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Summary  

 Septins play important roles in morphogenesis, cell cycle progression and 

cytokinesis in yeast. Their organization and function are regulated in a cell cycle 

dependent manner. However, the mechanisms of control remain unclear. This thesis 

consists of two projects on the study of one septin Cdc3 and a septin associated protein 

Nap1 in the fungus Candida albicans. 

The first project is on a septin protein Cdc3. I uncovered that the Candida 

albicans septin Cdc3 undergoes cell cycle dependent phosphorylation and that 

phosphorylation at a single amino acid Ser422 is critical for Cdc3 functions. 

Hyperphosphorylated isoforms are detected in early G1 followed by a period of 

dephosphorylation; and after the START, Cdc3 phosphorylation increases gradually 

through the rest of the cell cycle. Phospho-mapping by mass spectrometry identified 

phosphorylation on S422 near the C terminus. The phosphomimetic S422D mutation 

causes disorganization of septin structures, severe cytokinetic defects, dramatic cell 

elongation, and inability of Cdc3 to localize to the neck. In contrast, the 

nonphosphorylatable S422A mutation produces a much weaker phenotype. Co-

immunoprecipitation experiments demonstrate that the S422D mutation greatly weakens 

Cdc11’s association with the septin complex and causes premature dissociation of Cdc11 

from the ring. The Nim1 kinase Gin4 is involved in the phosphorylation of Cdc3, but the 

Cdk Cdc28 is not. These findings reveal that controlling the phospho-regulation at a 

single residue S422 on Cdc3 may play a crucial role in regulating septin 

assembly/disassembly and stability. 
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 The second project focuses on a septin-associated protein Nap1. I report that 

deletion of C. albicans NAP1 leads to constitutive filamentous growth, higher sensitivity 

to hyphal induction, and defective septin organization. FCF, a compound known to 

stabilize septin filaments, can rescue the defects caused by NAP1 deletion. Fluorescence 

recovery after photo-bleaching (FRAP) analysis of Cdc3-GFP uncovers a more dynamic 

septin ring in nap1∆ compared to that in WT. In nap1∆ cells, Cdc3 deposits randomly on 

the cell cortex as spots or partial rings and experiences impairment of phosphorylation. 

Double deletion of NAP1 and CDC10, another septin protein, results in exacerbated 

temperature sensitivity, defective septin ring formation and scattered Cdc3 localization. 

Phospho-mapping by mass spectrometry identified phosphorylation on 10 Thr/Ser 

residues in the N-terminus of Nap1. Mutation of these 10 residues to non-

phosphorylatable Ala results in pseudohyphal growth and affects Nap1 neck localization. 

Conversely, mutation of these ten residues to phospho-mimetic Glu does not affect cell 

morphology, but causes random deposition of Cdc3. My findings unveil the roles of 

Nap1 in septin stabilization and Cdc3 phosphorylation control. 
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Chapter 1 Introduction 

Candida albicans is an opportunistic fungal pathogen of human, commonly 

residing in the oral cavity, gastrointestinal and genital-urinary tracts (Odds, 1985). 

Although benign in healthy subjects, it frequently causes life-threatening systemic 

infections in immuno-compromised patients (Rabkin et al., 2000; Richards et al., 1999). 

Largely due to the AIDS pandemic in the past 30 years, C. albicans is today the most 

prevalent fungal pathogen, posing a great challenge to medicine (Berman and Sudbery, 

2002). Thus, there is an urgent need to understand the mechanism of its virulence, in 

order to eventually develop therapies to treat C. albicans infections. 

 In addition to its medical significance, C. albicans is an excellent model to study 

certain fundamental biological processes. For example, although well known for its 

stringent diploidy, its unusual sexual cycle can happen under certain special conditions 

(Hull and Johnson, 1999; Hull et al., 2000; Magee and Magee, 1997; Magee, 2010; 

Perepnikhatka et al., 1999; Soll, 1997). Another example is the morphogenesis aspect of 

this organism. C. albicans can grow under 3 vegetative morphological forms: yeast, 

pseudohyphae and hyphae. Great efforts in the field of C. albicans have been devoted to 

understanding its ability to switch between several different morphological forms in 

response to environmental stimuli (Odds, 1985). The various morphological forms play 

different roles to account for its virulence, and the transition between them has been 

shown to be essential for a successful infection (Sudbery et al., 2004). To accomplish a 

proper morphological transition, C. albicans deploys multiple mechanisms, some of 

which are highly conserved pathways in eukaryotes. Thus, elucidation of the mechanisms 

underlying the transition will not only contribute to a deeper understanding of fungal 
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pathogenesis and virulence, but also improve our knowledge in cell morphogenesis, 

polarity control and cell cycle regulation. 

 In the following introduction section, I will first review the pathogenicity and 

polymorphism of C. albicans, its cell cycle progression, and currently known 

mechanisms that control its morphogenesis. Then I’ll review previous studies on two 

proteins Cdc3 and Nap1 which I have found to play important roles in C. albicans 

morphogenesis. 
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1.1 Polymorphism in the pathogenesis of C. albicans 

1.1.1 Pathogenicity of C. albicans 

 Virtually all of us carry C. albicans in our gastrointestinal and genitourinary tracts, 

and to a lesser extent, on our skin. The integral host tissue and intact immune system help 

to maintain a commensal relationship between C. albicans and the host (Calderone and 

Fonzi, 2001). Candida infection can be classified as candidiasis, referring to the infection 

of mucosal surfaces, and candidaemia, referring to infection in the blood stream. Mucosal 

candidiasis in healthy subjects is normally not life-threatening. However, recurrent oral 

candidiasis, such as in immune-compromised patients, sometimes lead to death from 

advanced esophageal colonization. Candidemia, caused by tissue invasion or 

contamination of indwelling catheters, can progress to the growth of fungal masses in the 

kidney, heart and brain (Berman and Sudbery, 2002). 

 C. albicans is one of the most common hospital-acquired infections. The 

estimated cost of treating Candida infection in the US alone is 1.7 billion annually 

(Wilson et al., 2002). Candidemia-related hospitalization incidence rose by 52% from 

2000 to 2005 (Zilberberg et al., 2008). Because C. albicans shares some highly conserved 

biological processes with humans, most fungicidal drugs cause deleterious side effects. 

Moreover, the capacity to rapidly develop resistance to anti-fungal drugs, such as to 

amphotericin B, flucytosine, and a series of azoles, means that continued development of 

new fungicides remains of great importance. Thus, research on C. albicans biology 

would help to identify more appropriate treatment targets. 

 C. albicans develops various tactics to efficiently infect a host and evades the host 

defense mechanism. Biofilm formation is a sophisticated first step of infection. The yeast 
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form cells readily adhere to the host surface, followed by developing a meshwork of 

yeast, hyphal, pseudohyphal cells and extracellular polymers (Hawser and Islam, 1996). 

The ability of C. albicans to grow filamentously plays a critical role in the development 

of the spatially organized architecture seen in biofilms (López-Ribot, 2005). Deletion of 

the transcription factor Epidermal Growth Factor (EFG1) renders the cells in locked yeast 

form, resulting in inability of biofilm formation (Ramage et al., 2002).  

 The next step is tissue invasion, involving C. albicans cells penetrating either 

mucosal surfaces or blood vessel epithelial cells (Gow et al., 2003; Malic et al., 2007). To 

accomplish this, C. abicans cells utilize a combination of anchoring proteins and 

proteases, or mechanisms to induce endocytosis by host epithelial cells. Membrane 

anchoring proteins like hypha-specific wall protein 1 (Hwp1) (Staab et al., 1999), and 

secreted aspartyl proteinases (SAP proteins) (Naglik et al., 2004) have been extensively 

studied. C. albicans hyphae interact with endothelial cells in vitro by binding to N-

cadherin on the endothelial cell surface. This binding triggers rearrangement of 

endothelial cell microfilaments, which results in the organism being engulfed by 

endothelial cells (Filler and Sheppard, 2006). 

 It is evident that every step of a Candida infection involves the intricate 

collaboration between its yeast and filamentous forms. Accumulated evidence from years 

of research points directly to the ability of C. albicans to switch between different growth 

forms being key to its virulence and pathogenicity. It is clear that a detailed 

understanding of this ability is essential for the control and treatment of this opportunist 

pathogen. 
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1.1.2 Host defense system and vaccination 

 Thanks to the considerable amount of work done on host defense against C. 

albicans, a comprehensive understanding has been achieved. The first line of defense is 

the intact host tissue surface. After a successful invasion by mechanisms elaborated in 

Chapter 1.1.1, leukocytes from innate immunity forms the primary protection against 

this organism (Fidel, 1999). Macrophages, being an important arm of phagocytic 

leukocytes, are the major engulfer due to the expression of mannose receptors that can 

recognize the cell wall of Candida (Seider et al., 2010; van de Veerdonk et al., 2010). 

However, by switching from yeast to filamentous form, C. albicans can not only escape 

from inside the host macrophage but also lyse and destroy the phagocyte (Lo et al., 1997). 

T cells and cell-mediated immunity (CMI) are activated a few days after Candida 

invasion. Interferon γ (IFN-γ) is a prototypic cytokine generated by T-helper1 (Th1) 

response. It also facilitates the killing by macrophages and the production of Candida-

specific antibodies (Káposzta et al., 1998).  

 Vaccination is one of the most extraordinary achievements in human medical 

history, and its protective power against infectious diseases is evident. Unfortunately, no 

effective vaccine against Candida is currently available for human, and antibodies that 

can neutralize or opsonize the microbe are still under clinical trials (Ferwerda et al., 

2010). The discovery that bacterial peptidoglycan is the active compound in the serum to 

induce hyphal development is ground-breaking in the understanding of the morphological 

switch in this organism (Xu et al., 2008), and presents a new angle for antibody targeting. 

By scavenging the peptidoglycans in the serum, the morphological switch of C. albicans 

might eventually be blocked, resulting in avirulent C. albicans. 
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1.1.3 Polymorphism of C. albicans and controlling signal transduction pathways 

 As introduced above, polymorphism underlies the pathogenicity of C. albicans 

and contributes greatly to its ability to evade the host’s immune surveillance. 

Morphogenesis refers to the ability of C. albicans to switch between 3 vegetative 

morphological forms: yeast, pseudohyphae and hyphae (Fig. 1.1). The shape of yeast 

cells is round to ovoid, and the daughter and mother cells are readily separated from each 

other after cytokinesis. At the mother daughter junction, where the nuclear division 

occurs, the septin ring serves as both a scaffold and a diffusion barrier (Sudbery et al., 

2004). At the tip of the growing bud, the crescent-shaped polarisome helps to establish 

polarized growth. During pseudohyphal growth, both the polarisome and septin ring 

localize properly, except the cells themselves are elongated and are not separated after 

cytokinesis. Different from pseudohyphal cells, no obvious septal constrictions can be 

observed in true hyphae. At the tip of a growing germ tube, both the polarisome and the 

Spitzenkorper can be found (Crampin et al., 2005). Nuclear division happens across the 

septum within the elongated germ tube, usually 10-15 micron from the base of the germ 

tube (Sudbery, 2001). C. albicans can switch between these different morphologies 

responding to environment cues. As discussed in Chapter 1.1.1, each growth form 

provides essential functions to the pathogenicity of C. albicans, and the ability to switch 

growth forms accounts for its virulence (Sudbery et al., 2004). Mutants defective in 

morphological transition have shown to be less virulent than wild type strain or avirulent 

(Lo et al., 1997; Zheng and Wang, 2004).  
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Figure 1.1 Polymorphism of C. albicans 

C. albicans can switch among different morphological forms as indicated by yellow 

arrows upon external triggering. Grey bar=10 µm 

 

The yeast to hyphal transition can be triggered by a wide range of growth 

conditions and chemicals, such as serum, N-acetyl-glucosamine, high temperature, CO2, 

starvation, pH, genotoxic and oxidative stress (Biswas et al., 2007). Different inducers 

exhibit varied degrees of potency and penetration. Serum is found to be the most potent 

and physiologically relevant hyphae inducer (Ernst, 2000).  In laboratories, the routine 

practice for hyphal induction is media containing 5-20% serum at 37oC, which mimics 

physiological conditions. Xu et al. have recently identified the bacterial peptidoglycan-

like molecules as the active ingredient in serum, showing high potency in triggering C. 

albicans hyphal growth (Xu et al., 2008).  
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 Numerous studies have been devoted to the understanding on how the external 

signals are relayed into the cell to induce cellular response. Multiple pathways and genes 

involved in controlling the yeast-hyphal transition have been identified. Among them, 

Cph1-mediated MAPK and the Efg1-mediated cAMP pathways are well-understood (Fig. 

1.2). CPH1 (Candida PseudoHyphal 1) is a transcription factor homologous to S. 

cerevisiae STE12 (STErile 12), which is targeted by MAPK (Mitogen-Activated Protein 

Kinase) cascade. Its deletion results in suppression of hyphal formation on solid but not 

in liquid media containing serum (Liu et al., 1994).  Farnesol, an autoregulatory quorum 

sensing molecule, has been shown to inhibit hyphal formation through the MAPK 

pathway (Sato et al., 2004). Other triggers, such as oxidative stress, nitrogen starvation 

and low pH, are also likely to act through the MAPK pathway (Alonso-Monge et al., 

1999; Eisman et al., 2006). EFG1 (Enhanced Filamentous Growth 1), homologous to S. 

cerevisiae PHD1 (PseudoHyphal Determinant 1), is a transcriptional regulator targeted 

by cAMP metabolism. Deletion of EFG1 again results in defective hyphal formation on 

solid media. In fact, absence of CDC35/CYR1 that encodes the sole adenylyl cyclase 

responsible for cAMP production, also renders the yeast cells unresponsive to hyphal 

induction (Rocha et al., 2001). It has been demonstrated that muramyl dipeptides, 

subunits of peptidoglycan, can bind to Cdc35/Cyr1 directly and activate it (Xu et al., 

2008). Both Cph1and Efg1 subsequently regulate a group of hyphal-specific genes that 

orchestrate the hyphal growth in response to induction (Fig. 1.2).  

 Among the hypha-specific genes (HSGs), HGC1 (Hypha-Specific G1 Cyclin) is 

essential for hyphal growth (Zheng and Wang, 2004). The CDK/cyclin complex 

Cdc28/Hgc1 has been demonstrated to phosphorylate Rga2, a GTPase activating protein 
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(GAP) of the master polarity regulator Cdc42. Consequently, the localization of Rga2 to 

the hyphal tips is inhibited, thus Cdc42 is locked in the active form at the tip (Zheng et al., 

2007). Cdc28/Hgc1 also targets the above mentioned transcription factor Efg1 (Wang et 

al., 2009). The phosphorylated Efg1 exhibits strong affinity for the promoters of Ace2 

activated genes, which are involved in the post-cytokinetic septum degradation. The 

complex has also been shown to phosphorylate Sec2 to regulate secretory vesicles 

(Bishop et al., 2010), and mediate the transcription factor UME6 regulated filamentous 

growth (Carlisle and Kadosh, 2010). 

 

Figure 1.2 Signalling pathways responsible for hyphal induction 

Figure modified from review slides by Dr. Wang Y. 
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Other hyphal inducers, such as alkaline pH and N-acetyl-glucosamine are 

effectuated by transcription factor Rim101 (Davis et al., 2000) and a group N-acetyl-

glucosamine catabolic genes (Kumar et al., 2000) respectively. With the increased 

amount of regulatory factors that have been identified over the years, a network of signal 

transduction pathways is unveiling, which greatly enhances our understanding of C. 

albicans morphogenesis and related pathogenicity. 

 

1.2 Septins in the regulation of cell cycle  

1.2.1 Mitosis and its regulation 

Cell division is a fundamental biological process that underlies the survival and 

perpetuation of all living things, from prokaryotes to eukaryotes, from single to multi 

cellular organisms. Prokaryotic cells duplicate themselves by binary fission. In 

eukaryotes, cell division is a precisely controlled series of events, usually in a cyclic 

manner termed the cell cycle. When the DNA content is replicated and equally 

segregated into the two resultant cells, the cell cycle is termed mitosis. I will focus on 

mitosis in this thesis. In each mitotic cell cycle, the DNA content is faithfully duplicated 

and accurately segregated into two cells. It is quite clear now that the regulators of cell 

cycle are similar in essence in all eukaryotes, ranging from the budding yeast to human 

somatic cells (Enserink and Kolodner, 2010; Satyanarayana and Kaldis, 2009). 

The complicated process of cell cycle passage is controlled and driven by protein 

phosphorylation dependent activation or degradation. The most crucial group of proteins 

that orchestrate the cell cycle are called cyclin-dependent-kinases (CDKs) (Enserink and 
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Kolodner, 2010; Satyanarayana and Kaldis, 2009). Interestingly, their expression levels 

do not fluctuate with the progression of cell cycle. However, their kinase activities 

exhibit cell cycle dependency due to a group of the activator proteins called cyclins. 

Different cyclins associate with designated CDKs at specific stages of the cell cycle. 

They not only activate the kinase activity of CDKs, but also determine the substrate 

specificity. The activation or inhibition of the target proteins involved in cell cycle 

progression is achieved by the cyclin-CDK complexes phosphorylating their specific 

regulatory sites at the appropriate time. Two ubiquitin ligases, Skp1–Cul1–F-box-protein 

(SCF) and anaphase promoting complex (APC/C), are also essential for cell cycle 

progression (Skaar and Pagano, 2009). They control the ubiquitination and thus 

degradation of the phospho-inactivated proteins targeted by cyclin-CDKs. Moreover, 

they also control the degradation of cyclin-CDKs at the end of their designated phase, 

thus forcing the cell to traverse the cell cycle unidirectionally. 

Mitosis can be briefly divided into interphase and mitosis (M) phases. Interphase 

is generally a preparation stage and cells go through G1 (G indicates Gap), S (S indicates 

synthesis), and G2 phases.  During G1 phase, the cell size enlarges and G1 cyclin-CDKs 

are activated. They subsequently phosphorylate and activate transcription factors 

controlling the genes required for DNA synthesis. S-phase cyclin-CDKs are assembled in 

late G1 and accumulate very fast due to G1 cyclin-CDKs phosphorylating S-phase 

cyclin-CDK inhibitors, which are subsequently ubiquitinated by SCF. When S-phase 

cyclin-CDKs phosphorylate and activate proteins for DNA replication, cells enter S phase. 

Mitotic cyclin-CDKs are assembled during S and G2 phase, but their activity is 

suppressed until DNA synthesis is faithfully completed. Once activated, cells enter the 
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complicated M phase, which is divided into prophase, metaphase, anaphase and telophase. 

In prophase, several events occur, such as nuclear envelope breakdown, chromosome 

condensation, and formation of mitotic spindle apparatus by microtubules. In metaphase, 

chromosome kinetochores are attached to the spindle apparatus. Daughter chromatids are 

pulled towards opposite spindle poles by the shortening of spindle microtubules. 

Anaphase is marked by the separation of sister chromatids. This is promoted by APC/C 

mediated destruction of securin. Securin is the protector of the proteins linking the sister 

chromatids together. Cdc14 is a protein phosphatase essential for the late mitotic 

progression (De Wulf et al., 2009). It is released from the nucleolus by the coordinated 

action of FEAR (CDC Fourteen Early Anaphase Release) and MEN (Mitotic Exit 

Network) during anaphase. Cdc14 together with APC/C the ubiquitin ligase direct the 

dephosphorylation and degradation of mitotic cyclin-CDKs at late anaphase. The 

consequence is that the targets of mitotic cyclin-CDKs are dephosphorylated soon after 

the kinase activity drops, leading to the onset of telophase. During telophase, events such 

as chromosome decondensation, nuclear envelope re-assembly, remodeling of daughter 

cell cytoskeleton and eventual cytokinesis, mark the end of mitosis. 

Saccharomyces cerevisiae, also known as budding yeast and baker’s yeast, has 

had irreplaceable value in food and fermentation products for thousands of years. 

Together with Schizosaccharomyces pombe, also known as fission yeast, they have 

proven to be enormously beneficial eukaryotic model organisms, especially in the 

understanding of the eukaryotic cell cycle. The 2001 Nobel Prize in Physiology or 

Medicine was awarded to Sir Paul Nurse and Leland Hartwell for the discovery and 

elucidation of cell cycle regulation by cyclins and CDKs in yeast since the 1970s. They 
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identified the cdc (cell-division cycle) mutants by screening temperature sensitive 

mutations, which later led to the rapid isolation of genes regulating human cell cycle. 

They initiated the field of cell cycle control study using yeast models and laid the 

foundation of our current understanding of the cell cycle in eukaryotes. 

In animal cells, the nuclear envelope is broken down during mitosis, which is 

termed “open” mitosis. In S. cerevisiae and C. albicans, the nuclear envelope stays intact 

throughout the cell cycle, and the chromosome segregation is accomplished inside the 

nuclear envelope. This is termed “closed” mitosis. Both S. cerevisiae and C. albicans 

cells replicate by budding. Apart from differences in the bud formation and the 

breakdown of the nuclear envelope, the basic events and their regulation are quite similar 

in yeast and mammalian cells (Lodish et al., 6th ed). During G1 phase, the cell has to 

enlarge to a critical size, after which the cell enters S phase irrevocably and traverses the 

entire cell cycle. This point of commitment is called START (Fig. 1.3). A small bud 

emerges after START and DNA replication begins during S phase. In G2 phase, the 

nucleus migrates towards mother daughter neck region and starts to elongate. During M 

phase, the chromosomes align at the metaphase plane inside the nucleus and sister 

chromatids segregate, followed by cytokinesis, resulting in a larger mother cell and a 

smaller daughter cell. 
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Figure 1.3 The cell cycle progression in S. cerevisiae and C. albicans 

The septin ring is represented by the orange ring, polarisome by the red crescent, spindle 

pole body by yellow dots, astral microtubule by green lines, and nucleus by blue spheres. 

 

1.2.2 Cell cycle in C. albicans 

S. cerevisiae has six CDKs: Cdk1 (also known as Cdc28) (Lörincz and Reed, 

1984), Pho85 (similar to mammalian Cdk5) (Toh-e et al., 1988), Kin28 (mammalian 

Cdk7 homologue) (Simon et al., 1986), Ssn3 (mammalian Cdk8 homologue) (Liao et al., 

1995), Ctk1 (Lee and Greenleaf, 1991) and Bur1 (Yao et al., 2000) (both are homologues 
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of mammalian Cdk9). Cdk1/Cdc28 is the only necessary and sufficient CDK to drive the 

cell cycle (Liu and Kipreos, 2000). Stage specific cyclins include 3 G1 cyclins (Cln1, 2 

and 3) (Tyers et al., 1993), 6 B-type cyclins (Clb5 and 6 in early S phase (Jackson et al., 

2006); Clb3 and 4 in late S and early M phase (Mendenhall and Hodge, 1998; Richardson 

et al., 1992); Clb1 and 2 in late M phase (Seufert et al., 1995)). Similar to S. cerevisiae, C. 

albicans has one CDK Cdc28 (Damagnez and Cottarel, 1996), 3 G1 cyclins (Ccn1 and 

Cln3 for yeast growth G1 phase (Chapa y Lazo et al., 2005; Sherlock et al., 1994); Hgc1 

for hyphal growth (Zheng and Wang, 2004)). Unlike S. cerevisiae, C. albicans has only 2 

B-type cyclins (Clb2 and 4) (Bensen et al., 2005; Damagnez and Cottarel, 1996). The cell 

cycle progression in C. albicans is similar to that of S. cerevisiae, though the players vary 

(Fig. 1.3) (Berman, 2006). Cell size threshold has to be reached for START, after which 

septins form a ring at the neck and the polarisome concentrates to the tip of the bud to 

direct bud growth. Growth becomes more isotropic with the enlargement of the bud. The 

nucleus moves to the neck region during G2 and divides across the neck at anaphase. At 

telophase, with the disassembly of spindle, septin ring splits into two. The old septin ring 

will be disassembled before the formation of a new ring in the next G1.  

Pseudohyphal and hyphal growth forms of C. albicans have distinctive cell cycles. 

The features of pseudohyphal growth are: polarized growth persists longer, G2 phase is 

prolonged resulting in large daughter cell and cytokinetic defect results in chains of cells. 

The features of hyphal growth are: germ tube evagination and elongation occur before 

START, hyphal growth is independent of cell cycle (Hazan et al., 2002) and is directed 

by the Spitzenkörper and polarisome, both of which are constitutively present at the tip of 

the germ tube (Crampin et al., 2005). During early hyphal development, septins form a 
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faint cap at the tip of the germ tube and a band structure at the base of the germ tube. 

Both the cap and the band structures become diffuse as the germ tube elongates. A septin 

ring is formed at the presumptum along the germ tube, and the nucleus divides across the 

metaphase plane. After cytokinesis, the daughter cell, which is in the shape of a 

cylindrical germ tube, is still attached to the mother cell without a constriction between 

them. Furthermore, the septin ring is not disassembled and stays at the septum  (Sudbery 

et al., 2004). 

 

1.2.3 Septins  

 Septins are a group of highly conserved GTP binding proteins found in yeast and 

animal cells. Septins were first identified by Hartwell (Hartwell, 1971) as temperature 

sensitive cell cycle division (cdc) mutants in S. cerevisiae. S. cerevisiae encodes seven 

septins, of which 5 (CDC3, CDC10, CDC11, CDC12 and SHS1) are expressed in mitosis, 

and 2 (SPR3 and SPR28) in meiosis (De Virgilio et al., 1996; Ozsarac et al., 1995). The 

same number of septin genes was found in fission yeast and C. albicans (Pan et al., 2007; 

Warenda and Konopka, 2002). There are 2 septins in C. elegans, 14 in humans, 13 in 

mouse, and 17 in zebrafish (Pan et al., 2007). Despite the varied number of isoforms, 

septins share a common structure: a flexible N-terminal extension (NTE), a polybasic 

region that facilitates plasma membrane binding and a conserved GTP binding domain 

(Fig. 1.4). Most septins also have a C-terminal flexible end (CTE), which contains a 

coiled-coil (CC) domain. 
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Figure 1.4 The common structure of septins 

NTE=N terminal extension; CTE=C terminal extension; P=poly basic domain; 

CC=coiled coil domain. 

 

 Although every septin has a GTP-binding domain, not all possess the ability to 

hydrolyze GTP. For example, mammalian Sept2 and Sept7, but not Sept6, share the 

conserved Thr78, which is involved in GTP binding and hydrolysis (Sirajuddin et al., 

2007; Sirajuddin et al., 2009). In S. cerevisiae, only Cdc10 (Thr74) and Cdc12 (Thr75), 

but not Cdc3, Cdc11 or Shs1, display GTPase activity(Versele and Thorner, 2004). 

Therefore, the ability of septins to bind to GTP appears to play mainly a structural role, as 

many works have substantiated (Farkasovsky et al., 2005; Field et al., 1996; Kinoshita et 

al., 2002; Nagaraj et al., 2008; Vrabioiu et al., 2004). 

Though the number of players varies, the fundamental mechanism of septin 

complex formation is similar across species. Septin units can hetero-oligomerize into rod-

shaped complexes which then polymerize end-to-end into paired long filaments. Electron 

microscopy pictures show septins purified from yeast, C. elegans and human form similar 

rod-shaped hetero-oligomers in vitro (Fig. 1.5) (Bertin et al., 2008; John et al., 2007; 

Sirajuddin et al., 2007). The filaments can assemble into higher order structures such as 

rings at the mother-daughter neck in yeast. Two types of interaction interfaces G and NC 

alternate to link the septin monomers in a rod (Fig. 1.5). The G interface involves the 
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GTP-binding domain of adjacent monomers, and the NC interface involves residues in 

the N- and C-terminal segments. Most septins have a variable C-terminal extension (CTE) 

that often contains a segment with coiled-coil-forming potential thought to mediate 

protein-protein interaction. The CTE is essential for S. cerevisiae Cdc3 and Cdc12 

functions in vivo (Bertin et al., 2008; Bertin et al., 2010; John et al., 2007; Rodal et al., 

2005; Versele et al., 2004; Versele and Thorner, 2004). The two septins associate through 

the G interface in septin rods and their CTEs form a coiled-coil helix bundle (Bertin et al., 

2008). Under low salt conditions the CTEs coiled-coils projecting from one filament 

associate with those from a parallel filament, forming lateral bridges that cross-link the 

filaments into a ‘rail-track’-like structure (Bertin et al., 2010). Thus, the CTEs of Cdc3 

and Cdc12 play key roles in the assembly and stabilization of septin structures. The CTE 

of Cdc11 has also been shown to associate in a homotypic manner which mediates the 

end-to-end assembly of septin rods into long filaments and further into mesh-like 

structures (Bertin et al., 2008). It is thus tempting to speculate that the CTEs might be the 

points of control by protein modifications to regulate septin architectures. The reported 

regulatory phosphorylation of ScCdc3 and CaCdc11 by CDKs in the CTE supports this 

hypothesis (Tang and Reed, 2002; Sinha et al., 2007). 
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Figure 1.5 Electron microscopic photo of septin hetero-octamer in S. cerevisiae and 

schematics of the septin filament organization 

D: electron microscope picture of the septin hetero-octamer in vitro. The formation of the 

octamer requires the interaction between alternating N-C interface of one septin and G 

interface of another. The helices represent the C terminal extension of Cdc3 and Cdc12. 

 

 The septin complex at the bud neck serves two major functions: a scaffold that 

recruits proteins involved in cell cycle progression to the neck; and a diffusion barrier 

that maintains the distinct protein repertoires of mother and daughter cells. For example, 

in the budding yeast, the p21-activated kinase (PAK) Cla4 is recruited to septin filaments 

at G1 to S phase before bud emergence through its septin-binding domain, and directly 

phosphorylates Cdc10 to promote septin collar formation (Versele and Thorner, 2004). In 
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C. albicans, the Nim1 kinase Gin4 has been shown to be phospho-activated by the B-type 

cyclin-CDK to phosphorylate Sep7 at mitosis, but it can associate with septin complex 

since G1 phase through its non-kinase region. This association during G1 is likely to play 

a structural role in the septin ring assembly (unpublished data by Dr. Wang Yue’s lab). 

The barrier formed by the septin complex serves to prevent the free diffusion of nuclear 

envelope proteins (Shcheprova et al., 2008) and endoplasmic reticulum (Luedeke et al., 

2005), as well as to compartmentalize the plasma membrane (Barral et al., 2000; 

Dobbelaere and Barral, 2004; Takizawa et al., 2000). An unambiguous result of this 

septin filament barrier is the maintenance of growth polarity. In fact, in budding yeast 

cells with a disrupted septin collar in combination with the deletion of cell cycle check 

point SWE1, cell growth is mis-directed to the mother cell instead of to the daughter bud 

(Barral et al., 2000). 

 

1.2.4 Septin organization, dynamics and regulation in S. cerevisiae 

 In budding yeast, 5 septins (Cdc3, Cdc10, Cdc11, Cdc12 and Shs1/Sep7) are 

expressed during mitosis. Mutations in all but Shs1 cause temperature sensitive cell 

division cycle defects (Hartwell, 1971). Deletion of CDC3 or CDC12 is lethal (Flescher 

et al., 1993). All septins contain a conserved GTP-binding domain, with variable N- and 

C- terminal extensions. As discussed in Chapter 1.2.3, the function of GTP binding is 

mainly structural, since the ability to hydrolyze GTP is not absolutely required (Versele 

and Thorner, 2004). The longest N-terminal extension (NTE) is found in Cdc3, and 

longest C-terminal extension (CTE) is found in Shs1. A coiled-coil domain is located in 

the CTE of all septins except Cdc10. The CTEs are essential for the function and 
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association of Cdc3 and Cdc12 in vivo (Versele et al., 2004). The four essential septins 

(Cdc3, Cdc10, Cdc11 and Cdc12) form a linear octameric rod in the sequence of Cdc11-

Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 (Fig. 1.5). This non-polar feature of the 

octamer enables end-to-end assembly into filaments through the NTE of Cdc11 (Bertin et 

al., 2008). The lateral association between filaments is speculated to be mediated by the 

CTEs of Cdc3 and Cdc12, however, this has not been tested since octamers cannot form 

in the absence of them (Bertin et al., 2008; Versele et al., 2004).  

 One hallmark of the septin ring in the budding yeast is the cell cycle 

“regulatedness”. As discussed in Chapter 1.2.2, the old septin ring disassembles in early 

G1 and a nascent ring marking the incipient budding site is formed in late G1. Septin 

complex stays at the septum from S until late anaphase as a single ring. The ring splits 

into two at telophase and the two rings eventually separate with the two resultant cells. 

The disassembly is thought to be triggered by the phosphorylation of Cdc3 at its CTE by 

G1 cyclin-Cdk1 complex (Tang and Reed, 2002). The assembly of a new ring is 

controlled by Cdc42, the master regulator of polarity. Three steps are executed: septin 

recruitment, ring assembly and ring maturation. The recruitment of septins to the 

presumptive budding site can operate through either Gic1/Gic2 (GTPase interactive 

component 1/2) (Iwase et al., 2006) at high temperature or Bni1 (Bud neck involved 1) 

(Park and Bi, 2007) at low temperature, both of which are effecter pathways of Cdc42. 

The ring assembly requires the GTPase-activating proteins (GAPs) for Cdc42, which help 

to unload the septin complex from recruitment pathways (Caviston et al., 2003; 

Gladfelter et al., 2002; Kadota et al., 2004). Another Cdc42 effecter protein Cla4 has 

been shown to directly phosphorylate a subset of septins and promote septin collar 
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formation (Versele and Thorner, 2004). Ring maturation refers to the formation of a 

stable septin hourglass at the neck after bud emergence. The mechanism is still unclear. 

Elm1 (Bouquin et al., 2000) and one of its target kinases, the Nim1 kinase Gin4 (Asano 

et al., 2006)  are thought to be involved.  

 Using FRAP (Fluorescence Recovery After Photobleaching), the dynamics of the 

ring has also been shown to be cell cycle dependent (Dobbelaere et al., 2003). The septin 

ring appears static during bud growth and telophase, while highly dynamic during bud 

emergence and M phase till the onset of cytokinesis. Phosphorylation of Shs1 by Cla4 

and Gin4 triggers septin immobilization. While dephosphorylation of Shs1 by Rts1, a 

regulatory subunit of PP2A, induces fluidity at telophase (Dobbelaere et al., 2003). 

Together, even though the overall events are not quite clear, it is very likely that 

phospho-regulation of septins is the mechanism controlling the ring organization and 

dynamics.  

 

1.2.5 Septin organization, dynamics and regulation in C. albicans 

 Similar to S. cerevisiae, there are 5 mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12 

and Sep7) in C. albicans, of which Cdc3 and Cdc12 are essential for survival. All septin 

members have variable N- and C- terminal extensions. Cdc3, Cdc11 and Cdc12, but not 

Cdc10, have a coiled-coil domain at the C-terminus.  Deletion of CDC10 causes very 

mild cell elongation at 30oC, while the effect of CDC11 deletion is slightly stronger. The 

aberrant phenotype is exacerbated with the increase of temperature. Deletion of SEP7 

causes no observable phenotype under yeast growth condition (Warenda and Konopka, 

2002). Upon hyphal induction, CDC10 and CDC11 null mutants exhibit abnormally 
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curved germ tubes and reduced pathogenicity (Warenda et al., 2003; Warenda and 

Konopka, 2002). On the other hand, sep7∆ mutants are able to form normal germ tubes, 

but the daughter hyphal compartment, which usually remains attached to the mother cell, 

separates from the mother compartment after cytokinesis. The cause for the separation is 

the abnormal recruitment of Cdc14, the phosphatase promoting mitotic exit, to the 

septum in the hyphal tube (Gonzalez et al., 2009). 

 During C. albicans yeast growth, the localization of septins is indistinguishable 

from that in S. cerevisiae, i.e. at incipient budding site and later the neck of the mother-

daughter septum. The ring slowly disassembles after cytokinesis but before new bud 

emergence. Upon hyphal induction, septins localize to the cortical site of germ-tube 

emergence, then form a cap at the tip and a band at the base of the germ tube (Warenda 

and Konopka, 2002). As the germ tube elongates, the band at the base is disassembled 

and septins are concentrated at the septum between hyphal compartments. At telophase, 

the ring splits into two rings, which are maintained after cytokinesis. The septin dynamics 

under yeast growth condition in C. albicans has been reported to be different from hyphal 

growth (González-Novo et al., 2008). During yeast growth, the pattern is similar to that 

of S. cerevisiae. No exchange of septins is observed in cells with small buds or split rings. 

On the other hand, under hyphal induction condition, Cdc3, Cdc12 and Sep7 exhibit no 

observable exchange with cytoplasmic pool, whereas Cdc10 is quite dynamic. Cdc28-

Hgc1, the hyphal-specific CDK-G1 cyclin complex, has been implicated in the 

phosphorylation of Sep7, and conversion of the septin ring to hyphal-specific state 

(González-Novo et al., 2008). Therefore, the septin complex is likely to be differentially 

regulated under different growth modes with phospho-regulation as a major controlling 
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mechanism. One study by Sinha et al. has elegantly illustrated the differential control of 

Cdc11 under yeast and hyphal growth. Gin4, a Nim1 kinase known to regulate septins, 

phosphorylates Cdc11 at Ser349 at the end of mitosis. This event primes Cdc11 for the 

phosphorylation by Cdk1/Ccn1, the CDK- G1 cyclin complex, at Ser395 during G1 phase 

of the next cell cycle. Cdc11 is dephosphorylated at the G1/S transition and stays 

dephosphorylated until the end of mitosis. In contrast, under hyphal induction, both S394 

and S395 are locked in a phosphorylated state independent of cell cycle phases, which is 

achieved through coordinated actions of three kinases: Gin4, Cdc28-Ccn1 and the 

hyphal-specific Cdc28-Hgc1 (Sinha et al., 2007). 

 Compared to the septins in S. cerevisiae, the structural organization of the 

complex in C. albicans is less well understood. However, due to the high sequence 

homology, very similar behavioral pattern and dynamics, it is likely that the structure of 

C. albicans septins also resembles that of S. cerevisiae. Thus, combining their highly 

conserved nature and the current understanding of septins in C. albicans, the key 

regulation of septin complex in C. albicans most likely lies in the intricate interplay 

between kinases and phosphatases. Furthermore, the understanding of septins in C. 

albicans can also reciprocate and complement the current knowledge in S. cerevisiae and 

other organisms.  
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1.3 Nucleosome assembly protein 1 

 Nucleosome assembly protein 1 (Nap1), as the name suggests, was first identified 

as a chaperone protein that can assemble nucleosomes in mammalian cells in vitro 

(Ishimi and Kikuchi, 1991; Ishimi et al., 1987; Ishimi et al., 1985). Since then, 

homologues of Nap1 have been identified in yeast (Ishimi and Kikuchi, 1991), 

Drosophila (Ito et al., 1996), soybean (Yoon et al., 1995), tobacco and rice (Dong et al., 

2003), nematode (Gal et al., 2005), and Xenopus (Steer et al., 2003). Nap1 is a highly 

conserved protein among all these organisms. While yeast has only one NAP family 

protein, multi-cellular organisms have more than one NAP1 homologue, including NAP1 

like proteins (NAP1L), template activating factor 1 (TAP1, also known as SET), testis 

specific protein Y encoded (TSPY), and CASK (calcium/calmodulin-dependent serine 

protein kinase)-interacting nucleosome assembly protein (CINAP). Many members of the 

NAP family display tissue or cell type specific expression patterns. The functions of this 

family of proteins are ubiquitous and seemingly unrelated.  They have been implicated in 

nucleo-cytoplasmic shuttling, chromatin assembly and remodeling, transcription and 

translation, silencing, cell cycle control, and cell wall synthesis (Park and Luger, 2006a; 

Zlatanova et al., 2007). In this thesis, I will focus on Nap1’s involvement in cell cycle 

and morphogenesis control. 

 The central domain of all nucleosome assembly proteins, which is called the NAP 

domain, is highly conserved. This NAP domain is necessary and sufficient for their 

nucleosome assembly function (Fujii-Nakata et al., 1992); and the N- and C-terminal 

extensions are highly variable. The structure of yeast Nap1 reveals a possible mechanism 

by which the nucleo-cytoplasmic shuttling is regulated. Nap1 exists as homo-dimers, 
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which are mediated by a 47 amino acid long dimerization helix (McBryant and Peersen, 

2004). A nuclear export signal (NES) resides at the tip of the helix and is masked by an 

accessory domain that contains potential target sites for casein kinase II (Park and Luger, 

2006b). Indeed, a later study has demonstrated that casein kinase II can phosphorylate 

Nap1 at 3 Ser sites, and the phosphorylation promotes import of Nap1 into the nucleus 

(Calvert et al., 2008). Mutating these Serines to either non-phosphorylatable or phospho-

mimetic residues causes prolonged S phase, but exerts no effect on normal bud formation. 

 Due to its involvement in numerous cellular functions, especially in gene 

transcription regulation, deletion of NAP1 in S. cerevisiae causes altered gene expression 

patterns of over 10% of the whole genome (Ohkuni et al., 2003). Interestingly, loss of the 

gene does not result in any significant phenotype in the budding yeast. In contrast, 

deletion of NAP1 in Drosophila and mouse results in embryonic lethality (Lankenau et al., 

2003; Rogner et al., 2000). The diverse functions of Nap1 are likely to be achieved by 

binding to a vast number of partners. Compared to the understanding of Nap1 in 

chromatin assembly and histone binding, other aspects, such as cell cycle regulation are 

largely unclear. Its involvement in cell cycle was first discovered by Kellogg et al. for its 

specific interaction with the B type cyclins, Clb2 in the budding yeast and cyclins B1 and 

B2 in Xenopus (Kellogg et al., 1995). Without Nap1, Clb2 cannot carry out its full range 

of functions, such as the regulation of microtubule dynamics, or the induction of isotropic 

bud growth, which results in elongated buds (Kellogg and Murray, 1995). It was later 

uncovered that Nap1, together with Clb2-Cdk1 and Gin4, a Nim1 kinase promoting 

mitosis, are in the septin complex (Altman and Kellogg, 1997; Longtine et al., 2000; 

Okuzaki et al., 1997). Gin4 is hyperphosphorylated and activated upon entering mitosis. 
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The activation of Gin4 kinase activity is dependent on Nap1 and Clb2-Cdk1. In addition, 

the bud neck localization of Gin4 is lost in the absence of NAP1. Thus, it is highly likely 

that Nap1 acts upstream of Gin4. However, Nap1 has later been shown to affect septin 

organization in the budding yeast. In the absence of the gene, instead of forming a clear 

band structure at the neck, the septin complex is either “fuzzy” or forms parallel bars at 

the neck (Longtine et al., 2000). Therefore, it is also possible that Nap1 and Gin4 act on 

septins in separate pathways, and the efficient recruitment of Gin4 to the neck is impaired 

by the misorganized septin complex. This hypothesis is supported by the observation that 

the phenotype and degree of septin complex misorganization of nap1Δgin4Δ are more 

severe than either nap1Δ or gin4Δ (Longtine et al., 2000).  

 In C. albicans, in contrast to the mild filamentous growth phenotype in budding 

yeast gin4Δ mutants, deletion of GIN4 results in severe cell elongation, cytokinetic 

defects and irresponsiveness to serum induction (Wightman et al., 2004). Similar to S. 

cerevisae, CaGin4 is also activated by hyperphosphorylation during mitosis, as well as 

hyphal development (Sinha et al., 2007). Recent findings have shown that Gin4 is 

activated by mitotic Clb2-Cdk1, and the activated Gin4 kinase can then phosphorylate 

Sep7 in the septin complex (unpublished data in Dr. Wang Yue’s lab). Therefore, Nap1 

becomes a primary candidate as one of Gin4’s activators. 
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1.4 Objectives of studies 

 As discussed in Chapter 1.2, the septin complex is essential for cell polarity and 

cell cycle progression. The organization of the septin complex is in turn regulated by cell 

cycle and polarity determinants. In the event of septin complex assembly/disassembly, 

the exact mechanism of how these events are triggered and controlled is not fully 

understood in either S. cerevisiae or C. albicans. Cdc3 is an essential protein and a core 

septin unit in both organisms. Surprisingly, little is known about this protein in the 

budding yeast except that it is a substrate of G1 cyclin-Cdk1 during the disassembly of 

the old septin ring, and a likely substrate of Cla4 during the septin ring assembly. Less is 

known about Cdc3 in C. albicans. The first half of the thesis focuses on CaCdc3, The 

objectives of this project are: 1. characterize the protein; 2. identify the regulatory 

mechanism and its cell cycle dependency; 3. identify the target residues of the regulation 

and establish their physiological significance. 

 Since the mechanism of Gin4 activation seems quite conserved in both S. 

cerevisiae and C. albicans, and since Gin4 carries more physiological importance in C. 

albicans than in S. cerevisiae, it is of pragmatic interest to determine whether Nap1 is 

part of the activation pathway. Since CaNAP1 has not been characterized before, the 

objectives of this study are: 1. characterize NAP1 and the physiological functions of the 

protein; 2. identify its relevance in Gin4 activation; 3. elucidate its involvement in septin 

complex organization and morphogenesis. 
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Chapter 2 Materials and Methods 

2.1 Reagents 

 All laboratory chemicals were purchased from Sigma-Aldrich Co. (St. Louis MI, 

USA) and Bio-Rad Ltd. (Hercules CA, USA). Enzymes were purchased from New 

England Biolabs (Boston MA, USA) and Fermentas International Inc. (Canada). 

Antibodies were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz CA, USA) 

and Roche (Switzerland). Kits for plasmid and gel purification were purchased from 

Qiagen (USA). Kits for genomic DNA purification were purchased from Pierce (now 

own by Thermo Fisher Scientific Inc.). Site directed mutagenesis kit was purchased from 

Stratagene (USA). The isoelectric focusing machine and dry gel strips for 2D western 

blot were purchased from GE Healthcare (UK). Oligonucleotides were synthesized by 1st 

Base Ltd. (Singapore). Calf serum was purchased from JR Science (USA). 1NM-PP1 was 

purchased from EMD Chemicals (USA). 

 

2.2 Strains and culture conditions 

 C. albicans strains in this study are listed in Table 2.1. Strains were routinely 

cultured in YPD medium (1% yeast extract, 2% peptone, and 2% glucose), or GMM (1× 

yeast nitrogen base without amino acids and 2% glucose), or GMM with required amino 

acids. All strains were grown at 30oC or 37oC water-baths with shaking. For hyphal 

induction, yeast cells were inoculated into YPD or GMM supplemented with 20% 

newborn calf serum and incubated at 37oC.  
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Table 2.1 C. albicans strains used in this study 

Strains  Genotype  Sources  

SC5314 
BWP17 
 
nap1Δ/Δ 
 
nap1Δ/Δ::NAP1-MYC 
 
nap1Δ/Δ::NAP-GFP 
 
nap1Δ/Δ::NAP1 -HA 
 
BWP17::CLB2-MYC  
 
nap1Δ/Δ::CLB2-MYC 
 
NAP1-HA::CLB2-MYC 
 
BWP17::GIN4-GFP:: 
CDC3-MYC::NAP1-HA 
 
nap1Δ/Δ::CCN1-MYC 
 
BWP17::HGC1-MYC 
 
nap1Δ/Δ::HGC1-MYC 
 
nap1Δ/Δ::NAP1-GFP 
 
nap1Δ/Δ::NAP1 N-MYC 
 
nap1Δ/Δ::NAP1 N-HA 
 
nap1Δ/Δ::NAP1 C-MYC 
 
nap1Δ/Δ::NAP1 C-HA 
 
nap1Δ/Δ::NAP1 N-GFP 
 
nap1Δ/Δ::NAP1 C-GFP 
 

Wild type, clinically isolated 
ura3Δ/ura3Δ his1 Δ/ his1 Δarg4Δ/arg4 
Δ 
Same as BWP17 except 
nap1Δ::hisG/nap1Δ::hisG 
Same as nap1Δ/Δ except NAP1-MYC 
URA3 
Same as nap1Δ/Δ except NAP1-GFP 
URA3 
Same as nap1Δ/Δ except NAP1-HA 
ARG4 
Same as BWP17 except CLB2 MYC 
URA3 
Same as nap1Δ/Δ except CLB2-MYC 
URA3 
Same as BWP17 except NAP1 HA 
ARG4::CLB2 MYC URA3 
Same as BWP17 except NAP1 HA 
ARG4::CLB2 MYC URA3::GIN4 
GFPHIS1 
Same as nap1Δ/Δ except CCN1-MYC 
URA3 
Same as BWP17 except HGC1-MYC 
URA3 
Same as nap1Δ/Δ except HGC1-MYC 
URA3 
Same as nap1Δ/Δ except NAP1-GFP 
URA3 
Same as nap1Δ/Δ except NAP1(1-
860nt)-MYC URA3 
Same as nap1Δ/Δ except NAP1 (1-
860nt)-MYC URA3 
Same as nap1Δ/Δ except NAP1(861-
1307nt)-MYC URA3 
Same as nap1Δ/Δ except NAP1 (861-
1307nt)-MYC URA3 
Same as nap1Δ/Δ except NAP1(1-
860nt)-GFP URA3 
Same as nap1Δ/Δ except NAP1(861-
1307nt)-GFP URA3 

(Fonzi and Irwin, 
1993) 
(Enloe et al., 
2000) 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
 
This study 
  
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
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nap1Δ/Δ::NAP1 N-
MYC::PMET3 NAP1 C-
HFM 
nap1Δ/Δ::HOF1-GFP 
 
nap1Δ/Δ::PMET3 GFP-
CDC42 URA3 
nap1Δ/Δ::SEP7-GFP 
 
nap1Δ/Δ::MYO1-GFP 
 
nap1Δ/Δ::SPA2-GFP 
 
gin4Δ/PMET3 GFP- 
GIN4 K57A /NAP1-MYC  
BWP17::PMET3 GFP-
GIN4 ::NAP1 MYC 
BWP17::PMET3GFP-
GIN4 K57A ::NAP1 MYC 
 
nap1Δ/Δ::NAP1 6A MYC 
 
nap1Δ/Δ::NAP110A MYC 
 
nap1Δ/Δ::NAP1 6A HA 
 
nap1Δ/Δ::NAP1 10A HA 
 
gin4Δ/MAL2 GIN4/NAP1-
GFP  
 
nap1Δ/Δ::NAP16A-GFP 
 
nap1Δ/Δ::NAP110A-GFP 
 
cdc10Δ/Δ 
 
cdc11Δ/Δ 
 
cdc10Δ/Δ::NAP1-GFP 
 
BWP17::cdc28Δ::CDC28as 
 

Same as nap1Δ/Δ except NAP1(1-
860nt)-MYC URA3::PMET3 NAP1 
(861-1307nt)-HFM ARG4 
Same as nap1Δ/Δ except HOF1-GFP 
URA3 
Same as nap1Δ/Δ except PMET3-
GFP-CDC42 URA3 
Same as nap1Δ/Δ except SEP7-GFP 
URA3 
Same as nap1Δ/Δ except MYO1-GFP 
URA3 
Same as nap1Δ/Δ except SPA2-GFP 
URA3 
Same as BWP17 except 
gin4Δ::HIS1::PMET3 GFP-GIN4 
K57A ARG4::NAP1-MYC URA3 
Same as BWP17 except PMET3 GFP-
GIN4 ARG4::NAP1-MYC URA3 
Same as BWP17 except PMET3 GFP-
GIN4 K57A ARG4::NAP1-MYC URA3 
Same as nap1Δ/Δ except NAP16A-
MYC URA3 
Same as nap1Δ/Δ except NAP110A-
MYC URA3 
Same as nap1Δ/Δ except NAP16A-HA 
URA3 
Same as nap1Δ/Δ except NAP110A-
HA URA3 
Same as BWP17 except gin4Δ:: 
ARG4::MAL2 GIN4 HIS1::NAP1-GFP 
URA3 
Same as nap1Δ/Δ except NAP16A-
GFP URA3 
Same as nap1Δ/Δ except NAP110A-
GFPURA3 
Same as BWP17 except 
cdc10Δ::HIS1/cdc10Δ::ARG4 
Same as BWP17 except 
cdc11Δ::HIS1/cdc11Δ::ARG4 
Same as cdc10Δ/Δ except NAP1-GFP 
URA3 
Same as BWP17 except cdc28Δ:: 
HIS1::CDC28F58G-ARG4 

 
This study 
 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
Li Changrun 
 
 
Li Changrun 
This study 
This study 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
 
This study 
 
This study 
 
Li Changrun 
  
Li Changrun  
  
This study 
 
Li Changrun 
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BWP17::cdc28Δ::CDC28as 
::NAP- HA 
 
NAP16A MYC::CDC3-GFP  
 
nap1Δ/Δ::NAP13E MYC 
 
nap1Δ/Δ::NAP13E GFP 
 
nap1Δ/Δ::NAP7E MYC::CDC3-
GFP 
nap1Δ/Δ::NAP110E 
MYC::CDC3 GFP 
nap1Δ/Δ::NAP17E GFP 
 
nap1Δ/Δ::NAP110E GFP 
 
BWP17::CDC3 GFP 
 
nap1Δ/Δ::CDC3 GFP 
 
BWP17::CDC11 GFP 
 
nap1Δ/Δ::CDC11 GFP 
 
BWP17::GIN4 HFM 
 
nap1Δ/Δ::GIN4 HFM 
 
nap1Δ/Δ::CLB4 MYC 
 
NAP1-HA::CLB4 MYC 
 
cdc3∆::PMET3 CDC3 
 
cdc3∆::PMET3 CDC3 
::CDC3 HFM  
cdc3∆::PMET3 CDC3 
::CDC3 S422A HFM  
cdc3∆::PMET3 CDC3 
::CDC3 S422D HFM  
cdc3∆::PMET3 CDC3 
::CDC3 S422A GFP  
cdc3∆::PMET3 CDC3 

Same as BWP17 except cdc28Δ:: 
HIS1::CDC28F58G-ARG4::NAP1-
HA URA3 
Same as nap1Δ/Δ except NAP16A-
MYC URA3::CDC3-GFP ARG4 
Same as nap1Δ/Δ except NAP13E-
MYC URA3 
Same as nap1Δ/Δ except NAP13E-
GFP URA3 
Same as nap1Δ/Δ except NAP17E-
MYC URA3::CDC3-GFP ARG4 
Same as nap1Δ/Δ except NAP110E-
MYC URA3::CDC3-GFP ARG4 
Same as nap1Δ/Δ except NAP17E-
GFP URA3 
Same as nap1Δ/Δ except NAP110E-
GFP URA3 
Same as BWP17 except CDC3-GFP 
AGR4 
Same as nap1Δ/Δ except CDC3-
GFP ARG4 
Same as BWP17 except CDC11-
GFP URA3 
Same as nap1Δ/Δ except CDC11-
GFP URA3 
Same as BWP17 except GIN4-HFM 
URA3 
Same as nap1Δ/Δ except GIN4-
HFM URA3 
Same as nap1Δ/Δ except CLB4-
MYC URA3 
Same as BWP17 except NAP1 HA 
ARG4::CLB4 MYC URA3 
Same as BWP17 except 
cdc3∆::FRT1:: PMET3 CDC3 HIS1 
Same as cdc3∆::PMET3 CDC3 
except CDC3 HFM ARG4 
Same as cdc3∆::PMET3 CDC3 
except CDC3S422A  HFM ARG4 
Same as cdc3∆::PMET3 CDC3 
except CDC3 S422D HFM ARG4 
Same as cdc3∆::PMET3 CDC3 
except CDC3 S422A GFP ARG4 
Same as cdc3∆::PMET3 CDC3 

This study 
 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
Zeng Guisheng 
 
This study 
 
Zeng Guisheng 
 
This study 
 
This study 
 
This study 
 
Yap Wai Ho 
 
Yap Wai Ho 
 
Yap Wai Ho 
 
Yap Wai Ho 
 
This study 
 
This study 
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::CDC3 S422D GFP  
cdc28as::CDC3 GFP 
 
 
cla4 Δ/Δ::CDC3 GFP 
 
GIN4 K57A::CDC3 GFP 
 
rts1∆/∆::CDC3 GFP 
 
cdc14∆/∆::CDC3 GFP 
 
cdc3Δ::PMET3 
CDC3::CDC3HFM::CDC10 
GFP 
cdc3Δ::PMET3 
CDC3::CDC3HFM::CDC11 
GFP 
cdc3Δ::PMET3 
CDC3::CDC3HFM::CDC12 
GFP 
cdc3Δ::PMET3 CDC3::CDC3 
S422A MYC::CDC10 GFP 
 
cdc3Δ::PMET3 CDC3::CDC3 
S422D MYC::CDC10 GFP 
 
cdc3Δ::PMET3 CDC3::CDC3 

S422A MYC::CDC11 GFP 
 
cdc3Δ::PMET3 CDC3::CDC3 

S422D MYC::CDC11 GFP 
 
cdc3Δ::PMET3 
CDC3::CDC3S422A 
MYC::CDC12 GFP 
cdc3Δ::PMET3 CDC3::CDC3 
S422D MYC::CDC12 GFP 
 
cdc3Δ::PMET3 
CDC3::CDC3HFM::GIN4 GFP 
 
cdc3Δ::PMET3 CDC3::CDC3 

S422A MYC::GIN4 GFP 

except CDC3 S422D GFP ARG4 
Same as cdc28Δ:: 
HIS1::CDC28F58G-ARG4 except 
CDC3 GFP URA3 
Same as cla4 Δ/Δ except CDC3 
GFP ARG4 
Same as GIN4 K57A except CDC3 
GFP ARG4 
Same as rts1∆/∆ except CDC3 GFP  
ARG4 
Same as cdc14∆/∆ except CDC3 
GFP ARG4 
Same as cdc3∆::PMET3 CDC3 
::CDC3 HFM except CDC10 GFP 
URA3 
Same as cdc3∆::PMET3 CDC3 
::CDC3 HFM except CDC11 GFP 
URA3 
Same as cdc3∆::PMET3 CDC3 
::CDC3 HFM except CDC12 GFP 
URA3 
Same as cdc3Δ::PMET3 
CDC3::CDC3HFM::CDC10 GFP 
except S422A 
Same as cdc3Δ::PMET3 
CDC3::CDC3HFM::CDC10 GFP 
except S422D 
Same as cdc3Δ::PMET3 
CDC3::CDC3HFM::CDC11 GFP 
except S422A 
Same as cdc3Δ::PMET3 
CDC3::CDC3HFM::CDC11 GFP 
except S422D 
Same as cdc3Δ::PMET3 
CDC3::CDC3HFM::CDC12 GFP 
except S422A 
Same as cdc3Δ::PMET3 
CDC3::CDC3HFM::CDC10 GFP 
except S422D 
 Same as cdc3∆::PMET3 CDC3 
::CDC3 HFM except GIN4 GFP 
URA3 
Same as cdc3Δ::PMET3 
CDC3::CDC3HFM::GIN4 GFP 

 
This study 
 
 
This study 
 
This study 
 
This study 
 
This study 
 
Yap Wai Ho 
 
 
Yap Wai Ho 
 
 
Yap Wai Ho 
 
 
Yap Wai Ho 
 
 
Yap Wai Ho 
 
 
Yap Wai Ho 
 
 
Yap Wai Ho 
 
 
Yap Wai Ho 
 
 
Yap Wai Ho 
 
 
This study 
 
 
This study 
 



Chapter2  Materials and Methods 

 

 

 

34 

 
cdc3Δ::PMET3 CDC3::CDC3 

S422D MYC::CDC11 GFP 
 
gin4Δ/gin4K57A ARG4 
 
gin4Δ/gin4K57A ARG4::CDC3 
GFP 
cdc3Δ::PMET3 
CDC3::CDC3S422A GFP 
cdc3Δ::PMET3 
CDC3::CDC3S422D GFP 

except S422A 
Same as cdc3Δ::PMET3 
CDC3::CDC3HFM::GIN4 GFP 
except S422D 
Same as BWP17 except gin4Δ:: 
gin4K57A ARG4 
Same as gin4Δ/gin4K57A ARG4 
except CDC3 GFP 
Same as cdc3Δ::PMET3 CDC3 
except CDC3S422A GFP 
Same as cdc3Δ::PMET3 CDC3 
except CDC3S42D GFP 

 
This study 
 
 
Li Changrun 
 
This study 
 
This study 
 
This study 
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2.3 C. albicans manipulation 

2.3.1 Heat shock transformation 

 The overnight culture of yeast cells were harvested to obtain a cell pellet of 40-50 

μl. The pellet was washed once with 1 ml dH2O and resuspended into 100 μl 1X LiAc-TE 

for 10 min at 30°C. 600 μl 50% PEG 5000 was then added in together with 20 μl salmon 

sperm DNA and 30-80 μl of digested DNA. The mixture was vortexed briefly, and then 

incubated at 30°C for 1 hr. Heat shock was carried out at 45°C for 15 min. The cells were 

spun down at 4000 rpm for 1 min, PEG was then removed. After being washed once with 

dH2O, the cells were re-suspended in 100 μl of water and plated out on selection plates. 

 

2.3.2 Electroporation transformation 

 Cells were harvested from 10 ml over night culture, followed by washing once 

with water. Cells were then suspended in 4 ml 1X LiAc-TE and incubated at 30°C for 45 

min. 100 μl 1M DTT was added in and the mixture was incubated at 30°C for another 15 

min. Cells were wash twice with 15 ml ice cold water and once with 2 ml of 1 M sorbitol. 

The cell pellet was re-suspended in equal volume of 1 M sorbitol. Aliquot of 40 μl cells 

was mixed with pre-digested and purified DNA, and loaded into 0.2 mm cuvette. The 

electroporation was carried out at a voltage of 1.65 KV, resistance 200 Ω and capacity 25 

μF. The cells were then suspended into 100 μl water and plated out onto selection plates. 

 

2.3.3 Preparation of C. albicans genomic DNA 

 Pierce Y-DER Yeast DNA Extraction Reagent Kit was used to extract the 

genomic DNA. 50 μl of cell pellet were harvest from the overnight culture and 
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resuspended in 200 μl Y-PER. The mixture was incubated at 65oC for 10 min. After 

spinning at 13,000 rpm for 5 min, the supernatant was discarded, and 200 μl DNA 

Releasing Reagent A and 200 μl DNA Releasing Reagent B were added in. The solution 

was vortexed briefly and incubated at 65oC for 10 min. 100 μl Protein Removal Reagent 

was then added and the tube was inverted several times. The solution was then 

centrifuged at 13,000 rpm for 5 min and the supernatant was transferred to a new tube 

containing 400 μl isopropanol. The tube was inverted several times and spun at 13,000 

rpm for 10 min to precipitate the genomic DNA. The supernatant was removed and the 

remaining DNA was washed once with 1 ml 70% ethanol. The pellet was air dried for 5 

min and resuspended in 50 μl dH2O. 

 

2.3.4 Preparation of C. albicans total cell lysates 

 Cells were spun down from overnight culture by centrifugation at 4000 rpm for 5 

min. Cell pellets were resuspended in 5 times the volume of ice-cold lysis buffer 

containing 1% Triton X-100, 50mM Tris (pH7.4), 150mM NaCl, 2µM DTT, and 1× 

protease inhibitor mixture tablet (Roche). The suspension was subsequently transferred to 

a 2-ml screw-cap tube. An equal volume glass beads were added, and the cells were 

broken by the Mini-Beadbeater (Biospec Products Inc.) at 5000rpm for 5 cycles of 1 min 

beating at 4oC. The supernatant lysates were collected by spinning at 13,000 rpm for 10 

min in an Eppendorf centrifuge. Protein concentration was measured by either the 

Bradford assay (BioRad) or the Nanodrop (Thermo Scientific). 
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2.4 DNA work 

2.4.1 Oligonucleotides primers and PCR 

 Primers used in this study are listed in Table 2.4.1. Restriction sites added are 

underlined. Additional bases were added to the 5’ end to ensure a complete enzymatic 

digestion at the ends of the PCR products. Mutations of primers used in mutagenesis are 

highlighted in red. 

Table 2.2 Oligonucleotide primers used in this study 

No. Primer Sequence (5’ to 3’) 

1 
2 
 
3 
 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
 
24 

NAP1-A 
NAP1-B 
 
NAP1-C 
 
NAP1-D 
NAP1-E 
NAP1-F 
NAP1-G 
NAP1-H 
NAP1-I 
NAP1-J 
NAP1-K 
NAP1-L 
NAP1-
M 
NAP1-N 
NAP1-O 
NAP1-P 
NAP1-Q 
NAP1-R 
NAP1-S 
NAP1-T 
NAP1-U 
NAP1-V 
NAP1-
W 
NAP1-X 

TGC GGC CGC TAC CAT GAC CAT GTT TTG  
TCT TTC GTA TTT ACC TGC GGA TCC AGT TAA TAT GGG 
TTG TGT  
ACA CAA CCC ATA TTA ACT GGA TCC GCA GGT AAA TAC 
GAA AGA  
TGC GGC CGC GAT AAG TGA TAA GAG AAT 
TTT ATC TCT TTG TAA CCA 
ACA CAA CCC ATA TTA ACT 
TCT TTC GTA TTT ACC TGC 
GAA GGT GAT GAA GAT GAA TAT 
CGC GGA TCC TGA TGG TTG TGA AAT TCG 
CGG ACT AGT TTA CTG TTG TTT ACA TTC 
CGG GGT ACC GGT TAC AGT GGA GAT TTT 
CCG CTC GAG CTG TTG TTT ACA TTC TGG 
GAT CAA GAA GAA ACT TAC ATT 
 
GAA TTC AAA CCA AAT GAT TTT 
AAC ACA AGA GTA TGT TAA TTT 
CGG GGT ACC CAA ATG GAT GTG GTA AAA CA 
CCA TCG ATA TGA CTG AAC AAC CAA TCA 
TGC ACT GCA GTT ACT GTT GTT TAC ATT CTG 
TGC ACT GCA GCA GAT ACT GTA GAT AAA TTT 
CTG GAT AT ATT GAT AAT CAA TTA AAT CAA ATG 
CAT TTG ATT TAA TTG ATT ATC AAT ATA TCC AG 
CTA TAA CCA TTG AAA GAA CAA AGC AAA CTA GAA C 
GTT CTA GTT TGC TTT GTT CTT TCA ATG GTT ATA G 
 
TAG CAA ATA ATC CAG TAT TA 
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25 
26 
27 
28 
29 
30 
31 

NAP1-Y 
TRUN-1 
TRUN-2 
TRUN-3 
TRUN-4 
TRUN-5 
TRUN-6 

GGA GAT TTT GTA TAT GAT C 
CCG CTC GAG TCT TTC AAT GGT TAT AG 
CCC ATC GAT AGA AAA CAA AGA AAT AAA 
CCC ATC GAT  TTC AGT CAT AGT TAA TAT GG 
TGC ACT GCA GTC TTT CAA TGG TTA TAG 
GGG TAC CTC GAA ACC TAA TGA TGA TG 
CCT CGA GAG TTA ATA TGG GTT GTG TT 

32 
33 
 
34 
 
35 
 
36 
 
37 
 
38 
 
39 
 
40 
 
41 
 
42 
43 
 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
 
54 
 
55 
 

MNAP1
-1 
MNAP1
-2 
MNAP1
-3 
MNAP1
-4 
MNAP1
-5 
MNAP1
-6 
MNAP1
-7 
MNAP1
-8 
MNAP1
-9 
MNAP1
-10 
MNAP1
-11 
CDC3-1 
CDC3-2 
CDC3-3 
CDC3-4 
CDC3-5 
CDC3-6 
CDC3-7 
CDC3-8 
CDC3-9 
CDC3-
10 
CDC3-
11 
CDC3-
12 

GGG GAT ATT GCT AAA GCC CCT GCG CCA CAG AAC GCT 
CCT GCT AGT 
GCT CCT GCT GCT GTC GCC AAC GCC TAT ATG AGA GCC 
AAA CCA CCG ACG 
ACG GTG TCC GCC ATT CAA GAA GCA AAC AAT GAA GAT 
GGT GCT GGT GCT GCT 
GAT GAA TAT GCT GAT GAA GAT GGT GAA GGT GAT GCT 
GAT GAT GAT 
AAG AAT GGG GAT ATT GAA AAA GCC CCT GAG CCA CAG 
AAC GAG CCT GCT AGT GTC ACC 
GAG CCT GCT GAA GTC GAG AAC GAG TAT ATG AGA GAG 
AAA CCA CCG ACG 
ACG GTG TCC GAG ATT CAA GAA GAG AAC AAT GAA GAT 
GGT GAG GGT GCT GCT 
CAG AAC GAG CCT GCT GAA GTC GAG AAC GAG TAT ATG 
AGA GAG AAA CCA CCG ACG GTG 
CCA CCG ACG GTG TCC GAG ATT CAA GAA GAG AAC AAT 
GAA GAT GGT GAG GGT GCT GCT GCT GCT 
CCA CCG ACG GTG TCC GAG ATT CAA GAA TCA AAC AAT 
GAA GAT GGT GAG GGT GCT GCT GCT GCT 
CCA CCG ACG GTG TCC GAG ATT CAA GAA GAG AAC AAT 
GAA GAT GGT ACT GGT GCT GCT GCT GCT 
GGG GGT ACC agg ttt aca att ctt gct a 
CCG CTC GAG ACG TAA AAA TCC TTT ACG A 
GGG GGT ACC atg gct gca ggt atg tat 
CCC ATC GAT ATG GCT GCT GGT ATG TAT 
TGC ACT GCA GGT TGA TTT GAT CTT GAC AG 
CGG GGT ACC GAG GAA TTA AAA GAA CAT AC 
CC ATC GAT GAG GAA TTA AAA GAA CAT AC 
TGC ACT GCA GCT AAC GTA AAA ATC CTT TAC 
TGC TCT AGA CAT CTT TAG TTG TAT GTT TC 
 
TGC TCT AGA GAG GAA TTA AAA GAA CAT AC 

CGC GGA TCC GCT GAT TTA TTT GCC AG 

ATG GCT GCA GTT GAT CAT GCT ACC ACA GGA GAA ATT 
GTT 
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56 
 
57 
 
58 
 
59 
 
60 
 

CDC3 
MUT-1 
CDC3 
MUT-2 
CDC3 
MUT-3 
CDC3 
MUT-4 
CDC3 
MUT-5 

GCT GCA GTT GAT CAT TCT GCC ACA GGA GAA ATT GTT 
CCA 
GCA GTT GAT CAT TCT ACC GCA GGA GAA ATT GTT CCA 
CAA 
CAA CCA GCT CCA CAA AAG GAA CGT AAA GGA TTT TTA 
CGT TAG 
 
CAA CCA GCT CCA CAA AAG GCT CGT AAA GGA TTT TTA 
CAA CCA GCT CCA CAA AAG GCT CGT AAA GGA TTT TTA 
CGT TAG 
 

 

 

2.4.2 DNA recombination methods 

 DNA fragments were amplified from genomic DNA of C. albicans using high 

fidelity polymerase (Roche). Restriction enzymatic digestion was performed using the 

buffers provided by manufacturers. Klenow DNA polymerase (New England Biolabs) 

was used to generate an insert blunt fragment. Dephosphorylation of vectors was done 

using calf intestinal phosphatase (CIP) (NEB). T4 DNA ligase (Fermentas) was used for 

fragment ligation. DNA sequencing was performed with the Sequenase DNA sequencing 

kit (US Biochemical, USA). 

 

2.4.3 E. coli transformation 

 Electroporation competent E. coli cells were prepared as followed: 

1. 1:1000 dilution of a fresh saturated E. coli culture to LB medium. 

2. Grow the cells at 37oC at 200 rpm till OD550 reaches a reading from 0.6 to 0.8. 

3. Spin down the cells in a centrifuge at 4000 rpm for 10 min and keep the cells ice-

cold throughout the procedure. 
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4. Wash cells by resuspending them in ice cold 10% sterile glycerol equal to the 

original volume. 

5. Spin down the cells again at 4000 rpm for 10 min. Repeat the washing twice. 

6. Discard the supernatant and resuspend cells in 125µl of ice-cold 10% glycerol per 

100 ml of original culture. 

7. Quickly freeze the cells in 20µl aliquotes. 

 For transformation, 1-2µl of plasmid or ligation products was mixed into 20µl of 

competent cells and incubated on ice for 5 min. Electroporation was done by a Gene 

Pulser (BioRad) at 1.8KV, 200Ω resistance and 25µF capacity. Aliquots of cells were 

then spread onto plates containing ampicillin. 

 

2.4.4 Plasmid purification and analysis 

 Small-scale plasmid purification from E. coli was carried out using QIAGEN 

Miniprep Kit. The procedures were as follows: 

1. Harvest the cells by centrifugation from 2 ml over night culture. 

2. Discard the supernatant and resuspend the cells in 250µl P1 solution. 

3. Lyse the cells by adding 250µl P2 solution. Mix by gently inverting. 

4. Add in 350µl N3 to neutralize the solution and mix by inverting. 

5. Centrifuge at >13,000 rpm for 10 min. Transfer the supernant to a Miniprep 

column. Centrifuge at full speed and discard the flow-through. 
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6. Wash the column with 0.75ml buffer PE and centrifuge for 1 min. discard the 

flow-through. Centrifuge for another 1 min to ensure the removal of any 

residual buffer. 

7. Place the column in a fresh 1.5ml tube. Add 50µl water to the column and 

stand for 1 min before centrifugation to elute the DNA. 

Restriction digestion and sequencing were used to analyze the plasmids. 1-2µg of 

plamid DNA was digested with 1-2 units of the restriction enzyme in a 20µl reaction at 

37oC for 30 min. The digestion products were then analyzed by agarose gel 

electrophoresis. Sequencing was done to ensure the insertion of correct fragments. 

Standard sequencing PCR was carried out. 

 

2.5 Gene disruption and expression 

2.5.1 C. albicans CDC3 shut off and phosphomutants 

The shut down mutant was generated by Dr. Yap Wai Ho. To generate the 

cdc3/PMET3-CDC3 strain, one copy of CDC3 was deleted using the URA3 flipper 

cassette (Morschhäuser et al., 1999), which was subsequently looped out, and the other 

copy was placed under control of the MET3 promoter by a promoter replacement strategy 

(Care et al., 1999).  A region containing the 5’-untranslated region from nt -650 to -1 was 

amplified from genomic DNA with KpnI and BglII sites added to the 5’ and 3’ ends, 

respectively.  The fragment was then inserted into plasmid with HFM tag at the C 

terminal of CDC3 gene. Site-directed mutagenesis was then carried out to generate a 

unique SalI site at nt -371 within the 5’-untranslated region.  Site-directed mutagenesis 
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was the carried out to generate serine to alanine, threonine to alanine, serine to aspartate 

and threonine to aspartate individual mutations corresponding to amino acid positions 7, 

8, 9, 41, 47, 263, 365 and 422 of cdc3 protein using Stratagene QuickChange Multi-site 

Directed Mutagenesis kit. Mutant strand synthesis reactions consisted of 2.5 µl 10x 

reaction buffer, 0.75 µl QuickSolution, 0.5 µl templet, 0.25 µl of each primer, 1 µl dNTP, 

1 µl Quick Change Enzyme, topped up with dH2O to 25 µl. The thermocycle reaction 

was similar to normal PCR except extension at 65 oC with the speed of 2 min/kb of 

template plasmid. After the reaction, the mixture was treated by 1 µl DpnI restriction 

enzyme for 1 hr at 37 oC to digest the parental ds-strand, and then transformed into E. coli 

competent cells. Plasmids extracted from ampicillin positive colonies were then subjected 

to sequencing. 

The resultant plasmids with correct mutations were linearized with SalI and 

integrated separately into the genome of  the cdc3/PMET3-CDC3 strain, yielding 

cdc3/PMET3-CDC3/cdc3S7A-HFM, cdc3/PMET3-CDC3/cdc3S7D-HFM, cdc3/PMET3-

CDC3/cdc3T8A-HFM, cdc3/PMET3-CDC3/cdc3T8D-HFM, cdc3/PMET3-CDC3/cdc3T9A-

HFM, cdc3/PMET3-CDC3/cdc3T9D-HFM, cdc3/PMET3-CDC3/cdc3S41A-HFM, 

cdc3/PMET3-CDC3/cdc3S41D-HFM, cdc3/PMET3-CDC3/cdc3S47A-HFM, cdc3/PMET3-

CDC3/cdc3S47D-HFM, cdc3/PMET3-CDC3/cdc3S236A-HFM, cdc3/PMET3-

CDC3/cdc3S236D-HFM, cdc3/PMET3-CDC3/cdc3S365A-HFM, cdc3/PMET3-

CDC3/cdc3S365D-HFM, cdc3/PMET3-CDC3/cdc3S422A-HFM and cdc3/PMET3-

CDC3/cdc3S422D-HFM. Strain genotypes were verified by PCR or Southern blotting. 

Cdc3S422A and Cdc3S422D GFP tag were constructed by replacing the HFM with GFP, 

followed by site specific integration in the promoter site of cdc3/PMET3-CDC. 
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2.5.2 CDC3 domain deletion 

 CDC3 C terminal extension (nt1003 to nt 1284) was amplified from genomic 

DNA and inserted after MAL2 promoter with GFP tag. The plasmid was then integrated 

at MAL2 promoter site in cdc3/PMET3-CDC strain. Mutations of S422 to Ala or Asp 

were done using the same strategy described in Chapter 2.5.1. 

 

2.5.3 C. albicans NAP1 gene disruption and domain deletion 

 Two alleles of a gene were deleted sequentially from BWP17 (Enloe et al., 2000). 

Gene deletion cassettes consisted of 2 fragments corresponding to the 5’- and 3’-

untraslated regions of the gene of interested NAP1 flanking the marker gene hisG-URA3-

hisG. The flanking fragments were amplified from genomic DNA and the restriction sites 

were added to the facilitate ligation. Transformants were selected on uridine drop out 

plates. Correct deletion of NAP1 was verified by PCR. URA3 marker in the 1st copy 

knockout was flipped out on a GMM plate with 5-FOA. Correct flipping was verified by 

PCR. The 2nd copy of NAP1 gene was deleted the exact same way except the 3’- 

untranslated region was brought forward 500 nt to facilitate the PCR checking. Proper 

deletions of both alleles were checked by PCR with primers NAP1-F and G. Thus, all 

three selection marker (HIS1, ARG4 and URA3) were usable for subsequent genetic 

manipulation. 

 NAP1 gene was cut into 2 parts at amino acid position 287 in this study. NAP1 

was constructed by PCR amplification from genomic DNA using this pairs of 

oligonucleotides NAP1-P and L, NAP1-N using TRUN-4 and 5, NAP1-C from TRUN-3 
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and 5, TRUN-2 and NAP1-L. 900 nt of promoter region was included in both truncates to 

facilitate site specific integration. 

 NES deletion was carried out using primers NAP1-T and U. Deletion was 

confirmed by sequencing with primer NAP-X. Mutated NAP1 was then integrated into 

nap1Δ/Δ at the promoter region. Expressions were checked by either western blot or 

microscopy. 

 

2.5.3 NAP1 mutagenesis 

 All non-phosphorylatable and phospho-mimic mutations of NAP1 were done by 

Stratagene QuickChange Multi-site Directed Mutagenesis kit. Promoter + full length wt 

NAP1 was used as the template for mutagenesis. Properly mutated constructs were then 

transformed into nap1Δ/Δ at the promoter region. Expressions were checked by either 

western blot or microscopy. Mutations were further confirmed by genomic PCR of the 

ORF region followed by sequencing. 

 

2.5.4 Chromosomal tagging at C terminus 

Construction of plasmids pGFPutr, pMYCutr and pHFMutr were previously 

described (Sinha et al., 2007). To tag CDC3, a region of CDC3 from nucleotide (nt) 155 

to 1284, and a region of NAP1 from nt 768 to 1304 (the first nucleotide of the coding 

sequence is 1) were PCR-amplified from genomic DNA, with KpnI and XhoI sites added 

to the 5’ and 3’ ends respectively. The fragments were then inserted in frame with GFP-, 

Myc- or HFM-coding sequences in pGFPutr, pMYCutr and pHFMutr previously digested 

with KpnI and XhoI, yielding pCDC3-GFPutr, pCDC3-MYCutr and pCDC3-HFMutr, 
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respectively. These constructs were then linearized at a unique BglII site (nt 1117) in 

CDC3 and XcmI site (nt 1069) in NAP1 before being integrated into the genome. 

 

2.6 Protein work 

2.6.1 1D western blot analysis 

 Standard SDS-PAGE protocol (Sambrook et al., 1989) was carried out with the 

Mini-PROTEAN II electrophoresis system (BioRad, USA) in Tris-glycine running buffer 

(25 mM Tris, 250 mM glycine and 0.1% SDS). Proteins resolved on the gel were 

subsequently transferred onto PVDF membrane (Amersham, UK) using the Bio-Rad Wet 

Transfer System in transfer buffer (48mM Tris, 39mM glycine and 10% methanol).The 

membrane was blocked in 5% BSA for 1 hour. Primary anti-body incubation was 

normally carried out in room temperature for 1 hr or 4oC overnight, followed by washing 

with PBST (PBS with 0.1% Tween-20). The membrane was incubated in secondary 

antibody for 50 min, followed by washing extensively. The protein bands were visualized 

by the Enhanced Chemi-Luminescence (ECL) system (Amersham, UK) and Fuji Medical 

X-Ray Film (Fuji, Japan). 

 

2.6.2 2D western blot 

 First dimension isoelectric focusing (7cm strip) was done as described previously 

by Indrajit et al. (2007): 

1. Into 10 μg of protein, add in 0.5μl TCEP and 0.6 μl IPTG buffer of 

corresponding Ph range. Top up with sample buffer to 125 μl. 
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2. Apply the solution evenly to the strip holder. 

3. Remove the plastic protective cover on the gel strip and submerge in the 

sample solution applied to strip holder. 

4. Cover the strip with 600 μl cover fluid. 

5. Run at 20oC at 50 μA/strip and set the program as 30 V for 13.5 hrs, 500 V for 

45 min, 1000 V for 45 min, and 8000 V for 90 min. 

Total run of first dimension took 16.5 hrs. Second dimension was done as follows: 

1. Rinse the strip with Milli-Q water. 

2. Equilibrate the strip in equilibration buffer containing 10 mg/ml DTT for 10 

min with shaking. 

3. Rinse with Milli-Q water. 

4. Equilibrate the strip in equilibration buffer containing 25 mg/ml 

iodoacetamide for 10 min with shaking. 

5. Trim strips on both sides and carefully insert it between glass plates till it is 

well layered on the gel. 

6. Seal gel with 0.5% agarose in running buffer containing trace of bromophenol 

blue.  

The mounting of gel apparatus and the separation of the proteins were similar to 

1D SDS-PAGE described in Chapter 2.6.1. 
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2.6.3 Immunoprecipitation (IP) 

 500ml of total cell lysate was mixed with either anti-Myc, anti-HA or anti-GFP 

agarose beads (Santa Cruz, USA) with rotation for at least 2 hr at 4oC. The beads were 

then washed with lysis buffer 3 times. The precipitated proteins were resolved on SDS-

PAGE and detected by western blot as described in Chapter 2.6.1. 

 For co-immunoprecipitation, 10-15 ml overnight culture was refreshed into 100-

200 ml fresh culture till OD595 reached 1.2-1.6. Cell pellets were harvested for beads-

beating. Cell lysates were then incubated with the appropriate agarose beads overnight. 

The rest was handled the same way as IP. 

2.6.4 Phosphorylation site mapping 

 For mapping the phosphorylation sites of Cdc3 and Nap1, 1L YPD culture was 

grown over night. Cells were harvested and lysed as described in Chapter 2.3.4 and 

immuno-precipitated as described in Chapter 2.6.3 for overnight. Proteins were then 

resolved on SDS-PAGE and the gel was stained with Coomassie Blue. The Cdc3 HA and 

Nap1 HA bands were excised for MALDI-TOF in University at Albany, Center for 

Functional Genomics (USA). 

 

2.7 Centrifugal elutriation 

 Synchronized C. albicans G1 cells were obtained by centrifugal elutriation. 400-

500ml overnight galactose minimal media culture with required amino acids was injected 

into the chamber of a Beckman JE5.0 rotor in the Avanti J-26XP Beckman Centrifuge 

(Beckman, USA). The flow rate of a MasterFlex L/S pump (MaterFlex, USA) was then 

increased at small increments. Small G1 cells were eluted out first. The size of the eluted 
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cells was carefully monitored by microscopy. The synchronous G1 cells were then 

released into YPD, or GMM, or YPD with 20% serum for growth at 30oC or 37 oC. 

Aliquots of cells were collected for microscopy or western blot analysis. 

 

2.8 Microscope studies 

2.8.1 Fluorescence microscopy 

The Leica DMR fluorescence microscope with a 100X objective lens and a 

Hamamatsu digital camemra interfaced with METAMORPH software (Universal 

Imaging) were used to capture and analyze the images. General cell morphology was 

captured using differential interference contrast optics (DIC). GFP and nuclear DAPI 

(Vector Labboratories, USA) staining were visualized by corresponding fluorescence 

wave lengths. For GFP localization, live cells without fixation were examined. Cell wall 

staining was done using Fluorescent Brightener 28 (Sigma, USA) to a final concentration 

of 6µl/ml culture. Images were then processed with Adobe Photoshop to adjust the level 

and contrast. 

 

2.8.2 Confocal microscopy and fluorescence recovery after photo-bleaching (FRAP) 

 FRAP experiments were performed with a heating stage and objective heater 

system (Biotechs) maintained at 37 ˚C using the Zeiss LSM700 confocal microscope with 

a 100X oil-immersion objective. Briefly, cells expressing Cdc3 GFP were allowed to 

grow to the early log phase at 30 °C. Cells were harvested and resuspended in fresh 

media, and adhered to the surface of poly-lysine coated chambered slide (Lab-Tek). 

Excitation for image acquisition was set at 3% of the maximal laser intensity; whereas 
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bleaching of the septin ring was with 25 iterations of 100% laser intensity at 488 nm. 

Single-section images were then collected every 1 s for a total of 5 min. Fluorescence 

intensity was analyzed using NIH ImageJ. For each FRAP data set, three separate 

experiments were performed, typically including up to five cells investigated per strain. 

Normalized fluorescence intensity was obtained by subtracting the background (mean 

fluorescence intensity in the bleached region after bleach) and correcting for acquisition 

bleach (a control cell in the same field was used). The ratio between mean fluorescence 

intensity of the bleached region and the mean fluorescence of the whole cell was then 

expressed as a percentage and plotted against time. 
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Chapter 3 Phosphorylation of Cdc3 plays a critical role in regulating septin 

organization, stability and function 

3.1 Introduction 

Septins belong to a family of GTP-binding and filament-forming proteins (Faty et 

al., 2002; McMurray and Thorner, 2009a; Oh and Bi, 2010). They are evolutionarily 

conserved from fungi to humans and best known for their roles in cytokinesis (Estey et al., 

2010; Finger, 2005; Longtine et al., 1998) Studies in recent years have revealed new 

conserved functions of septins. For example, many cell types assemble septin filaments 

underneath the plasma membrane to form diffusion barriers that divide cells into 

functionally distinct compartments (Caudron and Barral, 2009). Septin complexes also 

serve as scaffolds that recruit and organize protein components of related functions at a 

certain cellular location to perform specific functions (Kozubowski et al., 2005; Longtine 

et al., 2000).  

Septin structure and function have been most extensively investigated in the 

budding yeast Saccharomyces cerevisiae (Sc). This model organism encodes 5 mitotic 

septins including Cdc3, Cdc10, Cdc11, Cdc12 and Sep7/Shs1 (Finger, 2005). At the 

beginning of the cell cycle, these septins assemble into a ring structure at the presumptive 

budding site that defines the future cell division plane (Caviston et al., 2003; Gladfelter et 

al., 2001; Iwase et al., 2006). The ring persists at the bud neck throughout the cell cycle 

until the time of cytokinesis when it splits into two rings followed by disassembly in the 

early stages of the next G1 phase (Tang and Reed, 2002; Longtine and Bi, 2003;). The 

dynamics of septins within the ring also changes with the progression of the cell cycle, 

being mobile at bud emergence and telophase and immobile during S, G2, and M phases 



Chapter3 Cdc3 in cell cycle transition and septin higher order organization 

 

 

 

51 

(Dobbelaere et al., 2003). Through its scaffold and diffusion-barrier functions, the septin 

ring plays crucial roles in morphogenesis, cell cycle progression, cytokinesis and cell 

separation (Longtine and Bi, 2003; McMurray and Thorner, 2009b; Oh and Bi, 2010; 

Weirich et al., 2008). These roles require the septin ring to be assembled and 

disassembled and its dynamics regulated precisely in a cell cycle dependent manner. 

However, the underlying molecular mechanisms of control remain poorly understood. 

Particularly, little is known about the molecular events that trigger septin ring assembly, 

disassembly and split. Several protein kinases have been reported to phosphorylate 

septins and influence their property and function. The cyclin-dependent kinase (CDK) 

Cdc28 phosphorylates Cdc3 at two consensus CDK phosphorylation sites near the C-

terminal end in G1 to promote disassembly of the old ring inherited from the previous 

cell division (Tang and Reed, 2002). Cdc28 and/or another CDK Pho85 are thought to 

target Shs1 in G1, playing a role in later phases affecting bud morphogenesis and septin’s 

association with the Nim1 kinase Gin4, a well known septin regulator (Egelhofer et al., 

2008). Several studies reported that Gin4 and the p21-activated kinase (PAK) Cla4 

regulate septin ring assembly, split and dynamics by targeting Cdc3, Cdc10 and Shs1 

(Longtine et al., 1998; Mortensen et al., 2002; Dobbelaere et al., 2003; Versele and 

Thorner, 2004; Asano et al., 2006;). Rts1-dependent protein phosphatase 2A appears to 

be involved in Shs1 dephosphorylation to modulate septin ring dynamics in telophase 

(Dobbelaere et al., 2003), and the Cdc14 phosphatase of the mitotic exit network has 

been implicated in septin ring split (Bloom et al., 2010; Cid et al., 2001; Clemente-

Blanco et al., 2006).  
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Candida albicans (Ca), a polymorphic fungus that can grow as yeast, 

pseudohyphae and hyphae (Berman and Sudbery, 2000; González-Novo et al., 2008), 

encodes homologues to all five S. cerevisiae mitotic septins. Like their S. cerevisiae 

counterparts, the C. albicans septins exhibit cell cycle dependent organizational and 

dynamic changes during yeast growth (Warenda and Konopka, 2002). However, during 

hyphal growth, the septin rings are not disassembled after cytokinesis; instead they 

persist at the septum through multiple cell cycles (González-Novo et al., 2008). 

Furthermore, Cdc10 molecules in the ring behave differently from other septins in 

dynamics during hyphal growth. These data indicate differential regulation of C. albicans 

septins in different growth forms. Interestingly, phosphorylation has also been found to 

play important roles in septin regulation. Sinha et al. (2007) reported that Cdc11 

undergoes cell cycle dependent phosphorylation by at least two kinases Cdc28-Ccn1 and 

Gin4 during yeast growth. It is phosphorylated at S395 by Gin4 around the time of 

cytokinesis that primes it for further phosphorylation at S394 by Cdc28-Ccn1 before bud 

emergence in the next cell cycle. And after the G1/S transition Cdc11 becomes 

completely dephosphorylated until being phosphorylated again by Gin4 near the end of 

the cell cycle. In contrast, during hyphal growth both S394 and S395 are locked in 

phosphorylated state independent of cell cycle phases, which is achieved through 

coordinated actions of three kinases Gin4, Cdc28-Ccn1 and the hyphal-specific Cdc28-

Hgc1 (Sinha et al., 2007). Blocking these phosphorylations causes defects in both yeast 

and hyphal cells. Cdc28-Hgc1 also regulates Sep7 phosphorylation and contributes to the 

inhibition of cell separation after cytokinesis (González-Novo et al., 2008). Taken 

together, current data from studies of both S. cerevisiae and C. albicans suggest that 
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timely phosphorylation and dephosphorylation of septins at specific stages appear to be a 

main mode of control underlying the cell cycle dependent regulation of septin 

organization and function (McMurray and Thorner, 2009).  

Septins have the capacity to assemble into structures of different levels of 

complexity. In solution, purified septin monomers can assemble into symmetric 

heterooligomeric rods that, in turn, form higher-order structures such as filaments, rings, 

and gauze. Salt and lipids play important roles in determining the levels of septin 

structures both in vitro and in vivo (McMurray et al., 2011; Bertin et al., 2008; Bertin et 

al., 2010). Two types of interaction interfaces G and NC alternate to link the septin 

monomers in a rod. The G interface involves the GTP-binding domain of adjacent 

monomers, and the NC interface involves residues in the N- and C-terminal segments. 

Most septins have a variable C-terminal extension (CTE). The CTEs often contain a 

segment with coiled-coil-forming potential thought to mediate protein-protein interaction. 

The CTE is essential for S. cerevisiae Cdc3 and Cdc12 functions in vivo (Versele et al., 

2004). The two septins associate through the G interface in septin rods and their CTEs 

form a coiled-coil structure (Bertin et al., 2008). Under low salt conditions the CTE 

coiled-coils projecting from one filament associate with those from a parallel filament, 

forming lateral bridges that cross-link the filaments into a higher order ‘rail-track’-like 

structure (Bertin et al., 2010). Thus, the CTEs of Cdc3 and Cdc12 play key roles in the 

assembly and stabilization of septin structures. The CTE of Cdc11 has also been shown 

to associate in a homotypic manner which mediates the end-to-end assembly of septin 

rods into long filaments and further into mesh-like structures (Bertin et al., 2010). It is 

thus tempting to speculate that the CTEs might be the points of control by protein 
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modifications to regulate septin organization. The reported phosphorylation of ScCdc3 

and CaCdc11 by CDK in the CTE supports this hypothesis (Tang and Reed, 2002; Sinha 

et al., 2007). 

To investigate the role of phosphorylation in regulating the septins, we have used 

2D western blotting (Sinha et al., 2007) to examine the phosphorylation status of each 

septin during cell cycle progression. In this study, I report that Cdc3 is a phosphoprotein 

and exits in multiple phosphoisoforms. Its phosphorylation is regulated in a cell cycle 

dependent manner. The most phosphorylated isoforms were observed in early G1 cells 

followed by a period of dephosphorylation through the rest of G1 phase; and 

rephosphorylation occurs gradually from the START to the end of the cell cycle. 

Phospho-mapping of immunopurified Cdc11 by mass spectrometry identified 

phosphorylation on S422 near the C-terminus. Mutating S422 to the phosphomimetic D 

causes severe cytokinetic defects and elongation of cells as well as disorganization of 

septin structures. In contrast, the S422A mutation leads to a much weaker phenotype.  

Gin4 is involved in the phospho-regulation of Cdc3, but Cdc28, Cla4 and Cdc14 are not. 

The results suggest that controlling the phosphorylation status of S422 may play a crucial 

role in regulating the assembly or stability of septin rings. 

 

3.2 Cdc3 is a phospho-protein 

In S. cerevisiae, Cdc28 phosphorylates Cdc3 at a pair of SP sites near the C-

terminal end, which is thought to initiate septin ring disassembly (Tang and Reed, 2002). 

The C. albicans Cdc3 sequence does not contain any consensus CDK phosphorylation 

site such as SP or TP in the CTE. Given the high evolutionary conservation and 
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essentiality of Cdc3 in the two organisms (Warenda and Konopka, 2002), I thought that 

in C. albicans either Cdc28 can phosphorylate Cdc3 at nonconsensus sites as is the case 

of Cdc11 phosphorylation (Sinha et al., 2007), or other kinases phosphorylate Cdc3. To 

begin to address this issue, I first wanted to determine whether CaCdc3 is a 

phosphoprotein. To detect Cdc3 phosphorylation, we used 2D western blotting which has 

the power to separate different phosphoisoforms as distinct spots according to their 

isoelectric points (Sinha et al., 2007). I tagged Cdc3 with GFP at the C-terminus in 

BWP17 cells. Proteins were extracted from exponential phase cells, resolved by 2D 

electrophoresis and analyzed by western blot using GFP antibodies. By this protocol, I 

consistently detected 10-11 spots of Cdc3-GFP in asynchronous cells (Fig. 3.1A). 

Treating the cell lysate with λ phosphatase eliminated all the isoforms closest to the 

acidic end of the gel and collapsed them into three spots near the basic end. This result 

demonstrates that the 7-8 spots closest to the acidic end of the gel are Cdc3 isoforms 

carrying different numbers of phosphorylated residues. The phosphatase-resistant spots 

may represent other types of modification that alters Cdc3’s isoelectric point. 
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3.3 Cdc3 phosphorylation is cell cycle dependent 

To determine when Cdc3 phosphorylation occurs during the cell cycle and 

whether it correlates with certain changes of septin behavior, I used centrifugal elutriation 

to prepare G1 cells to start synchronous cultures. Aliquots of cells were collected at timed 

intervals. The budding index of this culture shows that the cells start to bud at around 120 

min and undergoes cytokinesis between 180 and 210 min (Fig. 3.1B). I also examined 

septin localization at each time point of sample collection (Fig. 3.1C). All newly 

prepared G1 cells had a septin ring at one pole which was clearly the old ring from the 

previous cell division. At 60 min, most cells did not show any clear septin localization, 

indicating that the old ring had disassembled. At 90 min, a small percentage of cells had 

assembled a septin patch or a new ring in the cortex of unbudded cells, and at 120 min a 

bright ring was present at the presumptive budding site in most cells. At 210 min, two 

rings were seen in many large budded cells indicating completion of cytokinesis. Next, I 

harvested cells at several time points coinciding with major changes of septin 

organization to examine Cdc3 phosphorylation status. The results of 2D western blotting 

are shown in Fig. 3.1C. Cdc3 in newly prepared G1 cells (0 min) exhibited the same 10-

11 spots as those detected in the asynchronous exponential culture shown in Fig.3.1A 

above. Strikingly, at 60 min nearly all of the most phosphorylated isoforms disappeared, 

and only the few least phosphorylated ones were detected, indicating rapid 

dephosphorylation of Cdc3 during the early stages of G1 during which the old septin 

rings are disassembled. At 90, 120, 180 and 210 min, the number of hyperphosphorylated 

spots increased progressively with the pattern at 180 and 210 min being similar to that at 

0 min. At 270 min when the culture was in the next G1 phase dephosphorylation was 
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detected again. The results demonstrate that Cdc3 undergoes cell cycle dependent 

phosphorylation and dephosphorylation. Phosphorylation occurs progressively from late 

G1 throughout most of the cell cycle and peaks near the end of the cell cycle. The 

hyperphosphorylated isoforms are inherited by new G1 cells but quickly 

dephospharylated in early G1 coincident with the old septin ring disassembly until 

rephosphorylation starts shortly before the assembly of a new septin ring. 
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Figure 3.1 Cdc3 undergoes cell cycle dependent phosphorylation and 

dephosphprylation 

(A) 2D WB of Cdc3 GFP in WT cells treated and untreated with λ phosphatase. 

Asynchronous cells were used. (B) Budding index of WT G1 cells recovered in GMM. 

(C) WT G1 cells with Cdc3-GFP were released in GMM at 30°C. Aliquots of cells were 
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collected at indicated time points for microscopy (C) and 2 D WB analysis (D). Blots in 

(D) were aligned by the position of protein markers. 

 

3.4 Identification of phospho-residues in Cdc3 

To map the phosphorylated residues in Cdc3, Cdc3 was tagged with a 

hemagglutinin (HA) epitope for immunoaffinity purification. The protein was purified 

from 1L of asynchronous culture and separated by SDS PAGE. After Coomassie Blue 

staining, the Cdc3 band was excised and processed for mass spectrometry (MS) analysis. 

The MS mapping was repeated three times and identified phosphorylation on S7, S41, 

S365 and S422 (Fig. 3.2A). S7 is located in the N-terminal extension (NTE), S41 in the 

GTP binding site, S365 in the C-terminal coiled coil domain and S422 near the C-

terminal end. I then created a series of Cdc3 mutants, replacing each of the identified 

residues either with the nonphosphorylatable alanine (A) or the phosphomimetic aspartate 

(D). Since CDC3 is essential (Warenda and Konopka, 2002), to examine the effect of 

these mutations I first created a strain (PMet3-CDC3) in which one copy of CDC3 was 

deleted and the other placed under the control of the MET3 promoter. In glucose minimal 

medium (GMM), the strain grows normally. But when grown for >6 h in GMM 

supplemented with 0.5 mM each of methionine and cysteine (GMM+MC) to shut down 

the expression of CDC3, the cells exhibited severe cell elongation and cytokinetic failure, 

forming long branched filaments after 18 h (Fig. 3.2B). Methylene blue staining of the 18 

h cells revealed the presence of many dead cells, consistent with the essentiality of the 

gene (Fig. 3.2B).  To examine the effect of Cdc3 depletion on septin structures, I tagged 

Cdc10, Cdc11 and Cdc3 with GFP and found complete mislocalization of all the three 
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septins with Cdc10 and Cdc11 evenly distributed in the cytoplasm and Cdc12 forming 

large random aggregates (Fig. 3.2C). Furthermore, many elongated cells contained 

multiple nuclei, consistent with cytokinesis defects (Fig. 3.2D). The delayed appearance 

of the phenotype is most likely due to the high stability of septins such that only after 

several generations in the repressive condition would the amount of wild-type Cdc3 

molecules be reduced to a level that can no longer carry out its functions. The results 

show that the shut-off of CDC3 was rather complete, thus providing a proper background 

for testing the functions of the various CDC3 mutant alleles.  
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Figure 3.2 Cdc3 is essential for cell growth and septin function 

(A) Domain structure of Cdc3. Residues revealed by MS phospho-mapping are in red. P 

= poly basic domain; CC = coiled coil domain. (B) 0.5 mM Met+Cys were added to the 

culture. Aliquots of cells were collected at indicated time points for microscopy. 
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Methylene blue was used to stain the cells after 18 hr shutoff of CDC3. Cells stained 

purple are dead. Bar = 10 µm. Scale bar is representative for all panels. (C) GFP tagged 

Cdc10, Cdc11 and Cdc12 in overnight CDC3 shutoff cells. (D) DAPI staining of the 

nucleus and rhodamine-phalloidin of the F-actin in overnight CDC3 shutoff cells. 

 

Next, I integrated a CDC3 mutant allele at the native CDC3 promoter region in 

the PMET3-CDC3 strain and evaluated the effect of each of the mutations by growing the 

strains in GMM+MC. Under yeast growth conditions, mutating S7, S41 and S365 to 

either A or D all caused a similar degree of moderate morphological defects with 10-15% 

of the cells showing elongated buds or necks (Fig. 3.3A). In contrast, the S422A and 

S422D mutants exhibited dramatically different defects. While the S422D mutation 

caused severe morphological and cytokinetic abnormalities comparable to the depletion 

of Cdc3, the effect of the S422A substitution was much weaker. After overnight shutoff 

of the wild-type CDC3, nearly all S422D cells were highly elongated and failed in 

cytokinesis, but only ~20% of the S422A cells were elongated and normal yeast cells 

were still present in the culture indicating completion of cytokinesis (Fig. 3.3A). When 

the mutants were grown under hyphal-induction conditions, >50% of the S7A cells grew 

multiple germ tubes resembling the septin cdc11S395A mutant (Sinha et al., 2007) (Fig. 

3.3B). In comparison, ~20% of the S7D cells grew more than one germ tube, suggesting 

that phosphorylation at S7 may have a role in hyphal development. The S422D mutant 

completely lost its hyphal growth ability after overnight growth in media that turned off 

the wild-type CDC3 just like the Cdc3-depleted cells (Fig. 3.3B). In contrast, in spite of 

the morphological and cytokinetic defects the S442A cells exhibited largely normal 
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hyphal growth, again demonstrating differential effects between the A and D mutations 

of S422 (Fig. 3.3B). Together, the data strongly suggest that S422 is of great importance 

for the function of Cdc3 and is likely a critical site where phosphoregulation of the 

septins occurs. This hypothesis prompted me to focus this study on the S422 mutations. 

 Another interesting observation of the cdc3 mutants is that the protein levels of 

Cdc3S7A and Cdc3S422D are significantly lower than WT and other Ser site mutations. Is it 

possible that the phenotypes observed in the cdc3S422D mutant are due to the lowered 

expression of the mutated protein but not the mutation itself? This scenario is unlikely 

because Cdc3S7A and Cdc3S422D showed a comparable level of protein expression, yet 

cells expressing Cdc3S7A as the only source of Cdc3 exhibited relatively normal 

morphology. Therefore, it is highly likely that S7A and S422D mutations reduce the 

stability of the protein but exert differential effects on cell morphogenesis. 
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Figure3.3 Morphology and protein stability of Cdc3 phospho-mutants 

(A) Cells were grown in GMM with 0.5 mM Met+Cys at 30°C for overnight. Bar = 

10µm. Scale bar is representative for all panels. (B) Cells from the overnight culture were 

grown in GMM+20% serum for 90 min. (C) Myc tagged Cdc3, CdcS7A, CdcS7D, CdcS47A, 

CdcS47D, CdcS365A, CdcS365D, CdcS422A and CdcS422D were compared. Comassie blue 
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stained gel of the same total lysates was used as loading control. 

 

3.5 Cdc3S422D does not localize to the bud neck and fails to associate with other 

septins  

Next, I determined whether Cdc3S422D and Cdc3S422A can still localize to the bud 

neck and associate with other septins in the absence of WT Cdc3. GFP-tagging revealed 

that both mutant versions of Cdc3 localized and behaved normally in the presence of WT 

Cdc3. After switching off wild-type Cdc3 overnight, Cdc3S422A exhibited essentially 

normal localization at the presumptive budding site and septum, but also formed strong 

cortical patches and circles. In stark contrast, Cdc3S422D showed complete mislocalization, 

and no signal could be observed at the neck region (Fig. 3.4 A).  

I used 2D WB to check the phosphorylation status of Cdc3S422A. Two spots on the 

most phosphorylated end were missing and 3 were significantly weakened, while 3 least 

phosphorylated spots were enhanced (Fig. 3.4B). This result is consistent with S422 

being a site of phosphorylation and also suggests that phosphorylation of S422 may be 

required for further phosphorylation of the protein at other sites.  

In S. cerevisiae, the CTE of Cdc3 is known to be essential for stabilizing septin 

octamers and higher-order filaments by forming a coiled coil bundle with the CTE of 

Cdc12. Although how the different septin monomers are organized in C. albicans have 

not been determined, we hypothesized that the CTE of Cdc3 may play a similar role 

which may be regulated by phosphorylation of S422. To test this hypothesis, I tagged 

Cdc10, Cdc11 and Cdc12 with GFP in the PMET3-CDC3 cdc3S422A-Myc and PMET3-CDC3 

cdc3S422D-Myc strains as well as in a CDC3-Myc strain. After shutting off the WT CDC3, 
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I first immunoprecipitated Cdc3 and then probed the other septins with GFP antibody in 

western blotting. A strain expressing Cdc3-Myc without other tagged septins was 

included as negative control. The coimmunoprecipitation (co-IP) results showed that 

Cdc3S422A exhibited similar levels of association with Cdc10, Cdc11 and Cdc12 as the 

wild-type Cdc3 (Fig. 3.4C). In contrast, Cdc3S422D pulled down much less Cdc11 than the 

wild-type Cdc3 and Cdc3S422A although its association with Cdc10 and Cdc12 was 

unaffected (Fig. 3.4C). Thus, the data indicate that the S422D mutation has a strong 

effect on the integrity of the septin complex, consistent with a role of the CTE of Cdc3 in 

determining the stability of the septin filaments. However, we do not yet know whether 

the Cdc3 CTE directly associates with Cdc11 or the S422D mutation causes 

conformational changes of the septin oligomers which releases the Cdc11 molecules. If 

the C. albicans septin monomers are organized in the same order as in the S. cerevisiae 

septin octomers Cdc11–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11, CaCdc3 is 

not expected to directly interact with Cdc11. In S. cerevisiae, the CTE of Cdc11 mediates 

end-to-end linkage of the octomeric septin rods and inter-filament interactions and thus 

plays an important role in assembling septin rods into higher-order structures (see Fig. 

1.5). If Cdc11 has a similar role in C. albicans, the strong effect of the S422D mutation 

on Cdc3’s association with Cdc11 is consistent with the severe septin disorganization in 

the cdc3S422D mutant (Chapter 3.6). 

 

3.6 The S422D mutation causes premature disassembly of septin rings 

In light of the weakened interaction between Cdc3S422D and Cdc11, I wondered 

whether the localization of Cdc11 and other septin components was affected. GFP tagged 
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Cdc11, Cdc12 and Gin4 were examined in both cdc3S422A and cdc3S422D mutants before 

and after shutting off the WT CDC3. In cdc3S422A mutants, all Cdc11, Cdc12 and Gin4 

could localize to the neck in yeast cells (Fig. 3.4D). Cdc12 also exhibited some cortical 

signals in both yeast like and pseudohyphal cells. In cdc3S422D mutants, both Cdc12 and 

Gin4 could be seen as a band at the mother daughter neck of some cells and a diffused 

band near the tip of some filaments (Fig. 3.4E). In comparison, when I examined Cdc11-

GFP localization in the cdc3S422D background, I only saw occasional assembly of Cdc11 

rings at the base of small buds that was emerging from the elongated cells (Fig. 3.4D), 

suggesting that septin rings can form when buds initially emerge but are quickly 

disassembled. 

To confirm the transient localization of Cdc11 to the neck, I monitored septin 

organization in emerging buds using time-lapse confocal microscopy. Cells were first 

grown for 8 hours in GMM+MC before time-lapse observation. The cells were elongated 

and formed branched filaments confirming that the shut-off of WT CDC3 was complete. 

Images were taken every 15 min for several hours. We managed to capture several 

emerging buds and Figure 3.4F shows a representative one. Cdc11-GFP first localized to 

the presumptive budding site and then formed a ring at the bud neck. However, the ring 

disappeared quickly after 30 min as the bud elongated. In comparison, in wild-type cells 

the interval between the initial localization of septins to the presumptive budding site and 

the disassembly of the ring is 90-100 min under the same culture condition (not shown). 

The results indicate that septin rings can be assembled in cells expressing Cdc3S422D as 

the sole source of Cdc3, but such rings are not stable leading to premature disassembly. I 

also examined Cdc12 localization under the same conditions. Interestingly, Cdc12 was 
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able to form a ring at the bud neck which persisted much longer than Cdc11 (Fig. 3.4E).  

However, the Cdc12 ring was broader than a normal ring, and often incomplete and 

appeared as a set of bars (Fig. 3.4F). This defective ring was not disassembled after 

cytokinesis, but moved up to near the tip of the daughter cell. Together, the results 

suggest that the S422D mutation of Cdc3 causes early dissociation of Cdc11 from the 

ring leaving behind a disorganized and unstable septin structure at the neck. 
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Figure 3.4 Cdc3S422D cannot localize to the neck and affects interaction with Cdc11 

(A) cdc3S422A and cdc3S422D mutants were grown in GMM with 0.5 mM Met+Cys at 30°C 

overnight to shut off of WT CDC3. (B) G1 cells of cdc3S422A mutants were obtained for 

the 2D WB. (C) Cells were incubated in the shutoff media (+MC) overnight and diluted 

into fresh media (+MC) 10 times the original volume. More cdc3S422D cells were used 

because of its lower protein level. WT Cdc3, Cdc3S422A and Cdc3S422D were 

immunoprecipitated with anti-Myc conjugated beads, and probed with anti-GFP antibody 

to detect other septins in western blotting. (D) GFP-tagged Cdc11, Cdc12 and Gin4 in 

cdc3S422A and cdc3S422D mutant background were cultures in the shutoff media overnight. 

Localizations of these proteins were examined before and after shutting off WT Cdc3. 

Arrowheads in the Cdc12 image indicate misorganized rings (a high resolution image is 

shown in F). Arrowheads in the Gin4 image indicate the tip and neck localization of Gin4. 

Bar = 10 µm. (E) cdc3S422D cells with Cdc11-GFP or Cdc12-GFP were cultured in the 

shutoff media for 8 hours before live cell imaging. A z-stack of 15 images were taken at 

each of the indicated time points with minimum pinhole size to avoid photobleaching. (F) 
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Confocal images of Cdc12-GFP at the tip of elongated daughter cell in cdc3S422D mutant. 

~30% of filament tips showed this Cdc12 localization and organization. 

 

3.7 S422 is dephosphorylated during the assembly of the new septin ring 

 Since Cdc3 undergoes cell cycle regulated phosphorylation and S422 plays an 

important role in septin organization, the next question I asked is whether the 

phosphorylation of S422 was also cell cycle dependent. To answer this question, 

polyclonal antibodies were commercially prepared (Genemed Synthesis Inc., USA) to 

recognize phosphorylated S422 within a 15 amino-acid peptide. I first performed western 

blotting to assess the specificity of the antibody. The antibody strongly reacted with WT 

Cdc3 and the reaction was significantly reduced after pretreatment of the sample with λ 

phosphatase; and the antibody also exhibited weakened reaction with Cdc3S422A (Fig. 

3.5A). The Cdc3 proteins had a C-terminal Myc tag and anti-Myc western blotting was 

used to confirm equal loading of proteins (Fig. 3.5A). The results indicate the polyclonal 

antibody has specificity for phosphorylated S422 although it can also react weakly with 

unphosphorylated Cdc3. 

 Using this antibody as a probe, I next investigated the stages in the cell cycle that 

S422 is phosphorylated. I constructed a strain with one copy of CDC3 tagged with Myc 

at the C-terminus. I first pulled down the septin complex using an anti-Myc antibody and 

then probed the Cdc3 using the phospho-specific antibody in western blotting. Cdc3-Myc 

was also probed for loading control. The degree of phosphorylation was compared by 

calculating the ratio of signals detected by anti-phospho-S422 antibody over that by the 

anti-Myc antibody.  Freshly elutriated G1 cells showed strong phosphorylation. This is in 
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agreement with strong Cdc3 phosphorylation revealed by 2D WB at the same time point 

(Fig. 3.1D) when Cdc3 showed highest number of phospho-isoforms. During the first 60 

min, when the old septin ring is undergoing disassembly, phosphorylation at S422 was 

largely unaffected. At around 120 min, when the new septin ring is assembled, there was 

a sharp drop in S422 phosphorylation, indicating that dephosphorylation of the residue 

took place around this time. The phosphorylation was gradually restored as the cell cycle 

progressed. Together, I have shown that S422 is a critical amino acid in Cdc3 function, 

and its phosphorylation and dephosphorylation are temporally controlled. 
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Figure 3.5 S422 is dephosphorylated during the assembly of new septin ring 

(A) Cdc3-Myc and Cdc3S422A-Myc from asynchronous cultures were immunoprecipitated. 

The blot was first probed with anti-phosphor-Ser422 antibody, followed by stripping and 

reprobing with anti-Myc antibody. (B) Cdc3-Myc was immunoprecipitated by anti-Myc-

antibody conjugated beads. Untagged Cdc3 in the precipitate was detected by the anti-

phosphor-S422 antibody. Cdc3-Myc also serves as a loading control between samples. (C) 

The autorad was scanned to determine the intensity of each band. Relative intensity was 

calculated by the ratio of the area under the curve (AUC) detected by the anti-phosphor-

S422 antibody over that detected by the anti-Myc antibody. Cell images corresponding to 

the time points for sample collection are shown. 
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3.8 Gin4 but not Cdc28 is involved in the phosphorylation of Cdc3 

 Since my results above have shown that phospho-regulation of Cdc3 has high 

physiological importance, I set out to look for the kinases and phosphatases responsible 

for the regulation. One obvious candidate is Cdc28, which is known to phosphorylate 

Cdc3 in the budding yeast (Tang and Reed, 2002). To test whether it was the same case 

in C. albicans, I tagged Cdc3 with GFP in a cdc28as mutant and obtained G1 cells. The 

G1 cells were first grown in GMM at 30°C for 1 or 2 hours and then treated with the 

Cdc28as-specific inhibitor 1NM-PP1 for 1 hour. Upon addition of 1NM-PP1, the kinase 

activity of Cdc28 is blocked (Bishop et al., 2000). However, significant reduction of 

Cdc3 phosphorylation was not observed at either time point compared with mock-treated 

samples (Fig. 3.6A). To show that 1NM PP1, at the concentration used, can effectively 

inhibit Cdc28as, I included Gin4 as control (unpublished data in Dr. Yue Wang’s lab has 

shown that Gin4 contains 9 perfect consensus sites for Cdk phosphorylation and is a 

substrate of Clb2-Cdc28 both in vivo and in vitro). I found that 1NM PP1 abolished Gin4 

phosphorylation. Thus, the data indicate that Cdc28 does not have a significant role in 

Cdc3 phosphorylation. Another candidate is Cla4, a PAK kinase shown to phosphorylate 

Cdc3, Cdc10 and Cdc11 in S. cerevisiae (Versele and Thorner, 2004). Cdc3 from 

asynchronous cultures of WT and cla4∆ mutants were compared and no obvious 

difference was observed in the degree of phosphorylation (Fig. 3.6B). Since Gin4 

associates with septin complex tightly and phosphorylates Cdc11 (Sinha et al., 2007) and 

Sep7 (Dobbelaere et al., 2003), I next tested whether it is involved in Cdc3 

phosphorylation too. 2D WB of an asynchronous culture revealed the loss of a few spots 

in kinase inactive mutant gin4K57A (data not shown). To examine more closely, gin4K57A 
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G1 cells were prepared and phosphorylation of Cdc3 was profiled at different stages of 

the cell cycle. A clear reduction in the number of phosphorylated spots was observed at 0 

hr (Fig. 3.6C) compared to the 11-spot-pattern in WT (Fig. 3.1D). The 

dephosphorylation observed in WT cells happened in the gin4K57A mutant, but in a 

slightly different pattern. The signal of the two least phosphorylated spots were enhanced 

while one spot at the phosphorylated side remained. Interestingly, as the cell cycle 

progressed, rephosphorylation of Cdc3 occurred but was not complete, indicating that 

Gin4 is involved in Cdc3 phosphorylation. However, the observation that Cdc3 did not 

show any aberrant localization in gin4K57A mutants suggests that phosphorylation of Cdc3 

by Gin4 may not be relevant in Cdc3 localization. The attempt to search for the 

phosphatases did not show any conclusive results. Cdc3 in both cdc14∆ and rts1∆ 

showed a normal dephosphorylation 1 hr after recovery from elutriation (data not shown), 

while inhibition of Protein Phosphatases 1 and 2 by calyculin A blocked the 

dephosphorylation but also arrested the cell cycle. 
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Figure 3.6 Gin4 but not Cdc28 is involved in Cdc3 phosphorylation 

(A) G1 cells of cdc28as were obtained by centrifugal elutriation. After recovering in 

GMM at 30°C for 1 or 2 hrs, the cells were treated with 25 µM concentration of 1NM-

PP1 for 1 hr. Cdc3-GFP was analyzed by 2D WB. WT cells with Myc-Gin4 were 

induced for hyphae for 120 min in GMM+20% serum with or without 1NM-PP1. Gin4 

was immunoprecipitated with anti-Myc antibody-conjugated beads and detected by anti-

Myc antibody. (B) Asynchronous cultures of WT and cla4∆ cells with Cdc3-GFP were 
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used for the 2D analysis. (C) G1 cells of gin4K57A with Cdc3-GFP were obtained by 

centrifugal elutriation and recovered in GMM medium at 30°C. Aliquots of cells were 

harvested at the indicated time points and subjected to 2D WB analysis. 

 

3.9 Discussion 

In this project, I found that the C. albicans septin Cdc3 undergoes cell cycle 

dependent phosphorylation and that phosphorylation at a single amino acid S422 plays a 

critical role in determining septin organization and function. Cdc3 exhibits the highest 

level of phosphorylation in early G1 cells, followed by a period of dephosphorylation. 

After the cells traverse the START, Cdc3 phosphorylation increases gradually through 

the rest of the cell cycle and peaks around the time of cytokinesis. Phospho-mapping by 

mass spectrometry identified phosphorylation on several residues, and subsequent 

mutational studies indicated that phosphorylation on S422 may play a key role in 

regulating septin organization and stability. The phosphomimetic S422D mutation causes 

gross disorganization of septin structures, severe cytokinetic defects, dramatic cell 

elongation, and inability of Cdc3 to localize to the bud neck. The nonphosphorylatable 

S422A mutation causes a much weaker phenotype, and Cdc3S422A can localize to the bud 

neck although it also forms random cortical patches and circles. Coimmunoprecipitation 

experiments demonstrate that the S422D mutation greatly weakens Cdc11’s association 

with the septin complex and causes premature dissociation of Cdc11 from the ring. I 

found that the septin-associated kinase Gin4 is involved in the phosphorylation of Cdc3, 

but it remains to be determined whether it includes S422. Using the analog-sensitive 

cdc28as mutant did not reveal any significant difference in Cdc3 phosphorylation 
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between 1NM PP1-treated and untreated cells, indicating that Cdc28 is not involved. 

Interestingly, mutating S422 of Cdc3 to alanine causes disappearance of multiple 

phosphoisoforms, suggesting that phosphorylation of S422 may facilitate further 

phosphorylation at other sites. Thus, S422 appears to be a major determinant of the 

overall phosphorylation level of Cdc3. Together, my findings strongly support the idea 

that S422 serves as a critical site of control that regulates septin assembly/disassembly, 

organization and stability in a cell cycle dependent manner. 

Based on my findings above, I propose the following model (Fig. 3.7) to explain 

how Cdc3 phosphorylation regulates the septin structures throughout the cell cycle. Cdc3 

phosphorylation and dephosphorylation, in which S422 is a key determinant, is 

temporally controlled during the cell cycle: it is phosphorylated in early G1, 

dephosphorylated in late G1 and rephosphorylated progressively throughout S, G2 and M 

phases until the time of cytokinesis when most Cdc3 molecules are phosphorylated. Cdc3 

phosphorylation causes disassembly of the long, cross-connected septin filaments in the 

old septin ring into short oligomers in early G1; and at the same time it also prevents 

premature assembly of septin oligomers into new rings. When cells approach the START, 

cell cycle signals trigger a rapid dephosphorylation of Cdc3, which removes the 

hindrance for septin oligomers to assemble into long, cross-connected filaments, thus 

forming a new ring at the presumptive bud site. After the cells have entered the cell cycle, 

rephosphorylation of Cdc3 occurs in a progressive manner and reaches the highest level 

near the end of M phase. The slow and progressive rephosphorylation of Cdc3 may be 

important for maintaining the stability and integrity of the septin structure during the cell 

cycle. Only when the overall phosphorylation level of Cdc3 rises above a threshold level, 
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the septin structure will be significantly destabilized thus initiating the process of 

disassembly. The instability could be the result of weakened inter-oligomer or inter-

filament associations mediated by Cdc3 itself or Cdc11 (Fig. 3.4C) or both. In S. 

cerevisiae, Cdc11 mediates end-to-end association of septin octamers and the CTE of 

Cdc3 forms a coiled-coil bundle cross-linking parallel septin filaments (Bertin et al., 2008. 

See more discussion below). This model is also supported by my findings that Cdc3S422D, 

in the absence of WT Cdc3, cannot localize to the bud neck, while Cdc3S422A experiences 

defects in disassembly (Fig. 3.4A). In the presence of WT Cdc3, Cdc3S422D can be 

incorporated into the septin ring and the septin structures appear normal throughout the 

cell cycle. This is likely due to the presence of WT Cdc3 and Cdc3S422D molecules in the 

same oligomers which allows the incorporation of Cdc3S422D into the septin ring.  It also 

supports my hypothesis that only when Cdc3 phosphorylation rises over a threshold level, 

the stability of septin structures will be significantly reduced. 
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Figure 3.7 Working model for the dephosphorylation/phosphorylation of Cdc3 

Ser422 in controlling septin ring assembly/disassembly and stability. 

See the text for explanation.  

 

In S. cerevisiae, the sequence of septin subunits in an octamer is found to be 

Cdc11–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11 (Bertin et al., 2008). 

According to this model, Cdc3 does not interact with Cdc11 directly. It is possible that 

the phosphorylation at S422 causes conformational changes in Cdc12 that weakens the 

affinity between Cdc11 and Cdc12. Since Cdc3S422D cannot be integrated into the septin 

ring in the absence of WT Cdc3, in order to survive, the cell may be ‘forced’ to assemble 

septin filaments without Cdc3. The G face of Cdc12, which originally interacts with 

Cdc11, is switched to interact with Cdc10 to form a hexamer. Therefore, the affinity of 
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Cdc11 to this filament is greatly decreased, and Cdc11 dissociates from the ring rapidly 

after bud emergence. 

In S. cerevisiae, G1 cyclin/Cdk1 kinases phosphorylate Cdc3 at S503 and S509 

near the C-terminal end to facilitate the disassembly of the old septin ring (Tang and 

Reed, 2002). This mechanism seems to be conserved in C. albicans although a different 

kinase may be involved. CaCdc3 phosphorylation is at the peak level in early G1 cells 

which coincides the disassembly of the old ring. And in many S422A cells cortical septin 

circles and patches were observed in addition to the septin ring at the bud neck, 

suggesting defects in the disassembly of septin structures. Different from the budding 

yeast, CaCdc28 does not seem to be involved in the phosphorylation of Cdc3. Despite 

this distinction, phosphorylation of serine residues near the C-terminal end is required for 

the disassembly of old septin rings in both organisms.  
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Chapter 4 C. albicans Nap1 plays a role in polarized growth and septin ring 

organization 

4.1 Introduction 

 C. albicans is polymorphic, capable of switching between yeast, pseudohyphal 

and hyphal forms of growth in response to environmental stimuli (Berman and Sudbery, 

2002). Several pathways have been identified that mediate the yeast-to-hyphal growth 

transition, among which the mitogen-activated protein kinase (MAPK) cascade and the 

cAMP/protein kinase A (PKA) pathway play a key role (Liu et al, 1994; Lo et al, 1997; 

Liu, 2001). These two pathways activate two transcription factors, Cph1 and Efg1 

respectively (Lo et al, 1997; Stoldt et al., 1997). They subsequently switch on the 

expression of hypha-specific genes (HSGs) responsible for diverse virulence traits (Stoldt 

et al., 1997; Liu, 2001; Berman and Sudbery, 2002). The only known HSG that is 

essential for hyphal growth is HGC1, which encodes a G1 cyclin (Zheng et al., 2004) and 

forms a functional complex with the cyclin-dependent kinase (CDK) Cdc28. One early 

molecular event crucial for hyphal growth is the phosphorylation of the septin Cdc11, 

which involves three protein kinases sequentially: the septin-associated kinase Gin4, the 

G1 cyclin–CDK complex Ccn1-Cdc28, and Hgc1–Cdc28 (Sinha et al., 2007). As the first 

kinase required, Gin4, a Nim1 kinase promoting mitosis, plays an essential role; however 

it remains unclear how Gin4 is regulated for Cdc11 phosphorylation.  

Nucleosome assembly protein 1 (Nap1) was first identified in mammalian cells as 

a protein involved in nucleosome assembly (Ishimi et al., 1983). It is highly conserved 

among eukaryotes and has been implicated to have a variety of seemingly unrelated 
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cellular functions with many interacting partners. Studies in S. cerevisiae have shown that 

Nap1 interacts specifically with the B type cyclin Clb2 in cytoplasm to control proper 

mitotic progression (Kellogg and Murray, 1995; Miyaji-Yamaguchi et al., 2003), and the 

functional localization of Nap1 to the nucleus is regulated by the phosphorylation of 

casein kinase 2 (Calvert et al., 2008). It was later uncovered that Nap1, together with 

Clb2-Cdk1 and Gin4 are in the septin complex (Altman and Kellogg, 1997; Longtine et 

al., 2000; Okuzaki et al., 1997). Gin4 kinase activity is activated by 

hyperphosphorylation, which is dependent on Nap1 and Clb2-Cdk1. In addition, the bud 

neck localization of Gin4 is lost in the absence of NAP1. Thus, it is highly likely that 

Nap1 acts upstream of Gin4. However, Nap1 was later shown to affect septin 

organization in the budding yeast. In the absence of NAP1, instead of forming a clear 

band structure at the neck, the septin complex is either “fuzzy” or forms parallel bars at 

the neck (Longtine et al., 2000). Therefore, it is also possible that Nap1 and Gin4 act on 

septins in separate pathways, and that the efficient recruitment of Gin4 to the neck is 

impaired by the misorganized septin complex. This hypothesis is supported by the 

observation that the defects in the nap1Δ gin4Δ double mutant, including cell elongation 

and septin complex misorganization, are more severe than in the nap1Δ and gin4Δ single 

mutants (Longtine et al., 2000).  

In C. albicans, cells deleted for GIN4 exhibit severe cell elongation and failure to 

form the septin ring and complete cytokinesis (Wightman et al., 2004); and these defects 

are much stronger than those observed in S. cerevisiae gin4Δ mutants, which have weak 

effects on cell morphology and septin organization and function (Longtine et al., 2000). 

Therefore, using C. albicans as a model seems to have an advantage in revealing Nap1 
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functions especially in the aspect of how it interacts with and influences the function and 

organization of the Gin4-septin complex.  

In this chapter, I report that deletion of C. albicans NAP1 leads to constitutive 

filamentous growth and defective septin organization. In nap1∆ cells, Cdc3 forms 

random spots or partial rings in the cell cortex and experiences impairment of 

phosphorylation. Fluorescence recovery after photo-bleaching (FRAP) analysis of Cdc3-

GFP uncovers more frequent exchange between the cytoplasm and septin collar in nap1∆ 

cells than in WT cells. Double deletion of NAP1 and the septin gene CDC10 results in 

exacerbated temperature sensitivity, defective septin ring formation and scattered Cdc3 

localization. Phospho-mapping by mass spectrometry identified phosphorylation on 10 

Thr/Ser residues in the N-terminal region of Nap1. Mutation of these 10 residues to non-

phosphorylatable Ala results in pseudohyphal growth and affects Nap1’s neck 

localization. Conversely, mutation of these 10 residues to phospho-mimetic Glu does not 

affect cell morphology, but causes random deposition of Cdc3. My findings unveil the 

involvement of Nap1 in septin organization and Cdc3 phosphorylation control. 

 

4.2 C. albicans NAP1  

 Using S. cerevisiae Nap1 sequence to BLAST-search the Candida genome 

database revealed the highest identity of 49% to C. albicans protein encoded by 

Orf19.7501 (Fig. 4.1). This protein had been annotated as Nap1 in the database, although 

its function has not been characterized. CaNap1 contains 435 aa, which is slightly longer 

than ScNap1 (417 aa). 
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Figure 4.1 Sequence alignment of ScNap1 and CaNap1. Amino acid sequences of 

ScNap1 and CaNap1 are aligned. The red box indicates the nuclear export signal (NES) 

and the blue box the nuclear localization signal (NLS) previously identified in ScNap1 

(Li et al., 1999). Only the homologous regions are shown. 

NES  88 103 

NLS  257 278 
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4.3 Characterization of C. albicans Nap1 and its role in septin ring organization 

4.3.1 NAP1 deletion causes filamentous and invasive growth 

 To study its cellular functions, the two copies of NAP1 were deleted using a 

recyclable URA blaster cassette (Fonzi and Irwin, 1993). This was constructed by first 

replacing one copy of NAP1 with the hisG-URA3-hisG cassette flanked by DNA 

fragments from NAP1 promoter and terminator regions respectively (Fig. 4.2A). The 

Ura+ prototrophs were then counter-selected on 5-FOA plates to identify isolates which 

had lost the URA3 marker through recombination between the hisG repeats. The second 

copy was replaced with the same cassette except that the 3′ end of the hisG-URA3-hisG 

cassette is flanked by fragment IJ instead of CD (Fig. 4.2A). Oligonucleotide primers 

right before the start codon and after the stop codon were used to verify correct deletion 

of both copies of NAP1. PCR analysis of the first and second copy deletions generated 

1.2 and 1.7-kb DNA fragments respectively, whereas analysis of the WT control 

produced a 1.3-kb band matching the size of the NAP1 gene (Fig. 4.2B). All PCR 

products were purified and sequenced to confirm their identity. Since the URA3 

selectable marker was looped out for both copies, the nap1Δ mutant retains all three 

auxotrophic markers HIS1, URA3 and ARG4 to facilitate further genetic manipulations. 

The nap1Δ::NAP1 reintegrant strain and a series of strains expressing truncated or 

mutated versions of Nap1 tagged with GFP, Myc or HA were constructed by site-specific 

integration at the NAP1 promoter region (Fig. 4.2C). Various NAP1 tagging in the WT 

was done by site-specific integration in the C-terminal region (Fig. 4.2D). Proper 
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expression of tagged Nap1 proteins was confirmed by Western blot analysis (images are 

shown in relevant figures). 
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Figure 4.2 Chromosomal deletion of NAP1, re-integration and C terminal tagging 

(A) Schematic description of the NAP1 knock-out cassettes. The nucleotide immediately 

before the start codon ATG is designated as 0. The hisG fragments flanking URA3 are of 

the same sequence to enable recombination. (B) PCR verification of NAP1 chromosomal 

deletion. Primers F and G were used (Table 2.4.1). (C) Schematic representation of site-

directed integration at the NAP1 promoter region, using the restriction site PmeI. (D) 

Schematic representation of the method to tag NAP1 at the C terminal region. The 

restriction site used for integration is XcmI.  
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While the heterozygous NAP1/nap1Δ mutant showed a normal growth rate and 

morphology, the homozygous nap1Δ mutant exhibited strong filamentous growth on 

YPD plates at 30°C (Fig. 4.3B), conditions where wild-type cells grew exclusively as 

yeasts. On plates, long thin filaments emanated from the edge of colonies in contrast to 

the smooth edge of the WT colonies (Fig. 4.3A). Unlike the WT colonies which could be 

easily washed off the agar surface, the filaments of the nap1Δ colonies penetrated into the 

agar (Fig. 4.3A). Filaments also formed in liquid medium (Fig. 4.3C nap1Δ 30°C), and 

the filaments are pseudohyphae because of clear constrictions at the septa.  

 To confirm that the NAP1 deletion is indeed responsible for the morphological 

defects observed above, the complete coding sequence of NAP1 carrying a Myc tag at the 

C-terminus was integrated into the NAP1 promoter region of the nap1Δ mutant. Western 

blot analysis confirmed that the Nap1 protein was expressed to the WT level in the 

reintegrant (Fig. 4.3D). This reintegrant strain was found to be indistinguishable from the 

WT in phenotype (Fig. 4.3E).  
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Figure 4.3 Filamentous and invasive growth of nap1Δ cells 

(A) WT and nap1Δ cells were grown on YPD plates at 30°C for 2 days. Images of the 

same colonies before and after wash with water are shown. (B) WT and nap1Δ cells were 

grown in liquid YPD to log phase at 30°C. (C) WT and nap1Δ cells were grown in liquid 
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YPD at the indicated temperatures overnight. (D) Western blot analysis showed 

comparable levels of Nap1 in the rescued (reintegration of a copy of NAP1) and WT 

strains. Equal amounts of total protein was loaded for each lane. Anti-Myc antibody was 

used in western blotting. (E) The rescued strain exhibited a normal morphology. The cells 

were grown in YPD at 30°C. Bar = 10µm. 

 

I next examined how higher temperatures would affect the morphological defects 

of the nap1Δ mutant. Cells were grown in liquid YPD at 30, 33, 37 and 42°C for 12 h. At 

42°C, both WT and nap1Δ cells grew in extremely long filamentous form, which is most 

likely true hyphal growth which normally happens at temperatures above 42°C. At the 

temperatures lower than 42°C, WT cells underwent normal yeast growth. In contrast, the 

nap1Δ mutant exhibited an increase in the percentage of elongated cells with the 

elevation of temperature (Fig. 4.3C). At 30°C, ~50% of nap1Δ cells showed an elongated 

morphology with <30% growing into long filaments. When grown at 37°C, over 90% of 

the cells were elongated with more cells forming pseudohyphae. Cells at 33°C were 

intermediate of those grown at 30°C and 37°C in terms of the percentage of elongated 

cells and degree of filamentous growth. 

 To better understand the morphological defects, I obtained synchronous G1 yeast 

cells by centrifugal elutriation and then released them into YPD liquid media for growth 

at 30 and 37°C. WT cells started budding at ~120-150 min at both temperatures (Fig. 

4.4A). Intriguingly, at 37°C, nap1Δ cells started to form germ-tube like protrusions at 

~60 min (Fig. 4.4A) which continued to grow until ~240 min when the newly formed 

apical cells started to swell (Fig.4.4A). Afterwards, the cells gradually grew into chains 
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of mostly elongated cells with constrictions at the septum. The results suggest that the 

nap1Δ mutant may have become more sensitive to hyphal-induction signals such as 

temperature but is unable to maintain it beyond the germ-tube stage. In comparison, WT 

and mutant cells budded at about the same time at 30°C (Fig. 4.4B), although the nap1Δ 

mutant grew elongated daughter cells and had cytokinetic defects which were not seen in 

WT cells.  

Both WT and nap1Δ G1 cells were then examined for the ability of hyphal 

growth. Hyphal induction was done in media containing 20% serum at 37°C. The nap1Δ 

mutant produced germ-tubes indistinguishable from the WT in morphology. However, 

germ tubes emerged significantly earlier in nap1Δ cells than in WT cells. At 30 min, 

when WT cells only showed a slight protrusion, the germ tubes of nap1Δ cells were at 

least 2 μm in length (Fig. 4.4C).  

In summary, NAP1 deletion resulted in strong pseudohyphal growth of C. 

albicans under non-inducing conditions and invasive growth into solid media. The 

severity of the mutant phenotype increases with the elevation of temperature. At 37°C 

and in the absence of serum, while WT underwent normal yeast growth, nap1Δ G1 cells 

formed germ-tube like protrusions. The mutant cells also produced germ tubes earlier 

than WT cells when induced with serum at 37°C. The data show that nap1Δ cells are 

more sensitive to hyphal induction signals, suggesting a role for Nap1 in repressing germ-

tube formation in C. albicans. 
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Figure 4.4 nap1Δ cells exhibited growth defects  

Elutriated WT and nap1Δ G1 cells were released into liquid YPD for growth at (A) 37°C 

and (B) 30°C. Cells were collected at the indicated time points. (C) WT and nap1Δ G1 

cells were induced in YPD containing 20% serum at 37°C. Bars = 10 µm. 
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4.3.2 Nap1 colocalizes with septins  

 It has been well established that 5 septins, Cdc3, Cdc10, Cdc11, Cdc12 and Sep7, 

form a cortical ring that defines the site for bud growth in early G1 phase (Warenda and 

Konopka, 2002). The septin ring resides at the mother-daughter neck throughout the cell 

cycle until the time of cytokinesis when it splits into two rings which disassemble during 

early G1 of the next cell cycle. Upon hyphal induction, septins first form a small cortical 

patch marking the site of germ tube emergence; and with the growth of the germ tube a 

fraction of septins localize persistently at the growing tip and another fraction forms a 

diffuse band that encircles the base of the germ tube. The basal band later disassembles. 

Upon entering the cell cycle, a septin ring is formed within the germ tube marking the 

site for future cytokinesis. This septin ring also splits into two rings at the time of 

cytokinesis which are however not disassembled like during the yeast growth (Asleson et 

al., 2001; Warenda and Konopka, 2002). To determine whether Nap1 colocalizes with 

septins, Nap1 was tagged with GFP at the C terminus by site-specific integration 

described in Figure 4.2D.  I started the culture from G1 cells in GMM medium at 30°C 

or in GMM with 20% serum at 37°C, and collected cells at timed intervals for 

examination by fluorescence microscopy (Fig. 4.5A). In newly prepared small G1 cells, 

Nap1-GFP was seen as a faint cortical bar at one end of the cells, which is most likely the 

side view of a ring reminiscent of the old septin rings from the previous cell cycle as 

described in Chapter 3. With the growth of the G1 cells, the old ring gradually 

disappeared in ~60 min. At ~90 min, Nap1-GFP was found to form a new ring at the 

cortical site from which the bud later emerged. Like septins, the Nap1-GFP ring localized 

at the mother-daughter neck and split into two rings around the time of cytokinesis before 
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gradually disappearing in G1 of the next cell cycle (Fig. 4.5A). Slightly different from 

the septins, some Nap1 molecules remained at the bud tip forming a faint cap through 

most of the cell cycle. Upon serum induction, Nap1-GFP localized strongly to the tip of 

the germ tube and later faintly to the base of the germ tube (Fig. 4.5A). Together, the 

results show that the behavior and localization of Nap1-GFP are very similar to those of 

the septins, indicating their colocalization. Effort to Tag a septin and Nap1 with different 

fluorescent proteins were not successful because the signal of RFG or mCherry was 

extremely weak in C. albicans. However, I was able to detect coimmunoprecipitation of 

Nap1 with septins, consistent with their colocalization (see Fig.4.6A). 

 In Saccharomyces cerevisiae, Nap1 has been shown to possess a nuclear export 

signal (NES) (Fig. 4.1) that facilitates nucleocytoplasmic shuttling of the protein. 

Deletion of the NES sequence sequesters the protein in the nucleus and results in Clb2-

dependent mitotic delay (Miyaji-Yamaguchi et al., 2003). Since no nuclear localization of 

Nap1-GFP was observed throughout the cell cycle, next I examined whether there is any 

role of a putative nuclear localization signal (NLS) and nuclear export signal (NES) in C. 

albicans by creating NLS∆ and export deficient mutants. After deleting the putative NLS, 

the mutated Nap1 could largely rescue the phenotypes observed in nap1∆ cells (Fig. 

4.5B). A moderate increase in the cytoplasmic localization for Nap1NLS∆-GFP was 

observed compared to WT Nap1-GFP. The export deficient strain was constructed by 

mutating Leu98 and Leu102 to Ser in the NES. After integrating the mutant version of 

NAP1 back to nap1∆ cells, filamentous growth was almost completely rescued and 

mutated Nap1 localized clearly to the neck region (Fig. 4.5B). Less than 20% cells 

showed enhanced nuclear fluorescence, suggesting that NES has little effect in 



Chapter4 Nap1 in polarized growth and septin ring organization 

 

 

 

96 

determining the Nap1 localization. Together, the data support the idea that in C. albicans 

the localization of Nap1 to the nucleus is very weak or transient and that the defects 

caused by NAP1 deletion have little to do with its nuclear function. 

 

Figure 4.5 Nap1-GFP subcellular localization in yeast and hyphal cells 

(A) Elutriated G1 cells expressing Nap1-GFP were released to GMM at 30°C and GMM 

containing 20% serum at 37°C. (B) Nap1 with NLS∆ and export deficiency could still 

localize to the bud neck. Cells were grown to the same OD. Bar = 10 µm. 
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4.3.3 Physical interaction of Nap1 with the septin complex 

 To confirm the physical association of Nap1 with the septins and the septin-

associated kinase Gin4, co-immunoprecipitation was performed as described in Chapter 

2.6.3. Strains were constructed coexpressing HA-tagged Nap1 with Myc-tagged Gin4 or 

HFM (His-Flag-Myc)-tagged Cdc3. A strain expressing Nap1-HA alone was used as a 

negative control. Overnight cultures were reinoculated into fresh media and grown to log 

phase. Nap1 was pulled down with anti-HA beads and the precipitation products were 

probed with anti-Myc antibodies in western blotting. Figure 4.6A shows that Nap1 

physically associates with both Gin4 and Cdc3. This is consistent with the colocalization 

of Nap1 with the septins. Thus, like in S. cerevisiae, Nap1 interacts with the septin 

complex in C. albicans. 

 

4.3.4 Nap1 subcellular localization depends on septins and the septin-associated 

kinase Gin4 

 Next I wanted to determine whether Nap1 localization depends on septins. 

Previous studies have shown that while the septin genes CDC3 and CDC12 are essential, 

cdc10Δ and cdc11Δ mutants are viable but display a diffuse and unstable septin ring at 

higher temperatures (Warenda and Konopka, 2002). Numerous studies in S. cerevisiae 

and C. albicans have demonstrated the importance of Gin4 in septin assembly and 

organization (Bouquin et al., 2000; Carroll et al., 1998; Dobbelaere et al., 2003; Longtine 

et al., 1998; Longtine et al., 2000; Mortensen et al., 2002; Wightman et al., 2004). 

Therefore, Nap1-GFP localization was examined in the cdc10 Δ and cdc11Δ mutants and 

in a strain that allows the shutdown of GIN4. Western blotting showed that the Nap1-
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GFP level in the three mutants was comparable to that in WT cells. However, Nap1 

exhibited complete mislocalization in all three mutants (Fig. 4.6B), indicating that 

Nap1’s subcellular localization depends on the integrity of the septin complex.  

 

 

Figure 4.6 Nap1 interacts with septins both physically and genetically 

(A) Nap1 was pulled down with anti-HA antibody-conjugated beads. Cdc3 and Gin4 

were detected with anti-Myc antibody in western blot analysis. (B) Nap1-GFP 

localization was lost in cdc10Δ, cdc11Δ and GIN4-shutoff strains. For WB analysis, same 

amount of protein lysates were loaded from each strain. (C) cdc10Δ, nap1Δ and cdc10Δ 

nap1Δ cells were grown in YPD at the indicated temperatures to the same OD and 
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morphologies were examined. (D) Cdc3 was tagged with GFP at the C terminus in 

cdc10Δ, nap1Δ and cdc10Δ nap1Δ cells. After overnight culturing at the indicated 

temperatures, Cdc3-GFP localization was examined. 

  

4.3.5 Genetic interaction between NAP1 and CDC10 

To gain more evidence that Nap1 functions through interactions with the septins, I 

next examined the genetic interaction between NAP1 and the septin gene CDC10. 

CDC10 is nonessential and its deletion only causes weak morphological defects and 

minor perturbations to the septin ring at 30°C (Warenda and Konopka, 2002). I 

constructed a cdc10Δ nap1Δ double mutant and found that, at 37°C, although some 

separate yeast cells were present in the culture, many cells became highly elongated, 

forming intertwining filaments that easily formed precipitates in liquid media (Fig. 4.6C). 

At 30°C, 50% of the cells grew in the pseudohyphal form, with some exhibiting a wide 

bud neck with a poorly defined mother-daughter junction (Fig. 4.6C).  

To examine the septin structures, I tagged Cdc3 with GFP in the cdc10Δ nap1Δ 

mutant. Similar to the nap1Δ cells (see Fig. 4.7A), at both 30 and 37°C, Cdc3-GFP was 

found to be severely mislocalized, forming a range of random abnormal structures in the 

cortex not seen in the cdc10Δ mutants, including dots, patches, filaments and rings (Fig. 

4.6D). At 37°C, while Cdc3-GFP could localize to the neck region of nap1Δ mutants, 

only a small percentage of cdc10Δ nap1Δ cells showed a septal GFP signal.  

Taken together, the results clearly demonstrate that the cdc10Δ nap1Δ mutant has 

a range of defects that are either stronger than those or do not exist in either one of the 
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single-gene mutants. This genetic interaction indicates that Nap1 and septins are involved 

in the same cellular processes through parallel pathways. 

4.3.6 Deleting NAP1 causes severe defects in septin localization and organization  

The data above have shown that Nap1 associates with the septin complex. Next, I 

wanted to investigate the role of Nap1 in septin localization, organization and dynamics. 

To this end, I tagged Cdc3 with GFP at the C-terminus in the nap1Δ mutant. In 

asynchronous cultures, although Cdc3 was seen to localize to the bud neck and split at the 

time of cytokinesis in some cells, it also localized as numerous small patches or short 

bars randomly distributed throughout the entire cortex in many cells (Fig. 4.7A). To 

investigate Cdc3 mislocalization in more detail, I examined Cdc3 localization in 

synchronized yeast cultures. In newly prepared early G1 cells, Cdc3-GFP appeared as a 

cortical ring in both WT and nap1Δ strains. These rings are the old septin rings from the 

previous cell division which disassembled within 60 min. When the cells were 

approaching the time of budding, random small cortical septin patches started to appear 

in both WT and nap1Δ cells (see Fig. 4.7B, 2h). However, the percentage of cells with 2 

or more such patches was ~50% in the nap1Δ mutant compared with ~10% in the WT (n 

= 50). Suspecting that these random septin patches might behave differently in nap1Δ 

cells than in WT cells, I performed time-lapse microscopy on living cells, taking images 

at 2-5 min intervals and with 8 Z-stack sections at each time point. I found that the 

random septin patches moved rapidly in the cortex in G1 and completely disappeared at 

the time of the septin ring formation in all WT cells. In contrast, many septin patches 

persisted throughout the entire cell cycle in nap1Δ cells (Fig.4.7C). New cortical septin 

patches were also formed in later stages of the cell cycle in nap1Δ cells but never seen in 
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WT cells (Fig.4.7D arrows), and this happened only in the mother cell (Fig.4.7A arrows 

indicate daughter cells). The results suggest that Nap1 plays an important role in the 

temporal and spatial control of assembly and disassembly of septin structures during the 

cell cycle. Although assembly of random cortical septin patches also occurs in WT cells 

during G1, it is evident that mechanisms exist to disassemble them once the septin ring is 

formed at the presumptive budding site. 



Chapter4 Nap1 in polarized growth and septin ring organization 

 

 

 

102 

 

Figure 4.7 Cdc3 GFP localization in nap1Δ mutants 
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(A) Cdc3-GFP formed random patches in nap1Δ mother cells only. Arrows indicate 

daughter cells. (B) Time-course microscopic examination of elutriated G1 cells of WT 

and nap1Δ at 30°C. Arrowheads indicate mislocalization of Cdc3. (C) Time-lapse 

microscopic images of a single G1 cell of WT and nap1Δ at 30°C. (D) Time-lapse 

microscopic images of budding cells of WT and nap1Δ. Arrows indicate the formation of 

random cortical patches. 

 

I next investigated whether the deletion of NAP1 affects the dynamics of the 

septin ring. The 5 stages of dynamics of yeast septin complexes have been discussed in 

Chapter 1. In C. albicans, septin ring dynamics has been reported to be consistent with 

that in the budding yeast (González-Novo et al., 2008). Mainly, cells with a small bud or 

split rings showed no recovery of Cdc3-GFP after photo-bleaching, whereas in unbudded 

cells or cells with a single ring or cells undergoing ring splitting the septin complexes are 

more dynamic than in other stages (Dobbelaere et al., 2003). Here, I collected both WT 

and nap1Δ cells with a single Cdc3-GFP ring to compare the full-ring fluorescence 

recovery after photo bleaching (FRAP).  

 Fluorescence scanning was done every 60 seconds for a period of 300 seconds 

after bleaching. After analyzing the fluorescence intensity with the program ImageJ, a 

clear difference in Cdc3-GFP recovery rate was seen between the WT and nap1Δ mutants. 

Figure 4.8 shows that Cdc3-GFP in WT cells achieved only 20% and 22% recovery of 

fluorescence at 50 and 300 sec respectively, while that in nap1Δ cells recovered by 30 

and 40% at the same time points, indicating a higher exchange rate of Cdc3 molecules 

between the septin ring and the cytoplasmic pool in nap1Δ cells than in WT cells. It 
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suggests that the septin ring assembled in the absence of Nap1 is less stable and 

exchanges subunits with the cytoplasmic pool more frequently than a normal septin ring.  

In summary, the results above indicate that Nap1 plays an important role in 

determining the localization, organization and dynamics of the septins in C. albicans.  
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Figure 4.8 FRAP analysis of WT and nap1Δ mutants 

(A) Cells were incubated at 30°C, and Cdc3 GFP full ring bleach was carried out. Images 

were taken at indicated time points. (B) Relative fluorescence recoveries were calculated 

using ImageJ. Error bar stands for 1 standard deviation between 3 triplicates of 

experiments. p value<0.05. 
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4.3.7 Cdc3 phospho-regulation is impaired in nap1Δ cells 

 As described in Chapter 3, Cdc3 undergoes cell-cycle-dependent 

phosphorylation, in which dephosphorylation coincides with the disassembly of old 

septin rings and re-phosphorylation with the assembly of new ones. Since NAP1 deletion 

causes severe defects in septin organization and localization, I wondered whether the 

phospho-regulation of Cdc3 is affected as well. In asynchronous cultures, Cdc3 in nap1Δ 

mutants showed lower intensity in the hyper-phosphorylated end compared to that in WT 

(Fig. 4.9A). To further address this question, I prepared nap1Δ G1 cells that express 

Cdc3-GFP to start a synchronous yeast culture at both 30 and 37°C. Aliquots of cells 

were harvested at 0, 60, 120, 180 and 270 min followed by 2D WB analysis in which 

Cdc3 was detected with anti-GFP antibodies. The phosphorylation pattern of Cdc3 in 

nap1Δ cells was compared with that in WT cells. At 0 min, 7 spots of Cdc3 were detected 

in the nap1Δ cells in contrast to 10 spots in the WT cells (Fig. 4.9B). At 30°C, Cdc3 

dephosphorylation was near the peak at 60 min in both WT and nap1Δ cells although it 

appeared to be moderately stronger in the mutant cells. At 120 min, a significant 

difference was observed in the abundance of different isoforms between the WT and 

nap1Δ cells: the least phosphorylated Cdc3 isoforms were much more abundant in the 

nap1Δ cells than in the WT cells. The same experiment was repeated at 37°C at which 

the nap1Δ mutant shows a stronger phenotype. Strikingly, in the nap1Δ mutants, the 

strong dephosphorylation of Cdc3 that normally occurs at 60 min was nearly completely 

blocked, and its rephosphorylation between 60 and 180 min was drastically enhanced 

with all the 5 least phosphorylated isoforms being undetectable at 180 min. Together, the 

results indicate that Nap1 plays a critical role in determining the cell-cycle-dependent 
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phosphorylation and dephosphorylation of Cdc3, thus influencing the structure and 

function of the septins. 

   

 

Figure 4.9 Impaired Cdc3 phosphorylation in nap1Δ mutants 

(A) Phosphorylation pattern of Cdc3 in asynchronous WT and nap1Δ cells at 30°C. RThe 

pattern of phosphatase-treated Cdc3 can be found in Fig. 3.1. (B) Phosphorylation pattern 

of Cdc3 in WT and nap1Δ Cells at 30°C and 37°C. Elutriated G1 cells were released into 

GMM for growth at 30°C or 37°C and aliquots of cells were collected at the indicated 

time points. Cdc3 spots were aligned by the position of protein markers. 
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4.3.8 FCF treatment stabilizes septin structure in NAP1 deleted cells 

 Forchlorfenuron (FCF) is a small-molecule drug used in agriculture as a cytokinin. 

It has been reported to induce abnormal septin fiber assembly by suppressing septin 

dynamics and stabilizing septin polymers in both yeast and mammalian cells. Since the 

FRAP results from Fig. 4.8 demonstrated that the septin ring in nap1Δ is less stable, I 

wanted to determine whether FCF could ameliorate the defects of the NAP1 deletion. 

Treatment of WT cells with 25 μM FCF indeed caused formation of thick septin 

filaments in the cell periphery similar to observations made in S. cerevisiae and 

mammalian cells (DeMay et al., 2010; Hu et al., 2008; Iwase et al., 2004) (Fig. 4.10A 

arrowhead). However, the cells were able to go through the cell cycle without significant 

problems other than a slight delay in budding. Interestingly, treatment of nap1Δ G1 cells 

with 25 μM FCF blocked the germ-tube-like growth induced by incubation at 37°C in 

YPD and the cells were able to produce normal-looking buds (Fig. 4.10B); and highly 

elongated cells were not observed in the culture after overnight growth in the presence of 

FCF, although moderate cell swelling and cytokinesis/cell separation defects were 

obvious (Fig. 4.10B). However, the random cortical localization of Cdc3 was still 

observed in nap1Δ mutants at both 30 and 37°C. The results suggest that FCF’s 

interaction with the septins may have improved the structure and function of the septin 

ring at the neck, thus suppressing the aberrant polarized growth in nap1Δ cells. The effect 

of the septin-specific drug on nap1Δ cells also suggests that septin defects be primarily 

responsible for the morphological abnormalities in the nap1Δ mutant. Interestingly, FCF 

treatment of cells under hyphal-induction conditions, caused the formation of multiple 
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short surface protrusions and prevented normal hyphal growth in both WT and nap1Δ 

cells (Fig. 4.10C). 

I next examined whether the FCF treatment restored Cdc3 phosphorylation in 

nap1Δ G1 cells and thus suppressed the morphological defects. To answer this question, I 

obtained nap1Δ G1 cells by elutriation and released them into medium containing 25 μM 

FCF at 37°C and collected samples at timed intervals for 2D WB analysis. The result in 

Figure 4.10D shows that FCF treatment did not change the pattern of Cdc3 

phosphorylation in nap1Δ cells under this condition. The data suggest that FCF’s 

interaction with the septins might be able to bypass the damaging effect from the loss of 

NAP1 without restoring the Cdc3 phosphoregulation and preventing Cdc3 cortical 

deposits.  



Chapter4 Nap1 in polarized growth and septin ring organization 

 

 

 

110 

 

Figure 4.10 FCF treatment can partially restore the defects in nap1Δ cells  
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(A) Asynchronous WT cells before and after treatment with 25 µm FCF at 30°C in YPD. 

Green fluorescence indicates Cdc3-GFP. Blue fluorescence indicates cell wall. Red 

arrowheads indicate Cdc3 filaments. (B) WT and nap1Δ G1 cells treated with 25 µm 

FCF at 37oC in YPD. Aliquots of cells were collected at the indicated time points. (C) 

WT and nap1Δ G1 cells were treated with 25 µm FCF at 37°C in YPD with 20% serum. 

Aliquots of cells were collected at indicated time points. (D) 2D WB of Cdc3 in nap1Δ 

G1 cells at 37°C in YPD with or without 25 µm FCF. Aliquots of cells were collected at 

indicated time points. 

 

4.4 Phosphorylation of Nap1 is critical for its function in septin organization 

4.4.1 Nap1 is a phospho-protein  

Previous data in S. cerevisiae showed that Nap1 is a substrate of Casein Kinase 2 

(Calvert et al., 2008). To test whether Nap1 is a phospho-protein, immunoprecipitated 

Nap1 was subjected to 2D WB analysis. Figure 4.11A shows that the untreated Nap1 

yielded 6 spots, while the λ phosphatase treatment abolished 4 of the 6 spots and 

generated a strong spot near the basic end of the gel, consistent with dephosphorylation 

of Nap1 (Sinha et al., 2007). The two spots resistant to λ phosphatase may be due to other 

types of protein modifications. 

To identify the phosphorylated residues in Nap1, 1L overnight culture of cells 

expressing HA-tagged Nap1 was harvested and immunopurified using anti-HA beads. 

The band corresponding to Nap1-HA on SDS-PAGE was excised and subjected to mass 

spectrometry (MS) phospho-mapping. The mapping results showed phosphorylation on 

12 serine and threonine residues. Interestingly, 10 of the phospho-residues are clustered 
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within the first 60 amino acids at the N terminus (Fig. 4.11B). Mutational replacement of 

the 10 Ser/Thr residues with Ala abolished most of the Nap1 phospho-isoforms on 2D 

WT (Fig. 4.11A, bottom panel). 

Together, I have demonstrated that Nap1 is a phosphoprotein, and its 

phosphorylation mainly occurs near the N terminal end.  
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Figure 4.11 Nap1 is a phospho-protein 

(A) 2D WB analysis of immuneprecipitated Nap1-HA with or without λ phosphatase 

treatment and Nap110A. (B) MS phosphomapping of Nap1 identified 12 phospho-Ser and 

Thr residues which are indicated in bold. (C) WB analysis of Nap1-Myc, Nap110A-Myc 

and Nap110E-Myc. Cdc28 was used as loading control. 
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4.4.2 Nap1 phosphorylation status affects cell morphology 

 What is the physiological significance of Nap1 phosphorylation? To address this 

question, I mutated all 10 Ser and Thr residues in the N terminus to either the 

unphosphorylatable Ala (A) or the phosphomimetic glutamic acid (E).  The mutated 

versions of NAP1 were integrated into the nap1Δ mutant at the native promoter. Western 

blot analysis confirmed that Nap1 proteins were expressed to comparable levels (Fig. 

4.11C) Fig. 4.11A). Microscopic examination of cells grown at 30°C and 37°C showed 

that the nap110A allele could partially rescue the filamentous phenotype of the nap1Δ 

mutant: both the percentage of elongated cells and the degree of cell elongation were 

significantly reduced (Fig. 4.12A). The nap110A allele also abolished the germ-tube like 

growth of the nap1Δ mutant at 37°C, although 30% of the cells generated a highly 

elongated bud. In comparison, the nap110E cells exhibited rather normal yeast growth at 

both temperatures except a moderate degree of cell enlargement. Together, the results 

suggest that Nap1 phosphorylation has a role in determining the cell shape.   

 I next examined the cellular localization of GFP-tagged Nap110A and Nap110E. 

Nap110E exhibited generally the same localization pattern as the WT Nap1 through the 

cell cycle except that Nap110E also showed random cortical localization in the form of 

patches and small circles (Fig. 4.12B). In comparison, Nap110A exhibited a strong and 

largely even cytoplasmic localization, although localization to the bud neck could be seen 

in some cells (Fig. 4.12B arrowheads); perhaps, the strong cytoplasmic signal obscured 

the bud neck signal. Taken together, the data indicate that Nap1 phosphorylation may 

have a role in regulating Nap1 localization. 
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Figure 4.12 Morphology of nap110A and nap110E mutants 

(A) Cells of WT, nap1Δ, nap110A and nap110E strains were grown in YPD at 30 and 37°C 

overnight. (B) Localization of Nap110A-GFP and Nap110E-GFP through one cell cycle and 

in cells of an overnight culture. G1 cells were obtained and released into GMM for 

growth at 30°C. Aliquots of cells were collected at the indicated time points for 

fluorescence microscopy. Arrowheads in Nap110A panel indicate Nap110A-GFP signals at 

the bud neck. Arrowheads in Nap110E panel indicate Nap110E-GFP mislocalization. (C) 

Localization of Cdc3-GFP in nap110A and nap110E mutants. G1 cells were obtained and 

released to GMM for growth at 30°C. Aliquots of cells were collected at the indicated 

time points for fluorescence microscopy. Arrowheads in panel nap110E indicate abnormal 

Cdc3-GFP localization in nap110E cells. Bars = 10 µm. 
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4.4.3 Cdc3 localization is affected in nap110E mutants 

 Next I wanted to determine whether the 10A and 10E mutations of Nap1 affect 

septin localization by tagging Cdc3 with GFP in the mutants. I found that Cdc3-GFP 

localized normally in nap110A cells throughout the cell cycle at 30°C, exhibiting no 

increase in cytoplasmic localization like Nap110A itself (Fig. 4.12C). Interestingly, Cdc3 

in nap110E cells formed numerous random cortical patches similar to Nap110E-GFP and 

Cdc3 in nap1Δ cells (Fig. 4.12C).  The data suggests that Nap1 phosphorylation affects 

its own localization as well as that of the septins. 

 

4.5 Discussion 

In this chapter, I have introduced C. albicans ORF19.7501 as an orthologue of the 

Nucleosome Assembly Protein 1 (Nap1) of S. cerevisiae. Deletion of NAP1 in C. 

albicans leads to filamentous and invasive growth. The increase of temperature 

exacerbates the severity of the abnormal growth. Nap1-GFP has never been observed in 

the nucleus, not even in the mutant in which the putative nuclear export signal is mutated. 

Thus, the defects of nap1Δ mutants are unlikely due to the loss of its nuclear function. 

Nap1 is a component of the septin complex and plays a role in its organization and 

localization. Disturbance of the septin structure by deletion of CDC10 or CDC11 or 

shutoff of GIN4 expression all abolishes the neck localization of Nap1. NAP1 also 

interacts with CDC10 genetically, since deletion of the two genes together results in more 

severe defects than deletion of any individual gene. Absence of Nap1 causes an increase 

in septin ring dynamics and formation of random Cdc3 patches and partial circles in the 

cell cortex. The observation that delocalization of Cdc3 only occurs in mother cells but 
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not in daughter cells of the nap1Δ mutant suggests defects in the disassembly of the old 

ring and/or septins’ higher propensity for aggregation in the mother cell. Time-lapse 

microscopic studies indicate that both occur. Cdc3 rephosphorylation, which coincides 

with the new ring assembly, is impaired in nap1Δ cells.  

 

4.5.1 The defects of the nap1Δ mutant is not due to the loss of its nuclear functions 

Although Nap1 was originally identified to be a histone assembly protein in S. 

cerevisiae, deletion of the gene only causes mild cell elongation (Longtine et al., 2000). 

Deletion or mutation of its NES prevents its cytoplasmic localization, thus resulting in 

mitotic delay in a mitotic cyclin-dependent manner (Miyaji-Yamaguchi et al., 2003). The 

findings in the budding yeast confirm that Nap1 plays many roles outside the nucleus 

through its numerous binding partners (Zlatanova et al., 2007). In C. albicans, I found 

that similar to the budding yeast, Nap1 does not show detectable nuclear localization at 

any stage of the cell cycle. Deletion of NLS or disruption of NES has little effect on Nap1 

localization or the cell morphology. Thus, it is likely that the majority of Nap1 protein 

does not enter the nucleus and its nuclear function, if any, is minimal.  

 

4.5.2 Nap1’s role in filamentous growth 

Previous studies in S. cerevisiae have demonstrated the involvement of Nap1 in 

septin organization through Gin4, because Gin4 cannot localize to the bud neck in the 

absence of NAP1 (Altman and Kellogg, 1997; Okuzaki et al., 1997). This was later 

supplemented by the possibility that Nap1 affects septin organization directly which in 

turn ensures an efficient recruitment of Gin4 to the bud neck (Longtine et al., 2000). In C. 
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albicans, the senario is quite different since deletion of GIN4 results in complete 

disruption of septin complex organization (unpublished results in Dr. Yue Wang 

laboratory) and loss of Nap1 neck localization. Therefore, in C. albicans Gin4 most likely 

works upstream of septins and Nap1 as a master regulator.  

In this work, I demonstrated that NAP1 deleted cells are more prone to hyphal 

induction and form constitutive pseudohyphae under conditions for yeast growth. This 

filamentous growth phenotype is likely caused by destabilized septin structures in the 

absence of NAP1. This model is supported by results of FCF treatment of nap1Δ cells. 

The FCF-induced septin stability can restore normal budding and largely rescues the 

pseudohyphal morphology in nap1Δ cells. FRAP results also demonstrated a more rapid 

exchange of Cdc3 between cytoplasm and the septin complex at the neck. Therefore, the 

data suggest that Nap1 is involved in the regulation of the septin ring by stabilizing the 

septin structure. The involvement of septins in polarized growth has been implicated in 

numerous studies in mammalian cells, S. cerevisiae and C. albicans (Spiliotis et al., 2008; 

Roemer et al., 1996; Bi et al., 2000; Gladfelter et al., 2005; Gale et al., 2001; Luedeke et 

al., 2005; Li et al., 2007). Previous studies by Li et al. (2007) proposed that in C. albicans 

and S. cerevisiae septins mainly localize to two sites where cell growth happens:  

amorphous aggregation at the bud tip and highly organized septin rings at the bud neck. 

There is evidence that septins have an intrinsic ability to attract secretory vesicles to 

direct polarized growth. Septins at the hyphal tip or bud tip participate in attracting 

exocytosis to drive tip extension, while septins at the bud neck attract exocytosis for 

growth in the region adjacent to the neck. Septins at the tip dominate during hyphal 

growth, while the neck septins prevail during yeast growth. Thus, the balance between 
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the two septin pools plays an important role in determining whether daughter cells will 

grow apically or isotropically. Since septins at the neck are known to form highly 

organized structures while those at the tip aggregate in an amorphous manner, the neck 

septins and its ability to attract exocytosis are more sensitive to disruptions than the 

septins at the tip. This explains why nearly all mutations affecting septins cause bud 

elongation in both C. albicans and S. cerevisiae. In this study, I have shown that Nap1 

colocalizes and coprecipitates with septins and that deleting NAP1 causes mislocalization 

of septins. Therefore, the constitutive filamentous growth and enhanced sensitivity to 

hyphal induction in nap1Δ cells is most likely the result of impairment in septin 

organization and function.   

 

4.5.3 Nap1 regulates Cdc3 localization and phosphorylation 

In addition to constitutive filamentous growth, deletion of NAP1 also affects Cdc3 

localization and phosphorylation. In nap1∆ mutants, Cdc3 forms random cortical patches 

both before bud emergence and during bud enlargement. Cdc3 also forms similar patches 

in WT cells before bud emergence but at a lower frequency, and importantly most of 

these patches are disassembled prior to successful assembly of the septin ring at the 

presumptive budding site. Interestingly, these random cortical patches are not seen during 

bud enlargement in WT cells. These observations indicate that WT cells have a 

mechanism that disassembles ectopically formed cortical septin patches and prevents 

their formation during bud expansion. My data suggest that Nap1 is an important 

component of this mechanism.  
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As demonstrated in Chapter 3, Cdc3 undergoes cell cycle dependent 

phosphorylation, and constitutive phosphorylation at S422 mimicked by substitution with 

Glu severely impairs septin organization and function.  Interestingly, I observed that 

deletion of NAP1 strongly affects Cdc3 phosphorylation particularly at 37°C where Cdc3 

exhibits significantly enhanced phosphorylation accompanied by strong phenotypic 

defects. Thus, I propose that Nap1 plays an important role in septin 

assembly/disassembly and organization by regulating Cdc3 phosphorylation during the 

cell cycle.  

Consistent with the findings in S. cerevisiae (Calvert et al., 2008), CaNap1 is also 

a phospho-protein. Mass spectrometry analysis revealed 10 phospho-Ser/Thr residues that 

are clustered within the first 60 amino acids in the N-terminal end. Mutating the 10 

residues to non-phosphorylatable Ala abolishes Nap1’s localization at the bud neck and 

causes filamentous growth, while mutating the 10 residues to the phosphomimetic Glu 

results in random deposition of Cdc3 in the cell cortex but normal neck localization of 

Nap1. Thus, Nap1 phosphorylation not only controls its localization, but also different 

aspects of its function. The kinase(s) responsible for Nap1 phosphorylation has not been 

explored in this thesis. However, there are several candidates, such as the septin-

associated kinases Gin4, Elm1 and Cla4 and casein kinase 2 (Calvert et al., 2008). This is 

certaily an important issue to be addressed to gain a full understandin of Nap1’s role in 

the regulation of septins in future studies.
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Chapter 5 Conclusion and Perspectives 

5.1 Cdc3 project 

In the Cdc3 project, I found that the C. albicans septin Cdc3 undergoes cell cycle 

dependent phosphorylation and that phosphorylation at a single amino acid S422 plays a 

critical role in determining septin organization and function. Cdc3 exhibits the highest 

level of phosphorylation in early G1 cells, followed by a period of dephosphorylation. 

After the cells traverse the START, Cdc3 phosphorylation increases gradually through 

the rest of the cell cycle and peaks around the time of cytokinesis. Phospho-mapping by 

mass spectrometry identified phosphorylation on several residues, and subsequent 

mutational studies indicated that phosphorylation on S422 may play a key role in 

regulating septin organization and stability. The phosphomimetic S422D mutation causes 

gross disorganization of septin structures, severe cytokinetic defects, dramatic cell 

elongation, and inability of Cdc3 to localize to the bud neck. The nonphosphorylatable 

S422A mutation causes a much weaker phenotype, and Cdc3S422A can localize to the bud 

neck although it also forms random cortical patches and circles. Coimmunoprecipitation 

experiments demonstrate that the S422D mutation greatly weakens Cdc11’s association 

with the septin complex and causes premature dissociation of Cdc11 from the ring. I 

found that the septin-associated kinase Gin4 is involved in the phosphorylation of Cdc3, 

but it remains to be determined whether it includes S422. Using the analog-sensitive 

cdc28as mutant did not reveal any significant difference in Cdc3 phosphorylation 

between 1NM PP1-treated and untreated cells, indicating that Cdc28 is not involved. 

Interestingly, mutating S422 of Cdc3 to alanine causes disappearance of multiple 

phosphoisoforms, suggesting that phosphorylation of S422 may facilitate further 
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phosphorylation at other sites. Thus, S422 appears to be a major determinant of the 

overall phosphorylation level of Cdc3. The data from Chapter 3 strongly supports that 

S422 serves as a critical site of control that regulates septin assembly/disassembly, 

organization and stability in a cell cycle dependent manner.  

In the model I proposed in Fig. 3.7, Cdc3 phosphorylation and dephosphorylation, 

in which S422 is a key determinant, is temporally controlled during the cell cycle: it is 

phosphorylated in early G1, dephosphorylated in late G1 and rephosphorylated 

progressively throughout S, G2 and M phases until the time of cytokinesis when most 

Cdc3 molecules are phosphorylated.  

This model not only offers a possible link between septin phosphorylation and 

behavior, but also incorporated the molecular event of Cdc11 dissociating from the septin 

ring triggered by the overall phosphorylation of Cdc3. Cdc3 phosphorylation causes 

disassembly of the long, cross-connected septin filaments in the old septin ring into short 

oligomers in early G1; and at the same time it also prevents premature assembly of septin 

oligomers into new rings. When cells approach the START, cell cycle signals trigger a 

rapid dephosphorylation of Cdc3, which removes the hindrance for septin oligomers to 

assemble into long, cross-connected filaments, thus forming a new ring at the 

presumptive bud site. After the cells have entered the cell cycle, rephosphorylation of 

Cdc3 occurs in a progressive manner and reaches the highest level near the end of M 

phase. The slow and progressive rephosphorylation of Cdc3 may be important for 

maintaining the stability and integrity of the septin structure during the cell cycle. Only 

when the overall phosphorylation level of Cdc3 rises above a threshold level, the septin 

structure will be significantly destabilized thus initiating the process of disassembly. 
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The search for the kinases and phosphatases was unsuccessful. The strategy 

adopted is by first searching for kinases and phosphatases whose activation time 

coincides with the phosphorylation and dephosphorylation of Cdc3. The deletion mutants 

of these genes with GFP labeled Cdc3 were generated afterwards. The phosphorylation 

profile of Cdc3 was then examined in these mutants and compared to that in WT. This 

method identified Gin4 as a potential kinase. After validating with in vitro kinase assay, 

the effect of Gin4 turned out to be secondary. The current searching method still revolves 

around the same cascade of experimental approach. 

 

5.2 Nap1 project 

In this project, I have introduced C. albicans ORF19.7501 as an orthologue of the 

Nucleosome Assembly Protein 1 (Nap1) of S. cerevisiae. Deletion of NAP1 in C. 

albicans leads to filamentous and invasive growth. The increase of temperature 

exacerbates the severity of the abnormal growth. Nap1-GFP has never been observed in 

the nucleus, not even in the mutant in which the putative nuclear export signal is mutated. 

Thus, the defects of nap1Δ mutants are unlikely due to the loss of its nuclear function. 

Nap1 is a component of the septin complex and plays a role in its organization and 

localization. Disturbance of the septin structure by deletion of CDC10 or CDC11 or 

shutoff of GIN4 expression all abolishes the neck localization of Nap1. NAP1 also 

interacts with CDC10 genetically, since deletion of the two genes together results in more 

severe defects than deletion of any individual gene. Absence of Nap1 causes an increase 

in septin ring dynamics and formation of random Cdc3 patches and partial circles in the 

cell cortex. The observation that delocalization of Cdc3 only occurs in mother cells but 
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not in daughter cells of the nap1Δ mutant suggests defects in the disassembly of the old 

ring and/or septins’ higher propensity for aggregation in the mother cell. Time-lapse 

microscopic studies indicate that both occur. Cdc3 rephosphorylation, which coincides 

with the new ring assembly, is impaired in nap1Δ cells.  

In this work, I first demonstrated that NAP1 deleted cells are more prone to 

hyphal induction and form constitutive pseudohyphae under conditions for yeast growth. 

This filamentous growth phenotype is likely caused by destabilized septin structures in 

the absence of NAP1. I then showed that deletion of NAP1 affects Cdc3 localization. In 

nap1∆ mutants, Cdc3 forms random cortical patches both before bud emergence and 

during bud enlargement. Cdc3 also forms similar patches in WT cells before bud 

emergence but at a lower frequency, and importantly most of these patches are 

disassembled prior to successful assembly of the septin ring at the presumptive budding 

site. Interestingly, these random cortical patches are not seen during bud enlargement in 

WT cells. These observations indicate that WT cells have a mechanism that disassembles 

ectopically formed cortical septin patches and prevents their formation during bud 

expansion. My data suggest that Nap1 is an important component of this mechanism. In 

addition to its effect on the localization of Cdc3, absence of NAP1 also strongly affects 

the phosphorylation of Cdc3, especially at 37oC. Therefore, it is evident that Nap1 plays 

an important role in septin assembly/disassembly and organization by regulating Cdc3 

phosphorylation during the cell cycle.  
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