
Chimera: Large-scale Data Collection and
Processing

JIAN GONG

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

August 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48648758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I hereby give my heartiest thankness to my supervisor, Prof. Ben Leong, who has been offering
me great guidance and help for this work. The research project would not have been possible
without his support and encouragement. I have learned a lot from his advices not only in
academic study but also in philosophy of life.

I also thank my friends for their help. My sincere gratitude goes to Ali Razeen, who offered
me great help and invaluable suggestions for my thesis. I thank Daryl Seah, who helped me
and inspired me in the thesis writing and project implementation. I also thank Wang Wei, Xu
Yin, Leong Wai Kay, Yu Guoqing and Wang Youming, we have spent a great time together as
lab mates and fellow apprentices.

I thank my parents who always offer me unwavering support. My gratitude goes to all the
friends who accompany me during my study in National University of Singapore.

i

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Our Approach . 3

1.3 Organization . 3

2 Related Work 4

2.1 Overview of Stream Processing . 4

2.2 Existing Stream Processing Systems . 5

2.2.1 Aurora . 5

2.2.2 Medusa and Borealis . 5

2.2.3 TelegraphCQ . 6

2.2.4 SASE . 6

2.2.5 Cayuga . 6

2.2.6 Microsoft CEP . 7

2.2.7 MapReduce and MapReduce Online . 7

2.2.8 Dryad . 8

2.3 Description of Esper . 8

2.4 Evaluation on Stream Processing Systems . 9

3 Chimera Design and Implementation 11

3.1 Collector Nodes . 12

3.2 Worker Nodes . 12

3.3 Sink Nodes . 14

3.4 The Master Node . 14

3.5 Chimera Tasks . 15

3.6 Overview of Task Execution . 16

4 Evaluation 18

4.1 TankVille . 18

4.2 Experiment Setup . 18

4.3 Load Generator . 20

4.4 Answering the questions . 22

4.5 Scalability . 23

5 Conclusion 27

i

A Solving Questions with Esper and Chimera 31

A.1 Solving Question 1 . 31

A.1.1 Using Esper . 31

A.1.2 Using Chimera . 32

A.2 Solving Question 2 . 33

A.2.1 Using Esper . 33

A.2.2 Using Chimera . 34

A.3 Solving Question 3 . 35

A.3.1 Using Esper . 35

A.3.2 Using Chimera . 36

ii

List of Figures

2.1 Esper architectural diagram (taken from the Esper website) 9

3.1 System Architecture of Chimera. 12

3.2 Overview of Chimera inputs and runs a task. 16

4.1 Processing capacity of Chimera and Esper for question 1: number of players on

each map . 24

4.2 Processing capacity of Chimera and Esper for question 2: time spent by players

on each map . 25

4.3 Processing capacity of Chimera and Esper for question 3: histogram of players

gaming time . 25

4.4 Chimera on one thread compared with Esper for all three questions (on one core) 26

iii

Abstract

Companies depend on the analysis of data collected by their applications and services to

improve their products. With the rise of large online services, massive amounts of data are

being produced. Known as Big Data, these datasets are expected to reach 32.2ZB globally in

2011. As traditional tools are unable to process Big Data in a timely fashion, a new paradigm

of handling Big Data has been proposed. Known as Stream Processing, there has been a lot

of work on this paradigm from both the academic and commercial worlds, leading to a large

number of stream processing systems with varying designs. They can be broadly classified

into two categories: centralized or distributed. The former processes data atomically while the

latter breaks up a processing operation, deploys the sub-operations across multiple nodes,

and combines the output from those nodes to produce the final results.

In this thesis, we attempt to understand the limits of a centralized stream processing

system when it is under real-world workloads. We do this by evaluating Esper, an open-

source centralized stream processor, with data from a game deployed on Facebook. We also

developed our own distributed stream processing system, called Chimera, and compared

Esper with it. This is to understand how much more performance we can gain if we process

the same data with a distributed system.

We found that Esper’s performance varies widely depending on the kind of queries given

to it. While, the performance is very good when the queries are simple, it quickly starts

to deteriorate when the queries become complex. Therefore, although a centralized system

might seem attractive due to lower costs in deployment, developers might be better off using a

distributed system if they process data in a complex manner. We also found that a distributed

system may perform better than Esper, even when both of them are deployed on a single

machine. This is because the distributed system may be simpler in design compared to

Esper. Therefore, if developers do not need the various features offered by Esper, using a

simpler stream processing system would provide them with better performance.

1

Chapter 1

Introduction

Companies depend on the data produced by their applications and services to understand

how their products can be improved. By analyzing this data, they can identify important

trends and properties about their offerings and take any required action. With the increasing

popularity of the Internet and the rise of large Internet services, such as Facebook and Twitter,

massive amounts of data are being generated and tools traditionally used to analyze such data

are becoming inadequate. Termed as Big Data, the total size of these datasets is expected to

reach 34.2ZB (zetabytes) globally in 2011 [20].

In response to the problem of managing and analyzing Big Data, much work has been done

in the area of stream processing. Instead of storing datasets in a database and running time-

consuming queries on them, stream processing offers the ability to get answers to queries

in real-time by processing data as they arrive. To use stream processing, developers are

required to restructure their applications to generate data when important events occur and

send them to a stream processing system. For example, when a user signs up for an account

on Facebook, an event AccountCreated may be generated and properties such as the user’s

details could be associated with that event. A stream processing engine would then be used

to help answer, in real-time, queries such as: “On average, in a 24-hour window, how many

new account creations are there?”.

A number of stream processing systems have been proposed in the literature [9, 12, 8, 15,

26, 19, 13, 10, 16]. Many still have been developed in the commercial world [7, 4, 1, 6, 2].

There are many variations to these systems and they offer different capabilities. However, they

can be broadly classified as being either centralized or distributed systems. The difference

between them is on how they execute a stream processing operation. Suppose there is an

1

operation that comprises of two steps: a filtering step to remove unwanted data, and an

aggregation step to combine the remaining data. In a centralized system, both steps would be

carried out in a single instance of the stream processor. On the other hand, in a distributed

system, a set of nodes would execute the first step and pass the resulting data to another set

of nodes, which would then execute the second step.

As those who need to handle Big Data have different requirements and as there is no “one-

size-fits-all” stream processing system, a decision has to be made whether to use a centralized

system or a distributed system. The cost of deploying the stream processing system must also

be factored into the decision. For example, a company may have an application that generates

events on a rate, while large enough to warrant the use of a centralized stream processing

system, still small enough to not justify the cost of deploying a distributed system. Hence,

in this thesis, we evaluate the limits of centralized systems. This helps identify the instances

when it is better to use a distributed system.

In particular, we evaluated Esper [2], a widely known centralized stream processing sys-

tem, and compared it against Chimera, a distributed stream processing system that we devel-

oped. We found that Esper’s performance varies greatly depending on the kind of queries it is

executing. If the queries are very complex, the rate at which Esper can process events would

be low. This makes it easy for distributed systems to outperform Esper, even when sources

generate events at low rates. Furthermore, we found that Chimera can perform better than

Esper even when they are both deployed on a single machine. This is because Esper’s design

is more sophisticated than Chimera’s. If developers do not require the various features offered

by Esper, they would obtain better performance by switching to a simpler stream processing

system.

1.1 Motivation

This study is motivated by the work on TankVille [22]. TankVille is a Facebook game that is

used to evaluate another research project. When a user launches the game, data is collected

to study both the attractiveness of the game and the underlying research system. After

TankVille was launched, its developers found that running SQL queries on the database,

where all the TankVille data was sent to, was too time-consuming and did not yield timely

answers. There was a need for them to use a stream processing system. However, they were

unable to decide on a system to use as there were many of them and their differences were

not obvious.

2

There have been two previous studies that evaluated Esper [18, 23]. However, their eval-

uation was based on very generic queries. In our work, we use queries related to TankVille

to understand how Esper would perform under real-world conditions. We then compare our

findings with the previous studies to make inferences on Esper.

1.2 Our Approach

As Esper is open-source, well-known, and widely adopted, we take it to be representative of

centralized stream processing systems in general and base our evaluation off it. We compared

Esper against Chimera, a distributed stream processing system that we developed. We did not

use an existing distributed system as previously proposed academic systems are no longer in

active development. Even though their source code is publicly available, a significant amount

of time and resources would be needed to understand their code, fix outstanding bugs, and

adapt the systems for our use.

As we wanted to evaluate Esper with real-world queries, we attempt to answer questions

that the TankVille developers had. In particular, we attempt to answer which game map

in TankVille is most popular, so as to identify the attractive aspects of TankVille. However,

instead of using live data from TankVille, we built a load generator to generate the same

events that TankVille would. This was done for two reasons: (i) in a live deployment of the

game, we cannot control the rate at which events are produced, making it difficult to run

controlled experiments, and (ii) TankVille is currently inactive as it is undergoing upgrading

due to changes in the Facebook API.

1.3 Organization

This thesis is organized as follows: in Chapter 2, we give an overview of stream processing,

present related works, and describe Esper in detail. We present the design and implementa-

tion of Chimera, the distributed stream processing system that we developed, in Chapter 3.

Our evaluation of Esper is discussed in Chapter 4 and finally, we conclude in Chapter 5.

3

Chapter 2

Related Work

In this chapter, we first give an overview of stream processing and introduce the various

terminologies used. Next, we give an overview of several stream processing systems and

describe Esper in some detail. Finally, we discuss the performance studies that have been

conducted on these stream processing systems.

2.1 Overview of Stream Processing

In this section, we clarify some of the terminologies used in the area of stream processing.

The basic unit in stream processing is the event. An event refers to a system message

representing some real world occurrence. Each event would have a set of attributes describing

its properties. There are two types of events: simple and complex. A simple event corresponds

directly to some basic fact that can be captured by an application easily while a complex event

is one that is inferred from multiple simple events. For example, a game application may

generate the simple event (PlayerKill X Y) to refer to the fact that player X has killed player Y .

(Note that X and Y are attributes of the event). Suppose that the game keeps generating the

events (PlayerKill A B) and (PlayerKill B A). If these two events are generated very frequently,

then we can infer that players A and B are rivals, and generate the complex event (AreRivals

A B).

An application that generates a continuous stream of events is said to be a source of

an event stream. Event streams are processed by stream processing systems, which can

refer to either event stream processing systems or complex event processing systems. The

former is concerned mainly with processing streams of simple events and in doing simple

mathematical computations such as SUM, AVG, or MAX. For example, given a stream of events

4

representing withdrawals in a bank account, the total sum of money withdrawn in a day

can be calculated easily with a event stream processing system. Complex event processing

systems have greater features and also provide developers the tools to correlate different

kinds of events to generate complex events. In recent years, most stream processing systems

have the ability to do complex event processing.

2.2 Existing Stream Processing Systems

2.2.1 Aurora

Aurora [9] is a stream processing system that receives streams of data from different sources,

runs some operation on those streams and produces new streams of data as output. These

new streams can then be processed further, be sent to some application, or be stored in

a database. A developer would construct the stream processing operations (designated as

queries in the Aurora terminology) by using seven built-in primitives (such as filter and union)

and create a processing path that will transfer the input stream into a desired output stream.

Aurora also has a quality-of-service (QoS) mechanism built in. When it detects that a system

is overloaded, it starts dropping data from the streams so as to maintain its processing rate,

while also trying to maintain accuracy of results.

2.2.2 Medusa and Borealis

Medusa [12] is a distributed stream processing system that has multiple nodes running Au-

rora. It manages loads using an economic principle. A node with heavy loads considers its

jobs to cost high and unprofitable to complete. Therefore, it finds other nodes that are not as

loaded and attempts to “sell” its jobs to them. These nodes will have a lower cost in process-

ing the jobs and thus, will make a profit by “selling” the results to the consumer (the system

egress point). All nodes in Medusa are profit-seeking and therefore, the system distributes

load effectively.

Borealis [8] is another distributed stream processing system that builds upon Aurora.

Each node in the Borealis system will run a Borealis server, which has improvements over

Aurora. Namely, it supports dynamic query modifications, which allows one to redefine the

operations in a processing path while the system is active. It also supports dynamic revision

of query results, which can improve results previously produced when a new fact is available.

For example, a source may send an event claiming that the data it produced hours ago were

5

inaccurate by some margin. In such a case, there is a need to revise the previous results.

2.2.3 TelegraphCQ

TelegraphCQ [15] combines stream processing capabilities with relational database manage-

ment capabilities. By modifying the architecture of PostgreSQL, an open source database

management system, TelegraphCQ allows SQL-like queries to be continuously executed over

streaming data, providing results as data arrives. Based on the given query, the system

builds up a set of operators that can pipeline incoming data to accelerate the processing.

Their modifications to PostgreSQL allows the query processing engine to accept data in a

streaming manner.

2.2.4 SASE

One of the earliest works on complex event processing is SASE [26]. It provides a query lan-

guage with which a user can detect complex patterns in the incoming event streams by cor-

relating the events. Users can also specify time windows in their queries so as to concentrate

only on timely data. The authors compared their work to TelegraphCQ and demonstrated

that the relational stream processing model in TelegraphCQ is not suited for complex event

processing.

2.2.5 Cayuga

Cayuga [19] is another event processing system that supports its own query language. The

novelty here is that a query in Cayuga can be expressed as a nondeterministic finite state

automaton (NFA) with self-loops. Each state in the automaton is assigned a fixed relational

schema. An edge < S, θ, f > between states P and Q identifies an input stream (S), a predicate

(θ) over schema(P) × schema(S), and a function (f) mapping θ into schema(Q). If an event e ar-

rives at the state P of the NFA and θ(schema(P), e) is satisfied, then the automaton transitions

to state Q, with schema(Q) becoming f(schema(P), e). Expressing queries in this way allows

Cayuga to use NFA to process events in complex ways. For example, the use of self-loops in

the NFA will allow a query to use its output as an input to itself, which allows the query to be

recursive.

6

2.2.6 Microsoft CEP

Microsoft has also developed a complex event processing engine which they call CEP Server [10].

This is based on their earlier work, CEDR (Complex Event Detection and Response) [13]

project. Amongst other things, CEDR can handle events that do not arrive in-order. For

example, a query may depend on an event A and B, and either event may arrive first. CEDR

handles such scenarios by requiring each event to have two timestamps, indicating the in-

terval for which the event is said to be valid. When CEDR receives an event, it will buffer the

event until the event is either processed or until the event’s lifetime expires, whichever occurs

first. Microsoft has deployed its CEP server for its own use. To achieve scalability, it supports

stream partitioning and query partitioning. The CEP system runs multiple instances of the

servers, partitions an incoming stream into sub-streams and sends each sub-stream to a

different server. Queries are also partitioned in a similar manner.

2.2.7 MapReduce and MapReduce Online

MapReduce [17] is a distributed programming model proposed by Google. It runs batch

processing on large amounts of data, e.g. crawled documents from the Internet. By defining

the two functions, map and reduce, MapReduce is able to distribute a computation task

across thousands of machines to process massive amounts of data in a reasonable time. This

distribution is similar to parallel computing, where the same computations are performed on

different datasets on each CPU. MapReduce provides an abstraction that allows distributed

computing while hiding the details of parallelization, load balancing and data distribution.

To use MapReduce, a user has to write the functions map and reduce. map takes as

input a function and a sequence of values from raw data, and produces a set of intermediate

key-value pairs. The MapReduce library groups together all intermediate values associated

with the same key and passes them to the reduce function. The reduce function accepts an

intermediate key and a set of values for that key, then merges these values to form a smaller

set of values. Data may go through multiple phases of map and reduce before reaching the

final desired format.

The contribution of MapReduce is a simple and powerful interface enabling automatic par-

allelization and distribution of large-scale computations, combined with an implementation

of this interface that achieves high performance on large clusters of commodity PCs.

Recently, there has been some work in trying to use MapReduce for real-time data analy-

sis. MapReduce Online [16] is one such work that attempts to process streaming data with

7

MapReduce. In this system, when the map function produces outputs, they are sent directly

to the reduce function in addition to being saved to disk. The reduce function will work on

the outputs from map immediately to produce early results of the desired computation. When

the nodes in the system complete the map phase, the reduce phase will be executed again

to get the final results. In this manner, the system provides approximate results when it is

busy processing the input data, and provides the final results when all the data has been

processed.

2.2.8 Dryad

Isard et al. proposed a distributed framework similar to MapReduce called Dryad [21]. Just

like MapReduce, it allows parallel computation on massive amounts of data. However, the

authors claim that Dryad is more flexible than MapReduce as it permits multiple phases, not

just map and reduce. This allows developers to solve problems that cannot be converted into

the map and reduce phases naturally. Dryad cannot be used to process data in real-time as

it is still a batch processing system. However, we use their ideas of having multiple phases to

design Chimera.

2.3 Description of Esper

Here, we give a detailed introduction to Esper [2]. Esper is a state-of-the-art complex event

processing engine and is maintained by EsperTech. They provide an open-source version of

Esper, written in Java, for academic use and also a commercial version of Esper with more

features. To use Esper, developers will create their own application and link it with the Esper

library. The library will handle the actual processing of the events and the production of out-

puts, but the developer has the responsibility of connecting the application to the appropriate

event stream sources and in passing the events to Esper.

Figure 2.1 is a architectural diagram of Esper (taken from official Esper website). Incom-

ing events are processed according to the queries registered in the system. The results are

wrapped as POJOs (Plain Old Java Objects) and is sent to the result subscribers. Esper also

provides a layer to store the results into a database. This allows the construction of queries

that rely on historical data.

Events in Esper can be represented in three ways: (i) a POJO, (ii) a Java Map object with

key-value pairs where the key is the name of the attribute and the value is the value of the

8

Figure 2.1: Esper architectural diagram (taken from the Esper website)

attribute, and (iii) an XML document object. An SQL-like query language is provided to detect

different events (or patterns of events), and to take the appropriate processing action. The

query results can either be automatically sent to a subscriber, or the developer can poll the

Esper engine and see if new results are available.

2.4 Evaluation on Stream Processing Systems

Given that the different stream processing systems proposed previously work differently, sev-

eral evaluations have been done to understand their performance.

One of the earliest studies on Esper was conducted by Dekker [18]. He compared Esper

and StreamCruncher [5], another open-source centralized stream processing system. The

focus of his work was on testing the complex event processing capabilities of both systems

by running six different queries, each designed to produce a result by correlating different

events. He shows that Esper performs consistently better than StreamCruncher, and gives

good throughput. However, his study was done in 2007 and since then, Esper has gone

through significant upgrades. Therefore, we do not compare our results with his results.

Mendes et al. did another evaluation and compared Esper with two other commercial

products [23]. Due to licensing issues, they did not name any of the systems in their eval-

uation and simply referred to them as X, Y, and Z. However, one can infer that Y refers to

Esper as the authors specifically mentioned that Esper is the only open-source product of the

three stream processing systems and in their evaluation, they stated that they “examined Y’s

open-source code” to study its behaviour. Their results show that Esper’s performance varies

greatly depending on the kind of queries that are executed. For example, a simple SELECT

9

query can process events at a rate of 500K per second while a query that performs SQL-like

joins may process only at a rate of 50K per second. Their evaluation is based on FINCoS

framework [24], which is a set of tools designed to benchmark complex event processing en-

gines. Instead of using their benchmarks, which are based on a set of generic queries, we

evaluated Esper with our own set of queries based on TankVille. This allows us to understand

how Esper performs when it is used to answer actual application queries.

Arasu et al. [11] compared Aurora against a relational database configured to process

stream data inputs. They used the Linear Road project [3], another benchmark tool for

stream data processing. By measuring the response time and the throughput of the system,

the benchmark tool is able to identify the system more suitable for processing streaming

data. According to the results, under the same response time requirement, Aurora achieves

a throughput that is greater than 5 times of the database. The goal of their work is to confirm

that stream systems perform better than databases in processing streaming data.

Tucker et al. built NEXMark [25], a benchmark for stream processing built as an online

auction system. At any moment during the simulation, new users can create an account with

the system, bid on any of the hundreds of open auctions, or auction new items. NEXMarks

evaluates how a stream processing system can handle queries over all these events. This

benchmark is still under construction and is not yet used to evaluate stream processing

systems.

10

Chapter 3

Chimera Design and

Implementation

To evaluate Esper, we developed our own distributed stream processing engine called Chimera.

Chimera’s design is inspired by both MapReduce and Dryad. It allows developers to define

their own operations, organize a layered structure of nodes to process the data in a parallel

manner according to the defined operations. Chimera requires the developer to only define

the task to be processed. It transparently handles the details of distributed processing, such

as monitoring the status of the machines in the system, the offloading of processing jobs

to different machines depending on their availability, and the distribution of data between

different nodes. This improves the usability of Chimera.

In Chimera, we use text string to represent an event. These strings are formatted as a

comma-separated key value pairs. For example, the string < key1 = value1, key2 = value2, . . . , keyn =

valuen > will represent an event. We use strings representation for events as it simplifies the

implementation of Chimera.

The architecture of Chimera is illustrated in Figure 3.1. There are four kinds of nodes in

Chimera: (i) Collectors, (ii) Workers, (iii) Sinks, and (iv) the Master. The role of the Collectors

is to receive events from various sources and pass them to the Workers. The Workers would

then process the events according to the user-defined operations and according to how the

Workers are structured in the layer. The results are then sent to the Sink node, which can

either provide the data to the developer in real-time or simply store it in a traditional database.

The Master node is used to manage the previous three types of nodes, and ensures that they

process the developer’s tasks.

11

More

Workers

Sources Collectors Workers Sink

User

Database

Figure 3.1: System Architecture of Chimera.

We validated our implementation by running processing tasks where the source events

were saved in their raw form before they were passed to Chimera. Next, we manually pro-

cessed the raw source events and compared the results obtained with that from Chimera. The

two results turned out to be consistent. Further, we ran the same tasks with Esper and also

found the results to be consistent. Therefore, we concluded that our Chimera implementation

is correct.

We now proceed to describe the design of Chimera and the design of each node type in

greater detail.

3.1 Collector Nodes

Different event sources (such as desktop PCs and mobile devices) will send events to Chimera

by using an API exposed by the Collector nodes. In our current implementation, the API is

provided as HTTP webservice call. Collectors would then stream these events to the Worker

nodes so that they can be processed. As the Collector has few responsibilities, its design is

simple.

3.2 Worker Nodes

Workers are nodes that performs actual processing of events in Chimera. They are structured

in a topology to process events in layers. For instance, the first layer of Workers might trans-

form the event stream from sources into some intermediate form. A second layer of Workers

may process this intermediate form of data into yet another form. This can continue until

12

the events reach the final layer of Workers, where the expected results are produced. Each

Worker is structured as three parts: (i) receiver, (ii) operator, and (iii) sender.

Receiver

The receiver manages all incoming connections from upstream Workers. It monitors the rate

of incoming streams and the rate of processing. When the rate of incoming events over-

whelms the processing capacity, the Worker will send the Master a warning message, to ask

for it control the rate of upstream Workers.

Operator

The operator processes the events based on the user-defined operations. A Worker will con-

figure its operator after receiving instructions from the Master on the operation it should

execute.

Sender

The sender sends the output stream from the operator to the nodes in the next layer of the

topology. It also monitors the rate at which it is sending events, Rs. If the Worker receives

a rate-control message from the Master, it will adjust its sending rate so as to prevent the

downstream nodes from being overwhelmed. The rate control message contains Rp, which

is the processing rate of the downstream choked Worker. The Worker would then drop the

events produced with a probability Pd based on the following equation:

Pd =
Rs − Rp

Rs

∗ 100% (3.1)

Although the dropping of events may affect accuracy, this feature is useful in situations

where bursts at the sources occur, in terms of event generation rates. If these bursts is

beyond the processing capacity of the Chimera system and if there is no rate control, the

time taken to process events would increase. Consequently, the timeliness and “freshness”

of the results would be affected. Developers can switch off this feature if they prefer to have

accurate results at the cost of slower results.

13

3.3 Sink Nodes

The Sink is the egress point of the layered structure processing network. It collects results

from the last layer of Workers, does some necessary operations and returns the final results to

developers in real-time. Developers can also implement a Sink operation to store the results

to a database for future query. If a Chimera system is configured with many Workers but just

one Sink, the Sink might become the processing bottleneck as it may not be able to collect

the results quickly enough.

To address this issue, an additional layer of nodes may be inserted between the last layer

of Workers and the Sink. The job of these nodes would simply be to collect and do partial

merging of the results from the Workers, and send them to the Sink. In this manner, the Sink

handles inputs from a lesser number of nodes and it will not be overwhelmed. Note that this

is similar to the reduce phase in MapReduce.

3.4 The Master Node

The Master node controls the Collectors, Workers, and Sinks, when executing a developer’s

task. It is responsible for arranging the topology of the nodes, including the organization of

the Workers’ layers, and manages the communication between the various nodes. It is also

responsible for specifying the operations that the Workers and Sinks need to perform.

Machine Management

When a machine is added to the Chimera system, it will register with the Master and

indicate the computing resources it has, such as the number of CPU cores available. This

informs the Master that it has additional computing resources available and it may send the

machine some processing task. The machines are also required to periodically send heart-

beat messages to the Master. If the Master detects that a particular machine has not sent

this heartbeat message for some time, it will mark the machine as unavailable and will not

deploy any more tasks on them.

Worker Management

When a Master receives a task to be executed from the developer, it will determine the

number of Workers that are needed, the operations needed for each work and the topology of

the nodes. Next, it will create these nodes as logical nodes and deploys them on the available

14

set of machines. If there are insufficient computing resources, more than one logical node

may share a single CPU core. The Master also informs the nodes the topology of the system,

so that they know who the upstream and downstream nodes are.

3.5 Chimera Tasks

Users will send tasks to Chimera by completing a task interface. This interface has the

following required fields:

• srcNum. This refers to the number of sources that will send event streams to Chimera.

• eventID. An array of event IDs. The IDs specified should be of events that are required

in the processing.

• var. An array of key names to monitor when processing events.

• operation. The operation that would be executed on the values of the keys being moni-

tored.

• aggr. The name of the key by which Chimera will perform aggregation.

Chimera provides a set of common operations by default, such as SUM, MAX, and MIN.

However, developers can define their own custom operations. They can modify the Chimera

operations library, add their own operations, and distribute the library to the machines used

in Chimera.

The following is an example of what a task interface may look like:

srcNum = {3 } ,

eventID = {1 ,2} ,

var = { ts } ,

operation = {max(sum(span(1− >2))) } ,

aggr = {mapID (6) } .

When the Master receives this task, it will parse it and determine two things: (i) the

topology of the Workers, and (ii) the operation on each Worker.

The field aggr on the above example indicates that events with the same mapID will be

aggregated together. The value 6 indicates that the mapID may have six unique values. Using

this information, the Master will construct 6 Workers and each Worker would handle each

unique mapID. Similarly, the number of Collectors is decided by the field srcNum.

15

User inputs a

task

Task parsing

Parsing

succeeds?

Task

Deployment

Yes

No.

User inputs

again

Chimera

starts task

Layer 1

Layer 2

.

.

.

.

.

.

Layer n-1

Sink

More layers

Stream of events

Constructed processing

network

Worker topology

And

operations

Processed by

Layer 1

Processed by

Layer 2

Processed by

Layer n-1

Final results

Procedure of executing

a Chimera task

Figure 3.2: Overview of Chimera inputs and runs a task.

The fields eventID, var, and operation define the operations of Workers. In particular, the

operation field indicates that the difference in the ts value between the events with IDs 1 and

2 should be summed. This summation happens individually for each unique mapID value.

The final result returned is the map ID with the greatest summation.

3.6 Overview of Task Execution

In Figure 3.2, we show an overview of how Chimera executes a user’s task.

1. The user inputs a task to Chimera, to inform the system of the task to execute.

2. The Master node parses the task content, determines the operations required, and the

topology of Worker nodes on the set of available machines within the cluster.

3. The Master starts the Workers, deploys operations on them, and arranges them in the

network according to the topology determined in the previous step.

4. The Master starts the system and the Collectors begin to provide the event streams

(received from the sources) to the Workers.

5. Each Worker executes the operations deployed on it, and delivers the stream of results

to the Workers at the next layer.

16

6. The event stream flows through each layer to produce the expected results, which are

then given to the Sink node, where it is either displayed to the developer in real-time or

is stored in a traditional database.

17

Chapter 4

Evaluation

In this chapter, we present our strategy of evaluating the limits of Esper. We begin by describ-

ing TankVille as the queries we use to compare Esper and Chimera are based on TankVille.

Next, we describe the questions which we want answered, and the experiments we ran. We

also provide details of our load generator, and the strategy of answering the questions with

the generated events. Finally, we discuss the findings from our experiments.

4.1 TankVille

TankVille [22] is a real-time action game deployed on Facebook. It is used by the developers

to evaluate Hydra [14], a peer-to-peer networking architecture. In TankVille, each player

controls a tank and plays in a virtual battlefield, known as the game map, and competes with

other players to collect resources and fight enemy AI-controlled tanks. To provide variety in

the game, players can choose to play in any of the available maps. Players can either host a

new game or join a game that is already in progress.

When users launch TankVille, measurement data from both the game and Hydra is col-

lected. This allows the developers to understand how their game is performing and helps

them reason about Hydra. In this chapter, we concern ourselves only with the game data.

4.2 Experiment Setup

Our goal is to evaluate Esper and Chimera with real-world queries. To this end, we attempt

to answer a query that the TankVille developers had. They wanted to know which map in

their game was most popular so as to identify which aspects of TankVille was most attractive

18

to players. This query can be answered via the following three questions:

1. How many players are there currently on each map?

2. Which map do players spend most of their time on?

3. What are the histograms of the time spent by every player on each map?

The answer to the first question provides a bird’s eye view of the current state of the game.

It would also help developers understand how activity on each map varies through time. The

answer to the second question highlights clearly the map that is most popular. Answers to

the third question provide a breakdown of how much time players spend on TankVille and on

the individual maps.

The three questions above were answered with the aid of a load generator. We did not

use live data from TankVille players due to two reasons. First, with live data, we would

not be able to control the rate at which the events are produced. This makes it difficult

to run controlled experiments. Second, TankVille is currently undergoing upgrades due to

changes in the Facebook API. Therefore, we are unable to use it as a source of data. In our

experiments, we take it that there are 6 maps in total. Events will be generated to simulate

the activity of players joining and leaving these maps. The design of the load generator and

the events produced to answer the above questions is detailed later in this chapter.

In our experiments, we concentrated on answering the above questions using both Esper

and Chimera. Each experiment run uses either Esper or Chimera to produce results for

one question. In each Esper experiment, the Esper server is deployed on one machine and

the load generator is deployed on another machine. Both machines are on the same LAN.

Before the experiment begins, a timing offset between both machines is calculated. This is to

ensure that we can accurately measure the time taken by Esper to process an event, which

is calculated by the elapsed time between the time the load generator creates the event and

the time at which Esper finishes processing the event.

In our Chimera experiments, we configured Chimera to have 8 logical nodes: 1 data Collec-

tor, 6 Workers (one for each map), and 1 Sink. The Collector receives event streams from the

load generator, splits them into sub-streams, and delivers them to a Worker depending on the

event’s map ID. After receiving the results from the Workers, the Sink may, depending on the

question, do some final processing on the results before displaying them on the screen. Note

that the Collector and Sink also require CPU resources. Like the Workers, they will suffer

from bad performance if there are insufficient resources. We ran multiple experiments and

19

varied the number of CPU cores available to Chimera, from just 1 core to 8 cores. When only

1 core is available, each logical node shares the core to perform their respective operations.

When 8 cores are available, each node will make use of one. In all other cases, the nodes will

be evenly spread among the available cores.

We controlled the availability of CPU cores on multi-core machines by enabling only the

required number of cores. In our experiments, we did this by adding the maxcpus option to

Grub, the boot-loader used to load the GNU/Linux operating system. For example, by using

the option maxcpus=1, the operating system would only be able to use one core.

Each experiment run lasts one minute. One minute is sufficient as the load generator

stabilizes within 5 seconds and begins to generate events in the desired rates. We verified our

approach by running experiments up to 30 minutes and found the results to be similar to the

results obtained when we run the experiments for a minute.

As Esper is centralized, we evaluated it on a single machine that has a 2 GHz dual-core

processor with 4 GB of RAM. However, only one core is enabled in the Esper experiments

and in experiments where Chimera is deployed on only one core. On experiments where

Chimera was deployed on multiple cores, the logical Worker nodes were deployed on a cluster

of machines whose specifications ranged from a 2 GHz dual-core processor to a 2.67 GHz

quad-core processor and with the RAM ranging from 2 to 4 GB. We were unable to run all the

logical nodes of Chimera on machines with exactly the same specifications due to practical

reasons. The Master node on all Chimera experiments was deployed on a separate machine

that was not involved in any data processing.

We used only commodity hardware in our tests and the default Sun J2SE 1.6 JVM (without

any custom tuning) so as to see what kind of standard performance developers can expect.

4.3 Load Generator

An actual instance of TankVille generates many different kinds of events, to evaluate both the

game and the research platform it is running on. In our load generator, we generate just two

events to answer the questions stated earlier. Namely, the events PlayerJoin and PlayerLeave

are generated when players join and leave games respectively. These events are generated

as a text tuple consisting of four fields: (i) a timestamp stating when the event was created,

(ii) an event identifier that differentiates the various kinds of events from each other, (iii) an

identifier of the map used in the game the player created, joined, or left, and (iv) an identifier

of the player. As we demonstrate later, these two events with the four fields are sufficient to

20

answer the given questions.

Both events are produced continuously so as to match the desired event generation rates.

However, to make the simulation realistic, the method by which we generate the PlayerJoin

and PlayerLeave events for a given player is based on our observations of TankVille.

We noticed that the number of players arriving at the game within a time unit obeys a pois-

son distribution. Hence, according to probability theory, the inter-arrival time between every

two players obey an exponential distribution. The cumulative distribution function (CDF) of

an exponential distribution is given in Equation (4.1). The parameter λ is the inverse of the

average inter-arrival time. This affects the time between the generation of two consecutive

PlayerJoin events.

F (x) = 1 − e−λx (4.1)

The amount of time a player spends in a map also obeys an exponential distribution.

Therefore, the parameter λ here refers to the inverse of the average time a player spends in a

map. This affects the time between the generation of a PlayerJoin and the PlayerLeave events

for the same player. The λ parameters can be modified to adjust the event generation rate.

For example, suppose the average inter-arrival rate is 100 ms and the average amount of time

spent by players in a map is 10 seconds. This means that the load generator will produce

(on average) 600 PlayerJoin and 600 PlayerLeave events in one minute. In total, 1200 events

would be produced per minute.

The generator creates events with the help of a priority queue (i.e. a heap) that sorts

events in ascending order of the their timestamps and with the help of a PlayerArrival trip

event. When the generator is started, a PlayerArrival event with the current system time as its

timestamp is inserted into the heap. The generator would then continuously extract events

from the heap with the smallest timestamp and take the appropriate action. If this event

happens to be the PlayerArrival trip event, the generator will perform the following actions:

1. A PlayerJoin event is created with the same timestamp as that of the trip event, and

with a random map ID and player ID. The player ID would be one that was not created

previously.

2. Next, a PlayerLeave event is created with the same map ID and player ID as the Play-

erJoin event that was just created. The timestamp of this PlayerLeave event would be

the timestamp of the newly created PlayerJoin event, but with a random amount of time

21

added. This random time is taken from the exponential distribution.

3. A new PlayerArrival trip event. Its timestamp is computed by adding another random

amount of time to the timestamp of the newly created PlayerJoin event. This random

time is taken from the Poisson distribution.

4. The events created above are added into the heap and the generator would continue its

operation of extracting events from the heap.

If the event extracted from the heap is not a trip event, the generator would check if the

current system time is either equal to or is past the event timestamp. If so, the event is sent

to the stream processing system being tested. Otherwise, the generator would sleep until the

system time has advanced to the extracted event’s timestamp.

4.4 Answering the questions

In this section, we explain the strategy of using the PlayerJoin and PlayerLeave events to

answer the three questions. We only present the high-level idea here; the actual queries

written in Esper and Chimera are placed in Appendix A.

The first question is “How many players are there currently on each map?”. This can be

answered by keeping a counter for each map. When a PlayerJoin event is encountered, this

counter can be incremented. Likewise, when a PlayerLeave event is received by the stream

processor, the counter can be decremented.

The second question is “Which map do players spend most of their time on?”. When a

PlayerJoin event arrives, the player ID and the timestamp of the event has to be saved. Next,

when a PlayerLeave event arrives, we have to use its player ID, retrieve the previously stored

timestamp. Using this timestamp and the timestamp in PlayerLeave, the total amount of time

spent in the game can be calculated. This duration can then be added to the total duration

spent for the map specified by map ID in PlayerLeave. The map with the largest total duration

is the most popular map.

The third question is “What are the histograms of the time spent by every player on each

map?”. In this question, for each map, we plot a histogram of the time spent by players

on that map. Each bin in this histogram specifies some range of time, and the frequency

specified by the bin refers to the number of players who spent the amount of time specified

by the bin interval in TankVille. We also plot another histogram that illustrates the total

amount of time spent by players in all maps. The amount of time a player spent would be

22

the time elapsed between the PlayerJoin and PlayerLeave event pair while the grouping of the

player time by map can be done by taking into account the MapID attribute in the events.

4.5 Scalability

We tested the scalability of Esper and compared it with Chimera. To this end, we ran the

aforementioned experiments to answer the three questions and varied the event generation

rate. The aim is to see how the time taken by the systems to process each event varies with

the amount of load they are under. These experiments will also show the maximum number of

events Esper and Chimera can process before becoming completely overwhelmed. We plot the

results of answering the three questions in Figure 4.1, Figure 4.2 and Figure 4.3 respectively.

Note that for purposes of clarity, we did not plot results where Chimera was running on 2, 4,

and 6 cores.

As shown, the maximum throughput of Esper for the three questions is 467K, 260K, and

125K per minute. In other words, at its fastest, Esper performs at a rate of 7783 events

per second. This is different from official benchmarks released by EsperTech, the company

developing Esper, which claims that Esper can handle 500K events per second. There are two

reasons for this. Firstly, the official benchmarks are executed on a two dual-core processors

and on a JVM with tuned with custom parameters. In contrast, our experiments use only one

core of a dual-core processor and uses a JVM instance with default parameters. The aim of

our tests is to see how Esper will perform without any specific, performance-related tweaks.

Secondly, and more importantly, the queries executed in the benchmark are simple SE-

LECT statements and Esper may be well-optimized answer those questions. However, Esper’s

performance can vary widely. Mendes et al. [23] showed that on a machine with two 2.5GHz

quad-core processors (8 cores in total), a simple SELECT statement processes events at a rate

of 500K per second but a SELECT statement with joins may perform only at a rate of 50K

events per second. This suggests that there may be some bias to the benchmarks.

Furthermore, as demonstrated earlier, we have to maintain state for our queries. Esper

may not be as optimized in keeping track of the various counters. The key finding here is that

Esper’s performance varies widely between different query types. A developer who wishes to

use Esper needs to spend the effort to optimize his queries. He could even tune the JVM to

squeeze out more performance.

The next observation to be made is that Chimera outperforms Esper in terms of through-

put even when both are deployed on only one core. This is most likely due to Chimera being

23

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400 1600
la

te
nc

y
(m

s)

number of 1K events per minute

467
518

966 1170

1515

Esper on 1 core
Chimera on 1 core

Chimera on 3 cores
Chimera on 5 cores
Chimera on 8 cores

Figure 4.1: Processing capacity of Chimera and Esper for question 1: number of players on
each map

simpler in design compared to Esper, which is complex and supports features such as a gen-

eral, SQL-like query language. Note however that when both are deployed on one core, Esper

uses one thread to answer the defined questions while Chimera uses multiple threads, one

for each logical node.

Therefore, to have a fairer comparison and to better understand the complexity tradeoff

between Chimera and Esper, we ran another experiment where all logical nodes in Chimera

use a single thread. Figure 4.4 shows the results of this experiment contrasted with Esper’s

performance for the three questions. Chimera performs even better than Esper compared

to when it was using multiple threads. In questions 2 and 3, Chimera offers over twice the

performance of Esper. This shows that if the features offered in a complex system are not

required, it is better for the developer to use a simpler system to obtain better performance.

When Chimera is deployed on multiple cores (with the Master node located on a separate

machine that is not involved in the actual computation), the maximum throughput increases

and the latency of processing events decreases. For example, in question 1, Chimera on

one core has a latency of 100 ms when processing 500K events per minute. When Chimera

is deployed on eight cores, where each logical node occupies a separate core, Chimera can

handle 1200K events per minute with 60 ms latency. However, it costs more resources to

deploy Chimera on eight cores than on just one core. The take-away here is that when

deploying a distributed stream processing system, the benefit of having more throughput with

lower latencies has to be balanced with the cost of needing more cores.

24

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 200 400 600 800 1000 1200 1400 1600

la
te

nc
y

(m
s)

number of 1K events per minute

260

476

897 1105

1450

Esper on 1 core
Chimera on 1 core

Chimera on 3 cores
Chimera on 5 cores
Chimera on 8 cores

Figure 4.2: Processing capacity of Chimera and Esper for question 2: time spent by players
on each map

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

la
te

nc
y

(m
s)

number of 1K events per minute

125 239 364

477
618

Esper on 1 core
Chimera on 1 core

Chimera on 3 cores
Chimera on 5 cores
Chimera on 8 cores

Figure 4.3: Processing capacity of Chimera and Esper for question 3: histogram of players
gaming time

25

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800

la
te

nc
y

(m
s)

number of 1K events per minute

706
467

646

260
253125

Chimera Q1
Esper Q1

Chimera Q2
Esper Q2

Chimera Q3
Esper Q3

Figure 4.4: Chimera on one thread compared with Esper for all three questions (on one core)

26

Chapter 5

Conclusion

In this thesis, we conducted a study to understand the limits of centralized stream processing

systems so as to better understand when it is good to use centralized systems and when it is

better to use distributed systems. To this end, we evaluated Esper, a state-of-the-art central-

ized stream processing system. We used Esper to answer some queries that the developers

had of TankVille, a game on Facebook. We also processed these same queries on Chimera, a

distributed stream processing system we built.

We found that Esper’s performance varies widely depending on the complexity of the query.

While it can process events very quickly when the queries are simple, the processing rate

drops significantly when the queries are complex. In such cases, distributed systems out-

perform Esper easily. However, if a developer only uses simple queries, it may be more

cost-effective to just use Esper instead. There may also be instances where developers do not

require the various features offered by Esper. In such cases, it is better for them to use a

simpler stream processing system as that would offer better performance than Esper.

Through our study, we have showed that centralized stream processing systems are not

necessarily better than distributed systems, even when the rate at which events arrive from

sources is low. Developers have to decide whether to use a centralized system or a distributed

system based on the complexity of their queries, based on the features they need from a

stream processing system, and based on the rate of incoming events.

27

Bibliography

[1] Complex event processing (cep) technology & real-time business process management

- sybase inc. http://www.sybase.com/products/financialservicessolutions/complex-

event-processing.

[2] Esper. http://esper.codehaus.org/.

[3] Linear road. http://pages.cs.brandeis.edu/ linearroad/.

[4] Streambase: Complex event processing, event stream processing.

http://www.streambase.com/.

[5] Streamcruncher. http://www.streamcruncher.com/.

[6] Tibco businessevents. http://www.tibco.com/products/business-

optimization/complex-event-processing/businessevents/.

[7] Truviso web analytics software. http://www.truviso.com/.

[8] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,

W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, , and S. Zdonik.

The design of the borealis stream processing engine. In CIDR ’05: Proceedings of the

Conference on Innovative Data Systems Research, 2005.

[9] D. J. Abadi, D. Carney, U. ÃĞetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-

braker, N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data stream

management. VLDB Journal: International Journal on Very Large Data Bases, 12:120–

139, 2003.

[10] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin, T. Tarnavski, T. Verona, P. Wang, P. Zab-

back, A. Ananthanarayan, A. Kirilov, M. Lu, A. Raizman, R. Krishnan, R. Schindlauer,

T. Grabs, S. Bjeletich, B. Chandramouli, J. Goldstein, S. Bhat, Y. Li, V. Di Nicola,

28

X. Wang, D. Maier, S. Grell, O. Nano, and I. Santos. Microsoft CEP Server and On-

line Behavioral Targeting. VLDB ’09: International Journal on Very Large Data Bases, 2,

August 2009.

[11] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, and M. Stone-

braker. Linear road: A stream data management benchmark. In VLDB ’04: Proceedings

of the 30nd International Conference on Very Large Data Bases, 2004.

[12] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based load management

in federated distributed systems. In NSDI ’04: Symposium on Networked Systems Design

and Implementation, 2004.

[13] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent streaming through time:

A vision for event stream processing. In CIDR ’07: Proceedings of the Conference on

Innovative Data Systems Research, 2007.

[14] L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan. Hydra - a massively-multiplayer peer-

to-peer architecture for the game developer. In Proceedings of NetGames ’07, September

2007.

[15] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,

S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. Telegraphcq: Con-

tinuous dataflow processing for an uncertan world. In CIDR ’03: Proceedings of the

Conference on Innovative Data Systems Research, 2003.

[16] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears. Mapre-

duce online. In NSDI ’10: USENIX Symposium on Networked Systems Design and Imple-

mentation, 2010.

[17] J. Dean, S. Ghemawat, and G. Inc. Mapreduce: simplified data processing on large

clusters. In In OSDI ’04: Proceedings of the 6th conference on Symposium on Opearting

Systems Design and Implementation. USENIX Association, 2004.

[18] P. Dekkers. Complex event processing. In Master Thesis, Radboud University Nijmegen,

October 2007.

[19] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. White. Cayuga: A

general purpose event monitoring system. In CIDR ’07: Proceedings of the Conference on

Innovative Data Systems Research, 2007.

29

[20] InfoWorld. Big data to get even bigger in 2011, January 2011.

http://www.infoworld.com/d/data-explosion/big-data-get-even-bigger-in-2011-064.

[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-parallel

programs from sequential building blocks. In EuroSys ’07: Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems, 2007.

[22] W. K. Leong, D. Seah, A. Razeen, and B. Leong. Tankville.

http://apps.facebook.com/tankville.

[23] M. R. Mendes, P. Bizarro, and P. Marques. A performance study of event processing sys-

tems. In TPCTC: The TPC Technology Conference on Performance Evaluation and Bench-

marking, 2009.

[24] M. R. N. Mendes, P. Bizarro, and P. Marques. A framework for performance evaluation of

complex event processing systems. In DEBS ’08: International Conference on Distributed

Event-Based Systems, 2008.

[25] P. Tucker, K. Tufte, V. Papadimos, and D. Maier. Nexmark - a benchmark for queries

over data streams. 2002.

[26] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams.

In SIGMOD ’06: Proceedings of the ACM International Conference on Management of Data,

2006.

30

Appendix A

Solving Questions with Esper and

Chimera

A.1 Solving Question 1

Question: How many players are there currently on each map?

A.1.1 Using Esper

We first define the two events that Esper is interested in, and the variables used in the queries.

Configuration engineConfig = new Configuration () ;

engineConfig . addEventType (" PlayerJoin " , PlayerJoinEvent . class .getName ()) ;

engineConfig . addEventType (" PlayerLeave " , PlayerLeaveEvent. class . getName ()) ;

EPServiceProvider engine =

EPServiceProviderManager . getProvider ("myEsperEngine " , engineConfig) ;

We define auxiliary variables in Esper to be used in the queries.

/∗

∗ create a Integer variable named " playerCount " with

∗ i n i t i a l value as 0

∗/

engine . getEPAdministrator () . getConfiguration () . addVariable (" playerCount" ,

Integer . class , 0) ;

/∗

∗ create counters for players on each map, maps are indexed from 0 to 5

31

∗/

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC0" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC1" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC2" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC3" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC4" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC5" , Integer . class , 0) ;

Then we use the queries below to count the number of players.

"on PlayerJoin set playerCount = playerCount + 1 , curEvtTs = timeStamp " ;

"on PlayerLeave set playerCount = playerCount − 1, curEvtTs = timeStamp " ;

"on PlayerJoin (mapID=0) set pC0 = pC0 + 1" ;

"on PlayerLeave (mapID=0) set pC0 = pC0 − 1" ;

"on PlayerJoin (mapID=1) set pC1 = pC1 + 1" ;

"on PlayerLeave (mapID=1) set pC1 = pC1 − 1" ;

"on PlayerJoin (mapID=2) set pC2 = pC2 + 1" ;

"on PlayerLeave (mapID=2) set pC2 = pC2 − 1" ;

"on PlayerJoin (mapID=3) set pC3 = pC3 + 1" ;

"on PlayerLeave (mapID=3) set pC3 = pC3 − 1" ;

"on PlayerJoin (mapID=4) set pC4 = pC4 + 1" ;

"on PlayerLeave (mapID=4) set pC4 = pC4 − 1" ;

"on PlayerJoin (mapID=5) set pC5 = pC5 + 1" ;

"on PlayerLeave (mapID=5) set pC5 = pC5 − 1; " ;

Finally we input the queries into the Esper engine, and start Esper. We observe the auxil-

iary variables to obtain the results required for this question.

A.1.2 Using Chimera

We submit the task defined as follows.

srcNum = {1 } ,

eventID = {1 ,2} ,

var = { playerID } ,

operation = { count,+1 ,−2} ,

aggr = {mapID (6) } .

There is 1 data source. Generated events with ID 1 (PlayerJoin) and 2 (PlayerLeave) are

required to answer the question. Chimera will count the number of playerIDs in each of the 6

maps. PlayerJoin event will increment the counter and PlayerLeave event will decrement the

counter.

32

There are 6 Workers and each Worker handles each unique mapID (there are 6 unique

mapIDs in total). Collectors will receive events from the source and deliver them to each

Worker depending on the event’s mapID. The Sink receives the player counts and displays it

to the developer.

A.2 Solving Question 2

Question: Which map do players spend most of their time on?

A.2.1 Using Esper

Similar to question 1, we define the two events that Esper is interested in. The auxiliary

variables to be used in the queries are defined as follows.

/∗

∗ create counters for player number on each map, maps are indexed from 0 to 5

∗/

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC0" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC1" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC2" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC3" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC4" , Integer . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("pC5" , Integer . class , 0) ;

/∗

∗ create time counter f o r each map, maps are indexed from 0 to 5

∗/

engine . getEPAdministrator () . getConfiguration () . addVariable ("mT0" , Double . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("mT1" , Double . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("mT2" , Double . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("mT3" , Double . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("mT4" , Double . class , 0) ;

engine . getEPAdministrator () . getConfiguration () . addVariable ("mT5" , Double . class , 0) ;

// timer recording the last event

engine . getEPAdministrator () . getConfiguration () . addVariable (" lastTime " , Long . class , 0) ;

We use the following queries to get the map with the greatest play time.

/∗

∗ Auxil iary str ing used in queries

∗/

String updateMapTime = "mT0 = mT0 + pC0 ∗ (timeStamp − lastTime) " +

" , mT1 = mT1 + pC1 ∗ (timeStamp − lastTime) " +

33

" , mT2 = mT2 + pC2 ∗ (timeStamp − lastTime) " +

" , mT3 = mT3 + pC3 ∗ (timeStamp − lastTime) " +

" , mT4 = mT4 + pC4 ∗ (timeStamp − lastTime) " +

" , mT5 = mT5 + pC5 ∗ (timeStamp − lastTime) " ;

/∗

∗ queries for PlayerJoin events

∗/

"on PlayerJoin (mapID=0) set " + updateMapTime + " , lastTime = timeStamp , pC0 =

pC0 + 1" ;

"on PlayerJoin (mapID=1) set " + updateMapTime + " , lastTime = timeStamp , pC1 =

pC1 + 1" ;

"on PlayerJoin (mapID=2) set " + updateMapTime + " , lastTime = timeStamp , pC2 =

pC2 + 1" ;

"on PlayerJoin (mapID=3) set " + updateMapTime + " , lastTime = timeStamp , pC3 =

pC3 + 1" ;

"on PlayerJoin (mapID=4) set " + updateMapTime + " , lastTime = timeStamp , pC4 =

pC4 + 1" ;

"on PlayerJoin (mapID=5) set " + updateMapTime + " , lastTime = timeStamp , pC5 =

pC5 + 1" ;

/∗

∗ queries for PlayerLeave events

∗/

"on PlayerLeave (mapID=0) set " + updateMapTime + " , lastTime = timeStamp , pC0 =

pC0 − 1" ;

"on PlayerLeave (mapID=1) set " + updateMapTime + " , lastTime = timeStamp , pC1 =

pC1 − 1" ;

"on PlayerLeave (mapID=2) set " + updateMapTime + " , lastTime = timeStamp , pC2 =

pC2 − 1" ;

"on PlayerLeave (mapID=3) set " + updateMapTime + " , lastTime = timeStamp , pC3 =

pC3 − 1" ;

"on PlayerLeave (mapID=4) set " + updateMapTime + " , lastTime = timeStamp , pC4 =

pC4 − 1" ;

"on PlayerLeave (mapID=5) set " + updateMapTime + " , lastTime = timeStamp , pC5 =

pC5 − 1" ;

Then we input the query into Esper engine, and get the required answer by observing the

variables of the play time counter for each map.

A.2.2 Using Chimera

We submit the task defined as follows.

srcNum = {1 }

eventID = {1 ,2} ,

var = { ts } ,

34

operation = {max(sum(span(1− >2))) } ,

aggr = {mapID (6) } .

There is 1 data source. Generated events with ID 1 (PlayerJoin) and 2 (PlayerLeave) are

required to answer the question. The system will calculate the time spent by each player and

sum them to obtain the total amount of time spent in each map. Of the total times, the map

with the greatest time spent is selected and returned.

As per question 1, there are 6 Workers and once again, the Collector will deliver events to

the Workers based on the mapID. The Workers will calculate the total time spent in each map

and give the timings to the Sink. The Sink will perform an additional operation, to choose the

map with the greatest time, and will return the result to the developer.

A.3 Solving Question 3

Question: What are the histograms of the time spent by every player on each map?

A.3.1 Using Esper

In this question, we use a combination of both Esper and our own separate program to

generate the histograms. We define the two events, PlayerJoin and PlayerLeave for Esper

to capture as per the previous two questions. Then we use two queries in Esper engine to

process the events. We take the results from Esper and pass it to our program to compute

the histograms.

HistogramSubscriber sub = new HistogramSubscriber () ;

EPStatement joinStatement = engine . getEPAdministrator () . createEPL (" Select ∗

from PlayerJoin ") ;

joinStatement . setSubscriber (sub) ;

EPStatement leftStatement = engine . getEPAdministrator () . createEPL (" Select ∗ from

PlayerLeave ") ;

leftStatement . setSubscriber (sub) ;

We provide here a code snippet of the key functions of HistogramSubscriber, the Java class

used in our separate program.

class HistogramSubscriber {

/∗

∗ create a set stor ing a l l players in the game

35

∗/

private HashSet<Player > playerSet = new HashSet<Player > () ;

/∗

∗ receive a PlayerJoin event

∗/

public void update (PlayerJoin event) {

Player p = new Player (event . getPlayerID ()) ;

updateHistogram (event . getTimestamp ()) ;

playerSet .add(p) ;

}

/∗

∗ receive a PlayerLeave event

∗/

public void update (PlayerLeave event) {

Player p = new Player (event . getPlayerID ()) ;

updateHistogram (event . getTimestamp ()) ;

playerSet . remove (p) ;

}

/∗

∗ update the histogram

∗/

private void updateHistogram (long currentTime) {

for (Player p : playerSet) {

double time = currentTime − p. joinTime ;

p.gameTime = time ;

histogram . adjustBucket (p. playerID , p .gameTime) ;

}

}

}

A.3.2 Using Chimera

We submit the task defined as follows.

srcNum = {1 }

eventID = {1 ,2} ,

var = { ts } ,

operation = { histogram (span(1−>2), 5 sec) } ,

aggr = {mapID (6) } .

There is 1 data source. Generated events with ID 1 (PlayerJoin) and 2 (PlayerLeave) are

required to answer the question. The system will calculate the gaming time of each player

(span on values of key ts between event 1 and event 2), and put them into a histogram, with

36

bucket width as 5 seconds. This will be done for each of all the 6 maps.

As per the previous two questions, there are 6 Workers and once again, the Collector will

deliver events to the Workers based on the mapID. The Workers will compute the histogram

for each map and send it to the Sink. The Sink does not do any processing and simply returns

the histograms to the developer.

37

