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Abstract

This thesis presents the modelling and analysis of an engineered genetic oscillator in

E.coli. Genetic oscillators composed of transcriptional feedback loops are the central

components of circadian clocks [16]. Thus understanding small genetic oscillators is

key for understanding the complex regulatory networks of circadian clocks. In or-

der to monitor clock function, a new colony based imaging assay was set up, based

on luminescent transcriptional reporter constructs, that allows for automated data

collection over long time spans and for the screening of clock mutants. Clock runs

produced damped oscillatory behaviour after starting the clock by removal of the

lac inducer IPTG or by giving a metabolic stimulus by transferring cells onto fresh

agar plates. A detailed mathematical model of the clock was constructed, taking

into account discrete and stochastic regulatory binding events at the promoter sites.

From this model, using the theory of heterogeneous systems [69, 66], determinis-

tic equations were derived and analysed to yield conditions for the occurrence of

stable oscillations based on the system’s nullclines. To facilitate the modelling, an

algorithm was devised and implemented, that allows for automated construction of

Markov chain models of gene activity states based on DNA binding events. In sum,

the work constitutes the establishment and analysis of an integrated experimental

and modelling system, which opens possibilities for further investigation in order to

yield insight into the properties of genetic oscillators.
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Introduction

Organisms keep track of time by means of biological clocks, which allows them for

example to adjust to the circadian rhythms of light and darkness. Biological clocks

are able to incorporate environmental signals to adjust their phase and are robust to

noise. At the heart of these clocks lie transcriptional feedback loops, that produce

rhythmic patterns of gene expression. Thus understanding genetic oscillators is key

for deciphering the complex circadian regulatory networks.

Studying genetic oscillators of circadian clocks is typically complicated by the

lack of knowledge of the regulatory interactions, which limits the applicability of

detailed mathematical modelling. Recently it has become possible to construct small

artificial gene networks from well understood natural components, that are capable

of oscillatory behaviour. So far these constructs have mostly been a proof of concept,

and their potential for mathematical treatment has not been fully exploited. What

is currently lacking is an integrated experimental and modelling system, which can

be readily monitored and manipulated in order to study the generation of genetic

oscillations in detail.

In order to address this problem, this thesis investigated and studied the prop-

erties of a small, artificially engineered genetic oscillator, built from components of

the bacterial lac and nitrogen systems, that was previously described in [8]. A new

imaging assay was set up, based on luminescent transcriptional reporter constructs,

to allow for automated monitoring of clock function over long time spans and colony

based mutant screening.

The genetic regulation within the engineered circuit was modelled using the

theoretical framework of heterogeneous systems [69, 66], which are characterized by

the interaction of qualitatively different variables taking finite and infinite values.

Building on discrete stochastic Markov chain (MC) models, the theory allows to
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derive deterministic rates laws in terms of ordinary differential equations (ODEs).

This theory was applied to the clock circuit, constructing a MC model taking into

account the molecular details of gene regulation in form of binding of regulatory

factors to promoter associated binding sites. The corresponding deterministic rate

laws were derived and analysed using standard stability and bifurcation theory for

systems of ODEs.

Monitoring the clock function with a reporter construct for one of the two genes

in the clock circuit yielded damped oscillatory promoter activity patterns. Oscilla-

tions were observed after starting the clock by removal of the lac inducer IPTG, and

after the application of a metabolic stimulus. Oscillations showed periods of 10-15h,

which is in agreement with earlier measurements based on chemostat cultures [8].

In order to facilitate the generation of Markov chain models for genetic regulatory

mechanisms, an auxiliary algorithm was devised and implemented, that automat-

ically constructs a Markov chain description of gene activity states, based on the

provided information on binding site interactions, including cooperative binding and

DNA loop formation. The derived ODE model of the clock circuit was analysed,

which yielded conditions for the occurrence of Hopf bifurcations and stable oscilla-

tions in terms of the slopes of the system’s nullclines. In particular it was shown,

that cooperative autoactivation, protein degradation rates and the transcriptional

activation threshold for the respective promoters play an important role for the

generation of oscillations.

In sum, the work establishes an analytical modelling framework, that is sup-

ported by an adjustable experimental system, designed to investigate the molecular

basis of genetic oscillations and its properties. The developed algorithm for Markov

chain model construction can be regarded as a step towards a more integrated mod-

elling tool to facilitate the detailed modelling of genetic regulatory systems. The

derived conditions for oscillations for the analysed clock model correspond well to

findings in other studies on genetic oscillators [33]. This suggests, that conclusions

from the current and further work on this system should be relevant for understand-

ing the properties of genetic oscillations and thus biological clocks in general.

This thesis is structured into a mathematical (chapters two and three) and an

experimental part (chapter four). An introductory chapter (chapter one) presents

background and context on modelling and experimental approaches to circadian
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clocks, genetic oscillators and genetic regulatory networks in general. It introduces

the engineered clock circuit and reviews the mathematical theory of heterogeneous

systems, which is used for the modelling. Chapter two reviews the theoretical model

framework in more detail, presents the developed algorithm for automated Markov

chain construction and also a comparative discussion of models for DNA loop for-

mation mediated by the lac repressor. Chapter three contains the derivation and

analysis of the model of the clock circuit, where conditions for the occurrence of

oscillations are discussed. The fourth and final chapter presents the details of the

established imaging assay, and discusses the data collected from the clock runs.

Some additional thoughts on the motivation of the model approach used in this

thesis. Finding an appropriate model and fitting the corresponding parameters for a

genetic regulatory system is challenging, because of the large number of parameters,

the nonlinearity and intrinsic stochasticity of the processes and of the corresponding

data being typically sparse, noisy and relying on indirect measurement of gene ac-

tivity. The problem of parameter estimation has been addressed for example in [35],

where Markov chain Monte Carlo (MCMC) based methods using likelihood func-

tions and Bayesian inference have been applied to networks modelled by stochastic

differential equations (SDEs). By similar methods applied to simple models of or-

dinary differential equations (ODEs), the problem of reconstructing transcriptional

dynamics from gene expression data based on reporter constructs, like the ones used

in this thesis, has been addressed in [24].

In this thesis, no systematic fitting of the parameters was performed. Rather the

model parameters are the result of an upscaling process, in which the nonlinearities of

the model equations are derived from stochastic models of the molecular interactions,

for which parameters were taken from the literature. The model of the genetic circuit

was formulated in terms of ODEs, because the corresponding data stems from colony

based measurements, i.e. the time-series represents an average over a population of

cells. A model formulations in terms of SDEs would be more appropriate for single

cell modelling. Further no systematic reconstruction of the transcriptional activity

from the reporter data was performed, because the dynamics of the mRNA were

neglected in the derived model. This simplification allowed to reduce the dimension

of the ODE model to two, making it more accessible for analytical treatment.

In sum, the benefits of the approach used here include the ability to rigorously
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derive the nonlinearities in the laws describing gene regulation by upscaling from

discrete stochastic models of molecular interactions. Also, the upscaling process is of

a modular nature, which allows its application to more complex systems of genetic

regulation.
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Chapter 1

Genetic networks: modelling

approaches and biological

context

This chapter provides background on the theoretical context and modelling tech-

niques, with a special focus on the correspondences between discrete stochastic and

continuous deterministic model formulations. It also provides background of circa-

dian clocks and experimental approaches, that are employed to investigate them,

including the use of artificially engineered circuits to understand transcriptional os-

cillators.

1.1 Modelling gene networks

1.1.1 General network theory

In many fields of science there has recently been a shift in interest away from studying

objects in isolation, and towards investigating interaction and interdependencies

among them. This development has led to increased interest in network based model

formulations [11]. Biological examples for this include food webs, like predator-prey

interactions, networks describing protein interactions, metabolic reaction systems

and genetic regulatory pathways. Examples from other areas include information

flow in human social networks or the internet, and the complex interdependent

dynamics that produce the world climate. This thesis is part of the research initiative

14
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‘Unifying networks for science and society’ (UniNet, 2005-2008), which has been

concerned with reviewing network approaches across scientific disciplines and foster

the exchange of network concepts [41].

It has emerged that many complex systems can be seen from a network perspec-

tive and that it is often insightful to do so. Improving the robustness of the internet’s

architecture, the flow of communication in social networks or studying the stabil-

ity of ecosystems are examples for this. Many sciences have embraced the network

perspective recently, while it had long been natural for others - like research on the

interconnected functionality of neurons. But in the field of molecular and cellular

biology, the rise of the importance of structured interactions has been perceived as

a paradigm shift [88].

In molecular biology research the focus has been traditionally on identifying and

describing the functionality of a certain enzyme, a piece of genetic code or a part

of a cellular organelle. The advances in experimental data acquisition techniques

have created a vast and confusing amount of information. So as the functionality

of the smallest parts became clearer, the attention shifted on how these parts work

together to create the living cell. Networks have thus emerged as a natural way to

describe interactions between biological entities. Still, like other abstract or math-

ematical objects, such as functions or matrices, networks can be applied in many

ways. Consequently, a number of different network concepts have arisen in molecular

biology.

Networks differ in the nature of the data that they carry and whether their

structures are fixed or evolve. Protein interaction networks carry information about

which proteins a certain other protein is known to interact with. Weights may

indicate the certainty or strength of these interactions. Similar networks exist for

genetic regulation, where the network illustrates whether the product of gene A will

stimulate or inhibit the expression of a gene B. The information in these networks

lies mainly in their structure - the number and connectivity of their nodes, also

called the network topology. The network topology in these cases is typically fixed,

but is sometimes allowed to change - new species or interactions appear or vanish -

to describe selection dynamics on an evolutionary time scale.

In areas such as metabolic reactions, genetic regulation or signaling pathways,

there is more data available on the dynamics of these interactions. These dynamics
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are typically modelled using kinetic rate laws like mass-action, Michaelis-Menten

or Hill-type laws, the latter of which are used to describe cooperative reactions.

Network models of these dynamical systems illustrate the interdependencies and

interactions of its components. Values defined on nodes and edges may be concen-

trations and reaction rates, and may change over time. Because of this additional

complexity, these networks typically are smaller in size than static interaction net-

works, to make them tractable for mathematical analysis.

Given the heterogeneity of network models, it is helpful to distinguish four

classes, based on the variable types that are attached to the components of the

network. These classes are characterized by whether the corresponding networks

have static or evolving topologies, and by whether the variables attached to the

nodes and links - also called weights - are static or dynamic. Protein interaction

networks belong to class I - static networks with static weights. When the evo-

lutionary change of protein interaction is considered, the resulting network model

is of class II - evolving networks with static weights. Genetic regulation, signaling

and metabolic reaction networks typically belong to class III - static networks with

dynamics weights. Models of class IV - evolving networks with dynamic weights -

may be used to incorporate dynamics of shorter time-scales on the weights, with

slow processes like evolutionary changes of the network structure.

For genetic regulatory networks the situation is complicated by the involvement

of qualitatively different players, which are the candidates for network nodes. For

one there are the genes, gene modules or operons depending on the specific model

emphasis. On the other hand there are the products of gene expression - RNA

transcripts and proteins. For genes, it is their state of activity - whether they are

transcribed or not, that is of interest. For the expression products, their amount

in terms of particle numbers or concentrations is typically what matters. In other

words, genes may be described by variables of finite states, gene products by variables

of infinite copy numbers. Consequently, there are different types of interactions that

may link these nodes. Gene products may interact with each other in a biochemical

reaction. Genes are linked to their gene products, which, in turn, may be regulatory

factors that influence the activity states of the genes.

The last part of this section reviews work that has been done to describe these

hybrid-type networks in more detail and make them accessible to mathematical
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treatment. But first, we review general approaches to model genetic networks.

1.1.2 Approaches to model genetic networks

The environment, in which the evolution of modelling techniques for genetic networks

progresses, is characterized by the limitations of analytical and computational feasi-

bility on one hand, and the quality of the experimental data on the other. Quality of

experimental data may be discussed in terms of the attainable spatial and temporal

scales, ease of reproduction by automatization and the grade of quantification and

comparability between experiments. Traditionally biological experiments focused

on qualitative data to support or rebut descriptive models of biological mechanisms.

The process of exploiting the possibilities of the current experimental techniques to

increase the quantifiability of data is still ongoing.

The following review on modelling approaches to genetic networks proceeds in

a somewhat chronological order. This does not imply that older model techniques

are obsolete because they neglect or oversimplify a certain process. Model design

is always guided by the problem at hand, the nature of the underlying data, and

the urge to keep it simple while avoiding oversimplification. Recent advances in the

collection of gene expression data have allowed for more detailed models taking into

account even discrete molecular events. Still, all discussed approaches maintain their

validity within the appropriate context. For reviews on modelling genetic networks

see [34] and [76].

An early approach by Glass, Kaufmann and Thomas [28], [79] uses a Boolean

formulation to describe genetic control circuits. There, genes at any time points

are either in an ‘on’ or ‘off’ state. A gene in an ‘on’ state may change the activity

state of another gene in the next time step. This method appeals by its simplicity

and applicability to large networks. Dynamic activity patterns like oscillations and

switches and the role of feedback loops in these dynamics were studied with these

models [80], [81]. The Boolean network approach has been generalized to allow

genes to reside in a number of finite states in order to describe different levels of

gene activity. This approach was successfully applied to model gene expression in

plants [23], and was used for the reverse engineering of gene regulatory networks

from time-series data [43]. The Boolean and related approaches are limited when it

is important to capture gradual dynamics of gene regulation. These effects are easier
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described by dynamical models, that are based on ordinary differential equations

(ODEs).

In these continuous time models the evolution of the variables, the concentrations

of gene products, like mRNA transcripts and proteins, are described by systems of

coupled differential equations. The variables take values in the real numbers and

change gradually over time. Production and degradation of gene products and the

influence of regulatory factors on the gene expression are typically modeled by mass-

action, Michaelis-Menten or Hill-type equations, which are traditionally used to de-

scribe biochemical and enzymatic reactions [71]. This approach is now widely used,

for example to study the regulation of circadian clocks [45], [47], or the progression

through the cell cycle [82]. The shortcomings of this approach are for one, that the

employed reaction kinetics are typically based on heuristics, for example by assum-

ing a ‘gene population’, of which only a fraction is transcriptionally active at any

given time [84]. Secondly, many regulatory factors are present at very low amounts,

which limits the feasibility of treating them in terms of deterministically evolving

concentrations. Therefore some effort has been dedicated to take the discrete and

stochastic elements of gene regulation into account.

Ways to accommodate the stochasticity of molecular interaction when only a

few particles are around include the addition of ad-hoc noise terms to differential

equations or the decomposition of the deterministic model into discrete stochastic

events. The latter approach for example was used to describe different pathway

decisions of the cell governed by the noise in gene expression [3]. The complete

unfolding of reactions into stochastic equations, and their simulation by the Gillespie

algorithm, requires elaborate computations. Also these systems are more difficult to

treat analytically than deterministic rate equations are. Motivated by this, recent

work has been conducted to develop a theory for connecting the discrete stochastic

description of these systems to continuous and deterministic equations. This is

reviewed next.

1.1.3 From stochastic to deterministic models of gene expression

In a recent paper by Kepler and Elston [40], the authors study a stochastic model of

a gene that is activated by the binding of a transcription factor to a corresponding

binding site. When the transcription factor is bound, the gene is expressed at a
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higher ‘on’ rate, if not, then the gene is expressed at a lower ‘off’ rate. The system

is formulated in terms of a Master equation [83, 25], which is a differential equation

in the probabilities for the genes to be either in an ‘on’ or ‘off’ state. This treatment

of genetic regulatory interactions was generalized by Sbano and Kirkilionis in a

number of papers ([66, 69, 67, 68]), as discussed below.

In [66], the authors state their perspective of the modelling problem: Consider

a number of macro-molecules - called molecular machines, and a number of species

of smaller molecules - called communicating molecules. The number of molecular

machines is fixed over time, but the molecules may reside in any one of a finite num-

ber of discrete states. The communicating molecules on the other hand are defined

by their number. These smaller molecules may also influence the transitions of the

macro-molecules between states. What we end up with is a connection of two inter-

acting Markov chains (MCs): one that defines the transitions of the macro-molecules

between finitely many states, and another, that describes a birth-death process of

the communicating molecules. Apart from genetic regulation, other examples for

this type of system include the operation of membrane channels or other enzymatic

processes, where the enzyme reside in different conformational states.

These models of molecular dynamics are also called systems with finite states and

and infinite copy numbers [66], to stress the fact that there are two kinds of variables

- those which allow for a continuum approximation, and others which are inherently

discrete. More precisely, the infinite copy number may be treated by a continuum

limit, whereas the finite states remain discrete, but play a role in the time-scaling

argument. In [66] the Master equation (ME) of these systems is studied by deriving

a continuum limit and an adiabatic approximation. The continuum limit transforms

the infinite copy number - number of particles - into a concentration and transforms

the ME into a Fokker-Planck equation (FPE) (for theoretical background on the

ME and FPE see [83, 25]). The adiabatic approximation is based on the assumption

that the dynamics of the finite states - the states of the macro-molecules - evolve

very fast, so that the FPE can be approximated by an expansion in the time-scaling

parameter. The leading order term of that expansion corresponds to a differential

equation in the concentrations of the communicating molecules and is called the

average dynamics.

To summarize, we have one Markov chain that describes the evolution of the
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finite states of the macro-molecules, and another one, that describes the birth-death

process of the communicating molecules. The continuum limit for the communicat-

ing molecules turns the ME into a FPE. An adiabatic approximation of the FPE can

be constructed around the invariant measure of the fast evolving MC of the macro-

molecules. This yields the average dynamics, which are given by a system of ODEs

in the concentrations of the communicating molecules, and whose right hand site is

given by a vector field, which stems from the birth-death process, and is averaged

against the invariant measure. This model frame is used in [69] for an alternative

derivation of kinetic rate laws like Michaelis-Menten or Hill-type equations that are

typically used to describe gene regulation and enzymatic reactions.

In two further papers [67, 68], the authors elaborate this theory and study how

the associated interaction graphs are affected by the limit processes. Of practical

importance for this thesis is in particular an investigation on ways to modularize the

MC on the finite states. In typical cases the state space of this MC has the structure

of a Cartesian product, and the infinitesimal generator of the MC can be written

as a tensor product of smaller matrices. It turns out that the tensor product of the

invariant measures of these smaller matrices also solves the steady state condition of

the original MC. This can be applied to decompose the MC for the macro-molecules

into independent submodules.

We conclude by recalling how this theoretical description is applied to genetic

regulation (see figure 1.1). The macro-molecules are the genes or, more precisely,

the promoter regions that govern their expression (we will simply talk about ‘genes’

from here on). The communicating molecules are the gene products, which may be

regulatory factors that activate or inhibit the expression of the genes. The feeding

back of the regulatory factors onto the activity states of the genes occurs by binding

events to enhancer and repressor sites. The state space of a gene may be further

complicated by the appearance of regulatory DNA loops.

Summary: Modelling gene networks

In the first section it was described how network models can be classified depend-

ing on the type of variables - static or dynamic - that are defined an their nodes

and links, and the type of network structure - constant or evolving. Examples were

given for popular networks used in molecular biology, like static protein interac-
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Markov chain of gene 
states s

Birth-death process of 
gene products x

transitions are 
binding events of 
regulatory factors 
(gene products) 

inactive states

active states

mRNA protein
transcription translation

degradationdegradation

gene products regulate gene activity

adiabatic limit continuum limit

invariant measures

μs

Fokker-Planck equation in concentrations 
of gene products x; defines vector fields

fs

Master equation

average dynamics

dx/dt = ∑ μs⋅fs

Figure 1.1: From stochastic to deterministic models of gene regulation. The genes
reside in transcriptionally active and inactive states s. The transitions between these
states are governed by binding events of the gene products (regulatory factors)
to the DNA, and are described by a Markov chain (MC). The number of gene
products x evolves as a birth-death process defined for each of the gene states. The
evolution of the two interacting MCs is described by a Master equation (ME), which
is transformed into a Fokker-Planck equation (FPE) by taking a continuum limit,
which transforms particle numbers into concentrations of the gene products, also
denoted by x. An adiabatic approximation of the FPE can be constructed around
the invariant measure µ of the MC of the gene states. This yields a system of
ordinary differential equations (ODEs) in the concentration of the gene products,
whose right hand side is given by a vector field fs for each state s averaged over the
invariant measure. This ODE system is also called the average dynamics.
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tion networks, or networks of dynamical systems like coupled metabolic reaction

systems. Confusion may arise when variables of different types are associated to

nodes, like discrete variables for gene activity states and continuous variables for

the corresponding gene product concentrations.

The second section presented a review on typical model approaches that have

been taken to analyse genetic regulatory systems. Historically there has been a

development from discrete to continuous deterministic models, and from there to

continuous and discrete stochastic models. This development was accompanied by

the increased availability of gene expression data and the increase of computational

efficiency. Even though it is generally accepted that discrete stochastic events are

important in genetic regulation, the complexity of discrete stochastic computation

has motivated work to connect this level of modelling with the easier-to-analyse

deterministic models - through deriving deterministic equations as appropriate limit

processes of discrete and stochastic formulations.

The third section introduced the theory of systems of finite states and infinite

copy numbers. This theory is motivated by model situations that are typical for ge-

netic regulation and other molecular processes, where few macro-molecules interact

with a larger number of smaller molecules. The number of macro-molecules is fixed,

but each macro-molecule is able to switch among a finite number of states described

by a Markov chain. The change of the number of smaller molecules is described by

a birth-death process for each of the states of the macro-molecules. From these two

interconnected Markov chains, average dynamics - a system of coupled ODEs in the

concentration of the smaller molecules - can be derived by assuming that the MC of

the macro-molecules evolves fast (adiabatic limit), and that the number of smaller

molecules can be approximated by concentrations (continuum limit).

In the context of gene regulation, the macro-molecules are the genes. Their

states are defined by whether repressors and transcription factors are bound to

corresponding regulatory binding sites. Depending on their state, genes may be

transcriptionally active or inactive. The smaller molecules are the gene products,

which may act on the MC of the macro-molecules as the regulatory factors.
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1.2 Oscillating gene networks or “biological clocks”

1.2.1 Circadian clocks

Organisms keep track of time by means of biological clocks. These time keeping

mechanisms enable for example mammals to regulate their sleep-wake rhythms, or

plants to coordinate leaf movements with the day-night cycle. This section sum-

marizes the general properties of circadian clocks and their molecular basis. The

current model of the clock of Drosophila melanogaster is given as an example. For

recent reviews of the field of circadian clocks, see [20, 16, 90].

Emerging from first studies on Drosophila melanogaster circadian clocks have

been discovered in a number of other organisms like mammals (mouse, human),

plants (Arabidopsis thaliana), fungi (Neurospora crassa) and cyanobacteria (Syne-

chococcus elongatus) - the corresponding model organisms are given inside the paren-

theses. Cyanobacteria are the only group of bacteria where evidence for a functioning

clock has been found. So it seems that clocks are mainly a feature of eukaryotes.

From the studies of the different model organisms a number of paradigms have

emerged. It seems that clocks are typically realised within a single cell and do

not need communication between cells to function. In higher organisms there can

be certain clusters of cells which drive rhythms in other tissues or in the whole

organism. But rather than having an exclusive cluster of pacemaking cells, clocks

seem to expressed in different tissues if not in all cells of the organism.

Circadian clocks are often described according to a threefold structure. Input

pathways sense environmental signals like light and temperature and feed it into the

central oscillator. The central oscillator is responsible to produce a stable rhythm

and incorporates the environmental signals to adjust its phase. From the central

oscillator emanate output pathways, which drive the rhythmic expression of other

genes. The observed rhythms are robust in the face of genetic noise, and able to

compensate for fluctuations in the environmental conditions.

The molecular basis of clocks is generally composed of a transcriptional negative

feedback loop, where a positive element inhibits its own expression indirectly via a

negative element. A delay between the expression of the positive element and the

consequent self inhibition leads to an oscillatory behaviour. This delay is thought

to arise from the biochemical process of gene expression (transcription, translation),
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intermediate steps (forming of complexes, phosphorylation) or, in the case of eu-

karyotes, transport processes out and back into the nucleus.

Although transcriptional feedback loops seem to be an essential element of circa-

dian clocks, it has been shown that circadian oscillations from cyanobacteria clock

components can be produced solely by post-ranslational modifications in vitro [51].

Also it has become apparent that circadian oscillations typically rely not just on

one negative feedback loop, but multiple interlocking positive and negative feedback

loops [16]. The complexity and apparent redundancy of the circadian regulatory

network might be necessary to achieve the overall robustness of clocks.

Example: Molecular basis of the clock in Drosophila

The core of the Drosophila clock consists of a transcriptional negative feedback loop

comprising the genes per and tim (see figure 1.2). The protein products of these

two genes form a complex in the cytosol, which, after a number of phosphorylation

events, is transported into the nucleus to inhibit per and tim transcription. This

has inspired mathematical models which were able to produce stable oscillations by

incorporating transport, per-tim complex formation and phosphorylation reactions

[45].

The expression of the per and tim genes are dependent on the cyc-clk protein

complex, where cyc is a gene which is expressed at a constant level over time. The

per-tim protein complex inhibits the expression of per and tim by inactivating the

cyc-clk complex. The cyc-clk complex also regulates expression of two other genes,

vri and Pdp1e. A second loop is now formed by vri quickly inhibiting and pdp1E -

with a time delay - activating the expression of clk, which regulates the amount of

cyc-clk complexes. How oscillations can arise from these interlocked loops has been

explored by model by Kitano [36], where the authors concluded that the interlocked

feedback loops increase the robustness of the oscillations.

1.2.2 Experimental approaches to genetic networks

The regulatory interdependencies among the genes in a cell form a highly complex

and dynamic network. The product of any gene may trigger directly or indirectly the

activation or repression of one or more other genes. These effects may happen fast

or with a time delay, they may be switch-like or more gradual. From this variability
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Figure 1.2: Molecular basis of the circadian clock of Drosophila melanogaster. Two
feedback loops interconnect on the heterodimer cyc-clk. One, cyc-clk activates ex-
pression of the per and tim genes. The per and tim proteins accumulate as het-
erodimers inhibit the function of the cyc-clk complex. Two, cyc-clk activates the
expression of the genes vri and Pdp1ε. The protein vri accumulates fast and inhibits
expression of the clk gene and hence the number of cyc-clk complexes. The protein
Pdp1ε accumulates more slowly and activates the expression of clk. The figure was
taken from [16].
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of regulatory processes and the sheer size of cellular genomes arises the complexity

of natural gene networks.

Several strategies have been pursued to advance their understanding. One may

take a large-scale genome wide approach, as is characteristic for systems biology. On

a smaller scale one may focus on certain functional submodules of natural systems.

Recently it has also become possible to construct artificial gene circuits from well

understood genes and promoters. We will discuss these approaches in short, with

a special focus on engineered circuits. But first some notes on ways to collect gene

expression data.

Many different ways to measure gene expression have been employed. They

differ in their temporal resolution, the clarity of the signal and whether they can be

automatized or require the manual analysis of samples at certain time intervals.

Recent advances in the technology of microarrays have made available genomic

and proteomic data on a large scale. This data is now being used to elucidate

the dependency relations between genes and to identify certain structural modules

within a gene network [1]. The results of these studies are typically connected

with the static gene interaction networks mentioned earlier, because it is difficult to

obtain precise information on dynamics, although it is possible to obtain time-course

data, as was for example reported in [18]. From these data it is possible to identify

functional groups of genes by Bayesian methods [91]. Unfortunately, microarray

data are typically very noisy.

More accurate dynamical data for the activity of specific genes can be obtained

by mRNA or protein assays, or by reporter based imaging, which has become very

popular because it allows for automatized data acquisition from live organisms.

Imaging techniques are based on reporter proteins like fluorescent proteins (GFP,

YFP, etc.) or bioluminescent proteins of the luciferase family. The promoter region

of the gene of interest can be fused to the gene for the reporter protein, and its

expression can be monitored by fluorescence microscopy or photon-counting cameras.

Cells can be monitored in liquid culture or on a colony basis. There is generally

a payoff between the accuracy of the data and the convenience of its collection.

Therefore mRNA and proteins assays are typically more accurate than reporter

based assays, which in turn are more convenient to conduct.

The data collected for this work stems from bioluminescence assays using lu-
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ciferase reporter constructs, where cells were monitored on a colony basis on agar

plates [42], see figure 1.3. When the gene of interest is expressed, so is the enzyme

luciferase, which reacts with its substrate decanal under light emission. The emit-

ted light is collected by photon-counting camera equipment to produce time-series

data of gene expression. This setup allows to automatically collect data over long

time periods. Also, it allows to distinguish gene expression patterns of individual

colonies, which can be used to identify interesting mutants.

Photon 
counting 
camera

Bacterial colonies 
on agar plates

Substrate decanal 
provided in sterile cap

Bacterial luciferase reacts with 
the substrate, emitting light, 

which is monitored by a camera

Example for luminescent colonies 
monitored by photon-counting camera

Figure 1.3: Schematic of the bioluminescence assay based on luciferase reporter
constructs used for this thesis. Cells carrying luciferase reporter constructs are
grown into colonies on agar plates. The substrate decanal for luciferase, which is
provided in sterile caps on the agar surface, evaporates and is taken up by the cells,
where it reacts with luciferase under the emission of light. The emitted light is
monitored by a photon-counting camera. An example of an image of luminescent
colonies is given in the upper right corner.

Research on gene regulation traditionally focuses on functional modules of natu-

ral systems like regulation of circadian clocks or the cell cycle. The rationale for this

lies in the assumption that these systems are governed by a manageable number

of genes and that they can be understood on their own - when the impact from

all other genes is neglected. This is a popular area for mathematical models, for

example for circadian clocks [45, 47]. The fundamental problem in this context is

the incomplete knowledge of the system. Information on which genes are important

for the regulation of a given system is typically sparse. This limits the possibilities

for mathematical modelling of natural gene networks.
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An alternative approach to the study of natural systems is the construction and

analysis of synthetic gene circuits from well understood natural components [33].

This procedure yields small and self-contained regulatory networks, whose inter-

actions with the rest of the cell’s gene regulation network are tractable. Due to

isolation from outside influences, the regulation of individual genes can be under-

stood more accurately than would be possible in natural systems. Such a network

enters the scope of detailed, dynamical mathematical modelling in close relation to

the experimental data.

A number of synthetic gene circuits have been studied to address questions about

regulatory mechanisms and dynamics. By coupling three transcriptional repressors,

Elowitz and Leibler were able to construct a gene circuit in E. coli capable of os-

cillations [21]. Another system in E. coli, exhibiting a toggle switch behavior, was

studied by Gardner [26]. Becskei and Serrano used an engineered circuit, also in E.

coli, to investigate the role of feedback loops on system stability [14]. The role of

noise in gene expression was investigated by manipulating expression dynamics of

an gene introduced into B. subtilis [57]. In S. cerevisiae an eukaryotic gene switch

was constructed to study the role of positive feedback in cell differentiation [15].

1.2.3 A synthetic genetic oscillator in E.coli

This project is based on a synthetic feedback circuit by Atkinson and coworkers,

which was shown to exhibit damped oscillations [8]. The circuit consists of two gene

modules, which were constructed using elements from the lac operon and from the

regulatory system of the bacterial nitrogen metabolism. Expression of the genes

in the circuit is driven by the two promoters glnAp2 and glnKp, which are both

responsive to the transcription factor NRI, but with different activation thresholds.

The glnAp2 promoter was modified to be repressible by the lac repressor. We will

first review the biological context and the molecular details of the circuits compo-

nents, and then discuss how they are combined within the engineered clock circuit

to produce oscillatory behaviour.

Biological context of the nitrogen metabolism in E.Coli

The promoters glnAp2 and glnKp and the structural gene glnG of the transcription

factor NRI are components of the regulatory system for nitrogen uptake in E.coli and
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related bacteria [60]. The promoter glnAp2 is part of the promoter glnAp, which in

wild type E. coli controls the transcription of glnA, the structural gene of glutamine

synthetase (GS). The promoter glnKp controls the expression of glnK, the structural

gene for GlnK, which is a signal transduction protein. I give a short overview of this

system with specific focus on the regulation of the components used in the synthetic

clock (see figure 1.4).

Figure 1.4: Overview of regulatory interactions in the nitrogen metabolism of bacte-
ria. The glnALG operon expresses the genes for glutamine synthetase (GS), which is
responsible for the nitrogen assimilation, for NRI, which in its phosphorylated form
NRI∼P is a transcription factor for the operon, and for NRII, which controls the
phosphorylation state of NRI. The signal transduction protein PII senses the signals
of the carbon and nitrogen levels and regulates the amount of GS by controlling the
activity of NRII. It also regulates the activity of GS via the enzyme adenylyltrans-
ferase (ATase) (not shown). When the cell is starved for nitrogen, high levels of
NRI∼P trigger the shift from level 1 to level 2 of nitrogen assimilation. In level 2,
the gene glnK for a PII like signal transduction protein GlnK is expressed, as well as
the ntr and nif genes, which activates alternative mechanisms for nitrogen assimila-
tion. Pointed arrows denote activation, blunt arrows inhibition. The circle headed
arrow denotes activation at low levels and inhibition at very high levels of NRI∼P.
The boxed ‘Signals’ denotes the nitrogen and carbon level indicators, glutamine and
2-ketoglutarate (2KG). The figure was adapted from [52].

Bacteria have to regulate the uptake of ammonia, so that the amount of nitro-

gen inside the cell is in balance with the amount of intracellular carbon. The cell

keeps track of the availability of nitrogen and carbon through indicator molecules,
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also referred to as nitrogen and carbon signals. Glutamine, into which ammonia

is converted, serves as the nitrogen indicator, while 2-ketoglutarate (2KG) servers

as the indicator for carbon. These two signals are overlaid to regulate the activity

of the enzyme glutamine synthetase (GS), which catalyzes most of the ammonia

assimilation. In this process the signal transduction protein PII [52] plays a central

role.

Glutamine synthetase is regulated on two levels. On one level, the expression of

its structural gene glnA is controlled, on the other level the enzymatic activity of GS

is regulated by reversible covalent adenylylation by the enzyme adenylyltransferase

(ATase). The expression of glnA is dependent on the phosphorylated form of the

transcription factor NRI, denoted by NRI∼P. The phosphorylation state of NRI in

turn is controlled by the kinase/phosphatase NRII [58]. In consequence, the amount

of GS is regulated by NRII, while the level of its activity is regulated by ATase.

Both these enzymes are affected by the protein PII, which is responsible for the

interpretation and transduction of the nitrogen and carbon signals.

The PII protein senses the carbon and nitrogen levels through reversible uridy-

lylation and the binding of 2KG - see [52] for details. The net effect is that, when

nitrogen levels are low compared to carbon levels, PII increases the activity and

expression of GS, by regulating ATase and NRII - and vice versa.

When nitrogen levels are very low, the cell reacts with a stress response response

by changing its gene expression pattern - again see [52, 60] for details. The high

NRI levels under nitrogen starvation in particular switch on transcription of the

gene glnK [4]. The gene product GlnK has similar functions as PII, but seems to be

tuned to replace PII under nitrogen stress [6, 5]. Consequently, its promoter glnKp

is weak at low NRI levels, but becomes strong after NRI concentration increases

above a certain threshold [4, 17].

Mechanism of NRI dependent transcription at the glnA and glnK pro-

moters

In wild type E. coli the expression of the gene glnA is driven by two promoters,

glnAp1 and glnAp2 [61]. The first promoter glnAp1 is dependent on the catabolite

activator protein (CAP) and is repressed by NRI. The second promoter glnAp2 is

activated by the phosphorylated form of NRI, denoted by NRI∼P.
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The phosphorylation state of NRI is controlled by the kinase/phosphatase NRII

[53]. Only the phosphorylated form of NRI is able for form functional oligomers

that expose the regulatory domains, that interact with the σ54-RNA polymerase

[44], and stimulate the formation of stable ‘open’ transcription complexes [77]. This

interactions is facilitated by two enhancer sites NRI1 and NRI2 upstream of glnAp2

[54]. The NRI∼P bound to the enhancer sites is brought in contact with the σ54-

RNA polymerase bound at the promoter by the formation of a DNA loop [77].

At high concentrations of NRI∼P the activity of the glnAp2 promoter is again

reduced [73]. Responsible for this effect are three low-affinity NRI∼P binding sites

( governor sites) NRI3, NRI4, NRI5 [7]. These governor sites are only filled at high

NRI∼P concentrations and are thought to either interfere with the formation of

the activation DNA loop or hinder the successful interaction of NRI∼P with the

σ54-RNA polymerase transcription complex.

The activation of the promoter glnKp works similarly to that of glnAp2. Here

again, there are two enhancer sites for NRI∼P, as needed to facilitate its interaction

with the σ54-RNA polymerase, one with a high, the other with a low affinity. The

major difference apart from the absence of silencing governor sites, is that the glnKp

promoter needs a higher NRI∼P concentration for activation [4]. This difference in

sensitivity to the activator protein is reflected in the multi-level response of E. coli

to varying degrees of nitrogen starvation [4].

Regulation by the lac repressor

The lac repressor, which is a component of the repressor module of the engineered

clock, regulates the lac operon in wild type E. coli. Hence, to provide some context,

this section gives a short overview of the regulation of the lac operon. For a recent

review on the lac repressor see [46].

In the presence of glucose and lactose, E.coli preferably uses the first. When

glucose runs low, and after a short stagnation phase, the bacteria will then feed on

lactose. The observation of this growth pattern of bacterial cultures - also called

‘diauxic’ - led to the investigation of what has become the prototype of operon based

gene regulation in bacteria, the lac operon. Following the first studies by Jacob and

Monod in 1961 [38] the regulation of the operon and the function and structure of

its components have been described in a great detail, so that the lac operon has
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become a popular system for mathematical modelling of gene regulation.

The regulation of the lac operon can be described as an AND coupled logic unit

with two inputs: One is allolactose, which acts as an indicator of the availability

of lactose. The other is cAMP, which acts as an indicator of glucose levels. A

shortage of glucose leads to a rise in the concentration of cAMP, which activates

CAP by binding to it. By binding to an enhancer site close to the lac promoter

the CAP-cAMP complex then increases the activity of the promoter, which is very

low otherwise. Availability of lactose as a food source leads to the production of

the inducer allolactose. When allolactose binds to LacI, the repressor’s affinity

for binding to the operator sites is strongly reduced, so that it no longer inhibits

transcription of the operon’s structural genes. So the lac operon is only efficiently

transcribed when both allolactose and cAMP are present (see figure 1.5). This

two-fold regulation leads to the diauxic growth behavior described above.

lacI lacZ lacY lacA
5’ 3’

CAP P O

+1

5’ 3’

5’ 3’

CAP-cAMP complex RNA polymerase

lac repressor

P X X X

high level of gene expression

no gene expression

Figure 1.5: Control elements of the lac operon. A high level of gene expression only
takes place when the lac repressor is inactivated due to the presence of the inducer
allolactose, and the CAP protein is activated by cAMP. The CAP-cAMP protein
complex binds to the CAP site, which enhances the activity of the promoter. The
lac repressor inhibits transcription by binding to the operator site O, and thereby
blocking the binding of RNA polymerase to the promoter site P. So when the lac
repressor is bound, then no gene expression takes place even when CAP-cAMP is
bound as well (indicated with dashed boundary).

The functionality of the lac repressor is reflected in its structure. The lac repres-

sor is a heterogeneous tetrameric structure, which can be described as a tethered
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dimer of dimers (see figure 1.6). The interaction between the two dimers is flexible

enough to allow them to adopt different orientations with respect to each other.

Each dimer is capable to bind to specific operator sites in the promoter region of

the lac operon.

Figure 1.6: A ribbon diagram of the quaternary structure of the lac repressor com-
plexed to DNA. Each monomer is drawn in color. The lac repressor has the structure
of a tethered dimer of dimers. The figure was taken from [46].

When LacI is bound to two operator sites, the DNA forms a loop. In wild

type E. coli the main operator at position +11 (the position is given in base pairs

and relative to the start site of transcription +1) is flanked by two auxiliary sites

at positions -82 and +412. When LacI is bound to the main operator it blocks the

transcription of the lac operon by the polymerase. Removal of one auxiliary operator

will lead to a reduced repression, while removal of both reduces the repression about

70-fold, almost completely abolishing repression [56]. There are two possible ways

in which the repressor may form the DNA loop. Either a tetrameric repressor binds

subsequently to two operator sites with its two DNA binding domains. Alternately

dimeric repressor molecules bind independently to two operator sites and form the

DNA loop by binding to each other to form a tetrameric repressor.

The effectiveness of the repression is dependent on the binding affinity of LacI

to the operator sites and the number, relative positions of these operator sites. The

operator sequence within the lac operon is not optimized for tight binding [27, 9].
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A fully symmetric operator has an binding affinity which is ten times higher than

that of the wild type operator [64]. The repression becomes weaker with increasing

distance between the operator sites and when distances are small, the exact spacing

has a significant effect [50].

The repressor is released from the DNA when an inducer molecule binds to it.

The natural inducer is the galactoside allolactose, which is produced in small quan-

tities from lactose by the enzyme β-galactosidase. Another inducer is the chemical

compound IPTG, which is usually used for in vitro induction of the lac operon -

and was also used to regulate the engineered clock. There are also anti-inducers like

ONPF, which increase the binding affinity of LacI. All known effector molecules are

galactosides and bind to the same effector site of LacI. The effect of some inducers

on the binding affinity of the repressor has been quantified and reported in [62, 13].

Design of the gene circuit

The network as described in [8] comprises two modules, an activator and a repressor

module, which feed back into each other (see figure 1.7). Each module consists of a

gene and a promoter region including certain regulatory binding sites. The modules

are constructed from components of the regulatory systems for lactose (lac operon)

and nitrogen metabolism.

The activator module implements an autoregulatory positive feedback loop. The

gene glnG was fused to the glnAp2 promoter sequence. The product of the gene glnG

is the protein NRI, which is phosphorylated by the kinase NRII. In its phosphory-

lated form, NRI∼P, it activates the glnAp2 promoter. Thus NRI activates its own

transcription.

A negative feedback loop, is realized via the repressor module, which consists

of the lacI gene fused to the glnKp promoter. Similar to the glnAp2 promoter, the

glnKp promoter is activated by NRI∼P binding to two adjacent binding sites. The

repressor module regulates the activator module via two lac operator sites inserted in

the glnAp2 promoter region. When the lac repressor LacI is bound to the promoter

proximal operator site, it blocks the transcription of the glnG gene.

The E. coli strain carrying the modules had mutations in the chromosomal genes

lacI, glnG, glnL rendering it unable to produce functional LacI, NRI and NRII

proteins. So the only source of LacI and NRI was the synthetic clock. In wild
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1 2 glnKp lacI
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NRI~P
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1 2 3

NRII
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Figure 1.7: Diagram of the regulatory interactions in the synthetic clock, which
consists of two gene modules. The activator modules consists of the structural
gene glnG for the transcription factor NRI, driven by the NRI-responsive glnAp2
promoter. The repressor module consists of the gene of the lac repressor, driven by
the glnKp promoter. The circuit realizes an auto-activating feedback of the activator
module, as the phosphorylated form of NRI, NRI∼P binds to enhancer sites in the
glnAp2 promoter, that enhance its activity. A second, negative feedback is realized
by NRI∼P stimulating the expression of the lac repressor via enhancer sites in the
glnKp promoter. The lac repressor then inhibits the expression of NRI by binding
to lac operator sites inserted within the glnAp2 promoter of the activation module.
Additional low affinity (governor) sites for NRI in the glnAp2 promoter inhibit its
activity when NRI concentrations are high.
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type E. coli, NRII activity is regulated depending on the amount of nitrogen and

carbon available to the cell. In order to assure a constant phosphorylation of NRI,

a mutant form NRII2302 was provided by a plasmid [8]. NRII2302 exhibits strong

phosphorylation activity of NRI, independent of the cell state.

In their publication [8], the authors demonstrated the circuits ability to produce

synchronous damped oscillations in turbidostat cultures (see figure 1.8). The oscil-

lations lasted for about four cycles with a period of 10-20 hours depending on the

growth rate of the cells. To synchronize the cells, they were grown in a medium

containing the lac inducer IPTG, which inactivates the lac repressor. The clock was

then started by removal of IPTG from the medium. The clock function was mon-

itored by determining the amount of β-galactosidase (LacZ) in the cells in effluent

samples from the chemostat at regular intervals.

chemostat cell 
culture with IPTG

clock started by 
removal of IPTG

monitoring clock 
function by LacZ assay

Figure 1.8: Monitoring clock function of the engineered circuit in chemostat cul-
tures using LacZ assays (figure adapted from [8]). To synchronize the clock, cells
were grown in the presence of IPTG, which inactivated the lac repressor. At time
t = 0, IPTG was removed from the culture by dilution of the medium. Clock func-
tion was measured by assaying LacZ activity (β-Galactosidase, black sqares) from
effluent samples at regular time intervals. The cell density was kept approximately
constant during the clock run (density measurements are denoted by circles), i.e.
the chemostat was used as a turbidostat.
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Summary: Biological clocks

The first section gave an overview on research on circadian clocks. Certain paradigms

and patterns have emerged form studies of clocks in a number of model organisms.

In multi-cellular organisms clocks are functional within isolated single cells, where

higher organisms have mechanisms to coordinate clocks running in different tissues.

Central oscillators produce rhythms by transcriptional feedback loops, incorporating

environmental time-setting signals, and regulate rhythmic expression of other genes

via diverse signalling pathways. Observed rhythms are robust in the face of fluctuat-

ing environmental conditions, genetic noise, and often even gene knock-outs. As an

example, the molecular basis of the clock of Drosophila was described in more detail,

where multiple interlocking feedback loops work in concert to produce oscillations,

a pattern also found in other circadian clocks.

The second section described experimental approaches that have been employed

to investigate the complex network of genetic regulation. Large-scale, though mostly

static, data can be collected by microarray assays, from which genetic regulatory

interactions can be identified. Dynamical expression data with a better time reso-

lution can be obtained, for example, by the use of automated imaging assays based

on fluorescent and luminescent reporter molecules like GFP and luciferase, or other

protein and mRNA assays, which are more difficult to automatize. Research typ-

ically focuses on small to medium-sized functional subsets of genes. Prominent

problems in this context include the lack of knowledge of the involved components

and of the details of their interactions, which limits the possibilities for mathemati-

cal modelling. Alternatively, artificial genetic circuits that are engineered from well

known natural components are being studied, which promise to be a better basis for

detailed mathematical modelling than natural systems.

The third section introduced a synthetic genetic oscillator, consisting of an ac-

tivator and a repressor module, which were constructed from the gene of the lac

repressor and components from the bacterial nitrogen system [8]. The circuit real-

izes a positive and negative feedback loop. In [8] it was shown to produce damped

oscillations in chemostat experiments, where the clock function was measured by

LacZ assays of samples taken at periodic intervals. The molecular details of the

transcriptional activation and repression of the clock modules were discussed. Some

additional background information was provided of the role of the clock components
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in wild type bacteria.

Chapter summary

Models for dynamically interacting systems can be described by network systems.

Depending on the kind of players and interactions, the nodes, links and structure of

the network can be of static or dynamic nature. In genetic networks, variables that

describe genes and gene products differ in their degrees of freedom, which means

that care has to be taken in the corresponding network model construction. Popular

models for gene networks have been based on systems of ODEs, although it has

become clear that discrete stochastic events can be important in gene regulation and

therefore need to be considered. Recently work has been undertaken to rigorously

derive deterministic equations from discrete stochastic formulations, which in gene

regulation take the form of systems with variables of finite states and infinite copy

numbers.

The molecular basis of circadian clocks is formed by oscillating gene circuits,

that feature interlocking transcriptional feedback loops. Natural clocks are built in

a way that makes them robust to genetic and environmental noise. Understanding

and modelling natural oscillators is difficult, because often important components

are not known or interactions poorly understood. An alternative approach is the

study of small engineered circuits of well understood natural components, which

promise to be a good basis for mathematical modelling.

Project aims

This thesis studies such a synthetic clock, which has been shown to produce damped

oscillations by measuring it in chemostat experiments and using LacZ assays. The

aims of the project were to construct and analyse a detailed model of the regulatory

interactions within this engineered circuit, and to collect data for fitting and opti-

mization of the parameters. The theory of systems with finite states and infinite

copy numbers, that was described in section 1.1, was used to study the synthetic

oscillator that was introduced in section 1.2. This allowed to derive deterministic

equations from the discrete stochastic description of the regulator interactions of

the clock components, for which experimental data is available in the literature. A

new assay for clock function was set up, based on in vivo imaging of a luminescent
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reporter construct. This setup allowed automatized data collection and, for future

work, offers the possibility to screen for interesting clock functions on a colony basis.



Chapter 2

From stochastic to deterministic

models of gene expression

This chapter is divided into three sections. The first section reviews a general mod-

elling framework for molecular systems with finite states and infinite copy numbers,

which are discussed in more detail by Sbano [69, 66]. The focus lies here on how

deterministic equations can be derived from an underlying discrete stochastic de-

scription of the system by a continuum limit and time-scaling argument. The second

section deals with the construction of the discrete stochastic model of genetic regu-

lation by DNA binding factors, in particular in the presence of cooperative binding

and DNA loop formation, which were not treated in [69, 66]. An algorithm was de-

veloped and implemented that constructs the infinitesimal generator for a Markov

chain that describes the time evolution of the probabilities of different activity states

of one or multiple gene modules. The third section finally applies the techniques

laid out in the first two sections to derive and analyse modes of genetic inhibition

mediated by the lac repressor. This section extends work by Vilar [85] on the DNA

looping of the tetrameric repressor by deriving and analyzing models for DNA loop

formation mediated by the dimeric form of the repressor.

40
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2.1 From stochastic to deterministic descriptions of molec-

ular systems

The discrete state approach to genetic regulation has been reviewed by Kepler and

Elston [40] illustrated by examples of simple activating factors. Details on the

derivation and expansion of the Master equation are described in the books by

van Kampen [83] and Gardiner [25]. The theory for molecular systems with finite

states and infinite copy numbers has been studied in detail by Sbano and Kirkilionis

in [69, 66, 70, 67, 68].

Molecular systems with finite states and infinite copy numbers

Modelling gene expression involves the description of the evolution of the transcrip-

tion and translation products, which in turn depend on the activation state of the

promoters of the genes in question. On a more abstract level and disregarding the

biochemical details one can simplify these complex processes in terms of discrete

states and stochastic transitions between them. More precisely, assume there is a

fixed number of macromolecucles, for example DNA carrying genetic code or mem-

brane channels, which can reside in a finite number of different states - a gene can

be transcriptionally active or inactive, a membrane channel can be open or closed.

Further there are smaller molecules that are characterized only by their number, and

which are produced or destroyed depending on the state of the macromolecules. As

reviewed in [66] the evolution of the species numbers can be described by a Master

equation:

∂P (s,n, t)
∂t

=
∑
s,s′∈S

L∗ss′(P (s′,n, t)) +
1
ε

∑
s′∈S

KT
ss′(n)P (s′,n, t), (2.1)

where s denotes the state of the macro-molecules, s ∈ S is the corresponding finite

state space, and N is the number of species of the smaller molecules. Further

n = (n1, . . . , nN ) ∈ NN is the vector that describes the number of particles for each

of the N species, and P (s,n, t) is the probability that at time t the system has

ni particles or the i-th species, i = 1, . . . , N and is in state s. The matrix K is

the infinitesimal generator of the Markov chain that contains the transition rates

between the states in S. The small parameter ε > 0 describes the time scale of the
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evolution of the Markov chain that is defined by K. This parameter is motivated by

the notion that the Markov chain K evolves much faster than the production and

destruction events of the species. L∗ is a matrix of difference operators describing

the birth-death process of the species. In our context the matrix L∗ will always be

diagonal with diagonal elements L∗s for s ∈ S. Hence equation (2.1) reduces to

∂P (s,n, t)
∂t

= L∗s(P (s,n, t)) +
1
ε

∑
s′∈S

KT
ss′(n)P (s′,n, t). (2.2)

The structure of the state space S is determined by the geometry of the states that

the macro-molecules can reside in, for example conformational states for membrane

channels, or binding states for genetic promoter regions. In particular, in the case

where the states s are defined by the binding state of a number of binding sites on

the macro-molecules, which the communicating molecules can bind to, the structure

of S is typically a product space, that is formed by the Cartesian product of the

state spaces corresponding to the individual binding sites.

The average dynamics

When the amount of particles is given in terms of concentrations x ∈ RN
+ , then the

system’s dynamics are described by a corresponding Focker-Planck equation (FPE).

Also, the FPE can be regarded as an approximation of the master equation (2.1),

for when the number of particles is approximated by the concentration x = δn,

where δ is the inverse of the system size (volume or average particle numbers).

The probability distribution P (s,n, t) becomes a density p(s,x, t) and the difference

operators L∗s turn into differential operators L̂∗s. The FPE is given by

∂p(s,x, t)
∂t

= L̂∗s(p(s,x, t)) +
1
ε

∑
s′∈S

KT
ss′(x)p(s′,x, t), (2.3)

where the parameter ε is related to ε by the time and size scales as discussed in [66].

In chapter 3 the explicit from of the matrices L∗s and L̂∗s are given for an example

system (see tables 3.1 and 3.2).

From different perspective, the FPE (2.3) can be understood as describing a

dynamical system on X = RN
+ × S with elements (x, s) ∈ X, whose dynamics are

given by a hybrid set of laws. For each s ∈ S the evolution on RN
+ is given by a
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deterministic vector field,
dx(t)
dt

= X(s)(x(t)). (2.4)

The vector field is deterministic, because we neglect diffusion of the particles, which

otherwise would yield a corresponding stochastic differential equation. Rather we

assume that particles are homogeneously distributed in the system. So the Fokker-

Planck equation (2.3) does not contain a diffusion term.

For each x ∈ RN
+ the evolution on S is a finite Markov chain, whose probability

distribution evolves according to the FPE

dP (t, s)
dt

=
∑
s′∈S

KT
ss′(x)P (t, s′). (2.5)

The vector field in (2.4) is related to the FPE (2.3) by the equation

L̂∗s(p(s,x, t)) = −∇
(
X(s)(x)p(s,x, t)

)
. (2.6)

If we assume that the Markov chain on S defined by K reaches its equilibrium

probability distribution on a time scale that is shorter than the time scale of the

evolution of the concentrations x ∈ RN
+ , defined by (2.4), we can separate the two

processes by an adiabatic approximation of (2.3). In fact, in [66, 69, 70] it is shown

that the FPE (2.3) can be solved by looking for an asymptotical solution in ε, with

p(s,x, t) =
∞∑
n=0

εnpn(s,x, t).

The leading order term of this expansion is the marginal distribution

f(x, t) =
∑
s∈S

p(s,x, t),

whose evolution is given by

∂f(x, t)
∂t

=
∑
s∈S

L̂∗s (µs(x)f(x, t)) . (2.7)

The vector µ(x) is the invariant measure of the Markov chain, which is characterized
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by

KT (x)µ(x) = 0,
∑
s∈S

µs(x) = 1. (2.8)

For the systems studied here the Markov chain always evolves to a unique station-

ary measure, although it is possible also to treat the case of non unique invariant

measures [66, 69, 70].

Plugging the expression for L̂∗s (2.6) into (2.7) yields

∂f(x, t)
∂t

= −
∑
s∈S
∇
(
X(s)(x)µs(x)f(x, t)

)
. (2.9)

The preceding equation is a Liouville equation for the deterministic dynamical sys-

tem in Rn, whose trajectories are described by the system of differential equations

dx(t)
dt

=
∑
s∈S

X(s)(x)µs(x). (2.10)

For details of the correspondence of the FPE and ordinary and stochastic differential

equations see the books of Gardiner and van Kampen [25, 83].

Decoupling of Markov chains

In the case of a gene, whose expression activity is governed by two types of regulatory

factors binding to two distinct operator sites, the state space of the corresponding

MC has the structure of a product of the two state spaces corresponding to the two

operator sites. More generally let the matrix K generate the Markov chain on the

state space S = S1 × . . .× Sd. Then K can be written as a sum of tensor products

K =
d∑
l=1

I⊗(l−1) ⊗Kl ⊗ I⊗(d−l),

where K l generates a Markov chain on Sl, and I⊗m is a shorthand for I ⊗ I ⊗ . . .⊗ I︸ ︷︷ ︸
m times

.

It can be shown that the unique stationary measure µ of K can be written as

µ = µ1 ⊗ . . .⊗ µd,

where µlKl = 0 for all l. The decoupling of Markov chains in this fashion is described

in more detail in [68]. Definitions and properties for the tensor product can be found
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in [48]. This theory will be applied to decompose the system of the engineered clock

circuit described in the introductory chapter, which consists of two genes governed

by multiple operator sites.

Summary: From stochastic to deterministic descriptions of molecular

systems

In this section it was shown how gene regulation and expression can be described as

a stochastic system of finite states and infinite copy numbers. From the stochastic

description deterministic equations can be derived by taking appropriate limits - an

adiabatic limit for fast operator state changes and a continuum limit to move from

single particles to concentrations.

The deterministic rate laws derived this way have the advantage to be based

on the underlying discrete description and can thus discriminate between different

assumption of the dynamics at the molecular scale rather than having to rely on

heuristics. From the analytical perspective deterministic equations are preferable to

stochastic ones because more can be said about their dynamics.

The main task for setting up a model for a given genetic regulatory network is

the generation of the Markov chain. In this section it was shown how Markov chains

can be broken up into independent modules with the help of the tensor product.

Yet the construction of the Markov chain can be tedious even for smaller systems,

especially if it is done by hand. This motivated the fabrication of an algorithm that

automatically generates the Markov chain for general models for genetic regulation

of operons with any number of binding sites and regulatory DNA looping. This

algorithm is presented in the next section.

2.2 Algorithmic derivation of the infinitesimal genera-

tor of the Markov chain of the gene states

In our model context the activity state of a gene is defined by the binding state of its

operator sites. In order to write down the corresponding ME or FPE (see (2.1), (2.3))

one needs to construct the infinitesimal generator K, which contains the transition

rates between the gene states and defines the evolution of the corresponding Markov

chain. As an example, consider a gene (or another macro-molecule) that has two
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binding sites o1, o2, that can either be free, oi = 0 or occupied, oi = 1. Then the

corresponding state space S for the macro-molecule is the Cartesian product of the

state spaces of the individual binding sites S1, S2:

S = S1 × S2, Si = {bi| bi ∈ {0, 1}}, i = 1, 2.

Writing S out in full, we can number the states as indicated,

S = {(0, 0), (0, 1), (1, 0), (1, 1)} = {s1, s2, s3, s4}.

Now, assume that we know the rates at which the gene switches from state si to

state sj , and call them ρij . We can then write down the infinitesimal generator K,

that defines the Markov chain (K,S) by

K =


−ρ12 − ρ13 − ρ14 ρ12 ρ13 ρ14

ρ21 −ρ21 − ρ23 − ρ24 ρ23 ρ24

ρ31 ρ32 −ρ31 − ρ32 − ρ34 ρ34

ρ41 ρ42 ρ43 −ρ41 − ρ42 − ρ43

 .

This can be simplified by acknowledging that transitions happen by single binding

and unbinding events at either one of the two binding sites o1, o2. Assume that oi

switches between 0 and 1 with the rates

0
λ+
i−−→←−−
λ−i

1,

then

ρ12 = λ+
2 , ρ21 = λ−2 , ρ13 = λ+

1 , ρ31 = λ−1 ,

ρ24 = λ+
1 , ρ42 = λ−1 , ρ43 = λ−2 , ρ34 = λ+

2 ,

ρ23 = ρ32 = ρ14 = ρ41 = 0.

Note here that we only consider single binding and unbinding events - transitions

that would involve the simultaneous change of binding states of both binding sites

are not considered. This is so, because the probabilities of such events are very

small. Consequently, the rates that describe such transitions, in this example
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ρ23, ρ32, ρ14, ρ41, are set to zero. So K can be rewritten as

K =


−λ+

2 − λ+
1 λ+

2 λ+
1 0

λ−2 −λ−2 − λ+
1 0 λ+

1

λ−1 0 −λ−1 − λ+
2 λ+

2

0 λ−1 λ−2 −λ−1 − λ−2

 . (2.11)

The invariant measure µ for K is a probability distribution the states of the Markov

chain that satisfies the equation KTµ = 0. Sometimes it is more convenient to state

some vector v, for which KT v = 0, and make it a probability distribution by an

appropriate normalization. For example the invariant measure of K as defined in

(2.11) is given by

µ =
v∑
i vi

, v = (1, λ2, λ1, λ2λ1),

where the substitutions λ+
i

λ−i
= λi, i = 1, 2 were made. If, instead of just two binding

sites, there were n of them, the corresponding state space S would consist of 2n

possible states. So, in the presence of multiple binding sites, it is of advantage to

be able to compute the state space S and generator K of the markov chain (S,K)

automatically.

In order to achieve this an algorithm was created which builds this infinitesi-

mal generator based on the biological model of the regulatory interactions at the

promoter regions regulating gene activity. The algorithm takes into account the

information on the number of operator sites, what sites must be free or occupied

for transcriptional activity, which molecules bind to which sites and whether there

are cooperativity effects. It can also be specified under what conditions a DNA loop

can be formed, which happens when a molecule binds to two sites on the DNA si-

multaneously. The algorithm produces the infinitesimal generator and also indicates

which states are transcriptionally active.

This section specifies the class of models, for which the algorithm can construct

the infinitesimal generator. It describes how the gene states, the possible transitions

and the corresponding rates are defined. It explains how cooperative binding and

regulatory DNA looping are implemented and discusses the format of the input and

output files. The algorithm already provides a certain form of the transition rates

on the basis that transitions between states describe binding and unbinding events
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of proteins to DNA. A number of examples are provided for illustration.

An overview of the algorithm

The algorithm takes in a description of the binding mechanisms for the opera-

tor sites of the operons and the associated activity states of the genes. From

this, the state space S of these molecular machines is computed together with

the corresponding infinitesimal generator K. The details on how this mathemat-

ical construction is implemented is described in this section. The algorithm was

implemented as a Perl script and can be downloaded from the Compio website at

http://lora.maths.warwick.ac.uk.

The gene states. The state of the Markov chain is defined by the binding states

of a number of operator sites o1, o2, . . . , on - operator sites in this context are under-

stood to denote all DNA binding sites that affect the transcription of the genes in

question. Each of these operators can reside either in a free state oi = 0 or in bound

state oi = 1, when a regulating factor is bound to it. The operator sites regulate the

activity of a number of genes p1, p2, . . . , pm, where each operator site is associated to

exactly one gene. (‘Gene’ in this context may also stand for transcriptional unit of a

group of genes, commonly referred to as operon. Therefore here ‘gene’ and ‘operon’

will be used interchangeably.) Each gene may reside in an inactive pi = 0 or active

state pi = 1 depending on the binding states of its operators. See figure 2.1 for an

illustration.

Example 1: Simplified clock circuit scheme. As an example consider a sim-

plified version of the engineered circuit described earlier (chapter 1) that consists

of two genes p1, p2. Gene p1 is driven by two sites o0, o1 and p2 is driven by the

operator site o2. The sites o0, o2 are enhancer sites and must be occupied for the

promoter to be active. Site o1 is an inhibitor site and p1 can only be active if

o2 is free. This scheme is illustrated in figure 2.2. The system has eight possible

states (o0, o1, o2) ∈ {0, 1}3, which can be grouped according to their activity profile:

Here ‘*’ means that the operon’s activity is independent of the binding state of that

operator. The first line of the table means, that the enhancer site o0 needs to be

occupied for expression of p1 to occur, and that the repressor site o1 must be empty.
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o1 o2

o3

gene 1

gene 2

operon p1

operon p2

p1 = 0

p2 = 1

free 
operator 

site

occupied 
operator 

site

Figure 2.1: The state of genetic operons is defined by the binding states of a number
of operator sites. Depending on on the binding profile of the operator sites, the genes
can be either transcriptionally active, like gene p2 in the figure, or transcriptionally
inactive, as indicated for gene p1 in the figure.

o0 o1 o2

gene p1 is active when 1 0 *
gene p2 is active when * * 1

Table 2.1: Example 1: Activity of the genes depending on the operator states.

The binding state of o2 has no influence on the activity of p1. Similarly, p2 is active

if and only if the enhancer site o2 is occupied, while the binding state of o0, o1 is

irrelevant.

Transitions between gene states. The state of the gene is changed when a

molecule binds to or is released from one of its operator sites. Only transitions

by single binding and unbinding events are considered, because the probability of

several operator sites to change state simultaneously is very small. The rates at

which an operator switches from the free to the occupied state depends on the

amount of molecules in the system that can bind to it and on the rate at which this

occurs. It is assumed that operators are molecule specific, which means that only

one type of molecule can bind to it. Let ω+
i be the binding rate per molecule and

x is the number of molecules in the system. When k is the number of molecules

that are already bound to other operator sites, then the overall transition rate for
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gene 1 gene 2

o2

gene 2

o2

gene 2gene 1

o0 o1

gene 1

o0 o1

o_i = 0 o_i = 1 o_i = 0 or 1

Figure 2.2: Example 1: Operator and promoter states and transition for a simplified
version of the engineered clock circuit. Gene 1 corresponds to the gene for the
transcription factor NRI, gene 2 corresponds to the gene for the lac repressor LacI.

oi from the free to the occupied state is:

rate of ‘free’ to ‘occupied’ transition of operator oi = ω+
i (x− k).

The rate at which operators switch from the occupied to the free state is determined

by the dissociation rate of the bound molecule from the DNA, ω−i :

rate of ‘occupied’ to ‘free’ transition of operator oi = ω−i .

Example 1, continued. When we apply the rules laid out above to the example

system (figure 2.2), we can write down all possible transitions and their rates in a

graphical structure as depicted in figure 2.3. The graph contains all information of

the infinitesimal generator K and is also generated by the script in the form of a

GraphViz ‘.dot’ file (see below).

Cooperative binding. The binding of two neighbouring operator sites oi, oj may

happen cooperatively, which means that the binding state of one site will affect

the transition rates at the other site. This mechanism is reflected in the model by

changing the corresponding transition rates. So when oi = 1 the rate of binding for
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0 x
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1 y

ω-
2

ω+
0 (x-1)

ω+
1 y ω+

2 (x-1)

node   opstate 
p0       000
p1       001
p2       010
p3       011
p4       100
p5       101
p6       110
p7       111

gene 2 is 
active

gene 1 is 
active

Figure 2.3: Example 1. Transition graph for the operator states of the simplified
version of the engineered clock circuit depicted in figure 2.2. Each node indicates a
state in the Markov chain that is characterized by the binding states of the three
operator sites - o0, o1 for gene 1, and o2 for gene 2. The table next to the graph shows
the binding profile for each state in the form o1, o2, o3. ‘opstate 101’ for example
means that o0 = 1, o1 = 0, o2 = 1. States for which gene 1 is active are marked in
blue, states for which gene 2 is active are marked in yellow. The edges are labelled
with the corresponding transition rates.
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oj is scaled by the (non-negatve) cooperativity factor γij :

γijω
+
i (x− k).

This means, that if γij > 1, then the occupation of oi facilitates the binding to oj

(positive cooperativity). If γij < 1, then the occupation of oi obstructs the binding

to oj (negative ccoperativity). If γij = 1, then the binding state of oi does not affect

the binding to oj . Typically the cooperative relation of two binding sites is mutual,

which means γij = γji. An example of cooperative binding between two operator

sites is depicted in figure 2.4.

o_1

o_2

o_1 o_2o_2

o_1 o_2 o_1

ω+1·x
ω-1

ω-2

ω-2

ω-1

ω+2·x

γ21·ω+1·(x-1)

γ12·ω+2·(x-1)

occupied 
operator site

free
operator site

Figure 2.4: Example 2. Illustration of transition rates for cooperative binding. The
regulatory factor X, of which x particles are present in the system, binds coopera-
tively to the operator sites o1 and o2. This means that when one of the operator
sites, say o1, is occupied the binding rate to the second operator site o2 is scaled by
the cooperatvity factor γ12.

DNA looping. Regulatory factors that have two active domains for binding onto

DNA may mediate the formation of a DNA loop. In the MC model this is reflected

by introducing a ‘looped state’ that involves two operator sites. It needs to be

specified which two sites are involved in the DNA loop formation. The rates for the

closing and opening of the looped state are denoted by ψ+
ij and ψ−ij - the order of the

indices ij indicates that the loop is formed by a factor binding to oj that is already

bound to oi and that the loop is opened by dissociation of the factor from oj . For

an illustration see example 3, which is depicted in figure 2.5.

The rates for the loop formation and opening can be derived from the rate
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constants for the involved operators sites, modified by proportionality constants

a(= aij = aji) and b(= bij = bji):

ψ+
ij = aω+

j , ψ
+
ji = aω+

i , (2.12)

ψ−ij = bω−j , ψ
−
ji = bω−i . (2.13)

The constant a takes into account the changed entropy gradients for the binding

event that forms the loop - the difference in energy that is needed for a molecule

in solution to bind to the operator site in question compared to the energy that

is required for a molecule that is already bound to a nearby operator site. The

constant b describes the change in the dissociation rate caused by the bending of

DNA due to the looping (for a detailed discussion on the thermodynamics of DNA

looping, see [85]).

Input and output format of the algorithm

This section gives information about the input and output format of the algorithm.

Firstly, it shows how the examples presented earlier are translated into the syntax

of the input file and how it is done for more general cases. Secondly, it explains the

format of the different sections of the output file and how the algorithm presents

the information regarding the Markov chain states, the infinitesimal generator and

the transition graph.

Input syntax. These are the input files for the examples 1, 2, 3 described earlier.

After that the general syntax of the input is discussed.

Input file for the example system 1 as depicted in figure 2.2:

# Begin first operon section.

operon activator

# Number and type of operator sites.

# The letter indicates the name of the DNA binding factor

opsites x y

# Define states in which operon is active.

# Separate multiple states by comma. * denotes 0 or 1.

active 1 0

# Begin second operon section.

operon repressor
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that is involved 
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Figure 2.5: Example 3. Illustration of a model for DNA loop formation as it occurs
for regulatory DNA binding proteins like the lac repressor LacI that have multiple
domains for binding to DNA. Here two operator sites o1, o2 can be bound the reg-
ulatory factor X, whose particle number is denoted by x. The looped state can be
attained from any state, where exactly one of the operator sites is occupied. From
such a state, for example (o1, o2) = (1, 0), there are three possible transitions. First,
the operator o1 can become free and the system goes to the state (0, 0). Second, an-
other free regulatory factor may bind to the second operator and the system moves
to state (1, 1) without a loop being formed. Thirdly the factor X that is already
bound to the site o1 can also bind to o2 with its second DNA binding domain. This
yields the state (1, 1) with a DNA loop present. The transition rates ψ±ij to and from
the loop state are indicated in the diagram as given in equations (2.12, 2.13).
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opsites x

active 1

Input file for the cooperative example scheme 2 as depicted in figure 2.4:

# Begin operon section.

operon cooperative

opsites x x

# For example. Both sites must be occupied.

active 1 1

# Specify mutual cooperativity between sites 1 and 2

coop 1 1

Input file for the looping example scheme 3 as depicted in figure 2.5:

# Begin operon section.

operon Loop

opsites x x

# For example. Site 1 must be free.

active 0 *

# A loop can be formed between sites 1 and 2

loop 1 1

In sum the structure of the input file is as follows. The file is structured into

one or several operon (gene) definition blocks. Each block begins with the keyword

‘operon’ followed by the name of the operon. The next line specifies the number and

type of operator binding sites. After the keyword ‘opsites’ follows a list of characters

indicating for each operator site the type of molecule that can bind to it. Each

operator site can only be targeted by one type of molecule. After the ‘operon’ and

‘opsites’ definitions, there may follow further definitions of operon activity (keyword

‘active’), of cooperative binding (keyword ‘coop’), and of loop formation (keyword

‘loop’). It is important though that ‘operon’ and ’opsites’ are defined first.

After the keyword ‘active’ it can be specified which operator sites must be oc-

cupied (marked by ‘1’), or free (marked by ‘0’), for the operon to be active. If the

activity of that operon is independent of the binding state of an operator site, this
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is marked by an asterisk ‘*’. Cooperative binding between two binding sites can be

specified by the keyword ‘coop’. The two cooperative sites are set to ‘1’, all other

sites must be set to ‘0’. Similar holds for defining a DNA loop formation with the

keyword ‘loop’. The two binding sites involved in the DNA loop are set to ‘1’, all

other sites are set to ‘0’. The format for all these definitions - the number and order

of operator sites - must follow the one given in the ‘opsites’ line. If there are more or

less binding sites than were specified after ‘opsites’, the script will reject the input.

Some additional notes on looping and cooperative binding. The loop as defined

above is formed by a factor binding first to one operator site and then to the corre-

sponding second site. It is also possible to specify a loop where two molecules first

bind to each of the operator sites and then form a loop by dimerization. In that case

the two involved operator sites need to be set to ‘2’, not to ‘1’, in the corresponding

‘loop’ definition. An example for this is given in the next section in the context

of a lac repressor model. Concerning cooperative binding it is worth noting how it

can be used to model operator sites to which different types of molecules can bind.

This can be achieved by representing the operator site in question as two sites in

the model with cooperative binding. If the cooperativity factor for the sites is set to

zero, the binding rate of first operator site will become zero if the second operator

is occupied, and vice versa.

Output format. The script produces an output that is structured into five sec-

tions - A, B, C, D and E. Section A simply prints out the information provided by

the input file. Because the states of the Markov chain are based on the states of all

operator states, the algorithm merges the operator sites of all operons and treats

them jointly. The resulting list of operator states and the corresponding activity, co-

operative binding and looping definitions are compiled in section B. Section C gives

a numbered list of all possible states of the Markov chain. Each state is defined by

the occupation state of the operator sites and the presence of DNA loops. For each

state it is specified which operons are active. The last entry for each state is a list of

accessible states - states to which the Markov chain can move from the current state

- and the corresponding transition rates. Section D prints out the actual infinites-

imal generator K in a format readable by the mathematical software packages like

Maple. Section E finally contains the definition of the transition graph. The nodes
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are the states of the Markov chain, the edges denote all the possible transitions and

are labelled with the corresponding rates. This graph definition is in a format read-

able by graph visualization and manipulations software packages such as GraphViz

and OmniGraffle.

Below are given two examples on how the output file looks like. First the output

generated for example 1 depicted in figure 2.2:

A – Overview - Operon structure –

Operon No. 0, activator, size 2 :

operator sites: x y

active when: 1 0

Operon No. 1, repressor, size 1 :

operator sites: x

active when: 1

B – Overview - operator states considered jointly –

All operator sites: x y x

Operon 0 active for: 1 0 *

Operon 1 active for: * * 1

C – Overview - states of the Markov chain –

MC state [No]; opsite-state; loop-state; active operons; [accessible state: transition rate];

MC state [0]; 0 0 0; ; none; [ 1: omega ass[2]*x ]; [ 2: omega ass[1]*y ]; [ 4: omega ass[0]*x ];

MC state [1]; 0 0 1; ; 1; [ 0: omega diss[2] ]; [ 3: omega ass[1]*y ]; [ 5: omega ass[0]*(x-1) ];

...

D – The infinitesimal generator K –

K:=matrix(8,8,[

-omega ass[2]*x-omega ass[1]*y-omega ass[0]*x,omega diss[2],omega diss[1],0,omega diss[0],0,0,0,

...

E – The .dot file for the transition graph –

digraph TransitionGraph {

p0 -> p1 [label=”omega diss[2]”, weight=100];

p0 -> p2 [label=”omega diss[1]”, weight=100];

...

The second example shows an extract of the output - sections B and C - for the



Chapter 2. From stochastic to deterministic models of gene expression 58

loop system, example 3, depicted in figure 2.5. It is given to show how a loop is

incorporated into the Markov chain states:

...

B – Overview - operator states considered jointly –

All operator sites: x x

Operon 0 active for: 0 *

Looping pair No. 0: 1 1

C – Overview - states of the Markov chain –

MC state [No]; opsite-state; loop-state; active operons; [accessible state: transition rate];

MC state [0]; 0 0; 0; 0; [ 1: omega ass[1]*x ]; [ 2: omega ass[0]*x ];

MC state [1]; 0 1; 0; 0; [ 0: omega diss[1] ]; [ 3: omega ass[0]*(x-1) ]; [ 4: psi ass[1,0] ];

MC state [2]; 1 0; 0; none; [ 0: omega diss[0] ]; [ 3: omega ass[1]*(x-1) ]; [ 4: psi ass[0,1] ];

MC state [3]; 1 1; 0; none; [ 1: omega diss[0] ]; [ 2: omega diss[1] ];

MC state [4]; 1 1; 1; none; [ 1: psi diss[1,0] ]; [ 2: psi diss[0,1] ];

D – The infinitesimal generator K –

...

A short description of the algorithm

The algorithm can be structured into five steps that correspond to the sections A,

B, C, D and E of the output file discussed earlier. First the model description that

was provided in the input file is checked for consistency - for correct length and for

allowed characters (section A). Next the model definitions for the individual operons

are merged into a joint description in terms of all operator sites (section B). Now

the states of the Markov chain are built by considering all possible DNA looping

scenarios and compatible operator binding site profiles. Then follows the calculation

of all possible transitions.

For each given state all corresponding states are identified to which a transition

is possible - named accessible states. Accessible states are characterized in that

they differ from the present state in the binding state of only one operator site. The

change in the binding state of the operator must be compatible with the DNA looping

scenario - either it represents the closing or opening of a loop, or it is not involved

in any loop. In the case of a loop formation or opening by a dimerization process as

described earlier, only the DNA looping scenario changes while the binding profile

of the operator sites is unchanged.
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For each of the identified transitions the corresponding rates are calculated.

The rates are determined by the operator sites involved in the transition - including

cooperative binding factors if applicable. In the case of association rates the number

of free molecules is derived from the binding profile of current state. The results of

these computations are compiled in section C of the output. From the information

the algorithm has generated up to here the infinitesimal generator of the Markov

chain and its graphical representation are compiled and presented in sections D and

E of the output file. A flowchart representation of the elements of the algorithm is

presented in figure 2.6.

Summary: Algorithmic derivation of the infinitesimal generator of the

Markov chain of the gene states

This section introduced a piece of modelling software that generates a Markov chain

model of regulation of one or several genes or operons. The Markov chain is built

on information about the number and type of operator sites and on the required

binding states for transcriptional activity. The model is able to account for DNA

loop formation and cooperative binding, a feature that was not part of the papers

[69, 66], which this work was based on. The generated output includes a definition

of the Markov chain’s infinitesimal generator and a definition of the corresponding

transition graph that can be read by graph manipulation software like GraphViz and

Omnigraffle. The features of the program as well as its input and output format

were illustrated with a number of examples.

The software can be used to quickly generate stochastic models of small genetic

networks where the dynamics of operator sites needs to be taken into account. By

automatizing the typically tedious manual derivation of the Markov chain model,

the program enlarges the scope of this kind of modelling. In particular it allows to

quickly compare the consequences of different model assumptions on the nature of

the molecular basis of the genetic regulations. To illustrate this point I will conclude

this chapter with an analysis of different models for LacI mediated transcriptional

repression, which is presented in the next section.
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Figure 2.6: Flowchart representation of the elements of Markov chain generating
algorithm. Start and endpoint are indicated in red, input and outputs in turquoise,
decisions in yellow, processes in blue, and associated variables in green. Arrows
indicate the flow of processes. Sometimes, in abuse of notation, arrows also indicate
the associated output section of a process. ‘Binding’ and ‘unbinding events’ refer to
a regulatory factor binding to, or dissociating from, an operator site on the DNA.
See the text for further details on the derivation of the transition rates.
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2.3 Example: analysis of different models for LacI me-

diated repression

This section derives and analyses several models for transcriptional repression me-

diated by the lac repressor LacI. In particular it is shown how the introduction of

different kinds of DNA looping affects the structure of the transition graph and

the properties of the transcriptional repression. The work presented here is based

on previous work by Vilar [85] on regulatory DNA looping of the tetrameric lac

repressor, where DNA looping was discussed from a thermodynamic perspective.

Here these models are studied using the theoretical framework or systems of finite

states and infinite copy numbers [66, 69] as laid out earlier in this chapter. Also,

a loop forming mechanism based on dimerization is considered here, which was not

discussed in [85].

Modelling LacI mediated transcriptional repression

The lac repressor LacI is a regulatory DNA binding factor that represses the tran-

scriptional activity of the lac operon in wild type E.coli bacteria. The lac operon

expresses proteins that are important for the breakdown of the lactose. In condi-

tions when the cell has access to its preferred substrate glucose, the lac repressor

inhibits the expression of the lac operon. When the cells has access to lactose but

not to glucose, the lac repressor is inactivated by allolactose, a byproduct of the

lactose breakdown, and expression of the lac operon is switched on. Here we are

only interested in how LacI exerts the transcriptional repression. More precisely, in

the binding dynamics of LacI to DNA, and in how LacI induces the formation of a

DNA loop.

In wild type E.coli the promoter region of the lac operon has three binding

sites for the lac repressor - called the main, first and second auxiliary operators.

When the lac repressor is bound to the main operator site, it blocks the initiation

of transcription by the RNA polymerase. The two auxiliary operators lie further

upstream (‘Upstream’ and ‘downstream’ characterize the location of genetic code

relative to the start site of transcription, where transcription is thought to proceed

in the downstream direction.) and their binding states do not influence the tran-

scriptional activity directly. Yet the presence of the auxiliary operators increases the
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efficiency of repression dramatically [56]. This is due to the ability of LacI to initiate

the formation of a DNA loop by binding to two sites on the DNA simultaneously.

The lac repressor is a tetrameric molecule that consists of a dimer of dimers.

Each of these dimers features a DNA binding domain with a high affinity to the lac

operator sites. Recently a model of the loop formation by the tetrameric repressor

was published that explains how this kind of loop formation increases the overall

repression efficiency [85]. But it has been suggested that there are at least two ways

in which the DNA loop can be formed, depending on whether the repressor is in its

dimeric or tetrameric form, as Lewis notes in [46] on p. 545:

“There are two plausible mechanisms for looping the DNA that are con-

sistent with the architecture of the lac repressor tetramer. The two

subunits of the tetramer can bind to the primary operator site and the

other dimer subsequently associates with an ancillary operator. Alter-

nately, free repressor dimers could bind to separate operators and a loop

would occur when the dimeric repressors associate into a tetramer. [...]

Both mechanisms are plausible and depend on the precise physiological

conditions.”

To illustrate the consequences of these different loop forming mechanisms, this

section considers several models for LacI mediated repression. The models assume

the existence of either one or two lac operator sites and different loop formation

mechanisms as indicated in figure 2.7. Model I considers only one operator site that

blocks transcription. Model II considers two operator sites, both of which block

transcription, but neglects the formation of a DNA loop. The other three models

describe different looping mechanisms: Model III describes the dynamics of tetramic

DNA loop formation. Model IV describes a loop formation that occurs exclusively

by dimerization. Model V also models dimeric loop formation, but allows the loop

also to open by the dissociation of the repressor from the DNA. It is assumed that

the resulting tetramer breaks up immediately.

Construction of the models. The models for the binding of the lac repressor to

the DNA (depicted in figure 2.7) are based on the principles laid out earlier (section
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Figure 2.7: Characteristic features of the different models for LacI based transcrip-
tional repression. Model I: one operator, no looping; model II: two operators, both
of which block transcription when occupied, no loop formation. Models III-V fea-
ture a main and an auxiliary operator between which the lac repressor may form a
DNA loop. Model III: the DNA loop is formed by tetrameric repressor; model IV:
the DNA loop is formed by dimeric repressor; model V: the DNA loop is formed by
dimeric repressor as in model IV, but the loop may also open by the dissociation of
the repressor from the DNA, after which the resulting tetrameric repressor breaks
up into dimers. The main operator sites, which block transcription when occupied,
are labelled om, the auxiliary operators are labelled ox.
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2.2). The state spaces Si for the models, i = 1, . . . , 5, are:

S1 = {om| om ∈ {0, 1}} (2.14)

= {0, 1},
S2 = {(om1, om2)| (om1, om2) ∈ {0, 1}2} (2.15)

= {(0, 0), (0, 1), (1, 0), (1, 1)},
S3 = S4 = S5 = {(ox, om, l)| (ox, om, l) ∈ {0, 1}2 × {0} ∪ (1, 1, 1)} (2.16)

= {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)},

where om, ox mark the main and auxiliary operators and l denotes the presence of

the DNA loop. The second line of the definition of each state space Si indicates the

ordering of the states (s1
i , s

2
i , . . .). For all models the promoter is assumed to be in

an active state if and only if the (or both in model II) main operator sites om are

free (om = 0 or om1 = om2 = 0).

The rate constants for lac repressor binding to and unbinding from the operator

sites are λ+
0 , λ

−
0 for the first operator, and λ+

1 , λ
−
1 for the second (in the order

as the sites appear in the definitions of Si (2.14, 2.15, 2.16). The rates for the

closing and opening of the DNA loops are ψ+
ij = aλ+

j , ψ
−
ij = bλ−j (compare equations

(2.12), (2.13)), for the tetrameric repressor, and ψ+
d , ψ

−
d , for the dimeric repressor,

as discussed in the previous section 2.2. With the help of the algorithm described in

the last section we can construct the infinitesimal generators Ki, i = 1, 2, 3, 4, 5 for

the models I, II, III, IV and V (see table 2.2). The corresponding transition graphs

are depicted in figure 2.8.

The models described here represent extreme cases where the lac repressor is

exclusively present in either the dimeric or tetrameric form. In a more realistic

scenario one would assume some equilibrium relationship between the dimeric and

tetrameric repressor molecules. For simplicity’s sake this more general scenario is

not discussed here.

Model Analysis

The infinitesimal generators Ki, i = 1, 2, 3, 4, 5, define the evolution of the proba-

bility vector pj(t), which contains the probabilities for the system to reside in each
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Figure 2.8: Transition graphs for the different lac repressor models I, II, III, IV, V
(compare figure 2.7). The numbering of states are indicated for models I, II, III.
The states in models IV, V are the same as for model III (see definitions (2.14, 2.15,
2.16)). The corresponding transition rates are omitted for clarity and can be inferred
from the infinitesimal generators Ki (2.17, 2.18, 2.19, 2.20, 2.21). Also compare the
definitions of transition rates in the last section 2.2 and figure 2.5. Operator sites
that are free, occupied or involved in a DNA loop are marked in white, black and
grey respectively. The main and auxiliary operators are marked by M and X once
for each model. States for which transcription occurs are shaded in green.
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respective state si at time t, by the Master equation

ṗj = KT
i pj .

As laid out earlier (compare equation (2.8)) we are interested in the solution of the

equation

0 = KT
i p,

which is called the invariant measure µi of Ki. The invariant measures for the

infinitesimal generators Ki are given below. It is convenient to write the invariant

measure

µi =
vi∑
j v

j
i

,

as the normalized form of the vector vi, where vji is the j-th component of the vector

vi. The vectors vi are:

v1 = [1, xλ0] , (2.22)

v2 = [1, xλ1, xλ0, x(x− 1)λ0λ1] , (2.23)

v3 =
[
1, xλ1, xλ0, x(x− 1)λ0λ1, x

a

b
λ1λ0

]
, (2.24)

v4 = [1, xλ1, xλ0, x(x− 1)λ0λ1, x(x− 1)ψdλ0λ1] , (2.25)

v5 =

1, xλ1, xλ0, x(x− 1)λ0λ1

 b
(
λ−0 +λ−1
ψ−d

)
+ 1

b
(
λ−0 +λ−1
ψ−d

)
+ bψd + 1

 , (2.26)

x(x− 1)λ0λ1

 ψd

b
(
λ−0 +λ−1
ψ−d

)
+ bψd + 1


 .

In the formulas for vi the substitutions,

λi =
λ+
i

λ−i
, ψd =

ψ+
d

ψ−d
,

were made. Note that if we set b = 0 in v5 we retrieve v4 as expected (Setting b = 0

abolishes the alternative loop opening in model V, so it becomes equivalent to model

IV, compare figure 2.7).

One consequence of the different loop forming mechanisms of the models can be

seen by considering the limit of the invariant measure as the molecule numbers x go
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to infinity. These limits limx→∞ µi = µ̄i are

µ̄1 = [0, 1] ,

µ̄2 = [0, 0, 0, 1] ,

µ̄3 = [0, 0, 0, 1, 0] ,

µ̄4 =
1

1 + ψd
[0, 0, 0, 1, ψd] ,

which means that for high molecule numbers the measure for the tetrameric repres-

sor loop vanishes (model III), while it stays positive for the dimeric repressor loop

(models IV and V). The invariatn measure µ̄5 looks similar to µ̄4, where µ̄5 also con-

tains the extra terms in the brackets that appear in the definition of v5 in equation

(2.26)). The states with measure 1 in models 1, 2 and 3 are those where all binding

sites are occupied, as should be expected.

Repression levels. The level of transcriptional repression R is typically defined

as the fraction of maximal and repressed rates of transcription (see [85]),

R =
Tmax
Trep

.

In terms of our model the actual transcription rate equals that of a maximal tran-

scription rate Tmax times the probability that the gene resides in an active state. So

the actual (repressed) transcription rate Trep is described by

Trep = Tmax
∑

sj∈Siact

µji (x),

where Siact ⊂ Si is the subset of states that are transcriptionally active. The tran-

scription is maximal, when there are no repressors around, which is reflected in the

equation

Tmax
∑

sj∈Siact

µji (0) = Tmax,

because when x = 0, the operator sites are always free and the invariant measure is

concentrated in s1 in all models, µ1
i (0) = 1, and s1 is an active state. In sum, the
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repression level for model i is of the form

Ri =
1∑

sj∈Siact
µji
.

The repression levels for the models are

R1 = 1 + xλ0, (2.27)

R2 = 1 + (λ0 + λ1)x+ x(x− 1)λ0λ1, (2.28)

R3 =
1 + (λ0 + λ1 + a

bλ1λ0)x+ λ1λ0x(x− 1)
1 + λ0x

, (2.29)

R4 =
1 + (λ0 + λ1)x+ (1 + ψd)λ0λ1x(x− 1))

1 + λ0x
, (2.30)

R5 =
1 + (λ0 + λ1)x+

b

„
λ−0 +λ−1
ψ−
d

«
+1+ψd

D λ0λ1x(x− 1))
1 + λ0x

, (2.31)

where

D = b

(
λ−0 + λ−1
ψ−d

)
+ bψd + 1.

The number of binding sites and the molecular mechanism of the DNA loop

formation is reflected in the structure of the corresponding repression levels and the

location of the looping rate constants. The denominators in the fractions correspond

to the transcriptionally active states. The order of magnitude of the DNA looping

formation parameters a, ψd, is typically larger than the rates for lac repressor to

operator binding [85]. This means that the properties of the repression level will

strongly depend where these DNA looping parameters appear. For the repression

level of the tetrameric repressor model, R3, the looping parameters appear in the

linear term of the numerator, while for the dimeric repressor models, R4, R5 they

appear in the quadratic term. The consequence of this is a qualitative difference in

the repression level as a function of the number of repressor molecules x.

The repression levels are compared in figure 2.9. The curve for the tetrameric

repressor loop model, R3, has been plotted with parameters from the literature [85],

as a benchmark against which to compare the other models. For repression level

curves R1, R2 the binding constants for the main operators, λ0, λ1, were increased to

make the repression level for x = 5 comparable to R3. For the dimeric repressor loop

model, R4, the parameter for dimeric loop formation, ψd, was varied accordingly.
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Figure 2.9: Comparison of repression levels R1, R2, R3, R4, R5 for the five models
for the lac repressor (see (2.27, 2.28, 2.29, 2.30, 2.31)). The repression level R3

was chosen a benchmark and calculated for literature based parameters, λ0 = λ1 =
4.56, b = 1, a = 596 [85]. For models without DNA loop formation (R1, R2), the
binding constants were fitted so that repression levels were comparable for x = 5 re-
pressor molecules; for R1, λ0 = 523; for R2, λ0 = λ1 = 11. For the dimeric repressor
model, R4, the dimerization constant ψd was the variable parameter. Parameters
for R4, R5: λ0 = λ1 = 4.56, λ−0 = λ−1 = ψ−d = 0.016s−1, ψ = 148, b = 0.1. The unit
of the binding constants λi and ψ are ‘per particle’. The shape of R3 is determined
by its relatively large linear coefficient compared to its smaller quadratic coefficient.
The formulas for the other repression levels do not share this behaviour - either their
linear and quadratic coefficients are of comparable order of magnitude, or have a
larger quadratic coefficient.
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Here, a relatively weak loop formation rate sufficed to attain the same repression

level as R3. For R5, even small values of b, which controls the alternative loop

opening mechanism in model V (see figures 2.7, 2.8), decrease the repression level

compared to R4 in such a way, that it can not be compensated for by an increase of

the dimeric loop formation constant ψd. The reason for this is that positive values

for b diminish the impact that the dimeric loop constant has on the repression level.

The repression level curve for tetrameric loop formation, R3, rises steeply for

low values of x, and then flattens out as x increases. In contrast, the curves for

all other models retain a relatively steep slope. It has been suggested, that this

property makes the repression by tetrameric LacI robust to fluctuations in molecule

numbers - in the sense that variations in the number of repressors lead to only small

changes in the repression level [85]. The reason that tetrameric repression behaves

this way, while dimeric repression does not, lies in the position of the corresponding

loop constants in the equation for the repression levels. In R3, the large linear

term lets the repression level rise quickly for low molecule numbers and flatten out

as molecule numbers rise, while the large quadratic term in the dimeric repression

level, R4, leads to an approximately linear behaviour.

Another way to illustrate the different behaviours of the models is to look at the

typical distribution of the invariant measures on the operator states (figure 2.10).

The large loop formation constants increase the probabilities for the Markov chain

to reside in the loop states and those that can be directly reached from it. For the

tetrameric repressor model (model III) this means that for very low molecule num-

bers the system is pulled into the loop state and those where only one operator site

is occupied. For higher molecule numbers x, the system resides mostly in the state

where all operators are occupied - in this range of x the sensitivity of R3 to changes

in x is low. For dimeric repressor (model IV), there are no transcriptionally active

states that can be reached from the loop state. This leads to a strong repression,

that is sensitive to changes in x. The introduction of the alternative way of loop

opening for dimeric repression (model V) makes a transcriptionally active state ac-

cessible from the loop state. The consequence of this is a decrease in the repression

efficiency.

Generally, it should be recalled that in this theoretical framework an important

assumption is a homogeneous spatial distribution of particles, even at low numbers.
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occupied operator 
site

free
operator site

occupied operator 
site that is involved 

in DNA loop

loop state and its 
neighboring states

Tetrameric repressor - model III Dimeric repressor - model IV

Dimeric repressor - model V

state is 
transcriptionally active

Figure 2.10: Illustration of the effect of the connectivity of the loop state in the
models for tetrameric and dimeric repressors. The large constants for loop formation
increase the probability that the Markov chain resides in looped states and those
that are accessible from it (shaded in blue). In model III the system is pulled
towards the tetrameric loop state, while the fully occupied state dominates for higher
molecule numbers x. In model IV only the fully occupied state is accessible from the
loop state, which yields a strong repression. In model V a transcriptionally active
state (shaded in green) can be reached from the looped state - hence the repression
efficiency is decreased compared to that of model IV.
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That means that diffusion processes are not considered explicitly, but it is assumed

that particles are uniformly able to find the binding sites.

The model parameters for the lac repressor models were based on the experimen-

tal work presented in [55]. Here the authors introduced plasmids carrying lacZ genes

under the control of the natural lac promoter and with different arrangements of lac

operators, which were introduced into E.coli host strains that were lacZ and lacI

deficient. Different numbers of lac repressor were provided by additional plasmids.

LacZ activity was then measured by standard assays. Such an experimental setup

could be used to test further predictions of models like those presented here.

Summary: Analysis of different models for LacI mediated repression

This section presented a number of Markov chain models of the transcriptional inhi-

bition mechanisms of the lac repressor. A previously described model of DNA loop

formation for the tetrameric repressor [85] was compared to alternative mechanisms

based on the dimeric lac repressor. For comparison, also models with one or two

operator sites without DNA loop formation were discussed. For all models the cor-

responding infinitesimal generators, invariant measures and repression levels were

derived. It was discussed how the different molecular mechanisms are reflected in

these expressions.

Because the rate constants for DNA looping are typically much larger than those

for normal operator binding, their positions dominate the behaviour of the equation

for the repression levels. For dimeric repressors the looped state is accessible only

from the state where both two operator sites are occupied, while for tetrameric re-

pressors the looped state is accessible when one of the two operator sites is occupied.

Therefore the loop formation constants enter the repression level in front of terms

that are either quadratic - for dimeric repressors, or linear - for tetrameric repressors,

in the number of molecules x.

Consequently the repression levels for dimeric and tetrameric repressors behave

very differently in the context of fluctuating numbers of repressor molecules. The

repression curve for tetrameric repressors flattens out when molecule number in-

crease, while the curve for dimeric repressor retains a steep slope. This means that

the repression with dimeric loop formation, just as mechanisms without a DNA

loop, is more sensitive to variations in the number of molecules than repression that
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relies on tetrameric loop formation. This is a general principle of gene regulation

mechanisms that involve DNA looping.

Chapter summary

This chapter introduced an algorithm to generate a Markov chain based descrip-

tion of genetic regulatory mechanisms. The algorithm produces a model description

which fits into the theoretical framework of molecular systems of finite states and

infinite copy numbers as described by Sbano [69], [66]. The algorithm is capable

to generate infinitesimal generators for MC models that include multiple genes reg-

ulated by multiple operator sites and also takes into account cooperative binding

and DNA looping, which were not treated in [69, 66]. The algorithm was applied to

compare different DNA looping mechanisms of the lac repressor. In particular it was

discussed how these mechanisms affect the structure of the corresponding transition

graph, its invariant measure and the properties of the repression level in the context

of robustness to fluctuations in repressor numbers.

The analysis of the models for the lac repressor suggests that dimeric DNA loop-

ing does not share the noise robustness properties that tetrameric loop formations

confers. This means that if a cell wants to stabilize the level of repression in the

presence fluctuating repressor numbers, tetrameric looping should do better than

dimeric looping. This result illustrates a principle that distinguishes two general

mechanisms for DNA looping. One, a loop between two operator sites is formed by

binding of a factor to one site and then binding to the second operator site. Two,

two regulating factors bind to two operator sites on the DNA and then form a loop

by dimerization. It would be interesting to see if and in which contexts loop forma-

tion by dimerization happens in vivo. Also, robustness was here used in the sense

of the sensitivity of the steady state to parameter changes. In order to extend the

analysis, one could also conduct a time-dependent study.

The implementation of the described algorithm represents a step in the effort

to facilitate stochastic modelling of genetic regulatory systems. It automatizes the

translation of biological models into a mathematical description. This makes it

easier and faster to analyse these kind of models. The algorithm as presented still

leaves room for improvements and extensions, such as an implementation of the

identification of independent submodules as described in section 2.1. Generally it
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would be desirable to embed this tool into a larger computational framework, where

the constructed models are analyzed further, similar to the integrated modelling tool

‘Copasi’ for metabolic reaction networks [37].

The next chapter presents an application of the modelling technique described

in this chapter to a two gene system that also contains transcriptional regulation by

the lac repressor. This system is the engineered genetic circuit, that was introduced

in chapter 1, and which is inspired by the genetic oscillators that drive circadian

clocks.



Chapter 3

Modelling and analysis of the

genetic clock

In this chaper, a model for the genetic clock, that was described in chapter 1, is

derived and analysed. From Markov chain models for the two promoter regions of

the clock, the average dynamics are derived based on the theory described in the

previous chapter. The resulting ODE system is analysed in order to investigate its

dynamical proterties, in particular the generation of sustained oscillations, which

correspond to the existence of a stable limit cycle.

3.1 Derivation of the model for the genetic clock

In order to derive the average dynamics of the detailed model of the genetic reg-

ulation for the engineered clock, the Markov chain on the gene states is split into

submodules, which are then analysed separately for their invariant measures. From

these the invariant measure of the full system can be derived as described in the

previous chapter (section 2.1). We illustrate this with an example first, and then

continue to derive the model for the full clock circuit.

3.1.1 Average dynamics and decoupling of the Markov chain on

the promoter states

In the last chapter, an example of a clock like gene network (example 1, see figure

2.2) was introduced and the graphical representation of its infinitesimal generator K

constructed by the described algorithm (figure 2.3). We will conclude the discussion

76
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of that example here by deriving the average dynamics of that system and, in he

course of that, illustrate how the Markov chain on the gene states can be decoupled.

After that, we will discuss the somewhat more complicated, yet comparable, situa-

tion of the engineered clock circuit as introduced in chapter 1 and depicted in figure

3.1.

Example 1, continued

Derivation of the average dynamics. In the example 1, as depicted in figure

2.2, two genes for proteins X and Y were regulated by three operator sites (compare

table 2.1). The activation site o0 needed to be bound by X for the gene, p1, for X

to be active, site o1 was a site for the repressor Y , which would inhibit expression

of X when bound. Site o2 was an activating site for the gene p2. The state of the

Markov chain is defined by the triple of the binding states, s = (o0, o1, o2), and the

state space given by

S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}(3.1)

= {s0, s1, s2, . . . , s7}.

Further, gene p1 is active when s ∈ Sp1 = {s4, s5}, and gene p2 is active when

s ∈ Sp2 = {s1, s3, s5, s7}.
Recall the infinitesimal generator K for example 1, which is given in table 3.1

(compare its graphical representation in figure 2.3). To be able to define the full

master equation,

∂Pi(n, t)
∂t

= L∗ii(Pi(n, t)) +
1
ε

7∑
i=0

KT
ij(n)Pj(n, t), (3.2)

we need to specify the birth-death process of the gene products. Transcription

and translation are not considered seperately but lumped into one joint expression

process. The variable n = (n1, n2) describes the number of particles of type X and

Y . The diagonal matrix of difference operators, L∗, can be written as a sum

L∗ = L∗R + L∗E , (3.3)

where L∗R is a matrix that describes the reactions for X,Y that do not depend on



Chapter 3. Modelling and analysis of the genetic clock 78

the state s of the Markov chain of the genes, and L∗E describes those reactions, that

do [66]. The reactions defining L∗R correspond here to protein degradation and leaky

expression. The proteins are degraded with rates δ1, δ2. We consider basal rates of

expression β1, β2, which describe leaky expression that takes place regardless of the

gene state:

∅ β1−→ X
δ1−→ ∅, ∅ β2−→ Y

δ2−→ ∅.

In sum this means that (L∗R)ij = δij (lexp + ldeg), with

ldeg = δ1E
+1
n1

+ δ2E
+1
n2
− (δ1 + δ2)id,

lexp = β1E
−1
n1

+ β2E
−1
n2
− (β1 + β2)id,

where E±1
n are difference operators acting on a function f(n) as defined by E±1

n f(n) =

f(n± 1), and δij is the Kronecker delta.

The matrix L∗E describes the regulated gene expression that depends on the

activity state of the genes. Molecule X is produced with rate α1 when the first gene

p1 is active. Molecule Y is produced at rate α2, when the second gene p2 is active.

This means we have the reactions

∅ α1−→ X, s ∈ Sp1 = {s4, s5}; ∅ α2−→ Y, s ∈ Sp2 = {s1, s3, s5, s7};

where Sp1 , Sp2 are the subsets of the state space S, for which the genes p1, p2 are

active, respectively. The resulting operator matrix L∗E is given in table 3.1.

After taking the continuum limit, i.e. transforming the particle numbers n1, n2

into the concentrations x, y, the master equation turns into a Fokker-Planck equa-

tion, restated here from (2.3),

∂pi(x, t)
∂t

= L̂∗ii(pi(x, t)) +
1
ε

7∑
j=0

KT
ij(x)pj(x, t), (3.4)

where ε originates from the continuum limit approximation. The matrix operator

L̂∗ is of the form L̂∗ = L̂∗R + L̂∗E (compare (3.3)) with

(
L̂∗R

)
ij

= δij

(
(β1 − δ1)

∂

∂x
+ (β2 − δ2)

∂

∂y

)
.
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The matrices K and L̂∗E for (3.4) are given in table 3.2. In order to derive the

average dynamics, we need to compute the invariant measure of K (see table 3.2).

The invariant measure is given by µ = vP
i vi

, where

v = (1, ω2x, ω1y, ω1ω2xy, ω0x, (3.5)

ω0ω1x
2, ω0ω1xy, ω0ω1ω2x

2y),

with the substitutions

ωi =
ω+
i

ω−i
, i = 0, 1, 2.

The associated differential equations in terms of the concentrations x, y are

ẋ = β1 + α1

∑
s∈Sp1

µs − δ1x = β1 + α1
ω0x

(1 + ω1y)(1 + ω0x)
− δ1x, (3.6)

ẏ = β2 + α2

∑
s∈Sp2

µs − δ2y = β2 + α2
ω2x

1 + ω2x
− δ2y. (3.7)

Alternative derivation of the invariant measure µ by decoupling of the

Markov chain (S,K) into independent submodules. In the equation (3.6)

above the sum of invariant measures of the active gene states could be written as

a product. This is so, because for this system it is possible to derive the invariant

measure by first decoupling the Markov chain into submodules and then solving

those separately. As noted in the previous chapter (section 2.1), this procedure

makes use of the tensor product (see [48] for the definition and algebraic properties

of the tensor product). For one, the binding dynamics for the operator sites o0, o2,

which molecule X binds to, are independent to those of the operator site o1, to

which molecule Y binds to. Indeed, the generator K can be written as a sum of

tensor products:

K = I2 ⊗KX +KY ⊗ I4, (3.8)

=

 KX 0

0 KX

+

 −ω+
1 yI4 ω+

1 yI4

ω−1 I4 −ω−1 I4

 .



Chapter 3. Modelling and analysis of the genetic clock 82

with In being the n-dimensional identity matrix,

KX =


−(ω+

0 + ω+
2 )x ω+

2 x ω+
0 x 0

ω−2 −ω+
0 x− ω−2 0 ω+

0 x

ω−0 0 −ω−0 − ω+
2 x ω+

2 x

0 ω−0 ω−2 −(ω−0 + ω−2 )

 ,

and

KY =

 −ω+
1 y ω+

1 y

ω−1 −ω−1

 .
The equality (3.8) holds after an appropriate renumbering of the states, which cor-

responds to a reordering of rows and columns. The two matrices KX ,KY are in-

finitesimal generators for Markov chains on the two state spaces

SX = {(o0, o2)| o0, o2 ∈ {0, 1}} = {(0, 0), (0, 1), (1, 0), (1, 1)} = {sX0 , sX1 , sX2 , sX3 },

SY = {o1| o1 ∈ {0, 1}} = {0, 1} = {sY0 , sY1 }.

The corresponding activity of the genes depends on the states as follows. Gene p1 is

active, when the Markov chain (S,K) resides in either one of the states s ∈ {s4, s5} ⊂
S (compare (3.1)). This corresponds to the Markov chain (SX ,KX) residing in sX2

or sX3 , while the Markov chain (SY ,KY ) must reside in state sY0 . The gene p2 is

active, when the MC (S,K) resides in s ∈ {s1, s3, s5, s7} ⊂ S. This corresponds to

the MC (SX ,KX) residing in sX1 or sX3 , where the MC (SY ,KY ) may reside in any

state.

Further, since after making the continuum limit we are dealing with concentra-

tion and not particle numbers, we even can consider the binding states of the two X

specific sites, o0 and o2, independently and write KX as a sum of tensor products:

KX = I2 ⊗KX0 +KX2 ⊗ I2 (3.9)

=

 KX0 0

0 KX0

+

 −ω+
2 xI2 ω+

2 xI2

ω−2 I2 −ω−2 I2

 ,
where

KXi =

 −ω+
i x ω+

i x

ω−i −ω−i

 , i = 0, 2.
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The equality (3.9), as equality (3.8), holds after an appropriate reordering of rows

and columns. We have thus broken down the Markov chain (S,K) into three sim-

ple Markov chains, one for each of the binding sites o0, o1, o2. The corresponding

invariant measures are

µX =
1

1 + ω2x+ ω0x+ ω0ω2x2
(1, ω2x, ω0x, ω0ω2x

2); (3.10)

µoi =
1

1 + ωix
(1, ωix), i = 0, 2; µY = µo1 =

1
1 + ω1y

(1, ω1y). (3.11)

The tensor product of these can be used to find the invariant measure µ of the full

system (compare (3.5)) and the one for the MC (SX ,KX) (compare (3.10)):

µX ⊗ µY = ((µX)1µY , . . . , (µX)4µY ) = µ, (3.12)

µo0 ⊗ µo2 = ((µo0)1µo2 , (µo0)2µo2) = µX . (3.13)

The equations (3.12) and (3.13) hold after an appropriate reindexing. The corre-

sponding terms for the sums of invariant measures in the equations for the average

dynamics, (3.6) and (3.7), can be broken down into products of the corresponding

terms of the invariant measures of the submodules (equations (3.10),(3.11), (3.12)

and (3.13)). For the ODE for x, equation (3.6):

(µ4 + µ5) =
(
µX2 + µX3

)
µY0 = µo01

(∑
i

µo2i

)
µY0 = µo01 µ

o1
0 =

ω0x

(1 + ω1y)(1 + ω0x)
.

And for the ODE for y, equation (3.7):

(µ1 + µ3 + µ5 + µ7) =
(
µX1 + µX3

)(∑
i

µYi

)
= µo21

(∑
i

µo0i

)
= µo21 =

ω2x

1 + ω2x
.

We have the following generalization. Assume that instead of three binding sites,

we have three groups of binding sites, whose evolution is described by independent

Markov chains (S1,K1), (S2,K2), (S3,K3). Let gene p1 be active if and only if s′ ∈
S1
act ⊂ S1 and s′′ ∈ S2

act ⊂ S2. Let gene p2 be active if and only if s′′′ ∈ S3
act ⊂ S3.

Then using the same model and parameters as above, the corresponding average
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dynamics for this system can be derived and are of the form

ẋ = β1 + α1

 ∑
s′∈S1

act

µ1
s′

 ·
 ∑
s′′∈S2

act

µ2
s′′

− δ1x (3.14)

ẏ = β2 + α2

 ∑
s′′′∈S3

act

µ3
s′′′

− δ2y, (3.15)

where µi, i = 1, 2, 3 are the invariant measures of the infinitesimal generators Ki, i =

1, 2, 3. This decoupling of the Markov chain on the gene states will be used to derive

the average dynamics of the engineered circuit, that was described in the introduc-

tory chapter. The sum of the invariant measures of the states in Siact, i = 1, 2, 3,

will be denoted by the functions TglnA(x), TLacOp(y) and TglnK(x), respectively, in-

dicating their respective correspondence to the glnAp2 promoter, the lac operator

sites and the glnKp promoter. The dependence on either x or y indicates that the

corresponding operator sites are only targeted by either the transcription factor NRI

or the repressor LacI.

The Markov chain of the engineered clock

The model of the engineered circuit features seven (including the NRI governor

sites) binding sites for NRI, and two binding sites for the lac repressor, distributed

onto two promoter regions (see figure 3.1). To derive the average dynamics for this

system, we will decouple its infinitesimal generator K into submodules as illustrated

for the example system 1. In particular, we can again separate the dynamics for

the LacI specific binding sites from those, that are specific to NRI. Also, when we

apply the continuum approximation, we can separate the binding dynamics for the

two promoter regions, glnAp2 and glnKp.

The lac repressor binding dynamics have already been discussed in the last chap-

ter, so we can work with the invariant measures derived there. Next we will look

into the NRI mediated activation of transcription.

3.1.2 Transcriptional activation

This section deals with the modelling of transcriptional activation by the transcrip-

tion factor NRI. NRI dependent expression rates of the two promoters glnAp2 and



Chapter 3. Modelling and analysis of the genetic clock 85

glnGglnAp21 2 O*O*

1 2 glnKp lacI

NRI

NRI~P

LacI

1 2 3

ρ1 ρ2 ρ3 ν1 ν2

λ1 λ2

κ1 κ1

Figure 3.1: Diagram of the regulatory interactions and operator sites in the synthetic
clock, compare figure 1.7 in chapter 1. The diagram shows the two gene modules
and indicates the binding sites for NRI and LacI. Names for the binding parameters
for all binding sites are indicated.

glnKp were derived, based on the invariant measures of corresponding Markov chain

models. Parameter ranges were discussed based on published experimental data.

For comparison, different models are considered as shown in figure 3.2. Model I,

where the gene activity is governed by only one binding site. Model II, where the

gene activity is governed by two binding sites and binding happens cooperatively.

And a third model for the glnAp2 promoter, model III, where, in addition to the

two enhancer sites, the gene activity is reduced by NRI binding to governor sites at

high concentrations.

As described in chapter 1, NRI activates transcription by interacting with the

σ54-RNA polymerase, after it has bound to the promoter site, and thereby mediating

the transition from the closed into the open transcription complex by the formation

of a DNA loop [77]. For the model we neglect the details of this interaction and also

the dynamics of the RNA polymerase, but assume that transcription takes place

when NRI is bound to the enhancer sites. Experimental data suggest that a certain

degree of dimer- or oligomerization is required before NRI can activate transcription

[59]. In the model this is reflected insofar, that gene expression is active only when

all enhancer sites of the given promoter are occupied. Further, NRI needs to be

phosphorylated to activate transcription, and also shows stronger binding activity
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glnGglnAp21 21 2 3

glnGglnAp21 2

glnGglnAp21

glnGglnAp21 21 2 3

glnGglnAp21 2

glnGglnAp21

Binding site arrangement Binding states needed for gene expression

Model I

Model II

Model III

1

1

NRI enhancer site

NRI governor site

1 free binding site

1 occupied binding site
arrow indicates the binding states profile 

that is needed for gene expression

Figure 3.2: Illustration of the three models of NRI mediated activation of gene
expression. Model I has only one enhancer site that needs to be occupied for gene
expression. Model II features two NRI enhancer sites that both need to be occupied
for gene expression and to which NRI binds cooperatively (see text). Model 3 treats
the also includes the NRI governor sites, which need to be free for gene expression to
occur. NRI molecules also bind cooperatively to neighbouring governor sites. The
illustrations are for the situation of the glnAp2 promoter driven activator module of
the engineered clock. Models I and II also apply to the repressor module, which is
driven by the glnKp promoter, compare figure 3.1.
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in its phosphorylated form [87]. As described in chapter 1, the host strain of the

engineered clock carries a mutated NRI kinase, which leads to high degrees of NRI

phosphorylation [8]. Therefore the phosphorylation dynamics are neglected in the

model and NRI is assumed to be mostly phosphorylated.

The construction of the model, and the determination of corresponding param-

eter ranges, rely on a number of experimental studies of NRI dependent transcrip-

tional activation, which investigated the binding site occupation and transcriptional

activation as a function of NRI concentration for different binding site arrangements

[4, 7, 54, 72, 87]. In [72, 87], the authors measured the binding affinity of NRI to

the enhancer sites of the glnAp2 promoter and their role in transcriptional activa-

tion. In [4], the transcriptional activation of the glnKp promoter for different NRI

concentrations is compared with activation of the glnAp2 promoter. The effect of

the governor sites of the glnAp2 promoter was studied in [7, 54]. Concerning the

significance of these data it needs to be noted that they were collected under the

specific conditions of the given experiment - for example pH value, concentrations

of ATP and RNA polymerases or the phosphorylation state of NRI, which differ to

varying degrees from the biological conditions in vivo. Also, the parameter estimates

vary between experiments. Together, this means that the published data can only

serve to identify feasible parameter ranges for modelling the engineered circuit, not

to yield exact values. Also, it has been reported from scanning force microscopy

studies, that NRI forms oligomers up to the size of an octameric structure [89],

for which detailed experimental data is lacking, and which is also neglected in the

models discussed here.

Figure 3.1 shows the location of the NRI binding sites in the engineered circuit.

The glnAp2 promoter of the activator module features two enhancer sites that ac-

tivate transcription and three governor sites that inhibit transcription at high NRI

concentrations. We consider three models for the activity of the activator module

(see figure 3.2). First, a simplified model where transcription is activated by only

one binding site (model I). Second, a model for the cooperative binding of NRI to

the two enhancer sites (model II). And thirdly, a model that combines the cooper-

ative activation of transcription with the inhibition mediated by the governor sites

(model III). For the glnKp driven repressor module we consider two models, with

one or two enhancer sites (corresponding to models I and II in figure 3.2). The jus-
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tifications for the one-enhancer-site model of transcriptional activation are, for one,

to illustrate the possible design choices for changing the present engineered clock,

or for manufacturing similar gene circuits - indeed, one enhancer site is sufficient

to allow for NRI mediated activation of gene expression [87] - and secondly, as an

approximation for the cooperative model.

Model I - one enhancer site. When the expression of the gene is ruled by

the binding state of just one enhancer site, the state space is two dimensional,

s ∈ S1 = {0, 1}, and transcription is active for s = 1. When ν+, ν− denote the

binding and unbinding rates for that enhancer site, the transpose of the infinitesimal

generator of the Markov chain and the corresponding invariant measure are given

by

KT
1 =

 −xν+ ν−

xν+ −ν−

 , µI =
1

1 + νx
(1, νx),

ν+

ν−
= ν.

The corresponding rate of transcriptional activity is

T 1
glnAp(x) = µI2(x) =

νx

1 + νx
. (3.16)

Model II - cooperative binding to two enhancer sites. When the expression

of the gene is ruled by two binding sites o1, o2, to which NRI binds cooperatively,

the state space is four-dimensional,

s = (o1, o2) ∈ S = {(0, 0), (0, 1), (1, 0), (1, 1)}. (3.17)

If the corresponding binding rates are denoted by ν+
i , ν

−
i , i = 1, 2, and the coopera-

tivity constant by ψ, then the transpose of the infinitesimal generator of the Markov

chain of the gene and its invariant measure are given by

KT
2 =



−xν+
1 − xν+

2 ν−2 ν−1 0

xν+
2 −(x− 1)ψν+

1 − ν−2 0 ν−1

xν+
1 0 −ν−1 − (x− 1)ψν+

2 ν−2

0 (x− 1)ψν+
1 (x− 1)ψν+

2 −ν−1 − ν−2


,
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µII =
v∑
i vi

, v = (1, ν2x, ν1x, ψν1ν2x
2). (3.18)

If the gene is expressed only when both enhancer sites are occupied, then the corre-

sponding rate of transcriptional activity is

T 2
glnAp(x) = µII4 (x) =

ψν1ν2x
2

1 + (ν1 + ν2)x+ ψν1ν2x2
. (3.19)

A note on the Hill equation. When the cooperativity constant ψ is large com-

pared to the sum of the dissociation constants 1
νi

, such that ν1+ν2
ψν1ν2

=
1
ν1

+ 1
ν2

ψ ≈ 0,

then equation (3.19) can be approximated by a Hill equation,

T 2
glnAp(x) ≈ x2

k + x2
, k =

1
ψν1ν2

, (3.20)

that attains its half maximum for x =
√
k. This means that, in this situation, the

activation threshold is determined by k, which is the inverse of the product of the

binding coefficients and the cooperativity constant.

Model III - enhancer and governor sites. For the governor sites, we assume

that binding to neighbouring sites occurs cooperatively with the same cooperativity

constant ψ as for the enhancer sites. Since we are treating the amount of NRI as a

concentration x, we can decouple the Markov chain for the glnAp2 promoter into a

Markov chain for the enhancer sites, treated in model II, and a Markov chain for the

governor sites. The function for transcriptional activity is then derived by taking

products of the appropriate invariant measures of these two Markov chains. The

state space for the MC of the governor sites is eight-dimensional, with s = (o1, o2, o3),

and

s ∈ S = {0, 1}3 (3.21)

= {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

The infinitesimal generator K can be quickly constructed by the algorithm described

in the previous chapter using the input parameters: opsites x x x, coop 1 1 0, coop

0 1 1; and is therefore omitted here. Its invariant measure is given by

µgov =
v∑
i vi

, v = (1, ρ3x, ρ2x, ψρ2ρ3x
2, ρ1x, ρ1ρ3x

2, ψρ1ρ2x
2, ψ2ρ1ρ2ρ3x

3). (3.22)
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The invariant measure for model III is given by the tensor product µIII = µII⊗µgov.
Consequently, the transcriptional activity for the glnAp2 promoter including the

enhancer and governor sites is now given by the product of respective invariant

measures for the enhancer sites µII in equation (3.18), and for the governor sites

µgov in equation (3.22):

T 3
glnAp2(x) = µII4 (x)µgov1 (x) =

ψν1ν2x
2

1 + (ν1 + ν2)x+ ψν1ν2x2
× (3.23)

1
1 + (

∑3
i=1 ρi)x+ (ψ(ρ1ρ2 + ρ2ρ3) + ρ1ρ3)x2 + ψ2ρ1ρ2ρ3x3

.

Here it is assumed that binding to any governor site inhibits transcription, so that

transcription can take place only when all governor sites are free. This corresponds

to the state s1 = (0, 0, 0) in S as defined in (3.21) of the Markov chain for the

governor sites, which has the corresponding invariant measure µgov1 (x) defined in

(3.22). The factor µII4 is the invariant measure defined in (3.18) of s4 in S defined

in (3.17).

Models for the glnKp promoter. The models for transcriptional activity of

the glnKp promoter are of the same form as those for the glnAp2 promoter, safe the

governor sites (models I and II, compare figure 3.2). Thus, when κ and κ1, κ2 denote

the binding constants for the one and two enhancer site models, the corresponding

transcriptional activity functions are

T 1
glnKp(x) =

κx

1 + κx
, (3.24)

T 2
glnKp(x) =

ψκ1κ2x
2

1 + (κ1 + κ2)x+ ψκ1κ2x2
. (3.25)

Figure 3.3 compares the transcriptional activation profiles for the glnAp2 and

glnKp promoters for literature based parameters. Transcriptional activation of both

promoters occurs for NRI concentrations in the nano-molar region. The activation

threshold for glnKp is higher than that for glnAp2, because one of its binding sites

has a weaker affinity for NRI [4]. When NRI concentrations rise above the glnKp

activation threshold, the glnAp2 activity is reduced again due to the effect of the

governor sites, which have a very low affinity for NRI [7]. Generally, the binding

constants for the strong NRI sites, like the enhancer sites for glnAp2 promoter, are



Chapter 3. Modelling and analysis of the genetic clock 91

of the order of 10−1 . . . 101 per particle (for a bacterial cell, one particle corresponds

to a concentration of about 0.1nM to 1nM), and the cooperativity is estimated to

be of the order 10 . . . 1000. In wild type E.coli typical NRI concentrations range in

the order of 10−1 . . . 102nM [72, 87].

Figure 3.3: Comparison of transcriptional activation mediated by NRI. The glnAp2
promoter has two relatively strong enhancer sites, while the glnKp promoter has
a strong and a weak enhancer site, leading to a higher activation threshold for
the glnKp promoter [4]. At even higher NRI concentrations the glnAp2 activity
is reduced due to the effect of the low affinity governor sites [7]. Parameters are
ν1 = ν2 = 0.1nM−1, ψ = 550, ρ1 = 10−4nM−1, ρ2 = 10−6nM−1, ρ3 = 10−10nM−1 for
model T 3

glnAp2 as defined in (3.23); ν = 2nM−1 for the single site model T 1 as in
equation (3.16) (one site); and κ1 = 0.1nM−1, κ2 = 10−4nM−1 for the T 2

glnKp model
for the glnKp promoter, see (3.25).

3.1.3 Average dynamics of the clock

Here we assemble the average dynamics of the engineered circuit, using the invariant

measures, that were derived for the NRI dependent transcriptional activation and

LacI mediated repression of transcription. The decoupling of the Markov chain

for the states of the activator and repressor modules of the clock circuit can be

performed similarly as for the example system 1 (see text around equations (3.14,

3.15)). Each operator site in example 1 corresponds to a submodule of multiple

operator sites in the engineered clock: site o0 to the NRI mediated regulation of the

glnAp2 promoter, site o2 to the NRI mediated activation of the glnKp promoter, and

site o1 to the LacI mediated repression of the glnAp2 promoter. Because the glnAp2
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promoter is only active when both Markov chains for NRI and LacI regulation are in

the active states, their respective measures enter the average dynamics of the clock

as a product.

Assembling the equations for the NRI and LacI based regulatory interactions,

we arrive at the deterministic differential equations for the whole circuit, which

describe the time evolution of the concentrations of the NRI, denoted by x, and of

LacI proteins, denoted by y (compare the ODE system (3.14, 3.15)):

ẋ = β1 + α1TglnAp(x)TLacOp(y)− δ1x, (3.26)

ẏ = β2 + α2TglnKp(x)− δ2y, (3.27)

where δi are the rates of protein degradation, αi are the maximal expression rates

for activated promoters, and βi are the rates of basal expression, that takes place

independently of the promoter state. For the derivation of the average dynamics, the

corresponding operator matrix L̂∗ was constructed according to the same principles

as the one in example 1 (compare table 3.2). The functions TglnAp, TLacOp, TglnKp

can be one of the functions derived earlier in this chapter - or derived from those in

the previous chapter, in the case for TLacOp. More precisely, TglnAp may be defined

as in (3.16), (3.19) or (3.23); TglnKp may be defined as in (3.24) or (3.25). The

function TLacOp can be one of the following two choices

T 1
LacOp(y) =

1
1 + yλ0

, (3.28)

T 2
LacOp(y) =

1 + λ0y

1 + (λ0 + λ1 + a
bλ1λ0)y + λ1λ0y2

. (3.29)

These two functions are derived from the repression levels of the models for the lac

repressor, that were discussed in the last chapter and stated in equations (2.27) and

(2.29). For simplicity we only consider two models for LacI mediated repression

(models I and III) out of the five discussed in chapter 2 (see table 2.7). The pa-

rameters λi are the binding constants for the two lac operator sites and a, b are the

rates describing the formation and opening of the DNA loop.

A parameter estimation for protein production. The birth-death process for

the gene products, as in example 1, is treated as a joint protein expression process,
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where transcription and translation are lumped together. The literature typically

states parameter estimates for either transcription or translation. In order to moti-

vate how these parameters are combined to yield estimates for the rate of a lumped

protein production rate, we quickly discuss the consequence of making a quasi-

steady state assumption on the mRNA levels in a simple ODE system describing

transcription or a gene and translation of its mRNA transcripts into protein.

Consider the expression of a single gene subject to regulation described by the

function T . The number of mRNA transcripts R is described by a concentration r.

The number of proteins P is described by a concentration p. We can write down

the ad hoc system of differential equations:

ṙ = βr + αrT − δrr, (3.30)

ṗ = αpr − δpp, (3.31)

where αr, αp denote transcription and translation rates, δr, δp denote degradation

rates for mRNA and protein, and βr denotes leaky transcription that takes place

independent of the value of the regulatory function T . In bacteria, there is typi-

cally little time delay between transcription and translation - ribosomes may start

translating from the mRNA transcripts even while they are being produced by the

polymerases. Also, mRNA transcripts typically have a much shorter half-life than

proteins, and transcription is a fast process relative to translation. This motivates

a quasi–steady-state assumption for the mRNA dynamics, ṙ = 0. The equilibrium

value of r can be computed from equation (3.30):

req =
βr + αrT

δr
.

We plug this into the equation for p, (3.31), and get

ṗ =
αpβr
δr

+
αpαr
δr

T − δpp (3.32)

= β + αT + δpp, (3.33)

with obvious definitions for α, β.

Feasible parameter ranges were estimated from expression studies of the lac

operon [39] and other literature on gene expression [78, 57]. Assuming the typical
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lifetimes of mRNA transcripts - 2min, and proteins - 1h, the corresponding degra-

dation rates can be derived

δp =
log 2
3600s

≈ 0.0002s−1, δr =
log 2
120s

≈ 0.006s−1.

Estimates for the lac operon put mRNA production at αr ≈ 10−3 . . . 10−2s−1, with

about 5 to 40 proteins produced from every mRNA transcript, which puts the rate

of protein production in the order of αp ≈ 10−2 . . . 10−1s−1. This yields a lumped

expression rate of α ≈ 10−1 . . . 100s−1. These parameters of course depend on the

exact conditions for the gene in question - like the position on the chromosome or

plasmid, accessibility for polymerases, and the overall cell state - availability of ATP,

nucleotides, amino acids, or the number of ribosomes.

Summary: Derivation of the model for the genetic clock

To illustrate the construction of a model for expression of multiple genes, the deriva-

tion of the average dynamics for the system of example 1, that was introduced in

the previous chapter, was discussed. It was shown in detail how the Markov chain

of the gene states can be decoupled into submodules, consisting of Markov chains of

interdependent groups of operator sites. The invariant measure of the full model can

then be derived from those of the submodules with the help of the tensor product.

In order to derive the average dynamics of the engineered clock, the Markov chain

was decoupled into NRI mediated regulation of the glnAp2 and glnKp promoters and

LacI mediated repression of the glnAp2 promoter. Functions for NRI dependent

transcriptional activity were derived for when the promoter is regulated by one

enhancer site, for when it is regulated by two enhancer sites, to which NRI binds

cooperatively, and also for when transcriptional activity is reduced by NRI governor

sites. Feasible parameter ranges were discussed based on data from the literature.

The transcriptional activation functions were compared to illustrate the different

activation thresholds for glnAp2 and glnKp promoters.

Finally the average dynamics of the engineered clock were constructed by as-

sembling the transcriptional activation functions from the different submodules into

a system of two coupled differential equations, that describe the time evolution of

the concentration of the proteins NRI and LacI. Corresponding feasible parameter
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ranges for protein production and degradation were discussed based on related liter-

ature. The conversion of transcription and translation rates into a lumped protein

production rate was motivated by making a quasi-steady-state assumption on the

mRNA levels. Having established the overall form of the average dynamics of the

clock, the next section will deal with a general analysis of its phase plane by studying

the parameter dependent shapes of its nullclines.

3.2 Model analysis: nullclines and stability

In the context of genetic oscillators it is of interest which are the essential features

that drive oscillations. This is important for understanding circadian clocks in gen-

eral and in particular for designing artificially engineered circuits. In this section,

the model derived for the engineered clock, that was described in chapter 1, is in-

vestigated analytically using the theoretical tools for ordinary differential equations,

in particular with respect to the effect of different choices in the arrangement of the

regulatory operator sites. In the course of further work, model predictions could be

tested by site-directed mutagenesis of the clock’s promoter regions.

In a two dimensional system of ordinary differential equations, like the system

(3.26, 3.27), information on its dynamical properties, such as steady states or con-

ditions that facilitate the occurrence of limit cycles, can be found by looking at the

system’s nullclines. Nullclines are the curves in the phase plane, on which the time

derivative of one dependent variable is zero. Here it is investigated how the structure

of the equations determines the shape of the nullclines, in order to derive conditions

that allow for Hopf bifurcations.

Nullcline for LacI. The nullcline for the concentration of LacI (see figure 3.4) is

defined by the solution curve of the equation ẏ = 0. Setting ẏ = 0 in the equation

(3.27) yields the formula for the nullcline as a function of the NRI concentration x:

y = h(x) =
β2 + α2TglnKp(x)

δ2
, (3.34)

where for any given NRI concentration x, h(x) yields the corresponding LacI con-

centration y, such that LacI degradation balances the production of LacI governed

by the NRI responsive glnKp promoter. Thus the nullcline is determined by the
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choice for TglnKp(x), which is out of (3.24) and (3.25). For both choices TglnKp(x)

is a monotonically increasing function, and so is h(x). Characteristic values for the

nullcline like h(0), limx→∞ h(x) are

h(0) =
β2

δ2
, lim

x→∞
h(x) =

β2 + α2

δ2
,

and independent of the choice of TglnKp(x). These values reflect the ratios between

the rate of LacI degradation and the minimal and maximal LacI production rates,

respectively. The value x, for which the nullcline attains its half maximum, is defined

by the equation TglnKp(x) = 1
2 − β2

2α2
, which reduces to TglnKp(x) ≈ 1

2 , when β2 ≈ 0.

So the half maximum for h(x) is close to the half maximum for TglnKp(x), which is

given by

x =
1
κ
, or x ≈ 1√

ψκ1κ2
,

for TglnKp(x) as in (3.24) or in (3.25), respectively; for the approximation compare

equation (3.20). In particular the nullcline has no critical points and is defined for

all nonnegative x.

ymax =
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δ2

ymax
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Figure 3.4: Nullcline h(x) for equation (3.27) for the concentration y of the lac
repressor. The supremum of the nullcline is ymax = limx→∞ h(x). The symbol x 1

2

indicates where the nullcline attains half of its supremum, h(x 1
2
) = ymax

2 , and is

x 1
2
≈ 1

κ for T 1
glnKp, as in (3.24), or x 1

2
≈ 1√

ψκ1κ2
for T 2

glnKp, as in (3.25), for typical
parameter values (see text).
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Nullcline for NRI. The nullcline g for NRI is defined by setting ẋ = 0 in the

equation (3.26). This nullcline can also be written as a function of x,

y = g(x) = T−1
LacOp (z(x)) , z(x) =

−β1 + δ1x

α1TglnAp(x)
, (3.35)

where T−1
LacOp(z) is defined for 0 < z ≤ 1, which in particular implies x > β1

δ1
. So for

each NRI concentration x, the function g(x) gives the corresponding concentration y

of LacI, which represses the NRI production governed by the glnAp2 promoter, such

that NRI production and degradation are in balance. The lower boundary for the

definition interval for g(x) reflects the fact, that the basal production of NRI cannot

be balanced by NRI degradation at low NRI concentrations. The function z(x) is a

measure of how much the glnAp2 promoter needs to be repressed in order to balance

NRI production and degradation, where z = 1 corresponds to no repression, and

z = 0 to full repression of the glnAp2 promoter. The inverse T−1
LacOp(z(x)) yields the

corresponding concentration of repressor molecules. The inverses of TLacOp(y), as

given in the equations (3.28) and (3.29), are:

T−1
LacOp1

(z) =
1− z
λ2z

, (3.36)

T−1
LacOp2

(z) =
−[−λ1 + λ̃z] +

√
[−λ1 + λ̃z]2 + 4λ1λ2(1− z)z

2λ1λ2z
, (3.37)

with

λ̃ = λ1 + λ2 +
a

b
λ1λ2.

Note that the inverse z 7→ T−1
LacOp, (0, 1]→ [0,∞) is a strictly monotone and decreas-

ing function in z for both (3.36) and (3.37). This means, that when z(x) increases

up to 1, g(x) will decrease and reach 0. For higher values of z, g(x) is not defined.

Other characteristics, like the number of critical points, depend on the choice of the

regulatory function TglnAp and the presence of leaky gene expression, described by

the rate constant β1.

On the slope of the NRI nullcline. A positive slope of the NRI nullcline g(x)

means, that an increase in the concentration of NRI needs to be compensated with

a corresponding increase of the concentration of the repressor in order to maintain

a steady state. A negative slope means, correspondingly, that an increase in the
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concentration of NRI needs to be compensated by a decrease in the concentration

of repressors. Here we investigate the conditions for the slope of the nullcline to be

positive, negative or zero. Generally, by the chain rule we have

d

dx
g(x) =

d

dx
T−1
LacOp(z(x)) =

(
T−1
LacOp

)′
(z(x))︸ ︷︷ ︸

<0

z′(x), (3.38)

and consequently

g′(x) = 0 ⇐⇒ z′(x) = 0, (3.39)

and the sign of the derivative of g(x) depends only on the derivative of z(x). The

derivative of z(x) takes the form

z′(x) =
δ1TglnAp − (δ1x− β1)T ′glnAp(x)

α1 (TglnAp(x))2 . (3.40)

The nullcline g(x) has a nonnegative slope for z′(x) ≤ 0. This can be written as a

fraction of derivatives

z′(x) ≤ 0 ⇐⇒ T ′glnAp(x)
TglnAp(x)

≥ δ1

δ1x− β1
, (3.41)

or, equivalently,
d

dx
log (TglnAp(x)) ≥ d

dx
log (δ1x− β1). (3.42)

The NRI nullcline for a single enhancer site at the glnAp2 promoter.

Assume that the NRI mediated activation is described by T 1
glnAp as in (3.16), i.e.

NRI acts via a single enhancer site. Then the nullcline g(x) has no critical points and

is strictly monotone decreasing (see figure 3.5). For T 1
glnAp we have from equations

(3.35) and (3.40) that

z(x) =
δ1νx+ (δ1 − β1ν)− β1

x

α1ν
, z′(x) =

δ1ν + β1

x2

α1ν
> 0,

and hence g′(x) < 0 for all x ∈ Dg = (x0, x1] for that g(x) is defined. When β1 = 0,

then x0 = 0 and limx→x0 g(x) = T−1
LacOp

(
δ1
α1ν

)
. Further x1 = α1

δ1
− 1

ν , and g(x1) = 0.

When β1 > 0 then x0 = β1

δ1
and limx→x0 g(x) =∞. The value for x1 increases with

β1.

This means, that when the glnAp2 promoter is driven by only one enhancer site,
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an increase in the concentration of NRI is to be compensated with a decrease in the

concentration of repressor in order to maintain a steady state.

x0
x0

g(x0)

x1x1

Figure 3.5: Nullcline g(x) for equation (3.26) for the concentration x of NRI, when
the regulation at the glnAp2 promoter is driven by a single enhancer site, i.e. TglnAp
as in (3.16). The nullcline is defined on x ∈ (x0, x1], strictly monotone decreasing
in x with g(x1) = 0. For β1 = 0, x0 = 0 and limx→x0 g(x) = T−1

LacOp

(
δ1
α1ν

)
; and

x1 = α1
δ1
− 1

ν . When β1 > 0, then x0 = β1

δ1
and limx→x0 g(x) = ∞, and x1 increases

with β1.

The NRI nullcline for two enhancer sites at the glnAp2 promoter (β1 = 0).

Assume that the NRI mediated activation of the glnAp2 promoter is described by

T 2
glnAp as in (3.19), i.e. NRI acts via two enhancer sites. First consider the case when

β1 = 0, that is, when there is no basal production of NRI. The shape of the nullcline

is depicted in figure 3.6. The nullcline g(x) is defined on the interval Dg = [x0, x1],

with g(x0) = g(x1) = 0, where x0, x1 are the solutions of z(x) = 1:

x0,1 =
1
2

(ν1 + ν2

ψν1ν2
+
α1

δ1

)
±
√(

ν1 + ν2

ψν1ν2
+
α1

δ1

)2

− 4
ψν1ν2

 , (3.43)

or, when ν1+ν2
ψν1ν2

≈ 0 (compare equation (3.20)) then

x0,1 ≈ 1
2

α1

δ1
±
√(

α1

δ1

)2

− 4
ψν1ν2

 .
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Further, solving z′(x) = 0 using equation (3.41), we find by (3.39) that the nullcline

g(x) has exactly one local maximum at the position

xmax =
√

1
ψν1ν2

, (3.44)

which is equal to the approximate x value, for which T 2
glnAp(x) attains its half max-

imum (see equation (3.20)). Therefore T 2
glnAp(xmax) ≈ 1

2 , and

g(xmax) ≈ T−1
LacOp

(
2δ1

α1ψν1ν2

)
. (3.45)

This means that for very low NRI concentrations, x < x0, the production of

NRI via the glnAp2 promoter is too weak to be able to compensate for the NRI

degradation and hence no steady state can exist. At intermediate concentrations,

x0 < x < xmax, an increase in x increases the NRI production rate more strongly

than the degradation rate. Hence more repressors are needed to balance them, and

the nullcline increases. For higher NRI concentrations, xmax < x < x1, the opposite

is true and less repressors are needed when x increases, and the nullcline decreases

correspondingly. When x > x1, then the rate of NRI degradation can no longer be

compensated by NRI production, and hence the nullcline is no longer defined.

g(xmax)

x0
xmax

x1

y

x

Figure 3.6: Nullcline g(x) for equation (3.26) for the concentration x of NRI, when
the regulation at the glnAp2 promoter is driven by two enhancer sites, i.e. TglnAp
as in (3.19). The nullcline g(x) is defined on the interval Dg = [x0, x1], with

g(x0) = g(x1) = 0. The nullclines has exactly one local maximum at xmax =
√

1
ψν1ν2

(equation (3.44)). Formulas for x0, x1 (equation (3.43)) and g(xmax) (equation
(3.45)) are given in the text.
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The NRI nullcline for two enhancer sites at the glnAp2 promoter (β1 > 0).

Let again T 2
glnAp be defined as in (3.19) and β1 > 0. Then g(x) is defined on some

interval Dg = [x0, x1], where x0 = β1

δ1
and limx→x0 = ∞, and g(x1) = 0, where

x1 solves z(x) = 1. Solving z′(x) = 0 for T 2
glnAp(x), using (3.41), yields a cubic

equation,

δ1ψν1ν2x
3 + (β1(ν1 + ν2)− δ1)x+ 2β1 = 0. (3.46)

Note that for β1 = 0 the equation becomes quadratic and allows for one positive

solution, given in (3.44). For β1 > 0, we make use of the fact that equation (3.46)

lacks a quadratic term and is therefore of the form:

x3 + 3px+ 2q = 0, p =
β1(ν1 + ν2)− δ1

3δ1ψν1ν2
, q =

β1

δ1ψν1ν2
.

(Actually, all cubic equations can be transformed into this form by an appropriate

variable substitution.) This equation admits three real solutions if D = q2 + p3 < 0,

and one real and two complex solutions when D > 0. Because of the shape of g(x)

this means that the nullcline either has two or no critical points for D > 0 or D < 0

respectively. Explicitly D < 0 reads

(
β1

δ1ψν1ν2

)2

+
(
β1(ν1 + ν2)− δ1

3δ1ψν1ν2

)3

< 0, (3.47)

which implies β1(ν1 + ν2)− δ1 < 0. When we approximate (ν1+ν2)
ψν1ν2

≈ 0 as in (3.20),

then (3.47) reduces to (
β1

δ1

)2

− 1
27ψν1ν2

< 0.

This means that the occurrence of two critical points is facilitated, when the

basal transcription rate β1 is small in relation to the degradation rate δ1 for NRI,

and when the cooperativity constant γ and the binding constants νi are not too large.

Figure 3.7 illustrates the effect of varying β1 on the NRI nullcine. The occurrence

of two critical points in the NRI nullcline for β1 > 0 is necessary for the existence

of a stable limit cycle, as discussed further below.

LacI repression and governor sites have little effect on the NRI nullcline.

Assume that TglnAp is as in (3.23), i.e. the reduction of transcription by the NRI

governor sites at high concentration of NRI is considered. When the concentration
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xmaxxmaxx0x0

xmin

x0

Figure 3.7: Nullcline g(x) for equation (3.26) for the concentration x of NRI, when
the regulation at the glnAp2 promoter is driven by two enhancer sites, i.e. TglnAp
as in (3.23), for different values of β1. For β1 = 0, the nullcline is as in figure
3.6. For β1 > 0 and small, the nullcline has two critical points, which disappear
as β1 increases. Generally, g(x) has two critical points when condition (3.47) is
satisfied. For β1 > 0, g(x) is defined on the interval Dg = (x0, x1], with x0 = β1

δ1
and

limx→x0 g(x) =∞. For small β1, xmax in blue is close to the corresponding xmax in
red; xmin in blue is close to the value x0 in red (compare figure 3.6).

Figure 3.8: Nullcline g(x) for equation (3.26) for the concentration x of NRI, when
the regulation at the glnAp2 promoter is driven by two enhancer sites, i.e. TglnAp as
in (3.23) (Compare figure 3.7). Impact of different choices for LacI repression TLacOp
is shown. An decrease in the repression efficiency, by changing LacI binding or loop
formation parameters, leads to a corresponding increase in the function values of
g(x). The qualitative shape of g(x), i.e. the number and position of the critical
points, is not affected by the choice of TLacOp.
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x is large, so that T ′glnAp(x) ≤ 0 due to the effect of the governor sites (see figure

3.3), then the nullcline cannot have a critical point for that value x. Indeed, because

of (3.40) and (3.38) we have that

T ′glnAp(x) ≤ 0⇒ z′(x) > 0⇒ g′(x) < 0.

Also, the choice of the function for LacI mediated repression, TLacOp, does not affect

the qualitative picture for g(x), but, as follows from equation (3.35), only affects its

function values as illustrated in figure 3.8. A weaker repression by LacI increases the

function values of g(x), while a more effective repression by LacI decreases them.

Nullclines and linear stability. The steady states of the ODE system (3.26,

3.27) are defined by the intersection points of its nullcines h(x) and g(x) (equa-

tions (3.34) and (3.35)). In order to identify conditions for the occurrence of limit

cycles and Hopf bifurcations, the linear stability properties of the fixed points are

investigated. This is done by linear stability analysis, which is based on standard

results of ODE theory (see for example the book by Amann [2]). In particular, we

are interested in conditions, that can be formulated in terms of the slopes of the

nullclines.

The linear stability properties of a steady state are determined by the Jacobian J

matrix, which describes the properties of the linearization of the vector field around

the steady state (x, y):

J =

 α1TLacOp
dTglnAp
dx − δ1 α1TglnAp

dTLacOp
dy

α2
dTglnKp
dx −δ2

 . (3.48)

More precisely, the linear stability properties are determined by the eigenvalues

e1, e2 ∈ C of the matrix J . The eigenvalues are characterized by the existence of

a nonzero vector vi ∈ R2 such that Jvi = eivi. Information on the eigenvalues is

contained within the trace and determinant of J ,

tr(J) = e1 + e2, det(J) = e1e2.

A sufficient condition for a steady state to be unstable is tr(J) > 0. Recall that

necessary conditions for a Hopf bifurcation are tr(J) = 0 and det(J) > 0, and that
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for sufficiency the derivative of the real part of the eigenvalues with respect to the

bifurcation parameter must not be zero.

Explicitly, the equation tr(J) ≥ 0 reads

α1TLacOpT
′
glnAp ≥ δ1 + δ2.

Applying the steady state condition ẋ = 0 to equation (3.26) and plugging this in

yields

log′ (TglnAp) ≥
(

1 +
δ2

δ1

)
log′ (δ1x− β1). (3.49)

Comparing this to equation (3.42) reveals, that the slope for the NRI nullcline g(x)

needs to be sufficiently positive for a Hopf bifurcation to occur, or an unstable node

or spiral to exist. The condition on the steepness of the slope is weakened when δ2
δ1

is small, i.e. when NRI has a shorter lifetime than the lac repressor.

Another necessary condition for a Hopf bifurcation is, that det(J) > 0. The sign

of the determinant can also be connected with the slope of the nullclines. It holds

that

det(J) > 0 ⇐⇒ g′(x) < h′(x). (3.50)

Corresponding relations also hold for det(J) = 0 and det(J) < 0. Indeed, consider

the determinant of J , which can be computed from (3.48):

det(J) = δ2

(
δ1 − α1TLacOp(y)T ′glnAp(x)

)− α1α2TglnAp(x)T ′glnKp(x)T ′LacOp(y).

(3.51)

Plugging (3.51) into det(J) > 0, using the steady state condition ẋ = 0 applied to

equation (3.26), and rearranging yields

δ1TglnAp(x)− (δ1x− β1)T ′glnAp(x)

α1 (TglnAp(x))2 >
α2T

′
glnKp(x)T ′LacOp(y)

δ2
.

Dividing by T ′LacOp(y), which is negative, applying the inverse function theorem,

and using the equations for the nullclines (3.34), (3.35) and (3.38), we arrive at

g′(x) < h′(x),

as required.
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So if the LacI nullcline has a steeper slope than the NRI nullcline at the inter-

section point, then det(J) > 0, otherwise det(J) < 0. If det(J) > 0, then condition

(3.49) on the steepness of the g(x) decides whether that steady state is stable, un-

stable, or a candidate of a Hopf bifurcation. If det(J) < 0, then the steady state is

a saddle point.

Summary: Model analysis - nullclines and stability

This section presented a discussion of the qualitative picture of the two nullclines,

ẋ = 0 and ẏ = 0, of the clock model defined by equations (3.26) and (3.27). The

nullcline ẏ = 0, parametrized by h(x), is a strictly monotone increasing function

for any of the choices for TglnKp out of (3.24), (3.25), i.e. whether the promoter is

driven by one or two enhancer sites.

The qualitative properties of the nullcline ẋ = 0, parametrized by g(x), depend

mainly on the number of enhancer sites at the glnAp2 promoter and the parameter

for leaky gene expression for that promoter, β1. When the activity of glnAp2 is

driven by just one enhancer site (TglnAp as in (3.16)), then g(x) is strictly monotone

decreasing. When the activity of glnAp2 is driven by two enhancer sites (TglnAp

as in (3.19)), then g(x) may have up to two critical points. When β1 = 0, then

g(x) has one local maximum. When β1 > 0 then g(x) may have up to two critical

points depending on the condition (3.47). Changes in the efficiency of LacI mediated

repression of the glnAp2 promoter (choice of TLacOp) only changes the overall y values

of the nullcline, but not the number or position of the critical points. Considering

the glnAp2 governor sites (TglnAp as in (3.19)) also does not change the qualitative

picture for g.

The maximum of the LacI nullcline is determined by the maximal expression and

degradation rates of LacI. It attains its half maximum for when TglnKp reaches its

half maximum. The position of the critical points of the NRI nullcline are mainly

determined by the product of cooperativity and binding coefficients for NRI, ψν1ν2.

The y values for these points depend on the effectiveness of repression and hence of

LacI binding and loop formation parameters.

Further, the slope of the NRI nullcline is determined by the relation of the

logarithmic derivative of transcriptional activation, TglnAp, and degradation (see

equation (3.42)). Linear stability analysis was performed to derive necessary and
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sufficient conditions on the slope of the NRI and LacI nullclines at a steady state

for it to be stable, unstable or a saddle. The conditions also characterize candidates

for Hopf bifurcation points. This proves to be helpful to identify nullcline scenarios

that allow for instability and oscillations as discussed next.

3.3 Examples: bifurcations and oscillations

This section will discuss, how oscillations come about in the derived clock model and

how this depends on the location of the nullcines. First, an example is given for the

existence of a limit cycle that occurs for biologically feasible parameters. Second, it is

discussed how parameter dependent changes in the nullcline shapes push the system

out of the oscillatory regime. Third, the role of the different activation thresholds

of the glnAp2 and glnKp promoters with respect to oscillations is discussed.

3.3.1 An example for a stable limit cycle

In the last section it was shown, that if the nullclines intersect with sufficiently steep

and positive slopes such that g′(x) < h′(x) and (3.49) hold, then the intersection

point is an unstable node or spiral. We can do more than this and show, that if

the nullclines intersect only once, i.e. if there is only one unstable steady state and

β1, β2 > 0, then the system features a stable limit cycle.

The proof relies on the Poincaré-Bendixon theorem, which is a standard result

of ODE bifurcation theory (see for example the book of Hale and Kocak [31]). In

short, the theorem states that if, for a two-dimensional continuously differentiable

vector field, such as (3.26, 3.27), there is a closed and bounded subset R ⊂ R2, and

a trajectory that is confined in R for all time, then this trajectory is, or spirals into,

a closed orbit. The last condition is typically verified by showing, that the vector

field on the boundary of R points inwards. That is why R is also called a trapping

region.

So let (x∗, y∗) be the only steady state of the system (3.26, 3.27) and unstable.

Because g(x) is large for x close to x0 (compare figure 3.7), the condition (3.50) is

fullfilled at the steady state. Therefore it cannot be a saddle. We define R by setting

R =
{

(x, y)| 0 ≤ x ≤ β1 + α1

δ1
, 0 ≤ y ≤ β2 + α2

δ2

}
\Uε(x∗, y∗), (3.52)
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where ε > 0, and Uε(x∗, y∗) is a sufficiently small neighborhood around the steady

state, such that the vector field on its boundary points into R. We check the other

boundary sides of R in turn (see figure 3.9). Recall the definition of the vector field

in x, y, which is given by (3.26) and (3.27), Then on side I, we have

x = 0⇒ ẋ = β1 + α1TglnAp(0)TLacOp(y)− δ1 · 0 = β1 > 0,

and for side II,

x =
β1 + α1

δ1
⇒ ẋ = β1 + α1 TglnAp(x)TLacOp(y)︸ ︷︷ ︸

<1

−δ1x < β1 + α1 − δ1
β1 + α1

δ1
= 0,

which means that trajectories on the left and right boundary of R point inwards.

Concerning the lower and upper sides (III and IV) we have

y = 0⇒ ẏ = β2 + α2TglnKp(0)− δ2 · 0 = β2 > 0,

and

y =
β2 + α2

δ2
⇒ ẏ = β2 + α2 TglnKp(x)︸ ︷︷ ︸

<1

−δ2y < β2 + α2 − δ2
β2 + α2

δ2
= 0,

which means that trajectories on the lower and upper boundaries also point inwards.

So all trajectories on the boundary of R point inwards. From the Poincaré-Bendixon

it follows then that R contains a stable limit cycle, which attracts all trajectories in

R.

An example for a system with a stable limit cycle is given in figure 3.10, which is

realized with biologically feasible parameters, as estimated earlier. As is suggested

by condition (3.49) the occurrence of a stable limit cycle is facilitated when NRI

degrades faster than LacI, as is the case for the example in figure 3.10. The exact

values for these degradation rates are not known, but the failure of the actual engi-

neered clock to produce sustained oscillations might be due to the fact the fraction

of NRI and LacI lifetimes is not small enough.

Another way to understand the generation of oscillations for this nullcline sce-

nario is based on a separation of time-scale argument and is illustrated in figure

3.11. Assume that x moves on a fast time-scale, while y moves on a relatively slow



Chapter 3. Modelling and analysis of the genetic clock 108

y

x

R

Uε(x*,y*)

I II

III

IV

Figure 3.9: Illustration of the trapping region R for when the vector field (3.26),
(3.27) has exactly one unstable steady state. The region R, whose boundary is
indicated in green, is defined in (3.52), and used to prove the existence of a closed
orbit using the Poincaré-Bendixon theorem, see text. The four sides of the box
shaped region are labelled I, II, III and IV. Blue and red arrows indicate the direction
of the vector field on the boundary side in the x and y directions, respectively.
The NRI and LacI nullcilnes are indicated by blue and red dotted curves, whose
intersection marks the position of the steady state (x∗, y∗). The dashed intervals
indicate that the diagram is not to scale.
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y
[nM]

x
[nM]

Figure 3.10: Example for a stable limit cycle in the clock model for biologically
feasible parameters. The figure shows the phase plane for the ODE system (3.26,
3.27), with the functions TglnAp, TglnKp, TLacOp as in (3.19), (3.25), (3.29). Arrows
indicate the flow of the vector field in the phase plane. Red arrows indicate the sign
of ẏ on the ẋ = 0 nullcline, and blue arrows the sign of ẋ on the ẏ = 0 nullcline,
by pointing in the corresponding direction of the vector field. The NRI and LacI
nullclines are shown in blue and red dotted lines. The stable limit cycle is shown
in black with arrows indicating the sense of direction that the trajectories follow.
Parameters are: ν1 = ν2 = κ1 = 0.1, κ2 = 10−3, ψ = 100, λ1 = λ2 = 5, a = 500, b =
1, β1 = 3 · 10−4, β2 = 1.5 · 10−4, α1 = 12, α2 = 6, δ1 = 0.002, δ2 = 0.0001. Binding
parameters are given in nM−1, gene expression parameters in nM·s−1, degradation
rates in s−1.
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time-scale. Then a stable limit cycle exists that is driven by fast and slow phases of

the trajectory. Starting from position 1 in the phase diagram, as indicated in the

figure 3.11, the concentration of x increases until it hits the ẋ = 0 nullcline, which

is dotted in blue (fast phase, indicated by a blue arrow). The trajectory then crawls

backwards along that nullcline (slow phase, indicated by a red arrow), until it falls

off it at position 3, to be caught again by the left branch of the ẋ = 0 nullcline at

position 4. From there the trajectory moves slowly downwards to again fall off the

blue nullcline at position 1, where the cycle starts anew.

1 2

34

y
[nM]

x
[nM]

Figure 3.11: Illustration of a stable limit cycle of the system (3.26, 3.27), that is
driven by slow and fast phases of the trajectory. The variable x moves on a fast
time scale compared to the slower variable y. Nullclines for x and y are shown as
blue and red dotted curves, respectively. A trajectory traverses the limit cycle as
follows. Starting from position 1 in the phase diagram, x increases until it hits the
blue ẋ = 0 nullcline (fast phase, indicated by a blue arrow). The trajectory then
crawls backwards along that nullcline (slow phase, indicated by a red arrow), until it
falls off it at position 3, to be caught again by the left branch of the ẋ = 0 nullcline
at position 4. From there the trajectory moves slowly downwards to again fall off
the blue nullcline at position 1, where the cycle starts anew.

Sample trajectories for parameters as in figure 3.10 are shown in figure 3.12. The

period of oscillations is about 10h, which is comparable to the period found in the

experiments. The experimental data also suggest that the period of the oscillations

scales with the growth rate of the cells (see chapter 4). This was also observed in

previous experiments [8]. This dependency could be explained by assuming that

a slower cell growth correlates with slower gene expression and lower degradation
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rates due to less dilution. The figure 3.12 shows how the period of the oscillation

increases after the reduction of gene expression and degradation rates.
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Figure 3.12: Sample trajectories for engineered clock model with parameters as
in figure 3.10. Large values for the initial condition (x0, y0) = (100, 10000) were
chosen to reflect the situation, where the clock is started by the activation of the
LacI repressor. After a short lag phase, where proteins degrade, the trajectories
approach the limit cycle that is illustrated in figure 3.10. The dotted line indicate
trajectories, where the ODE equations have been scaled by the factor 0.75 to reflect
slower gene expression and degradation due to a slower cell growth. The dotted
curve shows an increased period of about 15h.

Nullcline based sensitivity analysis

This section illustrates how the position of the two nullclines changes with respect

to different parameters. The corresponding curves are collected in figures 3.13, 3.14,

3.15 and 3.16. Apart from the oscillatory behaviour, the system may also have one

single stable steady state, or exhibit bistability, as illustrated in figures 3.17 and

3.18.

When the curve of the nullcline changes, so does the position of the fixed point.

What this means for the stability of the fixed point depends on the circumstances,

but a general overview on how small changes in parameters affect the nullcline

picture as portrayed in figure 3.10, is given in the figures 3.13, 3.14, 3.15 and 3.16.

For example if δ1 is decreased as shown in figure 3.14 (the black dot indicates the

changed position of the steady state), the intersection point moves to the right on
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α1=12

α1=13

α1=11

α2=4α2=6α2=8
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for default parameters
for changed parameters
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Figure 3.13: Nullcline sensitivity to gene expression rates α1 and α2. The parameters
αi (in nMs−1) are indicated next to the corresponding x and y nullclines. All other
parameters and the vector field are as given in figure 3.10. The solid curves indicate
the nullclines identical to those in figure 3.10. The dotted curves are the nullclines
resulting from the different αi values as indicated.

δ1=1.8·10-3

δ1=2·10-3

δ1=2.1·10-3
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for changed parameters

y
[nM]

x
[nM]

Figure 3.14: Nullcline sensitivity to protein degradation rates δ1 and δ2 [s−1]. Other
details as for figure 3.13. The black dot denotes the nullcline scenario for which
sample trajectories are shown in figure 3.17.
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Figure 3.15: Nullcline sensitivity to operator site binding constants ν1 and κ1 (in
nM−1). Other details as for figure 3.13.
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Figure 3.16: Nullcline sensitivity to the lac operator binding constant λ2 (in nM−1).
Other details as for figure 3.13.
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the NRI (blue) nullcline. As a consequence the slope of the NRI nullcline at the

intersection point decreases, so that the limit cycle shrinks and breaks down as the

system undergoes a Hopf bifurcation. The steady state becomes a stable spiral.

Sample trajectories for this scenario are given in 3.17. As noted earlier, in the case

that the nullclines only intersect once, the resulting steady state is either a node or

a spiral, but cannot be a saddle point.
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Figure 3.17: Sample trajectory of the nullcline scenario, that is indicated by a black
dot in figure 3.14. The degradation rate for NRI is δ1 = 0.0018s−1. All other
parameters are as in figure 3.10, initial conditions as in figure 3.12. The decrease
of the NRI degradation rate here has the consequence that the limit cycle collapses
and the steady state becomes a stable spiral.

The system can also exhibit bistable behaviour, as is illustrated in figure 3.18.

Here the nullclines intersect three times, yielding two stable steady states and an

(unstable) saddle point. Trajectories approach one of the two stable steady states

depending on the initial conditions. In order to construct this scenario, the param-

eters for the expression and degradation of LacI, and the binding constants of NRI

to the glnKp promoter had to be changed substantially, as is detailed in the legend

of figure 3.18. In particular, LacI degradation δ2 was increased and the maximal

expression rate α2 decreased. Further the binding constants κ1, κ2 were increased so

that the activation threshold for the glnKp promoter became even lower than that

of the glnAp2 promoter.
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Figure 3.18: Example for a nullcline scenario where the phase plane features two
stable fixed points and a saddle. Trajectories approach either stable steady state
depending on the initial conditions, which are y0 = 100nM and x0 as indicated
in nM. The NRI nullcline (solid blue curve) has the same shape as in figure 3.10.
The LacI nullcline (red dotted line) has changed its position due to the changed
parameter choices: κ1 = κ2 = 1nM−1, α2 = 0.3nMs−1, δ2 = 0.002s−1. All other
parameters are as in figure 3.10.

Role of the different activation thresholds for glnAp2 and glnKp

promoters

One rationale behind the design of the engineered clock was to exploit the different

activation thresholds of the glnAp2 and glnKp promoters (compare figure 3.3): Low

NRI concentrations would first trigger the self activation of NRI via the glnAp2

promoter, and only when NRI concentrations rise higher, NRI production would be

inhibited by the lac repressor expressed by the glnKp promoter. From the linear

stability analysis it was learned, on the other hand, that a small fraction of NRI

over LacI protein lifetimes, i.e. δ2
δ1
<< 1, is important for the existence of a stable

limit cycle (compare condition (3.49)). Therefore we will discuss here the relation

between the activation thresholds and the fraction of protein lifetimes. In particular,

how a change in the difference of the activation thresholds affects oscillations, when

it is compensated with a corresponding change in the fraction of protein lifetimes,

to keep the system in the realm of sustained oscillations.

Assume we are in the situation of figure 3.10, where a stable limit cycle exists.
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We would like to know what happens to the oscillations when the difference between

the two activation thresholds is changed, while the position of the steady state on

the NRI nullcline remains fixed. This is achieved by changing the binding constant

of one the binding sites of the glnKp promoter, κ2, and by compensating this with

a corresponding change in the LacI degradation rate δ2. Rearranging (3.27) for the

steady state (x∗, y∗) yields

δ2 = δ2(κ2) =
β2 + TglnKp(x∗)

y∗
. (3.53)

Because TglnKp(x∗) increases with κ2, so does δ2, i.e. δ′2(κ2) > 0.

Example trajectories for different values of κ2 and corresponding δ2 are shown

in figure 3.19. When κ2 increases, the gap between the two activation thresholds

narrows. As δ2 increases correspondingly, the fraction of NRI and LacI lifetimes

increases as well, which strengthens condition (3.49), and shrinks the piece of the

NRI nullcline, where the steady state is unstable. In the example (figure 3.19,

red trajectory), this leads to the steady state becoming stable and the oscillations

breaking down.

When κ2 decreases, the gap between the two activation thresholds widens. As δ2

decreases correspondingly, the fraction of NRI and LacI lifetimes decreases as well,

which weakens condition (3.49), and elongates the piece of the NRI nullcline, where

the steady state is unstable. This means that oscillations are preserved. Due to the

longer lifetime of the LacI protein, the period of the oscillations increases (see the

green trajectory in figure 3.19).

Summary: Bifurcations and oscillations

In the first section it was proven that, when the clock model (with TglnAp as in

(3.19) and β1 > 0) has only one unstable steady state, a stable limit cycle exists. A

corresponding example system was shown, based on biologically feasible parameters.

The period of oscillations, as shown for sample trajectories, is comparable to that

observed in experiments. The emergence of oscillations from the corresponding char-

acteristic nullcline scenario can also be understood in terms of variables evolving on

different time scales. In particular, oscillations are favoured, when the concentration

of the activating molecule NRI evolves faster then the concentration of the repressor
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Figure 3.19: The effect of changing the interval between the activation thresholds
of the glnAp2 and glnKp promoters. The activation threshold of glnKp was changed
by changing the binding parameter κ2 of one of its enhancer sites. In order to keep
the position of the steady state fixed, the LacI degradation rate δ2 was adjusted
according to equation (3.53). The black dotted curve shows a LacI trajectory for all
parameters as in figure 3.10. Red and green curves show trajectories for decreased
and increased values of κ2 and correspondingly adjusted values for δ2, respectively.
Initial conditions for all trajectories were x0 = y0 = 0.
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molecule LacI.

The second section gave an overview on how the shape of the nullclines is af-

fected by changing the parameters of the system. In particular, with respect to the

oscillating system described in the first section, it was shown how a shift in one of

the nullclines may take the system out of the region of sustained oscillations. To

complete the discussion on possible dynamical behaviors of the system, an example

of a nullcline scenario resulting in bistable behaviour was given, where trajectories

approach either one of the two stable fixed points depending on the initial conditions.

One intuition behind the design of genetic clock, was to exploit the offset between

the two activation thresholds of the glnAp2 and glnKp promoters to produce oscilla-

tions. On the other hand, the linear stability analysis revealed that a short lifetime

of NRI relative to that of LacI was important for oscillations. A short analysis sug-

gested that indeed, a wider gap between the thresholds facilitates oscillations, while

a narrower gap makes oscillations less likely. More precisely, a wider gap between the

activation thresholds can be compensated, for example, by a corresponding increase

in the LacI lifetime, in order to keep the position of the nullcline intersection fixed.

And a longer LacI lifetime increases the interval of instability on the NRI nullcline.

It needs to be stressed that the analysis of the deterministic system neglects the

influence of noise in the system, which may alter the qualitative dynamics signifi-

cantly, see for example [19] and [22]. In particular oscillations in the deterministic

system may break down in the stochastic case when the number of particles in the

system is too low [30, 12]. Also stochastic effects may lead to oscillating behaviour

even when the deterministic case settles down to a steady state. This may happen

when small stochastic fluctuations trigger large excursions of the trajectories before

they approach the steady state again. In the context of this work this means that

for future work it would be very important to compare the deterministic results with

corresponding stochastic simulations.

Chapter summary

In the first section 3.1 the average dynamics of the clock model were derived. This

was achieved by decoupling the Markov chain of the gene states into submodules

describing the NRI dependent regulation of transcription of the glnAp2 and glnKp

promoters, and the LacI mediated repression of the glnAp2 promoter. The invariant
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measures of the Markov chains of these submodules were used to construct the

average dynamics of the full model, which was illustrated in detail working through

an example system introduced in the previous chapter 2.

To complement the LacI models derived in chapter 2, models for NRI activating

transcription via one or two enhancer sites, and also inhibiting transcription via NRI

governor sites were constructed and their invariant measures derived. Corresponding

parameter estimates were taken from the literature to define the different activation

thresholds. In particular the activation threshold of the glnAp2 promoter is lower

than that of the glnKp promoter, and the NRI induced inhibition of the glnAp2

promoter appears to be activated at NRI levels, where the glnKp promoter is already

active. This suggests that for the clock function, the effect of the NRI governor

site is not important, as was confirmed by the nullcline analysis of the system. The

modelling of the protein production as a single gene expression process, which jointly

describes the transcriptional and translational processes, was motivated by making

a quasi-steady-state assumption on the mRNA concentration.

Qualitative information of the possible dynamics of a two-dimensional ODE sys-

tem can be deduced from the corresponding nullclines, whose intersection points

are the steady states of the system. Therefore, the second section 3.2 discussed the

qualitative shapes of the NRI and LacI nullclines of the clock model for different

structural choices like the number of binding sites and the presence of positive basal

gene expression rates. In particular it was found that only if the NRI dependent

activation was driven by at least two enhancer sites, the NRI nullcline could have

an interval of positive slope. Further, a sufficient condition on the parameters was

derived for the NRI nullcline to have a positive slope.

Linear stability analysis revealed that a positive slope of the NRI nullcline at

the steady state is a necessary condition for the Jacobian matrix to have positive

trace, which implies instability of the steady state. A positive trace at the fixed

point can be guaranteed for a sufficiently steep slope of that nullcline, where the

condition is weakened, when the NRI lifetime is reduced, or the LacI liftetime is

increased. Further, when the LacI nullcline intersects the NRI nullcline from below,

the resulting steady state will be a node or spiral, while, when the LacI nullcline

intersects the NRI nullcline from above, the resulting steady state will be a saddle

point.
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The third section 3.3 discussed the different nullcline scenarios and corresponding

dynamical behaviours of the system, based on the previous nullcline and stability

analysis. An example for a stable limit cycle was presented, which was realized

with biologically feasible parameters, and for which the period of the oscillations

was comparable to that observed in experiments. It was illustrated how changes in

parameters lead to different nullcline scenarios. Apart from oscillations, the system

can also feature one single steady state, for example a spiral, which corresponds

to damped oscillations. Also an example for a bistable system was given, where

trajectories approach one of two fixed points depending on the initial conditions.

One rationale behind the construction of the genetic clock was to rely on the

different NRI dependent activation thresholds for two promoters, where the activator

module (glnAp2 promoter) would be triggered already for low NRI concentration,

while the repressor module (glnKp promoter) would be activated only after the NRI

levels had risen further. Fixing the position of the steady state on the NRI nullcline

and changing the activation threshold for the glnKp promoter, while compensating

for it by adjusting the degradation rate for LacI, revealed the following: Under the

constraint of a fixed steady state, an increase in the activation threshold for glnKp

can be compensated by an increase in the liftetime of LacI and vice versa. A longer

lifetime of LacI, in turn, leads to an increase of the region on the NRI nullcline,

where an intersection with the LacI nullcline leads to an unstable steady state. In

sum, this suggests that a clock circuit with a wider gap between the two activation

thresholds, allows for oscillations in a system with a larger difference in proteins

lifeteimes, such that the oscillations are more robust to parameter changes.

The predictions from the mathematical model might be tested experimentally

by changing the engineered clock in the following ways. The activation thresholds of

the glnAp2 and glnKp promoters could be changed by site-specific mutation of the

corresponding enhancer sites, and thereby increasing or decreasing the NRI binding

affinity. Degradation rates of proteins in general can be increased by the addition

of signal peptides, which mark the proteins for faster degradation by the proteases

(ssrA tagging, see [33]). Gene expression rates might be changed by relocating

the corresponding gene modules on the chromosome (compare [8]), or by mutating

polymerase or ribosomal binding sites.

The results so far suggest that for example an increase in the degradation rate
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of the activator protein NRI should facilitate oscillations. In order to optimize the

accuracy of the model predictions it would be necessary to have a more accurate

idea about actual mRNA and protein numbers in in the clock cells. These data

could be obtained by performing conventional mRNA and proteins assays during

clock experiments.



Chapter 4

Monitoring transcriptional

activity of an engineered genetic

clock in E.coli

This chapter presents the methods and results of experiments for monitoring the

activity of the clock modelled in chapter 3 and described in chapter 1. The clock

function was monitored by assaying transcriptional regulation of one of the compo-

nents of the network using a luciferase reporter construct. The data was collected

for fitting and optimization of the parameters for the model of the genetic oscillators

discussed in the previous chapter, and to enable testing of predictions of the math-

ematical model. Further work might, for example, investigate the effect of changing

the sequence of position of regulatory binding sites in the promoter regions of the

clock genes.

In [8] the authors showed that the clock was able to produce oscillations that

dampened within three to four cycles. There, clock function was monitored in

turbidostat cultures. The cellular clocks were started in a synchronized way by first

growing cells in an IPTG containing medium, which was then removed to start the

clock. The removal of the IPTG abruptly alters the steady state of the system by

activating the lac repressor function, and damped oscillations are produced when

the clock spirals into the new steady state. To monitor clock function, in [8] the

amount of lac repressor in the cell was measured indirectly by LacZ assays, because

the lac repressor regulates the expression of the endogenous lacZ gene via the lac

122
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operon.

In order to allow for an automated monitoring of the clock over long time spans,

and also to open the possibility to screen colonies for interesting clock behaviour,

we chose to monitor clock function by an imaging assay based on the luminescence

stemming from a luciferase reporter construct, where cells were monitored as colonies

on agar plates. The change in the IPTG content to start the clock was achieved

by first growing the colonies on medium containing IPTG, and then to transfer

the colonies onto fresh plates with IPTG free medium. The colonies were grown

on sterile cellophane membranes, which were transferred onto new plates with the

colonies on them. This chapter reports the optimization of this assay.

4.1 Experimental methods: establishment of the biolu-

minescence assay

4.1.1 Molecular cloning methods

Preparation and transformation of competent E.Coli

Competent E.Coli cells were prepared using the rubidium chloride method described

in [29]. Transformation was performed using the 42◦C heat shock method described

in [65]. Transformed colonies were selected on Luria-Bertani (LB) agar [65] with

the appropriate antibiotics (kanamycin sulphate (50µg/ml), ampicillin (100µg/ml),

chloramphenicol (12.5µg/ml), gentamicin (20µg/ml)).

Agarose gel electrophoresis and DNA extraction

Separation of DNA fragments by molecular weight was performed by gel elec-

trophoresis as described in [65]. To isolate DNA fragments from agarose gels the

appropriate band was cut out of the gel and the DNA extracted by QIAprep Gel

Extraction Kit (QIAGEN Ltd, UK).

Molecular methods

Ethanol precipitation. Ethanol precipitation was used to concentrate DNA or

to change buffer as described in [65].
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Ligation reactions. The ligation of DNA fragments into vector plasmids was

carried out using T4 DNA ligase (NEB, UK) according to the supplier’s protocol.

To prepare DNA fragments for blunt ended ligation sticky ends were filled in by the

Klenow fragment or T4 Polymerase enzymes according to the supplier’s protocol.

Restriction digests. Restriction endonucleases (Fermentas, Invitrogen, NEB)

were used with appropriate restriction buffers according to the protocols provided

by the enzyme suppliers.

Site-directed Mutagenesis. The sequence of promoter constructs was altered by

site-directed mutagenesis using the QuikChange method (Stratagene, La Jolla, CA,

USA). Efficiency of the method was increased by performing an additional primer

elongation step [86]. Correctly mutated plasmids were identified by sequencing plas-

mids extracted from transformed colonies.

DNA sequencing. DNA sequencing was carried out by the Warwick University

Molecular Biology Service. Sequencing reactions were performed using the BigDye

Terminator Version 3.1 system (Applied Biosystems, Warrington, UK) and analyzed

with the Applied Biosystems 3130xl Genetic Analyser.

Polymerase Chain Reaction. DNA was amplified using thermal cycling equip-

ment (Hybaid Co., UK) and the enzymes Taq (Invitrogen, UK) of Pfu turbo poly-

merase (Stratagene, UK] according to the protocol of the enzyme suppliers.

Extraction of DNA

Extraction of plasmid DNA from E.Coli. DNA extraction from E.Coli was

performed using the alkaline lysis method with the QIAprep Kit (Qiagen Ltd., UK)

according to the manufacturers protocol.

Extraction of E.Coli chromosomal DNA. Chromosomal DNA was extracted

from E.Coli by phenol:chlorophorm treatment as described in [32].
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4.1.2 Construction of luciferase reporter constructs

To study the activity of the engineered clock circuit (see [8]), luciferase based re-

porters were constructed by fusing the bacterial luxAB gene to the modGlnAp pro-

moter region, which drives the activator module of that circuit. The stages of the

construction are shown in figure 4.1.

isolation of 
chromosomal 

DNA

amplification of 
mglnAp by PCR

pSKluxAB 
plasmid

luxAB

ampr

E.coli clock 
strain

luxABmglnAp

ampr

pACYC177 
plasmid

kanr

amplification of 
kanr by PCR

luxABmglnAp

ampr kanr

ligation

ligation

luxABmglnAp

kanr

deletion of ampr 

Luciferase reporter 
constructs

Figure 4.1: Construction of luciferase reporter constructs. To study the activity of
the engineered clock circuit, luciferase based reporters were constructed by fusing
the bacterial luxAB gene to the modGlnAp promoter region (denoted by ‘mglnAp’
in the figure). The modglnAp promoter region was amplified by PCR from the
chromosomal DNA of the E.coli clock strain NC12p3415. The promoter region was
inserted in front of the luxAB gene into the pSKluxAB plasmid. A resistance gene
for kanamycin was amplified from the pACYC177 plasmid and inserted into the
reporter construct. The ampr gene was deleted to yield a reporter that only confers
resistance to kanamycin.

Isolation of the modGlnAp promoter. The clock circuit was embedded into

the chromosome of the E.coli strain NC12p3415 (clock strain) [8]. Therefore chro-

mosomal DNA from the clock strain was isolated by phenol:chlorophorm treatment.

The modGlnAp promoter region was amplified from the chromosomal DNA by PCR
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using the primers PCR-mglnAp (see tables 4.1, 4.2) containing a Shine-Delgano ri-

bosome binding sequence [74].

Fusion of luciferase gene to modGlnAp promoter. Bacterial luciferase (de-

scribed in [10]), was used as a bioluminescence reporter. The plasmid pSKluxAB

was cut with restriction enzymes Sal1 and Xho1. The DNA fragment containing

the luxAB gene was then separated by gel electrophoresis. The modGlnAp region

was inserted into the pSKluxAB plasmid by blunt ended ligation - the vector and

insert were blunt ended by the Klenow fragment after sticky-end ligation had been

tried without success. To optimize the distance between the ribosome binding site

and the ATG start codon, 10bp of sequence were deleted by the Quikchange method

(primer QC-rbs-dist in table 4.1) to yield an optimal distance of 9bp [63].

Changing antibiotic resistance conferred by the reporter. The antibiotic

resistance marker of the reporter was changed from ampicillin to kanamycin. The

reporter was fitted with a resistance to kanamycin from the plasmid pACYC177. A

region containing the kanr gene on this plasmid was amplified by PCR using the

primers PCR-Kan (see table 4.1) and inserted into the psk-mglnAp-luxAB reporter

plasmid at the sites SacI and XbaI.

The clock strain needed to retain an ampicillin resistance conferring plasmid

which carries the gene NRII2302. To avoid having two plasmids conferring the same

resistance and the resulting risk of plasmid loss, the ampicillin resistance gene of the

reporter construct was disrupted. This was achieved by cutting the reporter plasmid

at its two Alw44I restriction sites, one of which lay in the ampr coding region, and

religating it to yield reporter A.

Sequence of reporter constructs. Compared to the expected sequence of the

modGlnAp region (expected PCR product in table 4.2, as inferred from [8],[7])

reporter A DNA had an altered sequence (three mutation shown in red in table

4.2). The deletion in the second lac operator site and the deletion in the ribosome

binding site were fixed by Quikchange using the primer QC-LacOp-rbs (see table

4.1) to yield reporter B.



Chapter 4. Monitoring transcr. act. of an engineered genetic clock in E.coli 127

P
ri

m
er

Se
qu

en
ce

5’
-3

’

P
C

R
-m

gl
nA

p
F

O
R

5’
G
A
C
C
T
C
G
A
G

︸︷
︷︸

x
h
o
I

A
A
T
T
G
T
G
A
G
C
G
C
T
C
A
C
A
A
T
T

︸
︷︷

︸
O
∗

G
C
A
C
C
A
A
C
A
T
G
G
T
G
C

︸
︷︷

︸
N
R
I 1

T
T
A
A
T
G
T
T
C
C

3’
R

E
V

5’
G
A
C
G
T
C
G
A
C

︸︷
︷︸

S
a
lI

T
T
T
C
T
C
C
T
C
T
T
T
A
A
T

︸
︷︷

︸
r
bs

A
A
T
T
G
T
G
A
G
C
G
C
T
C
A
C
A
A
T
T

︸
︷︷

︸
O
∗

A
A
A
A
A
A
G
A
T
A
A
A
G
C
G
A
A
A
T
C
T
G

︸
︷︷

︸
p
a
r
t
σ

5
4

3’

P
C

R
-K

an
F

O
R

5’
A
T
G
C
T
C
T
A
G
A

︸︷
︷︸

X
ba
I

C
C
T
C
A
T
C
A
G
T
G
C
C
A
A
C
A
T
A
G
T
A
A
G

3’

R
E

V
5’
A
T
G
C
G
A
G
C
T
C

︸︷
︷︸

S
a
cI

T
G
C
G
T
G
A
T
C
T
G
A
T
C
C
T
T
C
A
A

3’

Q
C

-r
bs

-d
is

t
F

O
R

5’
G
G
A
G
A
A
A

︸
︷︷

︸
p
a
r
t
r
bs

G
T
C
G
A
C

︸ ︷
︷︸

S
a
lI

G
T
T
A
T
G ︸ ︷︷︸ st

a
r
t

A
A
A
T
T
T
G
G

3’

Q
C

-L
ac

O
p-

rb
s

F
O

R
5’
G
C
G
C
T
C
A
C
A
A
T
T

︸
︷︷

︸
p
a
r
t
2
n
d
O
∗

A
T
T
A
A
A
G
A
G
G
A
G
A
A
A

︸
︷︷

︸
r
bs

G
T
C

3’

T
ab

le
4.

1:
P

ri
m

er
s

us
ed

in
th

e
co

ns
tr

uc
ti

on
of

lu
ci

fe
ra

se
re

po
rt

er
co

ns
tr

uc
ts

.
N

am
es

of
P

C
R

pr
im

er
s

be
gi

n
w

it
h

‘P
C

R
’,

th
os

e
of

Q
ui

kc
ha

ng
e

pr
im

er
s

w
it

h
‘Q

C
’.

‘F
O

R
’

in
di

ca
te

s
fo

rw
ar

d
pr

im
er

s,
re

ve
rs

e
pr

im
er

s
ar

e
in

di
ca

te
d

by
‘R

E
V

’.T
he

m
od

ifi
ed

gl
nA

p2
pr

om
ot

er
re

gi
on

w
as

am
pl

ifi
ed

us
in

g
th

e
pr

im
er

‘P
C

R
-m

gl
nA

p’
.

T
he

ka
na

m
yc

in
re

si
st

an
ce

ge
ne

w
as

am
pl

ifi
ed

us
in

g
th

e
pr

im
er

‘P
C

R
-k

an
’.

T
he

di
st

an
ce

be
tw

ee
n

th
e

ri
bo

so
m

e
bi

nd
in

g
si

te
(r

bs
)

an
d

th
e

st
ar

t
co

do
n

A
T

G
w

as
op

ti
m

iz
ed

us
in

g
th

e
Q

ui
kc

ha
ng

e
pr

im
er

‘P
C

-r
bs

-d
is

t’
.

T
he

m
ut

at
io

ns
in

th
e

la
c

op
er

at
or

an
d

th
e

ri
bo

so
m

e
bi

nd
in

g
si

te
s

or
re

po
rt

er
A

w
er

e
co

rr
ec

te
d

us
in

g
th

e
Q

ui
kc

ha
ng

e
pr

im
er

‘Q
C

-L
ac

O
p-

rb
s’

-
co

rr
ec

te
d

m
ut

at
io

ns
ar

e
sh

ow
n

in
re

d.
T

he
re

st
ri

ct
io

n
si

te
s

ar
e

an
no

ta
te

d
by

th
e

na
m

e
of

th
e

re
st

ri
ct

io
n

en
zy

m
e.

T
he

la
c

op
er

at
or

si
te

s
ar

e
de

no
te

d
by

O
∗ .
N
R
I i

de
no

te
th

e
N

R
I

bi
nd

in
g

si
te

s.
σ

5
4

de
no

te
s

th
e

bi
nd

in
g

si
te

of
th

e
σ

5
4

po
ly

m
er

as
e.

P
ar

tl
y

re
pr

es
en

te
d

si
te

s
ar

e
pr

efi
xe

d
w

it
h

‘p
ar

t’
.



Chapter 4. Monitoring transcr. act. of an engineered genetic clock in E.coli 128

R
ep

or
te

r
Se

qu
en

ce
5’

-3
’

m
gl

nA
p

as
in

[8
]

5’
A
A
T
T
G
T
G
A
G
C
G
C
T
C
A
C
A
A
T
T

︸
︷︷

︸
O
∗

G
C
A
C
C
A
A
C
A
T
G
G
T
G
C

︸
︷︷

︸
N
R
I 1

T
T
A
A
T
G
T
T
T
C
C
A
T
T
G
A

A
G
C
A
C
T
A
T
A
T
T
G
G
T
G
C
A

︸
︷︷

︸
N
R
I 2

A
C
A
T
T
C
A
C
A
T
C
G
T
G
G
T
G
C
A
G

︸
︷︷

︸
N
R
I 3

C
C
C
T
T
T
T
G
C
A
C
G
A
T
G
G
T
G
C
G
C
A
T

︸
︷︷

︸
N
R
I 4

G
A
T
A
A

C
G
C
C
T
T
T
T
A
G
G
G
G
C
A

︸
︷︷

︸
N
R
I 5

A
T
T
T
A
A
A
A
G
T
T
G
G
C
A
C
A
G
A
T
T
T
C
G
C
T

︸
︷︷

︸
σ

5
4

T
T
A
T
C
T
T
T
T
T
T

+
1 A
A
T
T
G
T
G
A
G
C
G
C
T
C
A
C
A
A
T
T

︸
︷︷

︸
O
∗

A
T
T
A
A
A
G
A
G
G
A
G
A
A
A

︸
︷︷

︸
r
bs

3’

R
ep

or
te

r
A

5’
A
A
T
T
G
G
G
A
G
C
G
C
T
C
A
C
A
A
T
T

︸
︷︷

︸
O
∗

G
C
A
C
C
A
A
C
A
T
G
G
T
G
C

︸
︷︷

︸
N
R
I 1

T
T
A
A
T
G
−T

T
C
C
A
T
T
G
A

A
G
C
A
C
T
A
T
A
T
T
G
G
T
G
C
A

︸
︷︷

︸
N
R
I 2

A
C
A
T
T
C
A
C
A
T
C
G
T
G
G
T
G
C
A
G

︸
︷︷

︸
N
R
I 3

C
C
C
T
T
T
T
G
C
A
C
G
A
T
G
G
T
G
C
G
C
A
T

︸
︷︷

︸
N
R
I 4

G
A
T
A
A

C
G
C
C
T
T
T
T
A
G
G
G
G
C
A

︸
︷︷

︸
N
R
I 5

A
T
T
T
A
A
A
A
G
T
T
G
G
C
A
C
A
G
A
T
T
T
C
G
C
T

︸
︷︷

︸
σ

5
4

T
T
A
T
C
T
T
T
T
T
T

A
A
T
T
G
T
G
A
G
C
G
C
T
C
A
C
A
−T

T
︸

︷︷
︸

O
∗

A
T
T
A
A
A
−A

G
G
A
G
A
A
A

︸
︷︷

︸
r
bs

3’

R
ep

or
te

r
B

5’
A
A
T
T
G
G
G
A
G
C
G
C
T
C
A
C
A
A
T
T

︸
︷︷

︸
O
∗

G
C
A
C
C
A
A
C
A
T
G
G
T
G
C

︸
︷︷

︸
N
R
I 1

T
T
A
A
T
G
−T

T
C
C
A
T
T
G
A

A
G
C
A
C
T
A
T
A
T
T
G
G
T
G
C
A

︸
︷︷

︸
N
R
I 2

A
C
A
T
T
C
A
C
A
T
C
G
T
G
G
T
G
C
A
G

︸
︷︷

︸
N
R
I 3

C
C
C
T
T
T
T
G
C
A
C
G
A
T
G
G
T
G
C
G
C
A
T

︸
︷︷

︸
N
R
I 4

G
A
T
A
A

C
G
C
C
T
T
T
T
A
G
G
G
G
C
A

︸
︷︷

︸
N
R
I 5

A
T
T
T
A
A
A
A
G
T
T
G
G
C
A
C
A
G
A
T
T
T
C
G
C
T

︸
︷︷

︸
σ

5
4

T
T
A
T
C
T
T
T
T
T
T

A
A
T
T
G
T
G
A
G
C
G
C
T
C
A
C
A
A
T
T

︸
︷︷

︸
O
∗

A
T
T
A
A
A
G
A
G
G
A
G
A
A
A

︸
︷︷

︸
r
bs

3’

T
ab

le
4.

2:
Se

qu
en

ce
s

of
th

e
pr

om
ot

er
re

gi
on

s
of

R
ep

or
te

rs
A

an
d

B
ar

e
co

m
pa

re
d

w
it

h
th

e
m

od
ifi

ed
gl

nA
p2

pr
om

ot
er

re
gi

on
of

th
e

ac
ti

va
to

r
m

od
ul

e
of

th
e

cl
oc

k
ci

rc
ui

t.
M

ut
at

io
ns

of
th

e
re

po
rt

er
s

ar
e

sh
ow

n
in

re
d.
N
R
I i

de
no

te
s

th
e

bi
nd

in
g

si
te

s
fo

r
N

R
I.
O
∗

de
no

te
s

a
la

c
op

er
at

or
si

te
,
σ

5
4

de
nt

ot
es

th
e

bi
nd

in
g

si
te

of
th

e
σ

5
4

po
ly

m
er

as
e,
rb
s

de
no

te
s

a
ri

bo
so

m
al

bi
nd

in
g

si
te

.



Chapter 4. Monitoring transcr. act. of an engineered genetic clock in E.coli 129

Bacterial strains and growth conditions The bacterial strains used for moni-

toring the bioluminescence reporters were DH5α, C41(DE3) (described in [49]) and

NC12p3415 (clock strain). The clock strain NC12p3415 was provided by the Atkin-

son laboratory and described in [8]. DH5α, C41(DE3) were grown on Luria-Bertani

(LB) agar [65]. The clock strain was grown on the medium described in [8], based on

the minimum salt base ‘W-salts’ [75]. More precisely, the growth medium was com-

posed as follows. W-Salts: 10.5g K2HPO4, 4.5g KH2PO4, 50mg MgSO4 per litre.

Supplements: thiamine 0.005% (w/v), tryptophane 0.004% (w/v). Carbon source:

glucose 0.4% (w/v). Nitrogen source: glutamine 0.2% (w/v), casein hydrosylate

0.1% (w/v).

4.1.3 In vivo analysis of luciferase transcriptional reporters

Preparation of cells. Overnight cell cultures were diluted and spread onto stan-

dard agar plates containing the growth medium (including antibiotics and IPTG as

indicated in figure legends). Plates were incubated at 37◦C overnight (for about

18h) to yield 20-60 isolated colonies of about 0.5-2mm in diameter, after which the

imaging of the bioluminescence was started.

Application of decanal. The compound n-decanal (Sigma, St. Louis, MO, USA)

was used as a substrate for the bacterial luciferase. The substrate was administered

as described in [42]: Decanal was dissolved in mineral oil to a concentration of 3%

(w/v). 300µl of the decanal-oil solution were applied to a sterile cap of a microtube

and placed in the middle of the agar plate. The dish was sealed with Parafilm so the

cells were subject to a decanal vapor of constant concentration. Cells were exposed

to the decanal right before the start of the imaging.

Transfer of cells during imaging. To change the growth medium of the cells

during image acquisition, cells were grown on a cellophane membrane, which was

laid on the agar surface of the Petri dish. Membranes were then transferred onto the

new plate after 80-100h of imaging. The exact time of transfer and growth medium

are specified in the figure legends.

Image acquisition. During imaging cells were kept at room temperature (22◦C).

Images were acquired every thirty minutes with an exposure time of twenty min-
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utes. Luminescence of cell colonies was monitored by digital imaging of agar plates

using the ORCAII c4742-98 CCD camera system (Hamamatsu (UK) Ltd. Welwyn

Garden City, UK) or the liquid nitrogen cooled TEK 512x512DB CCD with an

ST138 controller (Princeton Instruments Inc. Trenton, New Jersey). Imaging was

controlled by running automated imaging protocols using the Metamorph software

package (Molecular Devices Ltd, Wokingham, UK).

Analysis of the imaging data. The light intensities were extracted from 16

bit images which were generated by the cameras using the Metamorph software

package. Numerical values were extracted by integrating over selected regions. The

regions were drawn by hand to cover a single colony each. To account for different

colony sizes the integrated light intensities were normalized by the region area. The

background signal was estimated for each image by measuring the light intensity of

a region not containing any colonies and subtracted from the colony signal.

For the observed oscillations, the average timing and standard deviations were

calculated using the software package Matlab. The data logs extracted from Meta-

morph were formated by Perl scripts to be readable by Matlab. The timings of

the oscillation peaks were obtained by scanning for data points, for which the lumi-

nescence values were maximal within an appropriately sized data window centered

about these data points.

4.2 Experimental results: monitoring clock function

The transcriptional activity of the activator module of the clock was monitored

using the constructed luciferase reporters. In section 4.2.1 the basic properties of

the luminescence assay are established. In section 4.2.2 the reporters A and B are

compared with respect to their inducibility by IPTG (which relieves repression by

LacI). Section 4.2.3 presents the results of monitoring the engineered circuit and

investigating its clock function.

4.2.1 Reporter bioluminescence test

Before engaging in monitoring clock activity some basic properties of the biolumines-

cence reporters were established. In particular for the design of further experiments
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it was important to know when the reporter signal would reach a steady state.

To investigate the basic properties of the reporter, reporter A was introduced

into the E.Coli strain DH5α. Diluted cell cultures were spread over LB agar plates

to yield about 50 colonies on each plate, which had their bioluminescence monitored

(figure 4.2).

After the administration of the luciferase substrate the bioluminescence signal

increased to reach a maximum after 5-10 hours. Thereafter the signal slowly de-

creased until after about 50-70h it reached a steady state. A luminescence signal

could still be detected after a week.

The original reporter A carried an ampicillin resistance marker. It was first

suspected that the decay in signal was due to the loss of the ampicillin resistance

conferring plasmid, as the resistance to ampicillin relies on its degradation which

over time creates an ampicillin free microenvironment of the colony. In order to

test for this possibility a kanamycin resistance gene was inserted. But cells carrying

the kanamycin resistant reporter showed a similar decrease in signal. The peak of

the luminescence was shifted a few hours to the right. This might be due to the

increased stress for cells growing on media containing kanamycin and ampicillin.

The experiment showed that the reporter was able to produce a reliable biolu-

minescence signal. The initial peak and following decay in the signal is believed to

reflect the uptake of the substrate decanal, possibly followed by the destabilisation

of the luciferase enzyme. From the results I concluded that to monitor responses

to stimuli, these had to be applied 70h or longer after the administration of the

substrate, once the luminescence signal has settled down to a steady state.

4.2.2 Induction test

The next experiment investigated whether the reporter constructs were responsive

to changes in the repression efficiency of the LacI repressor. This was checked

in particular to investigate the effect of the mutated lac operator of reporter A

compared to the perfect lac operator in reporter B (see reporter sequences in table

4.2).

The promoter regions of the two versions of the reporter differ in the sequence of

lac operator site. In order to compare the inducibility of the two different constructs

by IPTG, both reporter constructs were introduced into E.coli cells of the C41(DE3)
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Figure 4.2: Comparison of luminescence patterns for reporter A carrying either
ampicillin resistance (ampr) or both an ampicillin resistance and kanamycin resis-
tance (kanr). Reporters were introduced into strain DH5α and grown on LB as
described in the methods section. The substrate decanal was provided at the start
of imaging (t = 0). Out of about 50 colonies on each plate the signals of 20 colonies
were monitored, all of which showed qualitatively similar behavior. Average lumi-
nescence levels are shown for both of these sets of colonies. For comparison the
curves were normalized to have a maximum of one.
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strain, which carries and expresses the LacI repressor. Cell cultures were grown on

LB with antibiotics (ampicillin, kanamycin) and yielded about 50 colonies each.

During imaging the colonies were transferred onto fresh LB plates (with antibiotics)

that contained IPTG at a concentration of 1mM and the reaction monitored. Con-

trol colonies were transferred onto fresh plates containing the same medium without

any IPTG.

Colonies lying on the same plate all showed similar behaviour. Upon transfer

between plates the signal of all colonies, including that of the controls, increased at

first and then decayed slowly. The signal increase was more transient and of a lower

magnitude for the control colonies than for the induced ones. For control colonies

the signal peaked after about 10-15h and ceased to be detectable after 50h. For

the induced colonies the signal peaked later at about 25-50h and settled down to a

steady state about 100h after the transfer.

On each plate twenty colonies were chosen randomly and their signal averaged.

The results are shown in figure 4.3. Induced colonies showed a higher signal than

controls for both reporters. The relative increase compared to controls was higher

for reporter B (about ten fold on average) than for reporter A (about three fold on

average). However, the overall bioluminescence from reporter A was higher than

that from reporter B (by a factor of about four).

The data showed that reporter B is more inducible and therefore reacts stronger

to changes in LacI repressor activity than reporter A. This behavior was expected

as the main lac operator in reporter B is the ‘perfect’ palindromic lac operator

sequence [64] while the corresponding lac operator site in reporter A differs from it

by a single base pair mutation. This would suggest that reporter B was best suited

to monitor the dynamics of the engineered circuit. But the overall low signal of

that reporter leads to a low signal to noise ratio due to the camera limitations. The

overall stronger signal of reporter A on the other hand means that the data is less

noisy than that of reporter B, while it still shows a sufficiently strong induction.

Therefore I decided to use reporter A to measure the engineered clock circuit.

The increase in the signal of the control colonies after the transfer between plates

is thought to be the result of the change in the colonies’ microenvironment. As the

colonies grow over time they will consume nutrients in their immediate vicinity and

lower their local concentrations. As a consequence, when a colony is transferred onto
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a fresh plate, the concentration of the nutrients in that colony’s close environment

will suddenly increase. This probably leads to a perturbation of the metabolism

of the cells in the colony and overall gene expression activity, and also affects the

activity of the glnAp2 promoter that drives the bioluminescence reporter.

4.2.3 Monitoring the engineered clock circuit

Starting the clock by the removal of the lac inducer IPTG

In order to monitor the clock function, reporter A was introduced into the clock

strain. Cells were grown on the minimal medium with antibiotics (ampicillin,

kanamycin and chloramphenicol). Cells were grown on medium containing varying

concentrations of IPTG: 100µM, 1µM and 0µM (as a control). Cells were transferred

onto fresh plates without IPTG after 95h.

The response of the colonies to the plate transfer varied with the concentration

of IPTG on the pre-transfer plate. A first peak of expression was observed upon

transfer, as in the induction experiment shown in figure 4.3, followed by at least one

other, suggesting that oscillating functions of the clock had been initiated. With

increasing concentration of IPTG the percentage of oscillating colonies decreased to

47 % (1µM) and 15 % (100µM). For colonies showing oscillations the relative timing

of the peaks also varied with the IPTG concentration (see table 4.3). Surprisingly,

the highest frequency of oscillations was observed when cells were initially grown

on medium lacking IPTG. For low IPTG concentrations (0 − 1µM) the interval

between the peaks was about 15h, for a higher concentration (100µM) the interval

varied between 30 − 50h. The timing of the first signal peak lay shortly after the

point of transfer, 0 − 1h, for most oscillating colonies and did not vary with IPTG

concentration. Figure 4.4 shows representative curves for colonies showing damped

oscillations.

The first peak in the signal is the expected response following the cell transfer

between plates as was seen in the previous section. More precisely, this first peak

apparently is not due to the removal of IPTG, but a response to a metabolic stimulus

due to the plate transfer. This metabolic stimulus must be masking the response to

IPTG removal. The second peak was accredited to the dynamical feedback of the

engineered clock circuit. The spread in the relative timing of the peaks is probably
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Figure 4.3: Reaction of reporter constructs A and B to lac inducer IPTG. The re-
porter constructs were introduced into the inducible E.coli strain C41(DE3) and
grown on LB medium containing ampicillin and kanamycin. The medium was
changed - as described in the methods section - to contain additionally IPTG at
a concentration of 1mM at t = 0, 90h hours after the application of the substrate
decanal. Control cells were transferred to a medium without any IPTG. The figure
shows the averaged signal of 20 randomly chosen colonies from each plate, which
contained about 50 colonies each. Colonies from the same plate all showed similar
behavior. Luminescence was normalized on a per pixel basis.
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Figure 4.4: Induction of oscillatory behaviour by removal of IPTG. Reporter A was
introduced into the clock host strain. Cells were grown on the minimal medium with
antibiotics ampicillin, kanamycin, chloramphenicol (as described in the methods)
and varying concentrations of IPTG (see legend), then were transferred after 95h
onto plates containing medium without IPTG. The number of colonies monitored
for each IPTG concentration was 40 (0µM), 34 (1µM) and 40 (100µM). A fraction
of the colonies - detailed in table 4.3 - showed damped oscillatory behaviour with
two visible peaks. The figure shows representative example curves of the oscillating
colonies for the different IPTG concentrations. Solid and open arrows indicate the
timing of the first and second peak, respectively.



Chapter 4. Monitoring transcr. act. of an engineered genetic clock in E.coli 137

Table 4.3: Oscillations after removal of IPTG.

IPTG concentration before transfer 0
No. of monitored colonies 40
of which showed two peaks 30 (75 %)

mean std. deviation
Time of first peak 0.33h 1.43h
Time of second peak 15.45h 5.37h
Interval between peaks 15.12h 5.24h

IPTG concentration before transfer 1µM
No. of monitored colonies 34
of which showed two peaks 16 (47 %)

mean std. deviation
Time of first peak 1.13h 1.06h
Time of first peak 17.65h 2.39h
Interval between peaks 16.53h 2.51h

IPTG concentration before transfer 100µM
No. of monitored colonies 40
of which showed two peaks 6 (15 %)

mean std. deviation
Time of first peak 0.5h 0h
Time of second peak 37.67h 7.39h
Interval between peaks 37.17h 7.39h
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due to differences in the size and shape of the individual colonies. Cells at different

positions within a colony experience different environmental conditions - cells at the

rim of a colony have more access to the medium and grow faster, while cells in the

centre of the colony experience less favorable conditions and may stop growing or

die. Since the signal of a colony is the average of all the cells in it, the colony shape

will affect the colony’s signal. The decay of the oscillation after the second peak

might be the result of the promoter dynamics of the individual cells or due to a

desynchronization of the cells within single colonies as they grow during the course

of the experiment.

The results suggest that a high IPTG concentration prior to transfer reduces

the likelihood of colonies to show more than one clearly defined activation peak.

When two peaks can be seen the period of the oscillation seems to increase with

the IPTG concentration. In sum transferring colonies between cells whilst removing

IPTG from the growth medium triggers damped oscillations. But while a higher

pre-transfer concentration of IPTG increases the period of the oscillations it also

makes the oscillations less reproducible. This could be because the IPTG is not

completely removed from the cells following transfer to new plates.

Surprisingly, colonies on control plates, which were grown on medium without

IPTG also before the transfer, also showed damped oscillations. This suggests that

the metabolic stimulus, that cells experience upon transfer, perturbs the system in

a way that starts the clock.

The exact interpretation of the results is complicated by the overlay of the chem-

ical (removal of IPTG) and metabolical (replenishment of nutrients on fresh plate

after transfer) stimulus. That oscillations could only be observed on a fraction of

colonies on a plate suggests that the heterogeneity between colonies has a significant

effect on the clock’s behaviour.

Colony age at the time of transfer affects the period of the oscillations

In [8], the authors reported that the period of the oscillations depend on the growth

rate of the cells - doubling times of one and two hours yielded oscillations of the

period of about 10h and 20h hours respectively. When colonies grow larger in size,

cells in its centre will grow more slowly or die due to worsening environmental

conditions. Consequently, the average growth rate of the cells should decrease over
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time. This suggests that the age of the colony at the time the clock is triggered would

affect the period of the resulting oscillations. More precisely, the higher growth rate

of the younger colonies, which contain a higher percentage of rapidly dividing cells,

should yield a shorter period of oscillations. Heterogeneity of older colonies may

cause damping of oscillations due to different periods.

In order to test this hypothesis, reporter A was introduced into the clock strain

and cells grown on the minimal medium, as described in the methods section, with

antibiotics ampicillin, kanamycin and chloramphenicol. The colonies were transfered

at an earlier stage than in the previous experiment, i.e. after 75h, onto fresh plates

that contained the same medium. The bioluminescence response of 40 colonies was

monitored.

In about half of the colonies the initial peaks of luminescence was followed by

a second peak after about 10-15h, suggesting that the transition had triggered an

oscillation of the circuit. The rest of the colonies had only one clearly visible peak

in the signal. Signals decayed back to the steady state value about 50h after the

transfer. The signals of typical colonies are displayed in figure 4.5. The distribution

of the relative timing of the peaks is given in table 4.4. The first and second peaks of

the signal lay at about 5h and 17.5h after the transfer, yielding an average interval

(period) of about 12.5h between the peaks. Signals of oscillating colonies showed a

similar timing of the peaks as can be seen of the low standard deviation of 1.91h for

the period (interval between peaks.

In sum the experiment showed that the earlier transfer also triggers a damped

oscillatory response in the promoter activity of the activator module of the engi-

neered circuit. Oscillations could only be observed in about half of the cells. The

timing of the peaks of the oscillating colonies were fairly consistent. The average

period of the oscillations was shorter for cells transfered after 75h than for those

transferred after 95h, as expected. One issue that makes the interpretation of the

results difficult is that the exact effect of the metabolic stimulus on the cells is not

clear.



Chapter 4. Monitoring transcr. act. of an engineered genetic clock in E.coli 140

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300
Clock response to metabolic stimulus

time in hours

No
rm

al
ise

d 
lu

m
in

es
ce

nc
e

 

 
colony 1
colony 2
colony 3
colony 4
colony 5

Figure 4.5: Response of the glnAp:lux reporter A to the metabolic stimulus after 75h.
Reporter A was introduced into the clock strain. Cells were grown on the minimal
medium with antibiotics ampicillin, kanamycin, chloramphenicol (as described in
the methods). After 75h colonies were transferred to fresh plates containing the
same medium - 15h earlier than in the previous experiment (compare figure 4.4). 40
colonies were monitored, 20 of which showed oscillations with two peaks, while the
other colonies only showed one peak. The figure shows the bioluminescence response
of five typical oscillating colonies. Details on the distribution of the peaks’ position
are summarized in table 4.4.

Table 4.4: Reaction of activator to metabolic stimulus (no IPTG, transfer after 75h)

No. of monitored colonies 40
of which showed two peaks 20 (50 %)

mean std. deviation
Time of first peak 5.13h 0.84h
Time of second peak 17.6h 2.65h
Interval between peaks 12.48h 1.91h
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Possible causes for the rapid dampening of oscillations

In [8], the authors reported that the clock showed up to three to four cycles of

oscillations, while here, only two cycles could be observed. There are several possible

causes for this rapid dampening of the oscillations.

• One, over time, the clock of the individual cells desynchronize within the

colony and the oscillations are averaged out. In particular, the environmental

conditions of the cells in the middle of the colonies lead to slower growth or

death of cells - the net result is also a desynchronizing of the individual clocks.

• Two, the stimulus, which the cells experience upon transfer onto a fresh plate is

different from the IPTG removal in the chemostat experiments, and therefore

leads to different clock response. Also, the IPTG removal by transfer unto a

fresh plate might not be complete, because ITPG may still be sticking to the

cells or the membrane.

• Three, during the time of the imaging, the clock cells might loose a plasmid

that is important for clock function, as is explained below.

The functionality of the engineered circuit relies on the constant phosphoryla-

tion of the transcription factor NRI. To assure this the clock strain was fitted with

the mutant kinase NRII2302. The gene for this kinase was provided on a plasmid

conferring resistance to the antibiotic ampicillin. The way in which the resistance to

ampicillin is achieved leads to a degradation of ampicillin in the environment of the

cell colony. It was suspected that this change of a colony’s microenvironment might

cause clock cells to loose the kinase carrying plasmid over time and thus cause the

breakdown of the oscillations.

To check whether the plasmid was retained the following experiment was per-

formed. After a typical clock experiment all colonies were washed off and (after

sufficient dilution) plated on fresh LB plates containing either kanamycin and ampi-

cillin or only kanamycin as antibiotics. After an overnight incubation the number

of growing colonies was counted.

The number of colonies were similar on both plates. The kanamycin plate carried

621 colonies compared to 517 on the kanamycin / ampicillin plate. This means that

most of the clock cells that carried the bioluminescence reporter also retained their
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ampicillin resistance and the NRII2302 kinase. From that I concluded that the

breakdown of oscillations cannot be explained by the loss of the NRII2302 kinase.

Conclusions

It was shown that the constructed luciferase reporters produce a reliable lumines-

cence signal over long time periods. The reporter constructs showed a strong re-

sponse to the lac inducer IPTG. Reporter A, containing a mutant lac operator site,

was chosen for monitoring the clock circuit because it had stronger luminescence,

while still showing good inducibility.

Clock function was measured by synchronizing cells through exposure and sub-

sequent removal of IPTG by transfer between plates. The signal from reporter A

showed damped oscilations, whose period increased with the concentration of IPTG.

Also, oscillations were observed in control colonies, suggesting that the metabolic

stimulus from the transfer onto fresh plates is sufficient to start the clock function.

When cells were transfered at an earlier time, a shortening of period was observed,

suggesting that the higher average growth rate of younger colonies leads to a shorter

period of the clock. In all clock experiments damped oscillations were detected only

in a fraction of colonies. An increase in the IPTG exposure resulted in the damped

oscillatory behaviour being less reproducible. In order to improve the system it

would be important to determine the efficiency of IPTG removal upon transfer, i.e.

how much IPTG is still retained by the colonies and the membrane after transfer.

This might be tested for example by studying the response of a standard lac in-

ducible reporter to the IPTG removal by colony transfer, and compare it to reporter

carrying cells, which are grown at different IPTG concentrations. Also, a closer look

at the correlation between oscillations and colony size might be insightful.

The motivation for conducting the imaging experiments was to obtain reliable

data on which to base the modelling on. The system was also intended as a tool to

analyse the consequences of changes to the regulatory DNA sequences, which would

have been detected by colony based screening for interesting expression patterns - like

longer lasting oscillations. In experiments, the clock produced damped oscillations

of fairly consistent period. Only a fraction of colonies on a plate showed oscillatory

behaviour suggesting the need for further optimization of the experimental setup.

The obtained data serves as a good illustration of the model, as the model is able to
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reproduce the damped oscillatory behaviour with a comparable period length (see

section 3.3), and thus opens possibilities for further work on that system.

The conducted work highlighted some problems of the imaging assay experi-

ments, in particular the system’s sensibility to the growth conditions. Therefore the

assay could be further optimized to yield a better control and more homogeneity

of the growth conditions of the cells. This could be achieved by monitoring clock

function in a chemostat environment as in [8], where the growth medium can be

changed in a more controlled manner. Although, one would loose the advantages

of the automatization and the possibility of colony screening. Also, further data

might be obtained by measuring the level of mRNA transcripts and by monitoring

the expression of the second gene in the circuit. With some further work - and a

bit of luck - it might still be possible to push the system into the realm of sus-

tained oscillations, which would correspond moving through a Hopf bifurcation in

the mathematical model.



Conclusions

This work presented the mathematical modelling and analysis of an engineered ge-

netic oscillator in E.coli, in concert with the acquisition and analysis of experimental

data on that circuit, based on a newly set up imaging assay. Genetic oscillators are

the basis of biological clocks, which allow organisms to maintain stable circadian

rhythms. The mathematical modelling took into account the special, heterogeneous

nature of genetic regulatory systems, where variables can describe discrete finite gene

states, or infinite protein numbers (or concentrations). The newly set up imaging

assay for the engineered clock allowed to collect data over long time periods in an

automated fashion. Following an introductory chapter (chapter one), the work was

divided into three parts: Chapter two described the theoretical modelling framework

and introduced a newly developed algorithmic tool for automated model construc-

tion. Chapter three presented the model derivation and its analysis. Chapter four

discussed the details of the imaging assay and the data collected from the clock cells.

Summary of the presented work. Models with finite, inherently discrete vari-

ables in conjunction with variables describing particle numbers or concentrations

require special theoretical consideration. In chapter two, a theoretical framework,

previously described in [66, 69], was discussed, that allows to derive deterministic

and continuous rate equations from discrete stochastic model formulations of molec-

ular interactions. In order to be able to apply this theory to realistic systems, an

algorithmic modelling tool was devised and implemented, that automatically con-

structs Markov chain models for gene activity states based on binding dynamics of

regulatory factors to enhancer and operator sites of the respective promoters. In

particular, the algorithm is able to account for cooperative binding and DNA loop

formation. The source code and example files can be downloaded from the website

of the Compbio group at ‘lora.maths.warwick.ac.uk’. The developed algorithm was
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applied to study different models for repressive DNA loop formation induced by the

lac repressor. The model analysis suggested, that loop formation based on solely

dimeric repressor molecules fails to convey the noise reducing properties of looping

by tetrameric rerpressors, which were reported previously in [85].

Chapter three presented the derivation and analysis of models for the engineered

clock circuit. To reduce the dimension of the modelling problem, the Markov chain

of the gene states of the clock model was decoupled into submodules, to be treated

separately, describing the regulation of the promoters glnAp2 and glnKp by the

transcription factor NRI, and the repression of the glnAp2 promoter by the lac

repressor, LacI. Models for the NRI dependent regulation were constructed, which

took into account the cooperative binding of NRI to DNA, and whose parameters

were fitted from the literature, where the glnAp2 and glnKp promoters have been

studied in detail. The average dynamics for the clock circuit were then derived by

reassembling the rate laws for the respective submodules. The transcriptional and

translational processes were considered jointly, motivated by a quasi-steady-state

assumption on the mRNA concentrations, to arrive at a two dimensional system of

coupled ordinary differential equations.

Nullcline and linear stability analysis revealed that the occurrence of a Hopf bi-

furcation requires the positiveness of the slope of the NRI nullcline. This in turn

was only possible for models where the glnAp2 promoter was driven by at least two

enhancer sites. Further, sufficient conditions on the nullcines were derived for sus-

tained ocillations to exist. Other possible behaviour of the system, like the existence

of a single stable steady state, corresponding to damped oscillations in the case of

a stable spiral, or bistability, were characterized in terms of corresponding nullcline

scenarios. The model suggested, that a short NRI lifetime relative to a longer LacI

lifetime, as well as the difference in the activation thresholds of the glnAp2 and

glnKp promoters, were important for stable oscillations.

In order to fit and optimize the model and to be able to test predictions, a new

monitoring assay for the eningeered clock was set up based on luminescent transcrip-

tional reporter constructs. The imaging of colonies growing on a petri dish allowed

for automated data collection over long time spans and also opened the possibility

to screen for clock mutants. Damped oscillations were observed after starting the

clock by the removal of the lac inducer IPTG, as was expected from previously re-
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ported results based on chemostat culture assays monitoring LacZ activity [8]. Also,

damped oscillations were observed after cells were exposed to a metabolic shock due

to colony transfer between agar plates and consequent exposure to fresh nutrients.

(Colony transfer between plates was used to change the growth medium.) The ob-

served period of oscillations differed with the age of the colonies. On the grounds

of previous results [8], it was concluded that different average growth rates of cells

within colonies of different ages may be responsible for these period variations. The

esablished imaging assay constitutes a decent basis for the further testing of model

predictions. For this, the assay may need to be further optimized to improve control

of growth conditions. Also the imaging data could be complemented by measure-

ments of mRNA and protein numbers to improve parameter fitting.

Discussion and Outlook. The Markov chain based modelling framework allows

to bridge from detailed, discrete stochastic model formulations to deterministic and

continuous systems, which are more tractable by mathematical analysis. The pre-

sented algorithm, that automatizes the construction of the discrete Markov chain

models for the described class of genetic regulatory systems, constitutes a step to-

wards facilitating the application of this kind of modelling to realistic systems and

making it more accessible to non-specialists. A possible route for further devel-

opment would be to extend the algorithm, such that it can treat a larger class of

models, or to embed the algorithm into a larger modelling package, such that the

derivation of invariant measures and average dynamics can be performed routinely.

This would facilitate the comparative analysis of models for gene regulation and re-

lated systems, which are able to distinguish between specific molecular mechanisms,

and would make such modelling available to a larger part of the multidisciplinary

research community. The software package Copasi represents an example for such

a modelling tool used mainly for metabolical reaction networks [37]. A comparable

tool specifically designed for genetic regulatory networks appears still to be missing.

The analysis of the models of the clock circuit highlighted, that apart from

the overall composition of the regulatory dependencies, also the molecular details

of the implementations (number of binding sites, DNA looping, cooperativity) are

important for determining the qualitative dynamic properties of the system. For the

studied clock circuit the analysis suggested that the cooperative nature of the auto-
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activation of the activator module is an essential feature for oscillations, while the

nonlinearity of other regulatory mechanisms (activation of the repressor module and

repression of the activator module) seemed to be less important. The importance of

the degradation rates is in accordance with studies of other genetic oscillators [33]

and the difference in activation thresholds of the activator and repressor module

may mimic the role of delayed negative feedback, like for example in the Drosophila

clock described in chapter one.

Monitoring the clock using the newly setup imaging assay proved feasible, even

though further optimization is needed, like more homogenous growth conditions, to

improve the quality of the data. Maintaining homogenous growth conditions for this

colony based assay is more difficult than for chemostat cultures, for which, on the

other hand, assays based on culture samples are more difficult to automatize. Future

work on the established clock assay could include site-specific mutations of the clock’s

gene modules to study for example the effect of different activation thresholds for

the two gene modules of the clock, or increasing the degradation rate of the activator

protein NRI, by tagging it with degradation signal peptides. Random mutagenesis

of the chromosome of the clock strain might also yield interesting clock behaviour

which could be screened for.

On a wider perspective, the current work highlighted some characteristic features

of models of genetic regulatory systems, like of the heterogeneity of variables and

also the complexity in the details of the corresponding molecular mechanisms. The

presented results suggest, that it is important to develop models that are able to

precisely distinguish between different molecular mechanisms. On the other hand,

biological models found in the literature, are often not precise enough to be trans-

lated into mathematical models without some ambiguity and additional assump-

tions. Making the construction and formulation of mathematically well defined

models more routine, should thus help advance the understanding of biological sys-

tems.

In particular in the context of models for genetic oscillators, their possibly com-

plex dynamics are sensitive to the molecular details of gene regulation. The ad-

vancing ability to construct artificial genetic constructs promises to facilitate the

comparison of different mechanisms by modelling and experiment. This may help

elucidate the more complex properties of natural biological clocks like temperature
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compensation and robustness, by aiming to engineer circuits that are able to mimic

some of these advanced properties.

This thesis, being an interdisciplinary work of mathematics and biology, is also

characterized by the challenge to bridge between the corresponding research cultures.

While biologists typically use descriptive language in order to understand a certain

biological function, mathematicians prefer more rigorous and precise formulations

in order to capture more general patterns. This two-sidedness presents a challenge

in the field of mathematical biology in general. But as the understanding of the

cell as a complex molecular machine gains coherency, the description of its workings

will naturally become more mathematical. In this respect genetic oscillators are

an example for a long standing, and successfully developing field of research for

mathematical biology.
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