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SUMMARY 

 

This thesis presents a near-automatic non-rigid registration algorithm requiring minimal 

user interaction for renal dynamic contrast enhanced (DCE) MR images. The 12 patients’ 

dataset (24 kidney volumes) to be registered were acquired on a 1.5T scanner of size 256 

x 256 x 40 (voxel resolution of 1.66mm x 1.66mm x 2.5mm) with the number of static 

volumes in each dataset varying from 31 to 41. A multi-level registration algorithm is 

proposed to first account for initial large translational errors, followed by compensating 

for local deformations of the kidney. A graph-cut optimization technique integrating local 

gradient information into an energy function solves the initial problem of 3D translational 

registration. A motion/noise free pseudo ground-truth dataset is then estimated from the 

whole time sequence of each kidney dataset obtained after translational registration. 

Finally, the demons algorithm is used to register each 3-D volume (as floating image) to 

its corresponding estimated volume (as reference image) at each time frame. 

Experimental results on patient data demonstrate that the proposed algorithm is able to: 

(1) perform initial translational registration accurately with an error of up to 5 voxels; (2) 

correctly estimate the pseudo ground-truth dataset, and (3) achieve non-rigid registration 

of 4D time-series of renal DCE MRI data. 
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CHAPTER 1 

INTRODUCTION 

  

Magnetic resonance imaging (MRI) is becoming increasingly popular due to its 

non-invasive nature and good reliability. However, as the data acquisition procedure is 

rather lengthy, the misalignment of 3-D image volumes in a given time-series occurs, 

induced mainly by patient movement and breathing. Image registration, the process of 

comparing and integrating data obtained from different or same types of measurements, 

is thus employed to correct these movements, with details being described by Maintz and 

Viergever in [1]. Of great clinical interest are automated and semi-automated image 

registration techniques capable of correcting patient movement and respiratory motion, as 

the general registration procedure is rather time consuming and labor intensive. By 

aligning the images across different time frames, different modalities and different scenes, 

post-processing algorithms such as segmentation, recognition and diagnostics can be 

performed with higher accuracy because minimal misalignment errors are carried forward. 

Outside of the medical field, image registration is also useful in other important 

applications such as video enhancement [2], scene representation [3] and automatic target 

recognition (ATR) systems [4].  

 

1.1. Image Registration 

 

Much research has been done in the area of medical image processing, and there 

exist many different algorithms for performing image registration. Registration 

algorithms can involve: (1) different organs/features of interest; (2) different similarity 
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measures; (3) different modalities; (4) different degrees of freedom. Image registration 

algorithms act on different objects/features of interest (organs in a body, buildings or 

written characters, etc.); thus the methods applied in each registration algorithm are 

different based on the type of image being processed, how the important details change 

between different images (with time) and the user‟s requirements. Similarity measures 

depict the similarity between the floating image and the reference image, with some 

examples being given in [5]. By using these similarity metrics to determine how similar 

the reference and floating images are, the registration algorithm can align images based 

on a pre-defined search space. Different modalities are available for imaging, and these 

modalities are not restricted entirely to images created by photography. In medical image 

processing, popular imaging modalities include MRI and computed tomography (CT). 

Image registration algorithms can also be classified into rigid registration, affine 

registration or non-rigid registration. Each of these algorithms has different degrees of 

freedom to define how much an image can transform. In rigid registration, translation, 

rotation and scaling errors within an image are recovered. Rigid registration works best 

for objects in which the object features do not deform over time using the same viewing 

angle or the same principle axes, such as buildings and vehicles. Affine registration, like 

rigid registration, recovers a linear transformation between images, and has a higher 

degree of freedom than rigid registration to account for shearing. Lastly, non-rigid 

registration allows the most degrees of freedom in the image transformation; the object in 

the floating image is transformed elastically thus ensuring a better fit to the reference 

image. Non-rigid registration methods are more common, due to the nature of many 

objects/features deforming non-rigidly across different images, such as human organs and 
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written alphabets/numbers. Many types of transformations exist for non-rigid registration, 

for example, free-form deformation (FFD) or B-splines, etc.  

 
Fig.1.1. Sample kidney images from different patients (top and bottom rows) 

obtained at different times (different columns) with varying intensities at the cortex 

and medulla. The medulla (dark patches) is clearly visible in the kidney images in 

the second column due to the effect of contrast agent. 

 

Image registration is complex in nature, and the difficulty of image registration is 

increased further when dynamic contrast enhanced-magnetic resonance imaging (DCE-

MRI) is involved. Registration of DCE-MRI images is a major challenge, as the acquired 

images by DCE-MRI exhibit rapid intensity changes differently in different parts of the 

organ following the injection of a contrast agent as shown in Figure 1.1. In [6], a 

discussion on processing methods on DCE-MRI renal images is given.  

 

1.2. Perfusion Magnetic Resonance Imaging 

 

In this thesis, the patient datasets are obtained by perfusion magnetic resonance 

imaging (pMRI), a technique that measures the rate at which blood is delivered to the 

tissue. Being a subset of DCE-MRI, pMRI is a special technique for evaluating 



4 
 

microscopic blood flow in capillaries. With the advantages of providing images of high 

level of detail and ensuring that the patient is not exposed to radiation, pMRI has shown 

great promise for the non-invasive diagnosis of cardiovascular and renovascular diseases. 

As a diagnostic tool with great potential, pMRI is being used more and more extensively 

in both medical research and clinical practice. Some example images for pMRI are shown 

in Figure 1.2 and Figure 1.3. It can be observed in the MRI perfusion map of Figure 3, 

that “A” marks the position of a high grade brain tumor where the region demonstrates an 

increased capillary blood volume due to a tumor.  

 

Fig.1.2. Cerebral perfusion MRI images taken from http://emedicine.medscape.com/  

 

Fig.1.3. MRI perfusion map taken from http://www.rcnd.com/PerfusionMRI.html. 

The location marked with an ‘A’ indicates the position of a tumor. 

 

The main applications of perfusion MRI include the detection of the following 

diseases, as listed in [7]:  
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 Vascular diseases: ischemic stroke (search for penumbra / mismatch 

corresponding to viable brain tissue), study of vasospasm in subarachnoid 

hemorrhage.  

  Infectious or inflammatory diseases, one of whose physiopathological 

characteristics is hypervascularisation, can be explored in perfusion MRI.  

 Tumoral diseases: perfusion MRI is used to evaluate neoangiogenesis and 

tumoral vascularisation, with an impact on the diagnosis or aftercare 

treatment of certain nervous tumors (high grade glioma, lymphoma 

meningioma, pilocytic astrocytoma, metastasis…). 

 

1.3. Proposed Registration Algorithm 

 

Due to breathing motion, non-rigid deformations exist in the kidney images over 

time. Such non-rigid deformations become more complex when the patient datasets 

contain cysts, tumors and other anomalies in the kidneys as shown in Figure 1.4; these 

anomalies cause the kidney to deform non-rigidly over time. Non-rigid deformations 

cause ambiguities over the optimal transformation parameters in a rigid registration 

algorithm; rigid registration algorithms are unable to account entirely for non-rigid 

deformations. Therefore, it is only logical to account for such non-rigid deformations 

within the kidney by performing a non-rigid registration which is discussed in this thesis. 
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Fig.1.4. Sample kidney images from different patients (different rows) obtained at 

different times (different columns) with observable kidney deformations. 

 

In order to ensure the efficiency of the registration process, a multi-level 

registration algorithm is proposed. Pre-processing is first performed to obtain the initial 

region of interest (ROI) and a 2-D kidney mask. Following the pre-processing step are 

two major steps in the registration framework: (1) Rigid registration to account for initial 

large translational errors, and (2) Non-rigid registration to determine the non-rigid local 

deformations of the kidney. For the initial problem of 3-D translational registration, a 

graph-cut optimization technique is introduced as it is efficient and robust. Robustness of 

the registration algorithm is ensured by combining local gradient information of the 

kidney into the energy function to obtain a global solution. With rigid registration 

performed, a smaller ROI is obtained for the non-rigid registration process increasing the 

overall efficiency. For the non-rigid registration of the kidney, a motion/noise free pseudo 

ground-truth dataset is first estimated by imposing spatiotemporal smoothness constraints 

on the entire time sequence of each kidney dataset obtained after translational registration. 

The estimation is done with reference to the method described in [8] for the registration 

of myocardial perfusion MRI, with certain adaptations made to fit the framework of 
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kidney registration. Then, the images within the pseudo-ground truth dataset will be used 

as reference images to register the original kidney images non-rigidly. With knowledge 

that the non-rigid deformations are small, an efficient demons algorithm as described in 

[9] is used to register each 3-D volume (as floating image) with its corresponding 3-D 

estimated volume (as reference image) at a particular time. The flowchart of the proposed 

algorithm is given in Figure 1.5. 

The main contributions of the work presented in this thesis are threefold: 1) 

applying graph-cut to image registration using gradient information and implementing the 

graph by using super-nodes to link local edge information in different nodes together; 2) 

estimating pseudo ground-truth for the kidney images in 3D by adapting the estimation 

framework previously applied to 2D cardiac images; and 3) using the demons algorithm 

to account for small non-rigid motion in kidneys which is efficient and robust. 

The rest of the thesis is organized as follows. Chapter 2 gives a literature review 

on the various methods proposed in rich literature to perform biomedical image 

registration, with the focus on registration of renal DCE-MRI image series. Chapter 3 

describes the initial rigid registration algorithm to compensate for large translational 

motion in the kidney. Chapter 4 describes the non-rigid registration algorithm to 

compensate for elastic deformations of the kidney after the initial translational 

registration, including the estimation of the pseudo ground-truth and the demons 

registration algorithm. Chapter 5 presents the results qualitatively and quantitatively 

obtained from the multi-level registration algorithm as described in both Chapters 3 and 4. 

Finally, we conclude the thesis in Chapter 6.   
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Fig.1.5. Flowchart of the proposed registration algorithm. 
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CHAPTER 2 

LITERATURE REVIEW 

  

 This chapter provides a brief review on the various image registration methods 

proposed in rich literature. First, image registration methods will be classified into the 

different widely known categories (type of human organ, image modality, similarity 

measures, etc.) as briefly listed in Chapter 1. Then, a focused review will be done on the 

more relevant methods related to renal image registration and non-rigid image 

registration. The pros and cons of these methods will be analyzed. Finally, the methods 

will be compared in terms of the requirements of the registration algorithm in renal DCE-

MRI.  

As aforementioned, a multi-resolution algorithm will be proposed, consisting of 

both rigid and non-rigid registration methods. A rigid registration method must be able to 

handle large translations. Rotations are not considered as they are small and will be 

accounted for in the non-rigid registration step. The rigid registration method has to be 

robust with errors small enough to ensure that the subsequent non-rigid registration step 

can achieve sufficient accuracy. The non-rigid registration method, on the other hand, 

must be able to handle small deformations in the kidney efficiently and robustly because 

3D volumes are involved. 

 

2.1. Image Registration Algorithms 

 

Medical image registration algorithms can be classified according to the organ of 

interest: brain imaging [10-15], cardiac imaging [8, 16, 17], spine imaging [18], renal 
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imaging [6, 16, 19-25], bladder imaging [26] and breast imaging [27]. Image registration 

on these organs allows a radiologist to perform an accurate diagnosis and to administer 

treatment effectively. These registration algorithms can be applied to different modalities, 

including MRI [9, 13, 14, 16, 17, 22, 24, 28], computed tomography (CT) [29, 30] and 

inter-modalities between the ones aforementioned [18, 31]. Each modality has its pros 

and cons, and displays different information about the organs that are being imaged. CT 

outlines the bones inside the body accurately. Even though CT is cheaper than MRI, CT 

uses ionizing radiation that is harmful to the human body. MRI, on the other hand, is 

accurate and non-ionizing, although it is more expensive and time-consuming. Moreover, 

MRI can produce a good contrast between tissues based on different weightings. For 

example, on a T2-weighted scan, fluid-containing tissues are bright and fat-containing 

tissues are dark, whereas the reverse is true for T1-weighted images. In some cases, such 

as when the patient has a metallic implant, MRI cannot be performed due to the high 

magnetic field (measured in Tesla) present during the procedure. The difficulty of image 

registration is high where multi-modalities are involved, as the coordinate systems used 

and the information (such as edges and contrast) extracted are usually different.  

As mentioned in Chapter 1, image registration algorithms can be classified into 

rigid registration, affine registration or non-rigid registration. For rigid registration, most 

algorithms make use of the different similarity/difference measures defined in [5] and 

their variants to align the images, for example, mutual information (MI) [18, 22, 32, 33], 

gradient based similarity measure [24, 31], and cross-correlation [16]. Different similarity 

measures make use of different image information to quantify how much the reference 

image and the floating image look alike. For example, gradient-based methods make use 
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of object edges to align the images, and MI-based methods make use of probability 

theory and information theory to obtain the registration result. Some other unique 

methods in rigid registration employ point-based algorithms [34], wavelet and Fourier 

transforms [23], Markov random field (MRF) optimization [35] and alignment based on 

mid-sagittal plane (MSP) [10]. Affine registration allows for more degrees of freedom in 

transforming each image, although it is more computationally intensive than its rigid 

counterpart. Some affine registration methods are given in [13, 15, 28]. In the case of 3D 

affine registration, an efficient log-Euclidean poly-affine framework is described in [36].  

For non-rigid registration methods, some of which discussed in [37], most of the 

similarity measures mentioned above are integrated into a higher level algorithm. Many 

methods involve the use of affine parameters [13, 28], B-splines [21, 29] and graph-cuts 

[11, 12, 26, 38] to account for the local deformations of the organ due to movement and 

pressure. While affine registration algorithms use linear models to align the images, non-

rigid registration methods attempt to align the images by non-linear models with a higher 

degree of freedom to represent the elasticity of the transformation. Other methods include 

solving Laplace‟s equation between closed equally-spaced contours [19], thin-plate 

splines [39] and the demons algorithm [9, 30]. The difference between these methods lies 

in their efficiency and robustness in performing the non-rigid registration task.  

 

2.2. Methods for Registration of Renal DCE-MRI Image Series 

 

In recent research of medical image registration, the renal DCE-MRI image 

registration problem has mostly been dealt with rigidly [22-25], as it is popularly 
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assumed that kidneys do not exhibit non-rigid movements in most healthy patients. 

Mahapatra [22] proposed a method using an MI-based registration model to register 3-D 

volumes involving rotation and translation with respect to time. A saliency model is 

employed to determine the importance/utility of each voxel within an image; the saliency 

model improves the accuracy of rigid registration of the kidney. This solution reveals an 

interesting aspect of image registration, by differentiating active and passive voxels 

within an image. Active voxels are voxels that can enhance the accuracy of the 

registration algorithm when a certain similarity measure is used. In contrast, passive 

voxels will give an inconclusive result, lowering the accuracy of the registration 

algorithm. For example, a voxel containing the strong edge of an object is an active 

voxel, beneficial to the image registration algorithm when gradient difference is used as 

the similarity measure; a passive voxel located in the background with low edge strength 

will not be able to generate reasonable results in registration and should be given lower 

priority when computing the cost function. Furthermore, MI is a contrast invariant 

measure, and is used commonly to register DCE-MRI images. However, MI is 

computationally intensive given a large search space because the probabilities and joint 

probabilities have to be recomputed for each set of transformation parameters. 

Song et al. [23] applied anisotropic diffusion to pre-process the image before 

using wavelet and Fourier transform to detect edges and then registered 3-D volumes 

with time in an automatic fast Fourier processing. Anisotropic diffusion acts as a pre-

processing method to remove noise while keeping the important information such as 

edges, lines and other details intact. The wavelet and Fourier transform then detect the 

edges in the frequency domain for registration. It is noted that edges are important when 
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aligning DCE-MRI images, as edges are the only entity that does not shift when a 

contrast agent washes in and out of the kidney.  

Sun et al. [24] used an integrated registration technique to match images from 

different phases in 2-D. A multi-level solution was proposed, where gradient information 

was first used to align the images, followed by a level-set segmentation of the kidney to 

obtain the rough kidney segmentation. Registration is then refined and re-applied onto the 

kidney images incorporating regional homogeneity of pixel intensities to obtain the 

solution. This method did not consider out-of-plane motion and the kidney mask obtained 

is therefore in 2D. Certain methods used in this registration algorithm are notable, in 

particular the multi-level registration approach and the use of 2D segmentation mask with 

gradient information to perform registration.  

Lastly, Yim et al. [25] investigated two registration methods for registering 2-D 

kidney slices: (1) a semi-automatic method using contours as landmarks, and (2) an 

adaptation of the Automated Image Registration (AIR) algorithm. While being able to 

register DCE-MRI images of the kidney, the proposed methods did not guarantee good 

results when diseased kidneys are considered. However, it is to be noted that a good 

kidney boundary will allow for an easier registration of DCE-MRI images, as this 

boundary does not change with time, unlike the medulla of the kidney that appears only 

during the wash-in of the contrast agent affecting the results of edge matching. 

 

2.3. Relevant Methods for Non-Rigid Image Registration 

 

 Many solutions are available to perform non-rigid registration in medical imaging, 

but most of these solutions are implemented for registering other organs in the body other 
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than kidneys. Two similar solutions are proposed by So [11] and Tang [12]. Graph-cuts 

optimization with alpha expansions is carried out with MI and sum of squared difference 

(SSD) being integrated into the cost function. The purpose of graph-cuts serves to register 

2-D images where each pixel is represented by a node in the graph and the nodes are 

linked in a 4-neighbourhood fashion. However, when volumetric images are considered, 

there is a great tendency for the processing time to increase exponentially. Graph-cuts is 

normally used in segmentation with the setup being shown in Figure 2.1, with a 2D 

organized grid having 4-neighbourhood connectivity and 2 labels representing the 

background and foreground. It is observed that graph-cuts is a flexible optimization tool 

allowing the user to define the nodes and how they are linked together, the data cost and 

the smoothness cost between connected nodes. Additionally, multi-labels could also be 

defined instead of binary-labeling which is mostly used in segmentation; multi-labels fit 

the context of rigid registration with a pre-defined search space. 

Another solution employing graph-cuts was introduced in [38]. The proposed 

algorithm integrates both saliency and intensity information into a Markov Random Field 

(MRF) framework to register DCE-MRI kidney images. Similar to the graph-cut method 

as mentioned precedent using MI and SSD, edge and saliency information were both 

considered in the employed solution. It is observed that graph-cut is a very flexible tool 

which can solve MRF energy functions defined using different similarity measures and 

smoothness constraints. 
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Fig.2.1. Standard grid graph. 

   

Solutions in the form of free-form deformation (FFD) based on B-splines were 

introduced in [21, 29]. The transformation is defined by a deformation model based on a 

grid of control points described by B-splines basis functions where the grid spacing is 

user specified. A large grid-spacing allows for an efficient modeling of global 

deformations, whereas a small grid-spacing is able to detect high local deformations. For 

kidney registration, small local deformations are more common but this causes the FFD 

algorithm‟s complexity to greatly increase; having a small grid-spacing is undesirable 

due to higher computational costs. There is a tradeoff between local accuracy and 

computational cost, which is controlled by the grid spacing. Therefore, the grid spacing is 

an important parameter and should be set appropriately.  

 Finally, a solution based on diffusion models to perform image-to-image 

matching is presented – the demons model. The demons model is described in [9] with a 

fast variant of it being implemented in [30]. The demons algorithm performs optimization 

over the entire space of displacement fields, and matching is done iteratively by diffusion 

Label L 

Data cost Dp Node p 

Vp,q 

Node q 
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based on a deformable grid model. The demons model for non-rigid registration is much 

faster than the other two methods described above (i.e., graph-cuts and FFD) when 3D 

non-rigid registration is involved. If the deformation grid is simple, where the 

displacement of each grid point is small, the demons algorithm is able to perform a robust 

non-rigid registration of the image.  

 

2.4. Comparison of Methods 

 

 In this section, we compare the methods proposed in rich literature in terms of the 

requirements of the registration algorithm. First of all, we compare the two most common 

similarity measures, mutual information and gradient difference. As edge information is 

used frequently to register renal DCE-MRI images, gradient difference is the preferred 

choice. Besides, when rigid registration is concerned, we have a large number of labels 

where each label represents a certain translational transformation. In MI-based methods, 

when we shift the window of the kidney across the search space, the joint entropy needs 

to be re-computed, making the MI-based methods more computationally intensive than 

gradient difference based methods. 

 Graph-cuts optimization is employed to solve the problem of rigid registration 

due to the nature of graph-cuts being flexible, efficient and robust. With graph-cuts, many 

different parameters can be set according to application requirements: (1) it is possible to 

improve the emphasis on the nodes around the boundaries of the kidney as these 

boundaries contain useful gradient information ensuring a robust solution; (2) the use of 

multi-labels allows to search for the best translational parameters; (3) smoothness 
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between the nodes can be set in such a way that labels assigned to neighboring nodes do 

not represent very different transformation results; (4) sparse smoothness can be used to 

define the node structure and links between the nodes in any way as desired by the user. 

Being flexible in varying the node-structure and the size of nodes, a reasonable solution 

can be achieved with small translational errors, as long as the energy function follows the 

criteria as stated in [40]. Graph-cuts‟ flexibility and efficiency fit the requirements of the 

registration algorithm. The downsides of using graph-cuts are as follows: (1) the lost of 

label orders where mid-label results are not considered; (2) the computation of the data 

cost for each label on each of the nodes is exhaustive, even though the optimization 

procedure is efficient and robust. 

Next, we analyze the problem of selecting a reference image to register the 

dataset. For rigid registration, the user selects a frame where the kidney exhibits the best 

boundaries surrounding it (strong edges and good gradient information). One reference 

frame is sufficient since the kidney boundaries are often present before, during and after 

contrast enhancement. For non-rigid registration, in order to minimize the intensity 

difference between the reference and the floating images, some existing methods [16, 41] 

register every two consecutive frames for the whole sequence. However, as each pair of 

consecutive images would still exhibit varying intensities for different tissues in the 

kidney, registration errors tend to accumulate and the results become undesirable towards 

the end of the sequence. To overcome this problem, we propose to first estimate a 

motion/noise free sequence and then apply non-rigid registration to corresponding pairs 

of images between the observed sequence and the estimated sequence. Compared to pairs 

of images within the observed sequence, the pairs of corresponding images have similar 
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intensities, and hence the registration problem is greatly eased. We call the estimated 

sequence „pseudo ground truth‟, because it is the estimate of the image sequence that 

would have been acquired without being affected by motion or noise. However, to the 

best of our knowledge, such estimation methods do not exist for renal DCE-MRI data. 

Thus, an estimation method for the pseudo ground-truth will be borrowed and adapted 

from myocardial image registration in [8]. The pseudo ground-truth is obtained by means 

of intensity curve-fitting across the whole time-series volumes for each voxel, and this 

eliminates noise and small motion allowing for a reliable non-rigid registration. To 

ensure a reasonable estimation of the pseudo ground-truth, it is imperative that the 

translationally registered dataset does not contain large translational errors.  

Finally, we compare the algorithms used to perform the non-rigid image 

registration. As mentioned precedent, FFD using b-splines is reliable but it is too 

computationally intensive when 3D image registration accounting for small local 

deformations is concerned. FFD using b-splines becomes unreliable if we use a large 

grid-spacing and thus is not a suitable candidate for non-rigid registration. The demons 

algorithm, on the other hand, is efficient and accounts for local deformations 

satisfactorily.  
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CHAPTER 3 

TRANSLATIONAL REGISTRATION 

 

As stated in the introduction, motion and breathing of a patient are inevitable as 

each patient dataset is acquired over minutes during an MRI procedure; misalignment 

including large translations and small deformations between kidneys in volumes acquired 

at different times result from such motion. To address this problem, a multi-level 

registration algorithm is proposed, where an initial translational alignment of kidneys is 

performed to eliminate large translational errors between kidney volumes. Translational 

registration ensures that the kidneys in each volume are kept within a small region of 

interest (ROI) increasing the efficiency and accuracy of the non-rigid registration step. 

The challenges of performing translational registration on kidneys lie in: 1) defining a 

metric to determine the similarity between images; 2) determining the search space; and 

3) aligning kidneys robustly up to a small translational error. A good similarity metric 

should be sensitive to the matching of the images even in the case where a slight 

mismatch is present; matching kidney images will result in a high value, and this value 

decreases as the kidneys in the reference and floating images become further apart. The 

search space has to be large enough to ensure all large translational errors are accounted 

for, but a larger search space comes at the expense of a higher computational cost in 

registration. Errors are inevitable in a registration algorithm, and it is desirable if the 

registration errors are kept as small as possible for all the available datasets. The method 

to address the above challenges is discussed in this chapter. 

An outline of the algorithm is given in Figure 3.1. The proposed translational 

registration algorithm consists of the following two steps: 1) manual selection of the ROI 
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and obtaining a 2D segmentation mask of the kidney in a pre-processing stage; and 2) 

resolving the first registration stage by using graph-cuts to register the floating image 

volume to the reference image volume in the 3 principle axes using a large translational 

search space. In the second step, we first show how the graph is set-up and the different 

terms (data cost, smoothness cost and weights) are defined. This is followed by 

performing the graph cut operation to obtain the translational parameters for each node 

within the graph. Finally, we perform a weighted average over the translational 

parameters obtained for each node within the graph to obtain a set of global translational 

parameters for the entire volume. 

The algorithm is regarded as semi-automatic due to manual input involved in 

drawing a box depicting the ROI and in obtaining the seeds to be used in the grow-cut 

segmentation algorithm [42]. However, minimal time is spent on the manual input as 

compared to the main registration algorithm, and these pre-processing steps will 

ultimately ensure an efficient and accurate registration. To summarize, the main 

contributions of the translational registration step are: (1) Graph-cut is implemented with 

super-nodes where each of these super-nodes represents a local sub-volume of the 

kidney; (2) Gradient difference is incorporated into the energy function of the rigid 

registration algorithm. 
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Fig.3.1. Flowchart of the translational registration algorithm 
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3.1. Pre-Processing 

 

 In the pre-processing step, the kidney is extracted from the reference image in the 

form of a rectangular box and a 2D segmentation. The rectangular box serves as a 

window for matching volumes at different time frames, while the 2D segmented kidney 

slice differentiates the kidney from its background within the ROI. For each patient 

dataset, two kidney time-series volumes (left and right kidneys) can be extracted and each 

time-series volume is registered separately. A sample time-series volume is shown in 

Figure 3.2. The reference frame, middle slice and the ROI are manually selected by the 

user, where: (1) the user determines the best time frame at which the kidney exhibits the 

best contrast around kidney boundaries and uses it as the reference frame, (2) the user 

then selects the kidney slice with the largest cross sectional area as the middle slice, and 

(3) the user draws a box over the kidney region to crop the ROI for registration. Five 

slices of the kidney, inclusive of the middle slice and the two slices immediately above 

and below the middle slice, are included in the volume to determine the best translational 

parameters efficiently in this registration stage. 
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Fig.3.2.A sample time-series volume of a kidney. Each slice in the Z axis consists of a 

cross-section of the kidney in the XY plane. The 3-D volume of a kidney varies in 

intensity with time. 
 

Upon obtaining the reference frame and the ROI, the boundary of the kidney is 

then obtained by 2D segmentation using a grow-cut algorithm described in [42], where 

the object and background seed points are determined manually by the user for only the 

reference image slice. The Matlab wrapper used to perform the grow-cut segmentation is 

obtained at [43]. Figure 3.3 shows a sample of the grow-cut segmentation over a slice of 

the kidney from the reference frame. The resulting segmentation gives the boundary 

around the kidney which is used for the subsequent registration steps. It is noted that the 

segmentation need not be precise, and that the user can re-input the seeds for the grow-

cut segmentation if the results are undesirable. 
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Fig.3.3.A sample slice of the kidney: (left) with the background seeds (marked with 

* in red) and object seeds (marked with o in green), (right) with the kidney 

boundary obtained by grow-cut segmentation.  
 

3.2. Graph Cuts 

 

 We propose to solve the translational registration problem by means of a multi-

label graph-cut optimization technique via alpha-expansions, the pros and cons of which 

have already been discussed in Section 2.4. As mentioned precedent, graph-cut is a 

flexible, efficient and robust algorithm. The loss of label orders is not a major problem as 

the kidney alignment will be completed with a non-rigid registration step. A graph is 

defined by its nodes and the links between each node and its neighbors. A graph-cut 

solution then looks through the entire search space denoted by the number of labels to 

obtain the optimal global solution (the best label to each node in the graph). The next few 

sub-sections will discuss in detail how the rigid image registration parameters are set up, 

in terms of: energy function, node topology, labels, data penalty, smoothness cost and 

weights. A final section will then explain how this registration step is implemented and 

validated. 
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3.2.1 Energy Function  

 

To solve the translational registration problem, we propose to minimize the 

energy function, E(L), based on the Bayesian labeling of first-order Markov Random 

Fields (MRFs) as below:  

                                        , 

where               is a set of labels attributed to each node p within a set of nodes 

  of the image volume,    is the weight that controls the importance of certain nodes,    

is the data penalty term,     is the smoothness constraint term,   is a constant set at 0.01 

to balance the importance between the data cost and the smoothness constraint, and N is 

the set of all the pairs of neighboring nodes. Each parameter will be defined in the 

subsequent sub-sections, together with the implementation method to obtain the optimum 

translational values in the three axes. 

 

3.2.2 Graph Structure 

 

In translational registration, the image is partitioned into a number of volumes 

called super-nodes. The centers of these super-nodes are set in the form of a regular 

square grid on top of the kidney ROI. Each super-node/sub-volume contains the gradient 

information from the observed slice in the XY plane and the 2 anterior slices and 2 

posterior slices in the Z axis; the node sizes are 25 × 25 × 5 (x × y × z) for each volume 

partition. The size of each node in the XY plane is also equally sized and an overlap 

between each pair of neighboring nodes is implemented by using a node-spacing of 12 × 

(3.1) 
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12 (x × y) to increase the dependency between neighboring nodes. Because super-nodes 

are used, the number of nodes in the graph is kept small at about 20-30, thus increasing 

the efficiency of the algorithm. The segmented boundary, gradient map and the graph of 

nodes are shown in Figure 3.4.  

 

 

Fig.3.4. (left) ROI with segmented boundary; (middle) Node map with node-centers 

marked by Xs and overlapping node-windows; (right) Node distribution with links. 

 

 

3.2.3 Labels  

 

Each label, Lp, represents a certain transformation configuration for a particular 

node p, where                              . The number of labels is equal to 

the number of permutations of the possible values of translations in the X, Y and Z axes of 

the search space, which is set to be                             

             . The search space is set with reference to the ground truth 

information, with an extended    voxels in each dimension of the search window. 

During breathing, the diaphragm contracts and causes the lungs to expand, and the 

kidneys in the body are pushed downwards; thus, the search space is larger in the X-axis 

(top to bottom of the body). The search space in the Z-axis is small as the motion of the 
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kidney in this axis is generally small, and that the resolution of the image is 1.66 mm × 

1.66 mm × 2.5 mm where a 3-voxel shift in the X or Y-axes is equivalent in distance to a 

2-voxel shift in the Z-axis.  

 

3.2.4 Data Cost 

 

The data cost is defined by how different the floating image is from the reference 

image; the greater the difference between the floating image and the reference image, the 

higher the data penalty. A robust measure is required to ensure that an accurate 

registration result is obtained for most or all of the kidney volumes. For DCE-MRI 

images of the kidney, edges are the most reliable features, especially those around the 

boundaries of the kidneys. Therefore, gradient difference is used as the main similarity 

measure where each node in the floating image was compared to the corresponding node 

in the reference image. Let            denote the current 3D displacement,       and 

      denote the corresponding X-axis and Y -axis edge information of the voxel with 

position             in the reference volume image, while        and        denote 

their counterparts in the floating volume image with                      . 

Both F and G are obtained by performing convolution of the image feature with a 

Gaussian filter. The cost,     for a particular node p to take the label,    is given by:  

          
            

             
       

                                       

 

where Bp is the set of all voxels within the sub-volume corresponding to node p. Each 

voxel, v, in the floating image is compared against its corresponding voxel in the 

(3.2) 
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reference image in terms of edge magnitude and edge orientation. Voxels with matching 

orientation angles are given a high similarity value which translates to a low data cost as 

shown in (3.2). 

 

3.2.5 Smoothness Cost 

 

In order to ensure that neighboring nodes are not assigned to labels denoting 

translations that differ a lot from each other, a smoothness constraint is introduced; the 

smoothness constraint provides a force that pulls nodes together like magnets. Given a 

particular 3D displacement            for node p, and another 3D 

displacement                for neighboring node q, where                 

and                   , the smoothness cost,            , is set as follows:  

           

 
 
 

 
                                   

                                            

                                            

                                                   

 

 

where           is the Euclidean distance between the displacements denoted by labels 

   and   . It can be observed from (3.3) that if neighboring nodes are given varying 

labels with Euclidean distance higher than 2, the smoothness cost will be infinity, 

signifying that such an attribution of labels is impossible within a graph. 

 

3.2.6 Weights 

 

The weights,       assigned to each node p are determined by the strength of 

(3.3) 
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gradient information found within its corresponding sub-volume, and is given by 

    
 
       

         
                                   

                                             

 
 

                         ; 

             , 

where      is the number of voxels within node p,      indicates the strength of node p,    

represents the magnitude of the gradient of the reference image f,      and      

respectively represent the minimum and maximum strengths of all the nodes. Greater 

emphasis is placed on active nodes with a larger overall gradient magnitude; less 

emphasis is placed on passive nodes with a small overall gradient magnitude. Moreover, 

weights are set to zero if a certain sub-volume (defined by a node) does not contain any 

kidney boundaries, as other edges within the kidney are not persistent throughout the 

whole time-sequence. In (3.6), we normalize the weights in (3.4) such that the sum of 

weights of the nodes will be equal to unity. 

 

3.3 Implementation and Validation  

 

We make use of a Matlab wrapper [44] that implements the graph-cut technique 

[40, 45, 46] to solve the registration problem involving only translation of each node in 

the X, Y and Z axes. By partitioning the image volumes and employing the use of graph-

cuts, we are able to optimize the 3-DOF translational registration process while ensuring 

that dependency between neighboring nodes is observed; no two neighboring nodes have 

results that differ from each other by a large margin, thus obtaining the best result 

(3.4) 

(3.5) 

(3.6) 
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globally. The resulting global translational parameters            are then obtained by 

taking the weighted average of displacement over all nodes: 

                               , 

where             is the label attributed to node p after the graph-cut algorithm. 

To validate the translational registration algorithm described in this chapter, many 

different tests are performed in a quantitative analysis. As the ground truth of the dataset 

denoting the optimum global 3D translation is available, it is used to obtain the 

registration accuracy for the different tests. The mean error, standard deviation of error, 

and cumulative distribution function of the errors for each volume are evaluated for each 

of the test results. The first test involves comparing the similarity measures, gradient 

difference against normalized mutual information. Three different implementations are 

considered: 1) gradient difference used along with graph-cuts optimization to obtain the 

results; 2) MI applied globally to compare the difference between the floating image and 

the reference image; 3) MI used along with graph-cuts optimization to register the images. 

The second test involves comparing different node sizes when constructing the graph. A 

larger node size contains more information making the algorithm more robust, but a 

longer time is required to compute the data cost reducing the algorithm‟s efficiency. Thus, 

the second test determines the minimal amount of information required in each super-

node in order to obtain reasonably accurate results. The criterion for a result to be marked 

as reasonable is that the translational error obtained after registration is kept within a 

maximum Euclidean distance of 5 voxels. To show that the introduction of weights is 

able to ensure better registration accuracy, a third test is performed. Weights, as 

mentioned precedent, help to locate regions containing important and consistent edge 

(3.7) 
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information; the regions around the kidney boundaries are used to register the images. A 

fourth and last test is performed on two simulated datasets, created by performing a 

random translational transformation on two pre-aligned datasets. The random 

transformation is then recovered by using the proposed registration algorithm and the 

errors between the obtained and applied translational parameters are analyzed visually 

and quantitatively. The fourth test validates the choice of using a single reference frame 

to register the entire dataset. 

Additionally, a qualitative analysis is performed on the registration results. Apart 

from performing a visual analysis on the resulting registered images, a curve showing the 

average intensity over a few voxels of the kidney against time is constructed. If the 

kidney is registered correctly using the proposed registration algorithm, the intensity-time 

curve obtained post-registration will tend to the curve obtained by aligning the images 

using the ground-truth data.  
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CHAPTER 4 

NON-RIGID REGISTRATION 

 

The rationale of performing non-rigid registration after translational registration is 

to account for small rotations and also local deformations of the kidneys. Such 

deformations are also caused by motion and breathing of the patients. Rotation 

parameters or affine parameters have been used to define the deformations within a 

kidney with limited degrees of freedom. However, these parameters cannot account fully 

for deformations within a kidney, especially in 3D, and thus a model of higher order is 

required to fully describe such deformations. The main challenges of non-rigid 

registration are: 1) to obtain a high efficiency of the algorithm in 3D context, and 2) to 

have a good reliability of the registration algorithm performed on contrast-varying kidney 

images. Non-rigid registration methods as described in the literature are mostly 2D-

based, thus efficiency is not a major concern for such algorithms. However, for 3D 

images, the computational complexity increases exponentially, thus efficient registration 

algorithms are required. The reliability of the non-rigid registration algorithm is 

dependent on two factors – the structures extracted from the image and the reference 

image. For DCE-MRI images, edges are the best structures which can be used to align 

images even as tissues display varying intensity profiles. However, a kidney shows 

different edge information at different time frames due to the effect of a contrast agent, so 

a single reference image could not be used to register all kidney images. In order to 

achieve optimal accuracy in non-rigid registration, a reference image should resemble 

that of an image from the observed sequence. Thus, a pseudo-ground truth dataset is 

estimated from the translationally registered dataset to serve as reference images for 
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registering each floating image at different time frames. A pseudo-ground truth image has 

all the tissues aligned with the rest of the images within a dataset, and the intensity of 

each voxel follows a certain intensity profile depending on the type of tissue. The 

pseudo-ground truth dataset, being noise and motion free, serves as the best reference 

images to register the entire dataset. 

Figure 4.1 gives a flowchart of the non-rigid registration step. The non-rigid 

registration method consists of the following steps: 1) initial pseudo ground-truth dataset 

estimation given the translationally registered dataset; 2) resolving the non-rigid 

registration stage by aligning each translationally registered volume with its 

corresponding pseudo ground-truth volume at a particular time frame using the demons 

algorithm. In the first step of non-rigid registration, we compute the different terms (data 

fidelity, spatial smoothness and temporal smoothness) from the given dataset before 

performing an optimization procedure to obtain the pseudo ground-truth dataset. In the 

second step, we first perform a calibration on the pseudo ground-truth dataset by aligning 

the first static volume with its corresponding pseudo ground-truth volume. Finally, we 

perform a non-rigid registration on the rest of the dataset using the demons algorithm. 

To summarize, the main contributions of the non-rigid registration step are: (1) 

Pseudo ground-truth dataset estimation previously applied to cardiac images is introduced 

into renal image registration; (2) Application of the demons algorithm to DCE-MRI renal 

images to account for non-rigid transformations. 
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Fig.4.1. Flowchart of the non-rigid registration algorithm. 
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4.1. Pseudo Ground-Truth Estimation  

 

The pseudo ground truth is an estimate of the image volume time-series that 

would have been acquired without being affected by noise or motion during acquisition. 

Figure 4.2 shows the intensity-time curve for the mean intensity across the entire kidney 

mask. From the curve, we can observe that the intensity change is not smooth, mainly due 

to non-rigid deformations and misalignments. Thus, another image volume time-series is 

estimated from the original dataset to produce its noise/motion free counterpart. In this 

step, an estimation of the pseudo ground-truth of the translational registered dataset is 

performed with reference to the method as given in [8]. The pseudo ground-truth dataset 

is then used as a reference dataset to register the translationally registered dataset. 

Although the algorithm has been used on cardiac images with multiple segments 

(background, left and right ventricles, and the myocardium), a minor adaptation is made 

to the algorithm to make it work for renal images with only the kidney and the 

background. The pseudo ground-truth estimation algorithm proposed in [8] works only 

on 2D images. Taking into consideration that an implementation for estimating pseudo 

ground-truth in 3D will result in an exponentially increasing computational complexity 

with similar results, it is more efficient to perform the estimation several times for each 

kidney volume. Thus, seven 2D slices of the kidney are extracted from each kidney time-

volume and the estimation algorithm is performed seven times for each slice across the 

whole time sequence. In addition, since the intensities across different time-volumes 

affect the estimation of the pseudo ground-truth dataset, it is important that the 

translationally registered dataset: (1) should not contain large translational errors, and (2) 
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should not contain translational errors consecutively across different time-volumes. Next, 

we describe in detail the main components of the estimation algorithm: data fidelity, 

spatial smoothness, temporal smoothness and the optimization method. 

 

 

 

 

 

 

 

 

 

Fig.4.2. Intensity-time curve for the average of pixel intensities (Iave) over the kidney 

mask across all frames. 

 

 

4.1.1 Energy Function – Pseudo Ground Truth 

 

 The energy functional,           , used to perform the estimation of the pseudo 

ground-truth dataset is given as follows:  

                                       , 

where   represents the floating image, H represents the image transformation function, f  

represents the pseudo ground-truth image (reference image),    is the data fidelity term, 

   is the spatial smoothness term and    is the temporal smoothness term. Each of these 

terms within the energy function is controlled by a constant within to determine its 
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importance to the estimation algorithm. The data fidelity term determines the similarity 

of pixel intensities between the floating image and the estimated pseudo-ground truth 

image. The spatial smoothness term and the temporal smoothness term, on the other 

hand, ensure that the intensities of each pixel follow the profiles of the corresponding 

segmented kidney and tissue type. 

 

4.1.2 Data Fidelity 

 

The data fidelity term,            , is defined as the sum of squared difference 

(SSD) between the intensities of each pixel within the reference image and the floating 

image, and is given by: 

                                 , 

where f   and H(g) represent the intensity vectors of both the reference and the 

transformed floating images, respectively. The data fidelity term ensures that the 

estimated pseudo-ground truth resembles the original kidney images.  

 

4.1.3 Spatial Smoothness Constraint 

 

The spatial smoothness constraint term is used to ensure smoothness within 

different segments of an image while maintaining sharp boundaries between these 

segments, in this case between the kidney and the background. The kidney boundary 

obtained in the pre-processing stage of the translational registration is reused in this 

section to differentiate between the boundary pixels and the non-boundary pixels. An 

(4.2) 
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estimated sequence without using spatial smoothness constraint will result in blurred 

boundaries due to motion, which is undesirable for non-rigid registration. By considering 

the intensities of non-boundary pixels in each segment less likely to be affected by 

motion, the ambiguities in determining the intensities of boundary pixels are resolved. 

The spatial smoothness term,          is therefore defined as: 

               
          

 
   , 

where K is the number of neighboring pixels considered,     is the first order spatial 

derivative operator along the direction between each pixel and the k
th

 operator,    is the 

weight matrix to ensure the intensity difference between the pixels from different 

segments (the background and the kidney) are not penalized. In this case, K = 4, as a 4-

neighborhood system is employed. 

 In order for pixels belonging to the same segment to exhibit similar intensities and 

for their signals to maintain similar temporal dynamics,   , the spatial weight matrix is 

defined as: 

    
          

                       
 

   
                   

 
     

 
     

                                                                                

  

                , 

where   is a positive weight term,      is the correlation coefficient between the 

intensity-time curves of the pixel at position (     and its k
th 

neighbor at position        , 

   is the frame number, L’ is the label matrix for the kidney,     and   defines the 

minimal signal similarity and the intensity variance within the same tissue type 

respectively. In the proposed algorithm,          and      . 

 

(4.3) 

(4.4) 

(4.5) 
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4.1.4 Temporal Smoothness Constraint 

 

The temporal smoothness constraint uses the temporal neighborhood of each 

frame to estimate its counterpart in the pseudo ground-truth. Two different phases are 

identified in the time-sequence of the kidney dataset: (1) the pre-contrast phase and (2) 

the perfusion phase. The pre-contrast phase is determined by locating the time frames 

before which the contrast agent washes into the kidney and the intensity-curve starts to 

rise. As the contrast agent has no effect on the background and on the kidney in the pre-

contrast phase, the resulting signal at these locations should be approximately constant; 

the first order temporal derivative of the signals at the background or on the kidney 

during the pre-contrast phase should be close to zero. Then, as the contrast agent perfuses 

through the kidney, a piece-wise linear relationship can be observed approximately in the 

perfusion signals; the second order temporal derivative of the pseudo ground-truth should 

be penalized in this phase. The temporal smoothness term,         is defined as: 

               
                     

        , 

where     and     are the first and second order temporal derivative operators, and    is 

the temporal weight matrix defined as follows: 

    

                                                  
                                      

                                                

 , 

                 

 The constants    and    are set as 15 and 3, respectively. A higher    value will 

reduce the effect of noise in the pseudo-ground truth estimation and    affects the amount 

of smoothing within the kidney. 

(4.6) 

(4.7) 

(4.8) 
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4.1.5 Optimization Method 

 

To obtain the pseudo ground-truth estimation f‟ from the translationally-aligned 

dataset g, we derive from (4.1) by letting 
  

   
   a system of linear equations as follows: 

        
       

 
        

             
           

Let             
       

 
        

             
     , and the above 

equation becomes       . To solve equations of the form      g, the conjugate 

gradient method [47] is used as it is more efficient than a traditional method like 

Gaussian elimination [48].  Upon solving (4.9), we obtain the optimum pseudo ground-

truth dataset f‟ which minimizes the energy function in (4.1), to be used as the reference 

dataset for the subsequent non-rigid registration.  

 

4.2. Deformation Refinement with Demons Algorithm 

 

 The final step of the registration algorithm is to account for local non-rigid 

transformations within the kidney in 3D. In the previous step of pseudo ground-truth 

dataset estimation, 7 slices per volume are obtained. For 3D non-rigid transformation, 7 

slices per volume is also considered, but only 5 slices of the final resulting transformed 

image will be evaluated because interpolation from registration causes the boundary 

voxels to have irregular intensities. For FFD using a small grid-spacing, the 

computational time becomes too long (> 1 hour for a volume time-series) and thus is 

undesirable. The demons algorithm is considered, because of its efficiency as compared 

to FFD-based methods as well as its reliability when dealing with small non-rigid 

(4.9) 
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deformations. The demons algorithm is implemented following [9, 30] in which the 

algorithm is described in detail with the relevant equations. 

The demons algorithm is an automatic non-rigid image registration algorithm, 

accounting for non-rigid deformations of the subject by means of a diffusion model. 

Demons forces are estimated using the optical flow formula. The implemented version of 

the demons algorithm is an improved version with a much better efficiency due to an 

adaptive force strength adjustment during the iterative process. Moreover, a slight 

adaptation of the algorithm also makes the registration edge-emphasized by using the 

edge strength of the image to control the optical flow in different regions. By 

emphasizing the edges, the smoothing/noise-removing effect caused by the dataset 

estimation will minimize the effects of texture distortion in the registered images. A 

normalization factor proposed by [49] allows the force strength to be adjusted adaptively 

over different iterations to determine the scale of deformation.  

 

4.2.1 Energy Function – Demons Algorithm 

 

The energy function (equation (3) in [50]) to minimize in the case of the demons 

registration algorithm, between a translationally registered image g (floating image) and a 

pseudo-ground truth image f‟ (reference image), is given below as: 

                   
  
 

  
   

 , 

where   is the update of the transformation field   describing the translation in the 3 

principle axes of every voxel from its original position,    defines the image 

transformation function,   
  and   

  represent the constants for the image noise due to 

(4.10) 
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intensity uncertainty and transformation uncertainty, respectively. For each voxel, the 

energy function is described as follows: 

                  
 
 

  
 

  
   

 , 

where     and    are the intensities of the same voxel in the respective images f‟ and g,   

is the gradient operator and   is the estimated displacement (update velocity). The 

similarity measure used here is the squared pixel distance, with squared gradient of the 

transformation field being set as the smoothness regularization. It is given in [50] to 

replace   
          

 
 and   

  
 

  
, and we obtain the following: 

                  
 
           

 
   , 

where   is the normalization factor. It is noted that the demons registration algorithm is a 

local approximation, thus it is performed for a certain number of iterations until the 

solution converges; the displacement vector   is updated in each iteration so that any 

deformations in the image are accounted for progressively. In our experiments, the 

number of iterations is set to be 150 to ensure convergence, but if the energy function 

falls below a certain threshold in any iteration, the algorithm is terminated immediately 

since an optimized solution is found. 

4.2.2 Velocity Estimation 

 

The optical flow equation for finding small deformations is used as the basis for 

demons registration. The optical flow equation defines how the registration forces act on 

(4.12) 

(4.11) 
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the image to account for deformations. The estimated displacement   required for a point 

in the reference image f‟ to match a point in the floating image g is given by: 

   
  
  
       

                 
  

  
  
        

      
            

  , 

where   is the same normalization factor as shown in (4.12). The normalization factor is 

set to be 3 in this implementation to account for small local deformations more 

effectively.  The first term in (4.13) is derived directly from (4.12) given that the error 

gradient is zero where the error is at a minimum. 

In [9], the velocity formula contained only the first term in (4.13) without the 

constant  , which uses only edges in the reference image as the passive internal force. 

The term         
 
 in the denominator serves to make the velocity equation more stable 

in image registration. To regularize the deformation field, Gaussian smoothing is 

performed on the velocity field since the estimated displacement obtained is local. The 

second term in (4.13) is then introduced in [30] to improve registration convergence 

efficiency and robustness.  

4.3 Implementation and Validation  

 

 An adaptation of the method as described in [8] is used to estimate the pseudo 

ground-truth dataset and a Matlab wrapper [51] is used to implement the demons 

registration technique [9, 44] to account for the non-rigid deformations in the kidney. For 

the demons registration algorithm, each translation-aligned image (floating image in g) is 

registered to its corresponding estimated pseudo ground-truth image (reference image in 

(4.13) 
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f‟). However, calibration is performed prior to this step to remove the underlying 

deformation field for the reference frame. An image in f‟ is first registered to its 

corresponding reference image. The deformation field obtained is then applied to all 

images in f‟ to complete the calibration process.  

In terms of results validation, many different tests were conducted to validate the 

proposed method. The tests investigate the registration algorithm‟s limits and robustness 

with different scales of simulated transformation applied on the dataset. A visual 

inspection will be performed for all the tests to verify the quality of the non-rigid 

registration algorithm. Graphs showing the average intensity over a few voxels of the 

kidney against time are also constructed, where voxels within the registered kidney 

should generally exhibit a smooth intensity variation across time. For quantitative 

analysis, the distance between kidney masks shall be evaluated mainly for the simulated 

datasets to identify the limits of the non-rigid registration algorithm. For the first test, the 

non-rigid registration‟s ability to overcome different translational errors in the dataset 

will be investigated. Second, random non-rigid transformations of different scales are 

applied on the image, and these deformations are recovered using the demons algorithm. 

The random non-rigid transformation is achieved by applying a 3D B-spline 

transformation defined on a regular grid with a moderate spacing between the nodes and 

a random displacement of each node, a sample of which is shown in Figure 4.3. The 

nodes of the deformation grid in Figure 4.3 are shifted randomly, but they are adjusted by 

the B-spline transformation, depending on the 3D parameters. The deformation in the Z-

axis is restricted to 1 voxel due to a small number of slices involved. The final test 

includes creating a simulated dataset with both translation and non-rigid errors in the 
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kidney, and the registration algorithm as described in Chapters 3 and 4 will be employed 

in full to register the simulated dataset. 

 

 

Fig.4.3. (left) Original kidney image and (right) an example of a deformed kidney 

image. The nodes are marked by (*) in the images. 
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CHAPTER 5 

RESULTS 

 

The registration algorithm was tested on a dozen real patient datasets (24 3D+time 

kidney volumes). The dynamic MR images were obtained on a 1.5 T system (Avanto; 

Siemens, Erlangen, Germany) with a maximum slew rate of 200 T/m/s, maximum 

gradient strength of 45mT/m, and a torso phased-array coil. 3D T1 -weighted spoiled 

gradient-echo imaging was performed in the oblique coronal orientation to include the 

abdominal aorta and both kidneys. The following parameters were used: TR = 2.8 ms, TE 

= 1.1 ms, flip angle = 12
o
, matrix = 256 × 256 × 20, FOV = 425 × 425× 100 mm

3
, 

bandwidth = 650 Hz/voxel, volume acquisition time = 3 s. The 20 original 5-mm coronal 

partitions were interpolated to 40 2.5 mm slices so that the matrix becomes 256 × 256 × 

40 (voxel resolution of 1.66mm × 1.66mm × 2.5mm).  

Several unenhanced acquisitions were performed before a 4-ml bolus of Gd-

DTPA (Magnevist; Berlex laboratories, Wyne, NJ, USA) was injected, followed by 20ml 

of saline, both at 2 ml/s. More volume acquisitions followed at regular intervals, and all 

the volumes (with numbers ranging from 31-41) were combined to form a dataset. The 

size of the kidneys ranged from 60-90 voxels and 60-80 voxels in the X and Y axes, 

respectively. The registration algorithms are validated by a qualitative analysis and a 

quantitative analysis on the main datasets and on several motion-simulated datasets. The 

remaining sections will discuss the efficiency and robustness of the algorithm in separate 

levels (rigid and non-rigid registration) and in a combined two-level registration. An Intel 

Core2 Duo CPU E8500 @ 3.16GHz is used to perform the entire registration algorithm 

on all datasets in the Matlab environment. 
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5.1. Analysis of Translational Registration 

 

Various tests were conducted to validate the method qualitatively and 

quantitatively for translational registration as described in Chapters 3. The existing 

ground-truth of the dataset is used to compare the registration accuracy between different 

methods and the proposed method. Simulated datasets with random translational 

transformations in the 3 principle axes derived from pre-aligned datasets are also 

available to ensure the robustness of the algorithm. Four tests mentioned in sub-Section 

3.2.6 are performed and discussed quantitatively with the mean and standard deviations 

of the error in all the 3 axes (X, Y and Z). Moreover, a cumulative distribution of the 

registration error displays the percentage of volumes with errors (defined by the 

Euclidean distance) under a certain threshold. To ensure a robust result for non-rigid 

registration, it is important to keep the absolute error distance for each volume within a 

small voxel error range (< 5 voxels).  

 

5.1.1. Qualitative Analysis of Translational Registration 

 

Some kidney in-plane slices given in Fig. 5.1 illustrate the results of registering a 

simulated motion dataset with randomly applied translational motion. The first row 

shows the original aligned kidney images; the second row shows the respective randomly 

translated kidneys; and the third row displays the results of rigid registration. The 

registered kidney image slices generally follow the kidney boundary (contour line) of the 

reference frame, demonstrating good results for translational registration. 
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Fig.5.1. Results of rigid registration across different static time frames: (First row) 

some initially aligned kidney slices; (Second row) the same slices after simulated 

random transformations; (Third row) the registered slices. The contour line 

represents the boundary of the kidney in the reference slice to the left. 

 

Moreover, three average intensity curves as shown in Fig. 5.2 displays how the 

average intensity of a few selected voxels of the cortex within the kidney varies with time 

for a dataset: 1) aligned with ground truth data; 2) registered using the proposed method; 

3) pre-registration. The selected voxels of the cortex are close to the boundaries of the 

kidney and also the medulla, thus a slight displacement in the kidney will cause a large 

deviation in the intensity curve. The proposed registration method using graph-cuts has 

aligned the images satisfactorily as the post-registration intensity curve is close to the 

ground-truth aligned intensity curve. Although the intensity curve after translational 

registration is not smooth, it will be refined further during the non-rigid registration stage 

when local deformations are accounted for. 
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Fig.5.2. Three average intensity curves for one of the datasets: 1) pre-registration; 2) 

alignment using the ground truth; 3) post-registration using our method. 

 

 

5.1.2. Quantitative analysis of Translational Registration 

 

To quantify the accuracy of the translational registration algorithm, two types of 

errors are defined for each kidney volume: 1) the errors   ,    and    representing the 

absolute error between the ground truth and the obtained translational value after 

registration in each of the axes X, Y and Z, respectively; 2) the error   denotes the 

Euclidean distance of the absolute errors    ,    and   ) for each individual volume. The 

mean and standard deviation of the absolute errors    ,     and     are tabulated and 

compared across different methods. The computational timing is also displayed for the 

relevant cases and analyzed whether it is feasible to use a more complex procedure to 

obtain a better result. The error   is used in the cumulative distribution graph where the 

error probability        signifies the percentage of volumes with registration error   

larger than the threshold   . In the cumulative distribution graph of the error e, the 

Heaviside step function would be the most desired result. 
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For the first test, mutual information is compared against gradient difference in 

the rigid registration of the kidney images. Two forms of MI-based rigid registration 

methods are considered: 1) replacing gradient difference by MI in computing the data 

cost for the labels of each node; and 2) applying MI globally to compare the similarities 

between the reference and the floating image. The mean and standard deviation of error 

and the computational timing obtained for the MI-based rigid registration methods and 

the gradient-difference based registration method are shown in Table 5.1. For the MI-

based registration applied globally, the error means and standard deviations obtained 

were much higher than the ones obtained by using gradient difference registration in the 

X axis. The high mean and standard deviation in the error indicate that there is a large 

mismatch between images for some volumes which is undesirable. In terms of 

computational timing, registration takes about 4 minutes to register a dataset using 

gradient difference, whereas 6 minutes is used to register the same dataset using MI 

globally. For the MI graph-cut registration, image alignment failed using MI in a graph-

cut implementation with super-nodes, and the computational timing was comparatively 

much higher than the other two methods. The reason for the failed registration could be 

due to the lack of information within the super-nodes causing the graph to be unable to 

compute an optimal global solution. The cumulative distribution of the errors obtained 

for the gradient difference graph-cut registration and the global MI registration is 

displayed in Figure 5.3. The graphs show that the cumulative-error function for images 

registered by gradient difference is better than that of the images registered by mutual 

information. Thus, it can be concluded that gradient difference is a better choice of 
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similarity measure for registering DCE-MRI images due to a higher efficiency and a 

more reliable result. 

Table.5.1. Mean and standard deviation of error (in voxel) for rigid registration 

using different similarity measures: (1) Mutual information (2) Gradient Difference. 

 

Similarity 

Measure 

Mean Error 
Standard Deviation of 

Error 
Computational 

Time          

(per dataset)                   

Mutual 

Information 

(global) 
                                          ~6 minutes 

Gradient 

Difference 

(graph-cut) 
                                          ~4 minutes 

Mutual 

Information 

(graph-cut) 
                                          ~10 minutes 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

Fig.5.3. Cumulative distribution function for the error   in registration for 

similarity measures MI (*) and gradient difference (o). 
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For the second test, the registration accuracy and computational timing using 

different node sizes in a graph are compared. Different node sizes between 11 × 11 and 

25 × 25 are tested and analyzed, with the spacing between nodes set as half the node size 

in both the X and Y axes. The mean and standard deviation of errors obtained for all the 

different registration algorithms using graph-cuts of different node sizes are given in 

Table 5.2. 

Table.5.2. Mean and standard deviation of error (in voxel) for rigid registration 

using different node sizes.  

Node 

Size  

(X × Y) 

Mean Error Standard Deviation of Error Computational 

Time in 

Seconds      

(per volume) 
                  

25 × 25                                           5.4 

21 × 21 0.5761 0.4693 0.5221 0.5561 0.5677 0.4959 4.3 

17 × 17 0.6441 0.5136 0.5241 0.7501 0.7390 0.5038 4.0 

13 × 13 0.7459 0.5830 0.5219 0.9763 0.8579 0.4912 3.7 

11 × 11 0.9236 0.6431 0.5380 1.3635 0.9996 0.5253 3.5 

 

 

The mean and standard deviation of the error becomes smaller with a larger node 

size, as seen from the results in Table 5.2. When the node size is large at 21 × 21 or 25 × 

25, the results of translational registration are similar. The lower mean and standard 

deviation of the error comes at a higher computational cost, affecting the efficiency of the 

registration algorithm. Figure 5.4 shows the cumulative distribution function of the error 

distances given in all the different implementations using single sized nodes. It is 
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observed that the results improved with a large node-size, with a small difference 

between the results obtained with nodes sizes of 21 × 21 and 25 × 25. Since the most 

important criterion for a good translational registration is for the maximum value of the 

error distance,     to be less than 5 voxels, the node size is chosen to be sufficiently large 

so that the maximum error distance is small. It can be seen in Figure 5.4(B) that only two 

cases (of node sizes of 21 × 21 and 25 × 25) are able to obtain a maximum error distance 

of less than 5 voxels. A node size of 25 × 25 will be used in the subsequent tests. 

For the third test, the registration accuracy is compared for two implementations 

using the same node-structure (regular spaced grid), the same node-size (25 × 25) and the 

same similarity measure (gradient difference); only the weights will be varied in this test. 

For the first method, the weights allocated to each node are determined by the ratio of the 

amount of edge information present within the node to the amount of edge information 

throughout the whole kidney. Weights are excluded in the second registration method. 

The mean and standard deviation of errors obtained for the both methods are tabulated in 

Table 5.3. It is noted that the computational complexity is approximately the same for 

both methods and will not be shown in the table.  
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Fig.5.4. (A) Cumulative distribution curves for the registration error using different 

node sizes (B) Zoomed in result of the graph in A. 
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Table.5.3. Mean and standard deviation of error (in voxel) for rigid registration: (1) 

using weights and (2) without using weights. 

 

Registration 

Method 

Mean Error Standard Deviation of Error 

                  

w/ weights                                           

w/o weights                                           

 

 

The mean and standard deviation of error for rigid registration are similar for both 

methods with and without using weights; although the mean error for the registration 

algorithm without weights is slightly higher in each of the 3 principle axes. As previously 

mentioned, weights allow the registration algorithm to place more emphasis on active 

nodes containing more kidney edge information and less emphasis on passive nodes 

containing less edge information, thus obtaining a more robust solution. Figure 5.5 shows 

the cumulative distribution function of the errors given in both the methods, and it can be 

observed that the first method using weights is better by only a small margin. Table 5.4 

gives the maximum error distance for each of the patient datasets (24 kidney datasets). 

From Table 5.4, it is observed that the difference between the two methods is not 

significant for almost all of the patients except for patient 10, where the maximum error 

varied beyond the criteria of 5 voxels. The maximum error distance is 6.1985 and 4.6205 

for the registration algorithm without using weights and for the registration algorithm 

using weights, respectively; the registration algorithm using weights fits the criterion of 

having a maximum error distance of less than 5 voxels. Table 5.4, however, does not 
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show that the overall registration results improved with the introduction of weights as 

some datasets registered better whereas some did not. Taking into account that the 

maximum and mean error distance reduced, weights are included in the formulation of a 

translational registration algorithm.  

In the fourth and last test, the translational registration algorithm is tested on two 

simulated datasets that are created by performing random translations on two pre-aligned 

datasets. The mean and standard deviation of the error (in voxel) are negligible, with only 

a 1 voxel error in the X axis for one of the volumes in the simulated datasets. This 

concludes that the translational registration algorithm is robust in the presence of 

translational errors with a single reference frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.5. Graph on cumulative distribution function for the registration error in 

graph-cut: (1) incorporating weights based on amount of edge information (*); (2) 

without incorporating weights (o) 
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Table.5.4. Maximum error distance (in voxel) for each kidney dataset. The patient 

with the worst results is highlighted. 

 

 

5.2. Analysis of Estimated Pseudo Ground-Truth Dataset 

 

A visual inspection of the resulting estimated dataset and the intensity-time curves 

is done to interpret the results of pseudo ground-truth dataset estimation. Figure 5.6 

shows some instances of the pseudo ground-truth being estimated from two datasets. The 

pseudo ground-truth estimation is able to eliminate noise and minor motion from the 

original dataset by imposing spatiotemporal smoothness constraints on each voxel in a 

given time-series volume. The main edges around the boundary of the kidney and the 

medulla are preserved even though smoothing has occurred in the pseudo ground-truth 

Patient 

Number 

Left Kidney Right Kidney 

w/ weights w/o weights w/ weights w/o weights 

1 2.7216 2.0980 0.9865 1.3701 

2 1.0714 1.0714 1.3147 1.8442 

3 1.4660 1.6427 2.8522 2.8522 

4 1.0875 1.0875 2.1697 2.1697 

5 2.0645 2.0497 2.2513 1.9682 

6 1.2015 1.3210 2.0243 2.0243 

7 1.2745 1.2745 1.9010 1.7275 

8 2.0689 2.0689 1.7222 1.7593 

9 1.3519 1.3519 1.6430 1.6430 

10 4.5656 6.1985 3.7474 4.6205 

11 1.5641 1.5641 1.5207 1.5207 

12 3.2418 2.6824 2.7913 2.4736 
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dataset. Figure 5.7 shows the results of curve fitting in three graphs by using: (1) average 

intensity over the kidney mask; (2) intensity of a chosen voxel of the cortex; and (3) 

intensity of a chosen voxel of the medulla. It is observed that the proposed method as 

described in Chapter 4.1 is able to produce a good estimation of the pseudo ground-truth, 

even in the presence of noise and slight motion, as long as errors are not consistent.  

 

    
 

 

 
 

 

Fig.5.6. A and B gives different datasets showing: (top row) sample kidney slices 

from the resulting volume after translational registration; (bottom row) estimated 

pseudo ground-truth of the same kidney slices. Point marked ‘a’ is a voxel of the 

cortex and point marked ‘b’ is a voxel of the medulla within the kidney, the 

intensity-time curve of which are shown in Figure 5.7. 
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Fig.5.7. Graphs show the intensity-time curves between the translationally 

registered dataset (*) and the estimated pseudo ground-truth dataset (o) for: (top) 

the average intensities of the kidney across the mask; (middle) the intensity of a 

cortex voxel marked ‘a’ in Fig 5.6; (bottom) the intensity of a medulla voxel marked 

‘b’ in Fig 5.6.  

 

5.3. Analysis of Non-Rigid Registration 

 

In this section, a visual assessment/qualitative analysis on the general results of 

non-rigid registration will first be given. Then, to quantify the results of non-rigid 

registration, the distance between kidney masks is computed for the simulated datasets to 

verify the limits of registration. As mentioned previously, another set of tests was 

conducted to validate the non-rigid registration algorithm as described in Chapter 4. The 

first test will establish the tolerance of the demons algorithm to register volumes with 

translational errors of up to 5 voxels. The second test will then determine the tolerance of 
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the demons algorithm to register volumes with pre-applied free-form deformations over 

three different levels with the maximum error of a node in the grid to be 6 voxels. Using 

the demons algorithm, non-rigid registration takes roughly 1 minute to register a 3D 

volume of 7 slices non-rigidly (~ 40minutes a dataset), compared to more than an hour 

per 3D volume using FFD. Thus, the demons algorithm is much more efficient. 

 

5.3.1. Qualitative analysis of Non-Rigid Registration  

 

Non-rigid registration transforms a floating image (the translationally registered 

dataset) with reference to a reference image (the estimated pseudo ground-truth dataset) 

to account for deformations that exist in an image. A sample dataset in Figure 5.8 gives 

the general results where small local deformations are accounted for in non-rigid 

registration by the demons algorithm. It is observed that the non-rigid registration results 

are good; small local deformations are accounted for in all slices. Apart from having 

kidney boundaries that match between the registered image and the pseudo ground-truth 

dataset, the original texture of the translational registered dataset is also preserved with 

minor smoothing effect. 

Not to neglect are some examples where the deformation of the kidney is larger. 

In the next sample dataset as shown in Figure 5.9, it is observed in the translationally 

registered dataset that the kidneys shown did not fit into the kidney mask (represented by 

a contour line) exactly. The demons algorithm is also able to account for such errors and 

correctly register non-rigidly these images. 
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Fig.5.8. Sample dataset showing different 2D slices (different rows) of a kidney after: 

(left) translational registration; (middle) pseudo-ground truth estimation; (right) 

non-rigid registration. Points A, B, C and D shows some regions where there were 

local deformations, which are resolved after non-rigid registration as shown in 

points A*, B*, C* and D*. 

 

  

 

 

 

 

 

 

 

 

Fig.5.9. Sample dataset showing different 2D slices (different rows) of a more 

deformed kidney after: (left) translational registration; (middle) pseudo-ground 

truth estimation; (right) non-rigid registration. Points A, B, C and D shows some 

regions where there were larger local deformations, which are resolved after non-

rigid registration as shown in points A*, B*, C* and D*. 
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 Figure 5.10 shows the same sample dataset as in Figure 5.9, but with an additional 

4
th 

column showing the difference of images before and after non-rigid registration. It can 

be observed in Figure 5.10 that the edges of the kidney have shifted after non-rigid 

registration, showing how non-rigid deformation in the kidney is accounted for. Some 

results for the simulated dataset are provided in a later sub-section to demonstrate that 

non-rigid registration is indeed accurate and robust. Furthermore, note that some non-

rigid transformation within the kidney exists, marked by white patches within the kidney 

in the 4
th 

column of images. This transformation is caused by: (1) aligning the medulla 

within the kidney and (2) the smoothening of edges within the kidney during non-rigid 

registration.  

 

 

 

 

 

 

 

 

Fig.5.10. Same sample dataset as shown in Fig 5.9 showing different 2D slices 

(different rows) of a more deformed kidney after: (1
st 

column) translational 

registration; (2
nd 

column) pseudo-ground truth estimation; (3rd
 
column) non-rigid 

registration; (4
th 

column) Difference between images in 1
st 

column and 3
rd 

column. 

 

 In the first test, different scales of translational transformations (1 to 5 voxels) on 

a single axis are applied to certain time-volumes, and the demons registration algorithm is 

used to recover the pre-applied transformations. As the maximum error in the rigid 
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registration case is less than 5 voxels, the scales being considered are reasonable. Figure 

5.11 shows the results of performing demons registration in three graphs: (1) average 

intensity over the kidney mask; (2) intensity of a chosen voxel of the cortex; and (3) 

intensity of a chosen voxel of the medulla. We observe that the intensity curve post-

registration is generally smoother and closer to the pseudo ground-truth intensity curve 

than the intensity curve pre-registration, signifying that non-rigid registration is 

successful. 

Fig.5.11. Graphs show the intensity-time curves between the pre-registered dataset 

(*),  the post-registered dataset (o) the and the estimated pseudo ground-truth 

dataset ( ) for: (top) the average intensities of the kidney across the mask; (middle) 

the intensity of a cortex voxel marked ‘a’ in Fig 5.13; (bottom) the intensity of a 

medulla voxel marked ‘b’ in Fig 5.13.  
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Figures 5.12 and 5.13 show the results of non-rigid registration applied to two 

different datasets with different translational errors applied to each and every time frame 

except for the reference frame. In both figures, the 5
th

 column shows the absolute 

difference of kidney images between the pre-aligned kidney and the deformed kidney and 

the 6
th

 column shows the absolute difference of kidney images between the pre-aligned 

kidney and the post-registered kidney. It is observed in Figure 5.12 that the differences 

due to simulated translational error are accounted for by non-rigid registration as the 

absolute difference between images was eliminated in most cases. In Figure 5.13, due to 

a lower contrast between the kidney and the background tissues, the registration result did 

not account for all of the translational errors. For most of the volumes, the reasonable 

results obtained reinforce the criterion of having a maximum residual translational error 

after rigid registration to be less than 5 voxels.  
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Fig.5.12. 2 different datasets A and B displaying different 2D slices (different rows) 

of: (1
st 

column) an aligned kidney; (2
nd 

column) kidney after simulated translation; 

(3
rd 

column) estimated pseudo-ground truth kidney; (4
th 

column) registered kidney; 

(5
th 

column) absolute difference of kidney between columns 1 and 2; (6
th 

column) 

difference of kidney between columns 1 and 4.  
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Fig.5.13. Two datasets, A and B, at another time frame showing different 2D slices 

(different rows) in low contrast of: (1
st 

column) an aligned kidney; (2
nd 

column) 

kidney after large simulated translation; (3
rd 

column) estimated pseudo-ground 

truth kidney; (4
th 

column) registered kidney; (5
th 

column) absolute difference of 

kidney between columns 1 and 2; (6
th 

column) difference of kidney between columns 

1 and 4. Point marked ‘a’ is a voxel of the cortex and point marked ‘b’ is a voxel of 

the medulla within the kidney, the intensity-time curve of which are shown in Figure 

5.11. 
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 For the second test, random freeform-deformation fields are applied to the kidney 

images and registration is performed to recover these pre-applied non-rigid 

transformations. We obtained Figure 5.14 which shows the results of performing demons 

registration in three graphs: (1) average intensity over the kidney mask; (2) intensity of a 

chosen voxel of the cortex; and (3) intensity of a chosen voxel of the medulla. Similar to 

the first test, the intensity curve post-registration is smoother and closer to the pseudo 

ground-truth intensity curve than the intensity curve pre-registration, signifying that non-

rigid registration is also successful in this scenario. 

In Figures 5.15 and 5.16 we use different random transformations to different 

datasets, and we compare the results of registration visually by comparing: (1) the 

absolute difference of kidney between the pre-aligned kidney and the deformed kidney in 

the 5
th

 column and; (2) the absolute difference of kidney between the pre-aligned kidney 

and the post-registered kidney in the 6
th

 column. It can be observed in Figure 5.15 that 

the differences due to simulated deformation of the kidney are accounted for by non-rigid 

registration as the absolute difference has reduced. Some minor differences still remain 

partly due to the effect of smoothening by a non-rigid transformation. In Figure 5.16(A), 

a larger deformation field is applied, and the results show that the demons algorithm is 

still able to register the images to a reasonable degree, even though interpolation caused 

more smoothing to occur within the image volume. In Figure 5.16(B), the absolute error 

appears to have not been reduced, as the applied deformation is too large, and contrast 

between the kidney and the background is low due to the kidney exhibiting higher 

intensities. The non-rigid registration thus could not accurately register the kidney. This 

shows that the demons registration algorithm is sensitive to the contrast between the 
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kidney and the background tissues; when the contrast is small between the kidney and the 

background tissues, only a small amount of deformation could be recovered. 

 

 

Fig.5.14. Graphs show the intensity-time curves between the pre-registered dataset 

(*),  the post-registered dataset (o) and the estimated pseudo ground-truth dataset 

( ) for: (top) the average intensities of the kidney across the mask; (middle) the 

intensity of a cortex voxel marked ‘a’ in Fig 5.16; (bottom) the intensity of a medulla 

voxel marked ‘b’ in Fig 5.16. 
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Fig.5.15. Sample datasets A and B showing different 2D slices (different rows) of:  

(1
st 

column) an aligned kidney; (2
nd 

column) kidney after a different simulated 

deformation; (3
rd 

column) estimated pseudo-ground truth kidney; (4
th 

column) 

registered kidney; (5
th 

column) absolute difference of kidney between columns 1 and 

2; (6
th 

column) difference of kidney between columns 1 and 4. 
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Fig.5.16. Two datasets, A and B, at another time frame showing different 2D slices 

(different rows) in low contrast of: (1
st 

column) an aligned kidney; (2
nd 

column) 

kidney after another simulated deformation; (3
rd 

column) estimated pseudo-ground 

truth kidney; (4
th 

column) registered kidney; (5
th 

column) absolute difference of 

kidney between columns 1 and 2; (6
th 

column) difference of kidney between columns 

1 and 4. Point marked ‘a’ is a voxel of the cortex and point marked ‘b’ is a voxel of 

the medulla within the kidney, the intensity-time curve of which are shown in Figure 

5.14. 
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5.3.2. Quantitative analysis of Non-Rigid Registration  

 

We attempt to perform a quantitative analysis on the results of non-rigid 

registration by means of comparing the kidney mask segment before and after registration 

for the simulated datasets where the dataset is pre-aligned and the simulated 

transformation applied is known. In this way, we are able to determine the strength of the 

registration algorithm during the different stages of contrast within the kidney. 

Three images are present: (1) the pre-aligned image; (2) the transformed image 

(simulated image) and (3) the registered image. First, the kidney mask is obtained for 

each of the three images. To quantify the registration results for the translationally 

simulated dataset, we compare the Euclidean distance for each volume within the dataset 

between: (1) the centroid of the mask before registration to the mask obtained from the 

pseudo ground-truth; and (2) the centroid of the mask after registration to the mask 

obtained from the pseudo ground-truth. For the deformed simulated dataset, two distance 

measures are obtained by computing the average absolute distance between each pixel in 

the mask boundary of the pre-aligned image to: (1) the mask of the transformed image 

and (2) the mask of the registered image. For each test, the distance measures for all the 

simulated datasets are tabulated, and the variation of the two distance measures across 

different time frames in a particular dataset is displayed in the form of a graph. 
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Table.5.5. Translation simulation: mean and standard deviation of the distance (in 

voxels) between the kidney masks (1) pre-registration and (2) post-registration. 

Dataset 
Translation 

level 

Mean Standard Deviation 

Pre-

Registration 

Post-

Registration 

Pre-

Registration 

Post-

Registration 

1 

Low 4.5119        0.6736        

Medium 2.7326 1.0963 0.3690 0.2661 

High 1 0.4955 0 0.0661 

2 

Low 4.4258 1.2724 0.6966 0.3685 

Medium 2.6854 1.1543 0.3816 0.1907 

High 1 0.5108 0 0.0860 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.17. Translation simulation: curves showing the centroid distance between the 

kidney masks to the pseudo ground-truth kidney mask over time: (1) pre-

registration and (2) post-registration.  
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For the first test involving the datasets with simulated translation, the results are 

shown in Table 5.5 and Figure 5.17. Table 5.5 gives the mean and standard deviation of 

the distance between each centroid of the kidney mask to the centroid of the pseudo 

ground-truth kidney mask before and after registration for all simulated datasets. The low, 

medium and high translation levels represent simulated translation distances of 1, 3 and 5 

voxels for each volume respectively. The variation of the same distance measure across 

all time frames of a particular dataset is shown in Figure 5.17. 

 From Table 5.5, it is observed that the centroid distance between the kidney 

masks increases with a larger simulated translation. The centroid distance between the 

kidney masks also improved post-registration for all cases where only simulated 

translation is involved. The registration results for the low level of simulated translation 

are good, even though the results obtained for a medium and high levels of simulated 

translation are still considered reasonable. 

When simulated deformations are considered in the second test, the results 

obtained vary from the first and are shown in Table 5.6 and Figure 5.18. Similarly, Table 

5.6 gives the mean and standard deviation of the average distances between the kidney 

mask boundaries before and after registration for all simulated datasets, and Figure 5.18 

shows the variation of the distance measure across all time frames of a simulated dataset. 

The low, medium and high deformation levels define deformations of up to 2, 4 and 6 

voxels of each node in the grid, respectively.  
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Table.5.6. Deformed simulation: mean and standard deviation of the distance (in 

voxel) between the kidney masks (1) pre-registration and (2) post-registration. 

Dataset 
Deformation 

level 

Mean Standard Deviation 

Pre-

Registration 

Post-

Registration 

Pre-

Registration 

Post-

Registration 

1 

Low 0.4191 0.3842 0.1055        

Medium 0.5326 0.4192 0.1010 0.1064 

High 0.6601 0.4845 0.1420 0.1418 

2 

Low 0.3906 0.3591 0.0953 0.1314 

Medium 0.5448 0.4073 0.1263 0.1229 

High 0.6833 0.4759 0.1739 0.1318 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.18. Deformed simulation: curves showing the average distance between the 

kidney masks over time: (1) pre-registration and (2) post-registration. 
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 From Table 5.6, it is observed that the mean distance between the kidney masks 

increases with a larger simulated deformation. The mean distance between the kidney 

masks also improved post-registration for all cases where only simulated deformations is 

involved. It is noted, however, that moderate and large simulated deformations become 

increasingly difficult to recover using the non-rigid registration algorithm. Some cases as 

shown in Figure 5.18 have a slightly larger mask distance post-registration, but this is not 

entirely attributed to misalignment, as the blurred boundaries due to transforming an 

image affect the grow-cut segmentation accuracy. The registration algorithm works better 

when a small simulated deformation is present; small simulated deformation fields can be 

recovered more easily using the proposed registration algorithm. 

 

5.4. Registration Results on Simulated Datasets  

 

For the final test, we have applied both a translation and a free-form deformation 

on all the kidney volumes except for a reference volume to determine the robustness of 

the multi-level algorithm as a whole. The values used are all randomized for each and 

every volume. The translational values considered in the X, Y and Z axis are as 

follows                                      , and the non-rigid 

transformation grid is set with nodes being shifted by random values with 3 different 

levels of deformation (up to 2, 4 and 6 voxels). The purpose of this simulated dataset test 

is to ensure that the proposed multi-level registration algorithm is able to properly 

register the kidney volumes given a reasonable translation error and different levels of 

deformation of the kidney. The results will be evaluated separately for the rigid 
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registration and the non-rigid registration steps to obtain a more objective analysis of the 

entire registration algorithm. A sample of the simulated datasets is shown in Figure 5.19. 

For rigid registration, we attempt to recuperate the translational error that was 

applied to the dataset while simulating the dataset using the rigid registration algorithm 

described precedent. The mean and standard deviation of the error are computed and 

given in Table 5.7. 

 

  

 

 

 

 

 

 

 

Fig.5.19. Two sample datasets (left and right) showing different 2D slices (different 

rows) of the kidney: (1
st
 column) pre-aligned; (2

nd
 column) after simulated 

transformation. 
 

From Table 5.7, it is observed that when the non-rigid deformation level is low 

(up to 2 voxels shift per node in the deformation grid), the mean and standard deviation 

of the error is small. When the deformation level becomes higher (up to 6 voxels shift per 

node in the deformation grid), it becomes increasingly difficult for employing gradient 

difference because the local edges are deformed causing the orientation to become 

distorted. Thus, the mean and standard deviation of the error becomes higher for both of 
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the simulated datasets. The errors are still reasonable as the maximum error distance is 

still under 5 voxels for all simulated cases.  

Table.5.7. Mean and standard deviation of error (in voxel) for rigid registration of 

different datasets with different simulated deformation levels. 

Dataset 
Deformation 

level 

Mean Error Standard Deviation of Error 

                  

1 

Low                                           

Medium 0.3143 0.2286 0.1143 0.4710 0.4260 0.3228 

High 0.4000 0.4000 0.2286 0.4971 0.4971 0.4902 

2 

Low 0.1951 0.0732 0.0488 0.4012 0.2637 0.2181 

Medium 0.4634 0.1707 0.0976 0.5049 0.3809 0.3004 

High 0.6829 0.4146 0.1220 0.5674 0.4988 0.3313 

 

Next, we attempt to estimate the pseudo ground-truth of the dataset and to register 

the images non-rigidly using the demons algorithm. Figure 5.20 shows the sample 

registration results. It is observed that the estimated pseudo ground-truth dataset in the 3
rd

 

column has suffered from greater blurring effects due to the entire simulated dataset 

undergoing too much consecutive deformations. But the main edges of the kidney remain 

in the estimated pseudo ground-truth and that is why the resulting non-rigid registration 

volume still resembles the original image volume. In reality, the kidney volumes do not 

exhibit large random deformations as used in the simulated datasets. Therefore, the 
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pseudo ground-truth estimation is more accurate and a better registered dataset is 

obtained.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.20. Sample datasets A and B showing different 2D slices (different rows) of: 

(1
st 

column) an aligned kidney; (2
nd 

column) kidney after simulated deformation; 

(3
rd 

column) estimated pseudo-ground truth kidney; (4
th 

column) registered kidney; 

(5
th 

column) absolute difference of kidney between columns 1 and 2; (6
th 

column) 

difference of kidney between columns 1 and 4. 
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To quantify the results obtained for the non-rigid registration step objectively, we 

include the translational results obtained from the first rigid registration step in the 

computation of the kidney mask which is compared to the kidney mask post-registration. 

The non-rigid registration results are shown in Table 5.8 and Figure 5.21. Table 5.8 gives 

the mean and standard deviation of the distance measures before and after registration for 

all simulated datasets. The variation of the distance measure across all time frames of a 

simulated dataset is shown in Figure 5.21. The low, medium and high deformation levels 

define deformations of up to 2, 4 and 6 voxels of each node in the grid, respectively.  

 

From Table 5.8, it is observed that the mean distance between the kidney masks 

increases with a larger simulated deformation. The mean distance between the kidney 

masks also improved post-registration for all cases where only simulated deformations is 

involved. It is noted, however, that moderate and large simulated deformations become 

increasingly difficult to recover using the non-rigid registration algorithm. The 

registration algorithm works better when a small simulated deformation is present; small 

simulated deformation fields can be recovered more easily using the proposed 

registration algorithm. In Figure 5.21, some volumes have an increased distance between 

masks post-registration which signifies that the kidneys in these volumes are unable to 

recover their pre-applied deformations by performing non-rigid registration. 
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Table.5.8. Translation + deformed simulation: mean and standard deviation of the 

distance (in voxel) between the kidney masks (1) pre-registration and (2) post-

registration. 

Dataset 
Deformation 

level 

Mean Standard Deviation 

Pre-

Registration 

Post-

Registration 

Pre-

Registration 

Post-

Registration 

1 

Low 0.3775 0.2846 0.1431 0.1114 

Medium 0.5281 0.4013 0.1043 0.1088 

High 0.6885 0.4858 0.1801 0.1350 

2 

Low 0.3596 0.2591 0.0989 0.0880 

Medium 0.4766 0.3753 0.1003 0.0933 

High 0.6270 0.5070 0.1563 0.1194 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.5.21. Translation + deformed simulation: curves showing the average distance 

between the boundaries of the kidney masks over time: (1) post translational 

registration and (2) post non-rigid registration. 
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CHAPTER 6 

CONCLUSION 

 

 In this thesis, a semi-automatic non-rigid registration algorithm for renal images is 

investigated, detailed and analyzed. A multi-level approach was proposed, where a rigid 

registration step accounts for large initial translational errors before a non-rigid 

registration step accounts for local deformations of the kidney. To the best of our 

knowledge, all but one of the registration methods for renal images found in rich 

literature is rigid-based, as it is widely assumed that kidneys do not exhibit non-rigid 

motion. But this assumption is not true, even for healthy kidneys. Transformations 

(translation and non-rigid deformations) are caused by mainly patient‟s motion and 

breathing, and in the case of a diseased kidney, cysts, tumors and other anomalies will 

contribute to the misalignments. 

 For rigid registration, a graph-cut method was proposed. A graph-cut solution 

offers efficiency in computational timing and flexibility in defining the node structure, 

node size and node links. Super-nodes are considered where each super-node contains a 

certain volume of the kidney, which is unique because most imaging methods employing 

graph cuts represents each node by a pixel/voxel. Coupled with gradient difference as the 

main similarity measure, graph-cuts is able to make use of local gradient information to 

obtain a reasonable global solution. Other graph structures are also possible with graph-

cuts, but the other structures tested do not give better results than the regular grid 

structure as proposed in this thesis. 

 It is concluded with several tests that in our graph-cuts implementation, a larger 

node size increases the robustness of the algorithm, but at the expense of higher 
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computational cost. Thus, it is best to select a suitable node size that allows the 

registration algorithm to achieve reasonable errors. Moreover, the use of weights which 

signify the amount of gradient information contained within a super-node allows for a 

more robust solution, as the registration results became better in terms of mean error and 

also in terms of the maximum error distance. The weights ensure that only nodes around 

the boundary of the kidney are considered, as the kidney boundary is consistent over time 

unlike the outline of the medulla which appears only during the contrast phase. Lastly, 

mutual information is not used as the main similarity measure because of its poor 

computational timing and unreliable results for certain volumes. 

For the non-rigid registration, the reference images are formed by means of 

estimating the pseudo ground-truth for each dataset. An estimation method was borrowed 

from myocardial image registration and adapted to fit the renal image registration context. 

There exist a few limitations to this stage of the non-rigid registration; it is imperative 

that the initial stage of translational registration must be fairly accurate in order for the 

dataset estimation to be good. In addition, the kidney must not be deformed heavily in 

random directions in order for the estimation to be more accurate with lesser blurring 

effects. This limitation was examined in the previous chapter where the registration 

algorithm was tested on the various simulated datasets with various pre-defined 

transformations (translation, B-spline deformation or both). 

The demons algorithm is then used to register the volumes non-rigidly. The 

parameters are set in such a way that only small deformations are accounted for. Several 

simulated datasets with different known random transformations are applied on the pre-

aligned images and the registration algorithm is used to recover the transformations with 
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different degrees of freedom: (1) only translations; (2) only non-rigid deformations with 

different levels (small/moderate/large); and (3) translations and non-rigid deformations 

with different levels of non-rigid motion. It is observed that the demons algorithm is able 

to recover translations up to a maximum of 5 voxels satisfactorily. Thus, a criterion for 

evaluating rigid registration in the first step is that the maximum error distance must be 

less than 5 voxels for each volume in the datasets. The demons algorithm is able to 

recover small and moderate deformations applied to the pre-aligned images sufficiently. 

But, when larger deformations are concerned, there exists several volumes where the 

registration results are not reasonable, even though the fitting of the kidney masks has 

improved. It is noticed that the volumes where the demons algorithm is unable to register 

accurately have a low contrast between the kidney and the background tissues (during 

which the contrast agent washes into the kidney). The demons algorithm is edge-

emphasized; thus, when the edge becomes weaker due to a low contrast, the registration 

algorithm will not be able to obtain an optimal solution. Moreover, for the simulated 

dataset where both translation and non-rigid deformations are applied, the translational 

error after rigid registration increases with the amount of deformation pre-applied. This is 

due to the use of gradient difference as the similarity measure, where the edge orientation 

could not be determined properly. But, given the three different levels of deformation, the 

translational registration is still able to account for translational errors with a small error 

distance (<5 voxels).  

 As a continuation to the research work as presented in this thesis, several other 

considerations could be made in: (1) the graph cut algorithm to incorporate other graph 

structures, but how the nodes are linked within each graph still needs to be investigated, 
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since we can only have one realization of the smoothness cost for all the neighborhood 

links present; (2) a self-validation method to validate the results of the rigid registration 

without the use of the ground truth provided and re-run the registration algorithm using 

another setup (different reference frame/different node sizes/different grid structures) if 

needed; (3) the demons registration algorithm where a multi-level solution could be 

introduced to allow non-rigid registration to account for global errors first before 

accounting for more local deformations by adjusting the parameters for each different 

level; and (4) a more robust quantitative measure to determine the robustness of the non-

rigid registration algorithm. 
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