
OPTIMIZING COMPLEX QUERIES WITH MULTIPLE

RELATIONAL INSTANCES

YU CAO

(B.Sc. University of Science and Technology of China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48648833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgement

I would like to express my very deep appreciation to many people, without whom

this thesis would not have happened.

Prof. Tan Kian-Lee and Prof. Chan Chee-Yong are great supervisors and I am mostly

indebted to them. During the last few years, they have been patient in guiding and sup-

porting me. I am really grateful that they never push me hard for research achievements

and always try their best to relieve my mental stress and convince me that I can graduate.

It is their encouragement that drives me to the end. Their insights in database research

keep me walking on the right way, and their heuristic guidance in our discussion makes

me think and work very independently. They have taught me many things about how to

become a good researcher as well as a good person with kindness and wisdom.

Thanks to Gopal Das, Bramandia Ramadhana and Zhou Yongluan,who worked

closely with me on various papers. Their participation accelerated the work progress,

enriched the technical content and improved the paper presentation. Their help eased the

burden on my back to much extent.

Thanks to Prof. Ooi Beng Chin, who provided me the position ofresearch assistant

for a whole year.

ii

Thanks to members of my evaluation committees: Prof. Stephane Bressan, Prof.

Panos Kalnis, Prof. Pang Hwee Hwa and the anonymous externalthesis examiner. They

provided me valuable feedback to refine my research work at different stages. I also want

to thank other professors in our database group, especiallyProf. Ling Tok Wang who

invoked my initial interest in database research, and Prof.Anthony Tung, a semiprofes-

sional solo singer well recognized around, who made my Ph.D life more entertaining.

Thanks to many friends I have made during my years at NUS. Because of the mem-

orable friendship between us, my Ph.D life became more enjoyable. They are Bao

Zhifeng, Cao Jianneng, Chen Ding, Chen Su, Chen Yueguo, Dai Bingtian, Li Feng,

Li Yingguang, Liu Chen, Liu Xuan, Lin Yuting, Lu Meiyu, Lu Peng, Meduri Venkata

Vamsikrishna, Shi Lei, Su Shan, Sun Yang, Vo Hoang Tam, Wang Nan, Wang Tao, Wang

Xianjun, Wang Xiaoli, Wu Huayu, Wu Ji, Wu Sai, Wu Wei, Xiang Shili, Xu Liang, Xu

Linhao, Yang Fei, Yang Xiaoyan, Ying Shanshan, Zhang Dongxiang, Zhang Jingbo,

Zhang Zhenjie, Zhao Feng and many others.

My parents always respect my choices and decisions, and never try to impose their

belief on me. I am entirely grateful for that. Their love is the most precious treasure I

own.

CONTENTS

Acknowledgement i

1 Introduction 1

1.1 Thesis Motivation . 3

1.2 Thesis Contributions . 5

1.2.1 Shared Table Accesses for Relational Instances 5

1.2.2 Collaborative Executions of Sortings of Relational Instances . . 7

1.2.3 Optimizing Self-Joins Between Relational Instances. 8

1.2.4 Prototype System Development 9

1.3 Thesis Organization . 9

2 Shared Table Scans for Relational Instances 11

2.1 Introduction . 11

2.2 Overview of MAPLE . 16

2.2.1 Share Groups & Shared Scans 16

2.2.2 Interleaved Executions with Drainers 17

iii

iv

2.2.3 Architecture of MAPLE . 21

2.3 Shared Scan Post-Optimizer . 21

2.3.1 Overflow Instances . 21

2.3.2 Interleaved Execution Deadlocks22

2.3.3 Enhanced Query Plan Optimization 26

2.3.4 Optimization Algorithm . 29

2.4 Interleaved Iterative Execution 37

2.5 Performance Study . 41

2.5.1 Test Queries . 42

2.5.2 Experiment Design . 43

2.5.3 Optimization Overhead . 44

2.5.4 Operator Memory . 44

2.5.5 Instance-buffer Size . 49

2.5.6 Dataset . 50

2.5.7 Two Disks . 51

2.6 Related Work . 52

2.7 Summary . 54

3 Collaborative Sort Executions for Relational Instances 55

3.1 Introduction . 55

3.2 Preliminaries . 59

3.3 Sort Sharing Techniques . 60

3.4 Cooperative Sorting . 63

3.4.1 Overview . 63

3.4.2 Intermediate Sort Operations12 66

3.4.3 Generating Initials12 Runs 69

3.4.4 Cost Model . 74

v

3.4.5 Extensions . 77

3.5 Optimization of Multiple Sortings 78

3.5.1 K-way Cooperative Sorting 78

3.5.2 Multiple Sorting Optimization 80

3.5.3 Sort-sharing-aware Query Optimization 82

3.6 Discussions . 85

3.6.1 Ascending/Descending Ordering 86

3.6.2 Dynamic Optimization for Cases 3 and 4 87

3.6.3 Cooperative Index Building 87

3.6.4 Functional Dependency and Attribute Correlation 89

3.7 Performance Study . 90

3.7.1 Micro-benchmark Test with TPC-DS Dataset90

3.7.2 Micro-benchmark Test with Synthetic Dataset 95

3.7.3 Performance of Cooperative Index Building 98

3.7.4 Query Processing with Sort Sharing 103

3.8 Related Work . 106

3.9 Summary . 107

4 Self-Join Processing for Relational Instances 109

4.1 Introduction . 109

4.2 Related Work . 113

4.3 The SCALE Algorithm . 114

4.3.1 Overview . 115

4.3.2 Algorithm Details . 117

4.3.3 Integration with Tuple Selection and Projection Pushdown . . . 123

4.4 Analytical Study . 125

4.4.1 Cost Model . 125

vi

4.4.2 Comparison with Sort-Merge Join 132

4.5 Performance Study . 133

4.5.1 Synthetic Dataset Generation 134

4.5.2 Experiment Design . 135

4.5.3 Experimental Results . 136

4.6 Extensions to SCALE . 146

4.6.1 Sideways Information Passing 146

4.6.2 Self Band–Join . 147

4.7 Summary . 148

5 Conclusion 149

5.1 Contributions . 150

5.2 Future Work . 152

5.2.1 Refining Invented Techniques 152

5.2.2 Developing New Techniques 154

Bibliography 156

A Supplementary Materials for Chapter 3 164

A.1 The Proof of Theorem 3.1 . 164

A.2 Component Costs of Sorting Results in Performance Study. 170

Abstract

It is not uncommon that analytical database queries containmultiple instancesof the

same (base or derived) relation. Unfortunately, almost allof the conventional relational

query processing techniques are oblivious to these instances and instead deal with them

as independent relations. As a result, the query evaluationperformance would be subop-

timal.

This thesis studies the problem of optimizing complex queries with multiple rela-

tional instances. Specifically, we investigate three fundamental query execution opera-

tions, i.e. table scan, table sorting and table join, to exploit the corresponding optimiza-

tion opportunities when these operations involve multipleinstances. Our contributions

are summarized as follows.

First, we present a light-weight multi-instance-aware plan evaluation engine that en-

ables multiple instances of a relation to share one physicaltable scan. This evaluation

engine utilizes a novel interleaved pull iterative execution strategy, which interleaves the

query processing between normal processing and resolving blocked shared scans. Our

method demonstrates the feasibility and efficiency of a clustered table access strategy for

the instances within a single query.

Second, we develop a sort-sharing-aware query processing framework, which con-

sists of a series of useful techniques ranging from query optimization to query execution.

It turns out that sorting a table multiple times takes place frequently in many applications,

such as building various indexes over the table and businessintelligence reporting. With

this framework, we are able to maximize the effects of sharing and collaboration during

achieving different sorting requirements for multiple instances.

ii

Third, we propose an efficient algorithm for performing self-join operations between

two instances and with join predicates involving two distinct instances. This type of self-

joins occur often in many traditional as well as recently emerging database applications,

such as location-based service (LBS), RFID data management, sensor networks. Our

algorithm is generally superior to classical join algorithms like Sort-Merge Join, Hybrid

Hash Join and Nested-Loop Join.

Finally, we have implemented our instance-conscious queryprocessing techniques

in PostgreSQL, a widely known and deployed open-source object-relational DBMS. Our

extensive experimental study shows significant performance improvements over the tra-

ditional instance-oblivious evaluation schemes.

LIST OF TABLES

2.1 Queries Filtered by Each Criterion 42

2.2 Test Queries in Experiments . 43

2.3 Optimization times (inmicrosecond) with Default Settings 44

3.1 The Entries inTB for Example in Fig. 3.4 73

3.2 Tested TPC-DS Dataset . 91

3.3 Component Costs of CS and IS . 93

3.4 TPC-DS Dataset for Comparing Performance of Index Construction . . 98

3.5 Component Costs of CIB and NIB . 99

4.1 The possible distribution ofRM(t) tuples withinRM1(t) and RM3(t),

along with the corresponding right-join state oft 118

4.2 Notations used in the analytical study ofSCALE 125

A.1 Component Costs of Sortings in the Micro-benchmark Testof Section 3.7.1

(in seconds) . 172

A.2 Component Costs of CIB and NIB withSF 40 in Section 3.7.3 (in seconds)174

i

ii

A.3 Component Costs of CIB and NIB withSF 100 in Section 3.7.3 (in

seconds) . 175

LIST OF FIGURES

2.1 Architecture ofMAPLE . 12

2.2 Partial Query Evaluation Plans for Query Q90 in TPC-DS Benchmark . 14

2.3 Simple Execution Deadlock . 20

2.4 Examples of Group Dependency Cycles25

2.5 Enhanced Query Plans for Example 2 35

2.6 Performance Improvements ByMAPLE 45

2.7 Query Execution Times . 46

2.8 Expected Saving and Actual Saving With 5MB operatormem 47

2.9 MAPLE Effect of Changing Instance-buffer Size 49

2.10 MAPLE Effect in 100GB Dataset . 50

2.11 MAPLE Effect of Using Two Disks . 51

3.1 Cooperative Sorting Example:M = 4 andF = 2 64

3.2 Initials1 Runs for RelationT in Example of Fig. 3.1 68

3.3 Illustration of Four Types of Tuple Batches in Initials1 runs 72

3.4 Tuple Batches of the Two Initials1 Runs in Fig. 3.2 73

iii

iv

3.5 An Example of Multiple Sorting Optimization 81

3.6 Performance Comparison on TPC-DS Dataset 92

3.7 Comparison of CS with RS on websales,SF 40 95

3.8 Comparison of K-way IS with Polyphase IS on websales,SF 40 . . . 96

3.9 Varying Total Number ofs12 Chunks 97

3.10 Varying Number of Composites12 Chunks 98

3.11 Performance Comparison on TPC-DS Dataset, withSF 40 100

3.12 Performance Comparison on TPC-DS Dataset, withSF 100 101

3.13 The Optimal Plans for Q1 and Q2 by the Original PostgreSQL Optimizer 104

3.14 Query Execution Times of Q1 and Q2 104

3.15 Plans Considered During Query Optimization for Q1 105

4.1 SCALE execution during the first pass of processingSA(R) 117

4.2 Insert tuples to the hold buffer as well as read them into the run buffer . 120

4.3 Benchmark test, 1GB tables with 10 million tuples,AD varies,MD =

105, DD = uniform,DV = 1× 105 . 137

4.4 Benchmark test, 1GB tables with 10 million tuples,AD varies,MD =

5× 105, DD = uniform,DV = 1× 105 138

4.5 Benchmark test, 1GB tables with 10 million tuples,AD = uniform,MD

= 105, DD varies,DV = 1× 105 . 139

4.6 Benchmark test, 1GB tables with 10 million tuples,AD varies,MD =

105, DD = uniform,DV = 5× 105 . 140

4.7 Benchmark test, 1GB tables with 10 million tuples,AD varies,MD =

105, DD = uniform,DV = 9× 105 . 141

4.8 Scalability test, with varying table sizes and join memory sizes,AD =

uniform,MD = 105, DD = uniform . 142

v

4.9 Verify the effect of memory allocation scheme, 1GB tablewith 10 mil-

lion tuples,MEM = 10MB, AD = uniform, MD = 105, DD = uniform,

DV = 9× 105 . 143

4.10 Test on integration with selection conditionR1.C ≥ i × 5 × 104 and

R2.C ≤ 106 − i × 5 × 104, 1GB tables with 10 million tuples,MEM =

10MB, AD = uniform,MD = 105, DD = uniform 145

A.1 The Execution Plan of 3-way Cooperative Sorting 165

A.2 The Alternative Execution Plan of 2-way Cooperative Sorting 166

A.3 The Execution Plan of 4-way Cooperative Sorting 167

A.4 The Alternative Execution Plan of 2-way Cooperative Sorting 168

A.5 The Execution Plan ofk-way Cooperative Sorting 169

A.6 The Alternative Execution Plan of 2-way Cooperative Sorting 170

CHAPTER 1

Introduction

Relational databases are currently the predominant choicefor data storage, such as

storing financial records, medical records, manufacturingand logistical information and

personnel data. As such, a relational database management system (RDBMS), which

manages a set of relational databases, has become a backend component of almost any

modern application stack. Consequentially, RDBMS productmanufactures such as Or-

acle, IBM and Microsoft, are all among the largest and most successful software firms

around the world, together sharing a multi-billion dollar market.

The huge success of relational databases is significantly attributed to Codd’s rela-

tional data model [17], which provides a declarative methodfor specifying data and

queries: users directly state what data (in the form of relations) the database stores,

manipulate (insert, delete and update) and query the data through a data manipulation

language like SQL; the DBMS, managed and tuned by the database administrator, takes

care of describing formats for storing the data and retrieval procedures for getting queries

answered.

1

2

Historically, database systems mainly focused on transactional data processing. Trans-

actions are composed of simple, repetitive and short running action queries. For perfor-

mance reasons, a DBMS has to interleave the actions of several transactions. Therefore,

the major challenge of the DBMS was ensuring the ACID proprieties of transactions to

maintain data in the face of concurrent access and system failures. Later on, however,

organizations have increasingly emphasized applicationsin which current and historical

data are comprehensively analyzed and explored, identifying useful trends and creating

summaries of the data, in order to support high-level decision making. Consequently,

two new types of database systems, data warehouses and decision support systems, are

being created and maintained to process analytical queries. These queries usually con-

tain many complex query conditions over multiple tables, process large amounts of data

and thus run for a long time. Moreover, these queries are often ad-hoc and exploratory,

motivated by the desire to find interesting or unexpected trends and patterns in large data

sets. As such, the database system faces the challenge of efficiently answering users’

complex analytical queries. This challenge has spurred more than thirty years of query

processing research, pioneered by Selinger et al. [56] in System R and refined by gener-

ations of database researchers and developers. Nowadays, database systems have been

tremendously effective in addressing the needs of analytical query processing. However,

the existing database techniques are still far from perfectand will doubtless continue to

be further improved, with remaining tough research problems (e.g. adaptive query pro-

cessing [20]), newly emerging research challenges (e.g. database usability [38] and new

hardware platforms such as chip multiprocessors and solid state disks), as well as other

undiscovered important research areas.

3

1.1 Thesis Motivation

In this thesis, we investigate the problem of efficient processing of queries withre-

lational instances, which are the multiple occurrences of the same (base or derived)

relation within a single query.

Consider the TPC-D(ecision)S(upport) benchmark [3] queryQ90 below. It contains

two sub-queries in the from-list of the main query block, both of which operate on

the same set of relations:web sales, householddemographics, time dim andweb page.

Taken as a whole, each distinct relation has two instances inthis Q90.

SELECT amc/pmc as am pm ratio

FROM (SELECT count(*) as amc

FROM websales, householddemographics, timedim, webpage

WHERE ws sold time sk = t time sk and ws ship hdemosk = hd demosk

and ws web pagesk = wp webpagesk and t hour between 8 and 8+1

and hd dep count = 6 and wp char count between 5000 and 5200) at,

(SELECT count(*) as pmc

FROM websales, householddemographics, timedim, webpage

WHERE ws sold time sk = t time sk and ws ship hdemosk = hd demosk

and ws web pagesk = wp webpagesk and t hour between 19 and 19+1

and hd dep count = 6 and wp char count between 5000 and 5200) pt;

In many database applications, it is not uncommon for a single complex analytical

query to contain relations with multiple instances. For instance, among the 99 queries

in the TPC-DS benchmark, more than 60% of them contain at least one relation with

multiple instances; the maximum number of instances for a relation is 8 (e.g., Q11 and

Q88) and the maximum number of relations with multiple instances is 15 (e.g., Q78).

The reasons for the prevalence of relational instances are manifold. Complex queries of-

ten involve correlated nested subqueries with aggregationfunctions. Correlation refers

4

to the use of values from the outer query block to compute the inner subquery. Between

a subquery and the outer query and/or between subqueries, a non-empty set of common

relations are usually shared. Complex queries (e.g. the above Q90) also frequently con-

tain a lot of common or similar sub-expressions due to the extensive use of relational

views. Either materialized or expanded into the query at runtime, the views introduces

multiple instances of the materialized results or base tables. As another scenario, rela-

tional instances appear in queries representing set operations to establish a relationship

between results from several subqueries, such as UNION, INTERSECT and EXCEPT.

Moreover, self-join, a join operation that relates data within a relation by joining the

relation with itself, is extensively utilized in many applications. For example, 6 queries

in TPC-DS involve self-joins. When RDF data are managed as a triple table in relational

DBMS, SPARQL queries are often mapped to relational querieswith many self-joins

that relate the subjects and objects [5]. Yet another application where self-joins occur

frequently is the publication of relational data as XML; here, XML views are defined

over the underlying relational data and XML queries (e.g. inXQuery) over the views are

translated into self-join queries on the underlying table [57]. Moreover, self-joins occur

often in many recently emerging database applications, such as location-based service

(LBS), RFID data management, sensor networks, network management.

It is surprising that at least in the public domain there havenever been systematic

or specialized studies of query processing with relationalinstances. As a result, despite

the frequent relational instances encountered, most of today’s relational query engines do

not explicitly recognize them within queries during query optimization and/or evaluation.

Instead, each instance is treated as a distinct relation.

If a database system is oblivious of multiple instances, a large portion of the total

query expense will be wasted when queries contain instancesof big relations. The ob-

servation lies in the concerns on two components of the queryprocessing cost. On the

5

one hand, data of a multi-instance relation are repeatedly fetched from disk for each of

its instances due to system buffer trashing; later on, many common data are materialized

to disk and then retrieved back to memory as intermediate results of query processing by

different instances. In terms of each table tuple, it could be manipulated multiple times

by different instances. Intuitively, this tuple could serve all its host instances by incurring

fewer I/O accesses and thus less I/O cost. On the other hand, CPU-intensive operations

are also conducted on the data of multi-instance relations,such as tuple selection and

projection and join matching. Among them, many actually derive the same information

from the same data, which thereby incurs redundant CPU cost.

In this thesis, we try to recognize scenarios where the diverse ways of treating the

existing instances would significantly affect the query evaluation costs. Correspondingly,

we want to find the optimal solutions by exploiting novel, elegant and efficient multi-

instance conscious techniques.

1.2 Thesis Contributions

This thesis studies in-depth three significant research problems about efficient pro-

cessing of queries with relational instances, which are outlined in the following subsec-

tions.

1.2.1 Shared Table Accesses for Relational Instances

Traditionally, each instance has its own independent access method (sequential or in-

dex scan). While there have been some efforts to optimize multiple scans on the same ta-

ble to minimize disk I/O cost, these works are limited in scope. In [1, 18, 36, 42, 43, 69],

scans are coordinated for better buffer reuse (increasing buffer locality). In particular,

the data-sharing opportunity arises mainly among scans from different queries running at

6

the same time. The performance improvement is achieved by exhaustively exploiting the

knowledge of query access patterns and carefully scheduling query executions. However,

for a single query with multiple relational instances, it isnot possible to synchronize the

disk access patterns under the pull iterative execution model [31]. As such, the execution

of a single multi-instance query do not benefit much from these buffer reuse methods.

Works in [19, 66] look at facilitating sharing of a single scan on the base relations at the

operator level. However, these works are targeted at pipelining table tuples to consumers

in different SQL [19] (OLAP [66]) queries handled by independent threads. Instances

within a single query have, as we shall see, certain characteristics that these methods fail

to accommodate. Yet another approach is to employ multi-query optimization (MQO)

schemes (e.g., [54, 68]) to exploit common subexpressions in queries. However, MQO

does not further optimize multiple scans on the materialized views of common subex-

pressions, which can be considered as base relations with multiple instances. Moreover,

these techniques do not handle instances that are not part ofthe common subexpressions.

As such, the performance can be very bad even for an optimal plan especially when the

relation with multiple occurrences is a large table.

In this work, we developMAPLE, a Multi-instance-AwarePLan Evaluation engine

that enables multiple instances of a relation to share one physical scan (calledShared-

Scan) with limited buffer space. During execution, asSharedScanpulls a tuple forany

instance, that tuple is also pushed to the buffers of other instances with matching pred-

icates. To avoid buffer overflow, a novelinterleavedexecution strategy is proposed:

whenever an instance’s buffer becomes full, the execution is temporarily switched to a

drainer (an ancestor blocking operator of the instance) to consume all the tuples in the

buffer. Thus, the execution is interleaved between normal processing and drainers. We

also propose a cost-based approach to generate a plan to maximize the shared scan ben-

efit as well as to avoid interleaved execution deadlocks.MAPLE is light-weight and can

7

be easily integrated into existing RDBMS executors. This work has been published in

SIGMOD 2008 [13].

1.2.2 Collaborative Executions of Sortings of Relational Instances

For complex decision support queries with multiple relational instances, the opti-

mized execution plans may apply various sort operations to different instances of the

same relation, usually in the association with sort-merge joins. Besides, it also turns out

that such multiple sortings of a table is not uncommon in manyother applications. For

example, in data warehousing, a fact table typically has twotypes of columns: those that

contain facts and those that are foreign keys to dimension tables. It is often useful to

create both primary key index and foreign key indices on the fact table, which requires

the table to be sorted multiple times to bulk load the variousindices. In many organi-

zations, many reports are generated at the end of the day/week/month. Typically, these

reports contain the same content but in different sort orders. A bank may produce reports

ordered by amount deposited/withdrawn/balance, date, branch, and so on. Similarly, ex-

amination schedules are usually printed in different orders - order by course number,

dates, examiners, and invigilators.

In this work, we study the generalized problem on how to accomplish multiple sort-

ings of a table more efficiently than the straightforward yetwasteful approach of one

separate sorting per sort order. We investigate the correlation between sort orders and

exploit sort sharing techniques of reusing the (partial) work done to sort a table on a

particular order for another order. Specifically, we introduce a novel and powerful evalu-

ation technique, called cooperative sorting, that enablessort sharing between seemingly

non-related sort orders. Subsequently, given a specific setof sort orders, we determine

the best combination of various sort sharing techniques so as to minimize the total pro-

cessing cost. We also develop techniques to make a traditional query optimizer extensi-

8

ble so that it will not miss the truly cheapest execution planwith the sort sharing (post-)

optimization turned on. This work has been published in ICDE2010 [11]. A more

comprehensive description is to be published in the VLDB Journal [12].

1.2.3 Optimizing Self-Joins Between Relational Instances

Despite the importance and prevalence of self-joins, therehowever have been sur-

prisingly few research efforts on optimizing them. On the one hand, existing solutions

either employ join indexes [61] or handle the special case where the join attributes are on

the same attribute (e.g.,R1.A = R2.A) [16, 27]. As one can see, many emerging queries

involve self joins on two distinct attributes. While index-based techniques could be ap-

plied to the problem, it is possible that indexes do not exist, especially when the queries

are ad-hoc and/or the join attributes are derived ones computed from user defined func-

tions. Even when indexes exist, they may not be used. For example, if the join selectivity

is high (i.e. a lot of join results), then indexes, especially the non-clustered ones, are not

beneficial. On the other hand, conventional join algorithms, such as Sort-Merge Join

(SMJ) and Hybrid Hash Join (HHJ), treat the two instances of the same relation as distinct

relations. As such, they miss the opportunities to enhance the processing performance,

particularly in keeping the I/O cost low.

In this work, we presentSCALE (Sort for Clustered Access with Lazy Evaluation), an

efficient general self-join algorithm, which takes advantage of the fact that both inputs

of a self-join operation are instances of the same relation.SCALE first sorts the relation

on one join attribute, sayR.A. In this way, for every value of the other join attribute,

sayR.B, its matchingR.A tuples are essentially clustered. AsSCALE scans the sorted

relation, join results of tuples whoseR.B values can be fully or partially matched in

memory are produced immediately. For tuples where full-range clustered accesses to

their matching tuples are not possible (e.g., matching tuples may not be in memory),

9

they are buffered (and possibly spilled to disk) and the unfinished part of join processing

deferred. Such lazy evaluation minimizes the need for “random” access to the matching

tuples. SCALE further optimizes the memory allocation for clustered access and lazy

evaluation to keep the processing cost minimal. Our analytical study shows thatSCALE

degenerates gracefully to a Sort-Merge Join in the worst case.

1.2.4 Prototype System Development

The research on relational database query processing has a long history of over three

decades and its academic results have been highly commercialized. Therefore, new aca-

demic findings in this field need to be very solid and systematic in order for acceptance

and adoption. To this end, in all of the research works, we validate our techniques by

integrating them into an open-source database system PostgreSQL [2] and testing their

effectiveness using TPC [4] benchmarks. PostgreSQL is a powerful object-relational

database system and is widely utilized by organizations andsingle users. TPC is also

well-known in database industry and provides various benchmarks to deliver trusted re-

sults to the industry for their new techniques and products.The performance results

derived from evaluations at the system level verify that ourproposed techniques can

practically bring significant performance improvements over the existing approaches.

1.3 Thesis Organization

The rest of the thesis is structured as follows.

Chapter 2 describesMAPLE, the multi-instance-aware plan evaluation engine that

enables multiple instances of a relation to share one physical scan. It first presents

an overview ofMAPLE, which comprises two key components: ashared scan post-

optimizer(SSPO) and aninterleaved iterative query evaluator(IIQE). It then explains

10

howSSPO builds on a query plan by a conventional optimizer to producean enhanced

plan that supports shared scans and interleaved operator executions. It also illustrates

how theIIQE can be implemented by making only moderate modifications to the con-

ventional iterator query execution engine.

Chapter 3 elaborates the integration of sort sharing optimization into both query op-

timization and evaluation. It formally discusses the two sort sharing techniques, result

sharing and cooperative sorting, between two instance sortings. It generalizes cooper-

ative sorting to evaluate more than two sort operations, explains how to optimize the

evaluation of multiple sortings on a relation, and discusses sort-sharing-aware query op-

timization.

Chapter 4 discusses the efficient self-join processing withour proposedSCALE algo-

rithm. It presents the technical details of theSCALE algorithm and then presents a thor-

ough analytical study. It also proposes further optimizations and extensions ofSCALE.

Along with each individual work, we provide its specific background and related

work in the resident chapter. Finally, Chapter 5 concludes the thesis and points out some

directions for future work.

CHAPTER 2

Shared Table Scans for Relational

Instances

2.1 Introduction

This chapter examines the optimization problem of reducingthe total I/O cost in-

curred by multiple instances in a query in order to access thecommon underlying table

on the disk. While there have been some efforts to optimize multiple scans on the same

table, the effects of proposed approaches are limited in ourproblem context, according

to the following analysis.

In [1, 18, 36, 42, 43, 69], scans are coordinated for better buffer reuse (increas-

ing buffer locality). In particular, the data-sharing opportunity arises mainly among

scans from different queries running at the same time. The performance improvement

is achieved by exhaustively exploiting the knowledge of query access patterns and care-

fully scheduling query executions. However, for a single query with multiple relational

11

12

instances, it is not possible to synchronize the disk accesspatterns under the pull itera-

tive execution model [31]. As such, single multi-instance queries do not benefit much

from these buffer reuse methods. Works in [19, 66] look at facilitating sharing of a

single scan on the base relations at the operator level. However, these works are tar-

geted at pipelining table tuples to consumers in different SQL [19] (OLAP [66]) queries

handled by independent threads. Instances within a single query have, as we shall see,

certain characteristics that these methods fail to accommodate. Yet another approach is

to employ multi-query optimization (MQO) schemes (e.g., [54, 68]) to exploit common

subexpressions in queries. However, MQO does not further optimize multiple scans on

the materialized views of common subexpressions, which canbe considered as base re-

lations with multiple instances. Moreover, these techniques do not handle instances that

are not part of the common subexpressions.

Query
Q

Conventional
Query

Optimizer

Query plan
plan(Q)

Shared Scan
Post-Optimizer

(SSPO)

Enhanced
query plan
eplan(Q)

Query
result

Interleaved Iterative
Query Evaluator

(IIQE)

Figure 2.1: Architecture ofMAPLE

In this chapter, we presentMAPLE, aMulti-instance-AwarePLanEvaluation engine

that takes advantage of multiple instances in single queries to reduce disk I/O cost.

MAPLE comprises two key components (SSPO andIIQE) as shown in Fig. 2.1. First, a

shared scan post-optimizer (SSPO) builds on a query evaluation plan (generated by any

existing query optimizer) to produce an enhanced plan as follows. TheSSPO opportunis-

tically adds new materialize operators when required and bundles multiple instances of a

relation intoshare groupssuch that instances within a group share one physical table scan

(calledSharedScan). For each instance of a relation that employs aSharedScan

operator, it is allocated asmall buffer. Moreover, for each instance with buffer over-

flow risk, an ancestor (blocking) operator in the query plan will be designated as its

13

drainer. Second, aninterleaved iterative query evaluator(IIQE) is used to execute the

enhanced query plan produced bySSPO. IIQE adopts aninterleavedpull iterative ex-

ecution strategy to ensure that eachSharedScan operator scans the tableonly once

(for all instances within the same share group). Essentially, within a share group, as

SharedScan pulls a tuple forany instance, that tuple is alsopushedto other instances

with matching predicates and placed in their buffers for later use. Whenever a buffer be-

comes full, the corresponding drainer becomesactive. At this moment, query processing

is temporarily switched to this drainer until it consumes all tuples in the buffer. Thus,

query processing is interleaved between normal processingand active drainers.

Example 1Fig. 2.2(a) shows the partial evaluation plan of Q90 in TPC-DS benchmark,

generated by PostgreSQL [2]. Q90 contains two instancesws1 and ws2 for relation

web sales (denoted byws), two instanceswp1 andwp2 for relation webpage (denoted

by wp), and two instanceshd1 andhd2 for relation householddemographics (denoted

by hd). Here the hash operatorBuild is used to build hash table in hash join. The plan

tree contains one hash subtree in each side of the top nested-loop join and all instances

are accessed by table scans.

MAPLE generates an enhanced plan, shown in Fig. 2.2(b), with threeshare groups:

{ws1, ws2}, {wp1, wp2} and{hd1,hd2}. No additional materialize operators are intro-

duced. Each relation instanceri is now associated with a bufferbuf(ri) for storing the

tuples pushed by theSharedScan operator. Under the iterative model, the execution

starts fromBuild1. Since bothwp andhd are small tables, the shared scans on them did

not incur buffer overflows inwp2 andhd2. However, whenws1 calls itsSharedScan,

matching tuples pushed tows2 will fill up its buffer sincews is a very large table. Now,

wheneverbuf(ws2) becomes full, the execution temporarily switches toBuild5, ws2’s

drainer, which consumes all tuples in the buffer to partially construct the hash table,

and then switches back tows1. The switched execution forws2 will complete the nor-

14

→ pull 99K push · · · drainer assignment

NestedLoopJoin

Build1

HashJoin1

HashJoin2

Scan3

ws1

Build3

Scan2

hd1

Build2

Scan1

wp1

Build4

HashJoin3

Scan6

hd2

Build5

HashJoin4

Scan5

ws2

Build6

Scan4

wp2

(a) Conventional Query Plan

NestedLoopJoin

Build1

HashJoin1

HashJoin2

Scan3

buf(ws1)

Build3

Scan2

buf(hd1)

Build2

Scan1

buf(wp1)

Build4

HashJoin3

Scan6

buf(hd2)

Build5

HashJoin4

Scan5

buf(ws2)

Build6

Scan4

buf(wp2)

SharedScan SharedScan SharedScan

ws hd wp

(b) MAPLE’s Enhanced Query Plan

Figure 2.2: Partial Query Evaluation Plans for Query Q90 in TPC-DS Benchmark

mal execution ofBuild6 using cached tuples inbuf(wp2). Finally, as all three shared

scans finish, the remaining execution continues as in the traditional iterative model from

Build4 (which completes the execution ofBuild5 and then conducts the hash join by

15

probing the hash table with the cached tuples inbuf(hd2)).

As illustrated, by usingMAPLE, one share group reads the relation only once from the

disk. In this example, we save one full scan on eachws, wp andhd. Our experimental

results show significant benefit from the saving of one scan ofws since it is huge (1.5GB

in 10GB TPC-DS dataset). On the contrary, the CPU overhead ofexecution switches

is negligible. Intermediate results of execution switchesare naturally consumed by the

Build drainers without incurring additional I/O overhead. �

The key task ofSSPO is to generate an enhanced plan that maximizes the benefits

of SharedScan. Ideally, all instances of a relation should be grouped within a single

share group without introducing any additional blocking operators. However, it turns out

that this is not always possible due to several reasons (e.g., interleaved execution dead-

locks). In this case,SSPO aims at finding a feasible shareable scan plan with maximum

performance benefit.

MAPLE is light-weight and can be easily integrated into existing RDBMSs. We have

prototyped our ideas in PostgreSQL. Our extensive performance study on the TPC-DS

benchmark shows very significant reduction in execution time of up to 70% for some

queries.

The rest of this chapter is organized as follows. In Section 2.2, we present an

overview of ourMAPLE approach. Section 2.3 describes the shared scan post-optimizer.

In Section 2.4, we present how to integrateIIQE into existing query executors. Section

2.5 presents results of an extensive performance study. Section 2.6 reviews related work,

and finally, Section 2.7 concludes the chapter.

16

2.2 Overview of MAPLE

In this section, we present an overview of our light-weight optimization approach

namedMAPLE.

We useplan(Q) to denote a query evaluation plan forQ generated by a conventional

query optimizer, and useeplan(Q) to denote an enhanced query evaluation plan forQ

produced byMAPLE based onplan(Q).

A query plan operator is classified as ablocking operatorif it needs to completely

consume its operand(s) before producing any output (e.g., sorting, building hash table,

aggregation); otherwise, it is anon-blocking operator(e.g., scan, merge-join).

For a multi-instance relationR in Q, we useG = {r1, r2, · · · , rn}, n > 1 to denote

its instances.

2.2.1 Share Groups & Shared Scans

In contrast to the conventional pull-iterative execution engine [31], where the scans

of instances of the same relation are performed independently, MAPLE tries to maximize

the sharing of relation scans by partitioning the set of instances of a relation into a small

number of subsets calledshare groups. Each relation instanceri in a share group is

allocated some small memory space, denoted bybuf(ri), to hold the qualified tuples

that satisfied the selection predicates for the scan ofri. Each share group is associated

with a new scan operator called theSharedScan operator1 that can be invoked by any

instance in that group. When a scan of an instanceri is invoked,MAPLE will first check

whetherbuf(ri) is empty. If a tuple is available inbuf(ri), the scan ofri will simply

remove this tuple frombuf(ri) and pass it to the scan’s parent operator. However, if

buf(ri) is empty, the scan ofri will invoke the SharedScan operator for its share

group. Besides pulling the qualified tuples forri into buf(ri), theSharedScan opera-

1Currently,MAPLE considers shared scans only for table scans.

17

tor will also push qualified tuples for other instancesrj within the share group into their

buffersbuf(rj) as well. For space efficiency, the tuples stored in eachbuf(ri) only keep

the relevant attributes ofR for the scan ofri
2.

In the ideal scenario, the tuples in eachbuf(ri) are consumed in a timely manner

without causing any buffer overflows. However, in general, ashared scan can become

blockedwhen theSharedScan operator (invoked by some other instancerj in the same

share group asri) tries to push qualified tuples into a full bufferbuf(ri). In this case, we

say thatri is anoverflow instanceandbuf(ri) overflows.

A naive approach to fix a blocked shared scan (under the iterative execution model)

is to adopt adrop-out scheme, where the overflow instanceri is dropped out of the

shared scan ofR, and the shared scan ofR is allowed to continue among the remaining

non-overflow instances ofR within the share group. However, this scheme requires a

separate partial scan ofR to be initiated later to retrieve the remaining non-buffered

qualified tuples for the overflow instanceri, thereby limiting its effectiveness.

Note that if there is only one instanceri in a group, the scan forri is not shared with

any other instances ofR; therefore,buf(ri) is not allocated andSharedScan is not

used for this group.

2.2.2 Interleaved Executions with Drainers

MAPLE adopts a more aggressive approach to resolve blocked sharedscans. Consider

a shared scan invoked byri that becomes blocked due to the overflow ofbuf(rj). Instead

of droppingrj out of the shared scan ofR, MAPLE tries to “unblock” the shared scan

by suspending the execution of the scan and switching the execution control to another

operator, called thedrainer of rj, denoted bydrainer(rj). drainer(rj) is an ancestor

2An alternative buffering scheme is to have a single buffer shared among all instances within the share
group. But this not only requires storing the entire tuple (in general), but also involves a more elaborate
tracking of the tuples that are qualified for each instance scan.

18

of rj , whose execution will result in “draining” the tuples from the full bufferbuf(rj).

Once all the tuples inbuf(rj) have been consumed (i.e.,buf(rj) becomes empty), the

suspended shared scan ofR becomes unblocked and can be resumed byri. It is possible

for nested execution control switches to occur, where the execution of the query subplan

under a drainer operator causes another execution control switch to another drainer, and

so on. We refer to the enhanced iterative execution model used byMAPLE asinterleaved

iterative execution.

Drainer Operators

Whenbuf(rj) overflows during a shared scan that is invoked by another instanceri,

MAPLEwill try to switch execution to a drainer operator,drainer(rj), to clear the buffer

buf(rj). Thus,drainer(rj) must necessarily be an ancestor operator ofrj in the query

plan so that the scan ofrj will get evaluated as part of the evaluation of the subquery

plan rooted atdrainer(rj).

Consider the scenario where all the ancestor operators ofrj up to and including

drainer(rj) are non-blocking operators. In this case, any tuple produced by the eval-

uation ofdrainer(rj) has to be either cached (possibly incurring disk I/O) or returned

to the parent operator ofdrainer(rj). The latter option is not possible (under the itera-

tive execution model) since the execution control is passedto drainer(rj) and not to its

parent operator. To avoid incurring unnecessary disk I/O for caching output tuples from

drainer(rj), it makes sense to assign a blocking operator as a drainer. Inthis way, the

evaluation of the blocking drainer will not generate any output tuple until its entire query

subplan has been completely evaluated. To minimize the number of operator evaluations

for drainingbuf(rj), MAPLE chooses theclosestancestor blocking operator ofrj as its

drainer.

Clearly, a drainer operator does not always exist for an overflow instance. We can

19

classify an overflow instance as adrainable instanceif it has an ancestor blocking opera-

tor in the query plan; otherwise, the overflow instance is considered to benon-drainable.

Since a drainer operator cannot be assigned for a non-drainable instancerj, it is

not possible to drainbuf(rj) (if it becomes full) via an interleaved execution. Thus,

non-drainer instances cannot participate in shared scans (i.e, a separate physical scan is

necessary for each non-drainable instance). However, a non-drainable instancerj can be

made drainable by inserting an explicit materialize operator op in the query plan such

thatop becomes an ancestor operator ofrj (i.e.,drainer(rj) = op).

Consider the example in Fig. 2.2(b), wherews1 andws2 are assumed to be overflow

instances, the drainer assignment for each overflow instance rj is indicated by a dotted

line betweenscan(rj) anddrainer(rj).

Deadlock-free Interleaved Execution

To maximize shared scans, an ideal query plan is to have a single share group for

each distinct multi-instance relationR that contains all its instances. In this way, only a

single physical scan ofR is required to scan all its instances. However, this is not always

feasible due to two reasons: (1) the existence of non-drainable instances; and (2) the

existence ofinterleaved execution deadlocks.

Basically, an interleaved execution deadlock arises whenever an interleaved execu-

tion that is triggered to drain a full bufferbuf(rj) eventually leads to more tuples being

pushed intobuf(rj). The following example illustrates a simple example of an execution

deadlock.

Example 1Fig. 2.3 shows a self-join between two instancesws1 andws2 of the relation

web salesin TPC-DS, wherews1 is an overflow instance sharing a scan withws2. The

execution starts with the scan ofws2. During the scan ofws2, buf(ws1) will become

full and the execution will be switched todrainer(ws1), which is theSort operator.

20

Sort

HashJoin

Scan

buf(ws1)

Build

Scan

buf(ws2)

SharedScan

ws

Figure 2.3: Simple Execution Deadlock

However, since the hash table has not been completely constructed yet, before the tuples

from ws1 can be processed, it is necessary to complete the scan ofws2. But since

buf(ws1) is already full, the execution is deadlocked. �

The following example illustrates a more complex deadlock scenario.

Example 2Consider again the Q90 query plan in Fig. 2.2(b). Suppose that hd2 is now

an overflow instance. The execution will start withBuild1. During the shared scan of

hd1 andhd2, buf(hd2) becomes full and the execution switches toBuild4, which is the

drainer forhd2. This eventually triggers the execution of the scan ofws2 and hence a

shared scan ofws1 andws2 which results inbuf(ws1) becoming full. Consequently, the

execution now switches over toBuild1, which is the drainer forws1. Here, a deadlock

occurs since bothbuf(ws1) andbuf(hd2) are full but there are more tuples to be pushed

into them. �

To generate a deadlock-free query plan that maximizes shared scans,MAPLE uses a

cost-based approach to optimize both the usage of explicit materialize operators as well

as the partitioning of share groups. Explicit materialize operators can be used not only

to enable non-drainable instances to become drainable (andtherefore allowing them to

participate in shared scans) but also to avoid deadlock situations.

21

2.2.3 Architecture of MAPLE

Fig. 2.1 shows the architecture ofMAPLE which consists of two components: the

shared scan post-optimizer (SSPO) and the interleaved iterative query evaluator (IIQE).

An input queryQ is optimized byMAPLE in two steps. First, a conventional query

optimizer is used to generate a query evaluation plan (plan(Q)). Next,plan(Q) is used as

input for SSPO to produce an enhanced query plan (eplan(Q)). An eplan(Q) enhances

plan(Q) by using share groups,SharedScan operators, and possibly explicit material-

ize operators.

The generatedeplan(Q) is then evaluated by theIIQE component which is a variant

of the conventional iterative query execution engine enhanced to support shared scans as

well as interleaved operator executions.

2.3 Shared Scan Post-Optimizer

In this section, we describe how theshared scan post-optimizer(SSPO) component

of MAPLE generates an enhanced query plan that supports shared scansand interleaved

operator executions.

2.3.1 Overflow Instances

SinceSSPO optimizes a query plan statically, it needs to estimate the potential for

an instanceri to overflow and assign a drainer tori if necessary. Specifically, for each

instanceri within a share group in the query plan,SSPO uses statistical information onR

(to estimate the number of qualified tuples for the scan ofri) as well as information about

the allocated memory space forbuf(ri) to decide whetherri has the potential to overflow.

If the total estimated qualified tuples forri cannot fit inbuf(ri), ri is considered to be an

overflow instance, andSSPO then assignsdrainer(ri) to be the closest ancestor blocking

22

operator ofri if ri is drainable.

Consider an instanceri that is determined bySSPO to be a non-overflow instance

(i.e., no drainer has been assigned tori). If ri actually overflows at runtime, thenMAPLE

has no choice but to dynamically materialize the contents ofbuf(ri).

2.3.2 Interleaved Execution Deadlocks

In this section, we provide a characterization of interleaved execution deadlocks in

terms ofexecution dependenciesandoverflow dependencies.

Execution & Overflow Dependencies

Execution Dependencies.Wheneverbuf(ri) overflows during a shared scan and execu-

tion control switches todrainer(ri) which in turn causes the scan of some other relation

instancesj (wheresj is a descendant ofdrainer(ri)) to be evaluated, we say that there

is anexecution dependencyfrom ri to sj (denoted byri → sj). Here,ri andsj can be

instances of the same relation or different relations. Notethat execution dependencies

are transitive: ifa→ b andb→ c, thena→ c. Moreover, ifa→ b andb→ a, then both

drainer(a) anddrainer(b) must be the same.

Overflow Dependencies.Consider two instancesri and rj within a share group. If

buf(rj) becomes full during a shared scan invoked byri, we say that there is anoverflow

dependencyfrom ri to rj (denoted byri 99K rj).

Instance Dependency Cycles.We can now characterize interleaved execution dead-

locks in terms of execution and overflow dependencies. An interleaved execution dead-

lock occurs when there is aninstance dependency cycleamong a set of relation instances

{r1, s2, t3, · · · , zn}, n > 1, that consists of an alternating sequence of99K and→ depen-

dencies of the formr1 99K s2 → t3 99K · · · 99K zn → r1.

Observe that in Example 1, there is an instance dependency cycle ws2 99K ws1 →

23

ws2; and in Example 2, there is an instance dependency cyclehd1 99K hd2 → ws2 99K

ws1 → hd1.

Eliminating Dependencies

The above characterization of interleaved execution deadlocks provides two ways to

break deadlocks by eliminating overflow or execution dependencies. For an overflow

dependencyri 99K rj , which arises when a shared scan for a group containingri andrj

causesbuf(rj) to overflow, the overflow dependency can be eliminated by separatingri

andrj into two different share groups.

For an execution dependencyri → sj, the dependency can be eliminated by in-

troducing a materialize operatorop into the query plan such thatop becomes the closest

ancestor blocking operator forri (i.e.,op is a descendant ofdrainer(ri)) andsj is outside

of the query subtree rootedop. In this way,drainer(ri) becomesop and the evaluation

of this new drainer forri will not cause the scan ofsj to be evaluated.

Example 1Consider once more Example 2 in Fig. 2.2(b), where each distinct relation

(i.e.,hd, wp, andws) has a single share group for all its instances, andhd2 is an overflow

instance. There is an execution deadlock in this plan due to the instance dependency

cyclehd1 99K hd2 → ws2 99K ws1 → hd1. The execution dependencyhd2 → ws2 can

be eliminated by introducing a materialize operator aboveScan6 which will then become

the new drainer forhd2. The overflow dependencyhd1 99K hd2 can be eliminated by

separatinghd1 andhd2 into two separate share groups. �

Deadlock Avoidance

There are two approaches to handle interleaved execution deadlocks. The first is

a dynamic approach that detects and breaks instance dependency cycles at run-time to

resolve deadlocks. The second is a static approach that avoids deadlocks altogether by

24

generating and processing only deadlock-free query plans.MAPLE adopts the simpler

static approach as it provides a light-weight solution thatcan be easily integrated into

existing query engines. We plan to explore the dynamic approach as part of our future

work.

Due to the absence of run-time information on execution and overflow dependencies,

the deadlock-free plans generated by a static approach are necessarily more conservative.

Specifically, inMAPLE, if a relation instanceri in a share groupG is considered to be an

overflow instance, thenMAPLE will conservatively assume the following:

• for every other instancerj in G, there is an overflow dependencyrj 99K ri; and

• if ri is a drainable instance, then for every other instancesj within the query sub-

tree rooted atdrainer(ri), there is an execution dependencyri → sj .

Given the above conservative assumptions regarding execution and overflow depen-

dencies, we can now generalize the notion of instance execution dependencies to derive

a simpler and “higher level” characterization of interleaved execution deadlocks in terms

of group execution dependencies.

Group Execution Dependencies.Consider two share groupsG1 andG2. We say that

there is agroup execution dependencyfrom G1 to G2, denoted byG1 → G2, if there is

an instancex in G1 and an instancey in G2 such thatx → y. We refer tox andy as

participantsof the group execution dependencyG1 → G2. Note thatG1 andG2 are not

necessarily distinct.

Group Dependency Cycles.We say that there is agroup dependency cycleamong a

set of share groups{G1, · · · , Gn}, n ≥ 1, if there is a cycle of group dependencies

G1 → G2 → · · · → Gn → G1 such that for eachGi, i ∈ [1, n], the two participants of

the two group execution dependencies involvingGi are distinct.

Example 2 Consider the examples in Fig. 2.4, where instances within the same share

25

ws1 ws2

G
(a) Example 1

ws1

hd2

ws2

hd1

G1

G2

(b) Example 2

Figure 2.4: Examples of Group Dependency Cycles

group are boxed and the directed edges between instances represent instance execution

dependencies. Fig. 2.4(a) represents the group dependencycycle in Example 1 formed

within a single share groupG (i.e.,G→ G). Fig. 2.4(b) represents the group dependency

cycle in Example 2 formed between share groupsG1 andG2. �

Note that each group in a group dependency cycle must be involved in two group

execution dependencies. For example, in Fig. 2.4(b), we haveG1 → G2 andG2 → G1.

Moreover, the two participants in each group must necessarily be distinct; otherwise, it

would imply that a shared scan that is invoked by the scan of aninstanceri causes its

own bufferbuf(ri) to overflow, which is impossible.

The following results state a useful sufficient condition ondeadlock-free interleaved

executions based on the absence of group dependency cycles.

Theorem 2.1. If there are no group dependency cycles in a query planP , then there are

also no instance dependency cycles inP .

Proof. Based on an instance dependency cycle inP , it is trivial to derive a specific group

dependency cycle inP by grouping instances of the same relation in the cycle.

Corollary 2.2. If there are no group dependency cycles in a query planP , thenP is free

of interleaved execution deadlocks.

26

2.3.3 Enhanced Query Plan Optimization

In this section, we describe howSSPO generates an enhanced query planeplan(Q)

from the optimal query planplan(Q) produced by a conventional optimizer such that

eplan(Q) maximizes shared scans without any interleaved execution deadlocks. Specif-

ically, an enhanced plan forplan(Q), denoted byeplan(Q) = (plan(Q),G,M), specifies

two additional components:

1. a list of share groupsG = {G1, · · · , Gk}, where eachGi contains a subset of

instances from the same relation,
⋃k

i=1 Gi is the set of all relation instances inQ,

the Gi’s in G are pairwise disjoint. Clearly,G must contain at least one group

for each distinct multi-instance relation inQ, and the maximum number of share

groups occurs when each group is a singleton (i.e., without any shared scans).

2. a set (possibly empty) of materialize operatorsM = {M1, · · · , Mn} to be added

to plan(Q).

Following the discussion in Section 2.3.2, bothG andM help to eliminate some

dependencies, whileM also serves to enable some non-drainable instances to become

drainable.

For notational convenience, given an enhanced query planP , we useG(P) to refer

to the share group list component ofP , and useM(P) to refer to the materialize operator

set component ofP .

Cost Model. We now explain the cost model used bySSPO to select an optimal en-

hanced plan. LetR = {R1, · · ·Rd} denote the set of distinct multi-instance relations in

queryQ, andni denote the number of instances ofRi. Given the share group listG, let

gi denote the number of groups inG that have instances ofRi ∈ R. Thus, eachni > 1

and eachgi ≥ 1. In Example 1, we haved = 3, andni = 2, gi = 1, i ∈ [1, 3].

27

For eachRi ∈ R, let scanCost(Ri) denote the cost of a single complete scan of

Ri. For eachMi ∈ M, let matCost(Mi) denote the materialization cost ofMi, which

includes the cost of writing the intermediate results to disk and the cost of reading them

back later. GivenM ⊆M, we definematCost(M) =
∑

Mi∈M matCost(Mi).

Let cost(plan(Q)) refer to the total cost of scanning each relation instance inplan(Q)

independently; i.e.,

cost(plan(Q)) =
∑

Ri∈R

(scanCost(Ri)× ni) (2.1)

Let cost(eplan(Q)) refer to the sum of the total relation scan cost ofG and the total

materialization cost ofM incurred byeplan(Q); i.e.,

cost(eplan(Q)) =
∑

Ri∈R

(scanCost(Ri)× gi) + matCost(M) (2.2)

Thebenefitof eplan(Q) overplan(Q), which measures the savings in the evaluation

cost of usingeplan(Q) instead ofplan(Q), is given by

benefit(eplan(Q)) = cost(plan(Q))− cost(eplan(Q)) (2.3)

Ideal Enhanced Plan.Based on Equations (2.1) to (2.3), the upper bound forbenefit

is given by
∑

Ri∈R
(scanCost(Ri) × (ni − 1)) which happens wheneplan(Q) scans

each distinct relation exactly once (i.e., there is exactlyone share group for each distinct

relation), andeplan(Q) does not incur any materialization cost (i.e.,M is empty). We

refer to such aeplan(Q) as anideal enhanced query plan.

We can now state the query optimization problem forSSPO more formally as fol-

lows.

28

Enhanced Plan Optimization Problem. Given an optimal query planplan(Q) pro-

duced by a conventional optimizer for a queryQ, find an enhanced query planeplan(Q)

= (plan(Q), G, M) such thateplan(Q) is free of interleaved execution deadlocks and

benefit(eplan(Q)) is maximized.

The above optimization problem is (not surprisingly) a difficult problem as indicated

by the following result for a simplified version of the problem.

Theorem 2.3. Given plan(Q) and a set of materialize operatorsM, the problem of

finding a share group listG such thateplan(Q) = (plan(Q),G,M) is free of interleaved

execution deadlocks and benefit(eplan(Q)) is maximized is NP-hard.

Proof. We first model the problem as an abstractVertex Partition Problem and then

prove that it is NP-hard. We construct a directed graphG = {V, E}. V is the vertex

set andV = ∪n
i=1Vi, whereVi is a subset of vertices and represents all instances of a

distinct relationRi. EachVi is assigned a positive valuebi representing the value of

scanCost(Ri). E is the directed edge set and represents the execution dependencies

between instances. As such, a feasible list of share groupsG is equivalent to a valid

vertex partitioningVi = ∪ni

j=1Vij, under which there are no directed edge cycles among

partitions. The Vertex Partition Problem is to find a valid vertex partitioning which

minimizing the score ofB =
∑

1≤i≤n bi(ni − 1).

We show that the Vertex Partition Problem is NP-hard even when every setVi has

exactly2 vertices. Our proof is based on a polynomial-time reductionfrom the Vertex

Cover Problem (which is an NP-complete problem, see [28]).

Vertex Cover Problem.: Given a undirected graphH = (U, F) and an integerk, can

we find a subsetU ′ ⊆ U such that|U ′| ≤ k and for every(u, v) ∈ F at least one ofu

andv belongs toU ′?

First, we describe the reduction from the Vertex Cover Problem to the Vertex Partition

Problem. GivenH, we create a directed graphG = (V, E) as follows. First,V =

29

∪u∈UVu whereVu = {u, u′} and letbu = 1 for all u ∈ U . Second,E = {(u, v′), (v, u′) |

(u, v) ∈ F}. Note thatG is an acyclic graph.

We claim that there exists a set cover ofH of sizek if and only if there exists a valid

vertex partitioning of scorek.

⇒ Let U ′ be a vertex cover of sizek, we have a valid vertex partitioning for G of

scorek.

Foru ∈ U ′, we partitionVu into two sets{u} and{u′}. Foru 6∈ U ′, we retainVu as

one set. It is easy to check that the score of the partition isk. Observe that foru ∈ U ′,

{u} has indegree0 and{u′} has outdegree0. Hence, there is no cycle passing through

{u} and{u′}. Foru 6∈ U ′, in {u, u′} any outgoing edge goes to a{v′} with outdegree

0, any incoming edge comes from a{w} with indegree0. Therefore, all paths passing

through{u, u′} cannot form a directed cycle. Hence, this is a valid partitioning of score

k.

⇐ Given a valid vertex partitioning for G of scorek, we can construct a vertex

cover of sizek.

Since the score of the valid vertex partition isk, there existsu1, . . . , uk such thatVui

are partitioned into two sets{ui} and{u′
i}. DefineU ′ = {u1, . . . , uk}. It can be checked

thatU ′ is a vertex cover.

2.3.4 Optimization Algorithm

Given the hardness of the enhanced plan optimization problem,SSPO uses a heuristic

approach that is shown in Algorithm 1.

Consider a queryQ consisting ofd distinct multi-instance relationsR1, · · · , Rd with

a query planplan(Q). For each instancerj of eachRi, SSPO first estimates whetherrj

is an overflow instance and initializes the drainer for each drainable relation instance,

drainer(rj), to be the closest ancestor blocking operator ofrj (steps 1 to 4).

30

Next, SSPO checks whether a deadlock-free ideal enhanced query plan exists for

plan(Q) (steps 5 to 9). Recall that an ideal enhanced query plan has an “ideal” en-

hancement with an empty set of materialize operators and a share group list given by

G = {G1, · · · , Gd}, where each share groupGi contains all the instances ofRi except

for non-drainable instances. If the set of group dependencycycles inG, specified by

C, is empty and all the overflow instances inplan(Q) are drainable, then the constructed

planPopt is indeed a deadlock-free ideal enhanced plan, in which caseSSPO returnsPopt

and terminates.

If the constructed enhanced planPopt is not a deadlock-free ideal enhanced plan,

SSPO then optimizesPopt by refining its share group listG and/or adding materialize

operators using a two-phases approach. In the first phase (steps 10 to 17),SSPO gen-

erates a collection of candidate materialize operator sets. In the second phase (steps 18

to 30),SSPO takes each candidate materialize operator setM to create a deadlock-free

candidate enhanced planP with M(P) = M andG(P) = Gopt, whereGopt is an opti-

mized refinement ofG (w.r.t. M). Among all the candidate enhanced plans generated,

SSPO returns the plan with the maximum benefit as the optimized enhanced query plan.

The details of the two phases are presented in the rest of thissection.

Generating Materialize Operator Sets

Useful Materialized Operator Sets.Let Mall denote the set of all possible materialize

operators that can be inserted intoplan(Q). Instead of generating all possible subsets of

Mall, SSPO considers only candidate materialize operator sets that areuseful. Intuitively,

a set of materialize operatorsM ⊆ Mall is considered to beuseless(or not useful) if

there exists a deadlock-free enhanced query planP ′ with M(P ′) 6= M such that for

every deadlock-free enhanced query planP ′′ with M(P ′′) =M, cost(P ′) < cost(P ′′).

Thus, a useless set of materialize operators can be safely ignored without affecting the

31

Algorithm 1 : Post-Optimizer
Input : optimal planplan(Q) for queryQ
Output : enhanced query planeplan(Q)

1: letRmulti = {R1, · · · , Rd} be the set of distinct multi-instance relations inQ
2: for eachRi ∈ Rmulti do
3: for each overflow instancerj of Ri do
4: initialize drainer(rj) if rj is drainable
5: let G = {G1, · · · , Gd}, where each share groupGi contains all instances ofRi except for

non-drainable instances
6: let Popt = (plan(Q), G, ∅)
7: let C be the set of group dependency cycles inG
8: if (C = ∅) and (every overflow instance is drainable)then
9: return Popt

10: let Mall be the set of all possible materialize operators that can be inserted intoplan(Q)
11: let Mdrain = {Mi ∈Mall | drainSet(Mi) 6= ∅}
12: let Sdrain be the collection of all useful subsets ofMdrain

13: let Mcycle = {Mi ∈Mall | cycleSet−(Mi, C) 6= ∅}
14: for eachMdrain ∈ Sdrain do
15: let C ′ = C ∪ cycleSet+(Mdrain, C)
16: let Scycle(Mdrain) be the collection of all useful subsets ofMcycle w.r.t C ′

17: let S = {(Mdrain,Mcycle) | Mdrain ∈ Sdrain, Mcycle ∈ Scycle(Mdrain)}
18: initialize Pbest = (plan(Q), ∅, ∅)
19: for each(Mdrain,Mcycle) ∈ S do
20: for each instancerj ∈ drainSet(Mdrain) do
21: drainer(rj) = the closest ancestor operator ofrj fromMdrain ∪ Mcycle

22: let G′ = {{ri} | ri is a non-drainable instance}
23: let Gnew = {G1, · · · , Gd}, where each share groupGi contains all instances ofRi except

for non-drainable instances
24: if (Rmulti = {R1}) and (no two drainable instances inR1 have the same drainer)then
25: Gnew = OptimalGrouping (G1)
26: else
27: Gnew = HeuristicGrouping (Gnew)
28: P = (plan(Q), Gopt,Mdrain ∪Mcycle), where

Gopt = Gnew ∪ G
′

29: if (cost(P) < cost(Pbest)) then
30: Pbest = P
31: return Pbest

optimality of the enhanced query plan.

We now provide a more concrete characterization of the notion of a useful set of

materialize operators. Recall that adding a materialize operatorM to plan(Q) can help

enhance its performance in two ways. First,M can enable a non-drainable instanceri

32

to become drainable thereby allowingri to participate in a shared scan. Second,M can

eliminate some execution dependencies thereby enabling a plan to become deadlock-free

(i.e., C = ∅). These two benefits ofM can be formalized in terms of itsdrain setand

remove-cycle setdefined as follows.

The drain setof M , denoted bydrainSet(M), is defined to be the set of non-

drainable instances inplan(Q) that become drainable ifM is added toplan(Q). Thus,

M becomes the drainer operator for each of the instances indrainSet(M).

Theremove-cycle setof M (w.r.t. C), denoted bycycleSet−(M, C), is defined to be

the subset of group dependency cycles inC that are eliminated by the addition ofM to

plan(Q).

The following result states a useful relationship betweendrainSet(M) andcycleSet−(M, C).

Lemma 2.4. At most one ofdrainSet(M) andcycleSet−(M, C) can be non-empty.

Lemma 2.4 follows from the observation that ifdrainSet(M) 6= ∅ (i.e., M be-

comes a drainer for some non-drainable instanceri), thenri cannot have any ancestor

drainer operator prior to the addition ofM , which implies that there are no instance ex-

ecution dependencies (and hence group execution dependencies) thatM can eliminate.

HencecycleSet−(M, C) = ∅. Conversely, ifcycleSet−(M, C) 6= ∅, thenM is able to

eliminate some group dependency cycle (via the eliminationof some instance execution

dependency) which implies that there must exist some drainer operator that is an ances-

tor of M . Hence, there cannot be any non-drainable instances withinthe query subtree

rooted atM (i.e.,drainSet(M) = ∅).

Based on Lemma 2.4, the useful materialize operators (w.r.t. C) can be partitioned

into two disjoint setsMdrain andMcycle defined as follows:

Mdrain = {M ∈Mall | drainSet(M) 6= ∅}

Mcycle = {M ∈Mall | cycleSet−(M, C) 6= ∅}

33

A materialize operator that is not contained inMdrain ∪Mcycle is useless.

However, adding a materialize operatorM to plan(Q) not only incurs a processing

cost (i.e.,matCost(M)) but could also introduce additional group dependency cycles.

We characterize the latter cost forM as follows. Theadd-cycle setof M (w.r.t. C),

denoted bycycleSet+(M, C), is defined to be the set of new group dependency cycles

(i.e., not contained inC) that are introduced by the addition ofM to plan(Q).

The following result states that adding a materialize operator fromMcycle to plan(Q)

does not create any new group dependency cycles.

Lemma 2.5. cycleSet+(M, C) = ∅ for eachM ∈Mcycle.

Lemma 2.5 can be established by contradiction. SupposecycleSet+(M, C) 6= ∅.

Then the addition ofM must have introduced a new instance execution dependency

ri → sj (that contributed to a new group dependency cycle), where both ri andsj are

within the query subtree rooted atM . However,M ∈ Mcycle implies that there must be

a drainer operator that is an ancestor ofM in the query plan which contradicts the fact

thatri → sj is a new dependency.

The definitions ofdrainSet(M), cycleSet+(M, C), andcycleSet−(M, C) can be

generalized naturally for a set of materialize operatorsM⊆Mall (e.g.,drainSet(M) =

⋃

M∈M drainSet(M)).

By Lemmas 2.4 and 2.5, we can define a useful materialize operator set in terms of its

two disjoint subsets: a useful subset ofMdrain and a useful subset ofMcycle as follows.

We say thatM ⊆ Mdrain is useful(w.r.t. C) if there does not exist anotherM′ ⊆

Mdrain such that all the following four conditions hold: (1)drainSet(M)⊆ drainSet(M′),

(2) cycleSet+(M, C) ⊇ cycleSet+(M′, C), (3) matCost(M) ≥ matCost(M′), and

(4) at least one of the three previous conditions is strict.

Similarly, we say thatM⊆ Mcycle is useful(w.r.t. C) if there does not exist another

M′ ⊆ Mcycle such that all the following three conditions hold: (1)cycleSet−(M, C) ⊆

34

cycleSet−(M′, C), (2) matCost(M) ≥ matCost(M′), and (3) at least one of the two

previous conditions is strict.

Finally, consider a setM⊆Mall, whereM =Mdrain ∪ Mcycle,Mdrain ⊆ Mdrain,

andMcycle ⊆ Mcycle. We say thatM is useful(w.r.t. C) if Mdrain is useful (w.r.t.C)

andMcycle is useful (w.r.t.C ∪ cycleSet+(Mdrain, C)).

A materialize operator set that is not useful cannot form an optimal enhanced query

plan.

Algorithm. SSPO (steps 10 to 17 in Algorithm 1) generates a collection of useful

candidate materialize operator sets (denoted byS) as follows. First,SSPO generates

Sdrain, the collection of all useful subsets ofMdrain. Next,SSPO takes eachMdrain ∈

Sdrain to generateScycle(Mdrain), the collection of all useful subsets ofMcycle w.r.t.

C ′, whereC ′ = C ∪ cycleSet+(Mdrain, C). The final collectionS is given by

{Mdrain ∪ Mcycle | Mdrain ∈ Sdrain, Mcycle ∈ Scycle(Mdrain)}. Note that as the

empty set is contained in bothSdrain andScycle(Mdrain), an empty set of materialize

operators is also generated bySSPO.

Although the time complexity of the procedure above is exponential in the number of

materialize operators inMdrain andMcycle, this number is reasonably small in practice.

Alternatively, some heuristic can be applied to generate smaller Mdrain andMcycle so

as to reduce the running time, in the cost of missing some useful candidate materialize

operator sets inS.

Example 3Fig. 2.5(a) shows two useful materialize operators,M1 andM2, that can be

used to break the execution dependency cyclehd1 99K hd2 → ws2 99K ws1 → hd1

for the query plan of Q90 in Example 2.M1 breaks the cycle by eliminatingws1 →

hd1 while M2 breaks the cycle by eliminatinghd2 → ws2. Ignoring thematCost(.)

component, there are three useful sets of materialize operators:∅, {M1} and{M2}. �

35

NestedLoopJoin

Build1

HashJoin1

HashJoin2

Scan3

M1

ws1

Build3

Scan2

hd1

Build2

Scan1

wp1

Build4

HashJoin3

Scan6

M2

hd2

Build5

HashJoin4

Scan5

ws2

Build6

Scan4

wp2

(a) Candidate Materialize Operators

Plan M Share Groups
P1 ∅ {ws1, ws2}, {hd1}, {hd2}, {wp1, wp2}
P2 {M1}
P3 {M2} {ws1, ws2}, {hd1, hd2}, {wp1, wp2}

(b) Candidate Enhanced Query Plans

Figure 2.5: Enhanced Query Plans for Example 2

Optimizing Share Group List

Given a candidate set of materialize operatorsM, the second phase ofSSPO (steps

18 to 30 in Algorithm 1) computes an optimized share group list G to produce a deadlock-

free enhanced planP with M(P) = M andG(P) = G. SSPO has two algorithms for

this computation: an optimal algorithm (that can compute anoptimal share group list) is

used ifplan(Q) meets certain conditions; otherwise, a greedy heuristic algorithm is used.

Optimal Grouping. An optimal share group list can be computed using Algorithm 2

whenplan(Q) satisfies two conditions:

(C1) there is exactly one multi-instance relationR1 in plan(Q); and

36

(C2) the drainers for all the drainable-instances ofR1 are all distinct.

Algorithm 2 takes a single share groupG1 as input, whereG1 contains all the in-

stances ofR1 except for non-drainable instances. The algorithm first constructs a di-

rected graphG, where the nodes inG are instances inG1, and the edges represent exe-

cution dependencies among the instances inG1. By condition (C2),G must be a directed

acyclic graph. The algorithm then iteratively refinesG1 into a collection of share groups

G′
1, · · · , G

′
n such thatG′

1 → G′
2 · · · → G′

n. The time complexity of Algorithm 2 is

O(m2), wherem is the number of instances inG1.

Heuristic Grouping. Algorithm 3 is a greedy heuristic approach to optimize an in-

put share group list{G1, · · · , Gd}, where eachGi contains all the instances of rela-

tion Ri excluding the non-drainable instances. The share groups are ordered such that

scanCost(R1) ≤ · · · ≤ scanCost(Rd). The heuristic refines each share groupGi by

splitting it into a collection of smaller groupsSi in the orderG1, · · · , Gd. The intu-

ition behind processing the share groups in non-descendingorder of the scan cost of the

associated relations is to minimize the total scan cost of the refined share groups. For

each groupGi, the heuristic tries to splitGi into the smallest number of groups by iter-

atively removing fromGi, the instance that is involved in the largest number of cycles.

The removed instance is inserted into an existing split group of Gi whenever possible;

otherwise, it is inserted into a new split group. The insertions into split groups are per-

formed such that no new group dependency cycles are formed. The time complexity of

of Algorithm 3 isO(n2), wheren =
∑d

i=1 |Gi|.

Example 4 Continuing with Example 3, Fig. 2.5(b) shows the optimized share group

lists computed for each candidate materialize operator setusing the heuristic algorithm

in Algorithm 3. �

37

Algorithm 2 : OptimalGrouping
Input : a single share groupG1 containing the instances ofR1 excluding non-drainable
instances
Output : an optimal list of share groups

1: let G = (V,E), where
V = G1 andE = {(a, b) | a, b ∈ V , a→ b}

2: initialize n = 0
3: repeat
4: n = n + 1; G′

n = {v ∈ V | v has in-degree of 0 inG}
5: remove eachv ∈ G′

n from G and its incident edges
6: until V = ∅
7: return {G′

1, · · · , G
′
n}

Algorithm 3 : HeuristicGrouping
Input : {G1, · · · , Gd}, where eachGi is a share group containing all instances of relation
Ri excluding non-drainable instances such thatscanCost(R1) ≤ · · · ≤ scanCost(Rd)
Output : an optimized list of share groups

1: let C = set of group dependency cycles amongG1, · · · , Gd

2: for i = 1 to d do
3: initialize Si = {Gi}
4: while (C contains a cycle involvingGi) do
5: let rj be the instance inGi that participates in the largest number of cycles inC
6: if rj can be added into someGk ∈ Si, k 6= i, without introducing any new group

dependency cyclesthen
7: addrj into Gk

8: else
9: create a new groupG′ = {rj}

10: addG′ into Si

11: removerj from Gi

12: remove cycles inC that involvedrj

13: return S1 ∪ · · · ∪ Sd

2.4 Interleaved Iterative Execution

In this section, we explain how theIIQE component ofMAPLE can be implemented

by making only moderate modifications to the conventional iterative query execution

engine; thus, demonstrating thatMAPLE is indeed a light-weight approach to optimize

complex queries with multiple relation instances.

For each relation instanceri in eplan(Q),IIQE maintains the following static infor-

38

mation: (1) a boolean flag, denoted byswitchEnabled(ri), which has atrue value if

and only ifri is estimated bySSPO to be an overflow instance; and (2)drainer(ri) if

if ri is a drainable instance. In addition to the above information, which remains un-

changed during the execution of the query,IIQE also maintains some global runtime

information that is updated dynamically as the query execution progresses. Specifically,

each relation instanceri is associated with a status variable for its drainer, denoted by

drainerStatus(ri), which has three possible values:inactive, active, andsuccessful, indi-

cating, respectively, that the drainer is not active, the drainer is active and the draining

is in progress, and the drainer is active and the draining hascompleted. The value of

drainerStatus(ri) is initialized toinactivefor each relation instanceri before the execu-

tion of eplan(Q). Wheneverbuf(rj) becomes full during the shared scan of some other

instance ofr (sayri) andIIQE decides to switch execution todrainer(rj), the value

of drainerStatus(rj) is updated toactive. Subsequently, when all the tuples in the full

buffer buf(rj) have been consumed, the scan operator forrj will update the value of

drainerStatus(rj) from activeto successful. When the execution control is returned from

drainer(rj), the value ofdrainerStatus(rj) is reset toinactive.

Algorithm 4 : Scan
Input : ri, the instance being scanned

1: let Op be the parent operator ofScan(ri) in query plan
2: if (buf(ri) is not empty)then
3: let t be the first tuple inbuf(ri)
4: delivert to Op
5: removet from buf(ri)
6: else
7: if (drainerStatus(ri) = active) then
8: drainerStatus(ri) = successful
9: deliver adummy-null tuple toOp

10: else
11: SharedScan (ri)

Recall that in the iterative execution model, each operatoris specified in terms of

39

Algorithm 5 : SharedScan
Input : ri, the instance being scanned

1: let Gx be the share group thatri belongs to
2: initialize continueScan= true
3: while (continueScan) do
4: let t be the next tuple from relationr
5: if (t is null) or (t qualifies forScan(ri)) then
6: delivert to the parent operator ofScan(ri)
7: continueScan= false
8: for each (rj ∈ Gx, rj 6= ri) do
9: if (t is null) or (t qualifies forScan(rj)) then

10: if (buf(rj) is full) and switchEnabled(rj) then
11: SwitchExecution (rj)
12: appendt into buf(rj)

Algorithm 6 : SwitchExecution
Input : ri, an overflow instance

1: drainerStatus(ri) = active
2: transfer execution control todrainer(ri) operator
3: drainerStatus(ri) = inactive

three functions:open, getNext, andclose. Algorithm 4 highlights the modifications re-

quired for thegetNextprocedure of the table scan operator (referred to asScan). Given

a relation instanceri, Scan first checks whether its associated bufferbuf(ri) is empty:

if it is not empty, the first tuple inbuf(ri) will be returned to the parent operator of

Scan(ri) and then removed frombuf(ri). The key modification for theScan algorithm

occurs when the buffer is empty, where there are two cases to consider. In the first case

(steps 8-9), if the scan ofri has been initiated to drain its buffer (i.e.,drainerStatus(ri)

= active), then it means that the draining process has completed successfully. The value

of drainerStatus(ri) is then updated tosuccessful, and adummy-null tuple is returned

to the parent operator ofScan(ri). The use ofdummy-null tuples is important to

distinguish a successful draining process (i.e., all the tuples in a full buffer have been

consumed) from a completed relation scan event (i.e., thereare no more tuples to be

40

placed in the buffer). In the latter case, an actualnull tuple is returned. In this way,

whenever an operatorop receives adummy-null tuple from its child operator,op will

know that the tuple is due to a completed draining process andwill therefore pass the

dummy-null tuple up to its parent operator, and so on. The upward propagation of

thedummy-null tuple in the query plan tree continues until the tuple is received by

a successful drainer operatorop (i.e., op = drainer(rk) anddrainerStatus(rk) = suc-

cessful). Thus, the drainer operatorop then returns execution control to the interrupted

relation scan that initiatedop. The value ofdrainerStatus(rk) is also reset toinactive. In

the second case (step 11), where the scan ofri is a “normal” scan (i.e., not initiated for

buffer draining), theSharedScan of ri will be invoked.

The details ofSharedScan are shown in Algorithm 5. Essentially,SharedScan

continues scanningr for the next tuple that qualifies forri; i.e., satisfies the selec-

tion predicate conditions associated with the scan ofri. For each scanned tuplet,

SharedScan also checks ift qualifies for other instancesrj that are in the same share

group asri; the qualified tuples are pushed into the appropriate buffers. If some buffer

buf(rj) becomes full, then there are two cases to consider. IfSSPO has correctly es-

timated thatrj is an overflow instance (i.e.,switchEnabled(rj) has atrue value), a

drainer operatordrainer(rj) would have been assigned bySSPO and the execution con-

trol then switches to this drainer (step 11) by invoking theSwitchExecution func-

tion. Otherwise, if the overflow ofbuf(rj) has not been anticipated bySSPO, the full

buffer buf(rj) will not be drained and it will instead be implicitly materialized; i.e., in

IIQE, whenever a tuple is added to a full bufferbuf(rj), the buffer contents will be

materialized.

In general, theSharedScan of ri could lead to full buffers for multiple instances

in the same share group asri. When this happens, there is the issue of the execution

order of the multiple drainers. The current implementationof MAPLE simply picks an

41

arbitrary sequence; possible optimization of this ordering is part of our future work.

The SwitchExecution function (shown in Algorithm 6) is invoked to switch

execution todrainer(ri) for an overflow instanceri. The function needs to update the

activeDrainerstatus ofri to activebefore transferring control to the drainer and reset the

activeDrainerstatus toinactiveupon its return.

In summary, implementing theIIQE component ofMAPLE requires only moder-

ate modifications to the traditional iterative execution evaluation engine used by most

RDBMSs. Specifically, the main changes include: two new functionsSharedScan

andSwitchExecution; and minor modifications to operator code to distinguish be-

tweennull anddummy-null tuples.

2.5 Performance Study

We validated our techniques using an experimental prototype built on PostgreSQL

8.1.3. All experiments were performed on a Dell workstationwith a Quad-Core Intel

Xeon 2.33GHz processor, 3GB of memory, one 160GB SATA disk and another 750GB

SATA disk, running Linux 2.6.20. Both the operating system and PostgreSQL system

are built on the 160GB disk, while the databases of PostgreSQL are stored on the 750GB

disk.

Since PostgreSQL 8.1.3 does not support the WITH clause, we replaced those WITH

procedures in queries with VIEW definitions. In this way, PostgreSQL applies view

unfolding to replace the views by their definitions during optimization.

As default, the initial system buffer pool in PostgreSQL is set to 1,000 8K-pages. We

also tested with larger buffer pool sizes. The results were similar and thus omitted.

42

2.5.1 Test Queries

As mentioned, more than60% (61 out of total 99) of the TPC-DS queries contain

multiple instances. We have conducted experiments on many of these queries. We

present here a representative set that offers some interesting insights. A query is chosen

if it satisfiesall the following criteria: (a) It contains multiple instancesthat are eligible

for scan sharing, i.e., apply sequential scan on the same table. (b) It contains multiple

instances of at least one of the three big relations: storesales (ss), catalogsales (cs) and

web sales (ws). (c) It is executable by PostgreSQL. Some operators in the queries are

not recognized/supported by PostgreSQL. (d) It can be optimized by PostgreSQL’sdy-

namic programming(DP) optimizer. For queries that are too complex to optimizeusing

the DP method, PostgreSQL provides anothergenetic optimizer(geqo). However, since

geqo does not guarantee to generate consistent plans for thesame query, we cannot use

it. (e) It is not abatchquery which contains a batch of separate queries that run in paral-

lel. We have to exclude batch queries because our current implementation only supports

single queries, although our techniques can be easily extended to support batch queries.

(f) Its execution time is affordable for us. Some queries, like Q74 and Q95, require

super long-time executions. Table 2.1 presents a summary ofthe 49 queries excluded

according to the criteria above.

criterion a b c d e f
of queries 5 28 8 2 4 2

Table 2.1: Queries Filtered by Each Criterion

Finally we are left with 12 queries listed in Table 2.2, alongwith the instance number

of ss, cs andws inside. However, all other instances within a chosen query,irrespective

of their sizes, were also considered byMAPLE.

Since TPC-DS queries are all very complex, we cannot afford to draw full queries/plans.

43

rel ∗ inst# rel ∗ inst#
Q2 cs∗ 2, ws∗ 2 Q61 ss∗ 2
Q4 ss∗ 4, cs∗ 4 Q65 ss∗ 2
Q11 ss∗ 4, ws∗ 4 Q72 ss∗ 2, cs∗ 2
Q31 ss∗ 3, ws∗ 3 Q88 ss∗ 8
Q51 ss∗ 2 Q90 ws∗ 2
Q59 ss∗ 2 Q97 ws∗ 2

Table 2.2: Test Queries in Experiments

2.5.2 Experiment Design

In our implementation,MAPLE is integrated into the original system. By setting a

flag, we can switch between theoriginal modeandMAPLE mode. In the original mode,

the original execution engine will be used; in theMAPLE mode, theMAPLE engine will

be used. Both engines share the same query optimizer.

In each experiment below, we ran the same test query in both the original mode and

the MAPLE mode to compare the execution time difference. When a test query was

running, no other queries was running in parallel. Between queries we restarted the

operating system to clear caches.

In PostgreSQL,eachsorting and hashing operation has a dedicatedoperator mem-

ory. In MAPLE, besides the operator memories, each overflow instance usesadditional

buffer memory, which we shall refer to asinstance-buffer. For a fair comparison, in

each experiment we distributed the total amount of instance-buffer used inMAPLE mode

evenly to each operator memory in original mode.

We studied the effect of three experiment parameters: operator memory (opera-

tor mem), instance-buffer size (buffer) and thedatasetsize. For the latter, we used both

10 GB and 100 GB TPC-DS datasets.

The TPC-DS datasets are imported into PostgreSQL’s databases, which are stored on

the 750GB disk. In the experiments, the same disk was used to store the temporary files

generated during query execution.

44

The default settings that we used for our experiments are 1 MB(instance) buffer,

10 MB operator memory and a 10 GB dataset.

In following subsections, we shall refer to the system underoriginal mode as Post-

greSQL.

2.5.3 Optimization Overhead

psql MAPLE psql MAPLE
Q2 90 125 Q61 366 434
Q4 113 126 Q65 311 351
Q11 117 133 Q72 137570 137789
Q31 104 115 Q88 397 413
Q51 427 502 Q90 346 354
Q59 88 119 Q97 420 473

Table 2.3: Optimization times (inmicrosecond) with Default Settings

It is desirable to measure the optimization overhead ofMAPLE, which is incurred

mainly bySSPO. Therefore, we compared the actual optimization times of PostgreSQL

andMAPLE with default parameter settings. In order to eliminate any first-level in-

struction cache effect in query optimization, we restartedthe operating system between

optimizations. The optimization times of PostgreSQL andMAPLE can be found in Table

2.3. It is very clear that the optimization overhead ofMAPLE is low, and as we shall see

shortly, it is also negligible compared to the query execution time.

2.5.4 Operator Memory

In this experiment, we study the effect of operatormem. We use three different sizes:

5 MB, 10 MB and 20 MB.

Fig. 2.6 shows the performance improvements (in %) ofMAPLE over the Post-

greSQL; and Fig. 2.7 shows the corresponding query execution times inMAPLE and

PostgreSQL. In Fig. 2.7, the execution times of PostgreSQL can be computed by adding

45

operator_mem = 5 MB
operator_mem = 10 MB
operator_mem = 20 MB

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

Q2 Q4 Q11 Q31 Q51 Q59 Q61 Q65 Q72 Q88 Q90

O
ve

ra
ll

Im
pr

ov
em

en
t

Figure 2.6: Performance Improvements ByMAPLE

the execution time ofMAPLE with the timeMAPLE saved. Fig. 2.8 depicts theexpected

savingand theactual savingfor all queries with 5 MB operatormem. The expected

saving refers to the timeMAPLE is expected to save over PostgreSQL. The actual saving

is the saving ofMAPLE over PostgreSQL for the actual total query execution time. We

shall not present detail query-by-query analysis. Instead, we will summarize the more

interesting findings here.

First, as shown,MAPLE offers significant performance improvement in almost all

queries (except Q59, for which we will explain shortly). Theaverage improvement is

around 30% and the highest improvement is 67% achieved by Q88. In terms of absolute

time, the savings range from a few seconds to 700 seconds. These results are expected

asMAPLE requires only one scan of multiple instances of a relation. Second, we also

observe thatMAPLE remains superior as we vary operatormem.

Second, we note that, for some queries (Q2, Q4, Q11, Q31, Q59 and Q65), the exe-

cution times of bothMAPLE and PostgreSQL vary with different operatormem. There

are two main reasons for this:(a) The query plan generated byPostgreSQL (and hence

MAPLE) may be different under different operatormem size. In the experiment, the plans

for Q4 and Q65 are different when we change operatormem from 5 MB to 10/20 MB;

46

time saved
MAPLE’s execution time

 0

 100

 200

 300

 400

 500

 600

 700

 800

05
M

B
10

M
B

20
M

B

05
M

B
10

M
B

20
M

B

05
M

B
10

M
B

20
M

B

05
M

B
10

M
B

20
M

B

05
M

B
10

M
B

20
M

B

05
M

B
10

M
B

20
M

B

05
M

B
10

M
B

20
M

B

05
M

B
10

M
B

20
M

B

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Q2 Q31 Q51 Q61 Q65 Q72 Q90 Q97

time saved
MAPLE’s execution time

 0
 500

 1,000
 1,500
 2,000
 2,500
 3,000
 3,500
 4,000
 4,500

05
M

B

10
M

B

20
M

B

05
M

B

10
M

B

20
M

B

05
M

B

10
M

B

20
M

B

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Q4 Q11 Q88

original system
MAPLE

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

5MB 10MB 20MB

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Q59

Figure 2.7: Query Execution Times

47

expected saving
actual saving

 0

 100

 200

 300

 400

 500

 600

 700

 800

Q2 Q4 Q11 Q31 Q51 Q59 Q61 Q65 Q72 Q88 Q90

T
im

e
(in

 s
ec

)

Figure 2.8: Expected Saving and Actual Saving With 5MB operator mem

for Q11, there are three different plans for the three operator mem sizes; for the other

queries, their plans remain the same for the three operatormem sizes. (b) A larger oper-

ator mem may reduce the I/O cost, e.g., for sorting, the number of runs may be reduced,

and for hybrid hash join, the amount of data in the partitionsto be written out and re-read

will also be smaller. This reduces the execution times. Witha reduced execution time,

the savings forMAPLE over PostgreSQL may correspondingly reduce.

Third, from Fig. 2.8, we find that the actual savings inMAPLE are close to the ex-

pected savings for most queries. The difference is mainly due to the additional overhead

(like the cost of copying tuples to buffers) incurred by interleaved execution. However,

for Q11, the actual saving is significantly lower than expected, whereas for Q51, Q61 and

Q72, the actual savings are much higher than expected! Our investigation shows these

are contributed by several effects of the interleaved execution: (a)FragmentedReadWrite

effect. Under the interleaved execution model, the processing of one drainer may trig-

ger other drainers to become active. As a result, when the processing of these drainers

involve disk accesses (e.g., sorting), the intermediate results written (and subsequently

read) are more fragmented across the disk (than it would be had there been only one

single drainer running, as in PostgreSQL). (b)BufferHit effect.This effect arises when

48

both an active drainer and an interrupted drainer share somecache content. As a result,

when the active drainer requires some data, it finds it in the buffer, and when the sus-

pended drainer resumes processing, it also finds its required data in the buffer. Clearly,

the FragmentedReadWrite is a negative effect while the BufferHit is a positive effect.

For Q51, Q61 and Q72, we observe the BufferHit effect For example, in Q51, there

are some common index scans in subtrees of two drainers: while execution switches

between these two drainers, the index pages fetched from disk can be shared via the

system buffer. As such, besides the expected savings from using SharedScan, the sharing

of these indexed pages also contributes to the actual savings.

On the other hand, for Q11, it turns out that the drainers thatare processed in an

interleaved fashion need to write out large amount of intermediate results, resulting in

the FragmentReadWrite effect that reduces the savings.

For Q90 and Q97, little improvement opportunity was left toMAPLE due to theOS

CacheHiteffect. This is because in these two queries ws is the only large table for which

a large part is cached by the OS in the 3GB RAM.

Finally, for Q59, the plan involves a sort operator on a largeintermediate result pro-

duced by a hash join operator. When the operatormem is small (5 MB), the buffer is

not sufficient to hold the entire hash table, and the sort operation incurs more disk I/O

cost. As such, although there is a FragmentReadWrite effectin MAPLE, this is relatively

small and henceMAPLE outperforms PostgreSQL. However, when the operatormem

increases to 10/20 MB, the hash join can be processed in memory, and the sort operator

incurs lesser I/O cost. As a result, PostgreSQL’s executiontime reduces significantly.

On the contrary, the FragmenReadWrite effect remains inMAPLE. It turns out that this

effect far outweighs the benefits of SharedScan, resulting in its poorer performance than

PostgreSQL. We note that we can statically determine the number of switches (which

gives a hint on how fragmented the drainer’s output will be).If the value is above a

49

certain threshold, we will not post-optimize the PostgreSQL plan. We plan to explore

this further.

2.5.5 Instance-buffer Size

We next study the effect of instance-buffer size. In this experiment, we use two

different instance-buffer sizes: 100 KB, 1 MB. Recall that for PostgreSQL, the total

amount of instance-buffer sizes used forMAPLE goes to its operator memories. The

results for this experiment are shown in Fig. 2.9.

100 KB
1 MB

 0.0%

 10.0%

 20.0%

 30.0%

 40.0%

 50.0%

 60.0%

 70.0%

 80.0%

Q2 Q4 Q11 Q31 Q51 Q59 Q61 Q65 Q72 Q88 Q90

O
ve

ra
ll

Im
pr

ov
em

en
t

Figure 2.9:MAPLE Effect of Changing Instance-buffer Size

Generally, the performance ofMAPLE under different buffer sizes are more or less

the same. We see two different effects of the buffer size. ForMAPLE a larger instance-

buffer reduces the number of interleaved executions, and hence less FragmentReadWrite

effect. On the other hand, for PostgresSQL, a larger operator memory (recall that the

instance-buffer ofMAPLE are distributed to the operator memory) reduces the I/O cost

of sort and hash operators. For some queries (e.g., Q4, Q11, Q51, Q59, Q61, Q97), the

improvement over PostgreSQL increases with larger instance-buffer. However, for some

queries, like Q72 and Q88, the performance improvement overPostgreSQL degraded

marginally with increased buffer sizes.

50

2.5.6 Dataset

We also conducted an experiment with a 100 GB dataset to studythe scalability of

MAPLE. Here, we use 10 MB operatormem and 1 MB buffer. Fig. 2.10 shows both

the results of 100GB dataset and the results of 10GB dataset with the same parameter

settings.

10GB dataset
100GB dataset

 0.0%

 10.0%

 20.0%

 30.0%

 40.0%

 50.0%

 60.0%

 70.0%

 80.0%

Q2 Q11 Q31 Q51 Q61 Q72 Q88 Q90

O
ve

ra
ll

Im
pr

ov
em

en
t

Figure 2.10:MAPLE Effect in 100GB Dataset

Since the execution times of queries on 100GB dataset were very long, we did not

finish all 12 queries. From the figure, we see thatMAPLE still performs well with a larger

dataset.

For some queries like Q2, Q31 and Q88, the improvements over PostgreSQL (in

%) with the 100 GB dataset is lower than that with the 10 GB dataset. There are two

main reasons for this behavior: a) while (big) relation sizes have increased ten fold

from 10 GB to 100 GB dataset, their scan times have not increased proportionally. For

example, the scan time of websales in Q2 increased from 20 seconds to 90 seconds in

100 GB dataset. b) With the 100 GB dataset, in PostgreSQL the ratio of the total table

scan time of instances to the total execution time is reducedcompared to that of 10 GB

dataset. For example, the total table scan time of instancesof Q2 took around 49% and

51

39% of the total execution time in 10GB and 100GB dataset, respectively.

On the other hand, for Q90 and Q97,MAPLE performs much better in the 100 GB

dataset. This is because the OS CacheHit effect present in the 10 GB dataset disappeared

in 100 GB case, and the gain of shared scan becomes more significant.

2.5.7 Two Disks

So far, in all the experiments, we use the same 750GB disk to store both PostgreSQL’s

databases and the temporary files generated during query execution. In this experiment,

we use another 160GB disk to separately store the temporary files. In this way, the

reading relational data during execution was not interrupted by the disk access actions

of temporary files. We used 10 GB dataset, 20 MB operatormem and 1 MB buffer.

Fig. 2.11 shows both the results of two disks and the results of one disk with the same

parameter settings.

1 disk
2 disks

 0.0%

 10.0%

 20.0%

 30.0%

 40.0%

 50.0%

 60.0%

 70.0%

 80.0%

Q2 Q4 Q11 Q31 Q51 Q59 Q61 Q65 Q72 Q88 Q90

O
ve

ra
ll

Im
pr

ov
em

en
t

Figure 2.11:MAPLE Effect of Using Two Disks

For Q4, Q11 and Q59, using two disks actually favoured the original system more

since the interleaved disk accesses for relations and temporary files disappeared and

thus the reading of relational data was more sequential. InMAPLE, due to interleaved

52

executions, the reading of relational data still remained abit random and the execution

time did not reduce in proportion compared to PostgreSQL. Therefore, for these queries

the improvements achieved byMAPLE are lower than the situation of one disk.

For other queries, their executions generated little and small temporary files. There-

fore, using two disks made little difference.

We also find thatMAPLE may help to achieve higher improvement in some cases,

e.g. Q31.

2.6 Related Work

The need to efficiently coordinate multiple disk scans on thesame table to exploit

data-sharing has long been recognized. Early work focused on designing buffer replace-

ment algorithms (e.g., LRU-K [50]) to maximize buffer locality. However, these works

do not explicitly optimize data sharing. Moreover, their effectiveness is limited espe-

cially for large tables that do not fit in the cache. Several commercial Database systems

have implemented various forms ofcircular scanson database relations (Teradata [8],

RedBrick [18] and Microsoft SQL Server [1]). The basic idea is to let a newly starting

scan attach to an ongoing scan to reuse buffer pages brought by the ongoing scan. In

QPipe [36], Harizopoulos et al. propose to maintain one scanthread that keeps scanning

a table while table scan operators can attach to and detach from this thread in order to

share the scanned buffer pages. However, the degree of sharing the buffer pool provided

in these methods is extremely sensitive to the speed diversity of scans. Recently, a mod-

ified circular scan has been proposed in IBM DB2 system [42, 43] by adding explicit

group control and allowing throttling of faster scans. Zukowski et al. [69] introduce an

enhanced buffer manager that dynamically schedules disk reads of scan operators such

that multiple concurrent scans reuse the same buffer pages.

53

Sharing scan of base relations and pipelining of common subexpression results re-

duce disk access costs on the level of query processing operators. Zhao et al. [66] con-

sider sharing scans and pipelining subexpressions among OLAP queries (aggregation on

a join of fact table with dimension tables). Nilesh et al. [19] discussed the feasibility

of pipelining in multi-query optimization. They aim to pipeline results of a common

subexpression or tuples of a base relation to consumers in different SQL queries. Our

work can also be extended to handle common subexpressions and multiple queries.

In [19], the determination of a valid pipeline schedule has asimilar motivation as our

deadlock avoidance method in Section 2.3.2. However, the two are actually different.

As an example, consider Q90 in Fig. 2.2. The schedule of sharing the scan of all three

relations will be considered valid by [19] as each cycle has two opposite materialized

edges (the build edges of hash join). However, as we discussed in the chapter, whether

it is a valid sharing scan schema depends on whetherhd2 is an overflow instance or not

(see example 1 and example 2). In fact, the interleaved execution deadlock described in

this chapter is different from the deadlock situation in [19, 36].

In multi-query optimization(MQO) [54, 68], exploiting common subexpressions in

(multi-instance) queries indirectly leads to avoiding multiple scans on the same rela-

tion table. However, the materialized results of a common subexpression need be sepa-

rately read by different consumers, just like the independent scans of relation instances.

Moreover, MQO is not able to optimize scans of instances thatare outside the com-

mon subexpression. Therefore, for multi-instance queries, MAPLE can be either applied

independently or ultilized as the next optimization step after MQO.

The philosophy under our interleaved execution strategy isthat when eventa is

blocked, process eventb to continuea. The query scrambling[60] technique follows

another similar but different philosophy: when eventa is blocked, process eventb until

a resume itself. Used in distributed query processing, queryscrambling reacts to unex-

54

pected delays in obtaining initial requested tuples from remote sources by performing

other useful work which would normally be scheduled for a later point in the execution.

We also note that Graefe has hinted on the idea of switched execution in [31]. How-

ever, there is no discussion on how to realize it. We are the first to investigate the inter-

leaved execution model and demonstrate its practical effectiveness.

2.7 Summary

In this chapter, we have presentedMAPLE, aMulti-instance-AwarePLanEvaluation

engine.MAPLE enables multiple instances of a relation in single queries to share one

physical scan with limited buffer space.MAPLE is light-weight and can be easily inte-

grated into existing RDBMS executors. We have developed a prototype in PostgreSQL,

and our experimental study using the TPC-DS benchmark showed thatMAPLE can sig-

nificantly reduce the execution time (compared to the original plans produced by Post-

greSQL).

CHAPTER 3

Collaborative Sort Executions for

Relational Instances

3.1 Introduction

The previous chapter discusses how to efficiently retrieve the tuples of different in-

stances from the common table resident on the disk, with a minimum total I/O cost. In

this and the next chapter, we consider the optimization scenarios after tuples of instances

have flowed up to query execution components above the storage engine.

For complex decision support queries with multiple instances, the optimized execu-

tion plans may apply various sort operations to different instances of the same table,

usually in the association with sort-merge joins. Moreover, we find that the demand

of sorting a table multiple times also arises in many other scenarios. For example, in

data warehousing, a fact table typically has two types of attributes: those that contain

facts and those that are foreign keys pointing to dimension tables. According to the

55

56

workload, the index selection program may recommend to create both the primary key

index and foreign key indices on the fact table, which requires the table to be sorted

multiple times to bulk load the various indices. In many organizations, many reports are

generated at the end of the day/week/month. Typically, these reports contain the same

content but on different sort orders. A bank may produce reports ordered by amount

deposited/withdrawn/balance, date, branch, and so on. Similarly, examination schedules

are usually printed on different orders - such as course number, dates, examiners, and

invigilators.

In the above examples, the table could be separately sorted multiple times, once per

sort order. However, intuitively this is wasteful of resources (mainly I/O cost) especially

when the table is huge, as after all we are manipulating the same set of tuples. On the

contrary, it seems promising to execute these sortings in a more collaborative manner so

as to reduce the overall processing cost, by somehow salvaging the (partial) efforts spent

on sorting the table on a particular order to speed up the sortings on other orders. Such

sort sharingis exactly what we set out to achieve in this chapter.

We begin by considering sorting a tableT on two sort orderso1 and o2, both of

which are sequences of some attributes ofT . Wheno1 ando2 share a common prefix,

it is obvious that, onceT has been sorted ono1, the sorting output can be either re-used

directly (if one order is a prefix of the other) or be re-organized in a light-weight way (if

neither order is a prefix of the other) in order to derive the sortedT on o2. We refer to

such kind of optimizations asresult sharing, which leverages the output of one sorting

to more efficiently evaluate the other sorting. The result sharing technique has been well

recognized [6, 35].

However, wheno1 ando2 do not share a common prefix, the potential sort sharing

opportunities have not been explored previously. In this situation, we introduce a new

property between a pair of sort orders calledsubset-prefixand design a novel sorting

57

technique calledcooperative sortingthat can be applied to optimize two sort operations

if their sort orders satisfy the subset-prefix property. Cooperative sorting first organizes

the tuples ofT into an intermediate formT ′ such that subsequently (a)T ′ can be used

to produce the sortedT on o1 efficiently with only (possibly) in-memory sorting; (b)T ′

can also be viewed as a set of initial sorted runs ono2, which can be efficiently merged to

derive the sortedT ono2. In so doing, cooperative sorting saves the initial run formation

phase foro2. Furthermore, for the general case of two seemingly non-related sort orders,

we show that the pair of sort operations could still be optimized by first applying coop-

erative sorting on a derived pair of sort orders followed possibly by using result-sharing

optimization to achieve the desired sortings. Consequentially, when sorting a table on

an arbitrary pair of sort orders, we can always optimize the evaluation by utilizing result

sharing and/or cooperative sorting.

With the result sharing and cooperative sorting techniques, we then tackle the op-

timization problem of evaluating more than two sortings on the table. We model this

problem as the minimum directed Steiner tree problem, whichunfortunately is NP-Hard.

When the number of sortings is manageable, we will adopt a brute force algorithm to find

the optimal solution on how each sorting should be sequencedand accomplished. Oth-

erwise, we will resort to heuristic or approximation algorithms.

So far, we have implicitly assumed that the sortings on the table are the optimization

decision of a conventional query optimizer which is unawareof sort sharing optimiza-

tion. Further modifications of query plans generated by sucha sort-sharing-blind opti-

mizer, such as replacing a hash join with a sort-merge join and replacing a hash-based

aggregation with a sort-based aggregation, may enable additional sort-sharing opportu-

nities and thereby lead to a lower query execution cost. Therefore, it would be beneficial

to let sort sharing be explicitly considered during query optimization. As a result, we

propose solutions for the standard query optimizer to directly generate optimal sort-

58

sharing-aware query plans. Our techniques are generally applicable to different types of

query optimizer, such as the System-R style and the Volcano style.

We have performed a comprehensive experimental evaluationof our proposed tech-

niques with an implementation in PostgreSQL. We ran a micro-benchmark test, on both

TPC-DS dataset and our own synthetic dataset, to compare theperformance of cooper-

ative sorting against two independent sort operations. Theperformance results showed

that cooperative sorting improved the performance on average by 25% and up to 35%.

We also conducted a case study ofcooperative index building, where the standard coop-

erating sorting technique is slightly extended and then exploited when creating multiple

indices on a single table. The corresponding performance study on TPC-DS dataset illus-

trated that cooperative sorting is very helpful. The highest and the average performance

improvement were 37% and 24% respectively. Finally, we studied the overall benefits

of sort sharing techniques and the enhanced sort-sharing-aware query optimizer when

executing normal queries.

The rest of this chapter is organized as follows. In Section 3.2, we present some

preliminaries. In Section 3.3, we introduce our new sort order property, subset-prefix

property, and categorize the relationship between two sortorders into four cases. These

four cases can be optimized by applying the existing result-sharing sorting technique

and/or our new cooperative sorting technique. We elaborateon cooperative sorting in

Section 3.4. In Section 3.5, we generalize cooperative sorting to evaluate more than two

sort operations, explain how to optimize the evaluation of multiple sortings on a table,

and discuss sort-sharing-aware query optimization. Further general discussions about

sort sharing are presented in Section 3.6. Our experimentalstudy presented in Section

3.7 validates the effectiveness of our proposed techniques. We discuss relevant work in

Section 3.8 and finally conclude in Section 3.9.

59

3.2 Preliminaries

Sort orders are referred aso, o1, o2 etc., each of which is a sequence of distinct at-

tributes(a1, a2, · · ·an), n ≥ 1, of the relationT 1 to be sorted. In this chapter we utilize

the following main notations, some of which are borrowed from [35]:

• si = sort(T, oi): a sort operationsi onT , with orderoi.

• cost(s): the I/O cost (in number of accessed blocks) for sort operations.

• attrs(o): the set of attributes in sort ordero.

• |o|: number of attributes in the sort ordero.

• o1 < o2: o1 is a proper prefix ofo2.

• o1 ≤ o2: o1 is a prefix ofo2.

• o1 ∧ o2: the longest common prefix betweeno1 ando2.

• o1 + o2: sort order obtained by concatenatingo1 ando2.

• o − A: sort order obtained by removing fromo the attributes that also appear in

the set of attributesA.

• o-segment2: the cluster of tuples inT that have the same value forattrs(o).

• B(e): size of tuples of expressione, in number of blocks.

• D(e, o): number of distinct values forattrs(o) in tuples of expressione; i.e.,

D(e, o) = |πo(e)|.

• M : number of memory blocks available for sorting.

1For simplicity, our discussion assumesT to be a relation, but our techniques also apply whenT is the
output of some query subplan.

2It is also known asvalue packet[41].

60

In this chapter, we assume that initial sorted runs are generated using replacement

selection, and our cost model assumes that each initial sorted run is of size2M blocks.

The external sorting of a relationT is done using the well-knownF -way merge sort

technique, whereF is the merge order (i.e., number of runs that can be merged using

M). Our cost model for a sort operations onT usingM blocks of memory is given by

cost(s) = 2× B(T)× (⌈logF (
B(T)

2M
)⌉+ 1) (3.1)

3.3 Sort Sharing Techniques

In this section, we present an overview of techniques for optimizing the evaluation

of multiple sorts on a relationT . We will first focus on the basic setting involving only

two sort operations, and then explain how our techniques canbe easily extended to the

general setting in Section 3.5. For simplicity, we assume that all the attributes in a sort

order are to be sorted in ascending order. We discuss how to handle a combination of

ascending and descending sort orders in Section 3.6.

Consider two sort operationss1 = sort(T, o1) ands2 = sort(T, o2). By exploiting

the relationship betweeno1 ando2, the pair of sort operations can be optimized for two

well-known cases. The first case is wheno2 is a prefix ofo1 (i.e. o2 ≤ o2), and the second

case is wheno1 ando2 share a non-empty common prefix which is a proper prefix ofo2

(i.e. 0 < |o1 ∧ o2| < |o2|).

In this chapter, we introduce a new property between two sortorders termedsubset-

prefix that forms the basis of our novel cooperative sorting technique. Given two sort

orderso1 ando2, o2 is defined to be asubset-prefixof o1 if they satisfy two conditions:

1. some prefixo21 of o2 = o21 + o22 is the substring (but not prefix)o12 of o1 =

61

o11 + o12 + o13, and

2. the set of attributes in the suffixo22 of o2 is a subset of the attributes in the prefixo11

of o1; i.e.,o12 = o21, attrs(o22) ⊆ attrs(o11), |o11| > 0, |o13| ≥ 0 and|o22| ≥ 0.

As the name of the property suggests, ifo2 is a subset-prefix ofo1, then the set of at-

tributes ino2 is a subset of the set of attributes in a prefix ofo1.

Example 1 Consider the following four sort orders:o1 = (a1, a2), o2 = (a2), o3 =

(a2, a3, a4, a5), ando4 = (a4, a3, a2). We have three pairs of sort orders that satisfy the

subset-prefx property:o2 is a subset-prefix ofo1, o2 is a subset-prefix ofo4, ando4 is a

subset-prefix ofo3. �

Based on the new subset-prefix property, we can classify the relationship betweeno1

ando2 into four disjoint cases:

• Case 1:o2 is a prefix ofo1.

• Case 2:o1 ando2 share a non-empty common prefix which is a proper prefix of

o2.

• Case 3:o2 is a subset-prefix ofo1.

• Case 4:o1 ando2 do not satisfy any of the above three cases.

The first two cases are the more familiar and simpler cases, where s1 and s2 can

be efficiently evaluated using theresult sharing technique, which has been previously

discussed in other contexts [6, 35]. The idea is to leverage the output of one sort operation

to more efficiently evaluate the other sort operation.

For case 1, since a relationT sorted ono1 is trivially also sorted ono2, it is sufficient

to perform onlysort(T, o1); therefore,s2 is not evaluated explicitly andcost(s2) = 0.

For case 2, supposeo′ = o1 ∧ o2 such thato1 = o′ + o′1, o2 = o′ + o′2, |o
′
1| ≥ 0 and

|o′2| > 0. In this case, a relationT sorted ono1 is also partially sorted ono2: the output of

62

s1 can be viewed as a concatenation ofo′-segments, and each such segment can be sorted

independently ono′2 to form the sorted output fors2. If the size of eacho′-segmentis no

larger thanM blocks, then the sorting of each segment ono′2 can be performed efficiently

using internal sorting ands2 can be evaluated with only a single pass of reading the out-

put ofs1. As noted by [35], the strategy to evaluates2 by sortingo′-segmentsalso helps to

significantly reduce the number of tuple comparisons: the complexity of independently

sortingk segments each of sizen/k tuples isO(k ∗ n/k log(n/k)) = O(n log(n/k)) in

contrast to a complexity ofO(n log(n)) for a single sort of alln tuples.s1 is evaluated

using the conventional external merge-sort andcost(s1) is given by the Equation 3.1.

Following [35], cost(s2) =
∑D(T,o′)

i=1 cost(sort(sei, o
′
2)), wherecost(sort(sei, o

′
2)) de-

notes the cost of sorting theith o′-segmentsei in the sorted output ofs1. If B(sei) ≤M ,

cost(sort(sei, o
′
2)) is simply the cost of performing an internal sorting; otherwise, it is

given by Equation 3.1. If we assume that the values ofo′ follow a uniform distribution,

thenB(sei) = B(T)/D(T, o′).

The cases 3 and 4 are the new scenarios that we investigate in this chapter. For case 3,

the evaluations ofs1 ands2 can be optimized by our newly proposedcooperative sorting

technique, whose idea is to create “hybrid” sorted runs that can benefitthe evaluation

of both sort operations. We shall discuss the details of cooperative sorting in the next

section.

For the most general case 4,s1 ands2 can be optimized as follows. First, we derive

two new sort orderso′1 and o′2, whereo′2 is the longest prefix ofo2 such thato′2 is a

subset-prefix ofo′1 = o1 + (o′2 − attrs(o1)). Note that the derivation ofo′1 ando′2 is

always possible; in particular, the trivialo′2 containing only the first attribute ofo2 is a

subset-prefix of the correspondingo′1. Second, we apply cooperative sorting to evaluate

two sort operationssort(T, o′1) andsort(T, o′2). Sinceo1 is a prefix ofo′1, the output

of sort(T, o′1) is also sorted ono1 and thus can be directly utilized as the output ofs1.

63

Sinceo′2 is a prefix ofo2, there are two cases to be considered for the evaluation of

sort(T, o2): if o′2 = o2, then the output ofsort(T, o′2) can be directly utilized as the

output ofs2; otherwise, we can derive the output ofs2 by independently sorting each

o′2-segmentwithin the output ofsort(T, o′2) on ordero2−attrs(o′2). In order to optimize

the independent sorting of theo′2-segments, we chooseo′2 to be the longest prefix ofo2

that meets the subset-prefix requirement.

3.4 Cooperative Sorting

In this section, we present a novel technique, termedcooperative sorting, to effi-

ciently evaluate two sort operationss1 = sort(T, o1) ands2 = sort(T, o2), wheno2 is a

subset-prefix ofo1 (i.e. case 3) as defined in the previous section.

Recall that in this case, we haveo1 = o11 + o12 + o13 ando2 = o21 + o22, such that

o12 = o21, attrs(o22) ⊆ attrs(o11), |o11| > 0, |o13| ≥ 0 and|o22| ≥ 0.

3.4.1 Overview

Observe that the output ofs1 can be viewed as the concatenation ofo11-segments

(i.e., a set of tuples with identicalo11 values), each of which is also sorted ono2 and

thus is a sorted run fors2. As a result, the result sharing technique can actually be

applied to this case by first evaluatings1 followed by merging the resultanto11-segments

to computes2. However, depending on the number of distincto11 values and the extent

of data skew inT , the number ofo11-segmentsgenerated bys1 could be very large

with many small segments. In this situation, merging a largenumber of small sorted

runs to evaluates2 could lead to an overall performance that is bad or even worsethan

performing a conventional external sorting ofT ono2. The following example illustrates

this drawback of applying the result sharing technique for case 3.

64

Example 1Consider the relationT (a, b) in Fig. 3.1, which will serve as a running ex-

ample in this section. Assume the following: each tuple occupies one disk block, the

available sorting memory can hold four tuples (i.e.,M = 4), and the merge orderF = 2.

Consider two sort operationss1 ands2 on T , with orderso1 = (a, b) ando2 = (b), re-

spectively. Obviously,o2 is a subset-prefix ofo1 with o11 = (a). The output ofs1 is a

concatenation of sixa-segments(se1 to se6), each of which is sorted on(b). These six

a-segmentscan be merged fors2 with three I/O passes of reading and writingT tuples.

However, this is actually not better than a conventional external sorting: the replacement

selection incurs one I/O pass and generates three initial runs, which can be merged with

only two I/O passes. As a result, both approaches for evaluating s2 will incur three I/O

passes. �

����
����
����
����

����
����
����
����

����
����
����
����

6 7

2 2
3 6
4 9
1 5
6 8

3 2

6 3
3 9

3 4
1 3
3 10
2 1
3 8
5 1
3 5

a b

relation T 2s on (b)

3 10

2 1

2 2
3 2

1 3
3 4

3 5

6 7

3 8

5 1

6 3

1 5

3 6

6 8

4 9
3 9

a b

s on (a,b)1

1 3
1 5
2 1
2 2
3 2

3 6

6 8

3 4
3 5

3 8
3 9
3 10
4 9
5 1
6 3
6 7

a b

se1

ck1

ck3

ck4

ck2

s chunks12

se2

se

se

se

se

3

4

5

6

3 2

3 6

6 8

3 4
3 5

3 8
3 9
3 10

6 3
6 7

2 1
2 2
1 3
1 5

5 1

a b

4 9

Figure 3.1: Cooperative Sorting Example:M = 4 andF = 2

Cooperative sorting is proposed in order to retain the benefit of result sharing, i.e.

avoiding scanningT to generate initial sorted runs fors2, and also overcome as much as

possible the drawback of result sharing. The core of cooperative sorting is an intermedi-

65

ate sort operations12 based on a special hybrid sort order, such that the outputs ofboth

s1 ands2 can be efficiently derived from the output ofs12.

We will discuss how to perform the intermediate sort operation s12 in Sections 3.4.2

and 3.4.3. The output ofs12 will be a sequence oftuple chunkswhich are eithernatural

or composite. Tuples of a natural chunk are ordered byo1, while tuples of a composite

chunk are ordered byo2. For each composite chunk, it consists of tuples from two or

moreconsecutiveo11-segmentsin the output ofs1, and its size is no larger than the sorting

memory (i.e.M blocks). For each natural chunk, it consists of tuples from exactly one

o11-segmentin the output ofs1, and there is no constraint on its size. Moreover, the tuple

chunks areo1-order preserving, which means that if a chunkcki precedes another chunk

ckj in the output ofs12, then every tuple incki has ano1 value smaller than that of every

tuple inckj.

Example 2 Look at the running example in Fig. 3.1. The output ofs12 contains four

tuple chunks, two composite (ck1 andck3 shown shaded) and two natural (ck2 andck4

shown non-shaded). The output ofs1 contains sixa-segments, se1 to se6. In the output

of s12, se1 andse2 are combined intock1, se3 is exactlyck2, se4 andse5 are combined

into ck3, andse6 is exactlyck4. Bothck1 andck3 are no larger thanM = 4 blocks, while

ck2 is larger thanM andck4 is smaller thanM . �

To derive the output ofs1, thes12 chunks are scanned and processed sequentially:

if the chunk is a natural chunk, the tuples are already ordered ono1 and can simply be

output sequentially; otherwise, we first load all the tuplesin the chunk into the sorting

memory, internally sort the tuples ono1, and then output the sorted tuples sequentially.

Since the chunks areo1-order preserving, the whole resultant tuple stream will beordered

by o1.

Notice that the tuples in each naturals12 chunk are also ordered byo2. Therefore, to

derive the output ofs2, all thes12 chunks can be treated as initial sorted runs ono2 and

66

merged recursively.

Compared with result sharing, cooperative sorting generates longer and thus fewer

initial sorted runs fors2 to merge. Although the evaluation cost ofs12 is slightly more

expensive than the normal cost ofs1 and deriving the output ofs1 from the output of

s12 requires additional internal sorting cost, the saving on run merge cost fors2 makes

cooperative sorting competitive. As indicated by both the cost model in Section 3.4.4

and the experimental results in Section 3.7, cooperative sorting is at least as good as and

often better than result sharing.

However, the number ofs12 chunks generated in cooperative sorting could still be

more than the number of initial sorted runs generated by a conventional initial run for-

mation phase fors2, and thus cooperative sorting may incur a more costly run merging

phase fors2. As a result, cooperative sorting is not guaranteed to be always superior

to evaluatings1 ands2 independently. Both cooperative sorting and conventionalsort-

ing should be considered in a cost-based manner by the query optimizer for evaluating

multiple sorts on a relation.

3.4.2 Intermediate Sort Operations12

The computation ofs12 consists of four main steps. In the first step, we scan the

relationT to create initials1 runs (i.e., initial sorted runs ono1) with the conventional

initial run formation technique. We also collect the set of distinct o11 values, and count

the number of tuples corresponding to each distinct value, in each initials1 run at runtime

when it is being generated. After all initials1 runs have been generated, we combine

statistics for each initials1 run to acquire the global statistics on the distincto11 values

in T . Thus, at the end of the first step, we know the size of eacho11-segmentand the

distribution of eacho11-segment’s tuples among the initials1 runs.

We allocate a very small portion of memory for the purpose of the above statistics

67

collection, and flush the memory content to disk files when necessary (e.g., the statistics

for one initials1 run will be written to disk before the generation of the next run starts).

The global statistics will be computed from the disk files, which are also very small and

thus incur negligible I/O cost.

The above accurate statistics collection procedure works well when the domain of

o11 values is not large. As we shall see, in our experimental study, with 0.5MB of

memory, the scheme performs well for 50k distincto11 values. Alternatively, we can

estimate the statistics using approximation techniques such as [14, 30]. In this case, the

subsequent three steps of computings12 (to be described shortly) need to be modified to

handle estimatedo11 statistics. This extension is straightforward, and does not affect the

correctness of our proposed scheme. However, some composite chunks might have to be

externally sorted due to an underestimation of their sizes.

In the second step, we determine the output information ofs12: the number and the

sequence ofs12 chunks, the size of each chunk, and theo11-segments that comprise each

chunk. Intuitively, the composites12 chunks should be as large as possible (within the

size constraint), so as to minimize the total number ofs12 chunks. We thereby apply a

greedy algorithmthat utilizes the statistics collected from the first step and sequentially

checks theo11-segmentsas follows. If the size of ano11-segmentsei exceedsM , then

sei forms a natural chunk; otherwise, determine the longest sequence of consecutiveo11-

segmentssei, sei+1, · · · sej such that their total size is no more thanM . If i = j, then

sei forms a natural chunk; otherwise,sei, · · · , sej form a composite chunk. Repeat the

above procedure fromsej+1 unlesssej is the lasto11-segment.

Note that the tuples belonging to as12 chunk are generally distributed across multiple

initial s1 runs. Since thes12 chunks areo1-order preserving, each initials1 run consists

of a sequence oftuple chunklets, each of which represents a subset of tuples of a distinct

s12 chunk. Chunklets are also correspondingly classified as natural and composite.

68

Example 3Fig. 3.2 illustrates the two initials1 runs ordered byo1 = (a, b) and generated

from the relationT in Fig. 3.1. Based on the sizes ofa-segments, the above greedy

algorithm decides to form fours12 chunks. The first initials1 run consists of chunklets

ckl1,1, ckl2,1, ckl3,1, andckl4,1; the second initials1 run consists of chunkletsckl1,2,

ckl2,2, ckl3,2, andckl4,2. Hereckli,j denotes the chunklet in thejth initial s1 run that

corresponds to theith s12 chunk. �

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

����
����
����
����

1 5
2 2
3 2
3 6
3 9
4 9

6 8
6 3

ckl2,1

ckl3,1

ckl4,1

ckl1,1 ckl1,2

ckl2,2

ckl3,2

ckl4,2

a b
1 3
2 1
3 4
3 5
3 8
3 10

6 7

a b

5 1

initial run 1 initial run 2

Figure 3.2: Initials1 Runs for RelationT in Example of Fig. 3.1

In the third step, we merge the initials1 runs to generate the initials12 runs. Each

initial s12 run is created by merging a set ofF initial s1 runs. Specifically, the chunklets

in the F initial s1 runs that correspond to the sames12 chunk are merged to form a

longer chunklet in the initials12 run. Consequentially, each initials12 run is also a

sequence of chunklets, where tuples of a natural chunklet are ordered byo1, tuples of

a composite chunklet are ordered byo2 and the chunklets areo1-order preserving. This

merging operation is different from the conventional run merging procedure and will be

elaborated in Section 3.4.3.

Example 4When merging the two initials1 runs in Fig. 3.2, each pair of chunkletsckli,1

andckli,2 (i ∈ {1, 2, 3, 4}) are merged respectively. The resultant initials12 run is exactly

the finals12 chunks as shown in Fig. 3.1. �

69

In the fourth step, the initials12 runs are recursively merged to generate thes12

chunks. This is done by the conventional external run merging technique with a minor

extension for the tuple comparison operator. Specifically,when comparing two tuples

t1 andt2 during the merging, ift1 andt2 belong to the same composite (resp. natural)

chunk, thent1 precedest2 iff t1 has a smaller value foro2 (resp. o1) compared tot2;

otherwise,t1 precedest2 iff t1 belongs to a chunk that precedest2’s chunk. Note that the

fourth step is skipped if the third step produces only one initial s12 run as in the above

example.

3.4.3 Generating Initial s12 Runs

In this section, we elaborate on the procedure of mergingF initial s1 runs into an

initial s12 run.

Merging a set of natural chunklets in the initials1 runs is simple and just follows the

conventional external merge procedure, since the input andoutput orders are the same.

However, as mentioned in Section 3.4.2, for each composite chunklet in the gener-

ated initials12 run, its tuples will be ordered byo2, while the set of composite chunklets

in the initials1 runs are all sorted ono1. Therefore, before we can merge these compos-

ite chunklets in the initials1 runs, we need to internally sort each of them ono2
3, which

requires that our tuple reading strategy, i.e. the way we read tuples from different initial

s1 runs into the sorting memory during run merging, should ensure that these compos-

ite chunklets will be able to co-exist in the sorting memory when it is their turn to be

merged. Assume that these composite chunklets correspond to theith s12 chunk. When

tuples in these composite chunklets are being read into the sorting memory, the follow-

ing constraint must always be satisfied until these composite chunklets are completely

3Internal sortings are feasible as by design the total size ofthese composite chunklets will not exceed
the sorting memoryM .

70

read:

B(RP m
i) + B(RP d

i) +
∑

k>i

B(RP m
k) ≤M (3.2)

whereRP m
i (resp.RP d

i) denotes the set of tuples in the input initials1 runs that belong

to the ith s12 chunk and currently are in the sorting memory (resp. still onthe disk).

Equation 3.2 prevents too many tuples ofs12 chunks after theith chunk from occupying

the sorting memory space but not being merged, while some tuples of theith chunk are

still remaining on the disk.

Tuple reading strategies violating the above Equation 3.2 can lead to “deadlock”

situations. For example, consider the two initials1 runs shown in Fig. 3.2 and suppose

that we are merging the two composite chunkletsckl1,1 andckl1,2 for the firsts12 chunk

with M = 4. If we had read the first three tuples, (1,5), (2,2) and (3,2),of the first initial

s1 run into the sorting memory, then a deadlock situation wouldarise as the remaining

memory space is not adequate for loading the two tuples ofckl1,2, (1,3) and (2,1), in the

second initials1 run for internal sorting.

On the other hand, a sound yet conservative tuple reading strategy might fragment

the reading of the initials1 runs into too many short sequential I/O reads. For example,

consider the following approach to mergeF initial s1 runs into an initials12 run. The

merging reads and processes the chunklets in the initials1 runs for ones12 chunk at a

time based on the chunk order. If the current chunk being processed is composite, we

first read all the chunklets that belong to this chunk into thesorting memory, perform

an internal sorting on each chunklet, and then merge the sorted chunklets. If the current

chunk being processed is natural, we first readn tuples from the corresponding chunklet

in each initials1 run, wheren = min{size of the chunklet,⌊M/F ⌋}, to initialize the

merging. Each subsequent read includes at most⌊M/F ⌋ sequential tuples of a chunklet

in some initials1 run. By applying this approach to merge the two initials1 runs in

Fig. 3.2 withM = 4, a total of 10 sequential reads is required, which is suboptimal: we

71

shall later illustrate how this can be reduced to 8 sequential reads.

We thereby propose an efficientbatched tuple readingstrategy for loading tuples

from theF initial s1 runs into the sorting memory. Our strategy consists of two main

steps. First, we partition each initials1 run into a sequence of tuple batches. An initials1

run containingn tuple batches will be read withn sequential reads, each of which reads

a complete tuple batch. Second, we schedule the reading of tuple batches from different

initial s1 runs to do the tuple merging. Our goal is to minimize the totalnumber of tuple

batches (i.e., maximize the sequential I/O) without violating Inequation 3.2.

For simplicity, our batched read strategy is designed basedon the following two

rules:

• In an initial s1 run, a composite chunklet, or a natural chunklet that is no larger

than⌊M/F ⌋, will be completely included by a single tuple batch, where the total

size of any natural chunklet along with all the following tuples must not exceed

⌊M/F ⌋.

• In an initials1 run, a natural chunklet that is larger than⌊M/F ⌋ will be partitioned

into a series of consecutive tuple batches, each of which, except the last one, has a

size of⌊M/F ⌋. The last tuple batch may contain tuples from other chunklets, but

its size is at most⌊M/F ⌋.

It follows that each tuple batch can be classified into one of four types based on its

starting and ending points in the initials1 run:

1. the batch starts from the head of a composite/natural chunklet and ends at the tail

of a (possible different) composite/natural chunklet.

2. the batch starts from the head of a natural chunklet and ends inside the same chun-

klet.

72

3. the batch starts and ends both inside the same natural chunklet.

4. the batch starts inside a natural chunklet and ends at the tail of a (possibly different)

composite/natural chunklet.

����
����
����
����

����
����
����
����

��������

chunklet
a small natural

composite
chunklets

type−4

type−2
batch

type−3
batch

batch

chunklet
a large natural

type−1
batch

initial run initial run

Figure 3.3: Illustration of Four Types of Tuple Batches in Initial s1 runs

Fig. 3.3 illustrates the four types of tuple batches. A natural chunklet that is larger

than⌊M/F ⌋ will be partitioned into one type-2 tuple batch, zero or several type-3 tuple

batches, and one type-4 tuple batch. A composite chunklet, or a natural chunklet that is

no larger than⌊M/F ⌋, will be included by one type-1 or type-4 tuple batch. The size of

a type-2 or type-3 tuple batch is exactly⌊M/F ⌋. The size of a type-4 tuple batch is at

most⌊M/F ⌋. The size of a type-1 tuple batch could be larger than⌊M/F ⌋ but is under

constraint of the first rule above.

GivenF initial s1 runs, Algorithm 7 generates the complete set of tuple batches and

records them in an arrayTB. Algorithm 7 essentially involves two nested computation

loops. In the outer loop, each time it checks all the chunklets in the initials1 runs that

belong to ones12 chunk, based on the chunk order; in the inner loop, it sequentially

checks each chunklet of the currents12 chunk, and decides the specific tuple batch(es)

that will include this chunklet. InTB, a type-4 tuple batch immediately follows the

corresponding type-2 tuple batch, and the set of type-3 tuple batches in between are not

73

recorded, as they can be easily deduced at runtime. The composition of each type-1 (or

type-4) tuple batch starting from the head (or interior) of achunklet is determined by

using Algorithm 8, which tries to maximize the batch size by including as many tuples

following this chunklet in the initials1 run as feasible.

At runtime of run merging, Algorithm 9 schedules the readingof tuple batches. For

type-1 and type-2 tuple batches, they are read in the same order as inTB but are possibly

interleaved with dynamically arranged type-3 and type-4 tuple batches. Moreover, when

merging the chunklets for a natural chunk, a type-3 or type-4tuple batch associated with

a specific chunklet will be selected as the next one to read if and only if in the sorting

memory tuples belonging to the same chunklet will be exhausted most quickly by the

merging. This ensures the correctness of merging and is consistent with the run merging

procedure in conventional external sorting.

�����
�����
�����

�����
�����
�����

�����
�����
�����
���������������

�����
�����
�����
�����
1,1ckl

3,1ckl

4,1ckl

2,1ckl

1,2ckl

2,2ckl

3,2ckl

4,2ckl

M = 4

F = 2

1 3
2 1
3 4
3 5
3 8
3 10

6 7

a b

initial run 2

5 1

a b

initial run 1

1 5
2 2
3 2
3 6
3 9

6 8
6 3
4 9

1tb

tb

tb

tb

3

6

tb

4tb

2

8

5tb

tb7

Figure 3.4: Tuple Batches of the Two Initials1 Runs in Fig. 3.2

i 1 2 3 4 5 6 7 8
TB[i] tb1 tb2 tb3 tb6 tb4 tb5 tb7 tb8

Table 3.1: The Entries inTB for Example in Fig. 3.4

Example 5Fig. 3.4 shows the eight tuple batches (tb1 to tb8) comprising the two initial

s1 runs in Fig. 3.2. Table 3.1 shows the tuple batch arrayTB. tb1, tb2, tb7 and tb8

74

are type-1 tuple batches;tb3 andtb4 are type-2 tuple batches, andtb6 andtb5 are their

corresponding type-4 tuple batches respectively. There are no type-3 tuple batches in

this example. During run merging, these eight tuple batcheswill be read in the following

sequence:tb1, tb2, tb3, tb4, tb5, tb6, tb7, tb8. Note that since the last tuple (3,5) intb4 is

smaller than the last tuple (3,6) intb3, tuples intb4 will be exhausted first and thustb5

will be read beforetb6 at runtime. This situation cannot be predicated before runtime. �

Algorithm 7 : ComputeTB
Output : a tuple batch arrayTB according to the to be mergedF initial s1 runs

1: idx← 1
2: for i← 1 to N do // N is the total number ofs12 chunks
3: if theith s12 chunk is compositethen
4: for j ← 1 to F do
5: if ckli,j is non-empty and has not been assigned to a tuple batched yetthen // ckli,j

denotes the chunklet in thejth initial s1 run that corresponds to theith s12 chunk
6: TB[idx]← TupleBatch(ckli,j) // form a type-1 tuple batch starting from the

head ofckli,j
7: idx← idx + 1
8: else
9: for j ← 1 to F do

10: if ckli,j is non-empty and has not been assigned to tuple batches yetthen
11: if size(ckli,j) > ⌊M/F ⌋ then
12: TB[idx]← a type-2 tuple batch starting from the head ofckli,j
13: idx← idx + 1
14: TB[idx]← TupleBatch(ckli,j) // form the corresponding type-4 tuple batch
15: idx← idx + 1
16: else
17: TB[idx]← TupleBatch(ckli,j) // form a type-1 tuple batch starting from the

head ofckli,j
18: idx← idx + 1

3.4.4 Cost Model

In this subsection, we present an analytical cost model for cooperative sorting. The

total cost of utilizing cooperative sorting to evaluate twosort operationss1 ands2 con-

75

Algorithm 8 : TupleBatch
Input : ckli,j
Output : a type-1 (or type-4) tuple batchtb starting from the head (or interior) ofckli,j

1: initialize a type-1 (or type-4)tb including the whole (or part of)ckli,j
2: k ← i + 1
3: while true do // check whethercklk,j can be included bytb
4: if (cklk,j is natural &&size(cklk,j) > ⌊M/F ⌋) ||

includingcklk,j in tb violates the size restrictions in therules ||
includingcklk,j in tb violates the Inequation 3.2 for thelth (i ≤ l < k) s12 chunk which
is compositethen

5: break
6: includecklk,j in tb
7: k ← k + 1

Algorithm 9 : ScheduleReadingOfTupleBatches
Input : TB
Output : the order on which tuple batches inTB will be read during the actual run
merging

1: initialize an empty tuple batch poolP
2: i← 1
3: while i ≤ length(TB) do
4: readTB[i] whenever enough memory space is available
5: tb← TB[i] // mark this tuple batch for later reference
6: if TB[i] is a type-1 tuple batchthen // otherwise it must be type-2
7: i← i + 1
8: else
9: add intoP the corresponding type-4 tuple batchTB[i + 1] along with the set of type-3

tuple batches betweenTB[i] andTB[i + 1]
10: i← i + 2
11: if after readingtb, the merging of chunklets for a naturals12 chunk has just be initialized,

i.e. all the type-1 and type-2 tuple batches containing tuples of thiss12 chunk have been
read but none of the corresponding type-3 and type-4 tuple batches (recorded inP) have
been readthen

12: if P is non-emptythen
13: driven by the merge progress, read on a specific order all the type-3 and type-4 tuple

batches inP
14: restoreP to be empty

sists of three components: (1) the costCs12
of generatings12 chunks, which is estimated

as the costCs1
of independently evaluatings1 (given by Equation 3.1) plus the costCis

of performing internal sortings on composite chunklets within initial s1 runs; (2) the cost

76

Cs12→s1
of derivings1 which is equal to the total cost of performing internal sortings for

all the composites12 chunks; (3) the costCs12→s2
of derivings2 by mergings12 chunks

which is given by2× B(T)× ⌈logFN⌉, whereN is the number ofs12 chunks.

Assuming auniform distribution for the values ofo11, there are only two cases to

consider.

Case 1:B(T)/D(T, o11) ≤ 0.5M .

In this case, alls12 chunks are composite, and the number ofs12 chunks is given by

N = ⌈D(T, o11)/k⌉ (3.3)

wherek =
⌊

M×D(T,o11)
B(T)

⌋

is the number ofo11-segmentsin each composite chunk.

Let cpu cost(S) denote the cost of internally sorting tuples of total sizeS. We have

Cis =
B(T)

2M
×N × cpu cost(2M/N) (3.4)

Cs12→s1
= N × cpu cost(k ×B(T)/D(T, o11)) (3.5)

Case 2:B(T)/D(T, o11) > 0.5M .

In this case, alls12 chunks are natural, and

N = D(T, o11) (3.6)

Cis = Cs12→s1
= 0 (3.7)

The performance of cooperative sorting depends partially on D(T, o11) and the rel-

ative sizes ofo11-segments. Besides the distinct value cardinality ofo11, the statistical

value distribution ofo11 has little impact on the performance.

We conduct a brief analytical comparison between resultingsharing and coopera-

tive sorting as follows. When applying result sharing technique to directly mergeo11-

77

segmentsin the output ofs1 to derive the output ofs2, the total cost consists ofCs1
as well

as the cost incurred by⌈logF D(T, o11)⌉merge passes (i.e.,2×B(T)×⌈logF D(T, o11)⌉). In

case 1, the⌈logF N⌉ component of theCs12→s2
(i.e.,2×B(T)×⌈logF N⌉) is at most equal

to and often less by at least1 than⌈logF D(T, o11)⌉. As a result, considering the relatively

minor CPU costsCis andCs12→s1
, the total cost of cooperative sorting is often cheaper

than that of result sharing. In case 2, the total cost of cooperative sorting is exactly the

same as that of applying result sharing.

3.4.5 Extensions

In this subsection, we describe two important practical extensions of cooperative

sorting.

Final Merge Optimization

If the external sorting operation is part of a pipelining query plan, a common opti-

mization is to stop the run merge phase just before the final merge step so that the final

merge step can be done as part of the generation of the sorted output. In this way, the

final merge optimization saves one read and one write scan onT .

When the final merge optimization is enabled, the intermediate sort operations12 of

cooperative sorting will end up withN (1 < N ≤ F) s12 runs. The output ofs1 is derived

by merging theseN s12 runs on-the-fly, with thebatched tuple readingstrategy being

used to sort the tuples in composite chunklets ono1 before the merging. As fors2, each

chunklet within thes12 runs is treated as an initial sorted run fors2. For the special case

where the number of initials1 runs generated fors12 is no more thanF , these initials1

runs can be transformed into initials2 runs by simply sorting the composite chunklets

based ono2. In case many of the chunklets within these initials1 runs are composite, it

could be overall cheaper to simply ignore the final merge optimization and directly form

78

a singles12 run.

Adapting to Other Merge Patterns

Our description of cooperative sorting in Section 3.4.2 hasassumed that the sorted

runs are merged by usingk-way merge pattern for ease of presentation. The cooperative

sorting approach can be easily adapted to other merge patterns such aspolyphase merge

and cascade merge[40]. In the general case, the collection of the sorted runs to be

merged could consist of a combination of initials1 runs ands12 runs. Thebatched tuple

readingstrategy can be easily modified so that the composite chunklets within thes12

runs, which have already been sorted ono2, need not be internally sorted again as part of

the merging.

3.5 Optimization of Multiple Sortings

In this section, we first consider the extension of cooperative sorting to handle more

than two sort orders. We then consider post-processing the query execution plans re-

sulted from a conventional query optimizer, so as to furtheroptimize the evaluation of

multiple sortings on a relation appearing within these plans. Specifically, we consider

the evaluation of a collection of sort operationsS = {s1, s2, · · · , sk} (k ≥ 2), where

eachsi = sort(T, oi) is a sort operation on relationT with sort orderoi. Finally, we de-

scribe how to enable the query optimizer to take into accountthe impact of sort sharing

and directly generate the optimal sort-sharing-aware query execution plans.

3.5.1 K-way Cooperative Sorting

In Section 3.4, we develop cooperative sorting to evaluate two sort operationss1 and

s2. In this section, we consider whether it is feasible and makes sense to generalize the

79

binary (2-way) cooperative sorting to ak-way version so that allk sort operations can be

simultaneously and efficiently evaluated.

Given two sort ordersoi andoj, let oi · oj denote the sort orderoi + (oj − attrs(oi)).

Thek-way cooperative sortingis applicable to thek sort operations inS if there exists

some permutation ofS, (sp1, sp2, · · · , spk) (1 ≤ pi ≤ k), such that for each pair of sort

orderso′pi = ((op1 · op2) · op3) · ... · opi (1 < i ≤ k) andopi, the latter is a subset-prefix of

the former.k-way cooperative sorting works as follows: it generatesk − 1 intermediate

sort operations{s′2, s
′
3, · · · , s

′
k} from a single collection of initial runs that are sorted on

o′pk. Eachs′i corresponds to the pair of sort orderso′pi andopi. sp1 is derived from any

s′j (1 < j ≤ k) following the way hows1 is derived froms12 in the 2-way cooperative

sorting, and eachspi (1 < i ≤ k) is derived froms′i following the way hows2 is derived

from s12 in the 2-way cooperative sorting.

Example 1 Consider three sort operationss1 = sort(T, (a)), s2 = sort(T, (b)) and

s3 = sort(T, (c)), wherea, b, andc are attributes ofT . Any permutation ofs1, s2 ands3

is qualified for 3-way cooperative sorting. For one such permutation(s1, s2, s3), initial

runs sorted on(a, b, c) are generated for two intermediate sort operationss′2 (w.r.t sort

order pair{(a, b), (b)}) ands′3 (w.r.t sort order pair{(a, b, c), (c)}). s1 ands2 are then

derived froms′2, while s3 is derived froms′3. �

However, the following analytical result based on our cost model in Section 3.4.4

shows that it is not necessary to considerk-way cooperative sorting fork > 2.

Theorem 3.1. For each query planP that involvesk-way cooperative sorting,k > 2,

there exists another equivalent query planP ′ that uses only 2-way cooperative sorting

such that the cost ofP ′ is no higher than the cost ofP .

The proof of this theorem is given in Appendix A.1.

80

3.5.2 Multiple Sorting Optimization

Given a collectionS of k sort operations, there are many ways in which these oper-

ations can be ordered to exploit sort sharing. In this section, we model this optimization

problem as a graph problem. Based on Theorem 3.1, we consideronly the binary co-

operative sorting in subsequent discussions. GivenS, we construct a directed graph

G(V, E), whereV = Va ∪ Vb, Va represents the set ofsort nodesandVb represents the

set ofcooperative sort operator nodes.

Each sort nodeu ∈ Va is associated with a sort order, denoted byorder(u). For each

sort operations = sort(T, o) ∈ S, we create a sort nodeu ∈ Va with order(u) o. Each

directed edge (u, v) from sort nodeu to sort nodev is associated withcost(u, v) equal to

the cost of sortingT that satisfiesorder(u) to satisfyorder(v). There are two types of

directed edges between sort nodes, corresponding to case 1 and case 2 in Section 3.3.

For each pair of sort nodesu andv such thatorder(u) andorder(v) satisfy case 3 or

case 4, we create a new cooperative sort operator nodew ∈ Vb. This node represents a

potential cooperative sorting operation from whichu andv can be derived. Fromw, we

add two directed edges: (w, u) and (w, v). Both cost(w, u) andcost(w, v) are labeled

based on the cost model in Section 3.4.cost(w, v) may additionally include the cost of

sorting tuple segments fororder(v).

Finally, an artificial noderoot ∈ Va is added to represent the relationT without a par-

ticular order. We add an edge fromroot to each existing nodev in V , with cost(root, v)

equal to the cost of a conventional sort operation.

Once the graph has been constructed, the optimal solution isobtained by computing

the minimum directed Steiner tree spanningG. The sort nodes inVa are the exact set of

vertices’s that the Steiner tree aims to interconnect.

Example 2 Consider three sortingssort(T, (a, b)), sort(T, (a, b, c)) andsort(T, (d)),

wherea, b, c andd are attributes ofT . The graph for these three sortings is depicted in

81

abc, d

from root case 2 case 4

d, abcab, d

d, ab

dabc ab

root

case 1

(a) The Sample GraphG

root

abc d

ab

abc, d

(b) Steiner Tree ofG

Figure 3.5: An Example of Multiple Sorting Optimization

Fig. 3.5, where the sort (resp. cooperative sort) nodes are represented by rectangles (resp.

ellipses). The computed Steiner tree for this graph is shownin Fig. 3.5. Based on the

Steiner tree, a feasible evaluation plan is as follows: firstevaluatesort(T, (a, b, c)) and

sort(T, (d)) with cooperative sorting, and then derivesort(T, (a, b)) fromsort(T, (a, b, c)).

�

Although finding the minimum directed Steiner tree is an NP-hard problem [39], ap-

plying a brute-force algorithm is actually acceptable if|Vb| is small. Basically, we enu-

merate every subset ofVb to be used in the spanning tree and find one with the minimum

cost. The complexity of finding the directed minimum spanning tree isO(N2) whereN

is the number of nodes in the graph [29]. Hence, the total complexity of the algorithm is

O(2|Vb||V |2). In our context, since|Va| is small and|Vb| ≤ |Va|
2 is also small, a brute-

force solution is reasonable; otherwise, heuristic/approximation algorithms [15, 37] can

be applied here.

Execution order of sortings. Each sorting corresponds to a node in the Steiner tree.

When an unfinished sorting is triggered by the query execution, in the path from root

to this node, all unfinished sortings will be conducted one after another to complete the

82

target sorting. If this target sorting is an internal node ofthe tree, it is marked after the

sorted result is utilized; otherwise, it is deleted from thetree along with the deletion of

temporary sorting files. As old leaf nodes are deleted, some internal nodes become new

leaves and those marked ones will be repeatedly deleted until all leaves are unmarked

yet.

3.5.3 Sort-sharing-aware Query Optimization

The optimization techniques in Section 3.5.2 can be encapsulated into a post-optimizer,

which receives an execution plan from the original query optimizer, exploits sharing and

cooperation opportunities between the sortings in a cost-based manner and, whenever

possible, generates a cheaper plan enhanced with the sort sharing techniques. While this

two-phase optimization procedure will be very effective and efficient, it cannot guaran-

tee that the refined plan still remains optimal with additional sort sharing consideration.

For example, the original optimizer may choose hash join over sort-merge join for a pair

of relations, even if the latter may turn out to be cheaper after applying the sort sharing

post-optimization on the sortings it involves.

In the rest of this section, we discuss how to equip the standard query optimizer with

the ability of sort sharing optimization. As such, the wholesearch space will be enlarged

by the sort sharing extension and an optimal sort-sharing enhanced execution plan will

be generated via the single-phase query optimization.

We first discuss how to extend the system-R [56] style query optimizer, which is also

adopted by PostgreSQL. We have modified the PostgreSQL optimizer for our experi-

ments. After that, we discuss how to extend the Volcano [34] style query optimizer.

83

System-R Style Query Optimizer

The core of the System-R method is its join enumeration algorithm, whose input

is a connected join graphG = (V, E) whereV represents the set of relations to be

joined, and each edge inE represents a join predicate between two relations. During join

enumeration, a set ofinteresting propertiesare defined for subplan pruning. The frequent

interesting properties include the total execution cost and interesting orders [56].

Our approach to acquire an optimal sort-sharing-aware planfor V works as follows.

We add a new interesting propertyipss. For each subsetV ′ of V , its candidate subplan

setP ′ are generated with the updated set of interesting properties. Generally speaking,

ipss is used to ensure that a previously dominated subplansp will now remain inP ′ if

it could finally be part of the optimal global sort-sharing-aware plan. Once the plan set

P for V are available, we apply the post-optimization described inSection 3.5.2 to each

planp in P to get a sort-sharing enhanced planp+. Finally, the cheapestp+ is chosen as

the final optimal plan forV .

The modeling ofipss can be various and here we describe one possible modeling. For

single table access planp, let ipss(p) = 0. A sort operations = sort(T, o) is called as

interesting sortingif T is a multi-instance relation inV . For a join planp12 = sp1 ⊲⊳ sp2,

let ipss(p12) = cost(⊲⊳) + ipss(sp1) + ipss(sp2) − costs(⊲⊳), wherecost(⊲⊳) is the cost

of the join algorithm evaluation andcosts(⊲⊳) is the total cost of the interesting sortings

introduced by the join algorithm (e.g., sort-merge join). In other words,ipss(p12) is the

reduced plan cost ofp12 after subtracting the costs of all interesting sortings within the

plan tree ofp12. For two plansp12 andp′12, if cost(p12) < ipss(p
′
12), thenp12 is superior

to p′12 in terms ofipss. The intuition behind this modeling is that, even if all interesting

sortings withinp′12’s plan tree can finally be waived via sort-sharing post-optimization

owe to the case 1 and thus incur no cost,p12 is still cheaper even without any sort sharing

optimization. Such anipss modeling is conservative but can guarantee the optimality of

84

the resultant plan.

The additional optimization overhead incurred byipss is highly dependent on the

number, the distribution and the physical properties of therelational instances existing

in the join graphG. On the one hand, when there are few instances inG, we expect the

optimization overhead will be negligible, as not many extrasubplans will be reserved

during plan pruning. On the other hand, more instances implya greater potential to gen-

erate a cheaper sort-sharing-aware execution plan, and thecost saving in terms of query

execution can easily offset the relatively small cost increase of the query optimization.

Volcano Style Query Optimizer

The Volcano method is based on an AND-OR DAG representation [53], [34] to com-

pactly represent alternative query plans. The optimizer traverses the DAG expanded

by applying all possible algebraic transformation rules onevery node to search for the

cheapest plan. In the AND-OR DAG, we useAN(op) to denote an AND-node according

to an operationop; useON(e, P) to denote an OR-node according to a logical expression

e and an optional interesting physical property setP . Normally, theenforceroperations

(e.g., hashing and sorting) are implicitly represented by their caller AND-nodes.

Given a query, we generate with the traditional method the fully expanded AND-OR

DAG, on which we subsequently apply modifications.

First of all, we treat sorting as if it is a logical algebraic operation. As a result, in the

DAG, for each enforcer sort operations = sort(T, o), we add a new AND-nodeAN(s)

and a new OR-nodeON(T, {o}). AN(s) corresponds to the physical sort operations,

andON(T, {o}) corresponds to the sortedT with ordero. Suppose the caller AND-

node ofs is AN(c), thenON(T, {}) is originally one child ofAN(c). Now, this chain

AN(c)→ ON(T, {}) in the DAG is replaced with a new chainAN(c)→ ON(T, {o})

→ AN(s)→ ON(T, {}).

85

We then model the sort sharing between two sortingss1 = sort(T, o1) ands2 =

sort(T, o2) in above partially modified DAG. For case 1, we add a new AND-node

AN(ds) to form a new chainON(T, {o2})→ AN(ds)→ ON(T, {o1}), whereds repre-

sents the dummy operation of derivings2 from s1. For case 2, we add a new AND-node

AN(ps) to form a new chainON(T, {o2})→ AN(ps)→ ON(T, {o1}), whereps rep-

resents the partial sort operation of derivings2 from s1.

For case 3, we add three new AND-nodes,AN(s12), AN(s12 ։ s1) andAN(s12 ։

s2), as well as a new OR-nodeON(T, {o1⊎ o2}), to form two new chainsON(T, {o1})

→ AN(s12 ։ s1) → ON(T, {o1 ⊎ o2})→ AN(s12)→ ON(T, {}) andON(T, {o2})

→ AN(s12 ։ s2) → ON(T, {o1 ⊎ o2}) → AN(s12) → ON(T, {}). Heres12 is the

cooperative sorting based on (o1, o2); s12 ։ s1 is the operation of derivings1 from s12;

s12 ։ s2 is the operation of derivings2 from s12; o1⊎o2 denotes the hybrid output format

of a cooperative sortings12 for s1 ands2. The processings for case 4 are straightforward

extensions of case 3 and thus omitted.

Till now, we get a completely modified AND-OR DAG. In this DAG,it is possible

that a sorting or cooperative sorting OR-node may have more than one parent AND-

node. Such OR-nodes can be viewed as unified common subexpressions, and their sort

results are materialized and reusable. Therefore, the multiple query optimization (MQO)

techniques (e.g., [54]) can be utilized to find the optimal sort-sharing-aware execution

plan.

3.6 Discussions

In this section, we discuss the incorporation of ascending and descending orders into

the sort sharing techniques (Section 3.6.1). We present a dynamic way (Section 3.6.2)

to choose at runtime the smartest solution for sortings in cases 3 and 4, instead of the

86

static estimation depending on historical (and thus possibly inaccurate) statistics. We

also study how to apply cooperative sorting to simultaneously build multiple indices on

a table (Section 3.6.3). Finally, we briefly discuss the impact of functional dependency

and attribute correlation on sort sharing optimization (Section 3.6.4).

3.6.1 Ascending/Descending Ordering

Our proposed techniques can be extended to handle the general case where a sort

order can consist of attributes to be sorted in a combinationof ascending and descending

orders. For a sort attributea, let a′ anda′′ denote the ascending and descending ordering

of a, respectively. We can treata′ anda′′ as two different attributes in sort orders. For

two sort orderso1 ando2, we refer to them as areverse pairif (1) o1 = o2 when ascend-

ing/descending orderings are ignored; and (2) for each attributea′ (resp. a′′) in o1, the

corresponding attribute ino2 is a′′ (resp.a′). Clearly, for a reverse pair, the result of one

order can be easily converted into the result of the other by abackward scan of the sorted

output.

We now revisit the four cases foro1 ando2 with the additional consideration of as-

cending/descending order. Our discussion is based on the case into which the relation-

ship betweeno1 ando2 falls if all the sort attributes were to be sorted in ascending order.

For cases 1 and 2, there must exist a longest pair of prefixes,o11 and o21, from

o1 ando2, respectively, such that(o11, o21) forms a reverse pair. By using a backward

scan, we can treato11 ando21 as a common prefix; thus, the result sharing technique is

still applicable. For example,o1 = (a′, b′′) ando2 = (a′′, b′) still satisfy case 1, while

o1 = (a′, b′) ando2 = (a′′, b′) now satisfy case 2.

For case 3, cooperative sorting is still applicable. For a composites12 chunk, the

ascending/descending orders can be handled by internal sorting. For a natural chunk,

we generate it as usual with a sorted ordero12. To use this natural chunk as an initial

87

run in s2, its sort order should beo21 (each tuple in the chunk has the same value for

attrs(o22)). With a backward scan,o12 ando21 satisfy either case 1 or case 2. Therefore,

we can easily convert the order of the natural chunk on-the-fly from o12 to o21 when it is

merged fors2.

Since case 4 is handled by reducing it to case 3, the discussion for it is similar to case

3.

3.6.2 Dynamic Optimization for Cases 3 and 4

Recall that for cases 3 and 4, all the three sorting techniques (conventional sorting,

result sharing, and cooperative sorting) are applicable. The choice of which technique

to apply can actually be determined dynamically at run-time. Note that all the three

techniques share a common step of generating initials1 sorted runs. After the initial

s1 runs have been computed, we have precise information on the number of distinct

o11 values, the number and sizes ofs12 chunks, and the sizes and distributions of the

s12 chunklets among thes1 initial runs. With this information, we can more accurately

determine the cost estimates of the three competing techniques and choose the most

efficient technique to evaluates1 ands2 at run-time.

3.6.3 Cooperative Index Building

In data-intensive applications, such as decision support and data warehousing, an

important component of physical database design is selecting the right set of indexes for

a given workload. The chosen indices are then created in a batched manner. Sometimes

it would be beneficial to create multiple indices on the same table. For example, consider

a fact table in a star schema, which contains foreign keys pointing to the other dimension

tables. Each dimension table contains a key which corresponds to a foreign key of the

fact table and is used for joining with the fact table. As pointed out in [63], the existence

88

of indices on the foreign keys of the fact table enables theindex push-downoptimization,

which effectively improves the execution of join queries onthe star schema.

Sorting is widely utilized in DBMSs to speed up index creation. The procedure of

building an indexIdx(T, k) for a tableT with key k is as follows. First, sequentially

scanT ’s tuples and extract a listL of index tupleswhere each index tuple consists of

a key value and the tuple identifier. Second, externally or internally sortL on the sort

orderk. Finally, create the index via bulk loading the index tuplesof the sortedL and

each tuple becomes an entry in the index leaf page.

It is straightforward to exploit cooperative sorting to reduce the total index building

cost. For two indicesIdx(T, k1) andIdx(T, k2), wherek1 andk2 satisfy case 3 or case

4, we make use of cooperative sorting to generate sortedL1 andL2, which are then bulk

loaded separately. We call such a procedurecooperative index building.

We uses1 (resp. s2) to represent the independent sorting on orderk1 (resp. k2)

and uses12 to represent the cooperative sorting. After completings12, the generateds12

chunks consist of index tuples containing redundant attributes fork1 and/ork2. There-

fore, we need to conduct a step of attribute projection when scanning and merging these

s12 chunks. Depending on which casek1 andk2 satisfy, the details of attribute projection

are slightly different.

For case 3,attrs(k2) ⊂ attrs(k1). The index tuples in initials1 runs will contain

attributesattrs(k1). Therefore, when merging resulteds12 chunks to derive the output

of s2 (i.e., the sortedL2), we remove the redundant attributesattrs(k1 − attrs(k2)).

For case 4, the initials1 runs generated bys12 will contain attributesattrs(k1) ∪

attrs(k2). As a result, it requires an attribute projection to remove redundant attributes

attrs(k2 − attrs(k1)) from index tuples when deriving the output ofs1 (i.e., the sorted

L1); it also requires another attribute projection to remove redundant attributesattrs(k1−

attrs(k2)) when scanning and merging the generateds12 chunks.

89

3.6.4 Functional Dependency and Attribute Correlation

The functional dependencies existing among relational attributes have been exploited

for the purpose ofsort order reduction[58], which rewrites the order specification of a

sort operation in a simple canonical form by eliminating redundant sort attributes. As

such, some sort operations within the query execution plan become unnecessary and thus

can be removed. Sort order reduction is complementary to sort sharing optimization, and

can be applied separately before sort sharing optimization.

However, during sort sharing optimization, it would be beneficial to take functional

dependencies into account when classifying the relationship between two specific sort

orderso1 ando2. For example, supposeo1 = (a, b, d) ando2 = (b, c). Normally, o1

ando2 would be judged to satisfy case 4 whereo′1 = (a, b, d) ando′2 = (b). However,

if there is a functional dependency{a} → {c}, which means that for any two tuples

with the same attributea values, their attributec values are also the same, theno1 can

be equivalently treated as(a, c, b, d). As such,o1 ando2 actually satisfy case 3, and thus

can avoid the additional step of sortingb-segmentson (c) introduced by case 4 foro2.

The correlation among attributes could also contribute to sort sharing optimization.

For example, consider two sort orderso1 = (a) ando2 = (b). Attributesa andb are

highly correlated so that for any two tuplest1 andt2, if t1 has a smaller attributea value

than that oft2, then it is very probable (but not guaranteed) thatt1 also has a smaller

attributeb value than that oft2. As a result, after a relationT has been sorted ono1, T

can be viewed asnearlysorted ono2. Therefore, we can derive the sort output ono2 by

directly sorting the sort output ono1 and hopefully generating longer and fewer initial

sorted runs, which in turn lead to much cheaper run merge cost.

90

3.7 Performance Study

We validated our ideas using a prototype built in PostgreSQL8.3.5 [2]. All exper-

iments were performed on a Dell workstation with a Quad-CoreIntel Xeon 2.66GHz

processor, 8GB of memory, one 500G SATA disk and another 750GB SATA disk, run-

ning Linux 2.6.22. Both the operating system and PostgreSQLsystem are built on the

500GB disk, while the databases are stored on the 750GB disk.

This performance study focused on the effect of cooperativesorting. In our imple-

mentation, the cooperative sorting is integrated into PostgreSQL as a standard operator.

It adopts k-way merge pattern and is capable of final merge optimization. For the purpose

of fair comparison, we also converted the run merge pattern of the original sort operation

in PostgreSQL from polyphase to k-way. Moreover, we modifiedthe PostgreSQL’s opti-

mizer to implement the optimization techniques in Section 3.5.3. By switching between

the original and the new optimizer, we can easily compare thecost of processing a query

under the cooperative sorting operation against that of theconventional approach based

on two independent sort operations.

3.7.1 Micro-benchmark Test with TPC-DS Dataset

In this section, we use a micro-benchmark test to compare theperformance of coop-

erative sorting against two independent sort operations. We define a query templateQ:

(select attr1,attr2 from T order by attr1,attr2)

union all

(select attr1,attr2 from T order by attr2)

This template also serves to simulate two queries in a batch.The execution plan ofQ is

a result union (without duplicate removal) of two sortings,s1 ands2, on the same rela-

tional tableT . The sort orders ofs1 ands2 are(attr1, attr2) and(attr2) respectively

91

relation attr1 attr2 number of tuples (in million) tuple size (in byte)
web sales ws item sk ws sold time sk 0.72× SF 226

catalogsales cs item sk cs sold time sk 1.44× SF 226
storesales ss item sk ss sold time sk 2.88× SF 164

Table 3.2: Tested TPC-DS Dataset

and thus satisfy case 3.

We generate six concrete queries with the above query template by using three dif-

ferent relations from the TPC-DS [3] benchmark forT and two different scale factors

(denoted bySF) to vary the size ofT . The statistical information about the three rela-

tions, along with their sort attributes, are shown in Table 3.2. The scale factorSF values

used are 40 and 100. Another experimental parameter that we varied is the available

sorting memory dedicated to each sort operation (denoted byM) with values ranging

from 5 MB to 200 MB. The sorting memory values are chosen such that at least half of

them will result in a single run merge step.

We compare the performance of two basic evaluation techniques for sorting: the con-

ventional technique of usingtwo independent sortings(denoted by IS) and our proposed

cooperative sorting(denoted by CS). We also enable/disable the final merge optimiza-

tion to study the combined effectiveness of this optimization with the basic techniques.

We use CS-OPT and IS-OPT to denote the variants that have the optimization enabled,

and CS and IS to denote the variants that have the optimization disabled.

Each total execution time reported refers to the total queryevaluation time including

the I/O cost of reading the sorted outputs ofs1 ands2. Each query timing is measured

with the query running alone in the database system; and the operating system is restarted

between queries to clear the system cache.

92

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

5 15 30 45 60 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(a) websales,SF 40

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

5 15 30 45 60 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(b) catalogsales,SF 40

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

15 30 45 60 75 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(c) storesales,SF 40

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

10 25 50 75 100 150

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(d) websales,SF 100

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

50 75 100 125 150 200

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(e) catalogsales,SF 100

 0
 400
 800

 1200
 1600
 2000
 2400
 2800
 3200
 3600
 4000
 4400
 4800
 5200

50 75 100 125 150 200

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(f) storesales,SF 100

Figure 3.6: Performance Comparison on TPC-DS Dataset

General Results

Fig. 3.6 compares the performance of the four evaluation strategies as a function of

the sorting memory size; the comparison for each query is shown on a separate graph.

93

notation description

CS

RFcs(s12)
initial run formation cost fors12

(i.e., creating initials1 sorted runs)

RMcs(s12)
run merge cost fors12

(i.e., creatings12 chunks)

RMcs(s2)
run merge cost fors2

(i.e., mergings12 chunks to derives2)

SCcs(s12)
cost of internal sorting to create

initial s12 runs from initials1 runs

SCcs(s1)
cost of internal sorting during

the derivation ofs1 output froms12

IS

RFis(s1)
initial run formation cost fors1

(i.e., creating initials1 sorted runs)

RMis(s1)
run merge cost fors1

(i.e., mergings1 sorted runs)

RFis(s2)
initial run formation cost fors2

(i.e., creating initials2 sorted runs)

RMis(s2)
run merge cost fors2

(i.e., mergings2 sorted runs)

Table 3.3: Component Costs of CS and IS

The detailed breakdown of the various cost components for CSand IS are shown in Ta-

ble A.1 in Appendix A.2. The meanings of these cost components are given in Table 3.3.

We shall not present detailed query-by-query analysis. Instead, we will summarize

the more interesting findings here.

First, we observe that CS(-OPT) offers significant performance improvement over

IS(-OPT) in many queries. The savings range from a few seconds to 1,033 seconds

which is achieved by CS-OPT over IS-OPT for the query onstoresaleswith M = 50

andSF = 100 in Fig. 3.6(f). In terms of relative improvement, the average percentage

improvement is around 25% and the highest improvement is 35%achieved by CS over

IS for the query oncatalogsaleswith M = 30 andSF = 40.

Second, although operating on the same set of initial runs, the run merge phase of

s12 incurs a higher CPU cost than that ofs1 due to the additional tuple comparison steps.

Note thatRMcs(s12) does not include the internal sorting costSCcs(s12). However, in

Table A.1, for all the six queries,RMcs(s12) is close to or even less thanRMis(s1). This

94

observation validates the I/O effectiveness and efficiencyof our batched tuple reading

strategy.

Third, for all the six queries,RFcs(s12), RFis(s1) andRFis(s2) are more or less the

same with any amount of sorting memory. This is due to the factthat during the initial

run formation phase, the reading and writing of tuples to thedisk files are interleaved

and the cost of the incurred random I/O is independent of the size of the sorting memory.

On the other hand,RMcs(s12), RMcs(s2), RMis(s1), andRMis(s2) all decrease when

the sorting memory increases, as the larger sorting memory makes the run merging more

I/O-efficient.

Finally, for all the six relations,SCcs(s12) andSCcs(s2) increase along with the size

of sorting memory. The reason is two-fold: on the one hand, the larger sorting memory

means that more tuples will be combined into composite chunks/chunklets and more tu-

ples need to be internally sorted; on the other hand, it is cheaper to independently sort

many smaller composite chunks/chunklets than independently sort fewer larger compos-

ite chunks/chunklets, as shown by the analysis of case 2 in Section 3.3.

Effect of Result Sharing

As discussed at the beginning of Section 3.4.1, the result sharing technique (denoted

by RS) can actually be applied to evaluate case 3. In this section, we compare the effec-

tiveness of RS against CS for the six queries. Fig. 3.7 compares the performance of the

query on websales withSF 40; the comparison for other queries have similar trends

and are omitted.

The results clearly demonstrate that CS significantly outperforms RS in all sorting

memory settings. The performance of RS is just a little better than IS (see Fig. 3.6).

95

CS
RS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5MB 15MB 30MB 45MB 60MB 100MB

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

Figure 3.7: Comparison of CS with RS on websales,SF 40

Effect of Polyphase Merge Pattern

The original sort operation in PostgreSQL adopts the polyphase run merge pattern,

while we implemented a k-way version sort operation for performance comparison with

cooperative sorting. It is natural to ask whether changing the merge pattern will affect

the conclusions obtained in Section 3.7.1. In this experiment, we evaluateQ against the

6 tables with the original sort operation (polyphase IS) andcompare the execution times

with our sort operation (k-way IS).

Only the results of websales withSF 40 are shown in Fig. 3.8. We observe that the

performances of polyphase IS and k-way IS are more or less thesame, which demon-

strates that our results hold independent of the merge pattern.

3.7.2 Micro-benchmark Test with Synthetic Dataset

We also utilize synthetic data to investigate the sensitivity of CS. We generate syn-

thetic tables following the schema of theweb salesrelation in TPC-DS benchmark using

SF = 40; each table has 28.8 million tuples. We run template queryQ defined in the

96

k−way IS
polyphase IS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

5MB 15MB 30MB 45MB 60MB 100MB

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

Figure 3.8: Comparison of K-way IS with Polyphase IS on websales,SF 40

previous section on the synthetic tables to compare the performance of CS and IS.

Varying Total Number of s12 Chunks

Under CS, there will ben initial runs for s2 if n chunks are formed bys12. The

purpose of this experiment is to learn how the total number ofs12 chunks will affect the

run merge cost fors2. We vary the numbern of distinctws item sk (theo11) values

inside aweb salestable. Six values ofn are used: 15, 25, 50, 100, 150 and 200. A

uniform distribution is used for the values ofws item sk. We fix the sorting memory

to 20MB, so that even whenn is 200 the tuples with the samews item sk value cannot

fit in memory and thus will form a natural chunk. As a result, there will be a total ofn

natural chunks.

The experimental result is shown in Fig. 3.9. The y-axis denotes the run merge time

for s2. With 20MB sorting memory, the merge orderF is 73. Moreover, the number of

initial runs to merge fors2 under IS is 56. Therefore, with all the differentn values, the

number of merge passes for IS ons2 is always 1 and the merge costs are more or less

the same. As for CS, the merge cost increases significantly whenn becomes larger than

97

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

15 25 50 100 150 200

M
er

ge
 T

im
e

(in
 s

ec
)

Number of Chunks

CS
IS

Figure 3.9: Varying Total Number ofs12 Chunks

73. This is because the number of merge passes changes from 1 to 2. This confirms the

expectation that when varyingn, the merge costs of CS remain more or less unchanged

as long as the numbers of merge passes required stay the same.We also notice that with

the same number of merge passes, the merge cost of CS is alwayslower than that of IS,

which is consistent with the observation in the micro-benchmark test.

Varying Number of Composites12 Chunks

In this experiment, we examine the contributions of internal sorting cost to the total

CS cost. These internal sortings are applied to composite chunklets and chunks. We fix

the total numberm of chunks generated and vary the numbern of composite chunks.

We set the sorting memory to 50 MB andm to 55. Five values ofn are used: 0, 13, 27,

42 and 55.

Fig. 3.10 shows the internal sorting cost as well as the overall CS cost. As expected,

the internal sorting cost increases along with the number ofcomposite chunks. When all

the 55 chunks become composite, this cost takes 20% of the total CS cost.

98

 0

 50

 100

 150

 200

 250

 300

0 13 27 42 55

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Number of Composite Chunks

internal sorting
CS

Figure 3.10: Varying Number of Composites12 Chunks

3.7.3 Performance of Cooperative Index Building

We run another test to compare the performance of cooperative sorting against two

independent sort operations for index creation. To achievethis, we create a primary key

index idx1 = Idx(T, key1) as well as a foreign key indexidx2 = Idx(T, key2) on a

tableT . The index keyskey1 andkey2 satisfy case 4.

relation key1 key2 number of tuples (in million) tuple size (in byte)
web returns (wr item sk, wr order number) wr returned time sk 0.072× SF 150

catalogreturns (cr item sk, cr order number) cr returned time sk 0.144× SF 162
storereturns (sr item sk, sr ticket number) sr returned time sk 0.288× SF 134
web sales (ws item sk, ws order number) ws sold time sk 0.72× SF 226

catalogsales (cs item sk, cs order number) cs sold time sk 1.44× SF 226
storesales (ss item sk, ss ticket number) ss sold time sk 2.88× SF 164

Table 3.4: TPC-DS Dataset for Comparing Performance of Index Construction

We generated twelve concrete queries by using six differentrelations from the TPC-

DS benchmark forT and two different scale factors (denoted bySF) to vary the size

of T . The statistical information about the six relations, along with the index keys,

are shown in Table 3.4. The scale factorSF values used are 40 and 100. Another

experimental parameter that we varied is the available sorting memory dedicated to each

99

notation description

CIB

RFcs(s12)
initial run formation cost fors12

(i.e., creating initials1 sorted runs)

RMcs(s12)
run merge cost fors12

(i.e., creatings12 chunks)

RMcs(s2)
run merge cost fors2

(i.e., mergings12 chunks to derives2)

SCcs(s12)
cost of internal sorting to create

initial s12 runs from initials1 runs

SCcs(s1)
cost of internal sorting during

the derivation ofs1 output froms12

LDcs(s1)
cost of deriving and bulk-loading

output ofs1 to build idx1

LDcs(s2)
cost of deriving and bulk-loading

output ofs2 to build idx2

NIB

RFis(s1)
initial run formation cost fors1

(i.e., creating initials1 sorted runs)

RMis(s1)
run merge cost fors1

(i.e., mergings1 sorted runs)

RFis(s2)
initial run formation cost fors2

(i.e., creating initials2 sorted runs)

RMis(s2)
run merge cost fors2

(i.e., mergings2 sorted runs)

LDis(s1)
cost of deriving and bulk-loading

output ofs1 to build idx1

LDis(s2)
cost of deriving and bulk-loading

output ofs2 to build idx2

Table 3.5: Component Costs of CIB and NIB

sort operation (denoted byM) with values ranging from 1 MB to 200 MB.

We compare the performance ofnormal index buildingusing two independent sort-

ings (denoted by NIB) and our proposedcooperative index buildingusing cooperative

sorting (denoted by CIB). We always enable the final merge optimization as it is desir-

able during index creation. However, for the cooperative sorting s12, when the number

of initial s1 runs generated is no more than the merge orderF , we disable the final merge

optimization for a cheaper cost.

Each total execution time reported refers to the total queryevaluation time including

the cost of bulk loading the sorted outputs ofs1 ands2.

100

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(a) webreturns,SF 40

 0

 10

 20

 30

 40

 50

1 3 5 7 9 11

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(b) catalogreturns,SF 40

 0

 20

 40

 60

 80

 100

 120

1 4 7 10 13 16

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(c) storereturns,SF 40

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360
 400

5 15 30 45 60 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(d) websales,SF 40

 0

 100

 200

 300

 400

 500

 600

 700

 800

5 15 30 45 60 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(e) catalogsales,SF 40

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300

15 30 45 60 75 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(f) storesales,SF 40

Figure 3.11: Performance Comparison on TPC-DS Dataset, with SF 40

Figs. 3.11 and 3.12 compare the performance of CIB and NIB as afunction of the

sorting memory size; the comparison for each query is shown on a separate graph. The

detailed breakdown of the various cost components for CIB and NIB are shown in Ta-

bles A.2 and A.3 in the Appendix A.2. The meanings of these cost components are given

101

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

1 3 5 7 9 11

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(a) webreturns,SF 100

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1 5 9 13 17 21

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(b) catalogreturns,SF 100

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 6 11 16 21 26

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(c) storereturns,SF 100

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

10 25 50 75 100 150

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(d) websales,SF 100

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

50 75 100 125 150 200

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(e) catalogsales,SF 100

 0
 300
 600
 900

 1200
 1500
 1800
 2100
 2400
 2700
 3000
 3300
 3600
 3900

50 75 100 125 150 200

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(f) storesales,SF 100

Figure 3.12: Performance Comparison on TPC-DS Dataset, with SF 100

in Table 3.5. If a specific merge step is skipped because of final merge optimization, the

corresponding entry value (RMcs(s2) or RMis(s1)) in Tables A.2 and A.3 is marked as

zero. Note that for every row in Tables A.2 and A.3,RMis(s2) is always zero and is thus

omitted. SCcs(s1) is not separately listed but merged intoLDcs(s1). For each row in

102

Tables A.2 and A.3, ifRMis(s1) is zero, it means that there is only one merge level for

the initials1 runs ands12 does not apply final merge optimization as stated above.

First, even though sorting is just a part of the index building procedure, CIB still

offers significant performance improvement over NIB for most queries. The savings

range from a few seconds to 683 seconds which is achieved for the query onstoresales

with M = 100 andSF = 100 in Fig. 3.12. In terms of relative improvement, the average

percentage improvement is around 24% and the highest improvement is 37% achieved

for the query oncatalog returnswith M = 9 andSF = 100 in Fig. 3.12. The main

reason for such performance gain is due to the fact that the sorting time is always much

higher than the subsequent bulk loading time.

Second, there are some trends similar to those in the previous micro-benchmark test

(Section 3.7.1). For all queries,RFcs(s12), RFis(s1) andRFis(s2) are always more or

less the same with any amount of sorting memory. For all tables,SCcs(s12) andSCcs(s1)

increase along with the size of sorting memory.

Third, for all queries that require more than one merge levelfor the initial s1 runs

(i.e., RMis(s1) 6= 0), RMcs(s12) (resp. LDcs(s1) − SCcs(s1)) is close to or even less

than the correspondingRMis(s1) (resp.LDis(s1)). This is due to the I/O effectiveness

and efficiency of ourbatched readingstrategy. Note thatRMcs(s12) does not include the

internal sorting costSCcs(s12).

Fourth, for most tables, in terms of the total cost of run merge plus bulk loading for

s2, CIB’s cost is higher than NIB’s cost when the sorting memorysize is small, i.e.,

RMcs(s2) + LDcs(s2) > RMis(s2) + LDis(s2). This is expected as CIB is operating on

a larger set ofs2 data and generates more initials2 runs to merge than NIB. However,

when the sorting memory increases, the difference between these two costs decreases,

and eventually the cost in CIB is even cheaper than the cost inNIB.

103

3.7.4 Query Processing with Sort Sharing

So far, we have evaluated cooperative sorting for the basic scenario of processing two

sort operations on different orders. In this section, we evaluate the effectiveness of sort

sharing techniques and the enhanced sort-sharing-aware query optimizer when executing

queries. We generate a synthetic database with three relationsEmployee(id, name,

country id, supervisorid), Sales(employeeid, item id, quantity, profit)andItem(id,

name). Employee records the information of salespersons and has 10 million 32-byte

tuples,Sales records the sale transactions and has 50 million 12-byte tuples andItem

records the products in transactions and has 10 million 24-byte tuples.

We evaluate two queries on this database:

Q1: Find the name of each salesperson and its supervisor.

select A.id, A.name, B.id, B.name

from Employee A, Employee B

where B.id = A.supervisorid

Q2: Find each salesperson who has sold more than 1000 units ofa product in a single transaction

or his supervisor has done so.

(select A.id, A.namefrom Employee A, Sales B

where A.id = B.employeeid and B.quantity> 1000)

union all

(select A.id, A.namefrom Employee A, Sales B

where A.supervisorid = B.employeeid

and B.quantity> 1000)

With 50MB sorting memory, the optimal plans generated by theoriginal PostgreSQL

optimizer for these two queries are shown in Fig. 3.13.

We also optimize Q1 and Q2 with our enhanced PostgreSQL optimizer. The resultant

optimal plans enable the cooperative sorting between two instances ofEmployee in

104

MergeJoin

Sort
(on id)

Sort
(on supervisor_id)

Scan Scan

Employee Employee

(a) Q1

MergeJoin

Sort
(on employee_id)

Sort
(on id)

Scan Scan

Employee Sales

MergeJoin

Sort
(on employee_id)

Sort
(on supervisor_id)

Scan Scan

Employee Sales

Append

(b) Q2

Figure 3.13: The Optimal Plans for Q1 and Q2 by the Original PostgreSQL Optimizer

enhanced plan
conventional plan

 0

 100

 200

 300

 400

 500

 600

 700

Q1 Q2

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Queries

Figure 3.14: Query Execution Times of Q1 and Q2

both Q1 and Q2. For Q2, the plan also skips one redundant sort on Sales via result

sharing for case 1 and thus saves about another 90 seconds’ time. The comparison of the

105

overall query execution times are shown in Fig. 3.14. The results clearly show that both

queries can be processed in lesser time with sort sharing techniques.

We then study the potential benefit of enriching the optimizer search space with sort

sharing. In PostgreSQL, each sorting and hashing operationhas a dedicated operator

memory. We vary this operator memory and compare various execution plans for Q1:

Hybrid Hash Join (HHJ), Sort Merge Join (SMJ) and Sort Merge join with Cooperative

Sort (SMJ-CS).

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

5 10 15

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Operator Memory (in MB)

SMJ-CS
SMJ
HHJ

Figure 3.15: Plans Considered During Query Optimization for Q1

Fig. 3.15 shows the candidate plans considered during optimizing Q1, along with

their actual execution times (we force the execution of a non-optimal plan). Besides the

SMJ and HHJ that are enumerated by the original PostgreSQL optimizer, our enhanced

PostgreSQL optimizer also measures SMJ-CS. When the operator memory is 15MB,

both the original optimizer and our enhanced optimizer generate the same optimal HHJ

plan. However, when the operator memory is 5MB or 10MB, the SMJ-CS is recognized

by our enhanced optimizer as the optimal plan, instead of theSMJ or HHJ recognized

by the original optimizer.

106

3.8 Related Work

Sorting is a frequent and expensive operation in database systems. It is employed not

only to produce sorted output, but also in many sort-based algorithms for aggregation,

duplicate removal, join, and set operations. As such, it hasbeen extensively studied

([40, 51, 55, 64, 65, 67]). The standard technique adopted inmost commercial systems

is based on the external merge-sort algorithm that consistsof two phases: an initial

run formation phase that creates sorted subsets, called runs, and a merge phase that

repeatedly merge runs into larger and larger runs, until a single run has been created.

Knuth’s classical text [40] provides extensive coverage ofthe fundamentals of sorting,

including both replacement selection for run formation andrun merge patterns.

Standard replacement selection produces runs twice the size of memory on average.

There have been several efforts to increase the run length further ([23, 25, 59]). Lar-

son [44] introduced a cache-aware replacement selection that works for various length

keys. There are also many techniques to speed up the run mergephase ([64, 65, 67]), fo-

cusing on how to improve I/O performance during the merge phase because this phase is

typically I/O bound. These techniques are however complementary to our batched tuple

reading strategy, which relies more on the pre-collected knowledge about input data dis-

tribution. Our current implementation only applies simpleforecasting technique to read

the type-3 tuple batches. But it is possible to incorporate other optimization techniques

like double buffering [40], read-ahead [65], etc. Much research has been done on adap-

tive sorting [24] exploiting near-sortedness. The survey [32] by Graefe discussed how

sorting is implemented in database systems with many tricksand optimizations. Specif-

ically, [32] identified a special instance of case 3, whereo1 = (a, b) ando2 = (b), and

pointed out that the sorting ono2 can be evaluated by directly merging the output of the

sorting ono1, which is exactly the same as we discuss at the beginning of Section 3.4.1.

However, neither analytical nor experimental study on the effectiveness of the proposed

107

approach were conducted. Moreover, [32] did not generalizethis special instance to the

general case 3.

Simmen et al. [58] described how to determine the ordering propagation from the

inputs to the outputs of joins, based on functional dependencies and selection conditions.

As such, some sort operations within the query execution plan become redundant and

thus can be removed. Their work was followed and extended by [49, 62, 48], which are

all independent and complementary to our work.

In [35], Sudarshan et al. observed that the order requirements of operators are often

partially satisfied by the inputs. They proposed to maximizethe benefit of such partial

sort order by modifying the standard replacement selectionalgorithm and improving

the selection of interesting orders. We instead consider the opportunity of partial sort

sharing between two distinct sort operations. To some extent, [35] and our work are

complementary to each other. A similar idea to partial sorting was considered previously

in [6] for the CUBE operator, which computes group-bys corresponding to all possible

combinations of a list of attributes. Consider two group-bys B = {a1, a2, . . . , aj} and

S = {a1, a2, . . . , al−1, al+1, . . . , aj}. With sort-based aggregation, the result ofB can be

viewed as a concatenation of one or morepartitionsand the result ofS is the union of

independently computing aggregation within each partition.

Finally, there have been a few previous work on optimizing multiple scans on the

same table, such asMAPLE [13] andcooperative scan[69].

3.9 Summary

In this chapter, we have examined the problem of sorting a relational table on multi-

ple sort orders. Such collections of sortings are common in many applications. We have

identified several cases in which the (partial) work done in sorting a table on a partic-

108

ular order can be re-used for a subsequent sort of the same table on a different order.

We proposed the cooperative sorting technique to efficiently handle sorting of a table on

two orders. We also proposed optimization techniques to exploit sort sharing in a tradi-

tional query evaluation plan. We have implemented our techniques in PostgreSQL, and

our extensive performance study indicated a significant performance gain over the naive

strategy of processing each sorting independently.

CHAPTER 4

Self-Join Processing for Relational

Instances

4.1 Introduction

In Chapter 2 and Chapter 3, we have studied the optimizationsfor relational instances

that are related to the table scan operation and the table sort operation respectively. In this

chapter, we examine the self-join operation, which is a joinoperation that relates data

within a relation by joining the relation with itself. In other words, a self-join involves

two instances of the same relation. More specifically, we consider self-joins with the

join predicates involving two distinct attributes (i.e.,R1.A op R2.B, whereR1 andR2

are instances of relationR). We observe that this type of self joins occur frequently

in many recently emerging database applications, such as location-based service (LBS),

RFID data management, sensor networks, network managementetc. Below are two

examples:

109

110

Example 1: Consider a database of moving objects with a user-defined view, TRA-

JECTORY, storing the line segments of the trajectories of many moving objects. The

schema of TRAJECTORY is (objID, location1, location2, time1, time2). Each record

describes the movement of an object from location1 at time1 to location2 at time2. An

example LBS query is: for each location L, return all the pairs of objects O1 and O2,

such that O1 arrived at L shortly, say within t time units, before O2 moved out of L. This

query involves a self equi-join condition:

SELECT *

FROM TRAJECTORY O1, TRAJECTORY O2

WHERE O1.location2 = O2.location1

AND O1.time2 > O2.time1− t

AND O1.time2 < O2.time1

Example 2: Consider a table storing the readings from a network of temperature

sensors with schema: (sensorId, temperature, timestamp).A view STATS is created on

top of the table with schema: (sensorId, hourId, avgTemp, maxTemp, minTemp). Each

row in STATS provides the average, maximum and minimum temperatures reported by

a sensor over a particular hour of the day. A user may be interested in finding out the

pairs of sensors, S1 and S2, such that the average temperature reported by S1 is equal

to or lower by at most 2 degrees than the minimum temperature reported by S2, within

a certain time proximity, say one hour. This query involves two self band-join [22, 46]

conditions1:

SELECT *

FROM STATS S1, STATS S2

WHERE S1.avgTemp <= S2.minTemp

1A general band-join condition has the formR.A − c1 ≤ S.B ≤ R.A + c2, wherec1 and c2 are
constants but can not both be zero.

111

AND S1.avgTemp >= S2.minTemp− 2

AND S1.hourId <= S2.hourId + 1

AND S1.hourId >= S2.hourId− 1

AND S1.sensorId <> S2.sensorId

Moreover, self-join is also common in RDF data management where self-join is used

to relate the subjects and objects of a triple table, and in the publication of relational

data as XML where XML queries (e.g. XQuery) over XML views aretranslated into

self-joins of base relational tables.

Despite the importance and prevalence of self-joins, therehowever have been sur-

prisingly few research efforts on optimizing them.

On the one hand, existing solutions either employ join indexes [45] or handle the

special case where the join attributes are on the same attribute (e.g.,R1.A = R2.A) [16,

27]. As one can see from the examples, many emerging queries involve self joins on two

distinct attributes. While index-based techniques could be applied to the problem, it is

possible that indexes do not exist, especially when the queries are ad-hoc and/or the join

attributes are derived and computed from user defined functions as shown in Example 2.

Even when indexes exist, they may not be useful. For example,if the join selectivity is

high (i.e. a lot of join results), then indexes, especially the non-clustered ones, are not

beneficial.

On the other hand, conventional join algorithms, such as Sort-Merge Join (SMJ) and

Hybrid Hash Join (HHJ), treat the two instances of the same relation as distinct relations.

As such, they miss the opportunities to enhance the processing performance, particularly

in keeping the I/O cost low.

To improve performance, we need a scheme that can take advantage of the fact that

the two inputs of a self-join operator are instances of the same underlying relation. To-

wards this end, we propose a novel and efficient self equi-join algorithm calledSCALE

112

(Sort for Clustered Access with Lazy Evaluation), which is also easily extendible to han-

dle self band-joins [22, 46].SCALE first sorts the relation, sayR, on one of the join

attributes, sayA, to produce a sorted sequence, denoted asSA(R) (whenR has already

been ordered by some join attribute, this sorting step can beavoided). Now, given a tuple

t with t.B = x, whereB is the other join attribute, all the matching tuples whoseR.A

value isx are clustered withinSA(R). As such, by scanningSA(R), we have two possi-

ble cases. First, for each tuplet with t.B = x, we have a clustered access of all matching

tuples ift co-exists with them in memory. In this case, we can generate and produce the

join results at no extra cost since this is within a single scan of SA(R). Second, for a

tuplet with t.B = x for which such clustered access is not possible (e.g., matching R.A

tuples may not co-exist witht in memory), it is buffered and possibly spilled to disk to

defer the join processing to a later time. Such lazy evaluation minimizes the need for

“random” accesses to the matching tuples.

To support clustered access and lazy evaluation, the memoryspace has to be ef-

fectively allocated between these two tasks. To optimize performance,SCALE adopts

a cost-based approach to manage the memory allocation for clustered access and lazy

evaluation.SCALE is also able to handle the situation where the two joining instances

of the same relation are associated with different tuple selection and projection predi-

cates. Moreover, we can improveSCALE with sideways information passing techniques

to further reduce the cost when many tuples have no join matchings.

Our analytical study shows thatSCALE degenerates gracefully to Sort-Merge Join

(SMJ) in the worst case. We have also implementedSCALE in PostgreSQL [2], and the

results of our extensive experimental study confirms our analytical results. Moreover,

it shows thatSCALE outperforms both Sort-Merge Join and Hybrid Hash Join by 20%-

40% in (almost) all cases.

The rest of the chapter is organized as follows. Section 4.2 surveys the related work.

113

Section 4.3 discusses the technical details of theSCALE algorithm. We then present a

thorough analytical study ofSCALE in Section 4.4. An extensive experimental study is

presented in Section 4.5. In Section 4.6, extensions toSCALE supporting self band-join

and side-ways information passing are proposed. We conclude the chapter in Section

4.7.

4.2 Related Work

The join operation is one of the most time-consuming and data-intensive operations.

Therefore, it is critical to implement joins in the most efficient way possible. The join

operation has been studied and discussed extensively in theliterature (see [31] for a

comprehensive survey). Common ad-hoc join techniques can be classified into three

broad categories: nested-loop join, sort-merge join [9] and hash-based join [10, 21, 26,

47]. Recently, Goetz proposedg-join [33], a generalized join algorithm, intending to

replace the above join techniques. The major advantage ofg-join over sort-merge join

and hash-based join lies in its robustness rather than its potential performance gain. This

implies thatg-join’s costs should be comparable with those of sort-merge join and hybird

hash join. Therefore, in our experiments we did not directlycompare withg-join.

Nevertheless, to the best of our knowledge, only a few works specifically focus on

self-join processing. In [45], Lei and Ross proposed theStripealgorithm for performing

a join with a join index [61], which maintains pairs of identifiers of tuples that would

match in case of a join between two relations. Stripe join wasdesigned for general join

processing but is particularly efficient for self-joins. However, the applicability of Stripe

join is highly dependent on the availability of the suitablejoin index, which must have

been materialized and maintained by the database systems before the join execution. In

contrast, our algorithm is more useful in application contexts identified in Section 4.1,

114

e.g. the join attribute is a derived one that is not indexed. The problem of self-join

size estimation has been tackled in both centralized [7] andlarge-scale distributed [52]

database systems.

In this chapter, we mainly discuss the situation that the self-join predicate involves

two distinct attributes. In the special case where the join predicate is an equi-join over

the same attribute (e.g.,R1.A = R2.A), the join may be evaluated by partitioning the

base relation according to the attributes involved in the equality join predicates and then

performing a simplified join operation separately on each partition. The identification

and execution of such a special case of self-join were addressed previously in [16, 27].

Our algorithm is actually applicable to such special cases and essentially behaves like

the partition-based evaluation strategies in [16, 27]. Therefore, the performances are

expected to be comparable for such special cases.

4.3 The SCALE Algorithm

In this section, we consider a self equi-joinR1.A = R2.B. Both R1 andR2 are

instances of the same relationR, whereA andB are two (single or composite) attributes.

In the self-join, each tuplet in R is associated with two sets of matching tuples

referred to as itsleft-matchingandright-matchingtuples. A tuplet′ is a left-matching

(resp. right-matching) tuple oft if t.A = t′.B (resp.t′.A = t.B). We define theleft-join

(resp. right-join) of t to be the result of joiningt with its left-matching (resp. right-

matching) tuples. Thus, the self-join ofR can be computed as the union of the left-join

of each tuple inR or symmetrically as the union of the right-join of each tuplein R.

115

4.3.1 Overview

Without loss of generality, we present our self-join evaluation algorithmSCALE in

terms of the union of the right-join of each tuple. The choicebetween a left-join or

right-join evaluation ofR can be decided in a cost-based manner using the cost model in

Section 4.4.1.

To evaluate the self-join ofR in terms of right-joins,SCALE first sortsR in ascending

order ofA to produce the sorted tableSA(R) (sorting is unnecessary ifR has already

been ordered byA due to the existence of clustered indices). As such, for eachtuple in

R, all its right-matching tuples are clustered together inSA(R). SCALE then processes

SA(R) in at most two passes as follows. In the first pass,SCALE maintains three main-

memory buffers, namely,main, hold, anddeferbuffers. SCALE sequentially scans the

tuples inSA(R) into the main buffer and computes the right-joins between the newly

scanned tuple and the existing tuples in the main and hold buffers. The main buffer is

managed using a replacement policy to evict tuples when the buffer becomes full. Due to

tuple evictions, the right-join of a tuplet could be partially processed whent is evicted

out of the main buffer. Thus, at the same time that a tuplet is being evicted from the

main buffer, we can classifyt into one of three possible states (complete, prefix-complete,

or incomplete) as follows. If the right-join oft has been completed,t is classified as

complete; otherwise, if the right-join betweent and all its right-matching tuples that

precedet in SA(R) has been completed,t is classified as prefix-complete; otherwise,t

is classified as incomplete.

Before evicting a tuplet from the main buffer,SCALE first determines the state of the

right-join of t. If t is complete, thent is simply evicted from the main buffer; otherwise,

t needs to be buffered elsewhere (either in the hold or in the defer buffer) for subsequent

processing of its remaining right-join. Specifically, ift is incomplete, thent is transferred

to the defer buffer; otherwise,t must be prefix-complete and it is transferred to the hold

116

buffer. The tuples in the hold buffer will “wait” for their unread right-matching tuples in

SA(R) to be scanned into the main buffer to complete their right-join processing during

the first pass. The tuples in the defer buffer will complete their right-join computation in

the second pass.

At the end of the first pass, if the defer buffer is empty, this means the self-join of

R has been completely evaluated andSCALE will therefore terminate; otherwise,SCALE

will proceed with the second pass to process the tuples in thedefer buffer.

In the second pass,SCALE computes the remaining right-join of each tuple in the

defer buffer by performing a merge join of the tuples inSA(R) and the defer buffer. The

tuples inSA(R) (which are already sorted onA) will be scanned sequentially to merge

with the tuples in the defer buffer which will be retrieved inascending order ofB.

To facilitate the right-join processing, both the hold and defer buffers are organized as

min-heaps ordered on theB values. When the hold/defer buffer overflows,SCALE flushes

a sorted run from the appropriate heap to the disk. Thus,SCALE will subsequently need to

load back the disk-based sorted-runs during processing theright-joins, and an additional

buffer, referred to as therun buffer, is used for this purpose.

It is important that a join computation that has been performed in the first pass is not

computed again during the second pass.SCALE ensures this by simply recording for each

tuplet spilled to the defer buffer, the ranks of the first and last tuples inSA(R) (denoted

by first(t) andlast(t) respectively) that right-join witht during the first pass. During the

second pass, for each tuplet in the defer buffer,SCALE computes the right-join oft with

a right-matching tuplet′ in SA(R) if and only if the rank oft′ either precedesfirst(t) or

succeedslast(t). For correctness, the tuple eviction policy of the main buffer ensures that

if two tuplest andt′ in the main buffer have the sameA values andt is evicted before

t′, thent must precedet′ in SA(R). Thus,SCALE correctly computes the self-join ofR

without missing out any join result and without computing the same join more than once.

117

(R)SA

In
Memory

On Disk

run buffer

runs
sorted sorted

runs

buffer buffer
hold

main buffer

defer

sorted R on attribute A

tuple flow:
tuple matching:

Figure 4.1:SCALE execution during the first pass of processingSA(R)

Fig. 4.1 shows the execution ofSCALE during the first pass of processingSA(R). The

functions of each component, the tuple flow and the tuple matching procedure will be

elaborated in the following subsection.

4.3.2 Algorithm Details

For a tuplet, we denote the set of its right-matching tuples inSA(R) by RM(t).

During the first pass of processingSA(R), tuples inRM(t) can be divided into three

subsets:

• RM1(t): the tuples inRM(t) that have left the main buffer whent is read into the

main buffer.

• RM2(t): the tuples inRM(t) that will meet and join witht in the main buffer.

• RM3(t): the tuples inRM(t) that will only be read into the main buffer aftert has

left the main buffer.

118

For a tuplet currently in the main buffer, if it is evicted, there will be four possi-

ble cases according to the distribution ofRM(t) tuples withinRM1(t) and RM3(t), as

illustrated in Table 4.1.

case # RM1(t) RM3(t) right-join state oft
1 empty empty complete
2 non-empty empty incomplete
3 non-empty non-empty incomplete
4 empty non-empty prefix-complete

Table 4.1: The possible distribution ofRM(t) tuples withinRM1(t) andRM3(t), along
with the corresponding right-join state oft

Tuple Eviction Policy of the Main Buffer

Whenever the main buffer becomes full, each tuple inside is classified into one of the

above four cases and is assigned with an eviction priority. Tuples with higher priorities

will get evicted first. The destination of an evicted tuple isdependent on its right-join

state, as discussed in Section 4.3.1. The ultimate goal of the tuple eviction policy is to

improve tuples’ clustered access to their right-matching tuples and thus maximize the

total number of tuples reaching a complete right-join state. Besides, a secondary goal

is to produce early join results at high rates. We describe our tuple eviction policy by

comparing the eviction priorities of two arbitrary tuplest andt′.

First of all, whent.A = t′.A, if t precedest′ in SA(R), thent has a higher eviction

priority than t′. This rule ensures the correctness ofSCALE as discussed at the end of

Section 4.3.1. Whent.A 6= t′.A, the following heuristic rules are applied:

•Whent is in cases 1 or 2 andt′ is in cases 3 or 4,t has a higher eviction priority than

t′, since by staying in the main buffert′ could continue joining with moreRM3(t′) tuples

being or to be read fromSA(R) and thus is likely to be classified into cases 1 or 2 when

it is evicted in the future.

119

•When botht andt′ are in one of cases 1 and 2, they have equal eviction priorities.

• Whent is in case 3 andt′ is in case 4,t has a higher eviction priority thant′, as by

staying in the main buffert′ still has the chance to reach the complete state later.

•When botht andt′ are in case 3, they have equal eviction priorities.

•When botht andt′ are in case 4,t has a higher eviction priority thant′ if t.B > t′.B,

since as suchRM3(t′) tuples will be read earlier thanRM3(t) tuples and thus by staying

in the main buffert′ has a bigger chance to reach the complete status later.

It is obvious that the above rules will cover all scenarios betweent andt′, and thus

can produce a global ranking of the eviction priorities of all tuples in the main buffer.

Processing Tuples in the Hold Buffer

For each tuplet transferred from the main buffer to the hold buffer,RM1(t) is empty

andRM3(t) is non-empty. During the first pass of processingSA(R), t will wait in the

hold buffer until theRM3(t) tuples are sequentially scanned into the main buffer, and then

t will be moved into the run buffer so as to complete its remaining right-join processing

with theRM3(t) tuples2.

Since theSA(R) tuples are sorted onA, tuples in the hold buffer need to be retrieved

and processed in the order of theirB values. To achieve this, the hold buffer is organized

as a min-heap ordered on theB values and is used to generate disk-based sorted tuple

runs when buffer overflows. Once some tuples in the hold buffer need to join with their

remaining right-matching tuples newly read into the main buffer, they are retrieved into

the run buffer by progressively reading and (recursively) merging the sorted runs, while

the min-heap may be simultaneously dumping and appending tuples to some existing or

new runs on the disk. Fig. 4.2 shows the procedure of flushing hold buffer tuples from

2In the hold buffer, multiple tuples could share the same attributeB value. If their total size is larger
than the size of the run buffer, then the join processing for them degrades to a nested loop join, and each
tuple has to be moved into the run buffer more than once.

120

the min-heap to the sorted runs and then reading them back to the run buffer.

...

flow

buffer into the hold buffer

the min−heap in
the hold buffer

run
buffer

insert a tuple from the main

sorted runs
on the disk

append the tuple at the heap
top to one sorted run

merge

ordered tuple

Figure 4.2: Insert tuples to the hold buffer as well as read them into the run buffer

Processing Tuples in the Defer Buffer

For each tuplet transferred from the main buffer to the defer buffer, at least RM1(t)

is non-empty. SinceRM1(t) tuples precedet in SA(R), t is not able to join withRM1(t)

tuples during the first pass of processingSA(R). As a result,t will only complete its

right-join with tuples inRM1(t) and RM3(t) after the first pass of processingSA(R)

ends, via a merge join of the tuples inSA(R) and the tuples in the defer buffer. For

the purpose of merge join,SA(R) tuples will be sequentially scanned once again into

the main buffer, and defer buffer tuples will be read into therun buffer in the order of

their B values. Similarly to the hold buffer, we organize the defer buffer as a min-heap

ordered on theB values and generate disk-based sorted tuple runs when buffer overflows.

However, although generated during the first pass of processingSA(R), these sorted runs

are (recursively) merged in the run buffer during the secondpass.

121

Note that actually tuples in the hold buffer can be processedtogether with tuples in

the defer buffer via the merge join after the first pass of processingSA(R). However, pro-

cessing tuples in the hold buffer during the first pass can incur less I/O cost as analyzed

in Section 4.4.1, and can generate join results earlier.

Memory Allocation for Buffers

In the second pass of processingSA(R), SCALE only maintains the main buffer and

the run buffer to conduct the merge join. Both buffers dynamically share all available

memory space. As such, the run buffer may be able to grab enough memory to conduct

a single-step merge of sorted runs of defer buffer tuples.

In the first pass, both the main buffer and the run buffer will have predetermined

sizes, while the hold buffer and the defer buffer will dynamically share the remaining

memory space so as to maximize the average lengths of (and minimize the total number

of) generated sorted runs. We thereby develop a cost-based heuristic to optimize the

memory allocation for buffers in this pass.

Suppose the size ofR, in terms of the number of pages, isN and the total available

join memory isM pages fromR. The sizes of tuples in the hold buffer and in the defer

buffer areN1 andN2 respectively. The memory allocation scenario would affectthe I/O

costs incurred by tuples in the hold and defer buffers most significantly. In Section 4.4.1,

we theoretically analyze thatN1 would be small and thus the memory allocation of the

run buffer is not critical to the performance. Thus, we will experientially predetermine

a small size for the run buffer. In so doing, the rest of our work is simplified to finding

a good memory distribution between the main buffer (with a size Ms), and the hold

and defer buffers (with a total sizeMf). We useM ′ to denote the amount of memory

available forMs andMf , i.e. Ms + Mf = M ′.

From the analysis in Section 4.4.1, we can see that the valuesof N1 andN2 depend

122

on Ms. Basically, a higherMs can produce smallerN1 andN2. On the other hand,Mf

affects the number of run merging steps for the defer buffer.In general, a smallerMf

may increase the number of run merging steps for the defer buffer.

The cost model derived in Section 4.4.1 estimatesN1 andN2 based onMs and then

calculates the total I/O cost ofSCALE as

2N(⌈logM⌈
N

2M
⌉⌉ + 2) + 2N1 + 2N2(⌈logM⌈

N2

2Mf

⌉⌉ + 1) (4.1)

The objective of memory allocation is to minimize the total cost shown in Eqn. (4.1).

To simplify the problem, we assume a linear relationship betweenMs and the values of

N1 andN2. With this assumption, we could estimateN1 andN2 with differentMs values

as follows. First, we use the cost model to estimateN1 (or N2) under the two situations

of Ms = M ′ andMs = 0. The values are denoted asN11 (or N21) andN12 (or N22)

respectively. Then given anyMs ≤M ′, we can estimateN1 andN2 as

N1 = (M ′ −Ms)(N12 −N11)/M
′ + N11 (4.2)

N2 = (M ′ −Ms)(N22 −N21)/M
′ + N21 (4.3)

The memory allocation algorithm is shown in Algorithm 10, which is based on the

following observation of Eqn. (4.1): the dominant impact that the increase ofMf is

probably able to make is reducing the value of the termf(Mf) = ⌈logM⌈N2/(2Mf)⌉⌉.

The algorithm starts by setting theMf to a minimum value, say1. Then it iteratively

attempts to setMf to a higher number such that the value off(Mf) decreases by1 in

each iteration. If this results in a lower total cost of Eqn. (4.1), then the attempts will

be continued. Otherwise the loop will stop. The loop will also stop if f(Mf) already

reaches1. As in practice the value off(Mf) tend to be very small due to the logarithmic

effect, the loop will stop after several iterations.

123

Algorithm 10 : Memory Allocation for Buffers
Output: the value ofMf

1: Mf ← the minimum value
2: minCost← infinite
3: while true do
4: curCost← cost of Eqn. (4.1)
5: if curCost < minCost then
6: minCost← curCost
7: r ←Mf

8: else ifcurCost ≥ minCost then
9: break

10: if f(Mf) = 1 then
11: break
12: p← f(Mf)
13: setMf to the smallest value such thatf(Mf) = p− 1
14: return r

4.3.3 Integration with Tuple Selection and Projection Pushdown

For a self-join between two instancesR1 andR2 of relationR, it is possible that

each instance additionally involves distinct tuple filtering and projection conditions. In

the conventional query processing, tuple selection and projection operations are usually

pushed downonto the lowest feasible levels within the query execution tree. As a result,

the physical join implementation of the self-join has to deal with two input sets of tuples,

each of which is (horizontally and/or vertically) a subset of R. Suppose the tuple selec-

tion and projection attached toRi(i ∈ {1, 2}) areσi andΠi respectively, and suppose

the tuple projection attached to the self-join operation isΠ, the algebra expression of the

self-join is herebyΠ((Π1(σ1(R1))) 1 (Π2(σ2(R2))))
3.

According toσ1 and σ2, the tuples ofR that are relevant to the self-join can be

classified into three categories: satisfyingσ1 only, satisfyingσ2 only and satisfying both

σ1 andσ2, which are denoted withCσ1
, Cσ2

andCσ1∩σ2
respectively. The filteredR1

consists ofCσ1
andCσ1∩σ2

tuples, while the filteredR2 consists ofCσ2
andCσ1∩σ2

tuples.

3Note that the query optimizer will ensureΠ1 containsA andΠ2 containsB, even ifΠ does not contain
A and/orB.

124

Clearly, the (un-projected) self-join result can be represented by(Cσ1
1 Cσ2

) ∪ (Cσ1
1

Cσ1∩σ2
) ∪ (Cσ1∩σ2

1 Cσ2
) ∪ (Cσ1∩σ2

1 Cσ1∩σ2
).

In order to evaluate a self-join integrated with tuple selection and projection push-

down, a straightforward extension toSCALE works as follows. As the first step, we sort

R onA to obtain aSA((σ1∪σ2)(R)), which contains a sorted sequence of all above three

categories of tuples. In addition, inSA((σ1 ∪ σ2)(R)), theCσ1
, Cσ2

andCσ1∩σ2
tuples

are projected byΠ1, Π2 andΠ1 ∪ Π2 respectively. We then run the rest of the algorithm

as usual, with the mere modifications thatCσ1
(resp.Cσ2

) tuples are distinguished to act

only as the left-hand (resp. right-hand) side of the self-join, and thatCσ1
tuples behave

as if they had no right-matching tuples when they are considered for tuple eviction in the

main buffer. However, there are several potential problemswith such a straightforward

extension. First of all, intuitively it incurs wasteful I/Oand CPU costs to sortCσ2
tuples

on A, asCσ2
tuples are not a part of right-matching tuples. Moreover, during the first

pass of processingSA((σ1 ∪ σ2)(R)), Cσ2
tuples will keepCσ1

andCσ1∩σ2
tuples farther

away from their right-matching tuples. As such, moreCσ1
andCσ1∩σ2

tuples would be

forced to enter the hold buffer and the defer buffer and incuradditional I/O overhead.

There is another more efficient approach. The rough idea is tosplit those three cat-

egories of tuples inR into two parts: one partR+ contains allCσ1
andCσ1∩σ2

tuples,

and the other partR− contains the restCσ2
tuples. Similarly, theCσ1

tuples inR+ are

projected byΠ1, theCσ1∩σ2
tuples inR+ are projected byΠ1 ∪ Π2 and theCσ2

tuples

in R− are projected byΠ2. Given the self-join conditionR1.A = R2.B, we need to

sortR+ on A into SA(R+) and sortR− on B into SB(R−). We then sequentially read

bothSA(R+) andSB(R−) into memory to merge join them, which generates the pro-

jected result tuples of(Cσ1
1 Cσ2

) ∪ (Cσ1∩σ2
1 Cσ2

). In the meantime, we also apply

the self-join techniques ofSCALE to SA(R+) to produce the projected result tuples of

(Cσ1
1 Cσ1∩σ2

) ∪ (Cσ1∩σ2
1 Cσ1∩σ2

).

125

4.4 Analytical Study

In this section, we first analyze the cost of theSCALE algorithm and then analytically

prove that the performance ofSCALE is at least as good as Sort-Merge join.

4.4.1 Cost Model

Our SCALE algorithm on join conditionR.A = R.B is symmetric: it could choose

to sort on eitherA or B during the first-step external sorting. However, this choice

may affect the final total join cost and thus should be be decided in a cost-based way.

Moreover, the query optimizer also needs a cost model to estimate the self-join subplan

costs when doing join enumeration and pruning.

Notation Definition
N the size ofR in terms of pages
M the total number of buffer pages available for join
Ms the total number of pages occupied by main buffer
M the number ofR tuples that can be held by main buffer
Mf the number of pages occupied by hold and defer buffers
N1 the total size of tuples transferred to hold buffer
N2 the total size of tuples transferred to defer buffer

t(x, y) a tuple such thatt.A = x andt.B = y

N(x, y)
the number of tuples inR that have valuesx andy
on the attributesA andB respectively

NA(x) the number of tuples inR that have valuex onA
NB(y) the number of tuples inR that have valuey onB

Pt the position of tuplet in SA(R)
P

1st
RM(t) the position of the first tuple ofRM(t) in SA(R)

P
last
RM(t) the position of the last tuple ofRM(t) in SA(R)

Table 4.2: Notations used in the analytical study ofSCALE

Without loss of generality, in the following discussions, we assume thatSCALE sorts

R on attributeA during the first-step external sorting. Table 4.2 summarizes the notations

used throughout the analytical study ofSCALE. Generally, the I/O cost ofSCALE consists

126

of the following components:

(a) The cost of externally sortingR into SA(R).

(b) The cost of sequentially scanningSA(R) during the first pass of processingSA(R).

(c) The cost of inserting tuples into the hold buffer and the defer buffer (i.e. generating

sorted runs) during the first pass of processingSA(R).

(d) The cost of reading and merging sorted runs of hold buffertuples during the first

pass of processingSA(R).

(e) The cost of the merge join of defer buffer tuples andSA(R) tuples during the

second pass of processingSA(R).

In the ideal situation, the I/O cost ofSCALE consists of only (a)–(b). Suppose the size

of R, in terms of the number of pages, isN and the total available join memory isM

pages fromR. Then cost (a)–(b) can be calculated as2N(⌈logM⌈N/2M⌉⌉ + 1) + N .

To calculate (c)–(e), we first assume that we can estimate thetotal sizes of tuples in

the hold buffer and the defer buffer, denoted asN1 andN2 respectively. We will show

later how to estimate them.

Cost incurred by the hold buffer. The tuples spilled into the hold buffer are stored in a

number of disk-based run files sorted on attributeB, which have to be merged on-the-fly

using the run buffer during the first pass. Theoretically, wecan calculate the number of

merging steps based on the size of the run buffer and the number of sorted runs in the

hold buffer. However this will result in an overestimation of the actual merging steps due

to the following reasons:

• During the first pass of processingSA(R), as tuples are read into the main buffer

in the order ofA, roughly theB values of the case 4 tuples being spilled to the

hold buffer should be in a nearly sorted order. This is because for such a case 4

127

tuple withB = b, it then must have some matching tuples withA = b that have

not been read into the main buffer. Consequently, a few (but large) run files will

be generated.

• The runs in the hold buffer are merged progressively while the tuples are being

spilled. In other words, at any moment during the process, weare only merging

up to the tuples that have been spilled so far.

• As one will see in the later analysis, compared with the FIFO tuple eviction policy

for the main buffer, the number of tuples spilled to the hold buffer is significantly

reduced by our prioritized tuple eviction policy describedin Section 4.3.2.

Therefore, in our cost model, we assume that the tuples in thehold buffer are written to

disk and read into memory only once. Our experiment results validate this assumption.

Furthermore, this assumption simplifies the cost estimation and saves the optimization

cost.

Cost incurred by the defer buffer. The tuples in the defer buffer are also stored as

disk-based run files sorted onB and need to be merged during the second pass. The

size of each run depends on the size of the total memory, denoted asMf , that is dynam-

ically shared by the hold buffer and the defer buffer. As mentioned above, the tuples

are spilled to the hold buffer in a nearly sorted order and thus require only a small hold

buffer. Therefore, we can assume that almost the wholeMf is allocated to the defer

buffer. Given the size ofMf , the expected number of runs will be⌈N2/2Mf⌉. Fur-

thermore, we can use nearly all the available join memory to merge defer buffer tuples

during the second pass. Then the number of steps of run merging defer buffer tuples is

⌈logM⌈N2/2Mf⌉⌉. Finally, we also need to count the cost of writing the sortedruns in

the defer buffer to the disk before the merging.

128

In summary, the cost components (c)–(e) can be calculated asfollows:

2N1 + N2(2⌈logM⌈
N2

2Mf

⌉⌉ + 1) + N2 + N (4.4)

and hence the total cost of our algorithm is

2N(⌈logM⌈
N

2M
⌉⌉ + 2) + 2N1 + 2N2(⌈logM⌈

N2

2Mf

⌉⌉ + 1) (4.5)

Cost with FIFO Tuple Eviction Policy

Below we discuss how to estimate the values ofN1 andN2, i.e. the sizes of tuples

spilled to the hold buffer and the defer buffer respectively. Due to the dynamic behavior

of our algorithm, the exact estimation is quite complicatedand costly to perform. Hence,

we perform a simplified analysis by assuming that the main buffer applies the FIFO tuple

eviction policy. Moreover, we assume a tuplet(x, y) is randomly located within the

segment of tuples withA = x in SA(R). As such, there are three scenarios under which

tuples have to be spilled into the hold buffer and the defer buffer.

(I) If a tuple t(x, x) belongs to case2, 3 or 4, then it has to be spilled to either the

hold buffer or the defer buffer. Ast in this case is located inside its ownRM(t) in SA(R),

we haveP
1st
RM(t) ≤ Pt ≤ P

last
RM(t). Hence, the probability thatt(x, x) falls into case2 or 3

and thus is spilled to the defer buffer can be calculated as follows:

P (t(x, y) is spilled to the defer buffer| x = y) =

0 NA(x) ≤ M

1− M

NA(x)
otherwise.

(4.6)

Furthermore, the probability thatt(x, x) belongs to case 4 and thus is spilled to the hold

129

buffer is:

P (t(x, y) is spilled to the hold buffer| x = y) =

0 NA(x) ≤M

M

NA(x)
NA(x) ≥ 2M

1− M

NA(x)
otherwise.

(4.7)

(II) With x > y, a tuplet(x, y) cannot be in cases 3 and 4. Thus,t(x, y) will not be

spilled to the hold buffer, andP (t(x, y) is spilled to the hold buffer| x > y) = 0.

If t(x, y) with x > y is in case2, then it has to be spilled to the defer buffer. Note that,

in this case,Pt ≤ P
1st
RM(t) due to the fact thatx > y. Therefore, the probability thatt(x, y)

falls into this case is:

P (t(x, y) is spilled to the defer buffer| x > y) =

0 NA(x) ≤M−
x−1
∑

i=y

NA(i)

1
x−1
∑

i=y

NA(i) ≥M

1−
M−

x−1
P

i=y

NA(i)

NA(x)
otherwise.

(4.8)

(III) With x < y, a tuplet(x, y) cannot be in cases 2 and 3. Thus,t(x, y) will not be

spilled to the defer buffer, andP (t(x, y) is spilled to the defer buffer| x < y) = 0.

If t(x, y) with x < y is in case4, then it has to be spilled to the hold buffer. Here, we

havePt ≥ P
last
RM(t). Similar to the previous case, the probability oft(x, y) being in this

130

case can be derived as follows:

P (t(x, y) is spilled to the hold buffer| x < y) =

0 NA(x) ≤M−
y

∑

i=x+1

NA(i)

1
y

∑

i=x+1

NA(i) ≥M

1−
M−

y
P

i=x+1

NA(i)

NA(x)
otherwise.

(4.9)

Now we can derive the values ofN1 andN2 as follows:

N1 =

∑

x,y

N(x, y)P (t(x, y) is spilled to the hold buffer)

ρ
(4.10)

N2 =

∑

x,y

N(x, y)P (t(x, y) is spilled to the defer buffer)

ρ
(4.11)

whereρ is the number ofR tuples that can be stored in each page.

Cost with Prioritized Tuple Eviction Policy

The above analysis on the values ofN1 and N2 does not consider tuple eviction

priorities defined in Section 4.3.2, and hence may not reflectthe real cost of our algorithm

correctly. Below we try to measure some effects of our prioritized tuple eviction policy.

(I) A tuple t(x, x) in case 4 now is more likely to be kept in the main buffer until all

its right-matching tuples have been scanned. Therefore,t(x, x) can meet with all of its

matching tuples in the main buffer and can be directly discarded afterwards. As such,

131

the probability oft(x, x) being spilled into the hold buffer becomes:

P (t(x, y) is spilled to the hold buffer| x = y) =

0 NA(x) ≤M

1
NA(x)

otherwise.
(4.12)

By comparing with Eqn. (4.7), one can see that the adoption oftuple eviction priorities

significantly reduces the probability of spillingt(x, x) to the hold buffer. The number of

tuples spilled to the defer buffer in this case is unchanged.

(II) Similarly, a tuplet(x, y) with x < y that belongs to case 4 is more likely to be

kept in the main buffer until its right-matching tuples are fully scanned. Consider the set

S of tuples inSA(R) whose attributeA values fall in the range(x, y]. Within S, those

tuples in cases 1, 2 and 3 all have higher eviction prioritiesthant(x, y). By assuming that

t(x, y) has a higher eviction priority than any case 4 tuple inS and that the total number

of case 4 tuples inS is maximum, we can derive an upper bound of the probability that

t(x, y) is spilled to the hold buffer, which can serve as an approximation of the actual

probability:

P (t(x, y) is spilled to the hold buffer| x < y) ≤

0 NA(x) ≤M− k(x, y)

1 k(x, y) ≥M

1− M−k(x,y)
NA(x)

otherwise.

(4.13)

where

k(x, y) =
∑

x<i≤y
i≤j

N(i, j) (4.14)

Again, by comparing with Eqn. (4.9), we can see that the prioritized tuple eviction policy

can significantly reduces the probability of spillingt(x, y) to the hold buffer.

132

Practical Considerations

In DBMS systems, we could utilize a two-dimensional histogram to summarize the

joint distribution functionN(x, y) and hence we can use the above cost model to estimate

the cost of the join algorithm. Note that the sum aggregates in Eqns. (4.8) and (4.9) can be

efficiently calculated with the widely adopted one dimensional equi-depth histogram and

cumulative histogram. However, Eqn. (4.14) would be expensive to calculate. Therefore,

we will adopt Eqn. (4.9) in our cost model for algorithm implementation, which provides

an upper bound of the algorithm’s cost.

When the two-dimensional histograms are unavailable, we will use the one-dimensional

statistics to estimateN(x, y) as follows. Suppose we only have the one functionsNA(x)

andNB(y). By assuming that the attributesA andB are statistically independent of each

other, we can derive the functionN(x, y) as follows (|R| is the total number of tuples in

R): N(x, y) = NA(x)·NB(y)
|R|

.

4.4.2 Comparison with Sort-Merge Join

Now we try to compare the cost of ourSCALE algorithm with that of Sort-Merge Join

(SMJ). The I/O cost ofSMJ consists of: (a) the cost of externally sortingR into SA(R),

(b) the cost of externally sortingR into SB(R) and (c) the cost of merge join ofSA(R)

andSB(R). Hence the total cost can be estimated as follows:

4N⌈logM⌈
N

2M
⌉⌉ + 6N (4.15)

In the worst case ofSCALE, all the tuples will be spilled to the defer buffer during

the first pass of processingSA(R). That is, in this case,N2 = N andN1 = 0. By

133

substituting them into Eqn. (4.5), we have

2N⌈logM⌈
N

2M
⌉⌉ + 2N⌈logM⌈

N

2Mf

⌉⌉ + 6N

By comparing this with Eqn. (4.15), one can see the cost ofSCALE would be the same as

that ofSMJ if ⌈logM⌈N/2Mf ⌉⌉ = ⌈logM⌈N/2M⌉⌉.

As described in Section 4.3.2, generally speaking, the larger the portion of tuples that

are spilled to the defer buffer, the more memory is allocatedto the hold and defer buffers.

In the adverse case,Mf will be set to a value close toM such that⌈logM⌈N/2Mf ⌉⌉ =

⌈logM⌈N/2M⌉⌉. In other words,SCALE degenerates toSMJ in the adverse case.

4.5 Performance Study

We have integrated our proposedSCALE algorithm into PostgreSQL 8.4.4 [2] as a

standard join operation. We enabled the query optimizer to additionally includeSCALE

in its plan search space, based on the cost model provided in Section 4.4. We used the

default system settings without any tuning. We empiricallycomparedSCALE with the

native join operations of PostgreSQL: Sort-Merge Join (SMJ), Hybrid Hash Join (HHJ)

and Nested-Loop Join (NLJ). However, the performance ofNLJ was always significantly

worse than the other three join operations in all experiments. Thus, we will not report

the experimental results ofNLJ here.

We conducted all experiments on a Dell workstation which is equipped with a Quad-

Core Intel Xeon 2.66Hz CPU, 4GB DRAM and two SATA disks with storage capacities

of 500GB and 750GB. Both the operating system, Ubuntu 7.10 with Linux 2.6.22 ker-

nel, and the PostgreSQL system run on the 500GB disk, while the databases as well as

intermediate results of PostgreSQL are stored on the 750GB disk.

134

4.5.1 Synthetic Dataset Generation

We generated numerous synthetic tables with different properties in order to compre-

hensively and extensively evaluate the performance ofSCALE. In general, every synthetic

table consists of two join attributes,A andB, along with another 23 padding attributes4.

All attributes are of the (4-byte) integer data type and thuseach tuple has a fixed size

of 100 bytes. The attributeA, on which a synthetic tableR will be externally sorted by

SCALE to generateSA(R), has the value domain[1, 106].

As noted, the performance ofSCALE is dependent on the overall distance (nearness)

between tuples and their corresponding right-matching tuples inSA(R). A shorter av-

erage distance means to us a stronger correlation betweenA andB5 and hence better

performance ofSCALE. We expect to testSCALE on synthetic tables with tunable correla-

tion extents. To this end, we have four essential configurable parameters when generating

a tableR:

• AD: the statistical distribution ofA values, uniform or Zipf.

• MD: the maximum absolute difference between theA value and theB value of a

single tuplet, i.e.,|t.A−t.B| ≤ MD. MD is used to model the correlation between

R.A and R.B. A smallMD value means that R.A and R.B are more correlated.

Hence, more tuples will be able to complete their right-joins before they are evicted

from the main buffer. This is the situation whereSCALE is expected to perform

well. On the other hand, a largeMD means that it is less likely for tuples to find

matching tuples in the main buffer. Such cases are not favorable toSCALE.

• DD: the statistical distribution of (t.A− t.B +MD) values, either uniform or Zipf.

4Note that with fewer padding attributesSCALE could perform even better, as the same amount of join
memory now can hold more tuples and thus the sizes of the hold and defer buffers may decrease.

5Note here the meaning of correlation is a bit different from its traditional definition, which measures
the relationship between theA andB values within the same tuple.

135

• DV: the number of distinct values onA, which are uniformly distributed over

[1, 106].

The Zipf distribution has a parameterθ, which affects the skewness of the data distribu-

tion: the greater the value ofθ, the greater the skewness. We also varied theθ values. In

the following presentation, we shall use “Zipfx” to represent “Zipf withθ = x”.

4.5.2 Experiment Design

On each synthetic tableR, we executed self-join queries of the following basic form:

SELECT *

FROM R AS R1, R AS R2

WHERE R1.A = R2.B

and compared the total query execution times ofSCALE, SMJ andHHJ. In certain queries,

we also applied extra tuple selection conditions with different selectivities on bothR1

andR2. No clustered indices onA or B were available and thus bothSCALE andSMJ

were forced to explicitly sortR.

The experiments conducted consist of four parts. The first part is a micro-benchmark

test, which enumerated different combinations of the abovefour parameters (AD, MD,

DD andDV), as well as the total available join memoryMEM on a set of synthetic tables

with fixed sizes. The second part tested the scalability ofSCALE by varying the table

sizes. The third part measured and verified the effectiveness of our memory allocation

scheme presented in Section 4.3.2. The final part focused on the performance ofSCALE

when combined with tuple selection and projection, as described in Section 4.3.3.

Note that in all experiments, during the first pass ofSCALE, the size of the run buffer

was set toMEM/10. Except for those experiments that studied the memory alloca-

tion scheme, for all other experiments, we completely relied on our memory allocation

scheme to divide the remainder ofMEM between the main buffer, and the hold and de-

136

fer buffers. Between queries, we clear the operating systemcache by using the Linux

command“echo 3> /proc/sys/vm/dropcaches”.

We testedSCALE under a wide range of extents of correlation betweenA andB.

Throughout our experiments (Fig. 4.3 to 4.10 below), we utilized threeDV values, i.e.

105 (the most common),5 × 105 and9 × 105, and twoMD values, i.e.105 (the most

common) and5× 105. In Fig. 4.3, 4.5, 4.8 and 4.10,DV = MD = 105 so thatA andB

were not obviously correlated; in Fig. 4.4,MD = 5×105 andDV = 105 so thatA andB

were much uncorrelated; in Fig. 4.6, 4.7, 4.8, 4.9 and 4.10,A andB were (a bit or very)

correlated.

4.5.3 Experimental Results

Micro-Benchmark Test

All synthetic tables in this test have 10 million tuples, with a total size of 1GB. The

experimental results are depicted by Fig. 4.3 – 4.7, from which we can clearly see that

SCALE significantly outperformed bothSMJ andHHJ in all situations. The performance

gain ofSCALE over the winner betweenSMJ andHHJ was between20% to 45%. In all

figures, we observe that the execution times ofSCALE were quite stable for a wide range

of join memoryMEM. The execution times ofSMJ andHHJ also stabilized when the

join memoryMEM increased to 100MB. We will not show the statistical detailsabout

tuple distribution over the six cases as well as the sizes of hold buffer tuples and defer

buffer tuples inSCALE. Generally speaking, most tuples fell into cases 1, 2 and 4 as

expected, among which case 1 tuples occupied a very significant portion. As a result,

compared to the size ofR, the total size of tuples in hold and defer buffers was usually

small. The above observations explain the superiority ofSCALE. We then briefly analyze

the behaviour ofSCALE according to the figures.

In both Fig. 4.3 and Fig. 4.4, whenMEM was fixed, the execution times ofSCALE

137

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(a)AD = uniform

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(b) AD = Zipf 0.5

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(c) AD = Zipf 0.7

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(d) AD = Zipf 0.95

Figure 4.3: Benchmark test, 1GB tables with 10 million tuples, AD varies,MD = 105,
DD = uniform,DV = 1× 105

remained nearly unchanged asAD varied. The underlying reason lies in that different

AD settings resulted in more or less the same numbers of join result tuples, as well as

the similar tuple distributions over the six cases. On the other hand, with a specificAD,

whenMEM increased, the number of tuples in case 2 (so is the size of defer buffer tuples)

decreased slowly, the number of tuples in case 4 also decreased but the the hold buffer

was always empty. Therefore, the difference between the execution times ofSCALE

highly depended on how effectively the tuple runs in the defer buffer were merged. The

fact is that multiple merge passes were required only whenMEM = 10MB, which led

to an execution time notably higher than those with largerMEM values. Comparing

Fig. 4.3 with Fig. 4.4, the only parameter setting difference was the value ofMD. With

138

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(a)AD = uniform

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(b) AD = Zipf 0.5

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(c) AD = Zipf 0.7

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(d) AD = Zipf 0.95

Figure 4.4: Benchmark test, 1GB tables with 10 million tuples,AD varies,MD = 5×105,
DD = uniform,DV = 1× 105

a greaterMD, although the sizes of hold buffer tuples and defer buffer tuples increased,

the number of join result tuples was reduced dramatically and thus much less CPU cost

was incurred. Consequently, the execution times ofSCALE in Fig. 4.4 were lower than

their counterparts in Fig. 4.3.

In Fig. 4.5, theDD setting was varied. With the sameMEM value, from Fig. 4.5(a)

to Fig. 4.5, the sizes of hold buffer tuples and defer buffer tuples dropped gradually but

the number of join result tuples rose quickly, and thereforethe execution times increased

correspondingly. Note that Fig. 4.5(a) is actually the sameas Fig. 4.3(a). Within each of

Fig. 4.5(b) – 4.5(d) having the ZipfDD, when theMEM increased, the size of defer buffer

tuples decreased slightly while the hold buffer was always empty. Besides, multiple

139

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(a)DD = uniform

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(b) DD = Zipf 0.5

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(c) DD = Zipf 0.7

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(d) DD = Zipf 0.95

Figure 4.5: Benchmark test, 1GB tables with 10 million tuples, AD = uniform, MD =
105, DD varies,DV = 1× 105

merge passes for tuples in the defer buffer were required only whenMEM = 10MB.

Therefore, in all four subfigures of Fig. 4.5, the execution times ofSCALE with 10MB

MEM were much higher than those with largerMEM values.

In both Fig. 4.6 and 4.7, whenMEM was fixed andAD changed from uniform to

Zipf (θ increasing from 0.5 to 0.95), both hold buffer tuples and defer buffer tuples

shrank in sizes. However, in the meantime, the number of joinresult tuples increased,

which incurred much more CPU time as well as a higher total execution time. On the

other hand, with a specificAD, whenMEM increased, the number of tuples in case 2

(so is the size of tuples in the defer buffer) decreased slowly, but the relatively small

number of tuples in case 4 (so is the size of tuples in the deferbuffer) decreased fast.

140

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(a)AD = uniform

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(b) AD = Zipf 0.5

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(c) AD = Zipf 0.7

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(d) AD = Zipf 0.95

Figure 4.6: Benchmark test, 1GB tables with 10 million tuples, AD varies,MD = 105,
DD = uniform,DV = 5× 105

As a whole, similar to the scenarios in Fig. 4.3 and 4.4, the execution time differences

of SCALE were determined by the number of merge passes when merging tuples in the

defer buffer. Still, for the 10MBMEM, SCALE generated multiple merge passes and thus

resulted in a higher execution time than others with largerMEM values. Among Fig. 4.3,

Fig. 4.6 and Fig. 4.7, their parameter settings differed only on the value ofDV. With a

smallerDV, the sizes of hold buffer tuples and defer buffer tuples and the number of join

result tuples all rose a bit. Consequently, the corresponding execution times ofSCALE in

Fig. 4.3, Fig. 4.6 and Fig. 4.7 were in an ascending order.

141

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(a)AD = uniform

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(b) AD = Zipf 0.5

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(c) AD = Zipf 0.7

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10 20 50 100 500

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

MEM (in MB)

SCALE
SMJ
HHJ

(d) AD = Zipf 0.95

Figure 4.7: Benchmark test, 1GB tables with 10 million tuples, AD varies,MD = 105,
DD = uniform,DV = 9× 105

Scalability Test

In this test, we investigated how the relative performance of SCALE compared toSMJ

andHHJ will change with respect to the synthetic table sizes. We fixed AD (uniform),

MD (105) andDD (uniform), and then generated two groups of tables, each according

to a differentDV value (either9 × 105 or 105). Each group contains four tables of 50

million (5GB), 100 million (10GB), 150 million (15GB) and 200 million (20GB) tu-

ples, on which self-joins were conducted with join memoryMEMs of 500MB, 1000MB,

1500MB and 2000MB respectively. The experimental results are plotted in Fig. 4.8.

As shown,SCALE kept gaining significant performance improvement over bothSMJ

142

SCALE
SMJ
HHJ

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

1x 2x 3x 4x

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Table Size (in 5GB) and MEM Size (in 500MB)

(a)DV = 1× 105

SCALE
SMJ
HHJ

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

1x 2x 3x 4x

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Table Size (in 5GB) and MEM Size (in 500MB)

(b) DV = 9× 105

Figure 4.8: Scalability test, with varying table sizes and join memory sizes,AD = uni-
form, MD = 105, DD = uniform

andHHJ as the table sizes increased. Moreover, all execution timesof SCALE with DV =

9 × 105 in Fig. 4.8 were higher than their counterparts withDV = 1 × 105 in Fig. 4.8,

which is consistent with our observations from Fig. 4.3, Fig. 4.6 and Fig. 4.7. As such, it

would be convincing to claim that similar benchmark tests with different table sizes will

bring the same conclusions onSCALE as those presented in the above micro-benchmark

test.

143

Verification of Memory Allocation Scheme

 120

 130

 140

 150

 160

 170

9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9

E
xe

cu
tio

n
T

im
e

(in
 S

ec
)

Memory Ratio of SW to FW

Manual Alloc
SCALE

Figure 4.9: Verify the effect of memory allocation scheme, 1GB table with 10 million
tuples,MEM = 10MB,AD = uniform,MD = 105, DD = uniform,DV = 9× 105

In order to verify the effectiveness of our memory allocation scheme proposed in

Section 4.3.2, we conducted an experiment with the synthetic table in Fig. 4.7. We fixed

MEM to 10MB and then ranSCALE with nine different memory ratios of the main buffer

(denoted by SW) to the hold and defer buffers (denoted by FW).The experimental results

are shown in Fig. 4.9.

It is obvious that the curve in Fig. 4.9 contains a trough whose lowest point corre-

sponds to the ratio of 7:3 with the minimum execution time of 138 seconds. The small

circle in Fig. 4.9 represents the chosen ratio, 77:23, by ourautomatic memory allocation

scheme, with the actual execution time of 143 seconds. It turns out that our decision on

the memory allocation is quite near to the optimal scenario in the exploited space.

Effect of Integration with Tuple Selection and Projection

It is desirable to see how the tuple selection and projectionconditions that are pushed

down to the joining instances of a self-join will affect the effectiveness and efficiency of

144

SCALE. We therefore designed an experiment to investigate this.

SCALE incorporated the first approach in Section 4.3.3 to enable tuple selection and

projection pushdown, which requires much less implementation effort but has obviously

worse performance than the second approach. We defined a refined self-join query tem-

plate:

SELECT *

FROM R AS R1, R AS R2

WHERE R1.A = R2.B

AND R1.C ≥ i× 5× 104

AND R2.C ≤ 106 − i× 5× 104

whereC is a third integer attribute ofR whose values are uniformly distributed over

[1, 106] andi is an integer parameter ranging from 1 to 10. By varying the value of i, we

can easily and accurately control the tuple selection selectivities of R1 andR2, as well

as the number of overlapped tuples between these two instances. For simplicity we did

not introduce tuple projection into the queries.

We tested the above refined self-join queries against two synthetic tables with fixed

MEM (10MB), AD (uniform),MD (105) andDD (uniform) but two differentDV values

(1× 105 and5× 105). The experimental results are shown in Fig. 4.10. In bothSMJ and

HHJ, the selection conditions in the queries were pushed down tothe level of scanning

R1 andR2.

As can be seen,SCALE still performed better thanSMJ andHHJ in almost all scenar-

ios. Asi increased, the benefit ofSCALE disappeared gradually. However, this trend is

expected because the benefit ofSCALE mainly originates from the overlap betweenR1

andR2. Wheni became 10, which was actually the worst case asR1 andR2 are totally

disjoint, the execution times of these three approaches aremore or less the same. This

phenomenon, however, is surprisingly positive. Note that regardless of thei value, in

145

SCALE
SMJ
HHJ

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

The Value of i

(a)DV = 1× 105

SCALE
SMJ
HHJ

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

The Value of i

(b) DV = 5× 105

Figure 4.10: Test on integration with selection conditionR1.C ≥ i×5×104 andR2.C ≤
106− i×5×104, 1GB tables with 10 million tuples,MEM = 10MB,AD = uniform,MD

= 105, DD = uniform

this testSCALE was always sorted on the originalR and then two full sequential scans of

SA(R) were conducted. Furthermore, as mentioned above, our implementation ofSCALE

chose the worse one of two candidate solutions for the purpose of combining tuple se-

lection and projection. Therefore, we can optimistically conclude that a fully optimized

146

SCALE will be superior to bothSMJ andHHJ when dealing with general self-join queries.

4.6 Extensions to SCALE

In this section, we propose two extensions toSCALE. The first extension can improve

SCALE’s performance, while the second extension generalizesSCALE for it to be utilized

by more applications.

4.6.1 Sideways Information Passing

A tuple t in R plays roles as both the left-hand side (LHS) and the right-hand side

(RHS) in the self-join conditionR1.A = R2.B. Let NA(a) andNB(b) denote the total

number of tuples inR that have the attribute valueA = a andB = b respectively.

SupposeSCALE sortsR onA into SA(R).

If NA(t.B) (resp. NB(t.A)) is zero,t will not be able to find corresponding right-

(resp. left-) matching tuples inR. If bothNA(t.B) andNB(t.A) are zero, thent is totally

irrelevant to the self-join. Therefore, it would be beneficial to prune such irrelevant tuples

fromR as early as possible. To achieve this, we collect the value distribution information

not only for attributeA, but also for attributeB, during the initial run formation phase of

externally sortingR into SA(R). We can then discard those irrelevant tuples on-the-fly

when merging the initial sorted runs during the subsequent run merge phase.

During the first pass of processingSA(R), it is safe and beneficial to remove a tuple

t from the main buffer oncet can no longer left-join or right-join with any other existing

or incoming tuples in the main buffer. This is calledeager tuple pruning strategy.

At the moment whent becomes eligible for the early pruning,RM3(t) must be empty.

In the meantime, all the left-matching tuples oft must also have been read into the main

buffer. This situation can be easily determined by countingthe tuples whose attributeB

147

values are equal tot.A and so far have been read into the main buffer, and comparing

the number withNB(t.A) which will be collected during the external sorting ofR as

described above.

4.6.2 Self Band–Join

A band-join [22, 46] between two relationsR andS on attributesR.A andS.B has

the join condition of the formR.A − c1 ≤ S.B ≤ R.A + c2, wherec1 and c2 are

constants that may be equal, and either one of them, but not both, may be zero. Band

joins are common in queries that require joins over continuous domains such as time and

distance. A self band-join involves two instancesR1 andR2 of relationR with a join

conditionR1.A− c1 ≤ R2.B ≤ R1.A + c2.

ExtendingSCALE to the self band-join is straightforward. For a tuplet with t.B = b,

its right-matching tuplesRM(t) becomes the set of consecutive tuple segments inSA(R)

with their A values falling into the range[b − c2, b + c1]. Besides, there are no other

modifications required to enableSCALE to handle self band-joins.

The two schemes of sideway information passing discussed inSection 4.6.1 are also

extendible according to self band-join. For a tuplet in R, when
∑t.B+c1

i=t.B−c2
NA(i) = 0,

t will not be able to find corresponding right-matching tuplesin R; similarly, when
∑t.A+c2

i=t.A−c1
NB(i) = 0, t will not be able to find corresponding left-matching tuples in R.

Therefore, if
∑t.B+c1

i=t.B−c2
NA(i) = 0 and

∑t.A+c2
i=t.A−c1

NB(i) = 0, thent is irrelevant to the

self band-join and can be pruned during the external sortingof R intoSA(R).

The principle of the eager tuple pruning for the main buffer also applies to the self

band-join. However, in order to determine if all the left-matching tuples of a tuplet

have been read into the main buffer, it requires counting allthe tuples whose attributeB

values fall in the range[t.A− c1, t.A + c2].

It is also obvious that the self band-join can be integrated with tuple selection and

148

projection pushdown as described in Section 4.3.3, since the merge join betweenSA(R+)

andSB(R−) is also well adaptive to band-join.

4.7 Summary

In this chapter, we have proposedSCALE, a self-join algorithm that efficiently deals

with self equi-joins.SCALE can benefit from but does not rely on indices, is compatible

with tuple selection and projection pushdown, and is easilyextendable to handle self

band-joins. Our analytical study showed thatSCALE, in the ideal situation is simply one

sequential scan of the mutli-instance relation referred bythe join, and in the worst case

degenerates to Sort-Merge Join. Our extensive performanceevaluation showed that that

SCALE is generally superior to conventional join algorithms likeSort-Merge Join, Hybrid

Hash Join and Nested-Loop Join.

CHAPTER 5

Conclusion

Multiple instances of the same relation frequently exist within complex analytical

queries. However, the existence of relational instances has not received much research at-

tention in the past. While it is feasible to treat these instances as distinct relations during

query processing, such obliviousness will result in sub-optimal query performance. In

contrast, distinguishing the instances with well customized query evaluation techniques

can bring substantial performance improvement. This thesis is the first systematic study

on optimizing complex queries with multiple relational instances.

This chapter concludes the thesis by summarizing our work, discussing the contribu-

tions and presenting some interesting directions or concrete problems that are relevant to

the thesis topic and worthy of exploration in the future.

149

150

5.1 Contributions

This thesis revisited three traditional research problems, i.e. accessing tables resident

on the disk, external table sorting and relational join processing, in a new light of rela-

tional instances. We figured out several optimization opportunities that are brought by

relational instances and the accompanying solutions for further performance enhance-

ment.

In Chapter 2, we demonstrated that it is both beneficial and feasible to allow multiple

instances of the same base relation to share a single physical table scanner. We developed

MAPLE, aMulti-instance-AwarePLanEvaluation engine to execute queries with multiple

instances. The major encountered obstacle was the fact that, under the conventional

pull iterator execution model and with limited buffer space, a shared scan would be

slowed down or even totally blocked if the tuples of different instances are consumed

at dramatically diverse speeds. To resolve blocked shared scans and in the meantime to

minimize the query cost,MAPLE makes use of an interleaved iterative query evaluator.

The query plans to execute originate from a traditional query optimizer, but are enhanced

in a cost-based manner with additional materialized operators and explicit share groups.

Instances within each share group share one physical scan. We implementedMAPLE in

PostgreSQL, and our experimental study on the TPC-DS benchmark showed significant

reduction in execution time.

In Chapter 3, we showed that better query performance can be reached by enabling

the sharing and collaboration when carrying out different sortings on instances. The op-

timization opportunities arise when the relationship between two sort orders falls into

one of the four general cases that we identified, and the actual enhancement is achieved

by applying various sort sharing techniques that we investigated, including the novel

cooperative sorting idea. For a query containing a set of instances, we are able to gener-

ate its sort-sharing equipped execution plan with either two-phase or single-phase query

151

optimization. In the two-phase method, we post-optimize the plan resulted from a con-

ventional query optimizer to determine the best cost-efficient way to applying our sort

sharing techniques. In the single-phase method, the query optimizer directly generates an

optimal sort-sharing-aware execution plan. In comparisonwith the single-phase method,

the two-phase method is more light-weight but cannot guarantee the global optimality of

the execution plan. We demonstrated the efficiency of our ideas with a prototype built

in PostgreSQL and evaluated the performance using both TPC-DS benchmark and syn-

thetic data. Our experimental results showed significant performance improvement over

the traditional scheme.

In Chapter 4, we addressed the problem of self-join with the join predicates involving

two distinct attributes, by proposing an efficientSCALE (Sort for Clustered Access with

Lazy Evaluation) join algorithm.SCALE improves tuples’ clustered accesses to their join-

ing counterparts, and tries to maximize the overall chance of full-range clustered access,

where a tuple needs to be read into memory only once to join with all of its matching

tuples.SCALE handles tuples for which a full-range clustered access is still not possible,

by adopting a lazy evaluation strategy to defer their remaining join processing to a later

time. Such lazy evaluation minimizes the need for “random” accesses to the matching

tuples. For supporting clustered access and lazy evaluation, the memory space has to

be effectively allocated between these two tasks.SCALE applies a cost-based approach

to address this problem.SCALE is also able to handle the situation where the two join-

ing instances of the same relation are associated with different selection and projection

predicates. Moreover,SCALE is further strengthened with side-ways information passing

techniques and is extendible to handle self band-joins. Ouranalytical study showed that

SCALE degenerates gracefully to a Sort-Merge Join in the worst case. We also imple-

mentedSCALE in PostgreSQL, and results of our extensive experimental study showed

that it outperforms Nested-Loop Join, Sort-Merge Join and Hybrid Hash Join by a wide

152

margin in (almost) all cases.

Note that our techniques in the three chapters are fundamental and general, from

which some research problems in research fields other than relational query processing

could also benefit. For example, the shared table scan idea inMAPLE can be applied

to the context of distributed or cloud data management. The cooperative sorting idea

can be used for top-k query processing and MapReduce framework as both involve a lot

of sortings on massive data. TheSCALE algorithm is also suitable for self-joins arising

within spatial/temporal query processing and string similarity search.

5.2 Future Work

There are several future research directions to investigate how relational instances

can be better handled during relational query processing.

5.2.1 Refining Invented Techniques

Techniques presented in this thesis have not been fully exploited yet, and there still

remains great potential for further enhancement in terms ofboth completeness and ap-

plicability.

The MAPLE system. First,MAPLE is easily extendible to support common subexpres-

sions within a single query (instead of just table scans) as well as across multiple queries.

The result of a common subexpression, either pipelined or materialized, can be treated

as a virtual table and shared “scanned” by all instances. Formultiple queries, common

subexpressions or tables across multiple queries can be shared in a similar manner. In ad-

dition, these queries can be processed simultaneously without any execution dependency

between them. Second, as shown in our experimental study, interleaved execution of

operators may impact performance of a query in a negative way, i.e., the FragmentRead-

153

Write effect. It remains a challenge to explore how we can extendMAPLE to consider

these factors. In particular, we need to ensure that aMAPLE-enhanced plan must not be

inferior to the corresponding PostgreSQL plan. Finally,MAPLE is a post-optimization

strategy. As such, it only enhances a single plan generated by the optimizer. It would be

interesting to explore an integrated strategy, i.e., to extend the search space of a query

optimizer to support instance-awareness as a plan is built.In this way, the generated plan

is expected to be superior overMAPLE’s plan.

Self-join processing.First, inSCALE, the join result tuples are not delivered in a sorted

order. However, in some cases, it would be desirable and beneficial to produce a sorted

join output. It remains a challenge to revise the algorithm so as to generate sorted results

without incurring too much overhead. Second, the memory allocation among buffers of

SCALE is done statically based on the cost estimation before the first scan of the sorted

relation. As the cost estimation might not be accurate due toinaccurate statistics, it

would be interesting to design a dynamic allocation algorithm to adjust the memory al-

location among all buffers at runtime. Third,SCALE does not exploit the opportunity

of outputting join results during the external sorting of the relation at the beginning.

Intuitively, interleaving the sorting with the tuple matching procedure would further im-

prove the execution time. Fourth, our current techniques work well for a binary self-join.

When executing a query with multi-way self-joins, there might be a more efficient way

than simply applying a binary tree ofSCALE operations.

A uniform framework. In this thesis, we have studied the three research problems in

isolation. It would be promising to develop a uniform optimization framework which

combines all the techniques proposed for the three problems. In so doing, we may be

able to exploit additional opportunities for optimization.

154

5.2.2 Developing New Techniques

Hash sharing.For many database matching tasks such as join and aggregation, hashing

is a competitor to sorting. As a result, frequently there arealso multiple demands of

hashing the same relation based on different hash keys. It isnatural to think over the

notion ofhash sharingwhich is parallel to the sort sharing idea in Chapter 3. Similarly,

the initial study should focus on the relationships betweenhash keys to derive feasible

and efficientpartition sharingandcooperative hashingtechniques. One straightforward

example of partition sharing is when the attributes of a hashkey hk1 is a subset of the

attributes of another hash keyhk2, partitions onhk2 can be produced in a pipelined

manner from the partitions onhk1. As for cooperative hashing, an immediate idea is

that given two hash keyshk1 andhk2 whose attributes do not overlap, perform a two-

dimensional hashing on{hk1, hk2} to generate a partition matrix, in which a row of

partitions together form a partition onhk1 and a column of partitions together form a

partition onhk2. To achieve good performance, the chosen hash functions should avoid

resulting in too many partitions in the matrix, and the reading of partitions should be

carefully scheduled so as to incur as few random I/O activities as possible.

Minimizing non-I/O costs. Till now, our optimization goal is to minimize the total I/O

cost, which has been the major performance bottleneck in traditional disk-based database

systems for a long period. Recently, the abundance of main memory makes it more and

more likely for a moderate enterprise database system to completely reside in the mem-

ory. As such, database applications are becoming increasingly compute and memory

intensive. Along with this trend, two major scenarios arisefor optimizing relational

instances in a main-memory DBMS.

• When the memory bandwidth cannot keep pace with the increasing capability of

CPU(s), accessing memory becomes the performance bottleneck. In this case, it

155

would be meaningful to look closely at thein-memoryversions of disk-based query

processing problems about instances, including those already covered in this thesis

(i.e., shared scan, sort sharing and self-join) as well as the newly mentioned hash

sharing problem above.

• When there is sufficient memory bandwidth, the majority of query evaluation time

goes to CPU computation and thus the system is CPU-bound. In this case, we

should seek the opportunities of sharing in the CPU cache thecommon compu-

tations (e.g., tuple filtering, attribute projection and aggregation) among tuples of

instances to minimize the total CPU cycles consumed.

BIBLIOGRAPHY

[1] Microsoft SQL Server Library.http://msdn2.microsoft.com/en-us/

library/bb545450.aspx.

[2] Postgresql Offical Website.http://www.postgresql.org/.

[3] TPC BENCHMARK Decision Support.http://www.tpc.org/tpcds/.

[4] Transaction Processing Performance Council.http://www.tpc.org/.

[5] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Scalable

semantic web data management using vertical partitioning.In VLDB, pages 411–

422, 2007.

[6] Sameet Agarwal, Rakesh Agrawal, Prasad Deshpande, Ashish Gupta, Jeffrey F.

Naughton, Raghu Ramakrishnan, and Sunita Sarawagi. On the computation of

multidimensional aggregates. InVLDB, pages 506–521, 1996.

[7] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. Tracking join

and self-join sizes in limited storage. InPODS, pages 10–20, 1999.

156

157

[8] Ramesh Bhashyam. TPC-D: the challenges, issues and results. SIGMOD Rec.,

25(4):89–93, 1996.

[9] M.W. Blasgen and K.P. Eswaran. On the evaluation of queries in a relational

database system.IBM Research Report, RJ 1745, 1976.

[10] Kjell Bratbergsengen. Hashing methods and relationalalgebra operations. In

VLDB, pages 323–333, 1984.

[11] Yu Cao, Ramadhana Bramandia, Chee-Yong Chan, and Kian-Lee Tan. Optimized

query evaluation using cooperative sorts. InICDE, pages 601–612, 2010.

[12] Yu Cao, Ramadhana Bramandia, Chee-Yong Chan, and Kian-Lee Tan. Sort-

sharing-aware query processing.The VLDB Journal, 2011.

[13] Yu Cao, Gopal C. Das, Chee-Yong Chan, and Kian-Lee Tan. Optimizing complex

queries with multiple relation instances. InSIGMOD, pages 525–538, 2008.

[14] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. To-

wards estimation error guarantees for distinct values. InPODS, pages 268–279,

2000.

[15] Moses Charikar, Chandra Chekuri, Zuo Dai, Ashish Goel,Sudipto Guha, and Ming

Li. Approximation algorithms for directed steiner problems. In Journal of Algo-

rithms, pages 73–91, 1999.

[16] Damianos Chatziantoniou and Kenneth A. Ross. Groupwise processing of rela-

tional queries. InVLDB, pages 476–485, 1997.

[17] Edgar F. Codd. A relational model of data for large shared data banks.Commun.

ACM, 26(1):64–69, 1983.

158

[18] Latha S. Colby, Richard L. Cole, Edward Haslam, Nasi Jazayeri, Galt Johnson,

William J. McKenna, Lee Schumacher, and David Wilhite. Redbrick vista: Aggre-

gate computation and management. InICDE, pages 174–177, 1998.

[19] Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. Pipelining in

multi-query optimization.Journal of Computer and System Sciences, 66(4):728–

762, 2003.

[20] Amol Deshpande, Zachary Ives, and Vijayshankar Raman.Adaptive query pro-

cessing.Found. Trends databases, 1:1–140, January 2007.

[21] David J. DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R

Stonebraker, and David A. Wood. Implementation techniquesfor main memory

database systems.SIGMOD Rec., 14(2):1–8, 1984.

[22] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider. An evaluation

of non-equijoin algorithms. InVLDB, pages 443–452, 1991.

[23] R.J. Dinsmore. Longer strings from sorting.Comm. ACM, 8(1):48, 1965.

[24] Vladmir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms.

ACM Computing Surveys (CSUR), 24(4):441–476, 1992.

[25] W. Donald Frazer and Chi Kuen Wong. Sorting by natural selection. Communica-

tions of the ACM, 15(10):910–913, 1972.

[26] Shinya Fushimi, Masaru Kitsuregawa, and Hidehiko Tanaka. An overview of the

system software of a parallel relational database machine GRACE. InVLDB, pages

209–219, 1986.

159

[27] Cesar A. Galindo-legaria, Goetz Graefe, Milind M. Joshi, and Ross T. Bunker.

System and method for segmented evaluation of database queries. US Patent No.

7,599,953, 29 Nov. 2004.

[28] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide

to the Theory of NP-Completeness. 1990.

[29] Leonidas Georgiadis. Arborescence optimization problems solvable by edmonds’

algorithm.Theor. Comput. Sci., 301(1-3):427–437, 2003.

[30] Phillip B. Gibbons. Distinct sampling for highly-accurate answers to distinct values

queries and event reports. InVLDB, pages 541–550, 2001.

[31] Goetz Graefe. Query evaluation techniques for large databases.ACM Computing

Surveys, 25(2):73–170, 1993.

[32] Goetz Graefe. Implementing sorting in database systems. ACM Computing Sur-

veys, 38(3), 2006.

[33] Goetz Graefe. A generalized join algorithm. InBTW, pages 267–286, 2011.

[34] Goetz Graefe and William J. McKenna. The volcano optimizer generator: Exten-

sibility and efficient search. InICDE, pages 209–218, 1993.

[35] Ravindra Guravannavar and S. Sudarshan. Reducing order enforcement cost in

complex query plans. InICDE, pages 856–865, 2007.

[36] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. Qpipe:

a simultaneously pipelined relational query engine. InSIGMOD, pages 383–394,

2005.

160

[37] Ming-I Hsieh, Eric Hsiao-Kuang Wu, and Meng-Feng Tsai.Fasterdsp: A faster

approximation algorithm for directed steiner tree problem. J. Inf. Sci. Eng.,

22(6):1409–1425, 2006.

[38] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li,

Arnab Nandi, and Cong Yu. Making database systems usable. InSIGMOD, pages

13–24, 2007.

[39] Richard M. Karp. Reducibility among combinatorial problems. InComplexity of

Computer Computations, pages 85–103. Plenum Press, 1972.

[40] Donald E. Knuth.The art of computer programming, volume 3: (2nd ed.) sorting

and searching. Addison-Wesley, 1998.

[41] Robert Philip Kooi. The optimization of queries in relational databases. PhD

thesis, Case Western Reserve University, 1980.

[42] Christian A. Lang, Bishwaranjan Bhattacharjee, Tim Malkemus, Sriram Padman-

abhan, and Kwai Wong. Increasing buffer-locality for multiple relational table

scans through grouping and throttling. InICDE, pages 1136–1145, 2007.

[43] Christian A. Lang, Bishwaranjan Bhattacharjee, Tim Malkemus, and Kwai Wong.

Increasing buffer-locality for multiple index based scansthrough intelligent place-

ment and index scan speed control. InVLDB, pages 1298–1309, 2007.

[44] Per-Ake Larson. External sorting: Run formation revisited. IEEE Transactions on

Knowledge and Data Engineering, 15(4):961–972, 2003.

[45] Hui Lei and Kenneth A. Ross. Faster joins, self-joins and multi-way joins using

join indices.Data Knowl. Eng., 29(2):179–200, 1999.

161

[46] Hongjun Lu and Kian-Lee Tan. On sort-merge algorithm for band joins. IEEE

Transactions on Knowledge and Data Engineering, 7(3):508–510, 1995.

[47] Masaya Nakayama, Masaru Kitsuregawa, and Mikio Takagi. Hash-partitioned join

method using dynamic destaging strategy. InVLDB, pages 468–478, 1988.

[48] Thomas Neumann and Guido Moerkotte. An efficient framework for order opti-

mization. InICDE, pages 461–472.

[49] Thomas Neumann and Guido Moerkotte. A combined framework for grouping and

order optimization. InVLDB, pages 960–971, 2004.

[50] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The lru-k page re-

placement algorithm for database disk buffering. InSIGMOD, pages 297–306,

1993.

[51] Vinay S. Pai and Peter J. Varman. Prefetching with multiple disks for external

mergesort: simulation and analysis. InICDE, pages 273–282, 1992.

[52] Theoni Pitoura and Peter Triantafillou. Self-join sizeestimation in large-scale dis-

tributed data systems. InICDE, pages 764–773, 2008.

[53] Nicholas Roussopoulos. View indexing in relational databases. ACM Trans.

Database Syst., 7(2):258–290, 1982.

[54] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensi-

ble algorithms for multi query optimization. InSIGMOD, pages 249–260, 2000.

[55] Betty Salzberg. Merging sorted runs using large main memory. Acta Informatica,

27(3):195–215, 1989.

162

[56] Patricia Griffiths Selinger, Morton M Astrahan, DonaldDean Chamberlin, Ray-

mond A. Lorie, and Thomas Gordon Price. Access path selection in a relational

database management system. InSIGMOD, pages 23–34, 1979.

[57] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene J. Shekita, Catalina Fan, and

John Funderburk. Querying xml views of relational data. InVLDB, pages 261–270,

2001.

[58] David Simmen, Eugene Shekita, and Timothy Malkemus. Fundamental techniques

for order optimization. InSIGMOD, pages 57–67, 1996.

[59] T.C. Ting and Y.W. Wang. Multiway replacement selection sort with dynamic

reservoir.The Computer Journal, 20(4):298–301, 1977.

[60] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg.Cost-based query scram-

bling for initial delays.SIGMOD Rec., 27(2):130–141, 1998.

[61] Patrick Valduriez. Join indices.ACM Trans. Database Syst., 12(2):218–246, 1987.

[62] Xiaoyu Wang and Mitch Cherniack. Avoiding sorting and grouping in processing

queries. InVLDB, pages 826–837, 2003.

[63] Andreas Weininger. Efficient execution of joins in a star schema. InSIGMOD,

pages 542–545, 2002.

[64] Weiye Zhang and Per-Ake Larson. Dynamic memory adjustment for external

mergesort. InVLDB, pages 376–385, 1997.

[65] Weiye Zhang and Per-Ake Larson. Buffering and read-ahead strategies for external

mergesort. InVLDB, pages 523–533, 1998.

163

[66] Yihong Zhao, Prasad M. Deshpande, Jeffrey F. Naughton,and Amit Shukla. Simul-

taneous optimization and evaluation of multiple dimensional queries. InSIGMOD,

pages 271–282, 1998.

[67] Luoquan Zheng and Per-Ake Larson. Speeding up externalmergesort.IEEE Trans-

actions on Knowledge and Data Engineering, 8(2):322–332, 1996.

[68] Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag, and Wolfgang Lehner.

Efficient exploitation of similar subexpressions for queryprocessing. InSIGMOD,

pages 533–544, 2007.

[69] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. Cooperative scans:

dynamic bandwidth sharing in a DBMS. InVLDB, pages 723–734, 2007.

APPENDIX A

Supplementary Materials for Chapter 3

A.1 The Proof of Theorem 3.1

In this section, we provide the proof of Theorem 3.1 in Section 3.5.1. The proof

is based on induction. We first analyze the performance of 3-way and 4-way cooper-

ative sorting and compare them with the alternative realizations using 2-way coopera-

tive sorting. Subsequently, we generalize the analysis tok-way cooperative sorting for

k ≥ 3. For simplicity, we assume the permutation ofS is s1s2 · · · sk and leto′i denote

((o1 · o2) · o3) · ... · oi.

The figures below represent the execution plans of differentcooperative sortings.

Each node represents the set of tuples in relationT associated with a specific tuple ar-

rangement. Each directed edge represents an operation which reorganize the tuples of

one node to derive another node. The edges are annotated withthe I/O costs of oper-

ations. Besides the I/O costs, we also explicitly count in two types of non-trivial CPU

costs incurred by cooperative sortings, i.e. the cost of internally sorting the composite

164

165

chunklets within initial sorted runs during the intermediate sort operations12 and the

cost of internally sorting the composite chunks ofs12 to derives1. We assume that CPU

costs of the same type are universally equal.

3’s

2s1s 3s

o .
1 o .o2

2’s

T

3

2B

0

initial runs of .oo1
. o2 3

F F

2B log (B/2M)F

2B log (N)1 2B log (N)2

2B log (B/2M)F

Figure A.1: The Execution Plan of 3-way Cooperative Sorting

Analysis of 3-way cooperative sorting. Fig. A.1 shows an execution plan of 3-way

cooperative sorting. The tableT is first sorted into initial runs ono′3 = o1 · o2 · o3, which

are then separately fed into the two intermediate sort operationss′2 ands′3. Finally, s1

ands2 are derived froms′2, while s3 is derived froms′3.

The cost of generating initial sorted runs ono′3 is2×B, whereB is the total number of

blocks of tuples inT (i.e.,B = B(T)). The costs ofs′2 ands′3 are both2×B×⌈logF
B

2M
⌉

plusCis, which is the cost of performing internal sortings on composite chunklets within

the initial runs.s1 can be derived froms′2 with the costCs′
2
→s1

of performing internal

sortings for all the composite chunks ofs′2, ands2 can be produced by the chunk merging

procedure (Section 3.4.1) froms′2 with a cost2×B×⌈logF N1⌉, whereN1 is the number

of chunks ofs′2. s3 is computed by a chunk merge procedure froms′3 with a cost2 ×

B × ⌈logF N2⌉, whereN2 is the number of chunks ofs′3. Hence, the total cost of 3-way

166

cooperative sorting is

2× B × (1 + 2× ⌈logF

B

2M
⌉+ ⌈logFN1⌉+ ⌈logF N2⌉)

+2× Cis + Cs′
2
→s1

(A.1)

T

2B

o .
1 o2

’s2

T

2B

o3o1
. o2

initial runs of

2s1s

s3

0

2B log (B/2M) 2B log (B/2M)FF

F2B log (N)1

Figure A.2: The Alternative Execution Plan of 2-way Cooperative Sorting

We compare this execution plan with another plan that is based on 2-way cooperative

sorting depicted in Fig. A.2, wheres1 and s2 are derived from the intermediate sort

operations′2 of a 2-way cooperative sorting, ands3 is a normal external sorting. The

total cost of this plan is

2×B × (2 + 2× ⌈logF

B

2M
⌉+ ⌈logF N1⌉) + Cis + Cs′

2
→s1

(A.2)

The difference obtained by subtracting Eqn. A.2 from Eqn. A.1 is: 2×B×(⌈logF N2⌉−

1) + Cis, which is always non-negative. Hence, 3-way cooperative sorting is no cheaper

than its alternative realizations using 2-way cooperativesorting.

Analysis of 4-way cooperative sorting. A similar analysis can be derived to compare

the performance of 4-way cooperative sorting with 2-way cooperative sorting.

The execution plan of 4-way cooperative sorting is shown in Fig. A.3. The tableT

167

3o. .o3
.o4o1 o2

.

4’s2’s

2s1s

3’s

3s

T

2B

initial runs of o .
1 o2

.o4

s4

0 2B log (N)

2B log (B/2M)F

F F 2B log (N)F

2B log (B/2M)F

1
2B log (N)2

2B log (B/2M)F

3

Figure A.3: The Execution Plan of 4-way Cooperative Sorting

is first sorted into initial runs ono′4 = o1 · o2 · o3 · o4, which are then separately fed into

the three intermediate sort operationss′2, s′3 ands′4. Finally, s1 ands2 are derived from

s′2, s3 is derived froms′3 ands4 is derived froms′4. Ni (i ∈ {1, 2, 3}) is the number of

chunks ofs′i. The total cost of this execution plan is

2× B × (1 + 3× ⌈logF

B

2M
⌉+ ⌈logFN1⌉+ ⌈logF N2⌉

+⌈logF N3⌉) + 3× Cis + Cs′
2
→s1

(A.3)

The alternative execution plan that utilizes binary cooperative sorting is depicted in

Fig. A.4. In this plan,s′a is the intermediate sort operation for the cooperative sorting

betweens3 ands4 whereN4 is the number of chunks ofs′a. s1 ands2 are still derived

from the intermediate sort operations′2. The total cost of this plan is

2× B × (2 + 2× ⌈logF

B

2M
⌉+ ⌈logFN1⌉+ ⌈logF N4⌉)

+2× Cis + Cs′
2
→s1

+ Cs′a→s3

(A.4)

whereCs′a→s3
is the cost of internally sorting composite chunks ofs′a to derives3.

168

T

2B

o .
3 o4 o3

. o

’sa

3s 4s

T

2B

o .
1 o2o1

. o2

initial runs of

’s2

2s1s

initial runs of
4

0

2B log (B/2M)F

F 0 F
2B log (N)1 2B log (N)4

2B log (B/2M)F

Figure A.4: The Alternative Execution Plan of 2-way Cooperative Sorting

The difference obtained by subtracting Eqn. A.4 from Eqn. A.3 is

2× B × (⌈logF

B

2M
⌉+ ⌈logF N2⌉+ ⌈logF N3⌉ − ⌈logF N4⌉

−1) + Cis − Cs′a→s3

(A.5)

First of all, we assume that the value of|Cis − Cs′a→s3
| is negligible compared to the

dominant I/O cost.

Note that eacho31-segmentof s′a consists of one or multipleo′41-segmentsof s′4. With

this constraint, the maximum possible value ofN4/N3 is achieved when all chunks ofs′a

ands′4 are composite. In this case,N4 = 2∗B
M

(the upper bound of total number of chunks

possible) andN3 = B
M

(the lower bound of the total number of chunks possible). Since

the merge orderF is at least 2,⌈logF N4⌉ − ⌈logF N3⌉ ≤ 1.

Therefore, the minimum value of Eqn. A.5 is2×B × (⌈logF
B

2M
⌉+ ⌈logF N2⌉ − 2),

which is always non-negative. This means that 4-way cooperative sorting is no cheaper

than its alternative realizations using 2-way cooperativesorting.

Analysis of k-way cooperative sorting. The generalized execution plan ofk-way co-

operative sorting as well as the alternative plan with cooperative sorting are depicted in

169

Fig. A.5 and Fig. A.6, respectively. In Fig. A.6,sai is the intermediate sort operation for

the cooperative sorting betweensi andsi+1.

As shown, the plan in Fig. A.5 is composed of three parts: part1 represents equiv-

alently a 2-way cooperative sorting betweens1 ands2; part 2 is the derivation ofs3 to

sk−1 (or sk, if k is even) from their corresponding intermediate sort operations; part 3

contains the derivation ofsk if k is odd. Both part 2 and part 3 are probably but always

exclusively empty.

Similarly, the plan in Fig. A.6 also consists of three parts:part 1 is a 2-way coop-

erative sorting betweens1 ands2; part 2 contains(k − 2)/2 2-way cooerpative sortings

to derives3 to sk−1 (or sk, if k is even), each of which is betweensi andsi+1; part 3 is

a normal external sortingsk if k is odd. Both part 2 and part 3 are probably but always

exclusively empty.

i’s

is

i+1’s2’s

2s1s

k’s

T

2B

o .
1 o2

.o
.....

. ...
k

si+1 s

part 1: appear 1 time part 3: appear if k is odd

0 2B log (N)

2B log (B/2M)F

F
F F F

2B log (B/2M)F

2B log (B/2M)F

2B log (B/2M)F

1
2B log (N)i 2B log (N)i+1 k2B log (N)

k

part 2: appear (k−2)/2 times

Figure A.5: The Execution Plan ofk-way Cooperative Sorting

First of all, the cost of part 1 in both figures are equal. Note that the cost difference

between part 3 in Fig. A.5 and in Fig. A.6 is exactly the same asthe difference between

170

is

T

2B

o .
1 o2

’s2

i+1s

T

2B

sk

ok

2s1s

T

2B

sa’i

0

part 1: appear 1 time

0

o .
i oi+1

2B log (B/2M)F
2B log (B/2M)F2B log (B/2M)F

2B log (N)1F
2B log (N) F i+1

part 2: appear (k−2)/2 times part 3: appear if k is odd

Figure A.6: The Alternative Execution Plan of 2-way Cooperative Sorting

Eqn. A.1 and Eqn. A.2 in the analysis of 3-way cooperative sorting, which is always

non-negative. Also observe that for each pair ofsi andsi+1 that are generated in part 2

of both Fig. A.5 and Fig. A.6, the cost difference of derivingthem between the former

figure and the latter is actually the same as the difference between Eqn. A.3 and Eqn. A.4,

i.e. Eqn. A.5, in the analysis of 4-way cooperative sorting,which is always non-negative.

As a result, the cost of parti (i ∈ {1, 2, 3}) in Fig. A.6 is no higher than parti in Fig. A.5.

Therefore, it is easy to deduce that in general,k-way cooperative sorting (k ≥ 3) is not

more efficient compared to their equivalent realizations using 2-way cooperative sorting.

A.2 Component Costs of Sorting Results in Performance

Study

In this section, we list the component costs of sortings in Section 3.7.1 and Sec-

tion 3.7.3. The meanings of cost components in Section 3.7.1are given in Table 3.3. The

meanings of cost components in Section 3.7.3 are given in Table 3.5.

171

CS IS

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

5MB 129.25 70.29 59.15 3.45 22.98 127.39 70.90 128.71 54.43

15MB 126.62 69.47 32.57 8.30 23.57 126.36 75.54 125.70 71.79

30MB 129.62 58.64 28.12 11.47 23.80 126.52 60.05 126.24 53.60

45MB 130.18 53.87 27.46 15.45 24.51 129.92 55.22 125.84 53.24

60MB 126.27 47.89 28.81 18.41 24.85 126.23 50.96 129.36 47.61

100MB 125.64 34.90 24.52 22.11 25.32 125.93 49.26 129.59 46.88

web sales,SF 40 TPC-DS Dataset

CS IS

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

5MB 256.60 221.96 230.49 7.58 45.38 259.03 219.82 255.64 192.93

15MB 260.75 229.75 91.48 16.65 46.29 263.36 188.90 254.87 164.14

30MB 254.66 121.97 58.62 20.65 47.19 257.42 155.15 260.35 136.16

45MB 258.27 149.05 55.25 25.48 47.21 260.98 150.07 258.29 132.78

60MB 255.65 132.31 54.76 32.59 47.71 258.62 137.59 261.16 118.33

100MB 262.61 118.78 51.89 40.62 48.43 261.75 126.01 269.65 106.86

catalogsales,SF 40 TPC-DS Dataset

CS IS

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

15MB 352.36 934.28 244.45 19.21 70.28 410.03 539.52 399.86 492.84

30MB 377.94 385.95 236.96 28.94 72.11 392.31 399.09 370.46 381.49

45MB 362.83 195.38 224.75 39.27 72.91 351.04 277.77 358.31 259.73

60MB 384.26 291.87 102.73 49.96 73.91 354.45 279.03 384.18 242.23

75MB 377.61 243.56 93.21 64.51 75.17 380.68 256.74 360.36 217.99

100MB 393.62 263.99 99.12 67.59 76.32 385.29 270.82 375.42 232.20

storesales,SF 40 TPC-DS Dataset

CS IS

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

10MB 491.59 335.56 312.58 12.46 67.81 497.00 354.79 496.74 290.32

25MB 482.22 235.16 181.37 20.17 68.40 482.43 278.31 478.44 242.93

50MB 476.58 219.54 60.73 32.56 70.54 477.87 187.49 466.16 154.08

75MB 483.23 164.60 76.37 46.81 72.64 487.61 177.98 481.98 143.24

100MB 476.82 165.38 70.67 51.36 73.02 477.90 162.51 467.08 143.35

150MB 478.52 133.11 95.14 63.77 78.61 481.79 141.69 472.28 121.95

web sales,SF 100 TPC-DS Dataset

172

CS IS

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

50MB 705.38 338.82 565.95 54.38 112.06 703.48 457.27 693.35 419.20

75MB 711.31 398.54 304.16 69.84 119.20 714.88 394.66 694.66 342.41

100MB 715.49 385.83 329.92 77.85 127.05 716.09 395.31 706.47 352.02

125MB 720.86 334.10 330.60 89.33 135.23 723.51 337.24 721.25 319.61

150MB 753.44 312.17 300.76 104.36 147.99 726.86 339.33 703.37 285.73

200MB 726.80 310.83 306.59 107.31 147.15 722.88 335.29 707.18 282.62

catalogsales,SF 100 TPC-DS Dataset

CS IS

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

50MB 1051.42 1513.20 1204.94 64.11 158.26 1044.71 1474.01 1022.83 1245.96

75MB 999.68 893.91 694.19 78.83 165.50 1052.69 799.03 1048.09 707.88

100MB 976.48 967.27 677.03 91.12 165.33 1026.37 832.70 1047.79 724.80

125MB 1045.31 752.22 689.59 108.00 178.09 1038.55 791.06 1034.95 656.65

150MB 1002.96 614.47 600.49 130.60 187.06 1075.51 739.58 1061.20 601.23

200MB 1079.92 648.63 590.58 152.59 194.64 1043.65 703.66 1048.80 595.02

storesales,SF 100 TPC-DS Dataset

Table A.1: Component Costs of Sortings in the Micro-benchmark Test of Section 3.7.1
(in seconds)

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 12.17 1.67 3.16 0.38 4.90 2.58 12.35 1.84 12.56 5.26 2.31

2MB 12.15 1.08 4.74 0.65 3.46 2.42 12.40 1.21 12.46 3.81 2.14

3MB 12.12 1.33 2.34 0.77 4.80 2.43 12.66 1.56 11.92 3.80 2.47

4MB 12.53 2.05 0.88 0.91 4.76 2.89 12.04 1.66 12.00 3.16 2.79

5MB 12.18 1.52 0.97 0.90 4.71 2.16 12.61 1.84 12.18 3.79 2.33

6MB 12.01 1.65 0.92 1.04 4.41 2.46 13.09 0.0 12.34 4.30 2.45

web returns,SF 40 TPC-DS Dataset

173

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 19.07 3.85 10.53 0.66 4.77 3.73 19.39 3.74 17.88 5.98 3.74

3MB 18.96 2.67 3.69 1.11 8.02 4.65 18.13 3.00 18.02 7.54 4.15

5MB 20.31 3.61 1.90 1.52 7.94 4.79 19.28 4.09 19.50 6.37 4.98

7MB 19.40 3.84 2.01 1.93 10.28 4.55 18.75 4.85 18.99 6.01 4.29

9MB 19.05 4.03 1.91 2.01 8.77 4.69 20.02 0.0 19.15 6.11 3.44

11MB 19.85 3.72 0.0 2.04 9.26 6.14 19.14 0.0 19.85 6.00 3.68

catalogreturns,SF 40 TPC-DS Dataset

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 39.76 15.53 21.52 1.37 11.62 8.89 39.96 15.41 42.29 12.54 5.76

4MB 42.90 5.96 9.94 2.33 13.23 7.69 40.42 6.76 41.27 10.68 5.96

7MB 40.07 7.65 4.00 2.80 18.80 7.34 42.76 10.17 39.85 10.60 7.14

10MB 39.28 8.64 4.44 3.04 15.45 7.34 39.27 10.79 39.87 11.93 6.82

13MB 40.49 8.44 5.00 3.36 10.81 7.17 42.56 0.0 39.61 14.34 9.93

16MB 41.20 8.21 0.0 3.81 12.25 8.29 40.13 0.0 42.36 16.55 9.10

storereturns,SF 40 TPC-DS Dataset

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

5MB 114.82 42.92 21.38 3.75 36.72 37.79 122.94 50.88 121.70 31.09 31.65

15MB 118.25 37.73 12.19 8.37 48.49 28.39 122.58 61.13 122.55 29.07 31.81

30MB 114.79 46.11 0.0 11.92 38.00 26.29 124.16 0.0 123.13 65.71 31.46

45MB 121.06 46.90 0.0 13.42 34.97 22.50 123.30 0.0 129.82 56.49 27.42

60MB 121.00 40.29 0.0 16.16 31.37 22.16 119.95 0.0 121.78 50.88 31.87

100MB 120.71 38.80 0.0 22.60 30.42 21.39 120.30 0.0 122.86 46.29 29.64

web sales,SF 40 TPC-DS Dataset

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

5MB 242.68 132.64 137.28 6.94 86.53 80.35 251.62 144.24 250.50 47.85 63.00

15MB 248.14 122.63 32.24 16.41 88.32 73.82 244.54 125.28 243.98 57.23 63.78

30MB 243.26 81.99 26.56 23.51 69.05 66.49 227.69 0.0 229.18 112.56 55.81

45MB 243.86 110.16 0.0 28.42 68.74 50.27 226.68 0.0 227.72 141.63 56.25

60MB 244.23 97.42 0.0 34.17 63.00 50.71 244.42 0.0 242.53 104.58 59.26

100MB 245.17 85.09 0.0 48.15 61.91 45.87 243.59 0.0 244.63 98.61 60.58

catalogsales,SF 40 TPC-DS Dataset

174

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

15MB 357.17 376.00 56.68 18.42 172.56 156.89 362.11 229.02 354.70 150.13 114.50

30MB 394.37 225.36 64.21 29.86 201.09 151.49 353.83 257.54 356.87 140.07 123.38

45MB 364.07 172.20 69.11 33.98 140.53 130.42 384.02 0.0 367.14 263.73 128.57

60MB 389.42 240.03 0.0 47.61 136.47 107.93 384.39 0.0 353.24 279.82 121.23

75MB 391.61 240.29 0.0 58.01 141.05 108.65 359.72 0.0 354.20 277.25 120.84

100MB 390.97 200.70 0.0 70.37 144.21 108.10 363.89 0.0 351.61 245.71 111.46

storesales,SF 40 TPC-DS Dataset

Table A.2: Component Costs of CIB and NIB withSF 40 in Section 3.7.3 (in seconds)

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 31.48 7.51 11.25 1.04 5.26 4.45 31.91 6.59 32.04 6.28 4.50

3MB 32.91 3.30 11.17 1.55 6.17 5.77 31.43 3.29 32.39 8.56 4.77

5MB 32.21 3.98 5.22 1.84 9.63 6.04 32.04 4.72 31.58 7.13 5.18

7MB 32.08 4.62 2.65 2.50 11.14 6.07 31.73 5.71 32.06 7.63 4.89

9MB 32.09 4.79 2.57 2.65 9.69 6.37 33.86 0.0 32.97 7.84 3.16

11MB 33.32 4.98 2.78 2.84 6.95 4.56 32.52 0.0 32.94 7.77 3.21

web returns,SF 100 TPC-DS Dataset

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 72.09 24.75 25.88 1.83 15.78 10.64 70.06 24.38 71.50 14.13 8.33

5MB 69.96 13.01 10.10 2.85 17.78 12.37 71.73 12.77 70.36 12.35 7.59

9MB 64.80 14.71 5.33 3.77 18.95 11.31 72.77 18.21 70.64 13.81 12.19

13MB 69.73 14.96 5.73 4.99 17.60 10.68 71.93 0.0 72.94 23.74 12.14

17MB 69.61 14.04 0.0 5.47 16.76 12.98 71.41 0.0 68.80 21.22 11.99

21MB 72.55 13.79 0.0 6.00 17.24 10.28 70.43 0.0 72.77 22.40 13.04

catalogreturns,SF 100 TPC-DS Dataset

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 119.64 65.80 70.51 2.84 38.58 27.45 122.96 77.21 119.67 27.94 27.37

6MB 122.45 51.49 27.87 3.89 35.98 24.98 119.46 36.36 121.23 29.65 26.42

11MB 119.78 45.89 16.56 5.65 36.27 23.23 120.42 44.74 122.27 27.82 26.01

16MB 123.37 45.95 12.20 7.63 37.71 24.77 122.79 0.0 121.99 57.61 23.74

21MB 120.31 45.31 12.08 8.54 34.67 28.62 122.44 0.0 119.80 55.89 28.44

26MB 121.33 47.55 0.0 9.05 30.58 21.90 120.69 0.0 118.96 59.74 22.27

storereturns,SF 100 TPC-DS Dataset

175

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

10MB 367.37 185.29 64.86 28.33 115.41 72.73 367.88 130.74 353.44 76.76 67.55

25MB 366.31 101.06 35.17 36.52 147.14 63.19 364.42 140.74 367.71 74.39 74.51

50MB 366.29 134.47 0.0 49.96 109.81 62.53 367.67 0.0 367.48 161.26 75.56

75MB 353.53 107.97 0.0 62.23 119.55 68.41 366.20 0.0 365.19 145.66 74.17

100MB 355.73 98.76 0.0 87.97 105.77 62.54 367.09 0.0 368.00 131.01 75.88

150MB 367.23 95.03 0.0 110.87 113.11 64.53 365.35 0.0 364.66 117.61 75.23

web sales,SF 100 TPC-DS Dataset

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

50MB 684.11 286.07 0.0 54.49 194.25 139.52 700.05 0.0 701.99 318.83 166.82

75MB 699.00 306.33 0.0 73.87 191.15 146.53 698.60 0.0 698.12 346.95 167.25

100MB 692.16 255.92 0.0 83.69 191.43 131.78 696.26 0.0 698.25 300.61 166.82

125MB 691.51 239.11 0.0 100.66 192.40 141.00 696.13 0.0 698.65 284.29 166.21

150MB 697.67 252.29 0.0 112.42 196.01 137.42 698.40 0.0 701.03 284.75 167.67

200MB 698.56 214.58 0.0 121.02 209.85 133.78 702.50 0.0 700.29 250.96 149.78

catalogsales,SF 100 TPC-DS Dataset

CIB NIB

Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

50MB 1021.32 616.76 353.91 72.12 635.09 359.47 1025.74 832.74 1033.73 359.41 343.69

75MB 1022.98 448.50 361.05 85.49 457.38 430.03 1025.55 0.0 1026.94 717.00 308.64

100MB 959.97 629.48 0.0 103.33 453.39 408.62 973.20 0.0 1024.31 933.09 305.94

125MB 991.77 820.71 0.0 115.40 430.16 413.82 978.07 0.0 983.09 714.52 316.50

150MB 977.85 588.76 0.0 145.80 460.39 417.66 1025.25 0.0 951.52 696.81 266.49

200MB 1000.33 502.42 0.0 164.53 431.94 413.46 972.06 0.0 942.63 634.19 300.10

storesales,SF 100 TPC-DS Dataset

Table A.3: Component Costs of CIB and NIB withSF 100 in Section 3.7.3 (in seconds)

