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Summary 

 

This thesis aims to improve software reliability modeling of software failure process, 

and to study its corresponding release time determination problem. These objectives 

are achieved by extending traditional software reliability models and decision models. 

Research has been conducted as follows. 

 

Software reliability models can be classified into two categories: analytical software 

reliability models (ASRMs) and data-driven software reliability models (DDSRMs). 

Both of them are studied in this thesis. In particular, an extension on ASRMs is 

presented in Chapter 3. In this chapter, the modeling framework for open source 

software reliability is introduced, and the corresponding version-updating problem is 

studied as well.  

 

Besides the research on ASRMs, improvement on DDSRMs is also carried out as 

shown in Chapter 4. In most existing research on DDSRMs, it is generally assumed 

that the current failure is correlated with the most recent consecutive failures. 

However, this assumption restricts the failure data analysis into a special case. In 

order to relax this unrealistic assumption, a generic DDSRM is developed with model 

mining technique. The proposed model can greatly enhance the prediction accuracy.  

 

Developing models is not the ultimate goal of software reliability modeling. It is more 

important to apply these models to solve corresponding decision-making problems, 

and software release time determination is a typical application. In Chapter 5, 



viii 

 

sensitivity analysis of release time of software reliability models incorporating testing 

effort with multiple change points is studied. Sensitivity of the software release time 

is investigated through various methods, including one-factor-at-a-time approach, 

design of experiments and global sensitivity analysis.  

 

Although the use of sensitivity analysis can help to find out what significant 

parameters are and more attention can be paid for them, it is also quite possible that 

no more data or information is available for us to obtain more accurate estimates of 

parameters. Therefore, in Chapter 6, the effect of parameter uncertainty on release 

time determination is investigated. A risk-based approach is proposed for release time 

determination with delay cost considerations. It can help management have a boarder 

view of the release time determination problem.  

 

Furthermore, for software release time determination problem, most existing research 

formulates it as single objective optimization problems. However, these formulations 

can hardly describe the management‟s attitude accurately. Therefore, multi-objective 

optimization model is developed for release time determination problem in Chapter 7. 

In order to solve this multi-objective optimization problem, different multi-objective 

optimization approaches, including trade off analysis, multi-attribute utility theory, 

and physical programming, are used and compared in this chapter. By comparing 

these approaches, management can apply them more appropriately in practice 

considering their own unique properties. 
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Chapter 1 Introduction 

 

 

With the rapid increase of applications of computer systems in industries as well as in 

our daily life, the reliability of computer systems has become a crucial issue. Since 

computer systems are also widely used in safety-critical systems such as control 

systems in nuclear power plants or in medical instruments, the need for high 

reliability is even more urgent.  

 

Computer systems are generally composed of hardware and software, and therefore 

ensuring high reliability of the system involves investigating reliability of both 

hardware and software. Unfortunately, unlike hardware reliability assurance which 

has been well developed and widely applied in various industries, software reliability 

is still a relatively new field, and it is generally more difficult to ensure (Xie, 1991). 

Also, the rapid increase of software size and complexity imposes many challenges to 

achieve high reliability of software products.  

 

 

1.1 Background 

 

As a matter of fact, software has become the major source of reported outages, and 

billions of dollars has been wasted each year (Lyu, 1996). The following are some 

famous examples in recent years (Charette, 2005): in 2001, software problems with 

supply-chain management system contributed to $100 million (USD) loss to the Nike 



2 

 

Inc.; in 2002, McDonald‟s Corp. canceled the Innovate information-purchasing 

system after $170 million (USD) was spent; in 2004, Hewlett-Packard Co. lost $160 

million (USD) due to the software problems with ERP system and Ford Motor Co. 

suffered a loss of approximately $400 million (USD) deployment cost from 

abandoning the purchasing system. It is therefore not surprising that software 

reliability engineering (SRE) has received lots of attention, and abundant research has 

been carried out recently.  

 

To ensure the reliability of software, software needs to be tested prior to its release. 

This testing phase is time-consuming and costly. During this phase, the latent 

software faults are identified, isolated and removed. As a result, software reliability is 

improved. Based on the failure data obtained from the testing phase, software 

reliability can be measured and predicted with appropriate software reliability models 

(SRMs) (Musa et al., 1987; Xie, 1991; Lyu, 1996; Pham, 2000).  

 

The mainstream of software reliability modeling can be classified into two categories: 

the analytical approach and the data-driven approach (Hu et al., 2007). Analytical 

software reliability models (ASRMs) are generally based on certain prior assumptions 

made on the nature of software faults and the stochastic behavior of software failure 

process. These assumptions include equal fault sizes, perfect debugging, immediate 

fault repair, independent software failures, etc. Although these assumptions may not 

be valid in practice, they are made to facilitate software reliability modeling (Musa et 

al., 1987; Xie, 1991; Lyu, 1996; Pham, 2000). 
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As to the data-driven approach to software reliability modeling, the software failure 

process is viewed as a time series. Data-driven software reliability models (DDSRMs) 

are constructed to recognize the inherent patterns of the process which are carried by 

the recorded failure data. By modeling and analyzing the inherent patterns of software 

failure process, software reliability prediction can be made (Hu et al., 2007). 

 

 

1.2 Motivation 

 

SRMs are successfully applied in many real world projects, and there are more and 

more companies adopt the knowledge in software reliability engineering in practice 

(Wood, 1996; Musa, 2006). However, for both ASRMs and DDSRMs, there are still 

some assumptions that can be relaxed to better describe the software failure process. 

In addition, constructing models is not the end, to guide management when to release 

software is a typical application of these models. For this software release time 

determination problem, it is still an open question on how to describe management‟s 

attitude more accurately. Due to these considerations, research in this thesis is 

conducted by investigating the following specific topics. 

 

1.2.1 Reliability Analysis for Open Source Software 

 

Recently, a new style of software development process, the open source software 

(OSS) movement has received intensive interests (Raymond, 2001). OSS process is a 

relatively new way of building and deploying large software systems on a global 

basis, and differs in many interesting ways from the principles and practices of 
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traditional software engineering (Feller et al., 2005). There is widespread recognition 

that open source projects can produce high quality and sustainable software systems 

(such as Linux operating system, Apache web server, and Mozilla browser) that can 

be used by thousands to millions of end-users (Mockus et al., 2002). Currently, most 

OSS system is developed and maintained by non-commercial communities. However, 

more and more software companies have switched from a closed source to an open 

source development model in order to win market share and to improve product 

quality (Hertel et al., 2003).  

 

Since OSS is usually developed outside companies – mostly by volunteers – and the 

development method is quite different from the standard methods applied in 

commercial software development, the quality and reliability of the code needs to be 

investigated (Gyimothy et al., 2005). However, most existing research works have 

been focusing on the study of fault-proneness detection and defect prediction of OSS, 

which are essentially indirect reliability measurements without consideration of time 

effect. In fact, only in some recent studies by Tamura and Yamada (2008; 2009), such 

issue is considered. However, in their work, the differences between traditional 

commercial software and OSS are not highlighted. This motivates us to further 

investigate this problem by incorporating special properties of OSS into the analysis. 

 

1.2.2 Relationship of Software Failures 

 

Existing research on data-driven approach to software/system reliability modeling and 

prediction generally assumes that a failure is strongly correlated with the most recent 

several failures; thus the sliding window technique has been adopted to describe this 
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relationship. However, this assumption restricts the general time series analysis to a 

special case as the correlation may be quite complicated in a time series (Tsay, 2002). 

In fact, it is possible that a failure is correlated with some of previous failures, not 

necessarily being the most recent ones. For example, a failure, ix , could be correlated 

with, say, 8ix , 6ix , and 2ix . If this is the case, these three time lag terms should be 

used as model inputs instead of using 3ix , 2ix , and 1ix . Obviously, there should 

be a systematic way to discover the correlation among failures, which enables the 

model user to decide appropriate time lag terms to be used in the model, and hence 

the model performance can be improved. 

 

1.2.3 Software Release Policy under Parameter Uncertainty 

 

Software release time determination problem is of great importance in software 

development. Most existing research on this problem has been based on the 

assumption that parameters of software reliability models are known or accurately 

estimated. However, these model parameters are unknown in nature. They are 

generally estimated based on the limited amount of recorded failure data. Hence, the 

accuracy of the optimum release time obtained is questionable. It is necessary for 

management to know what the significant parameters are, and sensitivity analysis is 

needed.  

  

In fact, the problem of parameter uncertainty has been widely discussed in many 

domains. Benke et al. (2008) studied the effect of parameter uncertainty on the output 

in a water-balance hydrological model. Yu and Harris (2009) classified the inputs into 

two categories and discussed this problem in the framework of global sensitivity 
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analysis. Also, the so called robust optimization which considers the uncertainty of 

parameters has been received a lot of research attention recently (Ben-Tal and 

Nemirovski, 2002; Sahinidis, 2004). Previous research has demonstrated that 

parameter uncertainty cannot be discarded in the modeling and analysis. This also 

motivates us to study the optimal software release policy under parameter uncertainty. 

 

1.2.4 Formulation of Software Release Time Determination Problem 

 

For software release time determination problem, reliability and cost are two 

important dimensions that are generally considered. In order to determine an optimal 

software release time, existing research formulates this problem in the following three 

ways: (1) cost minimization (Boland and Singh, 2003; Morali and Soyer, 2003; Xie 

and Yang, 2003; Huang and Lyu, 2005a), (2) cost minimization given a reliability 

constraint (Yamada and Osaki, 1985; Pham, 1996; Pham and Zhang, 1999; Huang, 

2005; Boland and Chuiv, 2007), and (3) reliability maximization under a cost budget 

(Leung, 1992). It can be seen that software release time determination problem is 

formulated as single-objective optimization problems. However, this kind of 

formulation can hardly describe the management‟s attitude accurately. In reality, 

maximizing reliability and minimizing cost is expected to be considered 

simultaneously, and a compromise should be made between these two objectives 

based on management‟s preference. This motivates us to develop a new formulation 

for software release time determination problem, such that a more reasonable decision 

can be made. 
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1.3 Objective and Scope of Research 

 

The objective of this thesis is to develop comprehensive and practical models for 

software reliability analysis and software release time determination. Both ASRMs 

and DDSRMs are extended considering the practical issues involved in software 

reliability modeling. More specifically, in the framework of ASRMs, a model for 

open source software (OSS) is developed by incorporating the special properties of 

OSS; in the framework of DDSRMs, a generic model is proposed by relaxing the 

basic assumption in most existing DDSRMs.  

 

Besides the modeling part of software failure process, software release time 

determination problem, as a typical application of SRMs, is investigated as well. 

Sensitivity analysis of release time is introduced as a way to deal with parameter 

uncertainty. In particular, sensitivity of the software release time is investigated 

through various methods, including one-factor-at-a-time approach, design of 

experiments and global sensitivity analysis. By comparing different approaches, 

applicability and limitations of them will be shown. 

 

However, sensitivity analysis can only identify significant parameters. It is still 

imperative to investigate the release policy under parameter uncertainty. 

Theoretically, it can be shown that there is about 50% risk that software reliability 

requirement cannot be met when the mean value is used. This is because model 

parameters are unknown in nature, and they are estimated based on the limited 

amount of data. Provided that the 50% risk can be too high to be acceptable for 

management, software release policy under parameter uncertainty is studied.  
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Furthermore, for release time determination problem, most existing research 

formulates it as single-objective optimization problems, which can hardly describe the 

decision process accurately. Therefore, multi-objective optimization models are 

developed for software release time determination problem, and different multi-

objective optimization approaches are adopted for analysis.   

 

The remainder of this thesis is organized as follows. Chapter 2 provides a general 

review on software reliability modeling and the corresponding release time 

determination problem. In Chapter 3, reliability analysis and optimal version-updating 

for open source software is studied. Chapter 4 discusses the proposed generic data-

drive software reliability model with model mining technique. Chapter 5 discusses the 

sensitivity analysis of release time of software reliability models incorporating testing 

effort with multiple change-points. Chapter 6 highlights the risk that software cannot 

meet its reliability requirement due to parameter uncertainty. Also, a risk-based 

approach for release time determination with delay costs considerations is introduced. 

Chapter 7 formulates the software release time determination problem as multi-

objective optimization problems, and different multi-objective optimization 

approaches are compared. Chapter 8 concludes current research works and looks at 

future research prospects. 
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Chapter 2 Literature Review 

 

 

Software reliability modeling is of great importance for the reason that it can measure 

the reliability of software quantitatively by analyzing the recorded failure data. Due to 

this, a large number of software reliability models have been proposed and published 

in the literature (Musa et al., 1987; Xie, 1991; Lyu, 1996; Pham, 2000). In this 

chapter, a brief review on software reliability modeling is given, focusing on the two 

general categories: analytical software reliability models (ASRMs) and data-driven 

software reliability models (DDSRMs) (Hu et al., 2007). In addition, software release 

time determination, as a typical application of software reliability models, is briefly 

reviewed as well. 

 

 

2.1 Analytical Software Reliability Models 

 

Analytical software reliability models (ASRMs) are generally based on certain prior 

probabilistic assumptions made on the stochastic behavior of software failure process, 

such as the Markov process assumption and non-homogenous Poisson process 

(NHPP) assumption. It is worth noting that most of the Markov models are times-

between-failures models and almost all NHPP models are failure-count models 

according to the classification system proposed by Goel (1985). In the following sub-

sections, the Jelinski-Moranda model and a general formulation of NHPP models will 
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be briefly introduced. In addition, some recent advances on ASRMs will be discussed 

as well. 

 

2.1.1 The Jelinski-Moranda Model 

 

From a historic point of view, the Jelinski-Moranda model (Jelinski and Moranda, 

1972) has a paramount influence on software reliability modeling. It is the first 

published Markov model and the main assumptions of this model are: 

 

(1) The number of initial software faults is an unknown but fixed constant. 

(2) A detected fault is removed immediately and no new faults are introduced. 

(3) Times between failures are independent, exponentially distributed random 

quantities. 

(4) Each remaining software fault contributes the same amount to the software failure 

intensity. 

 

In the Jelinski-Moranda model, let 0N  denote the number of initial faults in the 

software before the testing starts; the initial failure intensity is then 0N , where   is 

a constant denoting the failure intensity contributed by each fault. Let iT , 

0,,2,1 Ni   denote the time between (i-1)th and ith failures, then iT ‟s are 

independent, exponentially distributed random variables with parameter 

 

)]1([ 0  iNi  ,    0,,2,1 Ni                                       (2.1) 
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It is obvious that the failure intensity is constant between the detection of two 

consecutive failures. This is quite reasonable since the software is unchanged between 

the detection of two consecutive failures and the testing process is random and 

homogeneous. However, the assumption that software faults are of the same size 

contributing the same amount to software failure intensity is not realistic. In order to 

relax this unrealistic assumption, some extensions of Jelinski-Moranda model were 

made, see, e.g., Schick and Wolverton (1978), Shanthikumar (1981), Xie (1990), 

Chang and Liu (2009). However, due to the complexity of these models, they have 

not been widely applied in practice compared with the NHPP models, which will be 

discussed in the following section.  

 

2.1.2 A General Formulation of NHPP Models 

 

NHPP models form a major part of analytical software reliability modeling. In these 

models, the underlying software fault detection process is assumed to be a non-

homogeneous Poisson process. As software faults are detected, isolated and removed, 

the software being tested becomes more reliable with a decreasing failure intensity 

function. In general, an NHPP software reliability growth model (SRGM) can be 

developed by solving the following differential equation (Pham, 2003): 

 

 )()()(
)(

tmtatb
dt

tdm
 ,                                               (2.2) 

 

where m(t) is the mean value function of detected faults, a(t) and b(t) are fault content 

function and failure detection rate function respectively. It can be seen that the idea 

behind the above equation just stems from the Jelinski-Moranda model, where the 
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relation between failure intensity and the number of remaining faults is studied. Given 

different expressions and explanations of a(t) and b(t), different NHPP SRGMs can be 

obtained (Zhang and Pham, 2000). 

  

Specifically, when ata )( , btb )( , the important Goel-Okumoto (GO) model  is 

received (Goel and Okumoto, 1979). This model has strongly influenced the 

development of many later models. Actually, many later NHPP models are 

modifications or generalizations of this model. It should be noted that in the Goel-

Okumoto model, both two model parameters are positive, and there are some physical 

meanings of them. In particular, a represents the number of faults to be eventually 

detected, and b denotes the failure detection rate per fault. 

 

The Goel-Okumoto model was successfully applied in many projects as reported in 

Wood (1996). However, it was sometimes observed that the curve of the cumulative 

number of faults is S-shaped. The reason for the S-shaped behavior is the “learning” 

effect of the debugging process (Yamada et al., 1984). To consider this issue, the 

delayed S-shaped NHPP model (Yamada et al., 1983; 1984) and the inflected S-

shaped NHPP model (Ohba, 1984) were proposed. For these two models, we still 

have ata )( . The only difference is the failure detection rate function. Specifically, 

)1()( 2 bttbtb   is in the delayed S-shaped model (Yamada et al., 1983; 1984) and 

)1()( btcebtb   is in the inflected S-shaped NHPP model (Ohba, 1984).  
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2.1.3 Recent Advances on ASRMs 

 

Based on the above discussions, it can be seen that different assumptions indicate 

different descriptions of the software failure process. However, it is worth noting that 

the underlying software failure process can hardly be described precisely, and 

assumptions are made to develop a model for the sake of mathematical tractability 

(Goel, 1985). It is obvious that these assumptions are in most cases not valid and 

cannot be made in some practical applications. Thus, relaxing these assumptions has 

drawn a lot of research attention, and most recent advances on ASRMs were focused 

on a better description of the software failure process and more reasonable software 

reliability analysis.  

 

Fault Correction Process 

 

Most existing SRGMs assume that faults are immediately removed when failures are 

detected, i.e., the repair time is ignored. Although this assumption provides simplicity 

and mathematical tractability for the modeling of the software failure process, it is 

usually not the case. In reality, the fault removal activity rarely occurs immediately 

after the observation of failure, and the time needed to correct the fault cannot be 

ignored. 

 

Schneidewind (1975) first modeled the fault correction process following the fault 

detection process with a constant time delay. However, a constant time delay 

assumption may not be appropriate since faults cannot be corrected with the same 

amount of testing effort in reality. For example, based on the empirical study of nearly 
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200 anomalies from seven NASA spacecraft systems, it was found that some 

anomalies are in need of multiple corrections (Lutz and Mikulski, 2004). With the 

consideration of this, some extensions are made under the framework of the model 

proposed by Schneidewind (1975). Xie and Zhao (1992) substituted the constant time 

delay with a time dependent delay function in their model, with the assumption that 

detected faults become harder to be corrected as the testing proceeds. Schneidewind 

(2001) assumed that the time delay is an exponentially distributed random variable. 

Recently, Xie et al. (2007) carried out a comprehensive study of the time delay issues 

with different kinds of distributions. Wu et al. (2007) discussed the parameter 

estimations of the combined model. Moreover, Huang and Lin (2006) incorporated 

both fault dependency and debugging time lag into the modeling.  

 

The models discussed above incorporated the correction process into analysis by 

introducing a time delay function. In fact, there also exist other alternative ways. 

More specifically, Bustamante and Bustamante (2002) proposed a software reliability 

model which represents the software failure process with a non-homogeneous Poisson 

Process and the correction process with a multinomial distribution. Gokhale et al. 

(2004; 2006) modeled both fault detection process and correction process with a non-

homogeneous Markov chain, where different fault removal policies are studied by 

different forms of the fault removal rate. Lo and Huang (2006) proposed a general 

framework for modeling these two processes with assumption that the mean number 

of faults corrected in a very small time interval is proportional to the mean number of 

detected but not yet corrected faults remaining in the system. Huang and Huang 

(2008) introduced the use of finite and infinite server queueing models to describe 
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these two processes, and the correction process is studied by cumulative distribution 

function of failure correction time.  

 

However, most of the existing models considering both of these processes assume that 

the failure rate at current time is proportional to the number of remaining undetected 

faults. In fact, since the fault removal activity is considered, this assumption no longer 

holds, and it is more reasonable to assume that the failure rate at time t is proportional 

to the number of remaining uncorrected faults (Hwang and Pham, 2009). 

 

Incorporation of Testing Effort  

 

In recent years, incorporating testing effort into software reliability growth models 

(SRGMs) has received a lot of attention, probably because testing effort is an essential 

process parameter for management. Huang et al. (2007) showed that logistic testing 

effort function can be directly incorporated into both exponential-type and S-type 

non-homogeneous Poisson process (NHPP) models, and the proposed models were 

also discussed under both ideal and imperfect debugging situations. Kapur et al. 

(2007) discussed the optimization problem of allocating testing resources by using 

marginal testing effort function (MTEF). Later, Kapur et al. (2008a) studied the 

testing effort dependent learning process, and faults were classified into two types by 

the amount of testing effort needed to remove them. In addition, some research 

incorporated change-point analysis in their models as the testing effort consumption 

may not be smooth over time (Huang, 2005; Kapur et al., 2008b; Lin and Huang, 

2008). Moreover, as constructing model is not the end, the optimal release time 
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problem considering testing effort was also discussed (Yamada et al., 1993; Huang 

and Kuo, 2002; Huang and Lyu, 2005a; Lin and Huang, 2008). 

 

However, most of the research assumes that parameters of the proposed models are 

known. In fact, there always exist estimation errors as parameters in testing effort 

function and SRGMs are generally estimated by least squares estimation (LSE) and 

maximum likelihood estimation (MLE) methods respectively. It is necessary to 

conduct the sensitivity analysis to determine which parameter may have significant 

influence to the software release time. This is even more important when there are an 

increasing number of parameters involved in the model. 

 

 

2.2 Data-Driven Software Reliability Models  

 

In data-driven approach, the software failure process is viewed as a time series, and 

data-driven software reliability models (DDSRMs) are constructed to recognize the 

inherent patterns of the process which are carried by the recorded failure data. By 

modeling and analyzing the inherent patterns of software failure process, software 

reliability prediction can be made. The main advantage of DDSRMs is that they do 

not require restrictive assumptions on software faults or software failure process; thus 

they may have better applicability across different software projects compared with 

traditional ASRMs. 

 

Machine learning techniques like artificial neural networks (ANNs) and support 

vector machines (SVMs) have been successfully applied for constructing DDSRMs. 
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For ANNs, both feed-forward neural networks and recurrent neural networks were 

used and compared in software reliability analysis (Karunanithis et al., 1992; Sitte, 

1999). Later, Cai et al. (2001) investigated the effectiveness of the use of ANNs in 

software reliability prediction, and found that ANNs‟ performance is highly 

dependent on the „smooth‟ trend of the data. Ho et al. (2003) revisited the 

connectionist model with a modified Elman recurrent neural network, which 

outperforms both of the Jordan model and feed-forward model. Tian and Noore 

(2005a) used genetic algorithm (GA) to optimize the number of the delayed input 

neurons and the number of neurons in the hidden layer of the neural network 

architecture. Su and Huang (2007) developed a dynamic weighted combinational 

model for software reliability prediction, and the results showed that the proposed 

model has a fairly accurate prediction capability. Hu et al., (2007) applied recurrent 

neural networks to model both the fault detection process and the fault correction 

process in software testing, and the authors proposed a GA-based networks 

configuration approach. 

 

Besides ANNs, another machine learning technique that has emerged as a promising 

modeling paradigm is support vector machines (SVMs), which have good 

generalization capability due to the structural risk minimization principle used 

(Vapnik, 1995; Vapnik, 1999; Kecman, 2001; Scholkopf and Smola, 2002). SVMs 

have been successfully applied in many domains such as pattern recognition, time 

series forecasting, diagnostics, robotics, and process control. In software reliability 

modeling and prediction domain, SVM-based SRMs have been proposed and studied 

as well. Tian and Noore (2005b) proposed an SVM-based modeling approach to 

software reliability prediction, and experimental results showed that the proposed 
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approach adapts well across different software projects and has higher next-step 

prediction accuracy compared with feed-forward ANN and recurrent ANN modeling 

approaches. Pai and Hong (2006) proposed an SVM-based SRM which uses 

simulated annealing (SA) algorithms to optimize model parameters. 

 

However, most existing research on data-driven approach to software reliability 

modeling and prediction generally assumes that a failure is strongly correlated with 

the most recent several failures. This assumption restricts the general time series 

analysis to a special case as the correlation may be quite complicated in a time series 

(Tsay, 2002). There should be a systematic way to discover the correlation among 

failures, which enables the model user to decide appropriate time lag terms to be used 

in the model, and hence the model performance could be improved. 

 

 

2.3 Determination of Software Release Time 

 

Constructing software reliability models is not the end. It is almost always the case 

that the model is developed to help management make some decisions. A typical 

purpose is to guide management on when to release/sell the software in the market. 

Since Okumoto and Goel (1980) firstly proposed the determination of software 

release time problem in 1980, many research works have been done in the past several 

decades.  

 

Koch and Kubat (1983) introduced the penalty cost into the release time 

determination model. Yamada and Osaki (1985) proposed a decision-making model, 
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where both reliability and cost are considered. In particular, their model was 

developed to minimize the cost subject to a reliability constraint. Dohi (1999) 

transformed the optimal software release time problem into a time series prediction 

problem, and the artificial neural network (ANN) was employed. Nishio and Dohi 

(2003) presented the determination of the optimal software release time based on 

proportional hazards software reliability growth model. Huang and Lyu (2005) 

proposed the optimal release time policy for software systems considering cost, 

testing-effort, and test efficiency, which enriched the decision model. Xie and Yang 

(2003) and Boland and Chuiv (2007) considered the optimal software release time 

when repair is imperfect. Chiu (2009) proposed a Bayesian method to determine the 

optimal release time for software systems based on experts‟ prior judgments. 

 

It is worth noting that the uncertainty involved in the determination of optimal release 

time has received special attention recently (Yang et al., 2008; Ho et al., 2008). It has 

been pointed out that the point estimate received from the traditional way is not 

precise as the software debugging process is essentially random. Yang et al. (2008) 

introduced a risk-control approach to obtain the optimal release time by quantifying 

the uncertainty in the actual cost of the project by variance. Ho et al. (2008) determine 

the optimal release time by considering the randomness of the mean value function, 

and the randomness is assumed to stem from the error-detection process. However, 

the optimal release policy considering the parameter uncertainty is still lacking. 

 

Furthermore, for the determination of optimal software release time, reliability and 

cost are the two important dimensions that are generally considered. It should be 

noted that most existing research formulates this decision process as single-objective 
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optimization problems. Although these formulations can greatly reduce the 

complexity, they can hardly reflect the nature of the decision process, which is 

essentially a multi-objective optimization problem. More specifically, maximizing 

reliability and minimizing cost should be achieved simultaneously. 
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Chapter 3 Reliability Analysis and Optimal Version-

Updating for Open Source Software 

 

 

3.1 Basic Problem Description 

 

Open source software (OSS) development is a new way of building and deploying 

large software systems on a global basis, and it differs in many interesting ways from 

the principles and practices of traditional software engineering (Raymond, 2001). 

There is a widespread recognition across software industry that open source projects 

can produce software systems of high quality and functionality, such as Linux 

operating system, Apache web server, Mozilla browser, MySQL database system, 

etc., that can be used by thousands to millions of end-users (Mockus et al., 2002).  

 

The OSS development is based on a relatively simple idea: the original core of the 

OSS system is developed locally by a single programmer or a team of programmers. 

Then a prototype system is released on the internet, so that other programmers can 

freely read, modify and redistribute that system‟s source code. The evolution process 

of OSS is much faster than the closed source project. The reason is that in the 

development of OSS, tasks are completed without assigning from hierarchical 

management and there is no explicit system-level design, no well-defined plan or 

schedules. A central managing group may check the code but this process is much 

less rigid than in closed-source projects. 
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Several OSS systems have been in widespread use with thousands or millions of end-

users, e.g. Mozilla, Apache, OpenOffice, Eclipse, NetBeans, GNOME, and Linux. 

Due to the success of OSS, more and more software companies have switched from a 

closed source to an open source development in order to win market share and to 

improve product quality (Ven and Mannaert, 2008). Even the leading commercial 

software companies, such as IBM and Sun, have begun to embrace the open source 

model and are actively taking part in the development of OSS products. 

 

As OSS application rapidly spreads out, it is of great importance to assess the 

reliability of OSS system to prevent potential financial loss or reputational damage to 

the company (Gyimothy et al., 2005). Due to this consideration, many studies have 

been carried out recently on predicting number of defects in the system. For instances, 

Eaddy et al. (2008) investigated the relationship between the degree of scattering and 

the number of defects by stepwise regression and other statistical techniques. Marcus 

(2008) proposed a new measure named Conceptual Cohesion of Classes (C3) to 

measure the cohesion in object-oriented software. They also applied C3 in logistic 

regression to predict software faults with the comparisons with other object-oriented 

metrics. Kim et al. (2008) introduced a new technique for predicting latent software 

bugs in OSS, called change classification. Change classification uses a machine 

learning classifier to determine whether a new software change is more similar to 

prior buggy changes or clean changes. In this manner, change classification predicts 

the existence of bugs in software changes. 

 

Although the works above can provide important information to assess the reliability 

for OSS, the total number of defects in a software system is an essentially indirect 
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reliability measurement where the time factor is often neglected (Xie, 1991). Only in 

some recent studies by Tamura and Yamada (2008; 2009), such issue is considered. In 

particular, Tamura and Yamada (2008) combined neural network and software 

reliability growth modeling for the assessment of OSS reliability. In Tamura and 

Yamada (2009), the stochastic differential equation is introduced for the modeling of 

OSS reliability, and optimal version-update time is discussed based on it.  

 

In this chapter, we will further investigate the modeling of OSS reliability and its 

optimal version-update time determination. Our model is based on non-homogeneous 

Poisson process (NHPP) which has been proven to be a successful model for software 

reliability (Musa, 1987; Xie, 1991; Lyu, 1996; Pham, 2000). However, different from 

the NHPP models for closed source software and the models proposed in Tamura and 

Yamada (2008; 2009), our model incorporates the unique patterns of OSS 

development, such as the multiple releases property and the hump-shaped fault 

detection rate function. In addition, because the project cost is no longer a crucial 

factor for optimal release time determination for most OSS projects, in this study, we 

formulate a new version-update time determination problem for OSS. Specifically, the 

multi-attribute utility theory (MAUT) is adopted for this decision process, where two 

important strategies are considered simultaneously: rapid release of the software to 

maintain sufficient volunteers involved and the acceptable level of OSS reliability. 

  

The rest of this chapter is organized as follows. Section 3.2 describes our proposed 

model based on NHPP incorporating unique properties of OSS. Section 3.3 

formulates the optimal version-update time problem based on MAUT, where the rapid 

release strategy and the level of reliability are considered simultaneously. Section 3.4 
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provides numerical examples for validation purpose based on the real world data sets. 

Conclusions are made in Section 3.5. 

 

 

3.2 Modeling Fault Detection Process of Open Source Software 

 

The underlying software fault detection process is commonly assumed to be a non-

homogeneous Poisson process (NHPP) (Musa, 1987; Xie, 1991; Lyu, 1996; Pham, 

2000). As software faults are detected, isolated and removed, the software being 

tested becomes more reliable with a decreasing failure intensity function. In general, 

an NHPP software reliability growth model (SRGM) can be developed by solving the 

following differential equation (Pham, 2003): 

 

 )()()(
)(

tmtatb
dt

tdm
 ,                                             (3.1) 

 

where )(tm , )(ta  and )(tb  are the mean value function of detected faults, the fault 

content function and fault detection rate function respectively, and typical boundary 

point is 0)0( m . Given different expressions and explanations of a(t) and b(t), many 

NHPP SRGMs can be developed (Zhang and Pham, 2000). 

 

The basic assumption illustrated by the above formulation can also hold in the context 

of OSS (Tamura and Yamada, 2009). The reason lies in the fact that in OSS the 

failure rate at current time is still determined by the product of the fault detection rate 
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function and the number of remaining faults. However, it is worth noting that some 

special properties of OSS have not been considered in traditional NHPP SRGMs.  

 

One special property of OSS is that multiple releases are common and often (Kozlov 

et al., 2008). Hence, a general NHPP software reliability model for OSS can be 

developed based on the following equation 

 

 )()()(
)(

tmtatb
dt

tdm
iii

i                                             (3.2) 

 

where )(tmi , )(tai  and )(tbi  are the mean value function of detected faults, the fault 

content function and failure detection rate function for release i respectively. As to the 

time basis, t starts from zero for each new release of OSS. It should be noted that we 

treat each new release as a new version of software since the defect count of a 

previous release and its current release do not correlate with each other in most 

projects (Illes-Seifert and Paech, 2010). Although the previous release has some 

uncorrected faults which may still exist in the new release, these faults will be 

counted again in the system if they are found. Therefore, 0)0( im  for each release. 

 

Besides the multiple releases property, the fault detection process in the development 

of OSS is essentially different from that of traditional closed source software. The 

testing process of traditional closed source software relies on a specified testing team, 

where the number of testers is generally stable. Therefore, the constant fault detection 

rate has become a common assumption, such as in the famous Goel-Okumoto (GO) 

model (Goel and Okumoto, 1979). Moreover, to account for the “learning” effects of 
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the testing team, the increasing fault detection rate function is used, and these models 

are S-shaped models as discussed in Yamada et al. (1983), Ohba (1984).  

 

Unlike traditional closed source software, OSS involves much more testers in the 

testing process, and most of these testers are volunteers. The number of volunteers 

involved in the OSS is largely influenced by the attractiveness of the software 

(Raymond, 2001). More specifically, each release of OSS can attract increasing 

number of volunteers in the early phase since more and more people know it and use 

it. After the number of volunteers reaches at the peak, it will decrease since the 

software is losing its attractiveness over time. Accordingly, it is reasonable to assume 

that the fault detection rate in OSS follows a hump-shaped curve. In order to describe 

this special property in OSS, the first derivative of logistic function is selected, and it 

is given by 

 

 

  2exp1

exp
)(

tA

tAN
tb

ii

iiii
i








                                             (3.3) 

 

where Ni is the product of total amount of testing effort eventually consumed and a 

constant fault detection rate (Huang and Kuo, 2002; Huang et al. 2007), Ai scales the 

)(tbi  without changing its shape and i  is the shape parameter of )(tbi for each 

release i. It is worth noting here that )(tbi  reaches its maximum value 

4max iii Nb   at 

 

i
i

i At ln
1

max


 .                                                    (3.4) 
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Since the fluctuation in )(tbi  originates from the change in the number of volunteers 

involved in the fault detection process, maxit  indicates that the testing effort from 

volunteers reaches its maximum at this time for release i.   

 

Moreover, the Weibull-type fault detection rate function can also capture the property 

of the hump-shaped curve with fairly good flexibility. That is 

  

 ii ttNtb iiiii
  


exp)(

1
                                         (3.5) 

 

where Ni is still the product of total amount of testing effort eventually consumed and 

a constant fault detection rate (Huang and Kuo, 2002; Huang et al. 2007); i  and i  

are the scale parameter and shape parameter respectively for each release i. However, 

the use of Weibull function suffers from two major deficiencies which may restrict 

their applicability in OSS reliability modeling. First, when 1i , )(tbi  is a 

monotonic decreasing function over time. This cannot capture the special property of 

OSS where the hump-shaped curve is the case. Second, when 1i , )0(ib  is always 

equal to zero and this actually introduces a bias into the modeling. Specifically, each 

version of the OSS has a number of volunteers (if no volunteers, at least developers) 

at the starting time. Therefore, )0(ib  should be a non-zero value. 

 

The selection of the logistic function can overcome the disadvantages of the Weibull 

function. Not only does it have good flexibility to describe the hump-shaped curve, it 

can also provide a more reasonable starting point with a non-zero value. In Huang and 

Kuo (2002) and Huang et al. (2007), the differences between the use of Weibull-type 



28 

 

function and logistic function in software reliability modeling were also discussed, 

and interested readers could refer to them for more detailed discussions. 

 

 

3.3 Determination of Optimal Version-Update Time 

 

Optimal release time determination in the testing phase is a typical application of 

software reliability models. The total expected cost including both testing cost and 

operation cost is a crucial factor for such determination (Pham, 2003). However, most 

OSS projects are interest-driven, and most development activities in OSS projects are 

accomplished by volunteer users. Consequently, the cost is no longer an important 

consideration for the OSS community to decide the release time (Samoladas et al., 

2010).  

 

For OSS development, there are two important factors for management to determine 

the optimal version-update time in the testing phase. On one hand, a sufficient number 

of volunteers are expected to be involved in the development of OSS. Since 

volunteers are interest-driven and the attractiveness of OSS is of great importance for 

them, rapid release of OSS becomes critical for maintaining the number of current 

volunteers and attracting new comers (Raymond, 2001). On the other hand, reliability, 

as the most important aspect of OSS quality, has to be ensured as well (Tamura and 

Yamada, 2009). Since reliability is an increasing function over time, reliable software 

requires a delay of the release to ensure that there is sufficient time for testing. 
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One challenging issue is that the rapid release strategy and the level of reliability are 

essentially conflicting with each other. Management, therefore, has to make a 

compromise between them. To the best of our knowledge, discussions on such a 

problem are still lacking in the literature, which motivates us to develop a new 

decision model. To tackle these two conflicting factors simultaneously, multi-attribute 

utility theory (MAUT) is adopted in our decision model.  

 

In MAUT, some independence assumptions, such as preferential independence, utility 

independence and additive independence, are used for a more practical form of the 

multi-utility function. It is worth noting that these assumptions are commonly 

accepted in practice. Moreover, it has been shown that even when these assumptions 

are violated, the additive multi-attribute function can provide fairly good 

approximations (Edwards, 1977; Farmer, 1987). For more detailed discussions on the 

multi-attribute function when independence assumptions are not held, interested 

readers can refer to (Keeney and Raiffa, 1976). In this thesis, we will adopt these 

commonly used assumptions.  

 

The application of MAUT can obtain a one-dimensional multi-attribute utility 

function, which is the measure of the attractiveness of the conjoint outcome of 

attributes given a specified alternative. The additive form of the multi-attribute utility 

function is given by 

 

   



n

i
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1

21 ,...,                                             (3.6) 
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where each attribute is denoted by di, i=1,2,…n, the attractiveness of each attribute is 

represented by the single utility function u(di) and wi‟s are the scaling constants 

allocated for different single utility functions. The scaling constants represent the 

different importance weights for the utilities of attributes and their sum is equal to one 

(von Winterfeldt and Edwards, 1986). By maximizing the multi-attribute utility 

function, the best alternative is obtained, under which the attractiveness of the 

conjoint outcome of attributes is optimized.  

 

The main reason for the selection of MAUT in our problem is that scenarios of 

management can be appropriately represented by the structure of it. Furthermore, 

MAUT has strong theoretical foundations based on the expected utility theory 

(Fishburn, 1970). Last but not least, as indicated in Ferreira et al. (2009), the use of 

MAUT provides the feasibility to consider the alternative on the continuous scale. 

The procedure of the use of it in our problem is discussed in detail as follows. 

 

3.3.1 Quantification of Attributes  

 

One strategy to the success of open source software is the rapid release of the 

software. Such a strategy can ensure a sufficient number of volunteers involved in the 

testing process. However, the real number of volunteers and their testing effort can 

hardly be traced and measured over time. To resolve this difficulty, analyzing the 

failure data available for the determination of underlying volunteers‟ testing effort 

could be an alternative. Fortunately, the proposed model in this chapter possesses 

such an advantage because the fault detection rate function bi(t) can describe the 
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underlying change of volunteers‟ testing effort by the logistic function. Therefore, the 

objective of rapid release can be formulated as. 

 

Maximize max)( iii btb                                             (3.7) 

 

where the rapid release indicator i  for release i is one of the attributes to be 

considered in MAUT, and t is the decision variable, ]1,0(i . In particular, a large 

value of it indicates a rapid release, and it reaches its maximum at the time maxit . 

 

On the other hand, during the testing process of OSS, maximizing software reliability 

is also a major concern of management. A simple index to measure the reliability is 

the ratio of the number of cumulative detected faults at time t to the mean value of 

initial faults in the software (Lin and Huang, 2008). Hence, the reliability for release i 

can be represented by mi(t)/ai, and it should be maximized. 

 

Maximize iii atmR )(                                               (3.8) 

 

where the approximated reliability Ri is another attribute in MAUT, and t is the 

decision variable. Since the reliability of release i is an increasing function of time, it 

reaches its maximum when time goes to infinity. Therefore, when both rapid release 

indicator and reliability are considered, the decision space is  ,maxit , and 

)1,)([ max iiii atmR  . 
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3.3.2 Elicitation of Single Utility Function for Each Attribute 

 

The single utility function for each attribute represents management‟s satisfaction 

level towards the performance of each attribute. It is usually assessed by a few 

particular points on the utility curve (Keeney and Raiffa, 1976; von Winterfeldt and 

Edwards, 1986). More specifically, suppose that the single utility function for 

reliability is to be determined, the worst and best values of reliability are selected first 

as 0
iR  and 1

iR . For OSS management, these values are of great importance because 

0
iR  and 1

iR  represent its lowest reliability requirement and its highest reliability 

expectation respectively. At these boundary points, we have   00 iRu  and   11 iRu . 

Here, the subscript and the superscript of 
j

iR  represent the number of release and the 

parameter‟s corresponding utility value respectively and  1 ,0j . 

 

Subsequently, management is presented with some simple hypothetical gambles to 

determine the certainty equivalents for a few 50-50 lotteries (Keeney and Raiffa, 

1976; von Winterfeldt and Edwards, 1986). For example, management is asked to 

chose a value for 5.0
iR , so that it is indifferent between accepting 5.0

iR  with certainty 

and having a 50-50 lottery, where there are 0.5 probabilities of getting 0
iR  and 1

iR  

respectively. Similarly,  75.0
iR  can be determined with a 50-50 lottery which consists 

of  5.0
iR  and 1

iR . Also, 25.0
iR can be obtained with a 50-50 lottery which includes 0

iR  

and 5.0
iR . These five points are commonly used to elicit the single utility function for 

each attribute (Keeney and Raiffa, 1976), which is generally represented by the linear 

or exponential function as  



33 

 

 

  ii RmlRu   or    ii RnmlRu  exp                                (3.9) 

 

where l, m and n are constants which secure    1 ,0iRu . It should be noted that we 

also need to compare the certainty equivalents and the expected values of the 50-50 

lotteries to determine which form in (3.9) should be selected. Specifically, if they are 

equal to each other, management is risk neutral and the linear form should be used. 

Otherwise, management is not risk neutral and the exponential form is generally 

adopted. 

 

The single utility function  iu   for the rapid release indicator can be obtained as 

well. Similarly, 0
i  and 1

i  are very important for management because they denote 

its lowest rapid release requirement and its highest rapid release expectation 

respectively. 

 

3.3.3 Estimation of Scaling Constants 

 

The following step is the estimation of the scaling constants 
i

w  and 
iRw . For real 

applications in OSS projects, they indicate the importance weights that management 

allocates for each attribute (von Winterfeldt and Edwards, 1986). There are two 

common methods to assess the scaling constants: certainty scaling and probabilistic 

scaling (von Winterfeldt and Edwards, 1986). Given that the number of attributes 

considered in our problem is only two and this is a small number, the probabilistic 

scaling technique is recommended for use.  
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In probabilistic scaling, management is asked to compare two choices as shown in 

Figure 3.1. On the left hand side, there is a certain joint outcome  01, ii R  comprised 

of rapid release indicator at its best level and reliability at its worst level. On the right 

hand side, the lottery is comprised of both attributes at their best levels with 

probability p and of both attributes at their worst levels with probability 1-p.  

 

p

1-p

 01, ii R

 11, ii R

 00 , ii R

The certain joint outcome The lottery

 

Figure 3.1 Two choices for the determination of the scaling constant 
i

w  

 

In the beginning, management is asked to compare the certain outcome with the 

lottery having a 50-50 chance of occurring. If management prefers the certain 

outcome, the probability p is gradually increased until management is indifferent with 

these two choices. On the contrary, if management prefers the lottery, we decrease the 

probability p until management‟s indifference towards these two choices is achieved. 

At indifference, p is equal to the scaling constant 
i

w  for the rapid release indicator. 

Since the sum of scaling constants must be equal to one, the other scaling constant 

iRw  can be obtained with ease. 
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3.3.4 Maximization of Multi-Attribute Utility Function 

 

Based on the previously estimated single utility functions and scaling constants, the 

additive form of the multi-attribute utility function in our problem can be obtained. 

That is 

 

     iRiii RuwuwRU
ii

  ,                                        (3.10) 

 

where 
i

w  and 
iRw  are the scaling constants for attribute i  and Ri respectively and 

 iu   and  iRu  are the single utility function for each attribute. By maximizing this 

multi-attribute utility function, the optimal version-update time *
iT  is obtained. 

 

It is worth noting here that the additive form of multi-attribute utility function is based 

on the utility independence assumption and the additive independence assumption. 

Interested readers can refer to Keeney and Raiffa (1976) for more detailed theoretical 

discussions. However, from the real applications‟ point of view, these assumptions are 

commonly accepted in practice (Brito and de Almeida, 2009; Ferreira et al., 2009). 

 

3.3.5 Summary of the Procedure 

 

The procedure of the use of MAUT in our problem is summarized in Figure 3.2. The 

first step of the implementation of the decision model is to quantify the attributes in 

our problem, which are the rapid release indicator and the reliability. For the rapid 

release indicator, it is quantified by (3.7) based on the failure data collected during the 
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testing process. While for the attribute of reliability, it represents the ratio of 

cumulative detected faults at time t to the mean value of initial faults and it is 

quantified by (3.8). The following step is the elicitation of the single utility functions 

for both attributes. As discussed previously, the linear form and the exponential form 

in (3.9) are generally used. After this, the scaling constants for each attribute are 

estimated by comparing the two choices as shown in Figure 3.1. Finally, based on the 

single utility functions and the scaling constants, the multi-attribute utility function is 

obtained as shown in (3.10). By maximizing this multi-attribute utility function, the 

optimal version-update time for release i is determined, which is the best option of 

version-update time when the rapid release strategy and the reliability of software are 

considered simultaneously.  

 

 Quantification of rapid release indicator βi and reliability Ri

Elicitation of single utility functions           and 

Estimation of scaling constants        and 

Maximization of multi-attribute utility function U(βi,Ri)

i
w iRw

 iu   iRu

 

Figure 3.2 The structure of the decision model for the determination of optimal 

version-update time 

 

3.4 Numerical Examples 

 

Special properties of OSS are incorporated into the proposed model for open source 

software reliability. In order to compare the proposed model against traditional 
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models for reliability assessment, numerical examples are provided based on two real 

world data sets from two famous open source projects: Apache and GNOME. 

Furthermore, based on the failure data from the first release of Apache, a decision 

model application example is provided, and sensitivity analysis is introduced to help 

management know how robust the decision is.  

 

3.4.1 The Data Sets 

 

Enormous open source projects are undergoing development and each project 

generates a lot of data sets. Therefore, it is important to select representative open 

source projects for model validations. Apache and GNOME projects both have large 

and well-organized communities, where a great number of developers have the right 

to update and change files freely. The large sizes of these two projects make them the 

state-of-the-art in terms of management of OSS projects. 

 

Apache 2.0.35 is available to the public since 2002/04/06 and this is the first release 

of Apache‟s major version 2.0. We select this release and the following two as our 

examples. As to the GNOME project, GNOME 2.0 is a major upgrade which includes 

the introduction of the human interface guidelines. Hence, this release and the 

following two releases are adopted for our test beds. The retrieved faults are presented 

in Table 3.1 and Table 3.2 respectively. In these two tables, some failure data is not 

shown for simplicity. For example, since there are no faults detected on the 29
th

 day in 

Apache 2.0.35, failure data on this day is not shown in Table 3.1. 
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Table 3.1 Detected faults in Apache official public releases 

Apache 2.0.35 Apache 2.0.36 Apache 2.0.39 

Days 

from 

release 

Detected 

bugs 

Days 

from 

release 

Detected 

bugs 

Days 

from 

release 

Detected 

bugs 

1 5 1 2 1 1 

2 5 2 5 2 2 

3 4 3 1 3 2 

4 1 4 1 4 3 

5 2 5 1 5 3 

6 4 7 2 7 2 

7 6 8 1 8 1 

8 2 9 1 9 1 

10 1 10 3 10 1 

11 8 12 2 11 1 

12 5 13 1 15 3 

13 2 15 2 16 2 

14 2 17 1 17 3 

15 1 18 2 18 1 

17 2 21 1 19 1 

18 3 25 1 22 3 

19 4 27 1 23 1 

20 1 29 2 24 1 

21 4 30 2 25 2 

23 2 31 3 26 1 

24 1 32 1 28 1 

25 1 33 3 29 1 

26 2 34 1 30 2 

27 1 35 3 31 1 

28 2 38 3 32 1 

31 1 40 1 35 3 

34 1 43 1 38 1 

43 1 44 1 39 1 

  103 1 42 1 

    43 1 

    49 3 

    50 1 

    51 1 

    57 1 

    66 1 

    70 1 

    81 1 

    164 1 
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Table 3.2 Detected faults in GNOME official public releases 

GNOME 2.0 GNOME 2.2 GNOME 2.4 

Weeks 

from 

release 

Detected 

bugs 

Weeks 

from 

release 

Detected 

bugs 

Weeks 

from 

release 

Detected 

bugs 

1 6 1 5 1 4 

2 5 2 4 2 5 

3 3 3 5 3 2 

4 2 4 5 4 7 

5 5 5 9 5 3 

6 5 6 5 6 1 

7 8 7 2 7 3 

8 4 8 1 8 4 

9 8 9 2 9 3 

10 3 10 3 10 5 

11 2 11 2 11 1 

12 1 13 1 12 3 

13 6 15 4 15 2 

14 8 16 1 18 1 

15 6 17 1 19 1 

16 2 18 1 20 5 

17 2 22 1 21 2 

18 1 24 2 23 1 

19 1   46 1 

20 1     

21 1     

22 2     

24 3     

 

3.4.2 Reliability Assessment for Open Source Software 

 

To compare the proposed model with traditional models for reliability assessment, the 

widely used GO model (Goel and Okumoto, 1979) and S-shaped model (Yamada et 

al., 1983) are selected as examples of traditional models. The mean value functions of 

these two models for release i are 

 

  tbatm iii  exp1)(  and     tbtbatm iiii  exp11)( ,                 (3.11) 
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where ai represents the number of expected initial faults in each release i. 

Furthermore, their corresponding fault detection rate functions are 

 

  ii btb   and    tbtbtb iii  1
2

.                                     (3.12) 

 

Since both GO model and S-shaped model are based on the assumption that ai(t)=ai, 

this assumption is also adopted in our proposed model. Hence, the mean value 

function of the proposed model for release i is obtained as 

 

   tBatm iii
*exp1)(                                               (3.13) 

 

where      0*
iii BtBtB   and )(tBi  is the integration of )(tbi  over the time period 

 t ,0 . 

 

Parameters of these models are estimated by the least square estimation (LSE) 

method. The estimation is done by minimizing the sum of squared residuals, which is 

the difference between estimated values and true observations as   
 


k

i

k

j

ijiji

i

ntm
1 1

2
, 

where nij denotes the cumulative number of detected faults until time tij, i denotes the 

release number and j denotes the observation number for each release i. Specifically, 

i=1, 2, …, k and j=1, 2, …, ki. It means that there are totally k releases, and for each 

release i, there are ki number of observations.  
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With the LSE method, the descriptive performance of the model can be measured by 

the mean squared error (MSEi) for each release i, and if it is small, it indicates the 

good descriptive performance of the model. In particular, the MSEi is given by 

 

  












 


ik

j

ijiji
i

i ntm
k

MSE
1

21
.                                   (3.14) 

 

After the estimates of the parameters are obtained numerically, these models can be 

used to measure the reliability of the software. Generally, software reliability at 

current time t is measured by  

 

  )()(exp)|( tmxtmtxR  .                                  (3.15) 

 

In (3.15), )|( txR  represents the conditional software reliability which is defined as 

the probability that the software will not fail given a specified time interval ],( xtt   

(Musa et al. 1987; Xie, 1991). However, )|( txR  here cannot measure the reliability 

for OSS accurately. The reason is coming from the unique property of OSS: the 

hump-shaped fault detection rate function. More specifically, suppose that most 

volunteers have left from a specific release of OSS, no matter how many remaining 

faults are still in this release, this release can generate a high value of )|( txR . In this 

case, the software may not be really reliable as the high reliability is due to the fact 

that few people are using it. With the consideration of this, we adopt the reliability 

measurement as shown in (3.8). Although it is simple, it can assess the OSS reliability 

more precisely. 
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In order to compare the reliability on the same time basis for different models, the real 

version-update time for each release is used. For Apache data, the real release times 

are Tr1=32, Tr2=41, and Tr3=53 days from each release respectively; while for 

GNOME data, these numbers are 32, 31 and 29 weeks. Estimated parameter values 

and numerical results are shown in Table 3.3 and Table 3.4.  

 

Table 3.3 Estimated parameter values and numerical results for Apache 

No. of release Different models Estimated parameters  MSEi Ri(Tri) 

1 GO model a1=84.60, b1=0.0564  5.76 0.8352 

1 S-shaped model a1=74.27, b1=0.1539  7.70 0.9570 

1 Proposed model 
a1=106.04, N1=1.6798, 

A1=3.1910, 1055.01   

 
2.80 0.6717 

2 GO model a2=52.32, b2=0.0393  8.84 0.8007 

2 S-shaped model a2=49.90, b2=0.0896  8.39 0.8813 

2 Proposed model 
a2=88.19, N2=1.0746, 

A2=3.5814, 0740.02   

 
5.98 0.4944 

3 GO model a3=58.38, b3=0.0367  2.57 0.8571 

3 S-shaped model a3=56.90, b3=0.0805  2.40 0.9260 

3 Proposed model 
a3=82.97, N3=1.5645, 

A3=3.0012, 0576.03   

 
0.68 0.6245 

 

Table 3.4 Estimated parameter values and numerical results for GNOME 

No. of release Different models Estimated parameters  MSEi Ri(Tri) 

1 GO model a1=140.09, b1=0.0418  11.84 0.7371 

1 S-shaped model a1=90.58, b1=0.1818  7.47 0.9797 

1 Proposed model 
a1=142.06, N1=1.1538, 

A1=5.9508, 1794.01   

 
4.44 0.6195 

2 GO model a2=55.98, b2=0.1255  2.93 0.9796 

2 S-shaped model a2=50.78, b2=0.3276  4.12 0.9996 

2 Proposed model 
a2=70.76, N2=2.1194, 

A2=1.9606, 1735.02   

 
2.44 0.7496 

3 GO model a3=55.17, b3=0.1003  2.92 0.9455 

3 S-shaped model a3=52.86, b3=0.2302  4.32 0.9903 

3 Proposed model 
a3=68.99, N3=2.1343, 

A3=2.4748, 1378.03   

 
1.99 0.7600 
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It can be seen that for different releases of Apache and GNOME, the proposed model 

has the best descriptive performance with the smallest value of MSEi. The proposed 

model can describe the failure process of OSS more accurately. Furthermore, in the 

later stage of software testing, there are fewer and fewer faults detected. Since both 

GO model and S-shaped model cannot describe the hump-shaped fault detection rate 

function accurately, they describe this with the assumption that most faults in the 

software have already been detected. Therefore, they provide an underestimation of 

the number of expected initial faults in the software and an overestimation of the 

reliability of software. The estimates of the reliability of software from traditional 

models are especially dangerous for management as they could be too optimistic to be 

acceptable. 

 

3.4.3 A Decision Model Application Example 

 

For management, it is of equal importance to predict the optimal version-update time 

for each release. It should be noted here that the version-update time is a more 

accurate concept than the release time for OSS. The reason lies in the fact that 

software is still used and tested by the volunteers after the each version-update. In 

other words, even after the version-update of OSS, it is still under the testing phase 

unless there is other information to indicate that this OSS is released for commercial 

use. Due to this consideration, the failure data after each version-update is also used 

as shown in Table 3.1 and Table 3.2. Specifically, in this part, the decision model is 

validated on the first release of Apache. Based on the procedure discussed in Section 

3.3, the determination of the optimal version-update time is presented as in the 

following steps. 
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Step 1: Quantification of rapid release indicator and reliability 

 

As discussed, rapid release indicator 1  and reliability R1 are two important factors 

for management to determine the optimal version-update time for the first release of 

Apache. Based on the failure data shown in Table 3.1, the model parameters can be 

estimated as shown in Table 3.3. Then, both of these two attributes are quantitatively 

measured by (3.7) and (3.8) and our decision space is  ,max1t  where 11max1 t . 

 

Step2: Elicitation of single utility function for each attribute 

 

The single utility function for each attribute is elicited based on the management‟s 

own scenarios. Since these management scenarios are subjective assessments from 

management, they may not be precise. In this case, sensitivity analysis is needed, and 

it will be discussed in the next subsection.  

 

Suppose that management scenarios in our application example are as follows:  

(1) Management demonstrates its risk neutral attitude for each attribute. 

(2) Under the rapid release strategy, management indicates that at least half of the 

maximum testing effort from volunteers at max1t  should be maintained and the larger 

the better; the highest rapid release expectation is achieved at the time when the 

maximum testing effort from volunteers is reached.  

(3) Considering the reliability of software, management has verified that at least 10% 

of software faults should be detected and the more the better; its highest reliability 

expectation is achieved when 60% of software faults are detected.  
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According to the scenarios above, some important points on the utility curve are 

obtained. In particular, the lowest rapid release requirement is 5.00
1   and the 

highest rapid release expectation is 11
1  ; the lowest reliability requirement is 

1.00
1 R  and the highest reliability expectation 6.01

1 R . Additionally, based on 

management‟s risk neutral attitude towards these two attributes, the linear form of the 

single utility function should be used. Specifically, we have   12 11  u  and 

  2.02 11  RRu . It is worth noting here that although the linear form is simple, it is 

a widely accepted form especially when empirical results are needed (Scholz and 

Tietje, 2002). 

 

Step 3: Estimation of scaling constants 

 

In this stage, the scaling constant 
1

w  is estimated first by comparing the two choices 

in Figure 3.1. Management has claimed that it is indifferent between these two 

choices when p is equal to 0.5. Therefore, 5.0
1
w . Since the sum of scaling 

constants is equal to one, 
1Rw  is equal to 0.5 as well.  

 

Step 4: Maximization of multi-attribute utility function 

 

Finally, based on the estimated single utility functions and the scaling constants, the 

multi-attribute utility function is evaluated and it is shown in Figure 3.3. The multi-

attribute utility function is maximized at the optimal version-update time 32.15*
1 T . 

It means that Apache release one should be updated at this time, under which the 
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conjoint outcome of   95.0*
11 T and   47.0*

11 TR  can provide the greatest overall 

satisfaction for management. Given that the real version-update time is Tr1=32, a 

delayed version-updating is used in practice under the provided management 

scenarios. More specifically, when the real version-update time is used, we have 

  35.011 rT  and   67.011 rTR . Although 67% of total software faults in the 

release are detected, 65% of the maximum testing effort from volunteers is lost.  
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Figure 3.3 The multi-attribute utility function given different release times 

 

It is worth noting that in Figure 3.3, 11max1 t  denotes that  tb1  reaches its 

maximum at this time. In other words, testing effort from volunteers reaches the 

maximum at this time and will decrease from this time on. If the OSS is updated at 

this time, the highest rapid release expectation 11
1   is satisfied. However, at this 

time, the reliability is low and we have   36.0max11 tR . It means that only 36% of 

total faults in the software are detected. Due to this consideration, software is 

expected to be tested longer for a higher reliability. 
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In addition, we denote  0
1T  as the time when the lowest rapid release requirement 

5.00
1   is reached and we have   7.270

1 T . Figure 3.3 shows that the multi-

attribute utility function remains at the 0.5 level when the version-update time is 

greater than  0
1T . It indicates that only the reliability of software has reached its 

highest expectation level 6.01
1 R  from this time on. However, at the same time 

period, software performs not well in terms of the rapid release requirement. 

 

Based on the discussions above, it can be seen that when both reliability and rapid 

release strategy are considered, a compromise should be between 11max1 t  and 

 0
1T . Figure 3.3 has shown us that the overall satisfaction level is maximized at the 

optimal version-update time 32.15*
1 T . 

 

3.4.4 Sensitivity Analysis 

 

Optimal version-update time for each release i can be determined by maximizing the 

multi-attribute function. However, since most parameters in the MAUT are obtained 

based on the subjective assessments from management, the optimal version-update 

time received may not be precise; in practice, sophisticated management needs to 

know how robust the result is. Accordingly, sensitivity analysis is needed. 

 

Sensitivity analysis is generally done by changing one parameter and setting the other 

parameters at their fixed values (Xie and Hong, 1998, Huang and Lyu, 2005b; Lo et 

al., 2005; Huang and Lo, 2006; Yang et al., 2008; Li et al., 2010). When the 

parameter   is investigated to see how much the optimal version-update time *
iT  is 
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changed, *
iT  is in fact a function of   as other parameters are fixed using their 

estimated values. Then i
qS ,  can be calculated and it is defined as the relative change 

of the optimal version-update time for release i when   is changed by 100q%. That is  

 

)(

)()(

*

**

,





i

iii
q

T

TqT
S


                                             (3.16) 

 

A large value of i
qS ,  indicates that parameter   has a significant influence on the 

determination of *
iT . Equivalently speaking, *

iT  is regarded as sensitive to the change 

of  . Normally, management should pay special attention to significant parameters 

(Xie and Hong, 1998, Huang and Lyu, 2005b; Lo et al., 2005; Huang and Lo, 2006; 

Yang et al., 2008; Li et al., 2010). 

 

Based on the decision model application example, results of sensitivity analysis are 

shown in Table 3.5. It is worth noting that the highest rapid release expectation is 

achieved when the maximum testing effort from volunteers is reached. 

Mathematically, it means that software should be released at timax when bimax is 

achieved and 11
1  . Therefore, based on (3.7), it can be seen that the positive change 

of the highest rapid release indicator 1
1  is impossible. In addition, 

1Rw  is not 

investigated in the sensitivity analysis because the sum of scaling constants is always 

equal to one. 
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Table 3.5 Results from sensitivity analysis 

q -30% -20% -10% 10% 20% 30% 

i
wq

S
1

,   
0.197  0.118  0.054  0.046  0.085  0.120  

i

q
S 0

1,  
0.072  0.048  0.024  0.025  0.050  0.076  

i

q
S 1

1,  
0.479  0.313  0.123  NA NA NA 

i

Rq
S 0

1,  
0.014  0.010  0.005  0.005  0.010  0.016  

i

Rq
S 1

1,  
0.126  0.041  0.033  0.027  0.049  0.067  

 

Table 3.5 indicates that parameters 0
1  and 0

1R  are not significant parameters. For 

example, when 0
1  changes by 30%, the relative change of *

1T  is still less than 8%. 

From management‟s point of view, it means that its lowest rapid release and 

reliability requirements will not have a significant effect on the final decision of 

optimal version-updating. More specifically, requirements, such as (a) at least half of 

the maximum testing effort from volunteers should be maintained and (b) at least 10% 

of faults should be detected, are not significant. Accordingly, it is not necessary for 

management to reassess these requirements. 

 

On the other hand, parameters 
1

w  and 1
1  are significant parameters and 

management needs to pay special attention to them. Normally, reassessments about 

these parameters are needed for more accurate estimates. In particular, for the 

importance weight 
1

w  allocated for the rapid release indicator, management should 

check the probability p in Figure 3.1 again. As to the highest rapid release expectation 

1
1 , management should reassess whether it is achieved when the maximum testing 

effort from volunteers is reached.  



50 

 

One special parameter is 1
1R  which represents the highest reliability expectation from 

management. Sensitivity analysis results indicate that the positive change of it does 

not affect the final decision much; while more than 20% negative change of it could 

significantly affect the decision on optimal version-updating. Therefore, management 

should be asked about whether its highest satisfaction towards reliability can be only 

achieved when more than 60% of faults are removed from the software. If this is the 

case, no more reassessments about the highest reliability expectation are needed; 

otherwise, the highest reliability expectation should be checked again, especially for a 

large decrease of this expectation. 

 

 

3.5 Conclusion 

 

The OSS approach provides a new paradigm of software development, where 

volunteer participation has become a critical issue. Since volunteers are interest-

driven and the attractiveness of a specific release of software is generally decreasing 

over time, multiple releases are expected to maintain a sufficient number of 

volunteers and to attract new comers. In order to describe these unique properties of 

OSS properly, a modified NHPP model is proposed to assess OSS reliability. Based 

on the numerical results, it is found that traditional models provide too optimistic 

reliability estimates. 

 

Furthermore, since multiple releases of OSS are common, and it is often imperative to 

know when to conduct the version-updating in the testing phase. On one hand, with 

the consideration of volunteers‟ participation, software is expected to release as early 



51 

 

as possible when the volunteers‟ testing effort involved in OSS reaches its maximum. 

On the other hand, reliability is also important because it is the most important aspect 

of software quality. With the consideration of OSS reliability, software should be 

tested for a long time prior to the next version-updating. The difficulty is that rapid 

release strategy and OSS reliability are contradicting with each other. In order to 

make a judicious decision on the optimal version-updating in this case, a decision 

model based on MAUT is proposed. The application example has shown that the 

proposed decision model can assist management to make a rational decision based on 

its own scenarios. Our future research will investigate more OSS projects to justify 

the generality of our proposed model for OSS reliability and its optimal version-

updating. 

 

However, there are some weaknesses to our proposed decision model for the 

determination of optimal version updating for OSS. Although sensitivity analysis can 

help management to determine what significant parameters are and more attention can 

be paid to them, the overall decision process is still quite subjective. Therefore, 

experts‟ past experience and historical data are important for management to obtain a 

trustworthy estimated optimal version update time. This is an interesting research 

direction that can be explored in the future.  

 

In addition, we only consider reliability and rapid release strategy in our approach. In 

reality, there could be other attributes that should be incorporated in the decision 

model. For example, when we desire for a rapid release of OSS, it will inevitably 

increase the number of software versions, and a corresponding increase in the 

complexity of the software product. More specifically, Eclipse was plagued with 
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compatibility problems due to the rapid release of software. In this case, complexity 

can be added as another attribute that should be considered in the decision model. 

Future research on this kind of problem will further refine our proposed decision 

model.  
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Chapter 4 Performance Improvement for DDSRMs 

 

 

4.1 Basic Problem Description 

 

Most of recent DDSRMs are based on multiple-delayed-input single-output (MDISO) 

architecture (Cai et al., 2001; Tian and Noore, 2005a; Tian and Noore 2005b; Pai and 

Hong, 2006; Hu et al., 2007; Yang and Li, 2007; Yang et al., 2007). DDSRMs with 

MDISO architecture form an important class of existing DDSRMs, which are focused 

on the inter-relationship among software failure data instead of the relationship 

between failure sequence number and failure data. In this chapter, our research also 

focuses on DDSRMs with MDISO architecture, and we refer to the term “DDSRM” 

as “DDSRM with MDISO architecture” if no further explanation is given. 

 

In existing data-driven approach to software reliability modeling and prediction, the 

software failure process is viewed as a time series. The inputs used by a DDSRM are 

the past, consecutive lagged observations of the time series, while the outputs are the 

future value. The time series model used by existing DDSRMs can be represented as 

follows. 

 

)](,),2(),1([)( wixixixFix   ,                                  (4.1) 

 

where )(x  is the observation from the software failure process, e.g., cumulative 

numbers of detected software faults (Hu et al., 2007), software failure times (Tian and 
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Noore; 2005a; Tian and Noore, 2005b), inter-failure times (Cai 2001; Pai and Hong, 

2006), etc.; )](,),2(),1([ wixixix    is a vector of consecutive lagged terms 

taken from the time series; and )(F  is the time series model describing the 

relationship between the past observations and the future value. In the literature, )(ix  

is also denoted by ix  for simplicity. In (4.1), w is the dimension of the input vector, 

which is also termed as the size of the sliding window (Hu et al., 2007), the fixed-

length of moving window (Chen, 2007), the order of autoregressive terms (Chen, 

2007), etc.  

 

The processes of using a DDSRM for software reliability modeling and prediction are 

illustrated in Figure 4.1, which consist of a training process, a testing process, and a 

prediction process. Suppose that we have observed a total number of n software 

failures, and failure data },,2,1,{ nixi   are recorded; then a DDSRM can be 

constructed. The constructed model will first be trained with the first )( dn  failure 

data, },,2,1,{ dnixi   , where d is a nonnegative integer determined by the model 

user; then the trained model will be tested for model performance by the rest d failure 

data, },,2,1,{ ndndnixi  . If the testing result of model performance is 

satisfactory, then the trained model can be used for prediction purpose. 
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Figure 4.1 The processes of using a DDSRM for software reliability modeling and 

prediction 

 

During the model training process, a w-dimensional vector, },,,{ 11  iwiwi xxx  , is 

used as model input and ix  is used as the expected output, which form a training 

sample pattern, as illustrated in Figure 4.1 (a). With i changing from )1( w  to 

)( dn  , there are a total of )( wdn   training sample patterns which are fed into the 

DDSRM (Chen, 2007), as shown in Table 4.1. The objective of the model training 

process is to make the model have the best fitting of recorded data, i.e., having the 

smallest mean squared error of data-fitting (MSEf), defined as  

 

,)ˆ(
1

1

2








dn

wi

iif xx
wdn

MSE                                      (4.2) 
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where ix̂  is the output obtained from the DDSRM (estimated observation), and ix  is 

the recorded failure datum (true observation).  

 

Table 4.1 Sample patterns used in model training process 

 Model Input 
Expected 

Output 

1 wi  },,,{ 21 wxxx   1wx  

2 wi  },,,{ 132 wxxx   2wx  

…
 

…
 

 

…
 

dni   },,,{ 11  dnwdnwdn xxx   dnx   

 

 

After the training process, the model has “learnt” the inherent patterns of the software 

failure process; however, as the model will be used for prediction purpose, its 

prediction accuracy needs to be tested before it can be practically used. During the 

model testing process (it is also called validation process), a w-dimensional vector 

},,,{ 11  iwiwi xxx   is fed into the trained model as input, and the output, ix̂ , the 

predicted value by the trained model, is obtained, as illustrated in Figure 4.1 (b). With 

i changing from )1(  dn  to n, there are a total of d predicted values obtained. 

Model performance can be measured by the mean squared error of prediction 

(MSEp), defined as 

 





n

dni

iip xx
d

MSE
1

2)ˆ(
1

.                                          (4.3) 

 

If the obtained MSEp is at an acceptable level, which implies that the trained model 

has satisfactory performance, then the model can be used for prediction of future 
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failure. During the prediction process, the most recent w failure data, 

},,,{ 21 nwnwn xxx  , are used as model input, and the model can then give the 

predicted value of 1ˆ nx , as illustrated in Figure 4.1 (c). The above model training, 

testing, and prediction processes are carried out iteratively at the observation of each 

new software failure. For example, when the (n+1):th software failure is observed, 

and thus failure datum 1nx  becomes available, the model will be once again trained 

and tested using new failure data set, }1,,2,1,{  nixi  , and then it can be used to 

give the prediction of 2ˆ nx . 

 

From above discussions, it can be seen that existing DDSRMs assume that a software 

failure is strongly correlated with the most recent w failures, see equation (4.1); 

however, this assumption may not be valid in reality because in a time series the 

correlation can be quite complicated (Tsay, 2002). In fact, it is possible that a 

software failure is correlated with some of previous failures, not necessarily being the 

most recent ones. For example, a failure, ix , could be correlated with, say, 8ix , 

6ix , and 2ix . If this is the case, these three time lag terms should be used as model 

inputs. This issue, despite its importance, has not been addressed in the literature. 

 

In this chapter, we relax the unrealistic assumption adopted by existing DDSRMs and 

develop a generic DDSRM. Existing DDSRMs are special cases of the proposed 

model. We also develop a GA-based algorithm to discover the correlation among 

software failures, by which appropriate time lag terms can be determined to be used 

as the inputs of the proposed DDSRM. Numerical examples are presented to testify 

the validity of the proposed model and algorithm. 
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The remainder of this chapter is organized as follows. In Section 4.2, since we take 

SVM-based DDSRMs as the illustrating example, the basic theory of SVM for 

regression is briefly reviewed. In Section 4.3, a new DDSRM is developed and a GA-

based algorithm is proposed. Numerical examples are presented in Section 4.4. In 

Section 4.5, some concluding remarks are made. 

 

4.2 A Brief Review of SVM for Regression 

 

As our numerical examples will use SVM-based SRMs, a major class of DDSRMs, 

here we give a brief review of SVM for regression. Interested readers can refer to 

Vapnik (1995), Vapnik (1999), Kecman (2001), Scholkopf and Smola (2002) for 

more detailed discussions. 

 

In general, SVMs can be used for two purposes, i.e., classification and regression. 

SVM-based SRMs are constructed by SVM for regression. Vapnik (1995) introduced 

a regression function which can reflect the mapping of input and output of a process 

by learning a set of training data, l
iii yx 1)},{(  , where sxi '  are the actual values of the 

input vectors and syi '  are the actual values of the output, l  is the number of total 

data pairs. Based on the structural risk minimization principle, the SVM regression 

minimizes an upper bound on the expected risk.  

 

Unlike traditional empirical risk minimization which attempts to minimize the error 

on the training data, minimizing this bound could achieve high generalization 
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performance (Vapnik, 1995; Vapnik, 1999). The SVM model used for regression 

function is given by 

 

bxxf  )()(  ,                                                   (4.4) 

 

where )(x  denotes the feature space which is transformation of the input space x . In 

other words,   is the high-dimensional feature space mapping function. By equation 

(4.4), the nonlinear relationship of the input and the output in the low-dimensional 

space can be written in a linear form in the high-dimensional feature space (Vapnik, 

1995; Vapnik, 1999); and the “dimension disaster” problem can be overcome 

following the above specific transformation in SVM regression. The coefficients   

and b  can be determined by minimizing the following regularized risk function 
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where 
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In the above regularized risk function, C  is the regulation constant which represents 

the trade-off between model structure complexity 2||||
2

1
  and empirical error 





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i

ii xfy
l 1
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 . By minimizing this risk function, structural risk minimization can 
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be achieved, which in turn improves the model generalization capability. 

Furthermore, to define the  -insensitive linear loss function more clearly, as shown in 

Figure 4.2, two slack variables,   and * , which represent the difference between the 

estimated value and the real value, are given by 
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Figure 4.2 The soft margin loss setting for a linear SVM regression (Scholkopf and 

Smola, 2002) 

 

In this case, the regularized risk function can be written in another form, which is 
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where 
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In general, minimizing the above regularized risk function directly is cumbersome and 

inefficient. Alternatively, according to Karush-Kuhn-Tucker conditions, this 

optimization problem can be transformed into maximizing its dual Lagrangian 

problem, which is given by 
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subject to constraints 
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In the dual Lagrangian form, ),( ji xxK  is the kernel function. In practice, polynomial 

and Gaussian kernel functions are commonly used. si '  and si '*  are Lagrange 

multipliers which satisfy 0*  ii   for li ,,1 . After si '  and si '*  are obtained, 

the regression function can be rewritten as 

 

bxxKxf ji
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Similar to Tian and Noore (2005b), Pai (2006), Pai and Hong (2006), Chen (2007), 

Yang and Li (2007), Yang et al. (2007), we adopt Gaussian kernel function in our 

research, which is given by 
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Substitute (4.12) into (4.10), and by maximizing ),( *
iiL   with constraints, si '  

and si '*  can be obtained. Substitute them into (4.11), and the SVM regression 

function )(xf  is obtained.  

 

 

4.3 A Generic DDSRM with a Hybrid GA-Based Algorithm 

 

As discussed, existing DDSRMs seem to have a fundamental drawback. For these 

models, it is assumed that a software failure is strongly correlated with the most 

recent w failures; however, this assumption may not be valid in reality. In a time 

series, the correlation may be quite complicated, thus it is more reasonable to assume 

that a failure is strongly correlated with some of previous failures as follows.  

 

)](,),(),([)( 21 pmixmixmixFix   ,                            (4.13) 

 



63 

 

where )(x  is the quantity of interest; )(,),(),( 21 pmixmixmix    are time lag 

terms taken from the time series; and )(F  is the time series model. It can be seen that 

(4.13) is a more general time series model, and the normally adopted model, (4.1), is a 

special case of (4.13) for which wp   and )1( piimi  .  

 

Before the time series model given by (4.13) can be used, the model user first needs to 

determine the time lag terms that should be used, i.e., to determine the value of p and 

the values of pmmm ,,, 21  . This is actually to discover the inherent correlation of 

observations (i.e., software failures) in the time series. For linear time series analysis, 

this can be done by using autocorrelation function (ACF), which can be calculated 

from the observed data (Tsay, 2002). If a time series has significant ACF at, say, lags 

2, 6, and 8, then the time series model should be ),,( 862  iiii xxxFx  in this 

particular case. However, for DDSRMs based on ANNs and SVMs, which are non-

linear time series models, the method to determine the time lag terms to be used as 

model inputs is yet to be developed.  

 

In time series analysis, whenever the time series model takes a different set of time 

lag terms as the input, it could be viewed as a new model. Therefore, to determine the 

appropriate time lag terms to be used could be thought of as to determine the 

appropriate time series model. For this reason, this kind of exploring process is 

sometimes referred to as a model mining process. In the literature, GA-based 

algorithms have been developed to conduct model mining, which have proved to be 

effective and efficient (Valdes and Mateescu, 2002; Valdes and Bonham-Carter, 

2006).  
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In the model mining process, for the sake of easy representation and programming, 

the time lag terms that should be used are represented by a binary code (Valdes and 

Mateescu, 2002; Valdes and Bonham-Carter, 2006), the length of which is denoted by 

v, which is a nonnegative integer determined by the model user. The position of a 

value of “1” in the binary code indicates a time lag term that should be used. For 

example, the binary code “10100010” (for which 8v  and 3p ) means that 2ix , 

6ix , and 8ix  should be used, as shown in Figure 4.3. 

 

6ix8ix 2ix

1 0 1 0 0 0 1 0
 

Figure 4.3 Interpretation of a binary code in model mining 

 

Besides the determination of the time lag terms that should be used as model inputs, 

for a DDSRM, the determination of model parameter values is of equal importance as 

it has great impact on model performance (Pai, 2006; Pai and Hong, 2006; Chen, 

2007). Taking both issues into consideration, we develop a hybrid GA-based 

algorithm by which the time lag terms to be used as well as the optimal values of 

model parameters can be determined simultaneously.  

 

The developed algorithm is shown in Figure 4.4, detailed explanation of which will be 

given later. In Figure 4.4, we take SVM-based SRM with Gaussian kernel function as 

an example of DDSRMs; however, the idea behind is applicable to other DDSRMs 

such as those based on ANNs, provided that GA2 is modified accordingly. 
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Figure 4.4 A hybrid GA-based algorithm to determine the time lag terms to be used 

and the optimal parameters of SVM-based SRM with Gaussian kernel function 
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Based on above discussions, we propose a new DDSRM which takes time series 

model (4.13) instead of (4.1), and uses the developed hybrid GA-based algorithm in 

Figure 4.4 to find the time lag terms that should be used as well as the optimal values 

of model parameters. The proposed DDSRM is illustrated in Figure 4.5. Note that 

there exists fundamental difference between the proposed DDSRM and existing 

DDSRMs. In Figure 4.1, the most recent w failure data are used as model inputs; 

while in Figure 4.5, time lag terms identified by the developed hybrid GA-based 

algorithm during the model training and testing processes are used. 
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Figure 4.5 The processes of using the proposed DDSRM 

 

The developed hybrid GA-based algorithm in Figure 4.4 consists of five steps, which 

are described below. 
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Step 1: Generation of chromosomes 

 

The time lag terms used in (4.13) are expressed by a binary code e.g., the binary code 

“10100010” indicates that 2ix , 6ix , and 8ix  are used as model input (see Figure 

4.3). The first GA (GA1 in Figure 4.4) generates an initial generation of N randomly 

selected binary codes. Generally, the value of N is much less than v2  which is the 

number of all possible combinations of binary codes. In the framework of GA, these 

binary codes are termed as chromosomes. 

 

Step 2: Local optimization of three parameters in SVM 

 

Under each chromosome, a second GA (GA2 in Figure 4.4) is introduced to 

determine the optimal values of three parameters in SVM. Following the general way 

of applying GA, an initial generation of chromosomes is generated, each chromosome 

is a set of parameter values, i.e., ),,( C . Then, the failure data are fed into the SVM 

training process. After the training process, each chromosome is tested by its fitness 

function value, which is the MSEf defined by (4.2) (note that w in (4.2) should be 

replaced by v). If the stopping criterion of GA2, which could be that the MSEf is 

minimized or a predetermined number of generations is reached, is satisfied, then 

GA2 is completed and the algorithm returns to GA1; otherwise the chromosomes that 

have small fitness function values are selected and the crossover and mutation are 

conducted, thus an offspring generation is generated, and the algorithm goes back to 

the SVM training process under this new generation of chromosomes. More 

discussions on GA can be found in Goldberg (1989); and the use of GA in SVM has 

been illustrated in detail in Chen (2007), which interested readers can refer to. 



68 

 

Step 3: Testing 

 

When GA2 is completed, the algorithm returns to GA1 and proceeds further. Each of 

the N chromosomes (binary codes) of the initial generation in GA1 is tested by its 

fitness function value, which is the MSEp defined by (4.3). If the stopping criterion of 

GA1, which could be that the MSEp is minimized or a predefined number of 

generations is reached, is satisfied, then the algorithm goes to Step 5; otherwise it 

goes to Step 4.   

 

Step 4: Evolution 

 

The chromosomes that have small fitness function values are selected and the 

crossover and mutation are conducted, thus an offspring generation is generated, and 

the algorithm goes back to Step 2.  

 

Step 5: Global optimization of the binary code and model parameters 

 

If the stopping criterion of GA1 is satisfied, then the algorithm is terminated, and the 

best binary code as well as the optimal values of SVM parameters is obtained. Then 

the proposed DDSRM can be used for prediction purpose, as shown in Figure 4.5 (c). 
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4.4 Numerical Examples 

 

In this section we give two numerical examples, both of which are based on real data 

sets. These two data sets come from different application domains and have different 

failure data types, which could be helpful to validate the usefulness and generality of 

the proposed DDSRM and algorithm. We compare the performance of the proposed 

DDSRM with that of existing ones. 

 

4.4.1 Example I 

 

Consider software failure data used in Pham and Pham (2000), Tian and Noore 

(2005b), Su and Huang (2007), which are 22 inter-failure times taken from a 

telemetry network system by AT&T Bell Laboratories, shown in Table 4.2. In our 

experiment, we use the 19
th

 to the 22
nd

 inter-failure times as testing data, i.e., we set 

4d . Now we adopt the DDSRM in Figure 4.5, and we use the algorithm in Figure 

4.4 to find the particular time lag terms that should be used and the optimal values of 

model parameters. Table 4.3 shows the results obtained. 
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Table 4.2 Software failure data taken from Pham and Pham (2000), Tian and Noore 

(2005b), Su and Huang (2007) 

Failure number Inter-failure time 

1 5.50 

2 1.83 

3 2.75 

4 70.89 

5 3.94 

6 14.98 

7 3.47 

8 9.96 

9 11.39 

10 19.88 

11 7.81 

12 14.59 

13 11.42 

14 18.94 

15 65.30 

16 0.04 

17 125.67 

18 82.69 

19 0.45 

20 31.61 

21 129.31 

22 47.60 

 

 

 

Table 4.3 Model mining result and optimal values of parameters of SVM-based SRM 

with Gaussian kernel function, using software failure data in Table 4.2 

The best binary code *C  *  *  MSEp 

00001100 2486 1.042 0.6417 670.56 

 

 

It can be seen from Table 4.3 that by analyzing the data in Table 4.2, a failure ix  is 

found to be strongly correlated with two previous failures, 4ix  and 3ix , thus these 

two time lag terms are used as model inputs for the SVM-based SRM; and the optimal 
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values of model parameters, *C , * , and * , are obtained as well. The resulting 

MSEp is 670.56. 

 

For comparative purpose, we examine the performance of existing SVM-based SRM 

which adopts equation (4.1), using the same data set in Table 4.2. To get the best 

model performance, we use the algorithm developed in Yang et al. (2007) to obtain 

the optimal values of model parameters. The results are 5* w , 7120* C , 

1013.1*  , and 9975.5*  , under which 2.2343pMSE . It can be seen that the 

MSEp is three more times bigger than that of the proposed DDSRM.  

 

4.4.2 Example II 

 

In the second example, we use the software failure data reported in Wood (1996), 

which are taken from a software release at Tandem Computers Company. This set of 

data is in the form of cumulative numbers of faults detected, shown in Table 4.4. The 

value of d is set to be the same as that in Example I, i.e., 4d . Table 4.5 shows the 

results obtained using the proposed DDSRM in Figure 4.5 and the algorithm in Figure 

4.4. 
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Table 4.4 Software failure data reported in Wood (1996) 

Week Cumulative faults detected 

1 13 

2 18 

3 26 

4 34 

5 40 

6 48 

7 61 

8 75 

9 84 

10 89 

11 95 

12 100 

13 104 

14 110 

15 112 

16 114 

17 117 

18 118 

19 120 

 

 

 

Table 4.5 Model mining result and optimal values of parameters of SVM-based SRM 

with Gaussian kernel function, using software failure data in Table 4.4 

The best binary code *C  *  *  MSEp 

00001011 4159 0.298 0.5296 0.0487 

 

 

 

In this example, it is found that a failure ix  is strongly correlated with three previous 

failures, 4ix , 2ix , and 1ix , thus these three time lag terms are used as model 

inputs. The resulting MSEp is 0.0487. 
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Similar as Example I, we use existing SVM-based SRM to analyze the software 

failure data in Table 4.4. For this example, the optimal values of model parameters are 

found to be 1* w , 1131* C , 3383.0*   and 0097.0*  , under which 

42.1pMSE . It can be seen that the MSEp is once again much bigger than that of the 

proposed DDSRM. 

 

The results obtained from the previous two examples verify that by using the 

proposed DDSRM with the developed hybrid GA-based algorithm, model 

performance could be significantly improved. This is actually expected because 

existing DDSRMs cannot cater for various failure correlations in a time series, e.g., 

for the data in Table 4.2, ix  is correlated with 4ix  and 3ix ; while for the data in 

Table 4.4, ix  is correlated with 4ix , 2ix , and 1ix ; and hence the model 

performance would be affected.  

 

As discussed, the proposed DDSRM is a generic model which includes the cases of 

existing DDSRMs. If by using the developed hybrid GA-based algorithm it is found 

that a failure is correlated with the most recent w failures, e.g., the best binary code is 

00001111, then the proposed DDSRM reduces to an existing DDSRM. 

 

 

4.5 Conclusion 

 

In this chapter, we first point out a fundamental drawback of existing DDSRMs which 

seems to have affected the performance of existing models. Then we develop a 
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generic DDSRM which can cater for various failure correlations in reality. Taking 

SVM-based SRM using Gaussian kernel function as an example, a hybrid GA-based 

algorithm is developed to discover the failure correlation and to obtain the optimal 

values of model parameters. Experimental results show that the proposed model 

outperforms existing DDSRMs. 

 

The improvement of model performance is achieved at a cost of increase of required 

computational effort. In the proposed hybrid GA-based algorithm, GA1 is used to 

determine the best binary code which describes the specific failure correlation, and 

GA2 is used to determine the optimal model parameters. Compared with existing 

DDSRMs for which failure correlation is assumed to be a simple one, i.e., only 

consecutive failures are correlated, and only GA2 is used, it is expected that the time 

complexity of the proposed algorithm is greater. In our experiments on a normal 

personal computer, the hybrid GA-based algorithm could take up to forty minutes to 

be completed. This necessitates our future research on the improvement of the 

algorithm efficiency. More specifically, on one hand, we can adopt the use of more 

recent and advanced genetic algorithms such as the algorithm proposed in Ye et al. 

(2010). On the other hand, we can try incorporating priori information from the 

decision maker. This kind of information can refine the search of algorithm in a more 

reasonable and limited parameter space. 
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Chapter 5 Sensitivity Analysis of Release Time of Software 

Reliability Models Incorporating Testing Effort with 

Multiple Change Points 

 

 

5.1 Basic Problem Description 

 

Developing software reliability models is not the end of software reliability analysis. 

To guide management when to release the software based on these models is a typical 

application. In the following chapters, we will focus on another important aspect of 

software reliability analysis: release time determination.  

 

Recently, incorporating testing effort into software reliability growth models 

(SRGMs) has received a lot of attention. The optimal release time problem 

considering testing effort was also discussed (Yamada et al., 1993; Huang and Kuo, 

2002; Huang and Lyu, 2005a; Lin and Huang, 2008). However, most of the research 

assumes that parameters of the proposed models are known. In fact, there always exist 

estimation errors as parameters in testing effort function and SRGMs are generally 

estimated by least square estimation (LSE) method and maximum likelihood 

estimation (MLE) method respectively. It is necessary to conduct the sensitivity 

analysis to determine which parameter may have significant influence to the software 

release time. This is even more important when there are an increasing number of 
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parameters involved in the model, such as the model proposed by Lin and Huang 

(2008). 

 

Sensitivity analysis can be used to determine how sensitive the software release time 

is. It helps to find parameters that could significantly affect the solution to the release 

time. By showing how the software release time reacts against the changes in 

parameter values, the model is also evaluated and validated. In this chapter, sensitivity 

of the software release time is studied and different approaches are used, including 

one-factor-at-a-time approach, design of experiments (DOE) and global sensitivity 

analysis. 

 

After the sensitivity analysis, significant parameters can be determined and they 

should be estimated precisely. However, this may not be possible due to the limited 

amount of information available. Thus, conservative estimation of release time is 

needed to avoid releasing the software too optimistically (Xie and Hong, 1998). To 

this end, interval estimation is recommended for use and the simulation results from 

global sensitivity analysis can just help in this.      

 

The rest of this chapter is organized as follows. Section 5.2 introduces the general 

model incorporating testing effort and formulates the software release time problem. 

Section 5.3 discusses procedures when using different approaches to sensitivity 

analysis. In Section 5.4, an application example is given, and some interesting results 

are obtained. In Section 5.5, limitations of different approaches are highlighted. The 

interval estimation of optimal release time is discussed in Section 5.6 and it can be 
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seen that results from global sensitivity analysis are very helpful in this. Concluding 

remarks are made in Section 5.7. 

 

 

5.2 General Model Incorporating Testing Effort 

 

To accurately model software failure process with SRGMs, incorporating testing 

effort has shown to be important and it has received a lot of attention. According to 

Lin and Huang (2008), multiple change points should be considered due to the 

changing testing efforts in reality. This model is adopted here as it is shown to be a 

general one with fairly accurate prediction capability (Lin and Huang, 2008). 

Specifically, with the consideration of arbitrary number of change points, the 

cumulative testing effort function is given by 

 

 









































































,,
]exp[]exp[

]exp[]exp[

,,
]exp[

]exp[]exp[1

,0,]exp[1

)(

1
1

11

21

2

1211

11

11

2

21

1

t

t

t
t

tt

tW

m

kk

m

k
kk

mmm

kk

mm


























                  (5.1) 

 

Based on the assumptions provided in Lin and Huang (2008), the mean value function 

representing the expected number of faults detected in time interval ],0( t  can be 

written as  
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  ,10 ,0    ; 1)( )(   raeatm trW                                      (5.2) 

 

where the boundary conditions are   00 m  and   00 W . Given (5.2), failure 

intensity can be also calculated by 

 

,10 ,0    )(
)(

)( )(   raetarw
dt

tdm
t trW                               (5.3) 

 

In general, constructing a model is not the end. When the testing process proceeds, 

there will be fewer and fewer faults in the software. Accordingly, the software 

becomes more reliable. It is useful to provide information for management to decide 

when to stop the testing. Given a reliability target, the minimum testing time T 

required is generally calculated from the following formulation.   

 

  )()(exp)|( tmxtmtxR                                          (5.4) 

0)|( RtxR                                                            (5.5) 

 

In (5.4), )|( txR  represents the conditional software reliability which is defined as the 

probability that the software will not fail given a specified time interval ],( xtt   

(Musa et al., 1987; Xie, 1991). By solving (5.4) and (5.5), the minimum testing time T 

required to achieve the given reliability target 0R  is received. However, the problem 

formulation above is under the testing reliability scenario. It means that the software 

is still under testing after release. In fact, operational reliability scenario is more 

reasonable as software codes will not be changed by customers after release (Yang 
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and Xie, 2000). Therefore, from the customers‟ point of view, the operational 

reliability perspective is adopted here for further analysis. That is 

 

   xetarwxttxR trW )()(exp)(exp)|(                                 (5.6) 

 

As there is no close form for the minimum testing time T to achieve a predetermined 

reliability target R0 based on the model proposed by Lin and Huang (2008), numerical 

calculations are generally adopted. Without the loss of generality, x is set to 1 in 

)|( txR  and 0R  is set to 0.95 in the following discussions. 

 

 

5.3 Approaches to Sensitivity Analysis 

 

In this section, sensitivity analysis of software release time formulated in the previous 

section is studied by various methods, i.e., one-factor-at-a-time approach, design of 

experiments (DOE) and global sensitivity analysis. The properties of each approach 

are also discussed. 

 

5.3.1 One-Factor-at-a-Time Approach 

 

One-factor-at-a-time approach is usually adopted due to its simplicity (Xie and Hong, 

1998, Huang and Lyu, 2005b; Lo et al., 2005; Huang and Lo, 2006; Yang et al., 2008; 

Li et al., 2010). It is generally done by changing one parameter and setting the other 

parameters at their fixed values. It can be seen from (5.1) and (5.2) that there are 

totally (2m+5) model parameters to be investigated in our problem. When the 
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parameter a is investigated to see how much the minimum testing time T is changed, 

T  is in fact a function of a as other parameters are fixed using their estimated values. 

Then apS ,  can be calculated, and it is defined as the relative change of the release 

time when a is changed by 100p% . That is  

 

)(

)()(
,

aT

aTpaaT
S ap


                                                 (5.7) 

 

Similarly, rpS , , ,pS , 
ipS , , and 

ipS ,  ( 1,,2,1  mi  ) can be received in the same 

manner.  

 

One-factor-at-a-time approach can help us to find the most sensitive parameter. For 

example, if apS ,  is with the largest scale when p changes, then parameter a  is 

regarded as the most sensitive parameter. Furthermore, it can also provide information 

about the trend of the release time with respect to each model parameter. By changing 

the value of p, we can check whether the minimum testing time required increases or 

decreases with respect to each model parameter.  

 

5.3.2 Sensitivity Analysis through DOE  

 

There are totally (2m+5) parameters of interest in the sensitivity analysis, i.e., a , r , 

 , i , and i . It can be seen that one-factor-at-a-time approach is cumbersome when 

many parameters are involved. Thus, a more efficient way in conducting sensitivity 

analysis is required. DOE is an efficient approach and it is adopted by Xie et al. 

(2004). In the framework of DOE, the experiment can be explained as a test or series 
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of tests where some purposeful changes are made to the input variables so that the 

reasons for the changes observed in the output response can be identified (Box et al., 

1978; Montgomery and Runger, 1999).  Specifically, in our problem, (2m+5) 

parameters (i.e., a , r ,  , i , and i ) are input variables and the optimal release 

time T is the output response.  

 

It is worth noting that there are totally (2m+5) parameters to be investigated and 

)52(2 m  runs are needed for a full factorial design. To improve the efficiency for 

conducting sensitivity analysis, a Resolution III fractional factorial design is adopted 

here and the interaction effects are assumed to be negligible. For more detailed 

process of Resolution III fractional factorial design, interested readers can refer to 

Box et al. (1978) and Montgomery and Runger (1999). In this part, a typical example 

of Resolution III fractional factorial design is shown in the following table and the use 

of it is briefly discussed. 

 

Table 5.1 A saturated Resolution III fractional factorial design 

θ1  θ2  θ3  θ4  θ5  θ6  θ7  T  

-  -  -  +  +  +  -  T1  

+  -  -  -  -  +  +  T2  

-  +  -  -  +  -  +  T3  

+  +  -  +  -  -  -  T4  

-  -  +  +  -  -  +  T5  

+  -  +  -  +  -  -  T6  

-  +  +  -  -  +  -  T7  

+  +  +  +  +  +  +  T8  

 

The experimental design shown in Table 5.1 is actually a saturated Resolution III 

factional factorial design, with which 7 factors with only 8 runs can be investigated. 

The sings „+‟ and „-‟ denote the high level and low level of each parameter 
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respectively. In this design, suppose that the integration effects are negligible, the 

optimal release time can be estimated by using a linear model. That is 
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where E0 is the grand average and the other Ei‟s are the main effects of parameters. 

These terms can be calculated according to the following equations and significant 

parameters can be determined based on them. If parameter θi is the most significant 

parameter, then Ei will be with the largest absolute value.   
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                              (5.9) 

 

The design discussed above is actually of great importance in our study for the 

following two reasons: (1) if one change-point is used for describing the changeable 

testing effort function, i.e., m=1, there are just 7 parameters to be investigated; (2) Lin 

and Huang (2008) provided three numerical examples based on three real data sets, 
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and all of them are with a single change-point, which may indicate that one change-

point could be quite general in real applications.     

 

In summary, sensitivity analysis through DOE can quickly identify the most sensitive 

parameter or a subset of input parameters which have the most significant influence 

on the solution. Compared with the other methods, this approach always enjoys the 

high efficiency. This is essentially in accordance with the original idea behind DOE, 

using the least resource to determine significant factors since the experiment could be 

very expensive or time consuming in the real world application.    

 

5.3.3 Global Sensitivity Analysis 

 

Global sensitivity analysis is widely discussed in recent years and it has drawn a lot of 

research attention (Sobol, 2001; Saltelli, 2002; Saltelli et al., 2008; Makowski 2006; 

Volkova et al., 2008; Benke et al., 2008; Yu and Harris, 2008). Compared with the 

previous two methods, where only special points or a local region of the parameter 

space is considered, the global sensitivity analysis can investigate the global 

parameter space and therefore the accuracy of the results can be improved (Saltelli et 

al., 2008; Yu and Harris, 2008). Specifically, it uses the additional knowledge we 

have about the model parameters, i.e., the distributions of model parameters. 

 

The MLE method is commonly adopted for the estimation of parameters in SRGMs 

(Zhao and Xie, 1996; Wu et al., 2007). Also, it is theoretically sound and acceptable 

that the distributions of parameters are asymptotically normal. In our problem, 

parameters a  and r  are estimated in such a way according to Lin and Huang (2008). 
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While for the parameters  , i  and i  in testing effort function, Lin and Huang 

(2008) adopted the LSE method for estimation. In this case, to construct reasonable 

distributions of these parameters, expert opinion is needed, and the triangular 

distribution is usually adopted (Park, 2007).  

 

In general, there are several methods for making global sensitivity analysis. In this 

research, we restrict ourselves to the first-order Sobol indices with Monto Carlo 

simulation (Sobol, 2001; Saltelli, 2002; Saltelli et al., 2008 ). This is also reasonable 

as main effects of parameters are of more concern and first-order sensitivity indices 

just measure them. In our problem, ),,( 5221  mfT    is the model under 

investigation where parameters 5221 ,, m   are input variables and the optimal 

release time T  is the output response. The total variance of T  used in global 

sensitivity analysis can be decomposed as follows: 
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where )(TV  is total variance of T induced by the (2m+5) parameters,   ii TEVV   

measures the main effect of parameter i  and other terms measure the interaction 

effects. Given (5.10), the first-order sensitivity index is defined as 

 

)(TV

V
S i

i                                                            (5.11) 

 



85 

 

The first–order sensitivity index given by (5.11) can measure the main effect of the 

parameter as well. Specifically, parameter i  has a significant influence on the 

solution of software release time when iS  is close to one. By contrast, i  is not a 

sensitive parameter when iS  is close to zero. Moreover, interaction effects in the 

model can be measured with 
i

iS1 .  

 

To calculate iS  for each parameter, iV  and )(TV  are required to be estimated in 

advance. These terms can be computed by using Monte Carlo simulation method 

discussed in Saltelli (2002) and Saltelli et al. (2008), where the input parameters si '  

are assumed uncorrelated with one another. In fact, Saltelli (2002) has justified the 

effectiveness and efficiency of the algorithm theoretically, and interested readers can 

refer to it for detailed discussions. On the other hand, the independence assumption 

for parameters is commonly adopted when global sensitivity analysis is used (Saltelli 

et al., 2008; Makowski 2006; Volkova et al., 2008). According to Saltelli et al. 

(2008), the reason for this assumption lies in the fact that dependent input samples are 

more difficult to generate. More seriously, the sample size needed to compute 

sensitivity measures for non-independent samples is much larger compared with the 

case of uncorrelated samples. 

 

The principle of the algorithm is to generate random samples of parameters according 

to their distributions. The base parameter values are quasi-random numbers generated 

using the Latin hypercube sampling method (Helton and Davis, 2003). Suppose that 

i  is with normal distribution, 2N random numbers of i  are generated according to 

this information. The first N of them are in matrix A denoted by 
)1(

i , 
)2(

i  ,…, 
)(N

i . 
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While the rest N of them are put into matrix B, where they are denoted by 
)1(

52 im  , 

)2(
52 im  ,…, 

)2(
52 im  . Specifically, the matrix A and matrix B are given by 
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and 
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With A and B, a new matrix iC  is received by substituting the ith column from A into 

B and it is  
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Finally, we calculate the software release time for all the parameter values in the 

matrices A, B, and iC , resulting three 1N  vectors: 

 

)()()( iCBA CfTBfTAfT
i
                                    (5.15) 

 

The iV  and )(TV in (5.11) are then obtained by 
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and 
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where  0f  is the mean of AT  given by 

 

 



N

j

j
ATNf

1

)(
0 1                                                     (5.18) 

 

The above mentioned algorithm can be explained in a „hand waving‟ fashion as 

illustrated in Saltelli et al. (2008). In the scalar product 
iCA TT   given by (5.16), 

values of T computed from matrix A are multiplied by those computed from matrix 

iC  where all parameters but  i  are resampled. Then, high and low values of  AT  and 
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iCT are randomly associated if i  is non-influential. On the contrary, if i  is 

influential, high (or low) values of  AT  and 
iCT  will be preferentially multiplied. 

 

 

5.4 An Illustrative Example 

 

To illustrate the application of various sensitivity methods in our problem, the third 

data set used in Lin and Huang (2008) is adopted here. The data set actually origins 

from software release one in Wood (1996) from Tandem Computers Company. As the 

weekly testing effort consumption gradually decreased from the 11th week, 1  is set 

to 11 and m is equal to one. Parameters are estimated in two ways according to Lin 

and Huang (2008): LSE method is used for estimating the parameters in test effort 

function and MLE method for the parameters a  and r  in SRGMs. Estimators of 

parameters are received in the same fashion in the following sensitivity analysis. The 

numerical results will help us to further understand the use of each approach. 

 

5.4.1 Results from One-Factor-at-a-Time Approach 

 

Following the procedures discussed in Section 5.3.1, some numerical results from the 

one-factor-at-a-time approach are shown in Table 5.2. 
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Table 5.2 Some numerical results from one-factor-at-a-time approach 

p -30% -20% -10% 10% 20% 30% 

apS ,  -0.097 -0.061 -0.029 0.027 0.051 0.074 

rpS ,  0.111 0.077 0.040 -0.041 -0.083 -0.126 

,pS  0.111 0.077 0.040 -0.041 -0.083 -0.126 

1,pS  0.078 0.050 0.025 -0.023 -0.045 -0.065 

2,pS  0.183 0.112 0.052 -0.046 -0.087 -0.125 

1,pS  0.180 0.133 0.073 -0.084 -0.173 -0.259 

2,pS  0.850 0.517 0.232 -0.186 -0.330 -0.445 

 

From the table, it can be seen that the shape parameter 2  in the testing effort 

function is the most sensitive parameter with the largest scale of  
2,pS . Moreover, 

optimal release time T is decreasing with the increase of  r ,  , 1 , 2 , 1 , and 2  

respectively. It is only increasing with the increase of the parameter a . Accordingly, 

overestimation of  r ,   , 1 , 2 , 1 , 2  and underestimation of a , which implies a 

underestimation of release time should be avoided. Because it will be costly by 

making consumers experience more failures when the software is released too early. 

 

It should be also noted that the S values in second row and third row are the same. 

The same values are received as the reliability function has the same amount of 

change when parameters r  and   change and optimal release time is uniquely 

determined by the reliability function. Specifically, let x equal to 1 and equation (5.6) 

has the same form when r and   change by 100p%. That is 

 

   )()1()()1(exp)(exp)|1( tWpretwparttR   .                       (5.19) 
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7.4.2 Results from Sensitivity Analysis through DOE 

 

Based on the same data set, it can be calculated that the respective relative changing 

rates of the maximum likelihood estimators â  and r̂  are approximately 

 

%,9.16
ˆ

)ˆ(
 %,1

ˆ

)ˆ(


r

rVar

a

aVar
 

 

which does not show significant difference. Therefore, according to Xie et al. (2004), 

factor levels for parameters can be described as follows, and they are consistently 

used for the other parameters. 

 

-: Decrease by 30% of original value 

+: Increase by 30% of original value 

 

The Resolution III fractional factorial design and analytical results are shown in Table 

5.3, Table 5.4 and depicted in Figure 5.1 in a descending manner. 

 

Table 5.3 Fractional factorial design 

a r   1  2  1  2  T 

- - - + + + - 81.51 

+ - - - - + + 43.16 

- + - - + - + 30.92 

+ + - + - - - 205.30 

- - + + - - + 41.99 

+ - + - + - - 163.97 

- + + - - + - 35.35 

+ + + + + + + 19.19 
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Table 5.4 Main effects of parameters 

(1- a ; 2- r ; 3- ; 4- 1 ; 5- 2 ; 6- 1 ; 7- 2 ) 

E1 E2 E3 E4 E5 E6 E7 

60.46 -9.97 -25.10 18.65 -7.55 -65.74 -87.72 

 

 

 

 

Figure 5.1 Main effects of parameters (absolute value) 

(1- a ; 2- r ; 3- ; 4- 1 ; 5- 2 ; 6- 1 ; 7- 2 ) 

 

It can be easily seen that parameter 2  is the most dominant factor which affects the 

solution to software release time; parameters 1  and a  have the second significant 

influence on the solution followed by  , 1 , r  and 2 . The significance of 

parameters 2  and 1  is reasonable when we come back to see equations given by 

(5.1) and (5.6). It can be seen that these two parameters are the shape parameters in 

Weibull testing effort function in (5.1) and the Weibull testing effort function is an 
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exponent in the second exponential function of (5.6). However, the significance of 

parameter a  is quite questionable since it is the only parameter, which is not related 

to the exponent in the second exponential function of (5.6). Furthermore, it is not in 

accordance with the results shown in Xie and Hong (1998) and Xie et al. (2004) that 

the expected number of faults a is generally less sensitive than the failure detection 

rate r. This inaccurate result could be caused by the assumptions used in the design, 

i.e., the use of the linear model, the arbitrariness of factor level labels and the 

ignorance of interaction.   

 

5.4.3 Results from Global Sensitivity Analysis 

 

In global sensitivity analysis, the base sample N should be predetermined. We set N 

equal to 200000 in our application example as a large number of N can produce stable 

estimates of the first-order sensitivity indices with low variability (Makowski et al., 

2006).  Further, since parameters  , 1 , 2 , 1 , and 2  in the testing effort function 

are estimated by LSE method, expert opinion is needed to construct reasonable 

distributions of them. In this case, the triangular distribution is generally adopted 

(Park, 2007). Due to this consideration, for parameters in the testing effort function, 

suppose that their most probable values are the estimated values from LSE method; 

their highest and lowest values are 30% increase and decrease of the most probable 

values respectively. However, it should be noted that this assumption is adopted here 

for illustrative purpose. In real applications, distributions of these parameters can be 

different from each other considering their different physical meanings in the testing 

effort function. While, for parameters a and r estimated by MLE method, it is 

theoretically sound and acceptable that these parameters are normally distributed. 
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Following the standard procedures of global sensitivity analysis discussed in Section 

5.3.3, results of the first-order sensitivity indices are listed in Table 5.5 and depicted 

in Figure 5.2 in a descending manner. 

 

Table 5.5 Results of the first-order sensitivity indices 

(1- a ; 2- r ; 3- ; 4- 1 ; 5- 2 ; 6- 1 ; 7- 2 ) 

S1 S2 S3 S4 S5 S6 S7 

0.0095 0.0664 0.0398 0.017 0.0497 0.1125 0.6951 

  

 

 

Figure 5.2 Results of first-order sensitivity indices in a descending manner 

(1- a ; 2- r ; 3- ; 4- 1 ; 5- 2 ; 6- 1 ; 7- 2 ) 

 

For the determination of software release time, it can be seen that parameter 2  is the 

most sensitive parameter. Its value of first-order sensitivity index is equal to 0.6951. It 

means that 69.51% of the software release time variance would be left if the 

parameter 2  is undetermined. According to Figure 5.2, the other parameter 1  also 
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has a significant influence on the determination of software release time. Its value of 

first-order sensitivity index is equal to 0.1125. The significance of these two 

parameters can also be explained as before. For the other 5 parameters, they are not 

significant according to the Pareto principle as parameters 1  and 2  has accounted 

for roughly 80% (80.76% exactly) of the software release time variance.  

 

Furthermore, the parameter a, which is determined as a significant parameter in DOE, 

is determined as the most insignificant parameter in global sensitivity analysis. The 

result here is in accordance with the intuition of equation (5.6). Therefore, it provides 

further evidence that global sensitivity analysis could be more accurate. In addition, 

since  %11 
i

iS , it indicates that the interaction effects are negligible in this 

application example.  

 

 

5.5 Limitations of Different Approaches 

 

In our study, different approaches to sensitivity analysis are with different advantages. 

One-factor-at-a-time approach is simple and straightforward; DOE is with high 

efficiency utilizing the least amount of resources and global sensitivity analysis can 

investigate the global parameter space to get more accurate results. However, at the 

same time, the limitations of different approaches need to be highlighted here and 

special care should be taken for them. 
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For one-factor-at-a-time approach, the most restrictive assumption is that all effects of 

parameters are independently estimated. Thus, it only focuses on some special points 

of the parameter space and fails to investigate these parameters simultaneously. 

Furthermore, when there are a large number of parameters to be investigated, large 

number of observations are needed. 

 

As to DOE, it is generally based on the linear model, which could be the most 

restrictive assumption, since in our study the relationship between the optimal release 

time and input parameters is complex and nonlinear. Probably because of this, in the 

application example, DOE treats the parameter a as a third significant parameter 

wrongly. Possible ways to solve this kind of problem could be the use of 3 level 

experimental design and nonlinearity check by statistical tests. However, the use of 

them will greatly increase the complexity of the method, which may not be desirable.  

 

Additionally, interactions are assumed to be negligible in our Resolution III fractional 

factorial design. Compared with the previous assumption, this one could be a minor 

one. On one hand, in our application example, the results from global sensitivity 

analysis indicate that the interaction effects can be ignored. On the other hand, the 

results of DOE are generally not affected when the interaction effects are assumed to 

be negligible according to Taguchi et al. (2005).  

 

As to global sensitivity analysis, the most restrictive assumption is that the priori 

knowledge about the distributions of parameters is needed. It is known that this kind 

of information may not be available all the time. Some common ways to solve this 

kind of problem is to use some simple distributions based on the expert opinion, i.e., 



96 

 

the uniform distribution or the triangular distribution (Makowski, 2006; Saltelli et al., 

2008). However, the impact of the accuracy of these estimations on the final results of 

sensitivity measures still needs to be investigated as an inaccurate estimation of the 

distribution can probably lead misleading results. Future research on this problem is 

needed.   

 

Additionally, compared with the previous two methods, global sensitivity analysis is 

more computationally expensive as shown in Table 5.6. The numbers in the table are 

received in the following manner. There are totally (2m+5) parameters to be 

investigated. In one-factor-at-a-time (OFAT) approach, -30% to 30% is selected and 

10% is set as the step, thus, 6(2m+5) T values are needed; in DOE, 2
k
 runs of 

Resolution III design can investigate 2
k
-1 factors (Montgomery and Runger, 1999), 

therefore, it should be greater than or equal to 2m+6 and less than 4m+12; in global 

sensitivity analysis (GSA), according to the simulation procedures discussed in this 

chapter, N(2m+7) T values are needed. Although global sensitivity analysis is the 

most computationally expensive method, this limitation may not be that serious in 

practice. The reason lies in the fact that values of optimal release time are just 

numerical calculations rather than costly and time-consuming real world experiments.  

 

Table 5.6 Comparison of computation resources needed 

Approaches No. of optimal release time values to be calculated 

OFAT 6(2m+5) 

DOE 
2

k
 

(2m+6≤2
k
<4m+12, k is a positive integer) 

GSA N(2m+7) 
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5.6 Interval Estimation from Global Sensitivity Analysis 

 

Significant parameters can be determined after sensitivity analysis. Usually, for these 

parameters, they should be estimated more precisely. One possible way to do this is to 

gather some information from similar projects as shown in Xie et al. (1999). 

However, parameters are unknown in nature, and they are estimated based on the 

limited amount of data. The point estimate of optimal software release time could be 

too optimistic. In fact, the optimal release time is a random variable with the 

consideration of the estimation errors in parameters. It is necessary to provide 

management with more confidence with respect to the estimation of the release time. 

With the consideration of this, interval estimation is recommended for use (Zhao and 

Xie, 1993).  

 

Previously, the interval estimation is usually received by standard method in statistical 

analysis where large sample properties of the MLE are adopted (Zhao and Xie, 1993). 

However, such analysis is not applicable in our analysis since parameters in testing 

effort function are estimated by LSE method. In this case, an alternative way is 

needed and simulation results from global sensitivity analysis can just help in this. 

Since there are totally N(2m+7) values of optimal release time T based on the 

simulation results from global sensitivity analysis, where N(2m+7) is large enough 

(i.e., in our application example it is equal to 1800000), then cumulative distribution 

function (CDF) of T can be estimated and it actually has all information we need for 

uncertainty analysis (Helton and Davis, 2003). Specifically, for any predetermined 

value denoted by x, the cumulative distribution function can be estimated in such a 

way that 
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Suppose that the confidence level is  , then the lower bound and upper bound of the 

optimal release time T can be obtained easily according to    

 

 
2


 LTTP  and  

2


 UTTP                                       (5.22) 

 

It means that the true value of the optimal release time will be included in the interval 

estimate [TL TU] with probability (1- ). Compared with the point estimate of the 

optimal release time, the interval estimation is generally more robust and informative 

(Zhao and Xie, 1993). The length of the interval estimate calculated by TU-TL can 

measure the precision of the estimation of the optimal release time. Specifically, a 

narrow confidence interval indicates the high accuracy. In practice, under a prescribed 

length L, the testing process can be controlled by the confidence interval. If TU-TL is 

less than or equal to L, the precision is supposed to be acceptable; otherwise, further 

testing is required to improve the precision (Zhao and Xie, 1993). However, it is 

possible that the predetermined threshold cannot be satisfied due to the time constraint 

or the available cost budget.  
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For illustration, based on the same data set, the 90% confidence interval is calculated 

and it is given by [38.62 102.84]. It can be seen that the length of the interval is 64.22. 

Therefore, if L<64.22, the testing process is required to be continued if the time 

constraint and the cost budget are not exceeded. It is worth noting that 90% 

confidence interval is used here. However, the selection of the confidence level could 

be quite different from company to company, and from project to project. Since 

different confidence intervals are just simple calculations, the results of them are 

omitted here.  

 

 

5.7 Conclusion 

 

In this chapter, different approaches to sensitivity analysis are adopted and properties 

of them are discussed. Especially, the assumptions are highlighted which can help 

practitioners better understand the limitations that need attention in the real 

application. Results from traditional methods like the one-factor-at-a-time approach 

and DOE may not be accurate enough. Thus, global sensitivity analysis is 

recommended for use due to the consideration of the global parameter space. 

Furthermore, global sensitivity analysis possesses another advantage that other 

methods do not have. Results from it not only help to determine the sensitive 

parameters, but also provide further information for management to decide when to 

release software under parameter uncertainty. With the use of the interval estimation 

for the optimal release time, the precision of the estimation can be measured and 

controlled. 
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Chapter 6 A Risk-Based Approach for Software Release 

Time Determination with Delay Costs Considerations 

 

 

For software release time determination problem, meeting the reliability requirement 

is of great importance. This is because customers generally have a minimum 

reliability requirement, and it can be specified in the contract. In order to check 

whether the reliability requirement is satisfied, software reliability model is generally 

adopted to predict the reliability of software. Most existing research on release time 

determination assumes that parameters in the software reliability model are known 

and the reliability estimate is accurate (Okumoto and Goel, 1980; Yamada and Osaki, 

1985; Xie and Yang, 2003; Boland and Chuiv, 2007; Huang and Lyu, 2005a; Ho et 

al., 2008; Liu and Chang, 2007; Yang et al., 2008). In practice, however, there exists 

the risk that the reliability requirement cannot be guaranteed due to parameter 

uncertainty, and such risk can be as high as 50% when the mean value is used, as 

shown in this chapter. It is necessary for management to reduce this risk to a lower 

level, and software is expected to be tested longer. The challenging point is that this 

will inevitably increase costs of the testing process. In order to balance between 

reducing the risk and controlling the penalty cost associated with it, in this chapter, we 

develop a new decision model for software release time determination, and apply 

multi-attribute utility theory (MAUT) to optimize risk and cost simultaneously. 

 

The rest of this chapter is organized as follows. Section 6.1 introduces the general 

approach of quantifying the uncertainty of model parameters. In Section 6.2, 
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limitations of existing research on software release time determination are further 

discussed, which motivate us to incorporate the risk that software cannot meet the 

reliability requirement into consideration. In addition, attributes including risk and 

penalty cost are formulated. In Section 6.3, the decision model based on MAUT is 

developed, and the procedure on how to construct it is discussed in detail. In Section 

6.4, an application example is provided for illustrative purpose. In Section 6.5, a 

simplification of the decision model is introduced with some non-restrictive 

assumptions. With the simplified decision model, analytical tractability is possessed 

and the complexity of the decision process is greatly reduced. In Section 6.6, threats 

to validity are discussed. Finally, concluding remarks are made in Section 6.7 

 

 

6.1 Quantifying Parameter Uncertainty 

 

Model parameters have to be estimated based on the recorded failure data. A common 

method is to adopt the maximum likelihood estimation (MLE) technique (Zhao and 

Xie, 1996; Wu et al., 2007). Using the MLE approach allows parameter uncertainty to 

be quantified in terms of variability.  

 

Suppose that there are totally m model parameters to be estimated denoted by 

m ,,, 21  . Let in  denote the number of failures observed in the time interval 

),[ 1 ii tt  , where tttt k  100  and t is the time at which the testing process 

has experienced. The likelihood function for a non-homogeneous Poisson process 

(NHPP) model with mean value function )(tm  is 
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It is worth noting here that the mean value function )(tm  contains the m model 

parameters m ,,, 21  . Point estimates of the model parameters can be determined 

by maximizing the likelihood function above. To quantify the parameter uncertainty, 

the variances of the estimators of the parameters can be calculated following the 

asymptotic theory for MLE (Nelson, 1982). Specifically, the Fisher information 

matrix can be calculated as  
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According to the standard theory of MLE, when the data size is large,  m ,, 21   

converges to m-variate normal distribution with mean ]ˆ,ˆ,ˆ[ 21 m   and variance 

)]ˆ(,),ˆ(),ˆ([ 21 mVarVarVar   . The asymptotic covariance matrix which is the 

inverse of the Fisher information matrix is given by 
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The two sided approximate %100  confidence interval for model parameter is  

 

    
ˆˆ    and    ˆˆ

2/2/ VarZVarZ LU                       (6.4) 

 

where  2/Z  is the (1- 2/ ) quantile of the standard normal distribution. 

 

Moreover, based on the covariance matrix, the uncertainty of other quantities which 

are functions of parameters  m ,, 21   can also be quantified. For example, let 

),,( 21 mff    represent the quantity of interest and )ˆ,ˆ,ˆ(ˆ
21 mff   be the 

estimate. The variance for the f̂  is estimated as  
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where if  /  is evaluated at ]ˆ,ˆ,ˆ[ 21 m  . The two sided approximate %100  

confidence interval for f  is 

 

   fVarZfffVarZff LU
ˆˆ    and    ˆˆ

2/2/                       (6.6) 
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A confidence interval for the parameter is a measure of the parameter uncertainty. In 

the following sections, attention will be focused on issues related to the software 

release time problem, which is an important decision that has to be made by managers 

in software development companies. In fact, the optimal software release time given 

the reliability requirement can be treated as a function of model parameters, and the 

uncertainty of it can be quantified based on the discussions above. 

 

 
6.2 Model Formulation 

 

Considering the software reliability requirement aspect for software release time 

determination, with the software reliability model and a specified minimum reliability 

level R0, the decision problem is typically formulated as 

 

0)|( RtxR  ,                                                    (6.7) 

 

where )|( txR  is the conditional software reliability, which is defined as the 

probability that the software will not fail within a specified time interval ],( xtt  . 

The optimal release time T is then the minimum testing time required to satisfy this 

reliability target R0. In most software reliability models, there are a set of parameters 

m ,,, 21  . Then the optimal release time T  can then be represented by 

 mfT  ,...,, 21 , where f denotes the mapping function. In solving for the optimal 

release time, most existing research assumes that these model parameters are known 

with certainty, and )|( txR  can model exactly the actual software reliability 

(Okumoto and Goel, 1980; Yamada and Osaki, 1985; Xie and Yang, 2003; Boland 



105 

 

and Chuiv, 2007; Huang and Lyu, 2005a; Ho et al., 2008; Liu and Chang, 2007; Yang 

et al., 2008). 

 

6.2.1 Risk Considerations 

  

In reality, however, exact values for these model parameters are unknown. These 

parameters are estimated based on the observed test data.  Parameter uncertainty 

arises since the estimated parameters are subject to the random variations in the data 

(Dai et al., 2007). With parameters estimated from observed data, the software 

reliability computed from these models is no longer exact. Therefore, the optimal 

release time T given a reliability target is no longer a fixed value but a random 

variable. When the model parameters are estimated by the MLE method, based on the 

standard statistical analysis (Nelson, 1982), the optimal release time T given a 

reliability target is asymptotically normally distributed with mean T̂  and variance 

 TVar ˆ  as discussed in the previous section. Here, T̂  is the release time given the 

reliability target R0 obtained from solving (6.7) with the estimated parameters, and 

 TVar ˆ  is the variance of T̂ . Detailed discussions on these results are shown in the 

previous section, and Figure 6.1 illustrates the uncertainty in the optimal release time 

T with 30ˆ T  and   25ˆ TVar .  
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Figure 6.1 An illustrative example of the distribution of the optimal release time T 

given a reliability requirement 

 

Based on this additional uncertainty in the optimal decision T, the risk that software 

cannot meet the reliability requirement when it is released at time t can be quantified 

as 

  

      



 )ˆ(

ˆ

00 1| TVar

Tt

dxxtrRtxRP  ,                                (6.8) 

 

where   2

2

2

1
x

ex





  is the probability density function of standard normal 

distribution. In Figure 6.1,  tr0  is the area of the shaded region. It can be seen that 

when the mean value of release time T̂  is used, there is 50% chance that the 

reliability requirement cannot be guaranteed. Since the reliability requirement is the 

software vendor‟s commitment and it is generally specified in the contract, such risk 
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can be too high to be acceptable. As a result, reducing the risk to a lower level to 

improve the confidence of the software quality becomes to an important issue. With 

the consideration of this, the risk-based release time TR is recommended and it is 

given by  

 

 TVarZTT rR
ˆˆ

0
 ,                                                  (6.9) 

 

where r0 denotes the acceptable risk level from management and 
0r

Z  is the (1-r0) 

quantile of the standard normal distribution. As seen from (6.9), the use of risk-based 

release time requires a delay of release, increasing the testing time by  TVarZr
ˆ

0
. 

This increased testing (and hence delay) increases the costs of the testing process. 

This is a useful approach if the developers and management are certain of the risk 

level required and are committed to achieve it at all costs.  More often than not, it is 

easier to elicit a maximum tolerable risk value (although preference may be to drive it 

to zero), and software projects have to work within a budget. 

 

6.2.2 Cost Considerations 

 

From the management‟s perspective, it is also important to control the penalty cost 

due to the use of risk-based release time. Based on the generalized software cost 

model proposed by Pham and Zhang (1999), such penalty cost is the additional 

general testing cost (e.g., the salaries to be paid for testing team members) and the 

additional expected fault removal cost during the testing process. Specifically, the 



108 

 

expected general testing cost  tC1  and the expected cost to remove errors during 

testing phase  tC2  are given by 

 

  tctC 11  ,     ytmctC 22  ,                                          (6.10) 

 

where c1 is the software test cost per unit time,   is the discount rate of the testing 

cost due to the learning effect, c2 is the cost of removing an error per unit time during 

the testing phase and y is the expected time of removing an error during this period. 

It is worth noting that risk is expected to be less than 50% from management‟s point 

of view. Therefore, we have ),ˆ[  Tt . Accordingly, the penalty cost at the time t is 

obtained as  

 

           yp TmtmcTtctC 
 ˆˆ

21 





  .                              (6.11) 

 

In summary, the discussions above indicate that reducing the risk and controlling the 

penalty cost are two important criteria that should be considered simultaneously when 

determining the software release time. In this decision process, these two objectives 

contradict each other because the use of risk-based release time can inevitably 

increase the testing costs. In this case, it is necessary to incorporate management‟s 

preference into the decision process to make a compromise between these two 

criteria. To the best of our knowledge, these issues have not been highlighted and 

studied in the literature. In order to resolve these difficulties, multi-attribute utility 

theory (MAUT) is adopted, and a decision model is developed based on it for the 

determination of optimal risk-based release time. The proposed decision model can 
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help management have a broader view of the software release time determination 

problem. 

 

 

6.3 The Decision Model Based on MAUT  

 

In MAUT, some independence assumptions, such as preferential independence, utility 

independence and additive independence, are used for a more practical form of the 

multi-utility function. It is worth noting that these assumptions are commonly 

accepted in practice. Moreover, it has been shown that even when these assumptions 

are violated, the additive multi-attribute function can provide fairly good 

approximations (Edwards, 1977; Farmer, 1987). For more detailed discussions on the 

multi-attribute function when independence assumptions are not held, interested 

readers can refer to (Keeney and Raiffa, 1976). In this thesis, we will adopt these 

commonly used assumptions. 

 

The application of MAUT is based on a one-dimensional multi-attribute utility 

function, which is the measure of the attractiveness of the conjoint outcome of 

attributes given a specified alternative. The additive form of the multi-attribute utility 

function is given by 

 

   



n

i

iin duwdddU
1

21 ,..., ,                                        (6.12) 
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where each attribute is denoted by di, i=1,2,…n, the attractiveness of each attribute is 

represented by the single utility function u(di) and wi‟s are the scaling constants 

allocated for different single utility functions. The scaling constants represent the 

different importance weights for the utilities of attributes, and the sum of them is 

equal to 1 (von Winterfeldt and Edwards, 1986). By maximizing the multi-attribute 

utility function, the best alternative is obtained, under which the attractiveness of the 

conjoint outcome of attributes is optimized. 

 

The main reason for the selection of MAUT in our problem is that typical 

management‟s scenarios can be appropriately represented within the structure of it. In 

our problem, there are two conflicting criteria to be balanced for the determination of 

optimal risk-based release time: minimizing the risk and minimizing the penalty cost. 

Hence, risk and penalty cost are two attributes and release time is the alternative in the 

framework of MAUT. Given that risk reduction and penalty cost control are both 

subjective, the single utility function is used to reveal management‟s own preference 

towards each attribute, i.e., risk and penalty cost. By allocating different importance 

weights for these two attributes, management can use the multi-attribute utility 

function to measure the attractiveness of the conjoint outcome of the risk and the 

penalty cost given a specified release time.  

 

Another reason for the selection of MAUT is that it has strong theoretical foundations 

due to the use of the expected utility theory. The utility theory not only allows us to 

quantify management‟s preference towards each attribute with flexibility, but also 

takes management‟s risk structure into account, such as risk neutrality, risk aversion 

and risk proneness. Furthermore, MAUT provides a feasible approach for considering 
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the continuous scale of the alternatives. Specifically, in our problem, the release time 

as the alternative should be considered in a continuous scale. Last but not least, when 

management has other requirements, i.e., the minimization of the total cost in the 

software development cycle (Sgarbossa and Pham, 2010), the control of the 

uncertainty in the total cost function (Yang et al., 2008), the optimized resource 

allocation (Ngo-The A and Ruhe, 2009), our decision model can be extended by 

introducing more attributes in the framework of MAUT. The proposed MAUT 

procedure for our decision problem is discussed in detail below. 

 

6.3.1 Quantification of Attributes  

 

The decision-maker should be identified before the application of our proposed 

MAUT procedure, and management here refers to the decision-maker(s) in our release 

time determination problem. In real applications, this decision maker is generally the 

quality manager of software products. When determining the release time, reducing 

the risk and controlling the penalty cost associated with it are both important for 

management. 

 

On one hand, management is concerned about the risk that software cannot meet its 

reliability target due to parameter uncertainty. As shown in Figure 6.1, when the mean 

value of release time is used, there is 50% risk that software cannot meet the 

reliability requirement. Since the reliability requirement is generally set by customers, 

and it is usually specified in the sales/service contract, such risk can be too large to be 

acceptable. As a result, the risk, which is quantified in (6.8), should be minimized. 
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However, reducing this risk inevitably causes a delay of the release, and such delay 

can increase the cost during the testing phase. Provided that there is always limited 

budget for the testing process, controlling this delay penalty cost is also of great 

importance. Therefore, on the other hand, the penalty cost, which is quantified in 

(6.11), is also to be minimized from the management‟s point of view. It is worth 

noting here that the cost components  tC1  and  tC2  are considered for illustrative 

purpose. In practical applications, other cost components incurred can be added in a 

straightforward manner. 

 

6.3.2 Elicitation of Single Utility Function for Each Attribute 

 

After the quantification of each attribute, management‟s preference towards the 

performance of each attribute should be assessed. To represent this, the single utility 

function for each attribute is used. Suppose that the utility function for risk is to be 

determined, the worst and best values of risk are first selected as 0
0r  and 1

0r . In real 

applications, they represent the lowest risk requirement and the highest risk reduction 

expectation from management. For example, suppose that management can only 

accept a risk level below 5%, and the smaller the risk the better, until this risk can be 

eliminated. Hence, the lowest risk requirement is %50
0 r  and the highest risk 

reduction expectation is 01
0 r . At these boundary points,   00

0 ru and   11
0 ru . The 

superscript of ir0  is used to represent the corresponding utility value under the 

parameter and  1 ,0i .  
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Subsequently, management is presented with some simple hypothetical gambles to 

determine the certainty equivalents for a few 50-50 lotteries (Keeney and Raiffa, 

1976, von Winterfeldt and Edwards, 1986). For example, management is asked to 

chose a value for 5.0
0r , so that it is indifferent between accepting 5.0

0r  with certainty 

and having a 50-50 lottery, where there are 0.5 probabilities of getting 0
0r  and 1

0r  

respectively. Similarly,  75.0
0r  can be determined with a 50-50 lottery which consists 

of  5.0
0r  and 1

0r . Also, 25.0
0r can be obtained with a 50-50 lottery which includes 0

0r  

and 5.0
0r . These five points are commonly used to elicit the single utility function for 

each attribute, which is generally represented by the linear or exponential function as 

follows (Keeney and Raiffa, 1976): 

 

  00 rru    or    00 exp rru    ,                            (6.13) 

 

where  ,   and   are constants which ensure    1 ,00 ru . It should be noted that 

we also need to compare the certainty equivalents and the expected values of the 50-

50 lotteries to determine which form in (6.13) should be selected. Specifically, if they 

are equal to each other, management is risk neutral and the linear form should be 

used. Otherwise, management is not risk neutral and the exponential form is generally 

adopted. 

 

Similarly, the single utility function for penalty cost can be obtained following the 

procedure discussed above. First of all, 0
pC  and 1

pC  should be determined. For 

management, these values are of great importance because they represent their 
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maximum penalty cost budget and the highest penalty cost control expectation. Then 

some points on the utility curve are assessed to obtain the single utility function for 

penalty cost. 

 

6.3.3 Estimation of Scaling Constants 

 

The following step is the estimation of the scaling constants w1 and w2, which 

represent the different importance weights allocated for risk and penalty cost 

respectively (von Winterfeldt and Edwards, 1986). There are two common methods to 

assess the scaling constants: certainty scaling and probabilistic scaling (von 

Winterfeldt and Edwards, 1986). Given that only two attributes are considered in our 

problem, and this is a small number, the probabilistic scaling technique is 

recommended.  

 

When using the probabilistic scaling approach, management is asked to compare its 

preference between the two choices as shown in Figure 6.2. On the left hand side, 

there is a certain joint outcome  01
0 , pCr  comprising of risk at its best level and 

penalty cost at its worst level. On the right hand side, the lottery comprising of both 

attributes at their best levels with probability p and both attributes at their worst levels 

with probability 1-p.  
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0 , pCr

 01
0 , pCr

The certain joint outcome The lottery

 

Figure 6.2 Two choices for the determination of the scaling constant w1 

 

Management is first asked to compare the certain outcome with the lottery having a 

50-50 chance of occurring. If management prefers the certain outcome, the probability 

p is gradually increased until management is indifferent with these two choices. On 

the other hand, if management prefers the lottery, we decrease the probability p. At 

indifference, p is equal to the scaling constant w1 for the risk attribute (von 

Winterfeldt and Edwards, 1986). Since the sum of the scaling constants must equal to 

one, w2 can be obtained with ease. 

 

6.3.4 Maximization of Multi-Attribute Utility Function 

 

As discussed, the attractiveness of each attribute is measured by the single utility 

function based on management‟s own preference. After that, given different 

importance weights allocated for attributes, a one-dimensional multi-attribute utility 

function is constructed to reveal the attractiveness of the conjoint outcome of 

attributes given a specified alternative. The additive form of the multi-attribute utility 

function in our problem can be written as  

 

     pp CuwruwtCtrU 2010 )(),(                                      (6.14) 
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where w1 and w2 are the scaling constants for attribute risk and penalty cost 

respectively and u(r0) and u(Cp) are the single utility function for each attribute. By 

maximizing the multi-attribute utility function, the optimal risk-based release time is 

obtained as   )(),(maxarg 0
* tCtrUT p

t
R  . 

 

It is worth noting here that the additive form of the multi-attribute utility function 

above is based on some independence assumptions and interested readers can refer to 

Keeney and Raiffa (1976) for more detailed theoretical discussions. In real 

applications, these assumptions are commonly accepted (Brito and Almeida, 2009; 

Ferreira et al., 2009). Moreover, it has been shown that even when these assumptions 

are violated, the additive multi-attribute utility function can provide fairly good 

approximations (Edwards, 1977; Farmer, 1987). 

   

6.3.5 Summary of the Procedure 

 

The procedure of our proposed MAUT approach in the decision problem is 

summarized in Figure 6.3. The first step of the implementation of the decision model 

is to quantify the attributes, i.e., the risk and the penalty cost. For the risk attribute, 

based on the standard statistical results, risk can be quantified by (6.8). For the 

attribute penalty cost, the generalized cost model is used and it is quantified by (6.11). 

The following step is the elicitation of single utility functions for both attributes. After 

this, the scaling constants for each attribute are estimated by comparing the two 

choices as shown in Figure 6.2. Finally, based on the single utility functions and the 

scaling constants, the multi-attribute utility function is obtained as shown in (6.14). 
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The optimal risk-based release time, which is the best option of release time in terms 

of risk and penalty cost, is determined by maximizing it.  

 

 Quantification of risk r0 and penalty cost Cp

Elicitation of single utility functions u(r0) and u(Cp)

Estimation of scaling constants w1 and w2

Maximization of multi-attribute utility function U(r0(t),Cp(t))
 

Figure 6.3 The structure of the decision model for the determination of optimal risk-

based release time 

 

 

6.4 An Illustrative Example 

 

In this section, a decision model application example is provided for illustrative 

purpose. By considering the risk and the penalty cost simultaneously, optimal risk-

based release time is determined by incorporating management‟s own preference into 

the decision process. In addition, sensitivity analysis is introduced to help 

management check the robustness of the final decision.  

 

6.4.1 The Data Set 

 

In this example, the data set used in Pham and Zhang (1999) is adopted. The reason 

for this selection is that both failure data and cost parameters are provided in it. In 
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particular, based on the failure data, the quantification of risk can be done; for the cost 

parameters, they can be used to obtain the general penalty cost function and we have 

c1=700, 95.0 , c2=60 and 1.0y .  

 

It should be noted here that the estimates of these cost parameters are usually 

determined based on previous experiences or expert opinions. Therefore, physical 

meanings of these parameters are of great importance and they are illustrated here 

again as follows:  c1 is the software test cost per unit time,   is the discount rate of 

the testing cost due to the learning effect, c2 is the cost of removing an error per unit 

time during the testing phase and y is the expected time of removing an error during 

this period. Different software projects usually generate different estimates of these 

parameters. However, the physical meanings of these parameters can ensure that they 

are estimated in a consistent way.  

 

6.4.2 The Determination of Optimal Risk-Based Release Time 

 

Following the procedure discussed in Section 6.3, the determination of optimal risk-

based release time is shown in a step-by-step manner. 

 

Step 1: Quantification of risk and penalty cost 

 

The Goel-Okumoto (GO) model (Goel and Okumoto, 1979) is adopted in Pham and 

Zhang (1999) to analyze the failure data for reliability assessment. In this study, we 

adopt this model as well. The mean value function and the failure intensity function of 

the GO model are given by 
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)1()( bteatm   and btabet )(                                   (6.15) 

 

where a denotes the number of expected faults in the software and b represents the 

fault detection rate. Furthermore, the reliability of the software system is obtained as  

 

 xttxR )(exp)|(                                              (6.16) 

 

and )|( txR  represents the conditional software reliability, which is defined as the 

probability that the software will not fail given a specified time interval ],( xtt   in 

the operational phase (Yang and Xie, 2000). We set x equal to 1 without loss of 

generality. Then the release time based on the reliability target R0 is  
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1

0R

ab

b
T                                               (6.17) 

 

Suppose that customer has indicated a reliability requirement of R0=0.95. Based on 

the maximum likelihood estimates as 32.142ˆ a  and 1246.0ˆ b , the mean value of 

the release time is 91.46ˆ T . Moreover, based on the standard statistical analysis as 

shown in Section 6.1, we have 85.154)ˆ( aVar , 41017.2)ˆ( bVar , 

0358.0)ˆ,ˆ( baCov . Hence, the variance of the release time  
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    (6.18) 

 

is obtained as 35.22)ˆ( TVar . Accordingly, the attribute risk can be quantified by 

substituting these estimated parameters into (6.8). 

 

For the quantification of the penalty cost function, it is relatively simple by 

substituting estimated values of cost parameters into (6.11), and our decision space for 

the release time is   ,91.46t . 

 

Step 2: Elicitation of single utility functions 

 

The following step is to assess management‟s preference towards the performance of 

each attribute, i.e., the risk and the penalty cost. Interviews with management are 

needed to elicit reasonable single utility functions.  

 

Suppose that management scenarios are as follows:  

(1) Management has verified that it is risk neutral towards both attributes.  

(2) Management indicate that it can only accept up to a risk level of 5%, and the 

smaller the risk the better, until this risk can be eliminated. 

(3) Management has an additional penalty cost budget of $15000 and it is completely 

unsatisfied when all the money is spent; its satisfaction increases when the money 
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spent decreases, and the highest satisfaction level is achieved when no money is 

spent. 

 

Based on the management scenarios above, corresponding explanations on the 

determination of single utility functions are shown as follows: 

(1) Since management is risk neutral towards both attributes, the linear form of the 

single utility function should be used.  

(2) The lowest risk requirement is %50
0 r  and the highest risk reduction expectation 

is 01
0 r . The single utility function for risk is obtained as   00 201 rru  . 

(3) The maximum penalty cost budget is 150000 pC  and the highest penalty cost 

control expectation is 01 pC . The single utility function for penalty cost is 

determined as   150001 pp CCu  . 

Step 3: Estimation of scaling constants 

 

In this stage, the scaling constant w1 is estimated first by comparing the two choices in 

Figure 6.2. Suppose management claims that it is indifferent between these two 

choices when p is equal to 0.5. Then, w1=0.5. Since the sum of scaling constants is 

equal to one, w2 is equal to 0.5 as well.  

 

Step 4: Maximization of multi-attribute utility function 

 

Based on the estimated single utility functions and scaling constants, the multi-

attribute utility function can be obtained by (6.14). Figure 6.4 shows this multi-

attribute utility function as a function of the release time. This multi-attribute utility 
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function is maximized when 15.60* RT  and the corresponding risk and penalty cost 

at this time are   %28.0*
0 RTr  and   7216* Rp TC  respectively. As a result, software 

should be released at the optimal risk-based release time 15.60* RT  to appropriately 

compromise between reducing the risk and controlling the penalty cost. 
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Figure 6.4 Multi-attribute utility function given different release times 

 

 

6.4.3 Illustration of the Proposed Decision Model 

 

In Figure 6.4, we denote 91.46ˆ T  as the mean value of release time without 

consideration of parameter uncertainty. If we release the software at this time, no 

penalty cost is incurred and the highest penalty cost control expectation 01 pC  is 

satisfied. However, at this release time, the 50% risk is too high to be acceptable for 
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management because the lowest risk requirement %50
0 r  is not satisfied. At this 

point, management has to make a compromise between reducing the risk and 

controlling the penalty cost.  

 

With the consideration of this, the software testing is expected to increase. We denote 

  77.540
0 rT  and   59.740 pCT  as the release times when the lowest risk 

requirement %50
0 r  and the maximum penalty cost budget 150000 pC  are satisfied 

respectively. These time points are of great importance since both attributes will 

contribute to the multi-attribute utility function during this time period. It is found that 

at the optimal risk-based release time 15.60* RT , the multi-attribute function is 

maximized. In other words, when both risk and penalty cost are considered, a 

compromise can be made to optimize them simultaneously, and corresponding risk 

and penalty cost are    %28.0*
0 RTr  and   7216* Rp TC  respectively. 

 

Finally, it should be noted that during the time periods   0
0 ,ˆ rTT  and    ,0

pCT , the 

multi-attribute utility function is dominated by only one attribute. More specifically, 

for the first period, since the lowest risk requirement  %50
0 r  has not been satisfied, 

the penalty cost is the only attribute contributing to the multi-attribute utility function. 

Given that the penalty cost is increasing over time and management‟s satisfaction 

level is decreasing with it, the multi-attribute utility function is decreasing during this 

time period. While for the second time period, the multi-attribute utility function is 

dominated by the risk attribute and it is equal to 0.5u(r0). Figure 6.4 shows that the 

multi-attribute utility function remains at 0.5 level when release time is greater than 
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 0
pCT . This implies that the available penalty cost budget 150000 pC  is sufficient 

for management to reduce the risk to the best level 01
0 r . 

 

6.4.4 Sensitivity Analysis 

 

Optimal risk-based release time can be determined by maximizing the multi-attribute 

utility function. However, since most parameters in the MAUT are obtained based on 

the subjective assessments of management, the optimal risk-based release time 

obtained may not be accurate. In practice, management has to know how robust the 

optimal decision is, and sensitivity analysis is needed. More specifically, sensitivity 

analysis can help to investigate the relative change of the optimal solution when a 

specific parameter changes, i.e., the change of cost parameters, scaling constants, etc. 

The results from sensitivity analysis reveal the stability of the optimal solution. 

 

Sensitivity analysis is generally done by changing one parameter and setting the other 

parameters at their fixed values (Xie and Hong, 1998; Li et al., 2010). When 

parameter x is investigated to see how much the optimal risk-based release time *
RT  

changes, *
RT  is in fact a function of x as other parameters are fixed using their 

estimated values. The sensitivity of the optimal decision to this parameter can be 

quantified by xqS , , defined as the relative change of the optimal risk-based release 

time when x is changed by 100q% (Xie and Hong, 1998; Li et al., 2010). 
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
                                        (6.19) 
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A large value of xqS ,  indicates that parameter x has significant influence on the 

determination of *
RT , and *

RT  is regarded as sensitive to the change of x. Normally, 

management should pay special attention to the significant parameters as the optimal 

decision *
RT  is heavily dependent on the accurate estimates of them (Xie and Hong, 

1998; Li et al., 2010). 

 

From a practical point of view, it may not be necessary to conduct sensitivity analysis 

for all the parameters in this optimal release time problem. For instance, parameters c2 

and y  are expected to be insignificant. The reason is that the expected cost to 

remove errors from time t to T̂  is negligible in (6.11). More specifically, given a high 

reliability requirement such as R0=0.95 in our application example, there will be few 

faults detected from T̂  to t. Additionally, as c1=700, c2=60 and 1.0y ; compared 

with the estimated value of c1, the product of c2 and y  is too small to have any 

impact on the penalty cost function in (6.11). Another example is the determination of 

1
0r and 1

pC , which represent the highest risk reduction expectation and highest penalty 

cost control expectation respectively. Since management always prefer less risk and 

less cost, setting them to zero can properly describe the best cases for risk control and 

penalty cost control respectively. 

 

In contrast, parameters c1 and   are much more important since they dominate the 

change of the penalty cost over time. Similarly, 0
0r  and 0

pC  are of great importance as 

shown in Figure 6.4, where  0
0rT  and  0

pCT  are change points of multi-attribute 
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utility function. Furthermore, scaling constants w1 and w2 are also important since 

they denote the different importance weights allocated for each attribute, which 

directly affect the final solution on *
RT . However, since the sum of these two weights 

is equal to one, investigating one factor is sufficient. Results of sensitivity analysis 

with regard to these parameters are summarized in Table 6.1. Specially, since 

parameter   represents the learning effect of the testing team which is not greater 

than one, the value of ,qS  when 1  is used for the positive change of  . 

 

Table 6.1 Sensitivity analysis results given different parameters 

q -30% -20% -10% 10% 20% 30% 

1,wqS  -0.0186 -0.0120 -0.0058 0.0057 0.0114 0.0171 

0, pCq
S  -0.0105 -0.0065 -0.0030 0.0027 0.0052 0.0074 

0
0,rq

S  0.0100 0.0063 0.0030 -0.0028 -0.0053 -0.0077 

1,cqS  0.0100 0.0063 0.0030 -0.0028 -0.0053 -0.0077 

,qS  0.0404 0.0272 0.0138 -0.0075 

 

 

It can be seen that these parameters do not significantly influence the final solution on 

*
RT  since all the absolute values of sS xq ',  are below 5%. In other words, the optimal 

risk-based release time obtained is robust to changes in the parameters. For example, 

when parameter  decreases by 30 percent, the relative change of *
RT  is only about 4 

percent. Moreover, results in Table 6.1 indicate that *
RT  is positively correlated with 

w1 and 0
pC , and negatively correlated with 0

0r , c1 and  . Physical meanings of these 

parameters can actually explain these results. For instance, when w1 increases, it 

means that more importance is allocated for the control of risk. As a result, *
RT  
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increases as well. Last but not least, it is interesting that parameter 0
0r  and c1 appears 

to have the same effect on *
RT . This result will be explained in the following section, 

where a simplification of the decision model is discussed. 

 

 

6.5 A Simplification of the Decision Model 

 

The decision model proposed can be simplified to provide analytical tractability with 

some additional non-restrictive assumptions. These assumptions are summarized as 

follows: 

 

(1) Management is risk neutral towards each single attribute, i.e., the risk and the 

penalty cost; 

(2) Management set its highest risk reduction expectation as 01
0 r  and its highest 

penalty cost control expectation as 01 pC ;  

(3) The penalty cost is dominated by the general testing cost C1(t) and the learning 

effect of the testing team is negligible such that 1 . 

 

From a practical point of view, these assumptions may not appear too far-fetched or 

restrictive. The first assumption is a widely adopted assumption in practice, especially 

when the single utility function is estimated empirically (Scholz and Tietje, 2002). For 

the second assumption, since management always prefer less risk and less cost, setting 

them to zero can properly describe the best cases for risk control expectation and 

penalty cost control expectation. As for the third assumption, the preceding 
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illustrative example has revealed that the penalty cost is indeed dominated by the 

general testing cost and the optimal risk-based release time is not sensitive to the 

change of the learning effect factor. 

 

Based on these additional assumptions, if    00
0 pCTrT  , the multi-attribute utility 

function when     00
0 , pCTrTt  simplifies to  
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where  TtctCp
ˆ)( 1  . 

 

Theorem: When     00
0 , pCTrTt  and    00

0 pCTrT  , define  TVar
C

c

w

w
rk

p

ˆ
0
1

1

20
0 . 

If   0
0rTk  , the multi-utility function for the simplified model is maximized at 

   2* 2lnˆˆ kTVarTt   ; if   0
0rTk  ,  0

0
* rTt  . 

 

Proof: Substitute (6.15) into (6.14) and take the first and second derivative of multi-

attribute utility function with respect to t, we have 
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and 
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Since the risk-based release time is always greater than the mean value T̂ , 

  22 dttUd is not greater than zero for all t. If   0
0rTk  , there is a feasible 

solution  

 

   2* 2lnˆˆ kTVarTt  ,                                      (6.23) 

 

under which   0dttdU  and the multi-attribute utility function is maximized. 

Otherwise, if   0
0rTk  ,    0dttdU which indicates that the multi-attribute 

utility function is a decreasing function, and it is maximized at  0
0

* rTt  . □ 

 

Subsequently, for   0
0,ˆ rTTt , it has been discussed that during this time, the multi-

attribute utility function is only determined by the single utility function for the 

penalty cost and it is decreasing over time. The maximum value of it is equal to w2 

and it is achieved at T̂ . Similarly, for     1
0

0 , rTCTt p , the maximum value of the 

multi-attribute utility function is w1 under  1
0rT .  

 

Accordingly, under the condition that    00
0 pCTrT  , management can determine 

optimal risk-based release time *
SRT  with the simplified decision model easily. It is 
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known that at release times  1
0rT , T̂  and *t , corresponding values of the multi-

attribute function are w1, w2 and  *tU  respectively. *
SRT  is then selected among these 

three release times, under which the corresponding multi-attribute utility value is the 

largest. Mathematically, by defining   *1
0  ,ˆ , tTrTT 


, we have )(maxarg* tUT

Tt
SR 


 . 

Previous discussions are based on the condition    00
0 pCTrT   and it means that the 

maximum penalty cost budget is sufficient enough to achieve the minimum risk 

requirement. While under the condition that    00
0 pCTrT  , during the time period 

    0
0

0 , rTCTt p , the value of the multi-attribute function is equal to zero because the 

maximum cost budget is exceeded and the lowest risk requirement is not achieved. 

Accordingly, only one attribute can be optimized in this case. Management needs to 

compare values w1 and w2, which represent the importance weights allocated for risk 

and penalty cost respectively. If w1>w2,  1
0

* rTTSR  ; otherwise, TTSR
ˆ*  . 

 

The structure of the simplified decision model is essentially the same as that of the 

general decision model as shown in Figure 6.3. However, some changes are made in 

the first two steps. For the first step, the penalty cost function is simplified based on 

the assumption (3). For the second step, since the assumptions (1) and (2) are adopted, 

the linear form is used to represent the single utility function. Due to these changes, 

the complexity of the decision process is greatly reduced, and the determination of 

optimal risk-based release time with the simplified decision model is shown in Figure 

6.5. 
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Figure 6.5 Determination of the optimal risk-based release time under the simplified 

decision model 

 

Illustrating with the example in Section 6.4, we see that the first condition 

   00
0 pCTrT   is just satisfied. Moving to the next step, since k=0.0112 and 

   1031.00
0 rT , the condition   0

0rTk   is satisfied. Therefore 

    70.592lnˆˆ 2*  kTVarTt   which gives   6643.0* tU . As a result of 

  5.021
*  wwtU , the optimal risk-based release time based on the simplified 

decision model is 70.59**  tTSR . Compared with 15.60* RT  obtained in Section 

5.4.2, there is only -0.75% relative difference. This implies that the simplified 

decision model (under the additional assumptions) can provide a fairly good 

approximation.  
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Based on this approximation, the sensitivity analysis results given parameter 0
0r  and 

c1 can be explained as well. Since    2** 2lnˆˆ kTVarTtTSR   and 

 TVar
C

c

w

w
rk

p

ˆ
0
1

1

20
0 , we have )()( 11

*0
0

0
0

* qccTqrrT SRSR  and 
1

0
0

,, cqrq
SS  . 

Accordingly, parameters 0
0r  and c1 appear to have the same effect on the final 

solution of *
RT  as shown in Table 6.1. 

 

 

6.6 Threats to Validity  

 

Based on the standard statistical analysis (Nelson, 1982), there is 50% chance that the 

software will not meet its reliability requirement when the mean value T̂  is used. 

However, it should be noted that the standard statistical analysis is for approximation. 

It is still an open question whether the risk is really as high as 50%. To investigate this 

problem, an empirical case study is conducted by the Monte Carlo simulation using 

MATLAB software.  

 

In particular, the GO model is adopted, where the preset parameters are given by 

100a and 1.0b . Therefore, suppose that the reliability requirement is 95.00 R , 

the real value of optimal release time is 73.52realT . According to the general 

procedures discussed in Lyu (1996), 10000 failure data sets are generated, and each 

failure data set is composed of ninety time to failures data. Since each failure data set 

can produce an estimate of the optimal release time denoted by T̂ , risk that software 

cannot meet the reliability requirement can be easily estimated by comparing these T̂  
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values with realT , and such risk is estimated as %21.600̂ r . Although this result is 

different from the estimated risk based on the standard statistical analysis, it severs as 

another piece of evidence that the risk due to parameter uncertainty cannot be 

neglected. 

 

In addition, previous discussions are based on the closed form of the mean value 

function given by (6.17). It is possible that there is no closed form of the mean value 

function if a different model instead of GO model is used for the analysis, e.g., the S-

shaped model (Yamada et al., 1983). When there is no closed form of optimal release 

time, the variance of it cannot be computed analytically as in (6.5) and (6.18). In this 

case, the Monte Carlo simulation approach could be a good alternative as it has been 

widely and successfully used in the uncertainty analysis of many complex systems 

(Helton and Davis, 2003). In general, such analysis can be regarded as the study of 

functions of the form 

 

 xy f                                                            (6.24) 

 

where ],...,[ 21 mxxxx  is a vector of analysis inputs and ,...],[ 21 yyy  is a vector of 

outputs. To evaluate the uncertainty of the elements of y, uncertainty of x is supposed 

to be known in advance and it is generally characterized by a sequence of probability 

distributions denoted by mDDD ,...,, 21  for each element in x respectively. According 

to the distributions of x and other associated restrictions, samples of inputs are 

generated and the corresponding values of outputs are received. Then, cumulative 

distribution functions (CDFs) for y can be estimated and uncertainty in y is analyzed 

based on these CDFs.  



134 

 

 

For our problem, only optimal release time is the output of interest and it can be 

written as  

 

)(θfT                                                             (6.25) 

 

where  ],,,[ 21 m θ  is the vector of input parameters. Based on the discussion 

of Section 6.1, input parameters can be regarded as normally distributed random 

variables and their mean values and variances can also be estimated. Further, with the 

use of asymptotic covariance matrix given by (6.3), correlated Gaussian random 

numbers can be generated following the standard procedures discussed in Johnson 

(1987). Let N denote the base sample size and therefore there will be N values of the 

optimal release time given by 

 

NifT miiii ,...,2,1),,,( 21                                            (6.26) 

 

Hence, the risk can be determined according to the definition given by (6.8) and the 

estimated CDF of T. More specifically, the CDF of T given a determined value of t  

can be estimated as      
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Another possible limitation for the quantification of risk is that the normal distribution 

is used to quantify the parameter uncertainty. Although this kind of approximation 

technique is widely adopted in reliability engineering, it may not be accurate. In this 

case, incorporating experts‟ opinion and past experience could be a choice. For 

example, experts could probably know the distributions of some model parameters 

based on their past experience on similar software projects. Based on this kind of 

information, parameter uncertainty can be quantified effectively by combining the 

Maximum-Entropy Principle (MEP) into the Bayesian approach as discussed in Dai et 

al. (2007).  

   

Besides the consideration of risk, the penalty cost associated with it is incorporated 

into our decision problem. This is because the risk cannot be overlooked due to the 

limited cost budget of the project (Nan and Harter, 2009). Management needs to strike 

a balance between reducing the risk and controlling the penalty cost associated with 

the risk. In other words, given a reliability requirement, we introduce two new 

important dimensions for the determination of optimal release time: the risk that 

software cannot meet the reliability requirement due to parameter uncertainty and the 

penalty cost associated with such risk. However, it should be noted that the 

formulation here may not be enough for release time determination. In reality, 

management can also have other requirements, which may include the minimization 

of the total cost in the software development cycle (Sgarbossa and Pham, 2010), the 

control of the uncertainty in the total cost function (Yang et al., 2008), and the 

optimized resource allocation (Ngo-The and Ruhe, 2009), etc. When these 

requirements are considered, our decision model should be extended by introducing 

more attributes in the framework of MAUT. 



136 

 

Last but not least, although the proposed decision model can better describe the 

management‟s perspective, it requires the model user to have the knowledge on how 

to apply MAUT in the decision problem properly. For large and experienced 

companies, this can be done in some training programs. While for the other 

companies, which may only require some empirical results, they can probably choose 

the simplified decision model.   

 

 

6.7 Conclusion 

 

The software release problem is of great importance in the software development 

cycle. In this chapter, when to release software given a reliability constraint is 

discussed in detail. In particular, we highlight the risk in the reliability estimate due to 

parameter uncertainty. However, reducing such risk inevitably increases the testing 

costs. Thus, from management‟s point of view, a compromise should be made 

between reducing the risk and controlling the delay penalty cost associated with it. 

Due to this consideration, a decision model based on MAUT is developed for the 

determination of optimal risk-based release time. The proposed model provides 

management with a boarder view of the release time determination problem. It not 

only allows management to optimize two conflicting criteria simultaneously, but also 

incorporates management‟s own preference into the decision process.  

 

The decision model proposed in this chapter is also general in terms of applicability 

since different software reliability models and cost models can be used in the testing 

process. Furthermore, the proposed decision model can be simplified under some non-
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restrictive assumptions. The simplified decision model not only provides analytical 

tractability, but also greatly reduces the complexity of the decision process. Since the 

MAUT approach is sometimes criticized for its complex decision process, the 

simplified decision model can probably provide a good alternative, especially when 

some empirical results are needed. 
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Chapter 7 Multi-Objective Optimization Approaches to 

Software Release Time Determination 

 

 

7.1 Basic Problem Description 

 

For optimal release time determination problem, it is generally formulated in one of 

the following ways: cost minimization, cost minimization given a reliability target, 

and reliability maximization under a cost budget. Obviously, all of these three 

optimization models formulate the optimal release time problem as a single-objective 

optimization problem. Although these formulations are simple to use, they cannot 

describe management‟s preference accurately. In reality, it seems to be more 

reasonable to describe the management‟s attitude like this: maximizing reliability and 

minimizing cost are expected to be achieved simultaneously. Therefore, in this 

chapter, the decision problem is formulated as a multi-objective optimization 

problem, and different multi-objective optimization approaches are investigated. 

 

The remainder of this chapter is organized as follows. In Section 7.2, multi-objective 

optimization model is formulated for software release time determination problem. In 

Section 7.3, different multi-objective optimization approaches, including the trade-off 

analysis, multi-attribute utility theory (MAUT), and physical programming approach, 

are introduced. In Section 7.4, two numerical examples are provided for illustrative 

purpose. In Section 7.5, applicability and limitations of these multi-objective 
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optimization approaches are studied. Finally, concluding remarks are given in Section 

7.6. 

 

 

7.2 Model Formulation for Release Time Determination 

 

In traditional formulations, it is difficult to make a priori selection of constraint 

values, i.e., the reliability target 0R  and the cost budget 0C . These constraint values 

will be modified frequently to obtain a satisfied solution of optimal release time, 

which is time-consuming and error-prone. Furthermore, optimal release time solutions 

under traditional formulations can be highly sensitive to the constraint values. We 

take the cost minimization given a reliability target 0R  as an example for illustration.  

In Figure 7.1, we denote *
0t  as the time at which the expected testing cost  )(tCE  is 

minimized, and its corresponding reliability value is *
0R . It can be easily seen from 

the figure that once the constraint value 0R  is greater than *
0R , the optimal release 

time is completely determined by the constraint condition, and it is equal to 0t .  
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Figure 7.1 Relationship between  )(tCE  and  txR  

 

It has been shown that the single-objective optimization models have many 

disadvantages when they are used to solve the optimal software release time problem. 

In reality, reliability and cost should be optimized simultaneously. Therefore, we 

formulate the release time determination problem as follows: 

 

Formulation 1 
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In this formulation, t is the release time of software, and  txR   represents the 

conditional software reliability which is defined as the probability that the software 

will not fail given a specified time interval ],( xtt  .  )(tCE  is the expected cost at 

time t. 

 

In the optimal software release problem, the evaluation of software reliability and 

expected cost is of great importance. Software reliability is generally measured based 

on a specific software reliability model (Musa et al., 1987; Xie, 1991; Pham, 2000). 

This model is selected based on the recorded failure data and experts‟ prior 

knowledge. Among software reliability models, non-homogeneous Poisson process 

(NHPP) models form a major part of it. Suppose that the mean value function of the 

NHPP is denoted by  tm , the testing reliability of software is measured by   

 

    )(tmxtmetxR  .                                                  (7.1) 

 

The testing reliability concept is under the scenario that software will be still in the 

testing phase in the time interval ],( xtt  . However, from customers‟ point of view, 

software will not be tested after its release. The operational reliability of software is a 

more meaningful and appropriate reliability measurement in the context of release 

time determination (Yang and Xie, 2000). Therefore, in this study, we adopt the 

operational reliability concept for software reliability measurement, and the reliability 

of software is measured by 

 

   xtetxR )( .                                                      (7.2) 
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Besides the measurement of reliability, the expected cost is another major concern in 

the software development. In the literature, different kinds of cost models are 

developed. Among these cost models, the cost model proposed by Pham and Zhang 

(1999) is a general one, and most cost models are obtained based on the simplification 

of it (Yang et al., 2008; Sgarbossa and Pham, 2010). In particular, the general cost 

model is given by 

 

         txRctmttmctmctcctCE wwy  1)]([ 43210  ,          (7.3) 

 

where c0 is the set-up cost for software testing, c1 is the cost of testing per unit testing 

time,  is the discount rate of testing cost over time ( 10   ), c2 and c3 are the cost 

of removing a fault per unit time in the testing phase and warranty phase respectively, 

y  and w  are expected time to remove a fault during the testing phase and warranty 

phase respectively, wt  is the warranty period, and c4 is the cost due to software 

failure. Since removing a fault in the warranty phase is more expensive than that in 

the testing phase, c3 is always greater than c2. In addition, the parameter   tries to 

capture the learning effect of the testing team. 

 

It should be noted that management may also have other objectives to be optimized in 

the release time determination problem. For example, Xie et al. (2010) introduced the 

risk that software cannot meet its reliability requirement due to parameter uncertainty, 

and this risk is another important dimension that should be incorporated in the release 

time determination. Based on their study, when the mean value of release time T̂  is 

used, there is as high as 50% risk that software reliability target cannot be met. Since 

such risk could be too high to be acceptable for management, it is expected to be 
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reduced. Therefore, in this chapter, we will also study the multi-objective 

optimization problem when such risk is incorporated. Mathematically, this problem is 

formulated as 

 

Formulation 2 
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where  tr  represents the risk that software cannot meet its reliability target R0 when 

software is released, and it is  quantified as 

 

    



 )ˆ(

ˆ

1 TVar

Tt

dxxtr  .                                               (7.4)         

 

In equation (7.4), T̂  is the estimated release time given the reliability target R0, 

 TVar ˆ  is the variance of T̂ , and  x  is the probability density function of standard 

normal distribution. More detailed discussions on the calculation of the risk have been 

shown in Chapter 6. 

 

In summary, in order to optimize various objectives simultaneously, release time 

determination is formulated as multi-objective optimization problems. To solve these 

two multi-objective optimization problems as shown in Formulation 1 and 
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Formulation 2, different multi-objective optimization approaches are adopted, which 

will be shown in the following section. 

 

 

7.3 Multi-Objective Optimization Approaches 

 

As discussed, for release time determination, it is an essentially multi-objective 

optimization problem. In this section, three widely used multi-objective optimization 

approaches are introduced for our multi-objective optimization problems, i.e., the 

trade-off analysis, MAUT, and physical programming method. 

 

7.3.1 The Trade-Off Analysis 

 

The objective of trade-off analysis is to identify the non-dominated solutions to the 

multi-objective optimization problem. These solutions are also called Pareto optimal 

solutions. Specifically, each Pareto solution is not inferior to any other solution on all 

objectives. One major merit for the use of trade-off analysis is that management can 

make the decision within the set of non-dominated solutions instead of considering 

the full range of feasible solutions. By comparing different options in the set of non-

dominated solutions, a rational compromise among various objectives can be made. 

In our multi-objective optimization problems, two formulations are provided as 

shown in Formulation 1 and Formulation 2. For Formulation 1, maximizing reliability 

and minimizing the cost are expected to be achieved at the same time. It can be easily 

seen from Figure 7.1 that the non-dominated solutions are in the set of  ,*
0t . For 

Formulation 2, minimizing risk is added as another objective. Since the risk is a 
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decreasing function over time as shown in equation (7.4), the non-dominated 

solutions are in the same set of  ,*
0t . After these non-dominated solutions are 

identified, management can check the options within the set of  ,*
0t , and 

compromise among different objectives. 

 

7.3.2 Multi-Attribute Utility Theory 

 

Different objectives are generally not in the same scale and unit. They may also 

conflict with each other. Therefore, all objectives can be hardly optimized 

simultaneously. In reality, a compromise among different objectives is to be made. 

Multi-attribute utility theory (MAUT) is a classical multi-objective optimization 

approach, which solves the multi-optimization problem by using weights and the 

single utility function (von Winterfeldt and Edwards, 1986). In particular, the use of 

single utility function for each attribute can convert each objective into the same scale 

from 0 to 1 with the same unit of utility. The utility value reveals the attractiveness of 

each attribute. On the other hand, different importance weights are allocated for each 

single utility function. Finally, the multi-attribute utility function is obtained, which is 

actually a weighted sum of single utility functions. Mathematically, the multi-attribute 

utility function is given by 

 

   



n

i

iin duwdddU
1

21 ,..., ,                                            (7.5) 

 

where each attribute is denoted by di, i=1,2,…n, the attractiveness of each attribute is 

represented by the single utility function u(di), and wi‟s are the importance weights 
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allocated for different single utility functions. By maximizing this multi-attribute 

function, the optimal solution is obtained. In reality, it means that the attractiveness of 

the conjoint outcome of attributes is maximized under this optimal solution. 

 

One important step in MAUT is the elicitation of single utility function. To achieve 

this, the equally likely certainty equivalent (ELCE) method was developed as a 

standard approach in MAUT (Keeney and Raiffa, 1976; von Winterfeldt and 

Edwards, 1986). In this method, certainty equivalents are obtained for a few 50-50 

lotteries. These certainty equivalents are actually some special points on the single 

utility curve. Based on these estimated points, the single utility function is determined 

by fitting these points. For more detailed discussions on this method, interested 

readers can refer to Keeney and Raiffa (1976), von Winterfeldt and Edwards (1986). 

However, in practice, it is generally assumed that management is risk neutral towards 

each attribute (Scholz and Tietje, 2002). Under this assumption, the single utility 

function is a linear function for each attribute. Management only needs to determine 

two particular points for each attribute, i.e., 0
id  and 1

id . These two points are the 

lowest requirement and the highest expectation from management for the attribute di, 

and the superscripts of them represent their corresponding utility values. 

 

Another important step is the estimation of weighting factors. This is done by 

comparing a certain scenario and a lottery (Keeney and Raiffa, 1976; von Winterfeldt 

and Edwards, 1986). More specifically, the certain scenario contains one attribute at 

its best level and the other attributes at their worst levels; the lottery contains all 

attributes at their best levels with probability p and all attributes at their worst levels 

with probability 1-p. When management is indifferent with these two choices, the 
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probability p is the weighting factor allocated for that attribute at its best level in the 

certain scenario.     

 

In summary, MAUT solves the multi-objective optimization problem in a 

straightforward way. It is quite understandable by incorporating weights and single 

utility functions into the decision making process. Based on the management‟s own 

attitude, the optimal solution is obtained, under which the overall attractiveness of the 

conjoint outcome of attributes is maximized.  

 

7.3.3 Physical Programming Method 

  

Physical programming, as an effective and competitive approach in multi-objective 

optimization, was originally proposed by Messac (1996). In order to express decision 

maker‟s preference towards each criterion, four distinct soft class functions are used. 

Specifically, they are Class 1-S: smaller is better, i.e., minimization; Class 2-S: larger 

is better, i.e., maximization; Class 3-S: value is better, i.e., seek value; and Class 4-S: 

range is better, i.e., seek range.  

 

It is worth noting that hard class functions are omitted here. This is because hard class 

functions are used to describe constraints, which are not in the context of our decision 

problems. In our decision problems, cost and risk is expected to be minimized, and 

reliability is to be maximized, only Class 1-S and Class 2-S will be used. Their 

qualitative meanings are described in Figure 7.2, where ig  is the class function of 

attribute i, i=1,2,…,n; ig  is the value of each attribute, and s'ijg  , j=1,2,…,5, are the 
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boundary values separating decision maker‟s satisfaction level towards each attribute 

into six ranges. Taking Class 1-S for an example, the six ranges are defined as: 

 

unacceptable range: 5ii gg  ; 

highly undesirable range: 54 iii ggg  ; 

undesirable range: 43 iii ggg  ; 

tolerable range: 32 iii ggg  ; 

desirable range: 21 iii ggg  ; 

highly desirable range: 1ii gg  . 
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Figure 7.2 Qualitative meaning of Class 1-S and Class 2-S (Messac, 1996) 
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It can be seen that the decision maker‟s preference is deliberately described. In fact, 

the boundary values s'ijg  are the only parameters that the decision maker needs to 

specify. Based on them, the class function ig  can be determined following the 

standard procedure developed in Messac (1996), and interested readers can refer to it 

for more detailed discussions.  

 

In fact, this standard procedure puts its most effort into the one versus others criteria 

rule (OVO rule), which expresses the preference regarding inter-criteria relationships. 

Specifically, suppose that we have the following two options: (1) full improvement of 

gi across a given range, i.e., the tolerable range; (2) full improvement of all other 

criteria across the next better range, i.e. desirable range. Under the OVO rule, the first 

option is always preferred over the second one. It means that the worst performance 

has the highest priority to be improved. After these soft class functions are 

determined, the multi-objective decision model using physical programming approach 

is formulated as (Messac, 1996): 
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where scn  is the number of soft class functions considered in the decision problem, 

jmx  and jMx  represent the minimum and maximum values of the corresponding 

decision variable jx .  
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7.4 Numerical Examples 

 

In this section, two numerical examples for software release time determination are 

provided. In particular, the first numerical example is to solve the release time 

problem under Formulation 1; and the second numerical example is for Formulation 

2. Both two numerical examples consider the failure data set used in Pham and Zhang 

(1999), which is the failure account data in one hour intervals. In Pham and Zhang 

(1999), the software reliability model used is Goel-Okumoto (GO) model (Goel and 

Okumoto, 1979), whose mean value function and failure intensity function are given 

by 

 

)1()( bteatm   and btabet )( ,                                   (7.6)                     

 

where a denotes the number of expected faults in the software, and b represents the 

fault detection rate. This model is also adopted in our analysis, and the estimated 

model parameters are given by 32.142ˆ a  and 1246.0ˆ b . In their work, parameters 

for the cost functions are also provided based on the real project data, and cost is 

measured in the unit of staff-units. Specifically, the parameter values are 500 c , 

7001 c , 602 c , 36003 c , 500004 c , 20wt , 1.0y , and 5.0w . 

These parameter values can help us to quantify the cost function as shown in equation 

(7.3). While for the reliability function, we set x=1.  
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7.4.1 Example I 

 

In the first numerical example, we only consider two attributes, i.e., reliability and 

cost. Based on the parameter values discussed above, reliability and cost can be 

quantified with ease based on (7.2) and (7.3). For the reliability and cost functions, 

their behavior is the same as shown in Figure 7.1. It can be calculated that cost is 

minimized at the time 97.43*
0 t , under which the corresponding reliability and cost 

values are 9286.0)( *
0 tR  and 30923)( *

0 tC .  

 

Results from Trade-Off Analysis 

 

Trade off analysis considers the multi-objective optimization problem by using Pareto 

optimal solutions. In trade off analysis, each Pareto optimal solution is not inferior to 

any other solution on all objectives. In our problem, maximizing reliability and 

minimizing cost should be considered simultaneously. Since reliability is increasing 

over time and the expected cost is a convex function with its minimum value at the 

time 97.43*
0 t , the Pareto optimal solutions in trade off analysis can be easily 

identified in the set of  ,97.43 . It can be seen that under Pareto optimal solutions, 

increasing reliability inevitably increases the expected software development cost as 

shown in Figure 7.3.  
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Figure 7.3 Non-dominated points of the consequence space with reliability and cost 

 

In trade off analysis, Figure 7.3 provides management with a broader view of the 

decision problem, where the general trend of the non-dominated points of the 

consequence space is easily identified. Subsequently, management can select some 

typical points from the Pareto optimal solutions, and check their corresponding 

reliability and cost values. If management wants to increase the accuracy of the 

interval estimation, they can simply reduce the length of the interval. For instance, 

Table 7.1 provides numerical results based on the 5-hour interval estimation. Suppose 

that management prefers possible reliability-cost combinations from (0.9657, 31863) 

to (0.9814, 33589), then the interval estimation for the optimal release time is 

obtained as [50, 55]. If management wants to increase the accuracy of this estimation, 

they can further check numerical results based on the 1-hour interval estimation in the 

range of [50, 55]. This iterative process can be further conducted until satisfactory 

results are obtained. 
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Table 7.1 Numerical results based on the 5-hour interval estimation 

t R(t) C(t) r(t) 

45 0.9370 30956 0.6573 

50 0.9657 31863 0.2570 

55 0.9814 33589 0.0436 

60 0.9900 35761 0.0028 

65 0.9946 38173 0.0001 

 

 

Results from MAUT 

 

MAUT solves the multi-optimization problem by using single utility functions and 

weights for each attribute. In our decision problem, we can first identify the single 

utility functions for reliability and cost respectively. As discussed before, risk 

neutrality is generally assumed, and management can use the linear single utility 

function (Scholz and Tietje, 2002). For the attribute reliability, management indicates 

that it can only accept reliability higher than 0.9, and the highest reliability 

expectation is 0.99. Therefore, we set 9.00 R  and 99.01 R , where the 

superscripts represent their corresponding utility values. Similarly, we receive two 

particular points for the attribute cost as 380000 C  and 320001 C . Based on the 

information above, the single utility function for reliability and cost are obtained as  

 

01

0)(
))((

RR

RtR
tRu




  and 

10

0 )(
))((

CC

tCC
tCu




 ,                              (7.7) 

 

where )(tR  and )(tC  are used to represent )( txR  and  )(tCE  for simplicity.  
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The following step is the estimation of weighting factors for each attribute. 

Management needs to compare the two choices as shown in Figure 7.4. When 

management is indifferent with these two choices, the probability p is the weighting 

factor Rw  allocated for the attribute reliability. In our problem, management 

demonstrates that they put more importance on reliability. By comparing the two 

choices as shown in Figure 7.4, management is indifferent with them when p is equal 

to 0.7. Hence, 7.0Rw  and 3.0Cw .  

 

p

1-p
 00 ,CR

 11,CR

 01,CR

 

Figure 7.4 Two choices for the determination of the weighting factor for reliability 

 

After the single utility functions and weights are identified, the multi-attribute utility 

function is obtained as  

 

  ))(())(()(),( tCuwtRuwtCtRU CR  .                                (7.8) 

 

By maximizing this multi-attribute utility function, the optimal release time is 

calculated as 33.54* T , under which corresponding reliability value and cost value 

are 0.9798 and 33325 respectively. In this example, numerical results from sensitivity 

analysis under the change of wR are also provided as shown in Table 7.2. This is 

because the subjective assessment for the two choices as shown in Figure 7.4 may not 

be accurate enough. These results can help management to check whether the optimal 
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solution is robust. Under the fact that management puts more importance on 

reliability, typical points of wR around the predetermined value 0.7 are investigated. It 

can be seen that the maximum relative change of the optimal solution is within 10%. 

Therefore, the optimal solution obtained is acceptable. In addition, it also provides 

management with possible interval estimation that the optimal solution is in the range 

of [50.48, 60.00].  

 

Table 7.2 Numerical results from sensitivity analysis under the change of wR 

wR t R(t) C(t) 

0.9 60.00 0.9900 35760 

0.8 57.70 0.9867 34722 

0.7 54.33 0.9798 33325 

0.6 51.91 0.9728 32450 

0.5 50.48 0.9676 32000 

 

 

Results from Physical Programming 

 

Physical programming approach only needs management to provide the five boundary 

points for each attribute. In our decision problem, boundary points of class functions 

are shown in Table 7.3. In this example, since only reliability and cost are considered, 

data in the first two rows in Table 7.3 is used. In addition, for comparative purpose, 

we also set 1ig  and 5ig  equal to 0
id  and 1

id  used in MAUT. Following the standard 

procedure discussed in Messac (1996), the class functions for reliability and cost can 

be built as  )(
_

tRg R  and  )(
_

tCg C  respectively. The physical programming model 

for the decision problem considering reliability and cost is formulated as 
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Table 7.3 Boundary points of class functions 

 

gi1 gi2 gi3 gi4 gi5 

reliability 0.99 0.97 0.94 0.91 0.9 

cost 32000 34000 36000 37000 38000 

risk 0.01 0.05 0.1 0.3 0.5 

 

 

Since we only have one decision variable as the release time t, the optimization 

problem above can be solved easily by some software, i.e., MATLAB. The optimal 

release time is obtained as 00.52* T , under which corresponding reliability value 

and cost value are 0.9732 and 32481 respectively. It can be seen that under the 

optimal release time, both reliability and cost are in the desirable range 

( 21 iii ggg  ).  

 

Compared with MAUT, physical programming approach is easier for management to 

update the optimal solution. This is because weighting process as shown in Figure 7.4 

is completely eliminated in the decision process. If management wants put more 

emphasis on reliability criterion, they can simply change the boundary points for 

reliability, and this process seems to be more meaningful.  
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7.4.2 Example II 

 

Customers usually have a reliability requirement R0, and management needs to try its 

best to make sure that this reliability requirement is satisfied. Generally, based on the 

estimated model parameters, the release time under this reliability requirement is 

calculated as T̂ . However, parameters are unknown in nature, and there exists the risk 

that software reliability cannot meet its reliability requirement due to parameter 

uncertainty (Xie et al., 2010). Therefore, in this numerical example, besides 

maximizing reliability and minimizing the software development cost, minimizing the 

risk that software cannot meet its reliability requirement is incorporated as well.  

 

The failure data set used in Pham and Zhang (1999) is also adopted in this example. 

Therefore, parameter values in the previous example are used in this example as well. 

In addition, we set reliability requirement R0 equal to 0.95. Hence, based on the GO 

model, the mean value of release time under this reliability target is obtained as 

92.46ˆ T . Furthermore, following the standard procedure discussed in Xie et al. 

(2010), the variance of release time is calculated as   35.22ˆ TVar . Based on the 

above calculations, risk can be quantified with equation (7.4).   

 

Results from Trade-Off Analysis 

 

In this numerical example, maximizing reliability, minimizing cost and risk should be 

considered simultaneously. Since reliability is increasing over time, risk is decreasing 

over time, and the expected cost is a convex function with its minimum value at the 

time 97.43*
0 t , the Pareto optimal solutions is still in the set of  ,97.43  as the 
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previous example. Under these Pareto optimal solutions, non-dominated points of the 

consequence space with reliability, cost and risk are shown in Figure 7.5. Similarly, 

Figure 7.5 provides management a broad view of the decision problem.  
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Figure 7.5 Non-dominated points of the consequence space with reliability, cost and 

risk 

 

Subsequently, management can select some typical points for analysis, and Table 7.2 

provides the numerical results based on the 5-hour interval estimation. However, in 

this numerical example, management needs to identify their preference towards three 

dimensional combinations, i.e. reliability-cost-risk combinations. This will certainly 

increase the complexity of the decision problem. Suppose that management prefers 

the reliability-cost-risk combinations from (0.9814, 33589, 0.0436) to (0.9900, 35761, 

0.0028), then the interval estimation for optimal release time is obtained as [55, 60]. If 

management desires to increase the accuracy of the estimation, they can also try the 1-
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hour interval estimation in the range of [55, 60]. However, to achieve this, 

management will spend more time and effort due to the increase of the dimension. 

 

Results from MAUT 

 

In MAUT, single utility functions and weights for each attribute should be determined 

first. In this example, risk is introduced as another dimension that management needs 

to consider. Management has indicated that they can only accept the risk to be lower 

than 0.5, and the highest expectation is 0.01. Therefore, we set the best and the worst 

value for risk as 5.00 r  and 01.01 r . The single utility function for risk is 

obtained as  
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trr
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 .                                                (7.9) 

 

The next step is the determination of weighting factors for each attribute. Since there 

are more dimensions to be considered in this decision problem, management probably 

wants to avoid answering the artificial lottery related questions. In this case, 

management can simply allocate equal importance for each attribute. In our problem, 

there are three attributes to be considered. Therefore, 3/1 rCR www , and the 

multi-attribute utility function is given by 

 

  ))(())(())(()(),(),( truwtCuwtRuwtrtCtRU rCR  .                   (7.10) 
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The optimal solution on release time is obtained by maximizing this multi-attribute 

utility function, and it is calculated as 94.54* T , under which corresponding 

reliability, cost, and risk values are 0.981, 33567, and 0.0447 respectively. It can be 

seen that although the dimension of attributes is increased, the decision process can 

become even easier than the previous example if the equal importance allocation is 

assumed. This approach highly reduces the complexity of the decision process, and it 

can be very helpful for management when only some empirical results are needed.  

 

Results from Physical Programming 

 

Since minimizing the risk is considered as another objective in this example. All the 

data in Table 7.3 is used. The boundary points for risk attribute can help to construct 

the soft class function for it as  )(
_

trg r , and the physical programming model in this 

example becomes 
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By solving the optimization problem above, the optimal release time is obtained as 

01.56* T , under which corresponding reliability, cost, and risk values are 0.9836, 

34000 and 0.0272 respectively.  
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Obviously, compared with MAUT, management is no longer worried about answering 

many lottery related questions. The introduction of risk only requires management to 

specify five boundary points for it, and this is not a difficult task because the physical 

meanings of these points are quite clear. Although MAUT can simply adopt the equal 

importance allocation assumption, this may probably restrict the decision problem to a 

special case. Due to this consideration, when many objectives are to be compromised 

together, physical programming is generally better than MAUT.  

 

 

7.5 Applicability and Limitations of Different Approaches 

 

In this study, different multi-objective optimization approaches to software release 

time determination are investigated. Compared with previous single-objective 

optimization approach, they can describe management‟s attitude more accurately. A 

compromise among different objectives can be made by incorporating more 

information from management into the decision process. However, it should be noted 

that different multi-objective optimization approaches have their own properties, 

which imply the applicability and limitations of them.    

 

Trade-off analysis can restrict the decision space into the Pareto optimal solutions. It 

provides management with the most information on the decision process. By 

comparing various combinations of objective values under non-dominated solutions, a 

compromise among different objectives can be gradually made. However, this 

decision process is essentially a trial process. Hence, it could be time-consuming and 

error-prone. This problem can become more serious when more than two objectives 
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are considered. As shown in our second numerical example, it is not an easy task to 

compare the three-dimensional combinations of objectives. These combinations could 

possibly confuse the management. Therefore, trade-off analysis seems to be more 

helpful for management to get a broad view of the decision process. It is the most 

informative multi-objective optimization approach, and can help to identify the trend 

and change of the non-dominated points of the consequence space. 

 

As to the MAUT, it is the most straightforward way to solve the multi-objective 

optimization problem. The use of the assumption of management‟s risk neutrality can 

greatly reduce the complexity the decision process in practice (Scholz and Tietje, 

2002). If management can further demonstrate their equal importance weights 

allocation, the optimal solution of release time can be identified with the minimum 

complexity, and it can be updated with ease. In this case, the MAUT serves to be the 

best multi-objective optimization approach to software release time determination. 

However, these two assumptions may not reveal management‟s attitude in practice. In 

this case, management needs to answer some lottery related questions to obtain the 

single utility function and the weights. This process is quite tedious, and it is even 

more unexpected that answers to these lottery related questions may not be consistent 

over time. Thus, from this standpoint, the applicability of MAUT is restricted. 

 

Compared with the MAUT, physical programming method completely eliminates the 

process of choosing weights. It only requires five boundary points from management 

for each attribute, such that six ranges are separated as shown in Figure 7.2. If 

management wants to set a more rigorous requirement for one attribute, they can 

simply change the corresponding five boundary points for this attribute, and the 



163 

 

optimal solution is updated. However, it is worth noting that physical programming 

approach incorporates the OVO rule. It is assumed that the worst performance has the 

highest priory to be improved. Accordingly, under the optimal solution, different 

objectives are in the similar preference ranges. In our numerical examples, it can be 

seen that all objectives are in the desirable range. This special property of physical 

programming approach indicates its limitation in the case that some attributes are 

extremely more important than the others.    

 

 

7.6 Conclusion 

 

Most existing research formulates software release time determination problem as 

single-objective optimization problems, which have many disadvantages in the 

decision process. In fact, the optimal software release time problem is a multi-

objective optimization problem, and a compromise among various objectives should 

be made based on the management‟s attitude. In this study, we propose two multi-

objective optimization models as shown in Formulation 1 and Formulation 2. To 

solve these multi-objective optimization problems, different approaches are used 

including the trade off analysis, MAUT, and physical programming approach. These 

approaches are also compared based on the numerical examples. Applicability and 

limitations of various approaches are discussed in detail. These discussions can help 

management apply these methods in practice more appropriately.  
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Chapter 8 Conclusions 

 

 

The objective of the research presented in this thesis was to improve software 

reliability analysis, and to study the corresponding release time determination 

problem by extending traditional software reliability models and decision models. 

This chapter summarizes the research results and highlights their significance. 

Limitations of current research and recommendations for future research are also 

presented.  

 

 

8.1 Research Results and Contributions 

 

For mathematical tractability and simplicity, some assumptions are made to facilitate 

the modeling of the software failure process. However, these assumptions may not be 

realistic in practice and the applicability of software reliability models is restricted. 

Therefore, relaxing these assumptions for both ASRMs and DDSRMs is of 

considerable importance.   

 

An extension on ASRMs was presented in Chapter 3. This chapter introduced the 

modeling framework for open source software reliability and discussed the 

corresponding version-updating problem. It was found that traditional non-

homogeneous Poisson process (NHPP) ASRMs underestimate the reliability of open 

source software. This is because these traditional models cannot describe the hump-
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shaped failure detection rate function properly. It was also found that for open source 

software, cost is no longer a major concern for version-updating problem. Thus, a new 

decision model was developed based on multi-attribute utility theory (MAUT). This 

decision model can help management to make a more reasonable decision. Since 

traditional ASRMs and decision models are only focused on the study of closed 

source software/commercial software, the research in this chapter is one of the first 

attempts on reliability analysis and optimal version-updating for open source 

software.  

 

Besides the research on ASRMs, improvement on DDSRMs was also carried out and 

presented in Chapter 4. The objective of this research was to relax the basic 

assumption in traditional DDSRMs, where the current failure is assumed to be 

correlated with the most recent consecutive failures. A generic DDSRM was 

developed by relaxing this unrealistic assumption. It was found that the proposed 

model can cater for various failure correlations and existing DDSRMs are special 

cases of the proposed model. Experimental results reveal that the prediction accuracy 

is greatly enhanced by the proposed model.  

 

Developing models is not the ultimate goal of software reliability modeling. It is more 

important to apply these models to decision-making problems, and software release 

time determination is a typical application. In Chapter 5, sensitivity analysis of release 

time was investigated. We took a recent proposed model by Lin and Huang (2008) as 

an example and applied different approaches to conduct the sensitivity analysis. It was 

found that global sensitivity analysis is a better choice for the complex nonlinear 

model. Furthermore, the simulation results from global sensitivity analysis can help 
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management make a judicious decision on when to release the software. The research 

in this chapter provides practitioners a better understanding of different approaches to 

sensitivity analysis in the context of software reliability analysis. 

 

Sensitivity analysis can identify what the significant parameters are, and more 

attention can be paid to them for more accurate estimates. However, when other 

information or data are not available, the improvement for the estimation can be 

hardly done. In this case, it is very important to study the effect of parameter 

uncertainty on release time determination, and this was presented in Chapter 6. It was 

found that when the mean value is used, there is 50% chance that the software cannot 

meet its reliability requirement. This is because parameters are unknown in nature and 

they are estimated based on failure data. In order to reduce the risk that software 

cannot meet its reliability requirement, a risk-based approach was proposed for 

release time determination with delay cost considerations. The proposed approach 

provides management a broader view of release time determination problem. 

 

Furthermore, for software release time determination problem, different formulations 

for it were examined in Chapter 7. It was found that formulating release time 

determination as single-objective optimization problems can hardly describe the 

management‟s attitude accurately. Hence, multi-objective optimization model were 

developed for release time determination problem, and various multi-optimization 

approaches are used. By comparing these different multi-optimization approaches, 

management can apply these methods more appropriately for release time 

determination problem. 
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8.2 Future Research 

 

Open source software (OSS) provides a new paradigm for software development. In 

this thesis, reliability analysis and optimal version updating for it was investigated. It 

should be noted that our proposed model is essentially an extension of traditional 

ASRMs. It is still an open question whether new methodology should be developed 

for describing the failure process of open source software. This is because there is a 

lot of information about software attributes available, and these data, if used properly, 

should greatly enhance the reliability analysis for open source software. Future 

research on this problem could possibly pave the way for a new stage of software 

reliability engineering. 

 

As to the proposed generic data-driven software reliability model, it is worth noting 

that the great enhancement of prediction accuracy was achieved at the cost of 

spending more time for calculation. Although a hybrid generic algorithm was 

proposed to speed up the time for convergence, future research on more advanced 

algorithms will be useful. In addition, it will be also interesting to investigate the 

relationship between current failure and other software attributes. In this case, not 

only the failure history will be analyzed, but also the change of software attributes 

over time will be studied together.  

 

Thirdly, for sensitivity analysis of release time, different approaches of it can have 

different limitations as discussed in detail in Chapter 5. These limitations require the 

users to apply different approaches properly in practice. Furthermore, although it has 

been shown that global sensitivity analysis is a better choice for complex nonlinear 
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model, the procedure of implementing the analysis could be still difficult and time-

consuming for practitioners. Therefore, developing a software tool with user-friendly 

interface may be necessary in the near future.  

 

Finally, for software release time determination, although some decision models were 

developed and different multi-objective approaches were compared, no single model 

can be regarded as a universal model to suit all decision processes. Beyond the studies 

explored in this research, other approaches can be studied as well in the future, and 

extensions can be made by considering the specific properties of the decision process 

in practice.   
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