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Summary

Model selection in general and variable selection in particular are important parts of

data analysis. This thesis makes some contributions to the model selection literature

by introducing two general procedures for model selection and two novel algorithms for

variable selection in very general frameworks. This thesis is based on a collection of my

own works and joint works. Each chapter can be read separately.

After giving in Chapter 1 a brief literature review and motivation for the thesis, I shall

discuss in Chapter 2 a general procedure for model selection, called the loss rank principle

(LoRP). The main goal of the LoRP is to select a parsimonious model that fits the data

well. General speaking, the LoRP consists in the so-called loss rank of a model defined as

the number of other (fictitious) data that fit the model better than the actual data, and

the model selected is the one with the smallest loss rank. By minimizing the loss rank, the

LoRP selects a model by trading off between the empirical fit and the model complexity.

LoRP seems to be a promising principle with a lot of potential, leading to a rich field. In

this thesis, I have only scratched at the surface of the LoRP, and explored it as much as I

can.

While a primary goal of model selection is to understand the underlying structure

in the data, another important goal is to make accurate (out-of-sample) predictions on

future observations. In Chapter 3, I describe a model selection procedure that has an

explicit predictive motivation. The main idea is to select a model that is closest to the
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full model in some sense. This results in selection of a parsimonious model with similar

predictive performance to the full model. I shall then introduce a predictive variant of

the Lasso - called the predictive Lasso. Like the Lasso, the predictive Lasso is a method

for simultaneous variable selection and parameter estimation in generalized linear models.

Unlike the Lasso, however, our approach has a more explicit predictive motivation, which

aims at producing a useful model with high prediction accuracy.

Two novel algorithms for variable selection in very general frameworks are introduced

in Chapter 4. The first algorithm, called the Bayesian adaptive Lasso, improves on the

original Lasso in the sense that adaptive shinkages are used for different coefficients. The

proposed Bayesian formulation offers a very convenient way to account for model uncer-

tainty and for selection of tuning parameters, while overcoming the problems of model

selection inconsistency and estimation biasedness in the Lasso. Extensions of the method-

ology to ordered and grouped variable selection are also discussed in detail. I then present

the second algorithm which is for simultaneous fast variable selection and parameter esti-

mation in high-dimensional heteroscedastic regression. The algorithm makes use of a Bayes

variational approach which is an attractive alternative to Markov chain Monte Carlo meth-

ods in high-dimensional settings, and reduces to well-known matching pursuit algorithms

in the homoscedastic case. This methodology has potential for extension to much more

complicated frameworks such as simultaneous variable selection and component selection

in flexible modeling with Gaussian mixture distributions.
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Chapter 1

Introduction

Model selection is a fundamental problem in statistics as well as in many other scientific

fields such as machine learning and econometrics. According to R. A. Fisher, there are

three aspects of a general problem of making inference and prediction: (1) model speci-

fication, (2) estimation of model parameters, and (3) estimation of precision. Before the

1970s, most of the published works were centered on the last two aspects where the under-

lying model was assumed to be known. Model selection has attracted significant attention

in the statistical community mainly since the seminal work of Akaike [1973]. Since then, a

large number of methods have been proposed. In this introductory chapter, we shall first

give a brief review of the model selection literature, followed by motivation for, and a brief

statement of the main contributions of, this thesis.

1.1 A brief review of the model selection literature

For expository purposes, we shall restrict here the discussion of the model selection problem

to the regression and classification framework. Our later discussions are, however, by no
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means limited to such a restriction.

Consider a data set D={(x1,y1),...,(xn,yn)} from a perturbed functional relationship

y = ftrue(x) + noise.

Given a family of function classes/models {Fc,c∈C}, we would like to choose the “best” to

fit/interpret D and/or to make good predictions on future observations. Here Fc denotes

a class of functions (which will also be referred to as a model) with the index c standing

for its complexity. For example, it can be the class Fd of d-order polynomials or can be

the kNN regression model Fk with k-nearest neighbors.

Many well-known procedures for model selection can be regarded as penalized versions

of the maximum likelihood (ML) principle. One first has to assume a sampling distribution

P(D|f) for D, e.g., the yi have independent Gaussian distributions N(f(xi),σ
2). For

estimation within a model, ML chooses

f̂ c
D = arg max

f∈Fc

P(D|f),

and for choice of model, penalized ML (PML) then chooses

ĉ = arg min
c
{− log P(D|f̂ c

D) + pen(Fc)},

where the penalty term pen(Fc) depends on the used approach. For instance, pen(Fc)

might be 1
2
k as in AIC [Akaike, 1973], or logn

2
k as in BIC [Schwarz, 1978] where k is the

number of free parameters in the model. From a practical point of view, AIC and BIC,

especially AIC, are probably the most commonly used approaches to model selection. They

are very easy to use and work satisfactorily in many cases. Some extension versions of

AIC have also been proposed in the literature (see, e.g. Burnham and Anderson [2002]).

All PML variants rely heavily on a proper sampling distribution (which may be difficult
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to establish), ignore (or at least do not tell how to incorporate) a potentially given loss

function, are based on distribution-free penalties (which may result in a bad performance

for some specific distributions), and are typically limited to (semi)parametric models.

Related are penalized empirical loss minimization (PELM) methods (also known as

structural risk minimization) originally introduced by Vapnik and Chervonenkis [1971].

Consider a bounded loss function l(.,.), empirical loss Ln(f)= 1
n

∑n
1 l(f(xi),yi) and “true”

loss L(f)=El(f(X),Y ). Let f̂ c
D =argminf∈FcLn(f). Then PELM chooses

ĉ = arg min
c
{Ln(f̂ c

D) + pen(Fc)}.

Unlike PML, the optimality properties of PELM are often studied in terms of nonasymp-

totic theory, in which concentration inequalities are used to obtain the so-called oracle

inequalities which evaluate how close the estimator is to the optimal one (see Massart

[2007] and Section 2.4 for a detailed review). The major question is what penalty func-

tion should be used. Koltchinskii [2001] and Bartlett et al. [2002] studied PELM based

on Rademacher complexities which are estimates of Esupf∈Fc
|L(f)−Ln(f)| which can

be considered as an effective estimate of the complexity of Fc. These methods have a

solid mathematical basis and in particular their penalty terms are data-dependent, so one

can expect better performance over model selection procedures based on distribution-free

penalties. A main drawback is that they are intractable because they often involve un-

known parameters that need to be estimated. Furthermore, from a practical point of view,

PELM criteria are not easy to use.

The third class of model selection procedures are Bayesian model selection (BMS)

methods which are very efficient and increasingly used. Typically, BMS consists in building

a hierarchical Bayes formulation and using MCMC methods or some other computational

algorithm to estimate posterior model probabilities. The model with the highest posterior
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model probability will be selected; alternatively, inferences can be averaged over some

models with highest posterior model probabilities. See O’Hagan and Forster [2004], George

and McCulloch [1993], Smith and Kohn [1996] and Hoeting et al. [1999] for comprehensive

introductions to BMS. BMS with MCMC methods may be computationally demanding in

high-dimensional problems. A representative is the popular BIC of Schwarz [1978] which

is an approximation of the minus logarithm of posterior model probability −logP (Fc|D)

(with a uniform prior on models). BIC possesses an optimality in terms of identification,

i.e., it is able to identify the true model as n→∞ if the model collection contains the

true one (see, e.g., Chambaz [2006]). However, BIC is not necessarily optimal in terms of

prediction. Barbieri and Berger [2004] show, in the framework of normal linear models,

that the model selected by BIC is not necessarily the optimal predictive one. Yang [2005]

also show that BIC is sub-optimal compared to AIC in terms of mean squared error.

Another class of model selection procedures which are widely used in practice are empir-

ical criteria, such as hold-out [Massart, 2007], bootstrap [Efron and Tibshirani, 1993], cross-

validation and its variants [Allen, 1974, Stone, 1974, Geisser, 1975, Craven and Wahba,

1979]. A test set D′ is used for selecting the c for which classifier/regressor f̂ c
D has small-

est (test) error on D′. Typically D′ is cut or resampled from D. Empirical criteria are

easy to understand and use, but the reduced sample decreases accuracy, which can be

a serious problem if n is small. Also, they are sometimes time consuming, especially in

high-dimensional and complicated settings.

1.2 Motivations and contributions

Before the data analyst proceeds to select a model, he or she needs to know what kind of

model needs to be selected. Phrased differently, the goal of the model selection problem
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needs to be clearly specified. Different goals may lead to different models. An important

goal in data analysis is to understand the underlying structure in the data. Suppose that

we are given a collection of models that reflect a range of potential structures in the data

and the task is to select among this given collection a model that best explains/fits the

data. It is well-known that overfitting is a serious problem in structural learning from

data, and model selection is typically regarded as the question of choosing the right model

complexity. Regarding this, the goal of model selection amounts to selecting a model

that fits the data well but is not too complex. Most of the procedures described in the

previous section aim at addressing this goal. They have been well studied and/or widely

used but are not without problems. PML and BMS need a proper sampling distribution

(in some problems such as kNN classification, a sampling distribution may not be avail-

able) while PELM is not easy to use in practice and empirical criteria are sometimes time

demanding. Moreover, some popular criteria, such as AIC and BIC, depend heavily on

the effective number of parameters which is in some cases, such as ridge regression and

kNN regression/classification, not well defined. The first contribution of the thesis is to

develop a model selection procedure addressing this first goal, i.e., selecting a parsimo-

nious model that fits the data well. We describe in Chapter 2 a general-purpose principle

for deriving model selection criteria that can avoid overfitting. The method has many

attractive properties such as always giving answers, not requiring insight into the inner

structure of the problem, not requiring any assumption of sampling distribution and di-

rectly applying to any non-parametric regression like kNN. The principle also leads to a

nice definition of model complexity which is both data-adaptive and loss-dependent - two

desirable properties for any definition of model complexity.

Another important goal in model selection is to select models that have a good (out-of-

sample) predictive ability, i.e., having an explicit predictive motivation. It is still not clear
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whether or not a model selection rule satisfying the first goal discussed above can also

satisfy this second goal. The second contribution of this thesis is the proposal of a method

addressing this second goal: we propose in Chapter 3 a model selection procedure that has

an explicit predictive motivation. An application of this procedure to the variable selection

problem in the generalized linear regression models with l1 constraints on the coefficients

allows us to introduce a Lasso variant - the predictive Lasso - which improves predictive

ability of the original Lasso [Tibshirani, 1996].

Variable selection is probably the most fundamental problem of model selection [Fan

and Li, 2001]. Regularization algorithms such as the Lasso and greedy search algorithms

such as the matching pursuit are very efficient and widely used. But they are not without

problems such as producing biased estimates or involving extra tuning parameters [Fried-

man, 2008, Nott et al., 2010]. The third contribution of the thesis is the proposal of two

novel algorithms for variable selection in very general frameworks that can improve upon

these existing algorithms. We first propose in Chapter 4 the Bayesian adaptive Lasso

which improves on the Lasso in the sense that adaptive shinkages are used for different

coefficients. We also discuss extensions for ordered and grouped variable selection. We

then consider a Bayes variational approach for fast variable selection in high-dimensional

heteroscedastic regression. This methodology has potential for extension to much more

complicated frameworks such as simultaneous variable selection and component selection

in flexible modeling with Gaussian mixture distributions.

The materials presented in this thesis either have been published or are under submis-

sion for publication [Tran, 2009, Hutter and Tran, 2010, Tran, 2011b, Tran and Hutter,

2010, Tran et al., 2010, Nott et al., 2010, Leng et al., 2010, Tran, 2011a, Tran et al., 2011].
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Chapter 2

The loss rank principle

In statistics and machine learning, model selection is typically regarded as the question

of choosing the right model complexity. The maximum likelihood principle breaks down

when one has to select among a set of nested models, and overfitting is a serious problem

in structural learning from data. Much effort has been put into developing model selection

criteria that can avoid overfitting. The loss rank principle, introduced recently in Hutter

[2007], and further developed in Hutter and Tran [2010], is another contribution to the

model selection literature. The loss rank principle (LoRP), whose main goal is to select

a parsimonious model that fits the data well, is a general-purpose principle and can be

regarded as a guiding principle for deriving model selection criteria that can avoid over-

fitting. General speaking, the LoRP consists in the so-called loss rank of a model defined

as the number of other (fictitious) data that fit the model better than the actual data,

and the model selected is the one with the smallest loss rank. The LoRP has close con-

nections with many well-established model selection criteria such as AIC, BIC, MDL and

has many attractive properties such as always giving answers, not requiring insight into

the inner structure of the problem, not requiring any assumption of sampling distribution
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and directly applying to any non-parametric regression like kNN.

The LoRP will be fully presented in Section 2.1 and investigated in detail for an

important class of regression models in Sections 2.2 and 2.3. Section 2.4 discusses the LoRP

for model selection in the classification framework. Some numerical examples are presented

in Section 2.5. Section 2.6 presents applications of the LoRP to selecting the tuning

parameters in regularization regression like the Lasso. Technical proofs are relegated to

Section 2.7.

The materials presented in this chapter either have been published or are under sub-

mission for publication [Tran, 2009, Hutter and Tran, 2010, Tran, 2011b, Tran and Hutter,

2010].

2.1 The loss rank principle

After giving a brief introduction to regression and classification settings, we state the loss

rank principle for model selection. We first state it for the case with discrete response

values (Principle 3), then generalize it for continuous response values (Principle 5), and

exemplify it on two (over-simplistic) artificial Examples 4 and 6. Thereafter we show how

to regularize the LoRP for realistic problems.

We assume data D = (x,y) := {(x1,y1),...,(xn,yn)}∈ (X×Y)n =:D has been observed.

We think of the y as having an approximate functional dependence on x, i.e., yi≈ftrue(xi),

where ≈means that the yi are distorted by noise from the unknown “true” values ftrue(xi).

We will write (x,y) for generic data points, use vector notation x= (x1,...,xn)
> and y =

(y1,...,yn)
>, and D′=(x′,y′) for generic (fictitious) data of size n.

In regression problems Y is typically (a subset of) the real set IR or some more general

measurable space like IRm. In classification, Y is a finite set or at least discrete. We impose
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no restrictions on X . Indeed, x will essentially be fixed and plays only a spectator role, so

we will often notationally suppress dependencies on x. The goal of regression/classification

is to find a function fD∈F⊂X→Y “close” to ftrue based on the past observations D with

F some class of functions. Or phrased in another way: we are interested in a regressor

r :D→F such that ŷ := r(D)(x)≡ r(x|D)≡ fD(x)≈ ftrue(x) for all x ∈X . The quality

of fit to the data is usually measured by a loss function Loss(y,ŷ), where ŷi = fD(xi) is

an estimate of yi. Often the loss is additive (e.g., when observations are independent):

Loss(y,ŷ)=
∑n

i=1Loss(yi,ŷi).

Example 1 (polynomial regression). For X =Y=IR, consider the set Fd :={fw(x)=

wdx
d−1 +...+w2x+w1 : w ∈ IRd} of polynomials of degree d−1. Fitting the polynomial

to data D, e.g., by the least squares method, we estimate w with ŵD. The regression

function ŷ=rd(x|D)=fŵD
(x) can be written down in closed form. This is an example of

parametric regression. Popular model selection criteria such as AIC [Akaike, 1973], BIC

[Schwarz, 1978] and MDL [Rissanen, 1978] can be used to select a good d. ♦

Example 2 (k nearest neighbors). Let Y be some vector space like IR and X be a metric

space like IRm with some (e.g., Euclidian) metric d(·,·). kNN estimates ftrue(x) by averaging

the y values of the k nearest neighbors Nk(x) of x in D, i.e., rk(x|D)= 1
k

∑
i∈Nk(x)yi with

|Nk(x)|=k such that d(x,xi)≤d(x,xj) for all i∈Nk(x) and j 6∈Nk(x). This is an example of

non-parametric regression. Popular model selection criteria such as AIC and BIC need a

proper probabilistic framework which is sometimes difficult to establish in the kNN context

[Holmes and Adams, 2002]. ♦

In the following we assume a class of regressors R (whatever their origin), e.g., the kNN

regressors {rk :k∈ IN} or the least squares polynomial regressors {rd :d∈ IN0 := IN∪{0}}.

Each regressor r can be thought of as a model. Throughout this chapter, we use the terms

“regressor” and “model” interchangeably. Note that unlike f ∈F , regressors r∈R are not
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functions of x alone but depend on all observations D, in particular on y. We can compute

the empirical loss of each regressor r∈R:

Lossr(D) ≡ Lossr(y|x) := Loss(y, ŷ) =
n∑

i=1

Loss(yi, r(xi|x,y))

where ŷi=r(xi|D) in the third expression, and the last expression holds in case of additive

loss.

Unfortunately, minimizing Lossr w.r.t. r will typically not select the “best” overall

regressor. This is the well-known overfitting problem. In case of polynomials, the classes

Fd⊂Fd+1 are nested, hence Lossrd
is monotone decreasing in d with Lossrn≡0 perfectly

fitting the data. In case of kNN, Lossrk
is more or less an increasing function in k with

perfect fit on D for k=1, since no averaging takes place. In general, R is often indexed by

a flexibility or smoothness or complexity parameter, which has to be properly determined.

The more flexible r is, the closer it can fit the data (i.e., having smaller empirical loss), but

it is not necessarily better since it has higher variance. Our main motivation is to develop

a general selection criterion that can select a parsimonious model that fits the data well.

Definition of loss rank

We first consider discrete Y, fix x, denote the observed data by y and fictitious replicate

data by y′. The key observation we exploit is that a more flexible r can fit more data D′∈D

well than a more rigid one. The more flexible regressor r is, the smaller the empirical loss

Lossr(y|x) is. Instead of minimizing the unsuitable Lossr(y|x) w.r.t. r, we could ask how

many y′∈Yn lead to smaller Lossr than y. We define the loss rank of r (w.r.t. y) as the

number of y′∈Yn with smaller or equal empirical loss than y:

Rankr(y|x) ≡ Rankr(L) := #{y′∈Yn : Lossr(y
′|x)≤L} with L := Lossr(y|x). (2.1)
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We claim that the loss rank of r is a suitable model selection measure. For (2.1) to make

sense, we have to assume (and will later assure) that Rankr(L)<∞, i.e., there are only

finitely many y′∈Yn having loss smaller than L.

Since the logarithm is a strictly monotone increasing function, we can also consider the

logarithmic rank LRr(y|x) :=logRankr(y|x), which will be more convenient.

Principle 3 (LoRP for discrete response). For discrete Y, the best classifier/regressor

in some class R for data D=(x,y) is the one with the smallest loss rank:

rbest = arg min
r∈R

LRr(y|x) ≡ arg min
r∈R

Rankr(y|x) (2.2)

where Rankr is defined in (2.1).

We give now a simple example for which we can compute all ranks by hand to help the

reader better grasp how the principle works.

Example 4 (simple discrete). Consider X = {1,2}, Y = {0,1,2}, and two points D =

{(1,1),(2,2)} lying on the diagonal x = y, with polynomial (zero, constant, linear) least

squares regressors R= {r0,r1,r2} (see Ex.1). r0 is simply 0, r1 the y-average, and r2 the

line through points (1,y1) and (2,y2). This, together with the quadratic Loss for generic

y′ and observed y=(1,2) and fixed x=(1,2), is summarized in the following table

d rd(x|x,y′) Lossd(y
′|x) Lossd(D)

0 0 y′
1
2 + y′

2
2 5

1 1
2
(y′

1 + y′
2)

1
2
(y′

2 − y′
1)

2 1
2

2 (y′
2 − y′

1)(x− 1) + y′
1 0 0

From the Loss we can easily compute the Rank for all nine y′ ∈ {0,1,2}2. Equal rank

due to equal loss is indicated by a “=” in the table below. Whole equality groups are
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actually assigned the rank of their right-most member, e.g., for d=1 the ranks of (y′
1,y

′
2)=

(0,1),(1,0),(2,1),(1,2) are all 7 (and not 4,5,6,7).

Rankrd
(y′

1y
′
2|12)

d 1 2 3 4 5 6 7 8 9 Rankrd
(D)

0 y′
1y

′
2 = 00 < 01 = 10 < 11 < 02 = 20 < 21 = 12 < 22 8

1 y′
1y

′
2 = 00 = 11 = 22 < 01 = 10 = 21 = 12 < 02 = 20 7

2 y′
1y

′
2 = 00 = 01 = 02 = 10 = 11 = 20 = 21 = 22 = 12 9

So the LoRP selects r1 as best regressor, since it has minimal rank on D. r0 fits D too

badly and r2 is too flexible (perfectly fits all D′). ♦

LoRP for continuous Y. We now consider the case of continuous or measurable spaces

Y, i.e., usual regression problems. We assume Y=IR in the following exposition, but the

idea and resulting principle hold for more general measurable spaces like IRm. We simply

reduce the model selection problem to the discrete case by considering the discretized

space Yε =εZZ for small ε>0 and discretize y;yε∈εZZn (“;” means “is replaced by”).

Then Rankε
r(L) :=#{y′

ε∈Yn
ε :Lossr(y

′
ε|x)≤L} with L=Lossr(yε|x) counting the number

of ε-grid points in the set

Vr(L) := {y′ ∈ Yn : Lossr(y
′|x) ≤ L} (2.3)

which we assume (and later assure) to be finite, analogous to the discrete case. Hence

Rankε
r(L)·εn is an approximation of the loss volume |Vr(L)| of set Vr(L), and typically

Rankε
r(L) ·εn = |Vr(L)| · (1+O(ε)) → |Vr(L)| for ε→ 0. Taking the logarithm we get

LRε
r(y|x)= logRankε

r(L) = log|Vr(L)|−nlogε+O(ε). Since nlogε is independent of r, we

can drop it in comparisons like (2.2). So for ε→0 we can define the log-loss “rank” simply

as the log-volume

LRr(y|x) := log |Vr(L)|, where L := Lossr(y|x). (2.4)
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Principle 5 (LoRP for continuous response). For measurable Y, the best regressor

in some class R for data D=(x,y) is the one with the smallest loss volume:

rbest = arg min
r∈R

LRr(y|x) ≡ arg min
r∈R
|Vr(L)|

where LR, Vr, and L are defined in (2.3) and (2.4), and |Vr(L)| is the volume of Vr(L)⊆Yn.

For discrete Y with counting measure we recover the discrete LoRP (Principle 3).

Example 6 (simple continuous). Consider Example 4 but with interval Y=[0,2]. The

first table remains unchanged, while the second table becomes

d Vd(L) = {y′ ∈ [0, 2]2 : ...} |Vd(L)| Lossd(D) |Vd(Lossd(D))|

0 y′
1
2 + y′

2
2 ≤ L

π
4
L if L≤4; 4 if L≥8;

2
√

L−4+L(π
4
−cos−1( 2√

L
)) else

5
.
= 3.6

1 1
2
(y′

2 − y′
1)

2 ≤ L 4
√

2L−2L if L≤2;
4 if L≥2

1
2

3

2 0 ≤ L 4 0 4

So LoRP again selects r1 as best regressor, since it has smallest loss volume on D. ♦
Often the loss rank/volume will be infinite, e.g., if we had chosen Y =ZZ in Ex.4 or

Y = IR in Ex.6. Regressors r with infinite rank might be rejected for philosophical or

pragmatic reasons. The solution is to modify the Loss to make LRr finite. A very simple

modification is to add a small penalty term to the loss.

Lossr(y|x) ; Lossα
r (y|x) := Lossr(y|x) + α‖y‖2, α > 0 “small”. (2.5)

The Euclidian norm ‖y‖2 :=
∑n

i=1y
2
i is default, but other (non)norm regularizations are

possible. The regularized LRα
r (y|x) based on Lossα

r is always finite, since {y : ‖y‖2≤L}

has finite volume. An alternative penalty αŷ>ŷ, quadratic in the regression estimates

ŷi =r(xi|x,y) is possible if r is unbounded in every y→∞ direction.

A scheme trying to determine a single (flexibility) parameter (like d and k in the above

examples) would be of no use if it depended on one (or more) other unknown parameters
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(α), since varying through the unknown parameter leads to any (non)desired result. Since

the LoRP seeks the r of smallest rank, it is natural to also determine α=αmin by minimizing

LRα
r w.r.t. α. The good news is that this leads to meaningful results. Interestingly, as we

will see later, a clever choice of α may also result in alternative optimalities of the selection

procedure.

Related ideas

There are various other ideas that somehow count fictitious data. In normalized ML

[Grünwald, 2007], the complexity of a stochastic model class is defined as the log sum

over all D′ of maximum likelihood probabilities. The empirical Rademacher complexity

[Koltchinskii, 2001, Bartlett et al., 2002] averages over all possible relabeled instances. In-

stead of considering all D′ one could consider only the set of all permutations of {y1,...,yn},

like in permutation tests [Efron and Tibshirani, 1993]. Finally, instead of defining the loss

rank based on fictitious y′, if we define the loss rank based on the future observations yf

generated from the posterior predictive distribution p(yf |y), then the loss rank of a model

is nothing but proportional to minus posterior predictive p-value [Meng, 1994, Gelman

et al., 1996] (exactly, the loss rank then = 1 - Bayesian p-value). While Gelman et al.

[1996] suggest to discard models with too small (smaller than 5%, say) Bayesian p-values,

the LoRP suggests to select the model with smallest loss rank (i.e., highest Bayesian

p-value).

2.2 LoRP for y-Linear Models

In this section we consider the important class of y-linear regressions with quadratic loss

function. By “y-linear regression”, we mean the fitted vector is only assumed to be linear
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in y and its dependence on x can be arbitrary. This class is richer than it may appear.

It includes the normal linear regression model, kNN, kernel regression and many other

regression models. For y-linear regression and Y = IR, the loss rank is the volume of an

n-dimensional ellipsoid, which can efficiently be computed in closed form (Theorem 7).

For the special case of projective regression, e.g., the classical linear regression, we can

even determine the regularization parameter α analytically (Theorem 8).

We assume Y=IR in this section, generalization to IRm is straightforward. A y-linear

regressor r can be written in the form

ŷ = r(x|x,y) =
n∑

j=1

mj(x,x)yj ∀x ∈ X and some mj : X ×X n → IR. (2.6)

Particularly interesting is r for x=x1,...,xn

ŷi = r(xi|x,y) =
∑

j

Mij(x)yj with M : X n → IRn×n, Mij(x) = mj(xi,x), (2.7)

i.e., the fitted vector can be written in the form ŷ=My. For example, in kNN regression

we have mj(x,x)= 1
k

if j∈Nk(x) and 0 else, and Mij(x)= 1
k

if j∈Nk(xi) and 0 else. Another

example is kernel regression which takes a weighted average over y, where the weight of

yj to y is proportional to the similarity of xj to x, measured by a kernel K(x,xj), i.e.,

mj(x,x)=K(x,xj)/
∑n

j=1K(x,xj).

Consider now a general linear regressor M with quadratic loss and quadratic penalty

as in (2.5)

Lossα
M (y|x) =

n∑

i=1

(
yi −

∑n
j=1Mijyj

)2

+ α‖y‖2 = y>Sαy

where

Sα = (11 −M)>(11 −M) + α11 (2.8)

(11 is the identity matrix). Sα is a symmetric matrix, for α>0 it is positive definite and

for α=0 positive semidefinite. If λ1,...,λn≥0 are the eigenvalues of S0, then λi+α are the

29



eigenvalues of Sα. V (L)= {y′∈ IRn :y′>Sαy
′≤L} is an ellipsoid with the eigenvectors of

Sα being the main axes and
√

L/(λi+α) being their length. Hence the volume is

|V (L)| = vn

n∏

i=1

√
L

λi + α
=

vnL
n/2

√
detSα

where vn = πn/2/Γ(n
2
+1) is the volume of the n-dimensional unit sphere, and det is the

determinant. Taking the logarithm we get

LRα
M(y|x) = log |V (Lossα

M(y|x))| =
n

2
log(y>Sαy)− 1

2
log detSα + log vn. (2.9)

Since vn is independent of α and M it is possible to drop vn. Consider now a class of y-

linear regressorsM={M}, e.g., the kNN regressors {Mk :k∈IN} or the d-order polynomial

regressors {Md :d∈IN0}.

Theorem 7 (LoRP for y-linear regression). For Y = IR, the best linear regressor

M :X n→IRn×n in some class M for data D=(x,y) is

M best = arg min
M∈M,α≥0

{n
2

log(y>Sαy)− 1

2
log detSα} = arg min

M∈M α≥0

{ y>Sαy

(detSα)1/n

}
(2.10)

where Sα =Sα(M) is defined in (2.8).

Note that M best depends on y unlike the M ∈M. In general we need to find the

optimal α numerically, however, it can be found analytically when M is a projection

(Theorem 8). For each α and candidate model, the determinant of Sα in the general case

can be computed in time O(n3). Often M is a very sparse matrix (like in kNN) or can

be well approximated by a sparse matrix (like for kernel regression), which allows us to

approximate detSα sometimes in linear time [Reusken, 2002]. To search the optimal α

and M , the computational cost depends on the range of α we search and the number of

candidate models we have.
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Projective regression. Consider a projection matrix M =P =P 2 with d(=trP ) eigen-

values 1, and n−d zero eigenvalues. This implies that Sα has d eigenvalues α and n−d

eigenvalues 1+α, thus detSα=αd(1+α)n−d. Let ρ=‖y−ŷ‖2/‖y‖2, then y>Sαy=(ρ+α)y>y

and

LRα
P =

n

2
log y>y +

n

2
log(ρ + α)− d

2
log α− n−d

2
log(1 + α). (2.11)

Solving ∂LRα
P /∂α = 0 w.r.t. α we get a minimum at α = αm := ρd

(1−ρ)n−d
provided that

1−ρ>d/n. After some algebra we get

LRαm
P = n

2
log y>y − n

2
KL( d

n
‖1− ρ), (2.12)

where KL(p‖q) := plog p
q
+(1−p)log1−p

1−q
is the relative entropy or the Kullback-Leibler di-

vergence between two Bernoulli distributions with parameters p and q. Note that (2.12)

is still valid without the condition 1−ρ>d/n (the term log((1−ρ)n−d) has been canceled

in the derivation). What we need when using (2.12) is that d < n and ρ < 1, which are

very reasonable in practice. Interestingly, if in (2.5) we use the penalty α‖ŷ‖2 instead of

α‖y‖2, the loss rank then has the same expression as (2.12) without any condition1.

Minimizing LRαm
P w.r.t. P is equivalent to maximizing KL( d

n
‖1−ρ). The term ρ is a

measure of fit. If d increases, then ρ decreases and conversely. We are seeking a tradeoff

between the model complexity d and the measure of fit ρ, and the LoRP suggests the

optimal tradeoff by maximizing the KL.

Theorem 8 (LoRP for projective regression). The best projective regressor P :X n→

IRn×n with P =P 2 in some projective class P for data D=(x,y) is

P best = arg max
P∈P

KL( trP (x)
n
‖y>P (x)y

y>y
). (2.13)

1Then Sα = (11n−P )>(11n−P )+αP>P = 11n+(α−1)P has d eigenvalues α and n−d eigenvalues 1,

thus det(Sα)=αd. The loss rank LRα
P = n

2 logy>y+ n
2 log(1+(α−1)(1−ρ))− d

2 logα is minimized at αm =
ρd

(1−ρ)(n−d) . After some algebra we get the same expression of LRαm

P as (2.12).
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2.3 Optimality properties of the LoRP for variable

selection

In the previous sections, the LoRP was stated for general-purpose model selection. By

restricting our attention to linear regression models, we will point out in this section some

theoretical properties of the LoRP for variable (also called feature or attribute) selection.

Variable selection is a fundamental topic in linear regression analysis. At the initial

stage of modeling, a large number of potential covariates are often introduced; one then

has to select a smaller subset of the covariates to fit/interpret the data. There are two main

goals of variable selection, one is model identification, the other is regression estimation.

The former aims at identifying the true subset generating the data, while the latter aims at

estimating efficiently the regression function, i.e., selecting a subset that has the minimum

mean squared error loss. Note that whether or not there is a selection criterion achieving

simultaneously these two goals is still an open question [Yang, 2005, Grünwald, 2007]. We

show that with the optimal parameter α (defined as αm that minimizes the loss rank LRα
M

in α), the LoRP satisfies the first goal, while with a suitable choice of α, the LoRP satisfies

the second goal.

Given d+1 potential covariates X0≡1,X1,...,Xd and a response variable Y , let X =x

be a non-random design matrix of size n×(d+1) and y be a response vector, respectively

(if y and X are centered, then the covariate 1 can be omitted from the models). Denote

by S={0,j1,...j|S|−1} the candidate model that has covariates X0,Xj1 ,...,Xj|S|−1
. Under a

proposed model S, we can write

y = XSβS + σε

where ε is a vector of noise with expectation E[ε] = 0 and covariance Cov(ε)= 11n, σ > 0,
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βS =(β0,βj1,...,βj|S|−1
)>, and XS is the n×|S| design matrix obtained from X by removing

the (j+1)st column for all j 6∈S.

2.3.1 Model consistency of the LoRP for variable selection

The ordinary least squares (OLS) fitted vector under model S is ŷS =MSy with MS =

XS(X>
SXS)−1X>

S being a projection matrix. From Theorem 8 the best subset chosen by

the LoRP is

Ŝn = arg min
S

LRαm
S = arg max

S
{KL(

|S|
n
‖1 − ρS)}, ρS =

‖y− ŷS‖2

‖y‖2 .

The term ρS is a measure of fit. It will be very close to 0 if model S is big, otherwise, it

will be close to 1 if S is too small. Therefore, it is reasonable to consider only cases in

which ρS is bounded away from 0 and 1. In order to prove the theoretical properties of

the LoRP, we need the following technical assumption.

(A) For each candidate model S, ρS is bounded away from 0 and 1, i.e., there are con-

stants c1 and c2 such that 0<c1≤ρS≤c2<1 with probability 1 (w.p.1).

Let σ̂2
S =‖y−ŷS‖2/n and Snull ={0}. It is easy to see that for every S

1− ρS = ‖ŷS‖2/‖y‖2, nσ̂2
S = ρS‖y‖2, n ȳ2 = ‖ŷSnull

‖2 ≤ ‖ŷS‖2 ≤ ‖y‖2 (2.14)

where ȳ denotes the arithmetic mean
∑n

i=1yi/n. Assumption (A) follows from

(A’) 0< lim inf
n→∞

(ȳ)2≤ lim sup
n→∞

( 1
n
‖y‖2)<∞ and ∀S : σ̂2

S→constant>0 w.p.1.

The first condition of (A’) is obviously very mild and satisfied in almost all cases in practice.

The second one is routinely used to derive asymptotic properties of model selection criteria

(e.g., Theorem 2 of Shao [1997] and Condition 1 of Wang et al. [2007]).
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Lemma 9. The loss rank of model S is

LRS ≡ LRαm
S =

n

2
log(nσ̂2

S) +
n

2
H(
|S|
n

) +
d

2
log

1− ρS

ρS
(2.15)

where ρS and σ̂2
S are defined in (2.14), and H(p) :=−plogp−(1−p)log(1−p) is the entropy

of p. Under Assumption (A) or (A’), after neglecting constants independent of S, the loss

rank of model S has the form

LRS =
n

2
log σ̂2

S +
|S|
2

log n + OP(1), (2.16)

where OP(1) denotes a bounded random variable w.p.1.

The proof is relegated to Section 2.7. This lemma implies that the loss rank LRS here

is asymptotically a BIC-type criterion, thus we immediately can state without proof the

following theorem which is the well-known model consistency of BIC-type criteria (see, for

example, Chambaz [2006]).

Theorem 10 (Model consistency). Under Assumption (A) or (A’), the LoRP is model

consistent for variable selection in the sense that the probability of selecting the true model

goes to 1 for data size n→∞.

2.3.2 The optimal regression estimation of the LoRP

The second goal of model selection is often measured by the (asymptotic) mean efficiency

[Shibata, 1983] which is briefly defined as follows. Let ST denote the true model (which

may contain an infinite number of covariates). For a candidate model S, let Ln(S) =

‖XST
βST
−XS β̂S‖2 be the squared loss where β̂S is the OLS estimate, and Rn(S)=E[Ln(S)]

be the risk. The mean efficiency of a selection criterion δ is defined by the ratio

eff(δ) =
infS Rn(S)

E[Ln(Sδ)]
(2.17)
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where Sδ is the model selected by the method δ. Note that eff(δ)≤ 1. δ is said to be

asymptotically mean efficient if lim infn→∞eff(δ)=1.

By minimizing the loss rank in α we have shown that the LoRP satisfies the first goal

of model selection. We now show that with a suitable choice of α, the LoRP also satisfies

the second goal.

From (2.11), we have that

LRα
S(y|x) =

n

2
log(σ̂2

S +
α

n
y>y) +

n

2
log n− |S|

2
log(α)− n− |S|

2
log(1 + α).

By choosing α= α̃=exp(− n(n+|S|)
|S|(n−|S|−2)

), under Assumption (A), the loss rank of model S

(neglecting the common constant n
2
logn) is proportional to

LRα̃
S(y|x) = n log σ̂2

S +
n(n + |S|)
n − |S| − 2

+ oP(1),

which is the corrected AIC of Hurvich and Tsai [1989]. As a result, the LoRP(α̃) is optimal

in terms of regression estimation, i.e., it is asymptotically mean efficient [Shibata, 1983,

Shao, 1997].

Theorem 11 (Asymptotic mean efficiency). Under Assumption (A) or (A’), with a

suitable choice of α, the loss rank is proportional to the corrected AIC. As a result, the

LoRP is asymptotically mean efficient.

2.4 LoRP for classification

We consider in this section the model selection problem in a (binary) classification frame-

work. Let D = {(X1,Y1),...,(Xn,Yn)} be n independent realizations of random variables

(X,Y ), where X takes on values in some space X and Y is a {0,1}-valued random variable.

We assume that these pairs are defined on a probability space (Ω,Σ,P) with Ω=(X×Y)n.
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We are interested in constructing a predictor t :X →{0,1} that predicts Y based on X.

The performance of the predictor t is ideally measured by the prediction loss

Pγ(t) = P(IY 6=t(X)) = P(Y 6= t(X)) (2.18)

where γ(t)(x,y) :=Iy 6=t(x) is called the contrast function. Hereafter, for a measure µ and a

µ-integrable function f , we denote the integral
∫
fdµ by µf or µ(f).

Ideally, we want to seek an optimal predictor s that minimizes Pγ(t) over all measurable

t :X→{0,1}. However, finding such a predictor is impossible in practice because the class

of all measurable functions t :X →{0,1} is huge and typically not specified. Instead, we

have to restrict to some small class of predictors F . A question arises immediately here:

how small should the class F be? A too small F may lead to an unreasonable prediction

loss, while finding an optimizer in a too large F may be an impossible task. Therefore

the class/model F itself must be selected as well (the terms class and model will be used

interchangeably). In this section, we are interested in the model selection problem in which

we would like to find a good model (in a sense specified later on) in a given set of models

{Fm, m∈M}.

The unknown prediction loss (2.18) is often estimated by the empirical risk

Pnγ(t) =
1

n

n∑

1

IYi 6=t(Xi) (2.19)

where Pn is the empirical measure based on data D, Pn = 1
n

∑n
1δ(Xi,Yi), with δx denotes

the Dirac measure at x. For a class Fm, one may seek a function t̂m minimizing Pnγ(t)

over t∈Fm and then choose model m̂=infmPnγ(t̂m). Unfortunately, it is well-known that

such a method leads to overfitting: the larger Fm, the smaller the empirical risk Pnγ(t̂m).

Consequently, the selected model is always the biggest one if the classes Fm are nested.

This leads to the idea of accounting for the model complexity, in which we select a model
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m̂ that minimizes the sum of the empirical risk and a penalty term taking the model

complexity into account.

Because Pnγ(t) underestimates Pγ(t), a well-known regularized criterion for model

selection is to penalize the approximation on Fm of the prediction loss by the empirical

risk (see, e.g., [Koltchinskii, 2001, Fromont, 2007, Arlot, 2009])

critn(m) = Pnγ(t̂m) + sup
t∈Fm

(P− Pn)γ(t). (2.20)

The second term, denoted by penn(m), is a natural measure of the complexity of class Fm,

which measures the accuracy of empirical approximation on class Fm. Then, the model

to be selected is mn =argminm{critn(m)}. For simplicity, we assume that mn is uniquely

determined.

In practice, P is unknown and so is penn(m). One has to estimate penn(m). Many

methods have been proposed to estimate this theoretical penalty: VC-dimension [Vap-

nik and Chervonenkis, 1971], Rademacher complexities [Koltchinskii, 2001, Bartlett et al.,

2002], resampling penalties [Fromont, 2007, Arlot, 2009]. All of these methods give upper

bounds for penn(m). The performances of the methods are measured in terms of oracle

inequalities. The sharper the estimate is, the better the performance is. These methods

often works well in practice but are not without problems. For example, the VC-dimension

is often unknown and needs to be estimated by another upper bound, Rademacher com-

plexities are often criticized to be too large (the local Rademacher complexities [Bartlett

et al., 2005, Koltchinskii, 2006] have been introduced to overcome this drawback, however

the latter still suffer from the hard-calibration problem because they involve unknown

constants).

In this section, based on the LoRP, we obtain a criterion to estimate the model mn

directly, not penn. Instead of giving an upper bound for penn(m), we directly estimate mn
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by minimizing a criterion over models m∈M. Minimizing the criterion is asymptotically

equivalent to minimizing critn(m) with probability 1 (Theorem 12).

The criterion is derived in Section 2.4.1, and its optimality property is given in Section

2.4.2. A numerical example to demonstrate the criterion is given in Section 2.5.

2.4.1 The loss rank criterion

Let us recall the basic idea of the LoRP. Let D =(x,y)= {(x1,y1),...,(xn,yn)} ∈ (X×Y)n

be the (actual) training data set with x = (x1,...,xn) are inputs and y = (y1,...,yn) are

(perturbed) outputs. Let y′ be other (fictitious) outputs (imagine that in experiment

situations we can conduct the experiment many times with fixed design points x, we then

would get many other y′). Suppose that we are using a model M ∈M to fit the data D.

Let LossM (y|x) be the empirical loss associated with a certain loss function when using a

model M ∈M to fit the data set (x,y). The loss rank of model M then is defined as

LRM(D) := µ {y′ ∈ Yn : LossM(y′|x) ≤ LossM(y|x)} (2.21)

with some measure µ on Yn. For example, µ can be the counting measure if Y is discrete,

the usual Lebesgue measure on IRn if Y=IR. As seen in the previous sections, for contin-

uous data cases, using the usual Lebesgue measure leads to a closed form of loss rank and

meaningful results.

The LoRP, as it is named, is a guiding principle rather than a specific selection criterion.

When it comes to apply in a specific context, a suitable choice of measure µ in (2.21) is

needed. In our current context of the binary classification, some suitable probability

measure on Yn = {0,1}n should be used to define the loss rank. To formalize this, we

define the loss rank of a model as the probability that a randomly resampled sample fit

the model better than the actual sample. This definition of the loss rank makes it not only
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possible to estimate the loss rank but also makes use of the available theory of resampling

to justify the method.

We now formally define the loss rank. Let ri, i=1,...,n be n independent Rademacher

random variables, i.e., ri takes on values either −1 or 1 with probability 1/2. The ri’s are

assumed to be independent of D. Let Y ′
i := 1+ri

2
−riYi, i.e., we flip the value/label of Yi

with probability 1/2. The loss rank of a model m is defined as

LRn(m) ≡ LRn(Fm) := PR( inf
t∈Fm

1

n

n∑

1

IY ′
i 6=t(Xi) ≤ Pnγ(t̂m)|D) (2.22)

where PR(.|D) denotes the conditional probability w.r.t. the Rademacher sequence given

data D. The selected model will be m̂LR=argminm∈MLRn(m). We name this method the

loss rank (LR) criterion.

Intuitively, the empirical risk based on the actual D would be small for a too flexible

class Fm, but many resamples D′ would then also result in small empirical risk, which leads

to a large loss rank LRn(m). Therefore, minimizing the loss rank helps avoid overfitting.

Also, a too rigid Fm fitting D not well would lead to a large loss rank as well. Thus,

the loss rank defined in (2.22) is a suitable criterion for model selection which trades off

between the fit (empirical risk) and the model complexity.

The loss rank LRn(m) (2.22) can be easily estimated by a simple Monte Carlo algorithm

as follows:

1. L̂Rn(m)←0.

2. Toss a fair coin n times and define

Y ′
i =





Yi, head occurs at i-th time

1− Yi, tail occurs at i-th time

, i = 1, 2, ..., n.

If inft∈Fm
1
n

∑n
1IY ′

i 6=t(Xi)≤Pnγ(t̂m) then L̂Rn(m)← L̂Rn(m)+1/B.
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3. Repeat step 2, B times.

The theoretical justification for this algorithm is the law of large numbers: L̂Rn(m)→

LRn(m) a.s. as B→∞.

2.4.2 Optimality property

We now discuss the model consistency of the LR criterion by using the modern theory of

empirical processes (see, e.g., van der Vaart and Wellner [1996]). To avoid dealing with

difficulties of non-measurability in empirical process theory, we as usual assume that for

each m∈M, class Fm is countable. We need the following regularity condition:

(C) Dm ={γ(t),t∈Fm}, m∈M are Donsker classes.

Recall that a function class F is called a Donsker class if
√

n(Pn−P)f converges in prob-

ability to N(0,P(f−Pf)2) uniformly in f ∈F . This, together with another condition that

P
(
supf∈F |f−Pf |2

)
<∞ (which is automatically satisfied in our context because γ(t)≤1 for

every predictor t) are essential in order for the weak convergence of empirical processes to

hold [van der Vaart and Wellner, 1996, Chapter 3]. These are also two essential conditions

in order for Efron’s bootstrap to be asymptotically valid [Gine and Zinn, 1990].

Theorem 12. Under Assumption (C), minimizing LRn(m) in (2.22) over m ∈ M is

asymptotically equivalent to minimizing the ideal criterion critn(m) in (2.20) with proba-

bility 1, i.e., m̂LR is a strong consistent estimate of mn.

On one hand, the LR criterion is closely related to penalized model selection based

on Rademacher complexities. As realized by Lozano [2000], a very large model which

generally contains a predictor predicting correctly most randomly generated labels results

in a large Rademacher penalty. While a very large model will result in a large loss rank

40



which is the probability that a randomly relabeled sample behaves better than the actual

sample. On the other hand, LR criterion is quite different from model selection based

on Rademacher complexities. While Rademacher complexities give upper bounds for the

ideal penalty penn(m), the LR criterion offers a way to directly estimate the ideal model

mn. The proof of the theorem can be found in Section 2.7.

2.5 Numerical examples

In this section we present a number of numerical examples to demonstrate how the LoRP

works in various model selection problems.

2.5.1 Comparison to AIC and BIC for model identification

Samples are generated from the model

y = β0 + β1X1 + ... + βdXd + ε, ε ∼ N(0, σ2) (2.23)

where β is the vector of coefficients with some zero entries. Without loss of generality,

we assume that β0 = 0, otherwise, we can center the response vector y and standardize

the design matrix X to exclude β0 from the model. We shall compare the performance of

LoRP to that of BIC and AIC with various factors n, d and signal-to-noise ratio (SNR)

which is ‖β‖2/σ2 (‖β‖2 is often called the length of the signal).

For a given set of factors (n, d, SNR), the way we simulate a dataset from model

(2.23) is as follows. Entries of X are sampled from a uniform distribution on [−1,1].

To generate β, we first create a vector u= (u1,...,ud)
> whose entries are sampled from a

uniform distribution on [−1,1]. The number of true covariates d∗ is randomly selected from

{1,2,...,d}, the last d−d∗ entries of u are set to zero, then coefficient vector β is computed
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by βi ={length of signal}∗ui/‖u‖. In our simulation, the length of signal was fixed to be

10. n observation errors ε1,...,εn are sampled from a normal distribution with mean 0 and

variance σ2=‖β‖2/SNR. Finally, the response vector is computed by y=Xβ+ε. For each

set of factors (n, d, SNR), 1000 datasets are simulated in the same manner to assess the

average performance of the methods. For simplicity, a candidate model is specified by its

order, i.e., we search the best model among only d models {1},{1,2}...,{1,2,...,d}. For the

general case, an efficient branch-and-bound algorithm [see, e.g., Miller, 2002, Chapter 3]

can be used to exhaustively search for the best subsets.

Table 2.1 presents percentages of correctly-fitted models with various factors n, d and

SNR. As shown, LoRP outperforms the others. The better performance of LoRP over

BIC, which is the most popular criterion for model identification, is very encouraging.

This is probably because LoRP is a selection criterion with a data-dependent penalty.

This improvement needs a theoretical justification which we intend to do in the future.

Note that the equivalence between LoRP and BIC as shown in Lemma 9 is only asymptotic.

2.5.2 Comparison to AIC and BIC for regression estimation

Consider the following model which is taken from Shibata [1983]

y = y(x) = log
1

1− x
+ ε, ε ∼ N(0, σ2), x ∈ [0, 1). (2.24)

We approximate the true function by a Fourier series and consider the problem of choosing

a good order among models

y = β0 +

k−1∑

l=1

cos(πlx/δ)

l + 1
βl + ε, k = 1, ...,K.

In the present context, a model in is completely specified by the order k of the Fourier

series. Samples are created from (2.24) at the points xi = δ i
n+1

, i=1,...,n. As in Shibata
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Table 2.1: Comparison of LoRP to AIC and BIC for model identification: Percentage of

correctly-fitted models over 1000 replications with various factors n, d and signal-to-noise

ratio (SNR).

n d SNR AIC BIC LoRP n d SNR AIC BIC LoRP

100 5 1 62 62 69 300 5 1 74 82 83

5 85 85 86 5 78 90 91

10 80 90 91 10 81 94 94

10 1 52 42 54 10 1 63 67 71

5 63 77 77 5 70 85 86

10 68 84 85 10 74 90 90

20 1 32 22 36 20 1 54 45 61

5 55 63 65 5 64 79 80

10 56 73 74 10 67 85 85

[1983], we take δ= .99, and K =163 with various n and σ. The performance is measured

by the estimate of mean efficiency (2.17) over 1000 replications.

Table 2.2 represents the simulation results. In general, LoRP (with α= α̃ as in Section

2.3) outperforms the others, except for cases with unrealistically high noise level. For cases

with high noise, mean efficiency of BIC is often larger than that of AIC and LoRP. This

was also shown in the simulation study of Shibata [1983], Table 1. This phenomenon can

be explained as follows.

The risk of model k (the model specified by its order k) is Rn(k)=‖(11−Mk)ytrue‖2+kσ2

where Mk is the regression matrix under model k and ytrue is the vector of true values

y(xi). When σ→∞, the ideal k? =arginfkRn(k)→ 1. Because BIC penalizes the model

complexity more strongly than AIC and LoRP do, the order chosen by BIC is closer to
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k?=1 than the ones chosen by AIC and LoRP. As a result, mean efficiency of BIC is larger

than that of the others.

Table 2.2: Comparison of LoRP to AIC and BIC for regression estimation: Estimates of

mean efficiency over 1000 replications with various factors n, d and signal-to-noise ratio

(SNR).

n σ AIC BIC LoRP n σ AIC BIC LoRP

400 .001 1.00 .98 .99 600 .001 1.00 .98 1.00

.01 .93 .68 .90 .01 .99 .67 .92

.05 .88 .67 .95 .05 .90 .66 .94

.1 .88 .67 .92 .1 .90 .67 .93

.5 .81 .66 .85 .5 .82 .66 .83

1 .79 .63 .82 1 .79 .65 .82

5 .67 .65 .70 5 .65 .67 .66

10 .54 .67 .59 10 .54 .59 .54

100 .31 .89 .33 100 .40 .90 .41

2.5.3 Selection of number of neighbors in kNN regression

Let us now see how the LoRP can be applied to select a good parameter k in kNN

regression. We create a dataset of n=100 observations (xi,yi) from the model:

y = f(x) + ε, with f(x) =
sin(12(x + 0.2))

x + 0.2
, x ∈ [0, 1] (2.25)

where ε∼N(0,σ2) with σ =0.5. The regression matrix M (k) for kNN regression is deter-

mined by M
(k)
ij = 1

k
if j∈Nk(xi) and 0 else. Then, the loss rank is

LR(k) = inf
α≥0
{n
2

log(y>S(k)
α y)− 1

2
log detS(k)

α },
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where S
(k)
α = (11−M (k))>(11−M (k))+α11. The most widely-used method for selecting k

is probably the generalized cross-validation (GCV) criterion [Craven and Wahba, 1979]:

GCV(k)=n‖(11−M (k))y‖2/[tr(11−M (k))]2. To judge how well GCV and LoRP work, we

compare them to an “ideal” criterion based on the expected prediction error defined as

EPE(k) =

n∑

i=1

E(yi − ŷi)
2 =

n∑

i=1

[
σ2 + (f(xi)−

1

k

∑

j∈Nk(xi)

f(xj))
2 +

σ2

k

]
.

Of course this criterion is not available in real data applications. Figure 2.1(a) shows the

curves LR(k), GCV(k), EPE(k) for k=2,...,20 (the trivial case k=1 is omitted), in which

k =7-nearest neighbors is chosen by LoRP and k=8 is chosen by GCV. The “ideal” k is

5. Both LoRP and GCV do a reasonable job. LoRP works slightly better than GCV in

this particular simulated data set.

Repeating the experiment 50 times, we find that LoRP always select a smaller k than

GCV. The averaged k over 50 values selected by LoRP (by GCV) is 7.1 (7.4, respectively).

In comparison with the “ideal” k = 5, this simulation study suggests that LoRP works

slightly better than GCV.

2.5.4 Selection of smoothing parameter

We now further demonstrate the use of the LoRP in selecting a good smoothing parameter

for spline regression. Consider the following problem: find a function belonging to the class

of functions with continuous 2nd derivative that minimizes the following penalized residual

sum of squares:

RSS(f) =
n∑

i=1

(yi − f(xi))
2 + λ

∫
(f ′′(t))2dt,

where λ is called the smoothing parameter. The second term penalizes the curvature of

function f and the smoothing parameter λ controls the amount of penalty. Our goal is to

choose a good λ.
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Figure 2.1: Choosing the tuning parameters in kNN and spline regression. The curves

have been scaled by their standard deviations. Plotted are loss rank (LR), generalized

cross-validation (GCV) and expected prediction error (EPE).
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It is well-known (see, e.g., Hastie et al. [2001], Section 5.4) that the solution is a

natural spline f(x) =
∑n

j=1Nj(x)θj where N1(x),...,Nn(x) are the basis functions of the

natural cubic spline:

N1(x) = 1, N2(x) = x, Nk+2(x) = dk(x)− dn−1(x) with dk(x) =
(x− xk)

3
+ − (x− xn)

3
+

xn − xk
.

The problem thus reduces to finding a vector θ∈IRn that minimizes

RSS(θ) = (y −Nθ)>(y −Nθ) + λθ>Ωθ

where Nij =Nj(xi) and Ωij =
∫
N ′′

i (x)N ′′
j (x)dx. It is easy to see that the solution is θ̂λ =

(N>N+λΩ)−1N>y, and the fitted vector is ŷ=Nθ̂λ=Mλy with Mλ=N(N>N+λΩ)−1N>y.

The fitted vector is linear in y, thus the loss rank is

LR(λ) = arg min
α≥0
{n
2

log(y>Sα
λy)− 1

2
log detSα

λ}

where Sα
λ =(11−Mλ)

>(11−Mλ)+α11.

Let us consider again the dataset generated from model (2.25). Figure 2.1(b) shows

the curves LR(λ), GCV(λ) and EPE(λ). The derivation of expressions for GCV(λ) and

EPE(λ) is similar to the previous example. λ≈ 3×10−4 is the optimal value selected by

the “ideal” criterion EPE. λ≈5×10−4 and λ≈7×10−4 are selected by LoRP and GCV,

respectively. Averaged λ over 20 replications are 5.1×10−4 for LoRP and 7.2×10−4 for

GCV. Once again, like the previous example, LoRP seems to work better than GCV.

2.5.5 Model selection by loss rank for classification

We now demonstrate the LR criterion for model selection in classification, developed in

Section 2.4, by a simple example of a piecewise constant classifier and compare it to the

model selection criterion based on Rademacher complexities. Consider the intervals model
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selection problem which was described by Fromont [2007] (see also, Lozano [2000], Bartlett

et al. [2002]). Given a number N ∈ IN , let X ={1,2,...,2N}. For u,v∈ IN,u≤v, denote by

IN [u,v] the set of integers in interval [u,v]. For an integer number m, 1≤m≤N , let

Fm =

{
t : X → {0, 1}, t =

2m∑

k=1

ckIIN [(k−1)2N−m+1,k2N−m], ck ∈ {0, 1}, k = 1, ...2m

}

be the set of piecewise constant functions defined on X and taking on values {0,1} with

possible jumps at k2N−m, k=1,...,2m−1 (two functions of this kind are plotted in Figure

2.2).

For a given m0, 1≤m0≤N , let S0 be the set of odd-numbered segments:

S0 =
⋃

k=2p+1, p=0,1,...,2m0−1−1

IN [(k − 1)2N−m0 + 1, k2N−m0 ].

Let X be a uniformly distributed random variable on X and Y be a {0,1}-valued random

variable defined as

P(Y = 1|X ∈ S0) =
1

2
+ h, and P(Y = 1|X /∈ S0) =

1

2
− h

where h∈ (1,1
2
) is called the margin parameter. We now have a model selection problem

with N candidate models {Fm, m ∈M = {1,...,N}} and the optimal predictor s(x) =

IS0(x)∈Fm0 belongs to one of them. See Figure 2.2 for plots of s(x) and observations.

We are interested in identifying the true model m0. The advantage of the intervals model

selection problem is that it is very easy to compute for each m∈M

Pnγ(t̂m) = inf
t∈Fm

1

n

n∑

i=1

IYi 6=t(Xi) and sup
t∈Fm

1

n

n∑

i=1

riIYi 6=t(Xi).

The reader is referred to Fromont [2007] for the details.

We compare the LR criterion to another criterion based on Rademacher complexities

which is taken following Fromont [2007] to be

critRC(m) = Pnγ(t̂m) + penRC(m) with penRC(m) = E( sup
t∈Fm

1

n

n∑

i=1

riIYi 6=t(Xi)|D).
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Figure 2.2: Plots of the true functions and data for two cases.
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We shall call this the Rademacher complexity (RC) criterion. In our experiment, the loss

rank LRn(m) and Rademacher complexities penRC(m) are estimated by B = 200 Monte

Carlo simulations.

Figure 2.2 plots true functions and observation data (with n=100) for two cases: first

with N =8, m0 =2, h= .1, then N =8, m0 =4, h= .2. These pictures show how hard it

is to decide intuitively what the true model is. Figure 2.3 plots the LR criterion and RC

criterion curves. Both criteria identify the true model in both cases.

Table 2.3 presents the proportions of correct identification over 100 replications for each

of 16 cases with various sample sizes n=50, 100, 200, 300 and noise levels h= .05, .1, .2, .3

(m0 =4). It suggests that both criteria are model selection consistent as the proportions

increases to 1 as n and h increase. The simulation suggests that the LR criterion has a

slight improvement over the RC criterion for large sample sizes.
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Figure 2.3: Plots of the loss rank (LR) and Rademacher complexities (RC) vs complexity

m.
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Table 2.3: Model selection by loss rank for classification: Proportions of correct identifi-

cation of the loss rank (LR) and Redemacher complexities (RC) criteria for various n and

h.

n h LR criterion RC criterion n h LR criterion RC criterion

50 .05 .12 .13 200 .05 .23 .21

.1 .35 .35 .1 .67 .66

.2 .62 .64 .2 .99 .97

.3 .95 .97 .3 1 1

100 .05 .15 .15 300 .05 .30 .28

.1 .41 .41 .1 .78 .76

.2 .89 .90 .2 1 .99

.3 .98 .98 .3 1 1

2.6 Applications

We present in this section two well-studied applications of the LoRP, one is to selecting

the ridge parameter in ridge regression and the other is to selecting shrinkage parameters

in regularization procedures such as the Lasso for variable selection. Their full discussions

can be found in Tran [2009, 2011b].

2.6.1 LoRP for choosing ridge parameter

Ridge regression

Consider the standard linear regression model

y = Xβ + ε (2.26)
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where y is an n-vector of responses, ε is an n-vector of noise, X is an (n×p) matrix

standardized such that X>X is in the form of a correlation matrix, E(ε) = 0, cov(ε) =

σ211n, and β = (β1,...,βp)
> is the vector of regression coefficients. When X is full rank,

it’s well-known in the literature that the unbiased least squares estimator of β is β̂OLS =

(X>X)−1X>y. When X>X is nearly singular, however, the expected distance E‖β̂OLS−

β‖2 = σ2tr(X>X)−1 will be very large, and β̂OLS is not stable (a small change in y may

lead to a large change in β̂OLS even in signs and some of its components may be extremely

large in absolute value).

The fact that the OLS estimate β̂OLS may explode when X>X is ill-conditioned natu-

rally leads to the idea of restricting coefficients β to a sphere by minimizing

n∑

j=1

(yj −
p∑

i=1

βixji)
2, s.t.

p∑

i=1

β2
i ≤ s, (2.27)

where s≥0 is a complexity parameter of the model. This optimization problem is equiva-

lent to the penalized least square estimation: minimizing w.r.t. β

n∑

j=1

(yj −
p∑

i=1

βixji)
2 + λ

p∑

i=1

β2
i , (2.28)

where λ>0 is called the ridge parameter that controls the amount of shrinkage of regression

coefficients. There is a one-by-one correspondence between s and λ [Hastie et al., 2001,

Chapter 3], an increase in s leads to a decrease in λ and otherwise.

The solution of (2.28) with a given λ is β̂(λ)=(X>X+λ11p)
−1X>y. This is often called

the ridge estimator, and was originally introduced by Hoerl and Kennard [1970] in an

attempt to deal with the ill-conditioned X>X. Although β̂(λ) is biased when λ>0, there

is a trade-off between the bias and the variance. Let d2
1≥ ...≥ d2

p be the eigenvalues of

X>X, the expected distance between β̂(λ) and β [Hoerl and Kennard, 1970] is

E‖β̂(λ)− β‖2 = λ2β>(X>X + λ11p)
−2β + σ2

p∑

1

d2
i

(d2
i + λ)2

. (2.29)
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The first term is known as the squared bias, it equals 0 when λ=0, the second is the sum

of variances tr[var(β̂(λ))]. Hoerl and Kennard [1970] showed that there exists a λ>0 such

that E‖β̂(λ)−β‖2<E‖β̂OLS−β‖2.

The remaining problem is how to choose a good ridge parameter. A large number of

methods have been proposed: the ridge trace [Hoerl and Kennard, 1970], Hoerl-Kennard-

Baldwin estimator (HKB) [Hoerl et al., 1975], PRESS, cross-validation and its variants

[Allen, 1974, Stone, 1974, Geisser, 1975, Craven and Wahba, 1979, Golub et al., 1979], and

the bootstrap [Delaney and Chatterjee, 1986].

In this section, based on the LoRP, we obtain a penalized maximum likelihood (PML)

criterion for choosing λ. The criterion is of the form

− sup(log-likelihood) + penalty of the complexity of model.

This PML criterion can be considered as a “continuous” version of AIC whose penalty of

the model complexity is the number of coefficients which is a discrete number. A simulation

study is carried out to compare the suggested method to several competitors.

Penalized ML for choosing λ

Denote by Mλ the ridge regression model w.r.t. parameter λ, M= {Mλ, λ > 0} is then

the class of candidate models. The regression matrix w.r.t. model Mλ is Mλ =X(X>X+

λ11p)
−1X> (we use the same notations for both model and its regression matrix). The

fitted vector ŷλ=Mλy is linear in y so Theorem 7 can be applied. The matrix Sα in (2.8)

now is

Sα = Sα(λ) = (11n −Mλ)
>(11n −Mλ) + α11n.

Consider the singular value decomposition (SVD) of X, X =UDV , where U is an (n×n)

orthogonal matrix, V is a (p×p) orthogonal matrix, D is an (n×p) diagonal matrix with
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principal diagonal elements d1≥ ...≥dp≥0. By using the SVD of X, it is easy to see that

the eigenvalues of Sα are

α + (
λ

d2
1 + λ

)2, ..., α + (
λ

d2
p + λ

)2, 1 + α, ..., 1 + α.

Suppose at the moment that α=OP(1/n) (this will be justified later on, here α may be

a random variable), where an = OP(bn) means random variables |an/bn| ≤C with some

bounded constant C as n→∞ with probability 1. Then we get with probability 1 (w.p.1)

that

detSλ
α = (1 + α)n−p

p∏

i=1

(α + (
λ

d2
i + λ

)2)

= (1 + α)n−p

[
p∏

i=1

(1 + α(
d2

i + λ

λ
)2)

][
p∏

i=1

(
λ

d2
i + λ

)2

]

≈ [1 + (n − p)α]

[
1 + α

p∑

1

(
d2

i + λ

λ
)2

] [
p∏

i=1

(
λ

d2
i + λ

)2

]

≈
[
1 + α(n− p +

p∑

1

(
d2

i + λ

λ
)2)

][
p∏

i=1

(
λ

d2
i + λ

)2

]

= [1 + αν]

p∏

i=1

(
λ

d2
i + λ

)2 where ν := n− p +

p∑

1

(
d2

i + λ

λ
)2 = n +

2p

λ
+

1

λ2

p∑

1

d4
i .

Let ρλ =‖y−ŷλ‖2/‖y‖2, (2.9) becomes

LRα
Mλ

(D) =
n

2
log(y>Sλ

αy)− 1

2
log detSλ

α

≈ n

2
log ‖y‖2 +

n

2
log(ρλ + α)− 1

2
log(1 + αν) − 1

2
log[

p∏

i=1

(
λ

d2
i + λ

)2].

Solving ∂LRα
λ(D)/∂α=0 with respect to α, we get a minimum at

α = αm =
νρλ − n

(n− 1)ν
provided νρλ > n w.p.1. (2.30)

ρλ can be considered as a measure of fit. Clearly, in the case of overfitting, ρλ will be

very close to 0. The main point of LoRP is to avoid overfitting. Thus, it is reasonable to

consider only λ such that ρλ is not so small in the sense of the following condition
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Condition (C): νρλ =(n+ 2p
λ

+ 1
λ2

∑p
1d

4
i )ρλ >n w.p.1.

Our experience to date shows that this condition is mostly satisfied in practice. Under the

condition (C), αm =OP(1/n) that justifies the assumption above about α. We then also

get αm/ρλ =OP(1/n) which leads to

n

2
log(ρλ + αm) =

n

2
[log ρλ +

αm

ρλ

− 1

2
(
αm

ρλ

)2 +
1

3
(
αm

ρλ

)3 + ...]

=
n

2
log ρλ +

1

2
+ oP(1)

where an =oP(1) means |an|→0 as n→∞ w.p.1. Combine the last equalities and neglect

the constants independent of model Mλ, we can finally write the loss rank of model Mλ as

LRλ(D) ≡ LRαm
Mλ

(D) =
n

2
log(‖y− ŷλ‖2)−

1

2
log
[νρλ − 1

n − 1

p∏

i=1

(
λ

d2
i + λ

)2
]
. (2.31)

Assume now that the noise ε is Gaussian N(0,σ211n), the log-likelihood of the observa-

tions from model (2.26) (neglecting constant −n
2
log(2π)) then is

ln(β, σ2) = −n

2
log σ2 − 1

2σ2
‖y−Xβ‖2.

Because of the equivalence between (2.27) and (2.28), the set Θλ = {θ = (β1,...,βp,σ
2) :

‖β‖2≤s,σ2>0} (note that s=s(λ) as there is a correspondence between s and λ) can be

seen as the parameter space of regression model Mλ, thus, since ε is Gaussian

sup
θ∈Θλ

ln(β, σ2) = −n

2
log(

1

n
‖y− ŷλ‖2)−

n

2
= −n

2
log(‖y − ŷλ‖2) +

n

2
log n− n

2
.

Neglecting the constant term which is independent of model Mλ, (2.31) can be written as

sup
θ∈Θλ

ln(β, σ2) +

p∑

1

log(1 +
d2

i

λ
)− 1

2
log

νρλ − 1

n − 1
(2.32)

which has the form of a penalized maximum likelihood criterion

− sup(log-likelihood) + “penalty of the model complexity”
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where the penalty term is

pen(n, λ) =

p∑

1

log(1 +
d2

i

λ
)− 1

2
log

νρλ − 1

n − 1
. (2.33)

Define c=c(λ)=1/λ. We can see that c is a measure of the complexity of model Mλ: larger

c (i.e., smaller λ) leads to bigger Θλ, thus Mλ is more complex/flexible; and otherwise.

Noting that when n is sufficiently large

pen(n, λ) ≈
p∑

1

log(1 +
d2

i

λ
)− 1

2
log ρλ

that ρλ increases as λ increases, and that ρλ↑1 as λ↑∞, we have w.p.1 that (i) pen(n,λ)

is an increasing monotone function of the complexity c, and (ii) pen(n,λ)→ 0 as c→ 0

and pen(n,λ)→∞ as c→∞. Therefore pen(n,λ) has the usual properties of a penalty

function [Chambaz, 2006]. This penalty function depends on ρλ, so it is data-dependent.

It has been widely criticised that PML criteria based on distribution-free penalties may

sometimes work poorly for some specific distributions. PML based on data-dependent

penalties may give better performance over based on distribution-free penalties.

A simulation study

We now conduct a systematic simulation study to evaluate the performance of the sug-

gested criterion for choosing λ and compare it to other competitors including GCV [Golub

et al., 1979]

GCV(λ) =
1

n
‖(11n −Mλ)y‖2/[

1

n
tr(11n −Mλ)]

2,

HKB estimator [Hoerl et al., 1975]

λHKB = ps2/‖β̂(0)‖2, s2 = ‖y−Xβ̂OLS‖2/(n− p)

and the ordinary least square (OLS). The HKB is introduced by the authors of the original

papers on ridge regression, while GCV is the most widely used method.
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Two factors that affect the ridge regression the most are degree of correlation between

explanatory variables and signal-to-noise ratio (SNR). The degree of correlation is often

measured by the condition number [Belsley et al., 1980] defined as d1/dp≥ 1 where d1≥

...≥dp >0 are singular values of design matrix X. The larger the condition number, the

stronger the dependencies between explanatory variables. SNR is defined as ‖β‖2/σ2.

In our study, four levels of correlation (very weak, weak, strong and very strong) w.r.t.

condition numbers 5, 10, 50 and 100 (according to Belsley et al. [1980]) are studied. We

considerer three levels of SNR: 1, 10 and 100 which can be considered as large, medium and

small errors, respectively. Therefore 12 ridge regression models which represent various

situations we would face in the real world are studied. For each model, a design matrix

of size (50×4) and a response vector are generated. To search for the optimal ridge

parameters, 1000 values of λ ranging from 0.001 to 1 in increments of .001 are used.

The performance of the methods is measured in terms of the average MSE in regression

coefficients. For each of the 12 regression models, 100 replications are generated, the MSEs

and the chosen λ’s are taken average over the 100 replications. For a method δ, its average

MSE is computed by

MSE(δ) =
1

100

100∑

j=1

‖β(j) − β̂(j)(δ)‖

where β(j) is the true coefficients of j-th replication and β̂(j)(δ) is the ridge estimator of β(j)

with λ is chosen by method δ. Along with the average MSE(δ), the standard deviations

sd(δ) are also computed.

Table 2.4 presents the average and standard deviation of MSE’s over 100 replications

for each of the 12 ridge regression models. The numbers in brackets are the means and

standard deviations of selected λ’s. LR outperforms the others, especially when there

are at least weak dependencies (i.e., the condition number ≥10) between the explanatory
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Table 2.4: LoRP for choosing ridge parameter in comparison with GCV, Hoerl-Kennard-

Baldwin (HKB) estimator and ordinary least squares (OLS): Average MSE over 100 repli-

cations for various signal-to-noise ratio (SNR) and condition number (CN). Numbers in

brackets are means and standard deviations of selected λ’s.

SNR CN LR GCV HKB OLS

5 1.95±0.54 2.36±1.51 2.26±1.31 3.18±2.15

(0.80±0.21) (0.39±0.31) (0.21±0.17) (0)

10 1.94±0.68 2.77±2.66 2.87±2.23 6.05±4.06

1 (0.79±0.21) (0.38±.32) (0.13±0.15) (0)

50 2.06±0.88 6.52±11.52 10.12±13.91 29.31±23.37

(0.81±0.21) (0.36±0.32) (0.05±0.14) (0)

100 2.09±0.72 4.95±9.41 17.86±22.99 58.41±39.57

(0.83±0.18) (0.38±0.31) (0.02±0.08) (0)

5 1.24±0.61 0.99±0.58 0.95±0.57 1.01±0.60

(0.20±0.13) (0.05±0.06) (0.03±0.01) (0)

10 1.57±0.88 1.61±0.97 1.71±0.87 1.94±1.25

10 (0.20±0.12) (0.05±0.07) (0.04±0.01) (0)

50 1.44±0.95 3.47±4.03 4.26±5.61 9.91±8.38

(0.21±0.14) (0.04±0.08) (0.01±0.01) (0)

100 1.42±0.83 2.95±2.96 6.27±8.06 18.85±13.39

(0.20±0.13) (0.03±0.07) (0.01±0.01) (0)

5 0.49±0.31 0.32±0.20 0.32±0.20 0.31±0.19

(0.04±0.01) (0.001±0.003) (0.003±0.001) (0)

10 1.328±0.88 1.327±0.95 1.40±0.95 2.02±1.37

100 (0.05±0.01) (0.006±0.005) (0.002±0.001) (0)

50 1.371±0.92 1.47±0.96 1.66±1.12 2.78±2.28

(0.06±0.03) (0.007±0.006) (0.002±0.002) (0)

100 1.45±0.91 1.59±1.19 2.69±3.13 6.02±4.78

(0.05±0.03) (0.005±0.004) (0.001±0.001) (0)
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variables. Also, as the condition number increases, the performance of LR increases, while

that of GCV and HKB decreases.

We use the method of comparing means of two paired samples (see, e.g., [Rice, 1995,

Chapter 11]) to test the hypothesis H0 :LR=δ (i.e., the overall average MSE of method δ is

the same as that of LR) against the alternative H1 :LR>δ (i.e., LR is better than δ, or the

overall average MSE of δ is larger than that of LR), where δ is each of the methods GCV,

HKB and OLS. Table 2.5 shows the P-values of the tests, in which the P-values smaller

than 0.01 are rounded down to 0. As shown, when there are dependencies between the

explanatory variables, most of the P-values are smaller than significance level 0.05. Thus,

we can conclude that the improvement of LR over the others is statistically significant.

In general, we can rank the performance of the criteria as: LR>GCV>HKB>OLS. In

summary, the simulation results strongly support the use of LR.

2.6.2 LoRP for choosing regularization parameters

The Lasso [Tibshirani, 1996] and other regularization procedures such as the SCAD [Fan

and Li, 2001] are attractive methods for variable selection, subject to a proper choice of

shrinkage parameter. We obtain in this section from the LoRP a criterion for choosing

shrinkage parameters for variable selection purposes.

Let us consider the problem of variable selection in linear regression analysis. We

consider the case where a large number (even larger than the sample size) of candidate

covariates are introduced at the initial stage of modeling. One then has to select a smaller

subset of the covariates to fit/interpret the data. If the number of potential covariates is

not so large (as small as 30), one may use subset selection to select significant variables

(Section 2.3). However, with a large number of covariates, searching on model space is

computationally infeasible. Regularization procedures are successful methods to overcome
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Table 2.5: P-values for testing LR=δ/LR>δ

SNR CN LR>GCV LR>HKB LR>OLS

1 5 0 0.01 0

10 0 0 0

50 0 0 0

100 0 0 0

10 5 1 1 0.99

10 0.35 0.02 0.01

50 0 0 0

100 0 0 0

100 5 1 1 1

10 0.50 0.27 0

50 0.14 0 0

100 0.03 0 0

this problem. A Lasso-type procedure estimates the regression coefficient vector β by

minimizing the sum of the squared error and a regularization term

‖y−Xβ‖2 + λT (β), (2.34)

where X is an (n×d) non-random design matrix, y is an n−vector of responses, and λ≥0

is a shrinkage parameter that controls the amount of regularization. The regularization

function T (β) can take different forms according to different regularization procedures.

The original and most popular one used in the Lasso is the l1 norm T (β) =
∑d

j=1|βj|.

As λ increases, the coefficients are continuously shrunk towards 0. When λ is sufficiently

large, some coefficients are shrunk to exact 0, thus leading to sparse solutions. This feature

makes the Lasso-type procedures very attractive for variable selection. Indeed, their model
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selection consistency has been shown [Zhao and Yu, 2006, Meinshausen and Buhlmann,

2006, Fan and Li, 2001]: Under some conditions, there exists a “proper” sequence of

shrinkage parameters {λn} under which

{j : β̂λn
j 6= 0} = ST w.p.1 when sample size n is large enough, (2.35)

where β̂λn =(β̂λn
1 ,...,β̂λn

d )> is the regularized estimator of β with shrinkage parameter λn,

and ST is the true model, i.e., ST is the index set of true covariates. Therefore, it is

convenient to use the Lasso-type procedures for variable selection purposes.

The remaining problem in practice is how to choose such proper λn. A widely-used

criterion is the generalized cross-validation criterion (GCV) [Craven and Wahba, 1979,

Tibshirani, 1996]. However, theoretical properties of GCV for choosing λ for the purpose

of variable selection have not been investigated yet. Furthermore, for choosing shrinkage

parameter for the SCAD method [Fan and Li, 2001], a regularization method closely

related to the Lasso, GCV seems to be likely to choose shrinkage parameters that produce

overfitted models [Wang et al., 2007]. Zou et al. [2007] showed that the number of nonzero

coefficients is an unbiased estimate for the degrees of freedom of the Lasso. As a result,

popular model selection criteria - like AIC, BIC and Cp - can be used for selecting λ.

However, theoretical properties of the selected model remain unknown. We obtain in this

section a criterion for selecting shrinkage parameters in order for regularization procedures

to produce the true model.

Although regularization procedures can be used for simultaneous variable selection and

estimation, it seems to be impossible to tune the shrinkage parameter to achieve both model

selection consistency and optimal estimation at the same time. For an orthogonal design,

Leng et al. [2006] showed that the Lasso estimator that is optimal in terms of estimation

does not give consistent model selection. This fact was also shown by Poetscher and Leeb
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[2009] for other regularized estimators. We are primarily concerned with the problem of

variable selection, i.e., we use a Lasso-type procedure to produce a set of potential subsets

and then select the best one among this preselected set using a model selection criterion.

The preselected set consists of at most d subsets rather than 2d possible subsets if using

subset selection. After selecting the best subset, we of course can use an unpenalized

procedure to estimate the coefficients in order to reduce estimation bias.

We shall derive from the LoRP a criterion, called the loss rank (LR) criterion, for

selecting shrinkage parameters for variable selection purposes. As long as the regularization

procedure in use has the consistency property (2.35), the shrinkage parameter selected by

the LR criterion will produce the true model asymptotically with probability 1. This

model selection consistency of the proposed criterion will be proven theoretically in the

case where the number of covariates d is fixed and smaller than n. For cases with d�n, our

simulation study suggests that this property still holds. The simulation also shows that our

method for variable selection works surprisingly well. Benefiting from fast l1-regularization

algorithms, our method is able to correctly identify significant variables from thousands

of candidates in several CPU seconds.

The LR criterion

Let β̂λ=(β̂λ
1 ,...,β̂λ

d)
> be the regularized estimator of β w.r.t. a certain shrinkage parameter

λ, i.e., β̂λ is the solution of (2.34). Denote by Sλ ={j : β̂λ
j 6=0} the index set corresponding

to the non-zero coefficients, by dfλ = |Sλ| the number of non-zero coefficients, and by XSλ

the design matrix corresponding to the selected covariates. We assume at the moment

that dfλ≤n and further assume that matrices XSλ
are full rank. The case where dfλ >n

will be dealt with later on.

Fitting model Sλ by least squares, we denote the OLS estimator and the variance
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estimator by

β̂Sλ
= (X>

Sλ
XSλ

)−1X>
Sλ

y ; σ̂2
Sλ

=
1

n
‖y−XSλ

β̂Sλ
‖2,

respectively. The fitted vector under model Sλ

ŷSλ
= XSλ

β̂Sλ
= MSλ

y with MSλ
:= XSλ

(X>
Sλ

XSλ
)−1X>

Sλ

is, conditionally on Sλ, linear2 in y. Then from (2.9), the loss rank of model Sλ with

parameter α is

LRα
λ ≡ LRα

Sλ
=

n

2
log(y>Sλ

αy)− 1

2
log det(Sλ

α)

where Sλ
α =(11−MSλ

)>(11−MSλ
)+α11=(1+α)11−MSλ

. Because projection matrix MSλ
has

dfλ eigenvalues 1 and n−dfλ eigenvalues 0, Sλ
α has dfλ eigenvalues α and n−dfλ eigenvalues

1+α. Thus, detSλ
α =αdfλ(1+α)n−dfλ . Let ρλ :=‖y−ŷSλ

‖2/‖y‖2, we have

LRα
λ =

n

2
log y>y +

n

2
log(ρλ + α)− dfλ

2
log α− n− dfλ

2
log(1 + α).

Taking derivative w.r.t α, it is easy to see that LRα
λ is minimized at αm = ρλdfλ

(1−ρλ)n−dfλ

provided that 1−ρλ>dfλ/n. This condition is ensured by Assumption (A3) below. Finally,

after some algebra, the loss rank of model Sλ can be explicitly expressed as

LRλ = LRαm
λ =

n

2
log ‖y‖2 − n

2
KL(

dfλ
n
‖1− ρλ). (2.36)

where KL(p‖q) = plog p
q
+(1−p)log 1−p

1−q
is the Kullback-Leibler divergence between the

Bernoulli distributions with parameters p,q∈(0,1). The optimal shrinkage parameter(s) λ

(for variable selection purposes) chosen by the LR criterion will be

λ̂LR ∈ argminλ≥0LRλ = argmaxλ≥0KL(
dfλ
n
‖1− ρλ). (2.37)

2Strictly speaking, ŷSλ is not linear in y because Sλ depends on y. However, we can consider preselected

subsets Sλ as fixed models. If instead we first derive the LR criterion for a general fixed model S and

then apply to Sλ, we get the same results.
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Often, LRλ reaches its minimum in an interval (λ̂l,λ̂u) (see Figure 2.4). Any λ in this

interval produces the same model. This can be explained as follows. When λ increases

from 0 to infinity, the number of non-zero coefficients of β̂λ will be a non-increasing step

function of λ [Efron et al., 2004]; in other words, the covariates are in turn removed from

the models. As a result, by its definition LRλ is also a step function. Note that our

emphasis is on variable selection rather than on coefficient estimation.

Optimality property

In order to prove the model selection consistency of the LR criterion, we assume in this

section that d is fixed and d≤n. We need the following assumptions

(A1) There exists a deterministic sequence of reference shrinkage parameters λn such that

Sλn→ST w.p.1.

(A2) ε is Gaussian N(0,11n).

(A3) For each candidate λ, ρλ is bounded away from 0 and 1, i.e., there are constants

c1, c2 such that 0<c1≤ρλ≤c2<1 w.p.1.

ρλ =‖y−ŷSλ
‖2/‖y‖2 is a measure of fit. In extreme cases where the resulting model Sλ is

too big or too small, ρλ will be close to 0 and 1, respectively. Therefore, it is reasonable

to consider only λ in which ρλ is bounded away from 0 and 1. Note that for every Sλ we

have that

ρλ =
‖y− ŷSλ

‖2

‖y− ŷSλ
‖2 + ‖ŷSλ

‖2 =
σ̂2
Sλ

σ̂2
Sλ

+ ‖ŷSλ
‖2/n.

For λ such that Sλ is the true model ST , (A3) follows from a mild sufficient condition

0 < lim inf
n→∞

(
1

n
‖ŷST

‖2) ≤ lim sup
n→∞

(
1

n
‖ŷST

‖2) <∞ and σ̂2
ST
→ σ2 > 0 w.p.1
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where ŷST
is the fitted vector under the true model. Moreover, if the intercept is included

in the models, we have that n(ȳ)2≤‖ŷSλ
‖2≤‖y‖2. (A3) then follows from a very mild

condition

0 < lim inf
n→∞

(ȳ)2 ≤ lim sup
n→∞

(
1

n
‖y‖2) <∞ and σ̂2

S → constant > 0 ∀S w.p.1.

Assumption (A1) is satisfied by some regularization procedures, for example, Lasso [Zhao

and Yu, 2006] and SCAD [Fan and Li, 2001]. Normality assumption (A2) is not a necessary

condition for consistency. This assumption can be relaxed, but then a more complicated

proof technique is needed.

We have the following lemma which is similar to Lemma 9.

Lemma 13. Under Assumption (A3), the loss rank LRλ has the form

LRλ =
n

2
log σ̂2

Sλ
+

dfλ
2

log n + OP(1), (2.38)

where OP(1) denotes a bounded random variable w.p.1.

The above lemma is used to prove model selection consistency of the LR criterion.

Theorem 14 (Model selection consistency of the LR criterion). Assume that d is

fixed. Under Assumptions (A1)-(A3), the shrinkage parameter selected by the LR criterion

will produce the true model w.p.1 when n is large enough, i.e.,

P(Sλ̂LR
= ST )→ 1

where λ̂LR is determined in (2.37).

The idea of the proof is to bound the probabilities of picking under- and overfitted

models. A model S is said to be underfitted if S misses at least one true covariate (i.e.,

S 6⊇ST ), overfitted if S contains all true covariates and at least one untrue (i.e., S)ST ).
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There is a finite number of such S, so it is sufficient to prove that P(Sλ̂LR
=S)→0 for each

of them. The detailed proof is relegated to Section 2.7.

We can of course use other model selection criteria such as AIC or BIC rather than

LoRP for choosing the best subset among the preselected set produced by the regular-

ization procedure. AIC is asymptotically optimal in terms of loss efficiency but likely to

select overfitted models, while BIC is asymptotically optimal in terms of model selection

consistency; see Shao [1997], Yang [2005]. Therefore one may use BIC as another stopping

rule besides LoRP. The shrinkage parameter chosen by BIC will be

λ̂BIC ∈ argminλ≥0BICλ where BICλ :=
n

2
log σ̂2

Sλ
+

dfλ
2

log n. (2.39)

We see from Lemma 13 that, up to a constant, the LR criterion is asymptotically equivalent

to BIC. It follows from the proof of Theorem 14 that using BIC also leads to the same

model selection consistency, i.e., P(Sλ̂BIC
= ST )→ 1 as n→∞. However, finite-sample

simulation studies below show that the LR criterion works better than BIC, especially

when d�n.

High-dimensional variable selection problems in which d� n are currently of great

interest to scientists. In order for such a problem to be solvable, an essential assumption

needed is that it is d∗−sparse [Candes and Tao, 2007], i.e., the number of true covariates

d∗ must be smaller than n. Under this solvability assumption, it is clear that we can safely

ignore irrelevant cases in which the number of covariates dfλ under consideration is larger

than n. Then the LR criterion (2.36) is still valid. In practice, therefore, we propose to

ignore those λ under which dfλ >n and apply the LR criterion as usual. A theoretically

rigorous treatment is beyond the scope of the thesis, which we intend to do in future

research. However, a systematic simulation study below suggests that the LR criterion

still works surprisingly well and enjoys model selection consistency.
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Numerical examples

We present now a simulation study for the LR criterion, compare it to other methods,

and also apply it to a real data set. The regularization procedure we use is the Lasso.

The Lasso solution paths are computed by the LARS algorithm of Efron et al. [2004]. A

widely-used method for choosing the Lasso parameter is GCV [Craven and Wahba, 1979,

Tibshirani, 1996]

GCVλ =
1

n

‖y−Xβ̂λ‖2

(1 − 1
n
DFλ)2

where DFλ := tr[X(X>X+λW−)−1X>y], W =diag(|β̂λ
j |) and W− is a generalized inverse

of W . Another one is the BIC-type criterion of Wang et al. [2007] (although its variable

selection consistency requires the oracle property, a property not enjoyed by the Lasso)

B̃ICλ = log
‖y −Xβ̂λ‖2

n
+ DFλ

log n

n
.

Note that β̂λ 6= β̂Sλ
. The former is the Lasso estimator whereas the latter is the OLS

estimator resulting from fitting model Sλ by least squares. Our proposed criteria (2.36)

and (2.39) are constructed based on β̂Sλ
, not β̂λ. This is the essential difference between

our approach and the others.

We consider the following example which is taken from Tibshirani [1996]:

y = x>β + σε (2.40)

where β=(3, 1.5, 0, 0, 2, 0, 0, 0)>, xi are marginally N(0,1) with the correlation between xi

and xj equal to 0.5|i−j|, ε∼N(0,1). We compare the performance of LR and BIC criterion

to that of GCV and B̃IC. The performance is measured by the frequency of underfitting,

overfitting and correct fitting and average number of zero coefficients over 100 replications.

Table 2.6 summarizes the simulation results for various factors n and σ. Although B̃IC

works slightly better than GCV, it still produces overfitted models most of the time. BIC
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does a good job and LR outperforms the others.

Table 2.6: LoRP for choosing regularization parameters: small-d case

σ n Method Under- Correctly Overfitted(%) Ave. No.

fitted(%) fitted(%) of zeros

1 100 GCV 0 0 100 1.57

B̃IC 0 3 97 2.32

BIC 0 89 11 4.88

LR 0 97 3 4.97

200 GCV 0 0 100 1.64

B̃IC 0 0 100 1.81

BIC 0 94 6 4.93

LR 0 100 0 5

3 100 GCV 0 0 100 1.34

B̃IC 0 0 100 1.53

BIC 1 70 29 4.22

LR 1 77 22 4.37

200 GCV 0 0 100 1.69

B̃IC 0 0 100 2.09

BIC 0 91 9 4.89

LR 0 91 9 4.90

We now consider cases of large d with d=300 and n=100, 200, 500. We set up a sparse

recovery problem in which most of the coefficients are zero except β30=β60= ...=β300=10.

Table 2.7 summarizes the simulation results for various factors n = 100, 200, 500 and

σ=1, 3. The LR criterion works surprisingly well in comparison with BIC and the others.

Let us take a closer look at the simulation results in Tables 2.6 and 2.7. Although
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the LR and BIC criteria are asymptotically equivalent to each other, the finite-sample

simulation study shows that the LR criterion works better than BIC. A similar situation

was also observed in Section 2.5 for subset selection. This is probably because, contrary

to the BIC criterion, the penalty term of the LR criterion is data-adaptive. Some results

in the model selection literature show that selection criteria with data-adaptive penalties

are more encouraging in terms of performance than those with deterministic penalties;

see Yang [2005] and references therein. We see that BIC seems to break down for the

cases d>n as it always produces overfitted models, but starts working well when n>d.

The OP(1) term in (2.38) plays an important role here: it serves as a “corrector” to BIC.

Note that BIC is just an approximation to the logarithm of posterior model probability

[Schwarz, 1978], the approximation might be inaccurate if n is not large enough relative

to d.

As another example, we consider a real data set. Stamey et al. [1989] studied the

correlation between the level of prostate antigen (lpsa) and a number of clinical measures

in men: log cancer volume (lcavol), log prostate weight (lweight), age, log of the amount

of benign prostatic hyperplasia (lbph), seminal vesicle invasion (svi), log of capsular

penetration (lcp), Gleason score (gleason), and percentage of Gleason scores 4 or 5

(pgg45). Following Tibshirani [1996], we assume a linear regression model between the

response lpsa and the 8 covariates. We want to select a parsimonious model for the sake

of scientific insight into the response-covariate relationship.

The data set of size 97 is standardized so that the intercept β0 is excluded. Figure

2.4 presents the curves GCVλ, B̃ICλ, LRλ (1000 values of λ ranging from 0.01 to 10 in

increments of .01 were used to search for the optimal λ). The λ selected by GCV, B̃IC are .5

and 1.1, and the corresponding models are {1, 2, 3, 4, 5, 7, 8}, {1, 2, 3, 4, 5, 8}, respectively.

The LR criterion is minimized in the interval (3.1,5.9). Any value in this interval produces
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Table 2.7: LoRP for choosing regularization parameters: large-d case

σ n Method Under- Correctly Overfitted(%) Ave. No.

fitted(%) fitted(%) of zeros

1 100 GCV 0 0 100 90.20

B̃IC 0 0 100 95.8

BIC 0 0 100 202.01

LR 0 30 70 288.24

200 GCV 0 0 100 87.51

B̃IC 0 0 100 89.45

BIC 0 0 100 102.02

LR 0 86 14 289.83

500 GCV 0 0 100 97.51

B̃IC 0 0 100 104.45

BIC 0 40 60 287.30

LR 0 100 0 290

3 100 GCV 0 0 100 78.35

B̃IC 0 0 100 87.40

BIC 0 0 100 202.04

LR 0 18 82 287.51

200 GCV 0 0 100 92.02

B̃IC 0 0 100 96.51

BIC 0 0 100 102.01

LR 0 58 42 289.29

500 GCV 0 0 100 93.31

B̃IC 0 0 100 96.52

BIC 0 35 65 288.35

LR 0 80 20 289.75
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Figure 2.4: Prostate cancer data: LRλ, B̃ICλ and GCVλ.
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the same model SLR = {1, 2, 5}. The BIC of these models are −19.20, −21.38, −25.19,

respectively. That means the BIC also supports the choice of the LR criterion. (Note

however that this does not mean that the BIC is an optimal criterion).

2.7 Proofs

Proof of Lemma 9. Inserting y>y=nσ̂2
S/ρS into (2.12) and rearranging terms gives (2.15).

By Assumption (A) the last term in (2.15) is bounded w.p.1. Taylor expansion log(1−p)=

−p+O(p2) implies H(p)/p+logp→ 1, hence n
2
H( |S|

n
) = |S|

2
logn+O(1). Finally, dropping

the S-independent term n
2
logn from (2.15) gives (2.16).

Proof of Theorem 12. By Y ′
i := 1+ri

2
−riYi, it’s easy to see that IY ′

i 6=t(Xi)=Iri=1−riIYi 6=t(Xi),

therefore

inf
t

1

n

n∑

1

IY ′
i 6=t(Xi) =

1

n

n∑

1

Iri=1 − sup
t

1

n

n∑

1

riIYi 6=t(Xi). (2.41)
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Moreover,

1

n

n∑

1

riIYi 6=t(Xi) =
1

n

n∑

1

IYi 6=t(Xi) −
1

n

n∑

1

(1 − ri)IYi 6=t(Xi) = Pnγ(t)− PR
n γ(t) (2.42)

where PR
n := 1

n

∑
Wiδ(Xi,Yi) with Wi := 1−ri ∼ 2Binomial(1,1/2) is the weighted bootstrap

empirical measure. From (2.41)-(2.42) and (2.22), we have

LRn(m) = PR

(
sup
t∈Fm

(Pn − PR
n )γ(t) ≥ 1

n

n∑

1

Iri=1 − Pnγ(t̂m)
∣∣D
)
.

The key point in the proof is the result of weak convergence of the weighted bootstrap

empirical processes. The result states that, under Assumption (C), the difference between

the conditional law of Pn−PR
n given data D and the law of P−Pn converges to zero almost

surely [van der Vaart and Wellner, 1996, p.346]. More formally, let Ĝn = Pn−PR
n and

Gn =P−Pn, and let l∞(Dm) be the space of all bounded functions from Dm to the real set

IR (Ĝn and Gn are random elements in l∞(Dm)). Then

|ERh(Ĝn)−Eh(Gn)| → 0, P− almost surely

for every continuous, bounded function h : l∞(Dm)→IR.

Therefore, by the continuous mapping theorem with notice that 1
n

∑n
1Iri=1→1/2 a.s.,

we have P-almost surely

∣∣∣PR

(
supt∈Fm

(Pn − PR
n )γ(t) ≥ 1

n

∑n
1 Iri=1 − Pnγ(t̂m)

∣∣D
)

−P
(

supt∈Fm
(P − Pn)γ(t) ≥ 1

2
− Pnγ(t̂m)

)∣∣∣→ 0.

Thus, as n is sufficiently large

LRn(m) = P

(
sup
t∈Fm

(P− Pn)γ(t) ≥ 1

2
− Pnγ(t̂m)

)
= P(critn(m) ≥ 1

2
) w.p.1.

For simplicity, suppose that LRn(m) has a unique minimum at m̂LR. If m̂LR 6= mn,

P(critn(mn) ≥ 1
2
) > P(critn(m̂LR) ≥ 1

2
). On the other hand, critn(mn) < critn(m̂LR) by

72



the definition of mn, so P(critn(mn)≥ 1
2
)≤P(critn(m̂LR)≥ 1

2
). The contradiction implies

m̂LR =mn w.p.1.

Proof of Theorem 14. The main idea of the proof is taken from Chambaz [2006]. Let

us denote by zi = (xi1,...,xid,yi) the i-th observation and by γ(.,m,σ2) the density of the

Gaussian distribution with mean m and variance σ2. Under model S, the density of zi is

pθS (zi)=γ(yi,
∑

j∈Sβjxij,σ
2). The log-likelihood is

ln(θS) =
n∑

i=1

log pθS (zi) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑

i=1

(yi −
∑

j∈S

βjxij)
2.

It is easy to see that

sup
θ∈Θ(S)

ln(θ) = −n

2
log σ̂2

S −
n

2
(1 + log(2π)).

By (2.38), the loss rank of model Sλ now can be written as

LRλ = − sup
θ∈Θ(Sλ)

ln(θ) +
dfλ
2

log n + C(n) + OP(1)

where the constant term C(n)= n
2
logn− n

2
(1+log(2π)) is independent of Sλ.

No underestimation. It is sufficient to prove that P(Sλ̂LR
=S)→0 for each S 6⊇ST , as

there is only a finite number of such S.

P(Sλ̂LR
= S) = P(Sλ̂LR

= S,LRλ̂LR
≤ LRλn)

= P
(1

n
sup

θ∈Θ(S
λ̂LR

)

ln(θ)−
1

n
sup

θ∈Θ(Sλn )

ln(θ) ≥
log n

2n
(dfλ̂LR

− dfλn) + oP(1), Sλ̂LR
= S

)

≤ P
(1

n
sup

θ∈Θ(S)

ln(θ)−
1

n
sup

θ∈Θ(Sλn )

ln(θ) ≥
log n

2n
(|S| − dfλn) + oP(1)

)

≤ P
(1

n
sup

θ∈Θ(S)

ln(θ)−
1

n
sup

θ∈Θ(ST )

ln(θ) ≥
log n

2n
(|S| − d∗) + oP(1)

)
+ P (Sλn 6= ST )

≤ P
(1

n
sup

θ∈Θ(S)

ln(θ)−
1

n
ln(θ

∗) ≥ log n

2n
(|S| − d∗) + oP(1)

)
+ P (Sλn 6= ST ) (2.43)
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where θ∗∈ST denotes the true parameter. By the law of large numbers for the supremum

of the likelihood ratios (see, e.g., Lemma B1 of Chambaz [2006])

1

n
sup

θ∈Θ(S)

ln(θ)−
1

n
ln(θ

∗)→− inf
θ∈Θ(S)

KL(pθ∗‖pθ) w.p.1.

Because S 6⊇ST , infθ∈Θ(S)KL(pθ∗‖pθ)>0. This, together with the fact that logn
2n

(|S|−d∗)→0

and Assumption (A1), shows that the left-hand side term of (2.43) goes to 0 as n→∞.

No overestimation. Fix an overfitted model S)ST , let us denote by

H(θ) := KL(pθ∗‖pθ) = E[
1

n
(ln(θ

∗)− ln(θ))] ≥ 0 ∀θ ∈ Θ(S)

(H(θ) is not necessarily positive) and hn(θ) :=
ln(θ)−ln(θ∗)

H(θ)1/2 with convention 0
0
=0. For every

θ∈Θ(S)

ln(θ)− ln(θ
∗) + nH(θ) = ln(θ)− ln(θ

∗)− E[ln(θ) − ln(θ
∗)]

= H(θ)1/2(hn(θ)− Ehn(θ))

≤ H(θ)1/2 sup
ν∈Θ(S)

(hn(ν)− Ehn(ν)). (2.44)

By Θ(ST )⊂Θ(S) and the property of supremum, for every ε > 0 there exists θ0 ∈Θ(S)

such that

sup
θ∈Θ(S)

(ln(θ)− ln(θ
∗)) ≤ ln(θ0)− ln(θ

∗) + ε (2.45)

and also

ln(θ0)− ln(θ
∗) ≥ 0. (2.46)

From (2.45) and (2.44)

sup
θ∈Θ(S)

(ln(θ)− ln(θ
∗)) ≤ H(θ0)

1/2 sup
θ∈Θ(S)

(hn(θ)− Ehn(θ)) + ε. (2.47)

From (2.46) and (2.44)

nH(θ0) ≤ ln(θ0)− ln(θ
∗) + nH(θ0) ≤ H(θ0)

1/2 sup
θ∈Θ(S)

(hn(θ)− Ehn(θ))
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or

nH(θ0)
1/2 ≤ sup

θ∈Θ(S)

(hn(θ)− Ehn(θ)). (2.48)

Now, since ε>0 was chosen arbitrarily, (2.47) and (2.48) yield

sup
Θ(S)

ln(θ)− sup
Θ(ST )

ln(θ) ≤ sup
Θ(S)

{ln(θ)− ln(θ
∗)} ≤ 1

n

(
sup

θ∈Θ(S)

(hn(θ)− Ehn(θ))

)2

. (2.49)

We need the following bounded law of the iterated logarithm which is a consequence of

Theorem 4.1, Dudley and Philipp [1983] or Lemma B2, Chambaz [2006].

Lemma 15. There is a finite constant C so that

lim sup
n

supθ∈Θ(S) |hn(θ)− Ehn(θ)|
√

n log log n
≤ C w.p.1.

Now for every overfitted model S )ST , it is sufficient to prove that P(Sλ̂LR
=S)→0.

In fact,

P(Sλ̂LR
= S) = P(Sλ̂LR

= S, LRλ̂LR
≤ LRλn)

≤ P

(
sup
Θ(S)

ln(θ) − sup
Θ(Sλn )

ln(θ) ≥
log n

2
(|S| − dfλn) + OP(1)

)

≤ P

(
sup
Θ(S)

ln(θ) − sup
Θ(ST )

ln(θ) ≥
log n

2
(|S| − d∗) + OP(1)

)
+ P(Sλn 6= ST )

= P

([ log log n
d∗

2
log n

][supΘ(S) ln(θ)− supΘ(ST ) ln(θ)

log log n

]
≥ |S|

d∗ − 1 + oP(1)

)
+ P(Sλn 6= ST )

≤ P

([ log log n
d∗

2
log n

][supΘ(S) |hn(θ)− Ehn(θ)|√
n log log n

]2
≥ |S|

d∗ − 1 + oP(1)

)
+ P(Sλn 6= ST )(2.50)

where the last inequality follows from (2.49). Observe that |S|> d∗ as S ) ST . This,

together with Lemma 15 and the fact that loglogn/(d∗

2
logn)→ 0, implies that the first

probability of (2.50) goes to zero. The second probability of (2.50) also goes to zero be-

cause of Assumption (A1). This completes the proof.
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Chapter 3

Predictive model selection

As discussed in the introduction chapter, model selection has many different goals. We

developed in the previous chapter a principle for model selection where the main motivation

is to learn the underlying structure in data. In this chapter, we approach the problem

from a different angle: consider the problem of model selection with an explicit predictive

motivation. In other words, the primary goal in model selection now is to select useful

models for predicting well future observations.

We present in Section 3.1 a procedure for optimal predictive model selection. Section

3.2 discusses a regularization version of this procedure for variable selection in generalized

linear models, which leads to the proposal of a predictive version of the Lasso. The

materials presented in this chapter have been published in Tran [2011a] and Tran et al.

[2010].
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3.1 A procedure for optimal predictive model selec-

tion

Let D be a given set of past observations andM={Mk,k∈K} be a set of candidate models

from which we want to select a useful one in order to predict future observations. Denote

by ∆ a future observation. We assume that there exists a known (up to a normalization

constant) predictive distribution p(∆|D) which is the best one in terms of making predic-

tions on future data but for some reasons (discussed later) should not be used. We will

refer to p(∆|D) as a reference distribution and give now two typical examples of it. The

basic idea of the model selection method proposed in this section is applicable to both

Bayesian and frequentists, but we will mainly take a Bayesian approach in this chapter.

Consider the model selection problem from a variable selection point of view, and con-

sider the case in which it is believed that every covariate should have a nonzero but prob-

ably small coefficient. Then, from the Bayesian perspective, it is sometimes argued that

the posterior predictive distribution based on the full model with a carefully elicited prior

should be used to achieve the best prediction accuracy [Aitchison, 1975, Geisser, 1993],

and that ignoring any covariate may lose some information for predicting the response.

Another example of the reference distribution p(∆|D) is the predictive distribution based

on Bayesian model averaging (BMA) which has some optimalities for prediction, and works

very well empirically (see Leamer [1978], Draper [1995], Raftery et al. [1997], Hoeting et al.

[1999] and references therein).

Although the full model and BMA often have predictive optimalities, there are some

reasons that may preclude their use. Their main drawback is non-interpretability. The full

model does not tell us (clearly or in an easily accessible way) which and how predictors

affect the response, while BMA does not produce an easily interpretable model because
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it averages over all candidate models. For many reasons, analysts often prefer simple

models. For example, given a large number of potential covariates, we would commonly

like to select a smaller subset that predicts future responses as well as possible. This

would give a model that can interpret which and how covariates affect the response. This

drawback is somewhat similar to that of ridge regression (see Section 2.6.1). Although

ridge regression produces stable estimates of coefficients and often has the optimal mean

squared error, it does not give an interpretable model. In contrast to ridge regression,

the Lasso (see Section 2.6.2) shrinks some coefficients to exact 0, so it produces an easily

interpretable model. That is why the Lasso is somewhat prefered to ridge regression.

Another drawback of using the full model or BMA is that if there is a cost associated

with data collection then it would be inadvisable to use all of the predictors or models.

There are some desirable properties that any statistical procedure should satisfy: pre-

diction accuracy, simplicity (or parsimony) and interpretability. Our motivation is to look

for a model that has all these desirable properties. The aim is to choose a single model that

is interpretable (thus simple) and has the best predictive performance over any other single

model that may have been reasonably selected. The idea is to trade-off between prediction

accuracy and interpretability. To this end, we use a distance function to measure distances

between the reference distribution p(∆|D) and the predictive distributions p(∆|D,M) of

candidate models M ∈M, and seek a model that has the smallest distance. Then, the

chosen model has obviously better predictive performance than any other single model -

besides, it is a model (rather than a combination of models), thus it is interpretable. In

addition, the predictive ability of the chosen model is similar to that of the reference dis-

tribution p(∆|D). We will refer to this Procedure for Optimal Predictive MOdel Selection

as POPMOS.

The POPMOS shall be fully described in Section 3.1.1, its implementation is discussed
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in Section 3.1.2 and its application to a real data set is given in Section 3.1.5. We present

in Section 3.1.3 two popular measures of predictive performance and introduce in Section

3.1.4 a model uncertainty indicator.

3.1.1 Setup of the POPMOS

Let
∫
d(p,q)dx be a distance function that measures the distance (or pseudo-distance)

between two density functions p and q (for simplicity, we assume that the Lebesgue measure

is used, however the following procedure can be constructed similarly for the general

case). We define the distance between the reference predictive distribution p(∆|D) and

the predictive distribution p(∆|D,Mk) under model Mk by

δ(Mk) ≡ δ(Mk,D, d(., .)) =

∫
d(p(∆|D), p(∆|D,Mk))d∆. (3.1)

If a single model is preferred, it is natural to seek a model Mk that has the predictive

distribution p(∆|D,Mk) closest to p(∆|D). Formally, the optimal predictive (OP) model

(among a given collection of modelM) is determined as

M̂OP = argminMk∈Mδ(Mk). (3.2)

This setup of the POPMOS is general enough to apply to various frameworks where the

collection of single models involves linear regression models, generalized linear models, Cox

models, graphical models, etc.

For the distance function, we will consider the Kullback-Leibler (KL) distance where

d(p,q) = plog(p/q). The KL distance is widely used in statistics and information theory

to measure the (pseudo) distance between two density functions and was used to derive

two well-known model selection rules, namely AIC [Akaike, 1973] and MDL [Rissanen,

1978]. Besides, many other distance functions can be used as well. Some of them are the
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Hellinger distance where d(p,q)=(
√

p−√q)2 and f -divergence where d(p,q)=f(p/q)q for

a convex function f such that f(1)=0. Using the KL distance, (3.1) becomes

δKL(Mk) = E

[
log

p(∆|D)

p(∆|D,Mk)

]
(3.3)

where the expectation is w.r.t. p(∆|D).

3.1.2 Implementation of the POPMOS

We discuss here an implementation of the POPMOS in the general case where the BMA

predictive distribution is used as the reference distribution p(∆|D). The case of predictive

variable selection in GLMs where the full model is used as the reference will be discussed

in Section 3.2.

Let p(Mk) be the prior probability of model Mk∈M, p(θk|Mk) be the prior distribution

of model parameter θk under model Mk. Then, the BMA predictive distribution of a future

observation ∆ is given by

p(∆|D) =
∑

Mk∈M

p(∆|Mk,D)p(Mk |D). (3.4)

In this expression, p(Mk|D) is the posterior probability of model Mk

p(Mk|D) =
p(D|Mk)p(Mk)∑

Ml∈M p(D|Ml)p(Ml)
, (3.5)

where

p(D|Mk) =

∫
p(D|θk,Mk)p(θk|Mk)dθk (3.6)

is the marginal likelihood and

p(∆|Mk,D) =

∫
p(∆|θk,Mk,D)p(θk|Mk,D)dθk (3.7)
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is the posterior predictive distribution of ∆ under model Mk. Expression (3.4) is a weighted

average of the posterior predictive distributions of ∆ under each model, the weights being

the posterior model probabilities.

There is a sense in which BMA provides better predictive performance than any single

model [Madigan and Raftery, 1994, Draper, 1995, Raftery et al., 1997, Hoeting et al., 1999,

Clyde and George, 2004].

However, the implementation of BMA (and thus of the POPMOS) is often a difficult

task. Fortunately, by virtue of recent computational advances and computational method-

ologies like Markov chain Monte Carlo (MCMC) methods, the computational burden of

the integrals in (3.3) is greatly reduced. We discuss below an approach for implementing

the POPMOS using the Occam’s window idea of Madigan and Raftery [1994] (see also

Hoeting et al. [1999]) and an MCMC algorithm for estimating integrals. Other methods

such as variational Bayes could be used also.

Occam’s window principle

The number of competing models under consideration is often huge and precludes the

calculation of all distances δ(Mk). It’s natural that if a model gets very little support

from the data (i.e., its posterior model probability p(Mk|D) is very small), it should be

excluded from consideration. This is the Occam’s window idea of Madigan and Raftery

[1994]. More formally, we only consider models belonging to

A =

{
Mk ∈ M :

maxMl∈M p(Ml|D)

p(Mk|D)
≤ C

}
(3.8)

where the cutoff parameter C is chosen by the data analyst, C=20 being often used [Madi-

gan and Raftery, 1994, Raftery et al., 1997]. Then the reference predictive distribution
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p(∆|D) in (3.4) is approximated by

p(∆|D) =
∑

Mk∈A

p(∆|Mk,D)p(Mk|D) (3.9)

and (3.2) reduces to

M̂OP = argminMk∈Aδ(Mk). (3.10)

In most cases, the number of models in A is greatly reduced to fewer than 50 and often

fewer than 25. Note that once A is determined, the posterior model probabilities must be

normalized (so that
∑

Mk∈Ap(Mk|D)=1).

MCMC for distance calculation

MCMC methods provide a very efficient way to estimate complicated integrals. A good

reference book on MCMC in practice is Gilks et al. [1996]. The Metropolis-Hasting algo-

rithm for estimating δKL(Mk) is as follows (for simplicity, we assume that the components

of ∆ are continuous):

1. Initialize a Markov chain to ∆0, set t←0.

2. Sample a candidate point ∆ from a multivariate normal distribution with mean ∆t

and covariance matrix σ2Ip where p is the dimension of ∆.

3. Sample a point u from a uniform distribution U(0,1).

4. If u≤min(1, p(∆|D)
p(∆t|D)

) then set ∆t+1←∆, else set ∆t+1←∆t.

5. Set t← t+1 and go back step 2 until t>T - a prespecified length of the chain.

For selection of the scale parameter σ, in our following examples, σ is often set after a

few trials by justifying the convergence of Markov chains graphically. σ can also be deter-
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mined in an automatic and adaptive way to yield a desirable overall sampler acceptance

probability [Garthwaite et al., 2010].

Let T be the length of the chain {∆t}, and T0 be the burn-in number. Then expectation

(3.3) is approximated by

δKL(Mk) = E

[
log

p(∆|D)

p(∆|D,Mk)

]
≈ 1

T − T0

T∑

t=T0+1

log
p(∆t|D)

p(∆t|D,Mk)
.

In order to get an accurate approximation, our experience shows that several chains with

overdispersed starting points should be sampled so that the chains can run through the

whole support of the target distribution.

Calculating integrals (3.6) and (3.7). What remains in implementing the POPMOS is

to compute integrals (3.6) and (3.7). In some special cases such as linear regression with

conjugate priors (see Section 3.1.5) or discrete graphical models [Madigan and York, 1995],

integrals (3.6) and (3.7) have closed forms. In general cases, the Laplace approximation is

often used to estimate p(D|Mk) [Schwarz, 1978, Tierney and Kadane, 1986, Raftery, 1996],

and p(∆|D,Mk) is often approximated by p(∆|θ̂k,Mk) where θ̂k is the maximum likelihood

estimate of θk [Taplin, 1993, Draper, 1995]. The relative approximation error is O(n−1)

[Kass and Vaidyanathan, 1992].

3.1.3 Measures of predictive ability

As mentioned earlier, a primary goal of statistical analysis is to make predictions and

inferences on future data. Many authors argue that a model is more impressive/preferable

if it assigns higher probabilities to the actual (test) data. Thus, a good and widely-used

measure of predictive ability is the partial predictive score (PPS) [Good, 1952, Geisser,

1980, Hoeting et al., 1999]. Suppose that the data is split into two parts, the training set
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DT and the prediction set DP . Then the partial predictive score of model M is defined as

PPS(M) = − 1

|DP |
∑

∆∈DP

log p(∆|M,DT ) (3.11)

where |DP | is the cardinality of DP and p(∆|M,DT ) is the predictive distribution under

model M given the training data DT . The smaller the PPS, the better the predictive

performance.

Another measure of predictive ability is the predictive coverage (PC). Consider the

regression context in which ∆=(x,y) where x is the explanatory value and y is the response

value. Let m and s be the mean and the standard deviation (which can be estimated by

MCMC) of the predictive distribution p(∆|M,DT ) = p(y|x,M,DT ) of the response y at

predictor value x. The 90%, say, prediction interval for a future observation of response

y at x is approximated by the interval m±1.645s. The (90%) PC then is defined as the

proportion of observations in DP that fall in the 90% prediction interval. In the following

examples, we use these two measures, PPS and PC, to assess the predictive performance

of selected models.

3.1.4 Model uncertainty indicator

We now introduce an indicator to measure model uncertainty, which we call the model

uncertainty indicator (MUI). It is defined as the ratio of the second highest posterior

model probability to the highest. More formally, let M0 =argmaxM∈Ap(M |D), then the

MUI is defined as

MUI =
maxM∈A\{M0} p(M |D)

p(M0|D)
≤ 1. (3.12)

It is clear that the larger the MUI is, the more model uncertainty there is. A very small

MUI indicates no model uncertainty. Our experience shows that when MUI is small enough

(often, MUI ≤ .5), the OP model (i.e., the model selected by (3.10)) coincides with the
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highest posterior probability model. However, if the MUI is large, the OP model is often

different to the highest posterior probability model and has better predictive ability.

3.1.5 An example

We now demonstrate the POPMOS for predictive variable selection in linear regression

analysis where the BMA is used as the reference. We use the Bayesian framework used in

Raftery et al. [1997]. Each model M under consideration is of the form

Y = β0 + β1Xi1 + ... + βkXik + ε, ε ∼ N(0, σ2)

where {Xi1 ,...,Xik} is a subset of the set {X1,...,Xp} of all potential covariates. Let y and

X (w.r.t. M) be the response vector and the corresponding design matrix, respectively.

It is reasonable to assign a uniform prior to possible combinations of covariates, i.e., the

prior information is “objective” between models. For model parameters, we assume priors

β|σ2 ∼ Nk+1(µ, σ2V ) ,
νλ

σ2
∼ χ2

ν.

Hyperparameters µ,V,ν,λ are chosen as follows (see Raftery et al. [1997] for the details)

ν = 2.58, λ = .28, µ = (β̂0, 0, ..., 0), V = diag(s2
Y ,

φ2

s2
i1

, ...,
φ2

s2
ik

)

where β̂0 is the OLS estimate of β0, s2
Y ,s2

i1
,...,s2

ik
are sample variances of Y,Xi1,...,Xik,

respectively, and φ=2.85. Typically, in our experience, results are relatively insensitive to

changes in values of the hyperparameters.

Then the marginal likelihood (3.6) under model M is

p(D|M) =
Γ(ν+n

2
)(νλ)ν/2[λν + (y−Xµ)>(11 + XV X>)−1(y−Xµ)]−(ν+n)/2

πn/2Γ(ν/2)|11 + XV X>|1/2
(3.13)

and the posterior predictive distribution (3.7) is

p(∆|D,M) =
Γ(ν+n+1

2
)

√
πΓ(n+ν

2
)

1

(1 + x>(X>X + V −1)−1x)1/2

A(n+ν)/2

B(n+ν+1)/2
(3.14)
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where

A = λν + ‖y‖2 + µ>V −1µ− (X>y + V −1µ)>(X>X + V −1)−1(X>y + V −1µ)

and

B=λν+‖y‖2+y2+µ>V −1µ−

−(xy+X>y+V −1µ)>(xx>+X>X+V −1)−1(xy+X>y+V −1µ).

Analysis of the crime data

Criminal behavior has been argued to be strongly related to criminal activity’s costs and

benefits and to other legitimate opportunities. Ehrlich [1973] used the data from 47 U.S.

states in 1960 to test this argument. The dependent variable was the crime rate. The

costs of crime were measured by probability of imprisonment and average time served in

prison. The benefits were related to wealth and income inequality in the community. The

investigation also included other variables such as sex ratio, percentage of young males,

etc. In summary, 15 potential covariates (Table 3.1) were considered.

This benchmark dataset has been analyzed by many authors. Previous diagnostic

checkings (see, e.g., Draper and Smith [1981]) did not show any violation of the linear

assumption. Ehrlich [1973] used the stepwise method to select significant variables. How-

ever, Raftery et al. [1997] reported evidence against Ehrlich’s results and suggested using

posterior probabilities to do variable selection. We now use this dataset to demonstrate

the POPMOS and compare it to other model selection rules.

Table 3.1 summarizes the experimental results using the whole dataset. Models se-

lected by different methods are listed in the corresponding columns. The third column is

the overall posterior probability that the j-th covariate is in a model, i.e., P (βj 6=0|D), cal-

culated by summing the posterior probabilities of models that contain the j-th covariate,
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Table 3.1: Crime data: Overall posterior probabilities and selected models

Number Covariate P (βj 6=0|D) AIC BIC OP MP

1 % of males age 14-24 .78 ? ? ? ?

2 Indicator for southern state .18

3 Mean years of schooling .97 ? ? ? ?

4 Police expenditure in 1960 .72 ? ? ? ?

5 Police expenditure in 1959 .50 ? ?

6 Labor force participation rate .08

7 No. males per 1000 females .08

8 State population .24

9 No. nonwhites per 1000 people .61 ? ? ? ?

10 Unemployment rate age 14-24 .11

11 Unemployment rate age 35-39 .45 ? ?

12 Wealth .31 ?

13 Income inequality 1.00 ? ? ? ?

14 Probability of imprisonment .82 ? ? ? ?

15 Ave. time in state prisons .23 ?

MUI=.71 suggests that there is high model uncertainty

j = 1,2,...,15. The POPMOS selected the predictors with highest posterior probabilities

(≥ .5). Raftery et al. recommended (from an empirical analysis) using posterior proba-

bilities rather than p-values for variable selection. The last column presents the so-called

median probability model (MP) introduced by Barbieri and Berger [2004]. The MP model

is defined as the model consisting of those covariates which have overall posterior prob-

ability P (βj 6= 0|D)≥ .5. In the framework of normal linear regression and under some

conditions, Barbieri and Berger showed that the MP model has the optimal predictive
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performance in terms of predictive expected squared loss (see Barbieri and Berger [2004]

for the full definition). As shown in Table 3.1, the OP model is the same as the MP model.

Table 3.1 also shows the models selected by AIC and BIC (which were exhaustively

searched by using the branch-and-bound algorithm [Miller, 2002]). AIC, BIC and POP-

MOS produced three different models. This is not a surprise because these criteria have

different goals. As we may expect, the AIC model is the “biggest” model among selected

models: it contains 9 covariates versus 7 covariates for OP and BIC. As we will see next,

AIC models sometimes have poor predictive performances.

We now use the crime data to assess the predictive ability of the selection rules. To

this end, the dataset was randomly split into two parts. One with 24 observations was

used as the training set, the other with 23 observations was used as the prediction set.

Other splits can be adopted. Table 3.2 shows the PPS and PC of the selected models.

With C=20 being used, model set A contains 29 models. The model uncertainty indicator

MUI=.61 suggests that there is moderate model uncertainty. As shown, the OP model has

a better predictive performance than the AIC and BIC models. AIC has a poor predictive

performance.

Note that the models selected using half of the data are slightly different from the

models selected using the full data (however, they both contain the most important co-

variates). This is not a surprise because of the small size of the dataset. If we had a large

enough dataset, using either the full data or half of it would lead to the same results. The

selected models summarized in Table 3.2 are used only to examine the methods, they are

not the final chosen models.
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Table 3.2: Crime data: Assessment of predictive ability

Method Model PPS PC

AIC 1 3 4 5 9 13 14 .18 82.61%

BIC 3 4 9 13 14 .16 82.61%

MP 1 3 4 5 9 13 .12 86.96%

OP 1 3 4 5 9 13 .12 86.96%

BMA all .06 91.30%

MUI=.61 suggests that there is moderate model uncertainty

3.2 The predictive Lasso

We present in this section an application of the POPMOS idea to the variable selection

problem in generalized linear models (GLMs). The method described in the previous

section may be challenging to implement in high-dimensional GLMs because searching

over the whole model space is computationally infeasible. Like the idea of the Lasso,

we overcome this problem by using l1 constraints on the coefficients. By doing this, we

can enjoy the computational advantages of algorithms for convex optimization with l1

constraints. Unlike the Lasso, however, our approach has an explicit predictive motivation

which aims at selecting a useful model with high prediction accuracy. We refer to this

methodology as the predictive Lasso or pLasso for short. The pLasso will be fully developed

in Section 3.2.1-3.2.2 and some examples will be presented in Section 3.2.3. This material

was developed in Tran et al. [2010].
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3.2.1 The predictive Lasso

We consider the problem of simultaneous coefficient estimation and variable selection for

GLMs with potential covariates x=(x0≡1,x1,...,xp)
>∈X and the response y∈Y. With a

suitable link function g, g(E(y|x)) is assumed to be a linear combination of x

g(E(y|x)) = β0 + β1x1 + ... + βpxp = x>β. (3.15)

We assume that the covariates xi are in their final forms, no further transformations are

needed (i.e., for various reasons and in order to keep things simple, we restrict ourselves to

the linear approximation (3.15)). The sampling distribution of an observation ∆i=(xi, yi)

then is assumed to have the following form

p(∆i|β, φ) = p(xi)p(yi|xi,β, φ) ∝ p(xi) exp

(
1

a(φ)

[
yiθ(x

>
iβ)− b(θ(x>iβ))

])
,

where β∈IRp+1, φ>0 are the coefficient vector and scale parameter, respectively, and θ, a

and b are known functions. In order to discuss the methodology in a general setting, we

consider predictors x as random. Bayesian variable selection with a random covariate has

been considered in a decision theoretic framework where the main concern is prediction of

a future observation for which the corresponding predictor is not yet observed (see, e.g.,

Lindley [1968]). The case with fixed design points can be considered as a special case,

then the density p(xi) in the above expression can be omitted.

We are concerned with the problem of simultaneous coefficient estimation and variable

selection with the goal of prediction in mind. Like the Lasso, we would like to develop a

method for simultaneous variable selection and parameter estimation. However, unlike the

Lasso our approach has a more explicit predictive motivation, which aims at producing a

useful model with high prediction accuracy.

Given the past dataset D and certain priors for parameters (β, φ) of the full model,
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the predictive distribution p(∆|D) for a future observation ∆=(x,y) is given by

p(∆|D) = p(x|D)p(y|x,D) = p(x|D)

∫
p(y|x,β, φ)p(β, φ|D)dβdφ. (3.16)

We can assume that p(x|D)≡p(x), i.e., future design points are independent of past data.

We propose to estimate the coefficient vector β by solving the following optimization

problem:

min
β

∫
log

p(∆|D)

p(∆|β, φ)
p(∆|D)d∆ s.t.

p∑

j=1

wj|βj| ≤ τ (3.17)

where the tuning parameter τ ≥ 0 and weights wj ≥ 0 are chosen later. (As will become

clear shortly, φ plays no role in this optimization problem, we can assume at the moment

that φ is known). Note that the objective function is the Kullback-Leibler divergence from

p(∆|β,φ) to the reference predictive distribution p(∆|D). We refer to this procedure of

estimating β through the optimization of (3.17) as the predictive Lasso (pLasso).

Let {∆t=(xt,yt), t=1,...,T} be Markov chain Monte Carlo (MCMC) samples from the

predictive distribution p(∆|D). The integral in (3.17) then can be approximated by the

average (1/T )
∑T

t=1log[p(∆t|D)/p(∆t|β,φ)], and (3.17) becomes

min− 1

T

T∑

t=1

log p(∆t|β, φ) s.t.

p∑

j=1

wj|βj| ≤ τ, (3.18)

or more specifically

min
1

T

T∑

t=1

[
b(θ(x>tβ))− ytθ(x

>
tβ)
]

s.t.

p∑

j=1

wj|βj| ≤ τ. (3.19)

This optimization problem is also equivalent to

min
1

T

T∑

t=1

[
b(θ(x>tβ))− ytθ(x

>
tβ)
]
+ λ

p∑

j=1

wj|βj| (3.20)

where λ is a tuning parameter. Such an optimization problem is easier to deal with if the

objective function is convex. The convexity of the objective function turns out to depend

on the link function, and holds for most popular GLMs.
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Often, the integral in x is approximated by a sum over N points xf
1,...,x

f
N. These

points might not coincide with the observed design points, they “come from the future”

(hence the superscript “f” stands for “future”). For each xf
i , let ȳf

i be the mean of MCMC

samples {yit,t=1,2,...} drawn from p(yf
i |x

f
i ,D) - the predictive distribution of the future

response yf
i at design point xf

i given past data D. Then, it is easy to see that (3.20)

becomes

min
1

N

N∑

i=1

[b(θ(β>xf
i ))− ȳf

i θ(β>xf
i )] + λ

p∑

j=1

wj|βj|. (3.21)

Note that, under the squared error loss, ȳf
i is an estimate of the best prediction (w.r.t. the

predictive distribution p(yf
i |x

f
i ,D)) for the response at xf

i . As will be seen in Section 3.2.2,

for linear regression with a convenient specification of priors there is no need to conduct

MCMC because the predictions ȳf
i =E(yf

i |x
f
i ,D) have a closed form.

We have approximated the integral over x by a sum over N “future” points xf
i , i =

1,...,N . Typically, these points are specified depending on the context and/or on the

distribution p(x) over X . As a default implementation of our procedure, however, we

propose to identify the future points xf
i with the observed training points xi, i=1,...,n.

The reason behind this is that if the sample size n is large enough and the observed training

points xi were randomly selected from p(x), then by the law of large numbers the integral

over x can be well approximated by the sum over xi. In what follows therefore, if not

otherwise specified, we consider the pLasso for GLMs in the following form

min
β

1

n

n∑

i=1

[b(θ(x>iβ))− ȳf
i θ(x>iβ)] + λ

p∑

j=1

wj|βj|. (3.22)

Note that the original (adaptive) Lasso for GLMs is

min
β

1

n

n∑

i=1

[b(θ(x>iβ))− yiθ(x
>
iβ)] + λ

p∑

j=1

wj|βj|. (3.23)
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The pLasso in this form differs from the original Lasso only in the way it replaces the

observed responses yi by the predictions ȳf
i = E(yf

i |xi,D). Available routines to solve

(3.23) then can be used for (3.22).

We have not yet considered the issue of choice of the tuning parameters in the pLasso.

As the primary goal of the pLasso is to predict the future, cross-validation is a very natural

choice for estimating λ. As in the adaptive Lasso, the weights wj can be assigned as 1/|β̃j|

with β̃j the MLE of βj or some others such as the Lasso estimate. In a Bayesian context

it is also natural to consider β̃j as the posterior mode.

3.2.2 Some useful prior specifications

Given the available routines to solve the optimization problem of form (3.22), all what we

need to implement the pLasso is to calculate the quantities ȳf
i =E(yf

i |xi,D). To do so, in

general, we first need to specify a useful prior for parameters, determine posterior distri-

butions and then estimate ȳf
i =E(yf

i |xi,D) by MCMC or some other method. However,

in some cases there is no need to conduct MCMC. We first present in this section a prior

specification for linear models in which the predictions ȳf
i have closed form. For genalized

linear models, we present here two prior specifications. The first is adapted from Chen

and Ibrahim [2003] which is interpretable in terms of observables rather than parameters.

The second one proposed recently by Gelman et al. [2008] is useful for routine applied use.

Prior specification for linear models

Consider the usual linear model

y = Xβ + ε
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where y is the n-vector of responses, X is an n×(p+1) design matrix and ε is an n-vector of

iid normal errors with mean zero and variance σ2. The (p+1)-vector β consists of unknown

parameters and we consider the situation where σ2 is also unknown. Consider the conjugate

prior specification [O’Hagan and Forster, 2004, Chapter 11] p(β,σ2)=p(σ2)p(β|σ2) in which

p(σ2) is inverse gamma

p(σ2) =
(a/2)(d/2)

Γ(d/2)
(σ2)−d/2−1 exp(− a

2σ2
)

and p(β|σ2) is multivariate normal, N(m,σ2V ). With these priors the predictive dis-

tribution of a new observation ∆ = (x,y) is p(∆|D) = p(x|D)p(y|x,D) with p(y|x,D) =

td+n

(
x>β̃,s2(1+x>V̂ x)

)
where

β̃ = (X>X + V −1)−1(V −1m + X>y),

V̂ = (V −1 + X>X)−1,

s2 =
a + m>V −1m + y>y− (V −1m + X>y)>(V −1 + X>X)−1(V −1m + X>y)

n + d− 2
,

β̂ = (X>X)−1X>y.

We write w(x)=1+x>V̂ x.

Now consider the predictive Lasso (3.17) where as usual the integral over x is approx-

imated by a sum over N “future” points xf
i . Then equivalently, we need to minimize (the

scale φ is now re-denoted by σ2)

N∑

i=1

∫ [
− log p(yf

i |x
f
i ,β, σ2)

]
p(yf

i |x
f
i ,D)dyf

i s.t.

p∑

j=1

wj|βj| ≤ τ. (3.24)

Noting that

log p(yf
i |x

f
i ,β, σ2) = −1

2
log 2πσ2 − 1

2σ2
(yf

i − (xf
i )

>β)2,

minimizing (3.24) is equivalent to minimizing

N

2
log σ2 +

1

2σ2

N∑

i=1

E
(
(yf

i − (xf
i )

>β)2|xf
i ,D

)
s.t.

p∑

j=1

wj|βj| ≤ τ. (3.25)
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With the closed form of the predictive distribution as a t-distribution we have

E
(
(yf

i − (xf
i )

>β)2|xf
i ,D

)
= s2w(xf

i ) +
(
(xf

i )
>β̃ − (xf

i )
>β
)2

.

Substituting this into (3.25) we must minimize

N

2
log σ2 +

1

2σ2

N∑

i=1

s2w(xf
i ) +

1

2σ2

N∑

i=1

(
(xf

i )
>β̃ − (xf

i )
>β
)2

(3.26)

subject to the constraint. Minimizing this as a function of β amounts as before to an

ordinary Lasso problem where the responses are replaced with the fitted values from the

full model at the future design points xf
i , i= 1,...,N . With a non-informative prior and

with the xf
i as the observed design points xi this is the ordinary Lasso, since in this case

β̃= β̂ and for the least squares estimator

n∑

i=1

(yi − x>iβ)2 =

n∑

i=1

(yi − x>i β̂)2 +

n∑

i=1

(x>i β̂ − x>iβ)2

where the first term on the right hand side does not depend on β.

If (3.26) has been minimized with respect to β subject to the constraint to obtain an

estimate β̂pLasso (this in general depends on the constraint τ but we suppress this in the

notation) then substituting in β̂pLasso and minimizing with respect to σ2 gives

σ̂2
pLasso =

∑N
i=1 Var(yf

i |x
f
i ,D) +

∑N
i=1

(
(xf

i )
>β̃ − (xf

i )
>β̂pLasso

)2

N

=

∑N
i=1 s2w(xf

i ) +
∑N

i=1

(
(xf

i )
>β̃ − (xf

i )
>β̂pLasso

)2

N
. (3.27)

The weighted version of pLasso. One extension we can consider is the following.

Suppose that instead of considering sampling distributions in our predictive Lasso where

the variance does not depend on x, we predict yf
i with

p(yf
i |β, σ2w(xf

i )) = N((xf
i )

>β, σ2w(xf
i )).
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That is, we allow our normal distributions to have variances vary in proportion to the

true predictive variances in the full model Var(yf
i |x

f
i ,D). The standard deviation in the

full model (Var(yf
i |x

f
i ,D))1/2 is often considered a more realistic estimate of the standard

error, because it incorporates model uncertainty. We now consider minimization of

N∑

i=1

∫ [
− log p(yf

i |β, σ2w(xf
i ))
]
p(yf

i |x
f
i ,D)dyf

i

subject to the constraint, and following a similar argument to our previous one, we must

minimize
N∑

i=1

1

w(xf
i )

(
(xf

i )
>β̃ − (xf

i )
>β
)2

subject to the constraint in order to estimate β. This is similar to before, but now with

weights of 1/w(xf
i ) for the different design points. We will refer to this producdure as the

weighted pLasso (wpLasso). After β has been estimated as β̂wpLasso say, the minimization

with respect to σ2 gives

σ̂2
wpLasso =

∑N
i=1

1
w(xi)

Var(yf
i |x

f
i ,D)+

∑N
i=1

1

w(xf
i )

(
(xf

i )
>β̃−(xf

i )
>β̃wpLasso

)2

N

=

∑N
i=1s

2+
∑n

i=1
1

w(xf
i )

(
(xf

i )
>β̃−(xf

i )
>β̃wpLasso

)2

N
.

Elicitation of hyperparameters. We now discuss on the choice of the hyperparameters

m, V, a and d. There are many different ways proposed for choosing the matrix V in the

literature. For example, Zellner [1986] proposed the so-called g-prior in which V is set equal

to c(X>X)−1 with some c>0 (c=n is a common choice). Raftery et al. [1997] proposed

an alternative where V is a block-diagonal matrix. For noncategorical covariates, V is a

diagonal matrix diag(s2
y,κ

2s−2
1 ,...,κ2s−2

p ) where s2
y is the sample variance of y, and s2

i are

the variances of the columns of X. For a categorical covariate, the corresponding diagonal

element will be a matrix induced from the corresponding dummy variables. Raftery et al.
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[1997] proposed a value of 2.85 for κ together with a=0.72 and d=2.58. For the parameter

m, they proposed the default value of m=(β̂OLS
0 ,0,...,0)> where β̂OLS

0 is the OLS estimate

of β0. An alternative is m=0. These two choices of m often lead to very similar inferences.

We will use the setup of Raftery et al. [1997] in our following numerical examples.

Prior specifications for generalized linear models

There is an extensive literature on prior specifications for GLMs. We will briefly present

here two of them: the first one is due to Chen and Ibrahim [2003] and the second is

proposed recently by Gelman et al. [2008].

The Chen and Ibrahim prior. Recall that the sampling distribution of observables

y=(y1,...,yn)
> in the GLM case is

p(y|X,β, φ) ∝ exp

(
n∑

1

1

a(φ)

[
yiθ(x

>
iβ)− b(θ(x>iβ))

]
)

= exp

(
1

a(φ)

[
y>θ − 11>b(θ)

])

where θ=θ(β)=(θ1,...,θn)
>, θi = θ(x>iβ), b(θ)=(b(θ1),...,b(θn))

> and 11 is an n−vector of

1s. For ease of exposition, we assume that φ is known (and therefore suppressed in the

notation), as, for example, in logistic and Poisson regression. Chen and Ibrahim [2003]

proposed the following prior for β

p(β) ∝ exp

(
γ0

1

a(φ)

[
α>

0θ − 11>b(θ)
])

(3.28)

where γ0≥0 and α0∈IRn are hyperparameters determined later on. Denote this distribu-

tion by β|φ∼D(γ0,α0). They proved that the prior (3.28) is proper and that this prior is

conjugate with the posterior β|X,y∼D(1+γ0,(γ0α0+y)/(1+γ0)).

As shown by Chen and Ibrahim [2003], E(y) = α0, it is natural to choose α0 as a

prior guess for E(y). Therefore, in practice, α0 should be obtained from experts in the

field although default empirical Bayes alternatives such as choosing α0 as the fitted values

97



based on the MLE or other methods are also possible. The parameter γ0 weighs the

importance of the prior guess. In general, γ0 should be taken such that γ0 =γ0(n)→0 as

n→∞, i.e., the prior has less influence when more data is available. An advantage of this

prior specification is that it is interpretable in terms of observables rather than parameters

which are sometimes not easy to elicit.

The Gelman et al. prior. Gelman et al. [2008] proposed a weakly informative prior

distribution for GLMs, constructed by first standardizing the covariates to have mean zero

and standard deviation 0.5, and then putting independent t−distributions on the coeffi-

cients. As a default choice, they recommended a central Cauchy distribution with scale

10 for the intercept and central Cauchy distributions with scale 2.5 for other coefficients.

As argued by Gelman et al. [2008], this prior specification has many advantages; besides,

it works in an automatic fashion with no hyperparameter elicitation needed.

Recall that all what we need to implement the pLasso is to calculate the quantities

ȳf
i = E(yf

i |xi,D). After the prior has been specified, ȳf
i can be estimated by MCMC or

some other method. It is well-known that

E(y|X,β) = ḃ(θ) = (ḃ(θ1), ..., ḃ(θn))>,

so that

ȳf = E(yf |X,y) = Eβ|X,y

[
E(yf |X,β)

]
= Eβ|X,y[ḃ(θ(β))] (3.29)

which can be easily estimated by MCMC samples from the posterior distribution β|X,y.

A procedure for fitting GLMs with the Gelman et al. prior has been implemented in R

by Gelman et al. (available online at http://cran.r-project.org/web/packages/arm).

In the following numerical examples for logistic regression where no expert advice is avail-

able, we use the default prior of Gelman et al. For high-dimensional cases where using

MCMC may be time consuming, we suggest using the plug-in predictive density (i.e., the
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density with its parameters fixed at their estimates) to estimate the predictions ȳf
i . Our

experiences show that this is very fast compared to MCMC.

3.2.3 Experiments

In this section, we study the pLasso through simulations and real-data examples. We use

the convenient prior specifications as in Section 3.2.2. The tuning parameter λ is selected

by 5-fold cross-validation. The examples are carried out using R with the help of the R

packages glmnet and arm.

As before, we use the popular PPS to measure predictive ability. We also use an-

other interesting predictive measure, called continuous ranked probability score (CRPS)

[Gneiting and Raftery, 2007]. Let F be the cumulative distribution function (cdf) of the

predictive distribution in use and x be an actual observation. The CRPS is defined as

CRPS(F, x) = −
∫

R

(F (y)− 11y≥x)2dy

which corresponds to the integral of the Brier scores [Hersbach, 2000]. A problem with

using CRPS is that the above integral is in general not available in closed form and needs

to be estimated in some way. However, when F is the cdf of the normal distribution with

mean µ and variance σ2, the CRPS is given by [Gneiting and Raftery, 2007, p. 367]

CRPS(N(µ, σ2), x) = σ

[
1√
π
− 2ϕ(

x − µ

σ
)− x− µ

σ

(
2φ(

x− µ

σ
)− 1

)]

where ϕ and φ are pdf and cdf of the standard Gaussian variable; when F is the cdf of a

Bernoulli variable X with probability of success p=P (X =1), the CRPS is given by

CRPS(F (p), x = 0) = −p2 and CRPS(F (p), x = 1) = −(1 − p)2.

The CRPS evaluated on a prediction set DP of the predictive distributions induced by
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model parameters θ∗ is defined as

CRPS ≡ CRPS(θ∗) = − 1

|DP |
∑

∆∈DP

CRPS(F (θ∗),∆). (3.30)

Under this formulation, it is (similar to PPS) understood that smaller CRPS means better

predictive performance.

In the simulation studies below, we also use mean squared errors (MSE) in terms of

coefficients and numbers of zero-estimated (NZE) coefficients to measure the performance.

A simulation study for linear regression. Consider the following linear model

y = 2 + x′β + σε (3.31)

where β=(3, 1.5, 0, 0, 0.5, 0.5, 0, 0)′ (so that there are some main and also small effects),

ε is iid N(0,1), and σ >0 is the noise level. We want to compare the performance of the

pLasso and the wpLasso to that of the adaptive Lasso (aLasso). We also consider the

orginal Lasso and the non-adaptive pLasso (i.e., the adaptive penalty term λ
∑

wj|βj| in

(3.22) is replaced by λ
∑
|βj|) which will be abbreviated as npLasso.

In our first simulation study, design points xj are simulated from a multivariate normal

distribution N8(0,Σ) with σij = 0.5|i−j|. We first generate from model (3.31) a dataset

which serves as the training set DT . Another dataset DP then is generated, which is

used to test the predictive performance. Table 3.3 presents the PPS (after ignoring the

constants independent of models), MSE, NZE and CRPS averaged over 500 replications

with various factors nT (size of training set), nP (size of prediction set) and σ. The

numbers in parentheses are standard deviations. The result suggests that the pLasso and

wpLasso have better predictive ability (having smaller PPS and CRPS) than the others,

and the non-adaptive predictive Lasso npLasso also works better than the Lasso and even

the aLasso. Furthermore, in terms of MSE, both pLasso and wpLasso give better and
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more stable coefficent estimation. As one may expect for predictively motivated methods,

models selected by the pLasso and wpLasso are less sparse than selected by the Lasso and

aLasso. In order to better compare the behaviour of the methods over the replications, we

plot in Figure 3.1 boxplots for the case n=200 and σ=1.

In our second simulation study, design points xj are simulated from a multivariate

t-distribution with degrees of freedom being 1.5. By doing so, we intend to simulate

situations in which some predictors have high leverage points, i.e., their distributions have

long tails. The simulation result is presented in Table 3.4. As one may expect, the wpLasso

works better and more stable than the others because the variance is modeled to vary in

proportion to the true predictive variance. Boxplots of the measures over replications for

the case n=200, σ=1 are given in Figure 3.2.

In our last simulation study, we try a high-dimensional example. We consider the linear

model (3.31) with p=100 and most of the coefficients are zero except βj=5, j=10,20,...,100.

The result reported in Table 3.5 suggests that the pLasso and wpLasso compare favourably

with the others in this example. Boxplots for the case n=200, σ =1 are given in Figure

3.3.

A simulation study for logistic regression. We simulate independent observations

from Bernoulli distributions with probabilities of success

µi = P (yi = 1|xi,β) =
exp(2 + x′

iβ)

1 + exp(2 + x′
iβ)

where the design points xi are generated from the normal distributions as in the previous

example. We consider two cases: a small p case with β = (3, 1.5, 0.5, 0.5, 0, 0, 0, 0)>

and a large p case with most of βj are zero except the first four entries are 3, 1.5, 0.5

and 0.5. We use the Gelman et al. prior and the plug-in method discussed earlier for

estimating the predictions ȳf
i (using MCMC would give a more accurate estimation but
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Table 3.3: Simulation result for linear regression: small-p and normal predictors. The

numbers in parentheses are standard deviations.

nT =nP σ measure Lasso aLasso npLasso pLasso wpLasso

50 1 PPS 0.77 (0.19) 0.72 (0.19) 0.59 (0.13) 0.57 (0.13) 0.57 (0.12)

MSE 0.59 (0.36) 0.56 (0.45) 0.23 (0.18) 0.19 (0.16) 0.18 (0.16)

NZE 4.10 (0.82) 5.02 (0.64) 2.47 (1.17) 3.42 (1.05) 3.57 (1.03)

CRPS 0.73 (0.12) 0.69 (0.11) 0.61 (0.07) 0.60 (0.06) 0.60 (0.07)

3 PPS 1.86 (0.16) 1.86 (0.17) 1.70 (0.14) 1.70 (0.14) 1.69 (0.13)

MSE 5.09 (2.68) 5.72 (3.16) 2.16 (1.68) 2.17 (1.81) 2.12 (1.83)

NZE 5.97 (0.90) 6.64 (0.58) 3.40 (1.56) 4.22 (1.38) 4.46 (1.37)

CRPS 2.17 (0.32) 2.17 (0.35) 1.83 (0.20) 1.83 (0.21) 1.83 (0.22)

100 1 PPS 0.68 (0.11) 0.65 (0.11) 0.54 (0.08) 0.54 (0.08) 0.54 (0.08)

MSE 0.35 (0.17) 0.36 (0.23) 0.10 (0.07) 0.08 (0.07) 0.08 (0.07)

NZE 3.82 (0.64) 4.63 (0.57) 2.18 (1.14) 3.23 (0.94) 3.17 (1.10)

CRPS 0.67 (0.07) 0.65 (0.07) 0.59 (0.05) 0.58 (0.05) 0.58 (0.05)

3 PPS 1.77 (0.10) 1.76 (0.10) 1.64 (0.08) 1.64 (0.08) 1.64 (0.08)

MSE 3.06 (1.41) 3.54 (1.78) 1.01 (0.76) 0.93 (0.79) 0.92 (0.83)

NZE 5.60 (0.84) 6.39 (0.69) 2.94 (1.43) 3.84 (1.20) 3.90 (1.36)

CRPS 2.00 (0.20) 1.98 (0.20) 1.76 (0.13) 1.75 (0.13) 1.75 (0.13)

200 1 PPS 0.62 (0.08) 0.61 (0.07) 0.53 (0.06) 0.52 (0.06) 0.52 (0.06)

MSE 0.19 (0.09) 0.22 (0.10) 0.06 (0.04) 0.05 (0.04) 0.05 (0.04)

NZE 3.84 (0.39) 4.28 (0.48) 2.24 (1.22) 3.28 (0.94) 3.25 (1.09)

CRPS 0.64 (0.05) 0.63 (0.05) 0.58 (0.03) 0.58 (0.03) 0.58 (0.03)

3 PPS 1.72 (0.07) 1.71 (0.07) 1.62 (0.05) 1.62 (0.05) 1.62 (0.05)

MSE 1.90 (0.84) 2.30 (1.10) 0.47 (0.34) 0.40 (0.34) 0.41 (0.35)

NZE 5.48 (0.74) 6.29 (0.61) 2.53 (1.32) 3.59 (1.15) 3.57 (1.31)

CRPS 1.90 (0.14) 1.89 (0.13) 1.73 (0.09) 1.73 (0.09) 1.73 (0.09)
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Table 3.4: Simulation result for linear regression: the small-p with long-tailed t-distribution

predictors. The numbers in parentheses are standard deviations.

nT =nP σ measure Lasso aLasso npLasso pLasso wpLasso

50 1 PPS 2.58 (9.04) 1.89 (2.67) 1.29 (3.52) 1.05 (1.81) 0.66 (0.14)

MSE 0.21 (0.19) 0.21 (0.33) 0.11 (0.11) 0.10 (0.11) 0.09 (0.12)

NZE 3.07 (0.84) 3.75 (0.89) 1.65 (1.17) 3.14 (1.05) 3.29 (1.12)

CRPS 0.90 (0.38) 0.91 (0.54) 0.74 (0.25) 0.71 (0.22) 0.70 (0.22)

3 PPS 4.15 (12.03) 3.97 (11.47) 3.00 (6.47) 2.81 (6.13) 1.74 (0.16)

MSE 1.36 (1.11) 1.71 (1.56) 0.80 (0.71) 0.77 (0.69) 0.78 (0.72)

NZE 4.06 (1.32) 5.12 (1.11) 2.22 (1.33) 3.45 (1.14) 3.71 (1.24)

CRPS 2.65 (1.20) 2.69 (1.19) 2.17 (0.73) 2.14 (0.69) 2.15 (0.70)

100 1 PPS 1.53 (3.26) 1.74 (4.66) 0.82 (0.81) 0.76 (0.60) 0.61 (0.15)

MSE 0.07 (0.05) 0.09 (0.12) 0.04 (0.05) 0.03 (0.06) 0.03 (0.06)

NZE 3.25 (0.99) 3.86 (0.64) 1.53 (1.19) 3.10 (1.03) 3.16 (1.12)

CRPS 0.74 (0.16) 0.76 (0.24) 0.66 (0.13) 0.64 (0.12) 0.64 (0.12)

3 PPS 5.95 (26.29) 7.77 (41.60) 2.34 (2.45) 2.06 (1.58) 1.67 (0.09)

MSE 0.51 (0.40) 0.58 (0.43) 0.26 (0.21) 0.25 (0.22) 0.25 (0.22)

NZE 3.41 (1.09) 4.61 (0.92) 2.00 (1.17) 3.18 (0.98) 3.37 (1.01)

CRPS 2.33 (1.05) 2.41 (1.23) 1.95 (0.36) 1.91 (0.30) 1.93 (0.38)

200 1 PPS 1.31 (3.91) 1.41 (3.62) 0.65 (0.32) 0.64 (0.33) 0.55 (0.08)

MSE 0.02 (0.02) 0.03 (0.05) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

NZE 3.22 (0.89) 3.78 (0.46) 1.39 (1.14) 2.90 (1.03) 3.13 (1.13)

CRPS 0.65 (0.11) 0.66 (0.16) 0.60 (0.05) 0.60 (0.05) 0.60 (0.05)

3 PPS 2.59 (3.52) 3.89 (12.03) 1.81 (0.87) 2.15 (4.38) 1.63 (0.05)

MSE 0.26 (0.22) 0.30 (0.31) 0.12 (0.10) 0.12 (0.10) 0.11 (0.10)

NZE 3.26 (0.93) 4.08 (0.72) 1.93 (1.03) 3.17 (0.83) 3.31 (0.93)

CRPS 2.01 (0.35) 2.07 (0.61) 1.80 (0.15) 1.80 (0.24) 1.80 (0.23)
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Table 3.5: Simulation result for linear regression: the large-p with normal predictors. The

numbers in parentheses are standard deviations.

nT σ measure Lasso aLasso npLasso pLasso wpLasso

50 1 PPS 3.08 (3.32) 1.96 (3.49) 2.66 (3.16) 2.64 (8.81) 2.56 (0.24)

MSE 14.35 (36.79) 10.45 (35.60) 6.01 (15.99) 5.34 (18.43) 5.67 (21.01)

NZE 75.21 (5.98) 86.06 (4.59) 64.20 (9.07) 73.36 (9.98) 80.15 (7.58)

CRPS 1.67 (1.55) 1.30 (1.49) 1.34 (0.79) 1.18 (0.95) 1.22 (1.15)

3 PPS 3.60 (3.14) 3.54 (12.83) 8.47 (10.16) 6.72 (9.16) 3.29 (0.40)

MSE 58.20 (63.86) 42.42 (67.93) 38.16 (41.15) 30.88 (34.58) 35.86 (50.35)

NZE 78.66 (7.11) 87.30 (4.97) 67.45 (8.84) 75.12 (8.54) 81.29 (7.01)

CRPS 4.39 (2.00) 3.63 (2.20) 3.99 (1.50) 3.63 (1.46) 3.97 (1.95)

100 1 PPS 2.45 (4.53) 1.43 (0.68) 1.04 (1.65) 1.04 (1.20) 1.01 (0.14)

MSE 1.38 (1.47) 13.53 (19.42) 1.23 (3.36) 1.17 (2.60) 0.49 (1.94)

NZE 54.74 (23.75) 85.69 (8.66) 61.06 (18.93) 71.14 (21.22) 83.50 (12.80)

CRPS 0.86 (0.24) 1.75 (1.26) 0.76 (0.30) 0.75 (0.30) 0.67 (0.21)

3 PPS 2.79 (2.99) 2.23 (0.37) 3.11 (4.37) 3.47 (4.52) 1.95 (0.39)

MSE 8.79 (6.60) 27.02 (25.73) 9.88 (17.38) 10.86 (19.11) 4.01 (8.84)

NZE 64.06 (20.88) 86.61 (7.98) 59.23 (19.65) 68.97 (21.16) 81.70 (12.46)

CRPS 2.38 (0.47) 3.19 (1.13) 2.36 (0.78) 2.36 (0.95) 2.14 (0.49)

200 1 PPS 0.95 (0.12) 0.57 (0.08) 0.60 (0.06) 0.57 (0.06) 0.57 (0.04)

MSE 1.50 (0.55) 0.17 (0.13) 0.27 (0.11) 0.18 (0.13) 0.09 (0.07)

NZE 89.19 (1.09) 89.49 (0.66) 65.66 (10.23) 78.05 (9.08) 86.15 (4.58)

CRPS 0.88 (0.10) 0.60 (0.05) 0.62 (0.04) 0.60 (0.04) 0.59 (0.03)

3 PPS 1.97 (0.11) 1.70 (0.08) 1.72 (0.08) 1.69 (0.11) 1.66 (0.05)

MSE 9.98 (3.18) 1.81 (1.32) 2.46 (0.96) 1.82 (1.42) 0.91 (0.59)

NZE 88.88 (1.30) 89.64 (0.64) 66.25 (10.14) 76.61 (10.69) 85.17 (4.55)

CRPS 2.46 (0.25) 1.86 (0.15) 1.88 (0.12) 1.83 (0.14) 1.80 (0.11)
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Figure 3.1: Boxplots of the performance measures over replications in linear regression:

the small p case with normal predictors, n=200 and σ=1.
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Figure 3.2: Boxplots of the performance measures over replications in linear regression:

the small p case with long-tailed predictors, n=200 and σ=1.
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Figure 3.3: Boxplots of the performance measures over replications in linear regression:

the large p case with normal predictors, n=200 and σ=1.
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may be time consuming in simulation when performance measures are to be averaged over

many replications). The simulation results are summarized in Tables 3.6 and 3.7 with

various sample sizes. Boxplots for two cases are given in Figures 3.4 and 3.5. As shown,

both pLasso methods outperform the Lasso methods in terms of both PPS, CRPS and

MSE. Furthermore, the aLasso seems to be unstable and work poorly in the large p case

with small number of observations. The pLasso with the regularization prior of Gelman

et al. [2008] works surprisingly well in this example.

Application: Linear regression - predicting percent body fat. Percentage of body

fat is one important measure of health, which can be accurately estimated by underwater

weighing techniques [Bailey, 1994]. These techniques often require special equipment and

are sometimes not convenient, thus fitting percent body fat to simple body measurements

is a convenient way to predict body fat. Johnson [1996] introduced a dataset in which
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Table 3.6: Simulation result for logistic regression: the small p case.

nT =nP measure Lasso aLasso npLasso pLasso

100 PPS 0.28 (0.05) 0.28 (0.07) 0.27 (0.05) 0.27 (0.05)

MSE 3.52 (2.19) 5.20 (29.81) 2.45 (1.12) 1.95 (1.26)

NZE 1.95 (1.47) 3.11 (1.08) 0.65 (1.41) 2.41 (1.40)

CRPS 0.09 (0.02) 0.09 (0.02) 0.09 (0.02) 0.09 (0.02)

200 PPS 0.27 (0.03) 0.27 (0.03) 0.27 (0.03) 0.27 (0.03)

MSE 1.40 (0.76) 1.09 (0.81) 0.95 (0.48) 0.90 (0.52)

NZE 1.63 (1.42) 3.01 (1.32) 0.40 (1.21) 2.13 (1.42)

CRPS 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01)

500 PPS 0.26 (0.02) 0.26 (0.02) 0.26 (0.02) 0.26 (0.02)

MSE 0.60 (0.33) 0.47 (0.29) 0.38 (0.23) 0.35 (0.22)

NZE 2.07 (1.24) 3.82 (1.12) 1.09 (0.97) 2.66 (1.20)

CRPS 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01)
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Figure 3.4: Boxplots of the performance mea-

sures over replications in logistic regression:

the small p case with n=500
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Figure 3.5: Boxplots of the performance mea-

sures over replications in logistic regression:

the large p case with n=1000

percent body fat and 13 simple body measurements (such as weight, height and abdomen

circumference) are recorded for 252 men. After omitting observations 39 (because a weight

value of 363.15 pounds is unusually large), 42 (because a height value of 29.5 inches is

unreasonable), and 182 (because the response value is 0), we obtain a dataset of size 249.

We are concerned with the problem of constructing a model that predicts the response

from the covariates. Following Hoeting et al. [1999], we use a linear regression model.

The primary goal is prediction accuracy for future observations; besides this, parsimony

is another important objective, since a simple model is preferred for the sake of scientific

insight into the x−y relationship.
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Table 3.7: Simulation result for logistic regression: the large p case.

nT =nP measure Lasso aLasso npLasso pLasso

100 PPS 0.33 (0.04) 0.56 (0.21) 0.32 (0.04) 0.31 (0.05)

MSE 4.56 (1.26) 17.5 (8.90) 4.37 (1.24) 2.63 (1.08)

NZE 91.8 (5.27) 69.5 (6.22) 89.2 (7.67) 96.5 (2.15)

CRPS 0.10 (0.02) 0.14 (0.04) 0.10 (0.02) 0.09 (0.02)

500 PPS 0.28 (0.02) 0.69 (0.43) 0.27 (0.03) 0.26 (0.03)

MSE 2.10 (0.59) 15.9 (18.1) 1.13 (0.43) 0.69 (0.36)

NZE 89.6 (6.92) 45.8 (30.5) 60.8 (17.7) 82.1 (9.22)

CRPS 0.09 (0.01) 0.12 (0.03) 0.08 (0.01) 0.08 (0.01)

1000 PPS 0.26 (0.01) 0.26 (0.02) 0.27 (0.02) 0.25 (0.02)

MSE 1.32 (0.40) 0.59 (0.28) 0.79 (0.41) 0.29 (0.20)

NZE 89.5 (5.53) 96.1 (1.02) 38.9 (14.9) 83.5 (6.98)

CRPS 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 0.07 (0.01)

Using the full dataset, the aLasso, pLasso and wpLasso estimates of β are given in

Table 3.8. The abbreviations “al”, “pl” and “wpl” stand for aLasso, pLasso and wpLasso,

respectively. These methods simultaneously do parameter estimation and variable selec-

tion, because some of the estimated coefficients are exact zero. Recall that the goals at

which the methods aim are somewhat different: pLasso and wpLasso have a more explicit

predictive motivation; besides, the wpLasso in some cases is somewhat more realistic in

the sense that it allows the variances to vary in proportion to the predictive variance of

the full model.

We now examine the predictive performance of these three procedures. To this end,

we split the dataset into two parts: the first 125 observations are used as the training set
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Table 3.8: Predicting percent body fat.

full data case I case II case III

al pl wpl al pl wpl al pl wpl al pl wpl

-18.0 6.79 -0.18 -14.8 2.88 -0.28 -15.7 -2.95 -4.59 -23.3 -0.61 -3.87

1 0 0.06 0.04 0.02 0.09 0.08 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 -0.20 -0.29 -0.27 -0.26 -0.40 -0.39 0 -0.17 -0.14 0 -0.24 -0.22

4 0 -0.30 -0.11 0 -0.24 -0.17 0 0 0 0 -0.34 -0.25

5 0 -0.09 0 0 0 0 0 0 0 0 0 0

6 0.55 0.78 0.68 0.55 0.70 0.68 0.38 0.66 0.66 0.45 0.69 0.69

7 0 -0.09 0 0 -.09 0 0 0 0 0 0 0

8 0 0.09 0 0 0.16 0.08 0 0 0 0 0 0

9 0 0 0 0 0.09 0 0 0 0 0 0 0

10 0 0.09 0 0 0.22 0.17 0 -0.39 -0.43 0 -0.04 0

11 0 0.13 0.04 0 0 0 0 0.10 0.10 0 0.20 0.20

12 0 0.19 0 0 0 0 0 0 0 0 0.19 0.07

13 0 -1.62 -1.31 0 -1.34 -1.20 0 -1.16 -1.15 0 -1.44 -1.35

PPS 1.95 1.93 1.93 2.11 1.91 1.90 2.08 1.96 1.95

CRPS 2.44 2.36 2.37 3.00 2.35 2.35 2.94 2.34 2.26
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D, the remaining observations are used as the prediction set DP . The aLasso, pLasso and

wpLasso estimates and their PPS are given in Table 3.8 (case I). As a second examination,

the first 125 observations are used as the prediction set DP , the remaining observations

are used as the training set D. For a third examination, we randomly split the full

dataset into two (roughly) equal parts which serve as the training and prediction sets.

The coefficient estimates, PPS and CRPS are summarized in Table 3.8. As one may

expect for predictively motivated methods, the variables selected by pLasso and wpLasso

in general contain those selected by aLasso, i.e., the models selected by pLasso and wpLasso

are bigger than the one selected by aLasso. In all cases, the pLasso and wpLasso show

a better predictive performance over the aLasso. Indeed, the PPS of the aLasso, pLasso

and wpLasso averaged over such 50 random partitions are 2.055, 1.998, 1.924, respectively

and the averaged CRPS are 2.703, 2.385, 2.370, respectively. It seems that modelling the

variances to vary in proportion to the predictive variance of the full model is appropriate in

this example, because the wpLasso has a similar or better predictive performance compared

with the pLasso.

Application: Logistic regression - the spambase data. We consider in this example

an application of the predictive Lasso in the logistic regression framework with many

predictors and instances. We consider the spam email data set created by Mark Hopkins,

Erik Reeber, George Forman and Jaap Suermondt at the Hewlett-Packard Labs. The data

set consists of 4061 messages, each has been already classified as email or spam together

with 57 attributes (predictors) which are relative frequencies of commonly occurring words.

The goal is to design a spam filter that could filter out spam before clogging the users’

mailboxes. Our goal as usual is to construct a parsimonious model with a good prediction

accuracy.

With a large number of predictors and observations, using MCMC may be time con-
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suming so that we use the plug in method discussed earlier. To access the performance of

the aLasso and pLasso methods, we randomly split the data set into two parts (training

set and prediction set) and record performance measures PPS, CRPS and NZE across such

50 random partitions. The averaged PPS, CRPS and NZE for the aLasso are 0.261, 0.072,

27.2 and for the pLasso are 0.251, 0.067, 25.1, respectively. The pLasso gives a better

predictive performance overall while selecting roughly 2 predictors more than the aLasso.
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Chapter 4

Some results on variable selection

While the last two chapters discussed in turn two general procedures for model selection,

this chapter focuses mainly on variable selection. We shall present two novel algorithms for

variable selection in two broad frameworks. In Section 4.1, we look at the regularization

approaches like the Lasso and its variants (adaptive Lasso, group Lasso, etc.) from a

Bayesian point of view. We propose the Bayesian adaptive Lasso (BaLasso) for variable

selection and group selection in a unified framework including GLMs, Cox’s model and

many others. The BaLasso is adaptive to the signal level in the sense that it adopts different

shrinkage for different coefficients. Furthermore, our Bayesian formulation enables us to

incorporate prior information on grouping and hierarchical structures present within the

variables.

We then in Section 4.2 consider the problem of variable selection for heteroscedastic

linear regression (i.e., the variance is allowed to vary with covariates) and propose a novel

fast greedy search algorithm for variable seletion in both mean and variance model using

a variational approximation method. Table 4.14 gives a brief summary of some of the

commonly used variable selection methods as well as the methods proposed in this thesis.
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This chapter is based on joint works with David Nott and Chenlei Leng [Leng et al., 2010,

Nott et al., 2010, Tran et al., 2011].

4.1 Bayesian adaptive Lasso

Let us start the discussion with the usual linear regression model

y = Xβ + ε.

As is usual in regression analysis, our major interests are to estimate β = (β1,...,βp)
>,

to identify its important covariates and to make accurate predictions. Without loss of

generality, we assume y and X are centered so that the intercept is zero and can be

omitted from the model.

The Lasso of Tibshirani [1996], formulated in the penalized likelihood framework, min-

imizes the residual sum of squares with a constraint on the `1 norm of β. Formally, the

Lasso solves

min
β

(y −Xβ)>(y−Xβ) + λ

p∑

j=1

|βj|, (4.1)

where λ > 0 is the tuning parameter controlling the amount of penalty. The least angle

regression (LARS) algorithm provides fast implementation of the Lasso solution [Efron

et al., 2004, Osborne et al., 2000]. Furthermore, the Lasso can be model selection consistent

provided that the so-called irrepresentable condition on the design matrix is satisfied and

that λ is chosen judiciously [Zhao and Yu, 2006].

However, if this condition does not hold, Zou [2006] and Zhao and Yu [2006] showed

that the Lasso chooses a wrong model with non-vanishing probability, regardless of the

sample size and how λ is chosen. The condition is almost necessary and sufficient for

model selection consistency of the Lasso, which requires that the predictors not in the
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model are not representable by predictors in the true model. This condition can be easily

violated due to the collinearity between the predictors. To address this issue, Zou [2006]

proposed to use the adaptive Lasso (aLasso) which gives consistent model selection. The

final inference procedure, thereafter, is based on a single selected model. This may bring

undesirable risk properties as discussed by Poetscher and Leeb [2009].

The Lasso estimator can be interpreted as the posterior mode using normal likelihood

and iid Laplace prior for β [Tibshirani, 1996]. The first explicit treatment of the Bayesian

Lasso (BLasso), which exploits model inference via posterior distributions, has been pro-

posed by Park and Casella [2008]. Griffin and Brown [2010] proposed an extension of this

approach but focused on finding posterior modes via an EM algorithm which does not

provide exploration of the posterior distribution.

Although the Lasso was originally designed for variable selection, the BLasso loses this

attractive property, not setting any of the coefficients to zero. A post hoc thresholding rule

may overcome this difficulty but it brings the problem of threshold selection. Alternatively,

Kyung et al. [2010] recommended to use the credible interval on the posterior mean.

Although it gives variable selection, this suggestion fails to explore the uncertainty in the

model space.

This work is motivated by the need to explore model uncertainty and to achieve par-

simony. With these objectives, we consider the following adaptive Lasso estimator:

min
β

(y −Xβ)>(y −Xβ) +

p∑

j=1

λj|βj|, (4.2)

where different penalty parameters are used for the regression coefficients. Naturally, for

the unimportant covariates, we should put larger penalty parameters λj on their corre-

sponding coefficients. This strategy was proposed by Zou [2006] by using some preliminary

estimates of β such as the least squares estimate β̂
ols

and modifying λj as λ/|β̂ols
j |. Our
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treatment is completely different and is motivated by the following arguments. Suppose

tentatively that we have a posterior distribution on λ=(λ1,...,λp)
>. By drawing random

samples from this distribution and plugging these into (4.2), we can solve for β using

fast algorithms developed for the Lasso [Efron et al., 2004, Figueiredo et al., 2007] and

subsequently obtain an array of (sparse) models. These models can be used not only for

exploring model uncertainty, but also for prediction with a variety of methods akin to

Bayesian model averaging. Since there are p tuning parameters, a hierarchical model is

proposed to alleviate the problem of estimating many parameters. We develop an efficient

Gibbs sampler for posterior inference.

We further propose a unified framework for variable/group selection using flexible

penalties. This unified framework encompasses generalized linear models, Cox’s model

and other parametric models as special cases. We outline novel applications of the BaL-

asso when structured penalties are present, for example, grouped variable selection [Yuan

and Lin, 2006] and variable/group selection with a prior hierarchical structure [Zhao et al.,

2009].

A Matlab implementation of our method is available from the author’s homepage. The

software is general enough to deal with most of the models encountered in practice. Sys-

tematic simulation studies and real-data analysis strongly support the use of our method.

The rest of this section is organized as follows. The BaLasso in linear regression is

presented in Section 4.1.1 and is extended in Section 4.1.4 to a unified framework with

structured penalties. Section 4.1.2 discusses model selection and Bayesian model averaging.

In Section 4.1.3, the finite sample performance of the BaLasso is illustrated via simulation

studies, and analysis of real datasets.
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4.1.1 Bayesian adaptive Lasso for linear regression

The `1 penalty corresponds to a conditional Laplace prior [Tibshirani, 1996] as

π(β|σ2) =

p∏

j=1

λ

2
√

σ2
e−λ|βj|/

√
σ2

,

which can be represented as a scale mixture of normals with an exponential mixing density

[Andrews and Mallows, 1974]

λ

2
e−λ|z| =

∫ ∞

0

1√
2πs

e−z2/(2s)λ
2

2
e−λ2z/2ds.

This motivates the following hierarchical BLasso model [Park and Casella, 2008]

y|X,β, σ2 ∼ Nn(Xβ, σ2In)

β|σ2, τ 2
1 , ..., τ 2

p ∼ Np(0p, σ
2Dτ ) (4.3)

Dτ = diag(τ 2
1 , ..., τ 2

p )

with the following priors on σ2 and τ =(τ 2
1 ,...,τ 2

p)
>:

σ2, τ 2
1 , ..., τ 2

p ∼ π(σ2)dσ2

p∏

j=1

λ2

2
e−λ2τ2

j /2dτ 2
j (4.4)

for σ2 > 0 and τ 2
1 ,...,τ 2

p > 0. Park and Casella [2008] suggested to use the improper prior

π(σ2)∝1/σ2 to model the error variance.

As discussed in the introduction, the Lasso uses the same shrinkage for every coefficient

and may not be consistent for certain design matrices in terms of model selection. This

motivates us to replace (4.4) in the hierarchical structure by a more adaptive penalty

σ2, τ 2
1 , ..., τ 2

p ∼ π(σ2)dσ2

p∏

j=1

λ2
j

2
e−λ2

jτ2
j /2dτ 2

j . (4.5)

The major difference of this formulation is to allow different λ2
j , one for each coefficient.

Intuitively, if a small penalty is applied to those covariates that are important and a large
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penalty is applied to those which are unimportant, the Lasso estimate, as the posterior

mode, can be model selection consistent [Zou, 2006]. Indeed, as we will see below and

in later numerical experiments, in the posterior distribution, the λj ’s for zero βj’s will be

much larger than those λj’s for nonzero βj’s.

The Gibbs sampling scheme follows Park and Casella [2008]. For Bayesian inference,

the full conditional distribution of β is multivariate normal with mean A−1X>y and vari-

ance σ2A−1, where A = X>X +D−1
τ . The full conditional for σ2 is inverse-gamma with

shape parameter (n−1)/2+p/2 and scale parameter (y−Xβ)>(y−Xβ)/2+β>D−1
τ β/2

and τ 2
1 ,...,τ 2

p are conditionally independent, with 1/τ 2
j conditionally inverse-Gaussian with

parameters

µ̃j =
λjσ

|βj|
and λ̃j = λ2

j

where the inverse-Gaussian density is given by

f(x) =
√

λ̃2πx−3/2 exp{− λ̃(x− µ̃j)
2

2(µ̃)2x
}, x > 0.

As observed in Park and Casella [2008], the Gibbs sampler with block updating of β and

(τ 2
1 ,...,τ 2

p ) is very fast.

Choosing the Bayesian adaptive Lasso parameters

We discuss here two approaches for choosing the BaLasso parameters λj in the Bayesian

framework.

The first one is the empirical Bayes (EB) method which aims at estimating the λj via

the marginal maximum likelihood. A natural choice is to estimate the hyper-parameters λj

by marginal maximum likelihood. However, in our framework, the marginal likelihood for

the λj is not available in closed form. To deal with this problem, Casella [2001] proposed

a multi-step approach based on an EM algorithm with the expectation in the E-step being
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approximated by the average from the Gibbs sampler. The updating rule then for λj is

easily seen to be

λ
(k)
j =

√
2

E
λ

(k−1)
j

(τ 2
j |y)

(4.6)

where λ
(k)
j is the estimate of λj at the kth stage and the expectation E

λ
(k−1)
j

(.) is approxi-

mated by the average from the Gibbs sampler with the hyper-parameters set to λ
(k−1)
j .

Casella’s method may be computationally expensive because many Gibbs sampler runs

are needed. Atchade [2009] proposed a single-step approach based on stochastic approxi-

mation which can obtain the MLE of the hyper-parameters using a single Gibbs sampler

run. In our framework, making the transformation λj = esj , the updating rule for the

hyper-parameters sj can be seen as [Atchade, 2009, Algorithm 3.1]

s
(n+1)
j = s

(n)
j + an(2− e2s

(n)
j τ 2

n+1,j)

where s
(n)
j is the value of sj at the nth iteration, τ 2

n,j is the nth Gibbs sample of τ 2
j , and

{an} is a sequence of step-sizes such that

an↘0,
∑

an =∞,
∑

a2
n <∞.

In the following simulation, an is set to 1/n. Strictly speaking, choosing a proper an is an

important problem of stochastic approximation which is beyond the scope of our discussion

in this thesis. In practice, an is often set after a few trials by justifying the convergence of

iterations graphically.

The second method for estimating the BaLasso parameters uses hyper priors on λj

which enable posterior inference on these shrinkage parameters. The λj themselves can

be treated as random variables and join the Gibbs updating by using an appropriate prior

on λ2
j . Here for simplicity and numerical tractability, we take the following gamma prior
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[Park and Casella, 2008]

π(λ2
j) =

δr

Γ(r)
(λ2

j )
r−1e−δλ2

j . (4.7)

The advantage of using such a prior is that the Gibbs sampling algorithm can be easily

implemented. More specifically, when this prior is used, the full conditional of λ2
j is

gamma with shape parameter 1+r and rate parameter τ 2
j +δ. This specification allows λ2

j

to join the other parameters in the Gibbs sampler. Although the number of the penalty

parameters λj has increased to p in the BaLasso from a single parameter in the Lasso, the

fact that the same prior is used on these parameters greatly reduces the degrees of freedom

in specifying the prior.

As a first choice, we can fix hyper-parameters r and δ to some small values in order to

get a flat prior. Alternatively, we can fix r and use an empirical Bayes approach where δ

is estimated. The updating rule for δ [Casella, 2001] can be seen as

δ(k) =
pr∑p

j=1 Eδ(k−1)(λ2
j |y)

.

Theoretically, we need not worry so much about how to select r because parameters that

are deeper in the hierarchy have less effect on inference [Lehmann and Casella, 1998, p.260].

In our simulation study and data analysis, we use r= .1 which gives a fairly flat prior and

stable results. In our experience, both the EB and full treatment methods for estimating

λj often give very similar results. In what follows we focus on the latter only.

Adaptive shrinkage

By allowing different λ2
j , adaptive shrinkage on the coefficients is possible. We demonstrate

the adaptivity by a simple simulation in which a data set of size 50 is generated from the

model

y=β1x1+β2x2+σε
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Figure 4.1: (a)-(b): Gibbs samples for λ1 and λ2, respectively. (c)-(d): Trace plots for λ
(n)
1

and λ
(n)
2 by Atchade’s method.
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with β=(3, 0)′, σ=1, ε∼N(0,1).

Because β1 6=0, β2 =0 we expect that the EB and posterior estimate of λ2 would be

much larger than that of λ1. As a result, a heavier penalty is put on β2 such that β2 is

more likely to be shrunk to zero. This phenomenon is demonstrated graphically in Figure

4.1. Figure 4.1 (a)-(b) plot 10,000 Gibbs samples (after discarding 10,000 burn-in samples)

for λ1 and λ2 (not λ2
1, λ2

2), respectively. The posterior distribution of λ2 is central around

a value of 22 which is much larger than .39, the posterior median of λ1. Figure 4.1 (c)-(d)

shows the trace plots of iterations λ
(n)
1 , λ

(n)
2 from Atchade’s method. Marginal maximum

likelihood estimates of λ1 and λ2 are 0.39 and 19, respectively. In Figure 4.2 we plot EB

and posterior mean estimates of λ2 versus β2 when β2 varies from 0 to 5. Clearly, both the

EB and the posterior estimates of λ2 decrease as β2 increases, which demonstrates that

lighter penalty is applied for stronger signals.
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Figure 4.2: Plots of the EB and posterior estimates of λ2 versus β2
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4.1.2 Inference

Estimation and model selection

For the adaptive Lasso, the usual methods to choose the λj would be computationally

demanding. From the Bayesian perspective, one can draw MCMC samples based on the

BaLasso and get an estimated posterior quantity for β. Like the original Bayesian Lasso,

however, a full posterior exploration gives no sparse models and would fail as a model

selection method. Here we take a hybrid Bayesian-frequentist point of view in which

coefficient estimation and variable selection are simultaneously conducted by plugging in

an estimate of λ into (4.2), where λ might be the marginal maximum likelihood estimator,

posterior median or posterior mean. Hereafter these suggested strategies are abbreviated

as BaLasso-EB, BaLasso-Median, and BaLasso-Mean, respectively.

With the presence of a posterior sample, we also propose another strategy for exploring

model uncertainty. Let {λ(s)}Ns=1 be Gibbs samples drawn from the hierarchical model

(4.3), (4.5) and (4.7). For the sth Gibbs sample λ(s) = (λ
(s)
1 ,...,λ

(s)
p )>, we plug λ(s) into
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(4.2) and then record the frequencies of each variable being chosen out of N samples. The

final chosen model consists of those variables whose frequencies are not less than 0.5. This

strategy will be abbreviated as BaLasso-Freq. The chosen model is somewhat similar in

spirit to the so-called median probability (MP) model proposed by Barbieri and Berger

[2004] (see Section 3.1)

As we will see in Section 4.1.3, all of our proposed strategies have surprising improve-

ment in terms of variable selection over the original Lasso and the adaptive Lasso.

Bayesian model averaging

When model uncertainty is present, making inferences based on a single model may be

dangerous. Using a set of models helps to account for this uncertainty and can provide

improved inference. As discussed in Section 3.1, Bayesian model averaging is widely used

for prediction and generally provides better predictive performance than a chosen single

model. For making inference via multiple models, we use the hierarchical model approach

for estimating λ and refer to the following strategy as BaLasso-BMA.

Let ∆=(x∆,y∆) be a future observation and D=(X,y) be the past data. The posterior

predictive distribution of ∆ is given by

p(∆|D) =

∫
p(∆|β)p(β|λ,D)dβp(λ|D)dλ. (4.8)

Suppose that we measure predictive performance via a logarithmic scoring rule [Good,

1952], i.e., if g(∆|D) is some distribution we use for prediction then our predictive perfor-

mance is measured by logg(∆|D) (where larger is better). Then for any fixed smoothing

parameter vector λ0

E(log p(∆|D)− log p(∆|λ0,D)) =

∫
log

p(∆|D)

p(∆|λ0,D)
p(∆|D)d∆
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is nonnegative because the right hand side is the Kullback-Leibler divergence between

p(∆|D) and p(∆|λ0,D). Hence prediction with p(∆|D) is superior in this sense to predic-

tion with p(∆|λ0,D) with any choice of λ0.

Our hierarchical model (4.3), (4.5) and (4.7) offers a natural way to estimate the

predictive distribution (4.8), in which the integral is approximated by the average from

Gibbs samples of λ. For example, in the case of point prediction for y∆ with squared error

loss, the ideal prediction is

E(y∆|D) =

∫
x>∆E(β|λ,D)p(λ|D)dλ = x>∆E(β|D),

where E(β|D) can be estimated by the mean of Gibbs samples for β. Write β̂λ as the

conditional posterior mode for β given λ. One could approximate x>∆E(β|D) by replacing

E(β|D) with the conditional posterior mode β̂λ̂ for some fixed value λ̂ of λ. However, this

ignores uncertainty in estimating the penalty parameters. An alternative strategy is to

replace E(β|D,λ) in the integral above with β̂λ and to integrate it out accordingly. This

should provide a better approximation to the full Bayes solution than the approach which

uses a fixed λ̂. In fact, we predict E(y∆|D) by s−1
∑s

i=1x
>
∆β̂λ(i) where λ(i), i=1,...,s, denote

MCMC samples drawn from the posterior distribution of λ. Note that this approach has

advantages in interpretation over the fully Bayes’ solution. By considering the models

selected by the conditional posterior mode for different draws of λ from p(λ|y) we gain

an ensemble of sparse models that can be used for interpretation. As will be seen in

Section 4.1.3, when there is model uncertainty, BaLasso-BMA provides an ensemble of

sparse models and may have better predictive performance than conditioning on a single

fixed smoothing parameter vector λ.
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Table 4.1: Frequency of correctly-fitted models over 100 replications for Example 1.

n σ Lasso aLasso BaLasso-Freq BaLasso-Median BaLasso-Mean BaLasso-EB

30 1 50 71 86 86 97 78

3 17 8 35 34 18 39

60 1 66 76 81 79 100 83

3 44 38 54 53 55 46

120 1 73 76 87 87 100 87

3 58 55 81 81 97 86

4.1.3 Examples

In this section we study the proposed methods through numerical examples. These meth-

ods are also compared to the Lasso, aLasso and BLasso in terms of variable selection and

prediction. We use the LARS algorithm of Efron et al. [2004] for the Lasso and the aLasso

in which fivefold cross-validation is used to choose shrinkage parameters. In the adaptive

Lasso, we either use the least squares estimate (Examples 1 and 2) or the Lasso estimate

(Example 3) as the preliminary estimate. For the optimization problem (4.2), we use the

gradient projection algorithm developed by Figueiredo et al. [2007].

Example 1 (simple example). We consider again model (2.40) of Tibshirani [1996].

We compare the performance of the proposed methods for model selection described above

to that of the original Lasso and adaptive Lasso. The performance is measured by the

frequency of correctly-fitted models over 100 replications. The simulation results summa-

rized in Table 4.1 suggest that the proposed methods perform better than the Lasso and

aLasso in model selection.

Example 2 (difficult example). For the second example, we use Example 1 in Zou

[2006], for which the Lasso does not give consistent model selection, regardless of the
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Table 4.2: Frequency of correctly-fitted models over 100 replications for Example 2.

n σ Lasso aLasso BaLasso-Freq BaLasso-Median BaLasso-Mean BaLasso-EB

60 9 0 5 8 8 9 12

120 5 10 45 66 65 66 51

300 3 12 65 83 83 85 83

300 1 12 100 100 100 100 100

sample size and how the tuning parameter λ is chosen. Here β=(5.6, 5.6, 5.6, 0)> and the

correlation matrix of covariates is such that cor(xj,xk)=−.39, j <k <4 and cor(xj,x4)=

.23, j <4.

The experimental results are summarized in Table 4.2 in which the frequencies of correct

selection are shown. We see that the original Lasso does not seem to give consistent model

selection. For all the other methods, the frequencies of correct selection go to 1 as n

increases and σ decreases. In general, our proposed method for model selection performs

better than the aLasso.

Example 3 (large p example). We consider a large-p example in which p=100 with

various sample sizes n = 50, 100, 200. We set up a sparse recovery problem in which

most of coefficients are zero except βj =5, j =10,20,...,100. From the previous examples,

the performances of the four methods BaLasso-Freq, BaLasso-Median, BaLaso-Mean and

BaLasso-EB are similar. We therefore just consider the BaLasso-Mean as a representative

and compare it to the adaptive Lasso which is generally superior to the Lasso.

Table 4.3 summarizes our simulation results, in which the design matrix is simulated as

in Example 1. The BaLasso-Mean performs satisfactorily in this example and outperforms

the aLasso in variable selection.

Example 4 (prediction). In this example, we examine the predictive ability of the
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Table 4.3: Frequency of correctly-fitted models over 100 replications for Example 3.

n σ aLasso BaLasso-Mean

50 1 24 39

3 24 35

5 8 29

100 1 40 100

3 39 99

5 20 86

200 1 100 100

3 88 100

5 78 97

BaLasso-BMA experimentally. As discussed in Section 4.1.2, when there is model uncer-

tainty, making predictions conditioning on a single fixed parameter vector is not optimal

predictively. Suppose that the dataset D is split into two sets: a training set DT and

prediction set DP . Let ∆=(x∆,y∆)∈DP be a future observation and ŷ∆ be a prediction of

y∆ based on DT . We measure the predictive performance by the prediction squared error

(PSE)

PSE =
1

|DP |
∑

∆∈DP

|y∆ − ŷ∆|2. (4.9)

We compare PSE of the BaLasso-BMA to that of the BaLasso-Mean in which ŷ∆ =x>∆β̂

where β̂ is the solution to (4.2) with smoothing parameter vector fixed at the posterior

mean of λ. We also compare the predictive performance of the BaLasso-BMA to that of

the Lasso, aLasso, and the original Bayesian Lasso (BLasso). The implementation of the

BLasso is similar to the BaLasso except that the BLasso has a single smoothing parameter.

We first consider a small-p case in which data sets are generated from Tibshirani’s
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Table 4.4: Prediction squared errors averaged over 100 replications for the small-p case.

nT =nP σ Lasso aLasso BLasso BaLasso-Mean BaLasso-BMA

30 1 2.02 1.97 1.27 1.17 1.16

3 17.43 17.37 10.88 15.51 11.06

5 42.74 42.13 29.43 41.32 29.56

10 126.6 126.2 109.6 123.9 109.9

100 1 1.44 1.43 1.04 1.07 1.03

3 12.69 12.58 9.66 9.62 9.48

5 34.89 34.79 25.79 27.55 25.83

10 117.6 117.5 105.7 118.2 106.5

200 1 1.27 1.27 1.01 1.03 1.01

3 11.44 11.40 9.42 9.32 9.32

5 31.30 31.18 25.32 25.36 25.19

10 120.7 120.7 103.9 108.8 104.3

model (2.40) but now with β =(3, 1.5, 0.1, 0.1, 2, 0, 0, 0)>. By adding two small effects

we expect there to be model uncertainty. Table 4.4 presents the prediction squared errors

averaged over 100 replications with various factors nT (size of training set), nP (size of

prediction set) and σ. The experiment shows that the BaLasso-BMA performs slightly

better than the BLasso and BaLasso-Mean, and much better than the Lasso and aLasso.

Similarly, we consider a large-p case as in Example 3 but now with β10 =β20 = β30 =

β40 =β50= .5 in order to get model uncertainty. The results are summarized in Table 4.5.

Unlike for the small-p case, the BLasso now performs surprisingly badly. This may be due

to the fact that the BLasso uses the same shrinkage for every coefficient. As shown, the

BaLasso-BMA outperforms the others.
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Table 4.5: Prediction squared errors averaged over 100 replications for the large-p case.

nT =nP σ Lasso aLasso BLasso BaLasso-Mean BaLasso-BMA

100 1 3.50 4.17 9.57 1.67 1.23

3 15.49 17.70 27.42 10.88 10.42

5 34.45 39.81 42.43 28.66 28.19

10 149.3 178.1 161.0 124.5 117.6

200 1 2.46 2.41 5.23 1.11 1.07

3 17.11 17.09 15.12 10.42 10.22

5 44.49 44.39 33.92 27.18 27.06

10 148.1 147.5 136.1 112.0 108.9

Example 5: Prostate cancer data. We now apply our methodologies to the prostate

cancer data set which was considered in Section 2.6.2. We first consider the variable selec-

tion problem. The data set of size 97 is standardized so that the intercept β0 is excluded.

Table 4.6 summarizes the selected smoothing parameters and estimated coefficients by

various methods. Note that, for the Lasso and aLasso there is just one smoothing param-

eter and putting the values on the first row as presented in the table does not mean these

parameters are only associated with the first predictor.

The EB estimation here is implemented using the stabilized Algorithm 2.2 of Atchade

[2009], in which the compact sets are selected to be ⊗[−n−1,n+1], and the step-size

an = 2/n is obtained after a few trials by justifying the convergence of iterations λ(n)

graphically. As shown in Table 4.6, the BaLasso-EB, BaLasso-Mean and BaLasso-Median

give very similar estimates for λj corresponding to nonzero-estimated coefficients, but

fairly different estimates for λj corresponding to zero-estimated coefficients. The effects

of increased penalty parameters on the zero coefficients are obvious: smaller shrinkage is
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Table 4.6: Prostate cancer example: selected smoothing parameters and coefficient esti-

mates

Selected λ Coefficient estimate β̂

BaLasso Lasso aLasso BaLasso Lasso aLasso

-EB -Median -Mean -EB -Median -Mean

1.2 1.2 1.4 2.4 1.9 0.56 0.56 .56 .56 .57

1.6 1.5 1.8 0.44 0.44 .44 .36 .44

332.8 841.1 1066 0 0 0 -.02 0

55.8 16.7 20.4 0 0 0 .1 0

1.2 1.1 1.3 0.59 0.59 .58 .43 .51

97.6 86.6 113.2 0 0 0 0 0

89.8 78.7 105.1 0 0 0 0 0

754.4 1242 1824 0 0 0 .01 0

applied to the nonzero coefficients and larger shrinkage is applied to those which should

be removed.

The adaptive Lasso and all of the proposed strategies (including the BaLasso-Freq also)

for variable selection produce the same model whose BIC is -25.19, while BIC of the model

selected by the Lasso is -21.38. Therefore the model chosen by our methods is favorable

according to this criterion at least. Note that the model selected here by the BaLasso

methods is the same as the one selected by the loss rank criterion in Section 2.6.2.

We now proceed to explore model uncertainty inherent in this dataset. Let M(λ) be

the model selected w.r.t. shrinkage parameter vector λ. The posterior model probability

(PMP) of a model M will be

p(M |D) =

∫

λ:M(λ)=M

p(λ|D)dλ.
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Table 4.7: Prostate cancer example: 10 models with highest posterior model probability

Models PMP (%)

1 2 5 27.9

1 2 5 8 16.1

1 4 5 6.3

1 2 4 5 8 5.9

1 2 8 5.7

1 2 4 5 5.1

1 2 3 5 8 4.9

1 2 3 4 5 8 4.9

1 4 5 8 3.2

1 2 3.1

From the Gibbs samples of λ, it is straightforward to estimate these PMPs. Table 4.7

presents 10 models with highest PMP. The most frequently selected model is the same

as the one selected by the aLasso and our methods. In comparison to the examples in

Section 3.1.5, the model uncertainty indicator defined in (3.12) MUI=.58 suggests that

the presence of model uncertainty is not very clear in this case. The model with highest

posterior probability accounts for 27.9% of the total. Moreover, this probability is also

considerably different from that of the model with second highest posterior probability.

To examine the predictive performance, we split the data set (without standardizing)

into two sets: the first 50 observations form the training set DT , the rest form the prediction

set DP . The PSEs of the aLasso, BLasso, BaLasso-Median, BaLasso-BMA are 1.89, 1.91,

1.91, 1.86, respectively. Therefore, although the presence of model uncertainty is not very

clear, the BaLasso-BMA still provides comparable and slightly better estimates in terms
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of prediction.

4.1.4 A unified framework

So far, we have focused on the BaLasso for linear regression. This section extends the

BaLasso to general linear models, such as generalized linear models, Cox’s model and so

on, with other penalties, such as the group penalty [Yuan and Lin, 2006] and the composite

absolute penalty [Zhao et al., 2009]. This unified framework enables us to study variable

selection in a much broader context.

Denote by L(β) the minus log-likelihood. In order to use the BaLasso developed for

linear regression, we approximate L(β) by the least squares approximation (LSA)

L(β) ≈ L(β̃)+
∂L(β̃)

∂β
(β−β̃)+

1

2
(β−β̃)>

∂2L(β̃)

∂β2 (β−β̃)

= constant +
1

2
(β−β̃)Σ̂−1(β−β̃)

where β̃ is the MLE of β and Σ̂−1 := ∂2L(β̃)/∂β2. The LSA was proposed by Wang

and Leng [2007] for a unified treatment of variable selection using the Lasso. To use the

BaLasso for a general model, the sampling distribution of y, conditional on β, can be

approximately written as

y|β ∼ exp

(
−1

2
(β − β̃)>Σ̂−1(β − β̃)

)
.

Using this approximation, we only need to update the hierarchical model for y in the linear

model as

y|β ∼ exp

(
−1

2
(β − β̃)>Σ̂−1(β − β̃)

)
.

Now we discuss in detail three novel applications of the BaLasso for general linear

models with flexible penalties.
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BaLasso for general linear models. The frequentist adaptive Lasso for general models

estimates β by minimizing

L(β) +
∑

λj|βj|. (4.10)

Its Bayesian version is the following

y|β ∼ exp

(
−1

2
(β − β̃)>Σ̂−1(β − β̃)

)
,

β|τ 2 ∼ Np(0,Dτ ), Dτ = diag(τ 2),

τ 2|λ2 ∼
p∏

j=1

λ2
j

2
e−λ2

jτ2
j /2,

λ2 ∼
p∏

j=1

(λ2
j )

r−1e−δλ2
j

where τ 2 :=(τ 2
1 ,...,τ 2

p)
>, λ2 :=(λ2

1,...,λ
2
p)
>. Note that we no longer have σ2 in the hierarchy.

The full conditionals are specified by

β|y, τ 2,λ2 ∼ Np

(
(Σ̂−1 + D−1

τ )−1Σ̂−1β̃, (Σ̂−1 + D−1
τ )−1

)
,

1

τ 2
j

= γj|y,β,λ2 ∼ inverse-Gaussian

(
λj

|βj|
, λ2

j

)
, j = 1, ..., p,

λ2
j |y,β, τ 2 ∼ gamma(r + 1, δ +

τ 2
j

2
), j = 1, ..., p.

BaLasso for group Lasso. The adaptive group Lasso [Yuan and Lin, 2006] for general

models minimizes

L(β) +
J∑

j=1

λj‖βj‖l2 (4.11)

where βj is the coefficient vector of the jth group, j=1,...,J . The corresponding Bayesian
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hierarchy is as follows:

y|β ∼ exp

(
−1

2
(β − β̃)>Σ̂−1(β − β̃)

)
,

βj |τ 2 ∼ Nmj(0, τ 2
j Imj ), j = 1, ..., J

τ 2
j |λ2 ∼ gamma

(
mj + 1

2
,
λ2

j

2

)
, j = 1, ..., J

λ2
j ∼ gamma(r, δ), j = 1, ..., J

where mj is the size of group j, Imj is the identity matrix of order mj. This prior was also

used by Kyung et al. [2010] for grouped variable selection in linear regression.

The full conditionals can be obtained as follows. Let X̃ be the square root matrix of

Σ̂−1 and ỹ :=X̃β̃. Write X̃ =[X̃1,...,X̃J] with block matrices X̃j of size p×mj. We have

βj|y,β−j , τ
2,λ2 ∼ Nmj

(
A−1

j X̃>
j (ỹ−

∑

j′ 6=j

X̃j′βj′), A
−1
j

)
,

1

τ 2
j

= γj|y,β,λ2 ∼ inverse Gaussian

(
λj

‖βj‖
, λ2

j

)
,

λ2
j |y,β, τ 2 ∼ gamma

(
r +

mj + 1

2
, δ +

τ 2
j

2

)
, j = 1, ..., J,

where β−j =(β1,...,βj−1,βj+1,...,βJ) and Aj =X̃>
j X̃j +(1/τ 2

j )Imj .

BaLasso for composite absolute penalty. We now consider the group selection prob-

lem in which a natural ordering among the groups is present. By j→ j′, we mean that

group j should be added into the model before another group j′, i.e., if group j′ is selected

then group j must be included in the model as well. We extend the composite absolute

penalty [Zhao et al., 2009] by allowing different tuning parameters for different groups

∑

group j

λj‖(βj,βall j′:j→j′)‖l2,

where βj is a coefficient vector and this penalty represents some hierarchical structure in
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the model. From this, the desired prior for β is the multi-Laplace

π(β) ∝ exp

(∑

j

λj‖(βj,βj′ :j→j′)‖l2

)

which can be expressed as the following normal-gamma mixture

∫ (
1

2πτ 2
j

)kj
2

exp

(
−
‖(βj,βj′ :j→j′)‖2

2τ 2
j

)
(

λ2
j

2
)

kj+1

2 (τ 2
j )

kj+1

2
−1

Γ(
kj+1

2
)

exp(−
λ2

jτ
2
j

2
)dτ 2

j =exp
(
λj‖(βj,βj′ :j→j′)‖

)

(4.12)

where kj := mj +
∑

j′:j→j′mj′. Similar to the Bayesian formulations before, this identity

leads to the idea of using a hierarchical Bayesian formulation with a normal prior for β|τ 2

and a gamma prior for τ 2
j . More specifically, the prior for β|τ 2 will be

β|τ 2 ∝ exp

(
−
∑

j

‖(βj ,βj′ :j→j′)‖2

2τ 2
j

)
=
∏

j

exp

(
−1

2

( 1

τ 2
j

+
∑

j′ :j′→j

1

τ 2
j′

)
‖βj‖2

)
.

This suggests that the hierarchical prior for βj|τ 2 is independently multinormal with

mean 0 and covariance matrix (1/τ 2
j +
∑

j′ :j′→j1/τ
2
j′ )

−1Imj , j =1,...,J . We therefore have

the following hierarchy

y|β ∼ exp

(
−1

2
(β − β̃)>Σ̂−1(β − β̃)

)
,

βj|τ 2 ∼ Nmj

(
0, σ2

j Imj

)
, where σ2

j := (
1

τ 2
j

+
∑

j′:j′→j

1

τ 2
j′

)−1

τ 2
j |λ2 ∼ gamma

(
kj + 1

2
,
λ2

j

2

)

λ2
j ∼ gamma(r, δ) for j = 1, ..., J.

Full conditionals. It is now straightforward to derive the full conditionals as follows
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βj|y,β−j, τ
2,λ2 ∼ Nmj

(
A−1

j X̃>
j (ỹ −

∑

j′ 6=j

X̃j′βj′), A
−1
j

)
,

1

τ 2
j

= γj |y,β,λ2 ∼ inverse Gaussian

(
λj

‖(βj ,βj′:j→j′)‖
, λ2

j

)
,

λ2
j |y,β, τ 2 ∼ gamma

(
r +

kj + 1

2
, δ +

τ 2
j

2

)
, j = 1, ..., J

where β−j =(β1,...,βj−1,βj+1,...,βJ) and Aj =X̃ ′
jX̃j +(1/σ2

j )Imj .

We now assess the usefulness of this unified framework by three examples. For brevity,

we only report the performance of various methods in terms of model selection.

Example 6: BaLasso in logistic regression. We simulate independent observations

from Bernoulli distributions with probabilities of success

µi = P (yi = 1|xi,β) =
exp(5 + x>iβ)

1 + exp(5 + x>iβ)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)>, and xi = (xi1,...,xip)
>∼Np(0,Σ) with σij = 0.5|i−j|.

We compare the performance of the BaLasso to that of the Lasso and the aLasso. The

performance is measured by the frequency of correct fitting and average number of zero

coefficients over 100 replications. The weight vector in the aLasso is as usual assigned

as ŵ = 1/|β̂
MLE
|, where β̂

MLE
is the MLE of β. The shrinkage parameters in the Lasso

and aLasso are tuned by 5-fold cross-validation. Table 4.8 presents the simulation result

for various sample size n. The aLasso in this example works better than the Lasso. The

suggested BaLasso works very well, especially when the sample size n is large. In addition,

the BaLasso often produces sparser models than the others do.

Example 7: BaLasso for group selection. We consider in this example the group

selection problem in a linear regression framework. We follow the simulation setup of

Yuan and Lin [2006]. A vector of 15 latent variables Z∼N15(0,Σ) with σij =0.5|i−j| are
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Table 4.8: Example 6: Frequency of correctly-fitted models over 100 replications. The

numbers in parentheses are average numbers of zero-estimated coefficients. The oracle

average number is 5.

n Lasso aLasso BaLasso

200 3(2.15) 35(3.97) 36(6.19)

300 5(2.42) 42(4.07) 90(5.10)

500 4(2.66) 41(4.00) 100(5.00)

first simulated. For each latent variable Zi, a 3-level factor Fi is determined according to

whether Zi is smaller than Φ−1(1/3), larger than Φ−1(2/3) or in between. The factor Fi

then is coded by two dummy variables. There are totally 30 dummy variables X1,...,X30

and 15 groups with βj =(β2j−1,β2j)
>, j =1,...,J=15. After having the design matrix X, a

vector of responses is generated from the following linear model

y = Xβ + ε, ε ∼ Nn(0, I) (4.13)

where most of βj =0 except β1 =(−1.2, 1.8)>, β3 =(1, 0.5)>, β5 =(1, 1)>. We compare the

performance of the BaLasso to that of the gLasso in Yuan and Lin [2006] and the adaptive

group Lasso (agLasso) [Wang and Leng, 2008] in terms of frequencies of correct fitting

and average numbers of not-selected factors over 100 replications. We follow Wang and

Leng [2008] to take the weights ŵj =1/‖β̂
MLE

j ‖ with β̂
MLE

j are the MLE of βj. The tuning

parameters in gLasso and agLasso are tuned using AIC with the degrees of freedom as in

Yuan and Lin [2006]. We use 1000 values of λ equally spaced from 0 to λmax to search

for the optimal value. Table 4.9 reports the simulation result. Both gLasso and agLasso

seem to select unnecessarily large models and have low rate of correct fitting. In contrast,

the BaLasso seems to produce more parsimonious models when n is small. In general, the

BaLasso works much better than the others in terms of model selection consistency.
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Table 4.9: Example 7: Frequency of correctly-fitted models and average numbers (in

parentheses) of not-selected factors over 100 replications. The oracle average number is

12.

n gLasso agLasso BaLasso

100 5(6.64) 22(9.60) 15(14.86)

200 8(6.92) 48(10.72) 90(12.04)

500 7(7.24) 70(11.34) 100(12.00)

Example 8: BaLasso for main and interaction effect selection. In this example

we demonstrate the BaLasso with composite absolute penalty for selecting main and in-

teraction effects in a linear framework. We consider the model II of Yuan and Lin [2006].

First, 4 factors are created as in the previous example, each factor is then coded by two

dummy variables. The true model is generated from (4.13) with main effects β1 =(3, 2)>,

β2 = (3, 2)> and interaction β1·2 = (1, 1.5, 2, 2.5)>. There are totally 10 groups (4 main

effects and 6 second-order interaction effects) with the natural ordering in which main

effects should be selected before their corresponding interaction effects. We use the BaL-

asso formulation with composite absolute penalty to account for this ordering. Table 4.10

reports the simulation result. We observe that both gLasso and agLasso sometimes select

effects in a “wrong” order (interactions are seclected while the corresponding main effects

are not). As a result, they have low rates of correct fitting. The BaLasso always produce

the models with effects in the “right” order. This fact has been theoretically proven in

Zhao et al. [2009]. In general, the BaLasso outperforms its competitors.
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Table 4.10: Example 8: Frequency of correctly-fitted models and average numbers (in

parentheses) of not-selected effects over 100 replications. The oracle average number is 7.

n gLasso agLasso BaLasso

100 18(4.25) 45(5.45) 72(7.28)

200 36(5.16) 88(6.78) 100(7.00)

500 34(5.24) 96(6.92) 100(7.00)

4.2 Variable selection for heteroscedastic linear re-

gression

Consider the heteroscedastic linear regression model

yi = x>iβ + σiεi, i = 1, . . . , n (4.14)

where yi is a response, xi = (xi1,...,xip)
> is a corresponding p-vector of predictors, β =

(β1,...,βp)
> is a vector of unknown mean parameters, εi∼N(0,1) are independent errors

and

log σ2
i = z>i α,

where zi=(zi1,...,ziq)
> is a q-vector of predictors and α=(α1,...,αq)

> is a vector of unknown

variance parameters. In this model the standard deviation σi of yi is being modelled

in terms of the predictors zi; this heteroscedastic model is contrasted with the usual

homoscedastic model which assumes σi is constant. We take a Bayesian approach to

inference in this model and consider a prior distribution p(θ) on θ=(β>,α>)> of the form

p(θ)= p(β)p(α) with p(β) and p(α) both normal, N(µ0
β,Σ0

β) and N(µ0
α,Σ0

α), respectively.

It is possible to consider hierarchical extensions for the priors on p(β) and p(α), but we

do not consider this here.
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We will consider a variational Bayes approach to inference (which will be discussed

in detail in Section 4.2.1). The term variational approximation refers to a wide range of

different methods where the common idea is to convert a problem of integration into an

optimization problem. For Bayesian inference, variational approximation provides a fast

alternative to Monte Carlo methods for approximating posterior distributions in complex

models, especially in high-dimensional problems. In the heteroscedastic linear regression

model, we will consider a variational approximation to the joint posterior distribution of

β and α as q(β,α)= q(β)q(α), where q(β) and q(α) are both normal densities, N(µq
β,Σq

β)

and N(µq
α,Σq

α), respectively. It is also possible to give a variational treatment in which

independence is not assumed between β and α but this complicates the variational opti-

mization somewhat. We attempt to choose the parameters in the variational posterior µq
β,

µq
α, Σq

β and Σq
α to minimize the Kullback-Leibler divergence between the true posterior

distribution p(β,α|y) and q(β,α). This results in a lower bound on the log marginal like-

lihood logp(y) - a key quantity in Bayesian model selection. Our first contribution is the

derivation of a closed form for the lower bound and the proposal of an iterative scheme for

maximizing it. This lower bound maximization plays a crucial role in the variable selection

problem discussed in Section 4.2.2.

Variable selection is a fundamental problem in statistics and machine learning, which

has attracted many researchers recently. A large number of methods have been pro-

posed for variable selection in homoscedastic regression. The traditional approach in the

Bayesian framework is Bayesian variable selection which consists in building a hierarchi-

cal Bayes model and using MCMC algorithms to estimate posterior model probabilities

[George and McCulloch, 1993, Smith and Kohn, 1996]. This methodology is computa-

tionally demanding in high-dimensional problems and there is a need for fast alternatives

in some applications. The reader is referred to Nott et al. [2011] and Tran et al. [2011]
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for some detailed reports on real computational time savings of variational approximation

methods compared to MCMC in the regression context. In high-dimensional settings,

commonly-used alternatives include the family of greedy algorithms [Tropp, 2004, Zhang,

2009]. Greedy algorithms, also known as matching pursuit [Mallat and Zhang, 1993] in

signal processing, are closely related to the Lasso [Tibshirani, 1996] and the LARS algo-

rithm [Efron et al., 2004]. See Zhao and Yu [2007], Efron et al. [2004] and Zhang [2009]

for excellent comparisons of these families of algorithms. In the statistical context, greedy

algorithms have been proven to be very efficient for variable selection in linear regres-

sion under the assumption of homoscedasticity, i.e., where the variance is assumed to be

constant [Zhang, 2009].

In many applications the assumption of constant variance may be unrealistic. Ignor-

ing heteroscedasticity may lead to serious problems in inference, such as misleading as-

sessments of significance, poor predictive performance and inefficient estimation of mean

parameters. In some cases, learning the structure in the variance may be the primary

goal. See Chan et al. [2006] and Carroll and Ruppert [1988] for a more detailed discussion

on heteroscedastic modelling. Despite a large number of works on heteroscedastic regres-

sion and modelling covariate-dependent overdispersion in overdispersed generalized linear

models [Efron, 1986, Smyth, 1989, Yee and Wild, 1996, Rigby and Stasinopoulos, 2005],

methods for model selection seem to be somewhat overlooked. Yau and Kohn [2003] and

Chan et al. [2006] consider Bayesian variable selection and MCMC approaches to compu-

tation in heteroscedastic Gaussian models and extensions involving flexible modelling of

the mean and variance functions. Cottet et al. [2008] consider extensions to overdispersed

generalized linear and generalized additive models. These approaches are computationally

demanding in high dimensional settings. A general and flexible framework for modelling

overdispersed data is considered by Yee and Wild [1996] and Rigby and Stasinopoulos
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[2005]. Methods for model selection are less well developed in these general models. A

common approach is to use information criteria such as generalized AIC and BIC together

with forward stepwise methods (see, e.g., [Rigby and Stasinopoulos, 2005, Section 6]). We

compare our own approaches to such methods later. Our main contribution in this section

is to propose a novel fast greedy algorithm for variable selection in heteroscedastic linear

regression. We show that the proposed algorithm is in homoscedastic cases similar to

currently used methods while having many attractive properties and working efficiently in

high-dimensional problems. An efficient R program is available on the author’s website.

Our methodology has potential for extension to more complicated frameworks such as

variable selection in regression density estimation [Tran et al., 2011] in which the density

of the response variable is smoothy estimated at all points in the covariate space with a

mixtute of experts. However, we do not discuss this extension here.

In Section 4.2.3 we apply our algorithm to the analysis of the diabetes data [Efron

et al., 2004] using heteroscedastic linear regression. This data set consists of 64 predic-

tors (constructed from 10 input variables for a “quadratic model”) and 442 observations.

We show in Figure 4.3 the estimated coefficients corresponding to selected predictors as

functions of iteration steps in our algorithm, for both mean and variance models. The

algorithm stops after 11 forward selection steps with 8 and 7 predictors selected for the

mean and variance models, respectively.

The rest of this section is organized as follows. The closed form of the lower bound and

the iterative scheme for maximizing it are presented in Section 4.2.1. We present in Section

4.2.2 our novel fast greedy algorithm, and compare it to existing greedy algorithms in the

literature for homoscedastic regression. Numerical examples are presented in Section 4.2.3.

Technical derivation is relegated to the Appendix.
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Figure 4.3: Solution paths as functions of iteration steps for analyzing the diabetes data

using heteroscedastic linear regression. The algorithm stops after 11 iterations with 8

and 7 predictors selected for the mean and variance models, respectively. The selected

predictors enter the mean (variance) model in the order 3, 12, ..., 28 (3, 9, ..., 4).
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4.2.1 Variational Bayes

We now give a brief introduction to the variational approximation method. For a more

detailed exposition see, for example, Jordan et al. [1999], [Bishop, 2006, Chapter 10], or see

Ormerod and Wand [2010] for a statistically oriented introduction. The term variational

approximation refers to a wide range of different methods where the common idea is

to convert a problem of integration into an optimization problem. Here we will only

be concerned with applications of variational methods in Bayesian inference and only

with a particular approach sometimes referred to as parametric variational approximation.

Write θ for all our unknown parameters, p(θ) for the prior distribution and p(y|θ) for the

likelihood. In Bayesian inference, decisions are based on the posterior distribution p(θ|y)∝

p(θ)p(y|θ), and a common difficulty in applications is how to compute quantities of interest

with respect to the posterior. These computations often involve the evaluation of high-

dimensional integrals. Variational approximation proceeds by approximating the posterior

distribution directly. Formally, we consider a family of distributions q(θ|λ) where λ denotes

some unknown parameters and attempt to choose λ so that q(θ|λ) is closest to p(θ|y) in

some sense. In particular, we attempt to minimize the Kullback-Leibler divergence

∫
log

q(θ|λ)

p(θ|y)
q(θ|λ)dθ

with respect to λ. Using the identity

logp(y) =

∫
log

p(θ)p(y|θ)
q(θ|λ)

q(θ|λ)dθ+

∫
log

q(θ|λ)

p(θ|y)
q(θ|λ)dθ, (4.15)

where p(y) =
∫
p(θ)p(y|θ)dθ, we see that minimizing the Kullback-Leibler divergence is

equivalent to maximization of

∫
log

p(θ)p(y|θ)
q(θ|λ)

q(θ|λ)dθ. (4.16)
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Here (4.16) is a lower bound on the log marginal likelihood logp(y) due to the non-

negativity of the Kullback-Leibler divergence term in (4.15). The lower bound (4.16),

when maximized with respect to λ, is often used as an approximation to the log marginal

likelihood logp(y) and clearly (again from (4.15)) the error in the approximation is the

Kullback-Leibler divergence between the approximation q(θ|λ) and the true posterior.

The approximation is useful, since logp(y) is a key quantity in Bayesian model selection.

For our heteroscedastic linear model the lower bound (4.16) can be expressed as

L = T1 + T2 + T3,

where

T1 =

∫
log p(β, α)q(β)q(α)dβdα,

T2 =

∫
log p(y|β, α)q(β)q(α)dβdα,

T3 = −
∫

log (q(β)q(α)) q(β)q(α)dβdα.

We show (see the Appendix) that these three terms, which are all expectations with respect

to the (assumed normal) variational posterior, can be evaluated analytically. Putting the

terms together we obtain that the lower bound (4.16) on the log marginal likelihood is

L =
p + q

2
− n

2
log 2π +

1

2
log |Σq

βΣ
0
β
−1|+ 1

2
log |Σq

αΣ0
α
−1| − 1

2
tr(Σ0

β
−1

Σq
β)

−1

2
tr(Σ0

α
−1

Σq
α)− 1

2
(µq

β − µ0
β)>Σ0

β
−1

(µq
β − µ0

β)− 1

2
(µq

α − µ0
α)>Σ0

α
−1

(µq
α − µ0

α)

−1

2

n∑

i=1

z>i µ
q
α −

1

2

n∑

i=1

(yi − x>iµ
q
β)2 + x>iΣ

q
βxi

exp
(
z>i µ

q
α − 1

2
z>i Σ

q
αzi

) . (4.17)

This needs to be maximized with respect to µq
β, µq

α, Σq
β, Σq

α. We consider an iterative

scheme in which we maximize with respect to each of the blocks of parameters µq
β, µq

α, Σq
β,

Σq
α with the other blocks held fixed.
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Write X for the design matrix with ith row x>i and D for the diagonal matrix with ith

diagonal element 1/exp(z>i µ
q
α−1/2z>i Σ

q
αzi). Maximization with respect to µq

β with other

terms held fixed leads to

µq
β =

(
X>DX + Σ0

β
−1
)−1 (

Σ0
β
−1

µ0
β + X>Dy

)
.

Maximization with respect to Σq
β with other terms held fixed leads to

Σq
β =

(
Σ0

β
−1

+ X>DX
)−1

.

Handling the parameters µq
α and Σq

α in the variational posterior for α is more complex.

We proceed in the following way. If no parametric form for the variational posterior

q(α) is assumed (that is, if we do not assume that q(α) is normal), but only assume the

factorization q(θ)=q(β)q(α), then the optimal choice for q(α) for a given q(β)=N(µq
β,Σ

q
β)

is (see Ormerod and Wand [2010], for example)

q(α) ∝ exp [E(log p(θ)p(y|θ))] , (4.18)

where the expectation is with respect to q(β). Similar to the derivation of the lower bound

(4.17), it is easy to see that

q(α) ∝ exp

(
−1

2

n∑

i=1

zT
i α− 1

2

n∑

i=1

(yi − xT
i µq

β)2 + xT
i Σq

βxi

exp(zT
i α)

− 1

2
(α − µ0

α)TΣ0
α
−1

(α − µ0
α)

)
,

which takes the form of the posterior (apart from a normalization constant) for a Bayesian

generalized linear model with gamma response and log link, coefficient of variation
√

2,

and responses wi = (yi−xT
i µq

β)2+xT
i Σq

βxi with the log of the mean response being zT
i α.

The prior in this gamma generalized linear model is N(µ0
α,Σ0

α). If we use a quadratic

approximation to logq(α) then this results in a normal approximation to q(α). We choose

the mean and variance of the normal approximation simply by the posterior mode and
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the negative inverse Hessian of the log posterior at the mode for the gamma generalized

linear model described above. The computations required are standard ones involving

iteratively weighted least squares in a Bayesian generalized linear model. With µq
α the

posterior mode, we obtain for Σq
α the expression

Σq
α =

(
Z>WZ + Σ0

α
−1
)−1

,

where W is diagonal with ith diagonal element wiexp(−z>i µ
q
α)/2. Our optimization over

µq
α and Σq

α is only approximate, so that we only retain the new values in the optimization

if they result in an improvement in the lower bound (4.17). The advantage of our approx-

imate approach is the closed form expression for the update of Σq
α once µq

α is found, so

that explicit numerical optimization for a possibly high-dimensional covariance matrix is

avoided.

The explicit algorithm for our method is the following.

Algorithm 1: Maximization of the variational lower bound.

1. Initialize parameters µq
α, Σq

α.

2. µq
β←

(
X>DX+Σ0

β
−1
)−1(

Σ0
β
−1

µ0
β+X>Dy

)
where D is the diagonal matrix with ith

diagonal entry 1/exp
(
z>i µ

q
α−1/2z>i Σ

q
αzi

)
.

3. Σq
β←

(
X>DX+Σ0

β
−1
)−1

.

4. Obtain µq
α as the posterior mode for a gamma generalized linear model with normal

prior N(µ0
α,Σ0

α), gamma responses wi =(yi−x>iµ
q
β)2+x>iΣ

q
βxi, coefficient of variation

√
2 and where the log of the mean is z>i α.

5. Σq
α←

(
Z>WZ+Σ0

α
−1
)−1

where W is diagonal with ith diagonal element wiexp(−z>i µ
q
αj)/2.
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6. If the updates done in steps 3 and 4 do not improve the lower bound (4.17) then

their old values are retained.

7. Repeat steps 2-6 until the increase in the variational lower bound (4.17) is less than

some user specified tolerance.

For initialization, we first perform an OLS fit for the mean model to get an estimate β̂

of β. Then we take the residuals from this fit, ri =(yi−x>i β̂)2 say, and do an OLS fit of

logri to the predictors zi to obtain our initial estimate of µq
α. The initial value of Σq

α is

then set to the covariance matrix of the least squares estimator. When the OLS fits are

not valid, some other method such as the Lasso can be used instead. The application of

this algorithm to the problem of variable selection in Section 4.2.2 always involves only

situations in which the above OLS fits are available.

We mention one further extension of our method. We have assumed above that the prior

covariance matrices Σ0
β and Σ0

α are known. Later we will assume Σ0
β =σ2

βI and Σ0
α =σ2

αI

where I denotes the identity matrix and σ2
β and σ2

α are scalar variance parameters. We

further assume that µ0
β = 0 and µ0

α = 0. It may be helpful to perform some data driven

shrinkage so that σ2
β and σ2

α are considered unknown and to be estimated from the data.

Our lower bound (4.17) can be considered as an approximation to logp(y|σ2
β,σ

2
α), and the

log posterior for σ2
β,σ

2
α is apart from an additive constant

log p(σ2
β, σ2

α) + log p(y|σ2
β, σ2

α).

If we assume independent inverse gamma priors, IG(a,b), for σ2
β and σ2

α and if we replace

the log marginal likelihood by the lower bound and maximize, we get

σ2
β =

b + 1
2
µq

β
>
µq

β + 1
2
tr(Σq

β)

a + 1 + p/2
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and

σ2
α =

b + 1
2
µq

α
>µq

α + 1
2
tr(Σq

α)

a + 1 + q/2
.

These updating steps can be added to the Algorithm 1 given above.

4.2.2 Variable selection

In the discussion of the previous section the choice of predictors in the mean and variance

models was fixed. We now wish to consider the problem of variable selection in the

heteroscedastic linear model, and the question of computationally efficient model search

when the number of candidate predictors is very large, perhaps much larger than the sample

size. In Section 4.2.1 we denoted the marginal likelihood by p(y) without making explicit

conditioning on the model but now we write p(y|m) for the marginal likelihood in a model

m. If we have a prior distribution p(m) on the set of all models under consideration, then

Bayes’ rule leads to the posterior distribution on the model given by p(m|y)∝p(m)p(y|m).

We can use the variational lower bound for logp(y|m) as a replacement for logp(y|m) in

this formula as one strategy for Bayesian variable selection when p(y|m) is difficult to

compute, and we follow that strategy here. For a more thorough review of the Bayesian

approach to model selection see, for example, O’Hagan and Forster [2004].

Before presenting our strategy for ranking variational lower bounds, we discuss here

the model prior. Suppose we have a current model with predictors xi, i∈C⊂D={1,...,p},

in the mean model and zi, i∈V ⊂E ={1,...,q}, in the variance model. The subsets C and

V give indices for the currently active predictors in the mean and variance models. Let

πµ
i (πσ

j ) be the prior probability for inclusion of xi (zj) in the mean (variance) model, and

write πµ =(πµ
1 ,...,πµ

p)
>, πσ =(πσ

1 ,...,πσ
q )

>. We assume that the inclusions of predictors are
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independent a priori with

p(C|πµ) =
∏

i∈C

πµ
i

∏

i 6∈C

(1− πµ
i ), p(V |πσ) =

∏

j∈V

πσ
j

∏

j 6∈V

(1 − πσ
j ),

and the prior probability of a model m with index sets C and V in its mean and variance

models is assumed to be

p(m) = p(C, V |πµ, πσ) = p(C|πµ)p(V |πσ). (4.19)

If no such detailed prior information is available for each individual predictor (which is the

situation we consider here), one may assume that πµ
1 = ...=πµ

p =πµ and πσ
1 = ...=πσ

q =πσ

(we note a slight abuse of notation here). Then

p(C|πµ) = π|C|
µ (1 − πµ)

p−|C|, p(V |πσ) = π|V |
σ (1 − πσ)q−|V |, (4.20)

where hyperparameters πµ, πσ∈ [0,1] are user-specified. One can encourage parsimonious

models by setting small (<1/2) πµ and πσ. The smaller the πµ and πσ, the smaller prior

probabilities are put on complex models. By setting πµ=πσ =1/2, one can set the uniform

prior on the models. Another option is to put uniform distributions on πµ and πσ, then

p(C) =

∫ 1

0

p(C|πµ)dπµ ∝
(

p

|C|

)−1

, p(V ) =

∫ 1

0

p(V |πσ)dπσ ∝
(

q

|V |

)−1

. (4.21)

This prior agrees with the one used in the extended BIC proposed by Chen and Chen [2008].

It has the advantage of requiring no hyperparameter while still encouraging parsimony.

We recommend using this as the default prior.

We now consider adding a single variable in either the mean or the variance model,

and then a one-step update to the current variational lower bound in the proposed model

as a computationally thrifty way of ranking the predictors for their possible inclusion.

In our one-step update, we consider a variational approximation in which the variational
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posterior distribution factorizes into independent parts for the added parameter and the

parameters in the current model. We stress that this factorization is only assumed for the

purpose of ranking predictors for inclusion - once a variable has been selected for inclusion

the posterior distribution is approximated using the method outlined in Section 4.2.1.

Write βC for the parameters in the current mean model and XC for the corresponding

design matrix, and αV for the parameters in the current variance model with ZV the

corresponding design matrix. Write xCi for the ith row of XC and zV i for the ith row of

ZV .

Ranking predictors in the mean model

Let us consider first the effect of adding the predictor xj, j ∈D\C, to the mean model.

We write βj for the coefficient of xj and we consider a variational approximation to the

posterior of the form

q(θ) = q(βC)q(βj)q(αV ), (4.22)

with q(βC)=N(µq
βC ,Σq

βC), q(αV )=N(µq
αV ,Σq

αV ) and q(βj)=N(µq
βj,(σ

q
βj)

2). Suppose that

we have fitted a variational approximation for the current model (i.e., the model without

xj) using the procedure of Section 4.2.1. We now consider fitting the extended model

with µq
βC,Σq

βC,µq
αV and Σq

αV fixed at the optimized values obtained for the current model,

and consider just one step of a variational algorithm for maximizing the variational lower

bound in the new model with respect to the parameters µq
βj,(σ

q
βj)

2. In effect for our

variational lower bound (4.17), we are assuming that the variational posterior distribution

for (βC
>,βj)

> is normal with mean (µq
βC

>,µq
βj)

> and covariance matrix


 Σq

βC 0

0 (σq
βj)

2


 .
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Substituting these forms into (4.17) and further assuming µ0
β = 0, µ0

α = 0, Σ0
β = σ2

βI and

Σ0
α =σ2

αI (see the remarks at the end of Section 4.2.1) we obtain the lower bound

L=Lold +
1

2
+

1

2
log

(σq
βj)

2

σ2
β

−
(σq

βj)
2

2σ2
β

−
(µq

βj)
2

2σ2
β

− 1

2

n∑

i=1

x2
ij(σ

q
βj)

2 + x2
ij(µ

q
βj)

2 − 2xijµ
q
βj(yi − x>Ciµ

q
βC)

exp
(
z>iV µq

αV − 1
2
z>iV Σq

αV ziV

)

(4.23)

where Lold is the previous lower bound for the current model without predictor j. Here we

are writing xij for the value of predictor j for observation i. Optimizing the above bound

with respect to µq
βj and (σq

βj)
2 and writing µ̂q

βj and (σ̂q
βj)

2 for the optimizers gives

µ̂q
βj =

(
n∑

i=1

xij(yi − x>Ciµ
q
βC)

exp
(
z>V iµ

q
αV − 1

2
z>V iΣ

q
αV zV i

)
)/( 1

σ2
β

+
n∑

i=1

x2
ij

exp
(
z>V iµ

q
αV − 1

2
z>V iΣ

q
αV zV i

)
)

,

(4.24)

and

(σ̂q
βj)

2 =

(
1

σ2
β

+
n∑

i=1

x2
ij

exp
(
z>V iµ

q
αV − 1

2
z>V iΣ

q
αV zV i

)
)−1

. (4.25)

Substituting these back into the lower bound (4.23) gives

Lold +
1

2
log

(σ̂q
βj)

2

σ2
β

+
1

2

(µ̂q
βj)

2

(σ̂q
βj)

2
. (4.26)

If the variance model contains only an intercept, this result agrees with greedy selection

algorithms where predictors are ranked according to the correlation between a predictor

and the residuals from the current model (see, e.g., Zhang [2009]). We will discuss this

point in detail in the case of homoscedasticity below. Later we write the optimized value of

(4.23) as LM
j (C,V ), the superscript M means the lower bound associated with the model

for mean.

Ranking predictors in the variance model

So far we have considered only the addition of a predictor in the mean model. We

now attempt a similar analysis of the effect of inclusion of a predictor in the variance
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model. With the mean model fixed, suppose we are considering adding a predictor

zj, j ∈ E\V , to the variance model. We consider a normal approximation to the pos-

terior q(θ)=q(βC)q(αV )q(αj) with q(βC)=N(µq
βC ,Σq

βC), q(αV )=N(µq
αV ,Σq

αV ) and q(αj)=

N(µq
αj,(σ

q
αj)

2). The variational lower bound is

Lold+
1

2
+

1

2
log

(σq
αj)

2

σ2
α

−
(σq

αj)
2

2σ2
α

−
(µq

αj)
2

2σ2
α

− 1

2

∑

i

zijµ
q
αj

− 1

2

n∑

i=1

{
1

exp(z>V iµ
q
αV − 1

2
z>V iΣ

q
αV zV i+zijµ

q
αj− 1

2
z2

ij(σ
q
αj)

2)
− 1

exp(z>V iµ
q
αV − 1

2
z>V iΣ

q
αV zV i)

}
×

(
(yi−x>Ciµ

q
βC)2+x>CiΣ

q
βCxCi

)
, (4.27)

where Lold is the lower bound for the current model without predictor zj. To obtain good

values for µq
αj and (σq

αj)
2 we use an approximation similar to the one used for the variance

parameters in Section 4.2.1. If we do not assume a normal form for q(αj) but just the

factorization q(θ)=q(βC)q(αV )q(αj) and with the current q(βC) and q(αV ) fixed, then the

optimal q(αj) is

q(αj) ∝ exp[E(log p(αj) + log p(y|θ))],

where the expectation is with respect to q(βC)q(αV ). We have that

E(log p(αj) + log p(y|θ)) = E

(
−1

2
log 2π − 1

2
log σ2

α −
α2

j

2σ2
α

− n

2
log 2π − 1

2

n∑

i=1

z>V iαV

−1

2

n∑

i=1

zijαj −
1

2

n∑

i=1

(yi − x>CiβC)2

exp
(
z>V iαV + zijαj

)
)

= −n + 1

2
log 2π − 1

2
log σ2

α −
α2

j

2σ2
α

− 1

2

n∑

i=1

z>V iµ
q
αV −

1

2

n∑

i=1

zijαj

−1

2

n∑

i=1

(yi − x>Ciµ
q
βC)2 + x>CiΣ

q
βCxCi

exp
(
z>V iµ

q
αV + zijαj − 1

2
z>V iΣ

q
αV zV i

) . (4.28)

We will make a normal approximation N(µ̂q
αj,(σ̂

q
αj)

2) to the optimal q(αj) via the mode

and negative inverse second derivative of (4.28). Differentiating with respect to αj, we
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obtain

−αj

σ2
α

− 1

2

n∑

i=1

zij +
1

2

n∑

i=1

zijvi

exp(zijαj)
where vi =

(yi − x>Ciµ
q
βC)2 + x>CiΣ

q
βCxCi

exp
(
z>V iµ

q
αV − 1

2
z>V iΣ

q
αV zV i

) .

Approximating exp(−zijαj)≈ 1−zijαj (i.e., using a Taylor series expansion about zero),

setting the derivative to zero and solving gives

µ̂q
αj =

(
1

2

n∑

i=1

zij(vi − 1)

)/( 1

σ2
α

+
1

2

n∑

i=1

z2
ijvi

)
. (4.29)

To get more accurate estimation of the mode, some optimization procedure may be used

here with (4.29) used as an initial point. In our R implementation, the Newton method

was used because (4.28) has its second derivative available in a closed form (see (4.30)

below). We found that (4.29) is a very good approximation as the Newton iteration very

often stops after a small number of iterations (with a stopping tolerance as small as 10−10).

Differentiating (4.28) once more, and finding the negative inverse of the second deriva-

tive at µ̂q
αj gives

(σ̂q
αj)

2 =

(
1

σ2
α

+
1

2

n∑

i=1

z2
ijvi

exp(zijµ̂
q
αj)

)−1

. (4.30)

We can plug these values back into the lower bound in order to rank different predictors

for inclusion in the variance model. We write the optimized value of (4.27) as LD
j (C,V ),

the superscript D means the lower bound associated with the model for standard deviance.

Summary of the algorithm

We summarize our variable selection algorithm below. We write L(C,V ) for the optimized

value of the lower bound (4.17) with the predictor set C in the mean model and the

predictor set V in the variance model. Write C+j for the set C∪{j} and V+j for the set

V ∪{j}.

Algorithm 2: Variational approximation ranking (VAR) algorithm.
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1. Initialize C and V and set Lopt :=L(C,V ).

2. Repeat the following steps until stop

(a) Store Cold :=C, Vold :=V .

(b) Let j∗=argmaxj{LM
j (C,V )+logp(C+j ,V )}. If L(C+j∗ ,V )+logp(C+j∗ ,V )>Lopt+

logp(C,V )} then set C :=C+j∗, Lopt=L(C+j∗,V ).

(c) Let j∗=argmaxj{LD
j (C,V )+logp(C,V+j)}. If L(C,V+j∗)+logp(C,V+j∗)>Lopt+

logp(C,V ) then set V :=V+j∗, Lopt=L(C,V+j∗).

(d) If C =Cold and V =Vold then stop, else return to (a).

Forward-backward ranking algorithm

The ranking algorithm described above can be regarded as a forward greedy algorithm

because it considers adding at each step another predictor to the current model. Hereafter

we refer to this algorithm as forward variational ranking algorithm or fVAR in short.

Like the other forward greedy algorithms that have been widely used in many scientific

fields, the fVAR works well in most of the examples that we have encountered. However,

a major drawback with the forward selection algorithms is that if a predictor has been

wrongly selected then it can not be removed anymore. A natural remedy for this is to add

a backward elimination process in order to correct mistakes made in the earlier forward

selection. We present here a recipe for ranking predictors for exclusion in mean and

variance models.

Let C, V be the current sets of predictors in the mean and variance models, respectively.

With j ∈C, we write C−j for the set C\{j} and consider now the effect of removing the

predictor xj to the lower bound. In order to reduce computational burden, we need

some way to avoid the need to do lower bound maximization for each model C−j when
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ranking xj for exclusion. Similar as before, we consider a variational approximation using

the factorization (4.22) for the variational posterior distribution. Following steps (4.23)-

(4.26), we can approximately write the lower bound for the current model (i.e.,the model

contains xj) as the sum of the lower bound for the model without xj and a xj-based term

L(C, V ) ≈ L(C−j , V ) + ΓM
C−j ,V (j), (4.31)

with

ΓM
C−j ,V (j) :=

1

2
log

(σ̂q
βj)

2

σ2
β

+
1

2

(µ̂q
βj)

2

(σ̂q
βj)

2
, (4.32)

where µ̂q
βj, σ̂q

βj are as in (4.24) and (4.25) with C replaced by C−j . All the relevant

quantities needed in the calculation of ΓM
C−j ,V (j) are fixed at optimized values maximizing

the lower bound for the current model. The subscripts C−j ,V is to emphasize that the

quantities needed are adjusted correspondingly when the predictor j is removed from the

mean model. The most plausible candidate for exclusion from the current mean model

then is

j∗ = argmaxj∈C{L(C−j , V ) + log p(C−j , V )} = argminj∈C{ΓM
C−j ,V (j)− log p(C−j , V )}.

(4.33)

We now rank the predictors for exclusion in the variance model. Following the arguments

above, we can write

L(C, V ) ≈ L(C, V−j) + ΓD
C,V−j

(j) (4.34)

with

ΓD
C,V (j)=

1

2
+

1

2
log

(σ̂q
αj)

2

σ2
α

−
(σ̂q

αj)
2

2σ2
α

−
(µ̂q

αj)
2

2σ2
α

− 1

2

∑

i

zijµ̂
q
αj

− 1

2

n∑

i=1

{
1

exp(z>V iµ
q
αV − 1

2
z>V iΣ

q
αV zV i+zijµ̂

q
αj− 1

2
z2

ij(σ̂
q
αj)

2
− 1

exp(z>V iµ
q
αV − 1

2
z>V iΣ

q
αV zV i)

}
×

(
(yi−x>Ciµ

q
βC)2+x>CiΣ

q
βCxCi

)
, (4.35)
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where µ̂q
αj , σ̂q

αj are as in (4.29)-(4.30) with V replaced by V−j . The most plausible candidate

for exclusion from the current variance model then is

j∗ = argmaxj∈V {L(C,V−j)+ logp(C,V−j)}= argminj∈V {ΓD
C,V−j

(j)− logp(C,V−j)}. (4.36)

Algorithm 3: Forward-backward variational approximation ranking algorithm.

1. Initialize C and V , and set Lopt=L(C,V ).

2. Forward selection: as in Step 2 in Algorithm 2.

3. Backward elimination: Repeat the following steps until stop

(a) Store Cold :=C, Vold :=V .

(b) Find j∗ as in (4.33). If L(C−j∗ ,V )+logp(C−j∗ ,V ) > Lopt+logp(C,V ) then set

C =C−j∗, Lopt=L(C−j∗,V ).

(c) Find j∗ as in (4.36). If L(C,V−j∗)+logp(C,V−j∗) > Lopt+logp(C,V ) then set

V =V−j∗ , Lopt=L(C,V−j∗).

(d) If C =Cold and V =Vold then stop, else return to (a).

Hereafter we refer to this algorithm as fbVAR.

In some applications where X ≡Z, it might be meaningful to restrict the search for

inclusion in the variance model to those predictors that have been included in the mean

model. To this end, in the forward selection we just need to restrict the search for the most

plausible candidate j∗ in Step 2(c) of Algorithm 2 to set C, i.e., j∗=argmaxj∈C{LD
j (C,V )+

logp(C,Vj)}. Also, when consider the removal of a candidate j from the mean model in

the backward elimination, we need to remove j from the variance model as well if j ∈V ,

i.e., Step 3(b) of Algorithm 3 must be modified to
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3(b’) Let j∗=argminj∈C{ΓM
C−j ,V−j

(j)−logp(C−j ,V−j)}. If L(C−j∗ ,V−j∗)+logp(C−j∗ ,V−j∗)>

Lopt+logp(C,V ) then set C =C−j∗, V =V−j∗, Lopt=L(C−j∗,V−j∗).

Later we compare with the variable selection approaches for heteroscedastic regression

implemented in the GAMLSS (generalized additive model for location, scale and shape)

package [Rigby and Stasinopoulos, 2005]. The GAMLSS framework allows modeling of

the mean and other parameters (like the standard deviation, skewness and kurtosis) of the

response distribution as flexible functions of predictors. Variable selection is done with

stepwise selection using a generalized AIC or BIC as the stopping rule. The GAMLSS

uses a Fisher scoring algorithm to maximize the likelihood for ranking every predictor

for inclusion/exclusion rather than only the most plausible one as in the VAR algorithm,

which leads to a heavy computational burden for large-p problems.

The ranking algorithm for homoscedastic regression

In order to get more insight into our VAR algorithm, we discuss now the algorithm for

the homoscedastic linear regression model. In the case of constant variance, the vari-

ance parameter α now becomes scalar, we rename the quantities Σ0
α, Σq

α as (σ0
α)2, (σq

α)2,

respectively. The optimal choice (4.18) for q(α) becomes

q(α) ∝ exp

(
−n

2
α− 1

2
ve−α − 1

2

α2

(σ0
α)2

)
where v :=

n∑

i=1

(
(yi − x>iµ

q
β)2 + x>iΣ

q
βxi

)
.

Using the approximation exp(−α)≈1−α, it is easy to see that the mean and variance of

the normal approximation are

µq
α =

v − n

v + 2/(σ0
α)2

and (σq
α)2 =

(
v

2
e−µq

α +
1

(σ0
α)2

)−1

,

respectively. We now can replace steps 4 and 5 in Algorithm 1 by these two closed forms

so that the computations can be reduced greatly. Similar to the above discussion, the
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Newton method may be used here in order to get a more accurate estimate of the mode.

In our experience, however, this is not necessary here.

For the variable selection problem we now just need to rank the predictors for inclu-

sion/exclusion in the mean model. Assume that we are using the uniform model prior,

i.e., p(C,V )≡constant, or a model prior as in (4.20), the ranking of predictors then fol-

lows the ranking of the lower bounds. We further assume that the design matrix X has

been standardized such that
∑

ixij =0 and
∑

ix
2
ij =n, the optimizer (σ̂q

βj)
2 in (4.25) then

does not depend on j, and the ranking of the lower bound (4.26) follows the ranking of
∣∣∑n

i=1xij(yi−x>Ciµ
q
βC)
∣∣ (i.e., it follows the ranking of the absolute correlation of the pre-

dictors with the standardized residuals from the current model). This result agrees with

frequentist matching pursuit and greedy algorithms where predictors are ranked according

to the correlation between a predictor and the residuals from the current model [Mallat

and Zhang, 1993, Zhang, 2009, Efron et al., 2004]. This is also similar to computationally

thrifty path following algorithms (the LARS of Efron et al. [2004], the BLasso of Zhao and

Yu [2007]).

For all the existing frequentist algorithms for variable selection in the literature, ex-

tra tuning parameters are involved (shrinkage parameters in penalization procedures like

the Lasso, number of iterations in matching pursuit, stopping parameter ε in greedy al-

gorithms) and their performance depends essentially on the method used to choose these

tuning parameters. An advantage of our method is that no extra tuning parameters is

required, the final model is chosen when the lower bound (which is a good approxima-

tion of the logarithm of the evidence logp(y)) is maximized - a natural stopping rule in

Bayesian model selection with uniform model prior. Unlike many commonly used greedy

algorithms, our Bayesian framework is able to incorporate prior information (if available)

on models and/or to encourage parsimonious models if desired. Besides involving ex-
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tra tuning parameters, penalized estimates are often biased (see, for example, Friedman

[2008], Efron et al. [2004]). While our method can penalize non-zero coefficients through

the prior if desired, it does not rely on shrinkage of coefficients to do variable selection, so

that in principle it might produce better estimation of non-zero coefficients. Simulation

studies in Section 4.2.3 confirm this point. Note that we do not consider models of all

sizes, the algorithm stops when important predictors have been included in the model

so that computations of Algorithm 1 just involve matrices with low-dimension. This is

another advantage which makes our method potentially valuable for variable selection in

high-dimensional problems. Our experience shows that the VAR algorithm is as fast as

the LARS algorithm in problems with thousands of predictors.

4.2.3 Numerical examples

Heteroscedastic case. We present here a simulation study for our VAR method for

simultaneous variable selection and parameter estimation in the heteroscedastic linear re-

gression model, and compare its performance to that of the GAMLSS and aLasso methods.

Data sets were generated from the following model

y = 2 + x>β̃ + σe
1
2
x>α̃ε, (4.37)

with β̃=(3, 1.5, 0, 0, 2, 0, 0, 0)>, ε∼N(0, 1). Predictors x were first generated from normal

distributions N(0,Σ) with Σij =0.5|i−j| and then transformed into the unit interval by the

cumulative distribution function Φ(.) of the standard normal. The reason for making the

transformation was to control the magnitude of noise level, i.e., the quantity σe
1
2
x>α̃. Let

β=(2, β̃>)> and α=(logσ2,α̃>)> be the mean and variance parameters, respectively, where

α̃ = (0, 3, 0, 0, −3, 0, 0, 0)>. Note that the true predictors in the variance model were
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among those in the mean model. This prior information was employed in the GAMLSS

and VAR.

The performance was measured by correctly-fitted rates (CFR), numbers of zero-

estimated coefficients (NZC) (for both the mean and variance models), mean squared

error (MSE) of predictions and partial prediction score (PPS) averaged over 100 repli-

cations. MSE and PPS were evaluated based on independent prediction sets generated

in the same manner as the training set. We compared the performance of the VAR and

GAMLSS methods (when heteroscedasticity was assumed) to that of the aLasso (when

homoscedasticity was assumed). The simulation results are summarized in Table 4.11 for

various factors sample size n, nP (size of prediction sets DP ) and σ. As shown, the VAR

method did a good job and outperformed the others.

We also considered a “large p, small n” case in which β̃ and α̃ in model (4.37) were

vectors of dimension 500 with most of the components zero except β̃50=β̃100=...=β̃250=5,

β̃300 = β̃350 = ...= β̃500 =−5 and α̃100 = α̃200 =5, α̃300 = α̃400 =−5. The simulation results

are summarized in Table 4.12. Note that the GAMLSS is not applicable when n<p, and

moreover that in the case with n≥p and with large p the current implementation version of

the GAMLSS is much more time consuming compared to the VAR and even not working

with p as large as 500. We are not aware of any existing methods in the literature for

variable selection in heteroscedastic linear models for “large p, small n” case.

Homoscedastic case. We also considered a simulation study when the data come from

homoscedastic models. Data sets were generated from the linear model (4.37) with α̃≡0,

i.e.

y = 2 + x>β̃ + σε

with predictors x generated from normal distributions N(0,Σ) with Σij =0.5|i−j|. We were

concerned with simulating a sparse, high-dimensional case. To this end, β̃ was set to be a

161



Table 4.11: Small-p case: CFR, NZC, MSE and PPS averaged over 100 replications. The

numbers in parentheses are NZC.

n=nP σ measures aLasso GAMLSS VAR

50 0.5 CFR in mean 64 (4.56) 36 (4.06) 80 (4.88)

CFR in var. nil 70 (5.74) 80 (5.96)

MSE 0.56 0.49 0.48

PPS 1.17 0.89 0.87

1 CFR in mean 22 (4.72) 38 (4.60) 56 (5.00)

CFR in var. nil 50 (5.88) 60 (6.22)

MSE 2.45 2.29 2.24

PPS 2.02 1.78 1.69

100 0.5 CFR in mean 74 (4.50) 30 (3.98) 88 (4.84)

CFR in var. nil 64 (5.62) 90 (5.90)

MSE 0.52 0.48 0.48

PPS 1.12 0.87 0.77

1 CFR in mean 36 (4.68) 42 (4.30) 66 (4.76)

CFR in var. nil 58 (5.72) 76 (5.84)

MSE 2.20 2.08 2.03

PPS 1.83 1.62 1.51

200 0.5 CFR in mean 94 (4.90) 48 (4.14) 100 (5.00)

CFR in var. nil 70 (5.70) 94 (5.94)

MSE 0.48 0.46 0.46

PPS 1.06 0.87 0.74

1 CFR in mean 56 (4.36) 36 (4.06) 88 (4.88)

CFR in var. nil 82 (5.80) 100 (6.00)

MSE 2.01 1.93 1.92

PPS 1.77 1.52 1.43
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Table 4.12: Large-p case: CFR, NZC, MSE and PPS averaged over 100 replications. The

numbers in parentheses are NZC.

VAR aLasso

n=nP σ CFR in mean CFR in var. MSE PPS CFR in mean MSE PPS

100 0.5 80 (489.75) 90 (495.90) 5.40 1.91 20 (491.80) 11.65 2.65

1 70 (489.05) 65 (495.80) 20.29 2.30 0 (495.75) 35.11 3.27

150 0.5 100 (490.00) 95 (495.90) 13.76 0.84 40 (491.95) 20.02 3.40

1 95 (489.95) 85 (495.85) 28.97 1.52 5 (495.05) 43.18 3.68

vector of 1000 dimensions with the first 5 entries were 5, −4, 3, −2, 2 and the rest were

zeros. We used the modified ranking algorithm with both forward and backward moves

and the default prior (4.21). The performance was measured as before by CFR, NZC and

MSE but MSE was defined as the squared error between the true vector β and its estimate.

The simulation results are summarized in Table 4.13. The big improvement of the VAR

over the aLasso in this example is surprising and probably due to the reasons discussed at

the end of Section 4.2.2.

Application to the diabetes data. As an application, we applied the VAR method to

analyzing a benchmark data set in the literature on progression of diabetes [Efron et al.,

2004]. Ten baseline variables, age, sex, body mass index, average blood pressure and

six blood serum measurements, were obtained for each of n = 442 diabetes patients, as

well as the response of interest y, a quantitative measure of disease progression one year

after baseline. We constructed a (heteroscedastic, if necessary) linear regression model to

predict y from these ten input variables. In the hope of improving prediction accuracy, we

considered a “quadratic model” with 64 predictors. We distinguish between input variables

and predictors, for example, in a quadratic regression model on two input variables age and
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Table 4.13: Homoscedastic case: CFR, MSE and NZC averaged over 100 replications for

the aLasso and VAR.

CFR (NZC) MSE

n=nP σ aLasso VAR aLasso VAR

50 1 0 (994.42) 38 (994.34) 31.21 17.72

2 0 (994.54) 2 (992.36) 38.20 33.16

100 1 46 (995.62) 96 (994.96) 8.40 0.09

2 16 (996.14) 32 (993.56) 11.86 2.08

200 1 90 (995.10) 98 (994.98) 6.34 0.04

2 44 (995.56) 32 (993.40) 7.78 0.62

income, there are five predictors (age, income, age×age, income×income and age×income).

The analysis of the full data set showed clear evidence of heteroscedasticity. See again

Figure 4.3 for the solution paths resulting from our VAR algorithm (only forward selec-

tion was implemented and the search for inclusion in the variance model was restricted).

The VAR and GAMLSS both selected some predictors to include in the variance model.

Furthermore, there was quite a clear pattern in the plot of the OLS studentized residuals

indicating heteroscedasticity (results not shown). Interestingly, when fitting y with only

ten input variables as the predictors, diagnostics and the selected model by VAR showed

no evidence of heteroscedasticity. This result agreed with the homoscedasticity assumption

often used in the literature for this diabetes data set.

To assess predictive performance, we randomly selected 300 instances to form the

training set, with the remainder serving as the validation set. Of 64 predictors, the VAR

selected 13 to include in the mean model and 12 to include in the variance model, while

the GAMLSS selected 23 and 7, respectively. Under the assumption of constant variance,
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the aLasso selected 43 predictors. On the validation set, the models estimated by the

aLasso, GAMLSS and VAR had PPS of 5.50, 15.93, 5.41 and MSE of 3264.95, 3506.32,

2993.16, respectively. In order to reduce the uncertainty in training-validation separation,

we averaged the MSE and PPS over 50 replications, and obtained the MSE for the aLasso,

GAMLSS and VAR of 3560.50, 4843.40, 2970.67, and the PPS of 5.63, 59.76, 5.38, respec-

tively. The GAMLSS method performed poorly in this example but it should be stressed

that we have only used the default implementation (i.e., stepwise selection with both

forward and backward moves and the generalized AIC used as the stopping rule) in the

GAMLSS R package. Further experimentation with tuning parameters in the information

criterion might produce better results.

Remarks on calculations. The VAR algorithm was implemented using R and the code

is freely available on the author’s website. The weights used in the aLasso were assigned as

usual as 1/|β̂j| with β̂j being the MLE (when p<n) or the Lasso estimate (when p≥n) of

βj. The tuning parameter λ was selected by 5-fold cross-validation. The implementation

of the aLasso and GAMLSS was carried out with the help of the R packages glmnet and

gamlss.
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4.2.4 Appendix

Below we write Eq(·) for an expectation with respect to the variational posterior. In the

notation of Section 4.2.1 we have

T1 = −p + q
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In evaluating T2 above we made use of the independence of β and α in the variational

posterior and of the moment generating function for the multivariate normal variational

posterior distribution for α. Putting the terms together, the variational lower bound

simplifies to (4.17).
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Table 4.14: A brief summary of some variable selection methods

Method Description Comment References

♠ Subset selection, Search over all possible subsets Traditionally widely used, Miller [2002]

forward/backward with some criterion such as a sub-optimal model may be

selection AIC, BIC, Cp as stopping rule. selected.

♠ Stochastic search Based on a Bayesian hierarchy and Efficient, flexible to design. George and McCulloch [1993],

variable selection Gibbs sampling. May be time demanding in Smith and Kohn [1996]

high-dimensional cases.

♠ Lasso-type Minimize an empirical loss with Efficient, a modern method, Tibshirani [1996],

constraints, such as l1, widely adopted. May cause bias Fan and Li [2001]

on the coefficients. on non-zero coefficients.

♠ pLasso A version of Lasso using the KL Achieve a good predictive Proposed in this thesis

divergence to the full/BMA model performance.

instead of empirical loss.

♠ BaLasso An extension of Lasso using Efficient practically in achieving Proposed in this thesis

adaptive constraints on coefficients. model selection consistency.

♠ VAR Rank variables for inclusion via Designed for heteroscedastic Proposed in this thesis

maximizing the VB lower bound. regression.
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Chapter 5

Conclusions and future work

The thesis has approached the model selection problem from different angles and made

some contributions to the model selection literature. This chapter gives some concluding

remarks and discusses some open research questions raised from our works.

Calculation of the loss rank in the general case. As presented in Chapter 2, the

LoRP is a general procedure for model selection whose main goal is to learn the underlying

structure in the data. The LoRP can be regarded as a guiding principle for deriving model

selection criteria that can avoid overfitting. This thesis has only scratched at the surface

of this new methodology and discusses here several interesting questions that are worth

investigating in future.

For non-linear regression we did not present an efficient algorithm for calculating the

loss rank/volume LRM (y|x). This high-dimensional volume may be computed by Monte

Carlo algorithms. Resampling techniques may be applied too.

A potential solution is as follows. Recall the definition of the loss rank of a model M

with output data y and fixed input data x

RankM (y|x) = Volume{y′∈Yn : LossM(y′|x)≤LossM(y|x)}
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where LossM(y|x) is the empirical loss associated with some loss function l(.). Assume

that the loss LossM(y|x) as a function of y is twice differentiable and that the Hessian

H = ∂2LossM (y|x)/∂y∂y> is positive definite. Let b = ∂LossM(y|x)/∂y. Using Taylor’s

expansion

LossM(y′|x) = LossM(y|x) + b>(y′ − y) +
1

2
(y′ − y)>H(y′ − y) + O(‖y′ − y‖3),

and ignoring the last term, the logarithm of the loss rank now can be approximately written

as

LRM (y|x) ≈ n

2
log b>H−1b +

1

2
log(detH−1). (5.1)

Note that, in the case of y-linear regression as considered in Section 2.2, this approximation

is exact. Investigation of (5.1) is currently in progress.

What is the “right” definition of model complexity?. Model selection can typically

be regarded as the question of choosing the “right” model complexity. Many popular

methods such as AIC and BIC define the complexity of a model as (to be proportional

to) its number of free parameters df. This has also been generalized in some cases to the

trace formula df=tr(M) where M is a regression matrix [Hastie et al., 2001, Section 7.6].

This definition is nicely motivated and widely used but is not without problem, because it

is not associated with the loss function as it should be. This definition results from using

the minus log likelihood as the loss, what if a different loss function such as lp-loss is used?

General speaking, a model is said to be complex if it can fit many data well, i.e., having

small empirical fit. The fitness here must be measured by some loss function. Therefore,

model complexity must be defined in association with a loss function, or in other words,

model complexity should be loss-dependent. Besides loss-dependency, data-adaptivity is

another desirable property for model complexity.
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The LoRP offers a neat way to define model complexity which can be both loss-

dependent and data-adaptive. By virtue of (5.1) and the results elsewhere in Chapter

2, it seems to be reasonable to define the complexity of a model M by

Com(M) ≡ Com(M |y, l(.)) := log det(H−1). (5.2)

Intuitively, for a flexible M , the loss LossM (y|x) is small and stays fairly constant with

changes in y. As the result, the Hessian H will be “small”, thus leading to a large

logdet(H−1). In some cases such as ridge regression, logdet(H−1) has a closed form and

a meaningful interpretation [Tran, 2009, Section 3.1]. Because model complexity plays an

essential role in model selection, a careful investigation of logdet(H−1) is necessary.

The POPMOS and the predictive Lasso. The procedure for model selection POP-

MOS with an explicit predictive motivation was described in Chapter 3. A variant of the

POPMOS, the pLasso, has been shown to be convenient for variable selection and efficient

in terms of prediction accuracy. A notable feature of the pLasso is that we put no restric-

tion on the reference predictive distribution p(∆|D). Although we have considered p(∆|D)

as arising from a full model including all potential covariates, it can in fact arise from any

model where a GLM approximation with variable selection is desired. The approximation

can also be an appropriately local one in the covariate space through a judicious choice

of the design points in the pLasso criterion, which need not correspond to the observed

design points. We have motivated and developed the idea of the pLasso only for GLMs.

It is clear that this idea can be extended to other models rather than GLMs, and this is

a topic for future research.

Variable selection in complicated frameworks. The variational approximation rank-

ing algorithm VAR described in Chapter 4 is efficient for variable selection in high-

dimensional heteroscedastic regression. The idea of ranking covariates for inclusion has
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potential for extensions to much more complicated frameworks like Bayesian (grouped)

variable selection in GLMs. Another potential research direction is to extend the method

to simultaneous variable selection and number of experts selection in flexible regression

density estimation with mixtures of experts. This research direction is currently in progress

[Tran et al., 2011].
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