

SOFTWARE RELIABILITY

MODELING AND RELEASE TIME DETERMINATION

LI XIANG

NATIONAL UNIVERSITY OF SINGAPORE

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48649190?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SOFTWARE RELIABILITY

MODELING AND RELEASE TIME DETERMINATION

LI XIANG
(B. Eng., UESTC)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2011

i

Acknowledgements

First of all, I would like to thank my supervisor, Professor Xie Min, for his pertinent

supervision and insightful suggestions throughout my research life at the university.

This thesis would not have been possible without Prof. Xie‟s help. It is my great

honor to have the chance to study under his guidance.

Secondly, I am very much grateful to Associate Professor Ng Szu Hui. As my vice

supervisor, she is always available for my questions and asking for help. I have also

benefited a lot from her as her teaching assistant.

Thirdly, my appreciation goes to Professor Yang Bo from University of Electronic

Science and Technology of China, with whom some of my research work is carried

out jointly. I have learned a lot from the cooperation with him.

Thanks also go to faculty members, staff, seniors and juniors in our ISE department. It

is my great appreciation to receive the help from you. In particular, I would like to

thank all the friends in ISE Computing Lab. I really enjoy the time spending with all

of you!

Finally, I would like to express my unbounded gratitude towards my parents, for their

unconditional love and consistent support all along the way of my study.

ii

Table of Contents

Acknowledgements ... i

Table of Contents ... ii

Summary ... vii

List of Tables ... ix

List of Figures .. xi

List of Symbols ... xiii

Chapter 1 Introduction.. 1

1.1 Background .. 1

1.2 Motivation .. 3

1.2.1 Reliability Analysis for Open Source Software .. 3

1.2.2 Relationship of Software Failures ... 4

1.2.3 Software Release Policy under Parameter Uncertainty 5

1.2.4 Formulation of Software Release Time Determination Problem 6

1.3 Objective and Scope of Research .. 7

Chapter 2 Literature Review .. 9

2.1 Analytical Software Reliability Models... 9

2.1.1 The Jelinski-Moranda Model .. 10

2.1.2 A General Formulation of NHPP Models ... 11

2.1.3 Recent Advances on ASRMs .. 13

2.2 Data-Driven Software Reliability Models ... 16

iii

2.3 Determination of Software Release Time .. 18

Chapter 3 Reliability Analysis and Optimal Version-Updating for Open Source

Software .. 21

3.1 Basic Problem Description .. 21

3.2 Modeling Fault Detection Process of Open Source Software 24

3.3 Determination of Optimal Version-Update Time .. 28

3.3.1 Quantification of Attributes .. 30

3.3.2 Elicitation of Single Utility Function for Each Attribute 32

3.3.3 Estimation of Scaling Constants ... 33

3.3.4 Maximization of Multi-Attribute Utility Function 35

3.3.5 Summary of the Procedure .. 35

3.4 Numerical Examples .. 36

3.4.1 The Data Sets .. 37

3.4.2 Reliability Assessment for Open Source Software 39

3.4.3 A Decision Model Application Example .. 43

3.4.4 Sensitivity Analysis .. 47

3.5 Conclusion ... 50

Chapter 4 Performance Improvement for DDSRMs ... 53

4.1 Basic Problem Description .. 53

4.2 A Brief Review of SVM for Regression .. 58

4.3 A Generic DDSRM with a Hybrid GA-Based Algorithm 62

4.4 Numerical Examples .. 69

4.4.1 Example I .. 69

iv

4.4.2 Example II ... 71

4.5 Conclusion ... 73

Chapter 5 Sensitivity Analysis of Release Time of Software Reliability Models

Incorporating Testing Effort with Multiple Change Points 75

5.1 Basic Problem Description .. 75

5.2 General Model Incorporating Testing Effort ... 77

5.3 Approaches to Sensitivity Analysis ... 79

5.3.1 One-Factor-at-a-Time Approach .. 79

5.3.2 Sensitivity Analysis through DOE .. 80

5.3.3 Global Sensitivity Analysis... 83

5.4 An Illustrative Example ... 88

5.4.1 Results from One-Factor-at-a-Time Approach ... 88

7.4.2 Results from Sensitivity Analysis through DOE .. 90

5.4.3 Results from Global Sensitivity Analysis ... 92

5.5 Limitations of Different Approaches ... 94

5.6 Interval Estimation from Global Sensitivity Analysis 97

5.7 Conclusion ... 99

Chapter 6 A Risk-Based Approach for Software Release Time Determination

with Delay Costs Considerations .. 100

6.1 Quantifying Parameter Uncertainty ... 101

6.2 Model Formulation .. 104

6.2.1 Risk Considerations .. 105

6.2.2 Cost Considerations .. 107

v

6.3 The Decision Model Based on MAUT .. 109

6.3.1 Quantification of Attributes .. 111

6.3.2 Elicitation of Single Utility Function for Each Attribute 112

6.3.3 Estimation of Scaling Constants ... 114

6.3.4 Maximization of Multi-Attribute Utility Function 115

6.3.5 Summary of the Procedure .. 116

6.4 An Illustrative Example ... 117

6.4.1 The Data Set .. 117

6.4.2 The Determination of Optimal Risk-Based Release Time 118

6.4.3 Illustration of the Proposed Decision Model .. 122

6.4.4 Sensitivity Analysis .. 124

6.5 A Simplification of the Decision Model .. 127

6.6 Threats to Validity ... 132

6.7 Conclusion ... 136

Chapter 7 Multi-Objective Optimization Approaches to Software Release Time

Determination ... 138

7.1 Basic Problem Description .. 138

7.2 Model Formulation for Release Time Determination 139

7.3 Multi-Objective Optimization Approaches.. 144

7.3.1 The Trade-Off Analysis .. 144

7.3.2 Multi-Attribute Utility Theory .. 145

7.3.3 Physical Programming Method... 147

7.4 Numerical Examples .. 150

7.4.1 Example I .. 151

vi

7.4.2 Example II ... 157

7.5 Applicability and Limitations of Different Approaches 161

7.6 Conclusion ... 163

Chapter 8 Conclusions ... 164

8.1 Research Results and Contributions .. 164

8.2 Future Research ... 167

References ... 169

vii

Summary

This thesis aims to improve software reliability modeling of software failure process,

and to study its corresponding release time determination problem. These objectives

are achieved by extending traditional software reliability models and decision models.

Research has been conducted as follows.

Software reliability models can be classified into two categories: analytical software

reliability models (ASRMs) and data-driven software reliability models (DDSRMs).

Both of them are studied in this thesis. In particular, an extension on ASRMs is

presented in Chapter 3. In this chapter, the modeling framework for open source

software reliability is introduced, and the corresponding version-updating problem is

studied as well.

Besides the research on ASRMs, improvement on DDSRMs is also carried out as

shown in Chapter 4. In most existing research on DDSRMs, it is generally assumed

that the current failure is correlated with the most recent consecutive failures.

However, this assumption restricts the failure data analysis into a special case. In

order to relax this unrealistic assumption, a generic DDSRM is developed with model

mining technique. The proposed model can greatly enhance the prediction accuracy.

Developing models is not the ultimate goal of software reliability modeling. It is more

important to apply these models to solve corresponding decision-making problems,

and software release time determination is a typical application. In Chapter 5,

viii

sensitivity analysis of release time of software reliability models incorporating testing

effort with multiple change points is studied. Sensitivity of the software release time

is investigated through various methods, including one-factor-at-a-time approach,

design of experiments and global sensitivity analysis.

Although the use of sensitivity analysis can help to find out what significant

parameters are and more attention can be paid for them, it is also quite possible that

no more data or information is available for us to obtain more accurate estimates of

parameters. Therefore, in Chapter 6, the effect of parameter uncertainty on release

time determination is investigated. A risk-based approach is proposed for release time

determination with delay cost considerations. It can help management have a boarder

view of the release time determination problem.

Furthermore, for software release time determination problem, most existing research

formulates it as single objective optimization problems. However, these formulations

can hardly describe the management‟s attitude accurately. Therefore, multi-objective

optimization model is developed for release time determination problem in Chapter 7.

In order to solve this multi-objective optimization problem, different multi-objective

optimization approaches, including trade off analysis, multi-attribute utility theory,

and physical programming, are used and compared in this chapter. By comparing

these approaches, management can apply them more appropriately in practice

considering their own unique properties.

ix

List of Tables

Table 3.1 Detected faults in Apache official public releases 38

Table 3.2 Detected faults in GNOME official public releases 39

Table 3.3 Estimated parameter values and numerical results for Apache 42

Table 3.4 Estimated parameter values and numerical results for GNOME 42

Table 3.5 Results from sensitivity analysis .. 49

Table 4.1 Sample patterns used in model training process .. 56

Table 4.2 Software failure data taken from Pham and Pham (2000), Tian and Noore

(2005b), Su and Huang (2007)... 70

Table 4.3 Model mining result and optimal values of parameters of SVM-based SRM

with Gaussian kernel function, using software failure data in Table 4.2 70

Table 4.4 Software failure data reported in Wood (1996) ... 72

Table 4.5 Model mining result and optimal values of parameters of SVM-based SRM

with Gaussian kernel function, using software failure data in Table 4.4 72

Table 5.1 A saturated Resolution III fractional factorial design 81

Table 5.2 Some numerical results from one-factor-at-a-time approach 89

Table 5.3 Fractional factorial design ... 90

Table 5.4 Main effects of parameters .. 91

Table 5.5 Results of the first-order sensitivity indices .. 93

Table 5.6 Comparison of computation resources needed .. 96

Table 6.1 Sensitivity analysis results given different parameters 126

Table 7.1 Numerical results based on the 5-hour interval estimation 153

Table 7.2 Numerical results from sensitivity analysis under the change of wR 155

x

Table 7.3 Boundary points of class functions .. 156

xi

List of Figures

Figure 3.1 Two choices for the determination of the scaling constant
i

w 34

Figure 3.2 The structure of the decision model for the determination of optimal

version-update time .. 36

Figure 3.3 The multi-attribute utility function given different release times 46

Figure 4.1 The processes of using a DDSRM for software reliability modeling and

prediction ... 55

Figure 4.2 The soft margin loss setting for a linear SVM regression (Scholkopf and

Smola, 2002) .. 60

Figure 4.3 Interpretation of a binary code in model mining .. 64

Figure 4.4 A hybrid GA-based algorithm to determine the time lag terms to be used

and the optimal parameters of SVM-based SRM with Gaussian kernel function 65

Figure 4.5 The processes of using the proposed DDSRM ... 66

Figure 5.1 Main effects of parameters (absolute value) .. 91

Figure 5.2 Results of first-order sensitivity indices in a descending manner 93

Figure 6.1 An illustrative example of the distribution of the optimal release time T

given a reliability requirement ... 106

Figure 6.2 Two choices for the determination of the scaling constant w1 115

Figure 6.3 The structure of the decision model for the determination of optimal risk-

based release time .. 117

Figure 6.4 Multi-attribute utility function given different release times 122

Figure 6.5 Determination of the optimal risk-based release time under the simplified

decision model ... 131

xii

Figure 7.1 Relationship between  )(tCE and  txR .. 140

Figure 7.2 Qualitative meaning of Class 1-S and Class 2-S (Messac, 1996) 148

Figure 7.3 Non-dominated points of the consequence space with reliability and cost

.. 152

Figure 7.4 Two choices for the determination of the weighting factor for reliability154

Figure 7.5 Non-dominated points of the consequence space with reliability, cost and

risk.. 158

xiii

List of Symbols

ANN artificial neural network

ASRM analytical software reliability model

CDF cumulative distribution function

DDSRM data-driven software reliability model

DOE design of experiment

GA genetic algorithm

LSE least square estimation

MAUT multi-attribute utility theory

MLE maximum likelihood estimation

MSE mean square error

NHPP non-homogeneous Poisson process

OSS open source software

SRM software reliability model

SRGM software reliability growth model

SVM support vector machine

)(t failure intensity function,
dt

tdm
t

)(
)(

 the discount rate of testing cost over time (10  )

y the expected time to remove a fault during the testing phase

w the expected time to remove a fault during the warranty phase

0c the expected set-up cost for software testing

1c the expected cost per unit testing time

xiv

2c the expected cost of removing a fault during the testing phase

3c the expected cost of removing a fault during the operation phase

4c the expected cost due to software failure

)]([tCE expected total cost of software development

I Fisher information matrix

L the likelihood function

)(ta fault content function

)(tb fault detection rate function

)(tm mean value function of software fault content

iA scale parameter in logistic function for release i

i scale parameter in logistic function for release i

i shape parameter in Weibull function for release i

i shape parameter in Weibull function for release i

iR reliability estimate for release i

)(tr risk function which measures the risk that software cannot meet its

reliability requirement due to parameter uncertainty

)|(txR software reliability at time x after it has been tested for t unit of time

0R software reliability requirement from customers

t release time of the software

T̂ mean value of release time based on the reliability requirement 0R

*T optimal software release time

)ˆ(TVar variance of T̂

Z the (1-) quantile of the standard normal distribution

1

Chapter 1 Introduction

With the rapid increase of applications of computer systems in industries as well as in

our daily life, the reliability of computer systems has become a crucial issue. Since

computer systems are also widely used in safety-critical systems such as control

systems in nuclear power plants or in medical instruments, the need for high

reliability is even more urgent.

Computer systems are generally composed of hardware and software, and therefore

ensuring high reliability of the system involves investigating reliability of both

hardware and software. Unfortunately, unlike hardware reliability assurance which

has been well developed and widely applied in various industries, software reliability

is still a relatively new field, and it is generally more difficult to ensure (Xie, 1991).

Also, the rapid increase of software size and complexity imposes many challenges to

achieve high reliability of software products.

1.1 Background

As a matter of fact, software has become the major source of reported outages, and

billions of dollars has been wasted each year (Lyu, 1996). The following are some

famous examples in recent years (Charette, 2005): in 2001, software problems with

supply-chain management system contributed to $100 million (USD) loss to the Nike

2

Inc.; in 2002, McDonald‟s Corp. canceled the Innovate information-purchasing

system after $170 million (USD) was spent; in 2004, Hewlett-Packard Co. lost $160

million (USD) due to the software problems with ERP system and Ford Motor Co.

suffered a loss of approximately $400 million (USD) deployment cost from

abandoning the purchasing system. It is therefore not surprising that software

reliability engineering (SRE) has received lots of attention, and abundant research has

been carried out recently.

To ensure the reliability of software, software needs to be tested prior to its release.

This testing phase is time-consuming and costly. During this phase, the latent

software faults are identified, isolated and removed. As a result, software reliability is

improved. Based on the failure data obtained from the testing phase, software

reliability can be measured and predicted with appropriate software reliability models

(SRMs) (Musa et al., 1987; Xie, 1991; Lyu, 1996; Pham, 2000).

The mainstream of software reliability modeling can be classified into two categories:

the analytical approach and the data-driven approach (Hu et al., 2007). Analytical

software reliability models (ASRMs) are generally based on certain prior assumptions

made on the nature of software faults and the stochastic behavior of software failure

process. These assumptions include equal fault sizes, perfect debugging, immediate

fault repair, independent software failures, etc. Although these assumptions may not

be valid in practice, they are made to facilitate software reliability modeling (Musa et

al., 1987; Xie, 1991; Lyu, 1996; Pham, 2000).

3

As to the data-driven approach to software reliability modeling, the software failure

process is viewed as a time series. Data-driven software reliability models (DDSRMs)

are constructed to recognize the inherent patterns of the process which are carried by

the recorded failure data. By modeling and analyzing the inherent patterns of software

failure process, software reliability prediction can be made (Hu et al., 2007).

1.2 Motivation

SRMs are successfully applied in many real world projects, and there are more and

more companies adopt the knowledge in software reliability engineering in practice

(Wood, 1996; Musa, 2006). However, for both ASRMs and DDSRMs, there are still

some assumptions that can be relaxed to better describe the software failure process.

In addition, constructing models is not the end, to guide management when to release

software is a typical application of these models. For this software release time

determination problem, it is still an open question on how to describe management‟s

attitude more accurately. Due to these considerations, research in this thesis is

conducted by investigating the following specific topics.

1.2.1 Reliability Analysis for Open Source Software

Recently, a new style of software development process, the open source software

(OSS) movement has received intensive interests (Raymond, 2001). OSS process is a

relatively new way of building and deploying large software systems on a global

basis, and differs in many interesting ways from the principles and practices of

4

traditional software engineering (Feller et al., 2005). There is widespread recognition

that open source projects can produce high quality and sustainable software systems

(such as Linux operating system, Apache web server, and Mozilla browser) that can

be used by thousands to millions of end-users (Mockus et al., 2002). Currently, most

OSS system is developed and maintained by non-commercial communities. However,

more and more software companies have switched from a closed source to an open

source development model in order to win market share and to improve product

quality (Hertel et al., 2003).

Since OSS is usually developed outside companies – mostly by volunteers – and the

development method is quite different from the standard methods applied in

commercial software development, the quality and reliability of the code needs to be

investigated (Gyimothy et al., 2005). However, most existing research works have

been focusing on the study of fault-proneness detection and defect prediction of OSS,

which are essentially indirect reliability measurements without consideration of time

effect. In fact, only in some recent studies by Tamura and Yamada (2008; 2009), such

issue is considered. However, in their work, the differences between traditional

commercial software and OSS are not highlighted. This motivates us to further

investigate this problem by incorporating special properties of OSS into the analysis.

1.2.2 Relationship of Software Failures

Existing research on data-driven approach to software/system reliability modeling and

prediction generally assumes that a failure is strongly correlated with the most recent

several failures; thus the sliding window technique has been adopted to describe this

5

relationship. However, this assumption restricts the general time series analysis to a

special case as the correlation may be quite complicated in a time series (Tsay, 2002).

In fact, it is possible that a failure is correlated with some of previous failures, not

necessarily being the most recent ones. For example, a failure, ix , could be correlated

with, say, 8ix , 6ix , and 2ix . If this is the case, these three time lag terms should be

used as model inputs instead of using 3ix , 2ix , and 1ix . Obviously, there should

be a systematic way to discover the correlation among failures, which enables the

model user to decide appropriate time lag terms to be used in the model, and hence

the model performance can be improved.

1.2.3 Software Release Policy under Parameter Uncertainty

Software release time determination problem is of great importance in software

development. Most existing research on this problem has been based on the

assumption that parameters of software reliability models are known or accurately

estimated. However, these model parameters are unknown in nature. They are

generally estimated based on the limited amount of recorded failure data. Hence, the

accuracy of the optimum release time obtained is questionable. It is necessary for

management to know what the significant parameters are, and sensitivity analysis is

needed.

In fact, the problem of parameter uncertainty has been widely discussed in many

domains. Benke et al. (2008) studied the effect of parameter uncertainty on the output

in a water-balance hydrological model. Yu and Harris (2009) classified the inputs into

two categories and discussed this problem in the framework of global sensitivity

6

analysis. Also, the so called robust optimization which considers the uncertainty of

parameters has been received a lot of research attention recently (Ben-Tal and

Nemirovski, 2002; Sahinidis, 2004). Previous research has demonstrated that

parameter uncertainty cannot be discarded in the modeling and analysis. This also

motivates us to study the optimal software release policy under parameter uncertainty.

1.2.4 Formulation of Software Release Time Determination Problem

For software release time determination problem, reliability and cost are two

important dimensions that are generally considered. In order to determine an optimal

software release time, existing research formulates this problem in the following three

ways: (1) cost minimization (Boland and Singh, 2003; Morali and Soyer, 2003; Xie

and Yang, 2003; Huang and Lyu, 2005a), (2) cost minimization given a reliability

constraint (Yamada and Osaki, 1985; Pham, 1996; Pham and Zhang, 1999; Huang,

2005; Boland and Chuiv, 2007), and (3) reliability maximization under a cost budget

(Leung, 1992). It can be seen that software release time determination problem is

formulated as single-objective optimization problems. However, this kind of

formulation can hardly describe the management‟s attitude accurately. In reality,

maximizing reliability and minimizing cost is expected to be considered

simultaneously, and a compromise should be made between these two objectives

based on management‟s preference. This motivates us to develop a new formulation

for software release time determination problem, such that a more reasonable decision

can be made.

7

1.3 Objective and Scope of Research

The objective of this thesis is to develop comprehensive and practical models for

software reliability analysis and software release time determination. Both ASRMs

and DDSRMs are extended considering the practical issues involved in software

reliability modeling. More specifically, in the framework of ASRMs, a model for

open source software (OSS) is developed by incorporating the special properties of

OSS; in the framework of DDSRMs, a generic model is proposed by relaxing the

basic assumption in most existing DDSRMs.

Besides the modeling part of software failure process, software release time

determination problem, as a typical application of SRMs, is investigated as well.

Sensitivity analysis of release time is introduced as a way to deal with parameter

uncertainty. In particular, sensitivity of the software release time is investigated

through various methods, including one-factor-at-a-time approach, design of

experiments and global sensitivity analysis. By comparing different approaches,

applicability and limitations of them will be shown.

However, sensitivity analysis can only identify significant parameters. It is still

imperative to investigate the release policy under parameter uncertainty.

Theoretically, it can be shown that there is about 50% risk that software reliability

requirement cannot be met when the mean value is used. This is because model

parameters are unknown in nature, and they are estimated based on the limited

amount of data. Provided that the 50% risk can be too high to be acceptable for

management, software release policy under parameter uncertainty is studied.

8

Furthermore, for release time determination problem, most existing research

formulates it as single-objective optimization problems, which can hardly describe the

decision process accurately. Therefore, multi-objective optimization models are

developed for software release time determination problem, and different multi-

objective optimization approaches are adopted for analysis.

The remainder of this thesis is organized as follows. Chapter 2 provides a general

review on software reliability modeling and the corresponding release time

determination problem. In Chapter 3, reliability analysis and optimal version-updating

for open source software is studied. Chapter 4 discusses the proposed generic data-

drive software reliability model with model mining technique. Chapter 5 discusses the

sensitivity analysis of release time of software reliability models incorporating testing

effort with multiple change-points. Chapter 6 highlights the risk that software cannot

meet its reliability requirement due to parameter uncertainty. Also, a risk-based

approach for release time determination with delay costs considerations is introduced.

Chapter 7 formulates the software release time determination problem as multi-

objective optimization problems, and different multi-objective optimization

approaches are compared. Chapter 8 concludes current research works and looks at

future research prospects.

9

Chapter 2 Literature Review

Software reliability modeling is of great importance for the reason that it can measure

the reliability of software quantitatively by analyzing the recorded failure data. Due to

this, a large number of software reliability models have been proposed and published

in the literature (Musa et al., 1987; Xie, 1991; Lyu, 1996; Pham, 2000). In this

chapter, a brief review on software reliability modeling is given, focusing on the two

general categories: analytical software reliability models (ASRMs) and data-driven

software reliability models (DDSRMs) (Hu et al., 2007). In addition, software release

time determination, as a typical application of software reliability models, is briefly

reviewed as well.

2.1 Analytical Software Reliability Models

Analytical software reliability models (ASRMs) are generally based on certain prior

probabilistic assumptions made on the stochastic behavior of software failure process,

such as the Markov process assumption and non-homogenous Poisson process

(NHPP) assumption. It is worth noting that most of the Markov models are times-

between-failures models and almost all NHPP models are failure-count models

according to the classification system proposed by Goel (1985). In the following sub-

sections, the Jelinski-Moranda model and a general formulation of NHPP models will

10

be briefly introduced. In addition, some recent advances on ASRMs will be discussed

as well.

2.1.1 The Jelinski-Moranda Model

From a historic point of view, the Jelinski-Moranda model (Jelinski and Moranda,

1972) has a paramount influence on software reliability modeling. It is the first

published Markov model and the main assumptions of this model are:

(1) The number of initial software faults is an unknown but fixed constant.

(2) A detected fault is removed immediately and no new faults are introduced.

(3) Times between failures are independent, exponentially distributed random

quantities.

(4) Each remaining software fault contributes the same amount to the software failure

intensity.

In the Jelinski-Moranda model, let 0N denote the number of initial faults in the

software before the testing starts; the initial failure intensity is then 0N , where  is

a constant denoting the failure intensity contributed by each fault. Let iT ,

0,,2,1 Ni  denote the time between (i-1)th and ith failures, then iT ‟s are

independent, exponentially distributed random variables with parameter

)]1([0  iNi  , 0,,2,1 Ni  (2.1)

11

It is obvious that the failure intensity is constant between the detection of two

consecutive failures. This is quite reasonable since the software is unchanged between

the detection of two consecutive failures and the testing process is random and

homogeneous. However, the assumption that software faults are of the same size

contributing the same amount to software failure intensity is not realistic. In order to

relax this unrealistic assumption, some extensions of Jelinski-Moranda model were

made, see, e.g., Schick and Wolverton (1978), Shanthikumar (1981), Xie (1990),

Chang and Liu (2009). However, due to the complexity of these models, they have

not been widely applied in practice compared with the NHPP models, which will be

discussed in the following section.

2.1.2 A General Formulation of NHPP Models

NHPP models form a major part of analytical software reliability modeling. In these

models, the underlying software fault detection process is assumed to be a non-

homogeneous Poisson process. As software faults are detected, isolated and removed,

the software being tested becomes more reliable with a decreasing failure intensity

function. In general, an NHPP software reliability growth model (SRGM) can be

developed by solving the following differential equation (Pham, 2003):

 )()()(
)(

tmtatb
dt

tdm
 , (2.2)

where m(t) is the mean value function of detected faults, a(t) and b(t) are fault content

function and failure detection rate function respectively. It can be seen that the idea

behind the above equation just stems from the Jelinski-Moranda model, where the

12

relation between failure intensity and the number of remaining faults is studied. Given

different expressions and explanations of a(t) and b(t), different NHPP SRGMs can be

obtained (Zhang and Pham, 2000).

Specifically, when ata )(, btb )(, the important Goel-Okumoto (GO) model is

received (Goel and Okumoto, 1979). This model has strongly influenced the

development of many later models. Actually, many later NHPP models are

modifications or generalizations of this model. It should be noted that in the Goel-

Okumoto model, both two model parameters are positive, and there are some physical

meanings of them. In particular, a represents the number of faults to be eventually

detected, and b denotes the failure detection rate per fault.

The Goel-Okumoto model was successfully applied in many projects as reported in

Wood (1996). However, it was sometimes observed that the curve of the cumulative

number of faults is S-shaped. The reason for the S-shaped behavior is the “learning”

effect of the debugging process (Yamada et al., 1984). To consider this issue, the

delayed S-shaped NHPP model (Yamada et al., 1983; 1984) and the inflected S-

shaped NHPP model (Ohba, 1984) were proposed. For these two models, we still

have ata )(. The only difference is the failure detection rate function. Specifically,

)1()(2 bttbtb  is in the delayed S-shaped model (Yamada et al., 1983; 1984) and

)1()(btcebtb  is in the inflected S-shaped NHPP model (Ohba, 1984).

13

2.1.3 Recent Advances on ASRMs

Based on the above discussions, it can be seen that different assumptions indicate

different descriptions of the software failure process. However, it is worth noting that

the underlying software failure process can hardly be described precisely, and

assumptions are made to develop a model for the sake of mathematical tractability

(Goel, 1985). It is obvious that these assumptions are in most cases not valid and

cannot be made in some practical applications. Thus, relaxing these assumptions has

drawn a lot of research attention, and most recent advances on ASRMs were focused

on a better description of the software failure process and more reasonable software

reliability analysis.

Fault Correction Process

Most existing SRGMs assume that faults are immediately removed when failures are

detected, i.e., the repair time is ignored. Although this assumption provides simplicity

and mathematical tractability for the modeling of the software failure process, it is

usually not the case. In reality, the fault removal activity rarely occurs immediately

after the observation of failure, and the time needed to correct the fault cannot be

ignored.

Schneidewind (1975) first modeled the fault correction process following the fault

detection process with a constant time delay. However, a constant time delay

assumption may not be appropriate since faults cannot be corrected with the same

amount of testing effort in reality. For example, based on the empirical study of nearly

14

200 anomalies from seven NASA spacecraft systems, it was found that some

anomalies are in need of multiple corrections (Lutz and Mikulski, 2004). With the

consideration of this, some extensions are made under the framework of the model

proposed by Schneidewind (1975). Xie and Zhao (1992) substituted the constant time

delay with a time dependent delay function in their model, with the assumption that

detected faults become harder to be corrected as the testing proceeds. Schneidewind

(2001) assumed that the time delay is an exponentially distributed random variable.

Recently, Xie et al. (2007) carried out a comprehensive study of the time delay issues

with different kinds of distributions. Wu et al. (2007) discussed the parameter

estimations of the combined model. Moreover, Huang and Lin (2006) incorporated

both fault dependency and debugging time lag into the modeling.

The models discussed above incorporated the correction process into analysis by

introducing a time delay function. In fact, there also exist other alternative ways.

More specifically, Bustamante and Bustamante (2002) proposed a software reliability

model which represents the software failure process with a non-homogeneous Poisson

Process and the correction process with a multinomial distribution. Gokhale et al.

(2004; 2006) modeled both fault detection process and correction process with a non-

homogeneous Markov chain, where different fault removal policies are studied by

different forms of the fault removal rate. Lo and Huang (2006) proposed a general

framework for modeling these two processes with assumption that the mean number

of faults corrected in a very small time interval is proportional to the mean number of

detected but not yet corrected faults remaining in the system. Huang and Huang

(2008) introduced the use of finite and infinite server queueing models to describe

15

these two processes, and the correction process is studied by cumulative distribution

function of failure correction time.

However, most of the existing models considering both of these processes assume that

the failure rate at current time is proportional to the number of remaining undetected

faults. In fact, since the fault removal activity is considered, this assumption no longer

holds, and it is more reasonable to assume that the failure rate at time t is proportional

to the number of remaining uncorrected faults (Hwang and Pham, 2009).

Incorporation of Testing Effort

In recent years, incorporating testing effort into software reliability growth models

(SRGMs) has received a lot of attention, probably because testing effort is an essential

process parameter for management. Huang et al. (2007) showed that logistic testing

effort function can be directly incorporated into both exponential-type and S-type

non-homogeneous Poisson process (NHPP) models, and the proposed models were

also discussed under both ideal and imperfect debugging situations. Kapur et al.

(2007) discussed the optimization problem of allocating testing resources by using

marginal testing effort function (MTEF). Later, Kapur et al. (2008a) studied the

testing effort dependent learning process, and faults were classified into two types by

the amount of testing effort needed to remove them. In addition, some research

incorporated change-point analysis in their models as the testing effort consumption

may not be smooth over time (Huang, 2005; Kapur et al., 2008b; Lin and Huang,

2008). Moreover, as constructing model is not the end, the optimal release time

16

problem considering testing effort was also discussed (Yamada et al., 1993; Huang

and Kuo, 2002; Huang and Lyu, 2005a; Lin and Huang, 2008).

However, most of the research assumes that parameters of the proposed models are

known. In fact, there always exist estimation errors as parameters in testing effort

function and SRGMs are generally estimated by least squares estimation (LSE) and

maximum likelihood estimation (MLE) methods respectively. It is necessary to

conduct the sensitivity analysis to determine which parameter may have significant

influence to the software release time. This is even more important when there are an

increasing number of parameters involved in the model.

2.2 Data-Driven Software Reliability Models

In data-driven approach, the software failure process is viewed as a time series, and

data-driven software reliability models (DDSRMs) are constructed to recognize the

inherent patterns of the process which are carried by the recorded failure data. By

modeling and analyzing the inherent patterns of software failure process, software

reliability prediction can be made. The main advantage of DDSRMs is that they do

not require restrictive assumptions on software faults or software failure process; thus

they may have better applicability across different software projects compared with

traditional ASRMs.

Machine learning techniques like artificial neural networks (ANNs) and support

vector machines (SVMs) have been successfully applied for constructing DDSRMs.

17

For ANNs, both feed-forward neural networks and recurrent neural networks were

used and compared in software reliability analysis (Karunanithis et al., 1992; Sitte,

1999). Later, Cai et al. (2001) investigated the effectiveness of the use of ANNs in

software reliability prediction, and found that ANNs‟ performance is highly

dependent on the „smooth‟ trend of the data. Ho et al. (2003) revisited the

connectionist model with a modified Elman recurrent neural network, which

outperforms both of the Jordan model and feed-forward model. Tian and Noore

(2005a) used genetic algorithm (GA) to optimize the number of the delayed input

neurons and the number of neurons in the hidden layer of the neural network

architecture. Su and Huang (2007) developed a dynamic weighted combinational

model for software reliability prediction, and the results showed that the proposed

model has a fairly accurate prediction capability. Hu et al., (2007) applied recurrent

neural networks to model both the fault detection process and the fault correction

process in software testing, and the authors proposed a GA-based networks

configuration approach.

Besides ANNs, another machine learning technique that has emerged as a promising

modeling paradigm is support vector machines (SVMs), which have good

generalization capability due to the structural risk minimization principle used

(Vapnik, 1995; Vapnik, 1999; Kecman, 2001; Scholkopf and Smola, 2002). SVMs

have been successfully applied in many domains such as pattern recognition, time

series forecasting, diagnostics, robotics, and process control. In software reliability

modeling and prediction domain, SVM-based SRMs have been proposed and studied

as well. Tian and Noore (2005b) proposed an SVM-based modeling approach to

software reliability prediction, and experimental results showed that the proposed

18

approach adapts well across different software projects and has higher next-step

prediction accuracy compared with feed-forward ANN and recurrent ANN modeling

approaches. Pai and Hong (2006) proposed an SVM-based SRM which uses

simulated annealing (SA) algorithms to optimize model parameters.

However, most existing research on data-driven approach to software reliability

modeling and prediction generally assumes that a failure is strongly correlated with

the most recent several failures. This assumption restricts the general time series

analysis to a special case as the correlation may be quite complicated in a time series

(Tsay, 2002). There should be a systematic way to discover the correlation among

failures, which enables the model user to decide appropriate time lag terms to be used

in the model, and hence the model performance could be improved.

2.3 Determination of Software Release Time

Constructing software reliability models is not the end. It is almost always the case

that the model is developed to help management make some decisions. A typical

purpose is to guide management on when to release/sell the software in the market.

Since Okumoto and Goel (1980) firstly proposed the determination of software

release time problem in 1980, many research works have been done in the past several

decades.

Koch and Kubat (1983) introduced the penalty cost into the release time

determination model. Yamada and Osaki (1985) proposed a decision-making model,

19

where both reliability and cost are considered. In particular, their model was

developed to minimize the cost subject to a reliability constraint. Dohi (1999)

transformed the optimal software release time problem into a time series prediction

problem, and the artificial neural network (ANN) was employed. Nishio and Dohi

(2003) presented the determination of the optimal software release time based on

proportional hazards software reliability growth model. Huang and Lyu (2005)

proposed the optimal release time policy for software systems considering cost,

testing-effort, and test efficiency, which enriched the decision model. Xie and Yang

(2003) and Boland and Chuiv (2007) considered the optimal software release time

when repair is imperfect. Chiu (2009) proposed a Bayesian method to determine the

optimal release time for software systems based on experts‟ prior judgments.

It is worth noting that the uncertainty involved in the determination of optimal release

time has received special attention recently (Yang et al., 2008; Ho et al., 2008). It has

been pointed out that the point estimate received from the traditional way is not

precise as the software debugging process is essentially random. Yang et al. (2008)

introduced a risk-control approach to obtain the optimal release time by quantifying

the uncertainty in the actual cost of the project by variance. Ho et al. (2008) determine

the optimal release time by considering the randomness of the mean value function,

and the randomness is assumed to stem from the error-detection process. However,

the optimal release policy considering the parameter uncertainty is still lacking.

Furthermore, for the determination of optimal software release time, reliability and

cost are the two important dimensions that are generally considered. It should be

noted that most existing research formulates this decision process as single-objective

20

optimization problems. Although these formulations can greatly reduce the

complexity, they can hardly reflect the nature of the decision process, which is

essentially a multi-objective optimization problem. More specifically, maximizing

reliability and minimizing cost should be achieved simultaneously.

21

Chapter 3 Reliability Analysis and Optimal Version-

Updating for Open Source Software

3.1 Basic Problem Description

Open source software (OSS) development is a new way of building and deploying

large software systems on a global basis, and it differs in many interesting ways from

the principles and practices of traditional software engineering (Raymond, 2001).

There is a widespread recognition across software industry that open source projects

can produce software systems of high quality and functionality, such as Linux

operating system, Apache web server, Mozilla browser, MySQL database system,

etc., that can be used by thousands to millions of end-users (Mockus et al., 2002).

The OSS development is based on a relatively simple idea: the original core of the

OSS system is developed locally by a single programmer or a team of programmers.

Then a prototype system is released on the internet, so that other programmers can

freely read, modify and redistribute that system‟s source code. The evolution process

of OSS is much faster than the closed source project. The reason is that in the

development of OSS, tasks are completed without assigning from hierarchical

management and there is no explicit system-level design, no well-defined plan or

schedules. A central managing group may check the code but this process is much

less rigid than in closed-source projects.

22

Several OSS systems have been in widespread use with thousands or millions of end-

users, e.g. Mozilla, Apache, OpenOffice, Eclipse, NetBeans, GNOME, and Linux.

Due to the success of OSS, more and more software companies have switched from a

closed source to an open source development in order to win market share and to

improve product quality (Ven and Mannaert, 2008). Even the leading commercial

software companies, such as IBM and Sun, have begun to embrace the open source

model and are actively taking part in the development of OSS products.

As OSS application rapidly spreads out, it is of great importance to assess the

reliability of OSS system to prevent potential financial loss or reputational damage to

the company (Gyimothy et al., 2005). Due to this consideration, many studies have

been carried out recently on predicting number of defects in the system. For instances,

Eaddy et al. (2008) investigated the relationship between the degree of scattering and

the number of defects by stepwise regression and other statistical techniques. Marcus

(2008) proposed a new measure named Conceptual Cohesion of Classes (C3) to

measure the cohesion in object-oriented software. They also applied C3 in logistic

regression to predict software faults with the comparisons with other object-oriented

metrics. Kim et al. (2008) introduced a new technique for predicting latent software

bugs in OSS, called change classification. Change classification uses a machine

learning classifier to determine whether a new software change is more similar to

prior buggy changes or clean changes. In this manner, change classification predicts

the existence of bugs in software changes.

Although the works above can provide important information to assess the reliability

for OSS, the total number of defects in a software system is an essentially indirect

23

reliability measurement where the time factor is often neglected (Xie, 1991). Only in

some recent studies by Tamura and Yamada (2008; 2009), such issue is considered. In

particular, Tamura and Yamada (2008) combined neural network and software

reliability growth modeling for the assessment of OSS reliability. In Tamura and

Yamada (2009), the stochastic differential equation is introduced for the modeling of

OSS reliability, and optimal version-update time is discussed based on it.

In this chapter, we will further investigate the modeling of OSS reliability and its

optimal version-update time determination. Our model is based on non-homogeneous

Poisson process (NHPP) which has been proven to be a successful model for software

reliability (Musa, 1987; Xie, 1991; Lyu, 1996; Pham, 2000). However, different from

the NHPP models for closed source software and the models proposed in Tamura and

Yamada (2008; 2009), our model incorporates the unique patterns of OSS

development, such as the multiple releases property and the hump-shaped fault

detection rate function. In addition, because the project cost is no longer a crucial

factor for optimal release time determination for most OSS projects, in this study, we

formulate a new version-update time determination problem for OSS. Specifically, the

multi-attribute utility theory (MAUT) is adopted for this decision process, where two

important strategies are considered simultaneously: rapid release of the software to

maintain sufficient volunteers involved and the acceptable level of OSS reliability.

The rest of this chapter is organized as follows. Section 3.2 describes our proposed

model based on NHPP incorporating unique properties of OSS. Section 3.3

formulates the optimal version-update time problem based on MAUT, where the rapid

release strategy and the level of reliability are considered simultaneously. Section 3.4

24

provides numerical examples for validation purpose based on the real world data sets.

Conclusions are made in Section 3.5.

3.2 Modeling Fault Detection Process of Open Source Software

The underlying software fault detection process is commonly assumed to be a non-

homogeneous Poisson process (NHPP) (Musa, 1987; Xie, 1991; Lyu, 1996; Pham,

2000). As software faults are detected, isolated and removed, the software being

tested becomes more reliable with a decreasing failure intensity function. In general,

an NHPP software reliability growth model (SRGM) can be developed by solving the

following differential equation (Pham, 2003):

 )()()(
)(

tmtatb
dt

tdm
 , (3.1)

where)(tm ,)(ta and)(tb are the mean value function of detected faults, the fault

content function and fault detection rate function respectively, and typical boundary

point is 0)0(m . Given different expressions and explanations of a(t) and b(t), many

NHPP SRGMs can be developed (Zhang and Pham, 2000).

The basic assumption illustrated by the above formulation can also hold in the context

of OSS (Tamura and Yamada, 2009). The reason lies in the fact that in OSS the

failure rate at current time is still determined by the product of the fault detection rate

25

function and the number of remaining faults. However, it is worth noting that some

special properties of OSS have not been considered in traditional NHPP SRGMs.

One special property of OSS is that multiple releases are common and often (Kozlov

et al., 2008). Hence, a general NHPP software reliability model for OSS can be

developed based on the following equation

 )()()(
)(

tmtatb
dt

tdm
iii

i  (3.2)

where)(tmi ,)(tai and)(tbi are the mean value function of detected faults, the fault

content function and failure detection rate function for release i respectively. As to the

time basis, t starts from zero for each new release of OSS. It should be noted that we

treat each new release as a new version of software since the defect count of a

previous release and its current release do not correlate with each other in most

projects (Illes-Seifert and Paech, 2010). Although the previous release has some

uncorrected faults which may still exist in the new release, these faults will be

counted again in the system if they are found. Therefore, 0)0(im for each release.

Besides the multiple releases property, the fault detection process in the development

of OSS is essentially different from that of traditional closed source software. The

testing process of traditional closed source software relies on a specified testing team,

where the number of testers is generally stable. Therefore, the constant fault detection

rate has become a common assumption, such as in the famous Goel-Okumoto (GO)

model (Goel and Okumoto, 1979). Moreover, to account for the “learning” effects of

26

the testing team, the increasing fault detection rate function is used, and these models

are S-shaped models as discussed in Yamada et al. (1983), Ohba (1984).

Unlike traditional closed source software, OSS involves much more testers in the

testing process, and most of these testers are volunteers. The number of volunteers

involved in the OSS is largely influenced by the attractiveness of the software

(Raymond, 2001). More specifically, each release of OSS can attract increasing

number of volunteers in the early phase since more and more people know it and use

it. After the number of volunteers reaches at the peak, it will decrease since the

software is losing its attractiveness over time. Accordingly, it is reasonable to assume

that the fault detection rate in OSS follows a hump-shaped curve. In order to describe

this special property in OSS, the first derivative of logistic function is selected, and it

is given by

 

  2exp1

exp
)(

tA

tAN
tb

ii

iiii
i








 (3.3)

where Ni is the product of total amount of testing effort eventually consumed and a

constant fault detection rate (Huang and Kuo, 2002; Huang et al. 2007), Ai scales the

)(tbi without changing its shape and i is the shape parameter of)(tbi for each

release i. It is worth noting here that)(tbi reaches its maximum value

4max iii Nb  at

i
i

i At ln
1

max


 . (3.4)

27

Since the fluctuation in)(tbi originates from the change in the number of volunteers

involved in the fault detection process, maxit indicates that the testing effort from

volunteers reaches its maximum at this time for release i.

Moreover, the Weibull-type fault detection rate function can also capture the property

of the hump-shaped curve with fairly good flexibility. That is

 ii ttNtb iiiii
  


exp)(

1
 (3.5)

where Ni is still the product of total amount of testing effort eventually consumed and

a constant fault detection rate (Huang and Kuo, 2002; Huang et al. 2007); i and i

are the scale parameter and shape parameter respectively for each release i. However,

the use of Weibull function suffers from two major deficiencies which may restrict

their applicability in OSS reliability modeling. First, when 1i ,)(tbi is a

monotonic decreasing function over time. This cannot capture the special property of

OSS where the hump-shaped curve is the case. Second, when 1i ,)0(ib is always

equal to zero and this actually introduces a bias into the modeling. Specifically, each

version of the OSS has a number of volunteers (if no volunteers, at least developers)

at the starting time. Therefore,)0(ib should be a non-zero value.

The selection of the logistic function can overcome the disadvantages of the Weibull

function. Not only does it have good flexibility to describe the hump-shaped curve, it

can also provide a more reasonable starting point with a non-zero value. In Huang and

Kuo (2002) and Huang et al. (2007), the differences between the use of Weibull-type

28

function and logistic function in software reliability modeling were also discussed,

and interested readers could refer to them for more detailed discussions.

3.3 Determination of Optimal Version-Update Time

Optimal release time determination in the testing phase is a typical application of

software reliability models. The total expected cost including both testing cost and

operation cost is a crucial factor for such determination (Pham, 2003). However, most

OSS projects are interest-driven, and most development activities in OSS projects are

accomplished by volunteer users. Consequently, the cost is no longer an important

consideration for the OSS community to decide the release time (Samoladas et al.,

2010).

For OSS development, there are two important factors for management to determine

the optimal version-update time in the testing phase. On one hand, a sufficient number

of volunteers are expected to be involved in the development of OSS. Since

volunteers are interest-driven and the attractiveness of OSS is of great importance for

them, rapid release of OSS becomes critical for maintaining the number of current

volunteers and attracting new comers (Raymond, 2001). On the other hand, reliability,

as the most important aspect of OSS quality, has to be ensured as well (Tamura and

Yamada, 2009). Since reliability is an increasing function over time, reliable software

requires a delay of the release to ensure that there is sufficient time for testing.

29

One challenging issue is that the rapid release strategy and the level of reliability are

essentially conflicting with each other. Management, therefore, has to make a

compromise between them. To the best of our knowledge, discussions on such a

problem are still lacking in the literature, which motivates us to develop a new

decision model. To tackle these two conflicting factors simultaneously, multi-attribute

utility theory (MAUT) is adopted in our decision model.

In MAUT, some independence assumptions, such as preferential independence, utility

independence and additive independence, are used for a more practical form of the

multi-utility function. It is worth noting that these assumptions are commonly

accepted in practice. Moreover, it has been shown that even when these assumptions

are violated, the additive multi-attribute function can provide fairly good

approximations (Edwards, 1977; Farmer, 1987). For more detailed discussions on the

multi-attribute function when independence assumptions are not held, interested

readers can refer to (Keeney and Raiffa, 1976). In this thesis, we will adopt these

commonly used assumptions.

The application of MAUT can obtain a one-dimensional multi-attribute utility

function, which is the measure of the attractiveness of the conjoint outcome of

attributes given a specified alternative. The additive form of the multi-attribute utility

function is given by

   



n

i

iin duwdddU
1

21 ,..., (3.6)

30

where each attribute is denoted by di, i=1,2,…n, the attractiveness of each attribute is

represented by the single utility function u(di) and wi‟s are the scaling constants

allocated for different single utility functions. The scaling constants represent the

different importance weights for the utilities of attributes and their sum is equal to one

(von Winterfeldt and Edwards, 1986). By maximizing the multi-attribute utility

function, the best alternative is obtained, under which the attractiveness of the

conjoint outcome of attributes is optimized.

The main reason for the selection of MAUT in our problem is that scenarios of

management can be appropriately represented by the structure of it. Furthermore,

MAUT has strong theoretical foundations based on the expected utility theory

(Fishburn, 1970). Last but not least, as indicated in Ferreira et al. (2009), the use of

MAUT provides the feasibility to consider the alternative on the continuous scale.

The procedure of the use of it in our problem is discussed in detail as follows.

3.3.1 Quantification of Attributes

One strategy to the success of open source software is the rapid release of the

software. Such a strategy can ensure a sufficient number of volunteers involved in the

testing process. However, the real number of volunteers and their testing effort can

hardly be traced and measured over time. To resolve this difficulty, analyzing the

failure data available for the determination of underlying volunteers‟ testing effort

could be an alternative. Fortunately, the proposed model in this chapter possesses

such an advantage because the fault detection rate function bi(t) can describe the

31

underlying change of volunteers‟ testing effort by the logistic function. Therefore, the

objective of rapid release can be formulated as.

Maximize max)(iii btb (3.7)

where the rapid release indicator i for release i is one of the attributes to be

considered in MAUT, and t is the decision variable,]1,0(i . In particular, a large

value of it indicates a rapid release, and it reaches its maximum at the time maxit .

On the other hand, during the testing process of OSS, maximizing software reliability

is also a major concern of management. A simple index to measure the reliability is

the ratio of the number of cumulative detected faults at time t to the mean value of

initial faults in the software (Lin and Huang, 2008). Hence, the reliability for release i

can be represented by mi(t)/ai, and it should be maximized.

Maximize iii atmR)( (3.8)

where the approximated reliability Ri is another attribute in MAUT, and t is the

decision variable. Since the reliability of release i is an increasing function of time, it

reaches its maximum when time goes to infinity. Therefore, when both rapid release

indicator and reliability are considered, the decision space is  ,maxit , and

)1,)([max iiii atmR  .

32

3.3.2 Elicitation of Single Utility Function for Each Attribute

The single utility function for each attribute represents management‟s satisfaction

level towards the performance of each attribute. It is usually assessed by a few

particular points on the utility curve (Keeney and Raiffa, 1976; von Winterfeldt and

Edwards, 1986). More specifically, suppose that the single utility function for

reliability is to be determined, the worst and best values of reliability are selected first

as 0
iR and 1

iR . For OSS management, these values are of great importance because

0
iR and 1

iR represent its lowest reliability requirement and its highest reliability

expectation respectively. At these boundary points, we have   00 iRu and   11 iRu .

Here, the subscript and the superscript of
j

iR represent the number of release and the

parameter‟s corresponding utility value respectively and  1 ,0j .

Subsequently, management is presented with some simple hypothetical gambles to

determine the certainty equivalents for a few 50-50 lotteries (Keeney and Raiffa,

1976; von Winterfeldt and Edwards, 1986). For example, management is asked to

chose a value for 5.0
iR , so that it is indifferent between accepting 5.0

iR with certainty

and having a 50-50 lottery, where there are 0.5 probabilities of getting 0
iR and 1

iR

respectively. Similarly, 75.0
iR can be determined with a 50-50 lottery which consists

of 5.0
iR and 1

iR . Also, 25.0
iR can be obtained with a 50-50 lottery which includes 0

iR

and 5.0
iR . These five points are commonly used to elicit the single utility function for

each attribute (Keeney and Raiffa, 1976), which is generally represented by the linear

or exponential function as

33

  ii RmlRu  or    ii RnmlRu  exp (3.9)

where l, m and n are constants which secure    1 ,0iRu . It should be noted that we

also need to compare the certainty equivalents and the expected values of the 50-50

lotteries to determine which form in (3.9) should be selected. Specifically, if they are

equal to each other, management is risk neutral and the linear form should be used.

Otherwise, management is not risk neutral and the exponential form is generally

adopted.

The single utility function  iu  for the rapid release indicator can be obtained as

well. Similarly, 0
i and 1

i are very important for management because they denote

its lowest rapid release requirement and its highest rapid release expectation

respectively.

3.3.3 Estimation of Scaling Constants

The following step is the estimation of the scaling constants
i

w and
iRw . For real

applications in OSS projects, they indicate the importance weights that management

allocates for each attribute (von Winterfeldt and Edwards, 1986). There are two

common methods to assess the scaling constants: certainty scaling and probabilistic

scaling (von Winterfeldt and Edwards, 1986). Given that the number of attributes

considered in our problem is only two and this is a small number, the probabilistic

scaling technique is recommended for use.

34

In probabilistic scaling, management is asked to compare two choices as shown in

Figure 3.1. On the left hand side, there is a certain joint outcome  01, ii R comprised

of rapid release indicator at its best level and reliability at its worst level. On the right

hand side, the lottery is comprised of both attributes at their best levels with

probability p and of both attributes at their worst levels with probability 1-p.

p

1-p

 01, ii R

 11, ii R

 00 , ii R

The certain joint outcome The lottery

Figure 3.1 Two choices for the determination of the scaling constant
i

w

In the beginning, management is asked to compare the certain outcome with the

lottery having a 50-50 chance of occurring. If management prefers the certain

outcome, the probability p is gradually increased until management is indifferent with

these two choices. On the contrary, if management prefers the lottery, we decrease the

probability p until management‟s indifference towards these two choices is achieved.

At indifference, p is equal to the scaling constant
i

w for the rapid release indicator.

Since the sum of scaling constants must be equal to one, the other scaling constant

iRw can be obtained with ease.

35

3.3.4 Maximization of Multi-Attribute Utility Function

Based on the previously estimated single utility functions and scaling constants, the

additive form of the multi-attribute utility function in our problem can be obtained.

That is

     iRiii RuwuwRU
ii

  , (3.10)

where
i

w and
iRw are the scaling constants for attribute i and Ri respectively and

 iu  and  iRu are the single utility function for each attribute. By maximizing this

multi-attribute utility function, the optimal version-update time *
iT is obtained.

It is worth noting here that the additive form of multi-attribute utility function is based

on the utility independence assumption and the additive independence assumption.

Interested readers can refer to Keeney and Raiffa (1976) for more detailed theoretical

discussions. However, from the real applications‟ point of view, these assumptions are

commonly accepted in practice (Brito and de Almeida, 2009; Ferreira et al., 2009).

3.3.5 Summary of the Procedure

The procedure of the use of MAUT in our problem is summarized in Figure 3.2. The

first step of the implementation of the decision model is to quantify the attributes in

our problem, which are the rapid release indicator and the reliability. For the rapid

release indicator, it is quantified by (3.7) based on the failure data collected during the

36

testing process. While for the attribute of reliability, it represents the ratio of

cumulative detected faults at time t to the mean value of initial faults and it is

quantified by (3.8). The following step is the elicitation of the single utility functions

for both attributes. As discussed previously, the linear form and the exponential form

in (3.9) are generally used. After this, the scaling constants for each attribute are

estimated by comparing the two choices as shown in Figure 3.1. Finally, based on the

single utility functions and the scaling constants, the multi-attribute utility function is

obtained as shown in (3.10). By maximizing this multi-attribute utility function, the

optimal version-update time for release i is determined, which is the best option of

version-update time when the rapid release strategy and the reliability of software are

considered simultaneously.

 Quantification of rapid release indicator βi and reliability Ri

Elicitation of single utility functions and

Estimation of scaling constants and

Maximization of multi-attribute utility function U(βi,Ri)

i
w iRw

 iu   iRu

Figure 3.2 The structure of the decision model for the determination of optimal

version-update time

3.4 Numerical Examples

Special properties of OSS are incorporated into the proposed model for open source

software reliability. In order to compare the proposed model against traditional

37

models for reliability assessment, numerical examples are provided based on two real

world data sets from two famous open source projects: Apache and GNOME.

Furthermore, based on the failure data from the first release of Apache, a decision

model application example is provided, and sensitivity analysis is introduced to help

management know how robust the decision is.

3.4.1 The Data Sets

Enormous open source projects are undergoing development and each project

generates a lot of data sets. Therefore, it is important to select representative open

source projects for model validations. Apache and GNOME projects both have large

and well-organized communities, where a great number of developers have the right

to update and change files freely. The large sizes of these two projects make them the

state-of-the-art in terms of management of OSS projects.

Apache 2.0.35 is available to the public since 2002/04/06 and this is the first release

of Apache‟s major version 2.0. We select this release and the following two as our

examples. As to the GNOME project, GNOME 2.0 is a major upgrade which includes

the introduction of the human interface guidelines. Hence, this release and the

following two releases are adopted for our test beds. The retrieved faults are presented

in Table 3.1 and Table 3.2 respectively. In these two tables, some failure data is not

shown for simplicity. For example, since there are no faults detected on the 29
th

 day in

Apache 2.0.35, failure data on this day is not shown in Table 3.1.

38

Table 3.1 Detected faults in Apache official public releases

Apache 2.0.35 Apache 2.0.36 Apache 2.0.39

Days

from

release

Detected

bugs

Days

from

release

Detected

bugs

Days

from

release

Detected

bugs

1 5 1 2 1 1

2 5 2 5 2 2

3 4 3 1 3 2

4 1 4 1 4 3

5 2 5 1 5 3

6 4 7 2 7 2

7 6 8 1 8 1

8 2 9 1 9 1

10 1 10 3 10 1

11 8 12 2 11 1

12 5 13 1 15 3

13 2 15 2 16 2

14 2 17 1 17 3

15 1 18 2 18 1

17 2 21 1 19 1

18 3 25 1 22 3

19 4 27 1 23 1

20 1 29 2 24 1

21 4 30 2 25 2

23 2 31 3 26 1

24 1 32 1 28 1

25 1 33 3 29 1

26 2 34 1 30 2

27 1 35 3 31 1

28 2 38 3 32 1

31 1 40 1 35 3

34 1 43 1 38 1

43 1 44 1 39 1

 103 1 42 1

 43 1

 49 3

 50 1

 51 1

 57 1

 66 1

 70 1

 81 1

 164 1

39

Table 3.2 Detected faults in GNOME official public releases

GNOME 2.0 GNOME 2.2 GNOME 2.4

Weeks

from

release

Detected

bugs

Weeks

from

release

Detected

bugs

Weeks

from

release

Detected

bugs

1 6 1 5 1 4

2 5 2 4 2 5

3 3 3 5 3 2

4 2 4 5 4 7

5 5 5 9 5 3

6 5 6 5 6 1

7 8 7 2 7 3

8 4 8 1 8 4

9 8 9 2 9 3

10 3 10 3 10 5

11 2 11 2 11 1

12 1 13 1 12 3

13 6 15 4 15 2

14 8 16 1 18 1

15 6 17 1 19 1

16 2 18 1 20 5

17 2 22 1 21 2

18 1 24 2 23 1

19 1 46 1

20 1

21 1

22 2

24 3

3.4.2 Reliability Assessment for Open Source Software

To compare the proposed model with traditional models for reliability assessment, the

widely used GO model (Goel and Okumoto, 1979) and S-shaped model (Yamada et

al., 1983) are selected as examples of traditional models. The mean value functions of

these two models for release i are

  tbatm iii  exp1)(and     tbtbatm iiii  exp11)(, (3.11)

40

where ai represents the number of expected initial faults in each release i.

Furthermore, their corresponding fault detection rate functions are

  ii btb  and    tbtbtb iii  1
2

. (3.12)

Since both GO model and S-shaped model are based on the assumption that ai(t)=ai,

this assumption is also adopted in our proposed model. Hence, the mean value

function of the proposed model for release i is obtained as

   tBatm iii
*exp1)( (3.13)

where      0*
iii BtBtB  and)(tBi is the integration of)(tbi over the time period

 t ,0 .

Parameters of these models are estimated by the least square estimation (LSE)

method. The estimation is done by minimizing the sum of squared residuals, which is

the difference between estimated values and true observations as   
 


k

i

k

j

ijiji

i

ntm
1 1

2
,

where nij denotes the cumulative number of detected faults until time tij, i denotes the

release number and j denotes the observation number for each release i. Specifically,

i=1, 2, …, k and j=1, 2, …, ki. It means that there are totally k releases, and for each

release i, there are ki number of observations.

41

With the LSE method, the descriptive performance of the model can be measured by

the mean squared error (MSEi) for each release i, and if it is small, it indicates the

good descriptive performance of the model. In particular, the MSEi is given by

  












 


ik

j

ijiji
i

i ntm
k

MSE
1

21
. (3.14)

After the estimates of the parameters are obtained numerically, these models can be

used to measure the reliability of the software. Generally, software reliability at

current time t is measured by

  )()(exp)|(tmxtmtxR  . (3.15)

In (3.15),)|(txR represents the conditional software reliability which is defined as

the probability that the software will not fail given a specified time interval],(xtt 

(Musa et al. 1987; Xie, 1991). However,)|(txR here cannot measure the reliability

for OSS accurately. The reason is coming from the unique property of OSS: the

hump-shaped fault detection rate function. More specifically, suppose that most

volunteers have left from a specific release of OSS, no matter how many remaining

faults are still in this release, this release can generate a high value of)|(txR . In this

case, the software may not be really reliable as the high reliability is due to the fact

that few people are using it. With the consideration of this, we adopt the reliability

measurement as shown in (3.8). Although it is simple, it can assess the OSS reliability

more precisely.

42

In order to compare the reliability on the same time basis for different models, the real

version-update time for each release is used. For Apache data, the real release times

are Tr1=32, Tr2=41, and Tr3=53 days from each release respectively; while for

GNOME data, these numbers are 32, 31 and 29 weeks. Estimated parameter values

and numerical results are shown in Table 3.3 and Table 3.4.

Table 3.3 Estimated parameter values and numerical results for Apache

No. of release Different models Estimated parameters MSEi Ri(Tri)

1 GO model a1=84.60, b1=0.0564 5.76 0.8352

1 S-shaped model a1=74.27, b1=0.1539 7.70 0.9570

1 Proposed model
a1=106.04, N1=1.6798,

A1=3.1910, 1055.01 

2.80 0.6717

2 GO model a2=52.32, b2=0.0393 8.84 0.8007

2 S-shaped model a2=49.90, b2=0.0896 8.39 0.8813

2 Proposed model
a2=88.19, N2=1.0746,

A2=3.5814, 0740.02 

5.98 0.4944

3 GO model a3=58.38, b3=0.0367 2.57 0.8571

3 S-shaped model a3=56.90, b3=0.0805 2.40 0.9260

3 Proposed model
a3=82.97, N3=1.5645,

A3=3.0012, 0576.03 

0.68 0.6245

Table 3.4 Estimated parameter values and numerical results for GNOME

No. of release Different models Estimated parameters MSEi Ri(Tri)

1 GO model a1=140.09, b1=0.0418 11.84 0.7371

1 S-shaped model a1=90.58, b1=0.1818 7.47 0.9797

1 Proposed model
a1=142.06, N1=1.1538,

A1=5.9508, 1794.01 

4.44 0.6195

2 GO model a2=55.98, b2=0.1255 2.93 0.9796

2 S-shaped model a2=50.78, b2=0.3276 4.12 0.9996

2 Proposed model
a2=70.76, N2=2.1194,

A2=1.9606, 1735.02 

2.44 0.7496

3 GO model a3=55.17, b3=0.1003 2.92 0.9455

3 S-shaped model a3=52.86, b3=0.2302 4.32 0.9903

3 Proposed model
a3=68.99, N3=2.1343,

A3=2.4748, 1378.03 

1.99 0.7600

43

It can be seen that for different releases of Apache and GNOME, the proposed model

has the best descriptive performance with the smallest value of MSEi. The proposed

model can describe the failure process of OSS more accurately. Furthermore, in the

later stage of software testing, there are fewer and fewer faults detected. Since both

GO model and S-shaped model cannot describe the hump-shaped fault detection rate

function accurately, they describe this with the assumption that most faults in the

software have already been detected. Therefore, they provide an underestimation of

the number of expected initial faults in the software and an overestimation of the

reliability of software. The estimates of the reliability of software from traditional

models are especially dangerous for management as they could be too optimistic to be

acceptable.

3.4.3 A Decision Model Application Example

For management, it is of equal importance to predict the optimal version-update time

for each release. It should be noted here that the version-update time is a more

accurate concept than the release time for OSS. The reason lies in the fact that

software is still used and tested by the volunteers after the each version-update. In

other words, even after the version-update of OSS, it is still under the testing phase

unless there is other information to indicate that this OSS is released for commercial

use. Due to this consideration, the failure data after each version-update is also used

as shown in Table 3.1 and Table 3.2. Specifically, in this part, the decision model is

validated on the first release of Apache. Based on the procedure discussed in Section

3.3, the determination of the optimal version-update time is presented as in the

following steps.

44

Step 1: Quantification of rapid release indicator and reliability

As discussed, rapid release indicator 1 and reliability R1 are two important factors

for management to determine the optimal version-update time for the first release of

Apache. Based on the failure data shown in Table 3.1, the model parameters can be

estimated as shown in Table 3.3. Then, both of these two attributes are quantitatively

measured by (3.7) and (3.8) and our decision space is  ,max1t where 11max1 t .

Step2: Elicitation of single utility function for each attribute

The single utility function for each attribute is elicited based on the management‟s

own scenarios. Since these management scenarios are subjective assessments from

management, they may not be precise. In this case, sensitivity analysis is needed, and

it will be discussed in the next subsection.

Suppose that management scenarios in our application example are as follows:

(1) Management demonstrates its risk neutral attitude for each attribute.

(2) Under the rapid release strategy, management indicates that at least half of the

maximum testing effort from volunteers at max1t should be maintained and the larger

the better; the highest rapid release expectation is achieved at the time when the

maximum testing effort from volunteers is reached.

(3) Considering the reliability of software, management has verified that at least 10%

of software faults should be detected and the more the better; its highest reliability

expectation is achieved when 60% of software faults are detected.

45

According to the scenarios above, some important points on the utility curve are

obtained. In particular, the lowest rapid release requirement is 5.00
1  and the

highest rapid release expectation is 11
1  ; the lowest reliability requirement is

1.00
1 R and the highest reliability expectation 6.01

1 R . Additionally, based on

management‟s risk neutral attitude towards these two attributes, the linear form of the

single utility function should be used. Specifically, we have   12 11  u and

  2.02 11  RRu . It is worth noting here that although the linear form is simple, it is

a widely accepted form especially when empirical results are needed (Scholz and

Tietje, 2002).

Step 3: Estimation of scaling constants

In this stage, the scaling constant
1

w is estimated first by comparing the two choices

in Figure 3.1. Management has claimed that it is indifferent between these two

choices when p is equal to 0.5. Therefore, 5.0
1
w . Since the sum of scaling

constants is equal to one,
1Rw is equal to 0.5 as well.

Step 4: Maximization of multi-attribute utility function

Finally, based on the estimated single utility functions and the scaling constants, the

multi-attribute utility function is evaluated and it is shown in Figure 3.3. The multi-

attribute utility function is maximized at the optimal version-update time 32.15*
1 T .

It means that Apache release one should be updated at this time, under which the

46

conjoint outcome of   95.0*
11 T and   47.0*

11 TR can provide the greatest overall

satisfaction for management. Given that the real version-update time is Tr1=32, a

delayed version-updating is used in practice under the provided management

scenarios. More specifically, when the real version-update time is used, we have

  35.011 rT and   67.011 rTR . Although 67% of total software faults in the

release are detected, 65% of the maximum testing effort from volunteers is lost.

10 15 20 25 30 35 40 45
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

release time

m
u
lt
i-
a
tt

ri
b
u
te

 u
ti
lit

y
 f

u
n
c
ti
o
n

*
1T 1rTmax1t  0

1T

Figure 3.3 The multi-attribute utility function given different release times

It is worth noting that in Figure 3.3, 11max1 t denotes that  tb1 reaches its

maximum at this time. In other words, testing effort from volunteers reaches the

maximum at this time and will decrease from this time on. If the OSS is updated at

this time, the highest rapid release expectation 11
1  is satisfied. However, at this

time, the reliability is low and we have   36.0max11 tR . It means that only 36% of

total faults in the software are detected. Due to this consideration, software is

expected to be tested longer for a higher reliability.

47

In addition, we denote  0
1T as the time when the lowest rapid release requirement

5.00
1  is reached and we have   7.270

1 T . Figure 3.3 shows that the multi-

attribute utility function remains at the 0.5 level when the version-update time is

greater than  0
1T . It indicates that only the reliability of software has reached its

highest expectation level 6.01
1 R from this time on. However, at the same time

period, software performs not well in terms of the rapid release requirement.

Based on the discussions above, it can be seen that when both reliability and rapid

release strategy are considered, a compromise should be between 11max1 t and

 0
1T . Figure 3.3 has shown us that the overall satisfaction level is maximized at the

optimal version-update time 32.15*
1 T .

3.4.4 Sensitivity Analysis

Optimal version-update time for each release i can be determined by maximizing the

multi-attribute function. However, since most parameters in the MAUT are obtained

based on the subjective assessments from management, the optimal version-update

time received may not be precise; in practice, sophisticated management needs to

know how robust the result is. Accordingly, sensitivity analysis is needed.

Sensitivity analysis is generally done by changing one parameter and setting the other

parameters at their fixed values (Xie and Hong, 1998, Huang and Lyu, 2005b; Lo et

al., 2005; Huang and Lo, 2006; Yang et al., 2008; Li et al., 2010). When the

parameter  is investigated to see how much the optimal version-update time *
iT is

48

changed, *
iT is in fact a function of  as other parameters are fixed using their

estimated values. Then i
qS , can be calculated and it is defined as the relative change

of the optimal version-update time for release i when  is changed by 100q%. That is

)(

)()(

*

**

,





i

iii
q

T

TqT
S


 (3.16)

A large value of i
qS , indicates that parameter  has a significant influence on the

determination of *
iT . Equivalently speaking, *

iT is regarded as sensitive to the change

of  . Normally, management should pay special attention to significant parameters

(Xie and Hong, 1998, Huang and Lyu, 2005b; Lo et al., 2005; Huang and Lo, 2006;

Yang et al., 2008; Li et al., 2010).

Based on the decision model application example, results of sensitivity analysis are

shown in Table 3.5. It is worth noting that the highest rapid release expectation is

achieved when the maximum testing effort from volunteers is reached.

Mathematically, it means that software should be released at timax when bimax is

achieved and 11
1  . Therefore, based on (3.7), it can be seen that the positive change

of the highest rapid release indicator 1
1 is impossible. In addition,

1Rw is not

investigated in the sensitivity analysis because the sum of scaling constants is always

equal to one.

49

Table 3.5 Results from sensitivity analysis

q -30% -20% -10% 10% 20% 30%

i
wq

S
1

, 
0.197 0.118 0.054 0.046 0.085 0.120

i

q
S 0

1,
0.072 0.048 0.024 0.025 0.050 0.076

i

q
S 1

1,
0.479 0.313 0.123 NA NA NA

i

Rq
S 0

1,
0.014 0.010 0.005 0.005 0.010 0.016

i

Rq
S 1

1,
0.126 0.041 0.033 0.027 0.049 0.067

Table 3.5 indicates that parameters 0
1 and 0

1R are not significant parameters. For

example, when 0
1 changes by 30%, the relative change of *

1T is still less than 8%.

From management‟s point of view, it means that its lowest rapid release and

reliability requirements will not have a significant effect on the final decision of

optimal version-updating. More specifically, requirements, such as (a) at least half of

the maximum testing effort from volunteers should be maintained and (b) at least 10%

of faults should be detected, are not significant. Accordingly, it is not necessary for

management to reassess these requirements.

On the other hand, parameters
1

w and 1
1 are significant parameters and

management needs to pay special attention to them. Normally, reassessments about

these parameters are needed for more accurate estimates. In particular, for the

importance weight
1

w allocated for the rapid release indicator, management should

check the probability p in Figure 3.1 again. As to the highest rapid release expectation

1
1 , management should reassess whether it is achieved when the maximum testing

effort from volunteers is reached.

50

One special parameter is 1
1R which represents the highest reliability expectation from

management. Sensitivity analysis results indicate that the positive change of it does

not affect the final decision much; while more than 20% negative change of it could

significantly affect the decision on optimal version-updating. Therefore, management

should be asked about whether its highest satisfaction towards reliability can be only

achieved when more than 60% of faults are removed from the software. If this is the

case, no more reassessments about the highest reliability expectation are needed;

otherwise, the highest reliability expectation should be checked again, especially for a

large decrease of this expectation.

3.5 Conclusion

The OSS approach provides a new paradigm of software development, where

volunteer participation has become a critical issue. Since volunteers are interest-

driven and the attractiveness of a specific release of software is generally decreasing

over time, multiple releases are expected to maintain a sufficient number of

volunteers and to attract new comers. In order to describe these unique properties of

OSS properly, a modified NHPP model is proposed to assess OSS reliability. Based

on the numerical results, it is found that traditional models provide too optimistic

reliability estimates.

Furthermore, since multiple releases of OSS are common, and it is often imperative to

know when to conduct the version-updating in the testing phase. On one hand, with

the consideration of volunteers‟ participation, software is expected to release as early

51

as possible when the volunteers‟ testing effort involved in OSS reaches its maximum.

On the other hand, reliability is also important because it is the most important aspect

of software quality. With the consideration of OSS reliability, software should be

tested for a long time prior to the next version-updating. The difficulty is that rapid

release strategy and OSS reliability are contradicting with each other. In order to

make a judicious decision on the optimal version-updating in this case, a decision

model based on MAUT is proposed. The application example has shown that the

proposed decision model can assist management to make a rational decision based on

its own scenarios. Our future research will investigate more OSS projects to justify

the generality of our proposed model for OSS reliability and its optimal version-

updating.

However, there are some weaknesses to our proposed decision model for the

determination of optimal version updating for OSS. Although sensitivity analysis can

help management to determine what significant parameters are and more attention can

be paid to them, the overall decision process is still quite subjective. Therefore,

experts‟ past experience and historical data are important for management to obtain a

trustworthy estimated optimal version update time. This is an interesting research

direction that can be explored in the future.

In addition, we only consider reliability and rapid release strategy in our approach. In

reality, there could be other attributes that should be incorporated in the decision

model. For example, when we desire for a rapid release of OSS, it will inevitably

increase the number of software versions, and a corresponding increase in the

complexity of the software product. More specifically, Eclipse was plagued with

52

compatibility problems due to the rapid release of software. In this case, complexity

can be added as another attribute that should be considered in the decision model.

Future research on this kind of problem will further refine our proposed decision

model.

53

Chapter 4 Performance Improvement for DDSRMs

4.1 Basic Problem Description

Most of recent DDSRMs are based on multiple-delayed-input single-output (MDISO)

architecture (Cai et al., 2001; Tian and Noore, 2005a; Tian and Noore 2005b; Pai and

Hong, 2006; Hu et al., 2007; Yang and Li, 2007; Yang et al., 2007). DDSRMs with

MDISO architecture form an important class of existing DDSRMs, which are focused

on the inter-relationship among software failure data instead of the relationship

between failure sequence number and failure data. In this chapter, our research also

focuses on DDSRMs with MDISO architecture, and we refer to the term “DDSRM”

as “DDSRM with MDISO architecture” if no further explanation is given.

In existing data-driven approach to software reliability modeling and prediction, the

software failure process is viewed as a time series. The inputs used by a DDSRM are

the past, consecutive lagged observations of the time series, while the outputs are the

future value. The time series model used by existing DDSRMs can be represented as

follows.

)](,),2(),1([)(wixixixFix   , (4.1)

where)(x is the observation from the software failure process, e.g., cumulative

numbers of detected software faults (Hu et al., 2007), software failure times (Tian and

54

Noore; 2005a; Tian and Noore, 2005b), inter-failure times (Cai 2001; Pai and Hong,

2006), etc.;)](,),2(),1([wixixix   is a vector of consecutive lagged terms

taken from the time series; and)(F is the time series model describing the

relationship between the past observations and the future value. In the literature,)(ix

is also denoted by ix for simplicity. In (4.1), w is the dimension of the input vector,

which is also termed as the size of the sliding window (Hu et al., 2007), the fixed-

length of moving window (Chen, 2007), the order of autoregressive terms (Chen,

2007), etc.

The processes of using a DDSRM for software reliability modeling and prediction are

illustrated in Figure 4.1, which consist of a training process, a testing process, and a

prediction process. Suppose that we have observed a total number of n software

failures, and failure data },,2,1,{ nixi  are recorded; then a DDSRM can be

constructed. The constructed model will first be trained with the first)(dn failure

data, },,2,1,{ dnixi   , where d is a nonnegative integer determined by the model

user; then the trained model will be tested for model performance by the rest d failure

data, },,2,1,{ ndndnixi  . If the testing result of model performance is

satisfactory, then the trained model can be used for prediction purpose.

55

DDSRM

Training Process

…
...

…
...

DDSRM

Prediction Process

…
...

…
...

(a)

(c)

xi

xi-1

xi-w+1

xi-w

xn-w+1

xn-w+2

xn

1ˆ nx

),,2,1(dnwwi  

DDSRM

Testing Process

…
...

…
...

(b)

xi

xi-1

xi-w+1

xi-w

),,2,1(ndndni 

Figure 4.1 The processes of using a DDSRM for software reliability modeling and

prediction

During the model training process, a w-dimensional vector, },,,{ 11  iwiwi xxx  , is

used as model input and ix is used as the expected output, which form a training

sample pattern, as illustrated in Figure 4.1 (a). With i changing from)1(w to

)(dn  , there are a total of)(wdn  training sample patterns which are fed into the

DDSRM (Chen, 2007), as shown in Table 4.1. The objective of the model training

process is to make the model have the best fitting of recorded data, i.e., having the

smallest mean squared error of data-fitting (MSEf), defined as

,)ˆ(
1

1

2








dn

wi

iif xx
wdn

MSE (4.2)

56

where ix̂ is the output obtained from the DDSRM (estimated observation), and ix is

the recorded failure datum (true observation).

Table 4.1 Sample patterns used in model training process

 Model Input
Expected

Output

1 wi },,,{ 21 wxxx  1wx

2 wi },,,{ 132 wxxx  2wx

…

…

…

dni  },,,{ 11  dnwdnwdn xxx  dnx 

After the training process, the model has “learnt” the inherent patterns of the software

failure process; however, as the model will be used for prediction purpose, its

prediction accuracy needs to be tested before it can be practically used. During the

model testing process (it is also called validation process), a w-dimensional vector

},,,{ 11  iwiwi xxx  is fed into the trained model as input, and the output, ix̂ , the

predicted value by the trained model, is obtained, as illustrated in Figure 4.1 (b). With

i changing from)1( dn to n, there are a total of d predicted values obtained.

Model performance can be measured by the mean squared error of prediction

(MSEp), defined as





n

dni

iip xx
d

MSE
1

2)ˆ(
1

. (4.3)

If the obtained MSEp is at an acceptable level, which implies that the trained model

has satisfactory performance, then the model can be used for prediction of future

57

failure. During the prediction process, the most recent w failure data,

},,,{ 21 nwnwn xxx  , are used as model input, and the model can then give the

predicted value of 1ˆ nx , as illustrated in Figure 4.1 (c). The above model training,

testing, and prediction processes are carried out iteratively at the observation of each

new software failure. For example, when the (n+1):th software failure is observed,

and thus failure datum 1nx becomes available, the model will be once again trained

and tested using new failure data set, }1,,2,1,{  nixi  , and then it can be used to

give the prediction of 2ˆ nx .

From above discussions, it can be seen that existing DDSRMs assume that a software

failure is strongly correlated with the most recent w failures, see equation (4.1);

however, this assumption may not be valid in reality because in a time series the

correlation can be quite complicated (Tsay, 2002). In fact, it is possible that a

software failure is correlated with some of previous failures, not necessarily being the

most recent ones. For example, a failure, ix , could be correlated with, say, 8ix ,

6ix , and 2ix . If this is the case, these three time lag terms should be used as model

inputs. This issue, despite its importance, has not been addressed in the literature.

In this chapter, we relax the unrealistic assumption adopted by existing DDSRMs and

develop a generic DDSRM. Existing DDSRMs are special cases of the proposed

model. We also develop a GA-based algorithm to discover the correlation among

software failures, by which appropriate time lag terms can be determined to be used

as the inputs of the proposed DDSRM. Numerical examples are presented to testify

the validity of the proposed model and algorithm.

58

The remainder of this chapter is organized as follows. In Section 4.2, since we take

SVM-based DDSRMs as the illustrating example, the basic theory of SVM for

regression is briefly reviewed. In Section 4.3, a new DDSRM is developed and a GA-

based algorithm is proposed. Numerical examples are presented in Section 4.4. In

Section 4.5, some concluding remarks are made.

4.2 A Brief Review of SVM for Regression

As our numerical examples will use SVM-based SRMs, a major class of DDSRMs,

here we give a brief review of SVM for regression. Interested readers can refer to

Vapnik (1995), Vapnik (1999), Kecman (2001), Scholkopf and Smola (2002) for

more detailed discussions.

In general, SVMs can be used for two purposes, i.e., classification and regression.

SVM-based SRMs are constructed by SVM for regression. Vapnik (1995) introduced

a regression function which can reflect the mapping of input and output of a process

by learning a set of training data, l
iii yx 1)},{( , where sxi ' are the actual values of the

input vectors and syi ' are the actual values of the output, l is the number of total

data pairs. Based on the structural risk minimization principle, the SVM regression

minimizes an upper bound on the expected risk.

Unlike traditional empirical risk minimization which attempts to minimize the error

on the training data, minimizing this bound could achieve high generalization

59

performance (Vapnik, 1995; Vapnik, 1999). The SVM model used for regression

function is given by

bxxf )()( , (4.4)

where)(x denotes the feature space which is transformation of the input space x . In

other words,  is the high-dimensional feature space mapping function. By equation

(4.4), the nonlinear relationship of the input and the output in the low-dimensional

space can be written in a linear form in the high-dimensional feature space (Vapnik,

1995; Vapnik, 1999); and the “dimension disaster” problem can be overcome

following the above specific transformation in SVM regression. The coefficients 

and b can be determined by minimizing the following regularized risk function





l

i
ii xfy

l
CR

1

2
)(

1

2

1


 , (4.5)

where










otherwise)(

)(0
)(

ii

ii
ii

xfy

xfyif
xfy




. (4.6)

In the above regularized risk function, C is the regulation constant which represents

the trade-off between model structure complexity 2||||
2

1
 and empirical error





l

i

ii xfy
l 1

|)(|
1

 . By minimizing this risk function, structural risk minimization can

60

be achieved, which in turn improves the model generalization capability.

Furthermore, to define the  -insensitive linear loss function more clearly, as shown in

Figure 4.2, two slack variables,  and * , which represent the difference between the

estimated value and the real value, are given by










)(

)(
)(* 




ii

ii
ii

yxfif

xfyif
xfy . (4.7)





0


*





loss

x

y

)(xfy 

Figure 4.2 The soft margin loss setting for a linear SVM regression (Scholkopf and

Smola, 2002)

In this case, the regularized risk function can be written in another form, which is





l

i

CR
1

*2
)(

2

1
 , (4.8)

where

61















li

liybx

libxy

iii

iii

,,2,10,

,,2,1)(

,,2,1)(

*

*













. (4.9)

In general, minimizing the above regularized risk function directly is cumbersome and

inefficient. Alternatively, according to Karush-Kuhn-Tucker conditions, this

optimization problem can be transformed into maximizing its dual Lagrangian

problem, which is given by





 







l

i

l

j

jijjii

l

i

ii

l

i

iiiii

xxK

yL

1 1

**

1

*

1

**

),())((
2

1

)()(),(





, (4.10)

subject to constraints

0)(
1

* 


l

i

ii  ,

liCii ,,2,1,0 *   .

In the dual Lagrangian form,),(ji xxK is the kernel function. In practice, polynomial

and Gaussian kernel functions are commonly used. si ' and si '* are Lagrange

multipliers which satisfy 0*  ii  for li ,,1 . After si ' and si '* are obtained,

the regression function can be rewritten as

bxxKxf ji

l

i

ii 


),()()(
1

* . (4.11)

62

Similar to Tian and Noore (2005b), Pai (2006), Pai and Hong (2006), Chen (2007),

Yang and Li (2007), Yang et al. (2007), we adopt Gaussian kernel function in our

research, which is given by













 


2

2

2

)(
exp),(



ji
ji

xx
xxK . (4.12)

Substitute (4.12) into (4.10), and by maximizing),(*
iiL  with constraints, si '

and si '* can be obtained. Substitute them into (4.11), and the SVM regression

function)(xf is obtained.

4.3 A Generic DDSRM with a Hybrid GA-Based Algorithm

As discussed, existing DDSRMs seem to have a fundamental drawback. For these

models, it is assumed that a software failure is strongly correlated with the most

recent w failures; however, this assumption may not be valid in reality. In a time

series, the correlation may be quite complicated, thus it is more reasonable to assume

that a failure is strongly correlated with some of previous failures as follows.

)](,),(),([)(21 pmixmixmixFix   , (4.13)

63

where)(x is the quantity of interest;)(,),(),(21 pmixmixmix   are time lag

terms taken from the time series; and)(F is the time series model. It can be seen that

(4.13) is a more general time series model, and the normally adopted model, (4.1), is a

special case of (4.13) for which wp  and)1(piimi  .

Before the time series model given by (4.13) can be used, the model user first needs to

determine the time lag terms that should be used, i.e., to determine the value of p and

the values of pmmm ,,, 21  . This is actually to discover the inherent correlation of

observations (i.e., software failures) in the time series. For linear time series analysis,

this can be done by using autocorrelation function (ACF), which can be calculated

from the observed data (Tsay, 2002). If a time series has significant ACF at, say, lags

2, 6, and 8, then the time series model should be),,(862  iiii xxxFx in this

particular case. However, for DDSRMs based on ANNs and SVMs, which are non-

linear time series models, the method to determine the time lag terms to be used as

model inputs is yet to be developed.

In time series analysis, whenever the time series model takes a different set of time

lag terms as the input, it could be viewed as a new model. Therefore, to determine the

appropriate time lag terms to be used could be thought of as to determine the

appropriate time series model. For this reason, this kind of exploring process is

sometimes referred to as a model mining process. In the literature, GA-based

algorithms have been developed to conduct model mining, which have proved to be

effective and efficient (Valdes and Mateescu, 2002; Valdes and Bonham-Carter,

2006).

64

In the model mining process, for the sake of easy representation and programming,

the time lag terms that should be used are represented by a binary code (Valdes and

Mateescu, 2002; Valdes and Bonham-Carter, 2006), the length of which is denoted by

v, which is a nonnegative integer determined by the model user. The position of a

value of “1” in the binary code indicates a time lag term that should be used. For

example, the binary code “10100010” (for which 8v and 3p) means that 2ix ,

6ix , and 8ix should be used, as shown in Figure 4.3.

6ix8ix 2ix

1 0 1 0 0 0 1 0

Figure 4.3 Interpretation of a binary code in model mining

Besides the determination of the time lag terms that should be used as model inputs,

for a DDSRM, the determination of model parameter values is of equal importance as

it has great impact on model performance (Pai, 2006; Pai and Hong, 2006; Chen,

2007). Taking both issues into consideration, we develop a hybrid GA-based

algorithm by which the time lag terms to be used as well as the optimal values of

model parameters can be determined simultaneously.

The developed algorithm is shown in Figure 4.4, detailed explanation of which will be

given later. In Figure 4.4, we take SVM-based SRM with Gaussian kernel function as

an example of DDSRMs; however, the idea behind is applicable to other DDSRMs

such as those based on ANNs, provided that GA2 is modified accordingly.

65

Obtain optimal

binary code and

C* σ* ε*

N

Y

Initial

generation of

(C, σ, ε)

SVM training

process

Calculate

MSEf

Satisfy

stopping

cretirion

New

generaion of

(C, σ, ε)

N

GA2

…

…

…

Initial generation of binary codes

…

…

…

…

…

Y

New generation of

binary codes

GA1

N

GA2

Y

Code 1

Mutation

Crossover

Selection

Code N

Mutation

Crossover

Selection

Selection

Crossover

Mutation

SVM training

process

Calculate

MSEf

Satisfy

stopping

cretirion

Satisfy

stopping

cretirion

Initial

generation of

(C, σ, ε)
New

generaion of

(C, σ, ε)

Calculate

MSEp

Calculate

MSEp

Calculate

MSEp

Calculate

MSEp

YY

Figure 4.4 A hybrid GA-based algorithm to determine the time lag terms to be used

and the optimal parameters of SVM-based SRM with Gaussian kernel function

66

Based on above discussions, we propose a new DDSRM which takes time series

model (4.13) instead of (4.1), and uses the developed hybrid GA-based algorithm in

Figure 4.4 to find the time lag terms that should be used as well as the optimal values

of model parameters. The proposed DDSRM is illustrated in Figure 4.5. Note that

there exists fundamental difference between the proposed DDSRM and existing

DDSRMs. In Figure 4.1, the most recent w failure data are used as model inputs;

while in Figure 4.5, time lag terms identified by the developed hybrid GA-based

algorithm during the model training and testing processes are used.

Proposed Model

Training Process

…
...

…
...

Proposed Model

Prediction Process

…
...

…
...

(a)

(c)

1ˆ nx

),,2,1(dnvvi  

Proposed Model

Testing Process

…
...

…
...

(b)

),,2,1(ndndni 

1mix 

2mix 

pmix 

ix

1mix 

2mix 

pmix 

ix

11 mnx 

21 mnx 

pmnx 1

Figure 4.5 The processes of using the proposed DDSRM

The developed hybrid GA-based algorithm in Figure 4.4 consists of five steps, which

are described below.

67

Step 1: Generation of chromosomes

The time lag terms used in (4.13) are expressed by a binary code e.g., the binary code

“10100010” indicates that 2ix , 6ix , and 8ix are used as model input (see Figure

4.3). The first GA (GA1 in Figure 4.4) generates an initial generation of N randomly

selected binary codes. Generally, the value of N is much less than v2 which is the

number of all possible combinations of binary codes. In the framework of GA, these

binary codes are termed as chromosomes.

Step 2: Local optimization of three parameters in SVM

Under each chromosome, a second GA (GA2 in Figure 4.4) is introduced to

determine the optimal values of three parameters in SVM. Following the general way

of applying GA, an initial generation of chromosomes is generated, each chromosome

is a set of parameter values, i.e.,),,(C . Then, the failure data are fed into the SVM

training process. After the training process, each chromosome is tested by its fitness

function value, which is the MSEf defined by (4.2) (note that w in (4.2) should be

replaced by v). If the stopping criterion of GA2, which could be that the MSEf is

minimized or a predetermined number of generations is reached, is satisfied, then

GA2 is completed and the algorithm returns to GA1; otherwise the chromosomes that

have small fitness function values are selected and the crossover and mutation are

conducted, thus an offspring generation is generated, and the algorithm goes back to

the SVM training process under this new generation of chromosomes. More

discussions on GA can be found in Goldberg (1989); and the use of GA in SVM has

been illustrated in detail in Chen (2007), which interested readers can refer to.

68

Step 3: Testing

When GA2 is completed, the algorithm returns to GA1 and proceeds further. Each of

the N chromosomes (binary codes) of the initial generation in GA1 is tested by its

fitness function value, which is the MSEp defined by (4.3). If the stopping criterion of

GA1, which could be that the MSEp is minimized or a predefined number of

generations is reached, is satisfied, then the algorithm goes to Step 5; otherwise it

goes to Step 4.

Step 4: Evolution

The chromosomes that have small fitness function values are selected and the

crossover and mutation are conducted, thus an offspring generation is generated, and

the algorithm goes back to Step 2.

Step 5: Global optimization of the binary code and model parameters

If the stopping criterion of GA1 is satisfied, then the algorithm is terminated, and the

best binary code as well as the optimal values of SVM parameters is obtained. Then

the proposed DDSRM can be used for prediction purpose, as shown in Figure 4.5 (c).

69

4.4 Numerical Examples

In this section we give two numerical examples, both of which are based on real data

sets. These two data sets come from different application domains and have different

failure data types, which could be helpful to validate the usefulness and generality of

the proposed DDSRM and algorithm. We compare the performance of the proposed

DDSRM with that of existing ones.

4.4.1 Example I

Consider software failure data used in Pham and Pham (2000), Tian and Noore

(2005b), Su and Huang (2007), which are 22 inter-failure times taken from a

telemetry network system by AT&T Bell Laboratories, shown in Table 4.2. In our

experiment, we use the 19
th

 to the 22
nd

 inter-failure times as testing data, i.e., we set

4d . Now we adopt the DDSRM in Figure 4.5, and we use the algorithm in Figure

4.4 to find the particular time lag terms that should be used and the optimal values of

model parameters. Table 4.3 shows the results obtained.

70

Table 4.2 Software failure data taken from Pham and Pham (2000), Tian and Noore

(2005b), Su and Huang (2007)

Failure number Inter-failure time

1 5.50

2 1.83

3 2.75

4 70.89

5 3.94

6 14.98

7 3.47

8 9.96

9 11.39

10 19.88

11 7.81

12 14.59

13 11.42

14 18.94

15 65.30

16 0.04

17 125.67

18 82.69

19 0.45

20 31.61

21 129.31

22 47.60

Table 4.3 Model mining result and optimal values of parameters of SVM-based SRM

with Gaussian kernel function, using software failure data in Table 4.2

The best binary code *C * * MSEp

00001100 2486 1.042 0.6417 670.56

It can be seen from Table 4.3 that by analyzing the data in Table 4.2, a failure ix is

found to be strongly correlated with two previous failures, 4ix and 3ix , thus these

two time lag terms are used as model inputs for the SVM-based SRM; and the optimal

71

values of model parameters, *C , * , and * , are obtained as well. The resulting

MSEp is 670.56.

For comparative purpose, we examine the performance of existing SVM-based SRM

which adopts equation (4.1), using the same data set in Table 4.2. To get the best

model performance, we use the algorithm developed in Yang et al. (2007) to obtain

the optimal values of model parameters. The results are 5* w , 7120* C ,

1013.1*  , and 9975.5*  , under which 2.2343pMSE . It can be seen that the

MSEp is three more times bigger than that of the proposed DDSRM.

4.4.2 Example II

In the second example, we use the software failure data reported in Wood (1996),

which are taken from a software release at Tandem Computers Company. This set of

data is in the form of cumulative numbers of faults detected, shown in Table 4.4. The

value of d is set to be the same as that in Example I, i.e., 4d . Table 4.5 shows the

results obtained using the proposed DDSRM in Figure 4.5 and the algorithm in Figure

4.4.

72

Table 4.4 Software failure data reported in Wood (1996)

Week Cumulative faults detected

1 13

2 18

3 26

4 34

5 40

6 48

7 61

8 75

9 84

10 89

11 95

12 100

13 104

14 110

15 112

16 114

17 117

18 118

19 120

Table 4.5 Model mining result and optimal values of parameters of SVM-based SRM

with Gaussian kernel function, using software failure data in Table 4.4

The best binary code *C * * MSEp

00001011 4159 0.298 0.5296 0.0487

In this example, it is found that a failure ix is strongly correlated with three previous

failures, 4ix , 2ix , and 1ix , thus these three time lag terms are used as model

inputs. The resulting MSEp is 0.0487.

73

Similar as Example I, we use existing SVM-based SRM to analyze the software

failure data in Table 4.4. For this example, the optimal values of model parameters are

found to be 1* w , 1131* C , 3383.0*  and 0097.0*  , under which

42.1pMSE . It can be seen that the MSEp is once again much bigger than that of the

proposed DDSRM.

The results obtained from the previous two examples verify that by using the

proposed DDSRM with the developed hybrid GA-based algorithm, model

performance could be significantly improved. This is actually expected because

existing DDSRMs cannot cater for various failure correlations in a time series, e.g.,

for the data in Table 4.2, ix is correlated with 4ix and 3ix ; while for the data in

Table 4.4, ix is correlated with 4ix , 2ix , and 1ix ; and hence the model

performance would be affected.

As discussed, the proposed DDSRM is a generic model which includes the cases of

existing DDSRMs. If by using the developed hybrid GA-based algorithm it is found

that a failure is correlated with the most recent w failures, e.g., the best binary code is

00001111, then the proposed DDSRM reduces to an existing DDSRM.

4.5 Conclusion

In this chapter, we first point out a fundamental drawback of existing DDSRMs which

seems to have affected the performance of existing models. Then we develop a

74

generic DDSRM which can cater for various failure correlations in reality. Taking

SVM-based SRM using Gaussian kernel function as an example, a hybrid GA-based

algorithm is developed to discover the failure correlation and to obtain the optimal

values of model parameters. Experimental results show that the proposed model

outperforms existing DDSRMs.

The improvement of model performance is achieved at a cost of increase of required

computational effort. In the proposed hybrid GA-based algorithm, GA1 is used to

determine the best binary code which describes the specific failure correlation, and

GA2 is used to determine the optimal model parameters. Compared with existing

DDSRMs for which failure correlation is assumed to be a simple one, i.e., only

consecutive failures are correlated, and only GA2 is used, it is expected that the time

complexity of the proposed algorithm is greater. In our experiments on a normal

personal computer, the hybrid GA-based algorithm could take up to forty minutes to

be completed. This necessitates our future research on the improvement of the

algorithm efficiency. More specifically, on one hand, we can adopt the use of more

recent and advanced genetic algorithms such as the algorithm proposed in Ye et al.

(2010). On the other hand, we can try incorporating priori information from the

decision maker. This kind of information can refine the search of algorithm in a more

reasonable and limited parameter space.

75

Chapter 5 Sensitivity Analysis of Release Time of Software

Reliability Models Incorporating Testing Effort with

Multiple Change Points

5.1 Basic Problem Description

Developing software reliability models is not the end of software reliability analysis.

To guide management when to release the software based on these models is a typical

application. In the following chapters, we will focus on another important aspect of

software reliability analysis: release time determination.

Recently, incorporating testing effort into software reliability growth models

(SRGMs) has received a lot of attention. The optimal release time problem

considering testing effort was also discussed (Yamada et al., 1993; Huang and Kuo,

2002; Huang and Lyu, 2005a; Lin and Huang, 2008). However, most of the research

assumes that parameters of the proposed models are known. In fact, there always exist

estimation errors as parameters in testing effort function and SRGMs are generally

estimated by least square estimation (LSE) method and maximum likelihood

estimation (MLE) method respectively. It is necessary to conduct the sensitivity

analysis to determine which parameter may have significant influence to the software

release time. This is even more important when there are an increasing number of

76

parameters involved in the model, such as the model proposed by Lin and Huang

(2008).

Sensitivity analysis can be used to determine how sensitive the software release time

is. It helps to find parameters that could significantly affect the solution to the release

time. By showing how the software release time reacts against the changes in

parameter values, the model is also evaluated and validated. In this chapter, sensitivity

of the software release time is studied and different approaches are used, including

one-factor-at-a-time approach, design of experiments (DOE) and global sensitivity

analysis.

After the sensitivity analysis, significant parameters can be determined and they

should be estimated precisely. However, this may not be possible due to the limited

amount of information available. Thus, conservative estimation of release time is

needed to avoid releasing the software too optimistically (Xie and Hong, 1998). To

this end, interval estimation is recommended for use and the simulation results from

global sensitivity analysis can just help in this.

The rest of this chapter is organized as follows. Section 5.2 introduces the general

model incorporating testing effort and formulates the software release time problem.

Section 5.3 discusses procedures when using different approaches to sensitivity

analysis. In Section 5.4, an application example is given, and some interesting results

are obtained. In Section 5.5, limitations of different approaches are highlighted. The

interval estimation of optimal release time is discussed in Section 5.6 and it can be

77

seen that results from global sensitivity analysis are very helpful in this. Concluding

remarks are made in Section 5.7.

5.2 General Model Incorporating Testing Effort

To accurately model software failure process with SRGMs, incorporating testing

effort has shown to be important and it has received a lot of attention. According to

Lin and Huang (2008), multiple change points should be considered due to the

changing testing efforts in reality. This model is adopted here as it is shown to be a

general one with fairly accurate prediction capability (Lin and Huang, 2008).

Specifically, with the consideration of arbitrary number of change points, the

cumulative testing effort function is given by

 









































































,,
]exp[]exp[

]exp[]exp[

,,
]exp[

]exp[]exp[1

,0,]exp[1

)(

1
1

11

21

2

1211

11

11

2

21

1

t

t

t
t

tt

tW

m

kk

m

k
kk

mmm

kk

mm


























 (5.1)

Based on the assumptions provided in Lin and Huang (2008), the mean value function

representing the expected number of faults detected in time interval],0(t can be

written as

78

  ,10 ,0 ; 1)()(  raeatm trW (5.2)

where the boundary conditions are   00 m and   00 W . Given (5.2), failure

intensity can be also calculated by

,10 ,0)(
)(

)()(  raetarw
dt

tdm
t trW (5.3)

In general, constructing a model is not the end. When the testing process proceeds,

there will be fewer and fewer faults in the software. Accordingly, the software

becomes more reliable. It is useful to provide information for management to decide

when to stop the testing. Given a reliability target, the minimum testing time T

required is generally calculated from the following formulation.

  )()(exp)|(tmxtmtxR  (5.4)

0)|(RtxR  (5.5)

In (5.4),)|(txR represents the conditional software reliability which is defined as the

probability that the software will not fail given a specified time interval],(xtt 

(Musa et al., 1987; Xie, 1991). By solving (5.4) and (5.5), the minimum testing time T

required to achieve the given reliability target 0R is received. However, the problem

formulation above is under the testing reliability scenario. It means that the software

is still under testing after release. In fact, operational reliability scenario is more

reasonable as software codes will not be changed by customers after release (Yang

79

and Xie, 2000). Therefore, from the customers‟ point of view, the operational

reliability perspective is adopted here for further analysis. That is

   xetarwxttxR trW)()(exp)(exp)|(  (5.6)

As there is no close form for the minimum testing time T to achieve a predetermined

reliability target R0 based on the model proposed by Lin and Huang (2008), numerical

calculations are generally adopted. Without the loss of generality, x is set to 1 in

)|(txR and 0R is set to 0.95 in the following discussions.

5.3 Approaches to Sensitivity Analysis

In this section, sensitivity analysis of software release time formulated in the previous

section is studied by various methods, i.e., one-factor-at-a-time approach, design of

experiments (DOE) and global sensitivity analysis. The properties of each approach

are also discussed.

5.3.1 One-Factor-at-a-Time Approach

One-factor-at-a-time approach is usually adopted due to its simplicity (Xie and Hong,

1998, Huang and Lyu, 2005b; Lo et al., 2005; Huang and Lo, 2006; Yang et al., 2008;

Li et al., 2010). It is generally done by changing one parameter and setting the other

parameters at their fixed values. It can be seen from (5.1) and (5.2) that there are

totally (2m+5) model parameters to be investigated in our problem. When the

80

parameter a is investigated to see how much the minimum testing time T is changed,

T is in fact a function of a as other parameters are fixed using their estimated values.

Then apS , can be calculated, and it is defined as the relative change of the release

time when a is changed by 100p% . That is

)(

)()(
,

aT

aTpaaT
S ap


 (5.7)

Similarly, rpS , , ,pS ,
ipS , , and

ipS , (1,,2,1  mi ) can be received in the same

manner.

One-factor-at-a-time approach can help us to find the most sensitive parameter. For

example, if apS , is with the largest scale when p changes, then parameter a is

regarded as the most sensitive parameter. Furthermore, it can also provide information

about the trend of the release time with respect to each model parameter. By changing

the value of p, we can check whether the minimum testing time required increases or

decreases with respect to each model parameter.

5.3.2 Sensitivity Analysis through DOE

There are totally (2m+5) parameters of interest in the sensitivity analysis, i.e., a , r ,

 , i , and i . It can be seen that one-factor-at-a-time approach is cumbersome when

many parameters are involved. Thus, a more efficient way in conducting sensitivity

analysis is required. DOE is an efficient approach and it is adopted by Xie et al.

(2004). In the framework of DOE, the experiment can be explained as a test or series

81

of tests where some purposeful changes are made to the input variables so that the

reasons for the changes observed in the output response can be identified (Box et al.,

1978; Montgomery and Runger, 1999). Specifically, in our problem, (2m+5)

parameters (i.e., a , r ,  , i , and i) are input variables and the optimal release

time T is the output response.

It is worth noting that there are totally (2m+5) parameters to be investigated and

)52(2 m runs are needed for a full factorial design. To improve the efficiency for

conducting sensitivity analysis, a Resolution III fractional factorial design is adopted

here and the interaction effects are assumed to be negligible. For more detailed

process of Resolution III fractional factorial design, interested readers can refer to

Box et al. (1978) and Montgomery and Runger (1999). In this part, a typical example

of Resolution III fractional factorial design is shown in the following table and the use

of it is briefly discussed.

Table 5.1 A saturated Resolution III fractional factorial design

θ1 θ2 θ3 θ4 θ5 θ6 θ7 T

- - - + + + - T1

+ - - - - + + T2

- + - - + - + T3

+ + - + - - - T4

- - + + - - + T5

+ - + - + - - T6

- + + - - + - T7

+ + + + + + + T8

The experimental design shown in Table 5.1 is actually a saturated Resolution III

factional factorial design, with which 7 factors with only 8 runs can be investigated.

The sings „+‟ and „-‟ denote the high level and low level of each parameter

82

respectively. In this design, suppose that the integration effects are negligible, the

optimal release time can be estimated by using a linear model. That is

     

        77665544

3322110

2222

222ˆ

xExExExE

xExExEET




 (5.8)

where E0 is the grand average and the other Ei‟s are the main effects of parameters.

These terms can be calculated according to the following equations and significant

parameters can be determined based on them. If parameter θi is the most significant

parameter, then Ei will be with the largest absolute value.

 

 

 

 

 

 

 

 876543217

876543216

876543215

876543214

876543213

876543212

876543211

876543210

4

1
4

1
4

1
4

1
4

1
4

1
4

1
8

1

TTTTTTTTE

TTTTTTTTE

TTTTTTTTE

TTTTTTTTE

TTTTTTTTE

TTTTTTTTE

TTTTTTTTE

TTTTTTTTE

















 (5.9)

The design discussed above is actually of great importance in our study for the

following two reasons: (1) if one change-point is used for describing the changeable

testing effort function, i.e., m=1, there are just 7 parameters to be investigated; (2) Lin

and Huang (2008) provided three numerical examples based on three real data sets,

83

and all of them are with a single change-point, which may indicate that one change-

point could be quite general in real applications.

In summary, sensitivity analysis through DOE can quickly identify the most sensitive

parameter or a subset of input parameters which have the most significant influence

on the solution. Compared with the other methods, this approach always enjoys the

high efficiency. This is essentially in accordance with the original idea behind DOE,

using the least resource to determine significant factors since the experiment could be

very expensive or time consuming in the real world application.

5.3.3 Global Sensitivity Analysis

Global sensitivity analysis is widely discussed in recent years and it has drawn a lot of

research attention (Sobol, 2001; Saltelli, 2002; Saltelli et al., 2008; Makowski 2006;

Volkova et al., 2008; Benke et al., 2008; Yu and Harris, 2008). Compared with the

previous two methods, where only special points or a local region of the parameter

space is considered, the global sensitivity analysis can investigate the global

parameter space and therefore the accuracy of the results can be improved (Saltelli et

al., 2008; Yu and Harris, 2008). Specifically, it uses the additional knowledge we

have about the model parameters, i.e., the distributions of model parameters.

The MLE method is commonly adopted for the estimation of parameters in SRGMs

(Zhao and Xie, 1996; Wu et al., 2007). Also, it is theoretically sound and acceptable

that the distributions of parameters are asymptotically normal. In our problem,

parameters a and r are estimated in such a way according to Lin and Huang (2008).

84

While for the parameters  , i and i in testing effort function, Lin and Huang

(2008) adopted the LSE method for estimation. In this case, to construct reasonable

distributions of these parameters, expert opinion is needed, and the triangular

distribution is usually adopted (Park, 2007).

In general, there are several methods for making global sensitivity analysis. In this

research, we restrict ourselves to the first-order Sobol indices with Monto Carlo

simulation (Sobol, 2001; Saltelli, 2002; Saltelli et al., 2008). This is also reasonable

as main effects of parameters are of more concern and first-order sensitivity indices

just measure them. In our problem,),,(5221  mfT   is the model under

investigation where parameters 5221 ,, m  are input variables and the optimal

release time T is the output response. The total variance of T used in global

sensitivity analysis can be decomposed as follows:

52,,2,1

521

52

1

)(







  m

mji

ij

m

i

i VVVTV  (5.10)

where)(TV is total variance of T induced by the (2m+5) parameters,   ii TEVV 

measures the main effect of parameter i and other terms measure the interaction

effects. Given (5.10), the first-order sensitivity index is defined as

)(TV

V
S i

i  (5.11)

85

The first–order sensitivity index given by (5.11) can measure the main effect of the

parameter as well. Specifically, parameter i has a significant influence on the

solution of software release time when iS is close to one. By contrast, i is not a

sensitive parameter when iS is close to zero. Moreover, interaction effects in the

model can be measured with 
i

iS1 .

To calculate iS for each parameter, iV and)(TV are required to be estimated in

advance. These terms can be computed by using Monte Carlo simulation method

discussed in Saltelli (2002) and Saltelli et al. (2008), where the input parameters si '

are assumed uncorrelated with one another. In fact, Saltelli (2002) has justified the

effectiveness and efficiency of the algorithm theoretically, and interested readers can

refer to it for detailed discussions. On the other hand, the independence assumption

for parameters is commonly adopted when global sensitivity analysis is used (Saltelli

et al., 2008; Makowski 2006; Volkova et al., 2008). According to Saltelli et al.

(2008), the reason for this assumption lies in the fact that dependent input samples are

more difficult to generate. More seriously, the sample size needed to compute

sensitivity measures for non-independent samples is much larger compared with the

case of uncorrelated samples.

The principle of the algorithm is to generate random samples of parameters according

to their distributions. The base parameter values are quasi-random numbers generated

using the Latin hypercube sampling method (Helton and Davis, 2003). Suppose that

i is with normal distribution, 2N random numbers of i are generated according to

this information. The first N of them are in matrix A denoted by
)1(

i ,
)2(

i ,…,
)(N

i .

86

While the rest N of them are put into matrix B, where they are denoted by
)1(

52 im  ,

)2(
52 im  ,…,

)2(
52 im  . Specifically, the matrix A and matrix B are given by




































)(
52

)()(
2

)(
1

)1(
52

)1()1(
2

)1(
1

)2(
52

)2()2(
2

)2(
1

)1(
52

)1()1(
2

)1(
1

N
m

N
i

NN

N
m

N
i

NN

mi

mi

A



















 (5.12)

and











































)(
104

)(
52

)(
72

)(
62

)1(
104

)1(
52

)1(
72

)1(
62

)2(
104

)2(
52

)2(
72

)2(
62

)1(
104

)1(
52

)1(
72

)1(
62

N
m

N
im

N
m

N
m

N
m

N
im

N
m

N
m

mimmm

mimmm

B



















. (5.13)

With A and B, a new matrix iC is received by substituting the ith column from A into

B and it is








































)(
104

)()(
72

)(
62

)1(
104

)1()1(
72

)1(
62

)2(
104

)2()2(
72

)2(
62

)1(
104

)1()1(
72

)1(
62

N
m

N
i

N
m

N
m

N
m

N
i

N
m

N
m

mimm

mimm

iC



















 (5.14)

87

Finally, we calculate the software release time for all the parameter values in the

matrices A, B, and iC , resulting three 1N vectors:

)()()(iCBA CfTBfTAfT
i
 (5.15)

The iV and)(TV in (5.11) are then obtained by

  2
0

1

)()(2
0 1 fTTNfTTV

N

j

j

C

j
ACAi

ii
 



 (5.16)

and

    2
0

1

2)(2
0 1)(fTNfTTTV

N

j

j
AAA  



 (5.17)

where 0f is the mean of AT given by

 



N

j

j
ATNf

1

)(
0 1 (5.18)

The above mentioned algorithm can be explained in a „hand waving‟ fashion as

illustrated in Saltelli et al. (2008). In the scalar product
iCA TT  given by (5.16),

values of T computed from matrix A are multiplied by those computed from matrix

iC where all parameters but i are resampled. Then, high and low values of AT and

88

iCT are randomly associated if i is non-influential. On the contrary, if i is

influential, high (or low) values of AT and
iCT will be preferentially multiplied.

5.4 An Illustrative Example

To illustrate the application of various sensitivity methods in our problem, the third

data set used in Lin and Huang (2008) is adopted here. The data set actually origins

from software release one in Wood (1996) from Tandem Computers Company. As the

weekly testing effort consumption gradually decreased from the 11th week, 1 is set

to 11 and m is equal to one. Parameters are estimated in two ways according to Lin

and Huang (2008): LSE method is used for estimating the parameters in test effort

function and MLE method for the parameters a and r in SRGMs. Estimators of

parameters are received in the same fashion in the following sensitivity analysis. The

numerical results will help us to further understand the use of each approach.

5.4.1 Results from One-Factor-at-a-Time Approach

Following the procedures discussed in Section 5.3.1, some numerical results from the

one-factor-at-a-time approach are shown in Table 5.2.

89

Table 5.2 Some numerical results from one-factor-at-a-time approach

p -30% -20% -10% 10% 20% 30%

apS , -0.097 -0.061 -0.029 0.027 0.051 0.074

rpS , 0.111 0.077 0.040 -0.041 -0.083 -0.126

,pS 0.111 0.077 0.040 -0.041 -0.083 -0.126

1,pS 0.078 0.050 0.025 -0.023 -0.045 -0.065

2,pS 0.183 0.112 0.052 -0.046 -0.087 -0.125

1,pS 0.180 0.133 0.073 -0.084 -0.173 -0.259

2,pS 0.850 0.517 0.232 -0.186 -0.330 -0.445

From the table, it can be seen that the shape parameter 2 in the testing effort

function is the most sensitive parameter with the largest scale of
2,pS . Moreover,

optimal release time T is decreasing with the increase of r ,  , 1 , 2 , 1 , and 2

respectively. It is only increasing with the increase of the parameter a . Accordingly,

overestimation of r ,  , 1 , 2 , 1 , 2 and underestimation of a , which implies a

underestimation of release time should be avoided. Because it will be costly by

making consumers experience more failures when the software is released too early.

It should be also noted that the S values in second row and third row are the same.

The same values are received as the reliability function has the same amount of

change when parameters r and  change and optimal release time is uniquely

determined by the reliability function. Specifically, let x equal to 1 and equation (5.6)

has the same form when r and  change by 100p%. That is

   )()1()()1(exp)(exp)|1(tWpretwparttR   . (5.19)

90

7.4.2 Results from Sensitivity Analysis through DOE

Based on the same data set, it can be calculated that the respective relative changing

rates of the maximum likelihood estimators â and r̂ are approximately

%,9.16
ˆ

)ˆ(
 %,1

ˆ

)ˆ(


r

rVar

a

aVar

which does not show significant difference. Therefore, according to Xie et al. (2004),

factor levels for parameters can be described as follows, and they are consistently

used for the other parameters.

-: Decrease by 30% of original value

+: Increase by 30% of original value

The Resolution III fractional factorial design and analytical results are shown in Table

5.3, Table 5.4 and depicted in Figure 5.1 in a descending manner.

Table 5.3 Fractional factorial design

a r  1 2 1 2 T

- - - + + + - 81.51

+ - - - - + + 43.16

- + - - + - + 30.92

+ + - + - - - 205.30

- - + + - - + 41.99

+ - + - + - - 163.97

- + + - - + - 35.35

+ + + + + + + 19.19

91

Table 5.4 Main effects of parameters

(1- a ; 2- r ; 3- ; 4- 1 ; 5- 2 ; 6- 1 ; 7- 2)

E1 E2 E3 E4 E5 E6 E7

60.46 -9.97 -25.10 18.65 -7.55 -65.74 -87.72

Figure 5.1 Main effects of parameters (absolute value)

(1- a ; 2- r ; 3- ; 4- 1 ; 5- 2 ; 6- 1 ; 7- 2)

It can be easily seen that parameter 2 is the most dominant factor which affects the

solution to software release time; parameters 1 and a have the second significant

influence on the solution followed by  , 1 , r and 2 . The significance of

parameters 2 and 1 is reasonable when we come back to see equations given by

(5.1) and (5.6). It can be seen that these two parameters are the shape parameters in

Weibull testing effort function in (5.1) and the Weibull testing effort function is an

92

exponent in the second exponential function of (5.6). However, the significance of

parameter a is quite questionable since it is the only parameter, which is not related

to the exponent in the second exponential function of (5.6). Furthermore, it is not in

accordance with the results shown in Xie and Hong (1998) and Xie et al. (2004) that

the expected number of faults a is generally less sensitive than the failure detection

rate r. This inaccurate result could be caused by the assumptions used in the design,

i.e., the use of the linear model, the arbitrariness of factor level labels and the

ignorance of interaction.

5.4.3 Results from Global Sensitivity Analysis

In global sensitivity analysis, the base sample N should be predetermined. We set N

equal to 200000 in our application example as a large number of N can produce stable

estimates of the first-order sensitivity indices with low variability (Makowski et al.,

2006). Further, since parameters  , 1 , 2 , 1 , and 2 in the testing effort function

are estimated by LSE method, expert opinion is needed to construct reasonable

distributions of them. In this case, the triangular distribution is generally adopted

(Park, 2007). Due to this consideration, for parameters in the testing effort function,

suppose that their most probable values are the estimated values from LSE method;

their highest and lowest values are 30% increase and decrease of the most probable

values respectively. However, it should be noted that this assumption is adopted here

for illustrative purpose. In real applications, distributions of these parameters can be

different from each other considering their different physical meanings in the testing

effort function. While, for parameters a and r estimated by MLE method, it is

theoretically sound and acceptable that these parameters are normally distributed.

93

Following the standard procedures of global sensitivity analysis discussed in Section

5.3.3, results of the first-order sensitivity indices are listed in Table 5.5 and depicted

in Figure 5.2 in a descending manner.

Table 5.5 Results of the first-order sensitivity indices

(1- a ; 2- r ; 3- ; 4- 1 ; 5- 2 ; 6- 1 ; 7- 2)

S1 S2 S3 S4 S5 S6 S7

0.0095 0.0664 0.0398 0.017 0.0497 0.1125 0.6951

Figure 5.2 Results of first-order sensitivity indices in a descending manner

(1- a ; 2- r ; 3- ; 4- 1 ; 5- 2 ; 6- 1 ; 7- 2)

For the determination of software release time, it can be seen that parameter 2 is the

most sensitive parameter. Its value of first-order sensitivity index is equal to 0.6951. It

means that 69.51% of the software release time variance would be left if the

parameter 2 is undetermined. According to Figure 5.2, the other parameter 1 also

94

has a significant influence on the determination of software release time. Its value of

first-order sensitivity index is equal to 0.1125. The significance of these two

parameters can also be explained as before. For the other 5 parameters, they are not

significant according to the Pareto principle as parameters 1 and 2 has accounted

for roughly 80% (80.76% exactly) of the software release time variance.

Furthermore, the parameter a, which is determined as a significant parameter in DOE,

is determined as the most insignificant parameter in global sensitivity analysis. The

result here is in accordance with the intuition of equation (5.6). Therefore, it provides

further evidence that global sensitivity analysis could be more accurate. In addition,

since %11 
i

iS , it indicates that the interaction effects are negligible in this

application example.

5.5 Limitations of Different Approaches

In our study, different approaches to sensitivity analysis are with different advantages.

One-factor-at-a-time approach is simple and straightforward; DOE is with high

efficiency utilizing the least amount of resources and global sensitivity analysis can

investigate the global parameter space to get more accurate results. However, at the

same time, the limitations of different approaches need to be highlighted here and

special care should be taken for them.

95

For one-factor-at-a-time approach, the most restrictive assumption is that all effects of

parameters are independently estimated. Thus, it only focuses on some special points

of the parameter space and fails to investigate these parameters simultaneously.

Furthermore, when there are a large number of parameters to be investigated, large

number of observations are needed.

As to DOE, it is generally based on the linear model, which could be the most

restrictive assumption, since in our study the relationship between the optimal release

time and input parameters is complex and nonlinear. Probably because of this, in the

application example, DOE treats the parameter a as a third significant parameter

wrongly. Possible ways to solve this kind of problem could be the use of 3 level

experimental design and nonlinearity check by statistical tests. However, the use of

them will greatly increase the complexity of the method, which may not be desirable.

Additionally, interactions are assumed to be negligible in our Resolution III fractional

factorial design. Compared with the previous assumption, this one could be a minor

one. On one hand, in our application example, the results from global sensitivity

analysis indicate that the interaction effects can be ignored. On the other hand, the

results of DOE are generally not affected when the interaction effects are assumed to

be negligible according to Taguchi et al. (2005).

As to global sensitivity analysis, the most restrictive assumption is that the priori

knowledge about the distributions of parameters is needed. It is known that this kind

of information may not be available all the time. Some common ways to solve this

kind of problem is to use some simple distributions based on the expert opinion, i.e.,

96

the uniform distribution or the triangular distribution (Makowski, 2006; Saltelli et al.,

2008). However, the impact of the accuracy of these estimations on the final results of

sensitivity measures still needs to be investigated as an inaccurate estimation of the

distribution can probably lead misleading results. Future research on this problem is

needed.

Additionally, compared with the previous two methods, global sensitivity analysis is

more computationally expensive as shown in Table 5.6. The numbers in the table are

received in the following manner. There are totally (2m+5) parameters to be

investigated. In one-factor-at-a-time (OFAT) approach, -30% to 30% is selected and

10% is set as the step, thus, 6(2m+5) T values are needed; in DOE, 2
k
 runs of

Resolution III design can investigate 2
k
-1 factors (Montgomery and Runger, 1999),

therefore, it should be greater than or equal to 2m+6 and less than 4m+12; in global

sensitivity analysis (GSA), according to the simulation procedures discussed in this

chapter, N(2m+7) T values are needed. Although global sensitivity analysis is the

most computationally expensive method, this limitation may not be that serious in

practice. The reason lies in the fact that values of optimal release time are just

numerical calculations rather than costly and time-consuming real world experiments.

Table 5.6 Comparison of computation resources needed

Approaches No. of optimal release time values to be calculated

OFAT 6(2m+5)

DOE
2

k

(2m+6≤2
k
<4m+12, k is a positive integer)

GSA N(2m+7)

97

5.6 Interval Estimation from Global Sensitivity Analysis

Significant parameters can be determined after sensitivity analysis. Usually, for these

parameters, they should be estimated more precisely. One possible way to do this is to

gather some information from similar projects as shown in Xie et al. (1999).

However, parameters are unknown in nature, and they are estimated based on the

limited amount of data. The point estimate of optimal software release time could be

too optimistic. In fact, the optimal release time is a random variable with the

consideration of the estimation errors in parameters. It is necessary to provide

management with more confidence with respect to the estimation of the release time.

With the consideration of this, interval estimation is recommended for use (Zhao and

Xie, 1993).

Previously, the interval estimation is usually received by standard method in statistical

analysis where large sample properties of the MLE are adopted (Zhao and Xie, 1993).

However, such analysis is not applicable in our analysis since parameters in testing

effort function are estimated by LSE method. In this case, an alternative way is

needed and simulation results from global sensitivity analysis can just help in this.

Since there are totally N(2m+7) values of optimal release time T based on the

simulation results from global sensitivity analysis, where N(2m+7) is large enough

(i.e., in our application example it is equal to 1800000), then cumulative distribution

function (CDF) of T can be estimated and it actually has all information we need for

uncertainty analysis (Helton and Davis, 2003). Specifically, for any predetermined

value denoted by x, the cumulative distribution function can be estimated in such a

way that

98

 

 




 


72

1 72

1
)(}{

mN

i

iT
mN

TxTP  (5.20)

where










xT

xT
T

i

i
iT

0

1
)( (5.21)

Suppose that the confidence level is  , then the lower bound and upper bound of the

optimal release time T can be obtained easily according to

 
2


 LTTP and  

2


 UTTP (5.22)

It means that the true value of the optimal release time will be included in the interval

estimate [TL TU] with probability (1-). Compared with the point estimate of the

optimal release time, the interval estimation is generally more robust and informative

(Zhao and Xie, 1993). The length of the interval estimate calculated by TU-TL can

measure the precision of the estimation of the optimal release time. Specifically, a

narrow confidence interval indicates the high accuracy. In practice, under a prescribed

length L, the testing process can be controlled by the confidence interval. If TU-TL is

less than or equal to L, the precision is supposed to be acceptable; otherwise, further

testing is required to improve the precision (Zhao and Xie, 1993). However, it is

possible that the predetermined threshold cannot be satisfied due to the time constraint

or the available cost budget.

99

For illustration, based on the same data set, the 90% confidence interval is calculated

and it is given by [38.62 102.84]. It can be seen that the length of the interval is 64.22.

Therefore, if L<64.22, the testing process is required to be continued if the time

constraint and the cost budget are not exceeded. It is worth noting that 90%

confidence interval is used here. However, the selection of the confidence level could

be quite different from company to company, and from project to project. Since

different confidence intervals are just simple calculations, the results of them are

omitted here.

5.7 Conclusion

In this chapter, different approaches to sensitivity analysis are adopted and properties

of them are discussed. Especially, the assumptions are highlighted which can help

practitioners better understand the limitations that need attention in the real

application. Results from traditional methods like the one-factor-at-a-time approach

and DOE may not be accurate enough. Thus, global sensitivity analysis is

recommended for use due to the consideration of the global parameter space.

Furthermore, global sensitivity analysis possesses another advantage that other

methods do not have. Results from it not only help to determine the sensitive

parameters, but also provide further information for management to decide when to

release software under parameter uncertainty. With the use of the interval estimation

for the optimal release time, the precision of the estimation can be measured and

controlled.

100

Chapter 6 A Risk-Based Approach for Software Release

Time Determination with Delay Costs Considerations

For software release time determination problem, meeting the reliability requirement

is of great importance. This is because customers generally have a minimum

reliability requirement, and it can be specified in the contract. In order to check

whether the reliability requirement is satisfied, software reliability model is generally

adopted to predict the reliability of software. Most existing research on release time

determination assumes that parameters in the software reliability model are known

and the reliability estimate is accurate (Okumoto and Goel, 1980; Yamada and Osaki,

1985; Xie and Yang, 2003; Boland and Chuiv, 2007; Huang and Lyu, 2005a; Ho et

al., 2008; Liu and Chang, 2007; Yang et al., 2008). In practice, however, there exists

the risk that the reliability requirement cannot be guaranteed due to parameter

uncertainty, and such risk can be as high as 50% when the mean value is used, as

shown in this chapter. It is necessary for management to reduce this risk to a lower

level, and software is expected to be tested longer. The challenging point is that this

will inevitably increase costs of the testing process. In order to balance between

reducing the risk and controlling the penalty cost associated with it, in this chapter, we

develop a new decision model for software release time determination, and apply

multi-attribute utility theory (MAUT) to optimize risk and cost simultaneously.

The rest of this chapter is organized as follows. Section 6.1 introduces the general

approach of quantifying the uncertainty of model parameters. In Section 6.2,

101

limitations of existing research on software release time determination are further

discussed, which motivate us to incorporate the risk that software cannot meet the

reliability requirement into consideration. In addition, attributes including risk and

penalty cost are formulated. In Section 6.3, the decision model based on MAUT is

developed, and the procedure on how to construct it is discussed in detail. In Section

6.4, an application example is provided for illustrative purpose. In Section 6.5, a

simplification of the decision model is introduced with some non-restrictive

assumptions. With the simplified decision model, analytical tractability is possessed

and the complexity of the decision process is greatly reduced. In Section 6.6, threats

to validity are discussed. Finally, concluding remarks are made in Section 6.7

6.1 Quantifying Parameter Uncertainty

Model parameters have to be estimated based on the recorded failure data. A common

method is to adopt the maximum likelihood estimation (MLE) technique (Zhao and

Xie, 1996; Wu et al., 2007). Using the MLE approach allows parameter uncertainty to

be quantified in terms of variability.

Suppose that there are totally m model parameters to be estimated denoted by

m ,,, 21  . Let in denote the number of failures observed in the time interval

),[1 ii tt  , where tttt k  100 and t is the time at which the testing process

has experienced. The likelihood function for a non-homogeneous Poisson process

(NHPP) model with mean value function)(tm is

102

    



 


k

i i

ii
n

ii

n

tmtmtmtm
L

i

1

11

!

)()(exp)()(
 (6.1)

It is worth noting here that the mean value function)(tm contains the m model

parameters m ,,, 21  . Point estimates of the model parameters can be determined

by maximizing the likelihood function above. To quantify the parameter uncertainty,

the variances of the estimators of the parameters can be calculated following the

asymptotic theory for MLE (Nelson, 1982). Specifically, the Fisher information

matrix can be calculated as




















































































































































2

2

2

2

1

2

2

2

2
2

2

21

2

1

2

12

2

2
1

2

1

lnlnln

lnlnln

lnlnln

),,(

mmm

m

m

m

L
E

L
E

L
E

L
E

L
E

L
E

L
E

L
E

L
E

I















































 (6.2)

According to the standard theory of MLE, when the data size is large,  m ,, 21 

converges to m-variate normal distribution with mean]ˆ,ˆ,ˆ[21 m  and variance

)]ˆ(,),ˆ(),ˆ([21 mVarVarVar   . The asymptotic covariance matrix which is the

inverse of the Fisher information matrix is given by

103

     
     

      



















 

mmm

m

m

VarCovCov

CovVarCov

CovCovVar

IV







ˆˆ,ˆˆ,ˆ

ˆ,ˆˆˆ,ˆ

ˆ,ˆˆ,ˆˆ

21

2212

1211

1









 (6.3)

The two sided approximate %100 confidence interval for model parameter is

    
ˆˆ and ˆˆ

2/2/ VarZVarZ LU  (6.4)

where 2/Z is the (1- 2/) quantile of the standard normal distribution.

Moreover, based on the covariance matrix, the uncertainty of other quantities which

are functions of parameters  m ,, 21  can also be quantified. For example, let

),,(21 mff   represent the quantity of interest and)ˆ,ˆ,ˆ(ˆ
21 mff   be the

estimate. The variance for the f̂ is estimated as

)ˆ,ˆ()ˆ()ˆ(
1 11

2

ji

m

i

m

ji

j ji

m

i

i
i

Cov
ff

Var
f

fVar 

























































 (6.5)

where if  / is evaluated at]ˆ,ˆ,ˆ[21 m  . The two sided approximate %100

confidence interval for f is

   fVarZfffVarZff LU
ˆˆ and ˆˆ

2/2/   (6.6)

104

A confidence interval for the parameter is a measure of the parameter uncertainty. In

the following sections, attention will be focused on issues related to the software

release time problem, which is an important decision that has to be made by managers

in software development companies. In fact, the optimal software release time given

the reliability requirement can be treated as a function of model parameters, and the

uncertainty of it can be quantified based on the discussions above.

6.2 Model Formulation

Considering the software reliability requirement aspect for software release time

determination, with the software reliability model and a specified minimum reliability

level R0, the decision problem is typically formulated as

0)|(RtxR  , (6.7)

where)|(txR is the conditional software reliability, which is defined as the

probability that the software will not fail within a specified time interval],(xtt  .

The optimal release time T is then the minimum testing time required to satisfy this

reliability target R0. In most software reliability models, there are a set of parameters

m ,,, 21  . Then the optimal release time T can then be represented by

 mfT  ,...,, 21 , where f denotes the mapping function. In solving for the optimal

release time, most existing research assumes that these model parameters are known

with certainty, and)|(txR can model exactly the actual software reliability

(Okumoto and Goel, 1980; Yamada and Osaki, 1985; Xie and Yang, 2003; Boland

105

and Chuiv, 2007; Huang and Lyu, 2005a; Ho et al., 2008; Liu and Chang, 2007; Yang

et al., 2008).

6.2.1 Risk Considerations

In reality, however, exact values for these model parameters are unknown. These

parameters are estimated based on the observed test data. Parameter uncertainty

arises since the estimated parameters are subject to the random variations in the data

(Dai et al., 2007). With parameters estimated from observed data, the software

reliability computed from these models is no longer exact. Therefore, the optimal

release time T given a reliability target is no longer a fixed value but a random

variable. When the model parameters are estimated by the MLE method, based on the

standard statistical analysis (Nelson, 1982), the optimal release time T given a

reliability target is asymptotically normally distributed with mean T̂ and variance

 TVar ˆ as discussed in the previous section. Here, T̂ is the release time given the

reliability target R0 obtained from solving (6.7) with the estimated parameters, and

 TVar ˆ is the variance of T̂ . Detailed discussions on these results are shown in the

previous section, and Figure 6.1 illustrates the uncertainty in the optimal release time

T with 30ˆ T and   25ˆ TVar .

106

10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T

 Tf

T̂ t

 tr0

Figure 6.1 An illustrative example of the distribution of the optimal release time T

given a reliability requirement

Based on this additional uncertainty in the optimal decision T, the risk that software

cannot meet the reliability requirement when it is released at time t can be quantified

as

      



)ˆ(

ˆ

00 1| TVar

Tt

dxxtrRtxRP  , (6.8)

where   2

2

2

1
x

ex





 is the probability density function of standard normal

distribution. In Figure 6.1,  tr0 is the area of the shaded region. It can be seen that

when the mean value of release time T̂ is used, there is 50% chance that the

reliability requirement cannot be guaranteed. Since the reliability requirement is the

software vendor‟s commitment and it is generally specified in the contract, such risk

107

can be too high to be acceptable. As a result, reducing the risk to a lower level to

improve the confidence of the software quality becomes to an important issue. With

the consideration of this, the risk-based release time TR is recommended and it is

given by

 TVarZTT rR
ˆˆ

0
 , (6.9)

where r0 denotes the acceptable risk level from management and
0r

Z is the (1-r0)

quantile of the standard normal distribution. As seen from (6.9), the use of risk-based

release time requires a delay of release, increasing the testing time by  TVarZr
ˆ

0
.

This increased testing (and hence delay) increases the costs of the testing process.

This is a useful approach if the developers and management are certain of the risk

level required and are committed to achieve it at all costs. More often than not, it is

easier to elicit a maximum tolerable risk value (although preference may be to drive it

to zero), and software projects have to work within a budget.

6.2.2 Cost Considerations

From the management‟s perspective, it is also important to control the penalty cost

due to the use of risk-based release time. Based on the generalized software cost

model proposed by Pham and Zhang (1999), such penalty cost is the additional

general testing cost (e.g., the salaries to be paid for testing team members) and the

additional expected fault removal cost during the testing process. Specifically, the

108

expected general testing cost  tC1 and the expected cost to remove errors during

testing phase  tC2 are given by

  tctC 11  ,     ytmctC 22  , (6.10)

where c1 is the software test cost per unit time,  is the discount rate of the testing

cost due to the learning effect, c2 is the cost of removing an error per unit time during

the testing phase and y is the expected time of removing an error during this period.

It is worth noting that risk is expected to be less than 50% from management‟s point

of view. Therefore, we have),ˆ[ Tt . Accordingly, the penalty cost at the time t is

obtained as

           yp TmtmcTtctC 
 ˆˆ

21 





  . (6.11)

In summary, the discussions above indicate that reducing the risk and controlling the

penalty cost are two important criteria that should be considered simultaneously when

determining the software release time. In this decision process, these two objectives

contradict each other because the use of risk-based release time can inevitably

increase the testing costs. In this case, it is necessary to incorporate management‟s

preference into the decision process to make a compromise between these two

criteria. To the best of our knowledge, these issues have not been highlighted and

studied in the literature. In order to resolve these difficulties, multi-attribute utility

theory (MAUT) is adopted, and a decision model is developed based on it for the

determination of optimal risk-based release time. The proposed decision model can

109

help management have a broader view of the software release time determination

problem.

6.3 The Decision Model Based on MAUT

In MAUT, some independence assumptions, such as preferential independence, utility

independence and additive independence, are used for a more practical form of the

multi-utility function. It is worth noting that these assumptions are commonly

accepted in practice. Moreover, it has been shown that even when these assumptions

are violated, the additive multi-attribute function can provide fairly good

approximations (Edwards, 1977; Farmer, 1987). For more detailed discussions on the

multi-attribute function when independence assumptions are not held, interested

readers can refer to (Keeney and Raiffa, 1976). In this thesis, we will adopt these

commonly used assumptions.

The application of MAUT is based on a one-dimensional multi-attribute utility

function, which is the measure of the attractiveness of the conjoint outcome of

attributes given a specified alternative. The additive form of the multi-attribute utility

function is given by

   



n

i

iin duwdddU
1

21 ,..., , (6.12)

110

where each attribute is denoted by di, i=1,2,…n, the attractiveness of each attribute is

represented by the single utility function u(di) and wi‟s are the scaling constants

allocated for different single utility functions. The scaling constants represent the

different importance weights for the utilities of attributes, and the sum of them is

equal to 1 (von Winterfeldt and Edwards, 1986). By maximizing the multi-attribute

utility function, the best alternative is obtained, under which the attractiveness of the

conjoint outcome of attributes is optimized.

The main reason for the selection of MAUT in our problem is that typical

management‟s scenarios can be appropriately represented within the structure of it. In

our problem, there are two conflicting criteria to be balanced for the determination of

optimal risk-based release time: minimizing the risk and minimizing the penalty cost.

Hence, risk and penalty cost are two attributes and release time is the alternative in the

framework of MAUT. Given that risk reduction and penalty cost control are both

subjective, the single utility function is used to reveal management‟s own preference

towards each attribute, i.e., risk and penalty cost. By allocating different importance

weights for these two attributes, management can use the multi-attribute utility

function to measure the attractiveness of the conjoint outcome of the risk and the

penalty cost given a specified release time.

Another reason for the selection of MAUT is that it has strong theoretical foundations

due to the use of the expected utility theory. The utility theory not only allows us to

quantify management‟s preference towards each attribute with flexibility, but also

takes management‟s risk structure into account, such as risk neutrality, risk aversion

and risk proneness. Furthermore, MAUT provides a feasible approach for considering

111

the continuous scale of the alternatives. Specifically, in our problem, the release time

as the alternative should be considered in a continuous scale. Last but not least, when

management has other requirements, i.e., the minimization of the total cost in the

software development cycle (Sgarbossa and Pham, 2010), the control of the

uncertainty in the total cost function (Yang et al., 2008), the optimized resource

allocation (Ngo-The A and Ruhe, 2009), our decision model can be extended by

introducing more attributes in the framework of MAUT. The proposed MAUT

procedure for our decision problem is discussed in detail below.

6.3.1 Quantification of Attributes

The decision-maker should be identified before the application of our proposed

MAUT procedure, and management here refers to the decision-maker(s) in our release

time determination problem. In real applications, this decision maker is generally the

quality manager of software products. When determining the release time, reducing

the risk and controlling the penalty cost associated with it are both important for

management.

On one hand, management is concerned about the risk that software cannot meet its

reliability target due to parameter uncertainty. As shown in Figure 6.1, when the mean

value of release time is used, there is 50% risk that software cannot meet the

reliability requirement. Since the reliability requirement is generally set by customers,

and it is usually specified in the sales/service contract, such risk can be too large to be

acceptable. As a result, the risk, which is quantified in (6.8), should be minimized.

112

However, reducing this risk inevitably causes a delay of the release, and such delay

can increase the cost during the testing phase. Provided that there is always limited

budget for the testing process, controlling this delay penalty cost is also of great

importance. Therefore, on the other hand, the penalty cost, which is quantified in

(6.11), is also to be minimized from the management‟s point of view. It is worth

noting here that the cost components  tC1 and  tC2 are considered for illustrative

purpose. In practical applications, other cost components incurred can be added in a

straightforward manner.

6.3.2 Elicitation of Single Utility Function for Each Attribute

After the quantification of each attribute, management‟s preference towards the

performance of each attribute should be assessed. To represent this, the single utility

function for each attribute is used. Suppose that the utility function for risk is to be

determined, the worst and best values of risk are first selected as 0
0r and 1

0r . In real

applications, they represent the lowest risk requirement and the highest risk reduction

expectation from management. For example, suppose that management can only

accept a risk level below 5%, and the smaller the risk the better, until this risk can be

eliminated. Hence, the lowest risk requirement is %50
0 r and the highest risk

reduction expectation is 01
0 r . At these boundary points,   00

0 ru and   11
0 ru . The

superscript of ir0 is used to represent the corresponding utility value under the

parameter and  1 ,0i .

113

Subsequently, management is presented with some simple hypothetical gambles to

determine the certainty equivalents for a few 50-50 lotteries (Keeney and Raiffa,

1976, von Winterfeldt and Edwards, 1986). For example, management is asked to

chose a value for 5.0
0r , so that it is indifferent between accepting 5.0

0r with certainty

and having a 50-50 lottery, where there are 0.5 probabilities of getting 0
0r and 1

0r

respectively. Similarly, 75.0
0r can be determined with a 50-50 lottery which consists

of 5.0
0r and 1

0r . Also, 25.0
0r can be obtained with a 50-50 lottery which includes 0

0r

and 5.0
0r . These five points are commonly used to elicit the single utility function for

each attribute, which is generally represented by the linear or exponential function as

follows (Keeney and Raiffa, 1976):

  00 rru   or    00 exp rru   , (6.13)

where  ,  and  are constants which ensure    1 ,00 ru . It should be noted that

we also need to compare the certainty equivalents and the expected values of the 50-

50 lotteries to determine which form in (6.13) should be selected. Specifically, if they

are equal to each other, management is risk neutral and the linear form should be

used. Otherwise, management is not risk neutral and the exponential form is generally

adopted.

Similarly, the single utility function for penalty cost can be obtained following the

procedure discussed above. First of all, 0
pC and 1

pC should be determined. For

management, these values are of great importance because they represent their

114

maximum penalty cost budget and the highest penalty cost control expectation. Then

some points on the utility curve are assessed to obtain the single utility function for

penalty cost.

6.3.3 Estimation of Scaling Constants

The following step is the estimation of the scaling constants w1 and w2, which

represent the different importance weights allocated for risk and penalty cost

respectively (von Winterfeldt and Edwards, 1986). There are two common methods to

assess the scaling constants: certainty scaling and probabilistic scaling (von

Winterfeldt and Edwards, 1986). Given that only two attributes are considered in our

problem, and this is a small number, the probabilistic scaling technique is

recommended.

When using the probabilistic scaling approach, management is asked to compare its

preference between the two choices as shown in Figure 6.2. On the left hand side,

there is a certain joint outcome  01
0 , pCr comprising of risk at its best level and

penalty cost at its worst level. On the right hand side, the lottery comprising of both

attributes at their best levels with probability p and both attributes at their worst levels

with probability 1-p.

115

p

1-p
 00

0 , pCr

 11
0 , pCr

 01
0 , pCr

The certain joint outcome The lottery

Figure 6.2 Two choices for the determination of the scaling constant w1

Management is first asked to compare the certain outcome with the lottery having a

50-50 chance of occurring. If management prefers the certain outcome, the probability

p is gradually increased until management is indifferent with these two choices. On

the other hand, if management prefers the lottery, we decrease the probability p. At

indifference, p is equal to the scaling constant w1 for the risk attribute (von

Winterfeldt and Edwards, 1986). Since the sum of the scaling constants must equal to

one, w2 can be obtained with ease.

6.3.4 Maximization of Multi-Attribute Utility Function

As discussed, the attractiveness of each attribute is measured by the single utility

function based on management‟s own preference. After that, given different

importance weights allocated for attributes, a one-dimensional multi-attribute utility

function is constructed to reveal the attractiveness of the conjoint outcome of

attributes given a specified alternative. The additive form of the multi-attribute utility

function in our problem can be written as

     pp CuwruwtCtrU 2010)(),( (6.14)

116

where w1 and w2 are the scaling constants for attribute risk and penalty cost

respectively and u(r0) and u(Cp) are the single utility function for each attribute. By

maximizing the multi-attribute utility function, the optimal risk-based release time is

obtained as   )(),(maxarg 0
* tCtrUT p

t
R  .

It is worth noting here that the additive form of the multi-attribute utility function

above is based on some independence assumptions and interested readers can refer to

Keeney and Raiffa (1976) for more detailed theoretical discussions. In real

applications, these assumptions are commonly accepted (Brito and Almeida, 2009;

Ferreira et al., 2009). Moreover, it has been shown that even when these assumptions

are violated, the additive multi-attribute utility function can provide fairly good

approximations (Edwards, 1977; Farmer, 1987).

6.3.5 Summary of the Procedure

The procedure of our proposed MAUT approach in the decision problem is

summarized in Figure 6.3. The first step of the implementation of the decision model

is to quantify the attributes, i.e., the risk and the penalty cost. For the risk attribute,

based on the standard statistical results, risk can be quantified by (6.8). For the

attribute penalty cost, the generalized cost model is used and it is quantified by (6.11).

The following step is the elicitation of single utility functions for both attributes. After

this, the scaling constants for each attribute are estimated by comparing the two

choices as shown in Figure 6.2. Finally, based on the single utility functions and the

scaling constants, the multi-attribute utility function is obtained as shown in (6.14).

117

The optimal risk-based release time, which is the best option of release time in terms

of risk and penalty cost, is determined by maximizing it.

 Quantification of risk r0 and penalty cost Cp

Elicitation of single utility functions u(r0) and u(Cp)

Estimation of scaling constants w1 and w2

Maximization of multi-attribute utility function U(r0(t),Cp(t))

Figure 6.3 The structure of the decision model for the determination of optimal risk-

based release time

6.4 An Illustrative Example

In this section, a decision model application example is provided for illustrative

purpose. By considering the risk and the penalty cost simultaneously, optimal risk-

based release time is determined by incorporating management‟s own preference into

the decision process. In addition, sensitivity analysis is introduced to help

management check the robustness of the final decision.

6.4.1 The Data Set

In this example, the data set used in Pham and Zhang (1999) is adopted. The reason

for this selection is that both failure data and cost parameters are provided in it. In

118

particular, based on the failure data, the quantification of risk can be done; for the cost

parameters, they can be used to obtain the general penalty cost function and we have

c1=700, 95.0 , c2=60 and 1.0y .

It should be noted here that the estimates of these cost parameters are usually

determined based on previous experiences or expert opinions. Therefore, physical

meanings of these parameters are of great importance and they are illustrated here

again as follows: c1 is the software test cost per unit time,  is the discount rate of

the testing cost due to the learning effect, c2 is the cost of removing an error per unit

time during the testing phase and y is the expected time of removing an error during

this period. Different software projects usually generate different estimates of these

parameters. However, the physical meanings of these parameters can ensure that they

are estimated in a consistent way.

6.4.2 The Determination of Optimal Risk-Based Release Time

Following the procedure discussed in Section 6.3, the determination of optimal risk-

based release time is shown in a step-by-step manner.

Step 1: Quantification of risk and penalty cost

The Goel-Okumoto (GO) model (Goel and Okumoto, 1979) is adopted in Pham and

Zhang (1999) to analyze the failure data for reliability assessment. In this study, we

adopt this model as well. The mean value function and the failure intensity function of

the GO model are given by

119

)1()(bteatm  and btabet )( (6.15)

where a denotes the number of expected faults in the software and b represents the

fault detection rate. Furthermore, the reliability of the software system is obtained as

 xttxR)(exp)|( (6.16)

and)|(txR represents the conditional software reliability, which is defined as the

probability that the software will not fail given a specified time interval],(xtt  in

the operational phase (Yang and Xie, 2000). We set x equal to 1 without loss of

generality. Then the release time based on the reliability target R0 is











)/1ln(
ln

1

0R

ab

b
T (6.17)

Suppose that customer has indicated a reliability requirement of R0=0.95. Based on

the maximum likelihood estimates as 32.142ˆ a and 1246.0ˆ b , the mean value of

the release time is 91.46ˆ T . Moreover, based on the standard statistical analysis as

shown in Section 6.1, we have 85.154)ˆ(aVar , 41017.2)ˆ(bVar ,

0358.0)ˆ,ˆ(baCov . Hence, the variance of the release time

120

)ˆ,ˆ(
ˆˆ

)/1ln(
ln1

ˆˆ

2

)ˆ(
ˆˆ

)/1ln(
ln1

ˆ

1
)ˆ(

ˆˆ

1

)ˆ,ˆ(2)ˆ()ˆ()(

0

3

2

0

4

2

ˆ

ˆ

2

ˆ

ˆ

2

ˆ

ˆ

baCov
ba

R

ba

bVar
ba

R

b
aVar

ba

baCov
b

T

a

T
bVar

b

T
aVar

a

T
TVar

bb

aa

bb

aa

bb

aa
















































































































 (6.18)

is obtained as 35.22)ˆ(TVar . Accordingly, the attribute risk can be quantified by

substituting these estimated parameters into (6.8).

For the quantification of the penalty cost function, it is relatively simple by

substituting estimated values of cost parameters into (6.11), and our decision space for

the release time is   ,91.46t .

Step 2: Elicitation of single utility functions

The following step is to assess management‟s preference towards the performance of

each attribute, i.e., the risk and the penalty cost. Interviews with management are

needed to elicit reasonable single utility functions.

Suppose that management scenarios are as follows:

(1) Management has verified that it is risk neutral towards both attributes.

(2) Management indicate that it can only accept up to a risk level of 5%, and the

smaller the risk the better, until this risk can be eliminated.

(3) Management has an additional penalty cost budget of $15000 and it is completely

unsatisfied when all the money is spent; its satisfaction increases when the money

121

spent decreases, and the highest satisfaction level is achieved when no money is

spent.

Based on the management scenarios above, corresponding explanations on the

determination of single utility functions are shown as follows:

(1) Since management is risk neutral towards both attributes, the linear form of the

single utility function should be used.

(2) The lowest risk requirement is %50
0 r and the highest risk reduction expectation

is 01
0 r . The single utility function for risk is obtained as   00 201 rru  .

(3) The maximum penalty cost budget is 150000 pC and the highest penalty cost

control expectation is 01 pC . The single utility function for penalty cost is

determined as   150001 pp CCu  .

Step 3: Estimation of scaling constants

In this stage, the scaling constant w1 is estimated first by comparing the two choices in

Figure 6.2. Suppose management claims that it is indifferent between these two

choices when p is equal to 0.5. Then, w1=0.5. Since the sum of scaling constants is

equal to one, w2 is equal to 0.5 as well.

Step 4: Maximization of multi-attribute utility function

Based on the estimated single utility functions and scaling constants, the multi-

attribute utility function can be obtained by (6.14). Figure 6.4 shows this multi-

attribute utility function as a function of the release time. This multi-attribute utility

122

function is maximized when 15.60* RT and the corresponding risk and penalty cost

at this time are   %28.0*
0 RTr and   7216* Rp TC respectively. As a result, software

should be released at the optimal risk-based release time 15.60* RT to appropriately

compromise between reducing the risk and controlling the penalty cost.

45 50 55 60 65 70 75 80

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

release time

M
u
lt
i-
a
tt

ri
b
u
te

 u
ti
lit

y
 f

u
n
c
ti
o
n

 0
0rT  0

pCT*
RTT̂

Figure 6.4 Multi-attribute utility function given different release times

6.4.3 Illustration of the Proposed Decision Model

In Figure 6.4, we denote 91.46ˆ T as the mean value of release time without

consideration of parameter uncertainty. If we release the software at this time, no

penalty cost is incurred and the highest penalty cost control expectation 01 pC is

satisfied. However, at this release time, the 50% risk is too high to be acceptable for

123

management because the lowest risk requirement %50
0 r is not satisfied. At this

point, management has to make a compromise between reducing the risk and

controlling the penalty cost.

With the consideration of this, the software testing is expected to increase. We denote

  77.540
0 rT and   59.740 pCT as the release times when the lowest risk

requirement %50
0 r and the maximum penalty cost budget 150000 pC are satisfied

respectively. These time points are of great importance since both attributes will

contribute to the multi-attribute utility function during this time period. It is found that

at the optimal risk-based release time 15.60* RT , the multi-attribute function is

maximized. In other words, when both risk and penalty cost are considered, a

compromise can be made to optimize them simultaneously, and corresponding risk

and penalty cost are   %28.0*
0 RTr and   7216* Rp TC respectively.

Finally, it should be noted that during the time periods   0
0 ,ˆ rTT and    ,0

pCT , the

multi-attribute utility function is dominated by only one attribute. More specifically,

for the first period, since the lowest risk requirement %50
0 r has not been satisfied,

the penalty cost is the only attribute contributing to the multi-attribute utility function.

Given that the penalty cost is increasing over time and management‟s satisfaction

level is decreasing with it, the multi-attribute utility function is decreasing during this

time period. While for the second time period, the multi-attribute utility function is

dominated by the risk attribute and it is equal to 0.5u(r0). Figure 6.4 shows that the

multi-attribute utility function remains at 0.5 level when release time is greater than

124

 0
pCT . This implies that the available penalty cost budget 150000 pC is sufficient

for management to reduce the risk to the best level 01
0 r .

6.4.4 Sensitivity Analysis

Optimal risk-based release time can be determined by maximizing the multi-attribute

utility function. However, since most parameters in the MAUT are obtained based on

the subjective assessments of management, the optimal risk-based release time

obtained may not be accurate. In practice, management has to know how robust the

optimal decision is, and sensitivity analysis is needed. More specifically, sensitivity

analysis can help to investigate the relative change of the optimal solution when a

specific parameter changes, i.e., the change of cost parameters, scaling constants, etc.

The results from sensitivity analysis reveal the stability of the optimal solution.

Sensitivity analysis is generally done by changing one parameter and setting the other

parameters at their fixed values (Xie and Hong, 1998; Li et al., 2010). When

parameter x is investigated to see how much the optimal risk-based release time *
RT

changes, *
RT is in fact a function of x as other parameters are fixed using their

estimated values. The sensitivity of the optimal decision to this parameter can be

quantified by xqS , , defined as the relative change of the optimal risk-based release

time when x is changed by 100q% (Xie and Hong, 1998; Li et al., 2010).

)(

)()(
*

**

,
xT

xTqxxT
S

R

RR
xq


 (6.19)

125

A large value of xqS , indicates that parameter x has significant influence on the

determination of *
RT , and *

RT is regarded as sensitive to the change of x. Normally,

management should pay special attention to the significant parameters as the optimal

decision *
RT is heavily dependent on the accurate estimates of them (Xie and Hong,

1998; Li et al., 2010).

From a practical point of view, it may not be necessary to conduct sensitivity analysis

for all the parameters in this optimal release time problem. For instance, parameters c2

and y are expected to be insignificant. The reason is that the expected cost to

remove errors from time t to T̂ is negligible in (6.11). More specifically, given a high

reliability requirement such as R0=0.95 in our application example, there will be few

faults detected from T̂ to t. Additionally, as c1=700, c2=60 and 1.0y ; compared

with the estimated value of c1, the product of c2 and y is too small to have any

impact on the penalty cost function in (6.11). Another example is the determination of

1
0r and 1

pC , which represent the highest risk reduction expectation and highest penalty

cost control expectation respectively. Since management always prefer less risk and

less cost, setting them to zero can properly describe the best cases for risk control and

penalty cost control respectively.

In contrast, parameters c1 and  are much more important since they dominate the

change of the penalty cost over time. Similarly, 0
0r and 0

pC are of great importance as

shown in Figure 6.4, where  0
0rT and  0

pCT are change points of multi-attribute

126

utility function. Furthermore, scaling constants w1 and w2 are also important since

they denote the different importance weights allocated for each attribute, which

directly affect the final solution on *
RT . However, since the sum of these two weights

is equal to one, investigating one factor is sufficient. Results of sensitivity analysis

with regard to these parameters are summarized in Table 6.1. Specially, since

parameter  represents the learning effect of the testing team which is not greater

than one, the value of ,qS when 1 is used for the positive change of  .

Table 6.1 Sensitivity analysis results given different parameters

q -30% -20% -10% 10% 20% 30%

1,wqS -0.0186 -0.0120 -0.0058 0.0057 0.0114 0.0171

0, pCq
S -0.0105 -0.0065 -0.0030 0.0027 0.0052 0.0074

0
0,rq

S 0.0100 0.0063 0.0030 -0.0028 -0.0053 -0.0077

1,cqS 0.0100 0.0063 0.0030 -0.0028 -0.0053 -0.0077

,qS 0.0404 0.0272 0.0138 -0.0075

It can be seen that these parameters do not significantly influence the final solution on

*
RT since all the absolute values of sS xq ', are below 5%. In other words, the optimal

risk-based release time obtained is robust to changes in the parameters. For example,

when parameter  decreases by 30 percent, the relative change of *
RT is only about 4

percent. Moreover, results in Table 6.1 indicate that *
RT is positively correlated with

w1 and 0
pC , and negatively correlated with 0

0r , c1 and  . Physical meanings of these

parameters can actually explain these results. For instance, when w1 increases, it

means that more importance is allocated for the control of risk. As a result, *
RT

127

increases as well. Last but not least, it is interesting that parameter 0
0r and c1 appears

to have the same effect on *
RT . This result will be explained in the following section,

where a simplification of the decision model is discussed.

6.5 A Simplification of the Decision Model

The decision model proposed can be simplified to provide analytical tractability with

some additional non-restrictive assumptions. These assumptions are summarized as

follows:

(1) Management is risk neutral towards each single attribute, i.e., the risk and the

penalty cost;

(2) Management set its highest risk reduction expectation as 01
0 r and its highest

penalty cost control expectation as 01 pC ;

(3) The penalty cost is dominated by the general testing cost C1(t) and the learning

effect of the testing team is negligible such that 1 .

From a practical point of view, these assumptions may not appear too far-fetched or

restrictive. The first assumption is a widely adopted assumption in practice, especially

when the single utility function is estimated empirically (Scholz and Tietje, 2002). For

the second assumption, since management always prefer less risk and less cost, setting

them to zero can properly describe the best cases for risk control expectation and

penalty cost control expectation. As for the third assumption, the preceding

128

illustrative example has revealed that the penalty cost is indeed dominated by the

general testing cost and the optimal risk-based release time is not sensitive to the

change of the learning effect factor.

Based on these additional assumptions, if    00
0 pCTrT  , the multi-attribute utility

function when     00
0 , pCTrTt simplifies to

 
   

0

0

20
0

0
0
0

1

p

pp

C

tCC
w

r

trr
wtU





 (6.20)

where  TtctCp
ˆ)(1  .

Theorem: When     00
0 , pCTrTt and    00

0 pCTrT  , define  TVar
C

c

w

w
rk

p

ˆ
0
1

1

20
0 .

If   0
0rTk  , the multi-utility function for the simplified model is maximized at

   2* 2lnˆˆ kTVarTt  ; if   0
0rTk  ,  0

0
* rTt  .

Proof: Substitute (6.15) into (6.14) and take the first and second derivative of multi-

attribute utility function with respect to t, we have

 
0
1

2
0
0

1

)ˆ(

ˆ

)ˆ(pC

c
w

TVar

Tt

TVarr

w

dt

tdU














 
  (6.21)

and

129

   












 


)ˆ(

ˆ

)ˆ(

ˆ

0
0

1
2

2

TVar

Tt

TVarr

Ttw

dt

tUd
 (6.22)

Since the risk-based release time is always greater than the mean value T̂ ,

  22 dttUd is not greater than zero for all t. If   0
0rTk  , there is a feasible

solution

   2* 2lnˆˆ kTVarTt  , (6.23)

under which   0dttdU and the multi-attribute utility function is maximized.

Otherwise, if   0
0rTk  ,   0dttdU which indicates that the multi-attribute

utility function is a decreasing function, and it is maximized at  0
0

* rTt  . □

Subsequently, for   0
0,ˆ rTTt , it has been discussed that during this time, the multi-

attribute utility function is only determined by the single utility function for the

penalty cost and it is decreasing over time. The maximum value of it is equal to w2

and it is achieved at T̂ . Similarly, for     1
0

0 , rTCTt p , the maximum value of the

multi-attribute utility function is w1 under  1
0rT .

Accordingly, under the condition that    00
0 pCTrT  , management can determine

optimal risk-based release time *
SRT with the simplified decision model easily. It is

130

known that at release times  1
0rT , T̂ and *t , corresponding values of the multi-

attribute function are w1, w2 and  *tU respectively. *
SRT is then selected among these

three release times, under which the corresponding multi-attribute utility value is the

largest. Mathematically, by defining   *1
0 ,ˆ , tTrTT 


, we have)(maxarg* tUT

Tt
SR 


 .

Previous discussions are based on the condition    00
0 pCTrT  and it means that the

maximum penalty cost budget is sufficient enough to achieve the minimum risk

requirement. While under the condition that    00
0 pCTrT  , during the time period

    0
0

0 , rTCTt p , the value of the multi-attribute function is equal to zero because the

maximum cost budget is exceeded and the lowest risk requirement is not achieved.

Accordingly, only one attribute can be optimized in this case. Management needs to

compare values w1 and w2, which represent the importance weights allocated for risk

and penalty cost respectively. If w1>w2,  1
0

* rTTSR  ; otherwise, TTSR
ˆ*  .

The structure of the simplified decision model is essentially the same as that of the

general decision model as shown in Figure 6.3. However, some changes are made in

the first two steps. For the first step, the penalty cost function is simplified based on

the assumption (3). For the second step, since the assumptions (1) and (2) are adopted,

the linear form is used to represent the single utility function. Due to these changes,

the complexity of the decision process is greatly reduced, and the determination of

optimal risk-based release time with the simplified decision model is shown in Figure

6.5.

131

   00
0 pCTrT 

Y

N

Define  TVar
C

c

w

w
rk

p

ˆ
0
1

1

20
0 w1>w2

  0
0rTk 

 Define

   2* 2lnˆˆ kTVarTt   0
0

* rTt 

  *1
0 ,ˆ , tTrTT 



)(maxarg* tUT
Tt

SR 




 1
0

* rTTSR  TTSR
ˆ* 

Y

N

Y

N

Figure 6.5 Determination of the optimal risk-based release time under the simplified

decision model

Illustrating with the example in Section 6.4, we see that the first condition

   00
0 pCTrT  is just satisfied. Moving to the next step, since k=0.0112 and

   1031.00
0 rT , the condition   0

0rTk  is satisfied. Therefore

    70.592lnˆˆ 2*  kTVarTt  which gives   6643.0* tU . As a result of

  5.021
*  wwtU , the optimal risk-based release time based on the simplified

decision model is 70.59**  tTSR . Compared with 15.60* RT obtained in Section

5.4.2, there is only -0.75% relative difference. This implies that the simplified

decision model (under the additional assumptions) can provide a fairly good

approximation.

132

Based on this approximation, the sensitivity analysis results given parameter 0
0r and

c1 can be explained as well. Since    2** 2lnˆˆ kTVarTtTSR  and

 TVar
C

c

w

w
rk

p

ˆ
0
1

1

20
0 , we have)()(11

*0
0

0
0

* qccTqrrT SRSR  and
1

0
0

,, cqrq
SS  .

Accordingly, parameters 0
0r and c1 appear to have the same effect on the final

solution of *
RT as shown in Table 6.1.

6.6 Threats to Validity

Based on the standard statistical analysis (Nelson, 1982), there is 50% chance that the

software will not meet its reliability requirement when the mean value T̂ is used.

However, it should be noted that the standard statistical analysis is for approximation.

It is still an open question whether the risk is really as high as 50%. To investigate this

problem, an empirical case study is conducted by the Monte Carlo simulation using

MATLAB software.

In particular, the GO model is adopted, where the preset parameters are given by

100a and 1.0b . Therefore, suppose that the reliability requirement is 95.00 R ,

the real value of optimal release time is 73.52realT . According to the general

procedures discussed in Lyu (1996), 10000 failure data sets are generated, and each

failure data set is composed of ninety time to failures data. Since each failure data set

can produce an estimate of the optimal release time denoted by T̂ , risk that software

cannot meet the reliability requirement can be easily estimated by comparing these T̂

133

values with realT , and such risk is estimated as %21.600̂ r . Although this result is

different from the estimated risk based on the standard statistical analysis, it severs as

another piece of evidence that the risk due to parameter uncertainty cannot be

neglected.

In addition, previous discussions are based on the closed form of the mean value

function given by (6.17). It is possible that there is no closed form of the mean value

function if a different model instead of GO model is used for the analysis, e.g., the S-

shaped model (Yamada et al., 1983). When there is no closed form of optimal release

time, the variance of it cannot be computed analytically as in (6.5) and (6.18). In this

case, the Monte Carlo simulation approach could be a good alternative as it has been

widely and successfully used in the uncertainty analysis of many complex systems

(Helton and Davis, 2003). In general, such analysis can be regarded as the study of

functions of the form

 xy f (6.24)

where],...,[21 mxxxx is a vector of analysis inputs and ,...],[21 yyy is a vector of

outputs. To evaluate the uncertainty of the elements of y, uncertainty of x is supposed

to be known in advance and it is generally characterized by a sequence of probability

distributions denoted by mDDD ,...,, 21 for each element in x respectively. According

to the distributions of x and other associated restrictions, samples of inputs are

generated and the corresponding values of outputs are received. Then, cumulative

distribution functions (CDFs) for y can be estimated and uncertainty in y is analyzed

based on these CDFs.

134

For our problem, only optimal release time is the output of interest and it can be

written as

)(θfT  (6.25)

where],,,[21 m θ is the vector of input parameters. Based on the discussion

of Section 6.1, input parameters can be regarded as normally distributed random

variables and their mean values and variances can also be estimated. Further, with the

use of asymptotic covariance matrix given by (6.3), correlated Gaussian random

numbers can be generated following the standard procedures discussed in Johnson

(1987). Let N denote the base sample size and therefore there will be N values of the

optimal release time given by

NifT miiii ,...,2,1),,,(21    (6.26)

Hence, the risk can be determined according to the definition given by (6.8) and the

estimated CDF of T. More specifically, the CDF of T given a determined value of t

can be estimated as





N

i
iT

N
TtTPtr

1
0

1
)(}{)( (6.27)

where










tT

tT
T

i

i
iT

1

0
)( (6.28)

135

Another possible limitation for the quantification of risk is that the normal distribution

is used to quantify the parameter uncertainty. Although this kind of approximation

technique is widely adopted in reliability engineering, it may not be accurate. In this

case, incorporating experts‟ opinion and past experience could be a choice. For

example, experts could probably know the distributions of some model parameters

based on their past experience on similar software projects. Based on this kind of

information, parameter uncertainty can be quantified effectively by combining the

Maximum-Entropy Principle (MEP) into the Bayesian approach as discussed in Dai et

al. (2007).

Besides the consideration of risk, the penalty cost associated with it is incorporated

into our decision problem. This is because the risk cannot be overlooked due to the

limited cost budget of the project (Nan and Harter, 2009). Management needs to strike

a balance between reducing the risk and controlling the penalty cost associated with

the risk. In other words, given a reliability requirement, we introduce two new

important dimensions for the determination of optimal release time: the risk that

software cannot meet the reliability requirement due to parameter uncertainty and the

penalty cost associated with such risk. However, it should be noted that the

formulation here may not be enough for release time determination. In reality,

management can also have other requirements, which may include the minimization

of the total cost in the software development cycle (Sgarbossa and Pham, 2010), the

control of the uncertainty in the total cost function (Yang et al., 2008), and the

optimized resource allocation (Ngo-The and Ruhe, 2009), etc. When these

requirements are considered, our decision model should be extended by introducing

more attributes in the framework of MAUT.

136

Last but not least, although the proposed decision model can better describe the

management‟s perspective, it requires the model user to have the knowledge on how

to apply MAUT in the decision problem properly. For large and experienced

companies, this can be done in some training programs. While for the other

companies, which may only require some empirical results, they can probably choose

the simplified decision model.

6.7 Conclusion

The software release problem is of great importance in the software development

cycle. In this chapter, when to release software given a reliability constraint is

discussed in detail. In particular, we highlight the risk in the reliability estimate due to

parameter uncertainty. However, reducing such risk inevitably increases the testing

costs. Thus, from management‟s point of view, a compromise should be made

between reducing the risk and controlling the delay penalty cost associated with it.

Due to this consideration, a decision model based on MAUT is developed for the

determination of optimal risk-based release time. The proposed model provides

management with a boarder view of the release time determination problem. It not

only allows management to optimize two conflicting criteria simultaneously, but also

incorporates management‟s own preference into the decision process.

The decision model proposed in this chapter is also general in terms of applicability

since different software reliability models and cost models can be used in the testing

process. Furthermore, the proposed decision model can be simplified under some non-

137

restrictive assumptions. The simplified decision model not only provides analytical

tractability, but also greatly reduces the complexity of the decision process. Since the

MAUT approach is sometimes criticized for its complex decision process, the

simplified decision model can probably provide a good alternative, especially when

some empirical results are needed.

138

Chapter 7 Multi-Objective Optimization Approaches to

Software Release Time Determination

7.1 Basic Problem Description

For optimal release time determination problem, it is generally formulated in one of

the following ways: cost minimization, cost minimization given a reliability target,

and reliability maximization under a cost budget. Obviously, all of these three

optimization models formulate the optimal release time problem as a single-objective

optimization problem. Although these formulations are simple to use, they cannot

describe management‟s preference accurately. In reality, it seems to be more

reasonable to describe the management‟s attitude like this: maximizing reliability and

minimizing cost are expected to be achieved simultaneously. Therefore, in this

chapter, the decision problem is formulated as a multi-objective optimization

problem, and different multi-objective optimization approaches are investigated.

The remainder of this chapter is organized as follows. In Section 7.2, multi-objective

optimization model is formulated for software release time determination problem. In

Section 7.3, different multi-objective optimization approaches, including the trade-off

analysis, multi-attribute utility theory (MAUT), and physical programming approach,

are introduced. In Section 7.4, two numerical examples are provided for illustrative

purpose. In Section 7.5, applicability and limitations of these multi-objective

139

optimization approaches are studied. Finally, concluding remarks are given in Section

7.6.

7.2 Model Formulation for Release Time Determination

In traditional formulations, it is difficult to make a priori selection of constraint

values, i.e., the reliability target 0R and the cost budget 0C . These constraint values

will be modified frequently to obtain a satisfied solution of optimal release time,

which is time-consuming and error-prone. Furthermore, optimal release time solutions

under traditional formulations can be highly sensitive to the constraint values. We

take the cost minimization given a reliability target 0R as an example for illustration.

In Figure 7.1, we denote *
0t as the time at which the expected testing cost  )(tCE is

minimized, and its corresponding reliability value is *
0R . It can be easily seen from

the figure that once the constraint value 0R is greater than *
0R , the optimal release

time is completely determined by the constraint condition, and it is equal to 0t .

140

t

t

R(x|t)

E[C(t)]

*
0t 0t

0R

*
0R

Figure 7.1 Relationship between  )(tCE and  txR

It has been shown that the single-objective optimization models have many

disadvantages when they are used to solve the optimal software release time problem.

In reality, reliability and cost should be optimized simultaneously. Therefore, we

formulate the release time determination problem as follows:

Formulation 1

 








 0,0Subject to

)(Minimize

)(Maximize

xt

tCE

txR

141

In this formulation, t is the release time of software, and  txR represents the

conditional software reliability which is defined as the probability that the software

will not fail given a specified time interval],(xtt  .  )(tCE is the expected cost at

time t.

In the optimal software release problem, the evaluation of software reliability and

expected cost is of great importance. Software reliability is generally measured based

on a specific software reliability model (Musa et al., 1987; Xie, 1991; Pham, 2000).

This model is selected based on the recorded failure data and experts‟ prior

knowledge. Among software reliability models, non-homogeneous Poisson process

(NHPP) models form a major part of it. Suppose that the mean value function of the

NHPP is denoted by  tm , the testing reliability of software is measured by

    )(tmxtmetxR  . (7.1)

The testing reliability concept is under the scenario that software will be still in the

testing phase in the time interval],(xtt  . However, from customers‟ point of view,

software will not be tested after its release. The operational reliability of software is a

more meaningful and appropriate reliability measurement in the context of release

time determination (Yang and Xie, 2000). Therefore, in this study, we adopt the

operational reliability concept for software reliability measurement, and the reliability

of software is measured by

   xtetxR)( . (7.2)

142

Besides the measurement of reliability, the expected cost is another major concern in

the software development. In the literature, different kinds of cost models are

developed. Among these cost models, the cost model proposed by Pham and Zhang

(1999) is a general one, and most cost models are obtained based on the simplification

of it (Yang et al., 2008; Sgarbossa and Pham, 2010). In particular, the general cost

model is given by

         txRctmttmctmctcctCE wwy  1)]([43210  , (7.3)

where c0 is the set-up cost for software testing, c1 is the cost of testing per unit testing

time,  is the discount rate of testing cost over time (10  ), c2 and c3 are the cost

of removing a fault per unit time in the testing phase and warranty phase respectively,

y and w are expected time to remove a fault during the testing phase and warranty

phase respectively, wt is the warranty period, and c4 is the cost due to software

failure. Since removing a fault in the warranty phase is more expensive than that in

the testing phase, c3 is always greater than c2. In addition, the parameter  tries to

capture the learning effect of the testing team.

It should be noted that management may also have other objectives to be optimized in

the release time determination problem. For example, Xie et al. (2010) introduced the

risk that software cannot meet its reliability requirement due to parameter uncertainty,

and this risk is another important dimension that should be incorporated in the release

time determination. Based on their study, when the mean value of release time T̂ is

used, there is as high as 50% risk that software reliability target cannot be met. Since

such risk could be too high to be acceptable for management, it is expected to be

143

reduced. Therefore, in this chapter, we will also study the multi-objective

optimization problem when such risk is incorporated. Mathematically, this problem is

formulated as

Formulation 2

 













 0,0Subject to

)(Minimize

)(Minimize

)(Maximize

xt

tr

tCE

txR

where  tr represents the risk that software cannot meet its reliability target R0 when

software is released, and it is quantified as

    



)ˆ(

ˆ

1 TVar

Tt

dxxtr  . (7.4)

In equation (7.4), T̂ is the estimated release time given the reliability target R0,

 TVar ˆ is the variance of T̂ , and  x is the probability density function of standard

normal distribution. More detailed discussions on the calculation of the risk have been

shown in Chapter 6.

In summary, in order to optimize various objectives simultaneously, release time

determination is formulated as multi-objective optimization problems. To solve these

two multi-objective optimization problems as shown in Formulation 1 and

144

Formulation 2, different multi-objective optimization approaches are adopted, which

will be shown in the following section.

7.3 Multi-Objective Optimization Approaches

As discussed, for release time determination, it is an essentially multi-objective

optimization problem. In this section, three widely used multi-objective optimization

approaches are introduced for our multi-objective optimization problems, i.e., the

trade-off analysis, MAUT, and physical programming method.

7.3.1 The Trade-Off Analysis

The objective of trade-off analysis is to identify the non-dominated solutions to the

multi-objective optimization problem. These solutions are also called Pareto optimal

solutions. Specifically, each Pareto solution is not inferior to any other solution on all

objectives. One major merit for the use of trade-off analysis is that management can

make the decision within the set of non-dominated solutions instead of considering

the full range of feasible solutions. By comparing different options in the set of non-

dominated solutions, a rational compromise among various objectives can be made.

In our multi-objective optimization problems, two formulations are provided as

shown in Formulation 1 and Formulation 2. For Formulation 1, maximizing reliability

and minimizing the cost are expected to be achieved at the same time. It can be easily

seen from Figure 7.1 that the non-dominated solutions are in the set of  ,*
0t . For

Formulation 2, minimizing risk is added as another objective. Since the risk is a

145

decreasing function over time as shown in equation (7.4), the non-dominated

solutions are in the same set of  ,*
0t . After these non-dominated solutions are

identified, management can check the options within the set of  ,*
0t , and

compromise among different objectives.

7.3.2 Multi-Attribute Utility Theory

Different objectives are generally not in the same scale and unit. They may also

conflict with each other. Therefore, all objectives can be hardly optimized

simultaneously. In reality, a compromise among different objectives is to be made.

Multi-attribute utility theory (MAUT) is a classical multi-objective optimization

approach, which solves the multi-optimization problem by using weights and the

single utility function (von Winterfeldt and Edwards, 1986). In particular, the use of

single utility function for each attribute can convert each objective into the same scale

from 0 to 1 with the same unit of utility. The utility value reveals the attractiveness of

each attribute. On the other hand, different importance weights are allocated for each

single utility function. Finally, the multi-attribute utility function is obtained, which is

actually a weighted sum of single utility functions. Mathematically, the multi-attribute

utility function is given by

   



n

i

iin duwdddU
1

21 ,..., , (7.5)

where each attribute is denoted by di, i=1,2,…n, the attractiveness of each attribute is

represented by the single utility function u(di), and wi‟s are the importance weights

146

allocated for different single utility functions. By maximizing this multi-attribute

function, the optimal solution is obtained. In reality, it means that the attractiveness of

the conjoint outcome of attributes is maximized under this optimal solution.

One important step in MAUT is the elicitation of single utility function. To achieve

this, the equally likely certainty equivalent (ELCE) method was developed as a

standard approach in MAUT (Keeney and Raiffa, 1976; von Winterfeldt and

Edwards, 1986). In this method, certainty equivalents are obtained for a few 50-50

lotteries. These certainty equivalents are actually some special points on the single

utility curve. Based on these estimated points, the single utility function is determined

by fitting these points. For more detailed discussions on this method, interested

readers can refer to Keeney and Raiffa (1976), von Winterfeldt and Edwards (1986).

However, in practice, it is generally assumed that management is risk neutral towards

each attribute (Scholz and Tietje, 2002). Under this assumption, the single utility

function is a linear function for each attribute. Management only needs to determine

two particular points for each attribute, i.e., 0
id and 1

id . These two points are the

lowest requirement and the highest expectation from management for the attribute di,

and the superscripts of them represent their corresponding utility values.

Another important step is the estimation of weighting factors. This is done by

comparing a certain scenario and a lottery (Keeney and Raiffa, 1976; von Winterfeldt

and Edwards, 1986). More specifically, the certain scenario contains one attribute at

its best level and the other attributes at their worst levels; the lottery contains all

attributes at their best levels with probability p and all attributes at their worst levels

with probability 1-p. When management is indifferent with these two choices, the

147

probability p is the weighting factor allocated for that attribute at its best level in the

certain scenario.

In summary, MAUT solves the multi-objective optimization problem in a

straightforward way. It is quite understandable by incorporating weights and single

utility functions into the decision making process. Based on the management‟s own

attitude, the optimal solution is obtained, under which the overall attractiveness of the

conjoint outcome of attributes is maximized.

7.3.3 Physical Programming Method

Physical programming, as an effective and competitive approach in multi-objective

optimization, was originally proposed by Messac (1996). In order to express decision

maker‟s preference towards each criterion, four distinct soft class functions are used.

Specifically, they are Class 1-S: smaller is better, i.e., minimization; Class 2-S: larger

is better, i.e., maximization; Class 3-S: value is better, i.e., seek value; and Class 4-S:

range is better, i.e., seek range.

It is worth noting that hard class functions are omitted here. This is because hard class

functions are used to describe constraints, which are not in the context of our decision

problems. In our decision problems, cost and risk is expected to be minimized, and

reliability is to be maximized, only Class 1-S and Class 2-S will be used. Their

qualitative meanings are described in Figure 7.2, where ig is the class function of

attribute i, i=1,2,…,n; ig is the value of each attribute, and s'ijg , j=1,2,…,5, are the

148

boundary values separating decision maker‟s satisfaction level towards each attribute

into six ranges. Taking Class 1-S for an example, the six ranges are defined as:

unacceptable range: 5ii gg  ;

highly undesirable range: 54 iii ggg  ;

undesirable range: 43 iii ggg  ;

tolerable range: 32 iii ggg  ;

desirable range: 21 iii ggg  ;

highly desirable range: 1ii gg  .

gi

gi

ig

Class 1-S

Class 2-S

H
ig

h
ly

 D
es

ir
ab

le

D
es

ir
ab

le

T
o

le
ra

b
le

U
n

d
es

ir
ab

le

H
ig

h
ly

 U
n

d
es

ir
ab

le

U
n

ac
ce

p
ta

b
le

gi1

gi1

gi2 gi3 gi4 gi5

gi2gi3gi4gi5

U
n

ac
ce

p
ta

b
le

H
ig

h
ly

 U
n

d
es

ir
ab

le

U
n

d
es

ir
ab

le

T
o

le
ra

b
le

D
es

ir
ab

le

H
ig

h
ly

 D
es

ir
ab

le

ig

Figure 7.2 Qualitative meaning of Class 1-S and Class 2-S (Messac, 1996)

149

It can be seen that the decision maker‟s preference is deliberately described. In fact,

the boundary values s'ijg are the only parameters that the decision maker needs to

specify. Based on them, the class function ig can be determined following the

standard procedure developed in Messac (1996), and interested readers can refer to it

for more detailed discussions.

In fact, this standard procedure puts its most effort into the one versus others criteria

rule (OVO rule), which expresses the preference regarding inter-criteria relationships.

Specifically, suppose that we have the following two options: (1) full improvement of

gi across a given range, i.e., the tolerable range; (2) full improvement of all other

criteria across the next better range, i.e. desirable range. Under the OVO rule, the first

option is always preferred over the second one. It means that the worst performance

has the highest priority to be improved. After these soft class functions are

determined, the multi-objective decision model using physical programming approach

is formulated as (Messac, 1996):

 






























 


jMjjm

ii

ii

n

i
ii

sc

xxx

gg

gg

gg
n

g

S)-2 Class(for)(

S)-1 Class(for)(Subject to

)(
1

log)(Minimize

5

5

1

_

10

x

x

xx

where scn is the number of soft class functions considered in the decision problem,

jmx and jMx represent the minimum and maximum values of the corresponding

decision variable jx .

150

7.4 Numerical Examples

In this section, two numerical examples for software release time determination are

provided. In particular, the first numerical example is to solve the release time

problem under Formulation 1; and the second numerical example is for Formulation

2. Both two numerical examples consider the failure data set used in Pham and Zhang

(1999), which is the failure account data in one hour intervals. In Pham and Zhang

(1999), the software reliability model used is Goel-Okumoto (GO) model (Goel and

Okumoto, 1979), whose mean value function and failure intensity function are given

by

)1()(bteatm  and btabet )( , (7.6)

where a denotes the number of expected faults in the software, and b represents the

fault detection rate. This model is also adopted in our analysis, and the estimated

model parameters are given by 32.142ˆ a and 1246.0ˆ b . In their work, parameters

for the cost functions are also provided based on the real project data, and cost is

measured in the unit of staff-units. Specifically, the parameter values are 500 c ,

7001 c , 602 c , 36003 c , 500004 c , 20wt , 1.0y , and 5.0w .

These parameter values can help us to quantify the cost function as shown in equation

(7.3). While for the reliability function, we set x=1.

151

7.4.1 Example I

In the first numerical example, we only consider two attributes, i.e., reliability and

cost. Based on the parameter values discussed above, reliability and cost can be

quantified with ease based on (7.2) and (7.3). For the reliability and cost functions,

their behavior is the same as shown in Figure 7.1. It can be calculated that cost is

minimized at the time 97.43*
0 t , under which the corresponding reliability and cost

values are 9286.0)(*
0 tR and 30923)(*

0 tC .

Results from Trade-Off Analysis

Trade off analysis considers the multi-objective optimization problem by using Pareto

optimal solutions. In trade off analysis, each Pareto optimal solution is not inferior to

any other solution on all objectives. In our problem, maximizing reliability and

minimizing cost should be considered simultaneously. Since reliability is increasing

over time and the expected cost is a convex function with its minimum value at the

time 97.43*
0 t , the Pareto optimal solutions in trade off analysis can be easily

identified in the set of  ,97.43 . It can be seen that under Pareto optimal solutions,

increasing reliability inevitably increases the expected software development cost as

shown in Figure 7.3.

152

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
3

3.2

3.4

3.6

3.8

4

4.2
x 10

4

Figure 7.3 Non-dominated points of the consequence space with reliability and cost

In trade off analysis, Figure 7.3 provides management with a broader view of the

decision problem, where the general trend of the non-dominated points of the

consequence space is easily identified. Subsequently, management can select some

typical points from the Pareto optimal solutions, and check their corresponding

reliability and cost values. If management wants to increase the accuracy of the

interval estimation, they can simply reduce the length of the interval. For instance,

Table 7.1 provides numerical results based on the 5-hour interval estimation. Suppose

that management prefers possible reliability-cost combinations from (0.9657, 31863)

to (0.9814, 33589), then the interval estimation for the optimal release time is

obtained as [50, 55]. If management wants to increase the accuracy of this estimation,

they can further check numerical results based on the 1-hour interval estimation in the

range of [50, 55]. This iterative process can be further conducted until satisfactory

results are obtained.

153

Table 7.1 Numerical results based on the 5-hour interval estimation

t R(t) C(t) r(t)

45 0.9370 30956 0.6573

50 0.9657 31863 0.2570

55 0.9814 33589 0.0436

60 0.9900 35761 0.0028

65 0.9946 38173 0.0001

Results from MAUT

MAUT solves the multi-optimization problem by using single utility functions and

weights for each attribute. In our decision problem, we can first identify the single

utility functions for reliability and cost respectively. As discussed before, risk

neutrality is generally assumed, and management can use the linear single utility

function (Scholz and Tietje, 2002). For the attribute reliability, management indicates

that it can only accept reliability higher than 0.9, and the highest reliability

expectation is 0.99. Therefore, we set 9.00 R and 99.01 R , where the

superscripts represent their corresponding utility values. Similarly, we receive two

particular points for the attribute cost as 380000 C and 320001 C . Based on the

information above, the single utility function for reliability and cost are obtained as

01

0)(
))((

RR

RtR
tRu




 and

10

0)(
))((

CC

tCC
tCu




 , (7.7)

where)(tR and)(tC are used to represent)(txR and  )(tCE for simplicity.

154

The following step is the estimation of weighting factors for each attribute.

Management needs to compare the two choices as shown in Figure 7.4. When

management is indifferent with these two choices, the probability p is the weighting

factor Rw allocated for the attribute reliability. In our problem, management

demonstrates that they put more importance on reliability. By comparing the two

choices as shown in Figure 7.4, management is indifferent with them when p is equal

to 0.7. Hence, 7.0Rw and 3.0Cw .

p

1-p
 00 ,CR

 11,CR

 01,CR

Figure 7.4 Two choices for the determination of the weighting factor for reliability

After the single utility functions and weights are identified, the multi-attribute utility

function is obtained as

 ))(())(()(),(tCuwtRuwtCtRU CR  . (7.8)

By maximizing this multi-attribute utility function, the optimal release time is

calculated as 33.54* T , under which corresponding reliability value and cost value

are 0.9798 and 33325 respectively. In this example, numerical results from sensitivity

analysis under the change of wR are also provided as shown in Table 7.2. This is

because the subjective assessment for the two choices as shown in Figure 7.4 may not

be accurate enough. These results can help management to check whether the optimal

155

solution is robust. Under the fact that management puts more importance on

reliability, typical points of wR around the predetermined value 0.7 are investigated. It

can be seen that the maximum relative change of the optimal solution is within 10%.

Therefore, the optimal solution obtained is acceptable. In addition, it also provides

management with possible interval estimation that the optimal solution is in the range

of [50.48, 60.00].

Table 7.2 Numerical results from sensitivity analysis under the change of wR

wR t R(t) C(t)

0.9 60.00 0.9900 35760

0.8 57.70 0.9867 34722

0.7 54.33 0.9798 33325

0.6 51.91 0.9728 32450

0.5 50.48 0.9676 32000

Results from Physical Programming

Physical programming approach only needs management to provide the five boundary

points for each attribute. In our decision problem, boundary points of class functions

are shown in Table 7.3. In this example, since only reliability and cost are considered,

data in the first two rows in Table 7.3 is used. In addition, for comparative purpose,

we also set 1ig and 5ig equal to 0
id and 1

id used in MAUT. Following the standard

procedure discussed in Messac (1996), the class functions for reliability and cost can

be built as  )(
_

tRg R and  )(
_

tCg C respectively. The physical programming model

for the decision problem considering reliability and cost is formulated as

156

   












































0,38000)(,9.0)(Subject to

)()(
2

1
log)(Minimize

__

10

ttCtR

tCgtRgtg CR

.

Table 7.3 Boundary points of class functions

gi1 gi2 gi3 gi4 gi5

reliability 0.99 0.97 0.94 0.91 0.9

cost 32000 34000 36000 37000 38000

risk 0.01 0.05 0.1 0.3 0.5

Since we only have one decision variable as the release time t, the optimization

problem above can be solved easily by some software, i.e., MATLAB. The optimal

release time is obtained as 00.52* T , under which corresponding reliability value

and cost value are 0.9732 and 32481 respectively. It can be seen that under the

optimal release time, both reliability and cost are in the desirable range

(21 iii ggg ).

Compared with MAUT, physical programming approach is easier for management to

update the optimal solution. This is because weighting process as shown in Figure 7.4

is completely eliminated in the decision process. If management wants put more

emphasis on reliability criterion, they can simply change the boundary points for

reliability, and this process seems to be more meaningful.

157

7.4.2 Example II

Customers usually have a reliability requirement R0, and management needs to try its

best to make sure that this reliability requirement is satisfied. Generally, based on the

estimated model parameters, the release time under this reliability requirement is

calculated as T̂ . However, parameters are unknown in nature, and there exists the risk

that software reliability cannot meet its reliability requirement due to parameter

uncertainty (Xie et al., 2010). Therefore, in this numerical example, besides

maximizing reliability and minimizing the software development cost, minimizing the

risk that software cannot meet its reliability requirement is incorporated as well.

The failure data set used in Pham and Zhang (1999) is also adopted in this example.

Therefore, parameter values in the previous example are used in this example as well.

In addition, we set reliability requirement R0 equal to 0.95. Hence, based on the GO

model, the mean value of release time under this reliability target is obtained as

92.46ˆ T . Furthermore, following the standard procedure discussed in Xie et al.

(2010), the variance of release time is calculated as   35.22ˆ TVar . Based on the

above calculations, risk can be quantified with equation (7.4).

Results from Trade-Off Analysis

In this numerical example, maximizing reliability, minimizing cost and risk should be

considered simultaneously. Since reliability is increasing over time, risk is decreasing

over time, and the expected cost is a convex function with its minimum value at the

time 97.43*
0 t , the Pareto optimal solutions is still in the set of  ,97.43 as the

158

previous example. Under these Pareto optimal solutions, non-dominated points of the

consequence space with reliability, cost and risk are shown in Figure 7.5. Similarly,

Figure 7.5 provides management a broad view of the decision problem.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

0.92

0.94

0.96

0.98

1

3

3.2

3.4

3.6

3.8

4

4.2

x 10
4

Figure 7.5 Non-dominated points of the consequence space with reliability, cost and

risk

Subsequently, management can select some typical points for analysis, and Table 7.2

provides the numerical results based on the 5-hour interval estimation. However, in

this numerical example, management needs to identify their preference towards three

dimensional combinations, i.e. reliability-cost-risk combinations. This will certainly

increase the complexity of the decision problem. Suppose that management prefers

the reliability-cost-risk combinations from (0.9814, 33589, 0.0436) to (0.9900, 35761,

0.0028), then the interval estimation for optimal release time is obtained as [55, 60]. If

management desires to increase the accuracy of the estimation, they can also try the 1-

159

hour interval estimation in the range of [55, 60]. However, to achieve this,

management will spend more time and effort due to the increase of the dimension.

Results from MAUT

In MAUT, single utility functions and weights for each attribute should be determined

first. In this example, risk is introduced as another dimension that management needs

to consider. Management has indicated that they can only accept the risk to be lower

than 0.5, and the highest expectation is 0.01. Therefore, we set the best and the worst

value for risk as 5.00 r and 01.01 r . The single utility function for risk is

obtained as

10

0)(
))((

rr

trr
tru




 . (7.9)

The next step is the determination of weighting factors for each attribute. Since there

are more dimensions to be considered in this decision problem, management probably

wants to avoid answering the artificial lottery related questions. In this case,

management can simply allocate equal importance for each attribute. In our problem,

there are three attributes to be considered. Therefore, 3/1 rCR www , and the

multi-attribute utility function is given by

 ))(())(())(()(),(),(truwtCuwtRuwtrtCtRU rCR  . (7.10)

160

The optimal solution on release time is obtained by maximizing this multi-attribute

utility function, and it is calculated as 94.54* T , under which corresponding

reliability, cost, and risk values are 0.981, 33567, and 0.0447 respectively. It can be

seen that although the dimension of attributes is increased, the decision process can

become even easier than the previous example if the equal importance allocation is

assumed. This approach highly reduces the complexity of the decision process, and it

can be very helpful for management when only some empirical results are needed.

Results from Physical Programming

Since minimizing the risk is considered as another objective in this example. All the

data in Table 7.3 is used. The boundary points for risk attribute can help to construct

the soft class function for it as  )(
_

trg r , and the physical programming model in this

example becomes

     












































0,5.0)(,38000)(,9.0)(Subject to

)()()(
2

1
log)(Minimize

10

ttrtCtR

trgtCgtRgtg rCR

By solving the optimization problem above, the optimal release time is obtained as

01.56* T , under which corresponding reliability, cost, and risk values are 0.9836,

34000 and 0.0272 respectively.

161

Obviously, compared with MAUT, management is no longer worried about answering

many lottery related questions. The introduction of risk only requires management to

specify five boundary points for it, and this is not a difficult task because the physical

meanings of these points are quite clear. Although MAUT can simply adopt the equal

importance allocation assumption, this may probably restrict the decision problem to a

special case. Due to this consideration, when many objectives are to be compromised

together, physical programming is generally better than MAUT.

7.5 Applicability and Limitations of Different Approaches

In this study, different multi-objective optimization approaches to software release

time determination are investigated. Compared with previous single-objective

optimization approach, they can describe management‟s attitude more accurately. A

compromise among different objectives can be made by incorporating more

information from management into the decision process. However, it should be noted

that different multi-objective optimization approaches have their own properties,

which imply the applicability and limitations of them.

Trade-off analysis can restrict the decision space into the Pareto optimal solutions. It

provides management with the most information on the decision process. By

comparing various combinations of objective values under non-dominated solutions, a

compromise among different objectives can be gradually made. However, this

decision process is essentially a trial process. Hence, it could be time-consuming and

error-prone. This problem can become more serious when more than two objectives

162

are considered. As shown in our second numerical example, it is not an easy task to

compare the three-dimensional combinations of objectives. These combinations could

possibly confuse the management. Therefore, trade-off analysis seems to be more

helpful for management to get a broad view of the decision process. It is the most

informative multi-objective optimization approach, and can help to identify the trend

and change of the non-dominated points of the consequence space.

As to the MAUT, it is the most straightforward way to solve the multi-objective

optimization problem. The use of the assumption of management‟s risk neutrality can

greatly reduce the complexity the decision process in practice (Scholz and Tietje,

2002). If management can further demonstrate their equal importance weights

allocation, the optimal solution of release time can be identified with the minimum

complexity, and it can be updated with ease. In this case, the MAUT serves to be the

best multi-objective optimization approach to software release time determination.

However, these two assumptions may not reveal management‟s attitude in practice. In

this case, management needs to answer some lottery related questions to obtain the

single utility function and the weights. This process is quite tedious, and it is even

more unexpected that answers to these lottery related questions may not be consistent

over time. Thus, from this standpoint, the applicability of MAUT is restricted.

Compared with the MAUT, physical programming method completely eliminates the

process of choosing weights. It only requires five boundary points from management

for each attribute, such that six ranges are separated as shown in Figure 7.2. If

management wants to set a more rigorous requirement for one attribute, they can

simply change the corresponding five boundary points for this attribute, and the

163

optimal solution is updated. However, it is worth noting that physical programming

approach incorporates the OVO rule. It is assumed that the worst performance has the

highest priory to be improved. Accordingly, under the optimal solution, different

objectives are in the similar preference ranges. In our numerical examples, it can be

seen that all objectives are in the desirable range. This special property of physical

programming approach indicates its limitation in the case that some attributes are

extremely more important than the others.

7.6 Conclusion

Most existing research formulates software release time determination problem as

single-objective optimization problems, which have many disadvantages in the

decision process. In fact, the optimal software release time problem is a multi-

objective optimization problem, and a compromise among various objectives should

be made based on the management‟s attitude. In this study, we propose two multi-

objective optimization models as shown in Formulation 1 and Formulation 2. To

solve these multi-objective optimization problems, different approaches are used

including the trade off analysis, MAUT, and physical programming approach. These

approaches are also compared based on the numerical examples. Applicability and

limitations of various approaches are discussed in detail. These discussions can help

management apply these methods in practice more appropriately.

164

Chapter 8 Conclusions

The objective of the research presented in this thesis was to improve software

reliability analysis, and to study the corresponding release time determination

problem by extending traditional software reliability models and decision models.

This chapter summarizes the research results and highlights their significance.

Limitations of current research and recommendations for future research are also

presented.

8.1 Research Results and Contributions

For mathematical tractability and simplicity, some assumptions are made to facilitate

the modeling of the software failure process. However, these assumptions may not be

realistic in practice and the applicability of software reliability models is restricted.

Therefore, relaxing these assumptions for both ASRMs and DDSRMs is of

considerable importance.

An extension on ASRMs was presented in Chapter 3. This chapter introduced the

modeling framework for open source software reliability and discussed the

corresponding version-updating problem. It was found that traditional non-

homogeneous Poisson process (NHPP) ASRMs underestimate the reliability of open

source software. This is because these traditional models cannot describe the hump-

165

shaped failure detection rate function properly. It was also found that for open source

software, cost is no longer a major concern for version-updating problem. Thus, a new

decision model was developed based on multi-attribute utility theory (MAUT). This

decision model can help management to make a more reasonable decision. Since

traditional ASRMs and decision models are only focused on the study of closed

source software/commercial software, the research in this chapter is one of the first

attempts on reliability analysis and optimal version-updating for open source

software.

Besides the research on ASRMs, improvement on DDSRMs was also carried out and

presented in Chapter 4. The objective of this research was to relax the basic

assumption in traditional DDSRMs, where the current failure is assumed to be

correlated with the most recent consecutive failures. A generic DDSRM was

developed by relaxing this unrealistic assumption. It was found that the proposed

model can cater for various failure correlations and existing DDSRMs are special

cases of the proposed model. Experimental results reveal that the prediction accuracy

is greatly enhanced by the proposed model.

Developing models is not the ultimate goal of software reliability modeling. It is more

important to apply these models to decision-making problems, and software release

time determination is a typical application. In Chapter 5, sensitivity analysis of release

time was investigated. We took a recent proposed model by Lin and Huang (2008) as

an example and applied different approaches to conduct the sensitivity analysis. It was

found that global sensitivity analysis is a better choice for the complex nonlinear

model. Furthermore, the simulation results from global sensitivity analysis can help

166

management make a judicious decision on when to release the software. The research

in this chapter provides practitioners a better understanding of different approaches to

sensitivity analysis in the context of software reliability analysis.

Sensitivity analysis can identify what the significant parameters are, and more

attention can be paid to them for more accurate estimates. However, when other

information or data are not available, the improvement for the estimation can be

hardly done. In this case, it is very important to study the effect of parameter

uncertainty on release time determination, and this was presented in Chapter 6. It was

found that when the mean value is used, there is 50% chance that the software cannot

meet its reliability requirement. This is because parameters are unknown in nature and

they are estimated based on failure data. In order to reduce the risk that software

cannot meet its reliability requirement, a risk-based approach was proposed for

release time determination with delay cost considerations. The proposed approach

provides management a broader view of release time determination problem.

Furthermore, for software release time determination problem, different formulations

for it were examined in Chapter 7. It was found that formulating release time

determination as single-objective optimization problems can hardly describe the

management‟s attitude accurately. Hence, multi-objective optimization model were

developed for release time determination problem, and various multi-optimization

approaches are used. By comparing these different multi-optimization approaches,

management can apply these methods more appropriately for release time

determination problem.

167

8.2 Future Research

Open source software (OSS) provides a new paradigm for software development. In

this thesis, reliability analysis and optimal version updating for it was investigated. It

should be noted that our proposed model is essentially an extension of traditional

ASRMs. It is still an open question whether new methodology should be developed

for describing the failure process of open source software. This is because there is a

lot of information about software attributes available, and these data, if used properly,

should greatly enhance the reliability analysis for open source software. Future

research on this problem could possibly pave the way for a new stage of software

reliability engineering.

As to the proposed generic data-driven software reliability model, it is worth noting

that the great enhancement of prediction accuracy was achieved at the cost of

spending more time for calculation. Although a hybrid generic algorithm was

proposed to speed up the time for convergence, future research on more advanced

algorithms will be useful. In addition, it will be also interesting to investigate the

relationship between current failure and other software attributes. In this case, not

only the failure history will be analyzed, but also the change of software attributes

over time will be studied together.

Thirdly, for sensitivity analysis of release time, different approaches of it can have

different limitations as discussed in detail in Chapter 5. These limitations require the

users to apply different approaches properly in practice. Furthermore, although it has

been shown that global sensitivity analysis is a better choice for complex nonlinear

168

model, the procedure of implementing the analysis could be still difficult and time-

consuming for practitioners. Therefore, developing a software tool with user-friendly

interface may be necessary in the near future.

Finally, for software release time determination, although some decision models were

developed and different multi-objective approaches were compared, no single model

can be regarded as a universal model to suit all decision processes. Beyond the studies

explored in this research, other approaches can be studied as well in the future, and

extensions can be made by considering the specific properties of the decision process

in practice.

169

References

Benke, K.K., Lowell, K.E. and Hamilton, A.J. (2008) „Parameter uncertainty,

sensitivity analysis and prediction error in a water-balance hydrological

model‟, Mathematical and Computer Modelling, 47 (11-12), 1134-1149.

Ben-Tal, A. and Nemirovski, A. (2002) „Robust optimization-methodology and

applications‟, Mathematical Programming, 92 (3), 453-480.

Boland, P.J. and Chuiv, N.N. (2007) „Optimal times for software release when repair

is imperfect‟, Statistics & Probability Letters, 77 (12), 1176–1184.

Boland, P. J. and Singh, H. (2003) „A birth-process approach to moranda‟s geometric

software-reliability model‟, IEEE Transaction on reliability, 52 (2), 168-

174.

Box, G.E.P., Hunter, W.G. and Hunter, S.J. Statistics for Experimenters: An

Introduction to Design, Data Analysis and Model Building, Wiley, New

York, 1978.

Brito, A.J. and de Almeida, A.T. (2009) „Multi-attribute risk assessment for risk

ranking of natural gas pipelines‟, Reliability Engineering & System Safety,

94 (2), 187-198.

Bustamante, A.S. and Bustamante B.S. (2003) „Multinomial-exponential reliability

function: a software reliability model‟, Reliability Engineering & System

Safety, 79 (3), 281-288.

Cai, K.Y., Cai, L., Wang, W.D., Yu, Z.Y. and Zhang, D. (2001) „On the neural

network approach in software reliability modeling‟, Journal of Systems and

Software, 58 (1), 47-62.

170

Chang, Y.C. and Liu, C.T. (2009) „A generalized JM model with applications to

imperfect debugging in software reliability‟, Applied Mathematical

Modelling, 33, 3578-3588.

Charette, R.N. (2005) „Why software fails‟, IEEE Spectrum, 42 (9), 42-49.

Chen, K.Y. (2007) „Forecasting system reliability based on support vector regression

with genetic algorithms‟, Reliability Engineering & System Safety, 92 (4),

423-432.

Chiu, K.C., Ho, J.W. and Huang, Y.S. (2009) „Bayesian updating of optimal release

time for software systems‟, Software Quality Journal, 17, 99-120.

Dai, Y.S., Xie, M., Long, Q. and Ng, S.H. (2007) „Uncertainty analysis in software

reliability modeling by Bayesian approach with maximum-entropy

principle‟, IEEE Transactions on Software Engineering, 33, 781-795.

Dohi, T., Nishio, Y. and Osaki, S. (1999) „Optimal software release scheduling based

on artificial neural networks‟, Annals of Software Engineering, 8, 167-185.

Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V., Murphy, G.C., Nagappan,

N., Aho, A.V., (2008) „Do crosscutting concerns cause defects?‟, IEEE

Transactions on Software Engineering, 34 (4), 497-515.

Edwards, W. (1977) „Use of multiattribute utility measurement for social decision

making‟, In: Bell, D.E., Keeney, R.L. and Raiffa, H. Editors, Conflicting

Objectives in Decision, Willey, New York, 247–276.

Farmer, P.C. (1987) „Testing the robustness of multiattribute utility theory in an

applied setting‟, Decision Sciences, 18 (2), 178–193.

Ferreira, R.J.P., de Almeida, A.T. and Cavalcante, C.A.V. (2009) „A multi-criteria

decision model to determine inspection intervals of condition monitoring

based on delay time analysis‟, Reliability Engineering & System Safety, 94

171

(5), 905-912.

Feller, J., Fitgerald, B., Hissam, S. and Lakhani, K. Perspectives on Free and Open

Source Software, MIT Press: Cambridge, MA, 2005.

Fishburn, P.C. Utility Theory for Decision Making, Wiley, New York, 1970.

Goel, A.L. and Okumoto, K. (1979) „Time-dependent error-detection rate model for

software reliability and other performance measures‟, IEEE Transactions on

Reliability, R28, 206-211.

Goel, A.L. (1985) „Software reliability models: assumptions, limitations, and

applicability‟, IEEE Transactions on Software Engineering, SE11, 1141-

1423.

Gokhale, S.S., Lyu, M.R. and Trivedi, K.S. (2004) „Analysis of software fault

removal policies using a non-homogeneous continuous time Markov chain‟,

Software Quality Journal, 12, 211–230.

Gokhale, S.S., Lyu, M.R. and Trivedi, K.S. (2006) „Incorporating fault debugging

activities into software reliability models: A simulation approach‟, IEEE

Transactions on Reliability, 55 (2), 281–292.

Goldberg, D. Generic Algorithms in Seach, Optimization, and Machine Learning.

Reading, MA: Addison-Wesley, 1989.

Gyimothy, T., Ferenc, R. and Siket, I. (2005) „Empirical validation of object-oriented

metrics on open source software for fault prediction‟, IEEE Transactions on

Software Engineering, 31 (10), 897-910.

Helton, J.C. and Davis, F.J. (2003) „Latin hypercube sampling and the propagation of

uncertainty in analyses of complex systems‟, Reliability Engineering &

Systems Safety, 81, 23-69.

Hertel, G., Niedner, S. and Hermann, S. (2003) „Motivation of software developers in

172

open source projects: An internet-based survey of contributors to the Linux

kernel‟, Research Policy, 32 (7), 1159-1177.

Ho, J.W., Fang, C.C. and Huang, Y.S. (2008) „The determination of optimal software

release times at different confidence levels with consideration of learning

effects‟, Software testing, verification and reliability, 18 (4), 221-249.

Ho, S.L., Xie, M. and Goh, T.N. (2003) „A study of the connectionist models for

software reliability prediction‟, Computer and Mathematics with

Applications, 46 (7), 1037-1045.

Hu, Q.P., Xie, M., Ng, S.H. and Levitin, G. (2007) „Robust recurrent neural network

modeling for software fault detection and correction prediction‟, Reliability

Engineering & System Safety, 92 (3), 332-340.

Huang, C.Y. (2005) „Performance analysis of software reliability growth models with

testing-effort and change-point‟, Journal of Systems and Software, 76 (2),

181-194.

Huang, C.Y. and Huang, W.C. (2008) „Software reliability analysis and measurement

using finite and infinite server queueing models‟, IEEE Transactions on

Reliability, 57 (1), 192-203.

Huang, C.Y. and Kuo, S.K. (2002) „Analysis of incorporating logistic testing-effort

function into software reliability modeling‟, IEEE Transactions on

Reliability, 51 (3), 261-270.

Huang, C.Y., Kuo, S.K. and Lyu, M.R. (2007) „An assessment of testing-effort

dependent software reliability growth models‟, IEEE Transactions on

Reliability, 56 (2), 198-211.

173

Huang, C.Y. and Lin, C.T. (2006) „Software reliability analysis by considering fault

dependency and debugging time lag‟, IEEE Transactions on Reliability, 55

(3), 436-450.

Huang, C.Y. and Lo, J.H. (2006) „Optimal resource allocation for cost and reliability

of modular software systems in the testing phase‟, Journal of Systems and

Software, 79 (5), 653-664.

Huang, C.Y. and Lyu, M.R. (2005a) „Optimal release time for software systems

considering cost, testing-effort, and test efficiency‟, IEEE Transactions on

Reliability, 54 (4), 583-591.

Huang, C.Y. and Lyu, M.R. (2005b) „Optimal testing resource allocation, and

sensitivity analysis in software development‟, IEEE Transactions on

Reliability, 54 (4), 592-603.

Hwang, S. and Pham, H. (2009) „Quasi-renewal time-delay fault-removal

consideration in software reliability modeling‟, IEEE Transactions on

Systems Man and Cybernetics Part A - Systems and Humans, 39 (1), 200-

209.

Illes-Seifert, T. and Paech, B. (2010) „Exploring the relationship of a file's history and

its fault-proneness: An empirical method and its application to open source

programs‟, Information and Software Technology, 52 (5), 539-558.

Jelinski, Z. and Moranda, P.B. (1972), „Software reliability research‟, in Statistical

Computer Performance Evaluation, ed. by Freiberger W., Academic Press,

New York, 465-497.

Johnson, M. E. Multivariate Statistical Simulation, John Wiley & Sons, New York,

1987.

174

Kapur, P.K., Bardhan, A.K. and Yadavalli, V.S.S. (2007) „On allocation of resources

during testing phase of a modular software‟, International Journal of

Systems Science, 38 (6), 493-499.

Kapur, P.K., Goswami, D.N., Bardhan, A. and Singh, O. (2008a) „Flexible software

reliability growth model with testing effort dependent learning process‟,

Applied Mathematical Modelling, 32 (7), 1298-1307.

Kapur, P.K., Singh, V.B., Anand, S. and Yadavalli, V.S.S. (2008b) „Software

reliability growth model with change-point and effort control using a power

function of the testing time‟, International Journal of Production Research,

46 (3), 771-787.

Karunanithi, N., Whitley, D. and Malaiya, Y.K. (1992) „Prediction of software

reliability using connectionist models‟, IEEE Transactions on Software

Engineering, 18 (7), 563-74.

Kecman, V. Learning and Soft Computing: Support Vector Machines, Neural

Networks, and Fuzzy Logics Models, MIT Press, 2001.

Keeney, R.L. and Raiffa, H. Decisions with Multiple Objectives: Preferences and

Value Tradeoffs, Wiley, New York, 1976.

Koch, H.S. and Kubat, P. (1983) „Optimal release time of computer software‟, IEEE

Transaction on Software Engineering, 9 (3), 323-327.

Kozlov, D., Koskinen, J., Sakkinen, M. and Markkula, J. (2008) „Assessing

maintainability change over multiple software releases‟, Journal of Software

Maintenance and Evolution-Research and Practice, 20, 31–58.

Kim, S., Whitehead, E.J. and Zhang, Y. (2008) „Classifying software changes: Clean

or buggy?‟, IEEE Transactions on Software Engineering, 34 (2), 181-196.

175

Leung, Y.W. (1992) „Optimum software release time with a given cost budget‟,

Journal of Systems and Software, 17 (3), 233-242.

Li, X., Xie M. and Ng, S.H. (2010) „Sensitivity analysis of release time of software

reliability models incorporating testing effort with multiple change-points‟,

Applied Mathematical Modelling, 34, 3560-3570.

Lin, C.T. and Huang, C.Y. (2008) „Enhancing and measuring the predictive

capabilities of testing-effort dependent software reliability models‟, Journal

of Systems and Software, 81 (6), 1025-1038.

Liu, C.T. and Chang, Y.C. (2007) „A reliability-constrained software release policy

using a non-Gaussian Kalman filter model‟, Probability in the Engineering

and Informational Sciences, 21 (2), 301-314.

Lo, J.H., Huang, C.Y., Chen, I.Y., Kuo, S.Y. and Lyu, M.R. (2005) „Reliability

assessment and sensitivity analysis of software reliability growth modeling

based on software module structure‟, Journal of Systems and Software, 76

(1), 3-13.

Lo, J.S. and Huang, C.Y. (2006) „An integration of fault detection and correction

processes in software reliability analysis‟, Journal of Systems and Software,

79, 1312-1323.

Lutz, R.R. and Mikulski I.C. (2004) „Empirical analysis of safety critical anomalies

during operation‟, IEEE Transactions on Software Engineering, 30 (3), 172-

180.

Lyu, M. Handbook of Software Reliability Engineering, McGraw-Hill, New York,

1996.

Makowski, D., Naud, C., Jeuffroy, M.H., Barbottin, A. and Monod, H. (2006) „Global

sensitivity analysis for calculating the contribution of genetic parameters to

176

the variance of crop model prediction‟, Reliability Engineering & System

Safety, 91 (10-11), 1142-1147.

Marcus, A., Poshyvanyk, D. and Ferenc, R. (2008) „Using the conceptual cohesion of

classes for fault prediction in object-oriented systems‟, IEEE Transactions

on Software Engineering, 34 (2), 287-300.

Messac, A. (1996) „Physical programming: effective optimization for computational

design‟, AIAA Journal, 34 (1), 149-158.

Mockus, A., Fielding, R.T. and Herbsleb, J.D. (2002) „Two case studies of open

source software development: Apache and Mozilla‟, ACM Transactions on

Software Engineering and Methodology, 11 (3), 309-346.

Montgomery, D.C. and Runger, G.C. Applied Statistics and Probability for

Engineers, 2nd ed., Wiley, New York, 1999.

Morali, N. and Soyer, R. (2003) „Optimal stopping in software testing‟, Naval

Research Logistics, 50 (1), 88-104.

Musa, J.D., Iannino, A. and Okumoto, K. Software Reliability: Measurement,

Prediction, Application. McGraw-Hill, New York, 1987.

Musa, J.D. (2006) http://members.aol.com/JohnDMusa/users.htm

Nan, N. and Harter, D.E. (2009) „Impact of budget and schedule pressure on software

development cycle time and effort‟, IEEE Transactions on Software

Engineering, 35 (5), 624-637.

Nelson, W. Applied Life Data Analysis, John Wiley & Sons, New York, 1982.

Ngo-The, A. and Ruhe, G. (2009) „Optimized resource allocation for software release

planning‟, IEEE Transactions on Software Engineering, 35 (1), 109-123.

Nishio, Y. and Dohi, T. (2003) „Determination of the optimal software release time

based on proportional hazards software reliability growth models‟, Journal

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=W1KCnnfoF1NAEogOiM8&page=1&doc=8
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=W1KCnnfoF1NAEogOiM8&page=1&doc=8

177

of Quality in Maintenance Engineering, 9 (1), 48-65.

Ohba, M. (1984) „Software reliability analysis models‟, IBM Journal of Research and

Development, 28, 428-443.

Okumoto, K. and Goel, A.L. (1980) „Optimum release time for software systems,

based on reliability and cost criteria‟, Journal of Systems and Software, 1

(4), 315–318.

Pai, P.F. (2006) „System reliability forecasting by support vector machines with

genetic algorithms‟, Mathematical and Computer Modeling, 43 (3-4), 262-

274.

Pai, P.F. and Hong, W.C. (2006) „Software reliability forecasting by support vector

machines with simulated annealing algorithms‟, Journal of Systems and

Software, 79 (6), 747-755.

Park, C.S. Contemporary Engineering Economics-4th Edition, Pearson Education

International, New Jersey, 2007.

Pham, H. Software Reliability, Springer-Verlag, Singapore, 2000.

Pham, H. (1996) „A software cost model with imperfect debugging, random life cycle

and penalty cost‟, International Journal of Systems Science, 27 (5), 455-463.

Pham, H. (2003) „Software reliability and cost models: perspectives, comparison, and

practice‟, European Journal of Operational Research, 149 (3), 475-489.

Pham, L. and Pham, H. (2000) „Software reliability models with time-dependent

hazard function based on Bayesian approach‟, IEEE Transactions on

Systems, Man, and Cybernetics Part A, 30 (1), 25-35.

Pham, H. and Zhang, X.M. (1999) „A software cost model with warranty and risk

costs‟, IEEE Transactions on Computers, 48 (1), 71-75.

Raymond, E.S. The Cathedral and the Bazaar: Musings on Linux and Open Source by

178

an Accidental Revolutionary, O‟Reilly, 2001.

Sahinidis, N.V. (2004) „Optimization under uncertainty: state-of-the-art and

opportunities‟, Computers & Chemical Engineering, 28 (6-7), 971-983.

Saltelli, A. (2002) „Making best use of model evaluations to compute sensitivity

indices‟, Computer Physics Communications, 145, 280-297.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,

M. and Tarantola, S. Global sensitivity analysis: the primer, John Wiley &

Sons, Chichester, 2008.

Samoladas, I., Angelis, L. and Stamelos, I. (2010) „Survival analysis on the duration

of open source projects‟, Information and Software Technology, 52 (9), 902-

922.

Shanthikumar, J.G. (1981) „A general software reliability model for performance

prediction‟, Microelectronics and Reliability, 21, 671-682.

Schick, G.J. and Wolverton, R.W. (1978) „An analysis of competing software

reliability models‟, IEEE Transactions on Software Engineering, 4, 104-120.

Schneidewind, N.F. (1975) „Analysis of error processes in computer software‟, in

Proceedings of the International Conference on Reliable Software, IEEE

Computer Society Press: Los Alamitos, CA, 337–346.

Schneidewind, N.F. (2001) „Modelling the fault correction process‟, in Proceedings of

the 12th International Symposium on Software Reliability Engineering,

IEEE Computer Society Press: Los Alamitos, CA, 185–190.

Scholkopf, B. and Smola, A.J. Learning with Kernels, MIT Press, 2002.

Scholz, R.W. and Tietje, O. Embedded Case Study Methods: Integrating Quantitative

and Qualitative Knowledge, Sage, California, 2002.

179

Sgarbossa, F. and Pham, H. (2010) „A cost analysis of systems subject to random field

environments and reliability‟, IEEE Transactions on Systems Man and

Cybernetics, Part C-Applications and Reviews, 40 (4), 429-437.

Sitte, R. (1999) „Comparison of software-reliability-growth predictions: Neural

networks vs. parametric-recalibration‟, IEEE Transactions on Reliability, 48

(3), 285-291.

Sobol, I.M. (2001) „Global sensitivity indices for nonlinear mathematical models and

their Monte Carlo estimates‟, Mathematics and Computers in Simulation, 55

(1-3), 271-280.

Su, Y.S. and Huang, C.Y. (2007) „Neural-network-based approaches for software

reliability estimation using dynamic weighted combinational models‟,

Journal of Systems and Software, 80 (4), 606-615.

Taguchi, G., Chowdhury, S. and Wu, Y. Taguchi’s Quality Engineering Handbook,

Wiley, Hoboken, 2005.

Tamura, Y. and Yamada, S. (2008) „A component-oriented reliability assessment

method for open source software‟, International Journal of Reliability,

Quality and Safety Engineering, 15 (1), 33-53.

Tamura, Y. and Yamada, S. (2009) „Optimisation analysis for reliability assessment

based on stochastic differential equation modelling for open source

software‟, International Journal of Systems Science, 40 (4), 429-438.

Tian, L. and Noore, A. (2005a) „Evolutionary neural network modeling for software

cumulative failure time prediction‟, Reliability Engineering & System Safety,

87 (1), 45-51.

180

Tian, L. and Noore, A. (2005b) „Dynamic software reliability prediction: an approach

based on support vector machines‟, International Journal of Reliability,

Quality and Safety Engineering, 12 (4), 309-321.

Tsay, R.S. Analysis of Financial Time Series, John Wiley & Sons, 2002.

Valdés, J.J. and Bonham-Carter, G. (2006) „Time dependent neural network models

for detecting changes of state in complex processes: Applications in earth

sciences and astronomy‟, Neural Networks, 19 (2), 196-207.

Valdés, J.J. and Mateescu, G. (2002) „Time series models discovery with similarity-

based neuro-fuzzy networks and genetic algorithms: A parallel

implementation‟, in Proceedings of the Third International Conference on

Rough Sets and Current Trends in Computing (RSCTC2002), Malvern, 279-

288.

Vapnik, V.N. The Nature of Statistical Learning Theory, Springer-Verlag, New York,

1995.

Vapnik, V.N. (1999) „An overview of statistical learning theory‟, IEEE Transactions

on Neural Networks, 10 (5), 950-958.

Ven, K. and Mannaert, H. (2008) „Challenges and strategies in the use of open source

software by independent software vendors‟, Information and Software

Technology, 50 (9-10), 991-1002.

Volkova, E., Iooss, B. and Dorpe, F.V. (2008) „Global sensitivity analysis for a

numerical model of radionuclide migration from the RRC “Kurchatov

Institute” radwaste disposal site‟, Stochastic Environmental Research and

Risk Assessment, 22 (1), 17-31.

von Winterfeldt, D. and Edwards, W. Decision Analysis and Behavioral Research,

Cambridge University Press, Cambridge, UK, 1986.

181

Wood, A. (1996) „Predicting software reliability‟, IEEE Computer, 29 (11), 66-77.

Wu, Y.P., Hu, Q.P., Xie, M. and Ng, S.H. (2007), „Modeling and analysis of software

fault detection and correction process by considering time dependency‟,

IEEE Transactions on Reliability, 56 (4), 629-642.

Xie, M. (1990) „A Markov process model for software reliability analysis‟, Applied

Stochastic Models and Data Analysis, 6, 207-214.

Xie, M. Software Reliability Modelling, World Scientific Publisher, Singapore, 1991.

Xie, M. and Hong, G.Y. (1998) „A study of the sensitivity of software release time‟,

Journal of Systems and Software, 44 (2), 163-168.

Xie, M., Hong, G.Y. and Wohlin, C. (1999) „Software reliability prediction

incorporating information from a similar project‟, Journal of Systems and

Software, 49, 43-48.

Xie, M., Hu, Q.P., Wu, Y.P. and Ng, S.H. (2007) „A study of the modeling and

analysis of software fault-detection and fault-correction processes‟, Quality

and Reliability Engineering International, 23 (4), 459-470.

Xie, M., Li, X. and Ng, S.H. (2010) „Risk-based software release policy under

parameter uncertainty‟, Journal of Risk and Reliability, accepted for

publication.

Xie, M. and Yang, B. (2003) „A study of the effect of imperfect debugging on

software development cost‟, IEEE Transactions on Software Engineering,

29 (5), 471-473.

Xie, M., Yang, B. and Gaudoin, O. (2004) „Sensitivity analysis in optimal software

release time problems‟, Opsearch, 41 (4), 250-263.

182

Xie, M. and Zhao, M. (1992) „The Schneidewind software reliability model revisited‟,

in Proceedings of the 3rd International Symposium on Software Reliability

Engineering, IEEE Computer Society Press: Los Alamitos, CA, 184–192.

Yamada, S., Hishitani, J. and Osaki, S. (1993) „Software-reliability growth with a

Weibull test-effort: a model and application‟, IEEE Transactions on

Reliability, 42 (1), 100-106.

Yamada, S., Ohba, M. and Osaki, S. (1983) „S-shaped reliability growth modeling for

software error detection‟, IEEE Transactions on Reliability, R-32, 475-484.

Yamada, S., Ohba, M. and Osaki, S. (1984) „S-shaped software reliability growth

models and their applications‟, IEEE Transactions on Reliability, R-33, 289-

292.

Yamada, S. and Osaki, S. (1985) „Cost-reliability optimal release policies for software

systems‟, IEEE transactions on reliability, R-34 (5), 422-424.

Yang, B. and Li, X. (2007) „A study on software reliability prediction based on

support vector machines‟, in Proceedings of IEEE International Conference

on Industrial Engineering and Engineering Management (IEEM2007),

Singapore, 1176-1180.

Yang, B. and Xie, M. (2000) „A study of operational and testing reliability in software

reliability analysis‟, Reliability Engineering & System Safety, 70 (3), 323-

329.

Yang, B., Hu, H. and Jia, L. (2008) „A study of uncertainty in software cost and its

impact on optimal software release time‟, IEEE Transactions on Software

Engineering, 34 (6), 813-835.

Yang, B., Tan, F. and Huang, H.Z. (2007) „Data selection for support vector machine

based software reliability models‟, in Proceedings of International

183

Conference on Reliability Engineering and Safety Engineering

(INCRESE2007), Udaipur, 299-307.

Ye, Z.S., Li, Z.Z. and Xie, M. (2010) „Some improvements on adaptive genetic

algorithms for reliability-related applications‟, Reliability Engineering &

System Safety, 95 (2), 120-126.

Yu, W. and Harris, T.J. (2008) „Parameter uncertainty effects on variance-based

sensitivity analysis‟, Reliability Engineering & System Safety, 94 (2), 596-

603.

Zhang, X. and Pham, H. (2000) „Comparisons of nonhomogeneous Poisson process

software reliability models and its applications‟, International Journal of

Systems Science, 31 (9), 1115-1123.

Zhao, M. and Xie, M. (1993) „Robustness of optimum software release policies‟, in:

Proceedings of International Symposium on Software Reliability

Engineering, 218-225.

Zhao, M. and Xie, M. (1996) „On maximum likelihood estimation for a general non-

homogeneous Poisson process‟, Scandinavian Journal of Statistics, 23, 597-

607.

