05%, 0.02% and 0.01% of the 

total variance, respectively; (c) PC1, PC2, PC5, PC11 and PC12 for intrinsic 

fluorescence 2, accounting for 69.1%, 14.1%, 1.04%, 0.02% and 0.01% of the total 

variance, respectively; (d) PC1, PC2, PC5, PC11 and PC12 for intrinsic fluorescence 3, 

accounting for 70.7%, 14.1%, 1.04%, 0.02% and 0.01% of the total variance, 

respectively. It was observed that PC1 covers most (~70%) of the total variance for the 

four different fluorescence datasets. It also showed a big similarity in the shape and 

coefficient value among different datasets. However, there still existed a slight 
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difference on PC1 between non-corrected fluorescence and intrinsic fluorescence, 

which was that a small peak at the vicinity of 576 nm appeared in PC1 of 

non-corrected fluorescence while disappearing in PC1 of intrinsic fluorescence. This 

peak may be correlated to the blood absorption dip at 576 nm and consequently the 

difference may be explained by the correction of the blood absorption. 
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Figure 6.3 Examples of the first five diagnostically significant principal components (PCs) 
with p-value<0.1: (a) PC1, PC3, PC4, PC5 and PC12 for non-corrected fluorescence; (b) PC1, 
PC2, PC5, PC11 and PC12 for intrinsic fluorescence 1; (c) PC1, PC2, PC5, PC11 and PC12 
for intrinsic fluorescence 2; (d) PC1, PC2, PC5, PC11 and PC12 for intrinsic fluorescence 3. 

To develop diagnostic algorithms, LDA was performed with all the significant PCs as 

input. Two LD functions were produced for the three-group classification. Figure 6.4 

shows scatter plots of two LD function weights for the four different spectral datasets. 

It was observed that the data points belonging to the same group mostly assembled 

together, indicating the efficacy of PCA-LDA for characterizing benign, LGSILs and 

HGSILs. In addition, a better separation of HGSILs cluster from the clusters of benign 

and LGSILs occurred compared to the separation between benign and LGSILs. Figure 

6.5 shows the posterior probabilities of each case belonging to benign, LGSILs and 



  144

HGSILs produced by the PCA-LDA diagnostic models. The distribution of the 

HGSILs was better separated from the distribution of benign and LGSILs, especially 

for the intrinsic fluorescence datasets. 
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Figure 6.4 Scatter plots of two LD function weights for benign (n=24), LGSILs (n=34) and 
HGSILs (n=22) tissues tested with leave-one-out cross-validation: (a) non-corrected 
fluorescence; (b) intrinsic fluorescence 1; (c) intrinsic fluorescence 2; (d) intrinsic 
fluorescence 3. Key: (○ in black) benign; (Δ in blue) LGSILs; (☆ in red) HGSILs. 
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Figure 6.5 Two-dimensional ternary plots of the posterior probabilities of each spectrum belonging 
to benign (n=24), LGSILs (n=34) and HGSILs (n=22), respectively, using the PCA-LDA-based 
spectral classification with leave-one-out, cross-validation method based on the four different 
dataset: (a) non-corrected fluorescence; (b) intrinsic fluorescence 1; (c) intrinsic fluorescence 2; (d) 
intrinsic fluorescence 3. Each vertex of the triangle represents a 100% confidence that the tissue is 
benign, LGSILs or HGSILs. Key: (○ in black) benign; (Δ in blue) LGSILs; (☆ in red) HGSILs. 

The predications are summarized in table 6.1. The sensitivities, specificities and 

accuracies calculated from the statistics data in table 6.1 are described in table 6.2. An 

increase was found in the diagnostic sensitivity and total accuracy of benign and 

HGSILs by intrinsic fluorescence compared to non-corrected fluorescence. In contrast, 

intrinsic fluorescence did not show any significant improvement in the identification of 

LGSILs. The overall accuracy for benign, LGSILs and HGSILs was 77.5% (62/80) for 

non-corrected fluorescence spectra while an increased rate of 81.3% (65/80) is 

achieved for intrinsic fluorescence 1, 2 and 3. 



  146

Table 6.1 Classification results of fluorescence-prediction for the three cervical tissue groups 
yielded by the PCA-LDA diagnostic algorithms tested with leave-one-out cross-validation 
method. 

 
 

 
Tissue Type 

Fluorescence-predicted Tissue Type  
 

Total 
 

Benign 
Dysplasia 

LGSILs HGSILs 

Non-correction 

Benign 17 6 1 24 

LGSILs 2 29 3 34 

HGSILs 3 3 16 22 

Intrinsic 
fluorescence 1 

Benign 20 3 1 24 

LGSILs 6 28 0 34 

HGSILs 1 4 17 22 

Intrinsic 
fluorescence 2 

Benign 18 5 1 24 

LGSILs 5 29 0 34 

HGSILs 0 4 18 22 

Intrinsic 
fluorescence 3 

Benign 20 3 1 24 

LGSILs 5 28 1 34 

HGSILs 1 4 17 22 

Table 6.2 The sensitivity, specificity and accuracy of fluorescence-prediction for the three 
cervical tissue groups yielded by the PCA-LDA diagnostic algorithms tested with leave-one-out 
cross-validation method. 

 
 

Fluorescence-predicted Tissue Type 

 
Benign 

Dysplasia 
LGSILs HGSILs 

Non-correction 

Sensitivity 70.8% (17/24) 85.3% (29/34) 72.7% (16/22) 

Specificity 91.1% (51/56) 80.4% (37/46) 93.1% (54/58) 

Accuracy 85.5% (68/80) 82.5% (66/80) 87.5% (70/80)) 

Intrinsic 
fluorescence 1 

Sensitivity 83.3% (20/24) 82.4% (28/34) 77.2% (17/22) 

Specificity 87.5% (49/56) 84.8% (39/46) 98.3% (57/58) 

Accuracy 86.3% (69/80) 83.8% (67/80) 92.5% (74/80) 

Intrinsic 
fluorescence 2 

Sensitivity 75.0% (18/24) 85.3% (29/34) 81.8% (18/22) 

Specificity 91.1% (51/56) 80.4% (37/46) 98.3% (57/58) 

Accuracy 86.3% (69/80) 82.5% (66/80) 93.8% (75/80) 

Intrinsic 
fluorescence 3 

Sensitivity 83.3% (20/24) 82.4% (28/34) 77.3% (17/22) 

Specificity 89.3% (50/56) 84.8% (39/46) 96.6% (56/58) 

Accuracy 87.5% (70/80) 83.8% (67/80) 91.3% (73/80) 

 
Due to the fact that three intrinsic fluorescence datasets showed the same overall 

accuracy, it was hard to judge which correction can provide the optimal diagnostic 

performance. Also, it is desirable to further confirm the improvement in the diagnosis 

by correcting the tissue absorption and scattering effect. Therefore, three-way ROC 
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analysis was performed on the posterior probabilities calculated from all the four 

datasets. Figure 6.6 depicts the three-way ROC surfaces for the four different spectral 

datasets. The ROC surfaces for intrinsic fluorescence spectra (Fig. 6.6(b) to (d)) 

exhibited an obvious increase in the region of TPR of HGSILs (0~1.0) and TPR of 

benign (0.75~1). The volume under the ROC surface (VUS) was calculated, which was 

0.675, 0.754, 772 and 0.74 for non-corrected fluorescence, intrinsic fluorescence 1, 2 

and 3, indicating that intrinsic fluorescence 2 was the optimal one. 
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Figure 6.6 Three-dimensional view of the ROC surface calculated from the posterior probabilities 
belonging to benign, LGSILs and HGSILs based on the four different datasets: (a) non-corrected 
fluorescence; (b) intrinsic fluorescence 1; (c) intrinsic fluorescence 2; (d) intrinsic fluorescence 3. 
The corresponding volumes under ROC surface are: 0.675, 0.754, 0.772 and 0.74, indicating the 
rank of the diagnostic performance based on different datasets. 
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6.3.3 Diffuse Reflectance  

Figure 6.7 shows the mean non-normalized (Fig. 6.7(a)) and normalized (Fig. 6.7(b)) 

spectra of benign, LGSILs and HGSILs. Overall, benign tissues appeared to exhibit the 

highest reflectance, HGSILs showed the weakest reflectance and LGISLs showed the 

reflectance in between. The reflectance difference between benign and dysplasia 

(LGSILs and HGSILs) was larger than that between LGSILs and HGSILs, especially 

in the blood absorption dip area in the central part of the reflectance spectrum. To 

avoid the misdiagnosis caused by the inter- and/or intra-patient variation, all the 

spectra were normalized to the integrated area under the spectrum as shown in Fig. 

6.7(b). It was observed that the spectra were altered continuously in the overall slope 

from benign to LGSILs to HGSILs. For instance, the reflectance spectrum of HGSILs 

seemed the steepest while the gentlest slope for benign and LGSILs in between. These 

spectral differences among different types of tissues indicate the potential of 

reflectance spectroscopy for the characterization of benign, LGSILs and HGSILs 

cervical tissues. 

400 450 500 550 600 650 700
30

40

50

60

70

80

90

100

400 450 500 550 600 650 700

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

In
te

n
si

ty
 (

%
)

Wavelength (nm)

(a) (b)

In
te

n
si

ty
 (

a
.u

.)

Wavelength (nm)

 Benign (n=24)
 LGSILs (n=34)
 HGSILs (n=22)

 

Figure 6.7 Mean reflectance spectra of benign (n=24), LGSILs (n=34) and HGSILs (n=22): (a) 
non-normalized spectra; (b) normalized spectra. Black: benign; Blue: LGSILs; Red: HGSILs. 

To utilize those spectral differences for tissue diagnosis, PCA was firstly used to 

reduce the data dimension from 80×383 to 80×79. Then, one-way analysis of variance 
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(ANOVA) was performed on the PC scores to find out those diagnostically significant 

PCs with p-value<0.1. Figure 6.8 shows the correlation of the first four significant PCs 

with the wavelength variable: (a) PC1, PC4, PC5, PC6 for non-normalized spectral 

dataset, accounting for 74.3%, 1.33%, 0.33% and 0.05% of the total variance, 

respectively; (b) PC1, PC3, PC4 and PC5 for normalized spectral dataset, accounting 

for 78.2%, 8.98%, 0.76% and 0.18% of the total variance, respectively. Obviously, 

PC1 covered the majority of the total variance for both non-normalized and normalized 

spectral datasets, and however showed a distinctive difference in the correlation with 

wavelength variables for the two datasets. This may be due to the intensity feature 

which was gotten rid of by normalization. Also, the correlation curves appeared to 

contain some features, of which a rough counterpart could be found in the reflectance 

spectrum, such as two absorption dips in the region of 520~600 nm. This indicates that 

the spectral features remain in the PCs after dimension reduction.  
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Figure 6.8 Examples of the first four diagnostically significant principal components (PCs) with 
p-value<0.1: (a) PC1, PC4, PC5 and PC6 for non-normalized spectral dataset; (b) PC1, PC3 PC4 
and PC5 for normalized spectral dataset.  

To develop diagnostic algorithms, LDA was carried out with the significant PC scores 

as input. Two linear discriminant (LD) functions were generated for tri-group 

classification. Figure 6.9 depicts the scatter plots of the LD functions for (a) 
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non-normalized spectra and (b) normalized spectra. It was noticed that the spectra from 

the same type of tissue was mostly assembled into the same cluster for non-normalized 

spectra and clustering was improved for normalized spectra. Figure 6.10 presents the 

posterior probabilities of each spectrum belonging to benign, LGSILs and HGSILs.  
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Figure 6.9 Scatter plots of two linear discrimination function weights for benign (n=24), 
LGSILs (n=34) and HGSILs (n=22) tissues tested with leave-one-out cross-validation: (a) 
non-normalized spectral dataset; (b) non-normalized spectral dataset; Key: (○ in black) benign; 
(Δ in blue) LGSILs; (☆ in red) HGSILs. 
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Figure 6.10 Two-dimensional ternary plots of the posterior probabilities belonging to benign, 
LGSILs and HGSILs, respectively, using the PCA-LDA-based spectral classification with 
leave-one-out, cross-validation method based on the dataset: (a) non-normalized spectra; (b) 
normalized spectra. Each vertex of the triangle represents a 100% confidence that the tissue is 
benign, LGSILs or HGSILs. Key: (○ in black) benign; (Δ in blue) LGSILs; (☆ in red) HGSILs. 

The classification results yielded by PCA-LDA model are summarized in table 6.3 and 

the corresponding sensitivities and specificities are tabulated in table 6.4. Twenty-one 
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benigns, thirty-one LGSILs and seventeen HGSILs were predicted correctly by 

non-normalized spectra. Normalized spectra yielded the same correct predication rate 

for benign and HGSILs and improved the prediction of LGSILs by one case. Although 

both non-normalized- and normalized-based LDA models showed the same accuracy 

in predicting benign and HGSILs, the misclassification was different. For example, 

three benigns were misclassified, including two as LGSILs and one as HGSILs for 

non-normalized spectra. In contrast, three benigns were all misclassified as LGSILs for 

normalized spectra. Hence, Fig. 6.11 elucidates the prediction variation between these 

two datasets. The LDA models based on non-normalized and normalized spectra got 

into an agreement in the prediction of 82.5% of the tissue spectra.  

Table 6.3 Reflectance-prediction for the three cervical tissue groups yielded by the PCA-LDA 
diagnostic algorithms tested with leave-one-out cross-validation method. 

 
 

 
Tissue Type 

Reflectance-predicted Tissue Type  
 

Total 
 

Benign 
Dysplasia 

LGSILs HGSILs 

Non-normalized 

Benign 21 2 1 24 

LGSILs 2 31 1 34 

HGSILs 2 3 17 22 

Normalized 

Benign 21 3 0 24 

LGSILs 2 32 0 34 

HGSILs 4 1 17 22 

Table 6.4 The sensitivity, specificity and accuracy of reflectance-prediction for the three 
cervical tissue groups yielded by the PCA-LDA diagnostic algorithms tested with 
leave-one-out cross-validation method. 

 
 
 

Reflectance-predicted Tissue Type 

 
Benign 

Dysplasia 
LGSILs HGSILs 

Non-normalized 

Sensitivity 87.5% (21/24) 91.2% (31/34) 77.3% (17/22) 

Specificity 92.9% (52/56) 89.1% (41/46) 96.6% (56/58) 

Accuracy 91.3% (73/80) 90.0% (72/80) 91.3% (73/80)) 

Normalized 

Sensitivity 87.5% (21/24) 94.1% (32/34) 77.3% (17/22) 

Specificity 89.3% (50/56) 91.3% (42/46) 100.0% (58/58) 

Accuracy 88.8% (71/80) 92.5% (74/80) 93.8% (75/80) 
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Figure 6.11 Color coded prediction results by the PCA-LDA model based on 
non-normalized and normalized spectral datasets. column 1: histology classification; 
column 2: non-normalized reflectance; column 3: normalized reflectance. Each grid 
represents one case. Blue: benign; Green: LGSILs; Brown: HGSILs. 

To further confirm the improvement in the diagnosis achieved by using the normalized 

spectral data, three-way receiver operating characteristic (ROC) testing was performed. 

Figure 6.12 shows the three-way ROC surface. The volumes under the ROC surface 

were 0.773 and 0.78 for non-normalized and normalized spectra data, respectively, 

indicating that normalized spectra achieve a better diagnosis performance. 
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Figure 6.12 Three-dimensional view of the ROC surface calculated from the posterior probabilities 
belonging to benign, LGSILs and HGSILs based on the datasets: (a) non-normalized reflectance 
spectra; (b) normalized reflectance spectra. The corresponding volumes under ROC surface are: 
0.773 and 0.78, indicating the rank of the diagnostic performance based on the two different 
datasets.  

6.3.4 Compare and Combine NIR Raman, Fluorescence and Reflectance 

The results above indicated that intrinsic fluorescence 2 is the best of the four different 

fluorescence spectra datasets with VUS of 0.772, and normalized reflectance is better 

than non-normalized reflectance with VUS of 0.78. A comparison of the VUS of 

Raman, intrinsic fluorescence 2 and normalized reflectance produced a rank of the 

diagnostic performance of these three different techniques, which is in an order of 

Raman, reflectance and fluorescence from best to worst. 

To investigate the complementarity among Raman, fluorescence and reflectance, 

normalized reflectance and intrinsic fluorescence 2 were included in the combination 

with Raman as they showed better diagnostic performance than the remaining 

reflectance and fluorescence datasets. Figure 6.13 maps the prediction results for 

individual spectroscopic methods and combined methods. It was found that Raman, 

fluorescence and reflectance got in an agreement on predicting 70% of spectra, 

implying a potential improvement room for the diagnosis of cervical dysplasia. The 
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majority-determined was eventually excluded due to the unique prediction on four 

cases by three different datasets. The diagnostic accuracies achieved by 

product-determined, max-determined, mean-determined were 97.5% (78/80), 98.8% 

(79/80) and 97.5% (78/80), respectively, which were higher than either of Raman, 

fluorescence and reflectance alone. This demonstrates that combining the different 

spectroscopic techniques have the potential to further improve the diagnosis, of which 

max-determined prediction is the optimal one.  

Figure 6.13 Color coded prediction results by combining intrinsic fluorescence 2, 
normalized reflectance and Raman. column 1: histology prediction; column 2: 
fluorescence prediction; column 3: reflectance prediction; column 4: Raman prediction; 
column 5: product-determined prediction; column 6: max-determined prediction; column 
7: mean-determined prediction; column 8: majority-determined prediction; Blue: benign; 
Green: LGSILs; Brown: HGSILs; Orange: disagreement on predicting this case by 
fluorescence, reflectance and Raman. 
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6.4 Discussion  

In this study, we evaluated the diagnostic capacities of three common spectroscopic 

techniques, including NIR Raman, UV/VIS fluorescence and reflectance spectroscopy, 

for cervical precancer and moreover explored the feasibility of further improving the 

diagnosis by combining these three techniques. Thus, NIR Raman, UV/VIS 

fluorescence and reflectance spectra were measured from the same set of cervical 

biopsied tissues, including three different types of pathologies (i.e., benign, LGSILs 

and HGSILs). This allowed us to make a direct pairwise comparison of diagnostic 

ability among Raman, fluorescence and reflectance as well as combine these three 

different techniques to optimize the diagnosis of cervical precancer. Good quality 

Raman, fluorescence and reflectance spectra were successfully acquired from cervical 

tissues. Significant spectral differences of Raman, fluorescence and reflectance were 

observed among benign, LGSILs and HGSILs. The diagnostic Raman spectral features 

have been discussed in detail in the section Discussions in Chapter 2. We discussed 

fluorescence and reflectance in detail in this chapter. 

Fluorescence spectra were mainly characterized by a single broad band centered at 486 

nm and two weak absorption dips at 542 and 576 nm as shown in Fig. 6.2(a). Note that 

fluorescence photon undergoes reabsorption and rescattering by those non-fluorescent 

absorbers and scatters in tissue. This can be illustrated in part by the two weak 

absorption dips. As a result, the measured tissue fluorescence spectrum is not the 

intrinsic fluorescence but the fluorescence distorted by tissue reabsorption and 

rescattering. This distortion may deteriorate the accuracy in predicting cervical 

dysplasia by fluorescence [261]. Besides, intrinsic fluorescence also facilitates the 

quantitative analysis of the concentration change of the fluorophores with tissue 

neoplastic transformation [138]. Therefore, it is desirable to investigate the diagnostic 
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ability exclusively of intrinsic fluorescence. In recent years, some methods have been 

proposed to retrieve intrinsic fluorescence from measured fluorescence by several 

groups [260, 262]. In this study, we employed a simple model to extract intrinsic 

fluorescence proposed by Diana et al [260]. The overall line shape of intrinsic 

fluorescence spectra remains similar to the measured fluorescence spectra, except the 

vanishing of the absorption dips, indicating the efficacy of this method on retrieving 

the intrinsic fluorescence from the measured fluorescence spectra.  

The tissue fluorescence spectra at 405-nm excitation can be mostly attributed to 

NADH, FAD, collagen and porphyrins, which have been proven to be fluorescent and 

diagnostically relevant to cancerous changes in various human organs [117, 134, 138, 

261, 263-265]. In particular for cervix, NADH and FAD dominate the epithelium 

fluorescence while collagen is the major contributor to stroma fluorescence [134, 137]. 

NADH is found to be increased while FAD is decreased in precancer tissues, which 

may be due to the increased metabolic activity associated with tissue premalignancy 

[117]. Collagen shows a decreased contribution to the tissue fluorescence in precancer 

tissues [117]. This may be explained by the increased collagenases which degrade the 

fluorescing collagen-crosslink in precancer tissues. This may also be partly due to the 

changes of tissue optical properties (e.g., thickening of epithelium) and morphologies 

(e.g., higher cellular density resulting from the increased nucleus to cytoplasm ratios) 

associated with dysplastic transformation. These changes above significantly attenuate 

the excitation light penetration and also obscure the tissue fluorescence photons 

emitted from the underlying stroma in precancer tissue as compared to normal cervical 

tissue [145, 192]. Our results show that HGSILs exhibited highly reduced fluorescence 

intensity. This may be due to the reduced FAD and collagen contribution. In 

comparison, fluorescence intensity above 600 nm was elevated in HGSILs as 
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compared to benign and LGSILs. This is probably attributed to the elevated porphyrins 

showing affinity with cancer cells, which is consistent with the reported finding in 

literature [115]. The classifications by PCA-LDA diagnostic models show that three 

groups of intrinsic fluorescence spectra yielded the same overall accuracy of 81.3% 

(65/80), which was higher than that achieved by measured fluorescence spectra (77.5% 

(62/80)). This indicates that intrinsic fluorescence has the potential to discriminate 

cervical dysplasia from benign tissues. The three-way ROC-VUS confirms its 

diagnostic potential and also suggests extracting intrinsic fluorescence with criterion 2 

is optimal for tissue discrimination.  

Reflectance spectra of three tissue groups (Fig. 6.7) were dominated by three 

prominent valleys, which were located in the vicinities of 418, 542 and 576 nm, 

respectively. These three valleys are recognized to result from the hemoglobin 

absorption and have been found in diffuse reflectance spectrum of a variety of human 

tissues [150, 151, 176, 260, 261, 266]. Moreover, the overall spectral intensity 

decreased continuously as the cervix tissue progresses from benign to HGSILs as 

shown in Fig. 6.7(a). This is consistent with the findings on cervix in the literature 

[150, 151]. This decrease in the reflectance of dysplasia can be accounted for by the 

increased hemoglobin absorption due to the fact that cancer tissue shows an increased 

angiogenesis with an increased microvessel density compared to normal or benign 

tissues [193]. In addition, the normalized reflectance spectrum (Fig. 6.7(b)) showed 

that the reflectance intensity increased in the region of 625~675 nm while decreased in 

the region of 450~500 nm with the progression of tissue from benign to HGSILs, 

indicating an increase in the spectrum slope. This slope change has been reported to be 

diagnostically valuable [151]. The reflectance spectral features above build a basis for 

reflectance spectroscopy coupled with multivariate statistical techniques (i.e., 
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PCA-LDA) as a diagnostic method for cervical precancer. The classification results 

show that PCA-LDA diagnostic model calculated from normalized data achieved 

almost the same overall accuracy (70/80) except one LGSILs case improvement 

compared to non-normalized data (69/80). However, the misclassification distribution 

was different, leading to various specificities in the diagnosis of each type of tissues. 

For instance, compared to non-normalized data, normalized data showed an increased 

sensitivity and specificity for LGSILs while the same sensitivity and a lower 

specificity for benign. Three-way ROC-VUS revealed the improvement extent by 

normalized data (0.78 vs 0.773) as compared to non-normalized data.     

Comparing the diagnostic accuracy and ROC-VUS calculated from Raman, 

fluorescence and reflectance, it was obvious that Raman outperformed fluorescence 

and reflectance in differentiating among benign, LGSILs and HGSILs while 

fluorescence showed the weakest diagnostic ability. The same diagnostic ranking of 

Raman, fluorescence and reflectance was reported on breast cancer [259]. The superior 

performance of Raman over fluorescence and reflectance may be explained as below. 

Raman spectroscopy is a molecular fingerprint technique and Raman spectrum of 

biological tissue contains many narrow Raman peaks which are assigned to different 

biomolecules. This allows Raman spectroscopy to probe the tissue biolomecular 

changes associated with tissue malignant transformation with high accuracy. In 

contrast, tissue fluorescence spectrum appears to be relatively broad, flat and 

featureless due to the overlap of the emission spectra from different fluorophores [175, 

259]. This may account for the less diagnostic information and consequently the 

inferior diagnostic performance compared to Raman. As for reflectance spectroscopy, 

it provides insight into tissue absorption (i.e., haemoglobin) and scattering properties 

(i.e., reduced scattering coefficient) related to tissue morphological structures [150, 
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151, 176]. Obviously, the diagnostic information contained in reflectance spectrum is 

very limited, especially compared to Raman spectrum, leading to the relatively weaker 

diagnostic ability. As for the comparison between fluorescence and reflectance, 

discrepancy is found in literature [144, 149, 259, 260].  

Furthermore, to our knowledge, we attempted to combine Raman, fluorescence and 

reflectance to improve the diagnosis of cervical dysplasia for the first time. Before this 

study, only fluorescence, diffuse reflectance and elastic scattering spectroscopy were 

included in the combination for improving the detection of cancer and precancer, [148, 

176, 259, 260]. Our previous study demonstrated that NIR Raman and 

autofluorescence are complementary rather than competitive in cancer diagnosis [175]. 

Therefore, we got Raman involved in the combination with fluorescence and 

reflectance for improving the diagnosis of cervical precancer. The combination of 

different spectroscopy methods can be achieved mainly in two different ways, which 

are combination of spectra for developing diagnostic algorithm and combination of 

classifier (i.e., use the majority of classifiers by different methods), respectively. The 

first one was reported to succeed in combining fluorescence and reflectance for 

improving breast tissue discrimination [259]. Meanwhile, the improvement by the 

second one is also reported in literature. For example, Georgakoudi et al succeeded in 

improving the diagnosis of esophageal dysplasia by combing fluorescence, reflectance 

and light-scattering spectroscopy with this method [176]. More recently, Veld et al 

attempted to use the maximum, product and mean of each case’s posterior probabilities 

yielded by fluorescence and reflectance to improve the diagnosis [260]. We used the 

same method to combine Raman, fluorescence and reflectance in our study. Our results 

demonstrated that combining Raman, fluorescence and reflectance has the potential to 

further improve the diagnosis of cervical dysplasia and max-determined prediction is 
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found to be the optimal combination strategy for improving the diagnosis of cervical 

dysplasia. The improvement resulting from the combination above can be accounted 

for by the fact that Raman, fluorescence and reflectance describe tissue in terms of 

different aspects of tissue as discussed above: Raman spectra provide the composition 

information of various biochemicals; fluorescence spectra probe a limited number of 

fluorophores and reflectance spectra provide the information about tissue morphology 

and architecture. 

6.5 Conclusion 

In this study, we evaluated the performance of NIR Raman, UV/VIS fluorescence and 

reflectance spectroscopy in the diagnosis of cervical dysplasia. The results showed that 

NIR Raman exhibited better diagnostic ability than UV/VIS fluorescence and 

reflectance, showing an overall diagnostic accuracy of 92.5% versus 81.3% 

(fluorescence) and 87.5% (reflectance). Then, we demonstrated that the diagnosis can 

be further improved by combining NIR Raman with UV/VIS fluorescence and 

reflectance with a significantly improved overall diagnostic accuracy of 98.8%. This 

implied that Raman, fluorescence and reflectance can provide complementary 

information for tissue diagnosis by providing different aspects of tissue 

pre-malignancy and malignancy. In addition, this combination can also create a more 

comprehensive understanding of the biochemical and morphological changes 

associated with tissue cancerous transformation, which may be helpful for treatment 

design. 
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Chapter 7 Conclusions and Future Work  

7.1 Conclusions 

The entire thesis is centered on NIR Raman spectroscopic diagnosis of the dysplasia in 

the cervix. The results and findings obtained from this thesis work demonstrate that 

NIR Raman spectroscopy has the potential to emerge as a promising technique for 

screening and diagnosing cervical dysplasia, and preventing cervical cancer.  

First of all, we explored the potential of NIR Raman spectroscopy for the detection of 

cervical precancer ex vivo. An in-house developed NIR Raman spectroscopy was 

employed and a novel data acquisition program was developed on LabVIEW platform 

for Raman measurement on biopsied cervical tissues. Significant spectral differences 

were observed among various tissue pathologies (i.e., benign, LGSILs and HGSILs). 

For instance, a significant decrease occurred on the intensity of Raman peaks at 849 

(C-C stretching of proline ring and ring breathing mode of tyrosine), 1125 (C-C 

stretching of lipid, C-N stretching of protein) and 1658 cm-1 (Amide I, C=O stretching 

mode of collagen and elastin) while an increased intensity for Raman peaks at 1004 

(phenylanaline), 1339 (nucleic acid) and 1449 cm-1 (phospholipids). Empirical analysis 

(i.e., intensity ratio of Raman peaks) and multivariate statistical techniques (i.e., 

PCA-LDA) were used to develop diagnostic algorithms. The PCA-LDA diagnostic 

model can make correct prediction for 92.5% of the tissues (i.e., benign, LGSILs and 

HGSILs). The volume under three-ways ROC surface was 0.815, indicating the total 

diagnostic accuracy. In addition, tissue spectral model revealed the major origins of 

biochemical changes with tissue precancerous transformation, such as the reduced 

contribution from collagen and glycogen and elevated contribution from lipids (i.e., 

cholesterol and oleic acid) and DNA. All the results above demonstrate that NIR 
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Raman spectroscopy has the potential for cervical precancer. 

The ex vivo study above encouraged an extension of our work to an in vivo study. A 

rapid portable NIR Raman spectroscopy system with a fiber-optic Raman probe was 

developed for the in vivo Raman measurement on the cervix. The fiber-optic Raman 

probe was coupled with a ball lens to enhance the detection of Raman signal 

originating from epithelial tissue, especially the epithelium. Monte Carlo method was 

employed to evaluate the performance of the ball lens Raman probe design. The Monte 

Carlo simulation results show that tissue Raman collection efficiency can be improved 

by properly selecting the refractive index and the diameter of the ball lens for the 

Raman probe design and the depth-selectivity of Raman measurements can also be 

improved by either increasing the refractive index or reducing the diameter of the ball 

lens. The simulation and experimental validation results demonstrate that this ball lens 

Raman probe design can facilitate the depth-selected Raman measurements of 

epithelial tissue in vivo. 

With the use of the in vivo Raman system we developed, we explored the feasibility of 

NIR Raman spectroscopy in the HW region (2800~3700 cm-1) for in vivo detection of 

cervical precancer as HW Raman is free of fiber optics’ interference and is more 

intense than Raman scattering in fingerprint region (800~1800 cm-1). Significant 

differences in Raman intensities of prominent Raman bands peaking at 2850 and 2885 

cm-1 (CH2 stretching of lipids), 2940 cm-1 (CH3 stretching of proteins), and the broad 

Raman band of water (peaking at 3400 cm-1 in the 3100-3700 cm-1 range) were 

observed in normal and dysplasia cervical tissue. A PCA-LDA diagnostic model 

calculated from the HW Raman data yielded a diagnostic sensitivity of 93.5% and 

specificity of 97.8% for dysplasia tissue, demonstrating the diagnostic ability of HW 

Raman spectroscopy for cervical dysplasia.  
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We also made efforts to improve the in vivo diagnosis of cervical dysplasia through 

combining NIR autofluorescence and Raman spectroscopy. Classification results 

obtained from the leave-one patient-out, cross-validation of the PCA-LDA model 

based on the three spectral datasets (i.e., Raman, NIR AF, and the combined NIR AF 

and Raman) yielded diagnostic sensitivities of 91.3%, 93.5%, 93.5%, specificities of 

95.7%, 87.0%, 95.7%, and accuracies of 93.5%, 90.2%, 94.6%, respectively, for 

precancer identification. Obviously, optimal discrimination was achieved by combined 

NIR AF and Raman, indicating NIR Raman and autofluorescence spectral features are 

complimentary rather than competitive in tissue diagnosis. The improvement in the 

diagnosis by combining NIR AF and Raman was further confirmed by ROC testing. 

The results above demonstrate that the integrated NIR autofluorescence and Raman 

spectroscopy has the potential to provide an effective and accurate diagnostic scheme 

for non-invasive, in vivo diagnosis and detection of precancer in the cervix.  

Alternatively, UV/VIS autofluorescence and diffuse reflectance were also combined 

with NIR Raman to optimize the optical diagnosis of cervical dysplasia. The diagnostic 

accuracy yielded by PCA-LDA models indicated that NIR Raman spectroscopy 

exhibited a better performance in differentiating cervical dysplasia than UV/VIS 

autofluorescence and diffuse reflectance spectroscopy. The optimal diagnosis was 

produced by combining Raman, fluorescence and reflectance with maximum rule 

which means the diagnostic decision is determined by the maximum of the posterior 

probabilities calculated from Raman, fluorescence and reflectance. The diagnostic 

accuracies were 100%, 97.1% and 100% for benign, LGSILs and HGSILs, respectively. 

This demonstrates the complementarity of Raman, fluorescence and reflectance in 

tissue diagnosis and the feasibility of improving clinic diagnosis with an integration of 

different optical screen modalities. 
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7.2 Future Directions 

In this study, we demonstrated that NIR Raman spectroscopy has the potential for 

cervical precancer detection and also exhibit higher diagnostic accuracy as compared 

conventional screening and diagnosis methods. However, further optimization is still 

desirable prior to being as a routine clinical screening and diagnosis program to 

prevent cervical cancer. Specifically, the future works to this thesis study are proposed 

as follows: 

1) Developing a robust spectroscopy program integrated with comprehensive 

functional modules, including data acquisition, data process and multivariate statistical 

analysis. The current Raman program built on LabVIEW platform only contains data 

acquisition and process modules. However, to achieve the true real-time tissue 

diagnosis and characterization, integration of diagnostic model is necessary. 

Meanwhile, prior to the on-line diagnosis in clinic, a large database must be built to 

validate the diagnostic model. 

2) Optimizing the diagnostic model by employing other multivariate statistic 

techniques. In this study, PCA-LDA was used for developing diagnostic algorithms 

throughout the whole thesis. Apart from PCA and LDA, there exist other multivariate 

statistic techniques which have been used for developing classification functions, such 

as support vector machine (SVM), artificial neural network (ANN), cluster analysis, 

recursive partition and random forest [9, 28, 46, 54, 65, 173, 267, 268]. For example, 

Widjaja et al used SVM to develop classification model for Raman spectra [28]. A 

pretty high accuracy of 99.9% was achieved in a multi-classification among normal, 

polyp and cancer colon tissues. Therefore, a proper selection of multivariate statistic 

techniques may be one of the choices of method to optimize the diagnostic algorithm 
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to optimize the diagnosis.  

3) Developing an in vivo optical diagnostic model integrated with NIR Raman, 

UV/VIS fluorescence and reflectance spectroscopy. In this thesis, the feasibility of 

combining these three different optical spectroscopic techniques to improve the 

diagnosis of cervical dysplasia was demonstrated ex vivo. In terms of clinical 

application, a multi-model suited for in vivo spectroscopic measurement is highly 

desired. Moreover, a higher efficacy in tissue diagnosis and identification may be 

achieved by adding the imaging mode into the multi-model system in addition to the 

spectroscopy mode. For instance, imaging mode can be used to rough the malignant 

tissue quickly and subsequently spectroscopy mode can further confirm the diagnosis 

and the tumor margin.  

4) Building an in vitro cervical tissue model to mimic live tissue at various 

histopathological conditions (i.e., normal, benign, LGSILs and HGSILs) for better 

understanding the biochemical changes accounting for Raman diagnosis. Although 

tissue classification is the primary goal of the diagnostic measurements in a clinical 

setting, understanding the underlying spectral differences is crucial for further 

validating and optimizing the methodology. In this study, we tentatively attributed the 

prominent Raman peaks to specific biochemicals and also used mathematical modeling 

(i.e., least squares fitting) to reconstruct the tissue spectrum with reference spectra of 

pure biochemicals. However, the accuracy of the former is limited by the overlap of 

different Raman bands; the latter one may be affected a lot by the selection of 

reference spectra and also does not consider the interaction among different 

biochemicals in tissue. Therefore, we propose to use organotypic culture method to 

build an in vitro tissue model to resemble the in vivo cervical neoplasia. Organotypic 

culture has been proven to be able to achieve the stratification and differentiation of 
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epithelial cells which are histopathologically similar to the epithelium in vivo in skin 

[269, 270], testis [271], ovary [272], stomach [273] and cervix [274, 275]. With this 

method, we can control and manipulate tissue components and culture conditions to 

build various tissue models for Raman study. Meanwhile, Raman study on individual 

epithelial cell lines is proposed as an adjunction to the tissue model study.  
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