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Abstract 

In chapter 1, we summarize the properties of nucleic acids in bulk and in nano-

confinement. We will be discussing the conformation of DNA in the presence of 

condensing ligands spermidine, cobalt hexamine and spermine.  

In chapter 2, we describe the materials and methods used in the experiments. 

We will describe the procedure for the fabrication of micro-fluidics channels in 

SU-8, fabrication of a nano-micro fluidic chip in PDMS (Polydimethylsiloxane), 

injecting molecules in nano-channels, and fluorescence imaging of T4-DNA 

molecules in nano-channels.   

In chapter 3 our main interest is to study the conformation of T4 DNA molecule in the 

presence multivalent cations like spermidine, cobalthexamine and spermine. To 

observe the conformation of dye labeled T4 DNA molecule we used fluorescence 

microscope. Our results show that transition from elongated state to collapsed state is 

discrete. The critical concentration of the cation needed to condense the DNA molecule 

is lowest for the tetravalent cation and highest for the trivalent cation. The co-existence 

region is larger for trivalent cation and less for the tetravalent cation 

In chapter 4 we aim to study the equilibrium conformation of the DNA molecule in 

nanoconfinement. For this purpose we fabricated nano-channels of 200nm in width and 

300nm in height in PDMS and used fluorescence microscope to observe the elongation 

of the molecule. Our results show that in 1XT buffer (10mM Tris-Hcl pH=8.5) the 

elongation of T4 DNA molecule is around 12µm 
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In chapter 5, we demonstrate the integration of the PDMS micro-fluidic channel with 

graphene device as a novel way to achieve electrolyte top gating of graphene. By 

applying a back gate voltage, carrier concentrations of up to 2.3 x 1012 /cm2 and mobility 

values of up to 7500cm2/Vs can be obtained in the device at ambient conditions. In the 

case of electrolyte top gating, significantly higher doping concentrations can be 

achieved as compared to conventional back gating at low voltages. The effective 

implementation of electrolyte top gating by using micro channels serves as a compelling 

proof of concept that graphene can be used as a chemical and biological sensor. 
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Chapter1 Introduction to the physics of nucleic acids 

 

1.1 The ideal chain model 

The simplest model for a polymer represents the molecule as a sequence of identical 

monomers in a chain of N links. Each monomer has a center of mass at ir . This ideal 

chain has a step vector between subsequent monomers, of 

                                           )1.........(......................1−−= iii rrl
 

 

This describes a random walk with step length through space. Note that the orientation 

of one link is independent of the orientation of other links, and that there is no 

interaction between segments that are not directly linked; there are no long-range 

interactions. The contour length of the molecule is given by 

                                      
)2....(..............................NllNL ic ==

 

 

The end-to-end distance of the molecule can be calculated by forming the expectation 

value of the squared sum of all steps 

                                    )3.(........................................
22

Nlh =〉〈  

 

This can be used to define an effective radius for the polymer coil, also called the radius 

of gyration (Graessley, 2008) 

                          

)4(........................................
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From the Gaussian distribution of radii (not shown), an effective free energy for the 

molecules can be derived. The source term is completely entropic, and we find the free 

energy as  

               

)5(..............................
2

3
)(

2

2

Nl

R
TkFTSURF Bo +=−=                   

Here Fo is the minimum free energy and R is the radius of gyration. Note that this is a 

harmonic spring free energy in R, and that the spring constant is temperature 

dependent. For DNA, this model of freely jointed links of monomers has to be altered 

because neighboring base pairs are stacked, leading to a bending stiffness. DNA is thus 

better described by a worm-like chain (WLC). The WLC model envisions the polymer as 

a uniform, continuously flexible rod. The key parameter of the WLC model is the 

persistence length LP, defined as the length over which the autocorrelation of the 

tangential vector decays to 1/e. When considering the WLC, there exist two limiting 

considerations: LC « Lp, and LC » Lp. In the case of a very long chain, a detailed 

calculation yields a relationship between contour length and the radius of gyration as in 

Equation for Rg. 
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1.2 Flory model of volume exclusion 

Note that the DNA worm-like chain in reality is not a “phantom chain” that can intersect 

itself; two links cannot occupy the same space at the same time. Flory was the first to 

take into account volume exclusion effects, and used the mean field approximation for 

the monomer concentration, 

                                          
)6.....(..............................

6

2

22

R

N
cc ≅〉〈=〉〈

 

 

If correlations between monomers are ignored. Flory then argued that the energy due to 

the excluded volume could be calculated by  

                                    
)7...(....................

3
2
dxcTKF BVolume χ∫=

 

 

The parameter ‘χ ’ is the excluded volume parameter, which has the units of volume. 

Onsager proposed in the context of liquid crystals that the volume occupied by two rods 

of length Lp and width weff, on average, could be represented as  

                                 
)8........(........................................2

peffLw=χ
 

 

In the following, we will drop factors of order one, and all results serve to establish 

relative relationships. If we assume that the molecule is shaped as a spherical blob 

(“Flory coil”) with radius R with constant density throughout, we can combine the free 

energy of the freely jointed chain with the Flory energy to form the total free energy 

                            (9)...................................Volumespringtotal FFF +=  
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 If NB  is the number of persistence lengths stored inside the blob, this becomes  

                               

)10(........................................
3

22

2

2









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R

NwL
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Btotal

 

   

The equilibrium radius can then be found by demanding a local minimum of the free 

energy  

                                                     
)11(..................................................0=

∂

∂

R

FTotal

 

 

Solving for R yields the Flory radius  

                                              )12(........................................5
3

5
2

5
1

NLR pf χ=  

 

(Shaefer et al. 1980, Moon et al. 1991) for arbitraryχ . Combining this result with 

Onsager’s excluded volume parameter leads to a Flory coil with length of 

                                            ( ) )13...(........................................5
3

5
1
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1.3 Conformation of DNA and its biological meaning 

 The word conformation means the arrangement of structure. In living cells, the 

arrangement of deoxyribonucleic acid (DNA) is important in many aspects. For instance, 

the compaction of DNA in prokaryotic and eukaryotic cells [1], the mechanism of DNA-

protein interaction [2], and the enzymatic reaction concerned with DNA transcription [3] 

are related to the conformation of DNA. Consider this example illustrating the 

compaction of DNA: a human DNA molecule about one meter in length can be 

packed into a micron-scale chromosome. Compaction of DNA to a million hold is 

established by the histone. A beads-on-a-string structure of DNA-histone complex 

(namely chromatin) is formed in the nucleosome (figure 1 (b)). This phenomenon exists 

exclusively in the eukaryotic cells. However in prokaryotic cells, spermidine plays a role 

in the compaction of DNA.  

 

 

Fig (1a): A schematic diagram of the chromosome in eukaryotic cell (b) The structure of Chromosome 
with an electron micrograph [4] (image taken from Lehninger principle of bio-chemistry). 
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Fig (2) The donut or the stem structure of T4 or T7 DNA induced by the poly (ethylene oxide) and the 
polylysine [5]. [a,d] the donut or the stem structure of T7 DNA induced by the polylysine are presented. In 
the panel [b,c] the donut or the stem structure of T4 DNA induced by the polylysine are presented. In the 

panels [e,f,g] t4 DNA is collapsed with the poly(ethylene oxide). The average length and width of the 
poly(ethylene oxide) collapsed T4 DNA are 100nm and 500nm.(image taken from Lehninger Principles of 

Bio-chemistry) 
 

 

Another example is the compaction of DNA in viruses. In a paper reported by U. K. 

Laemmli [5], the donut or the stem structures of T4 and T7 phage DNA are induced by  

poly(ethylene oxide) and  polylysine [5] (Fig. 2). The sizes of the poly (ethylene oxide) or 

the polylysine collapsed DNA is slightly larger than the phage head. The mechanism of 

the compaction of DNA in viruses is still not clear. Another feature of these condensed 

structures of DNA is that the efficiency of digestion by the single-strand specific 

endonuclease is enhanced. It suggests that the conformational change of DNA 

increases the enzyme-vulnerable regions and the condensed DNA is easier to be 

attacked by the endonuclease. However, in other cases, the activity of the restriction 

endonuclease is inhibited by the presence of spermidine (SPD) and spermine [6]. It is 

known that the conformation of DNA is also changed in the presence of spermidine [1]. 

The conformational change of DNA induced by spermidine is examined in this thesis. 
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Fig (3): (a) schematic diagram of DNA structure (b) The base pairs formed by purines and pyrimidines 
and nucleotides [7] (image taken from wiki/DNA). 

 

The double-helix structure of DNA was first proposed by James D. Watson and Francis 

Crick in 1953. The nucleotides are the monomers of DNA (figure 3). Two strands of the 

nucleotides forms a double-helix structure. The major groove and minor groove along 

the DNA structure are formed. Three major portions of the nucleotides are: the base, 

the deoxyribose, and the phosphate group. The four base types are adenine 

(abbreviated A), guanine (G), cytosine (C), and thymine (T). The hydrogen bonds 

between these bases are formed following the complementary base-pairing rule. The 

negative charge of DNA is carried by the phosphate group in the back bone. From the 

point of view of evolution, the specific sequence of DNA carries the information of 

heredity. A specific sequence of DNA, namely the gene, transcribes to the ribonucleic 

acid (RNA) and the RNA is translated to the functional protein. This process called 

Central Dogma is believed to govern the life cycle of all creatures on earth. From the 

point of view of polymer physics, the DNA is an extremely long molecule chain made up 
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of repeating nucleotides. The behavior of DNA is well described by the Kratky-Porod 

worm-like chain model (WLC) [8]. 

 

1.4 Introduction to polyamines 

Putrescine, spermidine, and spermine, which are classified as polyamines, are essential 

to prokaryotes, eukaryotes, viruses [10], and bacteria [11]. In mammalian cells, 

spermidine is found in millimolar concentration. Spermidine is a trivalent cation with a 

molecular weight of 145 daltons and the chemical formula is C7H19N3 (figure 4 (a)). 

Except for the compaction of DNA, spermidine is also related to transcription, cell 

growth and death regulation [12]. Due to the multication feature, spermidine binds the 

highly negative charged DNA and it makes DNA suitable for compact packaging and 

folding in the cell by neutralization. The binding model of spermidine is proposed by 

Amin A. Ouameur et al [13]. In figure 4, spermidine binds the adjacent phosphates from 

the same strand (figure 4 (b)) or intrastrand across the major groove or the minor 

groove of DNA (figure 4 (c, d)). There is an abundant literature devoted to the studies of 

the conformation of DNA changes in the presence of spermidine in vitro [15, 16, 17]. To 

probe the conformation of DNA, electron microscopes and atomic force microscopes 

(AFM) are the most commonly used. The toroid model of forming the DNA-SPD 

complex has been used the most accepted model in the past decade [18]. However, the 

flower-shaped structure has also been reported by Ye Fang et al [17].  



19 

 

 

Fig (4): The binding model of spermidine in DNA.(a) The chemical structure of spermidine[14].(b) spermidine 

binds three phosphates adjacent from the same strand.(c) Intrastrand across the major groove.(d) Intrastrand across 

the minor groove[13] (image taken from Amin Ahmed Ouameur and Heidar-Ali Tajmir-Riahi, 2004). 
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1.5 De Gennes Blob model for confined polymers 

De Gennes modified Flory’s model for self-avoiding polymers constrained in a tube of 

width R (Daoud et al. 1977, de Gennes, 1979). In the limit that R » Lp, the polymer is 

free to coil in a channel, since the energy for a molecule to make a backbend is ~ kBT. 

He thus treated the polymer as if it were a series of (named) “blobs”, which repel like 

hard spheres. He treats each blob as a Flory coil. This means that the polymer is evenly 

distributed along the channel, and (2) the blob radius RF scales as R, the size of the 

channel, according to Equation 13. 

 

Fig (5):  a) De Gennes’ ‘‘blob’’ model of confined DNA in a channel of diameter D describing the 
molecule as a series of self avoiding spheres. (b) Experimental stages of compressing a molecule at 

a constriction (image taken from Mannion and Craighead, 2006). 
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We are able to find the contour length that is stored in each blob, by back-solving 

Equation 13 for LB, and we find that

          

                

)14......(........................................
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3
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wL

R
L =

 

 

The apparent length along the channel L|| is then obtained from 
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A more rigorous derivation of the extension relationship would minimize the energy of 

the collection of blobs. For a polymer chain of N monomers of length Lp, divided among 

N/NB blobs, we rewrite Equation 10 as 
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We will consider the apparent length along the axis of the nanochannel as the free 

parameter, and we find that 
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Taking the derivative of Equation 17 with respect to length L|| and setting it equal to 

zero, we find the equilibrium length (all factors of order one will be omitted in the 

following),  
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and therefore 
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for Lc = NLp. C is a parameter that is common to all systems independent of channel 

size and polymer. This is in agreement with the more basic argument by De Gennes. 

 

1.6 Introduction to micro- and nanochannel devices  

Micro- and nano-fluidic devices are a relatively new way of analyzing single molecules 

and polymers. Devices made from transparent materials enable efficient imaging on the 

scale of biological interactions, with significantly smaller sample volumes. 

Nanostructures such as nanoslits, nanopores, and nanochannels have been designed 

to trap molecules in 1 or 2 spatial dimensions [18]. Channels inside these chips can be 

produced from microns to a few nanometers in width [18]. The mechanical properties of 

biological molecules are implicitly related to their function in vivo. Hence, microchannel 

and nanochannel devices that match the length scales of these interactions are 

valuable research tools [19]. 

 

Nanochannels act to confine bio-molecules by restricting their motion to one dimension 

along the channel axis. Once driven into the nanochannel, observed molecules are 
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subject to “confinement induced stretching” in the axial direction because they are 

compressed in the lateral direction [20]. Molecules that are introduced into micro- and 

nanochannel chips are directly manipulated by – electro kinetic transport. The stretching 

of individual molecules for imaging enables sizing of DNA molecules in a few minutes, 

whereas former gel-based separation techniques would require hours, or even days, to 

separate genomic length DNA [21, 22]. 

 

Instead of the traditional method dealing with ensembles of molecules, it is possible to 

measure the length of one molecule at a time. In ensemble methods data must be 

averaged across many molecules, which do not give the properties of single molecules. 

Stretching inside nanochannels is also an improvement over more traditional single 

molecules techniques, such as surface stretching methods [23] or adsorbing at the 

surface of mica [16]. That is because in surface stretching the molecule is locked into a 

single molecular conformation before measurement of its length. In nanofluidic devices, 

however, one molecule can be “trapped” within a nanochannel and many independent 

measurements can be taken while a molecule fluctuates. This allows rapid 

measurement of genomic DNA with high accuracy, within a few hundred base pairs 

[21]. Nevertheless, there are some disadvantages to the “lab-on-a-chip” design. 

Although shearing is avoided in the channels due to the low Reynolds number, very 

long portions of genomic DNA cannot be pipetted without shearing. 
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1.7 Conformation of molecule in the nano-confinement 

We define “confined” as the situation when a polymer is placed in a geometry that has 

at least one dimension smaller than the polymer’s equilibrium size in a dilute bulk 

solution ~Rg, bulk. In this vein, we define three major types of confinement. Slit-like 

confinement is defined as when only one dimension of the geometry is smaller than the 

natural size of a polymer (h<Rg, bulk). Similarly, tube-like confinement is defined as 

when a polymer is confined in a tube with a diameter h<Rg, bulk. In reality, this type of 

confinement is usually realized as a rectangular channel with its height (h) and width (d) 

smaller than Rg, bulk. Surface confinement is defined as when a polymer is limited to 

move in a plane. Fig. 6 illustrates these three types of confinement, the relevant 

theories, and representative fluorescence images of confined λ-DNA. From the 

fluorescence images in Fig. 6 one can get a feel for the striking conformational changes 

induced by confinement. Other types of confinements also exist in addition to those 

mentioned above. For example, it is possible to confine a chain from all three 

dimensions to form a box-like confinement [24]. A Polymer passing through a point-like 

pore can be considered as a slip link type confinement [25, 26]. Some studies actually 

 involved these two types of confinements [27], and such combinations are common in 

many bio-logical processes in cells. Fig.6 illustrates the conformation of DNA molecule 

in various confinements. 
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Fig (6): Shows the confinement of DNA in various confinements like weak confinement, slit-like 
confinement, Tube-like confinement, surface confinement (image taken from Maier and Rädler Phys. Rev. 

Lett., Copyright 1999 American Physical Society) 
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Chapter 2 Materials and methods 

 

2.1 Introduction to YOYO-1 and DAPI 

The stable fluorescence nucleic acid dye, YOYO-1 (molecular weight: 1270.65 Dalton) 

(Invitrogen, CA) is found to bis-intercalate into the base pair of the dsDNA by 

electrostatic interactions. The excitation wavelength of YOYO-1 intercalated DNA is 

491nm and the emission wavelength is 509nm. The reason behind using YOYO-1 is its 

high fluorescence intensity and low back ground noise. However by using YOYO-1 

several properties of the DNA such as persistence length and contour length of the DNA 

get increased where as the charge of the DNA molecule get decreased [1, 2, 7]. On the 

other hand the minor groove binding fluorescence labeling dye 49, 6-diamidino-2-

phenylindole (DAPI, excitation wavelength 358nm, emission wavelength 461nm) 

(Invitrogen, CA) which show less effect on the contour length and persistence length of 

DNA molecule when compared to YOYO-1. 

 

2.2  DNA sample preparation 

DNA stock solution is prepared in 1XT buffer(10mM Tris-Hcl) pH=8.5 at a concentration 

of 0.02g/l. YOYO-1 stock solution is prepared in 1XT buffer pH=8.5 at a concentration of 

5µM.  In our experiments, the ratio of DNA base pair to YOYO-1 molecule is fixed at 23 

to 1 (base pairs: YOYO-1). After adding YOYO-1 the solution is incubated at room 

temperature for 1hr to have uniform distribution of the YOYO-1 on the DNA molecule. 

The DNA-YOYO mixture is diluted to a final concentration of 0.1µM in base pairs with 

1XT, condensing ligand buffer. The solution is incubated for 3hrs to achieve equilibrium. 
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Note that the length of the incubation time with condensing ligands will affect the 

equilibrium conformation of the DNA molecule. During the incubation time the solutions 

are protected from light to avoid photo bleaching and photo damage of the DNA 

molecules. After the incubation the 3-5µl of the solution is placed on the cover slip or the 

sample cell to do fluorescence experiments.  

 

The single molecules were identified from the intensity profile of molecules [2, 3]. The 

intensity of the condensed DNA molecule will be very high when compared to the 

intensity of the coiled state DNA molecule. The aggregates or broken pieces of the DNA 

molecule were not considered. Long axis distance of the molecule is measured for the 

coiled and globule states of the DNA molecule. We observe the fluorescence of the dye 

which is attached to the DNA molecules. The coil is characterized by the internal 

fluctuation and translational Brownian motion of the DNA molecule. The DNA molecule 

in the elongated state is shown below Fig. (7a). The globule state is characterized by 

the bright spot exhibiting Brownian motion.  The globule state of the DNA molecule is 

shown in the Fig. (7b). At a critical concentration of the condensing ligand the transition 

from the coil state to the condensed state takes place. Around the critical concentration 

of the condensing ligands co-existence of the coil and globule states are observed, in 

agreement with a first order transition. 
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                            Fig (7a)                                                                Fig (7b) 

 

Fig (7a): shows the coiled state of the DNA molecule, Fig (7b): shows the condensed form of the DNA 
molecule 

 

2.3 Fabrication of micro and nano-channels 

The stamp was fabricated by a two step lithography process. The nano-channels were 

fabricated by proton beam lithography in Hydrogen Silsequioxane resist (HSQ) (Dow 

corning) [4, 5, and 6]. The micro-channels were fabricated by alignment UV-Lithography 

in SU-8 2005(Micro chem.). Both lithography steps are illustrated below.  
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Fig (8): Schematic illustration of the fabrication process of the micro-and nano-fluidic device. (a) 

Nanostructure patterning in HSQ photo resist by PBW. (b) Super positioning of the SU8 microstructure on 

the HSQ nanostructure by UV lithography [4-7]. 
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2.4 Fabrication of micro channels 

SU-8 2005 Photo resist is spin coated on a silicon substrate with suitable spin coating 

parameters to produce 5µm thick film of SU-8.  

• The substrate needs to be preheated on a hot plate at 200°Cfor 15min. 

•  The SU-8 is subsequently spin-coated on the substrate at 3000 rpm for 30 s. 

•  The SU-8 coated substrate is then pre-baked on a hot plate at 65°C for 2 min in 

order to evaporate the solvent. 

• The SU-8 coated substrate is then soft-baked on a hot plate at 95°C for 4 min in 

order to evaporate the solvent 

•  The nanostructure on the substrate is aligned with the microstructure on the UV 

mask with an UV mask aligner system. The substrate is exposed to UV light (365 

nm) for 4min. 

•  Post-bake 1: The exposed substrate is baked at 65°C for 2min. 

• Post-bake 2: The exposed substrate is baked at 95°C for 2min.  

•  Structures are developed by immersion in SU-8 developer (MicroChemTM) for 

120 s, followed by a brief rinse with IPA, then a rinse with deionized water, and 

eventually drying with a gentle stream of dry nitrogen gas. 

• Now the stamp containing nano and micro structures is further baked at 150°C 

for 30 min to further harden the resist. 

2.5 Fabrication of nano-channels 

• Coat a metal layer on silicon for easy release of PDMS. 

• Spin coat HSQ 

• Bake the wafer at 150°C for 2min 
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• Proton beam writing 

• Development in 2.38% TMAH for 60 sec 

• DI water rinse 

 

2.5 Transfer of nano-micro structures to PDMS 

The nano and micro structures are transferred into Polydimethylsiloxane (PDMS) (Dow 

corning). The curing agent (Dow corning) is mixed to the PDMS in the ratio of 1:10. The 

mixture is degassed for 30min to remove air bubbles. Now the mixture is poured on to 

the stamp and kept in the oven at 65°C for 6hrs. Once the PDMS is hardened the 

PDMS is peeled off the stamp very gently [7]. The separated PDMS contains nano and 

micro structures. The reservoirs are made with punchers (Ted Pella) of diameter 

1.5mm. 

 

2.6 Air plasma treatment 

The bonding between PDMS and the cover slip is greatly enhanced by plasma 

treatment of PDMS and cover slip. The bonding between PDMS and coverslip plays a 

crucial role in micro and nano-channel devices. The pressure exerted on the fluid inside 

the device is very high and is inversely proportional to the cross section of the channels. 

Therefore with proper sealing leakage of the fluid can be avoided. The oxidized PDMS 

surface contains negative charged surface groups which resist the adsorption of the 

DNA molecules. After plasma treatment the PDMS is hydrophilic for 45 min in air [9]. 

After this time the hydrophobicity of the PDMS is recovered. Once the PDMS is peeled 

from the master stamp holes of diameter 1.5mm were punched at the end of the micro 
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channel with punchers (Ted Pella). The PDMS is cut into slabs of length 1cm, breadth 

1cm and thickness of 0.2cm to 0.3cm. The PDMS strip and the cover slip are placed in 

a cylindrical type glow discharge cell. The air plasma treatment is done in medium 

power mode at radio frequency of 40 KHz. The PDMS and cover slip are air plasma 

treated for 30s at a pressure of 0.3 Torr [7]. Once the plasma treatment is finished, 

PDMS is immediately kept on coverslip and baked at 65°C for 1min to further improve 

the adhesion of PDMS to the cover slip. Fig. (9) shows the nano-micro fluidic chip.   

 

 

Fig (9): a) shows the nano-channels of dimensions 200nmX300nm on silicon substrate b)shows the 
channels in PDMS chip after bonding to the cover slip. c) Shows the picture of nano-micro fluidic ship. 

 

 

 

 

 

 

 

 

 



35 

 

2.7 Injecting molecules into nano-channels 

T4(165,600 bp; Nippon Gene) DNA molecules of concentration (1µM of bp) were 

prepared in various buffers like 1XT (10mM Tris-Hcl, pH=8.5), 1XTBE,pH=8.5 (90mM 

Tris,90mM Boric acid,2mM EDTA). The molecules were intercalated with YOYO-

1(Invitrogen, Carlsbad, CA) Dye at ratio of 1:23. The molecules are loaded into 

reservoirs. Due to capillary action the molecules diffuse to the nano-channels. DNA was 

visualized with inverted epi-fluorescence microscope (Olympus iX71) equipped with EM 

mode camera (Photo metrics). Two platinum wires were inserted into the reservoirs and 

connected to the power supply (keithley 237). The motion of the molecules can be 

controlled by the electric field [8]. The buffer system can affect the motion of the 

molecules. In 1XT buffer (low ionic strength) electro-osmosis (negative charged 

molecule moves towards negative electrode) takes place. In 5XTBE buffer (high ionic 

strength) electrophoresis (negative charged molecule moves towards positive electrode) 

takes place. The movies were collected at a frame rate of 33fps.  
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2.8 Florescence imaging of T4 DNA molecules in nano-channels 

The YOYO-1 stained DNA molecules were prepared in relevant buffer conditions and 

loaded into the reservoirs connected to the micro channels. The DNA molecules were 

driven in the nano-channels by applying electric field. Two electrodes were immersed in 

the two reservoirs and molecules were driven into the nano-channels either by 

electrophoresis or electro-osmosis. Once the DNA molecules were driven into nano-

channels the field is switched off for 1-2min for the molecules to arrive at equilibrium 

configuration [7]. The fluorescence of the stained DNA molecules was imaged using a 

100X oil immersion objective. The exposure time of the excitation light was controlled by 

a UV light shutter and attenuators. The extension of the observed DNA molecules was 

measured by imageJ (http://rsb.info.nih.gov/ij).  
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Chapter 3 Effect of polyamines on the conformation DNA 
 

3.1   Abstract In this chapter our main interest is to study the conformation of T4 

DNA molecule in the presence multivalent cations like spermidine, 

cobalthexamine and spermine. To observe the conformation of dye labeled T4 

DNA molecule we used fluorescence microscope. Our results show that 

transition from elongated state to collapsed state is discrete. The critical 

concentration of the cation needed to condense the DNA molecule is lowest for 

the tetravalent cation and highest for the trivalent cation. The co-existence region 

is larger for trivalent cation and less for the tetravalent cation 

 

3.2 Introduction 

In biological systems, DNAs on the order of 102-104 µm long are usually packed in a 

narrow space on the order of only 0.1-1 µm, i.e., bacteriophage head, cytoplasmic 

space in prokaryote, and nucleus in eukaryote [1]. 

 

On the other hand, DNA chains exhibit a highly elongated coiled state in aqueous 

solution in the absence of condensation agents. Thus, the study of the collapsed and 

decollapsed transition of long duplex DNAs [2-8] is expected to shed light on the 

dynamic change in the state of DNAs in a living cellular environment. Various chemical 

species, such as histone proteins, metal cations, and polyamines, are known to induce 

the compaction of long DNA chains. Polyamines are widespread in both prokaryote and 

eukaryotes cells and possess various biological effects. For example, it is known that λ-
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phage is not generated in polyamine-required mutant E. coli.[9] In eukaryote cells, 

polyamines play an essential role in the growth tissues [10,11].  

Several experimental studies have examined the interplay between polyamines and 

DNA [12-17]. Theoretical investigations have also been performed following by the 

development of the theory on polyelectrolytes [18-20] and polymers in general [21-24]. 

However, it has been difficult to obtain fully conclusive results from experiments on the 

physicochemical properties of the coil globule transition in single DNA chains, since 

competition is always present between single-chain events and the aggregation of a 

number of chains under usual experimental conditions. Actually, single-chain 

observation in aqueous solutions, in its strict sense, has been impossible with 

conventional experimental methods such as light scattering, X-ray analysis, and 

sedimentation. These methods require a relatively high concentration (more than about 

several µg/mL or 10 µM in base pair (concentration) to obtain adequate sensitivity. In 

addition, these experimental methods provide information essential only to the 

characteristics of the ensemble of polymer chains in solution. 

 

Fluorescence microscopy is useful for observing single molecules of long duplex DNA 

chains. It is reported that individual DNA molecules undergo a first-order transition 

between an elongated coil state and a compacted globule state with the addition of 

various kinds of condensing agents, such as neutral flexible polymer [25] cationic and 

neutral surfactants [26] alcohol [27] polyamine spermidine [28] and inorganic metal 

cation [29]. 
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We observed changes in the structure of T4DNA by fluorescence microscopy upon the 

addition of polyamines with different valences: spermine (SPM) with four positive 

charges, cobalt hexammine with three charges and spermidine (SPD) with three 

positive charges. We have studied the fragmentation of the T4 DNA molecules upon 

incidence of light in the presence of condensing ligands and in the absence of 

condensing ligands. 

 

3.3 Fragmentation of the DNA molecules with incident light 

Fig. (10) shows the fragmentation of the YOYO-1 intercalated DNA molecule when the 

molecules are illuminated with light of wavelength 491nm. The photo damage to the 

DNA molecule can be reduced by lowering the intensity of the light, by adding β- 

mercaptoethanol, and lowering the concentration of YOYO-1 [30]. Similar results were 

obtained when DAPI was used. The photo damage to the DNA molecule increases in 

the presence of condensing ligands. As the charge of the condensing ligand increases 

the photo damage to the DNA molecule increases. Fig.11 shows the fluorescence 

damage of the DNA molecule in the presence of 400µM Spermidine. 
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Figure (10): Time sequence of a molecule of T4 as it is labeled with YOYO-1 as it explodes in several 
short fragments upon intense illumination. 

 
 

 

Figure (11): Time sequence of a molecule of T4 as it is labeled with YOYO-1 as it explodes in several 
short fragments upon intense illumination. The sample contains 400µM Spermidine. 

 

 

3.4 Condensation of DNA observed with fluorescence microscope  

In chapter 1, we had introduced the biological meaning and the effect of spermidine on 

DNA. The conformation and the flexibility of DNA will be changed in the presence of 

polyamines. In our study, we investigate the polyamine induced condensation of DNA. 

There are three phases observed with respect to the concentration of polyamines 1) coil 

2) coil and globule, and 3) globule. Fig.12 shows the Brownian motion of the DNA 

molecule in coiled state. 

 

Figure (12): Brownian motion of the DNA molecule  
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                        13a) Coiled state                            13b) Globule state 

                                                     

Fig (13a): shows the coiled state of the DNA molecule, Fig (13b): shows the condensed form of the DNA 
molecule 

 

 

3.5 The conformation of DNA in the presence of polyamines: 

3.5.1 Folding transition of T4 DNA in the presence of spermidine 

Different states of DNA molecules in the presence of spermidine are observed with the 

fluorescence microscope and recorded in avi format at a frame rate of 33fps. These 

DNA-SPD complex samples are obtained by gradually increasing the concentrations of 

spermidine. As the spermidine concentration is increased the DNA molecule switched 

from the coil state to the condensed state [28, 43, 45]. In the lower concentration of 

spermidine the molecules are coil and at the higher concentration of spermidine the 

molecules are globule. Around the transition point the coexistence of the both coil and 

condensed states are observed; this is known as the co-existence region of both states 

[28, 43, 45]. The DNA molecules in the coil form have less intensity where as in the 

condensed state the molecules have very high intensity [23, 43, 45]. Fig.14 shows the 

histogram of the long axis distance of the T4 DNA molecules. Long axis distance is the 

longest distance within the fluorescence image of the DNA chain in a two dimensional 

plane. Fig.14 shows the long axis distance of the DNA molecules with various 

concentration of spermidine. The spermidine concentration is varied from 0µM to 1mM. 
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At lower concentration from 0µM to 400µM coil state of the DNA molecules exits. From 

500µM- 600µM co-existence of the coils and globules exits. Above 750µM condensed 

state of the DNA molecule exits. The concentration of DNA is 0.1µM in base pairs. 

Binding ratio of the YOYO to the base pair is 1:23. The buffer system used is 1XT 

(10mM tris, pH=8.5). Fig.14 shows the histogram of the long axis distance of the DNA 

molecules at concentrations 40µM, 400µM, 500µM, 600µM, 750µM and 800µM of 

spermidine. By using mat lab code, the movies are analyzed frame by frame to deduce 

the long axis distance of the DNA molecules.     

 

Figure (14): Histograms showing the distribution of the conformation of the DNA molecules with various 
concentrations of the spermidine 
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Figure (15): Phase diagram showing the different states of the DNA molecule with increasing 
concentration of the spermidine. 

3.5.2 Conformation of DNA in the presence of cobalt hexammine tri chloride 

(CoHex) 

The movies of different states of DNA in the presence of cobalt hexammine tri chloride 

(CoHex) are observed with the fluorescence microscope. These DNA-CoHex complex 

samples are obtained by gradually increasing the concentrations of CoHex. As the 

CoHex concentration is increased the DNA molecule switched from the coil state to the 

condensed state. In the lower concentration of CoHex the molecules are coiled and at 

the higher concentration of CoHex the molecules are condensed. Around the transition 

point the coexistence of both coil and condensed states are observed. When compared 

to spermidine at very low concentration of CoHex around 100µM the compaction of 

DNA is observed [17, 44]. This can be explained by the higher binding constant of 

CoHex to the DNA than SPD. The photo damage to the DNA molecule in the presence 

of CoHex is more when compared to SPD. 
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Fig (16): Histograms showing the distribution of the conformation of the DNA molecules with various 
concentrations of the CoHex 

 

 
Figure (17): Phase diagram showing the different states of the DNA molecule with increasing 

concentration of the CoHex 
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3.5.3 Conformation of DNA in the presence of spermine tetra chloride (SPE) 

The movies of different states of DNA in the presence of spermine tetra chloride (SPE) 

are observed with the fluorescence microscope. These DNA-SPE complex samples are 

obtained by gradually increasing the concentrations of SPE. As the SPE concentration 

is increased the DNA molecule switches from the coil state to the condensed state. For 

lower concentrations of SPE the molecules are coiled; and for higher concentrations of 

SPE, the molecules are condensed. Around the transition point, the coexistence of the 

both coil and condensed states (co-existence region) are observed [28, 43, 45]. When 

compared to spermidine and CoHex at very low concentration of SPE around 6µM the 

compaction of DNA is observed. This can be explained by the higher binding constant 

of SPE to the DNA than SPD and greater charge of SPE than SPD and CoHex. The 

photo damage to the DNA molecule in the presence of SPE is greater when compared 

to the SPD and CoHex. 
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Fig (18a): Histograms showing the distribution of the conformation of the DNA molecules with various 
concentrations of the SPE 

 
 

 
 
 

Fig (18b): Phase diagram showing the different states of the DNA molecule with increasing 
concentration of the CoHex 
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3.6   Effect of fluorescence dye on the conformation of DNA molecule 

There have been significant advances in the methods of observing individual molecules 

in recent years. Single molecular observation can provide direct information on the 

structure and function of individual molecules. Among the methods for single molecule 

observation, fluorescence microscopy has shown to be very useful to image time 

trajectories of the shape of individual giant DNA molecules [31–34]. It has been found 

that a single giant duplex DNA undergoes a large discrete transition from an elongated 

coil state to a folded compact state, with the addition of various kinds of condensing 

agents by distinguishing intramolecular collapse [35–37] from inter-molecular  

condensation of DNAs (38 –40). To visualize DNA, it must be stained with suitable 

fluorescence dyes. Among dyes, an intercalator, YOYO-1, is often used for direct 

observation of DNA because it provides high fluorescence intensity specific to DNA and 

a low background [41, 42]. On the other hand, it has been reported that DAPI exhibits a 

smaller effect on the DNA conformation, on contour and persistence lengths, than 

intercalators do. In the present study, we evaluated the effects of DAPI and YOYO-1 on 

the folding transition of giant DNAs induced by spermidine, with fluorescence 

microscopy. Our results indicate that with DAPI the compaction of the DNA molecule 

takes place at lower concentration of Spermidine when compared to YOYO-1[43]. DAPI 

attaches only to the minor groove of DNA. The excitation wavelength is 350nm and the 

emission wavelength is 461nm (blue color). Fig. 19 shows the distribution of the long 

axis distance of the DNA molecules with various concentrations of the spermidine. 

Fig.20 shows the phase diagram of the states of the DNA molecule intercalated with 

DAPI with increasing concentration of spermidine. 
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Fig (19): Histograms showing the distribution of the conformation of the DAPI- DNA molecules with 

various concentrations of the spermidine 

 

Figure (20): Phase diagram showing the different states of the DAPI-DNA molecule with increasing 
concentration of the spermidine. 
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From Fig (15) in the case of YOYO-1 intercalated DNA molecules the critical 

concentration of spermidine needed to condense the DNA molecules is 750µM. From 

Fig (20) in the case of DAPI labeled DNA molecules the critical concentration of 

spermidine needed to condense the DNA molecules is 600µM. It is known that 

intercalators elongate the coiled duplex DNA chain and increase the stiffness of the 

DNA chain [43]. An increase in the stiffness in the duplex DNA should cause instability 

in the compacted state. Because of the instability in the compacted state, it is expected 

that DNA molecules to be in elongated coil state. Consequently the phenomena we 

observed here with YOYO-1 would be common to most other intercalators and give us 

interaction of intercalators with higher order of structure of DNA. 
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3.7   DNA concentration effects 

Condensation by spermidine has been studied for different concentrations of base pairs 

ranging from 0.1µM to 5µM. In these experiments 1XT pH=8.5 buffer is used. In all 

these experiments the binding ratio between YOYO-1 and base pairs is fixed at 1:23. 

Fig. 21b shows the phase-diagrams for concentration of base pairs (bp):0.1µM, 1µM, 

5µM. Above 1µM concentration of bp, aggregation of the molecules cannot be 

disregarded in the presence of spermidine, therefore we have observed only elongated 

molecules (may not be single) and globules. Fig. (21a) shows the fluorescence 

microscope images of T4 DNA molecules stained by the fluorescent dye YOYO-1. At 

low concentration of DNA molecules [bp] =0.1µM, individual DNA molecules undergo 

large discrete transition from an elongated coil state to folded compact state with an 

increase in the concentration of condensing agent. At low concentration of DNA 

molecules the phase transition occurs at 750µM concentration of spermidine. At high 

concentration of DNA molecules [bp]=5µM the same phase transition is observed under 

the spermidine concentration similar to that used to induce the folding transition from 

coiled to compact states in the diluted DNA solution[48]. At high concentration of DNA 

molecules the phase transition occurs at 800µM concentration of spermidine Therefore 

critical concentration of spermidine needed for the phase transition remains constant 

irrespective of the concentration of the base pairs, indicating that this can be an intrinsic 

variable that depends on the polyamine [48]. 
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Fig: (21a) shows the fluorescence image of T4 DNA at various DNA concentrations. a) conc of bp=0.1µM 
and [SPD]=0µM b) conc of bp=0.1µM and [SPD]=750µM c) conc of bp=1µM and [SPD]=0µM d) conc of 
bp= 1µM and [SPD]=750µM e) conc of bp=5µM and [SPD]=0µM f) conc of bp=5µM and [SPD]=800µM 
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Fig (21b): Shows the phase diagrams for a) conc of bp= 0.1µM b) conc of bp= 1µM c) conc of bp=5µM 
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3.8      Conclusion 

 The critical concentration of spermidine (spd+3), cobalthexamine (cohex+3) and 

spermine (spe+4) needed to condense the DNA molecules are 750µM, 100µM and 

6µM. We have shown that DAPI labeled DNA molecules can be condensed at lower 

concentration of spermidine when compared to YOYO-1 intercalated DNA 

molecules. By changing the concentration of the DNA molecules we find that there is 

no change in the critical concentration of spermidine needed to condense the DNA 

molecules. Therefore critical concentration of spermidine needed for the phase 

transition remains constant irrespective of the concentration of the base pairs, 

indicating that this can be an intrinsic variable that depends on the polyamine  
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Chapter 4 DNA in nano-channels 

 

4.1 Abstract In this chapter we aim to study the equilibrium conformation of the DNA 

molecule in nanoconfinement. For this purpose we fabricated nano-channels of 200nm 

in width and 300nm in height in PDMS and used fluorescence microscope to observe the 

elongation of the molecule. Our results show that in 1XT buffer (10mM Tris-Hcl pH=8.5) 

the elongation of T4 DNA molecule is around 12µm 

 

4.2   Extensions of T4 DNA molecules in nano-channels 

Confinement elongation of genomic-length DNA has several advantages over 

alternative techniques for extending DNA, such as flow stretching or stretching relying 

on a tethered molecule. Confinement elongation does not require the presence of a 

known external force because a molecule in a nanochannel will remain stretched in its 

equilibrium configuration, and hence, the mechanism is in equilibrium. Second, it allows 

for continuous measurement of length.  

             Some fundamental statistical mechanical problems are associated with 

confinement of a polymer in a channel whose width D is much less than the radius of 

gyration of the unconfined polymer, such as (i) the dependence of the end-to-end length 

Lz of the confined polymer on the length L of the polymer and (ii) the dependence of the 

effective spring constant k of the confined polymer on the length L. The spring constant 

sets the scale of end-to-end length fluctuations for the confined polymer because of 

thermal effects. For the measurement process, an understanding of the relaxation time 

‘τ ’ is also crucial. A key element for understanding these questions is the influence of 
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the self avoiding nature of random walk of the polymer in the channel, as we show in 

Fig. 22.  

 

                The effect of self-avoidance on flexible polymers that are freely coiled in 

solution was first understood by Flory [1] and later generalized to the semi flexible case 

by Schaefer et al. [2]. The rms radius of gyration Rg of a self-avoiding persistent polymer 

in solution scales according to Flory–Pincus with the persistence length p, molecule 

width w, and contour length L, such that 5
3

5
1

)( Lpw . Compare this form with the result 

expected for an ideal, non-self-avoiding polymer 2
1

)( pLRg ≈ . Thus, self-avoidance for 

a freely coiled polymer has the following two effects: it adds a weak dependence on the 

molecule width and it ‘‘puffs out’’ the coil slightly by giving rise to a stronger dependence 

on the contour length. These equations are, in fact, roughly in agreement with existing 

data for freely coiled DNA [3].Benzothiazolium-4- quinolinium dimer (TOTO-1)-dyed 

DNA molecules in the range of 309–4.36 kbp are well fit by the form Rg=80nmn[kbp]0.6. 

Compare this experimentally measured prefactor to the prefactor predicted by the 

Flory–Pincus result, which turns out to be ≈90 nm if we use a DNA diameter of 2 nm, a 

persistence length of 60 nm [4] , and a base pair spacing of 0.34 nm [5]. 

 

                        Things change dramatically if the polymer is confined in a channel whose 

width D is less than its free-solution radius of gyration Rg. Self-avoidance increases the 

scaling exponent for the contour length because the polymer is prevented from back-

folding. As de Gennes demonstrated [6], self-avoidance effectively divides the confined 

polymer into a series of non-interpenetrating blobs, distributing the polymer mass along 
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the channel in such a way that the monomer density is uniform. Consequently, the 

extension of the polymer in the channel Lz must scale linearly with the contour length L. 

Assuming that the rms end-to-end length of each blob follows the Flory–Pincus scaling, 

de Gennes showed that 

)20.(....................
)(

3
2

3
1
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D
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this formula gives us a numerical estimate of how much a DNA molecule should stretch 

in a nanochannel, given that the stretching is purely due to self-exclusion. For example, 

in a 100-nm-wide channel, we would expect an extension factor, defined as the ratio 

LLZ /=ε  ,of ≈  0.20; in a 400-nm-wide channel, we would expect ε =0.15  

 

 

 

Fig [22]: shows the DNA molecule confined in a channel of diameter D, the polymer must elongate to 
some end to end distance LZ(D)[7]. In a confining tube, the polymer must elongate as a series of blobs 

which cannot interpenetrate because of self avoidance, thus in a tube diameter D we should have  
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We have investigated the extension of single T4 DNA molecules in 1XT buffer confined 

in the nanochannels of dimensions 200nmx300nm.Fig. 24 we show the typical 
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distribution in the extension obtained over 7 individual molecules measured over 300 

frames. Due to the photo-bleaching effect of the fluorescence dye, photo damage to the 

DNA molecule and hydro-phobicity of the chip very few molecules were collected. The 

average extension of the molecules is about 12 µm which is consistent with the reported 

results [7-11]. Fig. 23 shows the fluorescence images of T4 DNA confined in nano-

channels of cross section 200nmX300nm. It is very clear that DNA molecule becomes 

more extended once they are confined in the nano-channels. The extension of the DNA 

molecules increases when either cross section of the channel decreases or the 

molecular weight of the molecule increases [20, 21].  

 

Fig. (23):  Distribution of the extension of individual DNA molecules confined in 200 by 
300 nm2 nanochannels. The images were analyzed using Image-J software (http://rsb.info.nih.gov/ij/).  

The DNA molecules are immersed in 1XTbuffer. 
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Fig.(24): Shows the Single T4 DNA molecules confined in 200nmX300nm channels. The single DNA 
molecules are circled. 

 
 

4.3    Translocation of T4 DNA molecules nano-channels 

With the technology to make structures on an extremely small scale available, studies of 

DNA and its various properties in differing conditions in smaller scales have been made 

possible. In this experiment, the translocation of DNA through small nanochannels is 

studied. DNA is a negatively charged molecule that is very well affected by the electric 

field [13]. For DNA undergoing free-solution electrophoresis, the relationship between 

the DNA’s velocity, v and electric field strength, E is given as 

                                                  EV µ=                                                             (1) 

Where “µ” is the Electrophoretic mobility of the DNA molecule [13]. By determining the 

velocity of the DNA over a range of electric field strength, the linear relationship can be 

investigated.  
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Acquisition and processing 

The YOYO-1 stained DNA molecules in the 5XTBE (450mM Tris, 450mM Boric acid, 

50mM EDTA) buffer solution were loaded into the 2 reservoirs by injecting the sample 

solution directly into the chip. Two platinum wires, acting as electrodes, were immersed 

in the reservoirs and connected to a voltage source power supply (Kethley 237). The 

movement of the DNA molecules could be controlled via manipulating the electric field, 

to the extent of causing the DNA to reverse their motion by reversing the field’s polarity. 

The fluorescence of the stained DNA molecules were visualized with an Olympus IX71 

inverted fluorescence microscope equipped with a 100 W mercury lamp, a UV filter set 

and a 100×/1.40NA oil immersion objective.  

 

 

Fig. (25): Sequence of deinterlaced video images showing the passage of a T4-DNA molecule (circled) 
through a nanochannel. Scale bar = 10 µm 
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The exposure time was controlled by a UV light shutter. Images were acquired with a 

charge coupled device (CCD) camera (Photometrics Evolve 512, Photometrics, and 

Tucson, Arizona). Fig. 24 shows the montages of the T4 DNA molecules translocating 

through the 300nmX300nm channels. 

The results obtained from the experiments indicate linear relation between the electric 

field strength and velocity of the DNA molecule. A graph of velocity against the electric 

field strength was plotted and a resulting straight line from linear regression was 

obtained, as shown in Fig. 25. The gradient of the graph corresponds to a mobility of µ 

= (47±5) × 10-3 mm2 V-1 s-1. 

 

Fig.(26): Graph of velocity vs. field strength. Each point corresponds to the mean of all measurements 
taken for each voltage. The error bars correspond to one standard deviation. 

 

It is to be noted that below 2 volts of applied potential, no DNA movement into the 

channels was observed. The reason for this phenomenon is probably due to advection, 

whereby electro-osmotic motion of the fluid drags the DNA molecule away from the 

positive pole, and instead brings it towards the negative pole. The electrophoresis effect 
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on the DNA at voltages below 2 V is not strong enough to compete against the 

advection of the fluid; hence electro-osmotic flow of the fluid towards the negative pole 

dominates, preventing the DNA from entering the channels. A chemical known as 

Polyvinylpyrrolidone (PVP) could be used to suppress the electro-osmotic flow [15], 

thereby enabling the DNA to enter and translocate through the channels even with the 

low applied voltage. 

At voltages of 5 V and above, the movement of the DNA became too fast so it is 

difficult to capture with the camera which has a low frame rate. This effect can be seen 

from the last data point in the graph, which is found to be below the linear fit. Thus for 

this experiment, the range of velocities that could be tested was limited to the 5 V 

applied potential which meant that the dynamics of DNA translocating through 

nanochannels at high speed could not be probed. One method which might help in 

measuring the high velocities would be to use laser-induced fluorescence spectroscopy 

to measure the position and speed of the DNA molecules [14].  

 Another interesting observation made was that the length of the DNA, when 

translocating through the channels, was increasing in length with increasing applied 

potential, as shown in Fig. 4. In this case we observed an extension of about 35% of 

DNA counter length. This increase in length is only caused by the applied electric field 

[16]. 
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Fig.(27): Captured frames showing the DNA length at different applied potentials, hence velocities. a) 
applied potential of 2.5V b) applied potential of 3.0V and c) applied potential of 4.5V 

 

4.4    Cross section of micro channels 

The cross section of micro-channels was determined by two ways: 1) I-V measurements 

2) optical microscope of fractured micro-channels. The micro-channels are 1cm long, 

11.5µm deep and have following widths 8µm, 12µm, and 20µm. Firstly, For I-V 

measurements the electrolyte used is 1M Kcl, 10mM Tris, pH=8.0. The length of the 

channels is measured using an optical microscope. The area of cross-section is 

determined from the I-V measurements [17]. All the electrical measurements were done 

by kethley 2400.  Secondly, to measure the dimensions of the micro channel devices 

optical microscope image analysis of fractured micro-channels cross-section [18] was 

performed. Sample cross-sectional images of three different types of micro channel 

systems are shown in Fig. 27. The fractured PDMS micro-channels were prepared by 

bonding PDMS mould containing micro-channel to another PDMS mould and by cutting 

in with a blade into PDMS.  
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Fig. (28): Optical image of 8-micron width channel. Bonding of a PDMS (mold) to a PDMS (substrate) 
results in micro channels with a rectangular cross-section. 

 

Fig. (29): I-V characteristic of a salt solution (1 M KCl, 10 mM Tris-base, pH= 8.0) along  8 micron width 
and 11.5 micro meter deep channel. 
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Fig. (30): Optical image of 12-micron width channel. Bonding of a PDMS (mold) to a PDMS (substrate) 
results in micro channels with a rectangular cross-section 
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Fig. (31): The I-V characteristic of a salt solution (1 M KCl, 10 mM Tris-base, pH= 8.0) along 12 micron 
width and 11.5 micro meter deep channel. 

 

Fig. (32): Optical image of 20-micron width channel. Bonding of a PDMS (mold) to a PDMS (substrate) 
results in micro channels with a rectangular cross-section. 

 

Fig. (33): The I-V characteristic of a salt solution (1 M KCl, 10 mM Tris-base, pH= 8.0) along an 20 micron 
width and 11.5 micro meter deep channel. 
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4.5   Cross section of nano-channels 

 To confirm the 337nmX300nm channel cross-section, we measured the electrical 

conductance of a salt solution (1 M KCl, 10 mM tris, pH =8.0) along a 337nm wide and 

300nm deep 28µm long nanofluidic channel as well as a 5µm wide, 5µm deep, 500µm 

long microfludic channel. The total numbers of nano-channels are 11 in between the 

two micro channels. All electrical measurements were at room temperature using a 

keithley 2400. Fig. 27, and 28 shows the I-V characteristic in the nano channel, and the 

area observed is 0.082µm2 for 337nm wide and 300nm deep channels. In the case of 

105nm wide and 100nm deep nano-channel the area observed is 9878nm2. The 

conductivity of electrolyte solution measured with standard conductivity meter is 11.2 

S/m. The length of the whole device is 1mm which is measured using an optical 

microscope. In the below formula lm is determined after the reservoirs are punched in 

the micro channels. 
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In the above formula we know all the parameter from which we can deduce the 

area of the cross section of the nano-channels.RT is the total resistance of the 

chip.lm and ln are length of the micro and nano channels. Am and An are area of 

cross section of the micro and nano channels. 
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Fig.(34): I-V measurement of 300nmX300nm PDMS nano-channels. 

 

 

Fig.(35): I-V measurement of 100nmX105nm PDMS nano-channel 
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4.6    Conclusion 

 The average extension of the T4 DNA molecule in 200nm wide and 300nm 

deep channels is about 12µm.A linear relationship is obtained between 

electrophoretic velocity of DNA molecule and voltage in 5XTBE buffer 

condition. The cross section of the 300nm wide and 300nm deep channels are 

conformed by I-V measurements. 
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Chapter 5 Electrolyte top gating of graphene by using micro fluidic channel 

 

5.1 Abstract: Graphene is a new class of 2D material with zero band gap, exhibiting 

a strong ambipolar electric field effect. In this report, we demonstrate the 

integration of the PDMS micro-fluidic channel with graphene device as a novel 

way to achieve electrolyte top gating of graphene. By applying a back gate 

voltage, carrier concentrations of up to 2.3 x 1012 cm-2 and mobility values of up 

to 7500cm2/Vs can be obtained in the device at ambient conditions. In the case of 

electrolyte top gating, significantly higher doping concentrations can be achieved 

as compared to conventional back gating at low voltages. The effective 

implementation of electrolyte top gating by using micro channels serves as a 

compelling proof of concept that graphene can be used as chemical and 

biological sensing.  

5.2 Introduction 

Graphene is a 2D material with a honeycomb structure achieved via sp2 hybridization of 

carbon atoms. Since its discovery in 2004 [1], graphene has attracted intense research 

effort [2]. It has a unique band structure; its conductance and valence bands touch each 

other at one point, known as the Dirac point making it a zero band gap semiconductor. 

Carrier types in graphene (electrons or holes) can be continuously controlled globally by 

means of a back gate voltage, exhibiting strong ambipolar electric field effect [1]. Carrier 

concentrations of up to 2.3 x 1011 cm-2 and mobility values of up to 5000cm2/Vs can be 

obtained in our device by back gating.  



75 

 

       Although back gating of graphene had been widely investigated, electrolyte 

gating of graphene still remains to be explored following the successful use of solid 

polymer top gating by Das et al [3]. Here, we report top gating of graphene integrated 

with micro-fluidic channel in PDMS. Electrochemical top gating is preferred over 

conventional back gating using SiO2. This is because higher geometric capacitance can 

be achieved due to the nanometer thick Debye layer and higher dielectric constant of 

the electrolyte giving rise to significantly higher doping concentrations [3-5]. For sensing 

of biological molecules, the ability of graphene to work in an aqueous environment is 

very important. From the measurements obtained, it demonstrates the attractiveness of 

graphene not just for electronics but also for chemical and biological sensing in the near 

future.  

5.3 Device fabrication and measurement 

Graphene sheets were produced by micromechanical cleavage of highly pyrolitic 

graphite flakes using scotch tapes [1], followed by deposition of graphene onto p-type Si 

chip with 280nm thick SiO2 on top of it. Preliminary examination of monolayer graphene 

was conducted via optical microscope, by screening for barely visible regions in 

comparison to the background colour of silicon chip. It was postulated that the SiO2 

layer produces a feeble interference-like contrast with respect to the empty Si substrate, 

which enables identification of graphene [5]. The oxide layer also functions as dielectric 

layer in back gating. An image of graphene under optical microscopy is shown in the 

Fig. 36a. Further analysis of the silicon chip for confirmatory presence of single layered 

graphene sheet would be done by Scanning Tunneling Microscopy (STM) and Raman 

spectroscopy [6]. 
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      Thereafter, a thin layer of polymethylmethacrylate (PMMA) was spin coated on 

top of graphene as a resist layer. Alignment marks of equal spacing are placed onto the 

silicon chip to serve as coordinate points Fig. 36b. Based on the location of single-

layered graphene relative to the alignment marks, a graphene device was constructed 

using software Design CAD, in which the layout and precise location of electrodes on 

graphene are accurately outlined Fig. 36c. The source and drain electrodes (Au/Cr) 

were then patterned onto the silicon chip by thermal deposition after e-beam 

lithography.  It is necessary for the electrodes to be positioned strategically to avoid 

obstructions by thicker layer graphite in order to have unambiguous resistivity 

measurements. 

          Subsequently, PMMA resist was removed via a lift-off process using acetone (Fig. 

36d). Fluidic channels, which were prepared with polydimethylsiloxane (PDMS) mould, 

with dimension of 8µm x 11.5µm x 1cm were aligned across the graphene sheet (Fig. 

36e). Liquid electrolyte, consisting DI water was injected into the gaps situated at both 

ends of the channel using a syringe needle. Top gating was achieved via insertion of 

platinum electrodes in the fluidic channel. A diagram of graphene device used in the 

experiment is shown in Figure 37. Resistance versus gate voltage measurements were 

conducted at ambient temperature using Lock-In Amplifier SR830 (Stanford research 

systems), coupled with keithley 6430 and keithley 4360. 
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Fig.(36) : (a) View of graphene sample on top of silicon substrate via optical microscope, at 100x 

magnification. The light purple regions are considered as monolayer graphene, while the area which 

possesses darker shade of purple is trilayer graphite. (b) Graphene sample observed after spin-coating 

and placement of alignment marks, viewed in at 50x magnification. The small black dots seen on top and 

middle are the alignment marks. (c) Image of graphene device, designed via DesignCAD software. Red, 

dark blue and light blue colored shapes denote graphene, electrodes and graphite respectively. (d) 

Graphene device shown after thermal deposition of Au/Cr electrodes (yellow) and lift-off, observed at 

20x magnification. Large electrodes of average width 25µm connect external voltage source to small 

electrodes of average width 5µm, which are localized to connect to graphene. (e) The fluidic channel 

(grey) made of PDMS mould was aligned across graphene. The image was viewed at 10x magnification. 

 

 Fig. (37): Schematic diagram showing cross sectional view of electrolyte top-gated 

measurement device. NaCl solution is passed through in the fluidic channel. 
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Investigation on graphene for top and back gating experiments require transport 

measurements. Here we use the standard lock-in technique, which enables the 

detection of low input signal in the presence of high background noise level.  A block 

diagram of the lock in amplifier is shown in Fig. 3. The amplifier generally functions by 

synchronizing voltage input signal from the graphene device with a reference signal. In 

this context, the phase sensitive detector multiplies both input and reference signal of 

exact frequency and phase difference, resulting in strengthening of input signal, while 

simultaneously suppressing the noise level [7]. The low pass filter removes the 

background signal, allowing input signal to pass through and detected as output. Hence, 

the voltage signal from the device accounts for the majority of output signal. Top gate 

voltage (Vtg) was varied between -1 and 1V while back gate voltage (Vbg) was swept 

between -6 and 30V. Source and drain current was maintained at 10nArms. 

 

 

 

 

 

 

 

 

Fig. (38): Diagram showing how current bias transport measurements were conducted. The 

graphene device (G), connected in the circuit, provides the input signal to the amplifier. The Lock-

In amplifier increases the signal input, while filtering background noise signal away from appearing 

as output signal. 
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5.4 Back gating 

The electric field effect refers to the ability to control electronic properties of a material 

by an electric field by means of a gate voltage. Graphene exhibits a strong ambipolar 

electric field effect in which both carrier type and concentration can be controlled 

continuously by applying a gate voltage. In this back gating experiment, we fabricated a 

graphene device using the methods as mentioned in the device Fabrication and 

measurement section.  

       The observed curve is characteristic of single layer graphene, where the plot of 

resistance against gate voltage is symmetrical with a peak value seen at the Dirac point. 

As seen from Fig. 5, the peak in resistance of 4kΩ occurs at V=14V, which is the Dirac 

point. To the right and left of the peak, the resistance decreases rapidly below 4kΩ. This 

is because resistance varies inversely with the charge carrier concentrations (n). The 

fast decrease of resistance with gate voltages greater or less than 14V implies the rapid 

increase in charge carrier concentrations.  The relationship between the gate voltage 

supplied and n is given by  where ε0 and ε are the permittivity of free space 

and SiO2 respectively (ε =4); Vbg is the applied back gate voltage; d is the thickness of 

SiO2 layer which is approximately 280nm and e is the electronic charge. In short, since 

 is a constant given approximately by 7.1 x 1010, the above expression is reduced 

to n = αVbg, where α is given by 7.1 x 1010. By simply applying a gate voltage to 

graphene, its carrier type can be tuned continuously at doping concentrations of up to 

2.3 x 1012 cm-2. However, in ordinary semiconductors, the doping level is fixed. In this 

way, graphene is superior over ordinary semiconductors since carriers can be tuned 

continuously. 
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Fig. (39): Energy spectrum in graphene. At 0K, without gate voltage, there is no net concentration of 
charge carriers. Positive (negative) gate voltage decreases (increases) the Fermi energy, thus creating 
an excess of electrons (holes) as the charge carrier in graphene. 

 

           From Hall Effect measurement, it is known that carriers in the left and right of the 

peak are holes and electrons respectively. This can be understood as a consequence of 

shifting the Fermi energy EF by an applied gate voltage. An applied negative gate volt  

age will shift the Fermi energy downwards and vice versa. This results in the excess of 

holes as compared to electrons hence the carrier in graphene is holes at gate voltages 

less than 0V. The situation is reversed when a positive gate voltage is applied. 

            As seen in Figure 4, the peak of resistance known as the Dirac point occurs 

where the net carrier concentration is zero at 0K. However, the resistance of the device 

does not go to infinity but reaches a peak of 16kΩ as there are always some electrons 
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or holes available due to Klein tunneling [7]. In our device, at zero gate voltage (no 

electric field doping), carriers in graphene are holes while the Dirac point is shifted from 

0V to 14V. In other words, it is initially a p doped semiconductor. The reason is due to 

the unintentional presence of impurities (moisture) in graphene during fabrication, 

storage and handling of the device. In fact, it has been found that by annealing the 

device in vacuum, we can shift the resistance peak back to 0V, and exposure of clean 

graphene to water vapour or NH3 results in a p doped or n doped device [1].  

  Given that  bgVn α=  and µσ ne= , combining these 2 equations we get σ 

= αVbg eµ -- (1). Diffentiating (1) by Vbg, we get the =
bgdV

dσ  7.1 x 1011 eµ -- (2).From (2), 

we can now estimate the mobility of charge carrier in graphene using µ =  









eEdV

d

bg 111.7

1σ . The graph of mobility against gate voltage is given in Figure 5. Here 

we see again that mobility values are the highest at voltages greater or smaller than 

14V with zero mobility at the Dirac point. It can been seen that relatively high mobility 

values of up to 5000cm2/Vs and high carrier concentrations of 2.3 x 1011 cm-2 can be 

obtained from our graphene device. Mobility remains high even at high doping 

concentrations in graphene indicating the possibility of ballistic transport in graphene.  
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5.5 Top gating using DI water 

 While back gating offers an easy way to control the type and concentration of charge 

carriers present in graphene, this led to poorer device performance due to the lower 

geometrical capacitance of SiO2 as a back gate. Here, we report the use of liquid 

electrolyte, DI as a top gate to control the type and concentrations of charge carriers in 

graphene, which results in significantly higher doping concentrations.  

   The application of a back gate voltage  creates an electrostatic potential 

difference ( ) between the graphene sheet and the back gate, which shifts the Fermi 

level ( ) as seen in Figure 3, inducing different type of charge carriers in graphene. EF 

changes with charge carrier concentrations by EF =

e

nVf Π� , where vF is the Fermi 

velocity given by sec/
300

1
cm at the Dirac point [8].  The relationship between the 

applied gate voltage and the induced electrostatic potential difference is given by 

ν+=
e

E
V

f

bg
 where bgcne /=ν , and  is the geometric capacitance of the back 

gate. This is where geometrical capacitance plays an important role as in determining 

Fig (40a): shows the resistance of the graphene with respect to the 

backgate voltage. Fig (40b): shows the mobility of the charge carriers 

with respect to the backgate voltage. 
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the electrostatic potential difference  and the effectiveness in changing Ef to tune the 

carrier type and concentrations in graphene.  

In the case of back gating using SiO2,  is related to the thickness of the dielectric 

layer by bg
obg

dc /εε=  where ε is the dielectric constant of SiO2 ( 4), ε0 is the 

permittivity of free space and dbg is the thickness of the SiO2 layer (300nm). Hence for 

most back gated graphene devices, the geometric capacitance is low at around 1.2x10-8 

Fcm-2. Therefore, for values of n of around 2.3 x 1011 cm-2 given by our back gating 

experiment,   ν   is much larger than  

e

EF and hence  is approximately equals to v.        

Therefore the doping concentration in graphene is given by bgVn α= as described 

previously in back gating. From this equation, it is clear that in order to get high 

concentration we need to apply very high back voltages. In practice, the magnitude of 

applicable back gate voltage is limited by the breakdown limit of SiO2, which basically 

means that there is an intrinsic limit to the concentrations of charge carriers that can be 

induced by using SiO2 as a back gate. To overcome this limitation we can increase Cbg 

by either decreasing dbg or increase ε or a combination of both. While materials of 

higher dielectric constant like HfO2 and ZrO2 can solve this problem, these materials are 

be more expensive [9].  

           As such, liquid electrolyte top gating is explored to increase doping 

concentrations more effectively at smaller applied gate voltages. This is because in 

liquid electrolyte top gating high geometrical capacitance can be achieved as a result of 

the presence of an extremely thin Debye layer as the dielectric material. It can be seen 



85 

 

in the below Fig. 6 the change in the resistance of the device by the application of the 

top gate voltage between -1v to +1v. We are able to observe higher doping at low 

voltages in the device.  

 

 

           In our experiment, we used DI water as the liquid. It is known that when we apply 

voltage, free H+ and OH- in the liquid and form a Debye layer on top of graphene. The 

Debye layer plays the role of SiO2 layer in back gating. Hence the geometric 

capacitance of the top gate is given by the similar equation  tgotg dc /εε=  just like 

before. The thickness of the Debye layer is given by nmkTced otg 2)/2( 2
1

2 ==
−

εε  for 

monovalent ions kT is the thermal energy and ε is the dielectric constant of DI water [3, 

Fig. (41): shows the resistance of the graphene with respect to the top 

gate voltage from -1v to +1v. 
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4]. Using these parameters, it is determined that the Debye layer of our device is around 

2nm which is a significant reduction from 300nm for SiO2. Furthermore, since the 

dielectric constant of DI water is also around 20 times higher than that of SiO2, this 

combination of a higher dielectric constant and thinner dielectric layer led to significantly 

higher top gate geometrical capacitance of 7.2 x 10-5Fcm-1. As described above, 

ν+=
e

E
V

f

bg
since Ctg is very much larger, ν  is no longer very much larger than

e

Ef , 

hence this term cannot be neglected anymore. As such the doping concentrations in 

liquid electrolyte gated graphene is no longer estimated via bgVn α= as in back 

gating but using  
tgo

f

tg d
e

nV
V /εε+

Π
=
� Using the calculated values 

mentioned above, we reduced the above to n
15-7-

 tg  x102.22 n101.16x  V += to 

estimate the doping concentrations in top gated graphene.  

By using lower cost materials like electrolytes to significantly improve doping 

concentrations at lower top gate voltages, we have managed to fabricate graphene 

devices with better performance. 

5.6 Future work 
 

The excellent performance of the top gating by using PDMS micro-channel on top of 

graphene serves as proof that one can achieve electrolyte local gating of graphene [10, 

-12] by using this device geometry. The work on liquid gating paves the way for future 

work in realizing graphene based chemical and bio-sensors [13, 14]. A charged 

molecule near graphene acts in a similar way as ions in the electrolyte as an effective 

gate to change the resistance of graphene. The large resistance recorded for electrolyte 
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top gated graphene indicates that a signal from charged biological or chemical species 

can be readily observable. 

5.7 Conclusion 

Different types of charge carriers in graphene can be tuned by applying a gate voltage. 

In this report, we have demonstrated that by using liquid top gating in graphene, we can 

tune the carriers from electrons to holes. As a consequence, the higher dielectric 

constant of DI water and the presence of nanometer thick Debye layer leads to higher 

doping concentrations at smaller top gate voltages as compared to conventional back 

gating. 
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